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Abstract

Two dynamic models for the Butterfly Robot are derived, one with four degrees of freedom and
one with two. The first is used to derive constraint forces for the robot, while the second is used to
derive a stabilizing controller for the robot. To derive the controller the virtual holonomic constraint
approach is used. First to derive a feedforward, and then a partial feedback linearization for a set
of transverse coordinates. The linearization of the transverse coordinates are then stabilized with
the help of a time varying linear quadratic regulator. An observer for the set of linear transverse
coordinates is then found. The controller and observer is then tested on a physical realization
of the Butterfly Robot at NTNU. It is found that the controller is able to achieve the goal of
continuous rolling in one direction.

Sammendrag

To matematiske modeller for sommerfugl-roboten blir funnet, én med fire frihetsgrader og én med
to frihetsgrader. Modellen med fire frihetsgrader blir brukt til å finne kreftene som opprettholder
begrensningene i systemet mens den med to frihetsgrader blir brukt til å finne en stabiliserende
regulator for systemet. For å utlede regulatoren blir virtuelle holonomiske begrensninger brukt,
først for å finne en foroverkobling n̊ar systemet er p̊a ønsket bane, deretter for å finne en delevis
lineariserende tilbakekobling for et sett med transverse koordinater. De transverse koordinatene
blir deretter stabilisert rundt nullpunktet av en lineær kvadratisk regulator. En observator er for
de transverse koordinatene blir deretter formulert. Regulatoren og observatoren blir til slutt testet
p̊a et fysisk oppsett av sommerfugl-roboten p̊a NTNU. Eksperimentene viser at denne regulator
klarer å oppn̊a m̊alet om kontinuerlig rulling i en retning.
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This master thesis has been written at the Department of Engineering Cybernetics at the Norwe-
gian University of Science and Technology during the spring of 2021. It is a continuation of the
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List of Symbols

α(ϕ) The part of the reduced dynamics which is multiplied with ϕ̈.

β(ϕ) Part of the reduced dynamics which is multiplied with ϕ̇2.

ϕ̇?(ϕ) Nominal time derivative of ϕ.

γ(ϕ) Part of the reduced dynamics.

κ(ϕ) Curvature of the path of the center of the sphere.

κf (φ) Curvature of the frame.

C(~q, ~̇q) Coriolis and centrifugal matrix.

G(~q) Gravity matrix.

L Gain matrix for the Luenberger observer.

M(~q) Mass-inertia matrix.

Q Matrix of generalised constraint forces.

R Rotational matrix about the z-axis.

~δ(φ) Vector from the origin in the body frame to the point closest to the sphere on the edge of
the frame.

~λ Vector of the Lagrangian multipliers.

~ρ(ϕ,w) Vector from origin in body frame to the center of the sphere.

~τ(ϕ) Tangent vector to the path travelled by the center of the sphere.

~τf (φ) Tangent vector to the frame.

~ξ Alternative set of coordinates to describe the Butterfly Robot

~k Unit vector along the y-axis in inertial frame.

~n+(ϕ) Normal vector to the frame pointing away from the frame.

~q Vector of all the states in the system, used for both the system with four states and the
system with two states.

~vd(~q, ~̇q) Sphere/discs linear velocity in the inertial frame.

~x⊥ Vector of the transverse coordinates.

~y Transverse coordinates calculated from measurements of the states.

φ Angle between the y-axis in the body frame and the vector ~δ.

ψ Angle the sphere has rotated.

Θ(ϕ) Virtual holonomic constraint to create a link between ϕ and ϑ.
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ϕ Angle between the y-axis in the body frame and the vector ~ρ.

ϑ Angle the frame has rotated in the inertial frame, also angle between inertial frame and
body frame.

a Constant used to describe the frame.

ai Constants used to describe the frame with a cosine series.

b Constant used to describe the frame.

ci Constants used to describe the VHC, i ∈ {1..5}.

f1(~q) Contact constraint for the sphere.

f2(w) No-slip constraint

g Gravitational acceleration.

Jf Inertia of the frame about the z-axis.

Js Inertia of the sphere.

k Matrix function to simplify feedforward term

K(~q, ~̇q) Kinetic energy of the robot.

md Mass of the sphere/disc.

P (~q) Potential energy of the Butterfly Robot.

Q Tuning matrix for the periodic LQR.

R Gain matrix for the periodic LQR.

Rd Effective rolling radius of the sphere.

s(ϕ) Distance the center of the sphere has travelled.

sf (φ) Distance the sphere has travelled along the frame.

u Input to the system

u? Nominal input to the system

w shortest distance between the edge of the frame and the surface of the sphere.

w(ϕ) Virtual input to the system of transverse coordinates.

X Solution of the periodic Riccati differential equation.

xs Spheres x-position in the inertial frame.

y1 First transverse coordinate related to ϑ.

y2 Second transverse coordinate related to ϑ̇.

ys Spheres y-position in the inertial frame.

z Third transverse coordinate related to ϕ̇.

⊥ Estimate of the transverse coordinates.

ωs Angular velocity of the sphere given in the inertial frame.
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Notation

In this text a dot above a variable implies derivative with respect to time, i.e.

ẋ =
dx

dt
(1)

An apostrophe after a variable implies derivative with respect to the function’s variable. In this
report this will always be with respect to ϕ or ϑ, the angle between the y-axis in body frame and
the vector to the center of the sphere, i.e.

x′ =
dx

dϕ
(2)

Vectors are written with an arrow over them, i.e. ~v. After a function is defined as dependent on
another variable the parenthesis showing this is often dropped. This is to make the derivations
more readable. i.e.

α(ϕ) becomes α (3)

In this text the cross product sign, ×, implies the magnitude of the resulting vector from the cross
product. This will be equal to the size of the third element of the resulting vector as all vectors
are in the xy-plane. This is done to save space in formulas and make them more readable.

~v × ~u :=
[
0 0 1

]
~w (4)

where ~w would be the resulting vector if the cross product returned a vector.

iv



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope for this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Outline of the text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Background theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Dynamical model from Christoffel symbols . . . . . . . . . . . . . . . . . . 3

2 Model of the Butterfly Robot 4

2.1 Kinematics of the Butterfly Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Frenet-Serret frames for the Butterfly Robot . . . . . . . . . . . . . . . . . 5

2.1.2 Contact constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 No-slip constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Dynamics of the Butterfly Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 4-DoF system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 2-DoF system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Parameters of the dynamical models . . . . . . . . . . . . . . . . . . . . . . 9

3 Motion planning, controller and observer 11

3.1 Motion planing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Virtual holonmic constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2 Reduced Dynamics, the αβγ-equation . . . . . . . . . . . . . . . . . . . . . 11

3.1.3 Equilibria of the αβγ-equation . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.4 Parameters of the VHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.5 Shape of the Butterfly Robot . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.6 Continuous rolling for the sphere on the Butterfly Robot . . . . . . . . . . . 16

3.2 Controller for the Butterfly Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Feedforward on the nominal trajectory . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Transverse Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



3.2.3 Dynamics for the transverse coordinates . . . . . . . . . . . . . . . . . . . . 20

3.2.4 Linearization of the transverse coordinates . . . . . . . . . . . . . . . . . . . 22

3.2.5 Periodic LQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Observers for the transverse coordinates . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Luenberger observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Experiment and results 26

4.1 Physical system of the Butterfly Robot . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.2 Friction in rotation of the frame . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.3 Inertia of the frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.4 Measurements of the states . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 With Luenberger observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 Effects of measurement rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Model compared with the physical robot . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Discussion, further work and conclusion 36

5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 Experiment on the Butterfly Robot . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.2 Different representations of the frame . . . . . . . . . . . . . . . . . . . . . 37

5.1.3 Virtual holonomic constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.4 Noise as a result of low measurement frequency of the motion generator . . 38

5.1.5 Usability of Matlab Coder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.6 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 41

A Appendix 42

A.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A.2 Effective rolling radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A.3 Derivation 4-DoF dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.4 Derivation of the 2-DoF dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A.5 αβγ-equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vi



A.6 Derivation of feedforward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.7 Derivative of ϕ̇2
?(ϕ) with respect to ϕ . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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Chapter 1

Introduction

In this work the Butterfly Robot will be considered. This is a benchmark example for planning
and performing nonprehensile manipulation proposed in [7]. It was also extensively investigated in
[14], and much of this text is based on their work. The goal is to be able to manipulate a sphere
with a hand-shaped robot arm. See an illustration in Figure 1.1. The inspiration is from a juggling
trick called the butterfly where the juggler is able to make a sphere roll from the palm, over the
fingers and onto the back of his or her hand.

1.1 Motivation

Non-prehensile manipulation is something humans do regularly to solve tasks, this includes everything
from walking, throwing objects, pushing objects, balancing objects, carrying containers of liquids
and much more. Every task where the person or robot can not grasp the object he, she or it is
manipulating can be defined as non-prehensile manipulation. Here lies the problem for perform-
ing non-prehensile manipulation for robotic systems; when the object can not be grasped firmly
it cannot be made part of the robot, which inherently makes any system that is performing non-
prehensile manipulation underactuated. Underactuated systems are notoriously difficult to control,
especially if the degree of r is larger than one, that is more than one of the states does not have a
dedicated actuator. [7]

Development of better models and controllers for the Butterfly Robot is therefore of interest as
it enables better understanding of such systems. This can lead to the creation of robotic systems
better able to perform tasks previously done by humans. This can be of interest as such robots
can work in environments which are hazardous to humans or perform mundane repetitive work.
This is the motivation for the study of the Butterfly Robot.

1.2 Scope for this thesis

The goal for this thesis is to be able to achieve continuous rolling in one direction for a physical
realization of the Butterfly Robot at NTNU. A model with only one degree of underactuation will
be considered for controlling the Butterfly Robot.
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Figure 1.1: Illustration of the Butterfly, created by Maksim Surov for [14].

1.3 Outline of the text

This text is structured as follows: First some background theory is given. The kinematics for the
Butterfly Robot is then derived. The kinematics is then used to derive two dynamical models for
the system.
The simpler of these two models is then used to find feasible trajectories for the Butterfly Robot
with the help of a virtual holonomic constraint. This constraint is then used to further reduce the
model to a second degree differential equation, the αβγ − equation.
The found trajectories are then stabilized with the help of a time varying LQR of a set of transverse
coordinates. An observer is used to estimate these transverse coordinates.
Results from experiments on a physical realization of the Butterfly Robot are then given. Lastly
these results are discussed.
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1.4 Background theory

1.4.1 Dynamical model from Christoffel symbols

Given the Lagriangian of a system, L = K − P , and general coordinates qi i ∈ {1, .., n} the
equations of motions of a mechanical system can be written as given in Equation 1.1 by using
Christoffel symbols [13]. K is here the kinetic energy of the system while P is the potential energy.

D(q)q̈ + C(q, q̇)q̇ + ~g(q) = ~τ (1.1)

The kinetic energy of a physical system is always quadratic in velocities and can be written as:

K(~q, ~̇q) =
1

2
~̇q>D(~q)~̇q (1.2)

The elements of C(~q, ~̇q) can then be found as:

ckj =

n∑
i=1

cijk(q)~̇q, i, j, k ∈ {1, .., n} (1.3)

where cijk are known as Christoffel symbols. Expressions for these are given in Equation 1.4.

cijk(q) =
1

2
(
∂dkj
∂qi

+
∂dki
∂qj

− ∂dij
∂qk

), i, j, k ∈ {1, .., n} (1.4)

~g(q) can be found as:

~gk =
∂P

∂qk
, k ∈ {1, .., n} (1.5)
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Chapter 2

Model of the Butterfly Robot

2.1 Kinematics of the Butterfly Robot

Figure 2.1: Illustration of the Butterfly robot with states

In Figure 2.1 two drawings of the Butterfly Robot are shown. The one to the left shows a closeup
of the drawing to the right. These will be used to describe the various states of the system and
their relations. Here the body attached frame is drawn in red while the inertial frame is drawn in
black. The z-axis in the system is pointing out of the paper according to the right hand rule. The
following assumptions will be used to reduce the number of degrees of freedom from twelve to four.

