Vladislava Larina

Unified framework for omnichannel
communication services

Master’s thesis in Communication Technology
Supervisor: Kornschnok Dittawit
Co-supervisor: Bjgrn Gulla

June 2021

.ﬂ
»n
)

L
&)

v
S
()
dd
7
©

=

NTNU

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering
Technology

Dept. of Information Security and Communication

@ NTNU

Norwegian University of
Science and Technology

Vladislava Larina

Unified framework for omnichannel
communication services

Master’s thesis in Communication Technology
Supervisor: Kornschnok Dittawit
Co-supervisor: Bjgrn Gulla

June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

@ NTNU

Norwegian University of
Science and Technology

Title: Unified framework for omnichannel communication services

Student: Vladislava Larina

Problem description:

The evolution of communication channels as well as accompanying customer behaviour
patterns have led to the emergence of omnichannel concept. The term refers to a
seamless integration of different communication channels resulting in a consistent
customer experience. Approaches to omnichannel transformation have been well
elaborated in the marketing domain. However, such transformations strongly rely
on the underlying technologies. Communication services, provided and enabled
by telecommunication operators and their technology vendors, are fundamental to
omnichannel transformation technologies. Integration of communication services has
been to some extent addressed in unified communications (UC) solutions existing
since 2010. UC solutions primarily focus on providing a single view to an end-user
rather than enabling a uniform system behaviour across the supported channels.
Omnichannel communication services are called to bridge the gap. However, little
respective research and traditionally employed siloed design of communication services
make the technological omnichannel transformation challenging.

The objective of the thesis is to elaborate on an omnichannel-enabled conceptual
framework capable of incorporating flexible business logic and to evaluate this
framework’s viability in terms of its potential benefits and limitations by implementing
a prototype for a selected scope. The project is comprised of the following major
steps:

— conducting a broad study of existing knowledge context and derive functional
requirements for an omnichannel-enabled framework;
designing conceptual framework based on the requirements identified;

defining a scope of features / services for framework validation;

— proposing architecture for an experimental implementation of the framework
designed;

developing a prototype based on the framework design and selected scope;

— performing validation of the framework with a help of the prototype developed.

Date approved: 2021-02-08
Supervisor: Kornschnok Dittawit, NTNU / Gintel AS
Co-supervisor: Bjgrn Gulla, Gintel AS

Abstract

Omnichannel represents the latest stage in evolution of communication
services and places strong focus on customer-centricity and unification
aspects in development of such services. Omnichannel also constitutes
a prerequisite to a successful digital transformation. Traditional siloed
implementations should give way to flexible and cost-effective solutions
which would enable high level of business logic reuse as well as fine tuning
per customer needs.

Despite the market appeal of omnichannel, there has been little to none
consolidation of efforts on behalf of both research community and industry
to establish a common understanding of implications of omnichannel as
well as to suggest any best practices for omnichannel enablement. This
thesis represents a fair attempt to study existing disperse research along-
side commercial offerings and elaborate on requirements and conceptual
model of a unified framework for omnichannel communication services.
Prototyping is used as a means to validate the proposed model in terms
of its feasibility. It also allows to get additional insights insights into
the topic of the omnichannel enablement and its particular aspects. The
insights are not limited to the framework proposed but offer a broader per-
spective on omnichannel enablement in terms of its associated challenges
and prospects.

Preface

This master’s thesis is my final assignment for Master of Science
degree in Communication Technology at the Department of Information
Security and Communication Technology at the Norwegian University of
Science and Technology (NTNU). The project is conducted throughout
the spring semester 2021 as an in-depth evolution of the specialization
project carried out one semester earlier.

The topic of the research is suggested by Gintel AS, a technology ven-
dor for Communication Service Providers (CSPs), and thus the research
itself is heavily practice-oriented. The work is supervised by Kornschnok
Dittawit and co-supervised by Bjgrn Gulla, both representing Gintel AS.
Kornschnok Dittawit is also the responsible professor for the project at
NTNU.

Acknowledgements

One does not go far alone, and this thesis is no exception. It would
not happen, if not for all the wonderful people in my life continuously
encouraging, inspiring, or leading me - or all things together.

First of all, I would like express my deep appreciation to my supervisors
Bjgrn and Peach, whom I've also been privileged to call my colleagues,
for their incredible mentorship and all the time invested in me and this
project.

I would also like to thank my dear family for their unconditional love
and support and for being my safe haven.

Many thanks go to my friends for all the joyful distractions they
caused me: after all, all work and no play makes Jack a dull boy.

Last but not least, I am grateful to NTNU and Norway for opening
their doors to me and helping me, despite all the odds, to make my
life-long dream come true.

List of Figures

List of Acronyms

1

Introduction

1.1 Context
1.2 Motivation and research focus
1.3 Methodology
1.4 Thesisoutline

Omnichannel

2.1 Definition and capabilities
2.2 Maturity model
2.3 Approaches to omnichannel enablement
2.4 Example of industrial implementation

Unified communications

3.1 Motivation of study
3.2 Technical insights

Distributed Feature Composition

4.1 Main definitions
4.2 Omnichannel potential

General framework requirements

5.1 Modularity and service flow
5.2 Channel agnosticism
5.3 Datamodel

Conceptual framework

6.1 Proposed model
6.2 Design constraints

Contents

ix

xi

DLW N

© 00 N N

13

............... 13
............... 14

17

............... 17
............... 20

23

............... 23
............... 24
............... 24

25

............... 25
............... 28

vii

7 Prototype 31

7.1 Exampleservice. 31
7.2 Basic test scenario Lo 34
7.3 Advanced test scenario Lo oL 37
7.3.1 The first interaction 37
7.3.2 The second interaction 38
7.3.3 The final interaction L. 38
7.4 Test environment Lo L L Lo 43
7.5 Implementation o 44
7.6 Testing procedure. L Lo 46
8 Discussion 49
8.1 Service semantic 49
8.2 Feature-Interaction decoupling 50
8.3 Incremental omnichannel enablement 51
8.4 User and service authentication 51
8.5 Non-functional aspects L o 52
8.6 Prospects 52
8.7 Summary 53
9 Conclusion 55
References 57
Appendices
A Appendix A 63
A.1 Conversation Manager 63
A2 Interaction 67
A.3 Messagelnteraction oL 71
B Appendix B s
B.1 Conversation DML (MySQL) 7
B.2 Imteraction DML (MySQL) 78
C Appendix C 79
C.1 sipp/advanced_scenario/send_init.xml. 79
C.2 sipp/advanced_scenario/send_ack.xml. 80
C.3 sipp/advanced_scenario/menu_select_yes.xml 81
C.4 sipp/advanced_scenario/menu_select_no.xml. 82
C.5 sipp/advanced_scenario/send_reinit.xml 83
C.6 sipp/advanced_scenario/send_nack.xml 84
C.7 sipp/run_advanced_scenario.sh 85

List of Figures

1.1 Designcycle. 4
2.1 Omnichannel evolution 9
2.2 Approaches to omnichannel realization 10
2.3 Genesys Engage high level architecture 11
2.4 Genesys Context Services resources 12
3.1 UCreferencemodel 14
4.1 Example of DFC setup signalling graph 18
4.2 Example of shared operational data 19
4.3 Communication setup 20
4.4 Separate media control in BoxOS implementation 21
6.1 Conceptual framework for omnichannel communication services 26
7.1 Example service created in EasyDesigner 33
7.2 Example service general logico 35
7.3 Basic test scenario: successful service execution without service resume 36
7.4 Basic test scenario: SIP sequence 37
7.5 Advanced test scenario: initial interaction flow 39
7.6 Advanced test scenario: second interaction flow 40
7.7 Advanced test scenario: final interaction flow 41
7.8 Advanced test scenario: SIP sequence 42
7.9 Prototypesetup 43
7.10 Omnichannel enablement class diagram 45
7.11 Prototype test as per advanced scenario 47

ix

List of Acronyms

CSP communication service provider.

CX customer experience.

DFC Distributed Feature Composition.

DTMF dual-tone multi-frequency signaling.
IMS IP-Multimedia Subsystem.
NTNU Norwegian University of Science and Technology.

SCE Service Creation Environment.
SEE Service Execution Environment.

SIP Session Initiation Protocol.

UC unified communications.

UCC unified communications and collaboration.

VoIP Voice over Internet Protocol.

Xi

Introduction

1.1 Context

Digital transformation is an established trend for communication service providers
(CSPs) aimed at leveraging new technology to build all-digital brands. The ultimate
goal of a digital transformation is to grow CSP’s revenues through reducing operational
costs, increasing efficiency and customers loyalty. Improving customer experience
(CX) allows to achieve higher customer satisfaction and reduce customer churn.
Omnichannel transformation is one of digital transformation initiatives addressing
CX enhancement by focusing on ensuring seamless and consistent interactions between
CSPs and their customers across a variety of channels [Fin20]. According to [TMF18]
and [Turl5], CX becomes a key differentiator for CSPs offering otherwise similar
services, so CSPs have to close the omnichannel gap to retain the market [CC17,
Cox18].

Digital transformation initiatives have been ongoing since 2015, but they were
not prioritized and lacked alignment [NCT*20]. The COVID-19 pandemic revealed
the significance of digital transformation as rates of customer conversion to digital
channels have accelerated [BKv'™20, OU20]. At the same time, the proliferation of
such channels drives customers’ expectations of a holistic CX. Although unification
of customer engagement channels through omnichannel transformation has become a
strategic priority, it is projected that half of large organizations will fail to meet this
objective by 2022 [ML20].

As a matter of fact, many of out-ot-the-box omnichannel solutions available on
the market today are implemented as discrete silo offerings which require further inte-
gration efforts in achieving tailored CX [WSP20, McE20]. Tight coupling of channels
and fixed scenarios resulting in monolithic architectures is a common phenomenon.
Not only such an approach results in high customization and maintenance costs, but
it also acts as a barrier to digital transformation [FMWS16, NGO™19]. Thus, digital
transformation calls for a shift from monolithic architectures towards layered stacks

2 1. INTRODUCTION

of modular, composable, and reusable services. The first step in this direction would
be to decouple channel-specific handling from business logic and thus break channel
silos.

This project is done in collaboration with Gintel AS, a software company focusing
on offering rich communication solutions to CSPs. Gintel voice solution allows to
easily compose complex tailor-made business logic for voice communication process-
ing, whereas for other types of channels (chat, SMS/MMS) similar functionality is
offered as a set of fixed scenarios. Gintel would like to introduce a unified core en-
abling channel-agnostic Service Creation Environment (SCE) and Service Execution
Environment (SEE) to respectively define and execute channel-agnostic building
blocks.

For Gintel, an omnichannel adaptation is seen as an introduction of a unified core
enabling SCE to make use of various building blocks to configure channel-agnostic
business logic and SEE to instantiate and execute these blocks while efficiently
decoupling channel-specific handling from business logic. It is crucial that such a
solution provides cost-efficient means to deal with business logic variability as it is
now done for voice services. The core should allow for an easy integration of new
channels and ensure the common processing across all the channels integrated. The
unified core would enable other omnichannel enhancements in the future such as
cross-channel context sharing. The reason for such transformation is twofold: a single
unified solution would be more cost-efficient to maintain and extend and at the same
time it would be an eligible candidate for integration into a full-scale omnichannel
solution of a CSP.

1.2 Motivation and research focus

Although the omnichannel concept has existed for almost a decade [HB10], it has
been mostly elaborated and extensively used in the domains of marketing and
management. Technological omnichannel initiatives proved to be challenging and
impeded by the ever-changing scope comprised of emerging communication channels
and new customer behaviour patterns. Omnichannel concepts have been a subject to
misinterpretation and speculation resulting in multichannel solutions marketed as
out-of-the box omnichannel products. There has been little to none consolidation of
efforts of research community and industry to create a consistent knowledge context,
establish best practices, or introduce standardization when it comes to technological
omnichannel transformation.

As discussed in Section 1.1, omnichannel transformation remains one of the top
strategic priorities for CSPs as it, among other initiatives, constitutes a prerequisite
of a successful digital transformation. Moving away from an ad hoc design and silos

1.3. METHODOLOGY 3

implementation to a common platform will ensure a uniform operation across all the
channels thus making system’s behaviour more predictable, optimizing customization
and maintenance costs as well as costs of system’s enhancements with support of
new communication channels [FLB'17]. Therefore the objective of this project is
to look into the traditional approach to building communication services as well
disperse findings and advancements in respect to omnichannel transformation and to
elaborate on the common description of omnichannel-enabled framework concept and
its successive mapping on a prototype architecture, with Gintel voice solution serving
as a baseline. Although omnichannel transformation of communication services is a
complex topic, the project is going to be focused on the functional aspects of building
an omnichannel-enabled framework. Respective research questions were formulated
during the course of the preliminary specialization project, see [Lar20], as following;:

Q1: What could be functional requirements for an omnichannel-enabled framework?
Q2: What are possible design constraints?

Q3: Is such a framework viable given its potential benefits and limitations?

1.3 Methodology

The project aims to contribute to omnichannel transformation by proposing a unified
framework for omnichannel services as an improvement of existing solutions based
on siloed implementations. Being an improvement problem, it is a subject to a
solution-oriented methodology such as design science with a framework designed
being an artifact, or an object of study. Design science iterates over two problem-
solving activities: designing an artifact to improve a problem context and answering
knowledge questions about the artifact in context [Wiel4]. Proposing a framework is
a design problem and a cornerstone topic of the project, whereas knowledge questions
are motivated by the design problem and are formulated as research questions, see
Section 1.2.

Both design and investigation are tightly connected, but for this project the
design is primary to the investigation. Therefore, a design cycle as defined in [Wiel4]
is followed, see Figure 1.1. This cycle is a part of a larger engineering cycle which
also includes implementation (application of the treatment in the real context) and
its evaluation. As a design science research project, this project’s scope is confined
to the design cycle only.

Problem investigation stage should result in understanding of the context and
triggers of a change and formulation of requirements through the study of existing
knowledge context. This context is obtained with a help of literature study including
academical and technical papers as well as professional books and whitepapers

4 1. INTRODUCTION

7 Problem investigation

Treatment validation Treatment design

Figure 1.1: Design cycle. Adapted from [Wiel4]

addressing design of communication services, including omni- and multichannel
solutions as well as UC. In many cases, available specifications are defined on a
high-level so that a method of inference has to be used in order to draw conclusions
about technical details and motivation behind particular design choices. In addition
to that, technical evaluation of the Gintel solution is going to be performed as Gintel
solution is going to serve as a baseline for further work. Last but not least, the
knowledge context is going to be contributed with domain insights obtained from
Gintel experts during technical interviews. The initial problem investigation is to a
great extent covered in this report.

During the treatment design stage, a proposal of a unified framework is going to
be made. Here a case-based inference is going to be applied to a pre-defined scope
based on selection of cases and channels. This method would allow to elaborate on
general use framework through iterative extension of the scope during scaling-up.
The latter is a subject to further iterations of the design cycle and hence out of the
current project scope. The work is going to be occasionally supported with the same
methods applied during the previous stage.

