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Problem Description
While significant investments in renewable energy have led to a sharp decline in the related costs,

uncertain and intermittent behavior complicates the process of finding optimal renewable energy system
(RES) designs. Designing a flexible renewable power plant is imperative for coping with inherent fluctu-
ations for instance in weather patterns and power demand.

One way of dealing with the uncertainty in the design process is by the use of stochastic programming,
which includes a representation of the uncertain parameters in the optimization problem. Increased RES
flexibility can also be achieved by incorporating energy storage technologies, such as batteries or hydro-
gen, aiming to effectively mitigate the effect of fluctuating demand and power production. However, RES
both have a long project lifetime and requires a high temporal resolution to represent the substantial
short-term parameter variation. In turn, the complexity of these optimization problems rapidly increases,
and careful consideration is needed for both modeling and solving. In addition, developing accurate and
realistic models typically result in introducing nonconvexities.

Through the novel optimization software GOSSIP and a scenario representation of uncertainty, these
types of problems can be solved. GOSSIP provides a C++ framework for the modeling of two-stage
stochastic programs and their effective solution using a decomposition-based approach. Specifically,
GOSSIP has the inclusion of the Non-convex Generalized Benders Decomposition (NGBD) algorithm,
which allows for non-convex optimization problems and scales favorably with the number of scenarios.

Thus, the main objective of this master´s thesis is to use the GOSSIP software to develop and solve
the cost-optimal design and operation problem of flexible renewable energy systems under uncertainty.
The following tasks are to be considered:

1. Investigate and implement a renewable energy system model for the flexible design that includes
short-term energy storage using batteries.

2. Investigate approaches to account for and model uncertainty with hourly temporal resolution. This
would involve investigation of suitable scenario generation and methods.

3. Investigate the use of nonlinear models to improve model accuracy, for instance by accounting for
degradation of the battery with use.

4. Suggestions for further work for the flexible design problem of renewable energy systems will be
made.

Page 1 of 1



.



Abstract

Flexibility of energy systems is a term used for the ability to react to changes in circumstances
and to cover varying demand loads. For the renewable energy systems (RES), sufficient flexibility
can become an issue due to inherent intermittency and fluctuations of renewable energy sources.
A flexible design of a system mitigates these variations by increased production capacities, combi-
nation of different energy sources, and/or installation of energy storage technologies. The growing
need for flexible plants requires investigation of system environments and behaviours during the
design stage. Finding the optimal design is a complex process subject to large uncertainties due
to long project lifetimes and a need for high temporal resolution.

This work studies the flexible design problem of renewable energy systems in the novel optimiza-
tion software GOSSIP, which provides a framework for formulation and efficient solution of large
and complex two-stage stochastic programs. Two-stage stochastic programming is an optimiza-
tion approach that can account for uncertainty by separation of decision-variables into two stages.
Thus, first-stage variables represent the design decisions and second-stage variables represent the
operational decisions. Twelve 24-hour scenarios are used to represent the uncertainty through
typical design days. A mixed-integer linear programming (MILP) model for studying an energy
system with an end user, solar and wind energy sources, and a battery for hourly energy storage is
constructed using the GOSSIP framework. Further, the model is developed to be compatible with a
decomposition algorithm embedded in GOSSIP, providing a base for further problem investigation.

The flexible design strategy using the two-stage stochastic programming framework is shown to
turn a project profitable by increasing flexibility through battery energy storage and adjusting the
installed capacity of renewable sources. While being unprofitable with a design based on average
values, the flexible design obtained a value of the stochastic solution of 197 k$ annually. Further,
constraining construction cost is shown to affect the design decisions for achieving flexibility. For
battery energy storage, assumptions and modelling choices are found to potentially cause sub-
optimal designs. Therefore, it is argued for a need for further investigation of energy storage
modelling in the GOSSIP framework for the renewable energy system flexible design problem.
Further work with an extensive case study with rigorous uncertainty modelling, expansion of the
model with more components, and more detailed models should be investigated. Finally, future
work will include the creation of a user-friendly interface for making extensible RES models in
GOSSIP.
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Sammendrag

Fleksibilitet for energisystem er et begrep som brukes om evnen til å dekke en usikker og varierende
etterspørsel av energi. For fornybare energisystemer kan tilstrekkelig fleksibilitet bli et problem på
grunn av naturlige svingninger og periodevise brudd i energiproduksjon. Et fleksibelt design kan
dekke etterspørselen av energi ved å øke produksjonskapasiteten, kombinere forskjellige energik-
ilder og/eller benytte energilagring. Det økende behovet for fleksible system krever derimot en
grundig undersøkelse av systemets miljø og operasjonelle aspekt i designfasen. Å finne den beste
løsningen er en kompleks prosess med stor usikkerhet på grunn av lange tidshorisonter og behov
for fin tidsoppløsning.

I følgende arbeid studeres designproblemet for å oppnå tilstrekkelig fleksibilitet med forny-
bare energisystemer ved bruk av GOSSIP. GOSSIP er en ny programvare for optimalisering av
to-trinns stokastiske programmer som gir et rammeverk for formulering og effektive løsninger av
store og komplekse problem. To-trinns stokastisk programmering er en optimaliseringsmetode som
tar høyde for usikkerhet ved å separere variabler i to trinn. Typisk representerer variabler i første
trinn avgjørelsene for design og andre trinns variabler de operasjonelle beslutningene. Tolv 24-
timers scenarier brukes til å representere usikkerheten mellom trinnene ved å konstruere dager
med typiske svingninger i fornybare system. Ved bruk av rammeverket for modellering i GOS-
SIP, er det bygd en lineær mixed-integer programmeringsmodell (MILP) av et energisystem med
sluttbrukere, solenergi, vindkraft og batteri. Videre er modellen laget for å være kompatibel med
en dekomponeringsalgoritme innebygd i GOSSIP, og gir et grunnlag for videre undersøkelse av
problemet.

Den fleksible designstrategien ved bruk av det to-trinns stokastiske rammeverket er vist å
kunne gjøre et prosjekt lønnsomt ved å øke fleksibiliteten gjennom energilagring og justering av
produksjonskapasiteter. Selv om det viste seg å ikke være lønnsomt med et design basert på en
deterministisk tilnærming til optimalisering av problemet, viste en stokastisk løsning at det poten-
sielt kunne bli tilført en verdi av på 197 tusen dollar årlig. Videre er det vist at begrensning
av byggekostnadene påvirker de beslutningene som gjøres i designfasen for å oppnå fleksibilitet.
For batterilagring, er antagelser brukt for modellering vurdert til å kunne forårsake suboptimale
design. Derfor argumenteres det for et behov for videre undersøkelse av modellering av energi-
lagring i GOSSIP-rammeverket. Videre arbeid innebærer en omfattende casestudie med grundig
usikkerhetsmodellering og videre utvidelse med flere komponenter, samt undersøkelse av detal-
jerte modeller. Fremtidig arbeid vil også inkludere å lage et brukervennlig grensesnitt for å lage
utvidbare RES-modeller.
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EEV Evaluation of the expected value solution
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1 | Introduction

1.1 Motivation

Impelled by significant investments, technological progress and economies of scale have led to a
sharp decline in the cost of electricity production by renewable energy sources [1]. Photovoltaic
solar energy has seen an 82% reduction in the past decade, outperforming the marginal cost per
unit of energy produced by existing coal-fired plants. In fact, with a moderate price on carbon,
even the cheapest new coal plant were undercut in costs by the larger part of renewable capacity
additions in 2019. Replacing the 500 most expensive coal fired plants with solar and wind could
potentially save 23 billion dollars annually according to IRENA [2].

While the levelized cost of energy (LCOE) of renewable sources are becoming increasingly
competitive with fossil fuel driven plants, a technology’s generating cost of electricity can vary
significantly from its actual system value. Pure cost calculations neglect important differences in
and interactions between market, system and technology specific characteristics. These aspects
tend to decrease the value of renewable energy in the energy system [3].

Flexibility of energy systems is the ability to produce sufficient amounts of energy, i.e. match
energy supply with the demand of end users. However, operational challenges arise for renewable
energy systems due to the fluctuating nature of renewable energy input and energy demand. The
inherent fluctuations, characterized by significant uncertainties, reduce the readily available energy,
and consequently, the ability to cover demand loads. The capability of reacting swiftly to changes
in operational circumstances are needed to mitigate the uncertain fluctuations and obtain energy
security. Sufficient system flexibility therefore has to be considered at the design stage by optimal
selection of system technologies and unit size.

The flexible design problem of renewable energy systems aims to increase flexibility by taking
uncertainties and fluctuations into account when designing the system. Measures that improve the
reliability to cover demand loads include:

• Additional energy production capacity to provide a general higher level of power on average.

• The use of different energy sources to exploit power generation under different weather con-
ditions.

• Installation of energy storage, such as batteries or hydrogen technology, to offset power
surpluses and deficits in the system.

It should be noted that there is a trade-off between an increase in capital expenses and revenue
associated with increased robustness to uncertainty. Even though a flexible design with additional
capacity increases investment costs, it is more likely that the system can cover the demand load.

For short time horizons in particular, battery energy storage has been posed as a solution to
increase system flexibility. Batteries have the capability to quickly absorb and discharge electricity,
and can be used to balance out the fluctuations in light of the rest of the system and market. This
way, batteries can defer investments in production capacities and obtain a more flexible system

1



CHAPTER 1. INTRODUCTION

without increasing production [4]. With the inclusion of energy storage, it is believed that sub-
stantial amounts of renewable energy sources can be integrated with the global energy mix [5].

Designing a renewable energy system can be a challenging task and may entail a substantial
risk of sub-optimal decisions. Techniques for optimization under uncertainty should therefore be
considered for this purpose. Specifically, two-stage stochastic programming is a commonly uti-
lized framework [6]. In a two-stage stochastic program formulation, decision-making is performed
sequentially in two separate stages. A set of first-stage decisions has to be made before any un-
certainty is revealed, and a set of second-stage decisions can then be made for each realization of
uncertainty.

However, optimization of the flexible design of an energy system is often characterized by signif-
icant complexity. Numerous technologies are often available, which are subject to many uncertain
parameters with high variability. The rapidly fluctuating natures of energy markets and renew-
able energy sources require long time horizons and high resolutions from an operational modelling
perspective, driving up the number of decision variables and constraints.

Furthermore, accurate modelling of system technologies, such as battery energy storage, may
add non-linearities to the model. Non-linearities in an optimization model can cause a non-convex
program, known for being hard to solve. Due to its reasonable size, Gabrielli et al. [7] proposed
a deterministic mixed-integer linear programming approach for a multi-energy system that allows
hourly resolution and account for seasonal changes. However, the approach places a limited focus
on the uncertain variations.

In another study, uncertainty was included in the problem formulation through a two-stage
stochastic mixed-integer linear programming (MILP) approach [8]. For two-stage stochastic pro-
gramming, MILP formulations of the energy system design problems is the preferred approach due
to their simplicity and the availability of releavnt optimization software, as seen in [9], [10], [11]
and [12]. However, recent advances are unlocking the key for solving nonconvex two-stage stochas-
tic problems [13]. Additionally, large scale problems would require the need for decomposition
approaches.

In summary, optimization of the flexible design problem under uncertainty poses considerable
challenges as complexity may end up restricting accurate modelling of both uncertainty and sys-
tem technologies. Additionally, the inclusion of energy storage through batteries is expected to
be the key for obtaining sufficient system flexibility, but it further increases the decision-making
complexity. The novel optimization software GOSSIP, developed by researchers in the Process Sys-
tems Engineering Laboratory (PSEL) at MIT, has built-in functionality for decomposition-based
approaches that can guarantee optimal solutions for large and non-linear two-stage stochastic prob-
lems [14]. Utilizing such decomposition strategies for allowing large scale and complex problems
is hypothesized to be valuable for the study of the flexible design problem of renewable energy
systems.

1.2 Objectives, scope and limitations

Thus, the objective of this thesis is three-fold:

• Firstly, we develop a multi-period optimization model for the flexible design problem of
renewable energy systems under uncertainty. The model is used to obtain optimal flexible
solutions in GOSSIP by using a two-stage stochastic programming approach compatible with
a decomposition algorithm available in GOSSIP [15].

• The program is aimed to have hourly temporal resolution to be able to account for uncertain
fluctuations and employ measures at the design stage for increasing flexibility of renewable
energy systems.
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CHAPTER 1. INTRODUCTION

• Finally, we investigate the inclusion of energy storage in the model and the effect of related
modelling choices in a two-stage stochastic program.

A simple energy system with energy storage, solar energy and wind energy is used for the
flexible design problem in this thesis. Uncertainty will be accounted for when designing the system,
while operation will be optimized with perfect information. The scope of this project has certain
limitations:

• Energy modelling is limited to linear relations.

• Energy storage is limited to a battery that works on hourly variations.

• Non-linear battery models and degradation effects have been limited to investigation of pos-
sible dangers of omitting these aspects when modelling energy storage.

• Modelling of the energy system is limited to energy production and storage technologies.
Components such as transformers and grid connections are omitted.

• A simple representation of uncertainty and fluctuating patterns has been employed. Thus,
results are limited to illustration of possible ways to obtain flexible designs.

1.3 Structure of report

In Chapter 2, a brief background on renewable energy systems, solar energy, wind energy and
batteries are presented for the purpose of later technology modelling choices and implications.
An overview and fundamental concepts of optimization, mixed-integer programming, stochastic
programming and decomposition algorithms are presented in Chapter 3. Chapter 4 presents the
method and the model used in this thesis. The modelling approach of flexible renewable energy
system design is given in Sections 4.1 and 4.2, linking the background information in Chapters
2 and 3. Further, the resulting complete model formulations and the program inputs are given
in Sections 4.3 and 4.4 respectively. Results and discussion of the results are then presented in
Chapters 5 and 6. Firstly, the optimal solution and flexible design is presented together with
an assessment of the battery model in Chapter 5. Chapter 6 will then present a discussion on
the modelling approach and GOSSIP framework, before concluding remarks and suggestions for
further work are given in Chapter 7.

1.4 Contributions

The main contributions of this work are:

• Developing an MILP model for the flexible design problem.

• Renewable energy system modelling approach for compatibility with a decomposition algo-
rithm for solving non-convex problems.

• Performing a sensitivity analysis to investigate assumptions related to battery operation and
behaviour in models for two-stage stochastic optimization programs.

• Models for testing during the development of an object-oriented framework for the flexible
design problem of renewable energy system.
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2 | Renewable Energy Systems

Two trends have become increasingly prominent in the energy sector over the last decades. Firstly,
the transition from fossil to renewable energy sources have begun to speed up. 2020 is the first
year renewable energy production has overtaken fossil fuels in the EU due to increases in renewable
capacity, such as wind and solar power, and a falling share of coal [16]. Secondly, renewable energy
sources are fuelling the deployment of decentralized and distributed energy systems with more
and smaller electricity producers [17]. In this chapter, brief background information on three
important technologies for the development of decentralized renewable energy systems will be
presented. Additional background on the working principles of the technologies can be found in
Appendix A.

2.1 Solar energy

Harvesting energy from the sun has been on the rise this past decade, and 2019 alone saw a 22%
increase in solar energy production capacity [18]. However, challenges regarding solar PV are
present due to mismatches between electricity production and demand load patterns. This affects
the value of energy output from solar farms.

2.1.1 Solar irradiance
Solar PV has fluctuating power production due to the varying available intensity of solar radiation
throughout the day. However, typical patterns are fairly predictable. The value of solar mean
flux incident on a theoretical cross-section of the atmosphere is called the solar constant and is
illustrated in Figure 2.1. The solar radiation incident on the earth’s surface is, however, determined
by atmospheric effects and solar angels.

Figure 2.1: Solar constant on the atmosphere.

The atmospheric layer contains gases, dust, pollutants and other particles, causing a part of the
radiation to be absorbed, scattered or reflected [19]. This radiation is called diffuse radiation, and
the part of the radiation that has remained unaffected by the atmosphere is the beam radiation.
Consequently, an unclear atmosphere will have a reducing effect on the solar intensity, as illustrated
in Figure 2.2.
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Figure 2.2: Atmospheric effects on radiation.

Solar angles impact the radiation intensity on the earth surface. Air mass, illustrated in Figure
2.3, is a measure of the amount of air the sun rays have to pass through. It is normalized to the
shortest possible distance through the atmosphere, which is when the sun rays are incident normal
to the surface of the earth. The angle between the radiation path and the normal line to the earth’s
surface is called the solar zenith angle, denoted by θz, and defines the sun’s altitude.

Figure 2.3: Zenith angle and air mass.

The radiation received on a solar panel is also affected by the angle of which the solar panel
has been mounted. The tilt of the solar panel is meant to counter-act the fact that the zenith
angle causes a reduction in the horizontal solar intensity as earth surface area per unit of radiation
energy is increased. However, the panel will have a fixed tilt and position. Radiation incident on
the panel will therefore depend on the solar azimuth angle, which defines the sun’s relative location
on the horizon. For a tilted surface, radiation reflected off the earth’s surface or other objects may
be incident on the surface.

This reflected radiation depends on the object’s properties, where the fraction of light reflected
is defined as the albedo of the object. For instance, while the reflectivity of the earth´s surface is
varying, it is often assumed that it has an albedo of 0.2 [20], meaning that 20% of the radiation
incident on the surface is reflected. The global solar irradiance on a receiver, IRg, is the total
radiation incident on its surface. In summary, it can be assumed to consist of three components:

• Beam radiation, IRb: The direct solar radiation.

• Diffuse radiation, IRd: Scattered solar radiation that hits the solar panel.

• Albedo, IRa: The reflected solar radiation that a solar panel may receive after being reflected
from the ground.
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Calculating the three components above through-out the day can be used for estimation of solar
radiation patterns. This is imperative in evaluation of solar power in renewable energy systems.
Tools, which also includes weather data for average atmosphere clearness, are available for this
purpose [21].

2.1.2 Solar cells
Solar cells can convert radiation directly into electricity by exploiting the photovoltaic effect [22].
A brief overview of the concept of photovoltaics can be found in Appendix A.1.

The IV characteristic curve of a solar cell, illustrated in Figure 2.4, is the key for determining
its performance and efficiency [22]. The open circuit voltage occurs when there is no current, and
remain fairly constant under constant temperature. The short circuit current on the other hand,
depends on the intensity of the solar radiation.

Figure 2.4: IV-curve of a solar cell [23].

Ideal operation of a solar cell is at the maximum power point, VMP and IMP , illustrated by
PMP in Figure 2.4. This point determines the efficiency of the solar cell, linking the power in the
solar radiation to the power output of the solar cell, as given by Equation 2.1.

η =
VMP IMP

IR
=
qout
IR

(2.1)

where IR is the solar radiation incident on the solar cell and qout is the power output. Single solar
cells are connected in series or parallel to create photovoltaic modules called solar panels, shown in
Figure 2.5. PV farms in a RES would require large areas of interconnected solar panels in strings
and arrays to achieve a sufficient power output.

In addition to the design and construction, weather conditions play an important role for cell
efficiency:

• Low temperatures are preferred as high temperatures will decrease open circuit voltage and
the module efficiency.

• A higher solar intensity improves efficiency through altering the maximum power point.

While temperature can play a significant role in cell efficiency, the differences in normalized ef-
ficiencies due to irradiance are small [24]. Commercial PV modules usually have efficiencies around
15-20 % [25].
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Figure 2.5: Connection of solar cells.

However, the efficiency of solar panels will decrease with time as radiation and weather exposure
cause degradation to materials, for instance by deteroriation of antireflective coating will reduce
the efficiency [26]. Lifetime of the technology is given as the time before a certain efficiency loss
is reached. PV manufacturers typically guarantee 80% of initial efficiency after 25-30 years of
operation [27].

2.2 Wind energy

Contrary to solar energy, wind energy does not follow a typical pattern of production throughout
the day. Rather, wind energy from single turbines tend to have more uncertain fluctuations that
correlates more with wind turbines in the same area. As the distances between wind turbines
increase, the fluctuations tend to be uncoupled. However, this requires large land ares and nature
interference [28]. While placing wind turbines off-shore have been proposed as a future solution
for mitigating downsides of wind energy, on-shore wind turbines are currently seen as the most
economically viable option for harvesting the wind energy [29].

2.2.1 Wind speeds
The wind speed, determining the power output of wind turbines, does not follow typical patterns.
Instead, the patterns are known for being more random than solar irradiation patterns.

Wind speeds tend to be measured close to the ground, whereas wind turbines are usually at
higher altitudes. The boundary layer effect causes wind speed at higher altitudes to increase
relative to the distance to the ground [30]. The increasing wind velocity with altitude is illustrated
in Figure 2.6, where h is the height and v is the velocity vector of the wind.