• The frame will not have any linear velocity, and its center is in the center of the inertial
frame.

• The frame will only have rotational velocity about the z-axis.

• The sphere will not have any linear velocity along the z-axis.

• The sphere will only have rotational velocity about the z-axis.

This gives that the system is fully described by the states ϑ, the rotation of the frame about the
z-axis. xs and ys, the spheres position in the inertial frame and ψ, the spheres rotation about the z-
axis. This also reduces the problem from a sphere rolling on two plates with some distance between
them to a disc rolling on a single plate. The radius of the disc will be given as the square root of

the sphere’s radius squared minus half the distance between the plates squared, Rd =
√
R2
s −R2

f .

See appendix for derivation.
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Introducing the vector ~ρ(ϕ,w) shown in the right figure in Figure 2.1 gives the following equation
for the discs position, where R is the rotation matrix about the z-axis.[

xs
ys

]
= R(ϑ)~ρ(ϕ,w) (2.1)

In this equation the variable w has been introduced to describe the shortest distance from the
frame to the edge of the disc. When the disc is in contact with the frame this variable will be equal
to zero. From Figure 2.1 it can be observed that the vector ~ρ(ϕ,w) is given as:

~ρ = ~δ(φ) + ~n+(φ)(w +Rd) (2.2)

where Rd is the radius of the disc, δ is given by the shape of the frame and ~n+ is the normal
vector to the frame for a given φ that is pointing away from the frame. Here it is worth noting
that the angel ϕ is only equal to φ when the normal vector to the frame is pointing in the same
direction as ~δ.
The set of states

[
ϑ φ w ψ

]
is more convenient for describing the Butterfly Robot than the

states
[
ϑ ψ xs ys

]
and will therefore be used for further derivations. It is worth noting that

ϕ, w and ψ is very hard to measure directly in the actual robot. Measurements of xs and ys will
therefore be used to calculate these variables.

2.1.1 Frenet-Serret frames for the Butterfly Robot

To describe the sphere’s path it is convenient to introduce two Frenet-Serret frames. One with
origin in the center of the sphere and another with the origin in the point of contact between the
sphere and the frame. The variables s(ϕ) and sf (φ) shown in Figure 2.2 will be used to describe
the frames position. Equations for these variables are given in Equation 2.3.

s(ϕ) =

∫ ϕ

ϕ0

∥∥∥∥ ∂~ρ∂ϕ
∥∥∥∥ dϕ

sf (φ) =

∫ φ

ϕ0

∥∥∥∥∥ ∂~δ∂ϕ
∥∥∥∥∥ dφ

(2.3)

The basis vectors of a Frenet-Serret is the tangent vector to the path travelled, the normal vector
to the path and the binormal vector to the path. These are defined as follows [1].

~τ =
∂~ρ

∂s
, ~τf =

∂~δ

∂sf
(2.4)

~n =
∂~τ
∂s∥∥∂~τ
∂s

∥∥ , ~nf =
∂~δ
∂s∥∥∥ ∂~δ
∂sf

∥∥∥ (2.5)

~b = ~τ × ~n, ~b = ~τf × ~nf (2.6)

From Figure 2.2 it can be observed that ~τ and ~τf will be equal and ~n and ~nf will be equal. Note
that the curvature of the two paths κ and κf will not be equal. The torsion of both curves will be
zero as these are planar curves [1]. When the torsion is zero the Frenet-Serret formulas [1] reduces
to a simpler form given as:

d~τ

ds
= κ~n (2.7)

d~n

ds
= −κ~τ (2.8)

2.1.2 Contact constraint

If the disc is assumed to be in contact with the frame the variable w will be equal to zero. This
gives the first constraint for the Butterfly robot:

f1(~q) = w = 0 (2.9)

5



2.1.3 No-slip constraint

Under the assumption that the disc does not slip a relation between ψ and ϕ can be derived.
When the disc does not slip the relation between sf and ψ are given by Equation 2.10. The minus
in the formula comes from the way that the variables are defined in Figure 2.2 which is the common
way to define s in a Frenet-Serret frame.

sf = −Rdψ, ṡf = −Rdψ̇ (2.10)

The variable sf is given in terms of φ. An expression relating sf and s is therefore needed. Using
the fact that the tangent vector and the normal vector for the two Frenet–Serret frames are the
same and Equation 2.8 the following computations can be done:

∂~ρ

∂sf
=

∂~δ

∂sf
+

∂~n

∂sf
Rd = ~τf − κf~τfRd = ~τf (1− κfRd) (2.11)

Multiplying both sides by ∂sf and lining up with the expression for the derivative of ~ρ with respect
to s gives the following:

∂~ρ = ~τf (1− κfRd)∂sf (2.12)

∂~ρ = ~τ∂s (2.13)

(2.14)

Since the two tangent vectors, τ and τf , are equal the following relation between ∂sf and ∂s can
be observed:

∂sf =
1

(1− κfRd)
∂s (2.15)

Integrating both sides gives (s(0) and sf (0) has been set to zero):

sf =

∫ s

0

1

(1− κf (s)Rd)
ds (2.16)

As a result the no slip constraint can be written as an integral equation in terms of s:

f2(~q) =

∫ s

0

1

(1− κf (s)Rd)
ds+Rdψ = 0 (2.17)

By the fundamental theorem of calculus the time derivative is given as:

1

(1− κf (s)Rd)
ṡ+Rdψ̇ = 0 (2.18)
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Figure 2.2: Illustration Butterfly Robot with no slip

2.2 Dynamics of the Butterfly Robot

To derive the dynamics of the Butterfly Robot Lagrange’s Equations of motion will be used. For
this the kinetic energy and the potential energy of the robot will be needed. Two models will be
derived, one consisting of the four states ϑ, ϕ, ψ and w, and a reduced model consisting only of the
states ϑ and ϕ. The first model will be used to derive the constraint forces needed to uphold the two
constraints derived earlier while the second model will be used to derive a controller for the system.

2.2.1 4-DoF system

Assuming the center of mass for the frame is in the origin of the inertial frame the only potential
energy in the system results from the disc’s position. This gives that the potential energy is given
by Equation 2.19 where the subscript 2 denotes the second element of the vector. This equation
can be observed from Figure 2.1. Her md is the mass of the sphere/disc.

P (~q) = [gmdR(ϑ)~ρ(ϕ,w)]2 (2.19)

As the frame will have no linear velocity the kinetic energy of the system will be given by the frame’s
angular velocity, the sphere’s angular velocity and the sphere’s linear velocity in the inertial frame.
The angular velocity of the frame is given by the time derivative of ϑ. Since the z-axis of the
inertial frame and the body frame are parallel the angular velocity of the sphere in the inertial
frame can be found as the sum of ϑ̇ and ψ̇. This gives:

ωs = ϑ̇+ ψ̇ (2.20)

The discs linear velocity will be given by the time derivative of its position in the inertial frame.
The spheres position is given as:

~rd(~q) = R(ϑ)~ρ(ϕ,w) (2.21)

Taking the time derivative of Equation 2.21 gives by Leibniz rule:

~vd(~q, ~̇q) = R′(ϑ)ϑ̇~ρ(ϕ,w) + R(ϑ)
∂~ρ(ϕ,w)

∂ϕ
ϕ̇+ R(ϑ)~n+(ϕ)ẇ (2.22)

7



The kinetic energy of the system can then be written as

K(q, q̇) =
1

2
(Jf ϑ̇

2 + Js(ϑ̇+ ψ̇)2 +md~vd(q, q̇)
>~vd(q, q̇) (2.23)

Using Equation 2.22 the kinetic energy can be written on matrix form as given by Equation 2.24.
Here it has been used that the product between a rotation matrix and its transpose is the identity
matrix. The notation for dependencies of the functions has been dropped to make the expressions
more readable.

K(~q, ~̇q) =
1

2
~̇q


Jf + Js +md~ρ

>~ρ md(R
′~ρ)>R ∂~ρ

∂ϕ Js md(R
′~ρ)>R~n+

md(R
′~ρ)>R ∂~ρ

∂ϕ md
∂~ρ
∂ϕ

> ∂~ρ
∂ϕ 0 md

∂~ρ
∂ϕ

>
~n+

Js 0 Js 0

md(R
′~ρ)>R~n+ md

∂~ρ
∂ϕ

>
~n+ 0 md

 ~̇q (2.24)

Using the following identities this matrix can be simplified a bit:

~x>R′(ϑ)>R(ϑ)~z = ~x× ~z (2.25)

∂~ρ(ϕ,w)

∂ϕ
= ~τ(ϕ)s′(ϕ,w) (2.26)

~τ>~τ = 1 (2.27)

~τ>~n+ = 0 (2.28)

K(~q, ~̇q) =
1

2
~̇q


Jf + Js +md~ρ

>~ρ mds
′~ρ× ~τ Js md~ρ× ~n+

mds
′~ρ× ~τ mds

′2 0 0
Js 0 Js 0

md~ρ× ~n+ 0 0 md

 ~̇q (2.29)

Using Christoffel symbols the dynamics for the butterfly robot is found to be given by Equa-
tion 2.30. The derivation and expressions for M , C and G can be found in Equation A.4, Equa-
tion A.15 and Equation A.16 respectively in the appendix.

M(~q)~̈q + C(~q, ~̇q)~̇q + G(~q) = Bu+ Q(~q) (2.30)

Since only ϑ is actuated B is given as B =
[
1 0 0 0

]>
. Using the constraints in Equation 2.9

and Equation 2.17 an expression for the constraint forces Q(q) will be found. Q(q) can be expressed

as given in Equation 2.31 where ~f is a vector consisting of the two constraints f1 and f2 and ~λ is
a vector of the two Lagrangian multipliers λ1 and λ2.[3]

Q(~q) =
∂ ~f(~q)

∂~q
~λ (2.31)

Differentiating the two constraints with respect to the states gives:

∂ ~f(~q)

∂~q
=


0 0
0 1

1−κf (s)Rd
∂s
∂ϕ

0 Rd
1 0

 =


0 0
0 s′f (ϕ)

0 Rd
1 0

 = f q (2.32)

The values for λ1 and λ2 can now be found as:

~λ =
{
f−1
qL

(
M(~q)~̈q + C(~q, ~̇q)~̇q + G(~q)−Bτ

)}∣∣∣
constraints and their derivatives upheld

(2.33)

Where f−1
qL is the left inverse of the matrix f q.

By observing that the generalized force acting on w should be a force, that is given in Newton,
while the generalized force acting on ψ should be a torque, that is Newton meters, an interpretation
of λ1 and λ2 can be found. λ1 can be interpreted as the normal force acting on the sphere while
λ2 can be seen as the friction force between the sphere and the frame.

