
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

W
illiam

 Eikrem

6D
 Synthetic D

ata G
eneration Pipeline w

ith D
igital Representation of Structured Light Sensor

William Eikrem

6D Synthetic Data Generation
Pipeline with Digital Representation
of Structured Light Sensor

Master’s thesis in Mechanical Engineering
Supervisor: Lars Tingelstad
Co-supervisor: Sebastian Grans

June 2021

M
as

te
r’s

 th
es

is

William Eikrem

6D Synthetic Data Generation Pipeline
with Digital Representation of
Structured Light Sensor

Master’s thesis in Mechanical Engineering
Supervisor: Lars Tingelstad
Co-supervisor: Sebastian Grans
June 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Master’s Thesis
6D Synthetic Data Generation Pipeline with Digital

Representation of Structured Light Sensor

William Skeide Eikrem

2021-06-10

Preface

This report is the result of the Master’s thesis for the Department of Mechanical
and Industrial Engineering at the Norwegian University of Science and Technology
in the field of robotics and automation.

The subject of the report stems from my interest in computer vision technologies,
and the use of neural networks to solve complex problems with technology inspired
by biological principles. I also firmly believe in the power of sharing knowledge,
and thus it was a major motivation to potentially create a pipeline that could
contribute to making datasets available for a wide range of research areas.

First of all I want to express my gratitude towards my supervisor Lars Tingelstad,
for guidance throughout the research and development relating to my Master’s
thesis. I also want to direct my gratitude towards my co-supervisor, Sebastian
Grans, for guidance through meetings and discussions about the field of synthetic
data generation, as well as being a sparring partner when exploring the vast
software that is blender. I also want to thank Martin Ingvaldsen for insights
and introduction to many solutions regarding the theory around structured light
algorithms.

Lastly I want to thank my co-students for support and a lot of memories through-
out the years at NTNU.

Summary

The need for 3D datasets for use in computer vision tasks is growing with the
increased use of neural networks on computer vision tasks such as 6D pose esti-
mation and and segmentation. These neural network need large amounts of data
to train models for solving the problems at hand. Traditional methods for acquir-
ing such datasets involve manual labeling and annotation of ground truth values.
These tasks are cumbersome and repetitive, and has therefore made synthetic data
generation a popular approach to the dataset problem. Synthetic 3D datasets are
generated through the use of computer rendered images and spatial information.
The advantage of using computer generated datasets is that the ground truth
can be collected directly from the rendering software used. However, an inherent
problem with using synthetic datasets, is the “reality gap”, which is the difference
between real captured data and computer generated data.

For this report the aim is to create a pipeline process that generate synthetic data
for use in 6D pose estimation for bin picking scenarios. The pipeline also seek to
model realistic noise, as created by real 3D scanners, by creating a digital version
of a structured light camera in Blender. The aim was to find out if such a 3D
sensor could be created, and applied to the data generation pipeline.

Developing the structured light camera was done through exploring the theoretical
concepts of structured light algorithms and patterns and applying them to the
Blender software. The resulting pipeline was created as a Blender add-on, which
contained a selectable structured light sensor modeling the properties of a real
structured light scanner creating realistic noise properties and missing values.

Sammendrag

Behovet for 3D datasett for bruk i datasynsoppgaver øker med den økte bruken
av nevrale nettverk på datasynsoppgaver som 6D-estimering og og segmenter-
ing. Disse nevrale nettverkene trenger store mengder data for å trene mod-
eller for å løse. Tradisjonelle metoder for å anskaffe slike datasett innebærer
manuell merking og annotering av sanne verdier. Disse oppgavene er tungvint og
repeterende, og har derfor gjort syntetisk datagenerering til en populær tilnærm-
ing til datasettproblemet. Syntetiske 3D-datasett genereres ved hjelp av dataren-
dererte bilder og dybdeinformasjon. Fordelen med å bruke datamaskingenererte
datasett er at sanne vardier kan samles direkte fra visualiseringsprogramvaren
som brukes. Imidlertid er et iboende problem med bruk av syntetiske datasett, “
reality gap ”, som er forskjellen mellom ekte data og datagenererte datasett.

For denne rapporten er målet å lage en “pipeline process” som genererer syntetiske
data for bruk i 6D-posisjonsestimering for bin picking scenarier. Pipelinen skal
også prøve å modellere realistisk støy, som etterligner ekte 3D-sensorer, ved å mod-
ellere en digital versjon av en strukturert lys-sensor i Blender. Målet var å finne
ut om en slik 3D-sensor kunne opprettes og brukes i datagenereringsprosessen.

Utviklingen av strukturert lys-sensoren ble gjort gjennom å utforske de teoretiske
konseptene som omhandler strukturert lys-algoritmer og projiserte mønstre og
anvende disse i Blender programvaren. Den resulterende pipelinen ble laget til
å være en add-on i Blender, som inneholder en valgbar strukturert lys-sensor
som søker å modellere egenskapene til en ekte strukturert lys-scanner som skaper
realistiske støyegenskaper og manglende verdier.

Contents

Preface i

Summary iii

Sammendrag v

1. Introduction 1
1.1. Problem statement . 1
1.2. Objectives . 2
1.3. Related work . 2

2. Preliminaries 5
2.1. Artificial neural networks . 5
2.2. Coordinate frames and transformations 7

2.2.1. Rotation matrix . 8
2.2.2. XYZ-Euler angle representation 10
2.2.3. Quaternion representation 11
2.2.4. Transformation matrices . 12

2.3. Blenders node system . 13
2.4. Domain randomization . 14
2.5. Camera matrices and transforms 15

3. 3D scanning and structured light algorithms 17
3.1. Scanning methods . 17
3.2. Structured light . 19

3.2.1. Structured light phase shifting patterns patterns 19
3.2.2. Phase shifting algorithm . 20
3.2.3. Phase unwrapping . 23

3.3. Triangulation . 26
3.3.1. Point triangulation . 26
3.3.2. Active structured light triangulation 29

viii Contents

4. Method 31
4.1. Choice of software . 31
4.2. Structured light camera in Blender 32

4.2.1. Binary structured light . 33
4.2.2. Phase detection . 34
4.2.3. Phase unwrapping . 39
4.2.4. Triangulation . 41

4.3. DataPipe architecture . 42
4.3.1. Pipeline outputs . 43
4.3.2. Blender add-on . 45
4.3.3. BlendScene class . 47
4.3.4. BlendCamera class . 48
4.3.5. Projector class . 49
4.3.6. BlendObject class . 50
4.3.7. ObjectManager class . 51
4.3.8. Simulation class . 53
4.3.9. Renderer class . 54

5. Results 57
5.1. DataPipe GUI . 57
5.2. Pipeline output . 59
5.3. Structured light . 60

6. Discussion 65
6.1. DataPipe add-on GUI . 65
6.2. Pipeline outputs . 66
6.3. Depth from structured light camera 66

7. Conclusion 69
7.1. Further work . 70

A. Name of Appendix 75
A.1. Add-on __init__ file . 75
A.2. Add-on GUI panels script . 76
A.3. Add-on GUI operators script . 87
A.4. Scene class . 97
A.5. Camera class . 101
A.6. Projector class . 104
A.7. Objects class . 110
A.8. Objects manager class . 113
A.9. Simulation class . 115
A.10.Render class . 116

Contents ix

A.11.Config class . 120
A.12.Patterns class . 125
A.13.Algorithm class . 128
A.14.Utility functions . 131

List of Figures

2.1. A simple neural network structure with one input and output layer,
and three hidden layers. 6

2.2. Relation between the input layer and first hidden layer in a CNN
for a 2D image. Source: [11]. 6

2.3. Convolutional hidden layer consisting of 3 differt feature maps.
Source: [11] . 7

2.4. Rotation of frame a to frame b, by an angle θ about the unit vector
w. Adapted from [14]. 9

2.5. Transformations between the frames {a}, {b} and {c}. 13
2.6. Example of compositor node tree for rendering z-buffer, normals,

RGB and masked images. 14
2.7. Reality domain versus synthetic domain 15
2.8. Illustration of pin hole camera model and coordinate frames 16

3.1. Laser line scanning principle. Source: [20] 18
3.2. Vertical fringes projected to a scene in Blender. 19
3.3. Fringe patterns for 4 shift algorithm with equal shifts 20
3.4. Wrapped phase image with 8 periods (top), and its intensity cross

section (bottom) . 23
3.5. Absolute phase, with intensity ranging from 0 to 2π 24
3.6. Heterodyne princible with two fringes, phase 1 with 8 periods and

phase 2 with 7 periods combined into the absolute phase 25
3.7. k1 step image, φ1 and absolute phase cross section for phase images

with 8 and 7 periods. 26
3.8. Point triangulation with a stereo camera setup of point Q, in the

presence of noise. Where O1 and O2 is the optical centers of the two
cameras and p1 and p2 are the in-homogeneous image coordinates. 27

4.1. Comparison of synthetic rendered depth data from z-buffer and real
captured data from T-LESS dataset [8]. Images were received from
my co-supervisor, Sebastian Grans. 33

4.2. Comparison image of binary and gray code patter sequences. . . . 34

xii List of Figures

4.3. Wrapped phase image and phase image intensity for 8 fringe pat-
tern, captured in Blender. 35

4.4. Intensity value of pixel u = 400, v = 795, in three phase shifted
images. 36

4.5. Wrapped phase image and cross section from FFT appraoch. . . . 37
4.6. Intensity cross-section of the captured images projected by fringe

patterns. The blue graph shows the captured image rendered with
128 samples per pixel, the red graph shows 1000 samples and the
green graph shows 128 samples with a higher minimum intensity
in the projected pattern. 38

4.7. Phase unwrapping with 10 and 9 period image patterns, with the
use of heterodyne synthetic phase. 40

4.8. Phase unwrapping with 10 and 9 period image patterns, with the
use of heterodyne synthetic phase. 41

4.9. Pipeline process overview. 43
4.10. Example of masked image, transfered to human readble form . . . 44
4.11. GUI panel for camera inputs . 46
4.12. Node tree for projector creation from Blender light source object . 50
4.13. Initial object poses generated by the ObjectManager class. 52
4.14. Occlusion box added to prevent objects clipping through plane. . . 54
4.15. Compositor node tree for two wavelengths with three phase shifts. 55

5.1. Scene input panel and initialize pipeline panel 57
5.2. Camera input panel and objects input panel 58
5.3. DataPipe input panel placement in Blender’s 3D view port 59
5.4. Example of output images from pipeline run. 60
5.5. Captured phase shifted patterns with period 61
5.6. Images from the steps of the structured light algorithm. 62
5.7. Absolute phase images obtained from projecting on reference plane

at different distances. 63

Chapter 1.

Introduction

1.1. Problem statement
The use of neural networks are getting more common and popular for solving
complex problems in a wide variety of research fields and industrial applications,
such as robotics. Although the problems these networks aim to solve can differ
on most levels, most neural networks have one thing in common, the need for
data is substantial. 6D pose estimation tasks, i.e. rotation and translation, is no
exception. However, the annotation and labeling of such datasets is often more
cumbersome and difficult than for traditional computer vision tasks in 2D. This
report presents a pipeline process to automatically generate, annotate and label
such data through the use of synthetically produced 3D datasets, specifically for
the robotic industry problem of bin picking. Bin picking is the task of detecting
object instances from objects in bulk, and acquiring their respective 6D poses
to enable robotic grasping of said objects. With 3D cameras becoming a more
available technology, it is more widely used in different applications, thus data for
training is, as a consequence in large demand.

Traditional methods of acquiring usable 3D datasets for pose estimation tasks
involves scanning a scene with a 3D sensor and manual labeling and annotat-
ing captured real world data with ground truth poses and instances, which is
a monotonous and time consuming task. Time spent on labeling and annotat-
ing data could be better spent elsewhere, on tasks that are in need of human
interaction and reflection.

For dataset generation there are two main approaches, domain randomized renders
and hyper realistic renders. The hyper realistic approach tries to bridge the reality
gap by generating data as close to reality as possible. With developments in ray
tracing, this is made possible by having realistic lighting and object textures. Real
captured data is scanned by sensors that can retrieve 3D data of good quality

2 Chapter 1. Introduction

with imperfections stemming from the scanning process. Most synthetic data
have one common property, which is the lack of imperfections in the 3D data
collected from the 3D software’s internal z-buffer depth. Hence, this report tries
to add to the hyper realism with the addition of a digital representation of a
structured light camera. The generated data should display noise characteristics
and missing data points similar to a real sensor, where for instance shadows would
prevent a structured light sensor from capturing data. In combination with other
randomizing parameters, the aim is to generate datasets which neural networks
can be trained on and thus also take into account the effects of imperfect data at
training time.

1.2. Objectives
The objectives of the report is a combination of development and research goals
throughout the project. The development goals focuses on the final result of the
DataPipe pipeline as a whole, and the research is focused on the possibilities of
the principles utilized for the digital structured light model. This results in the
following research objectives:

• Creating a pipeline process for generating textured 3D datasets for bin pick-
ing applications.

• Making the pipeline easily accessed by users, with an intuitive user input.

• Exploring the possibilities of creating a working structured light camera
inside Blender.

1.3. Related work
The use of synthetic 3D data in training of neural networks is not a new concept
in machine learning. However, the fast development in computer graphics give
rise to new technology, which enables more realistic rendering of datasets. At the
same time the need for 3D datasets are steadily increasing, as the use of 3D data
for neural networks become more popular in the computer vision field.

The field of research revolving around 6D pose estimation and segmentation, is
indeed active. However, the state of the art of the problem bin picking is relatively
unknown, and the industry solutions performances is shrouded by secrecy as stated
by R. Brégier et al. [1]. Thus, the true state of the art in pose estimation and bin
picking as well as synthetic data generation is difficult to know for sure.

As mentioned, computer rendered datasets are becoming more realistic as new ad-
vancements in computer graphics are made. There is however, still a gap between

1.3. Related work 3

real images and rendered images. In the field of synthetic data generation, this is
referred to as the “reality gap”. These differences in real and computer generated
data will affect the training of neural networks that are exclusively trained on
synthetic data, to not encapsulate the reality domain. This in turn see the drop
in performance of such models [2].

Popular approaches to dealing with the reality gap includes “domain randomiza-
tion” and “hyper realism”. Domain randomization, elaborated on in Section 2.4,
is an approach utilized by the pipelines [3], where the images are rendered with
a large degree of randomized parameters such as random positions in front of
background images not connected to the objects that are selected for. This type
of dataset often utilize the OpenGL rendering approach [4].

The BlenderProc pipeline [5] is a procedural pipeline generating synthetic data.
This is a well developed pipeline with a lot of functionalities. Its physics based
rendering approach means that the datasets generated are in line with real life
lighting conditions and physics through the use of Blender’s ray tracing engine Cy-
cles [6]. Domain randomization is utilized by altering textures, surface roughness
and several other variables. BlenderProc incorporates video generation capabili-
ties, randomized object positioning and several other randomizing aspects. The
pipeline emphasises that it is to be opensource to enable a community of people
generating datasets, building the basis of available datasets together.

It was considered to use the tried and tested pipeline created by BlenderProc
to utilize the base functionalities, only implementing extensions to the existing
software. However, the BlenderProc pipeline incorporates a lot of extensive func-
tionalities, and it was ultimately decided not to use as a base, because of the
difficulty of implementing new software that could integrate with the existing.

A quite recently started initiative is the BOP challenge, which is a series of chal-
lenges trying to observe the state of the art of 6D pose estimation[7]. The Blender-
PRoc pipeline has been used in combination with real data as the pipeline for the
creation of synthetic data for this challenge, which is a statement to the quality
of their pipeline process.

An example of a texture-less dataset is the T-LESS dataset [8], which consists
of a real captured models, which are annotated with ground truth poses, after
scanning. A lot of datasets from industry applications are created to be texture-
less, because often industrial parts, for instance bolts and nuts, have low texture
variation. The depth images of this dataset is somewhat similar to what is aimed
for by creating the structured light camera model inside the pipeline. The objects
are rough models that show signs of being captured by real sensors.

Chapter 2.

Preliminaries

The following chapter aims to provide the reader with theoretical background
knowledge of key concepts used in the report. These concepts involve an intro-
duction to artificial neural networks, rotational transforms in three dimensional
space. The Blender node system is also explained, which is actively used in the
design of the DataPipe pipeline, as well as a short presentation on domain ran-
domization for synthetic data sets. Lastly the principles of intrinsic and extrinsic
camera matrices are presented and explained for use in the structured light part
of the report. A large part of the preliminaries is gathered form the project thesis
[9].

2.1. Artificial neural networks
Artificial neural networks are a form of machine learning algorithm. These neural
networks are inspired by biology in that they mimic the way a brain operates,
with several interconnected nodes called neurons. There are a lot of different
types of neural networks, but a large portion of them are so called supervised
learning algorithms [10]. Supervised learning is supervised in the sense that the
ground truth of the data is known. The known truth is used to train the neural
networks by applying an error function on the prediction at the end, and use this
error to correct weights in the neurons of the network, such that the model will
better estimate the actual problem the next time it is run. This changing of the
weights are known as training the neural network, and is typically done on very
large datasets, to account for a very large variation in the possible inputs.

An example of a simple neural network structure with 5 layers can be viewed in
Figure 2.1. At each neuron, the input is weighted and the output passed on down
the network structure, with the next layer taking the output of the previous as
input.

6 Chapter 2. Preliminaries

Figure 2.1.: A simple neural network structure with one input and output layer,
and three hidden layers.

As mentioned, this is a simple neural network and its effectiveness is limited when
working with 2D and 3D data. This data will have to be inputted as a vector
where each pixel of a 2D image being an entry of that vector. This large vector is
then sent in to the neural network by giving each entry of the vector to an input
node, thus, loosing the spatial aspect of the image.

Overcoming this problem can be done by keeping the relation between image
pixels. An example of such a neural network type is the Convolutional neural
network (CNN) [11]. These networks can take 2D images or 3D point clouds as
inputs and keep their spatial relations, in that they do not transform the input
data into vectors. Instead they keep the data on its original form, and weight the
inputs using local receptive fields as shown in Figure 2.2 for a 2D image. The
CNN that is explained is for 2D images, but CNNs for 3D data is created in a
similar fashion.

Figure 2.2.: Relation between the input layer and first hidden layer in a CNN
for a 2D image. Source: [11].

The local receptive field is a small part of the image, often referred to as a kernel.
For the next node in the hidden layer, the kernel is moved one step, typically
one pixel, along the original image. Initially the kernel applies equal weights,
or alternatively random weights, to the pixels in the convolution, such that no
particular feature is selected for at first. Typically such a convolutional layers
consist of several different feature maps, resulting in a hidden layer as in Figure

2.2. Coordinate frames and transformations 7

2.3, where the convolutional layer has 3 feature maps. In this case the neural
network can activate for three different feature types. The kernel is the one
determining what features that is searched for, and a typical kernel could for
example be a gradient kernel, which will detect edges in an image as a feature.

Figure 2.3.: Convolutional hidden layer consisting of 3 differt feature maps.
Source: [11]

Typically there is a pooling layer following the convolutional layer, which means
selecting between the nodes in the convolutional network based on some criterion.
A common pooling layer is max-pooling, where some small region in the convolu-
tional output is considered at a time. Max-pooling involves selecting the the node
in this small region of the convolutional layer with the largest output, meaning
the most considerable match to the feature selected for. This reduces the size of
data considerably, but at the same time losing the exact position of the feature
in the process.

The last layer is typically a fully connected layer, for tasks such as pose estimation,
where the output of the fully connected layer is evaluated based on some error
metric, compared to the ground truth. By using back-propagation, this error is
used to correct the weights, in the form of kernels, of the network, and thus the
neural network gets progressively better at modeling the problem.

As mentioned previously, the same concept is used for 3D CNNs, just with a
three dimensional kernel moving in a large three dimensional matrix. This has,
however until quite recent been impossible due to the dimensionality of such a
3D representation. But using a sparse representation of point clouds using a
Minkowski Engine [12], where most of the entries become zero.

2.2. Coordinate frames and transformations
A rigid-body object’s pose in 3D has 6 degrees of freedom, its position has three
degrees of freedom and the rotation has three degrees of freedom. The positional
argument of the pose can be represented by its x, y and z coordinates in space.

8 Chapter 2. Preliminaries

For the rotation there exists a number of different representations of rotation.
In this report we use the XYZ-euler angles, rotation matrices and quaternion
representation. The material used to compose this section about 3D rotations
and transforms are gathered from textbooks and well respected papers [13], [14],
[15]

2.2.1. Rotation matrix

The 3D rotation matrix represents a rotation between two coordinate frames, and
consists of three unit column vectors. The elements in the rotation matrix is
represented as follows

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 . (2.1)

Since the rotation of a rigid body 3D object has three degrees of freedom, only
three of the nine entries in the rotation matrix R can be chosen independently.
This means that R must have six constraints. Three of the constraints comes
from the three column vectors being unit vectors, and the last three constraints
states that the vectors have to be orthogonal to each other. This can be expressed
mathematically as

r2
11 + r2

21 + r2
31 = 1,

r2
12 + r2

22 + r2
32 = 1,

r2
13 + r2

23 + r2
33 = 1.

(2.2)

And,

r11r12 + r21r22 + r31r32 = 0,
r11r13 + r21r23 + r31r33 = 0,
r12r13 + r22r23 + r32r33 = 0.

(2.3)

A shorter notation for the constraints is that the rotation matrix has to fulfill the
following equation,

RTR = I. (2.4)

2.2. Coordinate frames and transformations 9

From this constraint it also follow that the inverse of rotation matrices R−1 is
equal to its transpose RT.

Further limiting the coordinate frames to be only right handed frames, introduces
one last constraint where the determinant of R is equal to one,

det(R) = 1. (2.5)

The 3 × 3 rotation matrices adhering to these constraints forms the special or-
thogonal group SO(3).

Using a rotation matrix to rotate a frame by some angle θ about a unit vector w,
taking the frame {a} to frame {b} as in Figure 2.4, is written as

Rot(w, θ). (2.6)

Figure 2.4.: Rotation of frame a to frame b, by an angle θ about the unit vector
w. Adapted from [14].

The rotation matrix Rot(w,θ), can then be written as Rab, where the subscript
indicates the rotation is applied to go from frame a to frame b. This rotation
matrix, describing the rotation about the vector w can be described using the
Rodrigues’ formula

Rab = Rot(w, θ) = I + sin θ[w] + (1− cos θ)[w]2. (2.7)

where I. is the identity matrix and [w] is the 3× 3 skew symmetric matrix of the
unit vector. The skew symmetric representation of a vector, represented as

10 Chapter 2. Preliminaries

[w] =

 0 −w3 w2
w3 0 −w1
−w2 w1 0

 . (2.8)

2.2.2. XYZ-Euler angle representation

The rotation of a rigid body object can also be expressed as Euler angles, which
can be represented as three rotation matrices, describing rotations about the three
basis vectors x, y and z. The order of the rotations about these vectors can be
altered, but in this section XYZ-Euler angles are used. The rigid body is then
first rotated about its x-axis, before then rotation about its new y-axis, and lastly
about its z-axis

The Euler angle representation takes three arguments in the form of three angles,
α about the x-axis, β about the y-axis and γ about the y-axis. From Rodrigues’
equation from equation (2.7) we can get the the three rotation matrices for each
of the basis vectors, by substituting w with each of the vectors, and inserting their
corresponding angles for θ. This gives us the three rotation matrices

Rot(x, α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 ,
Rot(y, β) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 ,
Rot(z, γ) =

cosα − sinα 0
sinα cosα 0

0 0 1

 .
(2.9)

Using these three matrices in combination, we obtain the XYZ-Euler angle repre-
sentation from the expression

R(α, β, γ) = Rot(x, α) Rot(y, β) Rot(z, γ)

=

 cβcγ −cβsγ sβ
cαsγ + sαsβcγ cαcγ − sαsβsγ −sαcβ
sαsγ − cαsβcγ sαcγ + cαsβsγ cαcβ

 , (2.10)

2.2. Coordinate frames and transformations 11

where sinα and cosα is shortened to sα and cα, and so on, for the other angles
as well.

2.2.3. Quaternion representation

In contrast to the Euler angle representation, which takes three arguments θ, α
and β, the quaternion representation uses 4 parameters to define a 3D rotation.
Using quaternions for rotation instead of Euler-angles or rotation matrices avoids
the problem of gimbal lock. Gimbal lock occurs when two rotational axes coincide,
an thus losing a degree of freedom.

A quaternion is a hypercomplex representation, where three of the four parameters
are represented as complex numbers. A quaternion can be expressed as a four
element vector,

q =

q1
q2
q3
q4

 = q1i+ q2j + q3k + q4, (2.11)

where qn, n = 1,2,3 and 4, are real numbers and i,j and k are imaginary units.
The norm of a quaternion is

|q| =
√
q2

1 + q2
2 + q2

3 + q2
4. (2.12)

The quaternion conjugate is given as

q∗ = −q1i− q2j − q3k + q4, (2.13)

following from the multiplication and addition rules of complex numbers. Then,
the quaternion product of q and its conjugate q∗ gives the following relation,

q · q∗ = |q|2. (2.14)

Following from this relation, the quaternion inverse is given by

q−1 = q∗

|q|2 (2.15)

If the quaternion is a unit quaternion it follows from the previous equation that

12 Chapter 2. Preliminaries

q−1 = q∗.

When using quaternions to describe three dimensional rotations, the unit quater-
nion elements are described by an angle θ and a unit vector w. The quaternion
can then be written as

q = iw1 sin θ2 + jw2 sin θ2 + kw3 sin θ2 + cos θ2 , (2.16)

where w is the axis of rotation for the angle θ. A rotation of vector x about the
angle and rotation vector can then be written as

y = qxq−1 (2.17)

Where x and y is the quaternion representation with zero real parts, of three
dimensional vectors. This expression, when q an q−1 is represented in its trigono-
metric form, can then be compared to the rotation matrix R given by the Ro-
drigues’ formula in equation (2.7). This gives the folloeing relation

Rx = qxq−1, (2.18)

which shows that the quaternion q represents the same rotation as the matrix
R. Solving the equation for the elements of R expressed as the elements of q
gives a way of converting between quaternion representation and rotation matrix
representation. A rotation matrix described by the elements of q is then given as

R =

q2
1 − q2

2 − q2
3 + q2

4 2(q1q2 − q3q4) 2(q1q3 + q2q4)
2(q1q2 + q3q4) −q2

1 + q2
2 − q2

3 + q2
4 2(q2q3 − q1q4)

2(q1q3 − q2q4) 2(q2q3 + q1q4) −q2
1 − q2

2 + q2
3 + q2

4

 . (2.19)

2.2.4. Transformation matrices

The previous sections have been focusing on the rotation of a rigid body only.
In order to describe both rotation and translation between two frames in three
dimensional space, one can use the matrix T , which is a 4× 4 matrix on the form

T =
[
R p
0 1

]
, (2.20)

2.3. Blenders node system 13

where R is a 3× 3 matrix as in Section 2.2.1, and p is a vector describing a trans-
lation. Matrices on this form makes up the special euclidian group SE(3), also
known as homogeneous transformation matrices. These transformation matrices
can be used to describe the pose of coordinate frames in space. Given three coordi-
nate frames in three dimensional space {a}, {b} and {c}, and the transformations
Tab, Tbc and Tac, shown in Figure 2.5, one can obtain Tac by the expression

Tac = TabTbc. (2.21)

Figure 2.5.: Transformations between the frames {a}, {b} and {c}.