During the validation stage, an experimental implementation, or prototype, is
going to be prepared. The prototype’s purpose is to prove the feasibility of the
architecture proposed in the previous stage. The prototype is going to be assessed
in respect to its functional compatibility to the baseline, answering requirements
formulated during the investigation stage and potential to further extension during
scaling-up. The results of validation in their turn serve as a knowledge base for the
next iteration of the design cycle. However, due to the constrained timelines and
resources, the cycle is going to be limited to one or few iterations.

1.4. THESIS OUTLINE 5

1.4 Thesis outline

The thesis is structured as following:

— Chapter 1 presents the context and the motivation of the project. The research
questions and methodology are also defined in this chapter.

— Chapters 2 through 4 are used to establish knowledge context essential for
understanding implications of omnichannel enablement when applied in the
domain of communication services.

— Chapter 5 addresses the first research question by elaborating on the re-
quirements for the unified framework as a tool to both design and execute
omnichannel communication services.

— The second research question is addressed by Chapter 6 where a conceptual
model of a framework is proposed and initial analysis of associated design
constraints is conducted.

— Chapters 7 to 8 elaborate on the third research question by the means of
prototyping and discussing its results in terms of additional insights both for
the proposed framework and in a broader perspective.

— Finally, Chapter 9 provides a brief summary of the project.

Omnichannel

2.1 Definition and capabilities

Ommnichannel (alternatively spelled as omni channel and omni-channel) is a capability
to create seamless, consistent and personalized CX across a variety of channels and
thus enable customer-centricity. This capability addresses the traditional configu-
ration of siloed channels operating in parallel rather than in concert. The concept
originated and was consistently developed in marketing and management domains,
but technology plays an instrumental role in the omnichannel enablement [Turl5].
The omnichannel capability is considered to be a highly demanded emerging ca-
pability of communication platforms [OU20]. This project addresses omnichannel
enablement as applied in the technology domain.

Emergence of new communication channels is an ongoing process which has
particularly accelerated during the past decade. In addition to traditional Voice &
Telecom services (calls, IVR, VOIP etc.) and email, customers are now presented with
a variety of applications and social media they can use to interact with CSPs. One
of the omnichannel imperatives is to support customer’s choice of channel [TMF18].

In its turn, the adoption of new channels influences customer behaviour patterns
and makes customer interactions more intense and varied [CC17]. The straightforward
consequence of enabling customer interaction over multitude of channels is that of
customers switching between those channels during a single interaction with a
CSP. Statistics gathered by [HB10] illustrate this phenomenon: 74% customers use
three and more channels to complete a transaction with their CSP. Such customer
behaviour pattern is called channel hopping: a customer moves between channels and
expects to proceed with the same transaction after having moved to a new channel
[Turl5, Turl7]. As a degenerate case, a customer might even use several channels
simultaneously and still expect it to be handled as a single interaction. CSPs have to
recognize such channel-spanning interactions and provide seamless handover by the
means of preserving and passing context and data associated with the interaction.

8 2. OMNICHANNEL

Channel hopping support is also relevant for providing customer service automa-
tion (chat- and voice-bots, virtual assistants etc.). The employment of non-assisted
channels allows CSPs to reduce human involvement and keep transaction costs low:
it is estimated that between 20% and 40% of interactions volume can be handled by
self-service functionalities [MRE"21, PPM18]. However, a complex situation might
require a resolution in a semi-assisted manner which implies switching to one of the
assisted channels. In this case, it is a must to provide smooth and transparent to the
customer handover [Turl?7].

Functional capabilities of omnichannel, as stated by [TMF18], address channel
hopping support by the means of consistent customer’s identification and application
of business rules as well as data integration. CSP need to recognize the actual customer
and associate it with other access identifiers across all channels and respective access
rights. Customer’s data should be integrated across channels, as opposed to data
fragmentation inherent to traditional siloed solutions, to establish a common view
of the customer [PPM18]. Omnichannel implies a high degree of automation, so it
is necessary to ensure a consistent set of business rules applied to each channel to
enable service consolidation and uniform system behaviour [FMWS16].

Customer data usage can be also used for gaining deeper insights into customer
behaviour to drive improved outcomes. Hence, knowledge management represents
another important functional capability of omnichannel [TMF18, PPM18]. Knowl-
edge management relies on data harvesting with the successive feeding of the data
gathered into analytical functions and employing the outputs to optimize operation
of a CSP. For example, predictive analytics, along with Artificial Intelligence and its
most popular implementation Machine Learning, are used to provide non-assisted
interactions, for example, by performing tasks of automated topic detection and
categorization and thus improving first call resolution rates [Turl7].

As omnichannel enablement relies heavily on customer data processing, it has
to adhere in such processing to existing legal requirements such as General Data
Protection Regulation (GDPR), applied to organizations operating within EU. This
has a direct impact on user identification procedure as well as on personal data
transfer, storage, and synchronization which should in no way compromise customer’s
security and privacy [PPM18, PMP18|. Privacy capability of omnichannel is critical
to retaining customer’s loyalty and trust as essential components of CX [TMF18].

2.2 Maturity model

Omnichannel maturity model, suggested by [TMF18], allows CSPs to evaluate their
maturity in respect to omnichannel enablement. Maturity levels represent evolution
of omnihchannel, see Figure 2.1, with its predecessors defined as:

2.3. APPROACHES TO OMNICHANNEL ENABLEMENT 9

— Single channel: disparate channels for customer interaction and siloed operation
on CSP’s. Each channel offers a unique CX.

— Multi-channel: CX across channels has increased consistency but remains
fragmented. Customers are restricted to one channel during a transaction.

— Cross-channel: provides initial channel integration capabilities and consistent
view from a customer’s perspective.

1 1211 2 9
¢ COPSCOPS OP
-

Figure 2.1: Omnichannel evolution. Adapted from [Turl5]

The model defines maturity across multiple, not exclusively technical, dimensions.
A CSP may have different level of maturity in different dimensions.

It is worth noticing, that the terminology presented above is not uniformly adopted
in the industry which reflects absence of common understanding. In addition to
that, there is a marketing trend to attribute omnichannel properties to the products
which are in their essence multi- or cross-channel [WSP20]. That leads to the general
depreciation of the terminology as such.

2.3 Approaches to omnichannel enablement

Being one of the main drivers of the structured approach to the omnichannel enable-
ment, TM Forum have identified and assessed a number of approaches to omnichannel
enablement in [TMF18]. The main approaches are demonstrated on Figure 2.2 with
parts of a system which are subject to change colored with orange.

The approaches vary greatly in terms of associated risks, costs and functional
potential. For example, platform-based enablement (see Figure 2.2a) exists in two
variations: a greenfield approach (replacement of the current communication platform)

10 2. OMNICHANNEL

Communication platform Communication platform

(a) Platform-based enablement (b) Channel-based enablement

Communication platform
(¢) Encapsulated enablement

Enablement layer

Figure 2.2: Approaches to omnichannel realization. Adapted from [TMF18]

and an incremental transformation of the current communication platform. The
greenfield approach allows to address the complete omnichannel feature set with
a promise of full interoperability as no alignment with legacy systems is required.
However, such a solution comes with particularly high risks and costs, in particular,
capital expenditures (CAPEX). The incremental approach introduces changes in
a more controllable way and allows to retain legacy processes. On a downside, it
comes with a risk of breaking such legacy processes. Moreover, the incremental
transformation inherits limitations of the the current platform thus restricting a
full-fledged omnichannel enablement.

Channel-based enablement (see Figure 2.2b) could be considered the most safe
and economical way to omnichannel enablement, had it not been highly constrained
by the existing core stack. This approach is not likely to lead to the required level of
consistency between channels.

Finally, there is an option to encapsulate omnichannel capabilities in an enable-
ment layer, see Figure 2.2c. Much like the incremental transformation, such an
approach is influenced by limitations of the current platform, but allows to orches-
trate implementation to introduce system complexity in a more controllable and

2.4. EXAMPLE OF INDUSTRIAL IMPLEMENTATION 11
agile manner.

2.4 Example of industrial implementation

The concepts discussed in Section 2.1 can be illustrated with an example of industrial
implementation. Genesys Engage is as a full-featured omnichannel engagement
solution comprised of a broad range of products [Gend]. It is also an only found
example of a commercial solution with publicly available technical specification
defined at a proper level of detail and from a perspective relevant to the discussion
of omnichannel enablement.

From the omnnichannel perspective, Conversation Manager (CM) is a cornerstone
component of Genesys Engage solution, see Figure 2.3. CM enables orchestration of
CX across a multitude of channels using customer engagement context and business
rules to decide when and what action to take. The context awareness is addressed
by Context Services (CS) sub-component of CM, and Genesys Rules System (GRS)
decides on business logic to be applied. The logic is then executed by another
channel-agnostic component, Orchestration (ORS).

8,

Customer

‘Conversation Manager

Genesys
Rules System

Chat GMS
Interaction
Server
Teacker D

Engagement

Context lourney:
Services Timeline

B

Web Engagement Events,
‘Web Identity, Visit History

Pulse
Collector

Data depot +
collector

Journey History
(Services, States, Tasks)

Pulsa
{lourney
Dashboard)

ﬁ Reporting User

Pulse collector DB
(Data snapshots)

Figure 2.3: Genesys Engage high level architecture. Source: [Genb]

In addition to publishing the high level architecture of their solution, Genesys
also elaborate on some concepts underlying the omnichannel implementation. For

12 2. OMNICHANNEL

example, an omnichannel conversation is defined as a composite entity comprised of
an arbitrary number of interactions spanning an arbitrary number of channels during
an arbitrary period of time with those interactions related by context. The context
is further defined as a combination of a service, a state, a task, and other relevant to
the conversation data [Genb]. Service is a business process comprised of one or more
communications between a customer and an enterprise. A service can be divided
into a set of states to transition between them. A state can in its turn include a list
of tasks [Genal]. Such a structure of nested entities, see Figure 2.4, allows to define
context with high granularity which then helps to introduce flexible business logic to
handle each step of a customer’s journey in an optimal way.

Service
~
State 1 State 2 State 3
/ / /
— Task 1.1 —1 Task 2.1 —1 Task 3.1
— Task 1.2 —1 Task 2.2 —1 Task 3.2
— Task 3.3

Figure 2.4: Genesys Context Services resources. Adapted from: [Gena]

The business logic is described by the means of business rules grouped in rule
packages. A package contains an arbitrary number of rules and an associated fact
model describing input for and output of a rule execution [Genc]. A business rule is
then included into a strategy to define a workflow. Genesys provide channel-agnostic
SCE and SEE to respectively define and execute business rules.

As both Genesys and Gintel place strong focus on business logic flexibility (see
Section 1.1), the former makes a particularly relevant example of existing omnichannel
implementation. Some of the concepts defined in Genesys Engage, for example that of
a conversation, are going to be further leveraged during design of omnichannel-enabled
conceptual framework.

Unified communications

3.1 Motivation of study

The term unified communications (UC), also known as unified communications and
collaboration (UCC), refers to a class of communication solutions integrating various
communication channels (voice, video, messaging etc.) to provide a common end-
user view. Although originally UC does not imply having omnichannel capabilities,
some UC vendors (for example, Mitel, Vonage, Avaya OneCloud) explicitly declare
omnichannel support [TFO*20, OU20]. That combination is not surprising as broader
UC offerings also include an integrated contact center, and omnichannel enablement
to a great extent addresses issues of a contact center [Bocl7].

There are also other aspects of UC which make it particularly relevant to the
discussion of omnichannel. UC address continuity of user experience in the sense of
device handover: user’s communication activities have to be seamlessly transferred
among multiple devices running UC so that the user can switch between those
devices and pick up where the user left off [PMF*17]. Device handover is enabled by
maintenance and continuous synchronization of a shared context between instances
of UC running on different devices. The shared context is also required to provide
a unified view of various communication channels to the end user. For example, a
conference call is often enhanced with a chat for the conference participants, and the
common participants list have to be maintained both for the call and the chat so
that users who joined or left the call are also added to or removed from the chat,
respectively. Now, it is easy to draw a parallel with the context preservation during
the channel hopping (see Section 2.1).

Such an overlap in the topics of omnichannel and UC allows to use the latter as
a complement to the problem context and try to gain additional technical insights
into the topic of communication channel merge.

13

14 3. UNIFIED COMMUNICATIONS

3.2 Technical insights

This section makes an effective summary of technical insights gained from studied
research papers on topic of UC and open documentation on UC commercial solutions.

Despite a plethora of communication channels, any communication can be effec-
tively classified as being either asynchronous or synchronous. The latter (such as
a voice or video call) can naturally be perceived as a conversation. A conversation
relies on the availability of all the parties involved and requires complex setup,
handling, and teardown with a state maintained throughout the duration of the
conversation. An asynchronous communication (such as an e-mail, SMS/MMS) can
be denoted as a notification which requires neither availability of the destination
party nor maintenance of a state. Since UC aims at providing a common processing
for all kinds of communication, a notification is considered to be a special case of
conversation thus allowing to define a common denominator in the processing of both
types of communication [HR04, GCM12|. Using Genesys Engage discussed earlier
as an example, one could follow the natural evolution of such UC terminology in
regards to omnichannel.

Common communication handling also implies usage of a flexible and extensible
control protocol. The common choice for such a protocol is Session Initiation Protocol
(SIP) [ZJ10, TLCZ14, BGK16]. SIP is an application-layer control protocol for
handling multi-participant multimedia sessions. It provides primitives, or mechanisms,
that can be used to implement meaningful services as well as extension points to
introduce custom operations [IETa]. SIP can also be used to carry data, but normally
a separate point-to-point path is established for media flow, see Figure 3.1.

Server 1

Server 2

SIP
SIP

Client 1 e e e > Client 2
P2P media path

Figure 3.1: UC reference model. Adapted from: [ZJ10]

Research on UC topic touches upon the context-awareness as a requirement for

3.2. TECHNICAL INSIGHTS 15

UC to be embedded with business systems [HR04, GCM12, RT09]. It is proposed
to encapsulate such a functionality into a separate component, for example, a
stand-alone extensible Context Service with an exposed API [HR04, HSD'02] or
Contextualization module providing work context as described in Section 3.1 [RT09].
Once again, these ideas have a clear resemblance with the omnichannel-enabled
architecture as discussed for Genesys Engage.

The insights discussed have been derived from the disparate research. Despite
the high expectations, the study of existing offerings, both omnichannel and UC,
with the exception of Genesys Engage, failed to provide any applicable inputs for the
omnichannel discussion. The study included but was not limited to Omnichannel
Enterprise Call Center and Contact Center by Mitel [Mit], Omnichannel Contact
Center by Cisco [Cisa] and Unified Communications and Collaboration by Cisco

[Cisb].

Distributed Feature Composition

4.1 Main definitions

Distributed Feature Composition (DFC) is a component-based approach for specifi-
cation and implementation of telecommunication services. It was first introduced
in 1998 in [JZ98] and then further elaborated and used in subsequent research in
design and development of media services. DFC has also been employed for imple-
mentation of both commercial Voice over Internet Protocol (VoIP) solutions, such as
AT&T CallVantage [BCGT05], and numerous prototypes and demonstration services
[Zav09, ZC09].