It can thus be concluded that λ1 should be bigger than zero for the sphere to stay on the frame
and |λ2| should be smaller than some threshold given by the materials of the frame and the sphere
for the sphere to not slip.
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2.2.2 2-DoF system

Now it will be assumed that the contact constraint and the no slip constraint is upheld. As a result
the function for ~ρ becomes simplified a bit:

~ρ(ϕ, 0) = ~δ(ϕ) + ~n+(Rd + 0) = ~δ(ϕ) + ~n+Rd = ~ρ(ϕ) (2.34)

The no slip constraint gives that the angular velocity of the disc in the inertial frame can be written
as:

ωd = ϑ̇+ ψ̇ = ϑ̇− 1

Rd − κf (s)R2
d

ṡ = ϑ̇−
s′f
Rd

ϕ̇ (2.35)

This gives that the kinetic energy of the system with the constraints active is given by:

K(~q, ~̇q) =
1

2
~̇q>

[
Jf + Js +md~ρ

>~ρ mds
′~ρ>~τ − s′f

Js
Rd

mds
′~ρ>~τ − s′f

Js
Rd

s′2f
Js
R2
d

]
~̇q (2.36)

Again using Christoffel symbols the model for the dynamics with two degrees of freedom is found
to be:

M(~q)~̈q + C(~q, ~̇q)~̇q + G(~q) = Bu (2.37)

with the matrices:

M(q) = md

[
Jf
md

+ Js
md

+ ~ρ>~ρ s′~ρ>~τ − s′f
Js

mdRd

s′~ρ>~τ − s′f
Js

mdRd
s′2f

Js
mdR2

d

]
(2.38)

C11 = md~ρ · ~τs′ϕ̇

C12 = md(~ρ · ~τs′ϑ̇+ (s′′~ρ× ~τ − s′′f
Js

Rdmd
+ s′

2
~ρ× ~κ)ϕ̇)

C21 = −md~ρ · ~τs′ϑ̇

C22 = md(s
′s′′ + s′fs

′′
f

Js
R2
dmd

)ϕ̇

(2.39)

G(q) = gmd

[
[R′(ϑ)~ρ ]2
[R(ϑ)~τs′ ]2

]
(2.40)

B =

[
1
0

]
(2.41)

Derivation is given in the appendix.

2.2.3 Parameters of the dynamical models

To be able to use the dynamical models previously derived expressions for the parameters ~ρ, ~τ , ~κ,
~n+, s′, s′′, s′f and s′′f needs to be derived.
From Figure 2.2 it can be observed that ~ρ can be expressed in two ways. One dependent on ϕ and
one dependent on φ. The equation dependent on φ can be expressed as the sum of the vector from
origin to the point of contact and the vector from the point of contact to the center of the sphere.
For this expression the normal vector to the frame in the point of contact is needed. The normal
vector defined in the Frenet-Serret frame can not be used as it will change sign depending on the
curvature of the frame. Instead the normalized tangent vector to the frame rotated anticlockwise
by 90 degrees will be used. This gives the following expressions.

~n+ =

[
0 −1
1 0

]
~τf (φ) (2.42)

~ρ(ϕ) = ~ρ(φ) = ~δ(φ) +Rb~n(φ) (2.43)

~τ(ϕ) = ~τf (φ) =
∂~δ

∂φ

/∥∥∥∥∥ ∂~δ∂φ
∥∥∥∥∥ (2.44)
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~κ(ϕ) =
∂2~ρ

∂s2
=
∂2~ρ

∂ϕ2

∂ϕ2

∂s2
=
∂2~ρ

∂φ2

∂φ2

∂ϕ2

∂ϕ2

∂s2
(2.45)

The expression for s′ is derived as follows:

s′(ϕ) =
∂

∂ϕ

∫ ϕ

ϕ0

∥∥∥∥ ∂~ρ∂ϕ
∥∥∥∥ dϕ =

∥∥∥∥ ∂~ρ∂ϕ
∥∥∥∥ =

∥∥∥∥ ∂~ρ∂φ ∂φ∂ϕ
∥∥∥∥ =

∥∥∥∥∥∂~δ(φ) +Rb~n(φ)

∂φ

∥∥∥∥∥
∣∣∣∣∂φ∂ϕ

∣∣∣∣ (2.46)

Assuming that the derivative of φ with respect to ϕ is never equal to zero this can be written as:

s′(ϕ) =

∥∥∥∥∥∂~δ(φ) +Rb~n(φ)

∂φ

∥∥∥∥∥
∣∣∣∣∂ϕ∂φ

∣∣∣∣−1

(2.47)

To find s′′(ϕ) a similar approach will be used:

s′′(ϕ) =
∂s′(ϕ)

∂ϕ
=
∂s′(ϕ)

∂φ

∂φ

∂ϕ
=

∂

(∥∥∥ ∂~ρ∂φ∥∥∥ ∣∣∣∂ϕ∂φ ∣∣∣−1
)

∂φ

∂φ

∂ϕ
(2.48)

=

∂~ρ
∂φ

>
( ∂

2~ρ
∂φ2 )∥∥∥ ∂~ρ∂φ∥∥∥

∣∣∣∣∂ϕ∂φ
∣∣∣∣−1

∂φ

∂ϕ
−
∥∥∥∥ ∂~ρ∂φ

∥∥∥∥ sign
(
∂ϕ
∂φ

)
∂2ϕ
∂φ2∣∣∣∂ϕ∂φ ∣∣∣2

∂φ

∂ϕ
(2.49)

All of these expressions depend on ϕ and φ. Therefore expressions f(ϕ) = φ and g(φ) = ϕ will be
needed. From figure 2.2 it can be observed that ϕ = atan2(ρx, ρy), here subscript x denotes the
x-component while subscript y denotes the y-component. This gives that the function g(φ) = ϕ
can be written as:

g(φ) = atan2(δx(φ)−Rbτfy(φ), δy(φ) +Rbτfx(φ)) (2.50)

f(ϕ) can be found numerically as the inverse of g(φ). In this report this is done in Matlab through
a spline function. Differentiating g(φ) we will find that g′(φ) > 0 ∀ φ. This gives that ~κ, s′ and
s′′ can be simplified to:

~κ =
∂2~ρ

∂φ2

1

g′(φ)2s′(φ)2
(2.51)

s′ =

∥∥∥∥∥∂~δ(φ) +Rb~n(φ)

∂φ

∥∥∥∥∥ 1

g′(φ)
(2.52)

s′′ =

∂~ρ
∂φ

> ∂2~ρ
∂φ2∥∥∥ ∂~ρ∂φ∥∥∥

1

g′(φ)2
−
∥∥∥∥ ∂~ρ∂φ

∥∥∥∥ g′′(φ)

g′(φ)3
(2.53)

Using the the function g(φ) s′f can be written as:

s′f =

∥∥∥∥∥ ∂~δ∂φ
∥∥∥∥∥ ∂φ∂ϕ =

∥∥∥∥∥ ∂~δ∂φ
∥∥∥∥∥ 1

g′(φ)
(2.54)

Taking the partial derivative of this with respect to ϕ gives:

s′′f =

∂~δ
∂φ

>
∂2~δ
∂φ2∥∥∥ ∂~δ∂φ∥∥∥

1

g′(φ)2
−

∥∥∥∥∥ ∂~δ∂φ
∥∥∥∥∥ g′′(φ)

g′(φ)3
(2.55)
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Chapter 3

Motion planning, controller and
observer

3.1 Motion planing

The motion that will be considered in this text is continuous rolling of the sphere along the frame.
This will be done using an approach with a virtual holonomic constraint and a reduced model of
the system known as the αβγ-equation.

3.1.1 Virtual holonmic constraint

If the contact constraint and the no slip constraint is upheld the Butterfly will be an underactuated
system of degree one. To be able to control this system a virtual holonomic constraint (VHC) will
be introduced. This will create a relationship between the two states ϑ and ϕ. This constraint
will be imposed on the system through feedback. As a result the system can be described as a one
degree of freedom system if the VHC is upheld. Firstly a constraint that is active when the system
is on the desired trajectory will be considered. This constraint will be given as:

ϑ = Θ(ϕ) (3.1)

where Θ is a function that is twice differentiable and has some desired properties associated with
the equilibria of the reduced system. Differentiating the VHC with respect to time gives the
following:

ϑ̇ =
∂Θ(ϕ)

∂ϕ
ϕ̇ = Θ′(ϕ)ϕ̇ (3.2)

ϑ̈ =
∂2Θ(ϕ)

∂ϕ2
ϕ̇2 +

Θ(ϕ)

∂ϕ
ϕ̈ = Θ′′(ϕ)ϕ̇2 + Θ′(ϕ)ϕ̈ (3.3)

3.1.2 Reduced Dynamics, the αβγ-equation

Inserting the VHC and its time derivatives in the 2-DoF system dynamics given in Equation 2.37
results in the following dynamics:

M

([
Θ
ϕ

])[
Θ′′ϕ̇2 + Θ′ϕ̈

ϕ̈

]
+ C

([
Θ
ϕ

]
,

[
Θ′ϕ̇
ϕ̇

])[
Θ′ϕ̇
ϕ̇

]
+ G

([
Θ
ϕ

])
= Bu (3.4)

From this it can be observed that the dynamics is only dependent on ϕ, ϕ̇, ϕ̈ and u if the VHC is
upheld. Additionally u is only acting directly on the first differential equation. Multiplying both
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sides with BD =
[
0 1

]
gives a second order differential equation only dependent on ϕ and its

derivatives.

BD

(
M

[
Θ′′ϕ̇2 + Θ′ϕ̈

ϕ̈

]
+ C

[
Θ′ϕ̇
ϕ̇

]
+ G

)
= 0 (3.5)

Since M and G is only dependent on ϕ while C is linear in ϕ̇, this can be observed from the
Christoffel symbols, this equation can be written on a special form known as the αβγ-equation.

α(ϕ)ϕ̈+ β(ϕ)ϕ̇2 + γ(ϕ) = 0 (3.6)

From Equation 3.5 and Equation 1.4 it can be observed that α, β and γ will be given as:

α(ϕ) = M21Θ′ + M22

β(ϕ) = M21Θ′′ + c112Θ′2 + (c212 + c122)Θ′ + c222

γ(ϕ) = G2(Θ, ϕ)

(3.7)

Inserting the expressions given for the mass matrix, the Christoffel symbols and the gravity matrix
gives:

α(ϕ) = md

((
s′~ρ× ~τ − s′f

Js
Rdmd

)
Θ′ + s′

2
+ s′f

2 Js
R2
dmd

)
(3.8)

β(ϕ) = md

((
s′~ρ× ~τ − s′f

Js
Rdmd

)
Θ′′ − ~ρ>~τs′Θ′2 + s′s′′ + s′fs

′′
f

Js
R2
dmd

)
(3.9)

γ(ϕ) = mdg[R(Θ)~τs′]2 (3.10)

A general formula for the kth αβγ-equation is given in the appendix. Assuming α is never zero an
expression for the second time derivative of ϕ on the desired trajectory can be found as:

ϕ̈ = − 1

α(ϕ)
(β(ϕ)ϕ̇2 + γ(ϕ)) (3.11)

From equation Equation 3.8 it can be seen that α will be larger than zero if Equation 3.12 is
upheld. Here it has been used that s′ > 0, s′f > 0 and ~ρ× ~τ < 0

Θ′ < −
s′2 + s′2f

Js
R2
dmd

s′~ρ× ~τ − s′f
Js

Rdmd

(3.12)

3.1.3 Equilibria of the αβγ-equation

Rewriting the equation for the reduced dynamics on state space form will make the analysis of the
equilibria of the αβγ-equation easier. Using x1 = ϕ and x2 = ϕ̇ Equation 3.6 can be written as:[

ẋ1

ẋ2

]
=

[
x2

−β(x1)x2
2+γ(x1)

α(x1)

]
(3.13)

From the state space form it can be observed that the reduced dynamics has an equilibrium
whenever x2 = ϕ̇ = 0 and γ(x1) = γ(ϕ) = 0. From Equation 3.10 it can be observed that for γ(ϕ)
to be zero the second element of R(Θ)~τ needs to be zero.

Since the VHC can be chosen freely to some degree these equilibria can be placed according
to the desired behaviours. A natural choice for two of the equilibria is when the disc is in the
valley of the frame and when the disc is on the top of the frame, ϕ = nπ, ϑ = nπ and ϕ = π

2 +nπ,
ϑ = π

2 + nπ, n ∈ N. At the first point ~τ will be pointing along the x-axis in the body frame, while
at the second point ~τ will point along the y-axis. For the second element of R(Θ)~τ to be zero at
the first point Θ will need to be nπ while at the second point Θ will need to be equal π

2 + nπ.
The choice of virtual constraint will also potentially introduce additional equilibria between ϕ = 0
and ϕ = π

2 .
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For determining the properties of these equilibria a linearization and the extended Lyapunov’s
lemma will be used. It was shown in [10] that for the αβγ-equation a center for the nonlinear
system can be shown by linearization. This is not the case in general, and makes the αβγ-equation
particularly useful to derive possible periodic motions.
Linearizing Equation 3.6 about one of the equilibria gives Equation 3.14. Here z1 represents the
linearized ϕ while z2 is the linearized ϕ̇. In this equation it has been used that γ(z∗1) = 0 and that
z∗2 = 0. z∗i represents the value of zi at the equilibrium.

