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Abstract

Optimization study is an exhaustive study that requires many runs and vast amounts of
space to find and store the results. Nevertheless, it is one of the most widely performed
studies in petroleum engineering studies, such as production optimization and EOR as-
sessment study. When talking about EOR, CO2 is one of the most common methods
employed. To assess the feasibility of the CO2-EOR project, a reservoir design study must
be conducted, where optimization will be performed. Some studies show that employing
a proxy model to do this task saves a lot of space and time needed. However, no studies
explicitly stated how this is done and what problems need to be tackled to build a proxy
model.

In this study, we developed proxy models to solve a multi-objective optimization problem
using NSGA-II on the reservoir models we have. The study was performed for CO2-WAG
reservoir assessment, where gas injection rate, water injection rate and half-cycle length
are assessed to maximize the oil recovery and CO2 stored in the reservoir. Two reservoir
models were studied. One represents a simple geological model (Egg Model), while the
other represents a complex model (Gullfaks Model). In this study, we described in details
the process to build both proxy models from scratch. Following that, we found out that a
higher amount of sampling is needed, and more proxy segmentations are needed to build
a robust proxy model for a complex reservoir model. In alignment with that, we found
that to reach the maximum oil recovery on CO2-WAG, we need to have a maximum gas
injection rate with a minimum water injection rate. However, this configuration will result
in the reduction of the total CO2 stored in the reservoir. All proxies have average error less
than 2% and is concluded to be robust based on the blind test results.

Keywords: Proxy Model, CO2-WAG, NSGA-II, Optimization Study
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Chapter 1
Introduction

1.1 Background
Most studies in petroleum industry involve optimization. The most common objective
function is to improve oil production. For example, to find the best location to add ad-
ditional wells, waterflood injection design, and EOR injection design. This is performed
more intensively nowadays as oil production decline occurs in existing fields, yet the en-
ergy demand constantly rises. Discoveries of new oil fields do not follow this problem. To
tackle the problem, more countries have started to study the feasibility of EOR applications
in their mature fields, such as CO2-EOR.

The study can be complex and hard to solve when discussing the optimization study for
CO2-EOR. Designing preferable injection rates and injection conditions is one of the reser-
voir engineering design techniques for CO2 EOR. Deciding whether it is profitable is such
an exhaustive process, where one of the components to be done is to optimize the CO2 in-
jection EOR based on selected optimization parameters. This study usually is performed
using a reservoir simulator first before moving to the small coverage area (pilot test), fol-
lowed by field-scale application. The current limitation of this study is its excessive time
and space needed to solve the optimization problem and store the result, especially for the
complex reservoir model.

For the past ten years, the idea to tackle this problem has been by employing a proxy
model, commonly called Smart Proxy Model (SPM) or Surrogate Reservoir Model (SRM).
The previous study (Matthew, 2020) shows that the proxy model is able to reduce the
total running time from 4.5 minutes to less than 10 seconds. The proxy model learned
the decline and plateau oil rate behaviour of our reservoir model (Egg Model). This proxy
was used to perform an optimization study to optimize total oil produced with gas injection
rate, start time of injection, total slug size injected and composition of the injected gas as
the parameters to be studied in the CO2 flooding project.

1



Chapter 1. Introduction

Most studies related to proxy modelling, such as CO2-related proxy model that performed
by Gholami (2014), Amini (2015), Nait Amar et al. (2018), and Nait Amar et al. (2020)
show that proxy model can be a substitute for our reservoir model and can be used for opti-
mization study. In our previous study (Matthew, 2020), we constructed a simple guideline
for developing a proxy model from scratch and applied the workflow to the CO2 flooding
optimization study. As the previous study continues, the current idea is to develop prox-
ies for a simple model and a complex field-like model to solve optimization study. From
both of them, we can see the complexity that might be encountered when building a proxy
model for a complex model and tackle the problems encountered while working with it.

1.2 Objective
The primary research objective is developing a new strategy that allows a significant reduc-
tion of runtime and storage associated with the commercial simulators without sacrificing
accuracy. This study will be performed on CO2-WAG as one of the most common En-
hanced Oil Recovery (EOR) methods. The proxy model will be made as our reservoir
model substitute, where we will maximize total oil produced and CO2 stored as the objec-
tive function of our optimization problem.

This study will be performed on two geological models, where one acts as a simple model
while the other represents the complexity we usually have in a real field model. Several
points that are studied in this research are:

1. Formulating a multi-objective optimization problem.
2. Building a proxy model for a simple and complex reservoir model that involves

sampling using experiments, proxy building, and proxy robustness assessment.
3. Analyzing the problem and complexity encountered when building a proxy model in

a complex reservoir model by comparing the results with the simple reservoir proxy
model.

4. Solving the optimization problem with the generated proxy, both simple and com-
plex reservoir model using an optimization algorithm.

1.3 Structure of the Report
The thesis is arranged in seven chapters. Chapter one introduces the background and
the research objective. Chapter two summarizes the basic theory of CO2-EOR, proxy
modeling and optimization. Chapter three describes the methodology and the problem,
followed with the details of the models used in the study.

Chapter four focuses on the details how proxy model is built to solve the optimization
problem. The fifth chapter describes the details of how each proxy model is constructed
for each reservoir model we have. Chapter six starts with the comparative study between
each proxy models, evaluations, improvements, and the truth found out during building a
proxy model. Finally, conclusion are presented in chapter seven.
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Chapter 2
Literature Review

A complete review of theories and concepts used are explained in this chapter.

2.1 CO2 Enhanced Oil Recovery
Starting 1901, when Spindletop discovered, an oil boom was started, making the oil con-
sumption economically feasible. Throughout the decades, thousands of oil fields are dis-
covered and extracted to fulfil the energy needs. Almost all known major fields in the
world are discovered by now. Even though still producing, most fields already passed
their peaks and now decline over time.

Primary recovery might be not economical after several years of field production. Im-
proved Oil Recovery (IOR) then will be employed to keep the production surpass the eco-
nomic limit. With the exponential growth in technology and knowledge in the industry,
Enhanced Oil Recovery (EOR) now soars as an option. Tabulated in Table 2.1, EOR types
are categorized as thermal and nonthermal (chemical, miscible, and other EOR types).

Table 2.1: List of EOR methods.

Group EOR Methods1 Principle2

Thermal
SAGD, Cyclic steam injection, hot water flood,
steam flooding

Sweep and displacement
efficiency improvement

Chemical
Polymer, micellar-polymer, emulsion, alkaline,
surfactant,

Sweep or displacement
efficiency improvement

Miscible
CO2 flooding, water alternating gas (WAG)
N2 flooding, vaporizing gas drive

Displacement efficiency
improvement

1Satter and Iqbal (2016)
2Carcoana (1992)
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When we try to observe EOR projects from 1971-2017, as shown in Figure 2.1, we can
see an increase of interest in CO2 as an EOR method to be applied. This method surpassed
thermal EOR from 2006 as the most employed EOR method. The increase in other gas
injection methods also can be seen, starting 2001. Chemical, as one of most studied EOR
methods in the eighties, declines rapidly after CO2 started to be applied in some fields in
the US.

Figure 2.1: Summary of EOR projects globally (IEA, 2017).

The surge of greenhouse gas emission becomes a vital player of this method. Several
policies were made to control the emission, reflecting the prediction of global warming
scenarios. Carbon Capture, Utilization and Storage (CCUS), one of the main strategies for
controlling gas emissions, noted that CO2-EOR is more lucrative than direct storing. The
benefits are tremendous, where the company can produce more hydrocarbon and reduce
the CO2 tax. CO2 storage might not economical unless the CO2 tax surpasses the injection
cost. Again, this depends on the field location, regulations and CO2 availability.

Other than that, the interaction between CO2 with hydrocarbon also becomes the main rea-
son for applying this method. As stated before, CO2-EOR mainly affects the displacement
efficiency of reservoir. CO2 become miscible with reservoir hydrocarbon at lower pressure
compared to other gas injection methods such as nitrogen, methane and methane-ethane
mixture (Hawthorne et al., 2017). Richer gas injection may mix at pressure lower than
CO2, but its availability is lower than CO2.

When mixed, CO2 will reduce oil viscosity. As mobility ratio is a function of viscosity,
this reduction decreases the mobility ratio, resulting in better displacement efficiency. The
mixing process itself will increase oil volume, so-called oil swelling and pushes more oil
to the producer. Other than that, as water is present in the system, CO2 will also mix with
it. Water expansion will happen. Hence, the gravity segregation effect will be reduced
due to smaller density differences (Gholami, 2014). Carbonic acid formed due to water
and CO2 interaction will dissolve carbonates. It will increase reservoir permeability and
injectivity.
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Miscibility condition needs to be focused in the CO2-EOR study, as it differs based on the
system’s pressure. Illustrated in Figure 2.2, we can see three stages of mixing. It is worth
knowing that miscibility develops slowly for every pressure increase. It is not a ”switch”
where it only mixes when the minimum miscibility pressure (MMP) was reached. Higher
pressure enables CO2 to mix with heavier hydrocarbon to reach the first contact miscibility
condition, but it requires higher pressure, even way higher than our reservoir pressure.

Figure 2.2: CO2 displacement at miscible and near-miscible conditions (Whitson et al., 2000).

CO2-EOR can be employed in many injection designs. The most well-known injection
designs are flooding, Water Alternating Gas (CO2-WAG), and huff-and-puff. Most designs
are performed until they reach the predetermined volume of total CO2 injected. One of the
methods, huff-and-puff, is performed using the same well to produce and inject the gas. It
involves injection, soak and production period as one cycle. Here, the other two injection
designs will be described deeper based on Verma (2015).

2.1.1 CO2 Flooding
This design, commonly called continuous CO2 injection, requires CO2 throughout the
injection period. Pure CO2 is usually preferred as the injection fluid but may be mixed
with other gas as impurities, such as nitrogen and methane, although this may increase the
MMP. This design is often applied to reservoirs with light to medium oil gravity, strongly
water-wet reservoirs, or reservoirs sensitive to water flooding. This method may be imple-
mented right after primary recovery if needed.

After the injection volume target is reached, water flooding may be performed to sweep
the oil left in the lower part of the reservoir due to the gravity segregation. It helps to
increase the recovery in low permeability or homogeneous reservoirs. Other types of gas,
such as nitrogen, can maximize gravity segregation, although this might not be preferred.
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Figure 2.3: CO2 continuous injection illustration (LLC, 2020).

Figure 2.3 shows the injection cycle of this design. Using this design, as we only have
one injection fluid type (compared to WAG), the work can be considered almost the same
as water flooding, except the tools should be more corrosive-resistant. Injection pattern is
critical, but in some cases, this can not be prioritized as adding or converting wells will
cost extra expenses. It reflects the capital cost that will be high, especially from surface
facilities, as most fields are not prepared for CO2 injection initially.

The main problem here is CO2 availability. It is a common problem for other CO2-EOR
design, but CO2 in bulk for this design is usually the main reason this method is not
employed. Channelling, which causes early breakthrough, is also one of the concerns. As
the gas density and or viscosity is lower than the fluid system we have in reservoir, it will
go through available thief zones, hence reduce the amount of oil that can be recovered
from the project. These two problems can be tackled by employing WAG design.

2.1.2 CO2 Water Alternating Gas (WAG)

In this method, water and gas are injected in cycles until the targeted gas injection volume
is reached. The cycle changes can be determined either by the total volume of fluid injected
or the total injection time for each injection phase. Conventionally, every cycle consists
of the total amount of gas and water injected, but tapered WAG can also be employed as
technology advances. Tapered WAG is usually employed to reduce the amount of CO2

needed, prevent an early breakthrough, and improve the oil recovery.

After the targeted slug volume is injected, water flooding can be performed. It is suitable
for layered reservoirs with different permeability in each layer. Gas flooding can be an-
other option, as it is usually cheaper gas such as air or nitrogen. Later, CO2 inside the
reservoir will migrate to the upper layer of the reservoir.
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Figure 2.4: CO2 WAG illustration (Lake et al., 2019).

Figure 2.4 shows the illustration of CO2-WAG design. Water alternating CO2 injection
can tackle the gas override and channelling, which is one of the main problems with the
previous design. Although the amount of CO2 needed may be the same, the need in bulks
throughout the project lifetime will be less burdensome than before. A new problem,
storing recycled CO2 during the water injection phase, also needs to be considered. This
design can be adaptive, as the cycle can be modified based on the real-time reservoir
response.

Although these problems can be tackled, new problem await. As we have CO2 and water,
regular workover to change the injection fluid are needed. In addition, CO2 and water
mixture can form carbonic acid. This corrosive solution can corrode pipelines, so extra
preparations are needed to reduce the effect of this acid.

2.1.3 CO2 EOR Reservoir Engineering Design
A comprehensive study needs to be performed before conducting CO2-EOR. It is noted
that not all reservoirs are suitable for this method. Many technical screening criteria are
available, which are gathered from successful projects for every EOR method. One of
them, written by Al Adasani and Bai (2011a), summarized EOR Projects based on oil
properties (oil gravity and viscosity) and reservoir characteristics (porosity, permeability,
depth, and other properties). Complementing this, rough economic screening usually is
performed for testing the project profitability.

CO2-EOR is usually applied in medium to light oils, which varies between 28 to 45◦API,
with viscosity averaging in 2.1 cp (Al Adasani and Bai, 2011a). When a reservoir passed
the screening criteria, then reservoir engineering design can be started. Jarrell et al. (2002)
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mentioned four points that need to be performed to design an EOR project. These points
collect valid input data, history matching, predicting the EOR performance, and determin-
ing the optimum flow design.

The first step, collecting data, involves tests (mainly laboratory tests) that explain the be-
havior of reservoir when CO2 is injected. Related tests are slim-tube, multi-contact, and
swelling test. Then, data upscaling will be performed to the history-matched reservoir
model. Here, the behavior will be observed from a field scale. The reservoir model then
can be used to make predictions, which reflects the field performance.

The last step, which is highly iterative and time-consuming, is determining the flow de-
sign. Here, the field constraints will be included, such as CO2 availability, pressure limit,
pipeline design, and surface facilities condition. Based on this and other parameters that
influence the EOR performance, optimization is performed. This step is repetitive, as we
want to reach the optimum condition of the field performance. A complex reservoir model
with a high number of grids, a high number of study parameters, and a complex fluid
model will increase the time needed to perform this study.

2.2 Proxy Model
Performing exhaustive study takes much running time and memory when performed with
current reservoir model technology. To tackle this problem, proxy model studies are per-
formed and yield a promising solution. Proxy model is a mathematically or statistically
defined function that replicates the simulation model output for selected input parameters
(Zubarev et al., 2009). One of the proxy model study results, performed to mimic the oil
saturation of the reservoir model, is attached in Figure 2.5. The ability of a proxy model
to learn complex reservoir model behavior is proven by recent studies, both synthetic and
field model.

Figure 2.5: Study results of proxy modeling for CO2-WAG study (Gholami, 2014)
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A proxy model learns from the given training and validation data generated from the re-
sponse surface or simulation models output. However, a proxy model is not response
surfaces nor statistical representations of the simulation model. It is an engineering tool
that honors the physics of the problem we have. This powerful tool is constructed based
on data managed, clustered and filtered into information, later learned as knowledge. The
proxy model has different naming in other studies, such as Smart Proxy Model (SPM),
Surrogate Reservoir Model (SRM), Dynamic Proxy Model. Nevertheless, all have the
same meaning as the proxy model we mentioned here.

Problems such as sensitivity analysis, optimization study and history matching are some
studies that can be solved with the help of proxy models (Zubarev et al., 2009). These
problems almost have the same way to solve, by iterative evaluation. As a proxy model
has higher computational efficiency than reservoir model, exhaustive sampling can be per-
formed with this method. How to build it, the growth of this study and room for improve-
ments based on the previous studies will be described in this sub-chapter.

2.2.1 Building Proxy Model
There are no direct guidelines that state the steps to build the proxy model. However, most
studies are performed in the same way. Here we summarized (in steps) a guideline for
developing a proxy model.

1. Determining the study objective
As proxy model only learns from the given sets of information, this creates a lim-
itation for the model, which is case-specific. Different proxies need to be built
for different study objectives, leading to sampling, proxy input-output combination,
study limitations, and algorithm to solve the problem. However, the most impor-
tant thing, the objectives will determine the scale and the complexity of our proxy
model. There are different scales of proxy models based on the size of their elemen-
tal volume, summarized in Figure 2.6. Again, determining which scale to be used
is based on the needs of the proxy to be built.

Figure 2.6: Summary of proxy model scale and application.
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Grid-based, the smallest, can track the change of pressure and saturation at the grid
block level. This scale can monitor the pressure and rate changes near the injection
and production wells, followed by a well-based proxy. The last one is field-based
proxy, where a segment of a field (or the whole field) is being observed. The differ-
ent scale yields different input needed, Table 2.2 can be used as reference.

Table 2.2: Needed input for each type of proxy model.