The central concept of DFC is that of a feature which is an increment of function-
ality enhancing a basic communication capability. A service is a set of features which
is usually used to market and sell those features as a whole. In this sense, features are
concepts to explain a behaviour of a service to its users [BCGT05]. From the software
development perspective, a feature is a standalone component which encapsulates
some common functionality and could be independently specified, developed and
tested, whereas a service is a specific composition of such components [JZ98, Smil0].

DFC is a domain-specific adaptation of pipes-and-filters architectural pattern
which enables structured composition and promotes principles of loose coupling and
reusability. This pattern allows to design a system as an easily modifiable graph
where nodes (filters) represent context-independent components linked by edges
(pipes) representing data streams. In DFC, features play the role of filters and pipes
are realized by the means of internal calls [ZJ02]. Each request for service is then
satisfied by a dynamically assembled signalling graph of features corresponding to the
services enabled for the parties involved in the communication. An example of such
a signalling graph is presented on Figure 4.1 and describes setup of communication
from party A to party B where the latter has Call Forwarding Busy (CFB) feature
enabled. In case a busy signal is received, CFB alters the signalling graph by creating
a new communication leg to party C while terminating a previously created leg to

17

18 4. DISTRIBUTED FEATURE COMPOSITION

party B. All the parties are connected to the DFC graph via interfaces (I) which are
also features. The signalling path is comprised of features (F) defined in services
assigned to the parties.

source = A source = A

target =B target=B ﬁ
D—» A —>» Fa —>» Fa CFBB > FB —>» B [—>

Party A

Y source=A
target=C

upstream in
respect to CFB 4 Fc N Ic f------

downstream in
respect to CFB

Figure 4.1: Example of DFC setup signalling graph. Adapted from: [Zav09]

In DFC, each feature should meet the following requirements [Zav09, Zav11]:

1. transparency, in the sense that an inactive feature merely relays signals and
hence is not observable. In the example on Figure 4.1, CFB initially behaves
transparently and does not alter up- or downstream signals, unless the latter
conveys a busy status.

2. autonomy, meaning each feature can act as a protocol endpoint without reliance
on other features. Sitting in the signalling path, a feature is able to observe all
the signals as well as alter or absorb them or generate new ones. In the example
used above, CFB is enabled to take an autonomous action of communication
legs re-configuration based on analysis of a downstream signal.

3. context-independence as a feature neither relies on nor has any knowledge of
other features involved. In terms of the used example, CFB acts on a busy
signal in the same way independently of whether that signal is generated by a
user device or another feature box such as, for example, Do Not Disturb (DND)
feature which could be used to simulate a busy status of party.

To perform their functionality, features may rely on persistent operational data.
This data can be manipulated both by features and through a provisioning interface
separate from communication processing. Provisioning stands for introducing user
and configuration data into a system. For example, provisioning of CFB feature for a

4.1. MAIN DEFINITIONS 19

particular user involves setting a forwarded-to address (party C). This value is then
retrieved by CFB instance during a communication processing.

The operation data could be used for feature cooperation as illustrated on Figure
4.2. Here, operational data is used to store buffered messages which delivery initially
failed. Although operational data represents a valuable channel of communication
between features, it opens the door for accidental feature interactions [BCP104]. A
feature interaction occurs when one feature is affected by another feature so that
the behaviour of the affected feature deviates from its specification and may lead
to the service disruption [CGLT93]. Since the main motivation behind DFC is to
avoid feature interaction, the shared use of operational data is generally discouraged.
Instead, it is recommended to partition operational data by feature and address
(served user) so that a feature can only access its own data relevant to a specific
service invocation [JZ98, BCP*04, Zav09].

source = A

target = B !
— ;... 3| Send | o CTTLT —»| Receive | o | — B —
Message Message

Party A Party B

Message operational data
(Party B)

v

failure treatment

..... «—] Read 1 <« B <—D
Message

Party B

Figure 4.2: Example of shared operational data. Adapted from: [BCPT04]

Apart from the operational data, DFC distinguishes routing data such as sub-
scription data indicating services assigned to a user and precedence data governing
the relative order of features. Routing data is used by feature router to assemble
a graph of features on communication setup [BCG05, Zav1l]. Having received a
setup signal, a feature forwards request to the feature router which then calculates
next feature to forwards the signal to, see Figure 4.3.

The feature router and features interact via an abstract communication control
protocol, or DFC control protocol. The protocol consists of command (setup,
teardown etc.) and status (available, non-available etc.) signals. Although DFC does
make a proposal of such a protocol [ZJ02], it does not necessarily correspond to the

20 4. DISTRIBUTED FEATURE COMPOSITION

feature router |
L

------- I
- '

Party B

Figure 4.3: Communication setup. Adapted from: [JZ98]

required level of modularity in each particular case. More specialized signals allow
to define features in a fine-grained way and build more advanced services. However,
designing such signals in a featureless way is challenging and not necessarily feasible
[Zav09, CS09].

4.2 Omnichannel potential

Initially, DFC did not consider having distinct paths for media and control signalling.
However, a need for such a separation became apparent during DFC implementation.
Firstly, these types of signalling have different requirements in respect to bandwidth,
reliability, etc. Secondly, content of a media channel may be concurrently influenced
by a set of features which calls for a separation of service and media control as shown
on Figure 4.4. Thus, features can be stripped of media-specific logic and defined in a
channel-agnostic manner [BCP104, Zav09, ZC09].

Having channel-agnostic features and a control protocol accommodating both
synchronous and asynchronous communication, one could design a unified service.
For example, the service illustrated on Figure 4.2 could be extended to voice channel
with "Send Message" standing for starting a call with a fallback option of recording
a voicemail and "Read Message" standing for listening to the deposited voicemail
[BCP104].

4.2. OMNICHANNEL POTENTIAL 21

l
B

control i
--------------------------- Media Manager

Figure 4.4: Separate media control in BoxOS implementation. Adapted from:
[BCP104]

A user invoking a service determines a communication channel by choosing an
end device. End devices operate in communication protocols different from the DFC
control protocol. Interoperability between an end device protocol and the DFC
control protocol is enabled by dedicated interfaces, or adaptors. One could define
multiple adaptors as potential entry points of the same service and thus allow that
service to be invoked for the supported channels.

Moreover, [BCPT04] discusses a possibility of handling different channels in the
same service simultaneously by introducing a facade component making devices
supporting different channels function as one. However, that idea was not further
elaborated and did not find a way into the respective implementation.

By allowing one to define a service in a channel-agnostic way, DFC becomes
extremely relevant to the discussion of omnichannel, especially given the general lack
of technical insights thereof. DFC serves as a suitable candidate for further discussion
and design of a unified framework for omnichannel communication services.

General framework requirements

The theoretical baseline discussed in the previous sections allows one to derive general
requirements for a uniform framework for omnichannel communication services. In
the context of the discussion, these requirements are considered functional as they
address different behavioural aspects of the framework as a tool for services definition
and execution. The requirements are grouped with respect to such aspects.

5.1 Modularity and service flow

On the one hand, modularity requirements are driven by best practices in telecom-
munication services design which promote service flexibility and feature reusability.
On the other hand, modularity requirements are suggested by the very definition of
omnichannel. An omnichannel service shall support channel hopping which implies a
possibility of a service interruption with a successive service resume. That notion
suggests a non-monolithic structure of a service.

Hence, the framework shall define a service as a composition of independent
blocks of functionality, or features. A service defines one or many service execution
paths as sequences of successively invoked features which selection is dynamically
defined by the service logic. Each feature must be defined in a self-contained manner,
without making any assumptions about other features or their relative ordering along
service execution paths.

The framework shall define at least one default entry point for each service.
An entry point is a feature triggered upon a new service invocation. Each service
invocation shall be unambiguously identified by the service triggered and the served
user. The framework shall define at least one condition which allows to indicate
a successfully completed service invocation. Any alternative outcome of a service
invocation shall be treated as an interrupted service invocation. The framework
shall detect an implicit service interruption caused by channel hopping. A service
invocation which neither has been completed or interrupted is considered to be active,

23

24 5. GENERAL FRAMEWORK REQUIREMENTS

and the framework shall ensure all the active service invocations at any instance of
time are uniquely identified by a service and a served user.

The framework may allow service resume as a treatment for an interrupted
service invocation by defining restore points for the service. A restore point is a
new entry point only employed for a new service invocation associated with an
existing interrupted service invocation, with an association performed on behalf
of the framework. A restore point shall optimize the new service invocation by
effectively reducing the respective service execution path.

The framework shall allow to define wutility services addressing cross-cutting
concerns such as logging, monitoring, audit, error handling etc. The framework shall
provide means for interaction of utility services with feature-based services.

5.2 Channel agnosticism

The cornerstone of omnichannel is that of providing a consistent processing via
different communication channels. Hence, requirements to the framework should
tackle decoupling of service logic and channel-specific processing.

Despite the abundance of communication channels, all of them could be classified
as being either synchronous or asynchronous. The framework shall provide support
for both modes of communication. The framework shall also support a change of
communication mode during service resume thus effectively enabling channel hopping.
This also implies the framework shall recognize the same user across different channels.

The framework shall define services and features in a channel-agnostic manner
in respect to both business logic, data, and semantics. The framework shall define
an abstract control protocol for feature interaction, or service orchestration. The
framework shall enable conversion of external channel-specific signalling into the
internal protocol and vice versa by the means of peripheral adaptor features. The
framework shall enable media control separate from business logic expressed by
features.

5.3 Data model

The framework shall define a common data model to describe users, services and
service invocation states regardless of a channel in use as well as a data normalization
mechanism to transform non-compliant data to the common data model model. The
framework shall allow to establish a service execution context as a combination of
global configuration data, user data and state data relevant to a particular a service
invocation.

Conceptual framework

6.1 Proposed model

The unified framework for omnichannel communication services can be defined in
terms of classes of entities and character of their relationship. The conceptual
framework proposed is based on the requirements discussed in Section 5 and the
problem context study conducted during the course of the project. Speaking of the
problem context study, design of the model is heavily based on Genesys Engage
discussed in Section 2.4 and DFC discussed Chapter 4. The conceptual model is
illustrated on Figure 6.1.

The cornerstone idea of the framework is that of clear separation between two
following concepts:

— Conversation as an entity consolidating multiple attempts of a particular
User to trigger execution of a specific Service until that execution has been
successfully completed or permanently invalidated (for example, due to some
expiration conditions).

— Interaction as one of such attempts. An Interaction has an associated Ezecution
State.

In line with the previously established requirements, all currently executed
Conversations are uniquely identified by a pair of a User and a Service. At the same
time, a User can have multiple ongoing Conversations as long as they involve distinct
Services. The illustration of the model (see Figure 6.1) does not capture a unique
association between a User/Service pair and a Conversation. The reason for that
is that the constraint has only an immediate effect and is not applicable in time
perspective. In other words, the history of Conversations may contain entities with
duplicated User-Service pair. However, this fact does not impede a differentiation of

25

26 6. CONCEPTUAL FRAMEWORK

User

1 1

* Conversation ([@p—————— Interaction |@——————— Execution State

— 1. 1
{ordered}

1 0.*
manages A executes on A '--»--»----------»--»---1--> Channel
Conversation 1 defines
"""""""""" Feature Feature

1 i

1 1. Zr
1 Service

Orchestrator

—— Matching Rule Restore Point

executes W

! matches A Manager <« operates on « behaviour of

i Service 1

has defined W

Execution Success
Criteria

Figure 6.1: Conceptual framework for omnichannel communication services

distinct Conversations as it is possible to distinguish them based on their execution
time.

The logical separation of the two entities supports notions of the continuous
service execution and the service resume. If an Interaction is interrupted, it is
possible to derive a non-default State for a newly issued Interaction in the scope of
the same Conversation and continue with the service execution in an optimized way,
without having to start the Service from scratch.

A Conversation maintains order of the associated Interactions with respect to
their start time with newer Interactions normally having precedence over the older
ones. Having such an order in place helps to correctly derive State upon the service
resume: for example, if there have been multiple interrupted Interactions, only the
most recent is used for the state derivation of a successive Interaction. The particular
service resume procedure, however, is dictated by underlying business logic and can
override the default order of precedence for Interactions.

6.1. PROPOSED MODEL 27

Each Interaction is associated with a particular Channel from those offered to
Users. A Conversation itself is omnichannel as it can be conducted via multiple
channels without having direct dependencies on those channels. In other words,
channel hopping is supported during the course of one Conversation.

The framework relies on two global entities acting in tandem to provide Users
with consistent Services:

— Conversation Manager performing matching of Conversation and Interaction
based on a set of Matching Rules as well as consistent management of those
entities;

— Service Orchestrator performing feature routing based on User and Service
configuration and a state of the matched Interaction.

The initial matching of pending Conversations by User and Service is performed by
an implicit Matching Rule whereas explicit Matching Rules allow to apply additional
business logic to narrow the selection even further. For example, an initially matched
pending Conversation may be considered invalid if the last associated Interaction has
a one-week-old timestamp. In this case, Conversation Manager has to permanently
invalidate it and create a new one. Once Conversation matching is done, an Interaction
matching in scope of this Conversion is performed: in case of a non-interrupted
service execution, the currently pending Interaction is used in further processing,
otherwise a new Interaction is created. Then, the Service Orchestrator uses the
matched Interaction in service execution.

There are a few more concepts involved which are used to describe the business
logic applied to an Interaction by the Service Orchestrator:

— Feature Template defining business logic unified by a single purpose as well as
parametrization options of that logic;

— Feature as an instance of a Feature Template which parameters are set to either
explicit or default values;

— Service as a composition of Features;

— Restore Point as a special sub-type of a Feature which declares that Feature
is a part of the service resume strategy defined in the scope of the respective
Service.

A Feature Template defines a general behaviour whereas a Feature allows to
supply some specific parameters to this behavior and thus derive its service specific

28 6. CONCEPTUAL FRAMEWORK

version. For example, a Feature Template for Call Forwarding Feature may allow
to specify a forwarded-to number in different ways (as a static value, a database
query etc.) whereas a particular Feature chooses one of these options to provide
an unambiguous behaviour. The separation of a Feature Template and a Feature
serves multiple purposes such as reusability (as the same Feature Template can be
used for setup of multiple Features both within the scope of a single Service and
across a number of Services) and flexibility (as it is possible to derive variations of
general behavior defined by a Feature Template by setting up Features with different
parameters).

A Service may or may not have Restore Points defined which indicates this Service
being resumable or not, respectively. A Service, however, must have an Ezecution
Success Criteria defined to be able to recognize service logical completion and
distinguish it from the situation when the Service execution was interrupted. Once
an Execution Success Criteria is satisfied, the running Interaction and the respective
Conversations are considered to be completed, even though the Service might still
have some post-processing logic being executed. Both an Execution Success Criteria
and Restore Points are defined by business rules behind the respective Service.

The Service Orchestrator executes Features on the matched Interaction which
means that Features operate on Interaction effectively changing its State and dele-
gating it any channel-specific logic. On practice, that implies Interaction providing a
channel-agnostic interface supporting general operations to be performed on commu-
nication.

6.2 Design constraints

Although the conceptual model is defined on the high level of abstraction, it still
could be analyzed in respect to constraints this model potentially introduces to the
design of omnichannel communication services.