Using the inverse of transformation matrices reverses the direction of the rotation
and translation such that T−1

ac = Tca. Thus, Tcb can be described as

Tcb = T−1
ac Tab = TcaTab. (2.22)

2.3. Blenders node system
The Blender application incorporates a node based system for editing its ob-
jects, rendering settings, lighting, etc. In blender, two of the main application
for this node system is “compositing” and “material creation”. For material cre-
ation, nodes are combined to create different textures, colours, surfaces and so on.
Compositing in Blender is the modification of the rendered results that is passed
as output from Blender. From compositor nodes, the rendering of the scene can
be altered to for example render the depth pass of an image or change images
to black and white. An example of such a node tree can be viewed in Figure
2.6. This node system is an example of node based programming, where different
nodes represents actions that are carried out on different inputs or as outputs.

14 Chapter 2. Preliminaries

Figure 2.6.: Example of compositor node tree for rendering z-buffer, normals,
RGB and masked images.

Nodes can have input sockets, output sockets or both, depending on the node
type. Nodes that only have output sockets are used as inputs to other nodes in
the “node tree”, which is what a network of node is called in Blender. Examples of
these nodes are called “input nodes”, since they are used to enable the node tree
to take inputs from different parts of Blender. An example of such a node could
be the “RGB node”, which outputs a specified RGB colour, which then can be
connected to a 3D objects “material output node”, to be displayed as the surface
colour of the object. The material output node is then said to be the output node
for the node tree.

2.4. Domain randomization
Using synthetic datasets to train neural networks that are aimed at modeling
a real life problem, is not an easy task. Even though computer graphics and
rendering has come a long way, the gap between artificially produces images and
real images is still present. This presents problems when lighting conditions,
reflections, surface textures, etc. introduces large variability in the data that is
produced.

An approach to overcome this challenge is domain randomization [16]. The
method of domain randomization is focused on producing large amounts of sim-

2.5. Camera matrices and transforms 15

ulated variability in the training data, such as for example large variations in
lighting conditions, randomizing textures, varying noise in images and so on. This
is to train the neural networks on data with large variation, and trying to make
the model generalize these variations when applied to the real-world data. The
concept is focused on trying to encapsulate the real-world domain inside a larger
domain of randomized data as illustrated by the overlapping green are in Figure
2.7.

Figure 2.7.: Reality domain versus synthetic domain

There are a lot of examples on pipelines using domain randomization, for example
in the article by M. Jalal et al. [3], where the generated data is used for pose
recognition. For 3D data, domain randomization can involve placing objects in
front of unrelated backgrounds, leaving the objects floating, seemingly in mid air,
ignoring real world physics. As well as applying textures to objects that are not
related to the shapes in any way, making textures metallic, roughen the surfaces
or in other ways introduce randomness to these generated images.

2.5. Camera matrices and transforms
A camera can be described by the usual pinhole model , and the coordinate frames
and parameters related to the model are illustrated in Figure 2.8, where the point
Q is a 3D point in world coordinates.

16 Chapter 2. Preliminaries

Figure 2.8.: Illustration of pin hole camera model and coordinate frames

The transformation between the point Q in homogeneous world coordinates to
the a point p = λ[u, v, 1]T in homogeneous coordinates performed through the
matrix multiplication

p = K[R|t]Q, (2.23)

taking the point homogeneous 3D world coordinates to homogeneous 2D camera
coordinates. The camera matrix K contains the camera’s intrinsic parameters,
and [R|t] is the extrinsic rotation and translation of the camera in the world
coordinate system. The intrinsic parameters for the camera contained in K is
presented as the 3× 3 matrix

K =

ρu 0 u0
0 ρv v0
0 0 1

 f β 0

0 fα 0
0 0 1

 (2.24)

where f is the focal length ρu and ρv are the pixel height and width respectively.
The u0 and v0 is the coordinate frame shifts, which moves the image frame to
the upper corner, to where the pixel frame is located. The entries α and β is the
skewness parameters for the pixels. Usually the pixels are right angled and square
such that α and β is set to be 1 and 0 respectively.

Chapter 3.

3D scanning and structured
light algorithms

This chapter provides the reader with the theoretical concepts used throughout
the report. The theory revolves around the

3.1. Scanning methods
Recovering 3D geometries through use of computer vision is an extensive field
of research, with applications such as manufacturing, human-computer interac-
tion, medicine and biology and entertainment [17]. 3D scanning, in general, can
be divided in two main categories, contact- and non-contact methods. Contact
methods are often very precise, but has its weaknesses. For example, the scanning
speed of a contact method is limited by the speed of the measuring device on the
surface of an object [18].

One of the most widely used non-contact scanning methods is structured light
[19]. Structured light is a 3D scanning technique where a pattern is projected
across the target object. A simple form of non-contact 3D scanning, similar in
some principles to structured light, is laser line scanning [20]. The laser projects a
sharp laser line across the target object, and the laser line viewed by the camera is
deformed by the contours of the object. The camera then captures the image with
the laser line and then triangulate between the camera’s optical center and the
captured laser line and the optical center of the laser, forming what is essentially
a laser plane, as shown in Figure 3.1. The downside to laser line scanning is that
the laser and camera have to be moved to capture the full surface and not just a
cross section.

18 Chapter 3. 3D scanning and structured light algorithms

Figure 3.1.: Laser line scanning principle. Source: [20]

Structured light approaches such as Fringe Projection Profilometry and binary en-
coding work in a similar manner in terms of triangulating between the light source
and the camera capturing an image of the object. However, the structured light
technique involves projecting an pattern image instead of a laser line, enabling
rendering of almost the full view of the camera instead of only the cross section.
For a structured light approach called fringe projection profilometry (FPP), ex-
plained more in-depth in Section 3.2, the projector pattern is a series of sine waves
alternating in one direction of the image. These sine waves code the surface such
that the camera can use the reference points created by the intensity of the sine
waves, also referred to as “fringes”. These fringes can be projected horizontally,
vertically as in Figure 3.2 or at an angle. The projected fringes create several
planes orthogonal to the sine wave which can be triangulated against. These
planes exist for each captured phase value in the image, in a similar way to the
one plane created by the laser line.

3.2. Structured light 19

Figure 3.2.: Vertical fringes projected to a scene in Blender.

3.2. Structured light
Structured light is a popular choice for 3D scanners. It is used for many indus-
trial applications due to its accuracy and dense point clouds. Structured light
scanning can be achieved through numerous approaches, with more techniques
being developed continuously as it is an active field of research. The approaches
to structured light vary in many different ways. The projected patterns can, for
example, be color encoding, binary, phase shifting and step-phases [17].

3.2.1. Structured light phase shifting patterns patterns

The patterns used in different structured light techniques have different properties,
some patterns are binary, and code the surface in discrete sections, and others
project continuous patterns. Generally discrete patters are less accurate than
continuous patterns, since they cannot reach camera pixel level accuracy due to
the resolutions of the binary stripes having to be greater than pixel width.

Figure 3.3 shows an example of continuous patterns. The patterns are sinusoidal
waves varying in the horizontal direction of the image coding the surface by the
amplitude of the sine waves.

20 Chapter 3. 3D scanning and structured light algorithms

(a) Shift 1 (b) Shift 2

(c) Shift 3 (d) Shift 4

Figure 3.3.: Fringe patterns for 4 shift algorithm with equal shifts

3.2.2. Phase shifting algorithm

The projected sinusoidal patterns of an N -step phase shifting method [17] consist
of multiple periods of one wavelength in the horizontal direction of the image.
An example of such patterns, for a 4-step algorithm, can be viewed in Figure 3.3.
Different phase shifting algorithms vary in the number of phase shifts are applied,
and therefore the number of images to capture. For the general N -step case with
equal phase jumps, the intensity in pixel x, y for shift n is given as

In(x, y) = I ′(x, y) + I ′′(x, y) cos(φ(x, y) + 2πn/N), (3.1)

where n = 1, 2, . . . , N and the phase shift applied for each projected image is the
2πn/N expression. The terms I ′(x, y) and I ′′(x, y) is the average intensity and
the intensity modulation respectively, for the pixel in the pixel coordinate x, y.
The average intensity I ′(x, y) is given by

I ′(x, y) =
∑N
n=1 In
N

, (3.2)

and the intensity modulation I ′′(x, y) is given by

3.2. Structured light 21

I ′′(x, y) =

√
(∑N

n=1 In cos(2πn/N))2 + (∑N
n=1 In sin(2πn/N))2

N
. (3.3)

The output of the algorithm is the phase φ(x, y) in each pixel, from Equation
(3.1). The phase can be derived through the expression

φ(x, y) = − arctan 2
(∑N

n=1 In sin(2πn/N)∑N
n=1 In cos(2πn/N)

)
, (3.4)

which outputs the “wrapped phase”, φ(x, y), in the range [−π, π]. From Equation
(3.1), there are three unknowns, and thus, the number of images needed to solve
for the wrapped phase is three, or more. The general N -step expression for φ
in Equation (3.4) can be obtained obtained through performing the least squares
algorithm [21] on Equation (3.1), solving for φ(x, y). First, it is re written as

In = I ′(x, y) + I ′′(x, y) cos(φ(x, y) cos(2πn/N)− sin(φ(x, y) sin(2πn/N), (3.5)

from the angle sum identity for cosine. Easing the notation, this expression be-
comes

In(x, y) = α0(x, y) + α1(x, y) cos(2πn/N) + α2(x, y) sin(2πn/N), (3.6)

where

α0 = I ′(x, y)
α1 = I ′′(x, y) cos(φ(x, y))
α2 = −I ′′(x, y) sin(φ(x, y)).

(3.7)

The least squares method then uses the squared difference between the measured
intensity In, and the predicted intensity, from Equation (3.6). Thus, obtaining
the expression

E2 =
N∑
n=1

[In(x, y)− α0(x, y)− α1(x, y) cos(2π/N)− α2(x, y) sin(2π/N)]2. (3.8)

22 Chapter 3. 3D scanning and structured light algorithms

The minimum error is found when derevating the expression with respect to the
unknowns α0, α1 and α2, and setting the expressions equal to zero. To simplify
the notation, δn is used for the 2π/n phase shifts, and the summation limits are
kept out. This derivation gives the three equations

dE2

dα0
=
∑

In − α0N − α1
∑

cos(δn)− α2
∑

sin(δn) = 0

dE2

dα1
=
∑

In cos(δn)− α0 cos(δn)− α1
∑

cos2(δn)− α2
∑

cos(δn) sin(δn) = 0

dE2

dα2
=
∑

In sin(δn)− α0 sin(δn)− α1
∑

sin(δn) cos(δn)− α2
∑

sin2(δn) = 0

(3.9)
.

Modifying these expressions by setting the entries with the unknowns α0−2 on one
side of the equation, enables us to put the equations on matrix form

A(δn)α(x, y) = B(x, y, δn), (3.10)

where

A(δn) =

 N
∑ cos(δn

∑ sin(δn)∑ cos(δn) ∑ cos2(δn) ∑ cos(δn) sin(δn)∑ sin(δn) ∑ cos(δn) sin(δn) ∑ sin2(δn)

 , α(x, y) =

α0
α1
α2

 and B(x, y, δn) =

∑
In∑

In cos(δn)∑
In sin(δn)

 .
(3.11)

The problem of obtaining the unknowns now become a matrix calculation prob-
lem, where the inverse of A(δn) is applied to matrix B(x, y, δn), to obtain α0−2

α0(x, y)
α1(x, y)
α2(x, y)

 = A−1(δn)B(x, y, δn). (3.12)

Once the three unknowns are obtained, for each pixel in the image, the phase
data can be extracted from equations (3.11) and (3.12)

φ(x, y) = arctan 2
(−α2(x, y)
α1(x, y)

)
. (3.13)

3.2. Structured light 23

In the case of evenly spaced phase shifts, where δn = 2πn/N The off diagonal
elements of matrix A(δn) become zero, and the solution for the phase φ(x, y)
then becomes

φ(x, y) = arctan
(
−
∑N
n=1 In sin(δn)∑N

n=1 In cos(δn)

)
, (3.14)

which is the same expression as Equation (3.4). The resulting wrapped phase
image from this equation contains 2π phase jumps, resulting in a “sawtooth”
patterned image as in Figure 3.4, where the mod (2π) function has been applied
to the phase. This is to remap the phase from the range [−π, π] to [0, 2π]

Figure 3.4.: Wrapped phase image with 8 periods (top), and its intensity cross
section (bottom)

As Figure 3.4 shows, the phase is uniquely defined inside each of the 8 periods.
However, the phase is not unique across the periods, and to obtain the full spatial
relation between the periods, a phase unwrapping algorithm has to be applied.

3.2.3. Phase unwrapping

Unwrapping the phase is the process of uniquely identifying the phase, and thus
the y-coordinate, of each pixel in the captured images. The target of phase un-
wrapping is to eliminate the phase jumps in the wrapped phase image, to create
a continuous phase across the image as in Figure 3.5. This is called the abso-
lute phase Φ(x, y) Phase unwrapping algorithms can be classified in three main

24 Chapter 3. 3D scanning and structured light algorithms

categories [22]; temporal algorithms, colour encoding algorithms and spatial algo-
rithms.

Figure 3.5.: Absolute phase, with intensity ranging from 0 to 2π

Spatial unwrapping algorithms works under the assumption that the scanned
surfaces are smooth with no large discontinuities. The main idea behind such
approaches is that neighbouring pixels in the wrapped phase image dictates the
phase value in the unwrapped phase image. This is done by adding 2kπ to the
wrapped phase in the event that a discontinuity in phase value is detected in the
wrapped phase image, and the unwrapped phase then become

Φ(x, y) = φ(x, y) + 2πk, (3.15)

where k ranges from 0 to K − 1. Where K is the number of fringes in the
projected pattern. Such algorithms are widely used, mostly on surfaces without
large discontinuities [22].

Temporal algorithms typically use phase images of different wavelengths, result-
ing in their corresponding wrapped phase images, through phase detection as
described in Section 3.2.2. To obtain the absolute phase more than one fringe
pattern is typically required, and often a temporal phase unwrapping algorithm
is applied [17]. Instead of utilizing the spatial relations to unwrap the phase,
the temporal algorithms utilizes the phase information of each pixel, from more
than one projected wavelength pattern. The “absolute” phase is then recovered
through the relationship between the phases of the different wavelength fringes.

As a simple example for what is meant by the relation between the phase in fringe
patterns, one can look at the heterodyne approach or two-wavelength approach
[23]. The algorithm involves subtracting the phase measurements in the wrapped
phase image from each of the wavelengths

φeq = φ1 − φ2, (3.16)

where φeq is the equivalent phase. This is the phase yielded by the equivalent

3.2. Structured light 25

wavelength

λeq = λ2λ1
λ2 − λ1

(3.17)

where λeq is also called the synthetic wavelength at beat frequency. If the wave-
lengths are related as λ1 < λ2 < 2λ1, it follows that λ1 < λ2 < λeq. The beat
frequency refers to the frequency of the wave produced by the absolute value of
two interacting waves. If the two wavelengths λ1 and λ2 are close, one can com-
pletely eliminate the 2π phase jumps, and end up with the the absolute phase
from only applying Equation (3.16) and using the mod (2π) function on the
result. However, such choice of algorithm means that the signal to noise ratio
become small, and the absolute phase image will be prone to noise. In Figure 3.6
the heterodyne principle is used on two waves, wave 1 with 8 periods (upper left),
and wave 2 with 7 periods across (upper right). The resulting absolute phase
(lower left) is smooth and continuous across the image. However, the algortihm
is run perfect fringe images, and therefore no noise effects are visible, as opposed
to if these patterns were projected onto an object.

Figure 3.6.: Heterodyne princible with two fringes, phase 1 with 8 periods and
phase 2 with 7 periods combined into the absolute phase

Because the two-wave heterodyne approach is so prone to noise interaction, the
synthetic phase map Φeq is most often used as a reference phase to assist further
phase unwrapping [24]. The ratio of synthetic wavelength λeq to the shortest
wavelength λ1 is combined to a scaling factor to create a step image k1(x, y)
defining the fringe order for the longer wavelength image

26 Chapter 3. 3D scanning and structured light algorithms

k1(x, y) = Round

[(λeq/λ1)φeq(x, y)− φ1(x, y)
2π

]
, (3.18)

The k1(x, y) scaling image is applied to the captured fringe image by adding the
two captured images together. The cross section of two ideal images of k1 and
φ1 can be viewed in Figure 3.7, which illustrates the principle. Each pixel of
the step image, k1(x, y) is multiplied by 2π and added to the unwrapped phase
φ1(x, y) pixels. Thus, the absolute phase image is obtained and the phase jumps
eliminated.

Figure 3.7.: k1 step image, φ1 and absolute phase cross section for phase images
with 8 and 7 periods.

The absolute phase in Figure 3.7 is found through

Φ(x, y) = φ1(x, y) + k1(x, y)2π mod (2π), (3.19)

where the mod (2π) function is applied to take the abolute phase Φ(x, y) from
the range [0, 8 · 2π] to the range[0, 2π].

3.3. Triangulation

3.3.1. Point triangulation

Depth measurements can be extracted by observing the same point in two or
more images, captured from different camera angles with a known transformation
between their optical centers. The method replicates how depth perception func-
tions for humans, in that both eyes are looking at the same scene, with a slightly

3.3. Triangulation 27

different point of view. The principle also applies to what is known as active
stereo vision [25],[26]. Active stereo vision is a form of structured light approach,
where patterns are projected onto an object, and thus coding its surface in phase
values, such as the structured light approaches explained in Section 3.2.2. The
two stereo cameras can then use the coded surface to find point correspondence
between their image frames, and performing point triangulation explained below.

Extracting the depth value of a 3D point Q is done by triangulating its image
projections [27], qi, where i = 1, 2, ..., n is the camera number. Each camera
has a projection matrix Pi, associated with it, which maps a 3D point Q in
homogeneous world coordinates, to pixel coordinates in the image plane. The
matrix Pi is described by

Pi = Ki[R|t], (3.20)

where Ki is the camera matrix, describing the intrinsic parameters of the cal-
ibrated camera, and [R|t] describing the extrinsic camera parameters, i.e. the
pose of the camera center in world coordinates.

Figure 3.8.: Point triangulation with a stereo camera setup of point Q, in the
presence of noise. Where O1 and O2 is the optical centers of the two cameras and
p1 and p2 are the in-homogeneous image coordinates.

Without noisy observations, the problem of triangulation would simply be to find
the intersection of the lines going through the image coordinate pi from each
optical center. However such observations does generally not occur in real world
problems, and the lines therefore do not intersect, as can be viewed in Figure
3.8. Therefore the triangulation becomes a task of finding the point at minimal
distance between these lines.

Siter Hartley and Zissermann, section “12.2 Linear triangulation meth-
ods”, hvor finnes artikkelen Obtaining the triangulated value of a 3D point

28 Chapter 3. 3D scanning and structured light algorithms

Q is done though a linear algorithm involving "Single Value Decomposition" [28],
hereafter referred to as SVD. In this linear algorithm, the rows of Pi are denoted
by superscript,

Pi =

P1
i

P2
i

P3
i

 . (3.21)

Using this notation, the camera model can be expanded as

qi =

sixisiyi
si

 =

P1
i

P2
i

P3
i

Q
sixi = P1

iQ , siyi = P2
iQ , si = P3

iQ

xi = sixi
si

= P1
iQ

P3
iQ

, yi = siyi
si

= P2
iQ

P3
iQ

.

(3.22)

From these equations for pixel values of xi and yi, an expression for Q can be
developed as follows

xi = P1
iQ

P3
iQ

, yi = P2
iQ

P3
iQ

xiP3
iQ = P1

iQ , yiP3
iQ = P2

iQ

xiP3
iQ−P1

iQ = 0 , yiP3
iQ−P2

iQ = 0
(xiP3

i −P1
i)Q = 0 , (yiP3

i −P2
i)Q = 0.

(3.23)

Since Q has three degrees of freedom from its coordinates X, Y and Z, the tri-
angulation algorithm needs three constraints from Equation (3.23). Thus, the
minimum number of camera poses required is two, such that Q has four con-
straints. Looking at Equation (3.23), the xi and yi parts correspond to planes.
The x and y coordinates of Q’s image defines a plane with coefficients P 3

i xi−P 1
i ,

which Q lies on. Where the planes intersect, is the line stretching from the optical
center of the camera to the 3D point, corresponding to the back projection of the
2D point qi. From these constraints, Q can be calculated by transferring them to
matrix form

3.3. Triangulation 29

B =

P 3
1 x1 − P 1

1
P 3

1 y1 − P 2
1

P 3
2 x2 − P 1

2
P 3

2 y2 − P 2
2

...P 3
nxn − P 1

n

P 3
nyn − P 2

n

, (3.24)

where B is a n× 4 matrix. Using B Equation (3.23) can be transformed into

BQ = 0. (3.25)

From the Equation (3.25) it is seen that a trivial solution of Q = 0 exists, and
thus an additional constraint ||Q|| = 1 is needed to ensure that the homogeneous
representation of Q is not scaled to be zero.

As mentioned, noisy observations mean that Equation (3.25) will not hold per-
fectly, and that the solution is found by

min
Q
||BQ||22 where ||Q|| = 1. (3.26)

Which is solved through applying SVD [28] to B, resulting in

B = UΣVT, (3.27)

where the minimal solution for Equation (3.26), and thus the Q, is found to be
the last column vector vn of the matrix V.

3.3.2. Active structured light triangulation

Contrary to the point triangulation explained in Section 3.3.1, the triangulation
for the fringe projection profilometry algorithm, are between the projector and a
camera. This approach is called active structured light, and is dependant on a
properly calibrated projector, because the intrinsic and extrinsic projector matri-
ces are used for triangulation. In the case of phase shifting and binary encoding,
which are commonly used structured light techniques, the patterns are only vari-
ant in one direction. As mentioned this can be in the horizontal direction, vertical
direction or at an angle. If the fringes or binary stripes are vertical, the patterns
vary in the horizontal direction. This means that the triangulation process are
performed using three coordinate entries [29]. From the camera this is the uc

30 Chapter 3. 3D scanning and structured light algorithms

and vc pixel coordinates, but for the projector, assuming the pattern stripes are
vertical, only the vp coordinate holds any information useful for the triangulation.

These three coordinates are linked through the absolute phase Φ(x, y) obtained
though the phase detection and unwrapping explained in Sections 3.2.2 and 3.2.3
by the constraint

Φ(uc, vc) = Φ(up), (3.28)

where uc and vc are the camera pixel coordinates, and up is the projector pixel
coordinate in the horizontal direction. Each phase’s pixel coordinates in the cam-
era frame is matched with the corresponding phase coordinate in the projected
pattern. The camera pixel coordinates and projector pixel coordinates’ relation
to world coordinates of a 3D point Q = [Xw, Yw, Zw] are defined as

λc

ucvc
1

 = Pc

Xw

Yw
Zw

 and λP

upvp
1

 = Pp

Xw

Yw
Zw

 , (3.29)

where λc and λp are the scaling factors for the homogeneous pixel coordinates
and Pc and Pp are the camera and projector projection matrices. In the following
equation, their matrix elements are denoted with c and p superscript, the matrices
are defined as

Pc =

pc11 pc12 pc13 pc14
pc21 pc22 pc23 pc24
pc31 pc32 pc33 pc34

 and Pp =

p
p
11 pp12 pp13 pp14
pp21 pp22 pp23 pp24
pp31 pp32 pp33 pp34

 . (3.30)

From the Equations 3.28 and 3.29, the resulting 3D word coordinates for Q is
obtained from triangulation

Xw

Yw
Zw

 =

pc11 − pc31uc pc12 − pc32uc pc13− pc33uc
pc21 − pc31vc pc22 − pc32vc pc23− pc33vc
pp21 − p

p
31vp pp22 − p

p
32vp pp23− pp33vp

−1 pc14 − pc34uc

pc24 − pc34vc
pp24 − p

p
34vc

 . (3.31)

Chapter 4.

Method

This chapter discusses the choices made and methods used when researching, the
designing and testing the pipeline and structured light concepts used throughout
the research and development related to this report. The main focus points are
the design choices for the pipeline, as well as testing of different structured light
techniques in combination with Blender.

4.1. Choice of software
When the development of the pipeline was initialized, the first priority was to
select a suitable 3D software platform that incorporated all features needed to
render, randomize and was somewhat easily programmable. A literature study
on similar work was performed, to get an overivew of different approaches and
possible software. Parts of the following section is adapted from the project thesis
[9], about the same subject.

The idea of a pipeline producing synthetic data is not new, and there are several
approaches to the problem. The focus of each of the pipelines vary by what
type of problem is aimed to optimize. Some pipelines are focused on rendering
speeds and utilize domain randomization on the data to try and bridge the reality
gap. Such data sets apply random lighting conditions and place objects often
in unrealistic positions. Sundemeyer et.al. [30] used the OpenGL [4] rendering
pipeline to produce randomized data. The resulting images are not in line with
physics, due to OpenGLs lack of physics simulation possibilities.

Another commonly used type of software for generating synthetic data is game
engines such as the Unity engine [31]. These are highly capable and relevant
software, with a large variety in functionality. However, they are often expensive
and not accessible to everyone. Thus, it was decided not to use such software, since
one of the main focus points of this project was to make the pipeline open-source.

32 Chapter 4. Method

By making pipelines, datasets and other tools open-source, the community could
then benefit from a large number of contributors generating data. Such a software
was found in Blender [32].

