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Abstract 

Autonomous systems, including airborne, land-based, marine and underwater vehicles, are 

increasingly present in the world. One important aspect of autonomy is the capability to 

process information and to make independent decisions for achieving a mission goal. 

Information on the level of risk related to the operation may improve the decision-making 

process of autonomous systems. This article describes the integration of risk analysis 

methods with the control system of autonomous and highly automated systems that are 

evaluated during operation. Four main areas of implementation are identified; (i) risk models 

used to directly make decisions, (ii) use of the output of risk models as input to decision-

making and optimization algorithms, (iii) the output of risk models may be used as a 

constraint in or modifying constraints of algorithms, and (iv) the output of risk models may be 

used to inform representations or maps of the environment to be used in path planning. A 

case study on a dynamic positioning controller of an offshore supply vessel exemplifies the 

concepts described in this article. In addition, it demonstrates how risk model output may be 

used within a hybrid controller. 

Keywords: Autonomous systems, supervisory risk control, risk-based decision-making 

1 Introduction 

Autonomous systems for transportation, surveillance, and exploration become a near future 

reality. Autonomous ships, autonomous cars1 and autonomous drones in the air2 and 

underwater3 are being used or are approaching the mass marked. Autonomous systems are 

characterized through the ability of making decision independent from an external supervisor 

to achieve a set goal4. This does not mean that no human supervisor is involved in the 

operation process. The difference between autonomous and highly automated systems is 

small. Highly automated systems are characterized through the automatic execution of 
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several functions, whereas higher level decisions for control of the system are given by an 

operator. 

Concerns regarding reliability and the risk level of such systems need to be addressed in 

order to make autonomous systems a success1,5,6. Risk can be described as the 

combination of undesired scenarios (chain of events), the associated consequences and the 

associated uncertainty with respect to the occurrence and magnitude of the events and 

consequences7, as summarized in equation (1). Risk is often associated with negative 

outcomes, however, may include positive outcomes. Safety of an operation or a system is 

established if the risk has been reduced to an acceptable and tolerable level8. That means 

that measures have been taken to reduce the frequency or probability of occurrence of 

consequences and to mitigate the impact of negative consequences. 

𝑅 = {𝑠𝑖 ,𝑪𝑖 , 𝑼𝒊}𝑖=1
𝑛  (eq. 1) 

Testing, assurance and compliance with safety-related standards are important tools to 

ensure safe operation of systems. Risk assessment is carried out to support decision-

making in socio-technological systems. Hence, information from the risk assessment 

process may be useful not only for design, but also as input to the decision-making 

capabilities of the control system of autonomous systems in operation. 

However, autonomous systems’ decision-making based on risk information during the 

operation of the system, is not much discussed in the literature, except for a few examples. 

Pereira et al.9,10 present an approach to mission and path planning of underwater gliders, 

considering both the surface ship traffic density, bathymetry and currents. Their approach fits 

in the risk definition, expressed earlier, uncertainty (of motion and position) is combined with 

undesired events and consequences (loss of the underwater glider). 

Lefevre et al.11 propose a risk aware path planning algorithm based on hierarchical path 

planning and different A* implementations for autonomous underwater vehicles. To select 

the best path the objective function minimizes the path cost, which includes risk as a factor.  

Johansen et al.12 present a Model Predictive Control (MPC) path planning that considers the 

maritime safety navigation rules (COLREGS). The path optimization uses hazard information 

from a ship simulator and uses the COLREG rules as constraints. Hazards, i.e., obstacles, 

are identified from an electronic map. Brekke et al.13 discuss the above and other 

approaches that attempt to build collision avoidance systems for autonomous vessels. 

Bremnes et al.14,15 combine a risk informed Bayesian belief network (BBN), implemented as 

decision graph with the control system, to make decision about proximity to ice when 

operating an underwater vehicle. System status, environmental factors and mission related 
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factors are considered in the BBN. A risk index is calculated, which will limit the allowable 

minimal distance to the ice. 

Hobbs16 discusses the possibility to combine risk analysis methods with safety critical 

functions in order to ensure safe operation. This may include a control functionality in a 

system. DNV GL17 recently discussed the concept of a digital twin incorporating uncertainties 

with respect to the systems condition and environment to allow for risk-informed decisions. A 

digital twin is an assembly of mathematical formulations and models that represents and 

abstracts a system. 

Despite some efforts to include risk information in control systems, only a few attempts have 

been made to incorporate risk analysis models or methods directly in the control system of 

an autonomous system. Such approaches are needed to support online risk analysis during 

operation and will lead to risk-aware autonomous system behaviour6,18. Utne et al.6 recently 

introduced the concept of supervisory risk control of ships. Supervisory risk control refers to 

the assessment of risk information based on operational data to support decision-making by 

the autonomous system. The goal is to improve the intelligence of autonomous systems and 

thus ensuring safe operation and successful mission execution. 

The objective of this article is to assess and outline possibilities to include risk analysis 

methods and models in the control systems of autonomous systems. Thereby, attempting to 

opening the application of risk analysis methods to be implemented with the control system, 

for safer operation and decision-making during an operation. The goal is to bridge the fields 

of control engineering (cybernetics) and risk engineering, to create a mutual understanding 

of topics and concepts. 

Different risk analysis methods are discussed and mapped on different elements of a generic 

control systems. For this purpose, an example control system for autonomous systems is 

described. The article provides input for improving the control systems’ decision-making 

processes for autonomous and highly automated systems in the future. Given the scope, this 

article does not focus on assurance, pure hazard identification methods, testing efforts, or 

processes related to standards for safety-related systems.  

The next section describes the generic control system and frequently employed control 

approaches and techniques. Section 3 describes the necessary background in risk and 

safety terminology, together with commonly employed methods in the field. Section 4 

describes the interfaces and possible approaches to connect the fields of cybernetics and 

risk engineering. An example based on a ship control system exemplifies the concepts 

throughout the article. Section 5 summarizes and concludes the article. 
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2 Control system design and methods 

2.1 Control system architecture 

In order to determine which type of risk information may be relevant for and used by the 

different parts of a control system, understanding both the constituent elements of a control 

system of an autonomous system (Figure 1) and the control system architecture is important 

(Figure 2). Figure 1 shows a generic component architecture of an autonomous system. The 

office systems as a supervising and managing entity have been added to emphasize that the 

autonomous system will receive goals and maintenance from humans. There is a difference 

between the operational and organizational environment of the entity owning and using the 

system. 

- System hardware: The physical components that make up the autonomous system 

and interact with the control system. External system interaction refers to the 

interaction or communication with other systems or operators through a dedicated 

communication system and the necessary hardware. External communication may 

include sharing of maps for mutual localization, system communication of information 

additional to position information, or systems’ coordination of actions. 

- Realtime network: BUS/ Real time ethernet network inside the system for 

communication of data and commands between the system’s internal components: 

sensors, actuators, control system, and external communication system. 

- Office network: Network used for operating organizations internal communication 

between computer systems and servers for data exchange. The office network 

enables communication with the lower levels of the control network. 
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Figure 1 Generic component architecture for autonomous systems, developed from (Sørensen19, Pendleton et 
al.20) 

The following systems are found in the component architecture: 

- Office systems: The operating organizations management system to ensure the 

operation of systems. This includes business enterprise, (vehicle/ vessel) fleet 

management, operational management systems. Operational management 

addresses the decisions to ensure the operability of a system, that includes 

maintenance, condition monitoring and operational risk assessments to optimize 

safety and operability. 

The generic control system for autonomous systems is depicted in Figure 2. The control 

system is based on Sørensen19 and Pendleton20. The focus of the control system 

architecture is on planning and re-planning and the plant control elements. These are most 

relevant for online risk monitoring and incorporation of risk models. Some elements in the 

figures are depicted through several layers of boxes, for example, sensors, or behavioural 

planning. This means that several of these elements may be present in the system. 

Behavioural planning, hence, may encompass several algorithms to assess the optimal 

behaviour with respect to different circumstances. 

The following elements (or main functions) are found in the generic control system: 
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Perceive: The system’s ability to collect information and extract relevant knowledge from the 

environmental and internal measurements. This knowledge may be used to understand the 

environment and its context (signs, signals, obstacles, etc.) or to localize the system’s 

position in the environment. In addition, this knowledge may be used by the system to 

determine its state. Different algorithms and systems have been developed for detection of 

traffic, roads, objects, and machine vision. No methods will be discussed in detail in this 

article. Generally, filters, machine learning and artificial intelligence methods may be 

employed for the perceive function. Risk information may make use of the information from 

the perceive function and vice versa. This is outside the scope of this article but should be 

addressed in future work. 

