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Abstract

To be able to make IoT sensors more energy efficient, we explore using depend-
ency in data to decrease their sampling rate. In this thesis, we look at noise levels in
the working environment Koopen, and a minimum of one sample each 15 minutes
is set as basis for the investigation of down sampling. Based on an energy-accuracy
tradeoff, the goal is to make a decision on whether the IoT sensors should sample
the next quarter, or let the noise levels be estimated based on a model that con-
ditions on the last observation.

In this work two approaches for modelling are taken; 1) to model the process
conditioned on the last observed noise level directly, and 2) to model the process
conditioned on the discrepancy between a weekly reference noise level and the
observed one. For each of these approaches a Student t copula or a Gaussian
Normal copula are set up for the time-dependencies.

The conditional copula models are evaluated based on how well they replicate
the environments noise characteristics given by the peak noise level, median noise
level, background noise level and variability in noise level. These noise level in-
dicators are defined by quantiles within the given time period of 15 minutes, and
how they classify is the basis for our decision making.

Generating densities of the simulated noise level indicators for different copu-
las, shows that the Normal copula fit the use case slightly better than the Student
t copula. The choice of conditional model has great impact, and the one based
on discrepancies are the best fit for the Koopen data. The modelling analysis do
though conclude that the background noise level and variance in noise level can
not be replicated using the models suggested in this thesis.

To evaluate the energy-accuracy tradeoff, a utility function is defined for the
Koopen use case as basis for decision making. The results from the decision ana-
lysis of the conditional normal copula model based on discrepancies, show an
opportunity of reduction to 1.1% and 5.8% samples a week, for the peak noise
level and median noise level, respectively. This given an expected loss in energy
of 0.05 for sampling 15 minutes, and no extreme measures as previous sampled
noise level value from the IoT sensors.

iii





Sammendrag

For å gjøre IoT-sensorer mer energieffektive, undersøkes bruk av avhengighetsstruk-
turer for å redusere samplingsfrekvensen. I denne oppgaven hvor vi ser på støynivåer
i arbeidsmiljøet Koopen, er en observasjon hvert 15. minutt satt som et minimum.
Basert på en avveining mellom energibruk og nøyaktighet i observasjoner, er må-
let å ta en avgjørelse på hvorvidt IoT-sensorene skal observere neste kvarter, eller
la støynivået estimeres av en modell basert på forrige observasjon.

I dette arbeidet ser vi på to betingede modeller; 1) å modellere basert på
det sist observerte støynivået direkte, og 2) å modellere basert på avviket mel-
lom et ukentlig referansestøynivå og den siste observasjonen. For hver av disse
tilnærmingene settes det opp en Student t kopula eller en Gaussisk Normal kop-
ula for tidsavhengighetene.

De betingede kopulamodellene blir evaluert ut ifra hvor godt de replikerer
omgivelsenes støyegenskaper gitt av støytopper, median støynivå, bakgrunnsstøy
og variasjon i støynivå. Disse støynivåindikatorene er definert av kvantiler innen
den gitte tidsperioden på 15 minutter, og hvordan de klassifiseres er grunnlaget
for vår beslutningstaking.

Å generere tettheter av de estimerte støynivåindikatorene for forskjellige kop-
ulaer, viser at Normal kopulaen passer arbeidsmiljøet noe bedre enn Student t
kopulaen. Valget av betinget modell har stor innvirkning, og den som er basert
på avvik, passer best for Koopen dataene. Modelleringsanalysen konkluderer i
midlertidig med at bakgrunnsstøyen og variansen i støynivå ikke kan replikeres
ved hjelp av modellene som er foreslått i denne oppgaven.

For å evaluere avveiningen mellom bruk av energi og nøyaktighet, defineres en
nyttefunksjon tilpasset Koopen som grunnlag for beslutningstakingen. Resultatene
fra beslutningsanalysen av den betingede normale kopulamodellen basert på av-
vik, viser en mulighet for reduksjon til henholdsvis 1,1 % og 5,8 % observasjoner
i uken, for henholdsvis støytopper og median støynivå. Dette gitt et forventet tap i
energi på 0,05 for observasjoner i 15 minutter, og ingen ekstreme støynivåer som
tidligere observert verdi av IoT-sensorene.
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Chapter 1

Introduction

Everywhere around us we hear sounds. From cars driving by, children playing
hide and seek in the park, bird chirps and church bells in the distance. Vibrating
objects cause slight changes in air pressure, and travel as waves through the air.
When these waves reach your ear, you hear it as sound. Unwanted sound is often
referred to as noise, but this depends upon circumstances and the person listening.
If you are exposed to loud noise levels over time, it may cause problems to your
hearing [1].

Housing, working and relaxing have different standards for acceptable noise
levels. The question is whether such standards are taken into account in our every-
day life? Do construction companies, employers and authorities consider them
when they set up houses, establish working environments and construct cities? Re-
commended noise limits are exceeded worldwide according to recent evidence[2].

The effects of noise are considerable; interference with communication, dis-
turbance of sleep, stress, annoyance, effects on performance and in the worst case
hearing loss. Therefore, it is important to be aware of what amount of noise levels
people are exposed to in different situations [3]. Traditional measuring of noise
levels requires manual operation and expensive equipment, and have shown to
come short in reflection of actual noise characteristics.

Internet of things (IoT) has lately been raised as a hot topic in communication
technology [4]. One use smart sensors to monitor different aspects around us.
From your pulse, to the number of bicycles that passes a specific spot in Trond-
heim every day. Fast output is generated by machines that automates and controls
the huge amounts of information logged. The human effort is minimized because
the devices of IoT interact and communicate directly with each other through the
internet. Many sensors do not need to be connected to the electric grid, and are
instead driven by battery power. This gives the opportunity of placing them almost
anywhere. To exploit the full potential of these sensors, we want to increase their
lifetime and effect as much as possible. An ideal sensor would use minimal energy
on sampling and communicating, and still log enough data to gain the desired in-
sight. This tradeoff depends on the IoT sensors use case. It is stated that there are
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2 CHAPTER 1. INTRODUCTION

huge potentials for down sampling by energy-accuracy tradeoffs [5].

The data set Koopen let us examine noise levels monitored every other second
for almost three months by IoT sensors. This is done in a working environment at
the Norwegian University of Science and Technology(NTNU) in Trondheim.

To be able to adapt the time and type of work, it is of interest to know the
noise level’s characteristics at given times. Thus, we want to point out the sounds
that are common for the environment, which peaks it has, and what type of back-
ground noise you could expect. For noise, it is stated [6] that the 50-, 90- and
10-percentile describes these properties, and that the variability in noise level can
be expressed by the subtraction between the 90- and 10-percentile. To set up such
quantiles we need to define a time period, within which they are calculated. For
this type of work environment, 15 minutes seems to be an appropriate choice of
time period, and are used throughout the thesis. In Chapter 3 the Koopen data
are explored, and shown to be time dependent, with a non-gaussian distribution
function.

This master thesis builds upon my own project thesis motivated by the same
need, using the same case study. The data are provided by researchers at NTNU
that also consider down sampling for energy efficient IoT sensors [7]. Their ap-
proach to the possibility of down sampling have been a direct cut in samples, and
by a predictive random forest strategy [5], as well as adaptive sensing based on
deep reinforcement learning [8].