[
ż1

ż2

]
=

 0 1

−
∂γ(z1)
∂z1

α(z1)

∣∣∣∣
z1=z∗1

0

[z1

z2

]
(3.14)

Taking the partial derivative of γ with respect to ϕ gives the following, here the unit vector in
y-direction, ~k has been used rather than the second element to make further derivations simpler.

∂γ(ϕ)

∂ϕ
= mdg~k

>(
∂R(Θ)

∂Θ
Θ′~τs′ + R(Θ)

∂~τ

∂ϕ
s′ + R(Θ)~τs′′) (3.15)

= mdg~k
>(R′(Θ)Θ′~τs′ + R(Θ)~κs′

2
+ R(Θ)~τs′′) (3.16)

Inserting for the two equilibria gives:

∂γ(ϕ)

∂ϕ

∣∣∣∣
ϕ=nπ

= mdg(~τ × ~ks′Θ′ + ~k>~κ) (3.17)

∂γ(ϕ)

∂ϕ

∣∣∣∣
ϕ=π

2 +nπ

= mdg(−~k>~τs′Θ′ + ~τ × ~κ) (3.18)

(3.19)

Here it has been used that ~k is orthogonal to R(Θ)~τ in the equilibra. From these equations it can
be observed that Θ′ can be used to chose the sign of γ at these equilibria.
The sign of the partial derivative of γ divided by α at the equilibrium will determine if the
equilibrium is a center or a saddle. If γ′ divided by α is smaller than zero it can be observed from
Equation 3.14 that the eigenvalues of the linearization at the equilibrium have only a complex part,
this gives a center. If it is larger than zero one eigenvalue will be positive and one negative, this
gives a saddle [5].
Taking the partial derivative of γ divided by α gives:

∂γ(ϕ)
∂ϕ

α(ϕ)
=

mdg~k
>(R′(Θ)Θ′~τs′ + R(Θ)~κs′

2
+ R(Θ)~τs′′)

md

((
s′~ρ× ~τ − s′f

Js
Rbmd

)
Θ′ + s′2 + s′f

2 Js
R2
bmd

) (3.20)

Since α is made to be larger than zero by the constraint in Equation 3.12 determining the proper-
ties of the equilibira is only dependent on the sign of the derivative of γ.

In total this gives a constraint for Θ′ for all values of ϕ and on constraint to make each of the
equilibira have the desired properties, either a center or a saddle.

3.1.4 Parameters of the VHC

The virtual holonomic constraint that will be used for the Butterfly Robot is given in Equation 3.21.
It can be observed that this function will be equal to zero when ϕ is equal to zero and it will be
equal to π

2 when ϕ is equal to π
2 . It is also infinitely differentiable. ci is constants that will be used

to give the equilibria of the αβγ-equation the desired properties.

Θ(ϕ) = c1 arctan {c2 sin(2ϕ) + c3 sin(4ϕ) + c4 sin(6ϕ) + c5 sin(8ϕ)}+ ϕ (3.21)

To determine the parameters of the VHC constrained optimization will be used. The constraints
that will be used are α(ϕ) larger than zero and that the equilibria have the desired properties
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discussed previously. In addition some additional equilibria will be placed between ϕ = 0 and
ϕ = π

2 .

To make the nominal trajectory as slow as possible the region of attraction for the centers should
not be too big. This will be achieved by minimizing with respect to the derivative of γ with respect
to ϕ. This gives the following optimization given in Equation 3.22.

min
c1,c2,c3,c4,c5

∑
ϕcenter

γ′(ϕcenter) +
∑

ϕsaddle

γ′(ϕsaddle) (3.22a)

subject to α(ϕ) > 0, (3.22b)

γ′(ϕcenter) > 0, (3.22c)

γ′(ϕsaddle) < 0, (3.22d)

γ(ϕcenter) = 0, (3.22e)

γ(ϕsaddle) = 0, (3.22f)

To implement these optimization problems YALMIP was used [6]. The Matlab solver FMINCON
was used as a solver.

3.1.5 Shape of the Butterfly Robot

To be able to use the model and controller derived earlier a description of the frame is needed, that
is the function δ(φ). In [14] a π periodic trigonometric function was used for this. This function is
given in Equation 3.23.

δ(φ) = a− b cos(2φ) (3.23)

This function has the advantage of being smooth and infinitely differentiable. This is important as
the model depends on the third derivative of this function. In this text three different descriptions
will be tested, the function given in Equation 3.23, the cosine series given in Equation 3.24 and a
spline interpolation of the actual frame.

δ = a0 +

4∑
n=1

an cos(2nφ) (3.24)

In Figure 3.1 the function δ and it’s derivatives are plotted. Data of the actual frame is shown in
blue, Equation 3.23 is shown in red while a cosine series with five elements is shown in yellow. To
find the derivatives of the numerical data of the frame a finite differences scheme was used. The
two cosine functions were curve fitted to data from the frame using Matlab’s curve fitting tool[8].
As can be seen from the plots both the functions match the values for the frame well, but becomes
progressively worse at describing the frames derivative as these increase in order. Especially at a
little before π

4 and a little after 3π
4 the values of the approximations are not good.
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Figure 3.1: Plots of the frame and its derivatives

The statement that ∂g(φ)
∂φ should be larger than zero can now be checked for the three different

representations of the frame. A plot showing the three functions from φ = 0 to φ = π is shown in
Figure 3.2. Here the radius of the disc has been set equal to 9.5 millimeters. It can be observed
from this plot that g′(φ) will be larger than zero for all φ ∈ R, this because g′(φ) is π periodic.
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Figure 3.2: Plot of ∂g(φ)
∂φ for the different representations of the frame.

3.1.6 Continuous rolling for the sphere on the Butterfly Robot

The optimization problem for the virtual holonomic constraint will now be used to find a nominal
trajectory for the Butterfly Robot. Three phase planes will be considered, one for each of the
previously discussed descriptions of the frame. The same VHC will be used for all of them.

Using the optimization problem one set of possible parameters for the virtual holonomic constraint
was found to be:

c1 = −4.95× 101, c2 = 1.17× 10−2, c3 = 2.96× 10−3, c4 = 4.73× 10−4, c5 = −5.47× 10−5

(3.25)
In Figure 3.3 a plot of the phase plane with Equation 3.23 used to describe the frame is shown.
Figure 3.4 shows the phase plane with the cosine series used while Figure 3.5 shows the phase
plane with the interpolation used to describe the frame.

From these phase planes it is worth noting that there can be found trajectories that result in
continuous motion for all three cases. Oscillations about π

2 and two other equilibria can also be
found. The cases where the initial condition results in continuous motion will be studied in this
text. It is also worth noting that the phase plane with the cosine series matches the interpolation
better than the single cosine. In addition the equilibria of the system does not seem to change
character between the three different descriptions, that is a saddle remains a saddle while a center
remains a center.
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Figure 3.3: Phase plane with δ described by Equation 3.23

Figure 3.4: Phase plane with δ described by a cosine series consisting of five terms.
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Figure 3.5: Phase plane with δ given as a spline interpolation of the data of the frame.
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3.2 Controller for the Butterfly Robot

A controller that is able to stabilize the nominal trajectory found earlier will now be derived. This
will be done in two stages. First a feedforward term will be derived that will keep the system on
the nominal trajectory if it already is on the nominal trajectory. As this is a feedforward it will not
be able to handle any noise or deviation from the nominal trajectory. To deal with this a feedback
linearization of a set of transverse coordinates will be introduced. The resulting time varying linear
system will then be controlled using a time varying LQR. An illustration of the resulting control
structure is given in Figure 3.6.

Figure 3.6: Control structure for the Butterfly Robot

3.2.1 Feedforward on the nominal trajectory

Multiplying both sides of Equation 3.4 with the transpose of B gives an expression for u. Assum-
ing the system is on the nominal trajectory and inserting the αβγ-equation gives the following
expression for the nominal input. Note that all expressions are evaluated as a function of ϕ. Here
? denotes a function on the nominal trajectory.

u?(ϕ) = B>
(
−M

[
Θ′

1

]
βϕ̇2

? + γ

α
+ M

[
Θ′′ϕ̇?

0

]
+ C

[
Θ′ϕ̇?
ϕ̇?

]
+ G

)
(3.26)

This expression can be further simplified to Equation 3.27 by using the expressions for α, β and
γ. The derivation is given in the appendix.

u?(ϕ) = k

([
k−1 −1

]
M

[
Θ′′ϕ̇2

?

0

]
+
[
k−1 −1

]
C

[
Θ′ϕ̇?
ϕ̇?

]
+
[
k−1 −1

]
G

)
(3.27)

Here k is given by the following expression:

k =

[
1 0

]
M
[
Θ′ 1

]
[
Θ′ 1

]
M

[
0
1

] (3.28)

3.2.2 Transverse Coordinates

The feedforward derived earlier will only work if the system already is on the desired trajectory.
It will also be unstable on this trajectory, a small deviation or disturbance will make it leave the
nominal trajectory and thus make the feedforward useless. A set of coordinates that stabilizes this
trajectory is thus needed.

Since the Butterfly Robot is a system with two degrees of freedom three transverse coordinates are
needed to describe how far away the system is from the desired trajectory. In addition a motion
generator will be needed.
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An alternative set of coordinates for the system given in Equation 2.37 can be given as:

~ξ(~q, ~̇q) =


ϑ−Θ(ϕ)

ϕ

ϑ̇−Θ′(ϕ)ϕ̇
ϕ̇− ϕ̇?

 (3.29)

This is the same set of coordinates used to describe the Butterfly Robot in [14]. They showed that
that this new set of coordinates is valid for the whole state space, that is the transformation from
~ξ to {~q, ~̇q} exists and the Jacobian has full rank.

In Equation 3.29 it can be observed that three of the new states will be zero when the system
is on the nominal trajectory. In addition if a nominal trajectory with continuous motion in one of
the directions is chosen ϕ̇ will always be larger than zero (alternatively always smaller than zero
if a negative ϕ̇ is chosen as the initial condition from one of the phase planes.) Thus ϕ will be a
monotonically increasing function on the nominal trajectory.
ϕ will therefore be chosen as the motion generator for the system, while the three remaining

states will be used as transverse coordinates, ~x⊥ =
[
y1 y2 z

]>
.

y1 = ϑ−Θ(ϕ) (3.30)

y2 = ϑ̇−Θ′(ϕ)ϕ̇ (3.31)

z = ϕ̇− ϕ̇?(ϕ) (3.32)

3.2.3 Dynamics for the transverse coordinates

Differentiating the expressions given for the transverse coordinates with respect to time gives the
following:

ẏ1 = y2 (3.33)

ẏ2 = ϑ̈−Θ′′(ϕ)ϕ̇2 −Θ′(ϕ)ϕ̈ = ÿ (3.34)

ż = ϕ̈− ∂ϕ̇?(ϕ)

∂ϕ
ϕ̇ (3.35)

Inserting that ϕ̇ = z + ϕ̇? and writing the expression for ẏ2 in a more convenient form gives:

ẏ1 = y2 (3.36)

ẏ2 =
[
1 −Θ′(ϕ)

] [ϑ̈
ϕ̈

]
−Θ′′(ϕ)(z + ϕ̇?)