Plan and re-plan mission: The system’s ability to make decisions to achieve its mission 

goals. There are several types of planning that address different time horizons and types of 

decisions. 

- Mission planning: Aims at finding an overall mission plan and high-level objectives, 

e.g., key points of interest to be visited, routes to be taken, etc. Re-planning occurs 

sporadically. 

- Behavioural planning: Aims at decision making to ensure that the system follows rule 

restrictions and behaves in a conventional and safe manner. This may include 

collision avoidance behaviour, respecting safe distances, etc. behavioural planning 

and re-planning occurs for short and medium time horizons varying from seconds to 

several minutes. It sets local objectives to be achieved20. This also includes the 

decision of changing the level of autonomy, e.g., when the operator needs to take 

control from an autopilot. 

- Motion planning/ local optimization: It aims at finding the set of actions that are 

needed to reach a local goal/ waypoint. Planning and re-planning considers a time 

horizon from milliseconds to minutes. This should be efficient, complete (time finite) 

and safe, i.e. avoid collision. 
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Figure 2 Generic control system structure for autonomous systems, developed from 

Sørensen19 and Pendleton et al.20. 

 

Plant control: Comprises the ability to execute the plans and actions that have been 

developed in the planning layer. The time horizon of this layer is short term and varies 

between milliseconds and few seconds. Plant control is often based on feedback from 

observers that estimate position/ velocity, estimate bias, and filter noise from the 

measurement signals in the perception element of the control systems. 
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- High level control and path and trajectory tracking: Is based on a simplified 

mathematical model of the system and controls/ guides the system’s behaviour on a 

system level, i.e., the position to be reached in the next time steps. 

- Actuator control: The desired control actions produced in the high-level controllers 

need to be translated to outputs of the actuators, e.g. rotation angles and rotational 

output frequency. The actuator control produces the signals that trigger these desired 

responses in the actuators. 

The different elements and their differentiation are in practice often not as clear. The plan 

and re-plan mission-elements are often not as nuanced. Several elements may be 

considered together, e.g., motion and behavioural planning. Similarly, there is often an 

overlap of the elements, e.g., motion planning and high-level plant control are often difficult 

to differentiate. However, a clear statement of the different functionalities, as described in 

this article, may assist in identifying control system requirements and capabilities. 

One aspect of control systems that has received a high level of attention is fault tolerant 

control. This concept is related to detecting failures in a control system and the associated 

sensor/ actuation hardware21. Fault tolerant control should prevent a failure event on the 

system level arising from a fault in the component. Three types of component faults can be 

distinguished: sensor fault, plant fault, and actuator fault. However, risk management and 

related risk analysis processes cover a wider scope than fault tolerant control and 

contingency handling, such as collision avoidance18. 

2.2 Development process of a control system 

A control system is typically developed in six steps of which some are carried out 

iteratively22. These steps and the proposed interaction with risk assessment are shown in 

Figure 3. The detailed steps and definitions for risk assessments will be further explained in 

Section 3. 

Figure 3 extends the normal development process of a control system. The normal steps (1-

6) have been adopted from Šabanović and Ohnishi22. Currently, risk assessments are only 

used to little extent to give input to the design of the controller e.g., to identify control system 

elements that need special attention. This input is mainly to the performance and 

requirement specification. For safety-relevant systems, processes and requirements for the 

design and development of control systems that are relevant for safety are laid out in, e.g., 

the generic industry standard IEC 6150823, the automotive standard ISO 2626224, or the 

railway standard EN 5012825. 

Risk assessments also can give input to risk models that are built to be used for decision 

support in the control system.6 That means that they are part of the control architecture and 
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the controller design. This is the focus of this article, the implementation and connection of 

risk analysis methods with the control system. These risk models and their output may be 

used by the control systems to make decisions or adapt the systems behaviour or 

performance to the current risk level. This is a novel application not yet required nor 

implemented. 
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specification

3. Design the 
controller
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test the controller
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Figure 3 Development process for a control system of an autonomous system and how information from risk 
models can contribute to the control system. 
 

2.3 Control approaches and algorithms 

For the different elements of a control system (Figure 2), there are commonly used control 

techniques and approaches. These are important to understand when determining how risk 

assessment and models can provide useful risk information. Table 1 summarizes control 

techniques that are commonly used in the different elements of the control system presented 

in Section 2.1. These control techniques are presented in detail in the following sub-sections.  
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The characteristics of the techniques are summarized as computation time, and 

requirements and element of the control system they are mostly applied in. The 

requirements summarize the information needed for this technique to design the control 

systems adequately. The computation time describes the time needed to evaluate the 

algorithm. This is categorized into low, medium, high, where low refers to a speed in the 

area of few milliseconds and high can be in the magnitude of several 100 milliseconds or 

seconds. This information is useful when evaluating the application of the risk analysis 

models in the control techniques, since a risk model that will take long to evaluate may slow 

down a control algorithm. The column for requirements summarizes data or knowledge 

needed for implementing the method. 

2.3.1 Mission planning and re-planning techniques 

Mission planning identifies sub-goals to be achieved for reaching the mission goal. The most 

common mission planning approach for autonomous/ self-driving cars, is graph search20. 

Additionally, finite state machines (FSM) and Markov decision processes are often used to 

determine achievable mission goals and plan the next sub-goal. Model Predictive Control 

(MPC) may include behavioural constraints. However, the focus of MPC is motion planning, 

hence, MPC will be described there. 

Graph search is mainly concerned with identifying the length of the shortest path and/ or the 

waypoints to follow this shortest path. Well known methods include, Dijkstra algorithm, and 

A* algorithm and their variations and extensions26. Sometimes the shortest path search is 

referred to as visibility graph27. 

The Dijkstra’s algorithm is a standard approach to the shortest path problem in a network or 

a discretized map. To find the shortest path the algorithm compares the distance from its 

initial node to connected nodes and then moves on to the shortest connected node. With 

each step the shortest distance between the initial node and additional nodes that can be 

reached is updated with the shortest distance. In this way, the shortest path to the end node 

can be identified from the vector of shortest distances26. 

A* is a goal oriented shortest path algorithm that uses Dijkstra’s algorithm and adds a 

potential function, favouring nodes to be checked that are closer to the target node26. 

Several improvements and combinations with other graph search techniques have been 

suggested to the Dijkstra and A* algorithms to improve their performance26. 
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Table 1 Summary and evaluation of control engineering techniques described and explored in this article 

Control technique Control system element Computation time Requirements References 
Artificial potential fields Motion planning Medium – High Identification of obstacles and state/ 

characteristics of the system. 
 

Finites state machines Behavioural planning, Mission 
planning, Motion planning 

Low All mission states need to be 
predefined and their transfer 
conditions. 

 

Graph search algorithms Mission planning, Motion 
planning 

Medium – High, depending on the 
algorithm and the scope of the problem. 
The original Dijkstra and A* have 
comparably high time.  

Environmental map needs to be 
available in enough detail, with 
feasible regions. 

26 

Hybrid control techniques Actuator control, Behavioural 
planning, Mission planning, 
Motion planning, Plant control 

Low – High All possible/ foreseeable system 
states need to be captured by the 
model. 

28,29 

Mixed/ Partial observable 
Markov decision 
processes 

Mission planning, Behavioural 
planning 

Medium – High Model needs to incorporate system 
states and conditions. Parameters 
may be learned during operation. 

 

Model predictive control Actuator control, Behavioural 
Planning, Motion planning, 
Plant control 

High  Definition of relevant system states 
that reflect the control problem. 

 

Probabilistic road maps Motion planning Medium, dependent on number of 
sampling points 

Environmental map needs to be 
available, with feasible regions. 

30 

Proportional/ Integrative/ 
differential control 

Actuator control Plant control Low Plant inputs and characteristics of 
the actuators. 

 

Rapid-exploring random 
trees 

Motion planning Medium, dependent on number of 
sampling points 

Environmental map needs to be 
available, with feasible regions. 

27,30 

Reachability guidance Motion planning Medium – High  Set of states and possible actions in 
the next time step. 

 

Signal/ Linear temporal 
logic 

Behavioural planning, Motion 
planning 

Low – Medium All signals and their mapping to 
actuator output need to be known. 