The first constraint relates to the notion of the conversation matching. The
proposed requirement is that of limiting the number of concurrent Conversations
for the same User-Service pair to one. Strictly speaking, this is not an explicit
requirement of omnichannel but rather a working assumption: even if a User makes
simultaneous attempts to trigger the same Service, it might be practical for the
service provider to optimize the service fulfillment by ignoring or suppressing all
but one such an attempt. However, specific business rules behind the service may
still allow a User to have multiple parallel Conversations being executed for the
same Service. Since Conversations are channel-less, such a situation may present an
issue for correct matching of a Conversation due to the lack of uniqueness in the
Conversation definition. As the service resume procedure relies on the conversation

6.2. DESIGN CONSTRAINTS 29

matching, it also becomes non-deterministic. The added flexibility to the framework
should be compensated with additional criteria for unambiguous differentiation of
Conversations allowing to effectively resolve the conversation matching issue.

Another constraint of the model relates to the interoperation of Features and
Interactions. As it was mentioned before, such an interoperation is enabled by a
channel-agnostic interface which allows to decouple business logic defined as behavior
of a Feature and channel-specific logic defined within a respective Channel entity.
The model assumes that such an interface could be defined in the first place. However,
the task of such an interface specification is non-trivial and depends on such factors
as set of channels and operations to be supported as well as a required level of detail
in an operation’s definition. For example, a Termination feature defined in the Gintel
solution is responsible for establishing and handling connection between two parties.
This feature is defined in the terms of a voice channel and as such provides options for
customized handling of a disconnect event, also distinguishing which party initiated
that disconnect. However, extending this notion to an asynchronous channel is at
the very least not straightforward, if feasible at all. In any case, it requires a service
designer to elaborate on a well-thought semantics behind the services which could be
generalized across different in their nature channels.

Prototype

According to the discussed methodology, the validation of the proposed conceptual
framework is done by implementing a prototype using Gintel Call Handling solution
as a baseline. The current Gintel solution allows to define and execute complex
tailor-made services for the voice channel only, see Section 1.1 for more details.
The initial ambition is to perform the platform’s omnichannel enablement for a
limited scope of features and thus create a prototype of the unified framework for the
omnichannel communication services. Creation of the prototype drives the empirical
validation of the proposed framework by investigating the framework’s feasibility,
potential benefits and limitations and thus addresses the respective research question.

It is important to note that the method of validation is inherent to the topic
of the research as the latter is heavily practice-oriented. However, such a method
comes with certain limitations since the results of validation are strongly defined
by its prerequisites (such as baseline, selected scope, etc.) and therefore might
be challenging to generalize. Nevertheless, having the functioning baseline allows
one to concentrate on omnichannel enablement issues and optimize time spent on
feature design and protocol-related development. Results provided are expected to
be sufficient for the first approximation of the unified framework design.

7.1 Example service

Although the Gintel Call Handling is not immediately based on DFC, a certain
resemblance takes place, and such resemblance is sufficient to use the Gintel solution
as a baseline for prototyping the proposed framework which in its term employs some
of the DFC principles.

Like DFC, the Gintel solution is based on the idea of modularity where a complex
behaviour is designed by composition of building blocks called components. The
granularity of those components differs greatly: some are used as a mere means to
conditionally branch execution paths, some could be straightforwardly mapped onto

31

32 7. PROTOTYPE

a DFC feature like, for example, communication barring or making a prompt, and
some components incorporate functionality of several DFC features. A Termination
component could serve as an example of such compound functionality which not
only represents an endpoint connecting the served user to a configured destination
but also encapsulates various forwarding options as well as call control functionality.
For the prototyping, this conceptual misalignment with a Gintel component and a
DFC-like feature could be ignored, and Gintel components are treated as features.

In general, all the features can be divided into two groups: those involving
channel-specific logic and those which are channel-neutral. For the prototyping
purpose, a few features from both categories have been picked up to compose the
example service:

— Menu which first presents the served user with an informative message and
then collects user’s input to determine further service execution path. This is
a channel-specific feature which employs a media server for the playback of the
announcement and enables user input via dual-tone multi-frequency signaling
(DTMF);

— Time Router which checks if current time falls within a configured period to
determine further execution path (channel-neutral);

— Termination which serves as an endpoint connecting the served user to a
configured destination (channel-specific);

— Release which releases communication with a configured error code (channel-
specific).

The example service has been designed with EasyDesigner (a Gintel proprietary
SCE), see Figure 7.1. The example service follows the idea of a main number service.
Main number services allow to streamline incoming communication processing by
using the main number as an exposed contact point of a company and applying some
semi- or fully automated logic to distribute the communication across company’s
agents. It is important to note, that the example service discussed in this section is not
a real-life example and is only used for the prototype purposes. A few simplifications
are made which might not be meaningful in terms of a real service.

The semantics of the example service is that of connecting a user with an agent,
or destination, where the choice of the latter is conditioned by both user input and
time conditions, or schedules. The possible outputs of the service are that of the
served user connected to one of the four possible destinations (200, 300, 401, 402) or
disconnected with an error. The latter represents one of the simplifications made
for the service which might not be applicable to a real-life service. In the example

7.1. EXAMPLE SERVICE 33

service, the Release feature is used to interrupt the ongoing interaction and test
more variations of the service resume. However, a real service is unlikely to have an
execution path deliberately leading to an error.

The prototype scope includes omnichannel enablement for the features used in
the example service to support a message channel along with the voice one which is
already being supported by the Gintel system. For the sake of simplification, these
channels merely represent different communication modes with the message and the
voice channels used for asynchronous and synchronous communication respectively.
In terms of the underlying protocols, both channels rely on SIP with the message
channel taking use of the SIP method of the same name (MESSAGE), see [IETD].
The semantics of the service as applied to the message channel is interpreted as
relaying contents of the original user request used to trigger the service execution
to a destination determined by the selected execution path. This is yet another
simplification made for the example service as pure relay might be of a limited use
for a real-life service.

= EasyDesigner 4.6.1-SNAPSHOT — [m] *

File Edit View Graph Templates Help

b =0— wox x| @] Q] [1[es| o] B2] 5]

Sz
Ho| B e O G

Menu: connectto CS7 TimeRouter: availability check #1 Termination: 200

Example Senvice

it (=32} D=3 (1D=38)
=i

- %,
{1 v

s
ng O ﬁ% Default @ Default °
O =

T
it

[Menu: local language? TimeRouter: availability check #2 Release: error simulation
M (ID=33) (ID=42) (ID=35)
) ’ ™~
| s ||~ S
i N
S 5 v K
Default [deh) [idoh)
S\RA Menu: local office? Termination: 401 Termination: 300
(ID=34) - (ID=40) (ID=38)
G .
5l \ 7
©|m -
™~
~
Ny
RaR | % (N
A
Termination: 402
Basic_| web | (ID=41)
VPH Graph | HTML | Changes

Figure 7.1: Example service created in EasyDesigner

The flow diagram on Figure 7.2 extends the description of the example service.
The diagram covers yet another aspect of the business logic which has to do with

34 7. PROTOTYPE

the service resume. Instead of the feature-based view, the service logic is represented
by the sequence of steps. Each Menu feature is mapped onto three steps such as
making a prompt, processing user input and a condition check. Each Time Route
feature is mapped onto two steps such as perform a schedule check and a condition
check. Both Termination and Release features are mapped onto one step each which
are also the terminal nodes in the graph.

Both a default entry point and a service execution success condition are indicated
along with the interruption condition explicitly introduced to the service logic. The
business rules were defined in a way to consider each prompt and each connect step
as a restore point for the service (colored with yellow). The diagram reveals why the
Release feature was used to introduce an interruption: it is a terminal node which
is nevertheless not used in the service resume and allows to verify that the service
resume is done correctly in respect to the execution path which led to the erroneous
step in the first place. The service execution success condition is for the served user
to be connected to one of a destinations. It translates to a successful INVITE and
MESSAGE transactions for the voice and message channels respectively.

7.2 Basic test scenario

The example service can be executed in a number of ways. For the validation
purposes, it is practical to limit the prototype test scope to a few test scenarios.
The prototype is created via an iterative omnichannel enablement of the baseline.
The first iteration consists of enhancing the baseline with a support of the message
channel. In other words, all the features employed in the example as well as the
service orchestration should support service execution for both the voice channel
and the message channel as selected by the served user during the service execution
triggering.

A basic test scenario is defined as a successful service execution without the
service resume via the message channel. In terms of the proposed framework, the
scenario implies having the service execution success criteria satisfied during the
course of a single interaction performed via the message channel. The basic test
scenario is illustrated on Figure 7.3. The execution path is chosen in such a way so
it includes all types of the omnichannel-enabled features except the Release feature
(Signal error) as the latter is introduced with a single purpose to test the service
resume.

The corresponding STP message sequence is modelled on Figure 7.4. This sequence
is used to verify the basic scenario execution by capturing the related traffic.

Default service
entry point

\ 4

Prompt:
connect to CS?

Prompt
confirmed

Prompt:
local language?

Prompt
confirmed

Prompt:
connect to CS?

Prompt
confirmed

Connect with CS in
local office

v

completion

7.2. BASIC TEST SCENARIO

- Yes Connect with
Available he- i
Schedule check eorern » completion

Signal error

. Yes i i
Schedule check Available ConnecumiticSinl - . 5. completion

local language

Connect with CS in

central office f=-» completion

Legend
Service restore point

[Regular feature

Figure 7.2: Example service logic

35

36 7. PROTOTYPE

Default service
entry point

Prompt:
connect to CS?

Prompt
confirmed

Connect with
attendant

Schedule check Available

Prompt:

local language?, Signal error

Prompt
confirmed

Connect with CS in
local language

Schedule check Available

Prompt:
local office?

Connect with CS in
central office

Prompt
confirmed

Connect with CS in
local office

Legend

] Feature in execution path
""" Feature not in execution path

Figure 7.3: Basic test scenario: successful service execution without service resume

7.3. ADVANCED TEST SCENARIO 37

Interaction via Message Channel
MSG ('hello!")

P 200
:MSG ('Connect to CS?")
) 200
MSG ('yes'")
200

»
>

&

_MSG ('Local language?")

200 .
MSG ('no") -
. 200
X MSG (‘hello!")
200 .

4
<

http://msc-generator.sourceforge.net v6.3.13

Figure 7.4: Basic test scenario: SIP sequence

7.3 Advanced test scenario

The next iteration of the baseline omnichannel enablement is that of supporting the
service resume along with its special case of the channel hopping. An advanced test
scenario consists of three interactions within one conversation. First two interactions
are conducted via the message channel and are interrupted. The final interaction is
conducted via the voice channel and leads to the successful service execution. All
the interactions are described separately in the following subsections. SIP message
flow for the advanced scenario verification is modelled on Figure 7.8.

7.3.1 The first interaction

The example service is triggered by a chosen user via the message channel. The
system indicates that there is no pending conversation for that user-service pair and
creates a new one. Then, the service execution starts at the default service entry
point. Both timing of the interaction and submitted user input are chosen so that the
specific execution path is calculated, see Figure 7.5. The purpose of arranging such
an execution path is to test that service resume during the successive interaction
works correctly.

38 7. PROTOTYPE

The last executed feature during the initial interaction is the Release feature
("Signal error") discussed earlier in the chapter. There are two execution paths leading
to that feature, and each of those paths has a different restore point associated with
it. It is thus important to check that the service resume resolves such ambiguity
correctly and uses the last activated restore point. The dotted arrow on the Figure
7.5 indicates such a restore point which should serve as a new service entry point for
the successive interaction.

7.3.2 The second interaction

The service is triggered by the same user via the same channel. The system indicates
that there is a pending conversation for that user-service pair with the previous
interaction interrupted. Thus, the system creates a new interaction in the scope of
the same conversation and performs the service resume. The new service entry point
calculated as the last activated restore point during the preceding interaction, see
Figure 7.6.

During testing, interactions are initiated one after another with a minimal op-
erational delay. If none of the test parameters is changed, the second interaction
is likely to follow the same execution path as the first one. Changing the schedule
ccheck parameters or putting even more constraints on the timing choice for the
first interaction is impractical. Instead, user input submitted to the first activated
prompt is changed. That results in the different execution path selected for the
second interaction.

An interruption is introduced during the final step of the flow thus setting this
step as a new restore point. The purpose of introducing this interruption is to test
the channel hopping in the successive interaction.

7.3.3 The final interaction

The service is triggered by the same user but via the voice channel. The system once
again recognizes a pending conversation, creates a new interaction in the scope of
that conversation and performs the service resume from the last activated restore
point, see Figure 7.7. Once the parties are connected, the example service execution
is considered to be completed, and so are the respective interaction and conversation.

7.3. ADVANCED TEST SCENARIO

Default service
entry point

\ 4

Prompt:
connect to CS?

Prompt
confirmed

Schedule check Available

Prompt: set restore point
local language?

Prompt
confirmed

Schedule check Available

Prompt:
local office?

Prompt
confirmed

Connect with CS in
central office

--» completion

Connect with
attendant

Signal error

Connect with CS in
local language

-->» completion

--) interruption

--» completion

Connect with CS in
local office Legend
- —
M —
completion

Service restore point in execution path

Regular feature in execution path

Feature not in execution path

Figure 7.5: Advanced test scenario:

initial interaction flow

39

40 7. PROTOTYPE

Default service
entry point

Prompt:
connect to CS?

Prompt
confirmed

Schedule check

New service

entry point

oy Prompt:
local language?,

Connect with
attendant

Available

Signal error

Prompt
confirmed

Schedule check

Connect with CS in
local language

Available

Prompt:
local office?

Prompt
confirmed

Connect with CS in
local office

completion

Figure 7.6:

set restore point

interruption

Connect with CS in

central office

simulated relay error

F--¥» completion

--» completion

--» interruption

--» completion

Legend
Service restore point in execution path

) Regular feature in execution path
——

Feature not in execution path

Advanced test scenario: second interaction flow

Default service
entry point

Prompt:
connect to CS?

Prompt

confirmed Schedule check

Prompt:
local language?,

Prompt

confirmed Schedule check

Prompt:
local office?

New service
entry point

\

Prompt
confirmed

central office

Connect with CS in
local office

completion

Figure 7.7:

Connect with CSin

7.3. ADVANCED TEST SCENARIO

Connect with
attendant

Available --» completion

Signal error --% interruption

Connect with CS in
local

Available

--» completion

Legend
Service restore point in execution path
:] Regular feature in execution path
""" Feature not in execution path

Advanced test scenario: final interaction flow

41

42 7. PROTOTYPE

m m Agent 300 | Agent 401

Interaction 1 via Message Ch'annel
MSG (hello') R

. 200
:MSG ('Connect to CS?')
) 200
MSG ('yes')
200

I
»

&

:MSG ('Local language?')
) 200 R
MSG ('no") -

200

<&

_ MSG (‘Error occurred.)4—fireraction interrupted)
200

>
>

Interaction 2 via Message Channel
MSG (‘hello again')

200

&

_MSG ('Local language?")