Data Grid-based* Well-based* Field-based
Property Domain Property Domain Property Domain

Static

Grid Type Grid Drainage Area Well

No input needed here
(constant geological/
static condition)

Location (i, j, k, Long, Lat) Grid/Tier Location (i, j, k, Long, Lat) Well
Thickness Grid Thickness Tier
Porosity Grid Porosity Tier
Permeability (x,y,z) Grid Permeability Tier
Grid top Grid/Tier Grid Top Tier
Distance to boundary Grid/Tier Distance to boundary Well

Dynamic

Time Time Time
Pressure Grid/Tier Pressure Tier
Saturation Grid/Tier Saturation Tier
CO2 Mole Fraction Grid/Tier CO2 Mole Fraction Tier
COW BHP Well COW BHP Well
COW Amount of Prod/Inj Well COW Amount of Prod/Inj Well
Amount of Prod/Inj Field Amount of Prod/Inj Field Amount of Prod/Inj Field

*Gholami (2014)

2. Data Sampling
After determining the study objectives, proxy scale and input data for the proxy, and
data sampling can be performed. Data sampling is usually performed by running
the reservoir model. The results to be learned are then being sampled for proxy
learning dataset. How to perform the data sampling is approached from available
statistical sampling. In this study, Latin Hypercube Sampling (LHS) will be used as
the problem is to solve the optimization study.

Figure 2.7: Latin Hypercube Sampling.

Rather than random sampling, LHS performs stratified sampling to improve the
coverage of the solution space. Shown in Figure 2.7, sampling was performed by
segmenting cumulative distribution function (CDF) into n equal, non-overlapping
intervals. These intervals will make equiprobable intervals in our horizontal axis.
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After segmentation, exactly one random value in between each interval will be se-
lected. When inverted into the horizontal axis, precisely one value will be sampled
for each equiprobable intervals. A random process must be used to ensure the ran-
domness of each segment. Performing with LHS ensures that the entire range is
completely covered without one variable dominating the others. It makes LHS more
efficient than random sampling for a study with ample solution space. LHS is usu-
ally performed in safety assessment, computer modeling, and petroleum industry,
particularly in optimization schemes (Iman, 1999).

3. Data Management
After obtaining the sampling plan, reservoir model runs will be performed. Many
data points can be obtained, yet not all of them will be used for our proxy model
training. By reviewing the study objective, understanding the reservoir model phys-
ical behavior (Table 2.2 as guideline), data can be filtered. All the needed data will
then be organized as input and output combination for the proxy to learn.

4. Designing and building the proxy model
Using available machine learning or deep learning models, a proxy model can be
built. The proxy model will approximate the numerical reservoir model. It should
mimic the nonlinearity in responses from the model. The complexity of the proxy
model itself reflects the complexity of the reservoir model.

Four common forms of a proxy model are polynomial regression model (PR), mul-
tivariate kriging model (KG), thin-plate splines model (TSP) and artificial neural
network (ANN) (Zubarev et al., 2009). Regardless of the models, the typical work-
flow to build a proxy is shown in Figure 2.8. The first three steps are the ones
performed during defining the study objective and doing data sampling.

Figure 2.8: Proxy modeling workflow (Zubarev et al., 2009).
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In this study, ANN will be used to build the proxy. ANN is a computational model
inspired by the biological behavior of human neurological system. As shown in
Figure 2.9, ANN consists of inputs, weights, bias, and activation function. This
structure, formed in several layers, each containing several nodes before reaching
the output, is called topology.

Figure 2.9: Main ANN structure.

The activation function gives ANN the ability to model the nonlinearity of reservoir
model. ANN then learns from forward and backpropagation, where the weights
will be updated during each process to minimize the error. During the forward
propagation, the network moves from the input layer to the output layer. Passing
through each node and transformed by the activation function, the results will reach
the output. It will be noted as the neural network prediction.

The learning process happens as we have the output dataset. The differences be-
tween the predicted and the actual output are then calculated using the loss function,
such as mean squared error (MSE), root mean square error (RMSE), absolute error
(AE), and any other loss function. Backpropagation will then be performed to min-
imize the loss function. The loss will be sent back to the input layer as a fraction
of the total signal of the loss. These two processes will be performed until error
satisfies the limit or the number of iterations (epoch multiplied by batch size).

Underfitting may happen if the network is not adequately trained. Overfitting, where
ANN learns the noise instead of the signal, may also happen during this process. To
avoid this, the database needs to be separated into training/validation datasets so that
the validation data loss function will prevent overfitting. To make an ANN, topology
needs to be defined, consisting of the number of hidden layers, nodes in each hidden
layer and the activation function. Then, the node weights can be estimated by a
supervised learning algorithm.

Hyperparameter is a parameter that control the learning process. Activation func-
tion, number of hidden layers, and number of nodes count as hyperparameters in
ANN. Other than that, we have other hyperparameters such as learning rate. op-
timization function/optimizer, batch size, dropout and number of epoch. Learning
rate is the step size for each iterations and optimizer is the optimization function to
minimize the loss function. Dropout is the probability where nodes are randomly
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disconnected during training and batch size is the number of data points that pass
through neural network every step. Epoch is the amount of times to go through our
training data.

5. Testing the robustness of the proxy model
The robustness of an ANN can be tested by performing a blind test. A blind test
dataset is a dataset that is not used to train the network. This dataset can be used
as an indicator of whether an ANN, which will be our proxy model, represents the
reservoir model behavior or not. We can see whether our proxy has the prediction
ability, which will be necessary for the study.

6. Performing the desired study
After the robustness of our proxy is confirmed, the preferred study such as opti-
mization study, history matching or sensitivity analysis can be performed using the
available computational algorithm to solve the problem.

2.2.2 Previous studies on proxy modeling
The proxy model study was initiated in the 2000s. Most of the studies were performed
to solve exhaustive problems as mentioned before. Zubarev et al. (2009) reviewed the
growth of proxy model study from 1998 until 2008. They found that all proxy-modeling
techniques showed dependence on the complexity of the reservoir model, solution space
dimensions, and dataset quality. History matching, sensitivity analysis, and optimization
studies were already performed using a proxy model as a substitute.

Based on their study of history matching, proxy models are able to calculate the objective
function values. However, they fail to predict the global minimum compared to reservoir
simulation that could locate it. In sensitivity analysis, proxy models can predict the field
performance uncertainties, where good results are reported using a different type of proxy
models. This result is obtained after applying a space-filling design (LHS) rather than other
traditional designs to form the dataset. Proxy model is often used to assist optimization
study. Past studies show that it can locate the local minimum, yet not all of them can.
From Zubarev et al. (2009) study, solution space based on their sampling is shown in
Figure 2.10. It shows that 100 samples were able to locate the known optimum of one in-
fill optimization study. However, even 200 samples were not enough to locate the optimum
for two in-fill optimization studies. In one of their case study, the proxy cannot locate the
optimum solution even though the global optimum is used as a training case.

Gholami (2014) interpreted this as one of the typical examples where the technology is
misused and misjudged. The neural network used was treated merely as a regression tool,
which sets the study as a failure. Deploying an ANN needs to be taken care of as an attempt
to observe, learn and generalize. Thus, particular comprehension of machine learning and
deep learning are needed before applying them.

Gholami (2014) applied proxy model, so-called SRM, in her study to a more complex
problem, where smaller elemental volume was studied. The study was applied to CO2-
WAG to mimic the grid behaviors (pressure and saturation), followed by a larger scale,
well-based behaviors (production rates of oil, gas and water) where both of them are con-
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Figure 2.10: Evolution of the solution space for single in-fill optimization (Zubarev et al., 2009).

nected. Grid-based results are shown in Figure 2.5. Based on the study results, the con-
structed proxy model learned the preferred pressure, saturation and rate behavior, where
one year was used as the timestep interval for reporting frequency.

Amini (2015) performed a detailed study for a grid-based proxy model following Gho-
lami’s results. The cascading effect and comparison between fine-grid and coarse-grid
reservoir model were analyzed in CO2 sequestration study. The study shows that the
coarser model requires fewer runs for training purposes than the fine grid model. In align-
ment with that, the cascading procedure shows significant errors when observed in the last
time step, as shown in Figure 2.11. The figure explains the saturation error for each grid
in the first layer.

Figure 2.11: Cascading and non-cascading error results. (Amini, 2015).

This literature has been used as the primary reference for developing a good proxy model
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until now. In one of the recent studies performed by Chaki et al. (2020), they developed
a proxy model to perform history matching using the Brugge field model as the reservoir
model to be learned. They applied two methods, deep neural network (DNN) and recurrent
neural network (RNN), to build a proxy that learns the behavior of the reservoir model (oil
and water production rate and cumulative production). RNN shows better performance
than DNN, yet the amount of time needed to construct it is 15 times higher than DNN.

Two other studies are aligned with this study. Optimization study for CO2 EOR projects
are performed by Amar et al. (2018), followed by their newest article (Nait Amar et al.,
2020). They performed a CO2-WAG optimization study using a proxy model in both
articles. Both ANN and hybrid support vector were used to learn the reservoir behavior
(oil and water rate) and then perform a CO2-WAG optimization. One of the proxy model
performances is shown in Figure 2.12. A recent study also shows that a proxy model was
built for a fractured reservoir model (Ng et al., 2021).

Two studies are found in which align with this study. Optimization study for CO2 EOR
projects are performed by Nait Amar et al. (2018), followed with their newest article
(Nait Amar et al., 2020). They performed a CO2-WAG optimization study using a proxy
model in both articles. Both ANN and hybrid support vector are used, and those methods
can learn the reservoir behavior (oil and water rate) and then perform a CO2-WAG opti-
mization study. One of the proxy performance is shown in Figure 2.12. A recent study
shows that a proxy model can be applied for fractured reservoir model (Ng et al., 2021).

Figure 2.12: Proxy performance on CO2 WAG study (Nait Amar et al., 2020).
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2.2.3 Room for Improvements
Many studies related to proxy modeling have been performed, but many research gaps
can be found. Most studies show that the proxy model can be used as a powerful tool
for many tasks, such as a substitute for the reservoir model or an exhaustive study. It
can break the current limitation in reservoir modeling (tremendous running time and high
memory consumption). No studies are focusing on the feasibility of this idea to be applied
in different geological models.

Most studies worked with only one geological model. Hence no information is available
about the complexities faced when building a proxy model for different reservoir mod-
els. Many studies mentioned that the proxy would reflect the complexity of the reservoir
model, yet quantitative results are to be found. Starting with this gap, later we can see
whether a proxy model is worth being built as a substitute for the reservoir model or not.
It is worth noting that the proxy model cannot be used as a substitute for the simulation
model in different studies due to its case-specific limitation.

Alongside this, as optimization is one of the procedures that need to be performed for the
EOR studies, proving the feasibility of the proxy model can shorten the duration of the
pre-study of EOR projects. It can be used as one of the decision tools for the EOR study.
Not only for the EOR study, but this will also help the study of production optimization.

2.3 Optimization
As one of three common proxy model applications, optimization will be performed in
this study. Optimization or optimization problem is a study to find the best solution from
all feasible solutions. When viewed from the mathematical perspective, optimization is a
study to find the best-generated values from the objective function in the defined domain
or solution space. It can be expressed as:

f : A→ Rn

f̃(x) := −f(x), f̃ : A→ Rn

Most optimization algorithms, also known as minimization problems, are expressed as
shown in the equation above. Maximization can be solved just by flipping the negative
term of the study or the objective function. A itself is a subset of Euclidean space Rn with
n-dimension(s), in which the constraints need to be satisfied. The domain A of f is called
the search space, and the elements of A are called feasible solutions.

The goal of optimization is to find the global maximum or minimum. However, several
local maximum or minimum are scattered throughout the solution space, as shown in Fig-
ure 2.13. A local minimum is the best solution in the nearby solution space area, while a
global minimum is the best solution for the whole solution space.

Nowadays, most optimization problems are solved using optimization algorithms. These
algorithms are employed to prevent the calculation convergence in the local minimum (or
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Figure 2.13: Non-convex optimization solution space illustration (Amini et al., 2018).

maximum). However, most of them cannot distinguish between local and global minimum
in the solution space. To identify this, the whole solution space must be computed. How-
ever, this is nearly impossible as it is computationally demanding and time-consuming,
especially for high dimensional optimization study. Most algorithms limit the study based
on the number of iterations defined differently on each algorithm, such as the number of
generations and swarm size.

Optimization in Petroleum Industry

Optimization is one of the most widely performed studies in the petroleum industry. Start-
ing from the exploration, studies such as near-wellbore profile management and near-
wellbore conformance management are performed. Moving to the planning for exploiting
the reservoir, well completion and maximizing productivity index are performed, which
count as a part of the optimization study.

Other typical optimization applications in this industry are gas-water coning and fingering
prevention, well stimulation, sand control management, artificial lift performance study,
and many more studies. It can be said that optimization is an integral part of petroleum
study. From the reservoir to the production facilities, most optimization studies are per-
formed mainly to maximize hydrocarbon production.

Optimization for CO2-EOR Design

This study will be focusing on optimization for CO2-WAG EOR design. Not very differ-
ent from the CO2 flooding study performed in the previous study (Matthew, 2020), most
parameters studied here are the same, except we have water injection rate and half-cycle.
Parameters that can be studied for CO2-EOR design are listed below.

1. Gas injection rate
This variable depends on the CO2 availability, where both source and transportation
will control this parameter. One of the main reasons why CO2-EOR does not meet
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the criteria is the CO2 availability. Hence, this is one of the main study parameters
in most CO2-EOR studies.

2. Water injection rate
CO2 will increase the displacement efficiency while our water will increase the
sweep efficiency indirectly. Most fields have no problems with the water source
for injection, yet this can be studied to fit the field condition.

3. Halfcycle length
This is the main parameter of the WAG project. Half-cycle length affects the recov-
ery directly. Currently, more studies related to this parameter are being performed,
such as a study about tapered WAG by Khan et al. (2016) and AlOtaibi et al. (2015).
Other than that, this parameter will determine the schedule of workover to change
the injection fluid.

4. Total slug size injected
Most pilot studies use 1.2 reservoir pore volume as the target of total gas injected
into the reservoir. The increase of total volume injected will increase the recov-
ery, yet at some point, it will not be economical to be continued. Some projects
determine this by project time rather than total slug size injected.

Other parameters can be studied if needed, such as well placement study and injection
intervals. Most of the optimization studies are coupled with the economic study in which
sensitivity analysis of oil prices, gas prices, and other economic variables are performed.
However, this will not be our primary focus as only technical aspects will be analyzed for
the optimization objectives and parameters.

2.3.1 Single, multi and many-objective optimization problems
Most optimization problems that we have in engineering designs have multiple conflict-
ing conditions/criteria needed to be solved. Not to mention that more than one objective
function might need to be solved. Other than that, the objective function can be said as
a ”black box”. This is because the derivative of this function is not always available. To
overcome this, existing optimization algorithms perform either in finite steps, iterative, or
heuristics that may converge to the solutions.

Single-objective Optimization Problem

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

The common formulation of a single optimization problem is shown above. The objective
function is followed by several sets of constraints, inequalities and equalities that needs to
be satisfied. In a solution space, there exists an optimum value in which these conditions
are satisfied. Most of the studies in petroleum engineering involve non-linear functions
where derivations do not exist. Hence an optimization algorithm can be employed to
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solve this. The main idea is the same, where algorithms are employed to find the global
minimum rather than trapped in the local minimum. Shown below is the solution space of
single-objective optimization problem (Figure 2.14).

Figure 2.14: Himmelblau solution space (Himmelblau et al., 2018)

Different methods can be used, such as methods that approximate Hessians (e.g. Newton’s
method), the gradient (e.g. conjugate gradient method), or evaluate the function values
(e.g. pattern search methods) or heuristics. The choice depends on the user. It is expected
that the main problem of performing an optimization study is the computational load in
evaluating the objective functions, where most of them are heavier than the optimizer. It
needs to be considered when choosing the iterations or step size for every algorithm used.

Multi-objective Optimization Problem

min (f1(~x), f2(~x), f3(~x))

s.t. ~x ∈ X

This class consists of two to three objective functions, as the formulation is shown above.
Figure 2.15 shows the illustration of the solution space for multi-objective optimization
problem (illustrated for two-objective optimization problem). Rather than being illustrated
with input parameters, the solution space is illustrated with the objective functions we have
(2D for two objective functions and 3D for three objective functions). In that space, there
exists a feasible solution region. For multi-objective optimization, typically there is no
feasible solution that minimizes all objective functions simultaneously.

We will have several Pareto optimal solutions. Here, the solution cannot be improved
unless we degrade one of the other objectives. All Pareto optimal solutions do not have any
objective function that dominates it. Collection of Pareto optimal solutions is often called
Pareto front (shown in red). Pareto front will be bounded by nadir objective vector (~znad)
and ideal objective vector (~zideal). This will give upper and lower bound of objective
function values, which can only be seen if the Pareto optimal set is known.
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Figure 2.15: Multi-objective optimization solution space illustration (Schweidtmann, 2021)

Solving a multi-objective optimization problem is sometimes understood as approximating
or computing all or a representative set of Pareto optimal solutions (Ehrgott, 2005). Then,
deciding which point to be selected from Pareto optimal solutions will be subjective to the
researcher’s preferences. Most multi-objective optimization algorithms follow this con-
cept to solve the optimization problems. Some available algorithms are Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) and Strength Pareto Evolutionary Algorithm 2
(SPEA-2).