The wind speed at higher altitudes can be estimated by relating the ratios to a surface roughness
factor [30], as illustrated in Equation 2.2.

W = W0 ·
(
h

h0

) 1
7

(2.2)

where W is the wind speed at altitude h, W0 is the wind speed at reference altitude h0, and
the coefficient 1

7 represent the surface roughness factor.
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Figure 2.6: Boundary layer effect on wind speed.

2.2.2 Wind turbines
While a wind turbine’s power output at given wind speeds depends on the size of the generator
and the strengths of its transmission, it will often be described by its rated power and rated wind
speed [31]. Rated power is the power produced by the wind turbine at the optimal wind conditions,
called rated wind velocity, i.e. the rotor operates at desired rotational speed.

The wind speed is highly fluctuating and may be higher than the rated velocity. Despite the
opportunity to obtain extra power by increasing the rated power and velocity to accommodate high
wind speeds, this will usually lead to an over-designed system [31]. On the other hand, exceeding
the optimal revolutions per minute (rpm) increases the risk for failure or overloading the wind
turbine. Restriction of the blade velocity is therefore needed, achievable through pitch controlled
wind turbines. The principles of generation and control of the rotational motion of blades on a
wind turbine are explained in Appendix A.2.

Wind turbines with pitch control will start to control the blade velocity when the turbine
approaches its rated power, keeping the turbine at its optimal rpm [31]. The relationship of the
power output of a pitch-controlled wind turbine to wind speed is referred to as a power curve.
While the actual observed power output can be described as a scatter plot, it can be approximated
by an idealized power curve or manufacturer power curve, illustrated by MPC in Figure 2.7.

Figure 2.7: Real data from a pitch controlled wind turbine and its idealized power curve [32].
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From the power curve, it is seen that the wind turbine can be characterized into four different
performance regions by the cut-in velocity, rated velocity and cut-out velocity:

1. Below the cut-in velocity, the wind turbine is idle and will not generate power.

2. Between the cut-in velocity and the rated velocity, the power output will increase with
increasing wind speeds.

3. From the rated velocity, the power output will remain at the rated power until the wind
speed reaches the cut-out velocity.

4. At the cut-out velocity, the system shuts down as the wind speed becomes too high for safe
operation.

An idealized power curve proposed by Matthew [31], given in Equation 2.3, can be used for
power output between the cut-in velocity and the rated velocity.

q = qd ·
W 3 −W 3

min

W 3
d −W 3

min

(2.3)

where q is the power output, qd is the rated power, W is the wind speed, Wmin is the cut-in
velocity, and Wd is the rated wind speed.

Degradation driven by time and weather conditions, however, causes power output losses of
around 1.5% per year for wind turbines due to fouling of blades and other components efficiency
losses [33]. The lifetime of wind turbines can be estimated to be about 20 years due to this wind
turbine degradation, in addition to fatigue and stress on the wind turbine materials.

2.3 Batteries

Utility-scale batteries are stationary batteries of several megawatt-hours connected to a grid or
power production unit. While many different battery technologies are available, the largest part
of the growth has been largely due to the cost reduction of Lithium-ion (Li-ion) batteries in recent
years [4]. Li-ion batteries are viewed as one of the most mature and prevalent alternatives for
large scale storage, providing low self-discharge losses, high energy and power density, decent
expected lifetime and reasonable costs [34]. The working principle of Li-ion batteries is presented
in Appendix A.3.

State of charge

A battery’s state of charge is the percentage of available capacity to the maximum capacity of the
battery, indicating the level of energy in the battery. The battery capacity indicates the amount
of electrical charge stored in a battery in ampere hours (Ah). This number represents how long
the battery can discharge a certain current. While actual available energy stored in the battery
will depend on the battery cell voltage level, this is often assumed to be constant for evaluating
the amount of energy that can be stored in the battery.

Voltage losses

The theoretical maximum power is given by the open circuit voltage of the battery, which is a
measure of the electrode potential with no current flow. Thereby, no losses are associated with
the amount of current that flows out of or in to the battery. The open circuit voltage is dynamic
in the sense that it depends on the battery state of charge. Further, the open circuit voltage
depends on whether the state was reached during charging or discharging. In Figure 2.8, typical
charge-discharge curves and the effects on open circuit voltage of a battery are presented.
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Figure 2.8: Charge - discharge profile [35].

The voltage losses will cause the actual battery voltage to differ from the open circuit voltage.
During charging operation, the battery voltage will have to be greater than the open circuit voltage.
Likewise, discharging the battery will give a battery terminal voltage that is less than the open-
circuit voltage. Furthermore, the voltage losses will increase in magnitude with an increasing
current, as shown in Figure 2.9: Increasing current will induce greater ohmic losses due to internal
resitances, activation polarization, and concentration polarization.

Figure 2.9: Voltage losses when increasing current [36].

Energy efficiency

The voltage losses are important in order to estimate the energy efficiency of the battery, ηenergy,
given by Equation 2.4.

ηenergy = ηvoltage · ηcoulombic =
V dis

V charge
· Qdis

Qcharge
(2.4)

Where: ηvoltage is the voltage efficiency; V dis and V charge are the battery voltage during dis-
charging and charging respectively; and ηcoulombic is the Coulombic efficiency, given by the ratio of
the total charge released during discharge, Qdis, and put into the battery during charge, Qcharge.
While the Coulombic efficiency is very high in lithium-ion batteries, the voltage efficiency can cause
significant losses [36].

The amount of current drawn or fed into the battery is referred to as the C-rate. This gives a
view of how high the battery power flow is relative to its capacity. Specifically, the C-rate indicates
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how many theoretical full capacities it discharges in an hour. For instance, a C-rate of 0.5 will
indicate that the entire capacity is withdrawn in two hours, while a C-rate of 2 will discharge it in
30 minutes. Higher C-rates represent more power and faster cycles, but will increase the voltage
losses due to increased current. Thereby, higher C-rates will decrease the energy efficiency.

Battery degradation

Various forms of degradation of batteries are well known phenomena: The battery experiences both
capacity loss and power fading due to degradation mechanisms such as parasitic reactions, stress
and volume changes [37]. Additionally, degradation can affect the lifetime of a battery, referred
to as the battery cycle life, i.e. how many times the battery can be charged and discharged until
required functions cannot be performed. The rate of power fading and capacity loss can be elevated
by numerous aspects of how the battery is operated, including:

• High C-rates

• Low states of charge

• High states of charge

In addition, increased temperatures are well known for speeding up battery capacity loss and
power fading [37]. However, proper maintenance and operation can slow down the performance
drop. For instance, the battery cycle life has been shown to be extended by avoiding high battery
states of charge [38]. The Tesla powerwall, an example of a Li-ion battery unit designed for
complementary use to solar and wind power, is expected to last approximately 15 years with daily
cycling [39].
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In this chapter, the mathematical background is provided for basic understanding of relevant
optimization and mathematical programming concepts. A focus will be placed on relevant problem
formulations for this thesis and important concepts that are central for describing the characteristics
and structure of optimization problems and stochastic programs. An overview and fundamental
concepts of a decomposition strategy for solving such problems will also be presented.

3.1 Basic optimization concepts

Estimation of either maximum and minimum points is always the goal of mathematical optimiza-
tion. The core concept is to find the optimal point of a defined domain corresponding to the
maximum or minimum value of what is referred as an objective function. In this thesis, the min-
imization problem will be used to explain the concepts of mathematical optimization. Barton’s
course notes on Mixed-Integer and Non-Convex Optimization [40] has been used as inspiration in
this section.

3.1.1 Optimality
In the standard optimization problem formulation (P.1), the goal is to find the point in a given set
D ∈ Rn that obtains the minimum value of an objective function f : Rn → R.

min
x∈D

f(x) (P.1)

The set D provides the feasible set for the problem, meaning that all feasible points exist in
this set. Any point x ∈ Rn : x /∈ D is infeasible and therefore cannot be the minimum for the
optimization problem. The point corresponding to the global minimum, x∗, is called the optimal
solution of the optimization problem and has to satisfy Equation 3.1.

f(x) ≥ f(x∗), ∀x ∈ D (3.1)

For optimization problems where a global minimum does not exist, a definition of optimality
can alternatively be provided through defining an infimum of the problem. The infimum of a set
S ⊂ Rn, inf(S), is defined as the greatest lower bound on a set of real numbers, meaning that
z ≥inf(S),∀z ∈ S and inf(S) ≥ β, where β is any other lower bound for S. The optimzation
problem on a given feasible set D ∈ R with an objective function f can then be formulated by

inf
x∈D

f(x) (P.2)

The set S = {f(x) : x ∈ D} is then the set of objective function values at feasible points.
However, the set S does not have to contain the optimal objective function value, inf(S). In
contrast to the minimization problem P.1, it is not necessary for the infimum of problem (P.2) to
be reached at any point x ∈ D. Conversely, the least upper bound to the set S is defined as the
supremum, sup(S).
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3.1.2 Relaxation and restriction
Relaxations and restrictions often play central roles in global optimization by providing bounds
on the global solution. From the previous definitions in Section 3.1.1 and for a set D ⊂ Rn, any
point x ∈ D in a function f(x) naturally becomes an upper bound for the minimization problem
min{f(x) : x ∈ D}. If we let D,E ⊂ Rn and D ⊂ E, then the solution for the minimization of a
function on the set E will give a lower bound for the solution of minimizing its subset:

min{f(x) : x ∈ E} ≤ min{f(x) : x ∈ D} (3.2)

In the above formulation, the set E has to contain every point existing in D, while the set D
only can contain points in E. An optimal solution to the problem on the left hand will therefore
be an optimal solution to the problem on the right hand of Equation 3.2 if the set D also contains
the optimal solution.

For the same two sets and the functions f : Rn → R and g : Rn → R, the following two
optimization problems can be created:

min{g(x) : x ∈ E} and min{f(x) : x ∈ D}

The left hand problem is then called a relaxation of the right hand problem if D is a subset of
E and g is an underestimator of f , i.e. D ⊂ E and g(x) ≤ f(x),∀x ∈ D. The right hand problem
can also be said to be a restriction of the problem on the left side. A solution to relaxations
or restrictions can therefore provide lower bound or upper bounds respectively to the original
optimization problem.

3.1.3 Constrained optimization
The domain on which the objective function will be optimized plays an important role in the field
of mathematical optimization. If the feasible set D equals the entire real domain of Rn in the
standard optimization problem formulation in Problem (P.1), the problem is called unconstrained
and any point in Rn can be the optimal solution provided that a minimum exists. A constrained
optimization problem seeks to find a minimum on a defined feasible set of values for each variable.
In this case, the domain D will not be equal to Rn and the optimal solution does not strictly
depend on the objective function. The general form of a constrained minimization problem with
an objective function f(x) : Rn → R is shown in Problem (P.3).

min
x

f(x)

s.t g(x) ≤ 0

h(x) = 0

x ∈ X ⊂ Rn

(P.3)

In the above problem formulation, the vector x is a vector of decision variables to be opti-
mized and X can explicitly describe the feasible points for the problem. The scalar output of the
objective function will in addition be affected by the set of inequality and equality constraints,
g : Rn → RmI and h : Rn → RmE respectively. For a point to be the optimal solution, the
point has to be the minimum value of the domain specified by X and the two sets of constraints.
Figure 3.1 illustrates how the global minimum of a simple problem min{f(x1, x2) : c1(x1, x2) ≤
0 , c2(x1, x2) ≤ 0 , x1, x2 ∈ X ⊂ R2} is affected when the objective function is subject to con-
straints. The contour of f illustrates the objective function’s minimum value and how the optimal
solution to the problem, x∗, is constrained from this area by the two constraints.
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Figure 3.1: Geometrical representation of the feasible set, objective function and optimal solution
of a constrained optimization problem [41].

These types of constraints are referred to as hard constraints, meaning that they are require-
ments for the problem, and as mentioned previously, a solution cannot lie outside of the region.
The other types of constraints are said to be soft, which means that they are not definite require-
ments. Instead the associated variables can be penalized in the objective function if a condition
is not met. Soft constraints will therefore not affect the feasible set, but rather how the feasible
points are valued.

3.1.4 Convexity
In mathematical optimization, convexity is a central concept for finding global optimal solutions
and classifying optimization problems. Characterized by the properties of their feasible sets and
objective function, convex optimization problems have the very useful property that every local
minimum is guaranteed to be a global minimum.

The formulation of a convex optimization problem does not change from a general constrained
optimization problem. It is rather determined by the properties of constraints and objective func-
tion. For an optimization problem to be convex, both the objective function and the feasible set
have to be convex. If either the objective function or the feasible set are non-convex, the problem
is said to be non-convex.

Convex sets

Any convex set, C, satisfies that for all x,y ∈ C and z defined in Equation 3.3, every point in z
is also in the set C.

z = λx+ (1− λ)y, ∀λ ∈ [0, 1] (3.3)

A set, C, is called convex if, for any two points in the set, every point on the straight line
connecting the two points are also in the set, as shown in Figure 3.2a. Figure 3.2b shows a non-
convex set, D, where some of the points on the straight line connecting two points in the set, are
outside D. In turn, these non-convex features produce non-convex optimization problems.
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(a) Convex set (b) Non-convex set

Figure 3.2: Convexity of sets [40].

The feasible set in the constrained optimization problem formulation in Problem P.3 is said to
be convex if the set D of feasible points, given in Equation 3.4, is convex. This means that all
functions creating the set, i.e. gj(x)∀j = 1, ...,mI and hi(x),∀i = 1, ...,mE , have to be convex.

D = {x ∈ X : gj(x) ≤ 0,∀j = 1, ...,mI ;hi(x) = 0,∀i = 1, ...,mE} (3.4)

Convex functions

The curvature of the graph is what defines if a function is convex or non-convex. A function is
convex if, for any two points on the graph, the straight line connecting the points lies entirely
above or on the graph, as shown in Equation 3.5.

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀λ ∈ [0, 1], ∀x,y ∈ C (3.5)

Where f : C → R and C ⊂ Rn is a convex set. A strictly convex function uses a hard inequality
in the same equation for x 6= y. Figure 3.3a shows a strictly convex function where the straight
line lies entirely above the graph. A non-convex function is illustrated in Figure 3.3b, where a
part of the straight line lies below the graph of the function. It is worth noting that a non-convex
function can be convex on a subset of its original set, provided that the subset is chosen correctly.
As an example, the set in Figure 3.3a can be viewed as a subset of the set in Figure 3.3b, if both
figures illustrates the graph of the same function.

(a) Convex function (b) Non-convex function

Figure 3.3: Convexity of functions [40].
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Hyperplanes

Hyperplanes are useful concepts when dealing with non-convex global optimization. A hyperplane,
H, is defined by a normal vector, a ∈ Rn, and a constant, b ∈ R. For vectors of variables, x ∈ Rn,
the affine equation defining a hyperplane is given in Equation 3.6.

H = {x ∈ Rn : aTx = b} (3.6)

Hyperplanes divides a space into two parts, which are called halfspaces. The positive halfspace
of a hyperplane is defined in Equation 3.7.

H+ = {x ∈ Rn : aTx ≥ b} (3.7)

Hyperplanes are called supporting hyperplanes to convex sets if they lie at the boundary of the
convex sets without crossing the boundary. For non-convex sets, supporting hyperplanes may not
exist.

3.1.5 Duality theory
Duality theory builds on a principle that optimization can be viewed from two different perspec-
tives. These two perspectives are the primal problem and the dual problem.

For a minimization problem on X ⊆ Rn with an objective function f : X → R and a set of
inequality constraints g : X → Rm, the primal problem (PRIMAL) is given below:

min
x∈X

f(x)

s.t g(x) ≤ 0
(PRIMAL)

The dual problem is then created by using the Lagrangian function for the optimization prob-
lem, L(x,µ) given in Equation 3.8. Through the Lagrangian, the constraints are added to the
objective function by using the Lagrangian multipliers, µ.

L(x,µ) = f(x) +

m∑
i=1

µigi(x) (3.8)

The value f∗ is defined to be a feasible value of the problem inf{f(x) : g(x) ≤ 0,x ∈ X}.
According to duality theory, a Lagrangian multiplier, µ∗ is a duality multiplier if µ∗ ≥ 0 and
f∗ = inf{L(x,µ∗) : x ∈ X}.

The set S ⊂ Rm+1 is called the image set of the primal problem. An image set is defined by the
values that are taken on by the constraints and the objective function, as given in Equation 3.9.
This concept can be referred to as mapping an image set, illustrated in Figure 3.4 with m = 1.

S = {(g(x), f(x)) : x ∈ X} (3.9)

Figure 3.4: Mapping an image set, S, of the primal problem [40].
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A hyperplane, H, is defined by the normal vector (µ, 1) ∈ Rm+1 and a constant c in the
space (z, w) ∈ Rm+1. If this hyperplane passes through S as previously described, it follows from
Equation 3.10 that H intersects the vertical axis at w = L(x,µ).

µTz = c = µTg(x) + f(x) (3.10)

The hyperplane, H, contains the image set, S, in its positive halfspace if inf{L(x,µ) : x ∈
X} ≥ c. In Figure 3.5, the hyperplanes defined by µ is illustrated. It is seen that µ is the only
duality multiplier and that f∗ is the smallest value for w that is feasible.

Figure 3.5: Hyperplanes through the image set, S, and the duality multipliers, µ∗ [40].

The duality multipliers that defines the hyperplane which gives the smallest value of w while
still holding the entire image set S in its positive halfspace will give the solution to the dual
formulation in Problem (DUAL).

sup
µ∈M

q(µ)

s.t µ ≥ 0
(DUAL)

where the set M = {µ ∈ Rm : infx∈X L(x,µ) ≥ −∞} and q : M → R is the dual function
given by q(µ) = infx∈XL(x,µ). The solution to the dual problem then gives the best lower bound
to the primal problem.

Figure 3.6: Duality gap following non-convexity [40].

However, duality requires convex primal problems in order to generate a hyperplane that holds
the entire image set, S, in its positive half-space and intersects the vertical axis at the same point
as S. If either the objective function or the feasible set has non-linear relations that cause non-
convexity, the image set may create a duality gap for the dual problem, as illustrated in Figure
3.6.
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3.2 Mixed-integer programming

In standard convex optimization, there is usually no restriction on which values the decision vari-
ables can take other than being within the specified range of values and satisfying constraints.
However, optimization problems will in many cases involve constricting decision variables by defin-
ing discrete sets of values. In integer programming, a special branch of optimization problems,
all decision variables are restricted to be integers. In addition to being beneficial for modelling
quantities that can only be integers, integer programming can be very useful for representing
yes/no-decisions.

These types of decisions can be modelled using the special case of integer programming, called
binary integer programming. A vector of size nz of binary decision variables z ∈ {0, 1}nz will be
restricted to two integer values, where the value 1 can indicate if an event should happen while
the value 0 will indicate that an event should not happen.

An optimization problem where only some of the variables are constrained to be integers or
binary integers, is called a mixed-integer programming (MIP) problem. The decision variables
can be discrete or continuous, and MIP formulations can be very useful when modeling real-life
problems. The formulation of a MIP problem with integer and continuous variables is given in
Problem (MIP).

min
x,z

f(x, z)

s.t. g(x, z) ≤ 0,

h(x, z) = 0

x ∈ X ⊂ Rnx , z ∈ Z ⊂ Znz

(MIP)

where f : Znz × Rnx → R, g : Znz × Rnx → RmI , h : Znz × Rnx → RmE and mI and mE

are the number of inequality and equality constraints. The decision variables z and x are integer
and continuous respectively, where z can be both regular integer and binary. Additionally, two
subclasses of MIPs are often used for describing the problems. If all the constraints and the ob-
jective function are linear, the problem is called a mixed-integer linear program (MILP). On the
other hand, any non-linear constraints or objective function will make the problem a mixed-integer
non-linear program (MINLP).

3.3 Stochastic Programming

Uncertainty is inherently a part of real-life problems. In the field of optimization, this uncertainty
can prove to be decisive in reaching optimality. Modeling of uncertainty involves the inclusion
of uncertain parameters in the optimization model where each parameter has a range of possible
values. Not accounting for several realizations of an uncertain parameter may yield solutions very
sensitive to variations or downright sub-optimal solutions. Stochastic programming is a framework
for accounting for uncertain parameters in optimization models.