200 R
MSG ('yes'") N
y 200 !
: MSG ('Local office?')
) 200 R
MSG ('no") -
J 200
) MSG (‘hello again'),
Wmo]
Interaction 3 via Voice Chanr:el
INVITE R
y 100 !
) INVITE R
J 100 !
) 180
J 200
| 200)
) ACK . M”v°°—'""'e‘i"]
. ACK R
conversation >
J BYE
) 200 R
J BYE g
) 200 >

http://msc-generator.sourcy

Figure 7.8: Advanced test scenario: SIP sequence

7.4. TEST ENVIRONMENT 43

7.4 Test environment

This section provides high-level overview of the test setup used for the prototype
validation. Such a setup consists of Gintel framework enhanced with the prototype
functionality as well as tools allowing to simulate communication as defined in the
test scenarios and verify SIP sequences generated by the framework. The setup is
illustrated on Figure 7.9 where introduced enhancements are highlighted with the
orange color.

Gintel Call Handling

Execution Engine

Omnichannel
Orchestration

i —

Conversation Manager

Engine API

Conversation /

I Interaction

Adapter

Message channel
extension

A

/

OpensIPS

4 Wireshark

MicroSIP SIPp

user accounts scenario descriptors

Figure 7.9: Prototype test setup

Gintel framework could be conditionally represented by the following hierarchy
of layers:

— Adapter is an entry point to the platform performing conversion of received
requests into internal events. This layer is extended with support of the message
channel.

— FEngine API performs initial processing of received events and, if necessary,
triggers service execution. This layer is extended with Conversation Manager
capabilities described in Section 6.1.

— FExecution Engine performs execution of the features, or components - in
Gintel terminology, corresponding to the service triggered. The omnichannel

44 7. PROTOTYPE

enablement on this level is done via omnichannel enablement of the dedicated
features as well as introducing service resume procedure.

The framework also relies a persistent storage depicted as Database. The prototype
introduced changes to support storage of conversation-related data which is used by
the Conversation Manager. Although in-memory storage is a viable alternative for
the prototype, the persistent storage is a practical solution for preserving test data
between system restarts as well as for transparently monitoring changes in such data
(for example, a change in interaction status or an execution timestamp) and thus
assisting in troubleshooting.

As for the tools employed for the test setup, MicroSIP [Mic] and SIPp [SIP] are
used to generate communication on behalf of a user/agent and Wireshark [Wir] is
used to capture traffic generated by the framework and the tools. OpenSIPS [ope] is
playing the role of a SIP registrar/proxy used to enable interconnectivity between
the framework and two MicroSIP instances representing a user and an agent when
communication takes place via the voice channel. When communication takes place
via the message channel, openSIPS is not needed as there is only one instance of
SIPP run. The captured traffic is then verified against the modelled SIP Sequences,
see Figure 7.4 and Figure 7.8.

MicroSIP is used to generate voice communication corresponding to the final
interaction of the advanced test scenario (see Section 7.3). SIPp is used for both the
basic test scenario (see Section 7.2 and the two first interactions of the advanced test
scenario (see Section 7.3). Custom scenario descriptors are used to both configure
generated requests and specify expected ones. Each descriptor can only handle one
SIP transaction, whereas the prototype test scenarios consist of multiple transactions.
In order to resolve this issue, a custom script was introduced to sequentially run a
series of chosen SIPp scenarios. SIPp acts both as a request generator and a universal
request sink in the sense it receives requests for both the served user and the chosen
agent.

7.5 Implementation

The changes introduced to Gintel framework during the prototype development are
illustrated on Figure 7.5 with the changeset element highlighted with orange. The
enhancements include both new classes and classes with updated signatures. In the
latter case, it is the signature itself which is highlighted whereas the class name stays

gray.

The diagram only covers the changes which immediately relate to the omnichannel
enablement of the baseline. Those changes can be relatively easily mapped on the

7.5. IMPLEMENTATION 45

MatchingRule ConversationManager ConversationLoader
. 1 1 1
+ match(Conversation, EngineEvent): boolean ~ —————@ + c K >———— + createC String, String): C
+ update(Conversation) + updatelnteraction(Conversation, Interaction)
+ String, String): Cs
1
Channel
VOICE
Conversation 1
MESSAGE
+ getld(): int InteractionLoader

+ getOName: String + loadLinkedInteractions{(int): Conversation
+ getLogin: String + savelnteraction(Conversation, Interaction)

+ getService: String . c

EngineEvent
9 + getLastinteraction: Interaction

+ getChannel(): Channel 1

Enginelmpl ‘ Interaction

+ + getld(): int

+ processConversation(Conversation) + getStartedAt: Date InteractionStatus

+ getFinishedAt: Date <>; +getld(): int
+ complete()
+interrupt()
\ ’ﬁ,m—‘ + process(EngineEvent)
<@ + execute(Interaction, EngineEvent): int + getMenuMedia(int): Object 1 1 ExecutionContext
o

+ prompt(Object) + getEngineEvent(): EngineEvent

+isRestorePoint(): boolean
+ getUserlnput(EngineEvent) + getExecutedComponent(): Component
+ send(String) + getVariable(String): Object

+ setVariable(String, Object)

} PromptAndCollect { Termination { 1

} TimeRouter t»_ ReleaseCall |

Figure 7.10: Omnichannel enablement class diagram

conceptual framework described in Section 6.1. However, the work conducted during
the prototype development extends beyond the presented scope of changes. Due to
tight coupling, the baseline required additional code modifications to successfully
embed the prototype changes. Although such modifications are not relevant to the
topic of omnichannel enablement on their own, they do highlight certain challenges
associated with the omnichannel enablement which are going to be discussed in the
further section.

The baseline characteristics imposed certain limitations for the framework’s om-
nichannel enablement. With the baseline being a voice-only solution having evolved
for almost a decade, the channel-specific logic is scattered across all the layers of the
solution and not only components implementing features. Full decoupling implied by
the omnichannel enablement proved to be unfeasible in the scope of the prototype
development. Re-implementation of the voice channel support from scratch was
unfeasible as well due to its complexity. Therefore, voice channel logic has been left
intact with Voicelnteraction class only dealing with Interaction statuses actualization
required by the Conversation Manager. Messagelnteraction, on the contrary, was im-
plemented in a new fashion handling channel-specific logic delegated by Components.

46 7. PROTOTYPE

Code listings for Interaction, Messagelnteraction, and ConversationManager classes
are included into Appendices A.1, A.2, and A.3 respectively. In the Interaction class,
some primitive code such as getters and setters has been omitted.

The very same limitations apply to the classes responsible for service execution:
Enginelmpl and Component with its descendants. Thus, new simplified signatures
are introduced to handle message channel in an omnichannel manner, whereas
voice channel is handled in the legacy manner with minor modifications to support
Interaction status actualization also for the voice channel. The source codes of these
classes cannot be distributed due to legal reasons.

The rest of the classes contain rather auxiliary logic and hence are not distributed
either. Data Definition Language (DDL) script for new database structures is covered
in Appendix B.

7.6 Testing procedure

The prototype has been tested against both basic and advanced scenarios described
in Section 7.2 and Section 7.3 respectively.

For each scenario, a group of SIPp scenario descriptors have been configured to
handle distinct transaction types to be executed within the scenario. To accumulate
those descriptors in one accumulative scenario, a shell script has been created.
Examples of scenario descriptors along with the accumulating execution script are
enlisted in Appendix C and cover the advanced test scenario run on the prototype.
SIPp configurations for running the basic test scenario are similar.

Before running each scenario, Wireshark was set up to capture traffic on the
interface used to connect the prototype and the testing tools. Example of the captured
traffic is presented on Figure 7.11 and corresponds to the advanced scenario. The
captured traffic is verified against the modelled flow, in the current case against the
flow on Figure 7.8. One deviation could be noticed: there is a duplication of messages
sent by the framework. An investigation was conducted with a conclusion that
such a duplication is a result of a delay occurring on SIPp side while acknowledging
the received requests. Thus, the exposed behaviour is actually normal from the
perspective of the framework. Otherwise, the traffic captured demonstrated that the
prototype correctly handled the service resume procedure in general and the channel
hopping in particular.

7.6. TESTING PROCEDURE

47

e ments chpespng - x
ams
] S+
2 u 9313!3 192.168.2.1 192.168.2.2 sIp 476 Request: MESSAGE 5ip:1009192.168.2.2:6060 | (text/plain)
Somssiss s 192268021 s 0 st 200 o |
41.231241 192.168.2.2 192.168.2.1 SIP 661 Request: MESSAGE sip:4204321000009192.168.2.1:5060 | (text/plain)
5 1.918457 192.168.2.2 192.168.2.1 SIP 661 Request: MESSAGE sip:4204321000009192.168.2.1:5060 | (text/plain)
6 1.918915 192.168.2.1 192.168.2.2 SIP 320 Status: 200 OK |
7 2.388296 192.168.2.1 192.168.2.2 SIP 463 Request: MESSAGE 5ip:1009192.168.2.2:6060 | (text/plain)
302 192.168.2.2 192.168.2.1 SIP 310 Status: 200 OK |
9 2.415593 192.168.2.2 192.168.2.1 ST 680 Request: MESSAGE sip:4204321000000192.168.2.1:5060 | (text/plain)
10 2.918510 192.168.2.2 192.168.2.1 ST 680 Request: MESSAGE sip:420432100000¢192.168.2.1:5060 | (text/plain)
21593 192.168.2.1 192.168.2.2 st 320 Status: 200 OK |
12 3.497766 192.168.2.1 192.168.2.2 st 463 Request: MESSAGE sip:1008192.168.2.2:6060 | (text/plain)
s as2a68.22 19226821 a
14 3.524509 192.168.2.2 192.168.2.1 sIp 420432100000192.168.2.1:5060 | (text/plain)
15 4.167626 192.168.2.2 192.168.2.1 SIP 659 Request: MESSAGE sip:4204321000009192.168.2.1:5060 | (text/plain)
oo 1226821 192.268.2.2 s 30 st 20 |
17 5.020458 192.168.2.1 192.168.2.2 SIP 483 Request: HESSME 51p:1009192.168.2.2:6060 | (text/plain)
18 5.065368 192.168.2.2 192.168.2.1 SIP 310 Status: 200 OK |
19 5.078831 192.168.2.2 192.168.2.1 SIP 680 Request: MESSAGE sip:4204321000009192.168.2.1:5060 | (text/plain)
20 5.667263 192.168.2.2 192.168.2.1 SIP 680 quuest MESSME 5ip:4204321000009192.168.2.1:5060 | (text/plain)
21 5.667755 192.168.2.1 192.168.2.2 s1p 320 st X |
13427 192.168.2.1 192.168.2.2 s1p 463 Rmuest HESSME 5ip:100192.168.2.2:6060 | (text/plain)
25 6.151033 192.168.2.2 192.168.2.1 st 310 Statu: oK |
b 26 6.161347 192.168.2.2 192.168.2.1 st 699 REauzst HESSME 4204321000008192.168.2.1:5060 | (text/plain)
666 192.168.2.2 192.168.2.1 SIP 699 Request: MESSAGE ;lpuzu;zlmemz 168.2.1:5060 | (text/plain)
weeess aspaem21 10226822 e 0 Stata: 200 o |
30 7.115210 192.168.2.1 192.168.2.2 SIP 463 Request: MESSAGE sip:1009192.168.2.2:6060 | (text/plain)
Soamme s 192.268.2.1 S e status 200 o |
32 7.156761 192.168.2.2 192.168.2.1 SIP 577 Request: MESSAGE s: (text/plain)
33 7.668030 192.168.2.2 192.168.2.1 SIP 577 Request: MESSAGE sm.wmsz IGR 1 1: Sﬂsﬂ | (text/plain)
e 7.ceen 15226821 192.160.2.2 1 400 504 req
6 ts.com7 152.268.2.1 192.168.2.2 SIP/507 1070 Request: TVITE 3
37 15.609461 192.168.2.2 192.168.2.1 1P 100 Giving a try |
3915.732055 192.168.2.2 192.168.2.1 SIP/SDP 1448 Request: INVITE sip:418192.168.2.1:58344;00 |
.77 192.168.2.1 192.168.2.2 stp 469 Status: 100 Trying |
4115.778883 192.168.2.1 192.168.2.2 180 Ringing |
42 15.819713 192.168.2.2 192.168.2.1 180 Ringing |
7. 15226821 10226822 st 200 0k |
o vane e 12.160.21 sto/son 3063 status 380 K |
6 s 1226021 12.168.2.2 tpaas Reauests Ak
67 17.534552 192.168.2.2 192.168.2.1 SIP ACK sw 401€192.168.2.1:58344;0b |
91 20.319813 192.168.2.1 192.168.2.2 SIP 550 Request: BYE i8¢
92 20.33%015 192.168.2.2 192.168.2.1 TP 404 Status: 200 OK |
93 20.426117 192.168.2.2 192.168.2.1 ST 471 Request: BYE slp +420432100000192.168.2.1:53513;0b |
94 20.426581 192.168.2.1 192.168.2.2 SIP 439 Status: 200 OK | v

S B ED b e [N e, B L) e B iy D o et e Aty 200
ou_

Ethernet II, Sre X
Internet Protocol Version 4, Srct A 2, Dst: 192 e
User Datagram Protocol, Src Port: 6068, Dst Port:

Session Initiation Protocol (MESSAGE

> Request-Line: MESSAGE sip:424321090009192.168.2.1:5060 SIP/2.0

~ Line-based text data: text/plain (2 lines)
Send '1' to connect with an expert from the local office.\n
Otherwise you will be comected to the central office

Figure 7.11: Prototype testing as

per advanced scenario

Discussion

The implemented prototype proved feasibility of the framework proposed in Section
6.1. The prototype demonstrated incremental omnichannel enablement approach as
applied to the initially voice-only baseline. The baseline’s logic has been extended
with the support for the message channel for the selected scope of features, with the
respective business logic unified across the channels. In addition to that, the common
service orchestration has been introduced. The baseline has been also enhanced with
the service resume capability as well as its specific case of channel-hopping.

The prototype development, although constrained by its prerequisites such as
the baseline, allowed to get additional insights into the topic of the omnichannel
enablement and its particular aspects. The insights are not limited to the framework
proposed but offer a broader perspective on omnichannel enablement in terms of its
associated challenges and prospects.

8.1 Service semantic

One of the cornerstones, as well a non-trivial task, for the omnichannel enablement
is to establish channel-agnostic semantic of features and services. For the prototype’s
sake, certain simplifications were done as the design of a real-life communication
service was not an immediate objective of the project. In the example service,
the Termination feature was used to establish connection between a user and a
specific agent. In terms of the voice channel, "connection established" conceptual
event was bound to successful completion of ACK transaction following the initial
INVITE transaction (see Figure 7.8) which signifies that the agent picked up and
thus was actively involved. In terms of the message channel, the same conceptual
event was bound to reception of a successful response code (200) for the initial
MESSAGE, which by itself does not imply that the agent has already read the
message [IETh|. For the prototyping purposes, the successful relay of the message
to a final destination sufficed. However, one could only conditionally equate those

49

50 8. DISCUSSION

outputs, and an alternative output for the message channel could as well have
been chosen as an analogue for the voice channel’s output. It is rather a matter of
perspective and a conceptual problem to be negotiated by a designer of a real-life
communication service.