Many-objective Optimization Problem

min (f1(~x), f2(~x), . . . , fk(~x))

s.t. ~x ∈ X

This class refers to optimization with more than three objectives. This became a hot topic
over the past years due to the emergence of many objective optimization studies for real-
world studies. As reviewed by Fleming et al. (2005), many studies are performed to tackle
the ineffective Pareto dominance, the inefficiency of recombination, and other problems
encountered in this optimization class. Several optimization algorithms exist to solve this
problem, such as Non-dominated Sorting Differential Evolution based on Reference points
(NSDE-R) and Non-dominated Sorting Genetic Algorithm (NSGA-III).

2.3.2 NSGA-II
There are a lot of multi-objective optimization algorithms proposed. We used NSGA-II
in this study. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is an improvement

20



2.3 Optimization

from NSGA due to its high computational complexity of non-dominated sorting, lack of
elitism, and need for specifying the sharing parameter (Deb et al., 2002).

NSGA-II works based on genetic algorithm. Genetic algorithm is an optimization algo-
rithm inspired from natural evolution theory. The algorithm reflects the natural selection
process where the fittest individuals are selected to reproduce the new offspring of the
next generation. Initial population is predetermined. Fitness function will be employed to
determine how fit an individual and scored. The probability of each individual to be se-
lected for reproduction is based on the fitness score. From two individuals, called parents,
crossover point will be chosen within the genes.

The crossover will results to a new offspring. During the process, mutation may happen in
the genes based on the mutation probability. The algorithm will be terminated if the pop-
ulation has converged or reach the maximum number of generations. In the application,
the population is fixed. For each iteration of generation, the least-fitted individual will die,
and new offspring will fill the position. This will give new population which is better than
the previous generation.

NSGA-II can be categorized as an evolutionary algorithm. This algorithm type was de-
veloped due to issues found in the classical and gradient-based techniques including the
performance that depends on the initial guess and the sub-optimal convergence issues.
This algorithm uses genetic algorithm as its fundamental knowledge. Three features of
this algorithm are:

1. Elitist principle
2. Explicit diversity preserving mechanism
3. Emphasis the non-dominated solutions

Figure 2.16 shows the illustration of NSGA-II procedure, where P indicates the Pareto
solutions from the previous timestep, Q indicates the new Pareto solutions obtained from
the new offsprings, R stands as the whole population and PF stands as Pareto Front with
rank as its indices.

Figure 2.16: Procedure of NSGA-II (Kumar and Yadav, 2019)

Algorithm 1 and Algorithm 2 list the iterations illustrated in the figure. This algorithm
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will perform a non-dominated sorting and a classification by fronts. This process is in
line with combining the parent and offspring populations. They are then sorted based
on the ascending level of non-domination. The new population will be taken based on
front ranking. In the figure, the third rank data will need to be taken partially. For this,
crowding distance sorting will be performed. Crowding distance is performed based on
the density of solutions around them, where the less dense solution will be taken. After
these processes are finished, the genetic algorithm will take over. New offspring of the
population based on this population will be created, followed by crossover and mutation.

Algorithm 1: NSGA-II Algorithm, Fast non-dominated sort loop (Deb et al., 2002)

for each p ∈ P do
Sp = ∅;
np = 0;
for each q ∈ P do

if p ≺ q then // If p dominates q
Sp = Sp ∪ {p} // Add q to the set of solutions

else
np = np + 1 // Increment the domination counter of p

end
end
if np = 0 then // p belongs to the first front

prank = 1;
F1 = F1 ∪ {p};

end
end
i = 1 // Initialize the front counter
while Fi 6= ∅ do

Q = ∅ // Used to store the next front
for each p ∈ Fi do

for each q ∈ Sp do
nq = nq − 1;
if nq = 0 then // q belongs to the next front

qrank = i+ 1;
Q = Q ∪ {q};

end
end

end
end
i = i+ 1;
Fi = Q;

A comprehensive study assessing the NSGA-II performance was carried out by Deb et al.
(2002). Their study shows that NSGA-II outperforms other optimization algorithms (SPEA
and PAES) for almost all tested cases, followed by SPEA and PAES. We can see from Al-
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gorithm 3 that the algorithm is very straightforward. We can use this algorithm that is
pre-coded already in most computational languages.

Algorithm 2: NSGA-II Algorithm, crowding distance loop (Deb et al., 2002)

l =| I | // number of solutions in I
for each i, set I[i]distance = 0 do // Initialize distance

for each objective m do
I =sort(I,m) // Sort using each objective value
I[1]distance = I[l]distance =∞ // to select boundary points
for i = 2 to (l − 1) do // for all other points

I[i]distance = I[i]distance + (I[i+ 1].m− I[i− 1].m)/(fmax
m − fmin

m );
end

end
end

Algorithm 3: NSGA-II Main Algorithm (Deb et al., 2002)

Rt = Pt ∪Qt;
F =Fast-non-dominated-sort(Rt);
Pt+1 = ∅ and i = 1;
while | Pt+1 | + | Fi |≤ N do

crowding-distance(Fi);
Pt+1 = Pt+1 ∪ Fi;
i = i+ 1;

end
Sort(Fi, );
Pt+1 = Pt+1 ∪ Fi[1 : (N− =| Pt+1 |)];
Qt+1 =make-new-pop(Pt+1);
t = t+ 1
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Chapter 3
Methodology, Problem, and Model
Description

To see the feasibility of the proxy model as a substitute for doing an exhaustive study, a
study on building a proxy model from scratch was performed. Previous study (Matthew,
2020) shows that the proxy model is capable of performing an optimization study for CO2

flooding case to represent the reservoir model (Egg Model). The study reported 1.53%
error compared to results obtained from the reservoir simulation model (Eclipse).

Several recommendations were given, such as testing the capability of the proxy model as
a field model substitute, deeper study on the proxy structure, and different optimization
studies to be performed. These recommendations complement the room for improvements
for proxy modeling study, as written in Section 2.2.3 of this thesis. Based on that, a
comprehensive study to see the capability of the proxy model and the complexity that we
may encounter during the building phase is performed.

In this study, two or more proxy models will be built to represent two reservoir models.
One of the models is the simple model taken from Jansen et al. (2014), while the other one
is developed from Gullfaks K1/K2 dataset. Both proxies will solve the multi-optimization
problem on CO2-WAG design study using the same optimization algorithm. The details
about the models, modified properties, optimization algorithm, and how the proxies will
be built are described in this chapter.

3.1 Study Workflow
A workflow that illustrates how the study is performed is shown in Figure 3.1, inspired
by our previous study. It is the proposed workflow for performing optimization study
using proxy model as a reservoir model substitute. This workflow is proven to be working
properly, which the details for each steps are described in the next chapter.
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Figure 3.1: Study workflow.
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3.2 Reservoir Model Description
As mentioned, two reservoir models are used in this study. The simple model will repre-
sent the Egg Model, while Gullfaks K1/K2 Model will represent a complex model. The
overview of the complexity difference between the models is listed in Table 3.1. More
details for each model and their alterations from the original model will be described.

Table 3.1: Model Overview

Parameter Egg Model Gullfaks Model
Permeability Channel distribution Heterogeneous
Porosity Homogeneous Heterogeneous
Faults 0 14
Fluid From SPE136530 From SPE136530
Transmissibility No multiplier Heterogeneous multiplier
Relative permeability Sand preset Sand preset
Grid system Cartesian Cornerpoint
Grid size Homogeneous Heterogeneous
Initial condition 320 bar, 120.85◦C, 1850m 320 bar, 120.85◦C, 1850m
Wells 3 injectors, 3 producers 3 injectors, 3 producers
Perforations Throughout all layers Different for each well

ECLIPSE 300 and PETREL were used as the simulator for running the models. It is worth
to be noted that an identical relative permeability relationship is applied to both models
(Figure 3.2). Both reservoirs have the same rock characteristics (sandstone), so sand preset
is used. The compaction function used for both models is the Newmann correlation for
consolidated sandstone rock type.

Figure 3.2: Relative permeability curve used from PETREL sand preset.
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Both models are initialized using the same condition as described in the fluid model data.
It is performed to ensure the miscibility condition is identical, as it will be applied to
different geological conditions. The initialization condition might be a bit different for
Norwegian continental shelf fields as the fluid model is taken from a Middle East field.

3.2.1 Fluid Model
Both models are applied using the same fluid model, taken from Negahban et al. (2010).
The fluid model, categorized as light oil from its density, has low viscosity (based on
EOS tuning results) and fulfills the screening criteria of CO2-EOR (Al Adasani and Bai,
2011b). Constant composition expansion (CCE), differential liberation expansion (DL),
multi-stage separator, slim tube, swelling, and multi-contact test data are available. These
PVT test data are sufficient for fluid modeling in the CO2-EOR study.

Due to the lack of molecular weight data on the matched pseudo-components, EOS tuning
is performed from the available data. The primary process for EOS tuning here is splitting
C20+ and regressing on conventional PVT test data (CCE, DL, multi-stage separator test).
After that, lumping was performed into seven components. Regression is then performed
based on available advanced PVT tests (slim-tube and swelling test), then the model can
be used as reservoir fluid model.

This task was performed using CMG-Winprop, where Peng-Robinson is used as PVT
EOS. The result was then converted to E300 with the help of PVTp. A multi-contact test
is not used in this study as both software cannot work with it. No quality control (QC) was
performed due to the lack of data data for QC material. The final composition after EOS
tuning is tabulated in Table 3.2. The phase envelope can be seen in Figure 3.3 and the
EOS results with our PVT test data can be seen in Figure 3.4. The test results are present
based CO2 and hydrocarbon gas as injection fluid in the article. In this study, EOS tuning
was performed based on the CO2 test results.

Figure 3.3: Reservoir fluid phase envelope.
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Table 3.2: Component properties after EOS tuning.

Component Zi Pc (atm) Tc (K) AF MW Vol Shift
CO2 2.99 72.80 304.20 0.225 44.01 -0.054
N2-C1 29.43 45.26 189.77 0.008 16.19 -0.154
C2-C3 13.74 45.14 338.00 0.124 36.78 -0.454
C4-C6 15.32 34.56 460.09 0.229 70.30 -0.396
PS-1 20.02 24.89 563.92 0.815 112.67 -0.025
PS-2 12.96 16.58 699.03 1.060 198.94 0.048
PS-3 5.55 10.87 753.29 1.887 498.61 0.188

BIP N2-C1 C2-C3 C4-C6 PS-1 PS-2 PS-3
CO2 0.034 0.2 0 0.003 0.164 0

Figure 3.4: PVT tests result after regression.
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Table 3.3: Single point regression result.

Single Point EOS Exp
Psat (bara) 142.7 142.0
MMP (bara) 176.6 178.0
Tres (K) 120.85 120.85
Oil FVF (rm3/sm3) 1.535 1.551
Oil Density 0.8135 0.8139
GOR (sm3/sm3) 130.30 133.07

Table 3.3 shows the single-point regression results of EOS tuning. The reservoir condition
of the fluid model is 287 bar and 394 K. This condition is applied as initial condition, and
the reservoir will be depleted before the EOR study takes place.

3.2.2 Simple Reservoir Model - Egg Model

Taken from Jansen et al. (2014), this model is a synthetic reservoir model with 101 real-
izations of a three-dimensional channelized reservoir. Six out of 101 are shown in Figure
3.5. This model was made to test the available reservoir simulators to compare their out-
put. With a 60 x 60 x 7 structure, this model consists of 18,553 active grid cells with no
faults implemented.

Figure 3.5: Six random realizations of Egg Model (Jansen et al., 2014).

As this model was used to see the performance difference between four simulators, the
dimension of the grid is considered small. The model is too small compared to the complex
model in terms of volume. For that, the grid dimension was altered by multiplying them
by 3.125 (from 8 x 8 x 4 m to 25 x 25 x 12.5 m). This increases the volume to 30.5 times
the original volume. The initial oil in place is now 16.5 million sm3 after initializing the
fluid model.

The leftmost permeability distribution in Figure 3.5 is the realization being used in this
study. Relative permeability curve shown in Figure 3.2 and Newmann rock compaction
is applied in this study. The model was initialized with the description from the fluid
model (320 bar and 394 K). The number of wells is reduced to match the total wells in the
complex model, where the chosen well positioning is shown in Figure 3.6.

After the modification and the initialization process, the model will then be depleted until
the time CO2-EOR is implemented. This will be described in the following subsection, as
the same depletion scenario is applied to the complex model (Gullfaks).
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Figure 3.6: Egg model after alteration.

3.2.3 Complex Reservoir Model - Gullfaks K1/K2 Model
This model was taken from Shpak (2013), where the segmentation of the entire Gullfaks
field was studied to analyze the performance of waterflooding and WAG coupled with well
placement optimization. The optimization study showed higher increase in production
when WAG is applied to the field compared with waterflooding. Three injector wells and
three producer wells were used in the study.

Figure 3.7: Gullfaks faults position.

Figure 3.7 shows the location of 14 faults modeled in the study, and Figure 3.8 shows the
distribution of porosity and permeability of the Gullfaks model. As no compositional fluid
model is available for the Gullfaks model and due to lack of advanced PVT test data for
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CO2-EOR, the fluid model is replaced with the model described in the previous subsection.
This changes the oil in place; where after initialization, the model has 17.2 million sm3 oil
in place. The reservoir is undersaturated initially.

Other than the fluid model, the Gullfaks model was constructed with relative permeabil-
ity end-point values distributed heterogeneously throughout the reservoir. This increases
the complexity of the model. For simplification, it was replaced with the sand preset
relative permeability curve. Rock compressibility was also replaced with the Newmann
compaction function. This is then followed by the fluid model initialization (320 bar and
120.85◦C).

Figure 3.8: Gullfaks porosity, permeability and their crossplot in equilibrium number.

The well positions in this study are close to the study performed by Shpak (2013), yet the
well locations are changed. The new positions are chosen based on the oil bank observed
at initial condition. The perforation was also altered for all wells. All injector wells are
perforated at the bottom of the reservoir, while the production wells are perforated at the
uppermost reservoir layers. The perforation zone can be seen in Figure 3.9.

All relative permeability end-point values distributed throughout the model are deleted
in this study, as new relative permeability relationships were applied. Other properties
such as transmissibility multipliers, well connection factor, and net-to-gross (NTG) are
kept. Before performing the EOR study, this model will be depleted to mimic the primary
depletion in natural conditions, which will be explained in the following subsection.
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Figure 3.9: Gullfaks well cross section map.

3.2.4 Depletion Scenario
Both models now have about the same initial oil in place after the alteration (16.5 million
sm3 for the Egg model and 17.2 million sm3 for Gullfaks). Both models will be depleted
for eight years, supported with water injection to keep the reservoirs undersaturated. Equal
injection rate and production rate limits are applied to both models. All wells are active
(producing and injecting) starting in 2013 and continue to operate until 2021. Table 3.4
shows the depletion study details and results obtained from each model.

Table 3.4: Depletion study details and results.

Parameter Egg Model Gullfaks Model
Injection rate 2000 sm3/day/well
Production rate limit 2000 sm3/day/well
Start of depletion January 1, 2013
End of depletion January 1, 2021
STOOIP 16.55 Msm3 17.24 Msm3

STOIP (2021) 8.94 Msm3 8.90 Msm3

RF 46.0 % 48.4 %
Pavg (2021) 254.9 bar 264.3 bar

Based on the results, both reservoirs deplete almost half of their initial oil in place. These
results will be used as the initial condition for the CO2-WAG study. Knowing the oil distri-
bution for each model is important. Figure 3.10 and Figure 3.11 show the distribution of
oil for each model after depletion study, plotted in pore volume multiplied by oil saturation
function. No optimization study was performed on the models for depletion.

The oil distribution of the Egg Model shows an unrecovered oil bank on the southeast part
of the model. Looking at the oil distribution, it can be concluded that the injected water
already reached the production wells. Evaluating Gullfaks, we can see that there is still an
oil bank near the second producer well. Both reservoirs can maintain the reservoir pressure
over the MMP (176.6 bar). Hence, the miscibility process can be ensured to happen when
CO2 injection starts.
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Figure 3.10: Egg Model oil distribution map after depletion scenario.

Figure 3.11: Gullfaks Model oil distribution map after depletion scenario.
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Before performing a CO2-WAG study for both reservoirs, we need to test the CO2-WAG
performance. The screening was performed based on Al Adasani and Bai (2011b) for both
reservoirs. It can be seen that based on the technical screening criteria shown in Table 3.5,
both reservoirs passed the screening. No economic screening was performed as this study
will not be focusing on that part.

Table 3.5: Reservoir properties and Aladasani technical screening.

Al Adasani and Bai (2011b) Egg Model Gullfaks
Oil Gravity 28 - 45 35 35
Viscosity (cp) 0 - 35 0.98 0.98
Porosity (%) 3 - 37 20 27
Oil Saturation 15 - 89 43 32
Formation Type Sandstone / Carbonate Sandstone Sandstone
Permeability (mD) 1.5 - 4500 1137 1752
Net Thickness [Wide Range] 87.5 204
Depth (ft) 1500 - 13365 5905 5905
Temperature (◦F) 82 - 250 249.53 249.53

Test runs were also performed to test the performance of both reservoirs. Waterflooding
study was performed to see the field performance compared to CO2-WAG. Figure 3.12
shows the results for both reservoirs. We can see a higher recovery when CO2-WAG is
applied (3 months half-cycle, 6000 sm3/day field water injection rate, and 0.9 Msm3/day
field gas injection rate) compared to waterflooding (3000 sm3/day field injection rate).