31,32 

Velocity obstacles Motion Planning Low- Medium Trajectory and speed of the 
obstacles, own systems state 

33 

Voronoi diagrams Motion planning Medium Obstacles need to be known or 
identified. 
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FSMs consist of states and the transitions between these states. The transitions describe 

the triggering condition and the action that will be triggered and lead to the next state. A 

state machine may only be in one state at a time. In a graphical representation the states are 

represented by circles. Transitions connect the states and are labelled with the conditions 

and actions34. In the context of autonomous systems and their control FSM may be used to 

decide on the next goal to be achieved or the overall mission planning approach given the 

current situation. 

Markov models are very similar to FSM. Their use is described below for control and in 

Section 3.2 for their use in risk analysis. Markov decision processes are used to reason and 

make decisions, when uncertainty is to be considered. Partial observable Markov decision 

process or mixed Markov decision processes may be employed. In Markov decision 

processes, the values of actions can be directly computed, and decisions can be taken 

immediately by calculating the reward of each action. A domain expert is needed to build the 

model and assess the parameters of such a model. Efforts are undertaken to grow the 

Partial Markov decision processes and parametrize them during the system operation, 

through machine learning approaches35. 

Mixed Markov decision models have similar characteristics. Not all relationship and their 

parameters need to be available when the model is defined. Instead variables are defined in 

the model that can modify the nodes in the Markov model36. Markov decision processes may 

be used for deciding on and optimizing mission sub-goals. In addition, they may be 

employed to plan the behaviour. 

2.3.2 Behavioural planning and re-planning techniques 

Behavioural planning employs currently two main techniques20. These are (i) FSM and (ii) 

signal temporal logic (STL) or linear temporal logic (LTL). Markov decision processes and 

Hybrid control may also be used. The latter is considered for the purpose of this article a 

behavioural planning technique, since it alters the system behaviour according to the 

circumstances. FSM and Markov decision processes have already been described in the 

previous section. 

STL and LTL are formal methods, originally designed for verification of the temporal 

behaviour of reactive software systems. STL is addressing analogous and mixed signal 

circuits. In STL, formulas are defined that constraint the signal. These formulas are using 

negation, Boolean combinations, or temporal operators to define the requirements with a 

standard logical notation32. 

LTL is different from STL in the way that there is assumed a relationship between the sensor 

and the system behaviour. That means that for a given input, certain actuator output is 
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expected. However if an input is out of its expected bounds the system behaviour cannot be 

guaranteed31. LTL may be used to translate requirements defined through logical statements 

into hybrid controllers (controlling a mixture of discrete and continuous system behaviours). 

This approach is advantageous for reactive tasks, i.e., reacting to information that is 

collected at runtime31. 

Hybrid systems theory provides a formalism for the integration of multi-functional controllers 

combining discrete events and continuous control. Hybrid control systems are characterized 

through either unreliable state measurements, high sensitivity to errors in the measurement 

of states, unsatisfactory performance of the system with only one state feedback controller, 

or a combination of these characteristics28,29. Hybrid control systems may be modelled 

through four elements; flow set, flow map, jump set, and jump map. Discrete changes 

(jumps) occur when the state is an element of the jump set. A system that has a discrete 

behaviour, i.e., jumps, can be modelled and controlled as a hybrid system28. Hybrid control 

may be used to combine several other control techniques and switch between control 

algorithms automatically based on different parameters. 

2.3.3 Motion planning and re-planning techniques 

Two main motion planning techniques may be differentiated: combinatorial planning and 

sampling-based planning. Combinatorial planning attempts to find a complete solution over 

the planning space while representing the space exactly. Special case solvers then exploit 

convenient properties of the representations. 

For lower dimensional planning problems visibility graphs, and Voronoi diagrams are used. 

Often discretization in space is done to apply trajectory search algorithms, such as, 

trajectory search tree, or other graph search methods (see Section 2.3.1). Artificial potential 

fields, Linear Temporal Logic (see Section 2.3.2), or mixed or partial observable Markov 

decision processes may also be applied over discretized cells in space. MPC, described 

later, is also relevant for motion planning. However, most applications are found in plant 

control (Section 2.3.3). 

Sampling-based planning techniques generate a trajectory graph (also referred to as 

roadmap or feasibility graph) by taking samples of the space. Feasible paths are than 

constructed from these graphs. Examples are probabilistic road maps, or rapidly exploring 

random trees (RRT). Extension to these probabilistic roadmaps and RRT methods have 

been proposed, e.g., dynamic versions30. Other methods employ reachability guidance to 

check the sample spaces faster for connectivity. 

RRT is an incremental sampling and searching approach. The trees are constructed 

incrementally, where the resolution is improved in the process. However, no explicit 
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resolution parameters are set. The paths identified in this way are stored in a tree structure, 

where the sequence of construction is random. For each point an edge is drawn to connect a 

new random point with the closest branch27. For planning a trajectory, the tree is grown 

randomly. The tree growth is stopped if the last connected point is in the desired goal 

region30. 

The artificial potential fields method assigns fields that either attract (e.g., the goal) or are 

repellent (obstacles and no-go areas). The algorithm is mainly employed for static obstacles. 

The goal of the algorithm is to minimize the repellent force. This may lead to non-optimal 

solutions, through local minima. However, algorithms have been developed to find globally 

optimal solutions37. 

Probabilistic roadmaps are used for finding paths over several waypoints. They employ a 

two-stage approach for identifying paths. Firstly, roadmaps are constructed by connecting 

randomly sampled points. Secondly, a connection between the desired start and endpoint 

are sought from the sampled trees30. The maps that are collected can be described as 

forests. The evaluation and identification of the path from a starting to point to an endpoint 

may use shortest path methods as described previously. 

Reachability analysis and guidance assess the possible set of states and positions of a 

system in the future, starting from known states and the initial position. This also takes into 

account the uncertainty connected with state measurements38. Sampled data is shown to be 

enough for this approach. Reachability analysis can be used to plan and assess reachable 

waypoints in future time intervals, predicting them over a time horizon that is a multiple of the 

time intervals. For this purpose, the effect of control actions on the system are assessed with 

respect to their results. The optimal control actions will minimize the cost of reaching the 

goal, while assuring that control actions will lead to a desirable state. Obstacles are be 

considered by defining zones that are not acceptable. 

Voronoi diagrams are used to represent the equidistance from several points in a Euclidean 

plane or space. Lines, so called edges in the diagram, represent the points that have the 

same distance from these points. At a vertex at least three edges meet. A vertex is at least 

equidistant from three points in the plane. Different measures may be used, such as the 

Euclidian distance or the Manhattan distance, to find the edges. Voronoi diagrams can be 

constructed by different algorithms39. For planning the diagrams and their evaluation are 

used to find clear routes, between, e.g., obstacles, where the lines would represent the 

furthest distance20. 

The velocity obstacles approach assesses velocities that would lead to a collision given that 

the system would move with these velocities. The algorithm applies to moving obstacles and 
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the trajectory of the obstacle needs to be known or estimated33. Different approaches exist to 

solve for the optimal speed of the vehicle to avoid collision. 

2.3.4 High level plant control techniques and approaches 

The purpose of plant control, which is the lowest element in the control system architecture 

(Figure 2), is to determine appropriate inputs to the actuator control level such as the desired 

motion which satisfies the needs from the motion planning element20. This may be 

necessary to coordinate the efforts of several actuators. Examples can be the autopilot or 

guidance system of a ship which determines an appropriate heading for following a path or a 

set of waypoints, or the cruise controller of a car which determines an appropriate engine 

control throttle position for achieving the desired speed. 

Appropriate control approaches depend on the application. To determine the appropriate 

heading of a ship, Line of Sight (LOS) steering laws are a possible approach. LOS guidance 

follows a straight path between two waypoints, where the desired heading of the ship points 

towards some point a certain distance ahead on the path (40, pp. 256). 

Proportional, Integral and Derivative (PID) controllers can be applied, where a control error is 

calculated from the feedback signal and the corresponding desired state (e.g., the measured 

speed of a car and the setpoint from the driver). The calculated control input consists of a 

term that is proportional to the control error, a term that is proportional to the integral of the 

error over time, and a term that is proportional to the time differential of the control error20. In 

certain applications, adequate performance in terms of stabilization, tracking and 

disturbance rejection cannot be achieved using PID control. In such cases, non-linear control 

methods, such as gain scheduling, sliding mode control and feedback linearization may be 

applicable. Common for PID control and non-linear feedback control strategies are that a 

control signal is calculated based mainly on measurement feedback signals. 

An alternative to PID or the nonlinear feedback control methods above are model-based 

methods such as MPC. Rather than determining the control input based on the control error, 

MPC seeks to identify a set of control input to minimize a cost function over a future 

prediction horizon by utilizing a mathematical model of the system. In addition to the control 

error, the cost function may penalize other costs such as fuel consumption or time delays. 