The problem can be elaborated even further. In the baseline solution, the
Termination feature is used not only to connect to a destination but also to control
the call flow. Since Gintel is specializing in providing tailored solutions, each feature
has an extensive list of parameters through which that feature could be fine-tuned.
For example, the Termination feature has an optional parameter regulating maximum
call time allowed. Clearly, this parameter cannot be ported to the message channel
in a straightforward manner as asynchronous communication is not supposed to be a
subject to strict timing conditions by the very definition of such communication. If
a feature designer still wants to have such a parameter applied in a cross-channel
manner, a new semantic has to be elaborated. However, such a semantic is likely to
be less transparent than the one defined for the voice channel.

8.2 Feature-Interaction decoupling

With the number of channel-specific parameters growing, so does the complexity
of porting those parameters to new channels. It does not only concern new service
semantic which has to be established, but also has a direct impact on the complexity
of channel-agnostic interface between Features and Interactions. Design of such an
interface has already been discussed as a potential constraint in Section 6.2. The
interface is supposed to provide decoupling of business logic implemented by Features
and channel-specific logic delegated to Interactions. The interface consists of a set
of signatures describing operations and their parameters, with both described in
channel-agnostic terms or normalized.

If parameters are not normalized across the channels supported, those parameters
could still be included into signatures of the interface. However, that would lead to
increased complexity and deteriorated transparency of the signatures, not to mention
that the interface itself would not be channel-agnostic anymore. An alternative
would be for an Interaction to derive required set of channel-specific parameters
in an indirect manner. For example, an Interaction could identify which channel-
specific parameters have to be retrieved during a specific operations as defined
by the currently executed Feature. Such an approach would compromise Feature-
Interaction decoupling and thus would have a negative impact on modularity of the
solution. It would also undermine the notion of omnichannel as common processing
of communication independent of the channel in use.

8.3. INCREMENTAL OMNICHANNEL ENABLEMENT 51

8.3 Incremental omnichannel enablement

For the prototype development, the incremental platform-based omnichannel en-
ablement approach was chosen (see Section 2.3). Given the timelines of the project,
performing greenfield development was unfeasible whereas the extension of the base-
line with omnichannel capabilities allowed to benefit from having the business logic
already in place. The initial plan was to perform proper decoupling of that business
logic from the channel-specific logic for the selected set of features.

However, with the baseline having evolved as a voice-only solution for over a
decade, the omnichannel enablement of the baseline turned out to be far more
complicated than initially anticipated as the full stack of the baseline components,
and not just features, was a subject to tight-coupling of business and channel-specific
logic. Thus, the all-depth decoupling had to be performed. With omnichannel
enablement scope extended, such a decoupling might be suboptimal as it is restricted
by the backwards compatibility requirements: a new increment should extend, and
not limit the existing functionality.

Therefore, forcing omnichannel enablement onto the long-established voice-only
solution might not be the best approach to omnichannel enablement. The greenfield
approach, however, might serve as a better alternative as it allows to make funda-
mental architecture changes required for proper omnichannel enablement. Such an
approach would also allow to rethink semantic of the services provided and thus
handle issues raised in Subsection 8.1 and Subsection 8.2.

8.4 User and service authentication

For both the baseline and the prototype, SIP was a protocol of choice. Hence,
the authentication procedure was straightforward and performed uniformly for
both the voice and the message channel, via the same SIP headers. However,
omnichannel generally implies greater variety in protocols which means that cross-
channel authentication should be considered during service design.

Omnichannel is a customer-centric paradigm of communication services (see
Section 2.2). Therefore, a problem of correct cross-channel user identification is a
cornerstone issue for any omnichannel enablement. Apart from identifying who is
triggering a service, it is important to understand which service is requested. Without
such authentication, conversation matching is not possible which in its turn disables
service resume and channel hopping.

Service authentication procedure is to a great extent determined by a definition
of a particular service. In certain cases, an original destination of an incoming
communication would serve the purpose. The prototype also relied on that approach

52 8. DISCUSSION

with the "main number" uniquely identifying a service to be provided. However,
in more advanced cases, when conceptual matching criteria do not map directly
on certain technical parameters, service authentication might potentially employ
knowledge management techniques and predictive analysis as discussed in Section
2.1.

8.5 Non-functional aspects

Non-functional aspects of omnichannel enablement have not been in the focus of
the project. However, they would play the key role in mapping of the conceptual
framework onto a particular architecture for a non-prototype solution.

Special attention should be given to privacy and security aspects which might
potentially have a great impact on authentication procedure as well as on general
feasibility of advanced omnichannel services.

8.6 Prospects

The ptototype implementation helped to identify some of the advatanges of the
framework. Apart from the standard benefits of omnichannel, such as common
processing across channels enabled by the decoupling and continuity of service
enabled by service resume, the proposed framework allows to envision alternative
ways of its exploitation.

The framework offers a set of extension points which could be used by CSP to
provide flexible resumable services. The framework explicitly suggests configurability
of conversation matching procedure by the means of Matching Rules discussed in
more details in Section 6.1. Another potential extension point, although not directly
reflected in the proposed framework, is the service resume policy. Initially, a direct
approach was implied as it was implemented in the prototype solution: service
resume restarts the Service from a Restore Point last activated during the previous
Interaction. However, it could also be possible to map all Restore Points to some
custom procedures, or service resume policies. Such a policy could trigger execution
of a specific execution path which is not a part of main service logic. For example,
a special prompt could be used to get a User’s confirmation of whether that User
prefers to continue with the service resume or restart the Service from scratch. Such
added flexibility would allow to design more user-friendly services and thus improve
CcX

The important benefit of the framework is that of loose coupling between the
service resume and channel agnosticism aspects. On practice, that means that an
CSP may choose to adopt those aspects separately or even limit adoption to one

8.7. SUMMARY 53

aspect only. Although the latter would not result in omnichannel enablement, it
could nevertheless optimize the solution in question in terms of either flexibility or
maintenance. As for the omnichannel enablement, the framework allows to perform
it in incremental manner on the high level with the particular aspects developed as
greenfield sub-projects of the overall solution. The loose coupling between aspects
allows to minimize adjustments necessary to combine the aspects to the single working
solution.

8.7 Summary

The discussion of the omnichannel enablement aspects and prospects leads to a
question whether a unified framework for omnichannel communication services is
after all viable. The answer to that question is not straightforward. The project
has demonstrated certain success in formalization of omnichannel requirements
and concepts and even in performing an omnichannel enablement of the existing
framework based on the proposed concepts. However, even on the scale of prototype,
it has become evident that omnichannel enablement requires re-evaluation of the
goals behind it.

Arguably, the primary goal of omnichannel enablement is to offer customers with
services perceived as consistent across a variety of channels. Hence, the internal
unification is a mere means to achieve the objective. However, trying to force
omnichannel enablement onto the solution only for the sake of internal unification
is not necessary a wise choice to make. In the prototype’s case, the baseline is
initially a solution aimed at providing finely tuned specialized services. In its
essence, such a definition goes against the notion of omnichannel which implies
rather general processing across channels supported. Such a mismatch has caused
challenges during establishing common feature semantic and decoupling. Persisting
with such enablement would not result in a viable solution as it inevitably leads to
compromising either principles of omnichannel, or goals of the baseline.

There is no evidence, however, that the framework cannot be considered viable.
On the contrary, the prototype has proved that the proposed concepts and approaches
could be to a great extent successfully applied, even constrained by the baseline and
scope choices. If services to be supported are defined as truly omnichannel in terms
of their semantic, it is anticipated to automatically resolve the majority of issues
associated with internal logic unification. That, however, is likely to come at a cost
of generalization of a solution.

Conclusion

This thesis represents a fair attempt to approach the topic of omnichannel enablement
as applied to the domain of communication services. Despite the market appeal
of omnichannel, the knowledge context behind the topic lacks consolidation as the
respective academic research is scarce and technical specifications of commercial
offerings remain to a great extent proprietary and not available to the general public.

In scope of this project, the study of disparate research and market offerings
has been conducted which allowed to build understanding of the implications of
omnichannel enablement for a communication services platform. Based on this
understanding, the requirements for unified framework have been formulated followed
by the conceptual model of such a framework. The framework has been validated
by the means of prototyping which both has confirmed the framework’s feasibility
and allowed to take a closer look at different aspects associated with omnichannel
enablement.

The results of the project should be treated as the first approximation to con-
solidation and formalization of omnichannel implications when building a unified
platform for communication services. Future research should be directed at particular
aspects as highlighted during the discussion stage. As complex as it is, omnichannel
enablement is the prerequisite of a successful digital transformation, and as such it is
going to remain on the wish list of CSPs in the foreseeable future.

55

References

[BCG105] G.W.Bond, E. Cheung, H. H. Goguen, K. J. Hanson, D. Henderson, G. M. Karam,

[BCP+04]

[BGK16]

[BKv+20]

[Bocl7]

[CC17]

[CGL+93]

[Cisal

K. H. Purdy, T. M. Smith, and P. Zave. Experience with Component-Based
Development of a Telecommunication Service. In G. T. Heineman, I. Crnkovic,
H. W. Schmidt, J. A. Stafford, C. Szyperski, and K. Wallnau, editors, Component-
Based Software Engineering, pages 298-305, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

G. Bond, E. Cheung, K. Purdy, P. Zave, and J. Ramming. An Open Architecture
for Next-Generation Telecommunication Services. ACM transactions on Internet
technology, 4(1):83-123, 2004.

A. Bolton, L. Goosen, and E. Kritzinger. Enterprise Digitization Enablement
Through Unified Communication amp; Collaboration. In Proceedings of the
Annual Conference of the South African Institute of Computer Scientists and
Information Technologists, SAICSIT 16, New York, NY, USA, 2016. Association
for Computing Machinery.

B. Burke, F. Karamouzis, G. van der Heiden, A. Chandrasekaran, D. Cearley,
B. Willemsen, B. Stewart, R. Krikken, J. Heiser, E. Brethenoux, J. Wong,
M. Chiu, M. Duerst, D. Scheibenreif, M. Bhat, T. Harvey, N. Sturgill, L. Shotton,
S. Stoudt-Hansen, G. Alvarez, D. Gaughan, A. White, D. Smith, E. Anderson,
D. Wright, and Y. Natis. Top strategic technology trends for 2021. https:
/ /www.gartner.com/document /3991906, October 2020.

L. Bocklund. The multichannel contact center becomes "omnichannel". Contact
Center Pipeline, September 2017.

P. Clark-Dickson and J. Cox. Orchestrating the Omnichannel Customer Experi-
ence. Whitepaper, Ovum, April 2017.

E.J. Cameron, N. Griffeth, Y.-J. Lin, M.E. Nilson, W.K. Schnure, and H. Velthui-
jsen. A feature-interaction benchmark for IN and beyond. 31(3):64-69, 1993.

Cisco. Omnichannel Contact Center. https://cjp.broadsoft.com/
contact-center-performance-solutions/omni-channel-contact-center /1.

57

https://www.gartner.com/document/3991906
https://www.gartner.com/document/3991906
https://cjp.broadsoft.com/contact-center-performance-solutions/omni-channel-contact-center/ l
https://cjp.broadsoft.com/contact-center-performance-solutions/omni-channel-contact-center/ l

58

[Cisb]

[Cox18]

[CS09]

[Fin20]

[FLB+17]

[FMWS16]

[GCM12]

[Genal

[Genb]

[Genc]

[Gend]

[HB10]

[HRO4]

[HSD*02]

[IETa]

REFERENCES

Cisco. Unified Communications and Collaboration. https://www.cisco.com/c/
en/us/products/unified-communications/index.html.

J. Cox. 2019 Trends to Watch: Customer Engagement Platforms. Whitepaper,
Ovum, November 2018.

E. Cheung and T.M Smith. Experience with modularity in an advanced telecon-
ferencing service deployment. In 2009 31st International Conference on Software
Engineering - Companion Volume, pages 39-49. IEEE, 2009.

E. Finegold,. Future customer experience: From digital to omnichannel. Research
report, TM Forum, March 2020.

S. Filiposka, R. Lapacz, M. Balcerkiewicz, F. Wein, and J. Sobieski. Transforming
silos to next-generation services. In IEEE EUROCON 2017 -17th International
Conference on Smart Technologies, pages 745-750, 2017.

S. Filiposka, A. Mishev, F. Wein, and J. Sobieski. Customer-Centric Service
Provider Architecture for the R E Community. In 2016 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), pages
596-601, 2016.

N. Ghiata, V. Cretu, and M. Marcu. Context-aware unified communication. In
2012 7th IEEE International Symposium on Applied Computational Intelligence
and Informatics (SACI), pages 297-301, 2012.

Genesys. Context Services Developer’s Guide 8.5.2. https://docs.genesys.com/
Documentation/CS/8.5.2/Developer/Welcome. Accessed: 26.03.2021.

Genesys. Conversation Manager Overview 8.5. https://docs.genesys.com/
Documentation/CM/8.5/Overview /Welcome. Accessed: 26.03.2021.

Genesys. Conversation Rules Templates Guide 8.5.1. https://docs.genesys.com/
Documentation/GRS/8.5.1/CR/Welcome. Accessed: 26.03.2021.

Genesys. Genesys Engage | Customer Experience Platform. https://www.genesys.
com/genesys-engage. Accessed: 26.03.2021.

D. Hong and A. Brinsmead. Optimizing Customer Service in a Multi-Channel
World. Whitepaper, Ovum, October 2010.

H. Lei and A. Ranganathan. Context-aware unified communication. In IEEE
International Conference on Mobile Data Management, 2004. Proceedings. 2004,
pages 176186, 2004.

H.Lei, D. M. Sow, J. S. Davis, G. Banavar, and M. R. Ebling. The Design and
Applications of a Context Service. SIGMOBILE Mob. Comput. Commun. Rev.,
6(4):45-55, 2002.

IETF. RFC 3261 - SIP: Session Initiation Protocol. https://tools.ietf.org/html/
rfc3261. accessed: 25.03.2021.

https://www.cisco.com/c/en/us/products/unified-communications/index.html
https://www.cisco.com/c/en/us/products/unified-communications/index.html
https://docs.genesys.com/Documentation/CS/8.5.2/Developer/Welcome
https://docs.genesys.com/Documentation/CS/8.5.2/Developer/Welcome
https://docs.genesys.com/Documentation/CM/8.5/Overview/Welcome
https://docs.genesys.com/Documentation/CM/8.5/Overview/Welcome
https://docs.genesys.com/Documentation/GRS/8.5.1/CR/Welcome
https://docs.genesys.com/Documentation/GRS/8.5.1/CR/Welcome
https://www.genesys.com/genesys-engage
https://www.genesys.com/genesys-engage
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3261

[IETb]

[JZ98]

[Lar20]

[McE20]

[Mic]

[Mit]

[ML20]

[MRE*21]

[NCT+20]

[NGO+19]

[ope]
[0U20]

[PMF*17]

[PMP18]

REFERENCES 59

IETF. RFC 3428 - Session Initiation Protocol (SIP) Extension for Instant
Messaging. https://datatracker.ietf.org/doc/html/rfc3428. accessed: 1.04.2021.

M. Jackson and P. Zave. Distributed feature composition: a virtual architecture
for telecommunications services. IEEFE transactions on software engineering,
24(10):831-847, 1998.