Figure 3.12: Reservoir performance comparison between waterflood and CO2-WAG.
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As both models show potential in recovery increase for CO2-WAG EOR, an optimization
study can now be conducted. The details of the objective functions, constraints, and the
optimization algorithm used are explained in the next subchapters.

3.3 Optimization Problem
In a previous study (Matthew, 2020) optimization study was performed for CO2 flooding
design by calculating the total oil produced, represented by field oil produced total (FOPT).
The results are tabulated in Table 3.6. In the current study, sequestration of CO2 will also
be observed, focusing only to the amount of CO2 stored. CO2-EOR study can be executed
in line with CO2 storage. Hence, in this study, oil production optimization will be coupled
with CO2 stored in the reservoir.

Table 3.6: Optimization results from a previous study (Matthew, 2020)

Parameter Optimum Value Range Value
Injection Rate (sm3/day) 2 1 - 2
PV Injected (PV) 1.9976 1 - 2
Start Time (years) 3.75 2.5, 3.75, 5
CO2 Composition (%) 0.9977 0.8 - 1
C1 Composition (%) 0.0008 0 - 0.2
C2 Composition (%) 0.0015 0 - 0.2
FOPT (sm3) 3,014,442

The same optimization problem will be applied to both reservoir models. The proxy model
is the central part of this study. The optimization problem will be solved using the proxy
model explicitly built for this purpose. This study will be focusing more on the techni-
cal study of the CO2-WAG project. Hence, no economic evaluation/constraints will be
applied.

3.3.1 Objective Functions
Two results that will be observed are the oil production and CO2 stored in the reservoir.
Based on that, two objective functions need to be defined. Before starting the formulation,
it can be seen that the previous optimization study (Matthew, 2020) converged to the ex-
treme conditions (pure CO2 injected, injected from the start of depletion, highest injection
rate, and largest slug size). This needs to be avoided in this study.

Responding to that information, the objection functions of this optimization study are:

1. Maximize total oil produced
The total oil produced from the reservoir is the main concern, as the project’s profit
will be generated from this result. This can be reflected from the total oil produced
or the multiplication of oil production rate with the duration of production. As no
economic constraints are applied, this might lead to the same optimization result
(extreme condition) we got before, so the other objective function is,
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2. Maximize total CO2 stored in the reservoir
The CO2 storage performance can be seen from the total CO2 injected and total
CO2 produced. This will make the solution space more complex, as the total CO2

produced will be minimized, yet more CO2 injection is needed to maximize this. In
alignment with that, a higher injection rate will yield a higher oil production rate.

An optimization study, especially for reservoir design, needs a period or targeted volume
to be injected/produced as the study target. This study is focused on a limited project
time, which is more common in real applications. For this reason, ten years is the limit
of the CO2-WAG project. Based on that, the total slug size injected will not be used as
a parameter in this study, and the optimization study will be performed to optimize the
project for ten years.

3.3.2 Parameters and Constraints
Parameters that will be studied are as follow:

1. Half-cycle length
Value range : 3 - 12 months

We will only consider some values in this range for this parameter, 3, 6, 9 and 12
months. For simplification, the half-cycle for both injection stages will be the same.
Hence, changes in this parameter will not affect the WAG ratio of the project if the
injection rates are kept constant.

2. Field gas injection rate
Value range : 1 - 2 Msm3/day

Along with the water injection rate, this parameter will affect the WAG ratio of
the project. The values were selected after considering the injection rate from the
previous CO2 injection study (Matthew, 2020). This parameter will be distributed
equally among all existing injection wells.

3. Field water injection rate
Value range : 3000 - 9000 sm3/day

Both fields were depleted using the same scenario, where water injection was ap-
plied to maintain the pressure. Assuming that the fields have existing facilities ready
for water injection, the range is taken near the previous water injection rate (6000
sm3/d). This parameter will be distributed equally among all injection wells.

We can formulate the objective functions and study parameters into mathematical expres-
sion, as shown below:

maximize FOPT (HC, qg, qw)

CO2 Stored (HC, qg, qw)

subject to HC = [3, 6, 9, 12] months

1 Msm3/d ≤ qg ≤ 2 Msm3/d

3000 sm3/d ≤ qw ≤ 9000 sm3/d
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3.3.3 Optimization Algorithm
Only NSGA-II was used to solve the optimization problem in this study. For doing this,
the PyMoo package available in Python is used. No optimization of the hyperparameters
in the optimization algorithm was performed here.

3.4 Proxy Model Development
Many machine learning algorithms or deep learning models can be employed to build a
proxy model, such as ANN-RNN, ANN-DNN, PR, KG, and TSP. However, we will focus
on artificial neural network (ANN), especially deep neural network (DNN) structure for
this study. More into the DNN, optimization of the topology will be performed to build a
better proxy.

Here, rather than using MATLAB like in the previous study (Matthew, 2020), we per-
formed all the studies using Python as the programming language. This is due to its versa-
tility, being easy-to-learn and work with, and open-source programming language with a
vibrant community. The details, structure of the scripts, and how it was built are described
in the next chapter.
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Proxy Model and Optimization -
Building the Foundation

As we will make two different proxies with the same study objective, it will be better to
construct the main script before performing all the studies. The idea is to get a grasp of all
tools that we will be using for this study. In this chapter, the process of building the proxy,
obtaining the needed inputs, and translating the optimization problems to programming
language will be described. The main process was described in sequence in the workflow
of Figure 3.1.

All reservoir model-related studies, including simulation and data extraction, are per-
formed using E300 with PETREL as the interface. For the proxy modeling and opti-
mization study, Python is used. In alignment with that, some of the processes will be
performed using Excel, which will be mentioned later. Many packages used for this study
are in Python, which will be mentioned in each segment of this chapter.

4.1 Optimization Problem Formulation
The equation of the optimization problem is shown below. The whole process of building
the proxy will be started from here as a proxy model is case-specific.

maximize FOPT (HC, qg, qw)

CO2 Stored (HC, qg, qw)

subject to HC = [3, 6, 9, 12] months

1 Msm3/d ≤ qg ≤ 2 Msm3/d

3000 sm3/d ≤ qw ≤ 9000 sm3/d
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First of all, based on the equation, we know that two functions are needed, total oil pro-
duced (FOPT) and CO2 stored/sequestrated. For total oil produced, we can collect data
easily as one of the outputs. For CO2 stored in the reservoir, it will be approached using
the equation shown below.

CO2 Stored = Total CO2 Injected− Total CO2 Produced

From the simulator, it is known that we can get the results of CO2 produced from one of
the outputs (FCO2PT), yet it is reported in kg-mole units. Hence, a simple conversion is
used where 1 Msm3 is equal to 44,122 kg-mole of CO2 to change the unit system. This
can be formulated as shown below.

CO2 Stored = qg ∗ tg,inject − FCO2PT(HC, qg, qw)

As this study is a CO2-WAG study, hence in a cycle, two types of fluid will be injected.
Here, tg,inject refers to the total time of gas injection. The gas injection rate is being set
to be constant. Based on the simulations, the highest gas injection rate will not reach the
pressure limit of the injector BHP. So, this approach is valid for this study.

FCO2PT is the total amount of CO2 produced at the surface. FCO2PT and FOPT can be
obtained using the rate functions. Based on this, a proxy of FOPR (field oil production
rate) and FCO2PR (field CO2 production rate) will be constructed. Both functions will be
evaluated on a field scale rather than on a well scale since we will only perform a field
optimization study.

Then, we can rewrite the formula of the optimization problem, as shown below.

maximize FOPT = ts . FOPR(HC, qg, qw)

CO2 Stored = qg . tg,inject − FCO2PR(HC, qg, qw) . ts

subject to HC = [3, 6, 9, 12] months

1 Msm3/d ≤ qg ≤ 2 Msm3/d

3000 sm3/d ≤ qw ≤ 9000 sm3/d

To find the tg,inject, we can put it in terms of HC, where we calculate the total cycle
passed for ten years. As we have only four half-cycle values to be observed, we only have
two possible values of tg,inject. These values are 62 months for 3, 6, and 12 months, and
63 months for 9 months half-cycle. This needs to be translated into days by multiplying
with 30 for unit conversion.

All variables shown in italic are the needed inputs of the functions. All of them are defined
except ts which refers to the timestep. As mentioned before, the project is time-based,
which means that we have the same total time step for each run, i.e. ten years. For this,
the monthly time step (equal to 30 days) will be used. We will approach ten years with

40



4.2 Reservoir Model Preparation

122 months (3660 days). Finally, the final form of our optimization study is shown in
Equation 4.1.

maximize FOPT =

122∑
n=1

(FOPR(HC, qg, qw))n . 30

CO2 Stored = qg . tg,inject −
122∑
n=1

(FCO2PR(HC, qg, qw))n . 30

subject to HC = [3, 6, 9, 12] months

1 Msm3/d ≤ qg ≤ 2 Msm3/d

3000 sm3/d ≤ qw ≤ 9000 sm3/d

(4.1)

Following this, we know what function we need to make. Now, we can prepare and extract
the data from our reservoir simulator runs. The details of how this optimization problem
will be translated into programming language will be described in the last section.

4.2 Reservoir Model Preparation
Both models have been modified already from their original forms. Before performing the
study, the models were initialized as described in Section 3.2.. CO2-WAG study will be
performed after depletion ends by using the created RESTART file to reduce the run time.
The results from the depletion phase will not affect our proxy and optimization study.

It will be helpful to identify what type of proxy model we will make beforehand by refer-
ring to its element volume. Based on the defined study objective and optimization problem,
we can see that the proxy we need will be field-based proxy. We refer to Table 2.2 as the
reference for identifying which data that needs to be extracted from the reservoir simula-
tor. It was performed to avoid reruns due to the missing data needed yet not reported for
the proxy.

Based on the formulation of the optimization problem, two simulation outputs will be
learned by our proxy, FOPR, and FCO2PR, which is in line with Table 2.2. These variables
are available as output results of a simulation run. These can be modified by defining
the simulation case → Section Results → Report frequency → Report timesteps only in
PETREL. Worth knowing that in the Development Strategy section, the timesteps and
half-cycle need to be defined in days.

Other than that, to reduce the amount of memory needed for each run, unwanted simulation
outputs are all removed. It hugely helps the amount of memory usage. For one case of
the Gullfaks Model, it takes 185 MB of space if we report all outputs that were defined
initially by the software. Modifying them only to report the needed output takes only 79-
87 MB of space. This reduces the total storage usage by more than half. As we will run
more than ten cases, this reduction hugely helps the simulation process.
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4.2.1 Data Extraction
Runs are performed for both reservoir models. For easier proxy modeling, constant time
step reporting is used while running the models. We will get a staircase production profile
for all needed outputs, which the proxy will learn. Such results are shown in Figure
4.1. A test run was performed using both models with the study parameters based on the
optimization study. The run statistics for one run is shown in Table 4.1. We can see that a
lot of space and time is needed to run the simulator.

Figure 4.1: Staircase rate behavior from one Egg Model run.

Table 4.1: Run statistics for each reservoir model.

Parameter Egg Model Gullfaks Model
Run Time (s) 565 523
Memory Usage (MB) 97 85

4.2.2 Maintaining the Numerical Stability
It is vital to get high-quality data for our proxy learning material. Especially later in a
more complex model, the numerical error might mask our simulator’s physical behavior.
To ensure this process, an additional keyword is added to our SCHEDULE section, as
shown below.

TUNING
0.1 1* 0.05 0.1 6* /
11* /
24 1* 200 7* /

The first line shows the maximum length of the next timestep and the minimum timestep
length. The second line shows the truncation and convergence controls, which are kept the
same. Moreover, the last line is the iteration control. We tweaked the maximum number
of Newton iterations and linear iterations for each timestep.
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The difference between non-tuned and tuned runs can be seen in Figure 4.2. It might seem
insignificant by bare eyes, but the maximum difference between the tuned (red) and non-
tuned (green) is 38 sm3 (January 2025), which is big (10% difference). The side effect
of applying this control is that a longer time is needed to run a case. An increase of one
minute per case was observed in each model after applying this keyword.

Figure 4.2: Non-tuned and tuned runs rate performance.

All data needed to make the proxy is then exported from PETREL to an Excel file. Then,
this excel file will be processed to be used for building the proxy.

4.3 Proxy Building Preparation
The previous steps we performed are essential to be done first. The proxy can be built only
if we know what proxy to be built and what data to use. Failure to perform in sequence will
make an infinite loop between these three sections (problem formulation, model prepara-
tion and proxy building) until we figure the first two sections. An overview that shows the
outline of the study, performed with the available software and programming language, is
shown in Figure 4.3. In this subsection, these processes will be described in detail.

Figure 4.3: Workflow of proxy building, optimization study, and software involved in this study.
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4.3.1 Proxy Model Rough Sketch
This part is in line with what we have explained in Section 4.2. We ought to know what
input-output combination we will have in our proxy. The input of the proxy will be the
optimization parameters and our rate data, which are extracted in each timestep. The
output that we expect to have is the rates in every timestep (30 days).

Figure 4.4: Rough sketch of the proxy model.

For better results, the rate in the previous timestep will also be used as an input, based
on experience from the previous study (Matthew, 2020). Figure 4.4 shows the predicted
network structure that will be constructed. Note that the network topology shown in the
figure is only an assumption. This is just a rough sketch to start the study. Later, if it does
not work properly, we can adjust the input-output combinations, the topology, and any
hyperparameter of DNN.

This rough sketch may be valid for most field-based optimization study problems. Differ-
ent rough sketches may apply for different kinds of studies, with different types of volume
element proxy. For well-based and grid-based proxy, Gholami (2014) and Amini (2015)
results can be used as reference. More studies need to be performed for these smaller
element volumes as we will have more input.

4.3.2 LHS Preparation
We performed the sampling using LHS in this study. The sampling can be considered as
a leveled sampling. It was performed based on the previous study results (Matthew, 2020)
and several success stories on sampling for the WAG study by for example Nait Amar et al.
(2018). Two levels of sampling that were performed in this study are as follows.

1. Half-cycle length
Sampling was performed for 3, 6, 9, and 12 half-cycle lengths. This was performed
because we discretized our half-cycle length, so other values are not counted as
part of our sampling space. Performing this means that the proxy we make will
not predict the CO2-WAG behavior out of this half-cycle length correctly (not even
3.00001 months).
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2. Gas injection rate and water injection rate
Gas injection rates are sampled for each possible half-cycle length equally since the
probability for half-cycle length is equal for each possible value. More samples can
be added if the proxy cannot learn from the given number of samples. The distribu-
tion of this parameter probability is uniform. All parameters are not dominating the
others. Hence usual LHS can be performed.

Based on this, we will have four two-dimensional space sampling performed with pyDOE
package in Python. The whole possible solutions must be represented, especially the ex-
treme points. As we do not know the optimum condition of our optimization problem,
the edges of the sampling space also need to be covered. These values can be approached
just like the number of edges of an n-dimensional hypercube. As this study involves three
parameters, 8 (23) points that can be created from the combination of extreme points of
each variable need to be added to the sampling, outside the results we obtained from LHS.
These edges are forced to be our training dataset.

We need to prepare a short script other than LHS sampling to ensure the quality of our
sampling method. A script that was made to perform the leveled sampling for this study
with the addition of the sampling space edges is shown below.

import numpy as np
from pyDOE import *

# input
variables = 3
vlim = np.array([[3,12], [1,2], [3000,9000]])

# the 1st column is the 1st level
N = 18 # number of samples for the 2nd level LHS

# create the array structure
sampling = np.zeros([1,variables])

# leveled LHS sampling
for half_length in range(1,5):

s = lhs(2, samples=N, criterion ='center')

#converting to the value ranges
s[:,0] = vlim[1,0]+s[:,0]*(vlim[1,1]-vlim[1,0])
s[:,1] = vlim[2,0]+s[:,1]*(vlim[2,1]-vlim[2,0])
t = np.full((N,1), half_length*3)
temp = np.append(t, s, axis = 1)
sampling = np.concatenate((sampling, temp), axis = 0)

# deleting the array structure
sampling = np.delete(sampling, 0, 0)

# add extreme points
extreme = np.array([[vlim[0,0], vlim[1,0], vlim[2,0]], \

[vlim[0,1], vlim[1,0], vlim[2,0]], [vlim[0,0], vlim[1,1], vlim[2,0]],\
[vlim[0,0], vlim[1,0], vlim[2,1]], [vlim[0,1], vlim[1,1], vlim[2,0]],\
[vlim[0,1], vlim[1,0], vlim[2,1]], [vlim[0,0], vlim[1,1], vlim[2,1]],\
[vlim[0,1], vlim[1,1], vlim[2,1]]])

sampling = np.concatenate((sampling, extreme), axis = 0)

# save to csv file
a_file = open("samplingdata.csv", "w")
np.savetxt(a_file, sampling, delimiter=',')
a_file.close()

45



Chapter 4. Proxy Model and Optimization - Building the Foundation

4.3.3 Data Preparation
After the sampling is performed and the run results are obtained, the data must be prepared
before being used to construct the proxy. The structure obtained from PETREL is then
arranged for each run case. Manual adjustment is performed to manage the obtained data.
The structure of the main database as the result of this process is shown in Figure 4.5.

Figure 4.5: Main database structure

We will have 122 data for each run that can be used to train the algorithm, as the total
timesteps are 122 months for each run. Field gas injection rate (FGIR) is added to the
database as an identifier of fluid being injected at the current timestep. The structure is
adapted from the needed input-output of the proxy.