3.3.1 Two-stage stochastic programming
In the two-stage stochastic program framework, decisions have to be made in two separate stages.
In the first-stage, a set of decisions has to be made irrespective of the actual realization of un-
certainty. The decisions in the first-stage will then be common for all decisions made in the
second-stage, which are then made with full information. The uncertain parameters are assumed
to have a fixed number of realizations with a known probability, which in turn will be used to
construct scenarios for the program.
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The goal of stochastic programming is therefore to minimize the expected value of the objective
function by accounting for all possible scenarios and their respective probabilities. This problem
is a recourse problem as the recourse actions in the second stage can be viewed as corrective ac-
tions based on the revealed scenario. The objective value of the recourse problem (RP) is found
by the minimizing the sum of the value of the first stage and the expected value of the second stage.

With y ∈ Y ⊂ Rny and x ∈ X ⊂ Rnx as the first and second stage decision variables respec-
tively, while uncertainty is represented by the vector ξ, the formulation of a two-stage stochastic
program can be written as in Problem (SP.1) and (SP.2). ny and nx represent the number of first
and second stage decision variables respectively.

RP = min
y

f (1)(y) + Eξ[R(y, ξ)],

s.t. g(1)(y) ≤ 0

h(1)(y) = 0

y ∈ Y

(SP.1)

where f (1) : Rny → R is the objective function contribution from solely first stage decisions,
g : Rny → Rm

(1)
I and h : Rny → Rm

(1)
E are the first stage constraints, and m(1)

I and m(1)
E denote

the number of first-stage constraints. Eξ denotes the expected value over the number of scenarios
and R(y, ξ) contains the recourse functions. Rh(y, ξh) gives the optimal value of the second stage
of the problem for a scenario h with given first stage decisions, y, and uncertainty realizations for
the scenario, ξh:

Rh(y, ξh) := min
x

f
(2)
h (x,y, ξh)

s.t. g(2)(x,y, ξh) ≤ 0

h(2)(x,y, ξh) = 0

x ∈ X(ξh)

(SP.2)

where f (2)h : Rnx×ny → R is the objective function contribution from both first and second
stage decisions in scenario h, g : Rnx×ny → Rm

(2)
I and h : Rnx×ny → Rm

(2)
E are the second

stage constraints, and m(2)
I and m(2)

E denote the number of second-stage constraints. The recourse
function can give a different value for all scenarios and recourse contribution can depend on the
probability of the scenario. The expected value of the second-stage for all scenarios can be found
by using their respective probability, as shown in Equation 3.11.

Eξ[R(y, ξ)] =

NS∑
h=1

ωhRh(y, ξh). (3.11)

Here ωh is the probability of scenario h, ξh is the realized uncertainty in scenario h, and NS is the
finite number of discrete scenarios.

The structure of a probabilistic two-stage stochastic program is illustrated in Figure 3.7. The
first stage decisions are independent of which scenario actually happens, while the second stage
decisions then will depend on parameter realizations and decisions in the first stage.
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Figure 3.7: Scenario tree for a two-stage stochastic program.

With xh now as the decision variables for scenario h, the single-level, deterministic equivalent
formulation of the two-stage stochastic program, Problem (SP), can be obtained by combining the
formulations in Problems (SP.1) and (SP.2), and Equation 3.11. Problems (SP.1) and (SP.2) can
be viewed as the projections of Problem (SP).

min
x1,···,xNS

,y
f (1)(y) +

S∑
h=1

ωhf
(2)
h (xh,y, ξh)

s.t. g(1)(y) ≤ 0

h(1)(y) = 0

y ∈ Y

g(2)h (xh,y, ξh) ≤ 0, ∀h ∈ {1, · · · , NS}

h(2)
h (xh,y, ξh) = 0, ∀h ∈ {1, · · · , NS}
xh ∈ X(ξ), ∀h ∈ {1, · · · , NS}

(SP)

3.3.2 Value of the stochastic solution
Next, a few central concepts related to stochastic programming will be addressed to evaluate the
benefit of optimizing under uncertainty.

• The expected value problem (EVP) is the deterministic approach to optimization without
accounting for uncertainty, assuming only one realization of each uncertain parameter. The
realizations are assumed to be the expected value of each parameter, also referred to as the
mean value of the realizations. The problem can be viewed as a stochastic program with only
one scenario where the first stage decisions are optimized for the expected value scenario.

• The evaluation of the expected value solution (EEV) is the value of expectation of the first-
stage decisions found in the EVP when used in a stochastic environment.

• The recourse problem value (RP) is the optimal objective function value of the recourse
problem obtained by accounting for uncertainty when optimizing the first stage decisions.

• The value of the stochastic solution (VSS) is the added value by accounting for uncertainty
in the 1st stage decision process. The value is found by the difference between the EEV and
RP:

V SS = EEV −RP (3.12)

20



CHAPTER 3. MATHEMATICAL PROGRAMMING

3.4 Decomposition algorithms

Decomposition approaches can be useful for solving two-stage stochastic programs as the number of
scenarios can drive an exponential growth in computational complexity [13]. Divide-and-conquer
strategies can be employed by creating and solving sub-problems to more efficiently obtain a
solution for the original problem. Generalized Benders decomposition (GBD) is an algorithm that
can be used for solving MIPs of the form in Problem (MICP).

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0,

x ∈ X ⊂ Rnx ,y ∈ Y ⊂ Rny

(MICP)

where y are the variables that complicates the optimization process.

GBD can be used for solving the above problem when fixing y reveals a special block structure,
creating independent sub-problems with different sub-vectors of x. Additionally, GBD requires a
convex program when the complicating variables are held constant. For linear programs, i.e. when
f and all functions in g are linear, the problem turns to an MILP, on which the classical Benders
decomposition (BD) can be used [13]. It is noted that both BD and GBD also are applicable to
programs with continuous complicating variables, provided a decomposable structure of indepen-
dent sub-problems.

The decomposable block structure with submatrices that is needed for the Benders decompo-
sition strategies is illustrated in Figure 3.8. In this figure: x are complicating variables and yω are
the independent variables for sub-problem ω; and Tω and Wω are the matrices for the variables
for each sub-problem. The block structure is exploited by iteratively exploring and cutting off so-
lutions by solving sub-problems. Two-stage stochastic programs where scenarios can be regarded
as independent are examples of optimization problems in which the decomposable structure is
present. Fixing the complicating variables, i.e. first stage variables, will turn the problem into
different scenario-wise independent problems.

Figure 3.8: Idea behind Benders decomposition [13].

For problems of the form as in Problem (MICP), with non-convex constraints in the block
independent variables, are referred to as non-convex mixed-integer non-linear problems (MINLPs).
Such problems are known to be hard to guarantee a global solution.

The non-convex generalized Benders decomposition (NGBD) is a non-convex extension of GBD,
which can guarantee global optimality under certain requirements. The core of the concept of
the NGBD algorithm is to create improved upper and lower bounds on the original problem by
iteratively solving bounding problems until convergence:
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• The upper bound is found by a primal problem (PP), created by restriction of the original
problem through fixing realizations of the complicating variables to particular values.

• A lower bounding problem (LBP) is created by performing convex relaxations of non-convex
functions in the original problem.

Figure 3.9: Overview of the NGBD algorithm [42].

An overview of the NGBD algorithm is presented in Figure 3.9, and can be conceptually
explained by:

1. The upper bounding problem (PP), obtained by restrictions, is solved by decomposition; i.e.
solving independent non-linear sub-problems.

2. The lower bounding problem (LBP) is constructed by replacing all the non-convex participat-
ing functions of Problem (P) with their corresponding convex relaxations to give a two-stage
stochastic MICP. The solution to the (LBP) is obtained by GBD:

i A master problem (MP) is constructed by projection onto the space of complicating
variables and dualization of the (LBP).

ii The master problem is relaxed by including only a finite subset of constraints.
iii Solution to the relaxed master problem (RMP) provides a lower bound to (LBP), im-

proved by iteratively adding constraints to the (RMP).
iv The upper bound of the (LBP) is found by fixing complicating variables in a primal

bounding problem (PBP) to solutions of the (RMP) that is providing lower bounds.

To obtain convergence of the NGBD, previously visited solutions are cut off by adding affine
constraints and improving the upper and lower bounds are sufficiently close.
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3.5 GOSSIP software

GOSSIP is a software framework for modelling and solving non-convex two-stage stochastic mixed-
integer non-linear programs [15]. GOSSIP is applicable to solving both two-stage stochastic MILPs
and MICPs, i.e. convex mixed-integer problems. However, the GOSSIP software has an imple-
mentation of the NGBD algorithm. Thus, GOSSIP can be used to obtain a guaranteed global
minimum of non-convex MINLPs under certain requirements, provided a feasible problem.

For non-convex two-stage stochastic MINLPs and solution by NGBD, GOSSIP requires a
scenario-wise decomposable structure and the problem formulation given in Problem (MINLP)

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0,

x ∈ X ⊂ Rnx ,y ∈ Y ⊂ Rny

(MINLP)

where y now is a set of discrete first-stage variables and x is a vector of continuous second-stage
variables.

The key strength of GOSSIP is the possibility of using decomposition approaches for efficiently
solving large problems. However, there is also an option to solve the full-space problem through a
linked version of ANTIGONE [43].
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4 | Renewable Energy System Model

The flexible design problem of renewable energy systems can be modelled using the two-stage
stochastic programming framework for efficient solutions in GOSSIP. In addition to a simple case
study with model inputs, this chapter presents the background, the methodology and the complete
formulation for a RES model consisting of solar power, wind power and battery energy storage.

4.1 Modelling of a renewable energy system

Modelling the optimal flexible design problem requires attention to the RES model choices and
decisions. In this section, the modelling approaches for the physical system, uncertainty and
components are presented.

4.1.1 Energy hub
The renewable energy system to be studied can be viewed using the energy hub concept [17]. The
concept involves looking at the components of the system as an interface between energy carriers
and demands to be covered by the system [44]. The components in the interface will then be
used for transformations and conversions between energy carriers and storage of energy carriers to
optimally cover a demand load.

Energy carriers are transported across the energy hub boundary, with both inputs and outputs
of energy. Note that energy sources such as solar and wind energy are regarded as energy carriers
when using the concept. Energy carriers such as electricity, solar radiation and wind can be
regarded as inputs, and may be converted in the energy hub into other types of energy, for instance
from solar radiation to electricity. The energy, often heat or electricity, can either be used to cover
a load, stored for later use through energy storage technologies, or exported. The energy hub
concept is illustrated in Figure 4.1 for a system consisting of solar PV, wind turbines and batteries
with electricity as the main energy carrier. In addition to be expandable to other technologies
and energy carriers, the concept allows for connections with other energy hubs, creating energy
networks [44].

Figure 4.1: Concept of an energy hub.
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4.1.2 Uncertainty modelling and design day approach
In renewable energy systems, many of the parameters can be considered as uncertain. However, the
largest portion of variation in optimization results due to uncertainty can often be characterized
by a few parameters. In a global sensitivity analysis of parameters in a distributed energy system
[45], three aspects were identified as particularly crucial:

• The variation in energy demand

• Energy carrier price variation

• Fluctuating weather patterns

Investment costs and most of the technical aspects of conversion technologies were found to be
considerably less significant to the optimal solution, allowing them to be considered fixed. For solar
panels and wind turbines, the weather patterns that have the largest influence on power generation
are the irradiation and the wind speed respectively, as presented previously in Chapter 2.

The variation of the uncertain parameters are modeled to be discrete, i.e. it is assumed the
uncertain parameters can take on finite numbers of realizations. Each combination of possible
parameter realizations will then produce a scenario for the program, resulting in a finite set of
scenarios. Each scenario is modelled using the design day approach, where sets of typical parameter
fluctuations are constructed for a 24-hour period. The combination of these sets, or design days, will
then represent the uncertainty and variability the system is subject to. For instance, a design day
can be constructed by a single combination of one daily pattern for each load curve, solar radiation,
wind speed and electricity price. The typical design days are created to represent uncertain and
seasonal variation in a full year, as illustrated in Figure 4.2.

Figure 4.2: Design days representing uncertain and seasonal variation [46].

4.1.3 Modelling of energy technologies
As previously discussed, renewable energy systems are generally complex and several simplifying
assumptions have to made. Non-linearity in any optimization model is important to evaluate. Non-
linear models lead to more complex problems as they have a tendency to lead to non-convexity.
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Even though tools, such as NGBD, are available for finding solutions to non-convex problems, the
computational complexity is significantly increased. A close look at the assumptions and approxi-
mations are imperative for an effective program.

In this work, the behavior of battery energy storage is approximated by a linear battery model,
i.e. power flow in and out of the battery are linearly related to changes in energy stored in the
battery. However, as discussed in Sections 2.3, the behaviour of battery energy storage is generally
characterized by non-linearity. The most important effects for modelling purposes of the battery
non-linearities can summarized by:

• Higher battery power flows causes a reduction in energy efficiency.

• Deep discharge, high states of charge and high battery power flows speed up cell degradation
rates. This causes an increased power fading and capacity loss, and reduced future energy
efficiency and cycle life.

Deep discharge and high power flows will be prevented to represent mitigation of the effects
of degradation and restrict efficiency losses. Non-linear battery models are assumed to be more
accurate for representation of these aspects, but produce non-linear relations between program
decision-variables. Non-linear battery models are therefore expected to produce non-convex prob-
lems, which is undesirable when it comes to computational complexity. If precision of the solution
is not significantly compromised, such non-linear models should be avoided.

Linear models from a program’s perspective are also used for conversion of solar radiation and
wind to electricity, i.e. only linear relations between decision-variables. However, the models may
have non-linearities for fixed and uncertain parameters. While solar panel output may be approx-
imated by conversion of radiation through a constant efficiency, the power output of wind farms
has non-linear relation to wind speed with different production domains, as discussed in Section
2.2. On the other hand, linearity of the optimization model will be maintained.

Furthermore, it is noted that while the performances of PV systems and batteries are dependent
on temperature, as discussed in Sections 2.1 and 2.3, the aspect of temperature is omitted in this
work.

4.2 Formulating the flexible design problem using GOSSIP

The optimization software GOSSIP, presented in Section 3.5, provides a framework for two-stage
stochastic programs. In this section, the formulation implications of the flexible design problem of
energy systems by using the GOSSIP modelling framework are presented.

4.2.1 Decision-making structure
The GOSSIP modelling framework requires compatibility with a two-stage stochastic program. In
Section 3.3, the decision-making structure of two-stage stochastic programs was presented, allowing
two sets of decisions to be made in two stages separated by the realization of uncertainty. This
decision-making structure can be applied to the flexible design problem of renewable energy systems
by identifying decisions as either design or operational decisions:

• First-stage decisions refer to the design and planning phase of the RES. Before any uncer-
tainty has been revealed, decisions related to choosing and sizing technologies have to be
made.

• Second-stage variables represent the operational aspects of the RES after the uncertainties
and variations have been revealed. After the design decisions have been set, the RES will
operate differently for the different cases of revealed uncertainty.
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4.2.2 Time dependency
Often in renewable energy systems, the program may be subject to variables or uncertainties
that are dependent on what has happened previously. For instance, optimal operational decisions
depend on a battery’s state of charge, which in turn depends on previous operational decisions.
For inclusion of some uncertainty in the operational aspect, the decision-making structure then
requires all decisions for previous time steps to be made in advance before consideration of the
decisions for the current time step. Consequently, the decision-making process of a RES gives a
multi-stage stochastic program. The first stage would represent the design decisions, where the
following stages represents a time step.

Figure 4.3: Scenario tree for a RES multi-stage stochastic program.

The scenario tree for a RES multi-stage stochastic programs is presented in Figure 4.3, where
each stage requires a set of decisions to be made. The multi-stage nature and the rapid increase
in scenarios and decision variables significantly complicate the optimization process. Moreover,
multi-stage stochastic programming is widely acknowledged to be computationally intractable [15].

As discussed in the previous sections, the GOSSIP software framework requires the model
formulation to be compatible with a two-stage stochastic program. This means that all decisions
involving time steps, i.e. operational decisions, have to be made in the same stage. Thereby, it is
assumed that uncertainty is only revealed once, i.e. the same information will be available when
making decisions in the first time step as when the final time step-decisions are made.
Figure 4.4 illustrates the concept of multiperiods in the scenario tree of a two-stage stochastic
program.

When using a two-stage multiperiod formualtion instead of a multi-stage formulation, informa-
tion about the realization of the uncertain parameters for all time steps is available at once. Thus,
second-stage decisions are optimized with perfect information of future time steps. Although this
assumption is not realistic, it is necessary for computational tractability.

4.2.3 Decoupling of design days using periodicity for state variables
Using the design day approach with hourly temporal resolution, the scenario multiperiods are
represented by design days with 24 timesteps. For the flexible design problem, the evaluation of
optimal design will then be based on the expected values for 24 hours of operation in the design
days. In reality, the design days are coupled by their boundaries, i.e. initial and final timestep
of different design days will be linked. The sequence of design days is modelled using a two-stage
stochastic program formulation, shown in Figure 4.5. However, the actual sequence of days is
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Figure 4.4: Scenario tree for a two-stage stochastic multiperiod program.

uncertain, making it difficult to model the coupling in a two-stage structure.

With the possible inclusion of energy storage in the design, the dynamic aspects and state
variables of the model become important. In this work, periodic boundary conditions are applied
for the design days, i.e. initial states and final states of all design days are set to the same
fixed value. This essentially performs a decoupling, producing independent design days. Thereby,
contrary to a real energy system, energy cannot be stored for use in other design days.

Figure 4.5: Day-sequence modelling by coupling design days through initial and final states.

4.2.4 Scenario-wise decomposable constraints
As explained in Section 3.4, using any version of Benders decomposition requires problems to have
a special block structure that can be exploited. For the flexible design problem, this entails that
only the coupling design decisions, i.e. the first-stage variables, can be present in constraints in
several scenarios. On the other hand, second-stage variables, i.e. operational decisions, have to be
restricted to existence in only one scenario.

All design days have to be possible to solve independently as subproblems when the design
decisions are made. For instance, it is not possible to create constraints on expected values of
second-stage variables as the constraints would involve variables from multiple scenarios. While
GOSSIP includes other algorithms for solving problems, full utilization of GOSSIP calls for the
need for compatibility with the decomposition approaches.
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4.2.5 Discrete first-stage variables
GOSSIP provides a framework for studying the effects of non-linearities in the flexible RES design
problem through the NGBD algorithm. For guaranteed convergence of the NGBD algorithm, the
first-stage variables have to be discrete. A continuous design variable, y, can be discretized by:

1. Assuming there is a finite number of discrete values, ND, that the first-stage variable can
hold.

2. Constructing a set of discrete values, zd, with ND entries containing the possible discrete
values that the first-stage variable can take on.

3. Constructing a set of binary integer variables, zb, with ND entries to represent the selection
of value in the discrete set for the first-stage variable.

4. Specifying that only one of the binary variables in the set can have 1 as their value.

5. Letting the continuous variable be defined as the sum of products of the entries in the set
for discrete values and their respective binary variables, as given in Equation 4.1.

y =

ND∑
j=1

zbj · zdj (4.1)

While the decomposable block structure discussed in the previous section is the core concept
of Benders decomposition, i.e. needed for MILPs, MICPs and MINLPS, the discrete set of values
for first-stage variables are a requirement for the NGBD only. In other words, discrete first-
stage variables are only a requirement for non-convex mixed-integer problems in GOSSIP. For
consistency, discrete first-stage variables are also applied for the development of the MILP model
for the flexible design problem.

4.3 Model formulation

In this section, the complete MILP model formulation for the optimal design under uncertainty
problem of a flexible energy system hub with solar power, wind power, end user, grid and battery
energy storage is presented. The model is built on the basis of the deterministic equivalent for-
mulation of two-stage stochastic programs in Problem (SP) and the assumptions presented in the
previous sections. The complete C + + model file used in GOSSIP can be found in Appendix B.

4.3.1 Model variables and uncertain parameters
Defining the uncertain parameters and decision variables of the system is key for the two-stage
stochastic model formulation. This section defines and presents the relationship between these
entities.

First-stage decision variables

The first-stage decisions involve choosing the optimal capacity of each technology. The design deci-
sions for the stochastic program are the optimal values for area of solar panels installed, the number
of wind turbines built and battery pack capacity, denoted by ZPV , ZWT and ZBAT respectively
in Table 4.1. Upper and lower bounds are denoted by UB and LB respectively.

Table 4.1: First-stage decision variables.

Variable Unit Description UB LB
ZPV m2 Installed area of solar panels ZLB

PV ZUB
PV

ZWT - Installed number of wind turbines ZLB
WT ZUB

WT

ZBAT MWh Installed battery capacity ZLB
BAT ZUB

BAT

29



CHAPTER 4. RENEWABLE ENERGY SYSTEM MODEL

Following the requirement of discrete first-stage variables in the NGBD algorithm, each com-
ponent is assumed to only take on one size out of a discrete set of sizes, as explained in Section
4.2.5.