For example, MPC applied to an adaptive cruise controller can improve the system by 

achieving acceptably small speed deviations while minimizing fuel consumption and 

passenger discomfort41. 
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2.3.5 Actuator control techniques and approaches 

In actuator control, the objective is to make each individual actuator behave according to the 

inputs from the plant control layer. To achieve this, the input from the plant control must be 

translated to control input appropriate for the actuator under control. In general, the same 

control design techniques are applicable on this level as for plant control. Control methods, 

such as the PID controller are common for applications such as, electrical motor speed 

controllers, which commonly use a proportional – integral (PI) control law42. In other 

applications, such as manipulator control with direct joint drives, nonlinearities due to joint 

interactions makes it necessary to use more advanced controller design, such as non-linear 

feedback control techniques, where the effect of the motion of other joints are be cancelled 

out43. 

2.4 Example – dynamic positioning control system 

To illustrate the elements of a control system, a generic control structure for a dynamic 

positioning (DP) system adapted from Brodtkorb44 is used. A DP control system is a control 

system that enables a maritime vessel to maintain its position and heading (station-keeping) 

by means of propellers and thrusters. In addition to station-keeping, a DP control system 

typically provides precise manoeuvring and trajectory following functionality45. The main 

control objective of the DP control system is to calculate setpoints for each active thruster 

and propeller (such as, rotational speed setpoints) such that the motion of the vessel 

corresponds to the desired motion of the vessel. The desired motion is nowadays typically 

defined by an DP operator. 

In the control system presented in Figure 4, the operator provides the guidance system with 

a desired motion. This can be location and heading setpoints or a trajectory. The function of 

the guidance system is to transform the operator’s input into reference states. The reference 

states are signals that represents the wanted values for actual controllable states of the 

vessel such as the north and east position, the surge and sway speed and the heading and 

yaw rate. The operator also determines the power management mode, which has influence 

on fuel consumption and power capacity reserve. 
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Figure 4: Block diagram of a dynamic positioning control system adapted from Brodtkorb44 
 

The DP controller calculates the commanded forces in surge, sway, and yaw. The thrust 

allocation is responsible for allocating these forces into a commanded force for each of the 

active thrusters. The process plant represents the actual vessel influenced by the generated 

thrust forces. Different states related to the motion of the vessel, such as the north and east 

position and the yaw rate, are measured using for example differential global positioning 

system (DGPS) and gyro compass. These measurements are verified and pre-processed in 

the signal processing before being fed to the state observer. The state observer is 

responsible for filtering noise and high frequency wave motion response from the 

measurements as well as reconstructing unmeasured states. This is usually achieved using 

an Extended Kalman filter or a nonlinear passive observer46,47. The power management is 

responsible for, among other things, to start and stop diesel generator sets to ensure 

sufficient amounts of available power48. 

The vessel in the example will carry out sub-sea intervention with a remotely operated 

vehicle. For this purpose, the vessel is fixed in a position by use of DP. For this operation, 

the elements of the generic control systems (cf. Section 2.1) are as below. The example will 

be expanded later in the article related to risk analyses methods, which are presented in the 

following Section. 

Perceive: Sensors, position reference system, state observer. 

Mission planning and re-planning: For this type of operation, missions are planned at an 

IMR subcontractor's office and re-planned by DP operator and offshore engineers 

immediately before mission. Typical planning tasks address ship arrival at the field, exact 

positioning, and time needs and availability for conducting the mission. 
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Behavioural planning and re-planning: Answer questions such as: Is the necessary 

position/trajectory of the vessel located within the safety zone (planned in IMR subcontractor 

office), is the weather state suitable to conduct the operation and is it expected to continue to 

be suitable throughout the mission (offshore engineers and DP operators), and will the ship 

be oriented upwind from the installation (offshore engineers and DP operators)? Select and 

enter setpoints or trajectory into guidance system (DP-operator). The power management is 

also part of the behavioural planning. 

Motion planning: Transform setpoints or trajectories into suitable reference states in 

guidance system. This partly overlaps with the DP controller. 

Plant control: Calculate commanded forces (DP controller) and allocate commanded force 

for each thruster (Thrust allocation). Ensure that an appropriate amount of available power.  

Actuator control: Control of the individual thrusters. 

3 Risk and risk analyses methods 

3.1 Definition of the concept of risk 

Risk, as previously defined in equation (1), is a combination of scenarios, consequences, 

and the associated uncertainty. Risk and its nature are discussed in detail in, e.g., Kaplan 

and Garrick49, Aven50,51, or Rausand and Haugen8. In the context of this article risk is 

understood as a combination of events that may lead to unwanted consequences, such as 

damage to people, the environment, or assets. Events may be initiated by the system itself 

or be the consequence of the environment acting on or interacting with the autonomous 

system. The occurrence of the events and their consequences are expressed through a 

measure of uncertainty. Uncertainty is often expressed as probability. The probability can be 

characterized through an underlying distribution that reflects the uncertainty. 

Risk assessment is the process to identify relevant risk contributors, analyse and evaluate 

the level of risk7. Hazard identification aims at recognizing and describing risks that are 

relevant for the operation of an organization, both positive and negative. Risk analysis is the 

process of risk comprehension and determination of the level of risk7. During risk analysis, 

risk models may be developed and used to reflect the relationship between the risk and the 

use and/or design of the system under analysis based on available information. Risk models 

are developed through risk analysis methods. Risk analysis should consider the sources of 

risk, uncertainties, likelihood, consequences, events, scenarios, and risk controls together 

with their effectiveness7. 
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The goal of risk assessment is to obtain information that supports decisions to be made with 

respect to a system’s design or operation. The results of risk assessments may lead to 

design modifications, safety requirements, or safety constraints and limits, that may be 

implemented in the design of a system or of an operation. Results may also be implemented 

by constraining, modifying, or limiting a systems behaviour in certain situations, i.e., speed 

limits or minimal distance to an object. Safety requirements describe a goal with respect to 

safety and the constraints describe how these goals can be achieved.52 

The next section summarizes commonly used risk analysis methods. The description 

focuses mainly on quantitative methods since they can potentially interface with a control 

system and give input through numerical values. It is important to note that some qualitative 

methods may provide input to (more detailed) quantitative methods6. 

3.2 Methods for risk analysis and risk level monitoring 

The methods described in this section are commonly used for risk analysis8. These methods 

are commonly used in the design phase, however, in this article their use and 

implementation in the control system is explored. 

Table 2 summarizes the main features of the methods with respect to application. The 

required expertise refers to the required knowledge of the assessors with respect to the 

method and the system. Required data refers to the amount of data that is required initially 

to conduct the analysis. Effort required refers to the amount of resources (experts and time) 

for conducting the analysis. The reference column points to the reference used to find this 

information. 

Bayesian belief networks (BBN) and decision graphs are a combination of a graphical 

representation of relationships and the quantitative relationship between the different 

influencing factors 53,54. The factors are represented through nodes and the relationships 

through directed arcs between the nodes. BBN and decision graphs are acyclic. The 

quantification relies on the Bayesian theorem (eq. 2). The tables associated with the nodes, 

so-called conditional probability tables, describe the probability of a nodes state given any 

combination of its parents states. Decision graphs are extended BBNs that include nodes 

and logic for possible decisions and the assumed effect of these decisions53. 

𝑃(𝐴|𝐵 =
𝑃(𝐵|𝐴)⋅𝑃(𝐴)

𝑃(𝐵)
 (2) 
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Table 2 Summary of selected risk analysis methods. 

Method Application Output 
type 

Quantitative measure Required 
Expertise 

Required data Effort required Reference 

Bayesian belief  
network/ decision 

graphs 

Identify hazards, 
estimate risk, decide 

between options 

Quant. Probabilities of  target 
nodes. 

High Medium Medium/ high 55 

Decision trees Compare options Quant. Best decision according 
to the circumstances. 

Moderate  Low/ medium Medium 55 

Dynamic Flow 
Graph Method 

Identify hazards, 
Analyse consequences, 

Analyse likelihood 

Qual./ 
Quant. 

Probability of  possible 
events/ outcomes. 

High High High 56,57 

Event tree 
analysis 

Analyse consequences 
Analyse likelihood 

Qual/ 
quant. 

Probability of  possible 
outcomes. 

Moderate, but 
depends on 
complexity 

Medium/ high for 
quantitative 
analysis 

Medium/ high 55 

Fault tree 

analysis 

Analyse causes 

Analyse likelihood 

Qual/ 

quant 

Probability of  the top 

event (e.g., system 
failure). 