We can see different magnitudes from all data in the database, such as in a million for gas
injection rate, thousands for water injection rate, and tens for the timesteps. The process of
ANN learning will be a bit harder when using this data. The worst thing that may happen
is that the network converges to local optima when updating the weights and biases. To
solve this, linear normalization is performed for all data we have using Equation 4.2.

xNorm =
x− xmin

xmax − xmin
(4.2)

This maximum-minimum normalization rescales our inputs into 0 to 1. This will help the
training process of our network and reduce the possibility of convergence failure. A special
treatment is applied for the FCO2PRt−1, FCO2PR, FOPRt−1 and FOPR. Maximum and
minimum values are taken from the combination of the current and previous timestep
population. This is performed because they are generated from the same dataset, where
t− 1 counts the timestep 0 value and t counts the final timestep value (122).
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4.3.4 Building the Proxy
After preparing the database, the proxy can be developed. As we have a small number of
input variables, principal component analysis (PCA) does not need to be performed (refer
to Figure 3.1). For the smaller level of the volume element, either PCA or KPI (Key
Performance Indicator) can be performed. It can reduce the amount of input based on its
influence on the proxy and may avoid the curse of dimensionality.

The first thing that we need to do, as shown in Figure 4.4, is to perform the hyperparameter
tuning of the neural network. All hyperparameters and their values are listed in Table 4.2.
This study only focuses on the learning rate, number of layers, and neurons/nodes. For
easier call in the whole loop for the study, the script below generates an ANN.

def ANN_model(features, target, learn_rate, layers, nodes):
"""
Input Data:
features : Input data for the ANN (numpy array)
target : Output of the ANN (numpy array)
learn_rate : Learning-rate for the optimizer.
layers : Number of dense layers.
nodes : Number of nodes in each dense layer.
"""

# Define model
model = Sequential()
if layers == 1:

# Input layer
model.add(Dense(nodes, activation='relu',

input_dim=features.shape[1]))
else:

model.add(Dense(nodes, activation='relu',
input_dim=features.shape[1]))

for i in range(layers-1):
model.add(Dense(nodes, activation='relu'))

# Add output layer, 1 nodes
model.add(Dense(1, activation='linear'))

adam = Adam(lr=learn_rate)
model.compile(optimizer=adam, loss='mse',

metrics=['mean_absolute_percentage_error',
'RootMeanSquaredError'])

return model

Table 4.2: Hyperparameters in ANN design with Python.

Parameter Value Notes
Learning rate 10−6-10−2 Learning rate of the optimizer function
Number of layers 1 - 3 Number of hidden layers
Number of neurons 2 - 20 Number of nodes in each hidden layer
Activation function Relu Activation function on each node
Optimizer Adam Function to optimize the NN
Batch size 64 Data points that pass through NN every step
Dropout - Probability where nodes are randomly disconnected during training
Epoch 100 Amount of times to go through our training data
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Then, the ANN topology optimization study was performed using this function.

# Function
@use_named_args(dimensions=dimensions)
def ANN_study(learn_rate, layers, nodes):

"""
Hyper-parameters:
val_features: Input of the ANN for validation (np.array)
val_target : Output of the ANN for validation (np.array)
"""

# Print the hyper-parameters.
print('Learning rate: {0:.1e}'.format(learn_rate))
print('Dense layers:', layers)
print('Nodes:', nodes)

model = ANN_model(features=features,
target=target,
learn_rate=learn_rate,
layers=layers,
nodes=nodes)

# Use Keras to train the model.
patience = 20
es = EarlyStopping(monitor='loss', mode='min', verbose=1,

patience=patience, restore_best_weights=True)
history = model.fit(features, target, verbose=0, epochs=100, batch_size = 64,

validation_data=(val_features, val_target), callbacks=[es])

# Get the regression validation loss
# after the last training-epoch.
if es.stopped_epoch == 0:

loss = history.history['loss'][-1]
else:

loss = history.history['loss'][es.stopped_epoch-patience]

# Print the validation loss.
print()
print('loss:', loss)
print()

# Save the model if it improves on the best-found performance.
global best_loss

# If the validation loss of the saved model is improved ...
if loss < best_loss:

# Save the new model to harddisk.
model.save(path_best_model)

# Update the regression accuracy.
best_loss = loss

#save the history of the best model
ANN_performance = history.history
temp = json.dumps(ANN_performance)
f = open(path_best_model_performance,"w")
f.write(temp)
f.close()

# Delete the Keras model with these hyper-parameters from memory.
# And clear the Keras session
del model
K.clear_session()

# NOTE: Scikit-optimize does minimization
return loss
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The script below was executed to do the hyperparameter optimization study, and it will
report the results. The reported results will be the optimum learning rate, number of hidden
layers, and nodes for each hidden layer. Training loss will be used as the objective function
to be minimized. We do not need to be concerned about the overfitting issues in this stage,
as later, the model will relearn.

search_result = gp_minimize(func=ANN_study,
dimensions=dimensions,
acq_func='EI', # Expected Improvement.
n_calls=80,
x0=default_parameters)

print("""Best parameters:
- learning rate = %.6f
- number of hidden layers = %d
- number of nodes = %d
- best loss = %.6f""" % (search_result.x[0], search_result.x[1],

search_result.x[2], best_loss))

After we obtained the optimum topology, we will make a new model with the results.
However, we will use a higher epoch, from 100 to 1500. Rather than using 1500 epochs
during the hyperparameter study, we only perform this to the best topology to reduce the
running time for building a proxy. The script is attached below.

learn_rate = search_result.x[0]
layers = search_result.x[1]
nodes = search_result.x[2]

ANN_model(features, target, learn_rate, layers, nodes)

model = ANN_model(features, target, learn_rate, layers, nodes)
history = model.fit(features, target, verbose=0, epochs=1500, batch_size = 64,

validation_data=(val_features, val_target))

model.save(path_best_model)

Many error metrics can be used. For this study, MSE (mean squared error) is used as the
loss function of the ANN, while R2 and AE (absolute error) are also reported with the
results. These metrics can be used as our proxy’s performance indicator, as each metric
has its pros and cons. All scripts shown here are small parts of the whole script. The whole
script can be seen in the Appendix.

4.3.5 Proxy Output
The proxy will produce a normalized value of FOPR and FCO2PR. Hence, denormaliza-
tion needs to be performed. Equation 4.2 will be adjusted to denormalize the results.
Then, the denormalized values will be reported as our proxy results. After the proxy was
constructed and the proxy’s performance was confirmed to be sufficiently good, it can be
used for the optimization study. A script to generate the output graph and run the proxy
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with all training-validation data is also written to evaluate the proxy performance (see
Appendix).

For information, the processes described in this subsection are drafts made before building
the proxy. The complexity of the data affects the learning process and performance of the
proxy. Hence, the details of how the proxy is constructed are different for the two models.
Nevertheless, the processes were performed for the same goal, to make a proxy that can
behave like the simulator model. More details will be described in the next chapter.

4.4 Optimization Study Preparation
When the proxies are ready to be used, objective ought to be prepared before moving into
the optimization study. In this study, FOPR was defined as oilproxy, while the CO2 stored
was defined as CO2proxy. The main inputs for both of them to work are the optimization
parameters. Other proxy inputs, such as timestep and the previous timestep value, are
generated inside the function. The previous timestep value will be the result that was
obtained from the proxy based on its previous timestep. For the time 0, it is predefined as
all runs start with the same initial time.

The whole optimization study was performed using PyMoo. As NSGA-II works as a
minimization optimization tool, all objective functions are transposed to negative. This
will make the maximization out of a minimization process result. Below is the main script
that defines our study objective and study parameters.

from pymoo.model.problem import FunctionalProblem

objs = [
lambda x : -oilproxy(x[0],x[1],x[2]),
lambda x : -CO2proxy(x[0],x[1],x[2])

]

constr_ieq = [lambda x : x[0]%3]

functional_problem = FunctionalProblem(3,
objs,
constr_ieq=constr_ieq,
xl=np.array([3,1,3000]),
xu=np.array([12,2,9000]))

The parameters are half-cycle length, gas injection rate (in Msm3/d), and water injection
rate (in sm3/d) in sequence. As we want to have the half-injection rate to be exactly 3, 6,
9, and 12, an extra constraint is defined by constr ieq. The bounded constraints that we
have for each optimization parameter are defined in the functional problem. It might help
to define the problem in class rather than as a function. Doing so will reduce the amount
of time for performing the optimization. However, the proxy we have is complex, with
many loops inside it. Hence it will be hard to define them as a class.

Outside of the constraints, some modifications need to be performed. We need to make
it integer sampling (for half-cycle length), so the optimization study will converge faster.
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Doing this will make the iterations work on the preferred solution space. The script is
shown on the next page.

mask = ["int", "real", "real"]

from pymoo.factory import get_sampling, get_crossover, get_mutation
from pymoo.operators.mixed_variable_operator import MixedVariableSampling,

MixedVariableMutation, MixedVariableCrossover

sampling = MixedVariableSampling(mask, {
"real": get_sampling("real_random"),
"int": get_sampling("int_random")

})

crossover = MixedVariableCrossover(mask, {
"real": get_crossover("real_sbx", prob=1.0, eta=3.0),
"int": get_crossover("int_sbx", prob=1.0, eta=3.0)

})

mutation = MixedVariableMutation(mask, {
"real": get_mutation("real_pm", eta=3.0),
"int": get_mutation("int_pm", eta=3.0)

})

Worth mentioning that no study was performed for the hyperparameters in our optimiza-
tion algorithm. To perform this, we must have a better understanding of how the function
is built. Other than that, the population size will be kept at 40. The number of gener-
ations for one study was set to 100, where ten new offsprings will be generated in each
generation. For the whole study, it will take more than 1000 proxy runs to be finished.

Following the descriptions, a script was made to perform the study, as shown below.

from pymoo.algorithms.nsga2 import NSGA2

algorithm = NSGA2(
pop_size=40,
n_offsprings=10,
sampling=sampling,
crossover=crossover,
mutation=mutation,
eliminate_duplicates=True

)

# Define termination criterion
from pymoo.factory import get_termination

termination = get_termination("n_gen", 100)

# Perform Optimization study
from pymoo.optimize import minimize

res = minimize(problem,
algorithm,
termination,
seed=1,
save_history=True,
verbose=True)
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The optimization study might take some time, as it depends on how long it takes to run one
case with our proxy. However, it can be assured that it will take less time than the reservoir
model. Assuming 1000 runs were needed, it will take 157 hours (6.5 days) for the reservoir
model we have to finish the task (refer to Table 4.1). As we will get several Pareto optima
from the optimization process, a plot can illustrate the possible combinations. The code
below is made to do so.

from pymoo.visualization.scatter import Scatter
plot = Scatter()
plot.add(res.F, color="red")
plot.show()

The whole outline of how the proxy model can be built and used to perform optimization
was explained in this chapter. However, it might be a bit different for each model. In the
next chapter, we will see how proxy models are developed for each reservoir model.
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Chapter 5
Developing a Proxy Model for
Optimization Study

In this chapter, the process of developing the proxy models is described. The first two
subsections describe how the final proxies are developed. And the last subsection explains
the learning process before the best proxy models are constructed.

Both models are employed with the same workflow as shown in Figure 3.1 and as de-
scribed in Chapter 4. Several adjustments and details of how the models are developed
are described here. The final programming scripts to build and perform the optimization
study are attached to this report.

5.1 Simple Model - Egg Model
The egg model is chosen due to its availability and simplicity. It is known that outside
the outer boundary (initiated as a no-flow boundary), no faults are installed. The initial
configuration of the injector and producer wells is inverted five-spot injection. It ensures
the sweep efficiency for all layers, as the well is perforated through all layers.

The grid configuration is also very simple, where constant grid size is applied for the
whole model. Also, the porosity is constant, with permeability defined as a channeling-
like reservoir. Other than that, no complex multipliers (such as transmissibility or near-
wellbore multipliers) and transformations were applied to the model. It can be used as a
good starting point for performing the proxy model study.

To reduce the complexity, the main model is tweaked by reducing the number of wells and
increasing the grid size. It was explained in Section 3.2.2. The goal is to make it easier to
compare with the Gullfaks model regarding the reservoir volume and production rates.
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5.1.1 Design of Experiments

Sampling is performed based on the parameters studied for the optimization study. As
explained, we performed leveled sampling. Water injection rates and gas injection rates
were sampled for all half-cycle possibilities of the study. The sampling for each half-cycle
are shown in Figure 5.1.

Figure 5.1: LHS performed for Egg model.

In total, 68 runs were performed as proxy training-validation dataset of our proxy. Fifteen
runs are sampled for each half-cycle. The other eight samples are representative of our
Latin hypercube space. It is based on a three-dimensional hypercube, which means eight
edges based on the combination of the extremes of the studied parameters. We can see the
edges in 3 months and 12 months half-cycle (the corners of the plots).

Based on the sampling, the rates were allocated equally for each injector well. Half-cycle
length is also defined for 30 days per month for easier proxy modeling rather than the
Gregorian calendar term. Then, runs were performed using PETREL and E300. The total
time to do the whole run based on the LHS is 9 hours and 43 minutes.

54



5.1 Simple Model - Egg Model

5.1.2 Data Preparation
Next, the data is extracted. FOPR, FCO2PR, half-cycle, timestep, gas injection rate, and
water injection rate are extracted. Normalization is performed to help the convergence of
our ANN. As maximum-minimum normalization will be performed, Table 5.1 shows the
values for each parameter that will be used as input and output of our proxy (except WAG
Ratio).

Table 5.1: Egg model variables statistical information.

Variables Min Max
Halfcycle (day) 90 360
Gas injection rate (Msm3/d) 1 2
Water injection rate (sm3/d) 3000 9000
WAG Ratio 0.60 3.61
Timestep 30 3660
FCO2PR (kg-mole/d) 0 59843.75
FOPR (sm3/d) 0 2026.89

As the zero timestep needs to be used as proxy input, the run results from the depletion
process will be used (1 Jan 2021). After the normalization was performed, the database
is then created in the same form as shown in Figure 4.5. All the data for proxy learning
processes will be normalized, later denormalized when reported as an output.

The database will be separated by 75:25 for training and validation. The test dataset is not
created as later the robustness will be tested using a blind test. Total of 8,296 data (68 runs
x 122 timesteps) is separated as 6,222 data (51 runs) for training and 2,074 (17 runs) as
validation. The edges of our Latin hypercube are forced to be the training data part, while
the others are chosen randomly as training or validation in terms of its Case ID.

5.1.3 Proxy Building
WAG has a distinct behavior. For a WAG ratio higher than 1, we will get a sharp increase
in production during the water injection phase. When the WAG ratio is less than 1, we
will get an increase in production during the gas injection phase. This distinct behavior is
then being used as the base of building the proxy. The database is then split based on its
injection phase.

These concepts are being applied to our FCO2PR proxy and FOPR proxy. Other than that,
it is observed that there is unique behavior from all sampled runs. In the 1st year of the
injection (2021), we can see that CO2 has not reached any of the producer wells. No cyclic
behavior is then shown in the run results (Figure 5.2). The cyclic behavior can still be seen
for a lower gas injection rate (1 Msm3/day) until 1.5 years after injection started.

In addition, the FCO2PR proxy is separated. This is done due to the low performance
when FCO2PR is combined as one ANN. All segments are then being integrated as one
proxy (the whole proxy segmentation is shown in Figure 5.2.
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Figure 5.2: Proxy segmentation for Egg Model.

In conclusion, the proxies are segmented into several parts. For FCO2PR, there are three
segments. The first segment (1) is to mimic the first-year behavior, which is unique com-
pared to the others. For this part, the proxy is not differentiated based on its injection
phase. The second segment (2) is the second until the fifth year of injection. We separated
based on the injection phase (blue for water, red for gas phase). In the third segment (3),
the same concept is applied as the second segment for the sixth until the tenth year of
injection. This results in 5 ANNs made to construct one proxy for FCO2PR.

For FOPR, only two ANNs were made. These ANNs were made based on the injected
fluid. For both proxies, seven ANNs were made. Then, a for loop and if function is used
to do the whole work to run the proxy for 122 months (10 years). The database is then
categorized based on these segmentations to be learned by our ANNs. We refer to Figure
4.4 as ANN structure reference.
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Proxy Training and Validation

As explained before, we performed an optimization process to find the best topology of
our ANN for every segment. Table 5.2 shows the best topology for every segment of our
proxies. It can be seen that most of them need three hidden layers and higher than 17
nodes for every layer to learn the behavior. The learning rate itself varies between each
proxy segment.

Table 5.2: Proxy segments topology (Egg Model).

Proxy
ANN Hyperparameter

Learning Rate Hidden Layers Nodes

FCO2PR

1 0.0100 3 17

gas
2 0.0031 3 20
3 0.0029 3 17

water
2 0.0036 3 20
3 0.0059 3 20

FOPR
gas 0.0028 3 20

water 0.0024 3 20

This optimum hyperparameter set is then being retrained. Epoch increased to 1500 to
get their best performance. The whole process is using MSE as loss function, where the
equation can be seen below.