Blender is a powerful open-source 3D creation software, with a large community.
It incorporates a large variety of functionalities. Most important for the pipeline is
its physics simulation, light simulation and rendering capabilities. With Blender,
it is possible to create realistic 3D environments, due to its node based material
editor, physics simulation and ray tracing capabilities.

Blender also has an embedded Python interpreter [33]. This allows users to ini-
tialize actions, extract data and modify 3D objects in Blender through Python
scripts. This means that the repetitive actions associated with data generation
can be automated, and output data for the pipeline can be collected and presented
in the format that is needed. Using Python alongside Blender in the pipeline also
enables the utilization of Python’s large selection of “modules”. A Python module
is a library of classes in Python that can be imported to extend functionality.

To access Blender through Python, the “bpy” module is used. The module allows
python script to do actions in almost every part of Blenders functionality base.
Settings of the “scenes”, which is a concept of a 3D environment inside blender,
which is elaborated on in Section 4.3.

4.2. Structured light camera in Blender
Blender is an extensive platform that laid the foundation for making a working
pipeline for realistic synthetic datasets. The large amount of functionalities incor-
porated in Blender, enabled the creation of a projector that could be controlled
though python and Blender, and therefore making a digital structured light cam-
era model. The inspiration to create such a camera in Blender was taken from a
Zivid blog post [34], where the author created a binary pattern structured light
setup, to understand the technique and algorithms of the method. The thought
behind then incorporating this in DataPipe, was to help bridge the “reality gap”
discussed in Section 2.4. The difference in real captured data and synthetic data
produced by rendering the z-buffer depth is shown in Figure 4.1, where the syn-
thetic depth data 4.1a is near perfect, in contrast to the uneven surfaces in the
real captured T-LESS data 4.1b. By mimicking the effects that noise has on
depth sensing with real cameras, the aim was to create more realistic datasets
for training neural networks. However, such a camera would mean a lot more
images would have to be rendered per image created which was an important
consideration throughout the research.

4.2. Structured light camera in Blender 33

(a) Blender z-buffer depth data. (b) T-LESS captured depth data.

Figure 4.1.: Comparison of synthetic rendered depth data from z-buffer and
real captured data from T-LESS dataset [8]. Images were received from my co-
supervisor, Sebastian Grans.

4.2.1. Binary structured light

Although the main focus of this project is not the data generation speed, some
considerations had to be made regarding the number of images rendered per scene.
The rendering process of the images captured in Blender is the largest time con-
sumption in the pipeline with rendering time of approximately one minute for an
image with resolution 1920 × 1080, on a standard Macbook Pro model. Since
datasets for neural networks often need to be in the range of several tens of thou-
sands of entries and often upwards, depending on the task, this sort of time spent
on rendering implies the need to minimize images generated per scene render for
the structured light camera in Blender.

As mentioned in Section 3.2.1, there are a number of different patterns that can
be used for structured light. At the start of the project, the search for the most
applicable method for structured light scanning, was the main research area. The
aim was to utilize a method that enabled high accuracy, was easy to implement
and required as few patterns as possible to be projected. The first type of patterns
considered was the binary patterns, more specifically, graycode patterns [17], be-
cause of the simplicity of the implementation itself. Graycode patterns were more
favorable than ordinary binary patterns, due to their robustness against misinter-
preted bits as illustrated in Figure 4.2. Gray code patterns only change one bit at
a time, such that is one bit is misinterpreted, the spatial displacement between the
correct and misinterpreted bit will always be small. For binary patterns however,
this spatial displacement is much larger, as shown by the arrow in Figure 4.2a,
where the value of one bit in the sequence is misinterpreted.

34 Chapter 4. Method

(a) Binary pattern sequence.

(b) Gray code pattern sequence.

Figure 4.2.: Comparison image of binary and gray code patter sequences.

The downside found to using binary approach of structured light however, is that
the patterns limit the resolution of the point-cloud in that the projected patterns
can not be divided into camera pixel size, to avoid miss interpretation of the
camera pixel values. In addition, the approach can be very costly in terms of
images that has to be taken to obtain the wanted accuracy. For graycode, each
image projected doubles the number number of stripes in the pattern such that
to divide a pattern with, for example, dimensions 1280 × 720 into stripes with
2 pixels width, one would need to solve n = log2(1280) − 1, and round up the
result, which is 10, but two additional images would have to be projected as well,
one completely lit and one completely dark. This is to correct for color variance
in each pixel. Thus, the number of patterns to project and render would be 12,
which would affect the run time of the pipeline to a large degree. In addition,
binary structured light not being of the most accurate techniques, the approach
was deemed unfavorable at an early stage.

4.2.2. Phase detection

Fringe projection profilometry, explained in Section 3.2.1, as a structured light
technique was of interest since the properties of the sinusoidal patterns allowed
for camera pixel accuracy, contrary to binary pattern methods, it is not affected by
the resolution of the projected patterns, due to the ability to interpolate between
the sine values captured. Different approaches utilizing fringe projection was
considered, and the initial experimentation was testing different approaches to
phase detection, where the wrapped phase was solved for.

4.2. Structured light camera in Blender 35

At the start of the testing and research, the initial approach was to use Equation
(3.4) with a three step heterodyne algorithm. The phase detection algorithm was
applied to every pixel to obtain the full phase image. In the early stages, this
involved looping the image pixel by pixel, calculating the pixel’s corresponding
phase value from three phase shifts. Time consumption of the approach was
between 40 seconds, and upwards to 1 minute 10 seconds for an image of resolution
1920 by 1080. However, the phase image was obtained, and the wrapped phase
in Figure 4.3 looked promising at such an early stage.

(a) Wrapped phase image

(b) Wrapped phase intensity

Figure 4.3.: Wrapped phase image and phase image intensity for 8 fringe pattern,
captured in Blender.

As the phase detection speed was slow due the algorithm having to loop and
separately compute two million pixels’ phase value, at resolution 1920 by 1080
pixels, a new method was proposed. In the Section 3.2.2, Fourier profilometry was
presented, which was a solution to the run time problem, as the numpy library
contains a function called FFT [35], short for “Fast Fourier Transform”, which

36 Chapter 4. Method

can be performed on every pixel in the shifted patterns, without going through a
loop. The FFT function compute the Fourier transform and outputs the signal in
frequency domain. With signal, it is refered to each pixel’s phase values at each
phase shifted image, together illustrating a partial sine wave with entries for each
phase shift, as in Figure 4.4. These sampled sine values were taken as input to the
numpy FFT which output a list of complex representation of the waves, z = a+ ib
at the different frequencies incorporated in the signal. The first output list entry
is the average value of the wave, and the second entry is the largest wavelength,
which is the projected pattern. By extracting this complex representation of the
wave, the phase can be computed by finding the angle of the complex number.
This was done through the numpy.angle function which computes the angle for
the complex number through the expression φ(x, y) = arctan(b/a).

Figure 4.4.: Intensity value of pixel u = 400, v = 795, in three phase shifted
images.

The obtained wrapped phase image was, at first glance, similar to that of the
previous approach using the arctan function to obtain the phase value. However,
what looked like periodic misinterpreted phase values as shown in Figure 4.5,
started to emerge. The misinterpreted phase values are shown as waves forming
on the saw tooth cross section of the wrapped phase. At first this was suspected
to be caused by low light strength from the projector, causing the projected phase
patterns to be saturated, causing the sine waves to be flattened at the peak
intensities. Tho test if this was the case, a range of strength values was tested as
projector output, but yielded no results, and the wrapped phase images showed
similar misinterpreted phase values.

4.2. Structured light camera in Blender 37

(a) Wrapped phase image from FFT ap-
proach, from 5 step algorithm

(b) Cross section of wrapped phase obtained
from FFT approach

Figure 4.5.: Wrapped phase image and cross section from FFT appraoch.

After eliminating the light strength as cause to the misinterpretation, it was sus-
pected that the cause of the periodic errors could be caused by the Cycles ray
tracing engine [6] incorporated in Blender. The Blender ray tracing is a stochastic
algorithm [36], where light rays are reflected off surfaces in a randomly selected
direction. It was therefore suspected that the lack of light in the low lit intensi-
ties of the fringe patterns, could cause noisy measurements in these places. To
test if this was the cause of the periodic errors in the wrapped phase image, the
sampling of rays per camera pixel was set to 1000, in contrast to 128 which is
the default setting used before. Another approach was to raise the lowest pixel
intensity in the projected patterns from 0 to 50, which was the range where most
noisy measurements was captured.

In Figure 4.6 the captured images from the three approaches can be viewed. The
blue line correspond to the default number of samples per pixel, and it is clearly
very noisy in the lower intensities of the projected fringe patterns. Compared with
the red line, which is the 1000 samples image, a large difference in noise can be ob-
served. This is indicating that the noise could be affecting the unwrapped image.

38 Chapter 4. Method

Since the 7 images with 1000 samples took 45 minutes to render, it is thus not an
approach that is valid for the full pipeline. However, when using 128 samples with
the intensity shifted patterns the noise was reduced to almost the same level as
the 1000 sample image, illustrated by the green line. However, the wrapped phase
image still had periodic phase misinterpretations despite minimizing the noise.

Figure 4.6.: Intensity cross-section of the captured images projected by fringe
patterns. The blue graph shows the captured image rendered with 128 samples per
pixel, the red graph shows 1000 samples and the green graph shows 128 samples
with a higher minimum intensity in the projected pattern.

Further experimentation was done by projecting patterns of different wavelengths
on the same scene, checking for a link between the misinterpreted phase values
and wavelength. The experimentation showed that the misinterpretations became
more prominent for the shorter wavelengths, but still also present in the longer
wavelength tested. From the tests, it was presumed that the misinterpretations
was due to the FFT causing aliasing due to the number of phase shifts being too
low, which gave the FFT too few data points to determine the phase.

Because the FFT approach resulted in wrapped phase images with periodic misin-
terpreted phase values, the arctan approach was again the favoured. However, the
approach of computing each phase changed from looping every pixel to applying a
matrix multiplication algorithm using the Numpy Python library, improving the
computation time and outputing cleaner wrapped phase images.

4.2. Structured light camera in Blender 39

4.2.3. Phase unwrapping

Obtaining the absolute phase of the fringe images is completely dependent on
the quality of the wrapped phase images, when using a temporal algorithm. The
temporal algorithm from Section 3.2.2, using the heterodyne approach with two
wavelengths was first tested. Two projected patterns with 9 and 8 fringes was
first projected. The image projected with the shortest wavelength pattern was
subtracted by the longer wavelength and the modulo operation was applied to
their difference. The resulting image is their synthetic phase, with pixel values
from 0 to 2π, because the 8 fringe pattern is exactly one wavelength less than the
9 fringe pattern.

The synthetic phase can be viewed in Figure 4.7, showing the synthetic phase
image 4.7a and the cross section of the synthetic phase and the two corresponding
wrapped phases 4.7b. The synthetic phase was at an early stage of the research
mistakenly believed to be the output absolute phase result, which it seldom is, as
explained in Section 3.2.3.

40 Chapter 4. Method

(a) Synthetic phase image from 9 fringes and 8 fringes
patterns.

(b) Cross section of wrapped phases and synthetic
phase.

Figure 4.7.: Phase unwrapping with 10 and 9 period image patterns, with the
use of heterodyne synthetic phase.

The synthetic phase was found to most often be used as a reference phase in the
process of further unwrapping the phase. As the phase values from the synthetic
phase is very susceptible to noise, it is not applicable for use in triangulating
between the projector and camera. However, the scaling factor assisted algorithm
from Section 3.2.3, where the shortest and more sensitive wavelength projected
is scaled by a step image k1. The image k1 determines the fringe order of the
discontinuous wrapped phase from said wavelength by being added to the wrapped
phase image. The absolute phase is thus transformed to the range [0, 2πK − 1]
where K is the number of fringes in the smallest wavelength image. The images
obtained from the algorithm can be viewed in Figure 4.8.

4.2. Structured light camera in Blender 41

(a) φ1(x, y) from 9 fringes (b) φ2(x, y) from 9 fringes

(c) (φ1(x, y)-φ2(x, y))mod(2π) (d) k1 image from synthetic phase

(e) Absolute phase, from k1 and φ1

Figure 4.8.: Phase unwrapping with 10 and 9 period image patterns, with the
use of heterodyne synthetic phase.

4.2.4. Triangulation

Triangulation between the projector and camera is done through the algorithm
from Section 3.3.2. For the triangulation the intrinsic matrices from both the
projector and camera was needed. Because the camera and projector intrinsic
parameters are determined from user input, these matrices are not the same for
every run of the pipeline. Thus they had to be calculated at run time. For
the camera matrix, the algorithm from [37] was used, which gather the matrix
entries directly from the camera object in Blender and compute the same camera
model as described in Section 2.5. The projector, a similar algorithm is used, but
the matrix inout is collected from the input variables defined by the user, since

42 Chapter 4. Method

the projector is created from a light source object, and therefor have no Blender
specific properties to collect. The camera extrinsic transformation matrix is set
to be the unit 3 × 4 matrix, and thus the coordinate frame the depth vales are
referenced from. The transformation between the projector is collected directly
from Blender, with the camera object being a parent object to the projector.
These operations are performed by the Algorithm class, which can be viewed in
Appendix A.13.

4.3. DataPipe architecture
From the previous report [9] and the creation of the first pipeline in Blender, ex-
perience and new ideas on how to improve the quality and structure of a pipeline
was obtained. For instance, the earlier version of the pipeline was designed in a
way that made expanding and improving functionalities difficult. The class de-
sign was cluttered and inconsistent. Thus, the need to build a new pipeline from
ground up was the easiest approach for improving. The new pipeline, DataPipe,
was build using proper instancing and object oriented techniques, instead of using
static classes handling too many tasks and variables. Classes were now designed
to have fewer responsibilities, more closely related to the Blender objects they
handle. This made for a better overview of the classes’ functionalities and respon-
sibilities, and making the process of expanding and changing the pipeline Python
classes more agile. The code for all DataPipe classes and scripts can be viewed
in Appendix A.1-A.14.

Figure 4.9 shows a simplified overview of the main components and processes in-
cluded in the pipeline. The pipeline revolves around two loops, the scene creation
loop and the render loop. In the scene creation loop the objects are imported
based on the user input described later, in Section 4.3.7. These objects are given
physics properties, and their physics are simulated, to mimic a bin-picking sce-
nario, with randomly positioned objects in the scene. This scene is then rendered
from one or multiple camera poses. The output information related to each ren-
dered camera angle is then sent to the output file and the render loop continues
until all selected camera poses are rendered. This launches the scene creation
loop, where the process repeats itself until the total number of renders, from user
input, is reached. The pipeline then terminates and resets to be ready for new
runs.

4.3. DataPipe architecture 43

Figure 4.9.: Pipeline process overview.

4.3.1. Pipeline outputs

The selection of pipeline outputs were based on inputs that are needed for a neural
network utilizing 3D data will need for 6D pose estimation. Looking at critical
outputs and some “nice to have” outputs, the following were selected:

• Depth image from structured light.

• Depth image from z-pass.

• Ground truth 6D poses of the objects in the rendered images.

• Masked image

• Normals map image

44 Chapter 4. Method

A critical factor for the data is the depth image, which introduces the spatial
aspect of the data. From the depth image a point cloud can be produced in
a desired format, for example using the Open3D library Zhou2018 in Python,
outside the pipeline. The depth is rendered through the structured light algorithm
from Section 4.2, but also through the z-pass which is the perfect depth image
gathered directly from the Blender software. The RGB image is also rendered
along with the z-pass, and adds three dimensions, in the form of pixel colors, if
used in the neural network input at training time.

To use this point cloud data to train a neural network, the ground truth poses
of the objects in each point cloud are needed. Ground truth poses are used
to compute the error in the estimations from the neural network. The error is
then back-propagated in the network, altering the weights. This altering of the
weights is making the model into a better approximation next time it is run,
as discussed in Section 2.1. Therefore, the pipeline needed to output a rotation
and a translation measure for the objects relative to some coordinate system.
Representing the translation part of the pose is most naturally done by the x, y and
z coordinates. However, for rotation this was not as clear, but the representation
that was chosen was the rotation matrix. This is due to it being an intuitive and
familiar representation of rotations, as well as its matrix multiplication properties
described in Section 2.2.1.

The masked image is an image containing the object indexes, whic are uniquely
defined for every object in the image. The image can be useda to link the object
output data from the output file to the object instances viewed in the image. The
masks and indexes are integer values which is written to an OpenEXR file [38]
which can contain the object indexes instead of RGB values as the usual .jpg or
.png images. An example of such an image can be viewed in Figure 4.10, where
the OpenEXR file is converted to a human readable format, with the different
indexes having different intensities. In addition to describing an objects location
in the image frame, it can be used for instance segmentation and object recognition
tasks.

Figure 4.10.: Example of masked image, transfered to human readble form

4.3. DataPipe architecture 45

The normals image illustrates the estimated normals of the 3D environment in the
image. The normal vectors are perpendicular to the surfaces in each pixel in the
image. They are represented as RGB channels describing the the entries in the
normal vectors, red being the x value, y is green and z is blue. The normals image
is not a critical output for the pipeline, but it is rendered simultaneously to the
z-pass. Thus, it being rendered does not affect the speed of the rendering process.
Also, many deep learning algorithms improve when the normals are introduced
as input in addition to other inputs, as stated in the article by M. Denninger et
al. [5].

4.3.2. Blender add-on

The main goal of the pipeline was to create a tool for producing large amounts
of realistic data for 3D applications, in a way that was user friendly and easy
to learn. The initial approach for gathering user input was having a .json file
created by the user, containing a dictionary from where the variables utilized by
the pipeline were collected. This was an easy method to implement and is used
in the pipeline BlenderProc [5]. However, the downside is the lack of opportunity
to guide the user to correctly define the inputs. The user is required to read and
understand a lot of documentation, to be able to make use of the features of the
pipeline.

Blender has its own python distribution, and incorporates a scripting environ-
ment, from where the user can work behind the graphical user interface, hereafter
referred to as GUI, of Blender itself, and automate processes and create scripts
that extend it’s functionalities. Along with this, developers can utilize existing
components and properties from Blenders GUI, to create additional elements to
the existing GUI where user inputs can be collected for python scripts. This is
called “add-ons”, and can be created by everyone using Blender.

The GUI components used are called “properties” and “operators” in the blender
environment. A property is an input element that can be defined as vectors,
integers, floats, enumerators and more. Operators are added as buttons that
launch other python scripts that are called when the user launches these operators.
These properties and operators are added to the GUI in what is called “panels”
in Blender, which is GUI element “containers” displaying the GUI elements that
are added.

An example of such a panel with properties and operators can be viewed in Figure
4.11. The panel contains the projector and camera intrinsic parameters in the form
of integer properties, the projector extrinsic parameters relative to the camera
are in form of two float vector properties and the structured light parameter is a
Boolean property that determines if the projector is included, and thus structured

46 Chapter 4. Method

light rendering is activated. At the bottom of the panel, three operators that
manage with the camera poses, can be seen; camera preview, append and remove
camera pose.

Figure 4.11.: GUI panel for camera inputs

The decision of making DataPipe into an add-on was taken to improve the user
interaction with the pipeline, and allow for a lower threshold for using the pipeline.
Blender has a large user base that are familiar with its GUI elements, which makes
DataPipe easy to use, and also easy to access. In addition, even as the building
of the pipeline was far along in the development, conversion from using a .json
file to an add-on GUI, was easily done, by making the GUI inputs write to the
same type of file. Thus, the pipeline could be left unaffected, and still collect the
input from the file.

Another problem that was solved when changing to add-on, was the working direc-
tory problem that was faced before conversion. The pipeline classes was created
as separate python files launched by the pipeline main.py. To use the pipeline
in blender, the function had to be imported to Blender, and being launched by
Blender’s own bundled python distribution. Thus, losing the relative paths to the
rest of the pipeline classes, as well as any link to the pipeline folder structure.

4.3. DataPipe architecture 47

Creating the pipeline as an add-on, enabled gathering all pipeline related direc-
tories and files inside Blenders add-on folder. This also meant that file locations
and paths were relative to Blender, which meant absolute paths could be input
through the use of the directory property. The property enabled the use of a file
explorer in the pipeline GUI which outputs the absolute paths, and makes for
better user interaction for inputting object files and defining output directories.

Add-ons are relatively easy to install for the user as well. The DataPipe zip file
can be downloaded from the github repository, and installed through Blender’s
preferences tab inside the GUI, then the add-on can be turned on and off as
needed.

4.3.3. BlendScene class

The concept of a scene in Blender is the environment that is created in the 3D
view of the program. The BlendScene class of the pipeline are responsible for all
operations carried out on the Blender scene, as well as outputting the information
about its associated objects and camera for every scene instance that is rendered
through the pipeline.

It was important that the scene layout can be varied by the user, as this helps
create data sets that are specific to the task at hand. It was therefore decided
that the user creates and models the scene layout outside the pipeline, then run
the pipeline from the .blend file containing the user created scene. This allows
the user to preview different elements of the pipeline, such as the camera and its
poses, and how they integrate with the scene layout.

The BlendScene class of DataPipe encapsulates all DataPipe objects that are
linked to the pipeline. As input, the scene class was set to control the amount of
total renders to be executed for the pipeline run, and how many different camera
poses that were to be rendered for each scene. Another key element to the scene
is the location of the drop zone. It determines the location of the initial positions
of the physics objects that is to be simulated. The positional and dimensional
agruments for this drop zone is collected from an object that is imported through
the use of a Blender operator. The drop zone object is then moved and scaled
by the user to fit the scene enviroment. When the pipeline is launched, this
information is gathered, and passed to the ObjectManager class, in charge of the
objects’ initial placements.

Output information about all blender objects contained in each scene is stored
in a dictionary that the BlendScene objects generates. Information about these
objects is collected from the ObjectManager object, explained in Section 4.3.7 and
the BlendCamera object. The information that is stored is the camera pose in the

48 Chapter 4. Method

world coordinate frame, and for the objects it is a dict containing information
about the objects currently in the scene. This dict is elaborated on in Section
4.3.6. When each scene is finished rendering, the output dict is appended to the
DataPipe_output.pickle file, such that if the pipeline crashed, all information
so far, will be available from the output file.

4.3.4. BlendCamera class

The ambitions of creating a digital version structured light camera for the pipeline,
made the BlendCamera and Projector classes some of the more critical compo-
nents of DataPipe. Because the structured light sensor addition to the pipeline
would produce data of unknown quality, it was early determined that it should be
possible to toggle the feature on and off. In addition, the substantial rendering
time of such data due to the addition of several more images per scene, the need
for an option to select a simple camera outputting noise free “z-buffer” data was
added at an early stage of the development.

BlendCamera takes input from the user for the intrinsic parameters in the form
of focal length, resolution and sensor width, relating to pixel size. The camera
position is defined by toggling camera preview on and moving the preview camera
object to the desired position. The interactive camera positioning was imple-
mented for convenience and such that the user could get visual aid when selecting
camera positions. The user can still choose to position the camera with angle
inputs, but additionally, it was now possible to drag an rotate the camera object
without knowing the exact coordinates. The input from the camera is collected
by extracting the position vector and the quaternions from the preview camera
object, and appended to a list in the input dictionary containing camera posi-
tions so that the user could choose to have multiple camera views of one scene.
The quaternion representation was chosen due to it’s robustness in 3D transforms
against gimbal lock, and due to inaccuracy when converting between Blenders
representation of Euler angles and rotational matrices, which is needed for the
output format of the objects positions relative to the camera frame.

Randomizing parameters to create diverse data was important for the pipeline to
generate good quality datasets, where the neural network could train on as many
different scenarios as possible. Building on this it was wanted that the camera
positions should be randomized to a certain degree. However, if the data were to
model a specific situation, the user could want to define specific camera poses to
better model the real environment. As a compromize to completely randomized
camera poses, it was determined that a semi-random camera pose selection should
be implemented. Poses are semi-random in that they are randomly chosen for each
scene, from a pool of poses defined by the user at input. Randomization is then

4.3. DataPipe architecture 49

achieved in that not all scenes are rendered from the same view point, but the
user still has full control over the poses that are in the pool.

The BlendCamera object has a boolean variable stating if it is a structured light
camera. Setting the input for structured light to true, a nested Projector object
instance will be initialized. This projector is coupled to the BlendCamera object
by setting the Blender light objects, explained in the following section, as child
objects of the camera, such that they maintain their relative pose to the camera
as it moves.

4.3.5. Projector class

The Projector class was the main element enabling the digital representation of
the structured light camera. Creating a digital representation of a projector in
blender was done through the use of light source objects [39] in Blender, with a
node tree applying an image texture to the emitted light rays. At the start of
the development an add-on for creating projectors in Blender was found [40]. It
enabled creation of projector through the GUI intuitive, but it was hard to control
through Python. In addition, the use of the add-on would create dependencies for
potential pipeline users and the functionality of the pipeline itself, and it would
rely on compatibility if the projector add-on was further developed. Hence, it was
decided to create a projector object from scratch.

The Projector class would have to project multiple different projected patterns,
and the solution was to add multiple light sources that project different patterns
on the scene. By doing that, a method for rendering one pattern at a time was
required. This was solved by using the “view layers” in Blender, which is layers
added to the scene in scene in Blender where specific object can be hidden and
showed based on what layer they are placed on. All layers viewed the same scene,
but the different light sources could now be hidden in the view layers they did not
belong to.

Making the light source objects function like a projector, a node tree had to be
created for each of the lights. The node tree can be viewed in Figure 4.12, and
consist of seven nodes added and modified through the Projector class. The
first node is a texture coordinate node mapping the textures of the unit sphere
that is the light object emitting rays in the normal direction to the light object.
From the node, the normal vectors of the unit sphere are taken as output, and
divided by the z-component through the use of a separate XYZ and a vector
divide node. The division is performed to remove the pincushion distortion of
the projected image, essentially projecting the image on a plane, instead of a unit
sphere. These vectors are then mapped to the image, giving each vector a pixel
value through the mapping node and image texture node, applying the structured

50 Chapter 4. Method

light pattern image. This mapped image is then sent to an emission node which
sets the light strength, and then this mapped image is sent to the light output
node projecting the image onto the scene.