The strategy for down sampling in this thesis, is based on using time depend-
ence to model the Koopen data. Our working hypothesis is that by letting the
IoT sensors sample once each 15 minutes, the next quarter of noise levels are de-
pendent on this previous sample. Making a decision on whether to model this next
quarter, or let the IoT sensors sample it is the thesis’ goal. Thus, we need to in-
vestigate if dependency itself is enough to replicate real noise level characteristics.

Applying copula models as the dependence structure between random vari-
ables, has been used as a method in several research areas. Taking it a step fur-
ther, the copulas can also be used to estimate multiple aspects of real life. The
most known examples may be in finance, but wind energy, flood events and en-
vironmental sciences are other areas where copula-based estimation are used
[9][10][11]. The background for modelling using copulas are presented in Chapter
4.

Our Koopen data can be referred to as time series, and Copulas are in this
thesis used as a framework for their dependency. Two different conditional noise
models are set up in Chapter 5. The first is based on copula modelling from ob-
servations taken straight from the raw data. The second conditional noise model
uses the discrepancies from a weekly reference time series model of the Koopen
data as basis for the set up copula.
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For our decision making, optimizing the utility, lays the foundation for whether
we decide to sample the next quarter or not. The utility function weights the
energy-accuracy tradeoff for monitoring with IoT sensors. The loss in accuracy
by our conditional copula models is set up using Brier score, and a classification
success rate for the noise level indicators at given time. The loss inn energy for
sampling 15 minutes are considered time independent.

In Chapter 6 the results are presented. A conclusion on this work as well as
recommendations for further work can be seen in Chapter 7.





Chapter 2

Mathematical formulation of
noise level indicators

In this chapter a mathematical formulation of noise level indicators are intro-
duced. These indicators are based on quantiles, which is defined in Section 2.1.
In Section 2.2 sound measuring and the noise level indicators used in this thesis
are introduced.

2.1 Empirical quantiles

Quantiles are a property of probability distributions first introduced by Maurice
G. Kendall in 1940. The quantile of a distribution is the xp such that a proportion
p of the values are less than or equal to xp with 0 < p < 1. Empirical quantiles
are often constructed by order statistics by sorting the data in ascending order as
a sequence x(1) ≤ x(2) ≤ . . .≤ x(n) with n data points. Let F(x) be the cumulative
probability function. Then the p-th quantile of the probability distribution can be
obtained by,

Q(p; F(x)) = xp =

�

x((n+1)p) if (n+1)p is an integer
(x([(n+1)p])+x([(n+1)p]+1))

2 otherwise
(2.1)

where [a] is the greatest integer not exceeding a [12]. If (n + 1)p is not an
integer there are several more complex ways to set up the quantile, elaborated by
Hyndman and Fan (1996)[13], not covered in this thesis.

2.2 Sound data

Sound is according to the Cambridge dictionary, defined as something that you can
hear or that can be heard. Noise is when sound becomes unwanted, unpleasant
or loud. The loudness of the sound is represented by it’s amplitude, and refers to

5



6CHAPTER 2. MATHEMATICAL FORMULATION OF NOISE LEVEL INDICATORS

the magnitude of an oscillation. Frequency is the rate at which a source produces
sound waves and is expressed in hertz(Hz). 1 Hz equals one oscillation per second.
These terms are illustrated for sound waves in Figure 2.1.

Figure 2.1: An illustration of the amplitude, wavelength and oscillations of a sound wave.

The quantity decibel(dB) is commonly used for measuring sound and is defined
by [14] as,

S = 10log10(
A
B
) dB (2.2)

where B is a reference level and A the measured level, both in intensity, power
or pressure. Here the reference level depends on what equipment you use to mon-
itor the noise level. Descibel(dB) is as stated a dimensionless logarithmic unit. To
get S as the sound pressure level, we need A and B expressed in air pressure.
For sound, the amount of air pressure fluctuation the source creates, is its sound
pressure expressed in Pascals (Pa).

Human ears are less sensitive to low and high frequencies of sound, and noise
measurement readings can be adjusted to correspond to this peculiarity by using
frequency weighting [3]. To adjust the measured sound to a curve, A-weighting
is a standard way of electronically filtering noise to represent what the human
ear hears. Some commonly known A-weighted sound pressure noise levels are
expressed in Table 2.1.

The speed of which a sound level meter measures sounds responds to changes
in noise levels, is called time weighting [14]. Modern sound level meters have two
options of time-weighting; SLOW and FAST, with respectively time constants of 1
second and 125 milliseconds. The SLOW mode is typically used to determine and
observe sounds slowly changing average value, which we use in this thesis.
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Everyday Sounds and Noises Average Sound Pressure Level(dB)
Softest sound that can be heard 0
Soft whisper 30
Normal conversation, air conditioner 60
Washing machine, dishwasher 70
Motorcycle 95
Shouting or barking in the ear 110

Table 2.1: Common noise levels defined by [1].

Sound measurements of the sound pressure levels in an environment can
therefore be attained by (2.2) using a sound level meter. The time- and frequency
weighting are chosen by the user, and depend on type of equipment.

2.2.1 Noise level indicators

In this thesis the sound level observations can be referred to as,

x, x2, . . . , x t . . . , xn−1, xn,

with x t as sound measurement at time point t with a total of n observations.

To evaluate noise characteristics in an environment one uses noise level indic-
ators. These are set up by empirical quantiles calculated within a time period T .
The sound pressure level observations for each time period can be expressed as,

x t:T = (x t , x t+1, . . . , x t+T ) .

The choice of time period T is determined suitable for the context. Using a
working environment as case study, T=15 minutes seems like a suitable choice
for looking at relevant noise characteristics that effect it’s users.

The noise level indicators used in this thesis are chosen based on present work
on the Koopen data set [7][5] with T =15 min, and are presented in Table 2.2.

L10 The peaks of noise defined by the sound pressure level exceeded for
10% of the time period T considered.

L50 The median noise level for the time period T considered
L90 The background noise level defined by the sound pressure level ex-

ceeded for 90% of the time period T considered
L10−90 The variability in noise level inside the interval i considered. It is

defined by the difference between the peaks of noise L10 and the
background noise L90.

Table 2.2: Noise level indicators used in this thesis.
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Having x t:T as the distribution of sound in the time interval [t, t + T], let
F(x) denote the cumulative distribution. The evaluated noise indicators used in
this thesis can be expressed as,

Lξ(x t:T ) =Q(
1− ξ
100

, F(x)) for ξ ∈ {10,50, 90}. (2.3)

Here Lξ(x t:T ) is the noise level indicator in decibel and Q the empirical quantile
from (2.1). For ξ=10-90 we have,

L10−90(x t:T ) = L10(x t:T )− L90(x t:T ). (2.4)

To evaluate and classify the noise level indicators, ranges customized to the
given context are needed. In this project we follow the previous work in [7] and
use,

Class(Lξ(x t:T )) = kξ(x t:T ) ∈ {good,fair,poor} (2.5)

to classify the noise level indicators. The ranges for different classes are based
on international standards for acceptable levels in working environments set by
Table 2.3.

Indicator Good Fair Poor
L10 < 50 [50,60] > 60
L50 < 45 [45,55] > 55
L90 < 42 [42,52] > 52
L10−90 < 3 [3,5] > 5

Table 2.3: Indicator ranges for classification of working environments defined by [7].