MSE =
1

n

n∑
i=1

(Xi −Xi,predicted)
2 (5.1)

The results after retraining are tabulated in Table 5.3. The whole segments show good
fitness that is shown by R2 values. The other error that is tabulated is the absolute error.
Rather than presenting the MSE values which will be hard to interpret, normalized absolute
error is reported. The absolute error values are about 0.1, where our data scale is between
0 and 1 after normalization.

Table 5.3: Proxy segments performance results (Egg Model).

Proxy R2 Absolute Error (Normalized)
train val Max (train) Mean (train) Min (train) Max (val) Mean (val) Min (val)

FCO2PR

1 98.788 97.665 1.41E-02 1.29E-03 2.00E-06 1.50E-02 1.45E-03 4.00E-06

gas 2 99.380 98.582 3.93E-02 5.64E-03 1.40E-05 4.84E-02 8.32E-03 1.70E-05
3 99.168 96.954 5.47E-02 8.51E-03 2.00E-06 6.47E-02 1.25E-02 4.20E-05

water 2 98.921 96.793 7.57E-02 1.03E-02 4.00E-06 1.10E-01 1.70E-02 2.30E-05
3 98.085 95.781 1.45E-01 1.40E-02 0.00E+00 1.19E-01 2.14E-02 4.90E-05

FOPR gas 99.414 98.660 5.56E-02 5.51E-03 2.00E-06 7.68E-02 8.09E-03 2.00E-06
water 99.454 98.694 1.29E-01 9.26E-03 5.00E-06 8.74E-02 1.37E-02 1.70E-05

It is essential to see the behavior of the segments as one proxy system. As one of the inputs
is the results from the previous timestep, we used the value we obtained from the proxy as
the input value. The segments were then tested as a part of one proxy to see its robustness.
Figure 5.3 shows a random case for each half-cycle length, compared to Eclipse results
for both proxies. We can see that our proxy able to is learn the behavior, both FCO2PR
and FOPR.
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Figure 5.3: Proxy results and comparison with the reservoir simulation output (Egg Model).

Rather than relying on visual inspection, error calculation was performed to quantify the
robustness of the proxy model. The values reported in Table 5.3 cannot be used to see the
whole proxy performance. For this reason, Average Percentage Relative Error (%) is used.
The equation is shown below

APRE =
Xpred −Xreal

Xreal
.100 (5.2)

Having a negative value means that the proxy underpredicts the results while having a
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positive value means overprediction. The preferred value is near zero.

Table 5.4: Proxy performance from training-validation process (Egg Model).

APRE (%)
Min Average Max

FOPR -2.307 -0.129 3.227
FCO2PR -9.882 0.842 10.962
FOPT -2.435 -0.268 2.449
FCO2PT -3.252 1.052 6.114

Table 5.4 shows the statistics of APRE for the whole 68 runs we used for training and
validation case. Overall, the average is near-zero values for the FOPR and FOPT (Field Oil
Produced Total), which is a good indication of proxy robustness. Looking at its maximum
and minimum value, we can see that they differ between 2.5% error. But overall, the proxy
slightly underpredicts the oil production of thr reservoir model.

We can see a significant error in the maximum and minimum of FCO2PR. This is due to
the error we get at early times (first year), as a difference in small value leads to significant
error calculated using the APRE term. The error window is slightly bigger than our oil
production rate, but FCO2PT (Field CO2 Produced Total) can be the main focus as it will
be used as our optimization study. The error window is around 5% for this proxy.

Figure 5.4: Relative percentage error for all training-validation dataset (Egg Model).

We can see the whole distribution of error in Figure 5.4. In general, FOPR and FOPT
yields error in 1% window, and we have less than 25% of the data that yield error more
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than 1%. Looking into FCO2PR and FCO2PT, we have almost most of the error less
than 5% (FCO2PR) and 2% (FCO2PT). Less than 25% of the data shows an error higher
than that. Based on this, we can ensure that the proxy is good enough to be blind tested.
Additional to that, the worst error for both FOPT and FCO2PT is shown in Figure 5.5.

Figure 5.5: The worst performance from all training and validation data (Egg Model).

For the proxy to run one case, it takes 14KB of space to report the results as Excel and
8.75 seconds to run. This is 64.5 times faster and 6000 times smaller memory needed
when compared to running with the reservoir simulator. For performing the whole process
(separating database, topology optimization, relearning with higher epoch, running all
training-validation data using the proxy model), it takes 1 hour and 23 minutes.

Blind Test

Following the training, a blind test is then performed on the proxy models. Here, 12 runs
outside of the sampling from LHS are prepared. The same assessment performed before
is used, where APRE was used as the error calculation to see the performance. The error
statistics of 12 blind test results are tabulated in Table 5.5.

Table 5.5: Proxy performance from blind test (Egg Model).

APRE (%)
Min Average Max

FOPR -1.078 0.646 2.850
FCO2PR -3.538 2.944 12.433
FOPT -1.575 0.168 2.162
FCO2PT -1.783 1.740 5.810

The error window is about the same as the training-validation dataset. But we get a bit
higher average values than our training-validation dataset, which is expected as the blind
test data is not what we have used to train the proxy model. A considerable deflection is
again shown in FCO2PR maximum error. Observing the data for every timestep indicates
that the error is due to the early times’ error, the same as we get in the training-validation
process. Figure 5.6 shows the error from all blind test cases.
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Figure 5.6: Relative percentage error for all blind dataset (Egg Model).

Figure 5.7 shows the proxy and Eclipse results comparison for the blind test. The upper
part shows a random case selected out of 12, while the lower part shows the worst error
case. We can see that mainly the high FCO2PT error is due to the later time error (2028

Figure 5.7: Blind test results and comparison with the reservoir simulation output (Egg Model).
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and later). This period will yield a higher error in total CO2 produced due to the mag-
nitude of the variable. But, overall, we can see that our proxy can learn the behavior of
FCO2PR and FOPR. This confirms the robustness of the proxy, and it is ready to be used
for optimization study.

5.1.4 Optimization Study
An optimization study will be performed using the proxy. As explained in the previ-
ous chapter, NSGA-II will be employed in this study. Here, possible optimum solutions
non-dominating the others need to be found. The number of generations used in this opti-
mization study is 100. No modifications in the programming script shown in the previous
chapter is performed.

Total time needed to finish this optimization study is 2 hours 25 minutes using NSGA-II
with hyperparameter shown in Section 4.4. Forty Pareto solutions are found, as tabulated
in Table 5.6. These solutions are also illustrated in Figure 5.8, where the FOPT and
CO2 stored are plotted in a negative term to show the front of the solution space easily.
Reflecting on the values we get, all solutions converge to the extreme value of gas injection
rate (2 Msm3/day), while other optimization parameters vary between their possible value.

Figure 5.8: Optimization results for Egg model.

We can see from the solution space that our Pareto front almost has a straight-line behav-
ior. We can choose any solutions from our Pareto front as we wish. But, if there are no
objective functions that need to be prioritized, we can select the middle point of the front
or the value near the mean of all possible positions. From all Pareto solutions, Case 28 is
the one that has the closest value to the average of both objective solutions (2.523 Msm3

of oil produced and 1.831 Bsm3 of CO2 stored) compared with the others.
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Table 5.6: Pareto optimum of the optimization problem (Egg Model).

No
Halfcycle
(month)

Gas Rate
(Msm3)

Water Rate
(sm3)

FOPT
(Msm3)

CO2 Stored
(Bsm3)

1 3 2.000 3001 2.100 2.093
2 3 1.994 8996 3.016 1.561
3 3 2.000 8696 2.978 1.577
4 6 2.000 8999 2.957 1.619
5 6 2.000 7846 2.796 1.675
6 6 1.989 8695 2.904 1.623
7 6 1.998 8200 2.838 1.652
8 3 1.999 5252 2.456 1.861
9 3 1.983 5062 2.414 1.876
10 3 1.999 3409 2.151 2.050
11 3 1.999 4921 2.385 1.911
12 3 1.998 5924 2.581 1.782
13 6 1.993 7231 2.724 1.715
14 3 1.999 4489 2.290 1.969
15 9 1.998 6555 2.615 1.771
16 3 1.997 4023 2.217 2.008
17 3 1.998 5360 2.477 1.847
18 3 1.999 5793 2.561 1.798
19 3 1.997 5007 2.403 1.896
20 3 1.997 3768 2.186 2.024
21 3 1.998 4168 2.238 1.998
22 6 1.997 6555 2.639 1.758
23 3 1.999 5485 2.501 1.834
24 3 2.000 5689 2.542 1.811
25 6 2.000 7420 2.747 1.703
26 3 1.997 3172 2.120 2.065
27 3 1.996 6586 2.684 1.724
28 3 1.989 5554 2.513 1.818
29 3 2.000 3641 2.175 2.035
30 6 1.999 6768 2.666 1.752
31 6 1.993 8445 2.869 1.640
32 3 1.998 4601 2.312 1.955
33 3 1.998 4800 2.357 1.928
34 3 1.999 4676 2.328 1.947
35 3 2.000 3100 2.113 2.076
36 3 1.998 6502 2.671 1.731
37 3 1.994 8989 3.015 1.561
38 3 1.999 4768 2.349 1.934
39 3 1.998 7122 2.759 1.681
40 3 2.000 4341 2.265 1.985

It is crucial to test the relative error between the solution and the actual reservoir model
run result. The selected Pareto optimum (Case 28) is then being tested using PETREL.
All error results are shown in Table 5.7 between the reservoir model and our proxy model.
The work shows a tiny relative error for this selected case.
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Table 5.7: Error of the selected pareto solution (Case 28, Egg Model).

PETREL Proxy Relative Error (%)
FOPR - - 0.26
FOPT (Msm3) 2.49 2.51 1.05
FCO2PR - - 1.23
FCO2PT (Mkg-mole) 78.84 79.43 0.75

Figure 5.9 shows the comparison between the reservoir simulator and proxy model. A
good fit can be seen visually, while its error is quantified in the table above. We can see
that our proxy is able to learn the behavior of the reservoir simulator model.

Figure 5.9: Comparison between reservoir simulator and proxy model for the selected pareto opti-
mum (Case 28, Egg Model).

5.2 Complex Model - Gullfaks Model
There are some field models available to use, such as Volve, Norne, and Sleipner. But for
this study, Gullfaks K1/K2 segment is used. As a field model, this model has complexity
compared with Egg model. We can start with the grid system. Since it is a cornerpoint grid,
neighboring cells can be identified by their XYZ coordinates rather than ijk coordinates.
This needs to be observed when building a grid-based proxy model. But, it is masked in
this study as the element volume is field scale.

Heterogeneous porosity and permeability are also one of the challenges in this model.
Again, it is masked in this study due to the bigger element volume being observed. One
that might be easily seen is the perforation zone. In this model, the depth for all wells is
different. We can expect a delay in production response when we are changing between
injection phases. Figure 3.9 shows that the wells are injected from the lower layers while
produced from the uppermost layers. This will delay the cyclic behavior that we saw in
the Egg model, which we wanted our proxy model to learn.

The main model was already modified a bit, where we changed the position of all wells. It
was explained in Section 3.2.3. The perforation was also changed. Some other parameters
that are changed include the fluid model, relative permeability, and rock compaction. The
changes are due to the complexity, but the originality (especially its geological features,
such as faults and available multipliers) is preserved.
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5.2.1 Design of Experiments

As expected, having a complex case requires a higher number of run samples than the
simple case we performed before. For this model, we need in total 97 reservoir model runs
as our proxy training-validation dataset. It consists of 89 samples from LHS and eight
samples as the edge of our Latin hypercube. Figure 5.10 shows the sampling for each
half-cycle.

Figure 5.10: LHS performed for Gullfaks model.

The sampling itself is not equal between half-cycle lengths. It is found that the proxy fails
to learn for higher half-cycle lengths (9 and 12 months) when we have an equal amount of
sample with the lower half-cycle length (3 and 6 months). It is explained in the following
subchapter. To fulfill this, 18 samples taken for the lower half-cycle, while we took 23
samples for nine months half-cycle length and 30 samples for 12 months half-cycle length.
Then eight samples are added from the edge of our Latin hypercube.

After performing sampling, the same procedure was applied. The rates allocated equally
for each injector wells and half-cycle length defined 30 days per month. The total time to
do the whole run is 12 hours and 35 minutes.
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5.2.2 Data Preparation
After runs are completed, the same variables as the Egg model are extracted (FOPR,
FCO2PR, half-cycle, timestep, gas injection rate, and water injection rate). Normaliza-
tion was also performed for building the database with the same format as for the Egg
model case. Table 5.8 shows the minimum and maximum values of each parameter used
to build the proxy (except WAG Ratio).

Table 5.8: Gullfaks model variables statistical information.

Variables Min Max
Halfcycle (day) 90 360
Gas injection rate (Msm3/d) 1 2
Water injection rate (sm3/d) 3000 9000
WAG Ratio 0.42 2.55
Timestep 30 3660
FCO2PR (kg-mole/d) 0 62301.46
FOPR (sm3/d) 0 1558.03

Database will be created as before (refer Figure 4.5). Zero timestep value for the t 1
parameter will be using the value we got from the depletion study (1 Jan 2021). The
database will be separated with the ratio (75:25), where we have 11,834 data (97 runs x
122 timesteps). It means 73 runs (8,906 data) will be used as training, while the other 24
runs (2,928 data) will be used as validation. We treat the edges of our Latin hypercube as
training data like before.

5.2.3 Proxy Building
The distinct WAG behavior we discussed in the previous case is still recognized here. Yet,
sharp production change can be seen after delays (of around one month) after the injection
phase is changed. It is the basis for splitting the database. At first, we split the database
based on injection phase (gas and water phase).

After that, the same behavior as explained before is identified. For FCO2PR, the first year
of the injection (2021) shows different behavior from the cyclic behavior. No injected CO2

reached the production wells until early 2022 from all the cases we run. In addition, to
enhance the quality of the proxy, the timespan is divided in 2.5 years intervals. This is due
to the low performance when combined as one ANN. As it is a little bit more complex than
what we had before, here we listed the whole proxy segments for building the FCO2PR
and FOPR proxy model:

1. FCO2PR Proxy (total = 9 ANNs)

• First segment (0 - 360 days): no separation between water and gas phase
• Second segment (360 - 900 days): separated between water and gas phase
• Third segment (900 - 1800 days): separated between water and gas phase
• Fourth segment (1800 - 2700 days): separated between water and gas phase
• Fifth segment (2700 - 3660 days): separated between water and gas phase
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2. FOPR Proxy (total = 8 ANNs)

• First segment (0 - 900 days): separated between water and gas phase
• Second segment (900 - 1800 days): separated between water and gas phase
• Third segment (1800 - 2700 days): separated between water and gas phase
• Fourth segment (2700 - 3660 days): separated between water and gas phase

The details for segmentations for each proxy model is shown in Figure 5.11.

Figure 5.11: Proxy segmentation for Gullfaks Model.

In total, 17 ANNs are needed to create both proxies. These ANNs will be combined in a
loop function to act as one proxy model to mimic the 10 years timespan defined. As a start
of building the proxy model, the database will be segmented based on the segmentations
listed above. Figure 4.4 is used as the reference of ANN structure for all ANNs that we
will make for this model.
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Proxy Training and Validation

The first step is to find the best topology for all proxy segments. Table 5.9 shows the best
topology based on minimization of our loss function, MSE (Equation 5.1). We can see
that most of the ANNs need three hidden layers with nodes of more than 15 to learn the
segmented data.

Table 5.9: Proxy segments topology (Gullfaks Model).

Proxy
ANN Hyperparameter

Learning Rate Hidden Layers Nodes

FCO2PR

1 0.0074 3 19

gas

2 0.0079 3 20
3 0.0025 3 20
4 0.0100 3 19
5 0.0042 3 20

water

2 0.0100 3 20
3 0.0023 3 20
4 0.0037 3 18
5 0.0100 3 19

FOPR

gas

1 0.0100 3 20
2 0.0073 3 20
3 0.0100 3 18
4 0.0100 3 20

water

1 0.0071 3 17
2 0.0053 3 20
3 0.0100 2 16
4 0.0050 3 20

Following this, ANN with the best topology is then being retrained using a higher epoch
(1500). Here, the fitness is shown in terms of R2 and normalized absolute error for both
training and validation dataset. The details can be seen in Table 5.10.

Table 5.10: Proxy segments performance results (Gullfaks Model).