2 (3.37)

ż = ϕ̈− ∂ϕ̇?(ϕ)

∂ϕ
(z + ϕ̇?) (3.38)

ϕ̇? is a solution of the αβγ-equation . This equation has an analytic solution given by Equation 3.39.
This was shown in [11]. Note that the system is assumed to be on the desired trajectory for this
derivation.

ϕ̇2
? = exp

{
−2

∫ ϕ

ϕ0

β(w)

α(w)
dw

}(
ϕ̇2

0? −
∫ ϕ

ϕ0

2γ(w)

α(w)
exp

{
2

∫ w

ϕ0

β(v)

α(v)
dv

}
dw

)
(3.39)

Differentiating ϕ̇2
? with respect to ϕ gives:

∂ϕ̇2
?

∂ϕ
= 2ϕ̇?

∂ϕ̇?
∂ϕ

(3.40)

The partial derivative of ϕ̇? can thus be found as:

∂ϕ̇?
∂ϕ

=

∂ϕ̇2
?

∂ϕ

2ϕ̇?
(3.41)
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Differentiating Equation 3.39 with respect to ϕ gives the following, derivation is given in the
appendix.

∂ϕ̇2
?

∂ϕ
= −2ϕ̇2

?

β(ϕ)

α(ϕ)
− 2

γ(ϕ)

α(ϕ)
(3.42)

The expression for the partial derivative of ϕ̇? is thus given as:

∂ϕ̇?
∂ϕ

= −ϕ̇?
β(ϕ)

α(ϕ)
− γ(ϕ)

ϕ̇?α(ϕ)
(3.43)

Inserting this in the expression for ż gives:

ż = ϕ̈+ ϕ̇?

(
β

α
+

γ

ϕ̇2
?α

)
(z + ϕ̇?) (3.44)

When the system is not on the desired trajectory the αβγ-equation can be written as given in
Equation 3.45 [12]. Note that W is zero when the system is on the desired trajectory.

α(ϕ)ϕ̈+ β(ϕ)ϕ̇2 + γ(ϕ) = W (3.45)

Inserting the αβγ-equation when the system is not on the trajectory into the equation for ż gives:

ż =
−βϕ̇2 − γ

α
+
W

α
+ ϕ̇?

(
β

α
+

γ

ϕ̇2
?α

)
(z + ϕ̇?) (3.46)

=
−β(z + ϕ̇?)

2 − γ
α

+
W

α
+ ϕ̇?

(
β

α
+

γ

ϕ̇2
?α

)
(z + ϕ̇?) (3.47)

=
−βz2 − 2βzϕ̇? − βϕ̇2

? − γ
α

+
W

α
+ ϕ̇?

(
β

α
+

γ

ϕ̇2
?α

)
(z + ϕ̇?) (3.48)

=
W

α
+

1

α

(
−βz2 − βzϕ̇? +

zγ

ϕ̇?

)
(3.49)

To be able to use these dynamics an expression for W is needed. It was shown in [12] that W can
be written as:

W = gy1y1 + gy2y2 + gẏ2 ẏ2 (3.50)

The dynamics for the transverse coordinates can thus be written as given in Equation 3.51. Note
that ẏ2 has been renamed to w, this is because it will be used as a virtual control input to the
system of transverse coordinates.

ẏ1 = y2

ẏ2 =
[
1 −Θ′(ϕ)

] [ϑ̈
ϕ̈

]
−Θ′′(ϕ)(z + ϕ̇?)

2 = w

ż =
1

α

(
gy1y1 + gy2y2 + gww − βz2 − βzϕ̇? +

zγ

ϕ̇?

) (3.51)

To find the expressions for gy, gẏ and gw the expressions for ϑ and it’s derivatives given in Equa-
tion 3.52 is inserted in the αβγ-equation in addition to ϕ and it’s derivatives.

ϑ = y1 + Θ(ϕ)

ϑ̇ = y2 + Θ′(ϕ)ϕ̇

ϑ̈ = w + Θ′′(ϕ)ϕ̇2 + Θ′(ϕ)ϕ̈

(3.52)

This results in the expressions given Equation 3.53, derivation is given in the appendix. These are
similar to the expressions found in [14].

gy = mbg
[
− cos(ϕ+ y

2 ) sin(ϕ+ y
2 )
]

sinc
(y

2

)
~τs′

gẏ = −mb~ρ
>~τs′(ẏ + 2Θ′(ϕ)ϕ̇)

gw = −
(
s′~ρ× ~τ − s′f

Js
Rbmb

) (3.53)
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A new input u will be needed to control the system. This will be given by Equation 3.54 where
k is given in Equation 3.28. This is the same as the feedforward derived earlier when the system
is on the nominal trajectory. A similar controller was used in [14] to control the Butterfly Robot,
it was shown in [12] that such a controller is able to achieve stabilization of the original nonlinear
system in a neighborhood of the desired trajectory.

u(ϕ,w) = k

([
k−1 −1

]
M

[
w + Θ′′ϕ̇2

?

0

]
+
[
k−1 −1

]
C

[
Θ′ϕ̇? + y2

ϕ̇?

]
+
[
k−1 −1

]
G

)
(3.54)

With this the problem of controlling the butterfly robot to the nominal trajectory has been reduced
to controlling the system of transverse coordinates to the trivial solution, that is all transverse
coordinates equal to zero. w will be used as a virtual input to achieve this.
In addition since the system will be controlled in terms of ϕ rather than time a change from
the time derivative to the derivative with respect to ϕ is needed. Her x⊥ is introduced as the
vector consisting of the transverse coordinates. Note that for this controller to be available the
transformation from time to ϕ needs to exist, that is ϕ needs to be monotonically increasing.

~̇x⊥ =
d

dt
~x⊥ =

d

dt
~x⊥

∂ϕ

∂ϕ
=

∂

∂ϕ
~x⊥

dϕ

dt
=

∂

∂ϕ
~x⊥ϕ̇ (3.55)

Assuming ϕ̇ is bigger than zero for all time gives that the derivative of ~x⊥ can be written as:

∂

∂ϕ
~x⊥ =

~f(~x⊥, w)

ϕ̇
(3.56)

Here the vector ~f represents the dynamics of the transverse coordinates given in Equation 3.51.

3.2.4 Linearization of the transverse coordinates

Linearizing the dynamics for the transverse coordinates given in Equation 3.51 along the nominal
trajectory, that is all the transverse coordinates equal to zero, gives the following:

d

dϕ
~z⊥ = A(ϕ)~z⊥ + b(ϕ)w (3.57)

A(ϕ) =

 0 1 0
0 0 0
ḡy1
ᾱ

ḡy2
ᾱ

γ̄−β̄ϕ̇?
ᾱϕ̇?

 1

ϕ̇?
(3.58)

b(ϕ) =
[
0 1 ḡw

ᾱ

]> 1

ϕ̇?
(3.59)

Here a bar over the functions indicates that they are evaluated on the nominal trajectory. The
expressions for gy, gẏ and gw becomes a bit simpler when evaluated on the nominal trajectory:

ḡy = mbg
[
− cos(ϕ) sin(ϕ)

]
~τs′

ḡẏ = −2mb~ρ
>~τs′Θ′(ϕ)ϕ̇?

ḡw = −
(
s′~ρ× ~τ − s′f

Js
Rbmb

)
(3.60)

To control this linear ϕ-varying system a ϕ-dependent linear quadratic regulator (LQR) will be
used. That is a controller on the form:

w(ϕ) = b(ϕ)X(ϕ)~x⊥ (3.61)

Here X(ϕ) is a stabilizing solution of the periodic Riccati differential equation.[12]
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3.2.5 Periodic LQR

It was shown in [12] that the controller given in Equation 3.62 is able to stabilize a periodic linear
time varying system that is controllable.

w(t) = −R(t)−1B(t)X(t)~x⊥ (3.62)

Here X(t) is the solution to the periodic Riccati differential equation given as:

−Ẋ(t) = A(t)>X(t) +X(t)A(t)−X(t)B(t)R(t)−1B(t)X(t) +Q(t) (3.63)

It was shown in [4] that an approximation to the solution of this matrix differential equation can
be found through semi definite programming (sdp). Here the problem of finding the solution X(t)
is reformulated as a discrete optimization problem. X(t) is written as N matrices Xn over the time
interval t ∈ [0, T ] and n ∈ [1, N ]. Note that for the Butterfly Robot this will be a period in ϕ
rather than time. The period will be π.
Using a Fourier series the solution can be written as X =

∑M
k=−M exp(ikωt)Fk(X) where F0 is a

symmetric real matrix, Fk, k = 1..M is a symmetric complex matrix, F−k is the complex conjugate
of Fk and ω = 2π

T .[4]
It was further shown in [4] that the following maximization problem converges to the solution of
the periodic Riccati differential equation as M goes to infinity and N

M3 goes to infinity.

max trace(F0(Xn)) (3.64a)

subject to L(X, tj) ≥ 0, tj = (j − 1)
T

N
j = 1, .., N (3.64b)

− dI ≤ X(tj) ≤ dI (3.64c)

Here L(X, tj) is known as the Riccati operator and is given as:

L(X, t) =

[
d
dtX(t) +X(t)A(t) +A>(t)H(t) +Q(t) X(t)B(t)

B>X(t) R(t)

]
(3.65)

To make the solution dependent on the states, ϕ will be used rather than time. This can be done
as ϕ is a monotonically increasing function on all the intervals that will be used. This will give a
solution consisting of N matrices Xn(ϕ), n ∈ 1, .., N .
The implementation of the optimization problem was done in Matlab with YALMIP [6], it was
solved with SDPT3 [15]. It can be found at https://github.com/GustavOften/ttk4900 master thesis.
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3.3 Observers for the transverse coordinates

To be able to use the controller derived earlier measurements of the states of the system are needed.
These measurements are prone to noise, especially the derivatives, so an observer will be introduced
to remove some of this noise. Since the control system is not using the states directly for control
but rather the set of transverse coordinates an observer for these are enough to be able to control
the system, note that ϕ is still needed for the partial feedback linearization.

As the linearized transverse coordinates can be used to describe the system when the system
is close to the nominal trajectory a linear observer will be introduced to estimate the linearized
transverse coordinates. The control structure with the observer included is shown in Figure 3.7.

Since all of the states in the Butterfly Robot are measured, all of the states in the linearized
transverse coordinates can be calculated from the measurements. This gives that the C can be
taken as the identity. This gives that the system of transverse coordinates are observable.

Figure 3.7: Control structure with observer included

3.3.1 Luenberger observer

A Luenberger observer can be used to estimate the linearized transverse coordinates when the
system is close to the nominal trajectory. The Luenberger observer is given in Equation 3.66
[2]. Her the matrix L is a positive definite gain matrix, while A and B is the matrices for the
linearization of the transverse coordinates derived earlier. In this text a constant matrix will be
used for L, though it could be made φ varying. Since all of the states of the system can be
measured and the transverse coordinates can be calculated from the measurements the matrix C
will be the identity matrix. The measurements ~y are the transverse coordinates calculated from
Equations 3.30, 3.31 and 3.32.

˙̂x⊥ = A(ϕ)x̂⊥ + B(ϕ)u+ L(~y −Cx̂⊥) (3.66)

3.3.2 Kalman filter

A Kalman filter is an optimal estimator in the same way that a LQR is an optimal controller if
the covariances of the measurements noise and process noise are known. This estimator assumes
a system on the form given in Equation 3.67. Here ~v(t) and ~w(t) are white noise processes with
covariance matrices given by Q(t) and R(t) respectively.