Moderate Medium/ high for 

quantitative 
analysis 

Medium 55 

Markov models Analyse likelihood Quant. Probabilities or 
percentage of  time 

spent in the states. 

High  Medium/ high Medium 55,58 

Markov Cell to 
Cell Mapping 
Technique 

Analyse consequences, 
Analyse likelihood 

Qual./ 
Quant. 

Probabilities or 
percentage of  time 
spent in the states. 

High High High 56,57 

Petri nets Analyse risk states 

Analyse likelihood 

Qual./ 

Quant. 

Probabilities or 

percentage of  time 
spent in the states. 

Moderate, 

depends on 
complexity 

Medium/ high Medium/ high 59,60 

Risk/ safety 
indicators2 

Analyse/ represent risk 
level 

Qual./ 
Quant 

Categorial/ continuous 
evaluation of  factors 

abstracting risk.  

Medium Medium/ High, 
dependent on 

complexity 

High, dependent 
on the complexity 

and method 

61,62 

Simulations/ 
Monte Carlo 
analysis 

Analyse likelihood Quant Probability of  possible 
events/ outcomes. 

High Medium Medium/ high 55 

 
2 Risk/ safety indicators are not a risk analysis method. However, they are a set of  tools to monitor the level of  risk and sup port operational decisions. 
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Decision trees are used to model decisions from an initial decision to the resulting outcomes, 

following the path of decisions on the way55. These are especially useful if sequential 

decisions need to be taken. Probabilities for decisions and their success can be assigned 

together with utilities for the final outcomes. The decision with the highest utility should then 

be chosen. Binary decision diagrams have been developed to model a systems reliability 

during different mission phases and used as part of the mission planning process.63–65 

The Dynamic Flowgraph Method (DFM) is a multi-valued, discrete-time logic modelling 

framework to represent a cyber physical system 66. The DFM allows for modelling of 

physical, functional, and dynamic characteristics of a system, with the aim to validate and 

analyse the design with respect to reliability and safety. The method can be used to assess 

the effect of a failure on the system behaviour and for backwards reasoning, i.e., inferring 

how a certain system behaviour may be produced 67. The model is represented as a 

diagraph. The inputs, parameters within the system, and outputs to the system are 

represented as vectors and the relationships between these are modelled through 

deterministic or probabilistic relations66. 

Event tree analysis (ETA) is used to analyse the possible consequences that may arise from 

an adverse event, respectively. Event trees are analysing what other events may occur and 

what the consequences of these events will be. Corresponding diagrams facilitate the 

communication of risk with these methods. 

Fault tree analysis (FTA) uses Boolean logic to analyse how an adverse event may occur. 

Fault trees are analysed from a top down perspective trying to identify possible reasons for 

the adverse event. Events are connected through logical gates that are used to structure the 

occurrence of events. 

Markov models are used as a tool to analyse the state behaviour of a system. Markov 

models build on the same logic and theorems as Markov decision processes. The technique 

allows to model the operational states of a system and the transition to failed states. Failed 

states may be restorable to a functional state or maybe absorbing, representing a system 

state that is not restorable. The analysis can be time dependent or steady state, whereas the 

latter allows for simpler calculational methods 58. Hidden Markov models are a special form 

of first order Markov models, where the states are hidden. Their occurrence is associated 

with a probability. Hidden Markov models are considered a form of a dynamic (time-

dependent) BBN. 

The Markov Cell to Cell Mapping Technique (MCCMT) separates the system’s states in cells 

analogous to the finite element method56. The states can be process variables, system 

component condition, or system configuration. The system’s behaviour is modelled through 
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discrete-time transitions among the cells. Transitions are modelled through a set of 

equations or algorithms that represent the physical and control laws the system is subjected 

to56,57. The technique has been developed for verification and validation of model-based 

control systems56. The level of computational time of the method can be controlled through 

truncating low probability branches. 

Petri nets are bipartite graphs that also contain nodes and directional arcs. The node types 

are places and transitions. The directional arcs model local states and events60. Petri nets 

may be timed or not. Timed Petri nets can include information about temporal relationships, 

delays or dependencies. Petri nets are used in several industries for reliability and event 

modelling.60 

Risk and safety indicators are not a risk analysis method per se. Risk indicators are actually 

derived from risk models developed for risk analysis in operation61. Safety indicators is an 

umbrella term for indicators that provide insights in conditions that reflect the safety 

performance, such as, barrier quality, scenarios, or decision-making.68 Risk and safety 

indicators shall reflect the level of risk/safety of an operation and hence mirror the condition 

of the system for the current conditions to operate the system without unwanted events. 

Indicators may be process parameters, performance parameters of the system, or reflect 

organizational qualities. These indicators are system, process and company specific. Hence, 

they need to be developed purpose specific. Different methods and approaches have been 

developed to identify Risk and Safety Indicators, c.f., 61,68. 

Simulations can have different forms and aims. One of the aims may be to predict possible 

outcomes and associated likelihood through mathematical models. Models may, for 

example, include physical system models, environmental models, or reliability models of 

sub-systems and components. Monte Carlo simulation that are run several iterations and 

makes use of random sampling from underlying distributions may be used as one 

approach55. Simulations enable analysts to analyse the system behaviour in case of a failure 

or accident event and the impact of subsequent corrective actions. 

3.3 Example – dynamic positioning control system and risk level 

With respect to the aforementioned DP system, some events may contribute to an increased 

risk level, such as a failure of local thrusters or diesel generators the inability of the system 

to produce sufficient thrust force to counteract environmental forces, erroneous position 

estimates from the observer causing the DP controller to drive the ship out of position, or the 

failure of the hardware on which the thrust allocation, DP controller, the guidance system, 

the observer or signal processing software is running. Ideally, the system is designed with 

these and other failure types in mind. Monitoring risk may give input to the optimal operation 
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and control of the system (with respect to risk). Considerations when building a risk model 

for implementation with the control system should include, among others6: 

• Weather conditions 

• Potential for damage in the event of uncontrolled motion 

• Proximity to other vessels or land 

• Technical condition of the machinery 

• Status of the energy supply system 

• Operational mode 

A risk model may be used to calculate the probability of risk related events for DP operation, 

affected by the above factors, for example potential damage in the event of “uncontrolled 

motion" and failure of technical components of the machinery. For a DP system, all the 

above-mentioned risk analysis methods are relevant, depending on the objective and scope 

of the analysis. In the following, the methods are evaluated with respect to control system 

techniques. 

4 Combining control and risk analysis techniques 

4.1 Implementing risk-based information in the control system 

Figure 5 summarizes the possible identified ways to implement the risk methods with the 

control techniques. This is an extension of Figure 2. It highlights how the risk analysis 

methods, risk indicators, or simulations may give input to the elements of the control system. 

The risk models, simulation, and indicators will use the information collected in the 

perception element, since this is the element that collects and prepares information. 

In general, four possibilities are identified regarding how risk models, simulations and risk 

indicators may be used. Firstly, information may be used directly in the elements of the 

control system, for example, as variable in a decision or optimization algorithm. Secondly, 

the information may be used to modify algorithms, through adapting allowable system states 

or modifying the systems behavioural and safety constraints. Thirdly, the risk analysis 

models may be used to identify or determine the state of the system, which is then fed 

forward in the control algorithms. Lastly, information assessed through risk models may 

inform environmental maps that are used for path planning. The following sub-sections 

describe possible application in more detail.  
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Risk 
information

Input to path choice, environmental map, 
system state, decisions, 

parametrization, optimization

Input to path choice, decisions,
parametrization, optimization

Processed/ estimated data

Input from motion planning
to plant control

Control 
feedback

Processed/
Estimated 

data

Data from sensors/ external agents

Control input to actuators

Perceive

Plan and replan 
mission

Plant Control

Risk model(s)/ 
Risk indicators

Processed/ estimated data, uncertainties

Safety constraints

Simulation and 
consequence 

analysis

Choice or 
modification of 

Risk related 
processes 

covered in this 
article

Elements of 
the control 

system

Input to system state, decisions, 
parametrization, optimization

Input to path choice, 
decisions, parametrization, optimization

Choice or 
modification of 

 

Figure 5 Overview of possible combinations of control techniques and risk analysis techniques 
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Table 3 Mapping risk analysis methods to the control techniques, which are mainly related to planning and re-planning. Abbreviations: BBN – Bayesian Belief Networks, DFM – Dynamic 
Flowgraph Methodology, FSM – Finite State Machines, MCCMT – Markov Cell to Cell Mapping Technique. 