Figure 4.12.: Node tree for projector creation from Blender light source object

To set the projector’s field of view the mapping node scale in Figure 4.12 has to
be set appropriately. This was done by modeling the light source as an inverse
camera. Input from the user was taken as focal length and sensor size, and
the scaling in x and y direction was computed similar to the camera matrix in
Equation (2.24) from Section 2.5 from the relations

scalex = f
sx

and scaley = f
sy
, (4.1)

where f is the focal length from input and sx and sy is the sensor size in horizontal
and vertical direction respectively. Modeling the projector as an inverse camera,
means that the projector intrinsic matrix can be calculated in the same manner
as the camera matrix. Due to the limitations of the report and the modeled in
Blender’s software being perfectly free from noise, the projector was decided not
to be calibrated, since that is a whole field of study in itself.

4.3.6. BlendObject class

The objects in scene is a key element for the pipeline, therefore it was important
that the input process was easy, such that the user would take the time to input
as many different objects as possible to get diverse data sets. The file explorer
property made the process much less cumbersome, by not having to find the path
to every single object before pasting it into the input file.

Blender has meters as default unit in it’s modeling environment, which can be
changed through python code. However, objects that were modeled in millimeters
tended to be imported with the default units in meters, making the objects scaled

4.3. DataPipe architecture 51

by 1000 and therefore not fitting the dimensions of the scene, which would impede
the physics simulations described in Section 4.3.8. With the pipeline created as
an add-on, these objects could be previewed before they were added to the scene,
and scaled accordingly by the user, before running the full pipeline.

BlendObject also takes collision shape as user input, which can be chosen to
be either the mesh shape or a convex hull surrounding the mesh of the object.
Selecting the latter drastically improves the physics simulation time, because the
collision shape has a lower resolution and is less detailed that using the mesh
shape. This enables the user to cut time for objects that does not have intricate
and concave shapes.

Each instance of BlendObject has a set of instance variables that are passed
as output for the pipeline. These variables are name, filename, pass index and
the transformation matrix. The variable name, is to uniquely identify the object
in each scene instance, the name is given at import time, and is on the form
“DataPipe_object.xxxx”, where “xxxx” correspond to the pass index padded with
zeros. The filename variable is collected from the object import path. This
variable is sent to output to be an identifier for the object type, if the pipeline data
is to be used for segmentation tasks. The pass index is tied to the masked image
output, where each of the objects can be identified by their pass index. The file
format of the masked image is “.exr”, which is not limited by the standard format
for .png and .jpg where there are three channels for the RGB values, but rather
it have arbitrary channel format, which allows for object indexes to be passed as
integers instead of a randomly generated unique RGB value. The transformation
matrix given as output is the transformation between the camera frame and the
object. By default Blender’s world coordinate system is situated at the center of
each scene, and all translations and rotations are described in that basis. Thus,
poses of the objects in the scene are only described in the world coordinate system,
and the objects poses in the camera frame therefore have to be computed using
transform matrices from Section 2.2.4. Multiplying the inverse transform matrix
T−1
sc = Tcs, between the world coordinate frame s to the camera frame c by the

transformation Tso between the world coordinate s frame and the object frame o
results in the transformation matrix describing the 6D pose of the object in the
camera frame Tco, which is passed as output for each object.

4.3.7. ObjectManager class

The ObjectManager class is a helper class for BlendObject, which administrates
the importing, placing and deletion of object in the scene in Blender. Input from
the user is appended to a list of objects to include in the pipeline, along with
their maximum and minimum occurrence in each scene creation, as well as their

52 Chapter 4. Method

scale and collision shape discussed in Section 4.3.6. The ObjectManager imports
a random number of each object within these minimum and maximum for every
3D object file, ensuring a randomized composition of objects in every scene. The
user input includes the file path to the 3D object, with the only accepted file type
being “.obj”. The .obj files allow the objects to be imported with textures, unlike
several other 3D file types such as “.stl” and “.ply”. Importing object with texture
adds to the realism of the outputted dataset images, and creates more variation
in the scene.

As objects are imported to the scene, the ObjectManager generates random initial
positions for the objects above the drop zone in the scene, shown in Figure 4.13.
Objects are placed in layers in the vertical direction, based on their size and the
size of their neighbouring objects such that no collisions or overlapping occurs.
In these vertical layers, each object is given a random position in the xy-plane,
to add to the randomization aspect of the simulation, and thus creating diverse
data with unique poses mimicking a bin picking scenario.

Figure 4.13.: Initial object poses generated by the ObjectManager class.

The BlendObject instances are stored in a list in the ObjectManager class, such
that their instance variables are accessible from the other classes of the pipeline
such as the BlendScene, which collects information about the objects at output

4.3. DataPipe architecture 53

time.

4.3.8. Simulation class

• Write about the box generated under the dropzone, to avoid objects clip-
ping through the bottom plane, because of the collision tolerance being so
low, that the speed of the objects allow them to slip through the tolerance
between frames.

The physics simulation is one of the main parts of DataPipe contributing to
the randomization of the generated datasets. The Simulation class is in charge
of simulating the objects physics properties through the use of Blender’s rigid
body physics simulation. The 3D objects in the scene environment is simulated
from their initial poses generated by the ObjectManager class, and interacts with
the environment when colliding throughout the simulation time, to end up in
disordered poses. This simulation is supposed to mimic the scenario of bin picking
where parts are thrown inside a bin, and left randomly distributed, which adds
an element of realism to the datasets generated.

While testing the simulations on object models of small scale, problems arose with
these objects clipping through the plane they collided with. This was found to
caused by the collision margins of the objects being low. This allowed the objects
to pass through the thin plane in between frames when the object reached large
velocities in the simulated drop. However, the collision margins could not be
changed because it caused the objects to hover above the surface and thus, giving
the objects unreal poses. This was solved by instead adding an occlusion box,
just below the drop zone, flush with the plane, and setting it to be invisible in
renders. This meant that the objects would have to pass through a much greater
volume in between frames, thus eliminating the clipping problem.

54 Chapter 4. Method

Figure 4.14.: Occlusion box added to prevent objects clipping through plane.

4.3.9. Renderer class

• Rendering in BW mode does not affect the render time, the gray scale filter
seems to be applied after rendering

• Maybe write about other rendering engines than cycles, and say that they
are possibly better

• Write about the use of a better computer to try rendering on

The render output of the pipeline can be altered using Blender’s node system.
For the render output, Blender has a “compositor” editor built in, which uses the
Blender node system elaborated on in Section 2.3. This allows to collect different
outputs from the scene view layers, including the z-buffer, which is the scene
depth relative to the camera object, represented by a depth value in each pixel of
the image. The compositor allows modification of this information using Blenders
node based programming, explained in Section 2.3.

The Renderer class is in charge of the whole rendering process from the creation
of the compositor node tree to the rendering and creation of the render output
directories. The rendering node tree can be viewed in Figure 4.15, where the view
layers containing each Projector light source is rendered separately. For the six
view layers containing the projected sine patterns, to the left in the figure, only
the RGB image is rendered, as a .png file. These images are passed through the
structured light algorithm in the Algorithm class at a later stage of the pipeline.
However, to the right in Figure 4.15, the native view layer is rendered. This is
the view layer that is created as default, and where the user defined scene lighting
still exists. From this view layer, the z-pass depth image of the scene is rendered,
along with the normals image, masked image and the RGB image is rendered.

4.3. DataPipe architecture 55

Figure 4.15.: Compositor node tree for two wavelengths with three phase shifts.

Chapter 5.

Results

5.1. DataPipe GUI
The DataPipe Blender add-on input panels are created using Blender’s own GUI
class types, included with the bundled Python API of Blender. Figure 5.1 to 5.2
shows the different GUI panels for collecting user input to the different DataPipe
classes making up the pipeline process. In addition, a video showing a short
demonstration of the DataPipe GUI elements is provided in the digital appendix.

(a) Pipeline initialization panel. (b) Scene input panel.

Figure 5.1.: Scene input panel and initialize pipeline panel

58 Chapter 5. Results

(a) Objects input panel. (b) Camera input panel.

(c) Run pipeline panel.

Figure 5.2.: Camera input panel and objects input panel

5.2. Pipeline output 59

The DataPipe GUI elements are integrated in the 3D view area of Blender’s native
GUI, as shown in Figure 5.3, where it is located at the right hand side as a tab.
The scripts written to create the GUI elements can be viewed in Appendix A.1.

Figure 5.3.: DataPipe input panel placement in Blender’s 3D view port

5.2. Pipeline output
DataPipe output for each rendered camera angle includes a z-pass depth image
5.4c, normals image 5.4b, masked image 5.4d, RGB image 5.4a and the structured
light depth image included in Figure 5.6d along with the images of the captured
fringe patterns projected on the scene in Figure 5.5.

60 Chapter 5. Results

(a) RGB image example output. (b) Normals image example output.

(c) depth image example output,
color mapped.

(d) Masked image example output,
color mapped.

Figure 5.4.: Example of output images from pipeline run.

5.3. Structured light
The structured light algorithm consist of four main phases, starting with the
rendering of the fringe images. After the rendering is done, the next step is
the phase detection on these phase shifted images, before the absolute phase is
computed. Lastly, the depth image is obtained by triangulation between the
projector and camera frames. In Figures 5.5a to 5.5f, the rendered fringe images
can be viewed.

5.3. Structured light 61

(a) Shift number 1 with 8 period
pattern.

(b) Shift number 2 with 8 period
pattern.

(c) Shift number 3 with 8 period
pattern.

(d) Shift number 1 with 7 period
pattern.

(e) Shift number 2 with 7 period
pattern.

(f) Shift number 3 with 7 period
pattern.

Figure 5.5.: Captured phase shifted patterns with period

The structured light algorithm is performed in steps, where each step builds on
the obtained images from the previous. The intermediate results throughout the
algorithm and the resulting depth image, can be viewed in Figures 5.6b to 5.6d,
and are collected from a DataPipe run, as output taken while debugging. These
images is not included in the regular output of the pipeline, except for the final
depth image.

62 Chapter 5. Results

(a) Wrapped phase image from 8
periods patterns.

(b) Wrapped phase image from 7
periods patterns.

(c) Absolute phase image from 8
and 7 periods wrapped phases.

(d) Depth image from triangulation
with projector.

Figure 5.6.: Images from the steps of the structured light algorithm.

Testing the effective range of the structured light setup used, where the projector
is offset by 15cm in the negative y direction relative to the camera, and rotated
8.5 degrees about the camera x axis, is shown in Figure 5.7. A plane were scanned
by the same structured light sensor at different distances to check the effective
range of the setup.

5.3. Structured light 63

(a) .15 meters from reference plane. (b) .3 meters from reference plane.

(c) .5 meters from reference plane. (d) .7 meters from reference plane.

Figure 5.7.: Absolute phase images obtained from projecting on reference plane
at different distances.

Chapter 6.

Discussion

6.1. DataPipe add-on GUI
The choice to develop the pipeline as an add-on was taken to make the pipeline
more user friendly and available. Add-ons are a large part of Blender, which has
a large user base continuously developing new features that can be downloaded
and extend Blenders basic functionalities. This same user base is already familiar
with the GUI elements used in the pipeline add-on, and thus the threshold is
lower to download and start generating data sets, that in turn can be shared with
others, and thus making the selection of available data sets for computer vision
tasks grow.

The GUI offers a lot of inputs for the pipeline process, which lets the user set the
basis for the datasets that is to be generated. For the objects imported to the
scene, the input is collected through the objects input panel in Figure 5.2a. The
objects can be imported through the file explorer in the panel and previewed in
the scene environment, and then scaled accordingly. In addition, the number of
instances of each object can be controlled by setting the maximum and minimum
number of instances of the object in each scene. This allows the datasets to display
a large degree of randomization in object compositions in the rendered images.

The inputs for the scene in entered though the scene panel showed in Figure 5.1b,
coltrolling the total number of images to render, as well as the maximum and
minimum number of camera poses to render from for each scene. Other than this,
the scene panel includes the option to import drop zone, which spawns an object
that

66 Chapter 6. Discussion

6.2. Pipeline outputs
The quality of the pipeline outputs has not been quantitatively evaluated based on
performance of a network trained on the data, but visual inspections of Figure 5.2
shows that the rendered data is of high quality, in resolution and in randomization
of poses. These figures does not however display a large variety in object mix,
but that is due to the lack of suitable 3D models used in that specific run of the
pipeline.

from Figure 5.4b the color encoded normal vectors values are shown represented
in RGB values. Many deep learning algorithms improve when the normals are
introduced as input in addition to other inputs, as stated in the article by M.
Denninger et al. [5], in addition the normals are rendered along with the z-pass
depth image, so rendering it does not affect run time.

Figure 5.4d and 5.4c shows the masked image and z-pass depth image respectively,
converted from OpenEXR format to human readable RGB images. The masked
images originally consist of integer values corresponding to identifier indexes for
each object. The pixels that contain the object are populated with the object
index value. This type of image can be used in instance segmentation tasks.

The RGB output from Figure 5.4a is taken as output to further extend the usabil-
ity of the datasets. The RGB images can be used in several different computer
vision task, and will also add three data points per 3D point when used along
with the 3D point cloud in pose estimation tasks.

6.3. Depth from structured light camera
The structured light camera implemented in the pipeline, shows promising results
from the absolute phase and the wrapped phase images from the algorithm. In
Figure 5.6a to 5.6c the intermediate steps for the structured light depth image
shows the fringes being decoded and the absolute phase in Figure 5.6c being
extracted though the phase unwrapping algorithm explained in Section 3.2.3.

The obtained absolute phase image shows what is mostly a successful absolute
phase recovery, except for some misinterpreted phase values in the middle and
towards the bottom of the absolute phase image. These misinterpretations are
suspected to stem from the camera being too close or too far to the planar surface
in the scene, and thus making the projected fringes “flatten” out, thus losing their
variation in the horizontal direction.

This theory is further strengthened by viewing Figure 5.7 where the images cap-
tured are of the same plane, at different distances. The observed effect is the same

6.3. Depth from structured light camera 67

as in Figure 5.6c, where the projected patterns that are closest to the surface i.e.
Figures 5.7a and 5.7b misinterprets the phase values because of the intensity of
the projector light is stronger when it is close to the surface. This is not a problem
however, since real scanners also have an optimum working distances, related to
its intrinsic and extrinsic parameters, as for instance with the Zivid One+ Medium
camera [41], which has a working distance between 0.6 and 2.0 meters.

As can be seen from what is supposed to be a structured light depth image in
Figure 5.6d, is instead completely black. This is due to the triangulation algorithm
only outputting zero values because of some, at this point unknown problem
relating to the matrix multiplication of the triangulation algorithm from Section
3.3.2. It is possibly a small error in the code for the algorithm, but due to time
limitations, it will not be investigated further in this report.

In hindsight, some of the inputs controlling the structured light system specifi-
cations should have been removed. The lack of predictability in the resolution,
focal length, sensor size and extrinsic relation of the projector and camera objects,
makes the creation of a generalized structured light system applicable for these
inputs, almost impossible.

Chapter 7.

Conclusion

The main research objective for this report was to explore the possibilities of
creating a working structured light camera inside Blender and incorporate it in the
pipeline. This was done by utilizing the wide variety of Blender functionalities for
light source objects and camera objects. The projector was modeled by a modified
light source emitting pattern images onto a scene. The distortion in the patterns
were then captured by the camera and passed through the phase detection and
phase unwrapping algorithms developed through theoretical research. However,
the triangulation of the obtained absolute phase was, as mentioned, not completed
because of the time limitations of the project.

Despite the triangulation part of the algorithm not yielding any results, the inter-
mediate steps was monitored and, and these resulting images was in line with the
theory behind the algorithm. These intermediate results give a good indication
that the use of a digital structured light scanner for creating reality-like noisy
data that could potentially be a contributor to bridging the reality gap.

The two other research objectives was tied to the development of the pipeline
process itself. The first was to create a pipeline process for creating textured data
that mimic the challenges that are faced in bin picking. The pipeline process is
fully functional at this stage, excluding the structured light camera functionality.
The objects being dropped onto the scene creates a similar disorderly composition
of poses and different 3D models.

The last research objective was to make the pipeline user friendly, so that there
is a lower threshold for using the feature. As it happens, Blender incorporates
a variety of GUI elements that can be used through Blenders bundled python
distribution. This allowed for the creation of an add-on with a GUI tying the
inputs to the corresponding operations carried out by the pipeline.

The creation of the GUI made it easier to guide the user to utilize the inputs

70 Chapter 7. Conclusion

correctly by adding text boxes explaining the variables and making invalid inputs
unavailable. In addition the whole input phase of the pipeline happens in the
3D view port of Blender, and previewing the object files that are taken as input,
as well as camera poses is possible without running the pipeline. This makes the
input process more dynamic and understandable. Lowering the threshold for using
the pipeline could potentially drive people to try using it and thus contribute to
the field of research by generating and sharing 3D data.

7.1. Further work
Naturally further work should be aimed at solving the problem with the trian-
gulation algorithm, and thus obtaining a depth image that can be compared to
the perfectly rendered depth from the z-pass of Blender. This can be done by
obtaining the depth difference in each valid pixel in the structured light depth
image and the corresponding pixel in the perfectly rendered z-pass depth.

As an improvement to the structured light camera, it would be interesting to find
out how good the achieved quality of the produced data could be, by adopting
a well developed structured light algorithm. In addition the large degree of user
controlled input on the camera and projector intrinsic and extrinsic parameters,
should be limited. The result of having user input for all these parameters is
an unpredictable structured light algorithm, since these parameters are so tightly
related to the output quality of the algorithm.

An interesting test of the synthetic structured light data would be to compare the
imperfect structured light dataset with the z-buffer data and real data, applied
in a 6D object pose estimation neural network algorithm. From these tests it
would be interesting to see how the structured light data would perform against
the widely used z-buffer data, and more importantly how the two would compare
to real scanned datasets.

The pipeline as it is performs no domain randomization on the object textures,
only in the composition and randomized object instances in the scene, as well as
the physics based randomization of object poses. As each object is imported with
textures to the pipeline, it would be beneficial to add randomizing parameters
to these textures. For instance altering the object’s surface shine, roughness,
transparency and other parameters, and then testing the impact these have on
the generalization of the model.

References

[1] R. Brégier, F. Devernay, L. Leyrit, and J. L. Crowley, “Symmetry aware
evaluation of 3d object detection and pose estimation in scenes of many
parts in bulk,” in 2017 IEEE International Conference on Computer Vision
Workshops (ICCVW), 2017, pp. 2209–2218. doi: 10.1109/ICCVW.2017.
258.

[2] T. Hodaň, V. Vineet, R. Gal, E. Shalev, J. Hanzelka, T. Connell, P. Urbina,
S. N. Sinha, and B. Guenter, “Photorealistic image synthesis for object
instance detection,” in 2019 IEEE International Conference on Image Pro-
cessing (ICIP), 2019, pp. 66–70. doi: 10.1109/ICIP.2019.8803821.

[3] M. Jalal, J. Spjut, B. Boudaoud, and M. Betke, “Sidod: A synthetic image
dataset for 3d object pose recognition with distractors,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
2019, pp. 475–477. doi: 10.1109/CVPRW.2019.00063.

[4] K. Group. (). “The industry’s foundation for high performance graphics,”
[Online]. Available: https://www.opengl.org. (accessed: 14.12.2020).

[5] M. Denninger, M. Sundermeyer, D. Winkelbauer, Y. Zidan, D. Olefir, M.
Elbadrawy, A. Lodhi, and H. Katam, Blenderproc, 2019. arXiv: 1911.01911
[cs.CV].

[6] J. Schell. (). “Cycles introduction,” [Online]. Available: https://docs.
blender.org/manual/en/latest/render/cycles/introduction.html.
(accessed: 09.05.2021).

[7] T. Hodan, M. Sundermeyer, B. Drost, Y. Labbe, E. Brachmann, F. Michel,
C. Rother, and J. Matas, Bop challenge 2020 on 6d object localization, 2020.
arXiv: 2009.07378 [cs.CV].

[8] T. Hodaň, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and X. Zabulis,
“T-LESS: An RGB-D dataset for 6D pose estimation of texture-less objects,”
IEEE Winter Conference on Applications of Computer Vision (WACV),
2017.

[9] W. Eikrem, “Pipeline for generating synthetic 6d pose estimation datasets,”
Project Thesis, Dec. 2020.

https://doi.org/10.1109/ICCVW.2017.258
https://doi.org/10.1109/ICCVW.2017.258
https://doi.org/10.1109/ICIP.2019.8803821
https://doi.org/10.1109/CVPRW.2019.00063
https://www.opengl.org
https://arxiv.org/abs/1911.01911
https://arxiv.org/abs/1911.01911
https://docs.blender.org/manual/en/latest/render/cycles/introduction.html
https://docs.blender.org/manual/en/latest/render/cycles/introduction.html
https://arxiv.org/abs/2009.07378

72 References

[10] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Sta-
tistical Learning. New York, NY: Springer, Jun. 2013, isbn: 9781461471370.

[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[12] C. Choy, J. Gwak, and S. Savarese, 4d spatio-temporal convnets: Minkowski
convolutional neural networks, 2019. arXiv: 1904.08755 [cs.CV].

[13] A. Cariow, G. Cariowa, and D. Majorkowska-Mech, “An algorithm for quater-
nion–based 3d rotation,” International Journal of Applied Mathematics and
Computer Science, vol. 30, no. 1, pp. 149–160, 1Mar. 2020. doi: https:
//doi.org/10.34768/amcs- 2020- 0012. [Online]. Available: https://
content.sciendo.com/view/journals/amcs/30/1/article-p149.xml.

[14] K. Lynch, Modern robotics : Mechanics, planning and control, eng, Cam-
bridge, 2017.

[15] A. Sveier, A. M. Sjøberg, and O. Egeland, “Applied runge–kutta–munthe-
kaas integration for the quaternion kinematics,” eng, Journal of guidance,
control, and dynamics, vol. 42, no. 12, pp. 2747–2754, 2019, issn: 1533-3884.

[16] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Do-
main randomization for transferring deep neural networks from simulation
to the real world,” in 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2017, pp. 23–30. doi: 10.1109/IROS.
2017.8202133.

[17] T. Bell, B. Li, and S. Zhang, “Structured light techniques and applications,”
in Wiley Encyclopedia of Electrical and Electronics Engineering. American
Cancer Society, 2016, pp. 1–24, isbn: 9780471346081. doi: https://doi.
org / 10 . 1002 / 047134608X . W8298. eprint: https : / / onlinelibrary .
wiley.com/doi/pdf/10.1002/047134608X.W8298. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.
W8298.

[18] S. Zhang, Handbook of 3D machine vision: Optical metrology and imaging.
CRC press, 2013.

[19] C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase
unwrapping algorithms for fringe projection profilometry: A comparative
review,” Optics and Lasers in Engineering, vol. 85, pp. 84–103, 2016, issn:
0143-8166. doi: https://doi.org/10.1016/j.optlaseng.2016.04.022.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0143816616300653.

http://www.deeplearningbook.org
https://arxiv.org/abs/1904.08755
https://doi.org/https://doi.org/10.34768/amcs-2020-0012
https://doi.org/https://doi.org/10.34768/amcs-2020-0012
https://content.sciendo.com/view/journals/amcs/30/1/article-p149.xml
https://content.sciendo.com/view/journals/amcs/30/1/article-p149.xml
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/https://doi.org/10.1002/047134608X.W8298
https://doi.org/https://doi.org/10.1002/047134608X.W8298
https://onlinelibrary.wiley.com/doi/pdf/10.1002/047134608X.W8298
https://onlinelibrary.wiley.com/doi/pdf/10.1002/047134608X.W8298
https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W8298
https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W8298
https://doi.org/https://doi.org/10.1016/j.optlaseng.2016.04.022
https://www.sciencedirect.com/science/article/pii/S0143816616300653
https://www.sciencedirect.com/science/article/pii/S0143816616300653

References 73

[20] Q. Tian, Y. Yang, X. Zhang, and B. Ge, “An experimental evaluation
method for the performance of a laser line scanning system with multi-
ple sensors,” Optics and lasers in engineering, vol. 52, pp. 241–249, 2014,
issn: 0143-8166.

[21] H. Schreiber and J. H. Bruning, “Phase shifting interferometry,” in Op-
tical Shop Testing. John Wiley & Sons, Ltd, 2007, ch. 14, pp. 547–666,
isbn: 9780470135976. doi: https://doi.org/10.1002/9780470135976.
ch14. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
9780470135976.ch14. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/9780470135976.ch14.

[22] K. Chen, J. Xi, and Y. Yu, “Quality-guided spatial phase unwrapping al-
gorithm for fast three-dimensional measurement,” Optics Communications,
vol. 294, pp. 139–147, 2013, issn: 0030-4018. doi: https : / / doi . org /
10.1016/j.optcom.2013.01.002. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0030401813000254.

[23] C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase
unwrapping algorithms for fringe projection profilometry: A comparative
review,” Optics and Lasers in Engineering, vol. 85, pp. 84–103, 2016, issn:
0143-8166. doi: https://doi.org/10.1016/j.optlaseng.2016.04.022.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0143816616300653.

[24] ——, “Temporal phase unwrapping algorithms for fringe projection pro-
filometry: A comparative review,” Optics and lasers in engineering, vol. 85,
pp. 84–103, 2016, issn: 0143-8166.

[25] A. Dipanda, S. Woo, F. Marzani, and J.-M. Bilbault, “3-d shape reconstruc-
tion in an active stereo vision system using genetic algorithms,” Pattern
recognition, vol. 36, no. 9, pp. 2143–2159, 2003.

[26] W. N. Klarquist and A. C. Bovik, “Fovea: A foveated vergent active stereo
vision system for dynamic three-dimensional scene recovery,” IEEE Trans-
actions on robotics and Automation, vol. 14, no. 5, pp. 755–770, 1998.

[27] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vi-
sion. Cambridge University Press, ISBN: 0521623049, 2000.

[28] V. Klema and A. Laub, “The singular value decomposition: Its computation
and some applications,” IEEE transactions on automatic control, vol. 25,
no. 2, pp. 164–176, 1980, issn: 0018-9286.

[29] K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency
pattern scheme for high-speed 3-d shape measurement,” Optics express,
vol. 18, no. 5, pp. 5229–5244, 2010.

https://doi.org/https://doi.org/10.1002/9780470135976.ch14
https://doi.org/https://doi.org/10.1002/9780470135976.ch14
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470135976.ch14
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470135976.ch14
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470135976.ch14
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470135976.ch14
https://doi.org/https://doi.org/10.1016/j.optcom.2013.01.002
https://doi.org/https://doi.org/10.1016/j.optcom.2013.01.002
https://www.sciencedirect.com/science/article/pii/S0030401813000254
https://www.sciencedirect.com/science/article/pii/S0030401813000254
https://doi.org/https://doi.org/10.1016/j.optlaseng.2016.04.022
https://www.sciencedirect.com/science/article/pii/S0143816616300653
https://www.sciencedirect.com/science/article/pii/S0143816616300653

74 References

[30] M. Sundermeyer, Z.-C. Marton, M. Durner, M. Brucker, and R. Triebel,
“Implicit 3d orientation learning for 6d object detection from rgb images,”
in Proceedings of the European Conference on Computer Vision (ECCV),
Sep. 2018.