~̇x = A(t)~x+ B(t)u+ G(t)~v(t)

y(t) = C(t)~x+ E(t)~w(t)
(3.67)

Note that this is not the standard way to write these equations. The matrix E is usually not
included. But, since the transverse coordinates are not directly measurable the noise in these will
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be multiplied with a nonlinear function. Assuming the following:

ϑmeasured = ϑtrue + wϑ (3.68)

ϑ̇measured = ϑ̇true + wϑ̇ (3.69)

ϕmeasured = ϕtrue (3.70)

ϕ̇measured = ϕ̇true + wϕ̇ (3.71)

The measurement of ϕ is assumed to be true, as this is the motion generator for this system. This
gives that the measurements of the transverse coordinates will be given as:

y1,measured = y1,true + wϑ (3.72)

y2,measured = y2,true + wϑ̇ −Θ′(ϕ)wϕ̇ (3.73)

zmeasured = ztrue + wϕ̇ (3.74)

The continuous time Kalman filter will then be given as follows [9].

˙̂x = A(t)x̂+ B(t)u+ L(t)(~y −C(t)x̂) (3.75)

The main difference between this and the Luenberger observer is how the matrix L is obtained.
For the Luenberger this is often tuned to to fit the system while in the Kalman filter a Riccati
equation is solved to find the optimal gain matrix, in this case a periodic Riccati differential equa-
tion (PRDE). The same procedure as was used to find the PRDE for the LQR will be used for the
Kalman filter.

With this the Kalman gain L(t) can be found as:

L(t) = P>C
(
ERE>

)−1

(3.76)

Where P (t) is found from the periodic Riccati differential equation:

Ṗ = AP + PA> + GQG> − PC
(
ERE>

)−1

C>P> (3.77)

Under the assumption that ~w is given as ~w =
[
wϑ wϑ̇ wϕ̇

]>
the matrix E will be given as

follows for the Butterfly Robot.

E =

1 0 0
0 1 −Θ′(ϕ)
0 0 1

 (3.78)
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Chapter 4

Experiment and results

4.1 Physical system of the Butterfly Robot

Now some of the parameters for the physical robot located at the Norwegian University of Science
and Technology will be found.

4.1.1 Parameters

With the help of a pair of calipers the diameter of the sphere was measured to be 33 millimeters.
The distance between the plates of frame was measured to be 27 millimeters. According to Equa-
tion A.1 this gives an effective rolling radius, Rd, of 9.5 millimeters.

The mass of the sphere was taken as 3 grams, this is the same as was used in [14].

The inertia of the sphere was found as the inertia of a spherical shell. That is:

Js =
2

3
msR

2
s = 1.805× 10−7[kgm2] (4.1)

4.1.2 Friction in rotation of the frame

To determine the friction for the rotation of the frame a PI-controller was used. This controller
was used to keep the angular velocity of the frame constant at one radian per second. Assuming
the frame can be described by the model given in Equation 4.4 the friction will then be given as
the negative of the required torque. The friction was found as the average over a period of forty
seconds. That is:

Ff = − 1

n

n∑
i=1

τi (4.2)

With this the friction was found to be given as −0.002[Nm] for positive rotation of the frame and
0.0032[Nm] for negative rotation of the frame.

Ff =

{
−0.002, if ϑ > 0

0.0032, if ϑ < 0
(4.3)

To counteract this friction a term with the opposite sign to the friction will be added to the
controller.
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4.1.3 Inertia of the frame

To find the inertia of the frame a step response was used. Assuming the center of mass for the frame
is in the center of the frame the dynamics of the frame can be found to be given by Equation 4.4
by Newton’s second law. Here τ is the output torque of the DC-motor, while Ff is the torque
generated by friction in the motor and the bearings found earlier.

Jf ϑ̈ = τ + Ff (4.4)

In Figure 4.1 the angular velocity of the frame is plotted in response to an input of 0.05[Nm]. The
system was run four times until it reached an angular velocity of 40[rad/s]. As can be seen from
the plot the angular velocity increases almost linearly.

Figure 4.1: Step response of the frame with an input 0f 0.05[Nm]

The average acceleration was found to be 54[ rad
s2 ]. Using Equation 4.4 the inertia was then found

to be given as:
Jf = 8.85× 10−4[Nm] (4.5)

4.1.4 Measurements of the states

To find the values for the four states for a given time value a camera and an encoder will be used.
The encoder will give the value for ϑ while the camera will find the sphere’s xy-position in the
inertial frame. As ϕ is given in body frame it can be found as :

ϕ = ϑ− atan2(xs, ys) (4.6)

Where xs and ys is the measurement of the sphere’s position. This formula can easily be observed
from Figure 2.1.
The time derivatives of the states are found by using a numerical differentiation scheme.
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4.2 Experimental results

The previously derived controller with the found parameters of the Butterfly Robot was tested
on a physical setup of the Butterfly Robot at NTNU. The code for the controller was written in
Matlab, which was then transcribed to C++ with the help of Matlab Coder. For tracking the
sphere, controlling the current in the DC-motor and reading the encoder C++ code written by
Maksim Surov for [14] was used.
A video of the Butterfly Robot in action can be found at https://photos.google.com/share/AF1Q
ipMviik3RWN3ou2166vBMF2LVt0r1V9DNqoTejouI-MYvOk70X7oNO8gTbeZYWldgg?key=X01fTF9
iWVlmekFFZ3VYbHN2WV9kOHBOcGhFc3Nn

4.2.1 With Luenberger observer

In the following the system was run with a Luenberger observer. L was chosen as:

L =

100 0 0
0 60 0
0 0 60

 (4.7)

For the LQR Q and R was choosen as:

Q =

40 0 0
0 40 0
0 0 20

 , R = 1 (4.8)

These values were found to work well for the Butterfly Robot by tuning.
For calculating the approximation of the stabilizing solution for the periodic Riccati differential
equation n was set to 200 while m was set to 40. These are close to the values found in [4] for
another periodic time varying system and the solution did not seem to change much by increasing
the values.

The controller was also only run if a new measurement of ϕ was obtained since the previous
run. The nominal trajectory was found with the help of the VHC and the αβγ-equation . An
interpolation was used to describe the frame.

In Figure 4.3 the measured ϕ is plotted over a part of the run. From this plot it can be observed
that continuous rolling of the sphere is achieved. It can also be observed that ϕ is monotonically
increasing with time. Figure 4.2 shows the frames rotation ϑ and the virtual holonomic constraint
Θ(ϕ). It can be observed that the controller is able make ϑ almost equal to Θ. Figure 4.4 shows
the time derivative of ϑ and the time derivative of the VHC plotted against ϕ. The controller is
also able to make these quite equal, note also that since the derivative of the VHC is dependent
on ϕ̇ the camera measurements introduce some noise into the desired value for ϑ̇.

Figure 4.5 shows the measurement of ϕ̇ and the nominal value for ϕ̇. Here it can be observed
that the measured value and the desired value are quite far from each other in certain parts of the
period, at most about one radian per second. A small jump in ϕ̇? at ϕ = π can also be observed.
This is due to the spline interpolation. It can also be noted that of ϑ, ϕ, ϑ̇ and ϕ̇ ϕ̇ is the one with
the most noise.

The measured transverse coordinates are plotted in Figure 4.6 while the estimates from the Lu-
enberger observer are plotted in Figure 4.7. From these plots it can be observed that the LQR
is able to stabilize the system, though convergence of all the transverse coordinates to zero is not
achieved. The observer is also able to remove most of the high frequency noise from the transverse
coordinates. Both the measured and the estimated transverse coordinates have less noise then the
ones obtained in [14].

In Figure 4.8 a scatter plot of the transverse coordinates over the entire run is shown. These
are plotted against the 2π modulo of ϕ over the entire run. Here it can be observed that the
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deviation from zero of the transverse coordinates does not seem to be random. In these plots there
is a total of 52 complete rotations of the frame, that is rotations by 2π radians.

The constraint forces given in Equation 2.33 are plotted in Figure 4.9. Here it can be observed that
the force corresponding to the normal force is always larger than zero while the force corresponding
to the friction is somewhere between 0.01 and minus 0.01. These forces were calculated in Simulink
with data from the run.

Figure 4.2: ϑ and Θ as a function of ϕ over 2 periods
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Figure 4.3: ϕ as a function of time

Figure 4.4: ϑ̇ and Θ′(ϕ)ϕ̇ over 2 periods of the system
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Figure 4.5: ϕ̇ and ϕ̇? over 2 periods

Figure 4.6: Measured transverse coordinates over 2 periods
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Figure 4.8: Transverse coordinates for the entire run as functions of 2π modulo of ϕ

Figure 4.7: Estimated transverse coordinates over 2 periods
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Figure 4.9: Calculated constraint forces from measurements

4.2.2 Effects of measurement rate

Now the system was run with no limitation on how often the control loop could be run, measure-
ments of the states were also done as fast as possible. The resulting transverse coordinates for two
periods is shown in Figure 4.10.
Here it can be observed that the first transverse coordinate has a lot more noise than earlier,
the second transverse coordinate has a bit more noise while the third has about the same as the
previous run. The shape of the noise in y1 is similar to the noise that can be seen in the transverse
coordinates in [14].

This made the system less robust, and as a result the system was only able to complete five
rotations.
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Figure 4.10: Measured transverse coordinates free running controller

4.3 Model compared with the physical robot

The measurements obtained from the run with the Luenberger observer were now used as an input
to the dynamical model given in Equation 2.37. The resulting second derivatives were then integ-
rated. This was done to see if the model was able to produce the expected results. In Figure 4.11
the results of inserting the measurements are plotted. In this plot the measurements of the two
derivatives are shown in blue while the integrated dynamics are shown in red. The plot shows four
runs of the system with different start times, the initial conditions of the integrators were set to
the values of ϑ̇ and ϕ̇ at the start time. This is done to show how fast the model diverges from
the measurements depending on the initial conditions.

Only the first derivatives of ϑ and ϕ are considered, not ϑ and ϕ. This is because ϑ and ϕ
will drift away from the measurements very fast as a result of the double integration.

From the plots it can be observed that the model gives a similar response to the measured re-
sponse when ϑ̇ and ϕ̇ is increasing. When they are not increasing the model and the measured
value diverge quite quickly, especially around ϕ = nπ where n is an integer.
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Figure 4.11: Measurements from run with observer inserted in the dynamical model. Blue line
represents the measurements while the red line is the calculated values.
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Chapter 5

Discussion, further work and
conclusion

5.1 Discussion

The results obtained in the modeling and experiments will now be discussed.

5.1.1 Experiment on the Butterfly Robot

As was shown in the results the controller is able to achieve the goal of continuous rotation. The
observer is also able to reduce the amount of noise in the estimated transverse coordinates com-
pared to the measured transverse coordinates, particularly in y2 and z as these had the most noise.
This could probably have been improved by better tuning of the Luenberger observer or switching
to a more sophisticated observer.

The transverse coordinates do not converge to zero as time goes on, though they seem to have a
similar amount of error for a given ϕ independent of the time. This is believed to be because of
the following reasons:

• Differences between the description of the frame and the actual frame:

At a little before ϕ = π
4 + n, where n is a integer, a deviation can also be observed in

all of the transverse coordinates. Comparing this with the plots for the frame given in Fig-
ure 3.1 it can be seen that this the same area as the approximations of the derivatives of the
frame deviate the most from the interpolation. So even though this run was done with the
spline interpolation it is reasonable to assume that in this area the interpolation deviate the
most from the actual frame.

• Large change in the nominal value for ϕ̇:

From Figure 4.8 it can be seen that the transverse coordinates have the most deviation
from zero at ϕ approximately equal to a multiple of π. The velocity profile that the sphere
was trying to follow has quite a large change around these points, this can be observed from
the phase portraits in subsection 3.1.6. A trajectory with a smaller change would probably
have been easier for the sphere to follow.

• Non-periodicity of the spline interpolation
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A small jump can be observed in the nominal trajectory for ϕ̇ at ϕ = π in Figure 4.5.
This is probably an artifact of the interpolation of the frame not being perfectly π periodic.
A similar problem can be observed in the phase portrait associated with the spline inter-
polation, Figure 3.5. Compared with the other two it is not perfectly symmetrical about
ϕ = π

2 .