Control 
Technique 

Risk analysis methods 

BBN/ 
decision 
graphs 

Decision 

trees 

DFM 
Event tree 

analysis 

Fault tree 

analysis 

Markov 

models 

MCCMT 
Petri nets 

Risk/ 
safety 
indicators 

Simulations/ 
Monte Carlo 
analysis 

Artificial 
potential 
fields 

Inf luence the 
potential of  
the f ields. 

No. 
Inf luence 
the potential 
of  the f ields. 

No. 
Inf luence the 
potential of  the 
f ields. 

Inf luence 
the potential 
of  the f ields. 

Inf luence the 
potential of  
the f ields. 

Inf luence 
the potential 
of  the f ields. 

Inf luence 
the potential 
of  the f ields. 

Inf luence the 

potential of  the 
f ields, 
simulate 

trajectories. 

FSM 

Determine 

the state of  
the system 
probabilistic. 

Give input to 
decisions. 

Determine the 
next best 
state to 

achieve. Help 
to determine 
the current 

state. 

Determine 

the risk 
level of  the 
possible 

states, 
determine 
the current 

state, use 
as decision 
criteria for 

state 
transition.  

Determine 
most likely 
Measureme

nt of  being in 
the current 
or a future 

state. 

Identify the 

current state, 
determine 
possible future 

(accidental) 
states, or state 
transitions 

probabilisticall
y. 

Very similar 

to FSM, 
may be 
developed 

in parallel. 
Determine 
future state 

transitions 
or 
determine 

the current 
state. 

Very similar 
to FSM, may 
be 

developed in 
parallel. 
Determine 

future state 
transitions or 
determine 

the current 
state. 

Very similar 
to FSM, 
may be 

developed 
in parallel. 
Determine 

future 
transitions 
of  the 

states, 
determine 
the current 

state. 

Determine 

the risk 
level of  the 
possible 

states, 
determine 
the current 

state, use 
as decision 
criteria for 

state 
transition.  

Simulate to 
choose the 
order of  

states, or to 
determine if  a 
state transition 

is necessary 

Graph 
search 
algorithms 

Inf luence the 

length or 
cost of  a 
path, may 

give input to 
a risk-aware 
map of  the 

environment. 

Determine 

paths to follow 
based on risk 
consideration

s/ decisions. 

Determine 
the risk 
level/ future 

system 
states to 
inform path 

choice. 

Determine 
the risk 

level/ future 
system 
states to 

inform path 
choice. 

Determine the 
risk level to 

inform path 
choice. 

Determine 
the risk 

level/ future 
system 
states to 

inform path 
choice. 

Determine 
the risk 
level/ future 

system 
states to 
inform path 

choice. 

Determine 
the risk 

level/ future 
system 
states to 

inform path 
choice. 

Inf luence 
the length 
or cost of  a 

path, may 
give input to 
a risk-aware 

map of  the 
environment
. 

Simulation of  

paths to 
assess the 
risk-based 

cost. 

Hybrid 
control 

As part of  

the decision 
process to 
switch 

behaviour or 
to inform the 
switching 

criterion. Fits 
well with the 

As part of  the 
decision 

process to 
switch 
behaviour. 

Analyse the 
outcome of  

switching 
and use this 
information 

in the 
process of  
switching. 

Analyse the 
outcome of  

switching 
and use this 
information 

in the 
process of  
switching. 

As part of  the 
decision 

process to 
switch 
behaviour. 

As part of  

the decision 
process to 
switch 

behaviour 
or to inform 
the 

switching 
criterion. 

As part of  

the decision 
process to 
switch 

behaviour or 
to inform the 
switching 

criterion. Fits 
well with the 

As part of  

the decision 
process to 
switch 

behaviour 
or to inform 
the 

switching 
criterion. 

Values 

produced by 
the 
indicators 

may be 
used as 
switching 

criterion, or 
to inf luence 

Simulations of  
future 

development 
to inform the 
switching 

criterion or 
trigger 
switching. 
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Control 
Technique 

Risk analysis methods 

BBN/ 
decision 
graphs 

Decision 

trees 

DFM 
Event tree 

analysis 

Fault tree 

analysis 

Markov 

models 

MCCMT 
Petri nets 

Risk/ 
safety 
indicators 

Simulations/ 
Monte Carlo 
analysis 

property of  

hybrid 
systems that 
state 

measuremen
t are 
uncertain. 

property of  

hybrid 
systems that 
state 

measureme
nt are 
uncertain. 

the 

switching 
thresholds. 

Mixed/ 
Partial 
Markov 

decision 
processes 

BBN/ 
decision 
graphs have 

a similar 
structure. 
Inform 

decisions 
and models. 

Both are 
decision 

making 
processes, no 
combination 

possible. 

Input to the 
decision, 
based on 

the current 
risk level 

Asses the 
measureme
nt of  choices 

and use for 
optimization. 

Input to the 
decision, 
based on the 

current risk 
level 

Use the 

states to 
inform the 
Markov 

decision 
process. 
Both are in 

the same 
f ramework 
implying 

ahigh 
compatibility
. 

Use the 
states to 

inform the 
Markov 
decision 

process. 
Both are in 
the same 

f ramework 
implying a 
high 

compatibility. 

Use the 

states to 
inform the 
Markov 

decision 
process. 
Both are in 

the same 
f ramework 
implying a 

high 
compatibility
. 

Input to the 
decision, 
based on 

the current 
risk level 

Input to 
parametrizatio
n or input to 

decision 
process. 

Probabilisti

c road 
maps 

Inf luence the 
length or 

cost of  a 
path, may 
give input to 

a risk-aware 
map of  the 
environment. 

Inf luence the 
length or cost 
of  a path in 

the 
connection 
phase of  the 

algorithm. 

Identify or 
predict the 

state of  the 
system to 
connect 

points or 
choose 
paths. 

No. No. 

Identify or 
predict the 

state of  the 
system to 
connect 

points or 
choose 
paths. 

Identify or 
predict the 

state of  the 
system to 
connect 

points or 
choose 
paths. 

Identify or 
predict the 

state of  the 
system to 
connect 

points or 
choose 
paths. 

Inf luence 

the length 
or cost of  a 
path, may 

give input to 
a risk-aware 
map of  the 

environment
. 

Identify or 
predict the 
state of  the 

system to 
connect points 
or choose 

paths. 

Rapid-

exploring 
random 
trees 

Inf luence the 
length or 
cost of  a 

path, may 
give input to 
a risk-aware 

map of  the 
environment. 

No. 

Inf luence 
the length 

or cost of  a 
path, may 
give input to 

a risk-aware 
map of  the 
environment

. 

Assess the 
measureme
nt of  

following a 
certain path 
that gives 

input to the 
length. 

Inf luence the 

length or cost 
of  a path, may 
give input to a 

risk-aware 
map of  the 
environment. 

Inf luence 
the length 

or cost of  a 
path, may 
give input to 

a risk-aware 
map of  the 
environment

. 

Inf luence the 
length or 
cost of  a 

path, may 
give input to 
a risk-aware 

map of  the 
environment. 

Inf luence 
the length 

or cost of  a 
path, may 
give input to 

a risk-aware 
map of  the 
environment

. 

Inf luence 
the length 

or cost of  a 
path, may 
give input to 

a risk-aware 
map of  the 
environment

. 

Simulate 

several paths 
and select the 
optimal path. 
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Control 
Technique 

Risk analysis methods 

BBN/ 
decision 
graphs 

Decision 

trees 

DFM 
Event tree 

analysis 

Fault tree 

analysis 

Markov 

models 

MCCMT 
Petri nets 

Risk/ 
safety 
indicators 

Simulations/ 
Monte Carlo 
analysis 

Reachabilit
y guidance/ 
analysis 

Determine 
the state of  
the system 

probabilistic. 
Give input to 
decisions. 

Determine the 

optimal state 
to be 
achieved in 

the next time 
step. Help to 
determine the 

current state. 

Determine 

the risk 
level/ future 
system 

states to 
inform 
action 

choice. 

Determine 
most likely 

measureme
nt of  being in 
the current 

or a future 
state. 

Identify the 
current state, 

determine 
possible future 
(accidental) 

states, or state 
transitions. 

Determine 

the risk 
level/ future 
system 

states to 
inform 
action 

choice. 

Determine 
the risk 

level/ future 
system 
states to 

inform action 
choice. 

Determine 

the risk 
level/ future 
system 

states to 
inform 
action 

choice. 