Proxy R2 Absolute Error (Normalized)
train val Max (train) Mean (train) Min (train) Max (val) Mean (val) Min (val)

FCO2PR

1 99.482 98.541 8.90E-03 8.39E-04 6.35E-06 1.31E-02 7.73E-04 1.06E-05

gas

2 99.119 97.722 2.91E-02 3.69E-03 7.11E-07 4.08E-02 4.92E-03 3.01E-05
3 99.333 98.213 7.20E-02 7.80E-03 6.06E-06 5.80E-02 1.06E-02 1.88E-05
4 99.636 99.151 4.57E-02 7.45E-03 9.53E-07 4.22E-02 8.87E-03 2.76E-05
5 99.685 99.024 5.66E-02 7.20E-03 4.78E-06 4.87E-02 9.92E-03 7.59E-05

water

2 98.590 97.344 5.49E-02 5.88E-03 2.36E-05 4.49E-02 7.25E-03 2.61E-05
3 98.957 98.203 6.73E-02 7.94E-03 3.28E-06 6.00E-02 9.67E-03 6.44E-05
4 99.612 99.321 5.05E-02 7.04E-03 9.36E-06 4.54E-02 8.51E-03 4.58E-05
5 99.471 98.848 6.18E-02 7.53E-03 1.16E-05 5.24E-02 9.81E-03 1.41E-05

FOPR

gas

1 99.160 98.213 1.05E-01 7.28E-03 1.10E-06 8.68E-02 8.96E-03 2.57E-05
2 97.206 90.133 8.09E-02 1.28E-02 1.98E-05 8.70E-02 2.04E-02 1.22E-05
3 98.430 97.192 2.98E-02 5.65E-03 3.88E-06 3.03E-02 7.00E-03 1.96E-05
4 99.222 96.900 1.44E-02 2.35E-03 9.79E-07 2.41E-02 4.14E-03 3.29E-07

water

1 99.438 98.228 5.99E-02 8.66E-03 2.21E-06 1.20E-01 1.34E-02 5.17E-06
2 98.059 95.077 7.97E-02 1.15E-02 3.53E-05 1.02E-01 1.58E-02 3.08E-05
3 98.462 97.293 4.52E-02 6.94E-03 4.43E-06 5.29E-02 8.30E-03 2.21E-05
4 99.283 98.083 1.86E-02 2.94E-03 5.37E-06 1.55E-02 3.84E-03 1.59E-06
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As seen, the proxy segments behave well individually, and now we can consider it as
one proxy model. The segments are combined based on the time split boundary, and
the results generated by the proxy will be used as the input to the proxy at the previous
timestep. Figure 5.12 shows randomly chosen case for each half-cycle length, starting
from 3 months half-cycle length (upper part) to 12 months (lower part). Eclipse results
are also reported to compare with the result of the proxy model. Roughly, we can see that
the combined proxy segments are able to work as one proxy model, both for FCO2PR and
FOPR.

Figure 5.12: Proxy results and comparison with the reservoir simulation output (Gullfaks Model).
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We can see that the cyclic behavior is masked at some points, as we see here for FOPR. Our
proxy model can learn such complex behavior. We can confirm the robustness visually,
yet we must confirm it quantitatively. Table 5.11 shows the performance based on average
relative error for 97 training-validation cases.

Table 5.11: Proxy performance from training-validation process (Gullfaks Model).

APRE (%)
Min Average Max

FOPR -2.364 0.042 1.443
FCO2PR -2.871 1.270 11.166
FOPT -2.533 -0.125 1.429
FCO2PT -6.048 -0.909 2.778

We can see that the average of APRE is near zero. The error window is pretty small for
FOPR and FOPT, which is around 2.5% error. This confirms the robustness quantitatively.
FOPT and FOPR will be used for optimization, and we can see that both proxies under-
predict the total oil and CO2 produced, yet it is below 1%.

For FCO2PR and FCO2PT, we encountered high maximum and minimum error. For
FCO2PR, the error is mainly due to the early times’ error, as a smaller magnitude can
yield a higher error even with a slight difference with the actual value. While for FCO2PT,
the error accumulated in the later timestep (since we have higher magnitude there) affects
significantly the total CO2 produced. We need to confirm this by looking through all the
runs used. Figure 5.13 shows the results for every case and their error.

Figure 5.13: Relative percentage error for all training-validation dataset (Gullfaks Model).
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We can see that for FOPR and FOPT, 75% of the trained-validated data fall in the 1% error
window, while the others are out of this window. For FCO2PR, more than 50% fall in the
2% error window. Eight out of 97 cases have errors more than 4% here. FCO2PT shows
good results where 80% of the data fall in the 2% error window, while only three out of 96
cases yield error higher than 3%. Based on this, we can conclude that the proxy is good
enough from training-validation results. The worst performance, evaluated from the error
of FOPT and FCO2PT is shown in Figure 5.14.

Figure 5.14: The worst performance from all training and validation data (Gullfaks Model).

For the proxy to run one case, it takes 13KB of space to report the results as Excel and
9.16 seconds to run a case. Comparing to the results we got in Table 4.1, this result
is 57.1 times faster and 7400 times smaller memory is needed to perform one task. For
performing the whole process (separating database, topology optimization, relearning with
higher epoch, running all training-validation data using the proxy model), it takes 2 hours
and 49 minutes.

Blind Test

To test the robustness of the proxy model, 12 runs were prepared for blind test. It should
be noted that these 12 cases were randomized, so the blind test case that we have in the
Egg Model is different from what we have here. We performed an APRE assessment for
error calculation for each run. The error statistics is tabulated in Table 5.12.

Table 5.12: Proxy performance from blind test (Gullfaks Model).

APRE (%)
Min Average Max

FOPR -0.700 0.511 3.930
FCO2PR -1.823 2.006 10.055
FOPT -0.728 0.194 3.405
FCO2PT -2.191 -0.071 5.612

For FOPR and FOPT proxy, we can see that the error is slightly higher than the training-
validation case. While looking into FCO2PR and FCO2PT, we can see that the error
window is about the same as we have during the proxy training. We can see more details
in Figure 5.15 as the error is presented for each blind test. We can see that almost all cas-
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Figure 5.15: Relative percentage error for all blind datasets (Gullfaks Model).

es have an error less than 2% in general, which is a good indicator of the robustness of the
proxy model. As a reference, random blind test (upper) and the worst blind test (lower) in
terms of the case FOPT and FCO2PT error are plotted in Figure 5.16.

Figure 5.16: Blind test results & comparison with the reservoir simulation output (Gullfaks Model).
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We can see that the proxy can learn the cyclic behavior and the masked cyclic behavior of
the reservoir simulation model observed due to the complexity of the geological model.
From the error, the proxy shows promising results and confirms its robustness. This proxy
is then ready to be used for optimization study.

5.2.4 Optimization Study

Using the proxy built in the previous section, an optimization study can be performed. The
same method and hyperparameters (as for the Egg model) are used. With 100 generations,
we got Pareto front as shown in Figure 5.17 and tabulated in Table 5.13. To finish the
whole optimization runs, it takes 2 hours and 23 minutes.

Figure 5.17: Optimization results for Gullfaks model.

We can see that the solution space of Pareto front is not linear, unlike for the Egg Model.
This is because there exist faults, perforations installed differently between wells, and
other effects due to the heterogeneity of the model. Overall, the optimization converges to
maximum gas rate (2 Msm3/d), while half-cycle varies between 3 to 9 months, and water
injection rate varies along all possible values.

In the Egg model, we saw that increase in water rate will increase the amount of oil pro-
duced and decrease the amount of CO2 stored. The same behavior is observed here. Egg
model was modified to have about the same in-place volume as Gullfaks model. Yet over-
all, Gullfaks has lower recovery and CO2 storativity compared to the Egg model.
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Table 5.13: Pareto optimum of the optimization problem (Gullfaks Model).

No
Halfcycle
(month)

Gas Rate
(Msm3)

Water Rate
(sm3)

FOPT
(Msm3)

CO2 Stored
(Bsm3)

1 6 1.994 3825 2.025 1.555
2 9 1.950 6454 2.163 1.450
3 6 1.994 3981 2.039 1.544
4 6 1.994 4428 2.073 1.483
5 9 1.989 7616 2.226 1.407
6 9 1.996 3202 1.926 1.577
7 9 1.994 3107 1.918 1.585
8 6 1.999 3489 1.992 1.564
9 6 1.988 8918 2.353 1.305
10 9 1.985 3165 1.919 1.578
11 6 1.983 8903 2.350 1.307
12 6 1.999 4933 2.102 1.463
13 6 1.982 8903 2.350 1.308
14 6 1.988 8999 2.357 1.304
15 6 1.998 3802 2.024 1.557
16 6 1.994 3965 2.037 1.546
17 6 1.989 5035 2.104 1.453
18 9 1.998 3245 1.931 1.574
19 9 1.965 7136 2.199 1.427
20 6 1.995 3850 2.028 1.554
21 6 1.995 4051 2.045 1.538
22 6 1.997 4408 2.073 1.486
23 3 2.000 8994 2.347 1.393
24 6 1.999 8969 2.360 1.300
25 9 2.000 3046 1.917 1.589
26 9 1.991 6735 2.190 1.448
27 9 1.999 7259 2.216 1.425
28 9 2.000 3219 1.928 1.577
29 6 1.993 4646 2.084 1.472
30 3 1.999 8834 2.338 1.394
31 6 1.999 8938 2.358 1.301
32 6 2.000 3766 2.021 1.560

To test the results, as no preference of objective functions is prioritized, the nearest mean
value for both objective functions will be selected to test the performance. Case 17 has the
closest value to the mean of the Pareto front (The average of FOPT is 2.12 Msm3 and CO2

Table 5.14: Error of the selected pareto solution (Case 17, Gullfaks Model).

PETREL Proxy Relative Error (%)
FOPR - - 1.04
FOPT (Msm3) 2.08 2.10 1.19
FCO2PR - - 0.45
FCO2PT (Mkg-mole) 95.91 94.83 -1.12
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5.3 Behind the Success Story

stored is 1.47 Bsm3). The selected case will then be tested and compared by running the
case with PETREL. The results are tabulated in Table 5.14. We can see that small error
was obtained compared with PETREL. Figure 5.18 shows the rate comparison between
proxy (black dot) and reservoir simulator (red line). We can see a jump in the middle of
the FCO2PR curve, yet the overall behavior aligns with reservoir simulator.

Figure 5.18: Comparison between reservoir simulator and proxy model for selected pareto optimum
(Case 17, Gullfaks Model).

5.3 Behind the Success Story
The results we described above are obtained after several trials. Figure 5.19 shows trials
performed to create the proxy model for both models, where the red-colored ones are the
proxy models presented above. The details are explained in this subsection.

Figure 5.19: Trials to develop the proxy models based on sampling and proxy segmentation.
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Figure 3.1 is the foundation of how the proxies are developed and improved. When proxy
fails to learn the whole data, segmentation is the first effort employed to improve its per-
formance. The definitions of proxy segmentations listed in Figure 5.19 are listed below.

1. Egg Model

• Base : Both proxies (FOPR and FCO2PR) are segmented based on the injec-
tion phase.

• Timestep split (1-9) : base idea is implemented. Then, for FCO2PR, the proxy
is segmented in two parts, the first year and later times.

• Timestep split 1-4-9 : Explained in Section 5.1.

2. Gullfaks

• Base : Both proxies (FOPR and FCO2PR) are segmented based on injection
phase.

• Halfcycle split : base idea is implemented. Then, the proxies segmented based
on low halfcycle length (3 and 6 months) and high halfcycle length (9 and 12
months).

• Timestep split (4) : base idea is implemented, then the proxies segmented in
2.5 years time interval.

• Timestep split (5) : Explained in Section 5.2.

When the efforts to improve the proxy performance by segmenting the proxy fail, the num-
ber of sampling is increased. This is performed until the proxy performance is acceptable.

The whole training-validation dataset is evaluated by comparing with reservoir simulator
results to assess the proxy performance. The performance is then assessed qualitatively (by
looking at the behavior from plots) and quantitatively (APRE results). This quick assess-
ment helps the proxy development process be more efficient, rather than blindly moving to
blind test right after constructing the proxy. The process of building the proxy is through
ANN topology optimization, retraining using higher epoch, and assessing individual seg-
ments loss function and fitness criteria (R2 and normalized absolute error).

When the plot comparing proxy and the reservoir simulator results shows different trends,
it will be counted as a failure instantly, and the assessment is stopped right away. When the
proxy results match the simulator results (visually), we assess qualitatively using APRE.
If a near-zero APRE value proves the high quality, we can move to a blind test. The
assessment for the blind test is also the same as the training-validation dataset. When the
robustness is confirmed from the blind test, the proxy model is ready for the optimization
study.

5.3.1 Egg Model
Due to the simplicity of the data, this model took less time and ideas to develop the proxy
model. We can see from the previous discussions that the cyclic behavior is not masked
in this model. Hence, the behavior can be learned just using 68 run samples (Figure 5.1).
Figure 5.20 shows the fitness of the first two trials to develop the proxy model.
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Figure 5.20: Proxy and Eclipse results for the trials to develop the proxy model of Egg Model.

The figure above is selected randomly from the 68 samples we have. We can see visually
that for the base model, the proxy can mimic the behavior for FOPR, but it fails to mimic
FCO2PR. As it fails the visual assessment, we tried to segmentize the proxy for FCO2PR.
The first year is separated from the other data, as no cyclic behavior can be seen in that
interval. The results show better trend compared to the base idea.

We can see some deflection in later times, where the proxy fails to mimic the behavior.
Because of this, we segmented the time again into 1 year - 4 years - 5 years for FCO2PR,
as explained in Section 5.1. The results we obtained for this trial yield good performance
both visually and in APRE statistics. Then, the proxy was tested using a blind test dataset.
As the performance is sufficient, the proxy is then used for the optimization study.
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5.3.2 Gullfaks Model

Looking at the geological model, we understand the complexity of the data in response to
the changes in injection rates, and the half-cycle length of the EOR study compared with
the simple Egg model. We observe sharp increase in production during low WAG ratio
as CO2 will go to the uppermost layer, where producer well perforations are located. In a
lower WAG ratio, the effect will be delayed as the perforation of injector wells is located
in the bottom layer of the reservoir. Based on this, we know that it will be harder to build
the proxy for this model.

Figure 5.21: Proxy and Eclipse results for the trials to develop the proxy of Gullfaks Model using
68 run samples.
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At the start, we are using the exact sampling as we have used for the Egg model (refer to
Figure 5.1). Sixty-eight samples are used to develop the proxy model, where the results
of proxy segmentation ideas are illustrated in Figure 5.21. Here, we will explain them one
by one.

We can see visually that overall, all ideas employed using 68 run samples could not learn
FCO2PR and FOPR behavior. For the base case, most segments perform around 98%
R2 value for training dataset and 96-98% R2 value for validation dataset. This seems
reasonable enough, but in terms of normalized absolute error, it varies greatly between 0
to 0.17, which is not a good sign for this cascading proxy model.

For the half-cycle split and timestep split ideas, both models have similarities, where some
segments have R2 more than 99%. But, we still see errors of more than 0.14 when looking
at the normalized absolute error. Having an error of 0.14 for data that varies between 0
and 1 means that we have more than 10% error. This error is carried over throughout the
later timestep, as we use the value of the previous time step as the input of the proxy.

Then, the number of samples is increased. Figure 5.22 shows the new sampling with 86
samples taken from the sampling space. Seventy-eight samples are taken, where for 3, 6,

Figure 5.22: New sampling for Gullfaks model.
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and 9 months half-cycle, we took 18 samples each, and 24 samples for 12 months half-
cycle. Additional eight runs for the edge of Latin hypercube were also added to the dataset,
resulting in 86 run samples. This unbalanced sampling was performed due to the proxy’s
failure in 68 samples to mimic the behavior of high half-cycle length.

We employed the same ideas explained before also for this new sampling. Figure 5.23
shows the results of all the proxy segmentation ideas we used. The figure shows the
behavior of the proxy for 9 months half-cycle. Even though all proxies fail to mimic the
behavior of higher half-cycle length (9 and 12), all proxies now can mimic the behavior
for the lower half-cycle length (3 and 6 months) which is not reported here.

Figure 5.23: Proxy and Eclipse results for the trials to develop the proxy model of Gullfaks Model
using 86 run samples.
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All ideas have a good performance on the individual segment assessment from R2 and
normalized absolute error. We can see from the base idea that the proxy fails to visually
perform as a good proxy model. We see high jumps in FOPR and FCO2PR plot for the
base idea. Hence, this idea will not be assessed further. We can see that for half-cycle split
idea, it performs better visually compared to the base model, but it is not sufficient to be
evaluated further when compared to timestep split.

Compared with the other results, the timestep split shows the best performance. We can
see that in the FOPR curve, the model can mimic the masked cyclic behavior in the early
time. Other than that, we can see the fitness is better compared to the other two ideas. For
the FCO2PR proxy, we can see that it fits better than the others, except for the middle time
(1800-2880 days) when it fails to mimic the behavior. This is an indication of potential
room for improvement. To do that, more sampling is added for the proxy model training-
validation dataset, as shown in Figure 5.24.

Figure 5.24: Additional runs (red) in addition to 86 run cases to improve Gullfaks proxy perfor-
mance.

In total, 97 samples are now used as proxy learning materials. Five additional runs for 9
months half-cycle length and six additional runs for 12 months half-cycle are added to 86
samples from before. With the same procedure, we assign the training-validation, create
and assess the performance of the proxy. Here, we directly use timestep split as our proxy
segmentation idea. The result is shown in Figure 5.25. Better matches are now seen in the
figure, where we considered the same case as in Figure 5.23.

Now, as it performs well visually, APRE assessment is performed. For the FCO2PR curve,
we see huge errors in early times (first year). The error at the first year varies between 5
to 140%, which is not desirable. So, the first year dataset was separated and a new ANN
is made to represents this timespan. The final results were reported in Section 5.2. As
the proxy passes the APRE assessment, a blind test can then be performed. The results
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are satisfying and can be concluded as a robust proxy. Then, the proxy is used for the
optimization study.

Figure 5.25: Proxy and Eclipse results for the trials to develop the proxy of Gullfaks Model using
97 run samples.
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Discussion and Evaluation

From the results obtained in this study, some points can be discussed and evaluated. All
evaluations can be used to improve when a deeper study related to the proxy model will be
performed later. Moreover, the time needed to build a proxy model will be discussed here
to decide whether it is worth to be explored deeper or not.