• Center of mass for the frame not the center of the frame:

From the plot showing the transverse coordinates over the entire run against ϕ between
0 and 2π, Figure 4.8, a small deviation between the part of the plot from ϕ ∈ {0, π} and
ϕ ∈ {π, 2π}. It seems that the the transverse coordinates have a larger error in the peaks for
the first part than in the second part. This may imply that the assumption that the center
of mass for the frame is in the center of the frame is wrong.

• Slip of the sphere

The plot of the dynamic model run with data from the measurements shows that the model
has problems describing the system when the sphere and frame is decelerating. In these
parts measured values and the calculated values are further apart than when the sphere and
frame are accelerating. From Figure 4.9 it can be seen that these areas also need the highest
friction force between the sphere and the frame. A possible explanation for this discrepancy
between the measured values and the calculated values is therefore that the sphere did not
have pure rolling when it was decelerating.

5.1.2 Different representations of the frame

In subsection 3.1.5 three different descriptions for the frame were given. These are based on data
of the frame, so none of the three descriptions describe the frame perfectly. In addition the second
and third derivative of the frame is probably non-continuous for the real frame because of produc-
tion errors. As a result this description will always cause a problem for the controller.

Comparing the phase portraits shows that the three descriptions give similar dynamics for the
reduced dynamics. They seem to have the same number of equilibria and these equilibria seem to
have the same characteristics. That is, a center remains a center and a saddle remains a saddle.
Though the two centers seem to move a bit between the phase portraits. This shows that the
description chosen for the frame has consequences for which trajectories can be found for the But-
terfly Robot. It also shows that these trajectories are quite sensitive to small differences in the
description of the frame.

5.1.3 Virtual holonomic constraint

The virtual holonomic constraint used in this thesis was taken as arctan of a sum of four sin terms.
This number of terms was found to give a satisfactory result in the optimization problem. Less
terms (that is one or two) resulted in a VHC that was not able to create the desired behaviours
in the phase planes for the αβγ-equation , while adding additional terms did not contribute much
and also made finding a feasible solution harder. Four terms was therefore chosen as a good middle
ground. It can also be observed from the values found in Equation 3.25 that the magnitude of the
terms decreases by about one order of magnitude for each term after the second.

The optimization problem is quite nonlinear and is not convex. As a result of this for some
placements of the equilibria no solution was possible to find.
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5.1.4 Noise as a result of low measurement frequency of the motion
generator

As the LQR and the system dynamics was calculated in terms of ϕ rather than time a problem
occurred when ϑ and ϑ̇ was measured with a higher frequency than ϕ. This because ϑ changed at
a higher frequency than Θ(ϕ), and ϑ̇ changed at a higher frequency than Θ′(ϕ)ϕ̇. ϑ was measured
about four times as often as ϕ. z was not affected by this as it is only dependent on the measure-
ment of ϕ and ϕ̇.

It seems that this had more of an impact on y1, that is the transverse coordinate dependent
on ϑ, than y2. The noise in y1 also seems to appear mainly when ϑ is increasing almost linearly,
see Figure 4.2, that is ϕ between π

4 and 3π
4 . This is also the part of the trajectory where ϑ has the

least deviation from Θ and increasing the fastest.

Since ϑ has a higher measurement frequency than ϕ and the controller was ran faster than the
measurement frequency of ϕ this caused the value of Θ to stay the same for a couple of iterations
of the controller while ϑ increased. This caused the transverse coordinate to increase (or decrease
depending on if ϑ was smaller or larger than Θ for the first measurement) steadily until a new
measurement of ϕ was obtained, at this point the transverse coordinate jumped to the actual value.
This gives this saw-tooth-like behaviour in the transverse coordinates which can be observed in
Figure 4.10. This shows the importance of not measuring other states faster than the motion
generator when using this type of controller. It could possibly have been resolved by using an
estimator for ϕ rather than the measurement of ϕ.

5.1.5 Usability of Matlab Coder

To generate the C++ code that was used to run the Butterfly Robot Matlab Coder was used. This
is a Matlab add-on which turns a Matlab function into valid C++ code. This application was used
rather than writing the C++ code myself as it made prototyping the controller faster and gave
the possibility to run the same controller for the simulation as the actual system. This turned out
to work well, integration of the C++ code from Matlab Coder into the already existing code for
the Butterfly Robot went smoothly. The code also ran fast enough to not become a bottleneck in
the system. The downside with doing it like this is that the resulting C++ code is quite hard to
understand for a human, making it a bit difficult to make changes to the code after the generation.

5.1.6 Kalman filter

In subsection 3.3.2 a setup for a Kalman filter for the Butterfly Robot was described. This turned
out to work very poorly in simulation of the Butterfly Robot, it was therefore not tested on the
real robot. The reason for this is believed to be because of how the noise enters the measurement
of the transverse coordinates. The measurement of the second transverse coordinate gets a term
dependent on the derivative of the VHC times the noise in the measurement of ϕ̇. As a result the
noise becomes linked to the states of the system through ϕ.

This may cause the separation principle to fall apart. The assumption that the measurement
of ϕ has no noise is also not true in the real system.
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5.2 Further work

In this work a very simple model for the friction in the DC-motor and bearings was used, a con-
stant for each direction of rotation. A more sophisticated model for this would probably improve
the controller, especially if it is able to describe the change in friction when the frame changes
direction of rotation. Taking the model for the DC-motor into account rather than looking at it
as part of the inertia of the frame could also have improved the model.

Rather than the Luenberger observer a Kalman filter could have been used. This would have
needed further study of the noise that appears in the transverse coordinates. Some way to incor-
porate the noise from ϕ would also be needed. Maybe an extended Kalman filter could work.

Using ϕ as the motion generator is causing some problems, the measurement rate is lower than
ϑ and it has more noise. If another variable was found that is monotonically increasing on the
trajectory this could have improved the controller. Splitting the trajectory into different parts
and using a different motion generator for each part could also have been a possibility. Another
possibility is to search for a linear combination of ϕ and ϑ that is monotonically increasing on
the trajectory. That is a motion generator on the following form, where δ and ε are some gains,
possibly time varying.

ψ = δϕ+ εϑ (5.1)

If the assumption that the sphere only has angular velocity about the z-axis is dropped the res-
ulting system will have a higher order of underactuation. A model that describes the resulting
system would give further insight into the Butterfly Robot and the control problem.

Further investigation of how the phase portrait changes as a result of the frame is also of in-
terest. Especially finding out if at some point there will be a bifurcation, that is a sudden change
in the characteristics of the equilibria, for the equilibria of the αβγ-equation.
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5.3 Conclusion

In this thesis a benchmark example for performing non-prehensile manipulation has been con-
sidered, the Butterfly Robot. The interest in this robot lies in that valid control strategies for this
robot can further our understanding of underactuated systems, and potentially create human-like
behaviour in robotic systems.

With the help of Lagrange’s equations of motion two models were derived for the Butterfly Robot,
one with four degrees of freedom and one with two degrees of freedom. The 4-DoF model was used
to derive two constraint forces representing the normal force and the friction force. The 2-DoF
model was used to derive a control strategy consisting of a virtual holonomic constraint and a
partial feedback linearization of a set of transverse coordinates. Three different descriptions of
the frame were considered for the Butterfly Robot, and the impact these had on the dynamics of
the αβγ-equation was studied. The linearized system of transverse coordinates was then used to
design a ϕ varying LQR and a Luenberger observer. This controller was then tested on a physical
realization of the Butterfly Robot at NTNU. It was found that the controller was able to stabilize
the found trajectories.

The main contributions of this thesis is the following:

• A new virtual holonmic constraint for the Butterfly Robot.

• Analysis of the equilibria of the αβγ-equation as a result of different descriptions of the frame
and showing that the αβγ-equation is quite sensitive to small variations in the frame.

• Confirming that the work done by Maksim Surov et al in [14] is repeatable with a different
VHC.
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Appendix A

Appendix

A.1 Code

All of the code used in this thesis can be found at: https://github.com/GustavOften/ttk4900 mas
ter thesis.

A.2 Effective rolling radius

In Figure A.1 an illustration of a sphere rolling on two discs is shown. The effective rolling radius
for this sphere will be given by the value Rd in the drawing. From the Pythagorean theorem it
can be seen that this radius will be given as:

Rd =

√
Rs

2 −Rf 2 (A.1)

Figure A.1: Illustration for effective rolling radius

42

https://github.com/GustavOften/ttk4900_master_thesis
https://github.com/GustavOften/ttk4900_master_thesis


A.3 Derivation 4-DoF dynamics

The kinetic energy of the system is given by:

K(~q, ~̇q) =
1

2
~̇q


Jf + Js +md~ρ

>~ρ mds
′~ρ× ~τ Js md~ρ× ~n+

mds
′~ρ× ~τ mds

′2 0 0
Js 0 Js 0

md~ρ× ~n+ 0 0 md

 ~̇q (A.2)

The mass-inertia matrix M(~q) can be found from the identity:

K(~q, ~̇q) =
1

2
~̇q>M(~q)~̇q (A.3)

This gives that it is given as:

M(~q) =


Jf + Js +md~ρ

>~ρ mds
′~ρ× ~τ Js md~ρ× ~n+

mds
′~ρ× ~τ mds

′2 0 0
Js 0 Js 0

md~ρ× ~n+ 0 0 md

 (A.4)

Using Christoffel symbols the centrifugal and Coriolis matrix can be found as:

ckj =
4∑
i=1

cijk(q)q̇i (A.5)

Where cijk is given as:

cijk =
1

2
(
∂mkj

∂qi
+
∂mki

∂qj
− ∂mij

∂qk
) (A.6)

Some matrices for the derivatives of M(q) will help with this:

∂M

∂ϑ
=
∂M

∂ψ
= 0 (A.7)

∂M

∂ϕ
= md


2~ρ>~τs′ s′′~ρ× ~τ + ~ρ× ~κs′ 0 s′ − ‖~κ‖ ~ρ× ~τs′

s′′~ρ× ~τ + ~ρ× ~κs′ 2s′′s′ 0 0
0 0 0 0

s′ − ‖~κ‖ ~ρ× ~τs′ 0 0 0

 (A.8)

∂M

∂w
= md


2~ρ>~n+ s′~ρ× ~n+ 0 0
s′~ρ× ~n+ 0 0 0

0 0 0 0
0 0 0 0

 (A.9)

This gives that the Christoffel symbols can be written as four matrices:

Cij1 = md


0 ~ρ>~τs′ 0 ~ρ>~n+

~ρ>~τs′ s′′~ρ× ~τ + ~ρ× ~κs′ 0 1
2 (s′ − ‖~κ‖ ~ρ× ~τs′)

0 0 0 0
~ρ>~n+

1
2 (s′ − ‖~κ‖ ~ρ× ~τs′) 0 0

 (A.10)

Cij2 = md


~ρ>~τs′ 0 0 0

0 s′′s′ 0 0
0 0 0 0
0 0 0 0

 (A.11)

Cij3 = 0 (A.12)

Cij4 = md


−~ρ>~τs′ 1

2 (s′ − ‖~κ‖ ~ρ× ~τs′) 0 0
1
2 (s′ − ‖~κ‖ ~ρ× ~τs′) 0 0 0

0 0 0 0
0 0 0 0

 (A.13)
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This gives that the C is given as:

c11 = ~ρ>~τs′ϕ̇+ ~ρ>~n+ẇ

c12 = ~ρ>~τs′ϑ̇+ (s′′~ρ× ~τ + ~ρ× ~κs′)ϕ̇+
1

2
(s′ − ‖~κ‖ ~ρ× ~τs′)ẇ

c13 = 0

c14 = ~ρ>~n+ϑ̇+
1

2
(s′ − ‖~κ‖ ~ρ× ~τs′)ϕ̇

c21 = ~ρ>~τs′ϑ̇

c22 = s′′s′ϕ̇

c23 = 0

c24 = 0

c31 = c32 = c33 = c34 = 0

c41 = −~ρ>~τs′ϑ̇+
1

2
(s′ − ‖~κ‖ ~ρ× ~τs′)ϕ̇

c42 =
1

2
(s′ − ‖~κ‖ ~ρ× ~τs′)ϑ̇

c43 = c44 = 0

(A.14)