[31] U. engine. (). “Real-time development platform | 3d, 2d, vr ar engine,”
[Online]. Available: https://unity.com. (accessed: 10.12.2020).

[32] B. community. (). “Blender - free and open 3d creation software,” [Online].
Available: https://www.blender.org. (accessed: 15.10.2020).

[33] ——, (). “Blender - python api overview,” [Online]. Available: https://
docs.blender.org/api/current/info_overview.html. (accessed: 05.12.2020).

[34] S.-A. Dragly. (). “How structured light works - part 1,” [Online]. Available:
https : / / blog . zivid . com / how - structured - light - works - part - 1.
(accessed: 15.12.2020).

[35] S. community. (). “Numpy documentation discrete fourier transform,” [On-
line]. Available: https://numpy.org/doc/stable/reference/generated/
numpy.fft.fft.html. (accessed: 12.03.2021).

[36] A. S. Glassner, An introduction to ray tracing. Morgan Kaufmann, 1989.
[37] M. Carletti. (). “Extracting the intrinsic parameters in blender,” [Online].

Available: https://mcarletti.github.io/articles/blenderintrinsicparams/.
(accessed: 26.05.2021).

[38] O. Community. (). “Openexr homepage,” [Online]. Available: https://www.
openexr.com. (accessed: 09.06.2021).

[39] B. community. (). “Blender light objects,” [Online]. Available: https://
docs.blender.org/manual/en/2.83/render/lights/light_object.
html. (accessed: 24.05.2021).

[40] J. S. Ocupe. (). “Projector add-on for blender,” [Online]. Available: https:
//github.com/Ocupe/Projectors. (accessed: 10.03.2021).

[41] Zivid. (). “Zivid one+ medium,” [Online]. Available: https://www.zivid.
com/zivid-one-plus-medium-3d-camera. (accessed: 28.05.2021).

https://unity.com
https://www.blender.org
https://docs.blender.org/api/current/info_overview.html
https://docs.blender.org/api/current/info_overview.html
https://blog.zivid.com/how-structured-light-works-part-1
https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html
https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html
https://mcarletti.github.io/articles/blenderintrinsicparams/
https://www.openexr.com
https://www.openexr.com
https://docs.blender.org/manual/en/2.83/render/lights/light_object.html
https://docs.blender.org/manual/en/2.83/render/lights/light_object.html
https://docs.blender.org/manual/en/2.83/render/lights/light_object.html
https://github.com/Ocupe/Projectors
https://github.com/Ocupe/Projectors
https://www.zivid.com/zivid-one-plus-medium-3d-camera
https://www.zivid.com/zivid-one-plus-medium-3d-camera

Appendix A.

Name of Appendix

A.1. Add-on __init__ file
1 '''
2 This program is free software ; you can redistribute it and/or modify
3 it under the terms of the GNU General Public License as published by
4 the Free Software Foundation ; either version 3 of the License , or
5 (at your option) any later version .
6

7 This program is distributed in the hope that it will be useful , but
8 WITHOUT ANY WARRANTY ; without even the implied warranty of
9 MERCHANTIBILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU

10 General Public License for more details .
11

12 You should have received a copy of the GNU General Public License
13 along with this program . If not , see <http :// www.gnu.org/ licenses />.
14 '''
15 print(" ########### __init__ Start ########### ")
16 bl_info = {
17 "name" : " DataPipe ",
18 " author " : " William Eikrem ",
19 " description " : " Pipeline addon for generating synthetic 3D

datasets for use in training neural networks ",
20 " blender " : (2, 80, 0),
21 " version " : (0, 0, 1),
22 " location " : " View3D ",
23 " warning " : "",
24 " category " : " Generic "
25 }
26

27 import bpy
28 from . import pipeline_panel
29 from . import pipeline_op
30

31

32

76 Appendix A. Name of Appendix

33 ## This is needed for multi file addons . Otherwise only the __init__
.py file will be reloaded .

34 # [Blender Logo] -> System -> Reload Scripts
35 if locals ().get('loaded '):
36 print("Addon was previously loaded . Force - reloading submodules ."

)
37 loaded = False
38 from importlib import reload
39 from sys import modules
40 modules [__name__] = reload (modules [__name__])
41 for name , module in modules .items ():
42 if name. startswith (f"{ __package__ }."):
43 globals ()[name] = reload (module)
44 del reload , modules
45

46 loaded = True
47

48 def register ():
49 try:
50 pipeline_op . register ()
51 pipeline_panel . register ()
52 except RuntimeError as e:
53 print(e)
54 # This prevents having to restart blender if a registration

fails midway .
55 unregister ()
56

57 # This is run when the addon is disabled .
58 def unregister ():
59 try:
60 pipeline_op . unregister ()
61 pipeline_panel . unregister ()
62 except RuntimeError :
63 pass
64

65 print(" ########### __init__ End ########### ")

Listing A.1: init.py

A.2. Add-on GUI panels script
1 from os import name
2 import bpy
3 import numpy as np
4

5 print(" ############ pipeline_panel Start ############ ")
6

7 class DATAPIPE_PT_Start_panel (bpy.types.Panel):
8 bl_idname = 'Start_PT_Panel '
9 bl_space_type = 'VIEW_3D '

A.2. Add-on GUI panels script 77

10 bl_region_type = 'UI'
11 bl_category = 'DataPipe '
12 bl_label = " Initialize pipeline "
13

14 def draw(self , context):
15 layout = self. layout
16

17 row = layout .row ()
18 row. scale_y = 2
19 row. operator ('datapipe . set_scene_parameters ', icon='PLAY ')
20

21 box = layout .box ()
22 box.label(text='Load pipeline input from pickle file ')
23

24 row = box.row ()
25 col = row. column ()
26 col.prop(context .scene , 'load_pipeline_input_path ')
27 col = row. column ()
28 col. scale_x = 0.7
29 col. operator ('datapipe . load_input_file ', icon='IMPORT ')
30

31

32 class DATAPIPE_PT_scenes_panel (bpy.types.Panel):
33 bl_idname = 'Scenes_PT_Panel '
34 bl_space_type = 'VIEW_3D '
35 bl_region_type = 'UI'
36 bl_category = 'DataPipe '
37 bl_label = "Scene inputs "
38

39 def draw(self , context):
40

41 layout = self. layout
42 box = layout .box ()
43 row = box.split(factor =0.6)
44 left_col = row. column ()
45 right_col = row. column ()
46

47 #Total number of renders input
48 row = left_col .row ()
49 row. alignment = 'RIGHT '
50 row.label(text='Total number of renders ')
51 row = right_col .row ()
52 row.prop(context .scene , 'num_renders ')
53

54 #Max renders input
55 row = left_col .row ()
56 row. alignment = 'RIGHT '
57 row.label(text='Renders per scene Max ')
58 row = right_col .row ()
59 row.prop(context .scene , 'max_renders_per_scene ')
60

78 Appendix A. Name of Appendix

61 #Min renders input
62 row = left_col .row ()
63 row. alignment = 'RIGHT '
64 row.label(text='Min ')
65 row = right_col .row ()
66 row.prop(context .scene , 'min_renders_per_scene ')
67

68 row = layout .row ()
69

70 # Dropzone inputs
71 box = layout .box ()
72 row = box.row ()
73 row. operator ('datapipe . import_dropzone_object ', icon='

PIVOT_BOUNDBOX ')
74 row = box.row ()
75 row.label(text='Move the box to desired location ')
76

77

78

79

80 class DATAPIPE_PT_objects_panel (bpy.types.Panel):
81 bl_idname = 'Objects_PT_Panel '
82 bl_space_type = 'VIEW_3D '
83 bl_region_type = 'UI'
84 bl_category = 'DataPipe '
85 bl_label = " Objects inputs "
86

87 def draw(self , context):
88

89 layout = self. layout
90

91 row = layout .row ()
92 row.label(text=" Object filepath :", icon='OUTLINER_OB_MESH ')
93 row = layout .row ()
94 row.prop(context .scene , 'object_path ')
95

96 box = layout .box ()
97

98 row = box.split(factor =0.5)
99

100 left_col = row. column ()
101 right_col = row. column ()
102

103 row = left_col .row ()
104 row. alignment = 'RIGHT '
105 row.label(text='Scaling factor ')
106

107 row = left_col .row ()
108 row. alignment = 'RIGHT '
109 row.label(text='Approx . mass ')
110

A.2. Add-on GUI panels script 79

111 row = left_col .row ()
112 row. alignment = 'RIGHT '
113 row.label(text='Collision shape ')
114

115 row = left_col .row ()
116 row. alignment = 'RIGHT '
117 row.label(text='Instances in scene Max ')
118

119 row = left_col .row ()
120 row. alignment = 'RIGHT '
121 row.label(text='Min ')
122

123 row = right_col .row ()
124 row.prop(context .scene , 'object_scale ')
125

126 row = right_col .row ()
127 row.prop(context .scene , 'object_mass ')
128

129 row = right_col .row ()
130 row.prop(context .scene , 'object_collision_shape ')
131

132 row = right_col .row ()
133 row.prop(context .scene , 'object_instances_max ')
134

135 row = right_col .row ()
136 row.prop(context .scene , 'object_instances_min ')
137

138 box = layout .box ()
139 row = box.row ()
140 row. operator ('datapipe . preview_object ', icon='WORKSPACE ')
141

142 row = box.row ()
143

144 row = box.row ()
145 left_col = row. column ()
146 right_col = row. column ()
147

148 row = left_col .row ()
149 row. scale_y = 2
150 row. operator ('datapipe . append_object_data ', icon='FILE_NEW ')
151

152 row = right_col .row ()
153 row. scale_y = 2
154 row. operator ('datapipe . remove_last_object_data ', icon='TRASH

')
155

156

157

158

159 class DATAPIPE_PT_camera_panel (bpy.types.Panel):
160 bl_idname = 'Camera_PT_Panel '

80 Appendix A. Name of Appendix

161 bl_space_type = 'VIEW_3D '
162 bl_region_type = 'UI'
163 bl_category = 'DataPipe '
164 bl_label = " Camera inputs "
165

166

167 def draw(self , context):
168

169 layout = self. layout
170

171 # Camera intrinsics
172 row = layout .row ()
173 row.label(text='Camera intrinsics ', icon='CAMERA_DATA ')
174 row = layout .split(factor =0.5)
175

176 left_col = row. column ()
177 right_col = row. column ()
178

179 #Focal length input
180 row = left_col .row ()
181 row. alignment = 'RIGHT '
182 row.label(text='Focal length ')
183 row = right_col .row ()
184 row.prop(context .scene , 'camera_focal_length ')
185

186 # Sensor width input
187 row = left_col .row ()
188 row. alignment = 'RIGHT '
189 row.label(text='Sensor width ')
190 row = right_col .row ()
191 row.prop(context .scene , 'camera_sensor_width ')
192

193 row = left_col .row ()
194 row. alignment = 'RIGHT '
195 row.label(text='Resolution height ')
196 row = left_col .row ()
197 row. alignment = 'RIGHT '
198 row.label(text='width ')
199

200 row = right_col .row ()
201 row.prop(context .scene , 'camera_resolution_height ')
202

203 row = right_col .row ()
204 row.prop(context .scene , 'camera_resolution_width ')
205

206 # Structured light
207 row = layout .row ()
208 row.prop(context .scene , 'is_structured_light ')
209

210 if context .scene. is_structured_light :
211

A.2. Add-on GUI panels script 81

212 # Projector intrinsics
213

214 box = layout .box ()
215 row = box.row ()
216 row.label(text='Projector intrinsics ', icon='LIGHT ')
217 row = box.split(factor =0.5)
218

219 left_col = row. column ()
220 right_col = row. column ()
221

222 row = left_col .row ()
223 row. alignment = 'RIGHT '
224 row.label(text='Focal length ')
225 row = right_col .row ()
226 row.prop(context .scene , 'projector_focal_length ')
227

228 row = left_col .row ()
229 row. alignment = 'RIGHT '
230 row.label(text='Sensor width ')
231 row = right_col .row ()
232 row.prop(context .scene , 'projector_sensor_width ')
233

234 row = left_col .row ()
235 row. alignment = 'RIGHT '
236 row.label(text='Resolution height ')
237 right_col . column (align=True)
238 row = right_col .row ()
239 row.prop(context .scene , 'projector_resolution_height ')
240

241 row = left_col .row ()
242 row. alignment = 'RIGHT '
243 row.label(text='width ')
244 row = right_col .row ()
245 row.prop(context .scene , 'projector_resolution_width ')
246

247

248 # Projector extrinsics
249 box = layout .box ()
250 row = box.row ()
251 row.label(text=" Location (x, y, z) relative to camera ",

icon='EMPTY_AXIS ')
252

253 row = box.row ()
254 row.prop(context .scene , 'projector_loc_vec ')
255

256 row = box.row ()
257 row.label(text='Rotation relative to camera ', icon='

SPHERE ')
258

259 row = box.row ()
260 row.prop(context .scene , 'projector_rot_enum ')

82 Appendix A. Name of Appendix

261

262 row = box.row ()
263 if context .scene. projector_rot_enum == 'xyz ':
264 row.prop(context .scene , 'projector_rot_xyz ')
265 else:
266 row.prop(context .scene , 'projector_rot_quat ')
267

268 row = layout .row ()
269 row.label(text='')
270

271 row = layout .row ()
272 row. operator ('datapipe . preview_camera_pose ', icon='WORKSPACE

')
273

274 row = layout .row ()
275 row.label(text='Move camera to desired pose ')
276 row = layout .row ()
277 row. scale_y = 2.0
278 row. operator ('datapipe . append_camera_pose ', icon='FILE_NEW ')
279

280 col = row. column ()
281 col. operator ('datapipe . remove_camera_pose ', icon='TRASH ')
282

283

284

285

286 class DATAPIPE_PT_run_panel (bpy.types.Panel):
287 bl_idname = 'Run_PT_Panel '
288 bl_space_type = 'VIEW_3D '
289 bl_region_type = 'UI'
290 bl_category = 'DataPipe '
291 bl_label = "Run pipeline "
292

293 def draw(self , context):
294

295 layout = self. layout
296 box = layout .box ()
297

298 row = box.row ()
299 row.label(text="Save pipeline input to file")
300

301 row = box.row ()
302 col = row. column ()
303 col.prop(context .scene , 'save_pipeline_input_path ')
304

305 col = row. column ()
306 col. scale_x = 0.7
307 col. operator ('datapipe . save_pipeline_info ', icon='EXPORT ')
308

309 row = layout .row ()
310

A.2. Add-on GUI panels script 83

311 box = layout .box ()
312 row = box.row ()
313 row.label(text='Save pipeline output to:')
314 row = box.row ()
315 row.prop(context .scene , 'pipeline_output_path ')
316

317 row = box.row ()
318 row = box.row ()
319 row. operator ('datapipe . run_pipeline ', icon='PLAY ')
320

321

322

323 classes = [
324 DATAPIPE_PT_Start_panel ,
325 DATAPIPE_PT_scenes_panel ,
326 DATAPIPE_PT_objects_panel ,
327 DATAPIPE_PT_camera_panel ,
328 DATAPIPE_PT_run_panel
329]
330

331 def register ():
332 # ###
333 # ###### INITIALIZE PIPELINE PROPERTIES #######
334 # ###
335 bpy.types.Scene. load_pipeline_input_path = bpy.props.

StringProperty (
336 name='',
337 subtype ='FILE_PATH ',
338 description ='Filepath to pickle file containing pipeline

inputs ')
339

340 # ###############################
341 # ###### SCENE PROPERTIES #######
342 # ###############################
343 bpy.types.Scene. num_renders = bpy.props. IntProperty (
344 name='',
345 default =1,
346 description ='Number of images to render ')
347 bpy.types.Scene. max_renders_per_scene = bpy.props. IntProperty (
348 name='',
349 default =1,
350 description ='The max number of camera poses rendered per

scene configuration ')
351 bpy.types.Scene. min_renders_per_scene = bpy.props. IntProperty (
352 name='',
353 default =1,
354 description ='The min number of camera poses rendered per

scene configuration ')
355

356 # ################################
357 # ###### OBJECT PROPERTIES #######

84 Appendix A. Name of Appendix

358 # ################################
359 bpy.types.Scene. object_path = bpy.props. StringProperty (
360 name='',
361 subtype ='FILE_PATH ',
362 description ='Filepath to object included in pipeline ')
363 bpy.types.Scene. object_scale = bpy.props. FloatProperty (
364 name='',
365 soft_min =0,
366 precision =3,
367 description ='Scaling of the object . Used to ensure that the

3D model\'s units are equal to scene units ',
368 default =1)
369 bpy.types.Scene. object_mass = bpy.props. FloatProperty (
370 name='',
371 soft_min =0,
372 default =0.5 ,
373 unit='MASS ',
374 precision =3,
375 description ='Approximate object mass , used by the simulated

physics ')
376 bpy.types.Scene. object_collision_shape = bpy.props. EnumProperty (
377 name='',
378 items =[('MESH ', 'Mesh ', ''),
379 ('CONVEX_HULL ', 'Convex hull ', '')],
380 description ='Object \'s collision shape for physics

simulation ')
381 bpy.types.Scene. object_instances_max = bpy.props. IntProperty (
382 name='',
383 soft_min =0,
384 default =2,
385 description ='Maximum number of object instance in each scene

.')
386 bpy.types.Scene. object_instances_min = bpy.props. IntProperty (
387 name='',
388 soft_min =0,
389 default =0,
390 description ='Minimum number of object instance in each scene

.')
391

392 # ################################
393 # ###### CAMERA PROPERTIES #######
394 # ################################
395 bpy.types.Scene. camera_focal_length = bpy.props. FloatProperty (
396 name='',
397 unit='CAMERA ')
398 bpy.types.Scene. camera_sensor_width = bpy.props. FloatProperty (
399 name='',
400 unit='CAMERA ')
401 bpy.types.Scene. camera_resolution_height = bpy.props. IntProperty

(
402 name='',

A.2. Add-on GUI panels script 85

403 default = 480,
404 subtype ='PIXEL ')
405 bpy.types.Scene. camera_resolution_width = bpy.props. IntProperty (
406 name='',
407 default = 720,
408 subtype ='PIXEL ')
409 bpy.types.Scene. is_structured_light = bpy.props. BoolProperty (
410 name='Structured light ',
411 description ='Toggles on structured light rendering . The

pipeline process will be slower , but the results will be
realistic noise on rendered dataset ')

412

413 # ###################################
414 # ###### PROJECTOR PROPERTIES #######
415 # ###################################
416 bpy.types.Scene. projector_focal_length = bpy.props. FloatProperty

(
417 name='',
418 unit='CAMERA ')
419 bpy.types.Scene. projector_sensor_width = bpy.props. FloatProperty

(
420 name='',
421 unit='CAMERA ')
422 bpy.types.Scene. projector_resolution_height = bpy.props.

IntProperty (
423 name='',
424 default = 480,
425 subtype ='PIXEL ')
426 bpy.types.Scene. projector_resolution_width = bpy.props.

IntProperty (
427 name='',
428 default = 720,
429 subtype ='PIXEL ')
430 bpy.types.Scene. projector_loc_vec = bpy.props.

FloatVectorProperty (
431 name='',
432 default =(-0.15 , 0, 0),
433 unit='LENGTH ')
434 bpy.types.Scene. projector_rot_enum = bpy.props. EnumProperty (
435 name='',
436 items =[('xyz ', 'XYZ Euler angles ', ''),
437 ('quat ', 'Quaternions [w, x, y, z]', '')])
438 bpy.types.Scene. projector_rot_xyz = bpy.props.

FloatVectorProperty (
439 name='',
440 default = (0, -np.pi /180*8.5 , 0),
441 unit='ROTATION ')
442 bpy.types.Scene. projector_rot_quat = bpy.props.

FloatVectorProperty (
443 name='',
444 default = (0.9972502 , 0, -0.0741085 , 0),

86 Appendix A. Name of Appendix

445 size =4)
446

447 # #####################################
448 # ###### OUTPUT PATH PROPERTIES #######
449 # #####################################
450 bpy.types.Scene. output_path = bpy.props. StringProperty (
451 name='',
452 subtype ='DIR_PATH ')
453

454 # ######################################
455 # ###### RUN PIPELINE PROPERTIES #######
456 # ######################################
457 bpy.types.Scene. save_pipeline_input_path = bpy.props.

StringProperty (
458 name='',
459 subtype ='DIR_PATH ')
460 bpy.types.Scene. pipeline_output_path = bpy.props. StringProperty (
461 name='',
462 subtype ='DIR_PATH ',
463 description ='Directory to save output from pipeline run.')
464

465 for cl in classes :
466 bpy.utils. register_class (cl)
467

468 def unregister ():
469 # ###
470 # ###### INITIALIZE PIPELINE PROPERTIES #######
471 # ###
472 del bpy.types.Scene. load_pipeline_input_path
473

474 # ###############################
475 # ###### SCENE PROPERTIES #######
476 # ###############################
477 del bpy.types.Scene. num_renders
478 del bpy.types.Scene. max_renders_per_scene
479 del bpy.types.Scene. min_renders_per_scene
480

481 # ################################
482 # ###### OBJECT PROPERTIES #######
483 # ################################
484 del bpy.types.Scene. object_path
485 del bpy.types.Scene. object_scale
486 del bpy.types.Scene. object_instances_max
487 del bpy.types.Scene. object_instances_min
488 del bpy.types.Scene. object_mass
489 del bpy.types.Scene. object_collision_shape
490

491 # ################################
492 # ###### CAMERA PROPERTIES #######
493 # ################################
494 del bpy.types.Scene. camera_focal_length

A.3. Add-on GUI operators script 87

495 del bpy.types.Scene. camera_sensor_width
496 del bpy.types.Scene. camera_resolution_height
497 del bpy.types.Scene. camera_resolution_width
498 del bpy.types.Scene. is_structured_light
499

500 # ###################################
501 # ###### PROJECTOR PROPERTIES #######
502 # ###################################
503 del bpy.types.Scene. projector_focal_length
504 del bpy.types.Scene. projector_sensor_width
505 del bpy.types.Scene. projector_resolution_height
506 del bpy.types.Scene. projector_resolution_width
507 del bpy.types.Scene. projector_loc_vec
508 del bpy.types.Scene. projector_rot_enum
509 del bpy.types.Scene. projector_rot_xyz
510 del bpy.types.Scene. projector_rot_quat
511

512 # #####################################
513 # ###### OUTPUT PATH PROPERTIES #######
514 # #####################################
515 del bpy.types.Scene. output_path
516

517 # ######################################
518 # ###### RUN PIPELINE PROPERTIES #######
519 # ######################################
520 del bpy.types.Scene. save_pipeline_input_path
521 del bpy.types.Scene. pipeline_output_path
522

523 for cl in classes :
524 bpy.utils. unregister_class (cl)
525

526 print(" ############ pipeline_panel End ############ ")

Listing A.2: pipelinepanel.py

A.3. Add-on GUI operators script
1 print(" ############ pipeline_op Start ############ ")
2 from pathlib import Path
3 import bpy
4 from .src import utility_fuctions
5 from .src import config_module
6 from .src. camera_module import BlendCamera
7 from .src. scene_module import BlendScene
8 from .src. objects_module import ObjectManager
9 from .src. render_module import Renderer

10 from .src. simulation_module import Simulation
11 from .src. structured_light_module import Algorithm
12 import numpy as np
13 import time

88 Appendix A. Name of Appendix

14

15 # ############# DO THIS FOR PIPELINE CLASSES ##############
16 #from .src import random_object
17

18

19 # ############ SCENE OPERATORS #############
20 class DATAPIPE_OT_Set_up_Scene (bpy.types. Operator):
21

22 bl_idname = 'datapipe . set_scene_parameters '
23 bl_label = 'Initialize pipeline '
24 bl_options = {'REGISTER ', 'UNDO '}
25

26 def execute (self , context):
27

28 utility_fuctions . initialize_pipeline_environment ()
29

30 return {'FINISHED '}
31

32 class DATAPIPE_OT_Load_input_file (bpy.types. Operator):
33

34 bl_idname = 'datapipe . load_input_file '
35 bl_label = 'Load '
36 bl_options = {'REGISTER ', 'UNDO '}
37

38 def execute (self , context):
39

40 #Load all input from file to configmodule . input_storage
41 config_module . input_storage . input_from_file (context .scene.

load_pipeline_input_path)
42

43 config_module . input_storage . set_input_panel_vars_from_dict (
context)

44

45 return {'FINISHED '}
46

47 class DATAPIPE_OT_Import_dropzone_object (bpy.types. Operator):
48

49 bl_idname = 'datapipe . import_dropzone_object '
50 bl_label = 'Import dropzone '
51 bl_options = {'REGISTER ', 'UNDO '}
52

53 def execute (self , context):
54

55 if 'drop_zone ' not in bpy.data. objects :
56 bpy.ops.mesh. primitive_cube_add ()
57 drop_zone = bpy. context . active_object
58 mesh_name = drop_zone .name
59 drop_zone .name = 'drop_zone '
60 bpy.data. meshes [mesh_name]. name = 'drop_zone_mesh '
61 drop_zone . location = (0, 0, 2)
62 drop_zone .scale = (0.5 , 0.5, 0.5)

A.3. Add-on GUI operators script 89

63

64 bpy.ops. object . select_all (action ='DESELECT ')
65

66 if drop_zone . select_get () is False:
67 drop_zone . select_set (True)
68

69 bpy. context . view_layer . objects . active = drop_zone
70 bpy.ops. object . select_all (action ='DESELECT ')
71

72 return {'FINISHED '}
73

74 # ############ OBJECT OPERATORS #############
75 class DATAPIPE_OT_Preview_object (bpy.types. Operator):
76

77 bl_idname = 'datapipe . preview_object '
78 bl_label = 'Toggle object preview '
79 bl_options = {'REGISTER ', 'UNDO '}
80