6.1 Comparative Study
Every proxy model is case-specific, which is based on the data provided to be learned. Two
proxy models that represent different reservoir models were made for solving optimization
problem in this study. One of thee models (Egg Model) was modified to make both models
similar in size, for comparison purposes. We will present a comparative study based on
the steps of building the proxy model.

Data Complexity

The rate response to the WAG injection phase for both models is shown in Figure 6.1. Two
cases are presented. The first part is for 90 days half-cycle length, 2 Msm3/d gas injection
rate, and 3000 sm3/d water injection rate. This case is shown until 1800 days only. The
second part is for 360 days half-cycle length, 2 Msm3/d gas injection rate, and 9000 sm3/d
water injection rate. The magnitude of rates can be neglected for now.

These cases are being run as training cases on both models, as it is one of our Latin
hypercube edges. First, for both FCO2PR behaviors, we can see sharp increase in CO2

production in the 90 days half-cycle . However, in 360 days half-cycle, for the Gullfaks
model, there is a smooth transition rather than a sharp increase or drop in the production
behavior. This different behavior will be learned using the same proxy model if it is not
segmented based on its half-cycle length.
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Figure 6.1: Differences between Egg Model and Gullfaks Model rate response to WAG injection
phase, upper part for 90 days half-cycle, lower part for 360 days half-cycle.
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Now we can observe the FOPR curve. Overall, we have an increase in production in
the second year of production. Then, it will decline over time. Other than that, we can
see sharp rate changes in both reservoir models in between each injection phase. However,
again, it is masked in higher half-cycle length in the Gullfaks model. The smooth transition
is observed in this model.

Two half-cycle lengths that are not reported here are six months and nine months. Six
months half-cycle length still inherit the behavior of three months half-cycle length. For
nine months half-cycle length, we start to see smoother changes as we have in higher half-
cycle length. Other than that, the smoothness increases when the WAG ratio is between 0.9
- 1.3. As the injection rates of both fluids become almost equal, we can witness decline-
like flow behavior in our FOPR.

We observe here the different responses of the two models primarily due to different ge-
ological model and well placement. Other parameters such as the fluid model, relative
permeability relationships, and initialization condition might not have any impact since
they are identical for both models. These complex behaviors were learned by both proxies
that we made for their respective reservoir models.

Number of Samples Needed

Here, we can conclude that complexity aligns with the number of samples needed for
developing the proxy. For the Egg Model, 68 samples are enough, yet in Gullfaks, we
need 97 samples to develop the proxy model. The total time to run the whole sample is in
alignment with the number of samples needed. This phase is the most time-consuming part
as both models need more than 9 hours to complete all runs from the training-validation
dataset.

Proxy Development Process

Just looking into Figure 5.19, we can see that more efforts are needed to build the Gullfaks
proxy model compared with Egg model. However, we will evaluate each step of this
process.

To improve the robustness, rather than increasing the number of samples directly, seg-
menting the proxy is the first effort. Segmenting the time into several parts shows the best
improvement compared to other ideas. The question that might pop up is the number of
segmentations needed. Three segmentations are enough for the Egg model, but more than
five are needed for the Gullfaks model.

Each segment involves gas-water segmentations inside due to distinct behavior of each
injection phase. Then, each segment is trained individually, which involves topology op-
timization, ANN relearning with higher epoch and error, and fitness analysis. Almost all
segments require a high number of nodes (15-20 nodes, 20 is the maximum number of
nodes for each layer) and hidden layers (2 to 3). It shows that a complex topology is
needed to learn the rate behavior we want to mimic.

Moving to the assessment of each proxy segment, we see that for both models, we need at
least R2 near 98% to make the segments work as one proxy model later. The error range
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for each segment (normalized absolute error) also needs to be minimized. This takes into
account the error that later timesteps have due to the cascading error of the proxy.

Before assessing the proxy robustness, we will be looking into the time-cost we need to
build all proxy segments. Here, the time presented in the previous chapter includes the
database segmentation, topology optimization, relearning ANN with higher epoch, and
running the whole training-validation-blind dataset using the proxy model. Two hours and
49 minutes is needed for the Gullfaks model, and an hour and 23 minutes is needed for the
Egg model. A higher amount of data and segmentation will increase the amount of time
needed.

Proxy Robustness

To assess the robustness of each segment as one proxy, both visual and APRE are used.
As explained before, when it is visually not robust, we will improve it right away rather
than accessing quantitatively and moving to the blind test. We used APRE since all ANNs
learned the model using normalized values. Assessing normalized values is hard as the
order of magnitude is masked by the normalization.

In this study, the average APRE was used as the target is less than 2% for the training-
validation phase. Other than that, the error window should be in the range of 10%. These
numbers are selected without any solid basis but as the boundary for this study. Both
proxy models must fulfill these criteria before being tested by the blind test dataset. As
we observed, both models fulfill these criteria, and a more profound assessment was also
performed to see the error variations for each training-validation case.

Both models are assessed using the blind test as the final test to check the robustness.
In general, both models have similar APRE values for both training-validation and blind
test. The robustness of blind test is assessed in the same way as we did for the training-
validation test. In this study, when the proxy model meets the robustness criteria during
the training-validation set, it tends to show the same robustness in the blind test.

Optimization Result

Both proxy models need an almost equivalent amount of time to finish the optimization
study. This is true as the difference between the proxy models to finish a run is only 0.41
seconds. No hyperparameter was changed, and the total generations used for both models
are the same, 100 generations.

The number of Pareto optimum is different, where we have 40 Pareto optima in the Egg
model and only 32 Pareto optima in the Gullfaks model. The Pareto front of both models
is different. Both still have the same behavior. If we increase the water injection rate
while maintaining the gas injection rate, we will increase oil production while reducing
the amount of CO2 stored in the reservoir. For the Egg model, this behavior is almost
linear. However, for the Gullfaks model, it is not anywhere near linear.

The nearest Pareto optimum with each objective function’s mean value is tested in both
models and compared with Eclipse runs. Their APRE is near the average APRE in the
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training-validation case, which is a good indication that the proxy is robust. It is noted
that all running times are assessed using the same computer specifications. To run the
case using PETREL, building the proxy, and performing the optimization study, PC with
Intel(R) Core(TM) i7-8565U with 1.99 GHz processor with 8GB RAM is used. No parallel
runs were performed during the study to allocate the whole CPU to do each task.

6.2 Evaluation and Improvements
After the whole study is finished for building the proxy model and performing an opti-
mization study, a comprehensive evaluation is reported.

Data Sampling

In this study, 68 samples are the number of LHS performed initially, reflecting the number
of samples used by Nait Amar et al. (2018) and Nait Amar et al. (2020) for CO2-WAG
study. It shows that it is sufficient for the Egg model, while it is not for the Gullfaks
model. There are no guidelines nor rule of thumb about the number of runs needed to do
the sampling for the field-based optimization study. The number of samples is important
as this part takes most of the time for building the proxy.

As observed in this study, resampling means re-running the reservoir model. This is proven
when we resampled the Gullfaks model from 68 to 86 samples. As we know that it is
computationally heavy to run many cases, resampling should be avoided. To avoid this,
the first ”guess” of the number of samples needed is essential. It seems to be okay if we
sampled too many rather than not enough. However, the cost of too much data means that
our ANN learning process will be longer, even though it might still be way shorter than
resampling and re-running the reservoir model for creating the database.

Another way to tackle this is by adding several run samples by adding extra samples into
our existing LHS results. It is proven when we added extra runs for the Gullfaks model
from 86 to 97 samples. It needs to be reconsidered, as LHS divided the whole sampling
space based on their equiprobable intervals, and each sample is taken from each inter-
val. Adding extra runs as proposed here means that the number of samples will not be
equiprobable again as before. More study about this is needed.

Another way is to change the sampling method. There are many sampling methods. Quasi-
Monte Carlo sequences sampling, such as Halton, Hammersley, and Sobol, can be tested.
Most proxy modeling for petroleum engineering relies on LHS as the sampling method.
Studying further into this can be a new insight for proxy modeling.

Developing the proxy

From the start of the study, we limited the proxy to be built using ANN. There are many
machine learning and deep learning methods to be used for building a proxy model. ANN
was selected in this study due to its simplicity compared to the others. We also performed
the previous study using ANN (Matthew, 2020), which showed good performance.
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Working with other machine learning and deep learning methods can be a good start for
improving the performance. This can improve from many aspects, such as a more straight-
forward proxy learning process and the total amount of time used to develop the proxy.

We will focus on ANN now as this study used it as a proxy model. The main question
that pops up is, ”Do we need to do hyperparameter optimization?”. All study results show
that we need 2 to 3 hidden layers and 15 to 20 layers. This can be a guideline if later a
hyperparameter study is not preferred. The problem with the hyperparameter study is that
it consumes more than half of the total time we need to build and run the proxy. Hence,
not performing this will save a huge amount of time.

Nevertheless, when hyperparameter optimization ought to be performed, adding an extra
hyperparameter is recommended. Dropout can be included first, as this helps to reduce
the probability of overfitting. Other than that, increasing the possible range of existing
hyperparameters is recommended, to enhance the proxy performance. In this study, we
limited the maximum number of nodes to 20, and most proxy sections converged to 20.

Our database is normalized. It makes the output of our proxy between 0 to 1, and then
it will be denormalized. During the study, we obtained a negative value of proxy output,
which results in negative rate (both oil and CO2) output. The only way to solve this is to
have the lowest rate and highest rate possible as our training dataset. In this study, we tried
forcing the minimum value of both FOPR and FCO2PR to 0 even though there are no zero
values in the training-validation dataset. It can be used as a reference for further study.

Last but not least, we used 75% and 25% of the data as proxy training and validation
datasets, respectively. At first, we used 70% for training, 15% for validation, and 15%
for testing. As we needed more data for training while maintaining validation to prevent
overfitting, test data was then allocated to both of them. The robustness was then only
tested with a blind test. More studies can be performed to find whether we need to test
proxy with test dataset and blind test. The cost that needs to be concerned is the amount
of time to generate a new dataset from the reservoir simulator.

Proxy Performance Indicator

In this study, to assess each proxy segment, MSE was used as our loss function, R2 and
the normalized absolute error were reported as proxy segments performance indicator. For
testing the whole proxy robustness, APRE was used.

For improving the performance, MSE is used. In this study, MSE performs well enough.
Proxy segments are first assessed with R2 as the most common parameter to assess the
fitness between proxy and learned data result. R2 cannot determine whether the coefficient
estimates and predictions are biased. For this reason, normalized absolute error was used
as the second indicator of the proxy fitness.

In this study, rather than minimizing the average value, we focused more on reducing the
error window. So, rather than choosing R2 with 99% and 0.1 normalized absolute error
window, we will choose R2 with 98.8% and 0.07 normalized absolute error window. This
is because the results from the previous proxy output will be used as input for the next
timestep. Hence, the error will be carried over throughout later timestep.
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The normalized absolute error is used because the input and output of proxy are normalized
before being used. This results in 0 to 1 values. Interpreting this might be hard as the
magnitude is ambiguous. Using other available errors might help, such as relative error,
yet zero values need to be concerned as this will count the error to converge to infinity.
Another option is to do the normalization inside ANN or using mean-standard deviation
normalization.

We are moving on to quantifying the whole proxy performance. In this study, we used
APRE. The main idea to use this is to easily identify whether the proxy underpredicts
or overpredicts the production performance. The main problem encountered is highly
negative percentage error can be neutralized with highly positive error. This will yield
near-zero APRE when calculated. Taking absolute value to assess the whole performance
can be implemented, and APRE can be reported as an additional assessment.

Blind Test

We used 12 run set, which is not included in the training-validation dataset. It can be
increased if needed, yet the problem that needs to be considered is the total amount of
time to run the blind test cases. Worth to be noted that a blind test must be taken in the
range the proxy is trained.

Optimization Study

The optimization study is not studied as deeply as the other parts of this study. One of the
most common things to be done for optimization study is optimizing the hyperparameters
of optimization algorithm. This was not performed as many optimization processes were
already performed before we obtained the representative proxy model. To tackle the con-
vergence failure, we used a high number of generations. Optimizing the hyperparameter
can be done as one of the ideas for further study. In addition, many parameters can be
studied for CO2-WAG study, yet these were not observed here. Some of these are gas
injection composition, well completion, total slug volume injected, and well positioning.

PETREL has a built-in optimizer. Here, we can test whether the results using the proxy
model are somewhere near the real optimum results or not. This study is not performed
either as a multi-objective optimizer is not available in PETREL, especially NSGA-II. An
idea that can be employed is to couple the reservoir simulator with optimization algorithm.

It is important to consider that the solution space of proxy model and reservoir simulator
will be different. It is an intuitive hypothesis as the results obtained with the proxy model
are not the same as the reservoir simulator model. This can be a new study to see the
differences between the solution space of the proxy model and reservoir simulator. The
thing to be taken into account is the amount of time to compute the solution space and the
way to minimize the difference between both models.

All evaluations described here can be used as the starting point for new proxy modeling
study. Moving into smaller element volume can also improve the study, starting with a
simpler reservoir model such as Egg model.
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6.3 The ”Real” Truth of Building Proxy Model
It seems attractive if we see the time reduction in performing the study using a proxy
model rather than a reservoir model. The truth is, the ”real” time that needs to be spent
developing a proxy model to perform the optimization study is not only the time used for
running the whole programming script. As a starting point, Figure 6.2 shows the workflow
of employing optimization study into reservoir simulator and proxy model.

Figure 6.2: Workflow of employing optimization study using PETREL (top) and proxy model (bot-
tom).

The blue-colored arrows involve scripting to be built. When not accounting the time
needed to prepare the scripts, the study takes 17 hours and 47 minutes (Gullfaks model).
1030 evaluations were performed using the NSGA-II based on the hyperparameter con-
figuration. The amount of time needed to solve the optimization problem directly using
the reservoir simulator model will be about 6 days, 5 hours, and 38 minutes (approximat-
ing using total evaluations multiplied by reservoir model run time from Table 4.1). This
proves the time reduction when we compare directly.

Scripting time is needed to be taken into account. In this master thesis study, we scripted
everything from a blank script. It took us around two months to script for the whole
study, where script adjustments are also accounted into that amount of time. The thing
that needs to be noted is that it was the first time we performed a proxy model study using
Python as the programming language. These two months account for the amount of time
to understand the needed packages(pyDOE, Keras, and scikit-learn). Starting a new proxy
modeling study with the tools we have now in place will definitely take much less time.

Mastering the packages and experience of developing a proxy model can reduce the amount
of time to build the proxy. There is much room for improving this work, such as creating
a GUI and main script that adjusts to the needed study objective.

So, is it Worth be Continued?

Yes. It was proved that the proxy model is able to tackle the common problems we have
in conventional reservoir simulations (time and storage space needed), even with high
complexity models such as the Gullfaks model used in this study. There is much room
for improvement of this study to support the idea. The potential to be unleashed, such as
application in history matching, is one of the main interests for proxy modeling study.
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From this study, we can conclude that developing a proxy model is one of the answers
to tackle the problems associated with conventional reservoir simulation: runtime and
amount of storage needed to store the results. When built in the right way, this can be
strong and powerful modeling tool, as explained by Gholami (2014). Our previous study
shows that it can learn decline and plateau behavior (Matthew, 2020), and here more com-
plex cyclic and decline behavior were able to be modeled by the proxy model.

In addition to that, several points can be highlighted:

1. As a proxy modeling application, an optimization problem needs to be formulated
carefully from the start of the study. It affects the reservoir model behavior that
needs to be learned by the proxy model. No major problem was reported when
solving a single-objective (Matthew, 2020) and multi-objective optimization study
using a proxy model as reservoir model substitute. It is valid as long as the proxy
robustness is confirmed before the optimization study is performed.

2. The workflow developed in the previous study can be used as a guideline for per-
forming proxy modeling study from scratch (Matthew, 2020). In this study, the
workflow is updated by combining the whole workflow with the preparation and
post-proxy model development, as shown in Figure 3.1.

3. Proxy models were built to mimic oil production rate and CO2 production rate from
Egg Model as simple reservoir model and Gullfaks model as complex reservoir
model. Several proxy segments constructed these proxy models. Each segment
was made using ANN, assessed using R2 and normalized average error. The robust-
ness as a whole proxy was tested using APRE, both during training-validation and
blind testing.

4. Higher number of samples is needed for a more complex reservoir. In addition ,
more proxy segmentations are needed to enhance the proxy performance. This was
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proven by the amount of samples and proxy segmentations (based on the timestep)
are for the Egg model (68 samples, 3 segmentations) compared with the Gullfaks
model (97 samples, 5 segmentations).

5. To reach the maximum oil recovery for CO2-WAG study, we need to have a max-
imum gas injection rate with a minimum water injection rate. It will reduce the
amount of CO2 stored in the reservoir. We can see a linear relationship between
water injection rate, total oil produced, and total CO2 stored in a simple reservoir
model. The complex reservoir model has the same trend, but it is not linear. This
trend is because of the reservoir heterogeneity that affects the sweep efficiency and
CO2 entrapment.
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Appendix

Access the whole script and databases here:

https://github.com/aqnanp/CO2WAG-Proxy-Study

To get the access to the reservoir models, please contact me via:

aqnanp@gmail.com
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