C(~q, ~̇q) = md


c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

 (A.15)

To find the gravity matrix the potential energy, P (~q), is differentiated with respect to the states.
This gives:

G(q) = gmd


[R′(ϑ)~ρ(ϕ,w)]2
[R(ϑ)~τ(ϕ)s′]2

0
[R(ϑ)~n+(ϕ)]2

 (A.16)

A.4 Derivation of the 2-DoF dynamics

From the kinetic energy of the system it can be observed that M will be given as:

M(~q) = md

[
Jf
md

+ Js
md

+ ~ρ>~ρ s′~ρ>~τ − s′f
Js

mdRd

s′~ρ>~τ − s′f
Js

mdRd
s′2f

Js
mdR2

d

]
(A.17)

The derivatives of M with respect to the states is then given as:

∂M

∂ϑ
=

[
0 0
0 0

]
(A.18)

∂M

∂ϕ
= md

[
2~ρ>~τs′ (s′′~ρ× ~τ − s′′f

Js
Rbmd

+ s′( ∂~ρ∂ϕ × ~τ + ~ρ× ∂~τ
∂ϕ ))

s′′~ρ× ~τ − s′′f
Js

Rbmd
+ s′

2
~ρ× ~κ 2(s′s′′ + s′fs

′′
f

Js
R2
bmd

)

]
(A.19)

The Christoffel symbols can then be found to be:

Cij1 =

[
0 mb~ρ

>

mb~ρ
> mb(s

′′~ρ× ~τ − s′′f
Js

Rbmb
+ s′

2
~ρ× ~κ)

]
Cij2 =

[
−mb~ρ

>~τs′ 0
0 mb(s

′s′′ + s′fs
′′
f

Js
R2
bmb

)

] (A.20)
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Which gives the following expressions for the elements of the centrifugal and Coriolis matrix:

C(~q, ~̇q) =

[
c11 c12

c21 c22

]
(A.21)

c11 = mb~ρ · ~τs′ϕ̇

c12 = mb(~ρ · ~τs′ϑ̇+ (s′′~ρ× ~τ − s′′f
Js

Rbmb
+ s′

2
~ρ× ~κ))

c21 = −mb~ρ · ~τs′ϑ̇

c22 = mb(s
′s′′ + s′fs

′′
f

Js
R2
bmb

)ϕ̇

(A.22)

Again, differentiating the potential energy with respect to the states gives the gravity matrix G:

G(q) = gmd

[
[R′(ϑ)~ρ ]2
[R(ϑ)~τs′ ]2

]
(A.23)

A.5 αβγ-equation

Assuming a system on the form given in Equation 2.37 with at least one actuator. And a motion
generator such that n− 1 of the states can be written as a function of the last state:

~q =


q1

q2

...
qn

 =


Θ1(qn)
Θ2(qn)
...

Θn(qn)

 = ~Θ (A.24)

This gives that:

~̇q = ~̇Θ = ~Θ′q̇n (A.25)

~̈q = ~̈Θ = ~Θ′′q̇2
n + ~Θ′q̈n (A.26)

Multiplying both sides of the robot model with a row matrix with a one on the kth row, assuming
state number k is not actuated gives the kth αβγ-equation . Here the Christoffel symbols has been
used to describe the coriolis and centrifugal matrix.

αk =

n∑
j=1

mkjΘ
′
j (A.27)

βk =

 n∑
j=1

mkjΘ
′′
j +

n∑
j=1

(
n∑
i=1

cijkΘ′i

)
Θ′j

 (A.28)

γk = G(~Θ)k (A.29)

A.6 Derivation of feedforward

In this derivation all of the matrices are evaluated on the nominal trajectory. Using the fact that
the αβγ-equation is zero on the trajectory ϕ̈? can be written as:

ϕ̈? = −β(ϕ)ϕ̇2
? + γ(ϕ)

α(ϕ)
(A.30)

Inserting for α, β and γ given in Equation 3.7 gives:

ϕ̈? = − (M21Θ′′ + c112Θ′
2

+ c122Θ′ + c212Θ′ + c222)ϕ̇2
? +G2

M21Θ′ +M22
(A.31)
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This can be written as:

ϕ̈? = −
M21Θ′′ϕ̇2

? +
[
0 1

]
C

[
Θ′ϕ̇?
ϕ̇?

]
+
[
0 1

]
G

M21Θ′ +M22
(A.32)

Which can be further simplified to:

ϕ̈? = −

[
0 1

]
M

[
Θ′′ϕ̇2

?

0

]
+
[
0 1

]
C

[
Θ′ϕ̇?
ϕ̇?

]
+
[
0 1

]
G

[
Θ′ 1

]
M

[
0
1

] (A.33)

Inserting this expression for ϕ̈? into Equation 3.4 gives

u?(ϕ) = k

([
k−1 −1

]
M

[
Θ′′ϕ̇2

?

0

]
+
[
k−1 −1

]
C

[
Θ′ϕ̇?
ϕ̇?

]
+
[
k−1 −1

]
G

)
(A.34)

Where k is defined to be:

k =

[
1 0

]
M
[
Θ′ 1

]
[
Θ′ 1

]
M

[
0
1

] (A.35)

A.7 Derivative of ϕ̇2
?(ϕ) with respect to ϕ

∂ϕ̇2
?

∂ϕ
=

∂

∂ϕ

[
exp

{
−2

∫ ϕ

ϕ0

β(w)

α(w)
dw

}(
ϕ̇2

0? −
∫ ϕ

ϕ0

2γ(w)

α(w)
exp

{
2

∫ w

ϕ0

β(v)

α(v)
dv

}
dw

)]
(A.36)

Using the following function will simplify the derivation a bit, here the fundamental theorem of
calculus [1] has been used to compute the derivative.

ψ(a, b) = 2

∫ b

a

β(w)

α(w)
dw (A.37)

∂ψ(a, b)

∂b
= 2

β(b)

α(b)
(A.38)

This gives that ϕ̇2
? can be written as:

∂ϕ̇2
?

∂ϕ
=

∂

∂ϕ

[
exp {−ψ(ϕ0, ϕ)}

(
ϕ̇2

0? −
∫ ϕ

ϕ0

2γ(w)

α(w)
exp {ψ(ϕ0, w)} dw

)]
(A.39)

Using Leibniz formula this can be written as:

∂ϕ̇2
?

∂ϕ
= exp {−ψ(ϕ0, ϕ)}

(
−∂ψ(a, b)

∂b

)(
ϕ̇2

0? −
∫ ϕ

ϕ0

2γ(w)

α(w)
exp {ψ(ϕ0, w)} dw

)
+

exp {−ψ(ϕ?, ϕ)} ∂

∂ϕ

[(
ϕ̇2

0? −
∫ ϕ

ϕ0

2γ(w)

α(w)
exp {ψ(ϕ0, w)} dw

)]
(A.40)

Here it can be observed that the first part of the sum is the expression for ϕ̇2
? times the derivative

of ψ, thus:

∂ϕ̇2
?

∂ϕ
= −2ϕ̇2

?

β(ϕ)

α(ϕ)
+ exp {−ψ(ϕ0, ϕ)} ∂

∂ϕ

[(
ϕ̇2

0? −
∫ ϕ

ϕ0

2γ(w)

α(w)
exp {ψ(ϕ0, w)} dw

)]
(A.41)

As ϕ̇2
0? is constant and the derivative of the integral can be calculated by the fundamental theorem

of calculus the derivative of the last part becomes:

∂

∂ϕ

[(
ϕ̇2

0? −
∫ ϕ

ϕ0

2γ(w)

α(w)
exp {ψ(ϕ0, w)} dw

)]
= −2γ(w)

α(w)
exp {ψ(ϕ0, ϕ)} (A.42)
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This gives that the last expression in the sum can be written as:

− exp {−ψ(ϕ0, ϕ)} 2γ(ϕ)

α(ϕ)
exp {ψ(ϕ0, ϕ)} = − exp {−ψ(ϕ0, ϕ) + ψ(ϕ0, ϕ)} 2γ(ϕ)

α(ϕ)
= −2γ(ϕ)

α(ϕ)
(A.43)

Thus the expression for the derivative of ϕ̇2
? is given by:

∂ϕ̇2
?

∂ϕ
= −2ϕ̇2

?

β(ϕ)

α(ϕ)
− 2γ(ϕ)

α(ϕ)
(A.44)

A.8 Derivation of gy, gẏ and gw

Inserting the expressions for ϑ, ϑ̇ and ϑ̈ given in Equation 3.52 into the αβγ-equation gives the
following:

M21(ÿ+Θ′′(ϕ)ϕ̇2+Θ′(ϕ)ϕ̈)+M22ϕ̈+c112(ẏ+Θ′(ϕ)ϕ̇)2+c222ϕ̇
2+mbg~kR(y+Θ(ϕ))~τs′ = 0 (A.45)

Here it can be observed that some of these terms are similar to α(ϕ) and β(ϕ), this gives:

α(ϕ)ϕ̈+M21ÿ + β(ϕ)ϕ̇2 + c112(ẏ2 + 2ẏΘ′(ϕ)ϕ̇) +mbg~kR(y + Θ(ϕ))~τs′ = 0 (A.46)

Moving some of the elements to the other side and adding γ(ϕ) to both sides gives:

α(ϕ)ϕ̈+ β(ϕ)ϕ̇2 + γ(ϕ) = −M21ÿ − c112(ẏ2 + 2ẏΘ′(ϕ)ϕ̇)−mbg~kR(y + Θ(ϕ))~τs′ + γ(ϕ) (A.47)

gẏ = −mb~ρ
>~τs′(ẏ + 2Θ′(ϕ)ϕ̇) (A.48)

gw = −
(
s′~ρ× ~τ − s′f

Js
Rbmb

)
(A.49)

The derivation for gy needs a few more steps:

gy =
1

y
(γ(ϕ)−mbg~kR(y + Θ(ϕ))~τs′) (A.50)

=
1

y
(mbg~kR(Θ(ϕ))~τs′ −mbg~kR(y + Θ(ϕ))~τs′) (A.51)

=
mbg~k

y

([
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
−
[
cos(y + ϕ) − sin(y + ϕ)
sin(y + ϕ) cos(y + ϕ)

])
~τs′ (A.52)

=
mbg~k

y

[
−2 sin( 2ϕ+y

2 ) sin(−y2 ) −2 cos( 2ϕ+y
2 ) sin(y2 )

2 cos( 2ϕ+y
2 ) sin(−y2 ) −2 sin(2ϕ+y

2 ) sin(−y2 )

]
~τs′ (A.53)

=
mbg~k
y
2

[
− sin(ϕ+y

2 ) sin(−y2 ) − cos(ϕ+y
2 ) sin(y2 )

cos(ϕ+y
2 ) sin(−y2 ) − sin(ϕ+y

2 ) sin(−y2 )

]
~τs′ (A.54)

= mbg~k

[
sin(ϕ+ y

2 ) 2 cos(ϕ+ y
2 )

− cos(ϕ+ y
2 ) 2 sin(ϕ+ y

2 )

]
sinc

(y
2

)
~τs′ (A.55)

= mbg
[
− cos(ϕ+ y

2 ) sin(ϕ+ y
2 )
]

sinc
(y

2

)
~τs′ (A.56)

Her it has been used that ~k =
[
0 1

]
, sinc(x) = sin(x)

x and the two trigonometric identities

sin(u)− sin(v) = 2 cos

(
u+ v

2

)
sin

(
u− v

2

)
(A.57)

and

cos(u)− cos(v) = −2 sin

(
u+ v

2

)
sin

(
u− v

2

)
(A.58)
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