81 def execute (self , context):
82

83 filepath = Path(bpy.path. abspath (context .scene. object_path))
. resolve () # Filepath from input

84

85 scale = context .scene. object_scale
86 ob_scale = [scale , scale , scale] # object scale from input
87

88

89 if filepath . suffix == '.obj ': # Filetype has to be .obj
90

91 if 'temp_collection ' not in bpy.data. collections .keys ():
#Check for earlier import

92

93 temp_collection = bpy.data. collections .new(name='
temp_collection ')

94 bpy. context .scene. collection . children .link(
temp_collection) #Link to scene collection

95

96 temp_collection = bpy.data. collections ['temp_collection '
]

97

98 if 'temp_object ' not in bpy.data. objects .keys () and '
temp_material ' not in bpy.data. materials .keys ():

99 bpy.ops. import_scene .obj(filepath =str(filepath))
100

101 if len(bpy. context . selected_objects) != 1: #Only one
object can be imported at a time

102 for ob in bpy. context . selected_objects :
103 # Remove belonging data
104 bpy.data. materials . remove (ob. active_material

, do_unlink =True)
105 bpy.data. objects . remove (ob , do_unlink =True)

90 Appendix A. Name of Appendix

106 bpy.data. meshes . remove (bpy.data. meshes [ob.
name], do_unlink =True)

107 print("Input .obj file can only contain one
object ")

108 else:
109 ob = bpy. context . selected_objects [0] #Get object
110

111 ob. users_collection [0]. objects . unlink (ob) #
Remove object from default collection

112 temp_collection . objects .link(ob) #Link to temp
collection

113

114 mesh_name = ob.name #Store current mesh name
115

116 ob.name = 'temp_object '
117 ob.scale = ob_scale #Set scale from input
118

119 ob_mat = ob. active_material #ob material data
120 ob_mat .name = 'temp_material '
121

122 bpy.data. meshes [mesh_name]. name = 'temp_mesh ' #
ob mesh data

123

124 else:
125 if 'temp_object ' in bpy.data. objects :
126 bpy.data. objects . remove (bpy.data. objects ['

temp_object '], do_unlink =True)
127 bpy.data. meshes . remove (bpy.data. meshes ['

temp_mesh '], do_unlink =True)
128 if 'temp_material ' in bpy.data. materials :
129 bpy.data. materials . remove (bpy.data. materials

['temp_material '], do_unlink =True)
130 else:
131 bpy.data. materials . remove (bpy.data. materials ['

temp_material '], do_unlink =True)
132 else:
133 print(" Required filetype for object is \". obj \".")
134

135 return {'FINISHED '}
136

137 class DATAPIPE_OT_Append_object_data (bpy.types. Operator):
138

139 bl_idname = 'datapipe . append_object_data '
140 bl_label = 'Append object to pipeline '
141 bl_options = {'REGISTER ', 'UNDO '}
142

143 def execute (self , context):
144 object_config = config_module . input_storage . config_dict ['

objects '] #Get object config
145 objects_list = object_config ['objects_list ']
146

A.3. Add-on GUI operators script 91

147 #User inputs
148 object_filepath = Path(bpy.path. abspath (context .scene.

object_path)). resolve ()
149 object_scale = context .scene. object_scale
150 object_mass = context .scene. object_mass
151 object_collision_shape = context .scene.

object_collision_shape
152 object_instances_max = context .scene. object_instances_max
153 object_instances_min = context .scene. object_instances_min
154

155 objects_list . append ({ 'filepath ': object_filepath , 'scale ':
object_scale , 'mass ': object_mass , 'collision_shape ':
object_collision_shape , 'max ': object_instances_max , 'min ':
object_instances_min }) # Append user input to config dict

156

157 if 'temp_object ' in bpy.data. objects .keys (): # Remove object
data

158 bpy.data. objects . remove (bpy.data. objects ['temp_object '],
do_unlink =True)

159 bpy.data. materials . remove (bpy.data. materials ['
temp_material '], do_unlink =True)

160 bpy.data. meshes . remove (bpy.data. meshes ['temp_mesh '],
do_unlink =True)

161

162 return {'FINISHED '}
163

164

165 class DATAPIPE_OT_Remove_last_object_data (bpy.types. Operator):
166

167 bl_idname = 'datapipe . remove_last_object_data '
168 bl_label = 'Remove last '
169 bl_options = {'REGISTER ', 'UNDO '}
170

171 def execute (self , context):
172 object_config = config_module . input_storage . config_dict ['

objects ']
173 object_list = object_config ['objects_list ']
174

175 if len(object_list) > 0: #Check if any objects in list
176 del object_list [-1] # Remove last object
177

178 return {'FINISHED '}
179

180

181 # ############ CAMERA OPERATORS #############
182 class DATAPIPE_OT_Append_camera_pose (bpy.types. Operator):
183

184 bl_idname = 'datapipe . append_camera_pose '
185 bl_label = 'Append pose '
186 bl_options = {'REGISTER ', 'UNDO '}
187

92 Appendix A. Name of Appendix

188 def execute (self , context):
189

190 camera_pose_list = config_module . input_storage . config_dict ['
camera ']['wrld2cam_pose_list ']

191

192 if 'temp_cam ' in bpy.data. cameras .keys ():
193 cam = bpy.data. objects ['temp_cam ']
194

195 loc = list(cam. location)
196 cam. rotation_mode = 'QUATERNION '
197 rot = list(cam. rotation_quaternion)
198

199 transform = {'rotation ': rot , 'location ': loc}
200

201 camera_pose_list . append (transform)
202

203 ###### reseting camera pose props to zero
204 cam. location = (0, 0, 1)
205 cam. rotation_mode = 'XYZ '
206 cam. rotation_euler = (np.pi/2, 0, 0)
207

208 print("\n### New pose added to camera pose list ###\n->
Utility camera pose list contains {} poses\n". format (len(
config_module . input_storage . config_dict ['camera ']['
wrld2cam_pose_list '])))

209

210 return {'FINISHED '}
211

212 class DATAPIPE_OT_Remove_camera_pose (bpy.types. Operator):
213

214 bl_idname = 'datapipe . remove_camera_pose '
215 bl_label = 'Undo last '
216 bl_options = {'REGISTER ', 'UNDO '}
217

218 def execute (self , context):
219

220 camera_pose_list = config_module . input_storage . config_dict ['
camera ']['wrld2cam_pose_list ']

221

222 if len(camera_pose_list) > 0:
223 del camera_pose_list [-1]
224 print(" Number of poses in list after removal : {}". format

(len(camera_pose_list)))
225

226 return {'FINISHED '}
227

228

229 class DATAPIPE_OT_Preview_camera_pose (bpy.types. Operator):
230

231 bl_idname = 'datapipe . preview_camera_pose '
232 bl_label = 'Toggle camera preview '

A.3. Add-on GUI operators script 93

233

234 def execute (self , context):
235

236 if 'temp_cam ' in bpy.data. cameras .keys (): #Check if camera
and projector temp object already exists

237 # Remove camera object when toggeling off preview
238 bpy.data. objects . remove (bpy.data. objects ['temp_cam '],

do_unlink =True)
239 bpy.data. cameras . remove (bpy.data. cameras ['temp_cam '],

do_unlink =True)
240

241 if 'temp_projector ' in bpy.data. lights .keys ():
242 # Remove projector object when toggeling off preview
243 bpy.data. objects . remove (bpy.data. objects ['

temp_projector '], do_unlink =True)
244 bpy.data. lights . remove (bpy.data. lights ['

temp_projector '], do_unlink =True)
245 else:
246 # Insert camera object in specified position for preview
247 cam = bpy.data. cameras .new(name='temp_cam ') # Create

camera data
248 cam_obj = bpy.data. objects .new(name='temp_cam ',

object_data =cam) # Create camera object
249 bpy. context .scene. collection . objects .link(cam_obj)
250

251 cam. sensor_width = context .scene. camera_sensor_width
252 cam.lens = context .scene. camera_focal_length
253

254 #Set default pose
255 cam_obj . location = (0 ,0 ,1)
256 cam_obj . rotation_euler = (np.pi/2, 0, 0)
257

258 #Check if projector pose should be previewed
259 if context .scene. is_structured_light :
260

261 projector = bpy.data. lights .new(name='temp_projector
', type='SPOT ')

262 projector_obj = bpy.data. objects .new(name='
temp_projector ', object_data = projector)

263 bpy. context .scene. collection . objects .link(
projector_obj)

264

265 projector_obj . parent = cam_obj #Set projector to
child of camera object

266 projector_obj . parent_type = 'OBJECT '
267

268 projector . spot_blend = 0
269 projector . spot_size = 45* np.pi /180
270 projector . shadow_soft_size = 0
271

272 proj_loc = context .scene. projector_loc_vec

94 Appendix A. Name of Appendix

273 projector_obj . location = proj_loc
274

275 #Check rotation mode of projector
276 if context .scene. projector_rot_enum == 'quat ':
277 projector_obj . rotation_mode = 'QUATERNION '
278 proj_rot = context .scene. projector_rot_quat
279 projector_obj . rotation_quaternion = proj_rot
280 else:
281 projector_obj . rotation_mode = 'XYZ '
282 proj_rot = context .scene. projector_rot_xyz
283 projector_obj . rotation_euler = proj_rot
284

285 return {'FINISHED '}
286

287

288 class DATAPIPE_OT_Save_pipeline_info (bpy.types. Operator):
289

290 bl_idname = 'datapipe . save_pipeline_info '
291 bl_label = 'Export '
292

293 def execute (self , context):
294

295 config_module . input_storage . write_to_config_dict (context)
296

297 config_module . input_storage . write_to_pickle_file (context .
scene. save_pipeline_input_path)

298

299 return {'FINISHED '}
300

301

302 # ############ RUN PIPELINE OPERATORS #############
303 class DATAPIPE_OT_Runner (bpy.types. Operator):
304

305 bl_idname = 'datapipe . run_pipeline '
306 bl_label = 'Run Pipeline '
307 bl_options = {'REGISTER ', 'UNDO '}
308

309 def execute (self , context):
310

311 # Remove temp objects before running the pipeline , to avoid
bugs.

312 if 'temp_projector ' in bpy.data. lights .keys (): # Remove
projector object preview before running the pipeline

313 bpy.data. objects . remove (bpy.data. objects ['temp_projector
'], do_unlink =True)

314 bpy.data. lights . remove (bpy.data. lights ['temp_projector '
], do_unlink =True)

315

316 if 'temp_cam ' in bpy.data. cameras .keys (): # Remove camera
object preview before running the pipeline

317 bpy.data. objects . remove (bpy.data. objects ['temp_cam '],

A.3. Add-on GUI operators script 95

do_unlink =True)
318 bpy.data. cameras . remove (bpy.data. cameras ['temp_cam '],

do_unlink =True)
319

320 if 'temp_object ' in bpy.data. objects .keys (): # Remove object
preview before running the pipeline

321 bpy.data. materials . remove (bpy.data. materials ['
temp_material '], do_unlink =True)

322 bpy.data. objects . remove (bpy.data. objects ['temp_object '],
do_unlink =True)

323 bpy.data. meshes . remove (bpy.data. meshes ['temp_mesh '],
do_unlink =True)

324

325 if 'temp_collection ' in bpy.data. collections .keys (): # Remove
collections preview before running the pipeline

326 bpy.data. collections . remove (bpy.data. collections ['
temp_collection '], do_unlink =True)

327

328 # Load all information from GUI to config dict
329 config_module . input_storage . write_to_config_dict (context)
330

331 # ################## PIPELINE FROM HERE ON OUT
###################

332 print("\n ###################\ nPIPELINE RUN INITIATED \n
###################\ n")

333 start_time = time.time ()
334

335 config = config_module . input_storage . config_dict
336

337 camera = BlendCamera (camera_name ='pipe_cam ',config = config)
338

339 renderer = Renderer (camera = camera)
340

341 object_manager = ObjectManager (config = config)
342

343 loop_finished = False
344

345 while not loop_finished :
346

347 #Prep simulation goes here.
348

349 scene = BlendScene (config =config , camera =camera ,
object_manager = object_manager)

350

351 object_manager . import_objects ()
352

353 object_manager . create_initial_positions (scene=scene)
354

355 # Simulation goes here
356 simulation = Simulation (sim_end =400)
357 simulation . run_loop () #Loop physics simulation

96 Appendix A. Name of Appendix

358 simulation . apply_simulated_transforms (object_manager =
object_manager)

359

360 for render in range (1, scene. renders_for_scene +1):
361

362 renderer . set_output_paths (scene=scene , render_num =
render)

363

364 camera .move(curr_render = render)
365

366 scene. write_output_info_to_scene_dict (render_num =
render , camera =camera , object_manager = object_manager)

367

368 renderer . render_results ()
369

370 if camera . is_structured_light :
371 SL_algorithm = Algorithm (renderer =renderer ,
372 pattern_names = camera .

pattern_names ,
373 pattern_generator =

camera . pattern_generator , camera = camera)
374

375

376 scene. write_scene_dict_to_file ()
377

378 loop_finished = scene. last_scene
379

380 del scene
381

382 BlendScene . reset_scene_number ()
383 config_module . input_storage . reset_config_dict ()
384

385 end_time = time.time ()
386

387 print(" ##################\ n# Timing results #\n# Run time:
{:2.2f} #\n ##################\ n". format (end_time - start_time))

388 print("\ nPIPELINE RUN FINISHED \n")
389 return {'FINISHED '}
390

391

392 classes = [
393 DATAPIPE_OT_Set_up_Scene ,
394 DATAPIPE_OT_Load_input_file ,
395 DATAPIPE_OT_Import_dropzone_object ,
396 DATAPIPE_OT_Preview_object ,
397 DATAPIPE_OT_Append_object_data ,
398 DATAPIPE_OT_Remove_last_object_data ,
399 DATAPIPE_OT_Preview_camera_pose ,
400 DATAPIPE_OT_Append_camera_pose ,
401 DATAPIPE_OT_Remove_camera_pose ,
402 DATAPIPE_OT_Save_pipeline_info ,

A.4. Scene class 97

403 DATAPIPE_OT_Runner ,
404]
405

406 def register ():
407 for cl in classes :
408 try:
409 bpy.utils. register_class (cl)
410 except RuntimeError as e:
411 print(e)
412

413 def unregister ():
414 for cl in classes :
415 try:
416 bpy.utils. unregister_class (cl)
417 except RuntimeError :
418 pass
419

420 print(" ############ pipeline_op End ############ ")

Listing A.3: pipelineop.py

A.4. Scene class
1

2 import bpy
3 import random
4 from pathlib import Path
5 import numpy as np
6 import pickle
7

8 from . objects_module import ObjectManager
9 from . camera_module import BlendCamera

10

11 class BlendScene :
12

13 scene_num = 0
14 finished_renders = 0
15

16 run_instance_path = ''
17

18 def __init__ (self , config : dict , camera : BlendCamera ,
object_manager : ObjectManager):

19 self. scene_config = config ['scene ']
20

21 self. object_manager = object_manager
22

23 self. scene_number = self. get_scene_number ()
24 self. scene_name = "scene .{:04} ". format (self. scene_num)
25

26 print("### SCENE {} CREATED ###". format (self. scene_num))

98 Appendix A. Name of Appendix

27

28 if self. scene_num == 1:
29 self. set_run_instance_path (config = config)
30

31 self. run_instance_path = self. get_run_instance_path ()
32

33 self. drop_zone_location , self. drop_zone_dimensions = self.
get_drop_zone_info (scene_config =self. scene_config)

34

35 self. output_path = Path. joinpath (Path(config ['output ']['path
']), self. scene_name)

36 self. output_path .mkdir ()
37

38 self. last_scene = False
39

40 self. total_num_renders = self. scene_config ['num_renders ']
41

42 self. renders_for_scene = self. get_num_renders (camera = camera)
43

44 self. scene_dict = {}
45

46 @classmethod
47 def get_scene_number (cls):
48 temp = cls. scene_num
49 cls. scene_num += 1
50 return cls. scene_num
51

52 @classmethod
53 def reset_scene_number (cls):
54 cls. scene_num = 0
55

56 @classmethod
57 def set_run_instance_path (cls , config):
58

59 path = Path(config ['output ']['path '])
60 path.mkdir ()
61 cls. run_instance_path = str(path)
62

63 @classmethod
64 def get_run_instance_path (cls):
65 return cls. run_instance_path
66

67 @classmethod
68 def set_finished_renders (cls , renders_for_scene : int):
69 cls. finished_renders += renders_for_scene
70

71 @classmethod
72 def get_num_finished_renders (cls):
73 return cls. finished_renders
74

75 def get_drop_zone_info (self , scene_config : dict):

A.4. Scene class 99

76

77 if 'drop_zone ' in bpy.data. objects .keys ():
78

79 drop_zone_ob = bpy.data. objects ['drop_zone ']
80 bpy.ops. object . select_all (action ='DESELECT ')
81 drop_zone_ob . select_get ()
82 bpy.ops. object . transform_apply (location =False , scale=

True , rotation =False)
83 scale = drop_zone_ob .scale
84 drop_zone_loc = drop_zone_ob . location
85 drop_zone_dim = drop_zone_ob . dimensions
86

87 bpy.data. objects . remove (drop_zone_ob , do_unlink =True)
88 bpy.data. meshes . remove (bpy.data. meshes ['drop_zone_mesh '

], do_unlink =True)
89

90 else:
91 drop_zone_loc = list(scene_config ['drop_zone_loc '])
92 scale = scene_config ['drop_zone_scale ']
93 drop_zone_dim = [2* scale [0], 2* scale [1], 2* scale [2]]
94

95 if self. scene_num == 1:
96 #Add cube under dropzone , to avoid simulation cliping

through
97 bpy.ops.mesh. primitive_cube_add ()
98 cube = bpy. context . active_object
99 old_col = cube. users_collection [0]

100 self. object_manager . objects_collection . objects .link(cube
)

101 old_col . objects . unlink (cube)
102

103 bpy.data. meshes [cube.name]. name = 'occlusion_box '
104 cube.name = 'occlusion_box '
105 bpy.ops. rigidbody . object_add (type='PASSIVE ')
106 cube_scale = [scale [0], scale [1], 0.1]
107

108 cube. hide_render = True
109 cube.scale = cube_scale
110

111 cube. location = [drop_zone_loc [0], drop_zone_loc [1],
drop_zone_loc [2] - drop_zone_dim [2]/2 - 0.1]

112 cube. rigid_body . collision_margin = 0.001
113

114 return list(drop_zone_loc), list(drop_zone_dim)
115

116

117 def get_num_renders (self , camera : object):
118

119 max_renders = self. scene_config ['max_renders_per_scene ']
120 min_renders = self. scene_config ['min_renders_per_scene ']
121

100 Appendix A. Name of Appendix

122 if max_renders > len(camera . pose_list):
123 max_renders = len(camera . pose_list)
124

125 num_renders = random . randint (a= min_renders , b= max_renders)
126 finished_renders = self. get_num_finished_renders ()
127

128 if finished_renders + num_renders >= self. total_num_renders :
129 num_renders = self. total_num_renders - finished_renders
130

131 self. last_scene = True
132

133 self. set_finished_renders (num_renders)
134

135 return num_renders
136

137 def write_output_info_to_scene_dict (self , render_num : int ,
camera : BlendCamera , object_manager : ObjectManager):

138 print("\ nWriting to output dict :\n")
139 object_output_list = object_manager .

get_objects_information_dict (camera = camera)
140 render_key = 'render .{:04d}'. format (render_num)
141

142 wrld2cam_pose = np. asarray (camera . blend_cam_obj . matrix_world
)

143

144 self. scene_dict [render_key] = {'wrld2cam_pose ':
wrld2cam_pose ,

145 'objects_in_scene ':
object_output_list }

146

147 def write_scene_dict_to_file (self):
148

149 filename = Path('output_dict . pickle ')
150 output_path = Path(self. run_instance_path)
151

152 pickle_path = Path. joinpath (output_path , filename)
153

154 if pickle_path . exists ():
155 path_str = str(pickle_path)
156 with open(path_str , "rb") as pickle_file :
157

158 info_dict = pickle .load(pickle_file)
159

160 info_dict [self. scene_name] = self. scene_dict
161

162 with open(path_str , "wb") as pickle_file_out :
163

164 pickle .dump(info_dict , pickle_file_out)
165 else:
166 path_str = str(pickle_path)
167 with open(path_str , "wb") as pickle_file_out :

A.5. Camera class 101

168 info_dict = {self. scene_name : self. scene_dict }
169

170 pickle .dump(info_dict , pickle_file_out)

Listing A.4: BlendScene

A.5. Camera class
1 import bpy
2 import numpy as np
3 import random
4 import copy
5

6 from . projector_module import Projector
7

8

9 class BlendCamera :
10

11 def __init__ (self , camera_name : str , config : dict):
12 print("### Camera object created ###")
13

14 self. camera_config = config ['camera ']
15

16 self.name = camera_name
17

18 self. is_structured_light = self. camera_config ["
is_structured_light "]

19

20 self. pose_list = self. camera_config [" wrld2cam_pose_list "]
21 self. pose_list_copy = copy.copy(self. pose_list)
22

23 self. blend_cam_obj , self. blend_cam_data = self. import_camera
()

24

25 bpy. context .scene. camera = self. blend_cam_obj
26

27 if self. is_structured_light :
28 self. projector = Projector (self , config = config)
29 self. pattern_names = self. projector . pattern_names_list
30 self. pattern_generator = self. projector .

pattern_generator
31 self. projector_matrix = self. projector .

get_projector_matrix ()
32 M = np. asarray (bpy.data. objects [self. projector .

pattern_names_list [0]]. matrix_basis)
33 self. projector_extrinsic = M[:3 ,:]
34

35 self.K = self. get_calibration_matrix_K_from_blender (mode='
complete ')

36 self. camera_extrinsic = np.array ([[1 , 0, 0, 0],

102 Appendix A. Name of Appendix

37 [0, 1, 0, 0],
38 [0, 0, 1, 0]])
39

40

41 def import_camera (self):
42 """
43 Imports camera into blender scene.
44 """
45 camera = bpy.data. cameras .new(name=self.name)
46 camera_obj = bpy.data. objects .new(name=self.name ,

object_data = camera)
47

48 parent_col = bpy. context .scene. collection
49 parent_col . objects .link(camera_obj)
50

51 camera_obj . rotation_mode = 'QUATERNION '
52

53 return camera_obj , camera
54

55

56

57 def get_random_pose_from_list (self , curr_render : int):
58 """
59 Selects a random pose from camera pose list.
60

61 Returns random tansformation numpy matrix .
62 """
63 if curr_render == 1:
64 self. pose_list_copy = copy.copy(self. pose_list)
65

66 #Pick random index of pose list
67 index = random . randint (a=0, b=len(self. pose_list_copy) -1)
68

69 pose = self. pose_list_copy .pop(index)
70

71 return pose
72

73 def move(self , curr_render : int):
74 """
75 moves camera object to random position .
76 """
77 print("\n ###### MOVING CAMERA ###### ")
78

79 # Sample random pose from input list
80 rand_pose = self. get_random_pose_from_list (curr_render =

curr_render)
81

82 self. blend_cam_obj . location = rand_pose ['location ']
83 self. blend_cam_obj . rotation_quaternion = rand_pose ['rotation

']
84

A.5. Camera class 103

85 bpy. context . view_layer . objects . active = self. blend_cam_obj
86 bpy.ops. object . visual_transform_apply ()
87

88

89 def get_calibration_matrix_K_from_blender (self , mode='complete ')
:

90

91 scene = bpy. context .scene
92

93 scale = scene. render . resolution_percentage / 100
94 width = scene. render . resolution_x * scale # px
95 height = scene. render . resolution_y * scale # px
96

97 camdata = scene. camera .data
98

99 if mode == 'simple ':
100

101 aspect_ratio = width / height
102 K = np.zeros ((3 ,3) , dtype=np. float32)
103 K [0][0] = width / 2 / np.tan(camdata .angle / 2)
104 K [1][1] = height / 2. / np.tan(camdata .angle / 2) *

aspect_ratio
105 K [0][2] = width / 2.
106 K [1][2] = height / 2.
107 K [2][2] = 1.
108 K. transpose ()
109

110 if mode == 'complete ':
111

112 focal = camdata .lens # mm
113 sensor_width = camdata . sensor_width # mm
114 sensor_height = camdata . sensor_height # mm
115 pixel_aspect_ratio = scene. render . pixel_aspect_x / scene

. render . pixel_aspect_y
116

117 if (camdata . sensor_fit == 'VERTICAL '):
118 # the sensor height is fixed (sensor fit is

horizontal),
119 # the sensor width is effectively changed with the

pixel aspect ratio
120 s_u = width / sensor_width / pixel_aspect_ratio
121 s_v = height / sensor_height
122 else: # 'HORIZONTAL ' and 'AUTO '
123 # the sensor width is fixed (sensor fit is

horizontal),
124 # the sensor height is effectively changed with the

pixel aspect ratio
125 pixel_aspect_ratio = scene. render . pixel_aspect_x /

scene. render . pixel_aspect_y
126 s_u = width / sensor_width
127 s_v = height * pixel_aspect_ratio / sensor_height

104 Appendix A. Name of Appendix

128

129 # parameters of intrinsic calibration matrix K
130 alpha_u = focal * s_u
131 alpha_v = focal * s_v
132 u_0 = width / 2
133 v_0 = height / 2
134 skew = 0 # only use rectangular pixels
135

136 K = np.array ([
137 [alpha_u , skew , u_0],
138 [0, alpha_v , v_0],
139 [0, 0, 1]
140], dtype=np. float32)
141

142 return K

Listing A.5: BlendCamera

A.6. Projector class
1 import os
2 import bpy
3 import numpy as np
4 from pathlib import Path
5

6 from . import utility_fuctions
7 from . pattern_generator import PatternGenerator
8

9 print(" ########## Projector start ########## ")
10

11 class Projector :
12 """
13 Projector class for Blender pipeline
14 """
15

16 def __init__ (self , blend_camera : object , config : dict):
17 print("### Projector object created ###")
18

19 self. projector_config = config ['projector ']
20

21 # Collect intrinsics from config
22 self. pattern_shape = self. projector_config ['resolution ']
23 self. focal_length = self. projector_config ['focal_length ']
24 self. sensor_size_horizontal = self. projector_config ['

sensor_width ']
25

26 # Generate patterns if they dont exist
27 self. pattern_generator = PatternGenerator (resolution =self.

pattern_shape)

A.6. Projector class 105

28 self. patterns = self. pattern_generator . patterns_list #List
of pattern dicts