Zi =

ND,i∑
j=1

zbi,j · zdi,j ,∀i ∈ I (4.2)

where I = {PV,WT,BAT} is the set of possible technologies, zb is the vector of binary
variables, and zd represents the discrete set of sizes. The set ND contains the number of entries
in the sets for each technology. The possible sizes in the discrete set are defined by Equation 4.3:

zdi,j = ZLB
i +

j − 1

ND,i − 1
(ZUB

i − ZLB
i ),∀i ∈ I, ∀j ∈ {1, 2, · · · , ND,i} (4.3)

where ZUB
i , ZLB

i and ND,i are the upper bound, lower bound and the number of discrete values
for technology i respectively.

Second-stage decision variables

After the uncertainty is revealed, a second set of decisions is made. The second-stage decision
variables of a RES can be divided into two different classes of state and flow variables. State
variables are necessary for describing the state of the dynamic components, while flow variables
describe the interaction between components. In this model, the state variables are the available
capacity in the battery, denoted by EBAT , while f denotes all flow variables that are the electric
power flows between components. Table 4.2 presents the second-stage decision variable definitions.

Table 4.2: Second-stage decision variables.

Variable Units Description LB UB
EBAT MWh Available battery capacity 0 ZUB

BAT

fPV MW Power flow from solar farm 0 fUB
PV

fWT MW Power flow from wind farm 0 fUB
WT

fREN MW Hub generated power flow to end user 0 fUB
PV +fUB

WT

fDEM MW Total power flow to end user 0 fUB
DEM

fchBAT MW Power flow into battery 0 fUB
BAT

fdisBAT MW Power flow out of battery 0 fUB
BAT

f
exp
GRID MW Power flow exported to grid 0 fUB

PV +fUB
WT

f
imp
GRID MW Power flow imported from grid 0 fUB

DEM

Upper bounds, with a margin of 5%, on system flows are given by calculation of maximum
output from the PV and wind farms, maximum flow for the battery, and maximum flow to the
end user, as shown in Equations 4.4, 4.5, 4.6, and 4.7.

fUB
PV = max(IRPV ) · ZUB

PV · ηPV · 1.05 (4.4)

fUB
WT = ZUB

WT · qd · 1.05 (4.5)

fUB
BAT = ZUB

BAT · Cmax
rate · 1.05 (4.6)

fUB
DEM = max(LDEM ) · 1.05 (4.7)

In Equation 4.4, max(IRPV ) is the maximum possible radiation incident on the solar panel
and ηPV is the conversion efficiency to electricity. Further, qd in Equation 4.5, Cmax

rate in Equation
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4.6, and max(LDEM ) in Equation 4.7 are the rated wind turbine power, maximum C-rate, and
maximum power demand respectively. It is noted that max(IRPV ), qd, Cmax

rate , and max(LDEM )
all are given in megawatts.

Uncertain parameters

This model assumes four uncertain parameters and a finite number of scenarios, NS , to be repre-
sentative for the uncertainty. The set of scenarios, S = {h : h = {1, · · · , NS}} are combinations
of different realizations of the uncertain parameters, and all scenarios are assumed to have an
associated probability defined by a vector ω of length NS . The uncertain parameters in the model
are presented in Table 4.3.

Table 4.3: Uncertain parameters.

Parameter Units Description
IRPV MW/m2 Solar irradiance
WWT m/s Wind speed
LDEM MW Demand load
OCGRID $/MWh Occurred cost when importing from grid

Program structure

Model topology including uncertain parameters and decision variables is summarized in Figure 4.6.

Figure 4.6: Model topology.

4.3.2 Objective function
The objective in the flexible design problem is to minimize the total expected costs of the system.
For two-stage stochastic programs, the total cost contributions can be split into two groups:

• First-stage costs, CAP : Capital expenses and maintenance costs assumed to be governed
solely by the design decisions.

• Second-stage costs, OPh: Related to purchasing and selling electricity for a scenario h. These
costs are entirely dependent on the second-stage variables and are therefore not constant for
all scenarios. Importing electricity from the grid will lead to a cost, while exporting will
generate revenue. Note that revenue will be regarded as a cost with a negative sign in the
model.
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The total cost of a scenario, h, is the sum of CAP and OPh, while the total expected cost of
the system is given by Equation 4.8. The expected value is denoted by the symbol E.

Total Annual Expected Cost = CAP + Eh∈S(OPh) (4.8)

First-stage costs

The first-stage costs include the up-front investment costs of building the system and the cor-
responding yearly maintenance cost, Myearly. In the objective function, the costs have to be
accounted for with the same time horizon. The investment cost of a technology, i, is annualized
by a capital recovery factor, CRFi, given by Equation 4.9.

CRFi =
r(r + 1)li

(r + 1)li − 1
(4.9)

where r is the interest rate and li is the lifetime of the technology. The yearly investment cost
is then given by:

Investyearly =
∑
i∈I

CRFi · Ci · Zi (4.10)

where Ci is the linear cost per unit size of each technology, $/m2 for PV, $/turbine for wind
and $/MWh for batteries, The yearly maintenance cost for technology i is given as a fraction, ξi,
of the yearly investment cost in Equation 4.11.

Myearly =
∑
i∈I

Investyearlyi · ξi (4.11)

The total annual first-stage costs can then be calculated by Equation 4.12.

CAP = Investyearly +Myearly (4.12)

Second-stage costs

Expenses and revenue associated with operating decisions represent the second-stage costs in the
objective function. These operating decisions involve the the amount of energy imported grid,
which are penalized with an occurred cost per megawatt-hour, OCGRID. Additionally, energy
exported to the grid and used for covering the demand load will create revenue. The operating
cost for a scenario h is given in Equation 4.13.

OPh =
Tyear
T

∆t

(
T∑

t=1

(f imp
GRID,t,h ·OCGRID,t,h−fexpGRID,t,h ·FiTextra−(fDEM,t,h−f imp

GRID,t,h) ·FiT )

)
(4.13)

where ∆t is the timestep in hours, T is the number of timesteps in a scenario, Tyear is the the
number of timesteps in a full year, and FiT is the constant feed-in-tariff of renewable power for
covering demand.

Furthermore, excess power which is sold to the grid is assumed to create a revenue of a value
of FiTextra. This represents a decreased value with increasing shares of renewables in the system’s
energy mix. Additionally, the imported power from the grid is assumed to not create revenue when
used for covering demand. In Equation 4.14, the expected second-stage costs are calculated from
the probability of each scenario and the associated operating costs.

Eh∈S(OPh) =
∑
h∈S

ωh ·OPh (4.14)
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4.3.3 First-stage constraints
The use of binary variables for creating the discrete sets for the first-stage decision variables requires
sets of constraints that make sure only one of the binary variables in each set is 1 ("True"), as
given by Equation 4.15.

ND,i∑
j=1

zbi,j − 1 = 0,∀i ∈ I (4.15)

For the sizing of each technology, this model assumes a constraint on the total initial investment
cost of the system given in Equation 4.16. The purpose of the constraint is to include the possibility
of a user-specified budget. This is important to include renewable energy projects that has limited
funds through loans and investors. ∑

i∈I
Ci · Zi ≤ Budget (4.16)

In the problem of evaluating the expected value solution in a stochastic environment, referred
to as the EEVP in this work, the first-stage variables will be set equal to the solution of the EVP
by Equation 4.17. We note that the EEVP is the optimization problem of evaluating the nominal
design in the stochastic environment, while EEV is the minimum value of the objective function
to the EEVP.

zbi,j − 1 = 0,∀(i, j) ∈ {(PV, nPV ), (WT,nWT ), (BAT, nBAT )} (4.17)

where nPV , nWT and nBAT is the discrete variable numbers representing the EVP design
decisions.

4.3.4 Second-stage constraints
The second-stage constraints include decision variables to be undertaken after uncertainty has been
revealed. In other words, these constraints specify the rules for behavior of system operation.

Energy balances for the energy hub

The energy balances for the energy hub are key to governing the behaviour of the system and act
as links between the inputs and outputs of the system. The energy balances make sure the net
power flow in or out of the junctions in Figure 4.6 are zero for each time step in all scenarios. The
first energy balance is given in Equation 4.18, and requires that the sources of electricity, grid and
renewable power, have to be able to cover the demand load at all time steps.

fDEM,t,h = fREN,t,h + f imp
GRID,t,h∀t ∈ {1, 2, · · · , T},∀h ∈ S (4.18)

The second energy balance, given in Equation 4.19, is necessary to determine when, where and
the amount of renewable power in the system flows. The renewable power can be used to cover
the end user load, exported to the grid, used for charging the battery, or extra renewable power
can be extracted from the battery if available capacity.

(4.19)fPV,t,h + fWT,t,h + fdisBAT,t,h = fREN,t,h + fexpGRID,t,h + f chBAT,t,h,∀t ∈ {1, 2, · · · , T},∀h ∈ S

Renewable power generation

For renewable power generation, a relation has to be established between the uncertain parameters,
the design decisions on the technology and the renewable power flows generated from the solar and
wind farms.

In Equation 4.20, the generated power flow from the PV farm is given by the area of solar
panels installed and the irradiance from the sun. The relation is explicitly defined and thereby
only one legal operational decision can be made for this variable per timestep in each scenario.
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fPV,t,h = ηPV · IRPV,t,h · ZPV ,∀t ∈ {1, 2, · · · , T},∀h ∈ S (4.20)

where ηPV is the efficiency of the solar panels.

Estimation of a wind turbine power output, q, is obtained through a wind velocity determined
approximation of the power curve of pitch controlled wind turbines described in [31]. The power
response to wind speed is given in four different operating regimes by Equation 4.21.

qt,h =


0, if Wt,h < Wmin

qd ·
W 3

t,h−W
3
min

W 3
d−W

3
min

, if Wmin ≤Wt,h < Wd

qd, if Wd ≤Wt,h ≤Wmax

0, if Wt,h > Wmax

∀t ∈ {1, 2, · · · , T},∀h ∈ S (4.21)

where qd is the rated power, Wd is the rated wind speed, Wmin is the cut-in wind speed, and
Wmax is the cut-off wind speed for the wind turbine. The total wind power generated, i.e. the
total power flow from the wind farm, is then calculated by Equation 4.22.

fWT,t,h = qt,h · ZWT ,∀t ∈ {1, 2, · · · , T},∀h ∈ S (4.22)

where qt,h is the power output for a single wind turbine at time step t for scenario h and ZWT

is the total number of wind turbines.

End user

The model assumes that for all scenarios, the entire uncertain demand load has to be covered by
power flows from the grid, PV farm or battery. Additionally, the demand is independent of system
states and flows in the system. This entails that the power flow to the end user has to be the same
value as the uncertain variable, as given by Equation 4.231.

fDEM,t,h = Lt,h,∀t ∈ {1, 2, · · · , T},∀h ∈ S (4.23)

Battery energy storage

The battery provides operational decisions with degrees of freedom to the model. The available
energy stored in the battery is kept track of by Equations 4.24 and 4.25. The energy balance for
the battery makes sure that the energy flow into and out of the battery equals the change in energy
stored in the battery:

(4.24)EBAT,t,h = EBAT,t−1,h · ηSD + ∆t · (f chBAT,t,h · ηchBAT −
fdisBAT,t,h

ηdisBAT

),

∀h ∈ S,∀t ∈ [2, 3, · · · , T ]

(4.25)EBAT,t =1,h = (SoCinitial
BAT − SoCmin

BAT ) · ZBAT + ∆t · (f chBAT,t,h · ηchBAT −
fdisBAT,t,h

ηdisBAT

),∀h ∈ S

where ηchBAT and ηdisBAT are the efficiencies for charging and discharging the battery respectively.
ηSD represents the storage efficiency and the losses that arise from battery self-discharge over the
course of one timestep. Equation 4.24 provides the relation for previous states in the system,
whereas Equation 4.25 provides the relation for the first time step using an assumed initial state
of charge, denoted by SoCinitial

BAT .

To prevent deep discharges, the energy available in the battery is restricted by a minimum state
of charge of the battery, SoCmin

BAT , and high states of charge are prevented by a maximum state
1These equations are not implemented as constraints in the model file. Rather, the uncertain parameter Lt,h

has been used directly in equations where fDEM,t,h is found.
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of charge, SoCmax
BAT . Equation 4.26 defines the available capacity of the battery. Additionally, the

available energy in the battery cannot be negative, defined by Equation 4.27.

EBAT,t,h ≤ (SoCmax
BAT − SoCmin

BAT ) · ZBAT ,∀h ∈ S, ∀t ∈ [1, 2, · · · , T ] (4.26)

EBAT,t,h ≥ 0,∀h ∈ S,∀t ∈ [1, 2, · · · , T ] (4.27)

As discussed previously in Section 2.3, how fast the battery can charge and discharge will affect
the battery performance and lifetime. The maximum average power flow out of and in to the
battery during one timestep is controlled through the user-defined maximum C-rate, Cmax

rate , as
shown in Equations 4.28 and 4.29.

f chBAT,t,h ≤ ∆t · Cmax
rate · ZBAT ,∀h ∈ S, ∀t ∈ [1, 2, · · · , T ] (4.28)

fdisBAT,t,h ≤ ∆t · Cmax
rate · ZBAT ,∀h ∈ S, ∀t ∈ [1, 2, · · · , T ] (4.29)

Additionally, periodicity is maintained by Equation 4.30 through the assumption that the final
available energy stored in the battery has to be equal to the initial state:

EBAT,t=T,h = (SoCinitial
BAT,h − SoCmin

BAT ) · ZBAT ,∀h ∈ S (4.30)

4.4 Input data

Evaluation of the model in the previous section is performed by a simple case study consisting of
certain inputs. In this section, the constant model parameters and realizations of uncertain model
parameters are presented.

4.4.1 Constant input data
The model requires certain inputs that are assumed to be independent of both scenarios and
design-decisions, i.e. they are fixed. Table 4.4 presents the fixed design and cost parameters for
the different technologies, while Table 4.5 gives the assumed fixed operational parameters related
to conversion by the technologies. Other constant parameters are presented in Table 4.6.

Table 4.4: Constant design and cost parameters for technologies.

PV WT BAT
Param Description Value Unit Value Unit Value Unit
ZUB Design upper bound 72,000 m2 18 - 13.5 MWh
ZLB Design lower bound 0 m2 0 - 0 MWh
ND Discrete values 10 - 10 - 10 -
l Lifetime [27][33][39] 30 years 20 years 15 years
r Discount rate 6 % 6 % 6 %
C Cost factor [47] 130 $/m2 1.2 M$/no. 0.18 M$/MWh
ξ Maintenance factor [45] 5 % 5 % 2 %
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Table 4.5: Constant operational parameters for technologies.

PV WT [48] BAT
Param Value Unit Param Value Unit Param Value Unit
η [25] 20 % qd 1 MW ηch[47] 95 %

Wd 14 m/s ηdis [47] 95 %
Wmin 4 m/s ηSD [49] 99.8 %
Wmax 25 m/s Cmax

rate 0.25 -
SoCmax

BAT 90 %
SoCmin

BAT 11 %
SoCinitial

BAT 50 %

Table 4.6: Other constant parameters.

Parameter Description Value Unit
∆t Length of timestep 1 h
T Timesteps in each scenario 24 −

Tyear Timesteps in a year 8760 −
FiT Assumed FiT for covering demand 70 $/MWh

FiTextra Assumed FiT for exports beyond demand 35 $/MWh
Budget Max investment cost 20 M$

4.4.2 Scenarios
In this case study, there is assumed to be four seasons to describe seasonal variation: Winter,
spring, summer and fall. Additionally, there is assumed to be three scenarios each season to model
the fluctuations in power generation to a certain degree. The three scenarios per season can be
described as:

• Average case: All uncertain parameters take on their assumed average values. The assumed
probabilities for the average cases are assumed to be 50%.

• High radiation, low wind speed: The solar radiation incident on the panel is scaled by a
factor of 1.35 and the wind speed is scaled by a factor of 0.65. The assumed probability for
each season is 25%.

• Low radiation, high wind speed: The solar radiation incident on the panel is scaled by a
factor of 0.65 and the wind speed is scaled by a factor of 1.35. The assumed probability for
each season is 25%.

Uncertain data and all 12 scenarios can be found in Appendix C.

Irradiance

As discussed in Section 2.1, the solar irradiance incident on an inclined panel depends on the
position of the sun and atmospheric effects. The position of the sun will depend on the time of
day and the season, while the atmospheric effects depend on the position of the sun, the ground
albedo, atmospheric diffusion, and atmospheric absorption and reflection. The average seasonal
values and the yearly average values for EVP, illustrated in Figure 4.7, for a location at 52°north,
13°east and an altitude at 35 meters are generated by [21]. The solar panels are assumed to have
an inclination of 30°and an albedo of 0.2 is assumed for the ground.
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Figure 4.7: Daily radiation patterns.

Wind speeds

Seasonal average wind speeds at wind turbine height are estimated from the average speed near the
ground by the boundary layer equation, Equation 2.6, in Section 2.2. The average values of wind
are gathered from [50], and the typical daily fluctuations are based on [51]. The resulting average
seasonal wind speed variations are illustrated in Figure 4.8 together with the yearly averages for
the EVP.

Figure 4.8: Daily wind patterns.

Grid electricity price

The penalty cost of not being able to cover for demand with self-generated renewable energy is
assumed to follow typical daily price variations in electricity. The average variations for each season
and data for EVP are shown in Figure 4.9. The hourly fluctuating patterns are based on [52], and
the differences in seasonal variations are based on [53]. The average value of the penalty when
importing from the grid is assumed to be 79 $/MWh
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Figure 4.9: Hourly variation of penalty when importing from grid.

Demand load

Hourly demand load data for a full year is gathered from the base year for the model used to
estimate future load patterns in [54]. The seasonal average values are used as scenarios in this case
study and the yearly average is used for the EVP. The load variations are presented in Figure 4.10.

Figure 4.10: Hourly demand load variations.
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5 | Results and interpretations

5.1 Optimization strategies

Flexible design and expected values

The optimal design decisions and resulting costs, expected operation, and expected yearly profit
are shown in Table 5.1. The three problems in the results can be described as:

• The expected value problem (EVP) is set in a deterministic environment, i.e. one typical day
with expected values for the uncertain parameters. The design decisions found in the EVP
is referred to as the nominal design.

• For the EEVP, i.e. the problem of finding the EEV, the design decisions are set to the
nominal design while subject to the stochastic environment.

• The stochastic problem (SP) is set in the stochastic environment and a flexible design strategy
is utilized. The design decisions obtained by using stochastic programming are referred to as
the flexible design.

Expected operational decisions are the expected values of system flows, Ef , and battery state
of charge, ESoC . The daily expected value for a system flow, f , is calculated by Equation 5.1 and
the expected value for the state of charge, SoC, is calculated from the design decision, ZBAT , and
energy levels in the battery, EBAT , by Equation 5.2.

Ef =

NS∑
h=1

(
ωh ·

T∑
t=1

ft,h

)
(5.1)

ESoC =

NS∑
h=1

(
ωh

T
·

T∑
t=1

EBAT,t,h

ZBAT

)
(5.2)

The nominal design obtained in the EVP was found to be 16,000 m2 of solar panels, 14 wind
turbines and a 6 MWh battery pack. The nominal design seems to heavily favor wind over solar
energy as the primary energy source, contributing to almost 90% of the total energy production.
Further, the nominal design in the deterministic environment is expected to use the battery for
more than one full cycle on average per day. This way, imported and exported power flows from
the grid are kept to a minimum while keeping budget specifications. The program expects an
annualized profit of 323 k$ for the project.

Using a nominal design in stochastic environments, however, entails a risk of sub-optimal de-
cisions. In this case, the nominal design is found to be unprofitable, specifically 380 k$ less than
what was estimated in the EVP. The expected utilization of the battery is also notably lower,
with a decrease in both expected discharge flow and state of charge for the EEVP. Meanwhile,
grid electricity import and export increase by multiple folds. Thereby, an increasing amount of
energy has to be acquired at a high cost and more of the generated power has to be sold at an
unfavourable price. This is despite the fact that the expected energy generation for the nominal
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Table 5.1: Nominal and flexible design results.