Chapter 3

The Koopen data

In this Chapter the data set used in this project is presented and explored. Section
3.1 introduces the Koopen case study, and the measurements used. In Section 3.2
an explanatory analysis of this data is presented.

3.1 Case study

At the Norwegian university of science and technology(NTNU) in Trondheim,
there is a working environment for students named Koopen. It has a variation of
stations for working and different types of learning, with a full capacity of about
80 students. The ceiling is high, and the space is connected directly to other parts
of the building without walls separating them. The Koopen-area can be seen in
Figure 3.1.

Figure 3.1: Students working at Koopen. Taken from [15].

9
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At Koopen the sound pressure levels were monitored every other second from
06.02.2019 to 26.04.2019 with five different sensors. The background for the
setup of this data is presented in [7]. Libelium devices [16] were used as IoT
sensors connected to power and logging through a router to a central database.
These consist of sound level meters measuring A-weighted sound pressure levels
with SLOW time weighting as presented in Section 2.2. The physical setup of the
IoT sensors can be seen in Figure 3.2. Even though the sensors are connected to
power, the use case can be applied to investigate energy efficient down sampling
strategies for sensors driven by batteries as well.

Figure 3.2: Physical setup of Libelium devices in Koopen. Five sensors, one router and a
central database connected through Wi-Fi [7].

In this thesis, only observations from one of the sensors, sensor 1 are con-
sidered. Our data should therefore ideally consist of about 3.4 million observa-
tions. 12.5% are missing, which results in about 3 million logged data points. We
denote these raw observations as x t with the time point t. They are presented in
Figure 3.3 for the whole logged time period, and in Figure 3.4 for a week late
February 2019.

3.2 Explanatory analysis

In this Section the data is explored. Our hypothesis’ are that there are systematic
patterns following time of week and time dependencies due to the type of envir-
onment we study sound from. Expecting higher and more variable noise levels
within work hours, than at night and in weekends.
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Figure 3.3: The raw data x t observed for the whole time period.

Figure 3.4: The raw data x t from Sunday 17.02.2019 to Saturday 23.02.2019.

3.2.1 Raw noise level data

From Figure 3.3 it is clear that the noise levels variate over time. However, the
noise levels are never below 42 dB, which from Table 2.3 indicates a high back-
ground noise level, L90, that will never classify as good. This seems to be the
constant minimum noise level, probably coming from ventilation. Since we are
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studying a working environment, patterns in noise levels are to be expected. Fig-
ure 3.3 of the raw noise levels show seasonal variations in late April, which cor-
responds to the Easter break. In Figure 3.4 of one week of raw noise level data,
we see weekly and daily variations as expected, depending on the usage of the
work space. Due to these variations four data sets; d={All, Work, No work, Busy
hour} are introduced and presented in Table 3.1. The norwegian calender[17] is
used to set weekdays and holidays.

Data set, d Description
All All logged data.
Work Weekdays between 07-19, excluded holidays
No work All data in the data set all that is not in the data set work.
Busy hour All data between 12-13 within the data set work.

Table 3.1: Data sets d; all, work, no work and busy hour.

The kernel density plots of different data sets d, can be found in Figure 3.5.
The density functions are all dominated by a peak at low noise levels (about 44
dB), and a long right tail to higher noise levels. This is not as prominent for work
and busy hour, where the kernel density has more mass on louder noise levels. This
is expected from Figure 3.4 and our hypothesis with high noise levels occurring
within work hours. The density functions shows that the distributions are skewed
by forming tails, implying non-Gaussian distributions.

Figure 3.5: The kernel density for different data sets d of the raw data x t .

To evaluate how well the present value of the time series data are related to
its past values, we use the empirical auto correlation function. It is plotted for
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different data sets d in Figure 3.6.

Figure 3.6: The autocorrelation function for different data sets of the raw data. A lag of
1800 corresponds to one hour, and a lag of 10 000 in excess of five and a half hour.

We see from Figure 3.6 that the serial correlation in the data differs some
between data sets. The fact that the no work data set is faster than the one for
work, seems in line with our hypothesis of more variation within work hours. That
the slowest auto correlation function belongs to all, makes sense since it contains
both work and no work data.

3.2.2 Noise level indicators

To get a clear picture of the noise characteristics of the environment, we use noise
level indicators as presented in Section 2.2.1. L10, L50, L90 and L10−90 respect-
ively gives us information about the peak noise level, median noise level, back-
ground noise level and variability in noise level. The sample period we calculate
the quantiles for each indicator within, is set as stated to T=15 minutes. For our
measured data every other second this correspond to nT=450 samples within each
time period. An example of this quarter of raw data with its respective noise level
indicators, are plotted in Figure 3.7.

An overview of the noise level indicators for all intervals over time are presen-
ted in Figure 3.8. To classify whether the indicator refers to a poor, fair or good
level the ranges in Table 2.3 are used.

In Figure 3.8 we can see that the peak noise level(Lall
10 ) and the median noise

level(Lall
50 ) are classified as good for almost all time outside peak hours Monday

to Friday. The background noise level(Lall
90 ) is never classified as good, and this

indicates that the general noise, from by example ventilation, always exceeds the
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Figure 3.7: A quarter of raw data, x t from 09:00 to 09:15 Wednesday, Feburary 20th
2019 with its respective noise level indicators.

Figure 3.8: Overview of the noise level indicators over time for d =all.

desired sound level for such an environment. The variance in noise level(Lall
10−90)

seems to classify as poor most often.
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3.2.3 Weekly reference

To investigate how the noise levels varies throughout a week, the variable tow
is introduced referring to the time of week. Within a week there are 672 in-
tervals of 15 minutes to calculate noise level indicators within, and therefore
tow ∈ 1,2, . . . , 672. As weekly reference we use the average of Lall

50 (x t:T ) at all
tow calculated over all weeks j defined as,

µtow
50 =

1
12

12
∑

j=1

L j
50(x t:T ) = (µ

1
50,µ2

50 . . . ,µ672
50 ). (3.1)

Here tow is dependent on the time t for which the random variable x t:T occur
and the week number j ∈ {1,2, . . . 12}. The weekly references are presented in
Figure 3.9.

Figure 3.9: Weekly reference noise level in dB.

Figure 3.9 confirms our hypothesis of highest noise levels within working
hours from Monday to Friday.





Chapter 4

Background

In this chapter the background for the modelling and methods used are presented.
Stochastic processes and time series models are introduced in Section 4.1. Copulas
as a framework for dependency is presented in Section 4.2, and the evaluation
methods used for decision making in this thesis, are introduced in Section 4.3.

4.1 Stochastic processes and time series models

The noise levels measured over time, can be seen as a stochastic process being
sampled as time series. This section is based on theory from Rausand and Høyland
(2004) [18]. A collection of discrete random variables X t indexed by time, forms
a stochastic process and can be denoted by,

{X t}t∈N

where N is the total time space. A common assumption is that future states of
this process only depends on the current state. This Markov property is defined
as,

X t+1|(X t = x t , X t−1 = x t−1, . . . , X0 = x0) = X t+1|(X t = x t). (4.1)

The process is said to be stationary when for any t ∈ N with n set of indexes,
X t1

, . . . X tn
all have the same probability distribution.