Vladislava Larina. Unified framework for omnichannel communication services.
Project report in TTM4502, Department of Information Security and Commu-
nication Technology, NTNU — Norwegian University of Science and Technology,
December 2020.

T. McElligott. Committing to omnichannel. https://inform.tmforum.org/insights/
2020/10/committing-to-omnichannel//, October 2020. accessed: 21.01.2021.

MicroSIP. Open source portable SIP softphone for Windows based on PJSIP
stack. https://www.microsip.org/.

Mitel. Omnichannel Enterprise Call Center and Contact Center. https://www.
mitel.com/products/applications/contact-center/other.

B. Manusama and N. LeBlanc. Market guide for digital customer service and
support technologies. https://www.gartner.com/document/3982236, March 2020.

B. Manusama, M. Revang, B. Elliot, S. Blood, N. LeBlanc, P. Rathnayake,
D. Alvord, J. Robinson, E. Potosky, S. Dibble, J. Davies, and Customer Service
and Support Research Team. 2021 strategic roadmap for customer service and
support: 10 dilemmas. https://www.gartner.com/document/3996004, January
2021.

A. Nandan, M. Cana, K. Takiishi, P. Liu, and T. Chamberlin. Predicts 2021:
CSP Technology and Operations Strategy. https://www.gartner.com/document/
3993798, December 2020.

Y. Natis, D. Gaughan, M. O’Neill, B. Lheureux, and M. Pezzini. Innovation
insight for packaged business capabilities and their role in the future composable
enterprise. https://www.gartner.com/document /3976170, December 2019.

openSIPS. OpenSIPS About. https://opensips.org/About/About.

D. O’Connel and L. Unden-Farboud. Market guide for communications platform
as a service. https://www.gartner.com/document,/3991743, October 2020.

J. Pérez, M. Murray, J. Fluker, D. Fluker, and Z. Bailes. Connectivity and
Continuity: New Fronts in the Platform War. Communications of the Association
for Information Systems, 40, April 2017.

D. Peras, R. Mekovec, and R. Picek. Influence of gdpr on social networks
used by omnichannel contact center. In 2018 41st International Convention on
Information and Communication Technology, Electronics and Microelectronics

(MIPRO), pages 1132-1137, 2018.

https://datatracker.ietf.org/doc/html/rfc3428
https://inform.tmforum.org/insights/2020/10/committing-to-omnichannel//
https://inform.tmforum.org/insights/2020/10/committing-to-omnichannel//
https://www.microsip.org/
https://www.mitel.com/products/applications/contact-center/other
https://www.mitel.com/products/applications/contact-center/other
https://www.gartner.com/document/3982236
https://www.gartner.com/document/3996004
https://www.gartner.com/document/3993798
https://www.gartner.com/document/3993798
https://www.gartner.com/document/3976170
https://opensips.org/About/About
https://www.gartner.com/document/3991743

60 REFERENCES

[PPM18]

[RT09]
[SIP]

[Smil0)

[TFO*20]

[TLCZ14]

[TMF18]
[Tur15]
[Turl7]
[Wield]
[Wir]
[WSP20]
[Zav09)]

[Zav11]

[ZC09)

R. Picek, D. Peras, and R. Mekovec. Opportunities and challenges of applying
omnichannel approach to contact center. In 2018 4th International Conference
on Information Management (ICIM), pages 231-235, 2018.

K. Riemer and S. Taing. Unified Communications. Business & information
systems engineering, 1(4):326-330, 2009.

SIPp. SIPp v3.3 documentation. http://sipp.sourceforge.net/doc3.3/reference.
html.

T. Smith. Reusable features for VoIP service realization. In Principles, Systems
and Applications of IP Telecommunications, IPTComm ’10, pages 42-47. ACM,
2010.

C. Trueman, M. Fernandez, D. O’Connell, R. Benitez, and P. Sheth. Critical
capabilities for unified communications as a service, worldwide. https://www.
gartner.com/document /3993202, November 2020.

A. D. Tesfamicael, V. Liu, W. Caelli, and J. Zureo. Implementation and Evalua-
tion of Open Source Unified Communications for SMBs. In 201/ International
Conference on Computational Intelligence and Communication Networks, pages
1243-1248, 2014.

GB994 Omni Channel Guidebook. Best Practice R18.0.1, TM Forum, August
2018.

A. Turner. Omnichannel: navigating new territory. Research report, TM Forum,
November 2015.

A. Turner. Customer centricity: Creating the digital experience. Research report,
TM Forum, September 2017.

R. J. Wieringa. Design Science Methodology for Information Systems and Software
Engineering. Berlin, Heidelberg, 2014 edition, 2014.

Wireshark. About Wireshark. https://www.wireshark.org/index.html#aboutWs.

J. Wong, D. Scheibenreif, and G. Phifer. Transcend omnichannel thinking and
embrace multiexperience for improved cx. https://www.gartner.com/document/
3981020, February 2020.

P. Zave. Modularity in Distributed Feature Composition. Software Requirements
and Design: The Work of Michael Jackson, February 2009.

P. Zave. Mid-call, multi-party, and multi-device telecommunication features
and their interactions. In Proceedings of the 5th International Conference on
principles, systems and applications of IP telecommunications, IPTcomm ’11.
ACM, 2011.

P. Zave and E. Cheung. Compositional Control of IP Media. IEEE Transactions
on Software Engineering, 35(1):46—66, 2009.

http://sipp.sourceforge.net/doc3.3/reference.html
http://sipp.sourceforge.net/doc3.3/reference.html
https://www.gartner.com/document/3993202
https://www.gartner.com/document/3993202
https://www.wireshark.org/index.html#aboutWS
https://www.gartner.com/document/3981020
https://www.gartner.com/document/3981020

REFERENCES 61

[2J02] P. Zave and M. Jackson. A Call Abstraction for Component Coordination.
66(4):36-55, 2002.

[2J10] N. P. Zhang and J. S. Jiang. A Reference Model of Unified Communication Based
on SIP/SIMPLE. Applied mechanics and materials, 20-23:232-235, 2010.

© 00 J O U W N

e e el e e
S UL W N = O

17
18
19
20

21
22

23
24
25

Appendix

A.1 Conversation Manager

package com. gintel .omni.conversation;

import com. gintel .common.engine.constants.EventType;
import com. gintel.common.engine.interfaces.EngineEvent;
import com. gintel .common.logger.LoggerFactory;

import com.gintel.common.logger.interfaces.Logger;
import com. gintel .omni.interaction.Channel;

import com.gintel .omni.interaction.Interaction;

import com.gintel.omni.interaction.InteractionStatus;
import org.springframework. util. CollectionUtils;

import javax.sql.DataSource;
import java.util .x;

public class ConversationManager {

private static Logger logger = LoggerFactory.getLogger(

ConversationManager. class);
public static final String KEY DELIMETER = ":";

private Map<String , Conversation> localStore = new
HashMap<>();

private List<MatchingRule> matchingRules = new ArrayList

<>();

private ConversationLoader dbLoader;

26

27
28
29
30
31
32
33
34
35

36
37
38
39
40

41
42
43
44
45
46
47
48

49
50

51

92
53
54
95
o6
o7
58
59
60

private String calculateKey (String userId, String orgld,
String serviceld) {
return new StringBuilder ()
.append (userId)
.append (KEY_DELIMETER)
.append (orgld)
.append (KEY_DELIMETER)
.append (serviceld).toString () ;

}

public ConversationManager (DataSource ds, List<

MatchingRule> matchingRules) {

dbLoader = new ConversationLoader (ds);

if (!CollectionUtils.isEmpty(matchingRules)) {
this.matchingRules = matchingRules;

}

logger.info("Initialized with ds=%ls, matching rules
=%2s", ds, matchingRules);

}

public void update(Conversation conversation) {
String orgName = conversation .getOname () ;
String userName = conversation.getLogin () ;
String serviceName = conversation.getService () ;

String key = calculateKey (orgName, userName,
serviceName) ;

localStore.put(key, conversation);

dbLoader.updatelnteraction (conversation ,
conversation. getLastInteraction ());

logger.info ("Conversation %ls updated"', conversation
Lgetld () ;

}

public Conversation get(EngineEvent event) {
Conversation result = null;

String userld = event.getUserld();

String orgld = event.getOrganizationId () ;

String serviceld = event.getServiceld () ;

String key = calculateKey (userld, orgld, serviceld);

61
62
63
64

65
66
67
68
69

70

71

72
73
74
5

76
7
78
79
80
81
82
83

84

85
86

87
88
89
90
91

Conversation conversation = localStore.get (key);

n

logger.info ('"Found in local store " + conversation);
if (conversation =— null) {
conversation = dbLoader.
findIncompleteConversation (orgld , userld,
serviceld);

logger .info ("Found in db " 4+ conversation);

}

if (conversation != null) {
Interaction lastInteraction = conversation.
getLastInteraction ();
InteractionStatus lastInteractionStatus =
lastInteraction .getStatus();
logger.info ('Last interaction has status " +
lastInteractionStatus);
switch (lastInteractionStatus){
case COMPLETED: break;
case IN PROGRESS:
Channel ch = lastInteraction.getChannel
0
if (!ch.equals(event.getChannel())) {
return null;

}

result = conversation;
break;

default :
boolean isMatch = false;

for (MatchingRule rule : matchingRules)

{

isMatch = rule.match(conversation ,
event) ;

if (!isMatch) {
logger.info ("Failed matching by

rule " + rule);

break;

}

result = isMatch? conversation : null;
if (result != null) {

92 if (EventType.MESSAGE ACK. equals (
event.type)) {
93 logger.info ("Message ACK doesn’t
trigger a new interaction
creation");

94 break;
95 }
96 Interaction newlnteraction =

Interaction.
createResumelnteraction (event.
getChannel (), lastInteraction);
97 result.setLastInteraction (
newlInteraction);

98 }

99 break;

100 }

101 }

102 if (result = null && event.isInitial ()) {

103 result = dbLoader.createConversation (orgld,
userld , serviceld);

104 result .setLastInteraction (Interaction .
createlnteraction (event.getChannel()));

105 localStore.put(key, result);

106 logger.info ('Created new conversation ' +
conversation) ;

107 }

108 return result;

109 }

110

11}

© 00 N O U = W N

DN NN DN DNDNDN = = e e e
DT W NP O © 0O Ut W~ O

27
28
29
30
31
32
33
34
35
36
37
38

A.2 Interaction

package com. gintel .omni.interaction;

import
import
import
import
import
import
import

import

public

com. gintel .common. engine.constants.EventType;
com. gintel .common. engine.constants.ReleaseCode;
com. gintel .common. engine.interfaces.EngineEvent;
com. gintel .common. logger . LoggerFactory;

com. gintel .common.logger.interfaces.Logger;

com. gintel .common. service .component.Component ;
com. gintel .common. service .component. Service ;

java.util.Date;

abstract class Interaction {

public Interaction () {

}

startedAt = new Date(System.currentTimeMillis ());
status = InteractionStatus .IN_PROGRESS;
executionContext = new ExecutionContext () ;

public abstract Channel getChannel () ;

public static Interaction createlnteraction (Channel

}

channel) {
switch (channel) {
case MESSAGE:
return new Messagelnteraction () ;
case VOICE:
return new Voicelnteraction () ;
default :

return null;

public static Interaction createResumelnteraction (

Channel channel, Interaction interruptedInteraction)

39

40
41
42
43
44
45
46

47
48
49
50
51
52

53
54
95
56

57

58
99
60
61

62
63
64
65
66
67

68
69

{

Interaction interaction = createlnteraction (channel)
>

int resumePoint = interruptedInteraction.getCid();

interaction.setCid (resumePoint);

return interaction;

}

public void finalize (InteractionStatus status) {
this.finishedAt = new Date(System.currentTimeMillis

());

this.status = status;

}

public void setCurrentComponent (Component component) {

this.executionContext .setExecutedComponent (component
)
}

public Component getCurrentComponent () {
Component currentComponent = this.executionContext.
getExecutedComponent () ;
logger.info ("getCurrentComponent: retrieved from

n

exec context = + currentComponent) ;

if (currentComponent = null) {
Service service = getService();
if (service != null) {

int cid = this.cid != DUMMY ID ? this.cid
service.getInitialComponent () ;
logger .info ("getCurrentComponent :

restorePoint = " 4+ this.cid);

logger .info ("getCurrentComponent: calculated
cid = " + cid);

currentComponent = service .getComponent (cid)

)

}

return currentComponent;

70
71
72
73
74
75
76
7
78
79
80

81
82
83
84
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99
100
101
102

103
104
105
106
107

public Service getService() {
return executionContext.getService () ;

}

public void interrupt () {
interrupt (null);

}

public void interrupt (ReleaseCode releaseCode) {
if (status.equals(InteractionStatus .COMPLETED)) {
logger .warning ("Ignored attempt to interrupt
completed interaction");
return;

}
status = InteractionStatus .INTERRUPTED;

finishedAt = new Date(System.currentTimeMillis ());

}s
public abstract void send(String to);

public void complete () {
if (status.equals(InteractionStatus .INTERRUPTED)) {
logger . warning("Ignored attempt to complete
interrupted interaction");
return;

}
status = InteractionStatus.COMPLEIED;

finishedAt = new Date(System.currentTimeMillis());

b
public abstract Object getMenuMedia(int mediald);
public abstract void prompt(Object menuMedia) ;

public abstract EventType interpretEvent (EventType
triggeringEvent) ;

public abstract String getUserInput(EngineEvent event);

public abstract void resetExecState () ;

108 public abstract void process(EngineEvent event);
109 }

© 00 J O U = W N

I e i e e e e e e R
S © 00O Uk W= O

21
22
23
24

25
26
27
28
29

30

31
32
33
34
35

A.3 Messagelnteraction

package com. gintel .omni.interaction;

import
import
import
import
import
import
import
import
import
import
import

import
import

com.
com
com .
com .
com.
com.
com .
com .
com
com.
com .

java.util .HashMap;

gintel

.gintel.

gintel
gintel
gintel
gintel
gintel
gintel

.gintel.

gintel
gintel

..common .
.adapter.interfaces.NetworkAdapter;

common

.common.
.common .
.common .
.common.
.common.
.common .

common

java.util .Map;

adapter.cc.FunctionMessage;

engine

engine .
engine.
engine .
logger .
logger.
.service.component. Service ;

.omni.stubs.ErrorMessageRepository;

.cc.EventMessage;
constants.EventType;
constants . ReleaseCode;
interfaces.EngineEvent
LoggerFactory;
interfaces . Logger;

.omni.stubs.MessageMediaRepository ;

public class Messagelnteraction extends Interaction {

private static Logger logger = LoggerFactory.getLogger(
Messagelnteraction. class);

public enum State {
INIT (new HashMap<EventType, EventType>() { {
put (EventType .MESSAGE, EventType.
INCOMING__CALL) ;

H

}

PROMPT SENT(new HashMap<EventType, EventType>() {

H

{

put (EventType .MESSAGE _ACK, EventType.ANSWER)

put (EventType .MESSAGE, EventType.
PROMPT AND COLLECT ENDED) ;

}

INTERRUPTED (new HashMap<EventType, EventType>() {

{

36

37
38
39
40
41
42
43
44
45
46

47
48
49
50
o1
52

53
o4
95
56
o7
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73

put (EventType .MESSAGE ACK, EventType.ANSWER)