Problem EVP EEVP SP
Number of scenarios 1 12 12
Number of timesteps 24 24 24

Design Nominal Nominal Flexible
Design Decisions

Area of solar PV (m2) 16000 16000 48000
Number of wind turbines (-) 14 14 10

Battery size (MWh) 6.0 6.0 9.0
Costs

Construction (M$) 19.96 19.96 19.86
Annualized investment (M$) 1.73 1.73 1.67

Yearly maintenance ($) 83014 83014 78313
Expected demand (MWh/day) 94.14 94.14 94.14
Expected energy generation

(MWh/day)
Solar PV 10.51 10.51 31.54

Wind power 85.39 114.21 81.58
Expected energy flows

(MWh/day)
Grid (import) 6.56 25.1 18.55
Grid (export) 7.54 55.07 36.54
From battery 6.3 4.65 7.75
To battery 7.09 5.26 8.74

Expected state of charge (%) 36.31 23.23 44.77
Expected annual loss ($) -323,200 57,518 -139,540

Value of stochastic solution - - 197,058($/year)

design are greater in the stochastic environment than in the deterministic environment.

Using the flexible design strategy results in an annualized profit of around $140K, while a
nominal design ends up with losses. Four wind turbines are cut from the design, while the capacity
of solar PV increases threefold and the energy storage capacity increases by 50%. Notably, this
is found to decrease the amount of expected energy generated by about 10%. Further, a higher
utilization of the battery and generated power is found: For a 50% increase in battery capacity,
expected discharge flow from the battery increased by 67%. Thus, the amount of power exported
and imported power decrease significantly, yielding a value of the stochastic solution of 198 k$.

Levelized cost of energy

The results in Table 5.1 show that each wind turbine could produce more energy in the stochastic
environment than in the deterministic environment used in the EVP. In the stochastic environ-
ment, the amount of wind power produced increases by 34% despite construction and maintenance
costs remaining constant. On the other hand, solar power generation in the nominal design is not
affected by the environment.

The levelized cost of energy (LCOE) is the expected net present cost of energy over the course
of the lifetime of the energy generating plant and is dependent on the environment the system is
placed in. The LCOEs are calculated by the ratio between the sum of cost over the lifetime to the
sum of electricity produced over the lifetime for a given energy source, as shown in Equation 5.3.
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LCOEi =

∑li
y=1

Invi,y +Mi,y

(1 + r)y∑li
y=1

Efi · 365

(1 + r)y

,∀i ∈ PV,WT (5.3)

where Invi,y is the investment cost, Mi,y is the maintenance cost and (Efi ·365) is the expected
energy produced in the year y and for technology i. The lifetime of technology i is li and r is the
discount rate.

Figure 5.1: Levelized cost of renewable energy.

The LCOEs of wind and solar power in a deterministic and stochastic environment are given
in Figure 5.1. Nominal designs are used in both the EVP and EEVP, but they are placed in
different environments. It is illustrated that the cost of wind decreases by 25% in the uncertain
environment, with a corresponding increase of 34% in wind energy output. This is to be expected
as calculation of levelized cost of energy uses values of expected power produced.

Variations in LCOE of wind in the environments originate from the wind power model and
how the environment in the EVP is calculated. The wind speeds naturally have larger variations
in the stochastic environment than what is used in the EVP. The wind power model, as previ-
ously discussed in Section 2.2, introduces a non-linear relationship between power and wind. The
expected power output will therefore depend on both wind speed variance and mean, and this
shows the importance of modelling uncertainty for power production from wind. Additionally, the
wind turbine performance in a certain environment depends on important characteristics such as
cut-in and cut-out wind speed, and rated nominal power and wind speed. Different types of wind
turbines could therefore beneficially be taken into account when designing the system.

On the other hand, a linear solar PV power model is assumed. The LCOE for solar PV is
therefore expected to be identical in the two environments. The small difference in the LCOE is
expected to have arisen from rounding errors in the creation of scenarios. Furthermore, the LCOEs
for PV and wind with nominal and flexible designs in the stochastic environment are shown to
be identical. This is to be expected as the flexible design improves the ability to cover a certain
demand, while the actual costs of the systems remain the same with the cost model used. One
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might expect to see LCOEs that are dependent on designs if other cost models were employed,
such as economies of scale.

System value of renewable energy

The flexibility of the renewable energy system can be measured by its ability to cover the required
load without importing power from external sources. The estimations for nominal design’s ex-
pected imported and exported power in the EVP were off by 280% and 630% respectively, when
compared to the EEVP. Opting for the flexible design strategy, both the expected amount of power
exported at a unfavourable price and the imported power were significantly reduced. Thus, the
RES is more likely to ensure the demand load with renewable energy supply with the flexible design
than with the nominal design.

Security of energy supply (SOES) is a term used about the availability of energy and the energy
supply’s ability to cover load with an affordable cost. In this case, the security of energy supply
will indicate the amount of energy that is supplied to meet the demand by using energy that
is generated in the energy hub, i.e. renewable power, and is calculated by Equation 5.4. The
remaining percentages will point to the expected portion of the demand load that is covered by
imported electricity.

SOES =

NS∑
h=1

(
ωh

T
·

T∑
t=1

fREN,t,h

fDEM,t,h

)
(5.4)

Figure 5.2: Security of renewable energy supply.

Figure 5.2 shows that the expected amount of energy sold at the preferable price decreases with
over 20 percentage points for the EEVP. It may be logical to assume that the value of wind to
the system should increase when the LCOE of wind was reduced, but as the nominal and flexible
design in this work show, this is not necessarily the case. It is seen that the EVP risks erroneous
evaluation of production patterns of the energy sources. The amount of wind energy produced
in the EEVP seems to produce too much energy at certain unfavourable hours, increasing the
amounts of exported power sold at an unfavourable price.

On the other hand, the flexible design identifies larger investments in solar and storage capacity
as means to increase the security of energy supply and reducing the expected amount of imported
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energy by 26%. The total amount of generated power is reduced compared to the nominal design,
seemingly counter-intuitive as increased capacities have been posed as a way to improve system
flexibility. However, the program in this case found the two other measures for increased flexibility
to be more valuable: Energy storage to offset fluctuations; and other production patterns more
suitable for the demand curve.

Thus, it is illustrated how the cost of energy is not the only factor determining the system value
of energy. Possible synergies between the respective environments of the technologies, i.e. how the
technologies can work together to cover the demand, are crucial to investigate for optimal design of
renewable energy systems. While LCOEs were independent of design strategies, both environment
and design strategy will affect the security of energy supply. A flexible design strategy is therefore
crucial for maximising the system value.

System operation

The battery are shown to be able to mitigate the power fluctuations of the renewable energy
system. The battery behaviour during operation for each scenario is illustrated by two example
scenarios:

• One scenario with high wind speeds and power surplus is presented in Figure 5.3.

• One scenario with a general power deficit and a solar PV dominated production curve in
Figure 5.4.

Figure 5.3 shows how the system operates on a particularly windy day, with rated power for
the wind turbines reached for larger parts of the day. Consequently, there is a large amount of
surplus energy as demand for the most part remains below 50% of the power output. In other
words, full utilization of wind leads to high amounts of exported power. This is expected to be
one of the reasons to why the amount of wind turbines was reduced in the flexible design.

The bottom two plots of Figure 5.3 show how the battery operates for hourly energy storage
in this type of scenario. A low utilization at well under 50% is noted, mostly due to the large
amounts of surplus power. While there is only one timestep with a power deficit, the C-rate will
prevent the battery from balancing out the difference. Thus, requiring importation of power even
for a scenario with a large amount of power surplus. Although not visible in the bottom plot, there
is a gradual slope for the state of charge when the battery is idle due to the self-discharge losses
of the battery. Therefore, the system charges the battery to a required SoC of 50% at the end of
the day, contrary to using the power surplus earlier in the day for charging power. This way, the
average SoC, and thereby the self-discharge losses, are minimized for the scenario.

A scenario with low wind speeds is illustrated in Figure 5.4, which has a power production
curve that resembles a PV dominated system. Low-speed winds around cut-in velocity generate
low amounts of power throughout the night, but the wind speed drops below cut-in velocity in the
evening. Consequently, large amounts of power have to be imported at times of day that are not
peak solar hours. In fact, the entire demand load is covered by grid electricity before 6AM and
after 8PM. The value added through increased energy storage capacity is clear in this scenario.
The battery cycles at least one full time, offsets power surplus by the solar farm around noon and
mitigates power deficits at other times of the day. In fact, the battery is able to store all surplus
power generated by the system and utilize it later.

For operation of a RES, it is logical to think that the battery follows two main rules of operation:

1. Store energy when there is a system power surplus and available storage capacity.

2. Discharge energy when there is a system power deficit and available energy in the battery.

However, it is seen that this is not necessarily the case: The RES charges the battery with
surplus power around noon, but is not discharged at the first timestep (3PM) with a power deficit.
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Figure 5.3: RES operation for an example scenario with high wind speeds.
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Figure 5.4: RES operation for an example scenario with low wind speeds.
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Rather, the system has found it to be optimal to wait a few hours before discharging. While the
battery increases its self-discharge losses during these timesteps, the fluctuating cost of importing
from grid makes it beneficial to discharge the battery when there is a power deficit and a peak in
cost of electricity import.

As previously shown by the grid electricity price patterns in Figure 4.9, two peaks are present
during the day: One in the morning and one in the evening. Logically, it is preferable to import
from the grid at more advantageous prices, enabled by the increased flexibility through battery
storage. Hence, the battery is charged at the beginning of the day. In Figure 5.4 even though
there is a substantial power deficit. The system imports the entire demand load, and all the wind
power generated is used to charge the battery. This way, the amount of power imported at peak
grid penalty cost is reduced, increasing the value of the battery.

Effect of battery and budget

The results in Table 5.1 show that the total production capacity was reduced to the benefit of
two other measures for increased flexibility: battery energy storage and other production patterns.
However, the budget seemed to be an active constraint in both nominal and flexible design.

To show the effect of increasing production capacity and the use of energy storage, the program
is tested for two cases without a budget: One case with and one without a battery. The budget
is removed by not including the constraint in Equation 4.16, while the battery is excluded in the
program by removing the constraints in Equations 4.24-4.30. Additionally, the set of technologies
will be reduced to I = {PV,WT} in the case of no battery. The results for the two cases are shown
in Table 5.2. It is noted that the upper bounds and number of discrete values defined in Table
4.4.1 have been increased to facilitate for larger designs.

The case of no budget or battery illustrates how a stochastic programming approach is used to
achieve a flexible design by increasing expected production capacity. An increased production ca-
pacity leads to increased construction costs, but reduces the amount of imported electricity, giving
a value of the stochastic solution of 273 k$. Both area for solar PV and number of wind turbines
increase in the flexible design, causing over a 50% reduction in expected imported power compared
to the nominal design. However, for wind energy alone, it is seen that the expected amount of
power produced is over 4 times as much as expected demand.

Energy storage is another measure for obtaining a flexible design. A battery in the nominal
design leads to a significant decrease in expected amount of imported power in both the EVP and
the EEVP compared to the nominal design without a battery. In the flexible design, there is an
increase in the number of wind turbines instead of battery capacity, compared to the nominal de-
sign. This suggests that an increased production capacity is a more valuable measure for flexibility
without a constraint on construction costs.

However, the battery is still able to provide a more flexible design. By comparison of the two
cases, the battery can be seen to lower construction costs and production capacity. At the same
time, imports from the grid are reduced and the expected yearly value of the project increases.
Thus, energy storage reduced the need for flexibility through production capacity.

In this work, only two sources of energy were available. Wind and solar power are assumed to
have provided some level of synergy for covering demand loads. For instance, the area installed
for solar PV were reduced in the flexible design without a budget. However, it is expected that
optimizing the combination of energy sources will be more valuable in larger problems with more
different sources of renewable energy.
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Table 5.2: Results from cases without a budget.

Without battery With battery
Problem EVP EEVP SP EVP EEVP SP

Number of scenarios 1 12 12 1 12 12
Number of timesteps 24 24 24 24 24 24

Design Nominal Nominal Flexible Nominal Nominal Flexible
Design Decisions

Area of solar PV (m2) 32,000 32,000 56,000 48,000 48,000 40,000
Number of wind turbines (-) 18 18 48 16 16 46

Battery size (MWh) - - - 4 4 4
Costs

Construction (M$) 25.76 25.76 64.88 26.25 26.25 61.21
Annualized investment (M$) 2.19 2.19 5.55 2.21 2.21 5.27

Yearly maintenance ($) 109,270 109,270 277,535 108,031 108,031 261,186
Expected energy generation

(MWh/day)
Solar PV 21.03 21.03 36.8 31.54 31.54 26.28

Wind power 109.79 146.84 391.57 97.59 130.52 375.25
Expected demand 94.14 94.14 94.14 94.14 94.14 94.14(MWh/day)

Expected energy flows
(MWh/day)
Grid (import) 3.99 20.46 9.24 1.16 16.4 7.72
Grid (export) 40.67 94.18 343.47 35.67 83.85 314.76
From battery - - - 3.77 3.69 2.63
To battery - - - 4.26 4.16 2.99

Expected state of charge (%) - - - 32.93 31.91 42.92
Expected annual loss ($) -399,625 -202,692 -475,231 -473,588 -280,207 -487,034

Value of stochastic solution - - 272,539 - - 206,827($/year)

5.2 Investigation of battery operation

The battery is shown to affect the results and optimal solution by distributing energy more evenly
throughout the day and enabling energy imports at more advantageous hours. However, several
simplifying assumptions have been made in modelling battery operation:

• Initial state of charge, being an operational decision, is assumed to have a value of 50%.

• Maximum allowable C-rate is assumed to be 0.25 in order to prevent high losses and fast
performance fading.

• Available capacity by a minimum and maximum state of charge of 10% and 90% respectively
to prevent increased performance fading.

• Energy efficiency is assumed to be constant and represented by a contribution of a charging
and discharging energy efficiency both of 95%.

Potential dangers with the assumptions are investigated by sensitivity analyses of the above
points, shown by objective value variations in Figures 5.5-5.8, and design decisions in Tables 5.3-
5.6. The row in the tables with red text indicate the flexible design obtained previously, and the
red dots in the Figures show their respective objective function values.
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Figure 5.5: Objective value sensitivity to ini-
tial state of charge.

Design
Value PV WT BAT
[%] [m2] [no.] [MWh]
10 48000 10 9
30 48000 10 9
50 48000 10 9
70 56000 10 3
90 40000 12 0

Table 5.3: Design sensitivity to initial state of
charge.

Figure 5.6: Objective value sensitivity to avail-
able capacity.

Design
Value PV WT BAT
[%] [m2] [no.] [MWh]
60 56000 10 3
70 48000 10 9
80 48000 10 9
90 48000 10 9
100 48000 10 9

Table 5.4: Design sensitivity to available ca-
pacity.

Figure 5.7: Objective value sensitivity to max-
imum C-rate.

Design
Value PV WT BAT
[%] [m2] [no.] [MWh]
0.1 56000.0 10.0 3.0
0.25 48000.0 10.0 9.0
0.35 48000.0 10.0 7.5
0.5 48000.0 10.0 7.5
0.75 48000.0 10.0 7.5

Table 5.5: Design sensitivity to maximum C-
rate.

Findings and interpretations from the analyses are summarized below:

• In this model, increasing initial state of charge decreased the value of the project. The cost
of charging the battery at the end of each day seemed to be higher than the value obtained
by having more power to spend at the beginning. The initial state of charge also had an
impact on the optimal design when it was set too high. This indicate that the RES could
have issues with charging the battery to the required level at the end of each day due to the
periodic boundary condition.

• The available capacity increased the objective value of the project in a somewhat linear
relationship. This is expected as, in principle, the available capacity changes the cost of
storage capacity. For low available capacities, the program found the cost of energy storage
too costly for covering certain differences between the demand load and the produced power.

• Maximum allowed C-rate seemed to potentially have a significant effect on the system. In the
differences between the potential production patterns and the demand load pattern, there
seems to be ranges of deficits and surpluses in power that is desirable to cover. For too low
rates, the battery loses some of its value, not being able to offset certain power variations
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Figure 5.8: Objective value sensitivity to effi-
ciency.

Design
Value PV WT BAT
[%] [m2] [no.] [MWh]
80 40000.0 12.0 1.5
85 56000.0 10.0 3.0
90 48000.0 10.0 9.0
95 48000.0 10.0 9.0
100 48000.0 10.0 9.0

Table 5.6: Design sensitivity to efficiency.
.

at reasonable costs. For a maximum C-rate of 0.25, the program found that it would be
beneficial to be able to cover deficits that require a certain amount of power. For higher
C-rates than this, the program found no additional value of higher power, even reducing the
size of the battery as the same amount of power could be achieved for a smaller battery. The
rate of charging/discharging therefore is an important factor when designing the system.

• The energy efficiency on discharging and charging of the battery also seemed to affect the
design decisions. Increased assumed efficiency logically increased the objective value, but
the optimal design remained unaffected. Below 90%, the efficiency affected the design. The
value of the battery seemingly was reduced to a significant extent. Thus, a flexible design
was rather obtained by increasing production capacities and a smaller battery.
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6.1 Assumptions for modelling energy systems

Modelling uncertain parameters for stochastic environment

The results show how the type of environment, i.e. stochastic or deterministic, can affect the opti-
mal design and how this can be taken into account for increased flexibility. In this work, a simple
uncertainty modelling approach has been used for finding representative fluctuating patterns. Pat-
terns were modelled to represent typical end users, costs of importing power, and characteristics
of renewable energy sources. However, using only 4 typical days to represent seasonal variation
and 3 scenarios of each season to represent fluctuations, the 12 scenarios have mainly illustrative
purposes. Modelling uncertainty with higher accuracy would increase the variance of the uncertain
parameters. Thus, a higher need for RES flexibility and a higher value of stochastic solution is
expected for better representations of the stochastic environment. For results that can provide
valuable insight in specific design processes, higher level of care should be taken when generating
scenarios.

It is however shown that the LCOEs in the stochastic environment are found to be comparable
to actual LCOEs in estimations provided by Lazard [55]. While solar PV are found to be in the top
range, wind is in the found to be in the middle range of the estimations. The scenarios and data
input are important drivers for the LCOE. As previously discussed, the value of renewable energy
sources are dependent on their generating patterns, adding to the need for rigorous uncertainty
modelling. The value of wind is deemed to be particularly sensitive to uncertainty modelling as
the typical daily patterns are varying to a greater extent, both in form and relative magnitude. In
turn, representative wind speeds may be harder to model. Solar radiation are determined by the
sun and clearness of the atmosphere, as explained in Section 2.1. Therefore, the RES value of PV
systems can be easier to estimate than the value of wind by using stochastic programs.

Modelling energy conversion

In the flexible design, the total expected power production of energy conversion technologies is
reduced. Rather, in addition to increased energy storage capacity, the capacities of PV and wind
are adjusted to provide a better match between supply and demand. In this work, only two en-
ergy conversion technologies were considered. However, the potential to obtain flexible designs by
combination of different technologies is expected to increase with the number of energy sources
available. For instance, hydroelectric energy and tidal energy can provide additional design flexi-
bility.

The power models for solar and wind have simplifying assumptions that may be sources of
uncertainty for the results, e.g. no degradation, solar power output to be linear to irradiance
and an idealized power curve for the wind turbines. Even though the wind model is non-linear
to wind speed, both models are linear from an optimization perspective as the wind speed is
a parameter and not a decision variable. Non-linearity in an optimzation program can only be
caused by decision-variables. Therefore, improvements in the models to reduce the effect of the
assumptions do not necessarily lead to a non-linear program. Rather, the relationships between
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the decision variables and uncertain parameters may become increasingly non-linear. For instance,
the efficiency of PV systems depend on uncertain parameteres such as irradiance and temperature.

Cost and revenue model

In this work, a simple cost modelling was applied with a linear construction cost and a factor of
annualized cost representing maintenance. As a result, the cost of the smallest capacities may
be underestimated as economies of scale usually can be expected for small plants under 5 MW
[56]. However, the actual effect for the flexible design in this case is likely to be insignificant.
Both capacities for the wind and solar farms were chosen to be around 10 MW in the stochastic
program. As the largest effect of economies of scale occurs when changing type of application,
e.g. residential, industrial or utility. Therefore, to use a constant cost for selection of a type of
technology may be an adequate representation for economies of scale for a certain application.

The revenue generation model is expected to have a significant impact of the value of renewable
systems, summarized as:

• Power used for covering the demand load generates revenue with a fixed price per unit of
energy.

• All extra power exported to the grid is sold at a fixed price per unit of energy. That is 50%
lower than the sum received when covering demand, which is for representing a drop of value
of renewable energy during overproduction of electricity.