4.2 Copulas

The evaluation of the data presented in Chapter 3 with kernel densities from Fig-
ure 3.5, shows that our data are non-Gaussian, hence we need another framework
for dependency than the multivariate Gaussian distribution gives. To model the
dependency between random variables in our data, we use copulas as a method
for describing the dependencies between cumulative distribution functions based
on their marginal distributions. By transforming the marginal distributions into

17



18 CHAPTER 4. BACKGROUND

uniform distributions when using copulas, it allows us to describe the marginal
distributions, and their joint dependencies(the copulas) separately.

This section is based on theory from Jaworski, Durante, Härdle and Rych-
lik (2009) [19]. A d-dimensional copula is defined as a d-variate distribution
function on Id whose univariate marginals are uniformly distributed on I. Let
U = (U1, U2, . . . Ud) be a random variable associated to this d-copula such that
U j ∼U (I) for every j ∈ {1, 2, . . . d} and U∼ C .

Letting F be a d-dimensional distribution function with univariate margins
F1, F2, . . . , Fd Sklar’s theorem states that there exists a copula C such that for all
(x1, x2, . . . xd) ∈ R−d ,

F(x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . Fd(xd)). (4.2)

The copula C can then be obtained by the formula,

C(u1, u2, . . . ud) = F(F−1
1 (u1), F−1

2 (u2), . . . F−1
d (ud)) (4.3)

where F−1
j is the pseudo-inverse of F j . Hence having uniform marginals on I

and preserving the components dependence, copulas are a way of transforming
the random variables (X1, X2, . . . , Xd) into other random variables (U1, U2, . . . , Ud) =
(F1(X1), F2(X2), . . . Fd(Xd)). An illustration of the transformation process for a
bivariate distribution function is illustrated in Figure 4.1 for 2000 random gener-
ated samples X j ∼N (0,1).

Figure 4.1: An illustration of the transformation process for a bivariate distribution func-
tion between the random variables X j and the uniform variables U j . Here X j ∼ N (0,1)
with 2000 random generated samples. (a) Scatterplot of the margins X1 and X2. (b) The
cumulative distribution function F(X ) used to transform the data. (c) Scatterplot of the
uniform variables U1 and U2 on [0,1].

4.2.1 Empirical copula estimation

The Koopen data does not have any known marginal distribution, hence we are in
need of an nonparametric approach to our copula estimation based on observa-
tions. Assume multivariate data observations (X t

1, X t
2, . . . , X t

d) from a random vec-
tor (X1, X2, . . . , Xd) with t = 1,2, . . . T as the time point. From (U t

1, U t
2, . . . , U t

d) =
(F1(X t

1), F2(X t
2), . . . Fd(X t

d)) we can set up an estimator,
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Ĉ(u1, u2, . . . , ud) = F̂(F̂−1
1 (u1), F̂−1

2 (u2), . . . F̂−1
d (ud)) (4.4)

Here F̂ is a nonparametric estimator of the d-dimensional distribution function
with,

F̂−1
j (s) = {t|F̂i(t)≥ s}= Û j(s), (4.5)

as a nonparametric estimator of its pseudo-inverse. These marginal distribu-
tions F̂i are usually unknown, but by using the empirical distribution functions
they can be found as,

F̂ T
j (x) =

1
T

T
∑

t=1

1(X̂ t
j ≤ x j) for x ∈ R, (4.6)

with 1 known as the indicator function.

4.2.2 Copula selection

In this thesis we focus on bivariate copulas with d = 2. Then the uniform random
variables are U1, U2, and F a 2-dimensional distribution function with marginals
F1(x1) and F2(x2). This subsection is based on Kurowicka and Joe (2010) [20].
To select an appropriate bivariate copula, the parameters need to be estimated for
all evaluated copulas based on the marginal distributions.

Using a nonparametric approach with observed multivariate data X t
1 and X t

2
we use the following maximum likelihood estimation for estimating the copula
parameter(s) θ̂C ,

θ̂C = Ar gMaxθC

T
∑

t=1

ln C(Û t
1, Û t

2|θC) (4.7)

with U t
1 and U t

2 as the pseudo inverses from (4.5) of the empirical distribution
functions from (4.6). For all evaluated copula families the Akaike Information
Criteria (AIC)[21] are computed by,

AIC := −2
T
∑

t=1

ln[C(Û t
1, Û t

2|θC)] + 2k (4.8)

with k = 1 for one parameter copulas and k = 2 for two parameters. The
copula family with minimum AIC value is selected.

Two common copulas; the Gaussian Normal copulas and Student t copulas
are selected for analysis of the data in this thesis. They are both elliptical with a
Spearman’s rho parameter, θC = ρ. ρ is a nonparametric measure of statistical
dependence between two variables. It is defined as,



20 CHAPTER 4. BACKGROUND

ρ =
cov(x1, x2)
σx1
σx2

(4.9)

with cov(x1, x2) as the covariance between the variables and σx1
and σx2

as
their standard deviations. The Student t copula also has degrees of freedom, d f
as parameter.

In this thesis we will have F as a 2-dimensional unknown distribution with
empirical margins. The Gaussian copula CN (u1, u2|ρ) and the Student t copula
CSt(u1, u2|ρ, d f ) is set up by (4.4). Examples of 2000 random variables gener-
ated by the Gaussian and student t copulas for different parameter values, are
presented in Figure 4.2 and 4.3, respectively. It is clear that the closer you get to
(0,0) and (1,1) the stronger correlated copulas. The student t copulas produce
pseudo observations that appear in a star liked shape. As the d f increases(closer
to Gaussian copula) this tail dependence gets smaller.

Figure 4.2: Scatter plot of 2000 random samples from the Gaussian copula for ρ =
{0.3,0.9}. Taken from [22].

4.2.3 Conditional models based on copulas

To model Û t
j ∼ Ĉ(u j) we assume that the Markov property from (4.1) holds. Û t−1

j
is used as input to extract a probability distribution for that previous uniform
value associated with the copula Ĉ(u j). The conditional distribution function of
this probability distribution is then calculated, and by a random generated value
on [0, 1]we point to the next uniform value Û t

j . This process is illustrated in Figure
4.4 and generated for the number of wanted modelled points.
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Figure 4.3: Scatter plot of 2000 random samples from the Student t copula for ρ =
{0.3,0.9} and d f = {2, 7}. Taken from [22].

Figure 4.4: An illustration on the modelling process from a copula. (a) The given bivariate
copula. (b) The probability distribution function given previous value=0.2. (c) Pointer to
the next value after generating a random variable on [0,1].

4.3 Evaluation methods used for decision making in the
Koopen use case

In this Section the evaluation methods used for decision making in the Koopen
use case are presented.

4.3.1 Brier score

In this thesis optimizing utility will be the ground for decision making. For the
accuracy of the probabilistic predictions a cost function is needed. Expected Brier
score is such a function, and measures the mean square difference between the
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expected probability assigned to the possible outcomes at time t and the actual
outcomes o(t). It is used for binary predictions and can be denoted as,

BS = (p(t)− o(t))2, (4.10)

with p(t) as the expected probability of a prediction. o(t) = 1 if the outcome
equals the prediction and o(t) = 0 if not [12]. The most accurate predictions will
be found at low Brier scores, and the higher the BS the less accurate prediction. It
classifies as a good cost function because of its properties as strictly defined(here
between [0,1]), non-negative(BS ≥ 0) and having no fixed cost(BS(p(t) = 0) =
0).