Determine 

the risk 
level/ 
system 

state to 
inform 
action 

choice. 

Simulation of  

paths to 
assess the 
risk-based 

cost. 

Signal/ 
Linear 
temporal 

logic 

Input to 
constraints 
based on the 

system 
state. Use as 
input 

parameters, 
or 
assessment 

of  decisions. 

Choose 
between 

dif ferent 
constraints to 
be used, or 

input to 
decision 
making. 

Input to 
constraints 
based on 

the system 
state. Use 
as input 

parameters. 

Input to 
constraints, 

use of  risk 
as Analyse 
dif ferent 

outcomes 
and set 
constraints. 

Use the risk 

level as input 
parameter. 

Input to 
constraints 
based on 

the system 
state. Use 
as input 

parameters. 

Input to 
constraints 
based on the 

system 
state. Use 
as input 

parameters. 

Input to 
constraints 
based on 

the system 
state. Use 
as input 

parameters. 

Input to 
constraints 
based on 

the system 
state. Use 
as input 

parameters. 

Choose 
constraints or 
predict output 

of  the system. 

Velocity 
obstacles 

Input to the 
constraints 
based on 

measuremen
t and 
systems 

state. 

Input to the 
choice of  
allowable 

velocities. 

Input to 
constraints 
based on 

the system 
state. Use 
as input 

parameters. 

No.  

Use the risk 

level as input 
parameter. 

Input to 
constraints 
based on 

the system 
state. Use 
as input 

parameters. 

Input to 
constraints 
based on the 

system 
state. Use 
as input 

parameters. 

Input to 
constraints 
based on 

the system 
state. Use 
as input 

parameters. 

Input to 
constraints 
based on 

the system 
state. Use 
as input 

parameters. 

Choose 

optimal path/ 
parameters. 

Voronoi 
diagrams 

Give input to 

a risk-aware 
map of  the 
environment. 

Input to path 
choice. 

Input to path 
choice.  

Give input 
to a risk-
aware map 

of  the 
environment
. Input to 

path choice. 

No. 
Input to path 
choice. 

Give input 
to a risk-
aware map 

of  the 
environment
. Input to 

path choice. 

Give input to 

a risk-aware 
map of  the 
environment. 

Input to path 
choice. 

Give input 
to a risk-
aware map 

of  the 
environment
. Input to 

path choice. 

Give input 
to a risk-
aware map 

of  the 
environment
. Input to 

path choice. 

Simulations 
may be used 
to identify the 

best path of  a 
given set of  
Input to path 

choice. 
 



 

28 

4.1.1 Plan and re-plan mission 

Table 3 summarizes the potential implementation of the risk analysis methods with the 

control techniques that are mainly related to the planning and re-planning subsystem of the 

control system. 

Artificial potential fields search for a minimal gradient path and for a minimal cost. Almost all 

risk models may be employed in combination with Artificial Potential fields. The calculated 

risk level may be used to influence the artificial potential that represents the environment and 

obstacles therein. Different system measurements and states may give input to the 

respective risk models and their evaluation. Simulations may be also used to test the 

identified paths and assist in choosing low risk path options. ETA and decision trees are not 

deemed suitable since no information that could inform the artificial potential fields can be 

drawn from these methods. 

For FSM the risk models can give input to the state assessment of the system at present or 

in the future. Furthermore, some risk models can contribute to the decision-making process 

of FSM, to assess whether the state of the system should be changed. This could be 

through using the risk information assessed in the models or use the decision output from, 

e.g., the decision tree or the BBN. 

Graph Search algorithms may use risk information in two ways. Firstly, the risk information 

may be incorporated in the map of the environment, increasing the cost for areas that are 

expected to exhibit a higher risk level. This may then in the optimization of the path be 

considered as a longer or more costly path. This combination is similarly presented in 

Pereira et al.9,10 and Lefebvre et al.11. Probabilistic road maps could be similarly informed by 

the risk model information to create risk-aware road maps. The assessment of the optimal 

path uses graph search methods. Secondly, the risk models may be used to make decisions 

on which path to choose, by using the state and risk information built in the models to make 

decisions. 

Hybrid Control may use the risk model output in two ways. Firstly, BBN/ Decision Graphs 

and Decision Trees may be used to identify risk-based switching of the algorithms. Secondly 

and in general, all the risk models may be used to assess the current or the future risk level. 

This information may be used to inform the switching process, e.g., as decision parameter or 

as modifier of decision criteria. 

Mixed or Partial Markov decision processes are very closely related to Markov risk models, 

MCCMT, and Petri nets. These are state-based assessment methods. Hence, the latter two 

may be used to directly incorporate risk-based reasoning in the mixed or partial Markov 
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decision processes. In general, all the risk models may be interfaced with Mixed or Partial 

Markov decision processes, providing risk information to the decision process. 

Like graph search algorithms, RRT may use information from the risk analysis methods to 

modify the length or cost of the paths. Hence the optimal, shortest path will be minimizing 

risk over the path length. Since decision trees provide decisions the implementation in RRT 

seems not directly possible, since no decisions are needed as input for the RRT. 

Reachability guidance/ analysis may be combined with risk models in several ways. Firstly, 

risk may be considered a state of the system that needs to be controlled. Secondly, the risk 

may be used as optimization criteria, together with other parameters to find an optimal path. 

Thirdly, risk-based information may be used to define zones that the system should not enter 

and the size of these. Therefore, may all types of risk models be used as input. Especially 

state-based models, such as, Markov models, MCCMT, or petri nets, may be suitable for all 

three possibilities. 

STL and LTL set requirements to the system to ensure operational success. Hence, risk 

models may be used to give input to these requirements, e.g., modify them depending on 

the risk level. Another combination could be to use risk as a parameter to be constrained 

and ensured by LTL. Since STL aims at the sensor input, risk is not a measurable sensor 

parameter to be constrained. 

For velocity obstacles, risk models may give input to the determination of collision 

candidates, e.g., by considering the current systems ability to manoeuvre or determine its 

and the obstacle’s position. In addition, risk may be incorporated as part of the determination 

of safe velocities, by modifying the margin of not allowable speeds in proportion with the risk 

level. ETA is not deemed suitable for velocity obstacles since its consequence assessment 

will not provide information on allowable speed. 

Voronoi diagrams are used to determine the largest optimal distance between several 

obstacles. Risk information may be used to determine the minimal required distance to the 

objects, i.e., modify the boundaries based on risk information. If several feasible paths are 

identified the risk models may be used to identify or choose the path with lowest risk. Only 

using ETA as input to Voronoi diagrams is not deemed suitable. 

4.1.2 Plant control 

Table 4 summarizes the potential implementation of the risk analysis methods with the 

control techniques that are mainly related to the plant control subsystem of the control 

system. Control approaches, such as PID controllers, may use risk model output to be 

tuned. This tuning may, for example, increase the rate of acceleration in the face of high risk, 
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to be able to handle a certain situation. This may then be not the optimal point with respect 

to energy consumption or other parameters. With such an approach of dynamic tuning, it is 

important that the tuning is bound to the stable regions of operation of the controller. Most 

risk models that provide information on the state of the system or its future state may be 

used. ETA and FTA is deemed unfit, since the information gained from the models is a 

quantitative measure of failure or of the associated consequences. This does not provide 

information or input to possible measures to be taken. 

For MPC all types of risk techniques may be used to give risk input. The risk information may 

be used in two ways. Firstly, the it may be used as a parameter in the optimization problem, 

minimizing or optimizing the risk with respect to other operational parameters. Secondly risk 

may be used as a constraint, meaning that certain risk levels are not permittable. 

Table 4 Mapping of the control techniques that are mainly related to plant control to the risk analysis methods. 

Risk methods Control method 

Proportional, integral 
derivative control or non-

linear control 

Model predictive control 

BBN/ decision 
graphs 

Based on the situation adapt 
and optimize the 
parametrization 

Use risk as parameter for optimization, i.e., 
in the optimization function or as a 
constraint.  

Decision trees Choose between dif ferent 

parametrizations of  the 
controllers 

Use risk as parameter for optimization, i.e., 

as a constraint. 

Dynamic 
Flowgraph Method 

Choose between dif ferent 
parametrizations of  the 

controllers 

Use risk as parameter for optimization, i.e., 
in the optimization function or as a 

constraint.  

ETA No. Use risk as parameter for optimization, i.e., 
in the optimization function or as a 
constraint.  

FTA No. Use risk as parameter for optimization, i.e., 

in the optimization function or as a 
constraint.  