Without an upper limit on construction cost, the program seemed to significantly over-design
the system. This indicates that the model may overestimate the value of renewables with increasing
shares, reflecting the revenue-structure of the model. In particular, wind energy seemed to be over-
designed. A possible explanation can be the cost to revenue ratio of wind energy. The LCOE of
wind was only about 5% higher than the price received when exporting to the grid, meaning system
experienced a minor penalty cost for producing too much wind energy. In reality, producing over
four times as much as needed would potentially cause a crash in the electricity price. Therefore,
a more accurate representation of the effect of renewables in energy markets could be required to
not overestimate the renewable value, leading to an over-designed system.

Assumptions for energy storage

Assumptions for battery operation and battery parameters have been shown to potentially have a
significant impact on the optimal flexible design in Section 5.2. While it may be logical to assume
that available capacity and costs per MWh are the most determining factors, it is shown that it
is not necessarily the case. The assumed rules for operation and for how the energy stored can be
utilized, e.g. initial state of charge, available power and cost per MW could affect both expected
profits and designs. If the cost per MW became too high, i.e. when the maximum allowed C-rate
was low, offsetting a certain range of peaks and valleys in power generation were no longer prof-
itable. It is argued that it is harder to assume appropriate maximum allowed C-rates for a model
due to power surplus and deficit often coming in bulks of particular magnitudes.

An increased relative utilization of the battery in the stochastic program led to a higher sys-
tem value. However, no costs associated with a higher utilization and more frequent cycling have
been included in this model. As previously considered in Section 2.3, a battery’s lifetime is often
calculated by how many cycles that it lasts. In turn, the added value of a higher utilized battery
is expected to have been potentially overestimated as it may induce a shorter battery lifetime. A
high battery utlization is logically expected to be more valuable than a low utlization, but to a
lesser extent than what is estimated in the program.

Battery degradation rate is also sped up by allowing an increased available capacity and C-rate,
reducing future battery performance. Additionally, the instantaneous energy efficiency is affected
by how the battery is operated. However, modelling degradation and battery behaviour with a
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higher accuracy inherently leads to non-linear problems. Battery flows and state of charge are
decision variables and cannot be represented by model parameters. A non-linear battery model or
modelling battery degradation will therefore produce a complex non-convex program and signifi-
cantly complicate the optimization procedure.

State of charge was assumed to be fixed for the initial and final time steps in order to decouple
the design days. However, requiring a certain level of energy stored at the end of each day could
lead to a reduced value of the battery. The model assumes that a 50% state of charge will be
reached at the end of each day. In this case, using a battery seem to be the most valuable when it
is assumed to be empty at the start and end of each day. The periodic boundary could potentially
be modelled as a supplementary battery design decision to reduce the risk of under-evaluating
battery energy storage.

Furthermore, which hour periodicity for design days is assumed may also be a source of un-
certainty for the results. Periodicity in this model is assumed at midnight, but it may be more
fitting to aim for the coupling of design days at other hours. For instance, the best hours to aim
for a certain battery level may be a couple of hours later or prior to midnight. It may even be
possible to assume a periodic boundary condition with higher state of charges around noon, which
is an hour with expected power surpluses in PV-dominated systems. The design day coupling
and the energy generation patterns are therefore argued to be important for evaluation of battery
energy storage, with a different set of general battery operational rules expected to be beneficial
for systems dominated by different energy sources.

6.2 Two-stage stochastic programming framework

The inherent fluctuations and uncertainty present in renewable energy systems are accounted for
by the method of stochastic programming, more specifically two-stage stochastic programming
using the design day approach. The battery was not allowed to add flexibility through day-to-day
energy storage due to the uncoupled design days used for problem formulation. It is expected
to be a potential for day-to-day energy storage due to relatively high amounts of both imports
and exports to grid. However, coupling of design days can prove to be hard to model using the
two-stage SP framework. The realization of one design day affect the probability of the typical
days that follow, but in a two-stage stochastic program non-anticipativity for decisions is only
present once. Using scenarios with multiple days, such as a ’design week’, will therefore operate
with perfect information. This will entail a risk of over-evaluating the battery as the program will
know with certainty how to operate the system for maximum utilization of the battery.

Additionally, perfect information is present when using design days in a two-stage SP. This is
clearly illustrated in the RES operational profiles: The program is seen to prefer to charge the
battery despite having a power deficit and reduce the amount of power imported at unfavourable
prices. Even though the battery is not allowed to be charged by power directly from the grid, the
optimizer uses the perfect information to foresee when importing to end user is beneficial. While
some level of uncertainty will be present in all operational decisions, forecasting within 24 hours
is expected to be fairly accurate for estimating power generation, grid prices and demand loads.
Perfect information on operation within design days is therefore argued to not necessarily entail
substantial risks of sub-optimal decisions due to over-evaluated energy storage.

6.3 Decomposition approach

The need for compatibility with the decomposition algorithm NGBD in the GOSSIP framework
provided additional considerations to modelling choices and approach. In particular, two require-
ments were needed for NGBD to guarantee convergence to a global optimum:

1. Discrete set of first-stage variables
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2. No constraints involving decision variables from multiple scenarios

The model produced was a MILP model, meaning NGBD essentially reduces to BD. Neverthe-
less, the model was verified for BD by comparison with the extension ANTIGONE’s Full Space
algorithm in GOSSIP (see Appendix D).

However, discretization of the first-stage variables may be a source of uncertainty. Optimal
combination of design decisions may depend on the bounds and number of discrete values. For
instance, building more solar panels has to be performed at increments of 8,000 m2 when using
11 discrete values, despite the possibility of optimality in the interval between these values. The
nominal design decision for solar PV is chosen to be the third lowest possible value, increasing the
probability of a large relative gap to the actual optimal design.

Another possibly limiting factor of the NGBD algorithm is the need for the program to be
scenario-wise decomposable. In this work, the restriction of independent scenarios may cause
modelling limitations for some RES aspects. For instance, modelling expected yearly degradation
of technologies or expected power flows as a method for coupling design days. For NGBD com-
patibility, only the objective function can include variables from several scenarios, meaning the
inclusion as soft constraints is the only possibility.

Furthermore, the decomposition algorithm in GOSSIP is still under development. Conse-
quently, it is found to be a higher need for a well defined model. In particular, issues with
unnecessary constraints with only one decision variable and one parameter were identified. How-
ever, this is omitted in the final model. Additionally, the model should be provided with appropriate
bounds when defining decision variables.

On the other hand, GOSSIP provides a framework for modelling and a way of efficiently ob-
taining solutions. There are possibilities for more accurate modelling of both technologies and
uncertainty, including non-linear behaviour such as battery degradation. The GOSSIP software
and modelling framework is therefore expected to be highly valuable for further development of
this RES model for the flexible design problem.
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7.1 Conclusions

Flexible designs for renewable energy systems are needed for mitigation of uncertain variations
and fluctuations in the system’s environment. Energy storage technologies, increased production
capacities, and different combinations of energy sources are measures for improving flexibility, but
these have to be considered at the design stage. The nature of renewables and energy systems
lead to large and complex optimization problems subject to uncertainty. Thus, this work has
investigated the modelling of the flexible design problem for renewable energy systems using the
framework provided by the novel optimization software GOSSIP for its efficient solution:

1. A flexible design was obtained by a two-stage stochastic multi-period MILP model with
hourly temporal resolution, created to be compatible with the non-convex generalized Benders
decomposition algorithm in GOSSIP.

2. 12 design days based on typical fluctuating patterns were constructed for a discrete scenario
representation of uncertainty in renewable energy systems.

3. The assumptions for including a linear battery model for hourly energy storage were inves-
tigated by a simple sensitivity analysis of the resulting parameters.

The results show that using a flexible design strategy in an uncertain environment can have
significant value for a renewable energy system project. The expected amount of imported power
is reduced by 26%, i.e. the energy security of the system is significantly improved. When con-
strained by a budget, increased energy storage and solar energy turned losses to profits compared
to a design based on expected values. At the same time, the number of wind turbines and total
expected power production were reduced. Test runs of the model without a budget show how
uncertainty can be accounted for by increasing production capacities as well. Hence, the model is
able to evaluate, compare and implement different measures for flexible designs.

Further, a notable difference in the cost of renewable energy sources compared to the value
provided to the system is found. The scenarios were, on the other hand, significant for both cost
and value of technologies. The risk of suboptimal decisions is increased when neglecting the effect
of typical patterns of energy sources and their respective contributions to covering a demand load.
In the assumed uncertain environment, the amount of installed wind power was reduced despite
the LCOE of wind power decreased by 25%. The added flexibility by increasing the use of so-
lar irradiation patterns and energy storage was found to outweigh the reduced LCOE for wind.
Hence, a rigorous representation of the uncertainty and fluctuations in the system’s environment
is imperative for obtaining a flexible design.

Battery energy storage is shown to be able to mitigate fluctuations and counter-act the need
for increased production capacities. The system is enabled to import power at favourable hours,
causing a reduction in the associated penalty cost of power deficits. Furthermore, the battery was
found to generate value for the system by storing surplus power for future deficits. Thus, energy
storage could counter-act the need for increased production capacities and construction costs, but
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at the same time, improve security of energy supply.

The assumptions for battery operation in the model were found to potentially have a significant
effect on optimal design and the expected values of program variables. This indicates that the esti-
mated value of the battery has a risk of being inaccurate: Initial state of charge, assumed efficiency,
available capacity and maximum allowable C-rate all showed potential to affect the value of the
battery. In particular, the C-rate was shown to produce a sharp relative decline for low values.
Furthermore, the battery increased its value when reducing state of charge at the boundaries of
the design days.

The developed model can be used as a foundation for further study of the RES flexible design
problem. The validity of simplifying assumptions can be investigated by including degradation and
other non-linear aspects of the technologies in the model. Furthermore, in order to obtain a useful
design for real-life applications, extensive modelling of the stochastic environment is important.
GOSSIP provides a framework for modelling and solving these large and non-convex two-stage
stochastic MINLPs. Thus, GOSSIP are found to be valuable for the further study of the flexible
design problem for renewable energy systems.

7.2 Future work

The scope of this thesis was limited to the creation of an MILP model for the flexible renewable
energy system design problem, and investigation of the modelling assumptions and framework.
Modelling uncertainty and the resulting 12 scenarios were used for illustrative purposes. Thus,
future work on the topic should include:

• A flexible design case study with rigorous uncertainty modelling.

• Further investigation and development of the RES model.

A case study with a more accurate representation of the fluctuating patterns in the system’s
uncertain environment should include:

• Adding temperature in the design days.

• Developing a method for constructing numerous scenarios for representation of uncertainty.

Further development of the model should also be a future priority for improving its validity,
including:

• Investigating and implementing more energy carriers, energy sources, energy conversion tech-
nologies, and energy storage technologies.

• Implementing net present value as the objective function.

• Investigating and implementing methods for including degradation in the model.

• Investigating and implementing of non-linear models for battery storage.

• Implementing of different cost and revenue generation models, particularly to represent a
penalty on overproduction.

• Developing of the solar PV model further, e.g. include efficiency dependence on irradiance
and temperature.

• Investigating the effect of discretization of design decisions.

• Investigating of possible improvements to the periodic boundary conditions and design day
coupling.

Finally, an aim should be the development of an easily extendable object-oriented framework
with a user-friendly interface for modelling of renewable energy systems in GOSSIP. This would
make the software more accessible to users with less hands-on knowledge of GOSSIP, and allowing
for simpler constructions, extensions, and modifications of renewable energy system models [57].
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A | Principles of renewable
energy technologies

In this appendix, brief overviews of the working principles of solar cells, pitch controlled wind
turbines, and batteries are presented.

A.1 Photovoltaics

The concept of photovoltaics, illustrated in Figure A.1, works by three main mechanism:

1. Electron-hole creation by absorbing sunlight

2. Electron-hole separation to opposite sides

3. Electron-hole recombination through an external circuit

Figure A.1: Concept of photovoltaics.

Semiconductors are materials that are conductors under certain circumstances, for instance
when the solar radiation creates a large enough energy field when used in solar cells. The solar
cell consists of a p-type cell, doped with atoms of one less valence electron than the semiconductor
material, making the cell positively charged. On the other hand, an n-type cell has a negative
charge due to doping with atoms with one more valence electron. The solar cell joins the two
types together in a pn-junction, which depletes the interface for free electrons and holes, and will
only allow charge to move across it if an external voltage or electric field is present. When solar
radiation is incident on the solar cell, the photons can give electrons in the depletion zone enough
energy to move across the electric field in the junction and create electron-hole pairs. This leads to
a voltage difference between the two sides and by connecting the two semiconducturs the electron
can move towards the holes on the other side, creating electric current.
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A.2 Rotational motion and pitch of rotor blades

The rotational motion of the wind turbine is produced when air flows over the curved blades and
creates a lift [31], illustrated in Figure A.2a. The lift, the perpendicular component of the total
force, F , relative to the air flow, is caused by a pressure difference on the top and bottom side of
the blade.

In addition to the wind speed, this pressure difference is determined by the angle of attack on
the blade, illustrated in Figure A.2b by the parameter α. Thereby, changing the pitch of the blades
can be used to control the rotational motion. Specifically for pitch controlled wind turbines, the
blade velocity, VT , can be held constant if the wind velocity, V , becomes greater than the rated
wind speed, VR, by reducing the angle of attack.

(a) Force creation on blade (b) Blade velocity by pitch control

Figure A.2: Creating rotational motion in a wind turbine [31]

A.3 Li-ion batteries

Li-ion batteries are a type of rechargeable batteries. Rechargeable batteries can be used to store
and use energy by conversion between electrical energy and chemical energy. Charging the battery
will convert electric energy to chemical energy in the cell, and during discharge, the energy can
be extracted by conversion of chemical energy to electricity. Operations during charging and
discharging of a lithium-ion battery are illustrated in Figure A.3.

Figure A.3: Operation of a lithium-ion battery [58]

The Li-ion battery consists of cells, an anode and a cathode, divided by a separator. This
separator only allows for transportation of lithium ions across it, while the electrons have to be
transported through an external circuit. The transportation of Li-ions is governed by the potential
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differences between the two electrodes. A Li-ion will always seek its stable state in the cathode
side, but applying an external voltage source will force the Li-ions over in an unstable state in the
anode. Hence, charging the battery. Due to the separator, the battery will remain charged until
the two electrodes are connected to a load, creating a path for the electrons and discharges the
battery.
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B | Model File

1 // Flexible RES design problem , model file
2 #include <iostream >
3 #include <string >
4 #include <vector >
5 #include <fstream >
6 #include <sstream >
7 #include <map >
8 #include "definitions.hpp"
9 #include "CompGraph.hpp"

10 #include <cmath >
11 #include "inputmodel.hpp"
12

13 using namespace std;
14

15 int inputmodel(vector <double > &probabilities)
16 {
17 // --------------------------------------------------------------------
18 // Controls
19 bool setDesignsManually = false; // For finding EEVP
20 vector <double > setDesign {3-1,8-1,5-1}; // Nominal design found in EVP
21 // No. of chosen discrete val.
22 bool useBattery = true; // Battery in system
23

24 bool expectedValueProblem = false; // EVP
25

26 bool printFile =false; // Print Scenarios
27 string uncertiantyFolder = "ScenarioSet4/";
28

29

30 // --------------------------------------------------------------------
31 // Input data and program set -up
32 int numScen = 0; // Number of Scenarios [-]
33 int numTimesteps = 24; // Number of timesteps [-]
34 double deltaT = 1; // length of a timestep [h]
35 int numParams = 4; // Number of uncertain parameters
36 int numTech = 3; // Number of technologies:
37 //1: PV. 2: WT. 3: BAT
38 int concount = -1;
39 int varcount = -1;
40 char clabel [75];
41

42 // --------------------------------------------------------------------
43 // Cost Parameters
44 double r = 0.06; // Interest rate [-]
45 vector <double > L{30 ,20 ,15}; // Lifetime [years]
46 vector <double > C{130 ,1200000 ,180000}; // Linear cost per unit size
47 //$/{m^2,no.,Mwh}
48 vector <double > xi {0.05 ,0.05 ,0.02}; // Maintenance factor [-]
49 double budget = 20*1000000; //Cap on construction costs [$]
50

51 // --------------------------------------------------------------------
52 // Discretization params
53 vector <int > numDiscrete {10 ,10 ,10}; // Number of discrete values
54 vector <double > Z_UB {72000 ,18 ,13.5}; //Upper bounds {m^2,no.,Mwh}
55 vector <double >Z_LB {0,0,0}; // Lower bounds {m^2,no.,Mwh}
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56

57 // --------------------------------------------------------------------
58 // Model Parameters: Grid
59 double FiT = 70; // Renewable Feed -in-tariff [$/MWh]
60 double FiT_extra = 0.5* FiT; // Extra earnings [$/MWh]
61 // --------------------------------------------------------------------
62 // Model Parameters: Renewable power gen
63 double eta_PV = 0.2; // Efficiency PV [-]
64

65 double q_d = 1 //Rated power for wind turbine [MW]
66 double W_d = 14; //Rated wind velocity [m/s]
67 double W_min = 4; //Cut -in wind velocity [m/s]
68 double W_max = 25; //Cut -off wind velocity [m/s]
69

70 // --------------------------------------------------------------------
71 // Model Parameters: battery
72 double SoC_initial = 50; //50; Initial SoC of battery [%]
73 double SoC_min = 10; //10; min SoC [%]
74 double SoC_max = 90; //90; max SoC [%]
75 double eta_ES_storage = 0.998; // Representing eergy storage self -
76 // discharge losses
77 double eta_ES_ch = 0.95; //0.95; Battery charging losses
78 double eta_ES_dis = 0.95; //0.95; Battery discharging losses
79 double C_rate_max = 0.25; //0.25; Battery max C-rate
80

81 // --------------------------------------------------------------------
82 // Calculating Bounds
83 double max_f_dem = 6;
84 double max_f_PV = 1000;
85

86 double bound_PV = Z_UB [0]* eta_PV*max_f_PV /1000000*1.1; //MW , 5% margin
87 double bound_WT = Z_UB [1]* q_d *1.1; //MW, 5% margin
88 double bound_BAT = Z_UB [2]* C_rate_max *1.1; //MW, 5% margin
89 double bound_DEM = max_f_dem *1.1; //MW , >5% margin
90

91 // --------------------------------------------------------------------
92 // Importing scenarios and uncertain data from csv -file
93 // Iinitializing
94 int t=0;
95 int it_line =0; // Counter for line -iterator
96 int it_cell =0; // Counter for cell -iterator
97 ifstream file;
98 string filepath;
99 string cell;

100 string line;
101 string param = "param0";
102 string paramName;
103 map <string ,vector <vector <double >>> uncertainParams; //Map for data
104

105 // Scenario probabilities from csv to program
106 //File with probabilities has to be called probabilities.csv
107 file.open(uncertiantyFolder+"probabilities.csv");
108 if (!file.is_open ())
109 {
110 cout <<"Error opening file for probabilities"<<endl;
111 return -1;
112 }
113 while(getline(file , line))
114 {
115 string comma(",");
116 if(printFile){ cout <<line <<endl;}
117 if(it_line !=0)
118 {
119 stringstream ss(line);
120 while (getline(ss,cell ,’;’))
121 {
122 if(it_cell == 1)
123 {
124 if (cell.find(comma) != string ::npos)
125 {

65



APPENDIX B. MODEL FILE

126 probabilities.push_back(stod(cell.replace(cell.find(comma),
comma.length (),".")));

127 }
128 else
129 {
130 probabilities.push_back(stod(cell));
131 }
132 numScen ++;
133 }
134 it_cell ++;
135 }
136 }
137 it_line ++;
138 it_cell =0;
139

140 }
141 file.close();
142 if (file.is_open ())
143 {
144 cout <<"Error closing file for probabilities"<<endl;
145 return -1;
146 }
147 // Uncertain parameter values from csv to program
148 // Have to be called param1.csv , param2.csv , param3.csv ..
149 vector <vector <double >> temp(numTimesteps ,vector <double >( numScen));
150 for (int i=0;i<numParams;i++)
151 {
152 it_line =0;
153 param.pop_back ();
154 param += to_string(i+1);
155 filepath = uncertiantyFolder+param+".csv";
156 file.open(filepath);
157 string comma(",");
158 if (!file.is_open ())
159 {
160 cout <<"Error opening file for "<<param <<endl;
161 return -1;
162 }
163 if (printFile){cout << param <<":"<<endl;}
164 // Reading file and updating map
165 while(getline(file , line))
166 {
167 if (printFile){cout <<line <<endl;}
168 if(it_line !=1)
169 {
170 stringstream ss(line);
171 while (getline(ss,cell ,’;’))
172 {
173 if(it_line ==0 && it_cell ==1)
174 {
175 paramName=cell; // Parameter identifier in map
176 uncertainParams.insert(pair <string ,vector <vector <double >>>(paramName ,

temp));
177 }
178 else if (it_line >1 && it_cell ==0)
179 {
180 t = stoi(cell);
181 }
182 else if(it_line >1 && it_cell >0 )
183 {
184 if (cell.find(comma) != string ::npos)
185 {
186 uncertainParams[paramName ][t-1][ it_cell -1] = stod(cell.replace(cell.find(

comma),comma.length (),"."));
187 }
188 else
189 {
190 uncertainParams[paramName ][t-1][ it_cell -1] = stod(cell);
191 }
192 }
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193 it_cell ++;
194 }
195 }
196 it_line ++;
197 it_cell =0;
198 }
199 file.close();
200 if (file.is_open ())
201 {
202 cout <<"Error closing file for "<< paramName <<endl;
203 return -1;
204 }
205 }
206