3

}
1)

private Map<EventType, EventType> eventMapping;

State (Map<EventType, EventType> eventMapping) {
this.eventMapping = eventMapping;

}

public EventType normalizeEvent (EventType

triggerType) {

return eventMapping.get (triggerType);

}

public Messagelnteraction () {
ExecutionContext executionContext =

getExecutionContext () ;

executionContext.setVariable("state", State.INIT);

}

@OQOverride

public ExecutionContext getExecutionContext () {

return super.getExecutionContext () ;

}

@OQOverride

public Channel getChannel() {
return Channel . MESSAGE;

}

@OQOverride

public Service getService() {
return executionContext.getService () ;

}

@OQOverride

public void send(String to) {

EngineEvent event

executionContext . getEvent () ;

74
75
76

7

78
79

80
81
82
83
84
85

86
87
88
89
90
91
92
93

94
95
96
97
98
99
100
101

102

103

if (EventType .MESSAGE. equals (event.type)) {

EventMessage em = (EventMessage) event;

NetworkAdapter networkAdapter = executionContext
.getNetworkAdapter () ;

String content = (String) executionContext.
getVariable ("userInputForRetran");

logger .info ("send: interaction id=" 4+ getld());

networkAdapter. handleFunction (new
FunctionMessage (em. get AppSessionld (), em.
getOrigRequest (), to, content));

}

@Override
public Object getMenuMedia(int mediald) {
return MessageMediaRepository . getMessageMedia (

mediald) ;
}
@Override
public void prompt(Object menuMedia) {
EngineEvent event = executionContext.getEvent () ;
if (EventType .MESSAGE. equals (event.type)) {
EventMessage em = (EventMessage) event;
NetworkAdapter networkAdapter = executionContext

.getNetworkAdapter () ;
logger .info ("prompt: interaction id=" + getld())

executionContext.setVariable("state", State.
PROMPT SENT) ;

networkAdapter. handleFunction (new
FunctionMessage (em. get AppSessionld (), em.
getOrigRequest (), null, (String) menuMedia));

}

@Override
public EventType interpretEvent(EventType triggerType) {
State state = (State) executionContext.getVariable ("
state");
logger.info ("interpretEvent: state = " + state);

104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
120
121
122
123

124

125

126

127

128
129
130
131
132
133
134
135
136
137

return state.normalizeEvent (triggerType);

}

@Override
public String getUserInput(EngineEvent event) {
if (EventType .MESSAGE. equals (event.type)) {
logger.info ("getUserInput from event " + event)

)

return ((EventMessage)event).getContent () ;

} non

return ;

}

@Override
public void resetExecState () {
executionContext.setVariable("state", State.INIT);

}

@Override
public void process(EngineEvent event) {
State state = (State) executionContext.getVariable ("
state");
if (State.INIT.equals(state) && EventType.MESSAGE.
equals (event.type)) {
String content = ((EventMessage) event).
getContent () ;
logger.info ("processInput: saving user input for
+ content);
executionContext.setVariable ("userInputForRetran

n

retransmission :
, content);

}

@Override
public void interrupt(ReleaseCode code) {
super.interrupt (code);
if (code = null) {
return ;
}
String errorMessage = ErrorMessageRepository.
getErrorMessage (code.intValue ());

138 EngineEvent event = executionContext.getEvent () ;

139 if (EventType .MESSAGE. equals (event.type)) {

140 EventMessage em = (EventMessage) event;

141 NetworkAdapter networkAdapter = executionContext
.getNetworkAdapter () ;

142 logger .info ("interrupt: interaction id = " +
getld ()

143 networkAdapter. handleFunction (new

FunctionMessage (em. get AppSessionld (), em.
getOrigRequest (), null, (String) errorMessage
)) s

144 }

145 }

146}

© 0o N>

10

11
12
13
14
15
16

Appendix B

B.1 Conversation DML (MySQL)

CREATE TABLE ‘Conversation ‘ (

“id ¢ INT(10) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT ’
Conversation id’,

‘oname ¢ VARCHAR(64) NOT NULL COMMENT ’Organization name’

COLLATE ’utf8mb4 unicode ci’,

‘login ¢ VARCHAR(20) NOT NULL COMMENT ’Login’ COLLATE ’
utf8mb4 unicode_ ci’,

‘service © VARCHAR(64) NOT NULL COMMENT ’Service’ COLLATE

"utf8mb4 unicode_ ci’,

PRIMARY KEY (‘id ‘) USING BTREE,

INDEX ‘END USER, FK‘ (‘oname‘, ‘login ‘) USING BTREE,

INDEX ‘SERVICE_FK‘ (‘service ‘) USING BTREE,

CONSTRAINT ‘END_USER FK‘ FOREIGN KEY (‘oname‘, ‘login ‘)
REFERENCES ‘easydb ‘. ‘EndUser‘ (‘oname‘, ‘login ‘) ON
UPDATE CASCADE ON DELETE RESTRICT,

CONSTRAINT ‘SERVICE_FK‘ FOREIGN KEY (‘service ‘)
REFERENCES ‘easydb ‘. ‘ Service * (‘sno ‘) ON UPDATE
CASCADE ON DELETE RESTRICT

)

(OMMENI=’Omnichannel support’
COLLATE="utf8mb4 unicode ci’
ENGINE=InnoDB
AUTO_INCREMENT=220

b

7

B.2 Interaction DML (MySQL)

1 CREATE TABLE ‘Interaction ¢ (

2

10

11

12
13
14
15
16
17

)

‘id ¢ INT(10) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT °’
Interaction id’,

‘conversation_id ¢ INT(10) UNSIGNED NOT NULL COMMENT °’
Conversation id’,

‘channel ¢ SMALLINT(6) NOT NULL COMMENT ’Channel type’,

‘startedAt ¢ TIMESTAMP NULL DEFAULT NULL COMMENT ’Start
timestamp ',

‘finishedAt ¢ TIMESTAMP NULL DEFAULT NULL COMMENT ’End
timestamp ',

‘status ¢ SMALLINT(6) NOT NULL COMMENT ’Status’,

‘cid ¢ INT(64) NULL DEFAULT NULL COMMENT ’Executing
component id’,

PRIMARY KEY (‘id ‘) USING BTREE,

INDEX ‘CONVERSATION_ID_FK‘ (‘conversation_id ‘) USING
BTREE,

CONSTRAINT ‘CONVERSATION ID FK‘ FOREIGN KEY (*
conversation_id ‘) REFERENCES ‘easydb ‘. ‘ Conversation °
(¢‘id) ON UPDATE CASCADE ON DELETE RESTRICT

COMMENI=’Omnichannel support’
COLLATE="utf8mb4 unicode ci’
ENGINE=InnoDB
AUTO_INCREMENT=216

bl

Appendix C

C.1 sipp/advanced__scenario/send__init.xml

1 <scenario name="Send initial request for service'>

2 <send>

3 <! [CDATA|

4 MESSAGE sip:100@ [remote_ip]: [remote_port] SIP /2.0

5 Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=|
branch |

6 Max—Forwards: 70

7 From: 420432100000 <sip:420432100000Q@ [local ip]: |
local_port]>;tag=[pid]SIPpTag00[call_number]

8 To: 100 <sip:100@ [remote_ip]: [remote_port]>

9 Call—ID: [call id]

10 CSeq: 1 MESSAGE

11 Content—Type: text/plain

12 Content—Length: [len|

13 X-OMNE-User: 420432100000

14 X-OMNE-Organization: VladaCompany

15 X-OMNE-Service: VladaOutbound

16

17 Hello !

18 11>

19 </send>

20

21 <recv response="200">
22 </recv>

23

24 </scenario>

79

© 00 O Uk W N~

e el T T e T T e T =
© 00 J O UL W N = O

20
21

C.2 sipp/advanced__scenario/send__ack.xml

<?xml version="1.0" encoding="ISO—-8859—1" 7>
<!DOCTYPE scenario SYSTEM "sipp.dtd"'>

<scenario name="Acknowledge request'>

<recv request="MESSAGE">
</recv>

<send>
<! [CDATA|

SIP /2.0 200 OK
[last__Via:]
[last__From: |
[last__To:]
[last__Call—ID:]
CSeq: 1 MESSAGE
Content—Length: 0

I1>
</send>
</scenario>

C.3 sipp/advanced__scenario/menu__select__yes.xml

1 <?xml version="1.0" encoding="ISO—8859—1" 7>

2 <!DOCTYPE scenario SYSTEM '"sipp.dtd">

3 <scenario name="Submitting user input: yes'>

4 <send>

5 <! [CDATA|

6 MESSAGE sip:100@ [remote ip]:[remote port] SIP /2.0

7 Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=]
branch |

8 Max—Forwards: 70

9 From: 420432100000 <sip:420432100000@ [local_ip]: |
local__port]>;tag=[pid] SIPpTag00[call_number]

10 To: 100 <sip:100@ [remote_ip]: [remote_port]>

11 Call-ID: [call_id]

12 CSeq: 1 MESSAGE

13 Content—Type: text/plain

14 Content—Length: [len|

15 X-OMNE-User: 420432100000

16 X-OMNE-Organization: VladaCompany
17 X—OMNE-Service: VladaOutbound

18

19 1]]>
20 </send>
21

22 <recv response="200">
23 </recv>
24 </scenario>

C.4 sipp/advanced__scenario/menu__select__no.xml

1 <?xml version="1.0" encoding="ISO—8859—1" 7>

2 <!DOCTYPE scenario SYSTEM "sipp.dtd'>

3 <scenario name="Submitting user input: no'>

4 <send>

5 <! [CDATA|

6 MESSAGE sip:100@ [remote ip]:[remote port] SIP/2.0

7 Via: SIP/2.0/[transport] [local ip]:[local port];branch=]|
branch |

8 Max—Forwards: 70

9 From: 420432100000 <sip:420432100000@ [local_ip]: |
local__port]>;tag=[pid]SIPpTag00[call_number]

10 To: 100 <sip:100@ [remote_ip]: [remote_port]>

11 Call—ID: [call_id]

12 CSeq: 1 MESSAGE

13 Content—Type: text/plain

14 Content—Length: [len|

15 X—OMNE-User: 420432100000

16 X-OMNF-Organization: VladaCompany

17 X—OMNE-Service: VladaOutbound

18

19 0]]>

20 </send>

21

22 <recv response='200">
23 </recv>
24 </scenario>

C.5 sipp/advanced__scenario/send__reinit.xml

1 <scenario name="Resend request for service'>

2 <send>

3 <! [CDATA|

4 MESSAGE sip:100@Q [remote_ip]: [remote_port] SIP/2.0

5 Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=|
branch]

6 Max—Forwards: 70

7 From: 420432100000 <sip:420432100000@ [local ip]: |
local port]>;tag=[pid]SIPpTag00[call number]

8 To: 100 <sip:100@ [remote_ip]: [remote_port]>

9 Call-ID: [call_id]

10 CSeq: 1 MESSAGE

11 Content—Type: text/plain

12 Content—Length: [len]

13 X—OMNE-User: 420432100000
14 X-OMNE-Organization: VladaCompany

15 X—OMNE-Service: VladaOutbound
16

17 Hello again!

18 11>

19 </send>

20

21 <recv response="200">
22 </recv>

23

24 </scenario>

© 00 O Uk W N~

N = = = = = e = e e
O © 00 O Ui W N~ O

21
22

C.6 sipp/advanced__scenario/send_ nack.xml

<?xml version="1.0" encoding="ISO—-8859—1" 7>
<!DOCTYPE scenario SYSTEM "sipp.dtd"'>

<scenario name="Simulate reception error">

<recv request="MESSAGE">
</recv>

<send>
<! [CDATA|

SIP /2.0 400 Bad request
[last_ Via:]
[last_From:]

[last__To:]
[last__Call—ID:]

CSeq: 1 MESSAGE
Content—Length: 0

I1>
</send>
</scenario>

10

11

12

13

C.7 sipp/run__advanced__scenario.sh

./sipp —sf advanced_scenario/send_init.xml —t ul —m 1 —i
192.168.2.1 —p 5060 192.168.2.2:6060

./sipp —sf advanced_scenario/send_ack.xml —t ul —m 1 —i
192.168.2.1 —p 5060 192.168.2.2:6060

./sipp —sf advancediscenario/menuiselectiyes.Xml —t ul —m 1
—i 192.168.2.1 —p 5060 192.168.2.2:6060

./sipp —sf advanced_scenario/send_ack.xml —t ul —m 1 —i
192.168.2.1 —p 5060 192.168.2.2:6060

./sipp —sf advanced_scenario/menu_select_no.xml —t ul —m 1 —
i 192.168.2.1 —p 5060 192.168.2.2:6060

./sipp —sf advanced_scenario/send ack.xml —t ul —m 1 —i
192.168.2.1 —p 5060 192.168.2.2:6060

./sipp —sf advanced_ scenario/send_reinit.xml —t ul —m 1 —i
192.168.2.1 —p 5060 192.168.2.2:6060

./sipp —sf advanced_scenario/send_ack.xml —t ul —m 1 —i
192.168.2.1 —p 5060 192.168.2.2:6060

./sipp —sf advanced_scenario/menu_select_yes.xml —t ul —m 1
—i 192.168.2.1 —p 5060 192.168.2.2:6060

./sipp —sf advanced_scenario/send_ack.xml —t ul —m 1 —i
192.168.2.1 —p 5060 192.168.2.2:6060

./sipp —sf advanced_scenario/menu_select_no.xml —t ul —m 1 —
i 192.168.2.1 —p 5060 192.168.2.2:6060

./sipp —sf advanced_scenario/send_nack.xml —t ul —m 1 —i
192.168.2.1 —p 5060 192.168.2.2:6060

@ NTNU

Norwegian University of
Science and Technology

	List of Figures
	List of Acronyms
	Introduction
	Context
	Motivation and research focus
	Methodology
	Thesis outline

	Omnichannel
	Definition and capabilities
	Maturity model
	Approaches to omnichannel enablement
	Example of industrial implementation

	Unified communications
	Motivation of study
	Technical insights

	Distributed Feature Composition
	Main definitions
	Omnichannel potential

	General framework requirements
	Modularity and service flow
	Channel agnosticism
	Data model

	Conceptual framework
	Proposed model
	Design constraints

	Prototype
	Example service
	Basic test scenario
	Advanced test scenario
	The first interaction
	The second interaction
	The final interaction

	Test environment
	Implementation
	Testing procedure

	Discussion
	Service semantic
	Feature-Interaction decoupling
	Incremental omnichannel enablement
	User and service authentication
	Non-functional aspects
	Prospects
	Summary

	Conclusion
	References
	Appendix A
	Conversation Manager
	Interaction
	MessageInteraction

	Appendix B
	Conversation DML (MySQL)
	Interaction DML (MySQL)

	Appendix C
	sipp/advanced_scenario/send_init.xml
	sipp/advanced_scenario/send_ack.xml
	sipp/advanced_scenario/menu_select_yes.xml
	sipp/advanced_scenario/menu_select_no.xml
	sipp/advanced_scenario/send_reinit.xml
	sipp/advanced_scenario/send_nack.xml
	sipp/run_advanced_scenario.sh