29

30 self. cam2proj_rot = self. projector_config ['proj2cam_pose ']['
rotation ']

31 self. cam2proj_loc = self. projector_config ['proj2cam_pose ']['
location ']

32

33 print("\n### Projector pose ###\n--> Quaternions : {}\n-->
Translation : {}\n". format (self. cam2proj_rot , self. cam2proj_loc))

34

35 self. pattern_names_list = self. pattern_generator .
pattern_names

36 self. pattern_filepath = Path(utility_fuctions . PathUtility .
get_patterns_path ())

37

38 self. camera = blend_camera # BlendCamera object
39

40 self. create_collections_and_viewlayers ()
41 self. import_light_sources ()
42 self. connect_collections_and_viewlayers ()
43

44

45 def create_collections_and_viewlayers (self):
46 """
47 Creates collections and viewlayers , corresponding to the

generated projected patterns
48 """
49

50 #Set parent collection to be scene master collection
51 parent_collection = bpy. context .scene. collection
52

53 view_layers = bpy. context .scene. view_layers
54

55 if not len(view_layers) == 1:
56 raise Exception ('Blender file can not contain more than

one view layer when running the pipeline \ nBlender file currently
contains {} view layers '. format (len(view_layers)))

57

58 bpy. context . view_layer .name = 'native_layer ' # Rename native
view layer

59

60 # Seperate native lighting from projector lighting
61 lights_in_scene = []
62 for light in bpy.data. lights :
63

64 if bpy.data. lights [light.name]. users:
65 lights_in_scene . append (light.name)
66

67 native_lights_list = list(set(lights_in_scene) - set(self.
pattern_names_list))

106 Appendix A. Name of Appendix

68

69 # Create a collection to store native lighting
70 native_light_collection = bpy.data. collections .new(name='

native_lights ')
71 parent_collection . children .link(native_light_collection)
72

73 #Add native lighting to collection
74 for native_light_name in native_lights_list :
75

76 native_light = bpy.data. objects [native_light_name]
77

78 current_collection = native_light . users_collection
79

80 # Unlink object from previous collection and link to new
collection

81 native_light_collection . objects .link(native_light)
82 current_collection [0]. objects . unlink (native_light)
83

84 #Loop number of phase shift patterns in structured light
algorithm

85 for pattern_name in self. pattern_names_list :
86

87 # Create viewlayers for both wave lengths at current
shift

88 bpy. context .scene. view_layers .new(name= pattern_name)
89

90 # Create collections for both wave lengths at current
shift

91 collection = bpy.data. collections .new(name="{}". format (
pattern_name))

92

93 #Make collections children of master collection /scene
collection

94 parent_collection . children .link(collection)
95

96

97 def connect_collections_and_viewlayers (self):
98 """
99 Connect collections with their associated view layers , to

enable hiding and unhiding in other view layers .
100 """
101

102 for layer in bpy. context .scene. view_layers : #Loop layers
103 native_lighting_col = bpy. context .scene. view_layers [

layer.name]. layer_collection . children ['native_lights ']
104

105 if layer.name in self. pattern_names_list : #
106 native_lighting_col . exclude = True
107

108 for collection in bpy. context .scene. view_layers [layer.
name]. layer_collection . children : #Loop collections in layer

A.6. Projector class 107

109

110 if layer.name in self. pattern_names_list : #On a
projector layer

111

112 if collection .name == layer.name or collection .
name not in self. pattern_names_list and collection .name != '
native_lights ': # Collection to show in layer

113 collection . exclude = False
114

115 else: # Collection not to show in layer
116 collection . exclude = True
117

118 else: #Not a projector layer
119

120 if collection .name in self. pattern_names_list : #
Hide the projectors in the native layers

121 collection . exclude = True
122

123

124

125 def import_light_sources (self):
126 """
127 Creating projector light sources in blender , and creating

node tree for each pattern
128 """
129

130 print('################# importing light sources
################# ')

131 for pattern_name in self. pattern_names_list :
132

133 coll = bpy.data. collections [pattern_name] #Store the
associated blender collection as variable

134

135 bpy.data. lights .new(name= pattern_name , type='SPOT ') #
Create new light source

136

137 light = bpy.data. lights [pattern_name] #Store blender
light as variable

138 light_obj = bpy.data. objects .new(name= pattern_name ,
object_data =light) #Store blender light object as variable

139 coll. objects .link(light_obj) #Link light object to
assiciated collection

140

141 light. spot_blend = 0 #Edge blending of spotlight turned
off

142 light. spot_size = np.pi #Set spot field of view to 180 (
Larger than the image field of view)

143 light. shadow_soft_size = 0 #Makes edges of projected
image sharp

144

145 light_obj . parent = bpy.data. objects [self. camera .name] #

108 Appendix A. Name of Appendix

Set light to child of camera
146 light_obj . parent_type = 'OBJECT '
147

148 light_obj . location = self. cam2proj_loc #Set light
location relative to camera

149

150 if len(self. cam2proj_rot) == 4:
151 light_obj . rotation_mode = 'QUATERNION ' #Set rotation

mode to quaternion
152 light_obj . rotation_quaternion = self. cam2proj_rot
153 else:
154 light_obj . rotation_mode = 'XYZ ' #Set rotation mode

to euler xyz
155 light_obj . rotation_euler = self. cam2proj_rot
156

157 light_obj .name = pattern_name # Rename light to be same
as associated view layer and collection

158

159 #Set up the node tree for the projector
160 self. create_projector_node_tree (light=light)
161

162

163 def create_projector_node_tree (self , light):
164 '''
165 Creates the node tree for the light source , such that it

projects the pattern as a projector
166 '''
167

168 light. use_nodes = True
169 node_tree = light. node_tree
170 nodes = node_tree .nodes
171 links = node_tree .links
172

173 #Store auto generated nodes for later use
174 emission_node = nodes [0]
175 light_out_node = nodes [1]
176

177 # Create and place texture coordinate node in node tree
178 texture_coord_node = nodes.new(type='ShaderNodeTexCoord ')
179 texture_coord_node . location = (0, 0)
180 texture_coord_node .name = " text_coord_ {}". format (light.name)
181

182 # Create and place separate XYZ node in node tree
183 separate_xyz_node = nodes.new(type='ShaderNodeSeparateXYZ ')
184 separate_xyz_node . location = (200 , -80)
185 separate_xyz_node .name = " separateXYZ_ {}". format (light.name)
186

187 links.new(input= separate_xyz_node . inputs [0], output =
texture_coord_node . outputs [1]) #Link texture node to seperate
xyz node

188

A.6. Projector class 109

189 # Create and place vector math divide node in node tree
190 divide_node = nodes.new(type='ShaderNodeVectorMath ')
191 divide_node . location = (400 , 0)
192 divide_node . operation = 'DIVIDE '
193 divide_node .name = " divide_ {}". format (light.name)
194

195 links.new(input= divide_node . inputs [0], output =
texture_coord_node . outputs [1]) #Link texture node divide node

196 links.new(input= divide_node . inputs [1], output =
separate_xyz_node . outputs [2]) #Link seperate xyz node to texture

node
197

198 # Mapping node
199 mapping_node = nodes.new(type='ShaderNodeMapping ')
200 mapping_node . location = (600 , 0)
201 mapping_node .name = " mapping_ {}". format (light.name)
202

203 x_scale = (self. focal_length /(self. sensor_size_horizontal))
#Scale mapping node to focal length and vertical resolution

204 y_scale = (self. focal_length /(self. sensor_size_horizontal))
*(self. pattern_shape [1]/ self. pattern_shape [0]) #Scale mapping
node to focal length and horizontal resolution

205

206 links.new(input= mapping_node . inputs [0], output = divide_node .
outputs [0])

207 mapping_node . inputs [1]. default_value = [0.5 ,0.5 ,0] # Center
image in sportlight

208 mapping_node . inputs [2]. default_value = [0,0,np.pi] # Rotate
image about z-axis of camera

209 mapping_node . inputs [3]. default_value = [x_scale , y_scale , 1]
SCaling image mapping to fit focal length

210

211 # Texture image node
212 texture_img_node = nodes.new(type='ShaderNodeTexImage ')
213 texture_img_node . location = (800 , 0)
214 texture_img_node .name = " text_img_ {}". format (light.name)
215

216 links.new(input= texture_img_node . inputs [0], output =
mapping_node . outputs [0]) #Link mapping node to texture image
node

217 texture_img_node . extension = 'CLIP ' #Clip image , so that it
doesnt repeat

218

219 # Collect image from / utility / SL_patterns folder
220 pattern_filename = '{}x{}_{}. jpg '. format (self. pattern_shape

[0], self. pattern_shape [1], light.name) # Filename of pattern
stored in

221 pattern_img = bpy.data. images .load(filepath =str(Path.
joinpath (self. pattern_filepath ,Path(pattern_filename))))

222 texture_img_node .image = pattern_img #Set image to be
projected from node

110 Appendix A. Name of Appendix

223

224 # Emission node
225 emission_node . location = (1200 , 0)
226 emission_node .name = 'emission_ {}'. format (light.name)
227

228 links.new(input= emission_node . inputs [0], output =
texture_img_node . outputs [0]) #Link texture image node to
emission node

229 emission_node . inputs [1]. default_value = 5
230

231 #Light output node
232 light_out_node . location = (1400 , 0)
233 light_out_node .name = " light_output_ {}". format (light.name)
234

235 def get_projector_matrix (self):
236

237 focal_length = self. focal_length
238 sensor_width = self. sensor_size_horizontal
239

240 height_px = self. pattern_shape [0]
241 width_px = self. pattern_shape [1]
242

243 pixel_width = sensor_width / width_px
244

245 aspect_ratio = height_px / width_px
246

247 u_0 = height_px /2
248 v_0 = width_px /2
249

250 alpha_u = focal_length *(width_px / sensor_width)
251 alpha_v = focal_length *(height_px * aspect_ratio /(pixel_width *

height_px))
252

253

254 M = np.array ([[alpha_u , 0, u_0],
255 [0, alpha_v , v_0],
256 [0, 0, 1]])
257 return M

Listing A.6: Projector

A.7. Objects class
1 import types
2 import bpy
3 import os
4 import numpy as np
5 import random
6 import copy
7

A.7. Objects class 111

8 from . camera_module import BlendCamera
9

10

11 class BlendObject :
12

13 def __init__ (self , object_info : dict , index: int , collection):
14

15 # Collect input data
16 self. filepath = object_info ['filepath ']
17 self.scale = object_info ['scale ']
18 self.mass = object_info ['mass ']
19 self. collision_shape = object_info ['collision_shape ']
20 self.index = index
21

22 #Set unique pbject name and add to collection
23 self.name = 'DataPipe_object .{:04d}'. format (self.index) #Set

object name
24 self. objects_collection = collection
25

26 print("### OBJECT {} CREATED ". format (self.name))
27

28 # Import object to blender
29 filename , blend_ob , blend_mat , blend_mesh = self. import_ob (

filepath =self.filepath , index=self.index , scale=self.scale)
30 self. filename = filename
31 self. blend_ob = blend_ob
32 self. blend_mat = blend_mat
33 self. blend_mesh = blend_mesh
34

35 self. dimensions = self. get_object_dimensions ()
36

37

38 def import_ob (self , filepath : str , index: int , scale: float):
39

40 head , tail = os.path.split(filepath)
41 filename = tail. replace ('.obj ', '') # Extract filename
42

43 bpy.ops. object . select_all (action ='DESELECT ')
44 bpy.ops. import_scene .obj(filepath =str(filepath))
45

46 obj_in_file = len(bpy. context . selected_objects)
47 if obj_in_file != 1: #Can only contain one object .
48 raise Exception (".obj file can not contain more than one

object , there are {} objects in file :\n{}". format (obj_in_file ,
filepath))

49

50 if bpy. context . selected_objects [0]. name != filename :
51 filename = bpy. context . selected_objects [0]. name
52

53 obj = bpy.data. objects [filename]
54 mat = obj. active_material

112 Appendix A. Name of Appendix

55 mesh = bpy.data. meshes [filename]
56

57 #Set names to current object name
58 obj.name = self.name
59 mat.name = self.name
60 mesh.name = self.name
61

62 # Remove from default collection and add to datapipe object
collection

63 obj. users_collection [0]. objects . unlink (obj)
64 self. objects_collection . objects .link(obj)
65

66 #Apply object scaling
67 obj.scale = (scale , scale , scale) #Set scale from user input
68 bpy.ops. object . transform_apply (location =False , scale=True ,

rotation =False) #Apply scale to object
69

70 #Set object physics properties
71 bpy. context . view_layer . objects . active = obj
72 bpy.ops. rigidbody . object_add (type='ACTIVE ')
73 bpy. context . object . rigid_body . collision_shape = self.

collision_shape
74 obj. rigid_body .mass = self.mass
75 obj. rigid_body . collision_margin = 0.001
76

77 obj. pass_index = index #Set pass index for masked image
78

79 return filename , obj , mat , mesh
80

81 def get_object_dimensions (self):
82

83 return self. blend_ob . dimensions
84

85 def delete_ob (self):
86 print(" Blender object {} deleted ". format (self.name))
87

88 bpy.data. objects . remove (self.blend_ob , do_unlink =True)
89 bpy.data. materials . remove (self.blend_mat , do_unlink =True)
90 bpy.data. meshes . remove (self.blend_mesh , do_unlink =True)
91

92 def place_ob (self , x, y, z):
93

94 self. blend_ob . location = x, y, z
95 self. blend_ob . rotation_mode = 'XYZ '
96 self. blend_ob . rotation_euler = (random . random () *2* np.pi ,

random . random () *2* np.pi , random . random () *2* np.pi)

Listing A.7: BlendObject

A.8. Objects manager class 113

A.8. Objects manager class
1

2

3 class ObjectManager :
4

5 def __init__ (self , config : dict):
6

7 self. objects_config = config ['objects '] # Collect input dict
8

9 self. objects_info_list = self. objects_config ['objects_list ']
Object info list

10 self. objects_in_scene = []
11

12 self. objects_collection = self. create_objects_collection () #
Create collection to store pipeline objects

13

14

15 def create_objects_collection (self):
16

17 objects_collection = bpy.data. collections .new('
DataPipe_objects ')

18 bpy. context .scene. collection . children .link(
objects_collection)

19

20 return objects_collection
21

22 def import_objects (self):
23

24 self. delete_all_objects ()
25

26 index = 1
27 print("\n### Importing objects ###\n")
28 for object_input in self. objects_info_list :
29

30 max_instances = object_input ['max ']
31 min_instances = object_input ['min ']
32

33 instances_in_scene = random . randint (a= min_instances , b=
max_instances)

34

35 for instance in range(instances_in_scene):
36

37 obj = BlendObject (object_info = object_input , index=
index , collection =self. objects_collection)

38

39 self. objects_in_scene . append (obj)
40

41 index += 1
42 random . shuffle (self. objects_in_scene) # Randomizing the order

of the objects
43

114 Appendix A. Name of Appendix

44 def delete_all_objects (self):
45 if len(self. objects_in_scene) != 0:
46

47 for obj in self. objects_in_scene :
48 obj. delete_ob ()
49

50 del obj
51

52 self. objects_in_scene = []
53

54 def create_initial_positions (self , scene):
55

56 drop_zone_loc = scene. drop_zone_location
57 drop_zone_dim = scene. drop_zone_dimensions
58

59 z = drop_zone_loc [2] #Set initial z- coordinate to be at the
midpoint of the dropzone height

60 delta_z = 0
61

62 max_x_coord = drop_zone_loc [0] + drop_zone_dim [0]/2 #Max x-
value to place objects

63 min_x_coord = drop_zone_loc [0] - drop_zone_dim [0]/2 #Min x-
value to place objects

64

65 max_y_coord = drop_zone_loc [1] + drop_zone_dim [1]/2 #Max y-
value to place objects

66 min_y_coord = drop_zone_loc [1] - drop_zone_dim [1]/2 #Min y-
value to place objects

67

68 for obj in self. objects_in_scene : #place objects random
69

70 max_dim = max(obj. dimensions) #The object 's maximal
dimension (either x, y, or z direction)

71

72 max_x_obj = max_x_coord - max_dim /2
73 min_x_obj = min_x_coord + max_dim /2
74

75 max_y_obj = max_y_coord - max_dim /2
76 min_y_obj = min_y_coord + max_dim /2
77

78 x = random . random ()*(max_x_obj - min_x_obj) + min_x_obj
79 y = random . random ()*(max_y_obj - min_y_obj) + min_y_obj
80

81 z += delta_z + max_dim /2
82

83 obj. place_ob (x=x, y=y, z=z)
84

85 delta_z = max_dim /2
86

87 def get_objects_information_dict (self , camera : BlendCamera):
88

A.9. Simulation class 115

89 obj_output_list = []
90

91 for obj in self. objects_in_scene :
92

93 dict = {}
94

95 wrld2cam_transform = np. asarray (camera . blend_cam_obj .
matrix_world)

96

97 wrld2obj_transform = np. asarray (obj. blend_ob .
matrix_world)

98

99 cam2obj_pose = np. matmul (np. linalg .inv(
wrld2cam_transform), wrld2obj_transform)

100

101 dict = {'name ': obj.name ,
102 'filename ': obj.filename ,
103 'mask_index ': obj.index ,
104 'cam2obj_pose ': cam2obj_pose }
105

106 obj_output_list . append (dict)
107

108

109 return obj_output_list

Listing A.8: ObjectManager

A.9. Simulation class
1 import bpy
2 import time
3

4 from. objects_module import ObjectManager
5

6

7 class Simulation :
8

9 def __init__ (self , sim_end : int):
10

11 self. sim_end = sim_end
12 self. sim_start = 1
13

14 bpy. context .scene. rigidbody_world . point_cache . frame_start =
self. sim_start

15 bpy. context .scene. frame_set (frame=self. sim_start)
16

17 bpy. context .scene. rigidbody_world . point_cache . frame_end =
self. sim_end

18 bpy. context .scene. frame_end = self. sim_end
19

116 Appendix A. Name of Appendix

20

21 def run_loop (self):
22 sim_end = self. sim_end
23 print(" Simulation initiated ")
24 start = time.time ()
25 temp_prev = time.time ()
26 for frame_num in range(sim_end -2):
27 bpy. context .scene. frame_set (bpy. context .scene.

frame_current + 1) #Loop frames to 400
28 temp = time.time ()
29 print("\n--- FRAME {} at time {}s". format (frame_num +1,

temp - temp_prev))
30 temp_prev = temp
31 end = time.time ()
32 print(" Simulation done in {} seconds ". format (end -start))
33

34

35 def apply_simulated_transforms (self , object_manager :
ObjectManager):

36

37 for obj in object_manager . objects_in_scene :
38

39 bpy. context . view_layer . objects . active = obj. blend_ob #
Set obj to active

40 bpy.ops. object . visual_transform_apply () #Apply transform

Listing A.9: Simulation

A.10. Render class
1 import bpy
2 from pathlib import Path
3 import time
4

5 from . scene_module import BlendScene
6

7

8 class Renderer :
9

10 def __init__ (self , camera : object):
11

12 self. camera = camera
13

14 self. view_layers_list = camera . projector . pattern_names_list
15

16 self. output_nodes_list = self. create_render_node_tree ()
17

18 self. render_path = ''
19

20

A.10. Render class 117

21 def create_render_node_tree (self):
22

23 print("\n\n #####################\ nCREATING NODE TREE\n
#####################\ n\n")

24 x_coord = 0
25 y_coord = 0
26

27 delta_y = -110
28 delta_x = 300
29

30 bpy. context .scene. use_nodes = True
31 node_tree = bpy. context .scene. node_tree
32 node_tree .nodes.clear () #Clear auto created nodes
33 links = node_tree .links
34

35

36 out_node_list = []
37

38 native_layer = bpy. context .scene. view_layers ['native_layer ']
39

40 #Set viewlayer render options
41 native_layer . use_pass_z = True
42 native_layer . use_pass_normal = True
43 native_layer . use_pass_object_index = True
44

45 render_node = node_tree .nodes.new(type="
CompositorNodeRLayers ") #Add a render layer node

46 render_node .layer = native_layer .name
47 render_node .name = " render_node_native_layer "
48 render_node . location = x_coord , y_coord
49

50 x_coord += delta_x
51

52 #RGB image node
53 rgb_out_node = out_node = node_tree .nodes.new(type="

CompositorNodeOutputFile ")
54 rgb_out_node .name = 'rgb_output_node '
55 rgb_out_node . format . file_format = 'PNG '
56 rgb_out_node . location = x_coord , y_coord
57 rgb_out_node . inputs [0]. name = 'rgb_image '
58

59 out_node_list . append (rgb_out_node) #Add rgb output node to
out_node_list

60

61 rgb_link = links.new(input= rgb_out_node . inputs [0], output =
render_node . outputs [0]) #Link to render layer node

62

63 y_coord += delta_y
64

65 #Depth image node
66 depth_out_node = node_tree .nodes.new(type="

118 Appendix A. Name of Appendix

CompositorNodeOutputFile ")
67 depth_out_node .name = 'depth_output_node '
68 depth_out_node . format . file_format = 'OPEN_EXR '
69 depth_out_node . location = x_coord , y_coord
70 depth_out_node . inputs [0]. name = 'depth_image '
71

72 out_node_list . append (depth_out_node) #Add depth output node
to out_node_list

73

74 depth_link = links.new(input= depth_out_node . inputs [0],
output = render_node . outputs [2]) #Link to render layer node

75

76 y_coord += delta_y
77

78 # Normals image node
79 normals_out_node = node_tree .nodes.new(type="

CompositorNodeOutputFile ")
80 normals_out_node .name = 'normals_output_node '
81 normals_out_node . format . file_format = 'PNG '
82 normals_out_node . location = x_coord , y_coord
83 normals_out_node . inputs [0]. name = 'normals_image '
84

85 out_node_list . append (normals_out_node) #Add normals output
node to out_node_list

86

87 normals_link = links.new(input= normals_out_node . inputs [0],
output = render_node . outputs [3]) #Link to render layer node

88

89 y_coord += delta_y
90

91 # Masked image node
92 mask_out_node = node_tree .nodes.new(type="

CompositorNodeOutputFile ")
93 mask_out_node .name = 'mask_output_node '
94 mask_out_node . format . file_format = 'OPEN_EXR '
95 mask_out_node . location = x_coord , y_coord
96 mask_out_node . inputs [0]. name = 'masked_image '
97

98 out_node_list . append (mask_out_node) #Add mask output node to
out_node_list

99

100 mask_link = links.new(input= mask_out_node . inputs [0], output =
render_node . outputs [4]) #Link to render layer node

101

102 x_coord = -500
103 y_coord = 0
104 delta_y = -400
105

106 if self. camera . is_structured_light : # Create render nodes for
structured light view layers

107

A.10. Render class 119

108 for layer_name in self. view_layers_list :
109

110 render_node = node_tree .nodes.new(type="
CompositorNodeRLayers ") #Add a render layer node

111 render_node .layer = layer_name
112 render_node .name = " render_node_ {}". format (

layer_name)
113 render_node . location = x_coord , y_coord
114

115 out_node = node_tree .nodes.new(type="
CompositorNodeOutputFile ")

116 out_node .name = " output_node_ {}". format (layer_name)
117 out_node . location = x_coord + delta_x , y_coord
118 out_node . format . file_format = 'PNG '
119 out_node . inputs [0]. name = layer_name
120

121 out_node_list . append (out_node)
122

123 out_link = links.new(input= out_node . inputs [0],
output = render_node . outputs [0])

124

125 y_coord += delta_y
126

127 return out_node_list
128

129 def set_output_paths (self , scene: BlendScene , render_num):
130

131 scene_path = scene. output_path
132

133 render_dir_name = 'render .{:04d}'. format (render_num)
134 render_path = Path. joinpath (scene_path , Path(render_dir_name

))
135

136 render_path .mkdir ()
137 render_path = str(render_path)
138

139 self. render_path = render_path
140

141 for out_node in self. output_nodes_list :
142

143 path_string = "{}/{}". format (render_path , out_node .
inputs [0]. name)

144 path = Path(path_string)
145 out_node . base_path = str(path) #Set render path for

nodes
146

147

148 def render_results (self):
149 render_start = time.time ()
150 bpy.ops. render . render (use_viewport =True)
151 render_end = time.time ()

120 Appendix A. Name of Appendix

152 print(" Rendertime : {:.4f}". format (render_end - render_start))

Listing A.10: Renderer

A.11. Config class
1 import pickle
2 from pathlib import Path
3 import os
4 from . import utility_fuctions
5

6 import bpy
7

8 class input_storage :
9

10 config_dict = {
11 'camera ': {
12 'wrld2cam_pose_list ':[],
13 'focal_length ': 50,
14 'sensor_width ': 36,
15 'resolution ': [480 , 720] ,
16 'is_structured_light ': False
17

18 },
19 'projector ': {
20 'proj2cam_pose ': {},
21 'focal_length ': 50,
22 'sensor_width ': 36,
23 'resolution ': [480 , 720]
24 },
25 'scene ': {
26 'num_renders ': 1,
27 'max_renders_per_scene ': 1,
28 'min_renders_per_scene ': 1,
29 'drop_zone_loc ': [0, 0, 2],
30 'drop_zone_scale ': [0.5 , 0.5, 0.5]
31

32 },
33 'objects ': {
34 'objects_list ':[]
35

36 },
37 'output ': {
38 'path ': ''
39 }
40

41 }
42

43 @classmethod
44 def reset_config_dict (cls):

A.11. Config class 121

45 """
46 Resets configuration dict for the full pipeline .
47 """
48

49 cls. config_dict = {
50 'camera ': {
51 'wrld2cam_pose_list ':[],
52 'focal_length ': 50,
53 'sensor_width ': 36,
54 'resolution ': [480 , 720] ,
55 'is_structured_light ': False
56

57 },
58 'projector ': {
59 'proj2cam_pose ': {},
60 'focal_length ': 50,
61 'sensor_width ': 36,
62 'resolution ': [480 , 720]
63 },
64 'scene ': {
65 'num_renders ': 1,
66 'max_renders_per_scene ': 1,
67 'min_renders_per_scene ': 1,
68 'drop_zone_loc ': [0, 0, 2],
69 'drop_zone_scale ': [0.5 , 0.5, 0.5]
70

71 },
72 'objects ': {
73 'objects_list ':[]
74

75 },
76 'output ': {
77 'path ': ''
78 }
79

80 }
81

82 @classmethod
83 def write_to_config_dict (cls , context):
84

85 config = cls. config_dict
86

87 scene_config = config ['scene ']
88 objects_config = config ['objects ']
89 camera_config = config ['camera ']
90 projector_config = config ['projector ']
91 output_config = config ['output ']
92

93 #Scene inputs
94 scene_config ['num_renders '] = context .scene. num_renders
95 scene_config ['max_renders_per_scene '] = context .scene.