207 if (printFile) // Printing data read from files
208 {
209 cout <<"-------printing data ---------"<<endl;
210 cout <<"prob: ";
211 for (int h=0;h<numScen;h++)
212 {
213 cout << "scen "<< h+1<<" "<< probabilities[h]<<endl;
214 }
215 map <string ,vector <vector <double >>>:: iterator it_map;
216 for (it_map = uncertainParams.begin(); it_map != uncertainParams.end(); it_map

++)
217 {
218 cout << "Param: "<<it_map ->first <<endl; // string (key)
219 for (int h=0;h<numScen;h++)
220 {
221 cout << " scen: "<<h+1<<endl;
222 for (int t=0;t<numTimesteps;t++)
223 {
224 cout <<" "<< it_map ->second[t][h]<< " "; // string ’s value
225 }
226 cout << endl;
227 }
228 }
229 }
230

231 // --------------------------------------------------------------------
232 // Expected value problem
233 // --> Alter the first scenario of uncertainParams and probability
234 // to represent EVP using expected values of uncertainty
235

236 if(expectedValueProblem)
237 {
238 cout <<"EVP running .. \n Calculating EVPs.."<<endl;
239 double avg;
240 map <string ,vector <vector <double >>>:: iterator it_map;
241 for (it_map = uncertainParams.begin(); it_map != uncertainParams.end(); it_map

++)
242 {
243 cout <<it_map ->first <<": "<<endl;
244 for (int t=0;t<numTimesteps;t++)
245 {
246 avg =0;
247 for (int h=0;h<numScen;h++)
248 {
249 avg += probabilities[h]*it_map ->second[t][h];
250 }
251 it_map ->second[t][0]= avg;
252 cout <<it_map ->second[t][0]<<" ";
253 }
254 cout <<endl;
255 }
256 probabilities.erase(probabilities.begin ()+1, probabilities.end());
257 probabilities [0] = 1;
258 numScen = 1;
259 }
260
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261 // --------------------------------------------------------------------
262 // 1st stage variables and discretization
263

264 vector <vector <double >> z_d(numTech);
265 vector <vector <Variables >> z_b(numTech);
266 for (int tech =0;tech <numTech;tech ++)
267 {
268 z_d[tech]. resize(numDiscrete[tech]);
269 z_b[tech]. resize(numDiscrete[tech]);
270 }
271 cout << "Discrete Sets of technologies:"<<endl;
272 for (int tech =0;tech <numTech;tech ++)
273 {
274 cout <<"Tech " <<tech+1<<": "<<endl;
275 for (int n=0;n<numDiscrete[tech];n++)
276 {
277 if(! useBattery && tech ==2)
278 {
279 continue;
280 }
281 z_d[tech][n] = Z_LB[tech] + n*Z_UB[tech ]/( numDiscrete[tech]-1);
282 cout << z_d[tech][n]<<"\t";
283

284 sprintf(clabel , "z_b[%d][%d]",tech+1,n+1);
285 z_b[tech][n]. setIndependentVariable (++ varcount ,compgraph ::BINARY ,I(0,1)

,0.,-1,clabel);
286 }
287 cout <<endl;
288 }
289 cout <<endl;
290

291 cout <<"-- Discretization performed .. --"<<endl;
292 // --------------------------------------------------------------------
293 // 2nd Stage Variables
294

295 // Declaring variables
296 // Renewable power for demand
297 vector <vector <Variables >>f_renewables(numTimesteps ,
298 vector <Variables >( numScen)); // [MW]
299

300 //vector <vector <Variables >>f_demand(numTimesteps ,
301 // vector <Variables >( numScen)); // [MW]
302

303 // PV
304 vector <vector <Variables >>f_PV(numTimesteps ,
305 vector <Variables >( numScen)); // [MW]
306 //WT
307 vector <vector <Variables >>f_WT(numTimesteps ,
308 vector <Variables >( numScen)); // [MW]
309 //grid
310 vector <vector <Variables >>f_grid_export(numTimesteps ,
311 vector <Variables >( numScen)); // [MW]
312

313 vector <vector <Variables >>f_grid_import(numTimesteps ,
314 vector <Variables >( numScen)); // [MW]
315 // Battery
316 vector <vector <Variables >>f_bat_charge(numTimesteps ,
317 vector <Variables >( numScen)); // [MW]
318 vector <vector <Variables >>f_bat_discharge(numTimesteps ,
319 vector <Variables >( numScen)); // [MW]
320 vector <vector <Variables >>E_BAT(numTimesteps ,
321 vector <Variables >( numScen)); // [%]
322

323 // Setting variables
324 for (int t=0;t<numTimesteps;t++)
325 {
326 for (int h=0;h<numScen;h++)
327 {
328 sprintf(clabel ,"f_renewables [%d][%d]",t+1,h+1);
329 f_renewables[t][h]. setIndependentVariable (++ varcount ,compgraph ::CONTINUOUS ,
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I(0,( bound_WT+bound_PV)) ,0.,h+1,clabel);
330

331 // sprintf(clabel ," f_demand [%d][%d]",t+1,h+1);
332 // f_demand[t][h]. setIndependentVariable (++ varcount ,compgraph ::CONTINUOUS ,I

(0, bound_DEM) ,0.,h+1,clabel);
333

334 sprintf(clabel ,"f_PV[%d][%d]",t+1,h+1);
335 f_PV[t][h]. setIndependentVariable (++ varcount ,compgraph ::CONTINUOUS ,I(0,

bound_PV) ,0.,h+1,clabel);
336

337 sprintf(clabel ,"f_WT[%d][%d]",t+1,h+1);
338 f_WT[t][h]. setIndependentVariable (++ varcount ,compgraph ::CONTINUOUS ,I(0,

bound_WT) ,0.,h+1,clabel);
339

340 sprintf(clabel ,"f_grid_export [%d][%d]",t+1,h+1);
341 f_grid_export[t][h]. setIndependentVariable (++ varcount ,compgraph ::CONTINUOUS

,I(0,( bound_WT+bound_PV)) ,0.,h+1,clabel);
342

343 sprintf(clabel ,"f_grid_import [%d][%d]",t+1,h+1);
344 f_grid_import[t][h]. setIndependentVariable (++ varcount ,compgraph ::CONTINUOUS

,I(0, bound_DEM) ,0.,h+1,clabel);
345

346 if(! useBattery) // Skip rest of loop
347 {
348 continue;
349 }
350

351 sprintf(clabel ,"f_bat_charge [%d][%d]",t+1,h+1);
352 f_bat_charge[t][h]. setIndependentVariable (++ varcount ,compgraph ::CONTINUOUS ,

I(0,bound_BAT) ,0.,h+1,clabel);
353

354 sprintf(clabel ,"f_bat_discharge [%d][%d]",t+1,h+1);
355 f_bat_discharge[t][h]. setIndependentVariable (++ varcount ,compgraph ::

CONTINUOUS ,I(0, bound_BAT) ,0.,h+1,clabel);
356

357 sprintf(clabel ,"E_BAT[%d][%d]",t+1,h+1);
358 E_BAT[t][h]. setIndependentVariable (++ varcount ,compgraph ::CONTINUOUS ,I(0,

Z_UB [2]*1.1) ,0.,h+1,clabel);
359 }
360 }
361

362 // --------------------------------------------------------------------
363 // Design decisions: Linking 1st stage to second stage
364 vector <vector <Variables >>Z(numTech ,vector <Variables >( numScen));
365 for (int tech =0;tech <numTech;tech ++)
366 {
367 if(! useBattery && tech ==2)
368 {
369 continue;
370 }
371 for (int h=0;h<numScen;h++)
372 {
373 sprintf(clabel ,"Z[%d][%d]",tech ,h);
374 Z[tech][h]. setIndependentVariable (++ varcount ,compgraph ::CONTINUOUS ,I(Z_LB[

tech],Z_UB[tech]) ,0.,h+1,clabel);
375 }
376 }
377 cout <<"-- 2nd stage varaiables declared .. --"<<endl;
378

379 // --------------------------------------------------------------------
380 // Objective function
381 vector <double > CRF(numTech); // Capital recovery factor [-]
382 for (int tech =0;tech <numTech;tech ++)
383 {
384 if(! useBattery && tech ==2) // Skip battery
385 {
386 continue;
387 }
388 CRF[tech] = r*pow(r+1,L[tech])/(pow(r+1,L[tech]) -1);
389 }
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390

391 vector <Objective >obj(numScen); // Total cost per scenario
392 for (int h=0; h<numScen;h++)
393 {
394 obj[h] = 0;
395 // Investment cost
396 for (int tech =0;tech <numTech;tech ++)
397 {
398 if(! useBattery && tech ==2)
399 {
400 continue;
401 }
402 // Annual investemnt + maintenance
403 obj[h] += Z[tech][h]*C[tech]*CRF[tech ]*(1+ xi[tech]);
404 }
405 // Operating cost (revenue)
406 for (int t=0 ; t<numTimesteps ; t++)
407 {
408

409 obj[h] += 365* uncertainParams["OC_GRID"][t][h]
410 *f_grid_import[t][h]* deltaT;
411 obj[h] -= 365* f_grid_export[t][h]* FiT_extra*deltaT;
412 obj[h] -= 365*( uncertainParams["L_DEM"][t][h]
413 -f_grid_import[t][h])*FiT*deltaT;
414

415 }
416 obj[h]. setDependentVariable (++ concount ,compgraph ::OBJ ,true ,h+1);
417 }
418 cout <<"-- Objective function set.. --"<<endl;
419

420 // --------------------------------------------------------------------
421 // 1st stage constraints
422 // Only one ’true’ binary variable per technology
423 vector <Constraints > con_binary(numTech);
424 for (int tech =0;tech <numTech;tech ++)
425 {
426 if(! useBattery && tech ==2)
427 {
428 continue;
429 }
430 con_binary[tech] = -1;
431 for (int n=0;n<numDiscrete[tech];n++)
432 {
433 con_binary[tech] += z_b[tech][n];
434 }
435 con_binary[tech]. setDependentVariable (++ concount ,
436 compgraph ::EQUALITY ,
437 false ,-1);
438 }
439

440 // 1st stage binary variable --> 2nd stage continuous
441 // Sizes equal to 1st stage for all scenarios
442 vector <vector <Constraints >> con_designs(numTech ,
443 vector <Constraints >( numScen));
444 for (int tech =0;tech <numTech;tech ++)
445 {
446 if(! useBattery && tech ==2)
447 {
448 continue;
449 }
450 for (int h=0;h<numScen;h++)
451 {
452 con_designs[tech][h] = -Z[tech][h];
453 for (int n=0;n<numDiscrete[tech];n++)
454 {
455 con_designs[tech][h] += z_b[tech][n]*z_d[tech][n];
456 }
457 con_designs[tech][h]. setDependentVariable (++ concount ,
458 compgraph ::EQUALITY ,
459 true ,h+1);
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460 }
461 }
462

463 // Budget constraint
464

465 Constraints con_budget;
466 con_budget = -budget;
467 for (int tech =0;tech <numTech;tech ++)
468 {
469 for (int n=0;n<numDiscrete[tech];n++)
470 {
471 if(! useBattery && tech ==2)
472 {
473 continue;
474 }
475 con_budget += z_b[tech][n]*z_d[tech][n]*C[tech];
476

477 }
478 }
479 con_budget.setDependentVariable (++ concount ,compgraph ::LEQ ,false ,-1);
480

481 // --------------------------------------------------------------------
482 //EEVP
483 if(setDesignsManually)
484 {
485 vector <Constraints > con_set_designs(numTech);
486 for (int tech =0;tech <numTech;tech ++)
487 {
488 if(! useBattery && tech ==2)
489 {
490 continue;
491 }
492 con_set_designs[tech] = -1;
493 con_set_designs[tech] += z_b[tech][ setDesign[tech ]];
494

495 con_set_designs[tech]. setDependentVariable (++ concount ,
496 compgraph ::EQUALITY ,
497 false ,-1);
498 }
499 }
500 cout <<"-- 1st stage constraints set.. --"<<endl;
501

502 // --------------------------------------------------------------------
503 // Second stage constraints
504 // Declaring constraints
505 // Energy hub
506 vector <vector <Constraints >> con_energyhub_eb(numTimesteps ,
507 vector <Constraints >( numScen));
508 vector <vector <Constraints >> con_renewables_eb(numTimesteps ,
509 vector <Constraints >( numScen));
510 vector <vector <Constraints >> con_demand(numTimesteps ,
511 vector <Constraints >( numScen));
512

513

514 // Renwable power generation
515 vector <vector <Constraints >> con_PV(numTimesteps ,
516 vector <Constraints >( numScen));
517 vector <vector <Constraints >> con_WT(numTimesteps ,
518 vector <Constraints >( numScen));
519

520 // Energy storage: Battery
521 vector <vector <Constraints >> con_BAT_eb(numTimesteps ,
522 vector <Constraints >( numScen));
523 vector <vector <Constraints >> con_BAT_SoC_max(numTimesteps ,
524 vector <Constraints >( numScen));
525 vector <vector <Constraints >> con_BAT_ch_max(numTimesteps ,
526 vector <Constraints >( numScen));
527 vector <vector <Constraints >> con_BAT_dis_max(numTimesteps ,
528 vector <Constraints >( numScen));
529 vector <Constraints > con_BAT_periodicity(numScen);

71



APPENDIX B. MODEL FILE

530

531 // Constraints
532 for (int h=0;h<numScen;h++)
533 {
534 for (int t=0;t<numTimesteps;t++)
535 {
536 con_energyhub_eb[t][h] = 0;
537 con_energyhub_eb[t][h] -= uncertainParams["L_DEM"][t][h];
538 // con_energyhub_eb[t][h] -= f_demand[t][h];
539 con_energyhub_eb[t][h] += f_renewables[t][h];
540 con_energyhub_eb[t][h] += f_grid_import[t][h];
541 // Eb2
542 con_renewables_eb[t][h] = 0;
543 con_renewables_eb[t][h] -= f_renewables[t][h];
544 con_renewables_eb[t][h] -= f_grid_export[t][h];
545 con_renewables_eb[t][h] += f_PV[t][h];
546 con_renewables_eb[t][h] += f_WT[t][h];
547 if(useBattery)
548 {
549 con_renewables_eb[t][h] -= f_bat_charge[t][h];
550 con_renewables_eb[t][h] += f_bat_discharge[t][h];
551 }
552

553 // Demand flow --> uncertain parameter
554 // con_demand[t][h] = -f_demand[t][h];
555 // con_demand[t][h] += uncertainParams ["L_DEM "][t][h];
556 //PV
557 con_PV[t][h] = -f_PV[t][h];
558 con_PV[t][h] += eta_PV*uncertainParams["IR_PV"][t][h]
559 *Z[0][h]/1000000;
560

561 // Wind
562 con_WT[t][h] = -f_WT[t][h];
563

564 if(( uncertainParams["W_WT"][t][h] >= W_min) &&
565 (uncertainParams["W_WT"][t][h] <= W_max))
566 {
567 if (uncertainParams["W_WT"][t][h] <= W_d)
568 {
569

570 con_WT[t][h] += Z[1][h]*q_d *
571 (pow(uncertainParams["W_WT"][t][h],3) -
572 pow(W_min ,3))/(pow(W_d ,3)-pow(W_min ,3));
573 }
574 else
575 {
576 con_WT[t][h] += Z[1][h]*q_d;
577 }
578 }
579 else
580 {
581 con_WT[t][h] += Z[1][h]*0;
582 }
583

584 if(! useBattery)
585 {
586 continue;
587 }
588 // Energy balance for battery
589 con_BAT_eb[t][h] = -E_BAT[t][h];
590 if (t != 0)
591 {
592 con_BAT_eb[t][h] += E_BAT[t-1][h]* eta_ES_storage;
593 }
594 else
595 {
596 con_BAT_eb[t][h] += eta_ES_storage *( SoC_initial -SoC_min)
597 *Z[2][h]/100;
598 }
599 con_BAT_eb[t][h] += f_bat_charge[t][h] * eta_ES_ch* deltaT;
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600 con_BAT_eb[t][h] -= deltaT* f_bat_discharge[t][h]/ eta_ES_dis;
601

602 // State of charge constraints
603 con_BAT_SoC_max[t][h] = E_BAT[t][h];
604 con_BAT_SoC_max[t][h] -= (SoC_max -SoC_min)*Z[2][h]/100;
605

606 // charging/discharging constraints
607 con_BAT_ch_max[t][h] = -deltaT*C_rate_max*Z[2][h];
608 con_BAT_dis_max[t][h] = -deltaT*C_rate_max*Z[2][h];
609 con_BAT_ch_max[t][h] += f_bat_charge[t][h];
610 con_BAT_dis_max[t][h] += f_bat_discharge[t][h];
611 }
612 if(! useBattery)
613 {
614 continue;
615 }
616 // Periodic boundary condition
617 con_BAT_periodicity[h] = -E_BAT[numTimesteps -1][h];
618 con_BAT_periodicity[h] += (SoC_initial -SoC_min)*Z[2][h]/100;
619 }
620

621 // Setting constraints
622 for (int h=0;h<numScen;h++)
623 {
624 for (int t=0;t<numTimesteps;t++)
625 {
626 // Energy Hub
627 con_energyhub_eb[t][h]. setDependentVariable (++ concount ,
628 compgraph ::EQUALITY ,true ,h+1);
629 con_renewables_eb[t][h]. setDependentVariable (++ concount ,
630 compgraph ::EQUALITY ,true ,h+1);
631

632 // Demand
633 // con_demand[t][h]. setDependentVariable (++ concount ,
634 // compgraph ::EQUALITY ,true ,h+1);
635

636 //PV
637 con_PV[t][h]. setDependentVariable (++ concount ,
638 compgraph ::EQUALITY ,true ,h+1);
639

640 // Wind
641 con_WT[t][h]. setDependentVariable (++ concount ,
642 compgraph ::EQUALITY ,true ,h+1);
643

644 // Battery energy storage
645 if(! useBattery)
646 {
647 continue;
648 }
649 // Energy balance for battery
650 con_BAT_eb[t][h]. setDependentVariable (++ concount ,
651 compgraph ::EQUALITY ,true ,h+1);
652

653 // State of charge constraints
654 con_BAT_SoC_max[t][h]. setDependentVariable (++ concount ,
655 compgraph ::LEQ ,true ,h+1);
656 //Flows
657 con_BAT_ch_max[t][h]. setDependentVariable (++ concount ,
658 compgraph ::LEQ ,true ,h+1);
659 con_BAT_dis_max[t][h]. setDependentVariable (++ concount ,
660 compgraph ::LEQ ,true ,h+1);
661 }
662 if(! useBattery)
663 {
664 continue;
665 }
666 // Periodicity
667 con_BAT_periodicity[h]. setDependentVariable (++ concount ,
668 compgraph ::EQUALITY ,true ,h+1);
669 }
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670 cout <<"-- 2nd stage constraints set.. --"<<endl;
671

672 cout <<"-- Running program .. --"<<endl;
673

674 return numScen;
675

676 }
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C | Scenarios for Program

In this appendix, the scenarios of different realizations of uncertain parameters are presented. The
assumed weighted probability of each scenario is given in Table C.1. The realizations for solar
irradiance, wind speed, demand load and grid price patterns are given in Tables C.2, C.3, C.4 and
C.5 respectively.