4.3.2 Classification error

In this thesis the conditions for classification of noise level indicators with T=15
min are the ranges in Table 2.3.

We define the classification success rate(CSR) as the proportion of cases for
which the predicted class k̂ξ(X t:T ) equals the true class kξ(x t:T ).

CSRLξ(X t:T ) =

∑S
s=1 1(k̂ξ,s(X t:T ) = kξ(x t:T ))

S
, (4.11)

with 1 as the indicator function and S as the number of classifications done for
the same estimated indicator Lξ(X t:T ) to evaluate the classification success rate.
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Methods

In this Chapter we set up conditional copula models in Section 5.1 and a decision
framework in Section 5.2 for the Koopen case study presented in Chapter 3. Fi-
nally, the use of statistical software is presented in Section 5.3.

5.1 Dependency models for noise

In this Section we introduce how to model noise levels the next 15 minutes, in-
stead of letting the IoT sensors sample them.

The working hypothesis is that we can use the dependency in the last sampled
value to model the next quarter. From Figure 3.5 the kernel densities do not form
a common known probability distribution, and this calls for further work to be
able to model the data set. Copulas are in Section 4.2 presented as a method for
representing dependent data with general marginal distributions. This seems like
an appropriate choice for modelling of the Koopen data. The data are divided in
different data sets d according to Table 3.1.

5.1.1 Conditional noise Model 1

In this thesis we set up two empirical marginals based on observations of noise
levels. Each marginal in a marginal pair with the same d has a two second dis-
placement from each other, but are practically equal.

X d
t : Noise level at time t.

The marginals are transformed to unitary values Ud(t) on [0, 1], by the process
described in Figure 4.1, where the empirical cumulative distribution F d(X d(t)) is
used.

Ud = F d
M1(X

d).

To set up the a copula by (4.4) the unitary values, Ud are used. Its parameters
θC are found by maximum likelihood estimation by (4.7). Assuming the Markov

23
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property as presented in (4.1) holds for our data, Ud
t |U

d
t−1. The copula Cd

M1 can
then be used for conditional modelling of Ud

t:T |u
d
0 described by the process in

Section 4.2.3. Having set the time period T to 15 minutes this translates to 450
conditional modelled Ud

t by,

Ud
t |U

d
t−1 ∼ Cd

M1(U
d |θC), (5.1)

which is straight forward to get Monte Carlo samples from. The translation
back to noise level values are done by,

X d
t:T = F d

M1
−1
(Ud),

to finally achieve the noise level indicators Ld
ξ
(X d

t:T ) calculated within the time

period T , given a previous value X d
0 .

5.1.2 Conditional noise Model 2

Model 1 is based on modelling from observations taken straight from the raw data.
The fact that the Koopen data are time dependent, are elaborated in Chapter 3.1.
From Figure 3.9 it is clear that the noise level varies with time of week. Therefore,
we introduce a model including the weekly reference from (3.1). This model is
based on statistical models for the discrepancy between the weekly reference and
the observed noise level X d

t at time t,

diffX t = X t −µtow
L50.

diffX t are transformed to unitary values diffUd(t) by the empirical cumulative
distribution for the discrepancy terms F d

M2(diffX d(t)) by the process illustrated in
Figure 4.1,

diffUd = F d
M2(diffX d

t )

The copula are set up by (4.4) using these unitary values diffUd(t). Its para-
meters θC are found by maximum likelihood estimation by (4.7). Assuming the
Markov property as presented in (4.1) holds for our data, diffUd

t |diffUd
t−1. The

copula, Cd
M2 based on discrepancies can then be used for conditional modelling of

diffUd
t:T |diffUd

0 , by the process in Section 4.2.3. Having set the time period T to
15 minutes this translates to 450 conditional modelled diffUd

t by,

diffUd
t+1|diffUd

t ∼ Cd
M2(diffUd |θC) (5.2)

which is straight forward to get Monte Carlo samples from. The translation
back to noise level values are done by,

diffX d
t:T = F d

M2
−1
(diffUd)

X d
t:T = diffX d

t:T +µ
tow
L50
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to finally achieve the noise level indicators Ld
ξ
(X d

t:T ) calculated within the time

period T , given a previous value X d
0 and time of week tow.

5.1.3 Conditional copula models for the Koopen use case

An overview of the in total 16 conditional copula models that are used in this
thesis are presented in Figure 5.1. There are two conditional noise models, M
described in Subsection 5.1.1 and 5.1.1 for M1 (based on direct observations)
and M2 (based on the discrepancy from the observations weekly reference), re-
spectively. These are adjusted based on four different data sets d ∈ {all, work, no
work, busy hour}, defined in Table 3.1. For each of these eight models we then
use two different selected copulas c; a Gaussian normal copula(N) and a Student
t copula(St) as described in 4.2.2. Each of the estimated conditional copula mod-
els have copula parameters θC , with θC = ρ and θC = {ρ, d f } for the Normal and
Student t copulas, respectively.

5.1.4 Evaluation of conditional copula models for the Koopen use
case

The different conditional copula models Cd
M ,c are evaluated based on how well

they replicate the noise characteristics of the peak noise level, median noise level,
background noise level and variability in noise level by the noise level indicators
Ld

10, Ld
50, Ld

90 and Ld
10−90, respectively. The evaluation is done by visually com-

paring these to the distributions of Ld
ξ
(X d

t:T ) that the different conditional copula

models Cd
M ,c estimates. In addition we look at some QQ-plots for the different

conditional noise models and noise level indicators.

5.2 Decision model for the Koopen use case

The decision to be made by the sensor is binary; sample (every other second) for
the next 15 minutes, or not. The decision is to be made, and optimized, based on a
noise level observation at present, and our chosen conditional copula model. Inde-
pendent on the decision, we will therefore always sample one’s each 15 minutes.
Based on the results in Section 6.2 we use conditional noise Model 2 and a normal
copula based on the whole data set with d =all as the basis for all decision making
described in this thesis. In addition to the present sampled noise level observation
x0, this model also uses knowledge about time of week, tow.

5.2.1 Utility function for the Koopen use case

To conclude which action optimizes the energy-accuracy tradeoff between energy
consumption and modelling accuracy, we need to set up a utility function. In this
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Figure 5.1: An overview of the 16 different conditional copula models C d
M ,c used in this

thesis.

thesis we address the decision problem as an optimization problem were we max-
imize the utility based on choice of action a = {sample, no sample}. The utility
function for given a can then be denoted as,

Ua(t) = −COST (t) = −(E + A(t)), (5.3)

for the Koopen use case. Here COST denotes the total cost, E the cost of energy
for sampling 15 minutes and A the cost in accuracy loss.

The expected loss in energy when sampling is given by the use case. To be able
to evaluate and discuss how and why different costs in energy affects the decision
problem used in this thesis we let E take four different values. The expected loss
as cost in energy is a binary operator that takes the value E = 0 for a=no sample
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and E ∈ {0.005, 0.05,0.15} for a=sample.
A(t) is also dependent on use case and the time t that sets the previous sampled

value x0 and the time of week, tow. In this work we have chosen Brier score from
(4.10) as basis for our accuracy cost function. The expected loss in accuracy when
we choose not to sample can therefore be denoted as,

A(t) = (p(t)− o(t))2, (5.4)

and A(t) = 0 for a=sample. The expected value p(t) is estimated using the
classification success rate, CSR defined by (4.11). The expected value Ld

ξ
(X t:T )

of the noise level indicators Ld
ξ
(x t:T ) are estimated using Monte Carlo simulation

for s = 1, 2, . . . ,S simulations as described in Subsection 5.1.2. For the Koopen
use case we have three classes k ∈ {good, fair, poor} for which these noise level
indicators can classify within. Examination of the simulated data shows us that
each estimated Ld

ξ
(X t:T ) at time point t only differs between two of the classes.