122 Appendix A. Name of Appendix

max_renders_per_scene
96 scene_config ['min_renders_per_scene '] = context .scene.

min_renders_per_scene
97

98 #Drop zone inputs
99 drop_zone = bpy.data. objects ['drop_zone '] #Get blender

object
100

101 bpy.ops. object . select_all (action ='DESELECT ') # Deselect all
object in blender scene

102

103 if drop_zone . select_get () is False:
104 drop_zone . select_set (True) # Select dropzone object
105

106 bpy. context . view_layer . objects . active = drop_zone #Set to
active object

107

108 bpy.ops. object . select_all (action ='DESELECT ') # Deselect all
object after

109

110 #Store object data in config
111 scene_config ['drop_zone_loc '] = list(bpy.data. objects ['

drop_zone ']. location)
112 scene_config ['drop_zone_scale '] = list(bpy.data. objects ['

drop_zone ']. scale)
113

114 # Camera intrinsics
115 camera_config ['focal_length '] = context .scene.

camera_focal_length
116 camera_config ['sensor_width '] = context .scene.

camera_sensor_width
117 camera_config ['resolution '] = [context .scene.

camera_resolution_height , context .scene. camera_resolution_width]
118 camera_config ['is_structured_light '] = context .scene.

is_structured_light
119

120 # Projector intrinsics
121 projector_config ['focal_length '] = context .scene.

projector_focal_length
122 projector_config ['sensor_width '] = context .scene.

projector_sensor_width
123 projector_config ['resolution '] = [context .scene.

projector_resolution_height , context .scene.
projector_resolution_width]

124

125 # Projector extrinsics
126 loc = list(context .scene. projector_loc_vec)
127 if context .scene. projector_rot_enum == 'quat ':
128 rot = list(context .scene. projector_rot_quat)
129 else:
130 rot = list(context .scene. projector_rot_xyz)

A.11. Config class 123

131

132 projector_config ['proj2cam_pose '] = {'rotation ': rot , '
location ': loc}

133

134 # Output
135 output_config ['path '] = utility_fuctions . PathUtility .

get_pipeline_run_output_path (context .scene. pipeline_output_path)
136

137

138 @classmethod
139 def set_input_panel_vars_from_dict (cls , context):
140 """
141 Set variables in Blender GUI to be the same as loaded file
142 """
143

144 config = cls. config_dict
145 scene_config = config ['scene ']
146 objects_config = config ['objects ']
147 camera_config = config ['camera ']
148 projector_config = config ['projector ']
149 output_config = config ['output ']
150

151 #Set scene variables
152 context .scene. num_renders = scene_config ['num_renders ']
153 context .scene. max_renders_per_scene = scene_config ['

max_renders_per_scene ']
154 context .scene. min_renders_per_scene = scene_config ['

min_renders_per_scene ']
155

156 # Import and move dropzone in blender
157 if 'drop_zone ' in bpy.data. objects .keys ():
158

159 bpy.data. objects ['drop_zone ']. location = scene_config ['
drop_zone_loc ']

160 bpy.data. objects ['drop_zone ']. scale = scene_config ['
drop_zone_scale ']

161

162 else:
163

164 bpy.ops.mesh. primitive_cube_add ()
165 drop_zone = bpy. context . active_object
166 mesh_name = drop_zone .name
167 drop_zone .name = 'drop_zone '
168 bpy.data. meshes [mesh_name]. name = 'drop_zone_mesh '
169 drop_zone . location = scene_config ['drop_zone_loc ']
170 drop_zone .scale = scene_config ['drop_zone_scale ']
171

172 bpy.ops. object . select_all (action ='DESELECT ')
173 if drop_zone . select_get () is False:
174 drop_zone . select_set (True)
175 bpy. context . view_layer . objects . active = drop_zone

124 Appendix A. Name of Appendix

176 bpy.ops. object . select_all (action ='DESELECT ')
177

178

179 #Set camera variables
180 context .scene. camera_focal_length = camera_config ['

focal_length ']
181 context .scene. camera_sensor_width = camera_config ['

sensor_width ']
182 camera_resolution = camera_config ['resolution ']
183 context .scene. camera_resolution_height = camera_resolution

[0]
184 context .scene. camera_resolution_width = camera_resolution [1]
185 context .scene. is_structured_light = camera_config ['

is_structured_light ']
186

187 #Set projector variables
188 context .scene. projector_focal_length = projector_config ['

focal_length ']
189 context .scene. projector_sensor_width = projector_config ['

sensor_width ']
190 projector_resolution = projector_config ['resolution ']
191 context .scene. camera_resolution_height =

projector_resolution [0]
192 context .scene. camera_resolution_width = projector_resolution

[1]
193

194 context .scene. projector_loc_vec = projector_config ['
proj2cam_pose ']['location ']

195 rot = projector_config ['proj2cam_pose ']['rotation ']
196 if len(rot) == 3:
197 context .scene. projector_rot_enum = 'xyz '
198 context .scene. projector_rot_xyz = rot
199 else:
200 context .scene. projector_rot_enum = 'quat '
201 context .scene. projector_rot_quat = rot
202

203

204

205 @classmethod
206 def write_to_pickle_file (cls , dir_path : str):
207 dir_path = Path(bpy.path. abspath (dir_path)). resolve ()
208 filename = Path('DataPipe_input . pickle ')
209

210 path = Path. joinpath (dir_path , filename)
211

212 if utility_fuctions . file_exists (path):
213

214 exist = True
215 index = 1
216

217 while exist:

A.12. Patterns class 125

218

219 filename = Path('DataPipe_input .{:04d}. pickle '.
format (index))

220 path = Path. joinpath (dir_path , filename)
221 exist = utility_fuctions . file_exists (path)
222 index += 1
223

224 pickle_file = open(path , "wb")
225 pickle .dump(cls. config_dict , pickle_file)
226 pickle_file .close ()
227

228 @classmethod
229 def input_from_file (cls , file_path : str):
230

231 file_path = Path(bpy.path. abspath (file_path)). resolve ()
232

233 if file_path . suffix == '. pickle ':
234 pickle_file = open(file_path , "rb")
235 cls. config_dict = pickle .load(pickle_file)
236 print("-- Input loaded from file :\n{}". format (cls.

config_dict))
237 else:
238 print("-- Filetype must be . pickle ")

Listing A.11: inputconfig

A.12. Patterns class
1 import os
2 from pathlib import Path
3 import cv2
4 import numpy as np
5 from numpy import pi
6 import copy
7

8 from . import utility_fuctions
9

10

11

12 class PatternGenerator :
13 """
14 Class for generating structured light patterns .
15 """
16

17 shifts = 3
18

19 def __init__ (self , resolution : list):
20

21 self. resolution = np. asarray (resolution)
22

126 Appendix A. Name of Appendix

23 self. num_phase_shifts = 3
24 self. periods = [8, 7]
25

26 self. patterns_list = []
27 self. generate_fringe_pattern (resolution =self.resolution ,

periods =self. periods [0])
28 self. generate_fringe_pattern (resolution =self.resolution ,

periods =self. periods [1])
29

30 self. store_patterns ()
31

32 self. pattern_names = self. get_pattern_names_list ()
33

34

35 def get_pattern_names_list (self):
36 """
37 Generate a list of pattern names to be used in creation of

viewlayers
38 """
39

40 names = []
41

42 for pattern in self. patterns_list :
43 names. append (pattern ['name '])
44 return names
45

46

47 def generate_fringe_pattern (self , resolution : list , periods : int
):

48 """
49 Generates three monochrome fringe patterns for structured

light scanner
50

51 :param width: image width
52 :type width: int
53 :param height : image height
54 :type height : int
55 :param periods : number of full periods along image width
56 :type periods : int.
57 """
58 print("### Generating patterns ###")
59

60 resolution = np. asarray (resolution)
61 print(" Resolution : {}". format (resolution))
62 height , width = resolution [0], resolution [1]
63

64 periods = periods
65 shifts = self. num_phase_shifts
66

67 delta_x = 2*pi* periods /(width)
68 x = np. arange (0 ,2* pi*periods , delta_x)

A.12. Patterns class 127

69

70 phi = 2*pi/ shifts
71

72 canvas = np.ones ((height ,width , shifts))
73 waves = np. transpose (255 * (0.5 + 0.5 * np.cos(np.array ([x,

x + phi , x - phi]))))
74

75 patterns = canvas *waves
76

77 for shift in range(shifts):
78

79 name = 'p{}s{}'. format (periods , shift +1)
80

81 pattern = copy.copy(patterns [:,:, shift])
82

83 pattern_dict = {'name ': name ,
84 'pattern ': pattern }
85

86 self. patterns_list . append (pattern_dict)
87

88

89 def store_patterns (self):
90 """
91 Stores generated pattern images in utility folder
92 """
93

94 patterns_folder_path = Path(utility_fuctions . PathUtility .
get_patterns_path ())

95

96 for pattern in self. patterns_list :
97

98 height , width = pattern ['pattern ']. shape
99

100 filename = "{}x{}_{}. jpg". format (height , width , pattern [
'name '])

101

102 Path(filename)
103 save_path = str(Path. joinpath (patterns_folder_path ,

filename))
104

105 pattern ['filename '] = save_path
106

107 if not os.path. exists (save_path): #Check if the pattern
already exist

108 cv2. imwrite (save_path , pattern ['pattern '])

Listing A.12: PatternGenerator

128 Appendix A. Name of Appendix

A.13. Algorithm class
import numpy as np from pathlib import Path import copy import cv2

from .rendermoduleimportRendererfrom.patterngeneratorimportPatternGeneratorfrom.cameramoduleimportBlendCamera

class Algorithm:

def init(self,renderer:Renderer,patternnames:list,patterngenerator:P atternGenerator,camera:BlendCamera):

self.renderpath = renderer.renderpath

self.filepaths = self.getrenderoutsubdirs(patternnames = patternnames)

self.images = self.loadimages(filepaths = self.filepaths)

self.periods = patterngenerator.periods

self.phase1img = self.phasedetection(images = self.images[:, :, : 3])self.phase2img =
self.phasedetection(images = self.images[:, :, 3 :])

self.absphaseimg = self.absolutephase(self.phase1img, self.phase2img)

self.cameramatrix = np.matmul(camera.K, camera.cameraextrinsic)self.projectormatrix =
np.matmul(camera.projectormatrix, camera.projectorextrinsic)

self.depthimg, image = self.triangulatedepth(camera.projector.patternshape[1], self.absphaseimg, self.cameramatrix, self.projectormatrix)

def getrenderoutsubdirs(self, patternnames : list) :′′′ Collectstherenderedoutputimagepathsformeveryrenderedcameraangle′′′

renderdir = Path(self.renderpath)

filepaths = []

for patternnameinpatternnames : subdir = Path(patternname)imgdir = Path.joinpath(renderdir, subdir)

for filepathinimgdir.iterdir() :

if filepath.suffix ==′ .png′ :

filepaths.append(str(filepath))break

return filepaths

def loadimages(self, filepaths) :′′′ Loadallrenderedstructuredlightimagesintomatrix′′′print(”LOADINGIMAGES”)

supportedf iletypes = [′.png′,′ .jpg′]

numimages = len(filepaths)

threshold = (25**2)*numimages

count = 0

A.13. Algorithm class 129

for imagepathinfilepaths :

imagepath = Path(imagepath)

if imagepath.suffixnotinsupportedf iletypes : raiseException(”Filetypenotvalid, use”.format(imagepath.suffix, supportedf iletypes))

img = cv2.imread(str(imagepath))imggray = cv2.cvtColor(img, cv2.COLORBGR2GRAY)

(height,width) = imggray.shape

if count == 0: out = np.empty((height, width, numimages))

out[:,:,count] = imggray

count += 1

Remove unlit noisy pixels errorimg = copy.copy(out)errorimg = np.sum(errorimg∗
∗2, axis = 2)filterimg = np.oneslike(out[:, :, 0])filterimg[np.where(errorimg <
threshold)] = None

for i in range(len(out[0,0,:])): out[:,:,i] = np.multiply(out[:,:,i], filterimg)

return out

def removeunlitpixels(self, images, threshold) : errorimg = copy.copy(images)errorimg =
np.sum(errorimg∗∗2, axis = 2)filterimg = np.oneslike(images[:, :, 0])filterimg[np.where(errorimg <
threshold)] = None

for i in range(len(images[0,0,:])): images[:,:,i] = np.multiply(images[:,:,i], filterimg)

return images

def phasedetection(self, images) :′′′ Extractsthephaseiamgeforeveryshiftedfringeimagepattern′′′print(”PHASEDETECTION”)dim =
images.shape

r = dim[0] c = dim[1]

phase = np.empty((r,c)) numphasesteps = dim[2]

ph = 2*np.pi*np.arange(0,numphasesteps)/numphasestepsP lasserfaseforskyningenienvektorprint(ph)

sinph = np.sin(ph) Faseforskyvningen cosph = np.cos(ph) Faseforskyvningen print(sinph)
print(cosph)

imagevector = np.array(images).reshape(r∗c, numphasesteps)Omformbildettilenvektorprint(imagevector.shape)

numerator = np.matmul(imagevector, sinph)Multiplisermedfaseforskyvningendenominator =
np.matmul(imagevector, cosph)Multiplisermedfaseforskyvningen

print(numerator.shape)

phase = -np.arctan2(numerator, denominator) Finn vinkelen i sin og cos

130 Appendix A. Name of Appendix

phase = phase.reshape(r,c) Form bildet tilbake til originalt format phase = np.mod(phase,2*np.pi)
Map verdiene til 0 til 2pi

return phase

def absolutephase(self, phase1, phase2) : ”””Computestheabsolutephaseusingtwowaveheterodyneprinciplewithsyntheticphaseasaid.returnparam :
absphasereturntype : numpy.ndarray”””

phaseeq = np.mod(phase1− phase2, np.pi ∗ 2)

l1 = phase1.shape[1]/self.periods[0]Wavelengthforpattern1l2 = phase1.shape[1]/self.periods[1]Wavelengthforpattern2leq =
l2 ∗ l1/(l2 − l1)

k = np.round(((leq/l1) ∗ phaseeq − phase1)/(np.pi ∗ 2))

temp = phase1 + k * 2*np.pi

absphase = temp/self.periods[0]

return absphase

def triangulatedepth(self, projectorreswidth, absphase, cameramatrix, projectormatrix) :

Pc = cameramatrixPp = projectormatrix

depthimg = np.emptylike(absphase)count = 0

for ucinrange(len(depthimg[:, 0])) :

for vcinrange(len(depthimg[0, :])) :

phase = absphase[uc, vc]

if phase is not None or phase is not ’nan’:

vp = projectorreswidth ∗ (phase/(np.pi ∗ 2))

M = np.array([[Pc[0, 0] − Pc[2, 0] ∗ uc, Pc[0, 1] − Pc[2, 1] ∗ uc, Pc[0, 2] − Pc[2, 2] ∗
uc], [Pc[1, 0]− Pc[2, 0] ∗ vc, Pc[1, 1]− Pc[2, 1] ∗ vc, Pc[1, 2]− Pc[2, 2] ∗ vc], [Pp[1, 0]−
Pp[2, 0] ∗ vp, Pp[1, 1]− Pp[2, 1] ∗ vp, Pp[1, 2]− Pp[2, 2] ∗ vp]])

vec = np.array([[Pc[0, 3]−Pc[2, 3]∗uc], [Pc[1, 3]−Pc[2, 3]∗vc], [Pp[1, 3]−Pp[2, 3]∗vp]])

worldcoordinates = np.matmul(np.linalg.inv(M), vec)

depthimg[uc, vc] = worldcoordinates[2]count+ = 1

return depthimg

REMOVE def tempsaveimagetorenderpath(self, image) : path = Path.joinpath(Path(self.renderpath), Path(′image.png′))count =
1whilepath.exists() :

name = Path(’image.png’.format(count)) path = Path.joinpath(Path(self.renderpath), name)

A.14. Utility functions 131

count += 1

path = str(path) cv2.imwrite(path, image)

Listing A.13: Algorithm

A.14. Utility functions
1 from genericpath import exists
2 import types
3 import bpy
4 import subprocess
5 import numpy as np
6 from scipy. spatial . transform import Rotation
7 import os
8 from pathlib import Path
9

10 from . scene_module import BlendScene
11 from . config_module import input_storage
12

13 class PathUtility :
14

15 @staticmethod
16 def get_addon_path ():
17 """
18 Returns path to addon folder .
19 """
20 resource_path = Path(bpy.utils. resource_path (type='USER '))
21 addon_sub_path = Path(" scripts / addons / DataPipe ")
22 addon_path = Path. joinpath (resource_path , addon_sub_path)
23 print(" addon_path :\n{}". format (addon_path))
24 return str(addon_path)
25

26 @staticmethod
27 def get_patterns_path ():
28 """
29 Returns path to patterns folder .
30 """
31 resource_path = Path(bpy.utils. resource_path (type='USER '))
32 pattern_sub_path = Path(" scripts / addons / DataPipe / utility /

SL_patterns ")
33 pattern_path = Path. joinpath (resource_path , pattern_sub_path

)
34 print(" $$$$$$$ \ nResource path :\n{}\n--> Type: {}\n\ nPattern

sub path :\n{}\n--> Type: {}\n\ nTotal path :\n{}\n--> Type: {}\
n$$$$$$$ ". format (resource_path , type(resource_path),
pattern_sub_path , type(pattern_sub_path), pattern_path , type(
pattern_path)))

35 return str(pattern_path)

132 Appendix A. Name of Appendix

36

37 @staticmethod
38 def get_pipeline_run_output_path (path: Path):
39 path = Path(bpy.path. abspath (path)). resolve ()
40 dir_name = Path(" DataPipe_run ")
41 out_path = Path. joinpath (path , dir_name)
42 print("Try 1 at path_\n{}". format (str(out_path)))
43 if not os.path. exists (out_path):
44 return str(out_path)
45

46 exists = True
47 index = 1
48

49 while exists :
50 dir_name = 'DataPipe_run .{:04d}'. format (index)
51 out_path = Path. joinpath (path , dir_name)
52 print("Try {} at path :\n{}". format (index +1, str(out_path

)))
53 if not Path. exists (out_path):
54 exists = False
55 return str(out_path)
56 index += 1
57

58

59

60

61 class PackageControll :
62 """
63 Class for installing python dependencies for the pipeline addonq
64 """
65

66 package_list = ["opencv - python ", "scipy"]
67

68 @classmethod
69 def installDependencies (cls):
70 """
71 installing package dependencies to Blenders bundled python
72 """
73

74 #Path to python executable
75 py_exec = str(bpy.app. binary_path_python)
76

77 # Ensure that pip is installed
78 subprocess .call ([py_exec , '-m', 'ensurepip ', '--user '])
79

80 # Install latest version of pip
81 subprocess .call ([py_exec , '-m', 'pip ', 'install ', '--upgrade

', 'pip '])
82

83 #Loop package list to install all of them
84 for package_name in cls. package_list :

A.14. Utility functions 133

85 subprocess . check_call ([py_exec , '-m', 'pip ', 'install ','
{} '. format (package_name)])

86

87

88

89 def quat2rot (quat):
90 """
91 Converts blender quaternion representation to rotation matrix
92

93 :param: quat
94 :type quat: array
95 """
96 # Converts from blender quaternion representation
97 q = [quat [1], quat [2], quat [3], quat [0]]
98

99 quat = Rotation . from_quat (q) # Stores as a rotation
100 R = quat. as_matrix () # Rotation matrix
101 return R
102

103 def xyz2rot (xyz):
104

105 xyz_rot = Rotation . from_euler (seq='XYZ ',angles =xyz)
106 R = xyz_rot . as_matrix ()
107 q = xyz_rot . as_quat ()
108 quat = np.array ([q[3], q[0], q[1], q[2]])
109 return R, quat
110

111 def rot2quat (rot):
112 """
113 Converts a rotation matrix to blender quaternion representation
114

115 :param: rot
116 :type rot: array
117 """
118 R = Rotation . from_matrix (rot) # Stores as a rotation
119 q = R. as_quat () # Quaternions
120

121 quat = [q[3], q[0], q[1], q[2]] #Saves quaternion in Blender
representation

122 return quat
123

124

125

126 def pose_to_tranformation_matrix (rotation , location):
127 """
128 Changes Blenders quaternion or Euler rotational representation

and location
129 to transformation matrix representation
130 """
131

132 if len(rotation) == 4:

134 Appendix A. Name of Appendix

133 R = quat2rot (quat= rotation)
134 else:
135 R = xyz2rot (xyz= rotation)
136

137 t = location
138

139 T = np.array ([[R[0,0], R[0,1], R[0,2], t[0]] ,
140 [R[1,0], R[1,1], R[1,2], t[1]] ,
141 [R[2,0], R[2,1], R[2,2], t[2]] ,
142 [0, 0, 0, 1]])
143 return T, R, t
144

145

146 def transformation_matrix_to_quat_and_translation (matrix):
147 """
148 Converts pose from transformation matrix format to quaternions

and translation
149

150 return : [quaternions] and [x,y,z]
151 """
152 quat = rot2quat (rot= matrix [0:3 ,0:3])
153 trans = [matrix [0,3], matrix [1,3], matrix [2 ,3]]
154 return quat , trans
155

156

157 def transform_inverse (matrix):
158 R = matrix [0:3 , 0:3]
159 t = matrix [0:3 , 3]
160

161 T = np. zeros_like (matrix)
162 T[0:3 , 0:3] = np. transpose (R)
163 T[0:3 , 3] = - np. transpose (R)@t
164 T[3 ,3] = 1
165 return T
166

167

168 def cam2obj_transform (blender_object , cam_pos_matrix):
169 obj_translation = blender_object . location #Get object location

vector
170 obj_quaternions = blender_object . rotation_quaternion #Get object

rotation on quaternion
171 obj_trans_quaternions = rot2quat (quat2rot (obj_quaternions))
172

173 cam_translation = cam_pos_matrix [0:3 ,3] #Get camera location
vector

174 cam_quaternions = rot2quat (cam_pos_matrix [0:3 ,0:3]) #Get camera
rotation on quaternion

175

176 T_so , R_so , t_so = pose_to_tranformation_matrix (obj_quaternions ,
obj_translation) # Object transformation matrix in world

coordinates

A.14. Utility functions 135

177 T_sc , R_sc , t_sc = pose_to_tranformation_matrix (cam_quaternions ,
cam_translation) # Camera transformation matrix in world

coordinates
178

179 T_cs = transform_inverse (T_sc) #World coordinate system in
camera coordinate system

180

181 T_co = np. matmul (T_cs ,T_so) # Object transform from camera
coordinate system

182 R_co = T_co [0:3 ,0:3] # Rotation
183 t_co = T_co [0:3 ,3] # Translation
184

185 return T_co , R_co , t_co
186

187 def file_exists (file_path : str):
188

189 return os.path. exists (file_path)
190

191

192 def initialize_pipeline_environment ():
193 """
194 Setting blender variables to the required specifications for the

pipeline .
195 -Rendering engine is set to cycles and gpu - compute .
196 -Scene units are set to metric .
197 -Native object
198 """
199 print(" ###### INITIALIZING PIPELINE ###### ")
200

201 bpy. context .scene. render . engine = 'CYCLES '
202 bpy. context .scene. cycles . device = 'GPU '
203

204 bpy. context .scene. unit_settings . system = 'METRIC '
205 bpy. context .scene. unit_settings . length_unit = 'METERS '
206 bpy. context .scene. unit_settings . system_rotation = 'RADIANS '
207 bpy. context .scene. unit_settings . mass_unit = 'KILOGRAMS '
208 bpy. context .scene.world.color = (0 ,0 ,0)
209

210 BlendScene . reset_scene_number ()
211 input_storage . reset_config_dict ()
212

213

214 #Make all existing meshes be rigid bodies .
215 for obj in bpy.data. objects :
216

217 obj. pass_index = 0
218

219 bpy. context . view_layer . objects . active = obj
220

221 if bpy. context . object .type == 'MESH ':
222 bpy.ops. rigidbody . object_add (type='PASSIVE ')

136 Appendix A. Name of Appendix

223 bpy. context . object . rigid_body . collision_shape = 'MESH '
224

225

226 obj. rigid_body . collision_margin = 0.001

Listing A.14: utility functions

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

W
illiam

 Eikrem

6D
 Synthetic D

ata G
eneration Pipeline w

ith D
igital Representation of Structured Light Sensor

William Eikrem

6D Synthetic Data Generation
Pipeline with Digital Representation
of Structured Light Sensor

Master’s thesis in Mechanical Engineering
Supervisor: Lars Tingelstad
Co-supervisor: Sebastian Grans

June 2021

M
as

te
r’s

 th
es

is

	Preface
	Summary
	Sammendrag
	Introduction
	Problem statement
	Objectives
	Related work

	Preliminaries
	Artificial neural networks
	Coordinate frames and transformations
	Rotation matrix
	XYZ-Euler angle representation
	Quaternion representation
	Transformation matrices

	Blenders node system
	Domain randomization
	Camera matrices and transforms

	3D scanning and structured light algorithms
	Scanning methods
	Structured light
	Structured light phase shifting patterns patterns
	Phase shifting algorithm
	Phase unwrapping

	Triangulation
	Point triangulation
	Active structured light triangulation

	Method
	Choice of software
	Structured light camera in Blender
	Binary structured light
	Phase detection
	Phase unwrapping
	Triangulation

	DataPipe architecture
	Pipeline outputs
	Blender add-on
	BlendScene class
	BlendCamera class
	Projector class
	BlendObject class
	ObjectManager class
	Simulation class
	Renderer class

	Results
	DataPipe GUI
	Pipeline output
	Structured light

	Discussion
	DataPipe add-on GUI
	Pipeline outputs
	Depth from structured light camera

	Conclusion
	Further work

	Name of Appendix
	Add-on __init__ file
	Add-on GUI panels script
	Add-on GUI operators script
	Scene class
	Camera class
	Projector class
	Objects class
	Objects manager class
	Simulation class
	Render class
	Config class
	Patterns class
	Algorithm class
	Utility functions