Table C.1: Weighted probabilities for scenarios

Scenario 1 2 3 4 5 6
Weight 0.125 0.125 0.125 0.125 0.0625 0.0625
Scenario 7 8 9 10 11 12
Weight 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

Table C.2: Fluctuating patterns for irradiation [W/m2]

t Scenario
1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 4 11 0 0 5 15 0 0 3 7 0
7 0 25 42 1 0 34 57 1 0 16 27 1
8 5 100 123 25 7 135 166 34 3 65 80 16
9 51 219 243 109 69 296 328 147 33 142 158 71
10 141 357 380 218 190 482 513 294 92 232 247 142
11 211 461 497 312 285 622 671 421 137 300 323 203
12 255 511 569 368 344 690 768 497 166 332 370 239
13 257 520 586 387 347 702 791 522 167 338 381 252
14 230 508 588 354 311 686 794 478 150 330 382 230
15 173 466 558 299 234 629 753 404 112 303 363 194
16 89 388 484 219 120 524 653 296 58 252 315 142
17 24 296 395 136 32 400 533 184 16 192 257 88
18 2 190 281 71 3 257 379 96 1 124 183 46
19 0 92 165 21 0 124 223 28 0 60 107 14
20 0 28 67 2 0 38 90 3 0 18 44 1
21 0 5 20 0 0 7 27 0 0 3 13 0
22 0 0 2 0 0 0 3 0 0 0 1 0
23 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0
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Table C.3: Fluctuating patterns for wind speeds [m/s2]

t Scenario
1 2 3 4 5 6 7 8 9 10 11 12

1 11.3 14.0 4.0 9.0 7.4 9.1 2.6 5.9 15.3 18.9 5.4 12.2
2 12.2 11.6 5.1 7.7 7.9 7.5 3.3 5.0 16.4 15.6 6.8 10.4
3 10.5 14.9 5.1 9.7 6.8 9.7 3.3 6.3 14.1 20.1 6.8 13.1
4 11.3 14.0 5.1 11.9 7.4 9.1 3.3 7.7 15.3 18.9 6.8 16.0
5 12.2 10.0 6.2 9.7 7.9 6.5 4.0 6.3 16.4 13.5 8.4 13.1
6 11.3 6.5 5.1 9.0 7.4 4.2 3.3 5.9 15.3 8.8 6.8 12.2
7 10.5 8.6 5.6 11.9 6.8 5.6 3.7 7.7 14.1 11.6 7.6 16.0
8 12.2 7.9 7.4 9.7 7.9 5.1 4.8 6.3 16.4 10.6 10.0 13.1
9 10.5 5.9 8.0 9.0 6.8 3.8 5.2 5.9 14.1 7.9 10.8 12.2
10 11.3 7.2 10.0 9.0 7.4 4.7 6.5 5.9 15.3 9.7 13.5 12.2
11 11.3 5.9 10.7 11.9 7.4 3.8 6.9 7.7 15.3 7.9 14.4 16.0
12 8.1 6.5 12.1 9.0 5.3 4.2 7.9 5.9 10.9 8.8 16.3 12.2
13 8.1 5.3 12.8 9.7 5.3 3.4 8.3 6.3 10.9 7.1 17.3 13.1
14 10.5 3.5 12.8 11.9 6.8 2.3 8.3 7.7 14.1 4.8 17.3 16.0
15 10.5 7.2 10.7 11.1 6.8 4.7 6.9 7.2 14.1 9.7 14.4 15.0
16 8.1 5.9 10.0 9.7 5.3 3.8 6.5 6.3 10.9 7.9 13.5 13.1
17 6.6 7.2 10.7 9.7 4.3 4.7 6.9 6.3 8.9 9.7 14.4 13.1
18 9.7 5.9 10.7 7.7 6.3 3.8 6.9 5.0 13.0 7.9 14.4 10.4
19 11.3 6.5 5.1 6.5 7.4 4.2 3.3 4.2 15.3 8.8 6.8 8.7
20 10.5 10.8 4.0 6.5 6.8 7.0 2.6 4.2 14.1 14.6 5.4 8.7
21 11.3 13.2 4.0 5.3 7.4 8.6 2.6 3.4 15.3 17.8 5.4 7.1
22 11.3 13.2 5.6 5.3 7.4 8.6 3.7 3.4 15.3 17.8 7.6 7.1
23 10.5 14.0 4.5 5.3 6.8 9.1 2.9 3.4 14.1 18.9 6.1 7.1
24 12.2 13.2 4.0 7.7 7.9 8.6 2.6 5.0 16.4 17.8 5.4 10.4
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Table C.4: Fluctuating patterns for demand load [MW ]

t Scenario
1 2 3 4 5 6 7 8 9 10 11 12

1 3.93 3.07 2.53 2.97 3.93 3.07 2.53 2.97 3.93 3.07 2.53 2.97
2 3.86 3.00 2.49 2.89 3.86 3.00 2.49 2.89 3.86 3.00 2.49 2.89
3 3.78 2.93 2.45 2.83 3.78 2.93 2.45 2.83 3.78 2.93 2.45 2.83
4 3.70 2.91 2.48 2.86 3.70 2.91 2.48 2.86 3.70 2.91 2.48 2.86
5 3.58 3.17 2.81 3.16 3.58 3.17 2.81 3.16 3.58 3.17 2.81 3.16
6 3.61 3.66 3.32 3.68 3.61 3.66 3.32 3.68 3.61 3.66 3.32 3.68
7 3.96 4.00 3.68 4.04 3.96 4.00 3.68 4.04 3.96 4.00 3.68 4.04
8 4.41 4.19 3.89 4.22 4.41 4.19 3.89 4.22 4.41 4.19 3.89 4.22
9 4.68 4.28 3.97 4.33 4.68 4.28 3.97 4.33 4.68 4.28 3.97 4.33
10 4.93 4.31 4.02 4.37 4.93 4.31 4.02 4.37 4.93 4.31 4.02 4.37
11 5.04 4.31 4.03 4.39 5.04 4.31 4.03 4.39 5.04 4.31 4.03 4.39
12 5.09 4.25 3.97 4.34 5.09 4.25 3.97 4.34 5.09 4.25 3.97 4.34
13 5.11 4.19 3.91 4.29 5.11 4.19 3.91 4.29 5.11 4.19 3.91 4.29
14 5.06 4.14 3.88 4.26 5.06 4.14 3.88 4.26 5.06 4.14 3.88 4.26
15 5.03 4.18 3.94 4.35 5.03 4.18 3.94 4.35 5.03 4.18 3.94 4.35
16 5.04 4.26 3.97 4.57 5.04 4.26 3.97 4.57 5.04 4.26 3.97 4.57
17 5.31 4.25 3.85 4.72 5.31 4.25 3.85 4.72 5.31 4.25 3.85 4.72
18 5.58 4.29 3.72 4.68 5.58 4.29 3.72 4.68 5.58 4.29 3.72 4.68
19 5.52 4.29 3.63 4.47 5.52 4.29 3.63 4.47 5.52 4.29 3.63 4.47
20 5.29 4.15 3.60 4.18 5.29 4.15 3.60 4.18 5.29 4.15 3.60 4.18
21 5.01 3.82 3.42 3.80 5.01 3.82 3.42 3.80 5.01 3.82 3.42 3.80
22 4.66 3.41 3.03 3.40 4.66 3.41 3.03 3.40 4.66 3.41 3.03 3.40
23 4.29 3.09 2.74 3.09 4.29 3.09 2.74 3.09 4.29 3.09 2.74 3.09
24 3.94 3.10 2.62 3.05 3.94 3.10 2.62 3.05 3.94 3.10 2.62 3.05
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Table C.5: Fluctuating patterns for cost of grid import [$/MWh]

t Scenario
1 2 3 4 5 6 7 8 9 10 11 12

1 76 62 61 68 76 62 61 68 76 62 61 68
2 74 60 60 66 74 60 60 66 74 60 60 66
3 72 58 58 64 72 58 58 64 72 58 58 64
4 70 57 57 63 70 57 57 63 70 57 57 63
5 71 58 58 64 71 58 58 64 71 58 58 64
6 75 61 61 68 75 61 61 68 75 61 61 68
7 87 75 69 78 87 75 69 78 87 75 69 78
8 101 86 79 89 101 86 79 89 101 86 79 89
9 104 87 82 92 104 87 82 92 104 87 82 92
10 100 84 79 89 100 84 79 89 100 84 79 89
11 96 81 76 86 96 81 76 86 96 81 76 86
12 95 81 75 85 95 81 75 85 95 81 75 85
13 91 78 73 81 91 78 73 81 91 78 73 81
14 89 77 72 80 89 77 72 80 89 77 72 80
15 88 77 71 80 88 77 71 80 88 77 71 80
16 89 78 72 80 89 78 72 80 89 78 72 80
17 91 79 74 82 91 79 74 82 91 79 74 82
18 99 85 79 88 99 85 79 88 99 85 79 88
19 105 89 82 93 105 89 82 93 105 89 82 93
20 106 90 82 93 106 90 82 93 106 90 82 93
21 99 85 77 87 99 85 77 87 99 85 77 87
22 92 79 73 81 92 79 73 81 92 79 73 81
23 87 75 70 78 87 75 70 78 87 75 70 78
24 79 68 64 71 79 68 64 71 79 68 64 71
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This appendix presents the GOSSIP output of the stochastic program when running the program
with two different algorithms: NGBD and ANTIGONE´s full space. It is noted that the second
stage flow and state variables are omitted.

Output with NGBD

Discrete Sets of technologies:
Tech 1:
0 8000 16000 24000 32000 40000 48000 56000 64000 72000
Tech 2:
0 2 4 6 8 10 12 14 16 18
Tech 3:
0 1.5 3 4.5 6 7.5 9 10.5 12 13.5

-- Discretization performed.. --
-- 2nd stage varaiables declared.. --
-- Objective function set.. --
-- 1st stage constraints set.. --
-- 2nd stage constraints set.. --
-- Running program.. --

Number of scenarios: 12

Before Preprocessing:

Variables: 2370

Complicating: 30
Binary: 30

Integer: 0
Continuous: 0

Recourse: 2340
Binary: 0

Integer: 0
Continuous: 2340

Constraints: 2356

First-stage: 4
Recourse: 2352

After Preprocessing:
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Variables: 2382

Complicating: 30
Binary: 30

Continuous: 0

Recourse: 2352
Binary: 0

Integer: 0
Continuous: 2352

Constraints: 2368

First-stage: 4
Equality: 3

Inequality: 1

Recourse: 2364
Equality: 1200

Inequality: 1164

Linear Constraints: 2368
Nonlinear Constraints: 0

Time for preprocessing: 0.06 seconds
Reformulation: 0.00 seconds

Simplification: 0.06 seconds
Structure detection: 0.00 seconds

Cannot write full-space GAMS model when algorithm is NGBD

Running NGBD to solve the input problem

|It#| LBD | UBDPB | UBD | Gap % |Solver time|Wall Clock time|
| 0| -6.0444e+06| 2.1035e+06| | --- | 0.01| 1.86|
| 1| -6.9719e+05| 3.0609e+05| | --- | 0.02| 1.87|
| 2| -6.6780e+05| 1.2018e+03| | --- | 0.02| 1.88|
| 3| -3.2074e+05| -7.2867e+04| | --- | 0.03| 1.90|
| 4| -2.3392e+05| -1.0644e+05| | --- | 0.05| 1.92|
| 5| -1.6706e+05| -1.3954e+05| | --- | 0.06| 1.94|
| 6| -1.5679e+05| | | --- | 0.08| 1.96|
| 7| -1.3657e+05| | | --- | 0.10| 1.99|
| | -1.3657e+05| | -1.3954e+05|0.00000| 0.11| 2.00|
| | -1.3657e+05| -1.1908e+05| |0.00000| 0.11| 2.00|

Number of iterations: 8
Final LBD: -1.3657e+05
Final UBD: -1.3954e+05
Final UBDPB: -1.1908e+05
Final Relative Gap: 0.0000e+00

PP Calls: 1
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PBP Calls: 8
FP Calls: 0
RMP Calls: 8
FBBT Calls: 0
OBBT Calls: 0

Model set up + generation time: 1.85

Total Solver Time: 0.11
PP Solver Time: 0.01
PBP Solver Time: 0.05
FP Solver Time: 0.00
RMP Solver Time: 0.05
IG Solver Time: 0.00
FBBT Solver Time: 0.00
OBBT Solver Time: 0.00

Total Wall Time: 2.00
PP Wall Time: 0.02
PBP Wall Time: 0.09
FP Wall Time: 0.00
RMP Wall Time: 0.05
IG Wall Time: 0.00
FBBT Wall Time: 0.00
OBBT Wall Time: 0.00

Best found solution:
z_b[1][1] = 0.0000
z_b[1][2] = 0.0000
z_b[1][3] = 0.0000
z_b[1][4] = 0.0000
z_b[1][5] = 0.0000
z_b[1][6] = 0.0000
z_b[1][7] = 1.0000
z_b[1][8] = 0.0000
z_b[1][9] = 0.0000
z_b[1][10] = 0.0000
z_b[2][1] = 0.0000
z_b[2][2] = 0.0000
z_b[2][3] = 0.0000
z_b[2][4] = 0.0000
z_b[2][5] = 0.0000
z_b[2][6] = 1.0000
z_b[2][7] = 0.0000
z_b[2][8] = 0.0000
z_b[2][9] = 0.0000
z_b[2][10] = 0.0000
z_b[3][1] = 0.0000
z_b[3][2] = 0.0000
z_b[3][3] = 0.0000
z_b[3][4] = 0.0000
z_b[3][5] = 0.0000
z_b[3][6] = 0.0000
z_b[3][7] = 1.0000
z_b[3][8] = 0.0000
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z_b[3][9] = 0.0000
z_b[3][10] = 0.0000

Z[0][0] = 48000.0000
Z[0][1] = 48000.0000
Z[0][2] = 48000.0000
Z[0][3] = 48000.0000
Z[0][4] = 48000.0000
Z[0][5] = 48000.0000
Z[0][6] = 48000.0000
Z[0][7] = 48000.0000
Z[0][8] = 48000.0000
Z[0][9] = 48000.0000
Z[0][10] = 48000.0000
Z[0][11] = 48000.0000
Z[1][0] = 10.0000
Z[1][1] = 10.0000
Z[1][2] = 10.0000
Z[1][3] = 10.0000
Z[1][4] = 10.0000
Z[1][5] = 10.0000
Z[1][6] = 10.0000
Z[1][7] = 10.0000
Z[1][8] = 10.0000
Z[1][9] = 10.0000
Z[1][10] = 10.0000
Z[1][11] = 10.0000
Z[2][0] = 9.0000
Z[2][1] = 9.0000
Z[2][2] = 9.0000
Z[2][3] = 9.0000
Z[2][4] = 9.0000
Z[2][5] = 9.0000
Z[2][6] = 9.0000
Z[2][7] = 9.0000
Z[2][8] = 9.0000
Z[2][9] = 9.0000
Z[2][10] = 9.0000
Z[2][11] = 9.0000

Final wall clock time = 2.03

Output with ANTIGONE´s full space

Discrete Sets of technologies:
Tech 1:
0 8000 16000 24000 32000 40000 48000 56000 64000 72000
Tech 2:
0 2 4 6 8 10 12 14 16 18
Tech 3:
0 1.5 3 4.5 6 7.5 9 10.5 12 13.5

-- Discretization performed.. --
-- 2nd stage varaiables declared.. --
-- Objective function set.. --
-- 1st stage constraints set.. --
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-- 2nd stage constraints set.. --
-- Running program.. --

Number of scenarios: 12

Before Preprocessing:

Variables: 2370

Complicating: 30
Binary: 30

Integer: 0
Continuous: 0

Recourse: 2340
Binary: 0

Integer: 0
Continuous: 2340

Constraints: 2356

First-stage: 4
Recourse: 2352

After Preprocessing:

Variables: 2382

Complicating: 30
Binary: 30

Continuous: 0

Recourse: 2352
Binary: 0

Integer: 0
Continuous: 2352

Constraints: 2368

First-stage: 4
Equality: 3

Inequality: 1

Recourse: 2364
Equality: 1200

Inequality: 1164

Solving the full space problem

Tried aggregator 2 times.
MIP Presolve eliminated 448 rows and 447 columns.
MIP Presolve modified 3 coefficients.
Aggregator did 289 substitutions.
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Reduced MIP has 1631 rows, 1646 columns, and 5176 nonzeros.
Reduced MIP has 29 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.01 sec. (5.55 ticks)
Found incumbent of value 2771209.575000 after 0.01 sec. (7.21 ticks)
Probing time = 0.01 sec. (2.00 ticks)
Tried aggregator 1 time.
Reduced MIP has 1631 rows, 1646 columns, and 5176 nonzeros.
Reduced MIP has 29 binaries, 24 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (1.91 ticks)
Probing time = 0.00 sec. (1.99 ticks)
Clique table members: 32.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: none, using 1 thread.
Root relaxation solution time = 0.04 sec. (21.20 ticks)

Nodes Cuts/
Node Left Objective IInf Best Integer Best Bound ItCnt Gap

* 0+ 0 2771209.58 -5654588.52 983 304.05%
0 0 -154033.10 30 2771209.58 -154033.10 983 105.56%

* 0+ 0 403352.71 -154033.10 983 138.19%
0 0 -153950.62 32 403352.71 Cuts: 42 997 138.17%

* 0+ 0 -127763.39 -153950.62 997 20.50%
0 0 -153763.49 31 -127763.39 Cuts: 5 1026 20.35%
0 0 -153709.51 31 -127763.39 Cuts: 3 1037 20.31%
0 0 -153709.51 32 -127763.39 Cuts: 2 1040 20.31%
0 0 -153706.91 32 -127763.39 Cuts: 11 1043 20.31%
0 2 -153706.91 32 -127763.39 -153659.25 1043 20.27%

Elapsed time = 0.17 sec. (110.10 ticks, tree = 0.00 MB, solutions = 3)
* 9 5 integral 0 -139541.1204 -147136.2604 1219 5.44%

GUB cover cuts applied: 2
Clique cuts applied: 1
Implied bound cuts applied: 23
Mixed integer rounding cuts applied: 4
Zero-half cuts applied: 1
Gomory fractional cuts applied: 2

Root node processing (before b&c):
Real time = 0.16 sec. (98.70 ticks)

Sequential b&c:
Real time = 0.01 sec. (7.48 ticks)

------------
Total (root+branch&cut) = 0.16 sec. (106.18 ticks)
Best found objective value = -139541
Best found solution:
z_b[1][1] = -0.0000
z_b[1][2] = -0.0000
z_b[1][3] = -0.0000
z_b[1][4] = 0.0000
z_b[1][5] = -0.0000
z_b[1][6] = 0.0000
z_b[1][7] = 1.0000
z_b[1][8] = 0.0000
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z_b[1][9] = 0.0000
z_b[1][10] = 0.0000
z_b[2][1] = -0.0000
z_b[2][2] = -0.0000
z_b[2][3] = -0.0000
z_b[2][4] = -0.0000
z_b[2][5] = -0.0000
z_b[2][6] = 1.0000
z_b[2][7] = 0.0000
z_b[2][8] = 0.0000
z_b[2][9] = 0.0000
z_b[2][10] = -0.0000
z_b[3][1] = -0.0000
z_b[3][2] = 0.0000
z_b[3][3] = -0.0000
z_b[3][4] = -0.0000
z_b[3][5] = -0.0000
z_b[3][6] = -0.0000
z_b[3][7] = 1.0000
z_b[3][8] = 0.0000
z_b[3][9] = 0.0000
z_b[3][10] = 0.0000

Z[0][0] = 48000.0000
Z[0][1] = 48000.0000
Z[0][2] = 48000.0000
Z[0][3] = 48000.0000
Z[0][4] = 48000.0000
Z[0][5] = 48000.0000
Z[0][6] = 48000.0000
Z[0][7] = 48000.0000
Z[0][8] = 48000.0000
Z[0][9] = 48000.0000
Z[0][10] = 48000.0000
Z[0][11] = 48000.0000
Z[1][0] = 10.0000
Z[1][1] = 10.0000
Z[1][2] = 10.0000
Z[1][3] = 10.0000
Z[1][4] = 10.0000
Z[1][5] = 10.0000
Z[1][6] = 10.0000
Z[1][7] = 10.0000
Z[1][8] = 10.0000
Z[1][9] = 10.0000
Z[1][10] = 10.0000
Z[1][11] = 10.0000
Z[2][0] = 9.0000
Z[2][1] = 9.0000
Z[2][2] = 9.0000
Z[2][3] = 9.0000
Z[2][4] = 9.0000
Z[2][5] = 9.0000
Z[2][6] = 9.0000
Z[2][7] = 9.0000
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Z[2][8] = 9.0000
Z[2][9] = 9.0000
Z[2][10] = 9.0000
Z[2][11] = 9.0000
Final wall clock time = 2.53
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