Therefore, we may use the binary cost function Brier score. The classification in
CSR is done deterministically, meaning we always use the estimated class k̂ξ(X t:T )
with highest probability, as true class kξ(x t:T ). Then we for a = no sample have,

A(t) = (CSRLξ(X t:T ) − o(t))2 = (

∑S
s=1 1(k̂ξ,s(X t:T ) = kξ(x t:T ))

S
− 1)2. (5.5)

The observation o(t) is always set to 1, according to the deterministic clas-
sification assuming we observe the expected observation. This leads to A(t) ∈
[0, 0.25], independent on choice of conditional copula model.

In total the utility is,

Ua(t) =

�

−E if a =sample
−A(t) if a =no sample,

(5.6)

which makes us able to choose an action based on which maximizes the utility.
The decision is a =sample if E < A(t) and a =no sample otherwise.

5.2.2 Decision network formulation

Another framework for presenting the decision problem is based on common ar-
tificial intelligence methodologies as presented by Russel and Stuart(2016) [23].
An influence diagram is used to clarify the different parts of the decision network
and how they interact with each other to form a decision. For the Koopen use case
the influence diagram is presented in Figure 5.2. The known features previous
value and time of week, as well as the random variables energy cost and mod-
elling accuracy are ovals and represent the chance nodes. The decision makers
choice(to sample or not) is drawn as a rectangle and represent the decision node.
Finally, the diamond is the utility function and represent a utility node.
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Figure 5.2: Influence diagram for the decision used in this thesis on whether to sample
with an IoT sensor or model the next 15 minutes.

5.3 Statistical software

R is used for the analysis in this thesis. The data were loaded from [24] and trans-
formed into data frames by the work of my project thesis [25]. The library ’copula’
[26] and ’VineCopula’ [27] were used to select and set up the Gaussian and Stu-
dent t copulas. The code for all analysis done in this thesis can be found at Github
[28].



Chapter 6

Results

In this Chapter the results are presented and discussed. The results regarding
choice of copulas are presented in Section 6.1. The results from all conditional
copula models are presented and compared in Section 6.2. In Section 6.3 the
results for sampling decisions are presented and evaluated for different choices of
expected loss in energy.

6.1 Fitting the dependency models

The margins for different data sets d are by the process described by Figure 4.1
in Section 4.2 transformed to unitary values, U on [0,1]. The scatterplots of these
unitary values can be seen in Figure 6.1 and 6.2 for conditional noise Model 1 and
2, respectively.

Looking at u1 and u2 in Figure 6.1 and 6.2, we observe a clear tendency for
values on u1 = U2 and diffu1 = diffu2, as well as a representation through the
whole unitary space. u1 and u2 as well as diffu1 and diffu2 seems symmetric for
all d except busy hour. To investigate the impact choice of copula has to our mod-
elling results, we have chosen to use different elliptical copulas; Gaussian Normal
and Student t in this thesis.

In Section 4.2.2 methods for selecting an appropriate copula based on AIC
from (4.8) are presented. For all models we get the bivariate Student t copula as
best fit compared to the Normal copula.

Visually by comparing the tendencies in Figure 6.1 and 6.2 to Figure 4.2 and
4.3 we would expect quite high Spearman’s rho parameters, ρ from (4.9) and
degrees of freedom, d f < 7 for the Student t copulas.

To fit Student t and Normal copulas to the different conditional copula mod-
els, the maximum likelihood estimates are found as described in Section 4.2.2 by
(4.7). All parameters for the conditional bivariate copula models set up in Sub-
section 4.2.3 are presented in Table 6.1.

29
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Figure 6.1: Scatterplot using the conditional noise Model 1 of the marginals unitary trans-
formations for all data sets.

Figure 6.2: Scatterplot using the conditional noise Model 2 of the diff marginals unitary
transformations for all data sets.

Examples of a Normal and Student t copula based on the Koopen data for
conditional noise model 1 and 2 is presented in Figure 6.3 and 6.4, respectively.
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All Work No work Busy hour
Model 1, Normal : ρ = 0.92 ρ = 0.89 ρ = 0.88 ρ = 0.87
X t+1|x t ∼ Cd

M1,N
Model 1, Student t : ρ = 0.94 ρ = 0.90 ρ = 0.91 ρ = 0.89
X t+1|x t ∼ Cd

M1,St d f = 2.9 d f = 3.8 d f = 2.5 d f = 3.8
Model 2, Normal : ρ = 0.81 ρ = 0.78 ρ = 0.87 ρ = 0.81
diffX t+1|diffx t ∼ Cd

M2,N
Model 2, Student t : ρ = 0.92 ρ = 0.82 ρ = 0.93 ρ = 0.83
diffX t+1|diffx t ∼ Cd

M2,St d f = 2.0 d f = 2.0 d f = 2.0 d f = 2.3

Table 6.1: Conditional bivrariate Normal and Student t copula models used in this thesis
with selected best fit parameters ρ and d f = degrees of freedom.

Figure 6.3: Bivariate Normal copula and Student t copula with parameters ρ = 0.92 and
{ρ = 0.94, d f = 2.9}, respectively for conditional model 1.

6.1.1 Simulation of noise level data

Examples of modelling 15 minutes by the use of both a Normal and Student t
copula are presented in Figure 6.5 and 6.6 for conditional noise model 1 and 2,
respectively. All are given the previous sampled value x0 = 45.9 from the raw data
20.02.2019 at tow =Wednesday 09:00. To get from a previous value to the next
value the process illustrated by Figure 4.4 is used. From the modelled quarters
there are no immediate difference between the choices of copula. For the different
choice of conditional noise model we can see that Model 2 tends to have some
lower noise level values, as well as the largest amount of high noise level values.
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Figure 6.4: Bivariate Normal copula and Student t copula with parameters ρ = 0.81 and
{ρ = 0.92, d f = 2.0}, respectively for conditional model 2.

Figure 6.5: A random modelled quarter using conditional noise Model 1 for both the
Student t and Normal copula for d =all. Given previous value x0 = 45.9.

6.2 Model evaluation for noise level indicators.

In this Section the results from our dependency modelling using copulas will be
presented. The 16 different conditional copula models used, with their respective
parameters are shown in Table 6.1. The comparison in this Section is done based
on type of copula c, data set d and choice of conditional model M for the estimated
noise level indicators Ld

ξ
as presented in Section 5.1.4.
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Figure 6.6: A random modelled quarter using conditional noise Model 2 for both the
Student t and Normal copula for d =all. Given previous value x0 = 45.9 and tow =
Wednesday 09:00.