Markov models Choose between dif ferent 
parametrizations of  the 

controllers 

Use risk as parameter for optimization, i.e., 
in the optimization function or as a 

constraint.  

Markov Cell to Cell 
Mapping 
Technique 

Choose between dif ferent 
parametrizations of  the 
controllers 

Use risk as parameter for optimization, i.e., 
in the optimization function or as a 
constraint.  

Petri nets Choose between dif ferent 

parametrizations of  the 
controllers 

Use risk as parameter for optimization, i.e., 

in the optimization function or as a 
constraint.  

Risk/ safety 
indicators 

Choose between dif ferent 
parametrizations of  the 

controllers 

Use risk as parameter for optimization, i.e., 
in the optimization function or as a 

constraint.  

Simulations/ 
Monte Carlo 
analysis 

Simulate the system and 
choose the optimal 
controller 

Simulate the system and choose the optimal 
controller. Use risk as parameter for 
optimization, i.e., in the optimization function 

or as a constraint 
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4.2 Example – dynamic positioning control system with risk information 

This section discusses how control techniques may use risk models and risk analysis 

methods in a hybrid system controller. The purpose of the example is to illustrate and 

discuss how one of the combinations may be realized. A full development and 

implementation of the case study would exceed the scope of this article and is not 

attempted. 

The example described in Section 2.4 is used as basis for further exemplification. The DP 

control system is modified with a risk-based power management controller. The controller 

provides automatic switching between the economy mode and the high-power mode. These 

controllers are today based on static power reserve requirements. That means that 

independent of the situation a certain power reserve should be available to serve suddenly 

rising power demands. These limits are defined through the maximum allowable load69. The 

novel aspect of this case study is the implementation of a risk model to determine safe and 

efficient power reserves 

For the case study it is assumed that there are two power management modes available. In 

the high-power reserve mode, more generators are active, to provide additional power 

availability for the thrusters, when needed. Generators are operated with a low load, which is 

not optimal with respect to fuel efficiency. The economy mode is operated with fewer 

generators, closer to the optimal operation point. However, in case the thrusters require 

more power, only a comparably lower power margin is available. Hence, in a sudden high 

demand scenario the ship may experience a blackout, due to overload and hence drift off 

position70. In this case study example, control of the power reserve relies on the risk level 

and the load level. This is described in the remainder of this section. 

The case study ship is operating in the proximity of an offshore oil and gas installation, to 

carry out subsea maintenance. The scenario is depicted in Figure 6. In DP operation, safety 

is of high importance. A loss of power, due to insufficient power reserves is the main hazard. 

As a consequence, loss of position and collision with the offshore installations may result. 

Such a collision may lead to severe accidents. Hence, risk indicators are proposed for 

determining the allowable power reserve. 
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Figure 6 Scenario assumed in the case study. 
 

Risk indicators that can be employed are listed in Table 5. The risk indicators were 

developed based on the information described in Section 3.3, in this section and in the 

articles by Rokseth et al.48,71. Risk indicators should be linked to a risk model, e.g., a BBN72. 

The development process of the risk indicators is not further detailed as this is outside the 

scope of this article. The purpose here is illustration. 

The changes of the risk level with respect to time may be described using indicators 1 – 5. 

This may be used in the performance monitoring of the hybrid control law evaluating which 

algorithm to use in the power management system the high-power reserve mode, or the 

economy mode. Indicators 1 – 5 would form the flow set of the hybrid controller. Indicator 5 

(available power) is part of the jump set of the hybrid controller since it will create a discrete 

response to the change of the controller. Permissible states of the flow set are defined in the 

flow map by the operational limitations set by the system and physical limitations. 
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Table 5 Indicators suggested for the case study. 

ID Indicator Measurement source Description 
1 Distance to 

installation 
GPS signal and digital 
chart 

Distance to the installation, measured 
from the closest point of the vessel to the 
closest point of the installation 

2 Wind direction 
with respect to 
installation 

Measurements on 
board, estimation 
through estimators 
(e.g., 73) 

The wind direction with respect to the 
location of ship and offshore installation, 
three cases may be differentiated 
(towards installation, passing the 
installation, away from the installation, c.f., 
Figure 6). 

3 Wind speed Wind measurements 
on board, estimation 
through estimators 
(e.g., 73) 

The wind speed that is met by the ship. 

4 Sea state Estimation through sea 
state estimates, (e.g., 
74) 

The wave height and frequency acting on 
the ship. 

5 Available 
power 

Directly from the power 
system 

Percental usage of the current available 
power for the DP system (c.f., 70) 

 

Considerations regarding the jump map, indicating to change the controller based on the 

jump set, are described briefly. In case the forces acting on the vessel are low less 

generators are needed. The reserve on available power can be lower. In case, the wind 

direction would point towards the installation a larger reserve is needed. If the sea state and 

wind are strong, even more available power is needed and hence more generators are 

needed. More detailed considerations on the jump map are also presented in Thorat and 

Skjetne73 with respect to the dynamics of the system. The presented risk indicators are 

already used by human operators when deciding whether to change the setpoint of the DP 

operation further away from the installation, or to abort mission. The suggested approach 

employs these indicators to automatically switch the operation mode. 

Another approach to include risk information for the current example could be to determine 

the risk with respect to blackouts and drifting in the installation/ off position. This model could 

use different states and be fed by real-time measurements of the system and environment. 

However, the development of such a model would exceed the scope of this article. In 

addition, several of the proposed risk analysis methods are of limited use for assessing the 

risk level including all system dynamics, feedback loops and interaction hazards75. 

5 Discussion and conclusion 

This article addresses the integration of risk analysis and models in the control system of 

autonomous and highly automated systems for risk level evaluation during operation. Four 

main areas of application of risk models in control systems are identified. Firstly, models can 
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give direct input to the mission planning and behavioural planning through risk-based 

decisions. Models that are mainly relevant for this purpose are BBN, and decision trees. 

Secondly, risk derived from the risk models may be used as a decision or optimization 

criteria. All risk model types can give input to the different control techniques. Likewise, all 

types of control techniques may benefit from risk model input in this way. Thirdly, the risk 

models output may be used as constraint or modifying a constraint in the control techniques. 

Lastly, maps or environmental representations that incorporate risk information area useful 

for path planning methods, such as, graph search, artificial potential fields, probabilistic 

roadmaps, or Voronoi diagrams. 

The few publications that take risk into account for decision-making and planning in the 

control system, use risk information mainly in the mission or path planning tasks of a system. 

Path planning often overlaps with behavioural planning and decisions. Currently, risk 

considerations on the plant control level are not addressed in the literature. In addition, the 

literature, covers the incorporation of the risk methods with the control techniques just too a 

little extent. 

This article presents a starting point to systematically include risk analysis methods in the 

control system, to improve safety of operation and support decision-making. Due to the 

complexity of the material and the amount of available control techniques and risk models, 

only the most prominent methods were described. This description is also limited in detail. 

The identified possible relationships and considerations need to be explored further in more 

detail. A challenge, limiting this work, with existing risk analysis methods is that their results 

may be difficult to adapt to be used as input. 

A challenge for use of risk models within a control system is arising from the risk assessment 

methods mainly being static and the nature of the model development. Hazard identification 

and risk analysis often include the use of experts and brainstorming assessments, including 

predefined taxonomies or checklists. Hence the coverage of hazardous events may be 

limited. Qualitative methods, such as System-Theoretic Process Analysis, or the Functional 

Resonance Assessment Methodology need input from brainstorming and are not automated. 

Hence, these have not been discussed in detail in this article. 

Risk analysis often use average values, which is sufficient for decision-making in the design 

phase. However, for operations real-time information is needed and the dynamics of the 

system need to be reflected in the models. Another challenge is related to risk evaluation 

and acceptable risk. These need to be defined and considered in the control system design. 

A case study on a power system mode controller on board of an offshore vessel 

demonstrates the application of the concept of implementing risk considerations in the 
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control system. The controller is part of the behavioural planning and re-planning layer and 

decides between an economy mode or a high-power mode. Such a controller may be part of 

an autonomous ship. A hybrid controller is outlined that switches the available number of 

generators based on the risk level of the current operation, leading to more energy efficient 

operation. The example is not fully detailed; however, it is demonstrated and discusses how 

risk methods and models may be used to improve decision processes and to create risk-

aware control systems. 

5.1 Future work 

Further work includes expanding the findings presented in this article. Implementation of risk 

models in the control system will provide risk aware system with enhanced decision-making 

capabilities. Hence, the identified opportunities need to be tested to support these claims.  
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