The simulation of modelled noise level data for one quarter are presented in
Subsection 6.1.1. This quarter modelling process is then repeated 1000 times for
each conditional copula model Cd

M ,c with random input values x0 and tow to get
a representation of the total model performance. The densities of the noise level
indicators, Ld

ξ
for all 16 models from Table 6.1 are compared to the ones for the

raw data of the data sets all, work, no work and busy hour in Figure 6.7, 6.8, 6.9
and 6.10, respectively. Here we look at each noise level indicator separately.

The figures show that the choice of copula family seems to have the least
impact on the modelling results as their densities always follow each other. For
especially d =all in Figure 6.7 the normal copula does seem to capture the noise
level indicators closer to their original values based on raw data. Since the noise
level indicators are what we want our conditional copula model to replicate, we
will in further analysis choose the normal copula for the decision making.

From Figure 6.10, it is clear that none of the models are able to replicate the
behaviour of d = busy hour for the raw data. Results for conditional noise Model
1 is really bad, and Model 2 just a little bit better. The choices of copulas may,
by looking at the scatterplots in Figure 6.1 and 6.2, be the wrong ones. Using
elliptical copulas we are assuming symmetric unitary values U , which is not the
case for d = busy hour.

For d = {all, work, no work} there are no d that stands out as a better fit for
the models of the Koopen use case. For that reason the data set d = all is chosen,
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Figure 6.7: Model comparison for different conditional copula models of the data set
d =all for all noise level indicators.

Figure 6.8: Model comparison for different conditional copula models of the data set
d =work for all noise level indicators.

since it is convenient that it models all time points, and the IoT sensors will be in
no need of switching between models for time points referring to d = work and
d = no work.
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Figure 6.9: Model comparison for different conditional copula models of the data set
d =no work for all noise level indicators.

Figure 6.10: Model comparison for different conditional copula models of the data set
d =busy hour for all noise level indicators.

Having the 16 conditional copula models narrowed down to only two; Call
M1,N

and Call
M2,N for conditional noise Model 1 and 2, respectively, their quantile-quantile

plots for different noise level indicators Lall
ξ

are presented in Figure 6.11. The ref-
erence to ideal performance is plotted as a red line.
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Figure 6.11: QQ-plots for all indicators of the modelled data compared to the raw data
for conditional noise Model 1 and 2, copula, c = Normal and data set, d = all. The red
line is plotted as reference to ideal behaviour.

Figure 6.7, 6.8, 6.9 and 6.10 all show that conditional noise Model 1 tends
to be narrow for all indicators and do not represent a wide enough selection of
noise levels for the indicators compared to the raw data. From Figure 6.11 it is
also clear that conditional noise Model 2 is the best fit for the Koopen use case.
Hence, it will be the preferred choice.

It is clear from both the density plots in Figure 6.7, 6.8, 6.9, 6.10 and the
QQ-plot in Figure 6.11 that our conditional copula models do not perform well
for Lall

10−90. If the variance in noise level are important for the monitoring of the
Koopen use case, conditional copula models of the data can as a result be rejected
as approach for down sampling strategy.

Figure 6.6 of a modelled quarter for conditional noise Model 2 reveal some
tendencies to low noise level values that are not monitored by the IoT sensors in
the environment we are looking at. This makes especially the background noise
level indicator Lall

90 hard to replicate. The density plots in Figure 6.7, 6.8, 6.9 and
6.10 confirms this, and reveal that too low modelled values are furthermore a
problem for conditional noise Model 1 as well. As a result, one should not use the
conditional copula models presented in this thesis to model the background noise
level of the Koopen use case.

According to Figure 6.7 and 6.11, the preferred choice of conditional copula
model Call

M2,N , fit both Lall
10 and Lall

50 quite well. This is especially the case for noise
level values below 60 dB, that there are most of in the raw data. If the peaks in
noise level and median noise level are of interest in the Koopen use case, one can
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reduce the sampling rate for the IoT sensors by using Call
M2,N for modelling parts

of the data. Which parts are further evaluated in Section 6.3.

6.3 Results for sampling decisions

In this Section the result from the decision making are presented. The copula
used is Call

M2,N as concluded with in Section 6.2. In Section 5.2 the decision model
is described. The goal is to find out whether or not to sample the next 15 minutes,
given a sampled previous noise level value x0 and a time of week tow. The cost
in energy E is also given as input. To evaluate the different factors in our decision
model, the results for different time of week, previous sampled value and choice of
expected loss in energy are in Section 6.3.1, 6.3.2, 6.3.3, respectively presented.

Based on the results in Section 6.2 our models do not represent L90 and L10−90
well. Further, knowing from the utility function (5.6) that the decision making is
partly based on the classification success rate, L90 may need some adjustments
because it never classifies as good, confirmed by Figure 3.8. In Section 5.2.1 we
assumed that the largest partition of classes for S simulations of the noise level
indicators would classify correctly. To be sure this holds for our decision model,
neither Lall

90 nor Lall
10−90 are good choices. Hence, Lall

10 and Lall
50 are the ones being

used for decision making for the Koopen use case.

6.3.1 Decision based on different times of week

In this Subsection the previous values are given by the sampled noise levels at
each tow from a week of raw data 16.02.2019 to 23.02.2019. The decision for
each time of week interval and different E are presented in Figure 6.12 and 6.13
for Lall

10 and Lall
50 , respectively. Grey spaces visualize a =sample and white ones

a =no sample. As one would expect, the number of recommended samples by the
IoT sensors increases when the expected loss in energy E decreases, as we can see
in Figure 6.12 and 6.13.

For the peak noise level Lall
10 in Figure 6.12 the times of week that the decision

model tells us to sample, are always within work hours. The Koopen data is based
on noise levels in a working environment, and therefore it makes sense that these
are most uncertain. When there are people present, the noise levels will change
rapidly according to type of work, and how load the people are. It is reasonable
to sample some of these times within work hours, in between the set rate of at
least one sample each 15 minutes.

For the median noise level Lall
50 in Figure 6.13 there are more times of week that

the decision model tells us to sample than for Lall
10 . Here we are interested in the

median observed noise, and as we can see the conditional copula model become
unsure at by example Friday nights. This indicates that the environment may be
used different at this time outside working hours for different weeks, which do
make sense. Then it would be a good idea to sample the actual noise levels at
those times, as our decision model tells us.
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Figure 6.12: Binary decision on whether to sample(grey) or not(white) throughout a
week based on the conditional copula model C all

M2,N and Lall
10 . Previous sampled values are

taken from the raw data at given time of week 16.02.2019 to 23.02.2019. (a) E=0.005
(b) E=0.05 (c) E=0.15.

6.3.2 Decision based on different sampled previous value

In this section we choose to look at three selected times of week, tow for each
noise level indicator to get a spectre on how previous sampled value can impact
the decision. The previous values are chosen to be x0 ∈ {40,45, 60,80, 90}, where
both x0 = 40 and x0 = 90 are values out of scope from the given Koopen raw data
x t . The three other x0 = 45, x0 = 60 and x0 = 80 are respectively common, com-
mon within work hours and rare.

First we set tow = {Tuesday 08:00, Tuesday 10:00, Wednesday 09:00} for
Lall

10 , and calculate the cost in accuracy A(t) for different previous values. These,
as well as all E are presented in Figure 6.14.

For tow=Tuesday 10:00 we see that the decision differs a little for given pre-
vious value x0 =42 dB. E = 0.005 lay in between different A(t) and therefore the
decision is not independent on previous value for this E. For tow = Wednesday
09:00 in Figure 6.14, A(t) differs more for given previous values. It is almost al-
ways quite high, but also here we see that one given previous value x0 =90 dB
could change the decision, here if E = 0.15. Figure 6.12 shows that the decision
model quite rarely decides on sampling for Lall

10 . If this was only due to the choice
of previous value, one should be quite aware of it. Although Lall

10 always categorize
with A(t) as in Figure 6.14 where tow= Tuesday 08:00 when the decision is clear
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Figure 6.13: Binary decision on whether to sample(grey) or not(white) throughout a
week based on the conditional copula model C all

M2,N and Lall
50 . Previous sampled values are

taken from the raw data at given time of week 16.02.2019 to 23.02.2019. (a) E=0.005
(b) E=0.05 (c) E=0.15.

Figure 6.14: The loss in accuracy, A(t) for the conditional copula model C all
M2,N and Lall

10 ,
with different sampled previous noise levels. The loss in energy, E are plotted as dotted
lines for comparison.
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E < 0.005. If Figure 6.12 concludes on no sample for some previous value, the
decision is as well independent on previous sampled value in our decision model.

For Lall
50 , we use tow= {Tuesday 08:00, Wednesday 09:00, Friday 23:30} and

calculate the cost in accuracy A(t) for different previous values. These, as well as
all E are presented in Figure 6.15.

Figure 6.15: The loss in accuracy, A(t) for the conditional copula model C all
M2,N and Lall

50 ,
with different sampled previous noise levels. The loss in energy, E are plotted as dotted
lines for comparison.

Here the example of being sure on decision independent on previous sampled
noise level is plotted for tow = Wednesday 09:00, as can also be seen by Figure
6.13 is a=no sample for all E. For the other choices of tow in Figure 6.15 the
decision is not that clear. For tow = Tuesday 08:00 and tow = Friday 23:30 the
decision is dependent on previous noise level for E = 0.05 and E = 0.15, respect-
ively.

For most times of week, we see that the decision model chooses to not sample
as seen in Figure 6.12 and 6.13. It is also shown by examples in Figure 6.14 and
6.15 that this is independent on previous sampled value. Based on this fact the
conditional copula model is clearly quite forgetful, an will not catch extreme be-
haviour. A way to incorporate this complication for the decision making in this
thesis, is to always sample for extreme previous sampled values independent on
E and A(t). A proper choice for extreme values for the Koopen use case, is noise
level values below 42 dB and above 75 dB, which we see from the raw data in
Figure 3.3 is outside scope and rare, respectively.
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6.3.3 Evaluation on choice of expected loss in energy

The utility function in Section 5.2.1 is based on a weighting of whether the ex-
pected loss in energy or loss in accuracy is largest. Therefore the choice of cost
in energy E is really important for the decision making. The loss in accuracy is
defined in such a way that it exists between 0 and 0.25. The choice of E has from
Section 6.3.1 and 6.3.2 shown to impact the decision. Deciding on a E that fits
the data and use case is important. The conditional copula model Call

M2,N for the
Koopen data has shown to be able to reduce the need of sampled quarters con-
siderably by Figure 6.12 and 6.13. From these Figures E = 0.05 seems like an
appropriate choice of E to contribute to increase the IoT sensors lifetime by down
sampling, as well as ensuring model accuracy. E = 0.05 translates to a need of over
77% of the noise level indicators classified equally. The number of samples needed
throughout a week with the decision model defined in this thesis for Call

M2,N with

E = 0.05, can be reduced to 1.1% and 5.8% wanting Lall
10 and Lall

50 , respectively.
This shows a huge possibility for down sampling by the use of conditional copula
models as presented in this thesis when you are interested in the peak noise level,
and median noise level.





Chapter 7

Conclusion

In this thesis we consider sampling decisions for energy efficient IoT sensors using
dependency models. Down sampling makes sensors more efficient and reduces the
need of both power and communication, which further contributes to increase
their lifetime. The goal is to balance use of energy and accuracy when monitoring
noise in the working environment Koopen.

To investigate the environment’s noise characteristics, we set up noise level
indicators. This is done by using quantile theory in practice. Quantiles are in need
of more than just one measure to be set. This challenges the prospect of being
able to down sample a lot, when we simultaneous want to explore the noise level
indicators within short time periods. If one were able to model these points, in-
stead of sampling them by the IoT sensors, the monitoring would be more energy
efficient.

The IoT sensors are set up to sample once each 15 minutes. Dependent on
an energy-accuracy tradeoff, the decision model in this thesis chooses between
letting the IoT sensors sample within the quarter, and letting a conditional copula
model based on dependency in given data, model the quarter of noise levels.

To compare the suggested models with respect to copula families, Akaike In-
formation criteria is used. Their parameters are found by maximum likelihood
estimation. In this thesis we use Student t and a Gaussian Normal copula based
on our marginals of time dependent noise level data from Koopen. The Normal
copula fit the use case the best. Anyway, the modelling results show us that the
choice of copula itself, does not have profound impact on how well the conditional
copula models perform.

Further we examine if partitioning the Koopen use case data into data sets of
all data, only work hours, only outside work hours or a chosen busy hour, makes
it easier to be replicated by the dependency models. This shows no large effect,
except that the conditional copula models for the busy hour do not fit the data.

The two different types of conditional modelling introduced as conditional
noise Model 1 and 2, turns out to have the greatest impact on model perform-
ance in this thesis. Model 2 based on discrepancies, instead of observations taken
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straight from the raw data, seems to be able to replicate the noise level character-
istics quite well. This applies especially on higher noise levels, where Model 1 do
not even reach up.

The results of conditional copula modelling for the variance in noise level,
and the background noise level for the Koopen data, are still shown to be of poor
quality and uncertain for some parts of the data, respectively. That being so, these
are not recommended modelled by conditional copula models as presented in this
thesis.

Knowing noise can be disturbing, annoying and in the worst case dangerous,
we are interested in how the different noise level indicators classifies given known
standards.

Because it has shown to be the best fit for the Koopen data, we use a con-
ditional Normal copula model based on all the discrepancies from a weekly ref-
erence in the data for our decision model. The decision analysis are based on a
tradeoff between energy and accuracy for the noise monitoring. To optimize this
tradeoff, a binary utility function is set up. The loss in energy is constant for the
case of sampling, and the loss in accuracy is based on classification by an adapted
Brier score when modelling.

The decision model shows that the sampling rate can be reduced to once every
15 minutes for most part of a week, dependent on which noise level indicator
you are interested in. Being interested in the peak noise level, and median noise
level, respectively, the IoT sensor samples from one week, can be reduced to 1.1%
and 5.8%, respectively for an energy loss set to 0.05. This down sampling will
contribute to increase the lifetime of the IoT sensors.

The behaviour of our models for extreme previous values are shown to be in-
sufficient. That being so, independent of the energy-accuracy tradeoff in the util-
ity function for extreme previous values with noise levels below 42dB and above
75dB for the Koopen data, it is recommended to always sample, to catch the noise
characteristics for such abnormal behaviour.

This project clearly shows the possibilities for down sampling by the use of
conditional copula models. In further analyses it would be of interest to fit models
that can capture the background noise level and variance in noise level. Adapting
the conditional copula models to be intelligent by learning from new samples
could be of interest to make them better, and more robust. The use case could
also benefit from investigation of a function for the actual loss in energy.
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