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Abstract

Higher education programmes can be modelled as graphs were
nodes may represent courses, subjects, topics and sub-topics within
a program, and where the edges represent potential relations among
them. Such graphs may be used to represent intended learning paths
through constructivistic interpretations like ”to learn A one needs to
know first B”, where A and B may be content units from the pro-
grams with different levels of granularity. These graphs are, however,
designed by hand and are subject to personal interpretation. In this
thesis we explore how to translate abstract connections of learning out-
comes expressed through what are called Course Flow Matrices into
more detailed connections using a graph-theoretical approach.

In detail, five methods that translate abstract connections are con-
sidered. The methods are analysed using graph theoretical tools such
as centrality and connectivity. The centrality of the graph is evaluated
with four different metrics, namely degree, PageRank, Katz and close-
ness centrality. The metrics are used to determine the importance,
influence and closeness of the subjects in a course. The connectivity
of a graph can identify if the translation result in inconsistencies or
overlap in the programme.

This thesis investigates the benefits and drawbacks of using the
individual methods for translating abstract connections, in terms of
how well the connection represent the actual knowledge flow and how
the graph properties change for the subjects.

By comparing the different methods on data from cybernetics-
related programs, it is discovered that the method that connect to
the nodes with the highest indegree yield the best results, with best
an opportune metric that combines pedagogical interpretability with
readability of the end results. If however one wants to maximize pre-
serving some specific mathematical properties of the graphs possessed
before the translation process (e.g., some specific type of connectivity),
then the recommended method is that of connecting to nodes with no
outgoing edges.



Sammendrag

Et høyere utdanningsprogram kan bli modellert som en graf hvor noder kan
representere fag, emner, teamer eller sub-temaer innen et program, og hvor
kantene representerer potensielle relasjoner mellom dem. Slike grafer kan
bli brukt til å representere ment lærings flyt gjennom konstruktivistiske
tolkninger som ”for å lære A trenger man å kunne B først”, hvor A og B
kan være en form for kunnskap fra programmer med forskjellig granulitet.
Disse grafene er, derimot, designet for hånd og kan bli tolket personlig. I
denne avhandlingen utforsker vi hvordan en kan tolke en abstrakt forbindelse
av lærings flyt, uttrykt gjennom det som vi kaller Course Flow Matrices til
mer detaljerte forbindindelser ved bruk av graf-teoretisk tilnærming.

I detalj, fem metoder som omformer en abstrakt forbindelse blir vurdert.
Metodene blir analysert ved hjelp av graf teoretiske verktøy som sentralitet
og konnektivitet. Sentraliteten av en graf blir evaluert ved hjelp av fire
målinger, nemlig degree, PageRank, Katz og closeness. Disse målingene kan
bli brukt til å bestemme viktigheten, innflytelsen og nærheten til et emne i ett
fag. Konnektiviteten til en graf kan hjelpe til å identifisere om omformingen
resulterer i inkonsekvenser eller overlapp i programmet.

Denne avhandlingen undersøker fordelene og ulempene ved de individu-
elle metodene for omforminger av abstrakte forbindelser, ved å se på hvor
bra forbindelsene representerer den faktiske kunnskapsflyten og hvordan graf
atributtene forandrer seg for hvert emne.

Ved å sammenligne de ulike metodene på data fra kybernetiske program,
blir det konkludert med at metoden som lager forbindelser til noder med
høyest indegree gir det beste resultatet, med en begrunnelse i både peda-
gogisk tolkningsevne og forståelse av sluttresultatet. Hvis, til formodning,
en vil maksimere det å bevare noen matematiske attributer til grafen før
omformings prosessen (i.e noen form for konnektivitet), så er den anbefalte
metoden å lage forbindelser til noder som ikke har en kant utover.
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1 Introduction

Graph theory is the study of graphs and the concept’s origin date back to
1741. Graphs and graph theory can be a useful tool to help visualize and
interpret how systems are connected. A graph can be used to model objects
and the relations between them. The application of graphs include physical,
theoretical, sociological and information systems. A common use of graph
representation is within social media, where users can be modelled as nodes
and the relation between them as edges [8]. The current application of
graph theory within education and curriculum is however limited. In higher
education, citations in scientific papers can be modelled as a network and
represented as a graph [9].

Higher education programmes consist of a set of courses spread through-
out semesters. Courses taught later on in a programme usually rely on
knowledge obtained in earlier courses. The education programme can be
represented as a directed graph where nodes represent a concept, topic or
a course and the edge between them indicate the knowledge flow. A quan-
titative analysis of curriculum coherence has been conducted by Varagnolo
et al. [11]. Such an analysis can help uncover inconsistencies, overlap and
discrepancies in the education programme [16].

The different courses within a programme can be modelled as individual
graphs were nodes represent a concept, topic or fact. The knowledge flow
within the course is usually clear as the teacher knows what is taught and how
it relates. A study conducted by the supervisors has shown that the student’s
opinion and teacher’s opinion about a course may differ [11]. The knowledge
flow between the courses may, however, not be as clear. Teachers may have
different opinions on how the subjects between their courses relate. Is there
a way to find the connections between the courses using graph theory and
how does it relate to real world? This thesis seeks to answer that question.

1.1 Problem Description

A study programme in higher education consist of a set of courses which
cover a range of different topics. Any programme can be described as a
set of Knowledge Components (KCs) and the relation between them. A
KC is defined as ”an acquired unit of cognitive function or structure that
can be inferred from performance on a set of related tasks” [12]. In practise
it translates to anything a student can learn, which can be in the form of
practise, facts, concepts, subjects and procedures.

Most courses in a study programme have prerequisite knowledge required
for the course. Another interpretation is that KCs are needed in order to
learn other KCs. A course can in this way be represented as a directed
graph of KCs. An approach for modelling a programme is using Course
Flow Matrices (CFMs) as denoted by Wengle, Knorn and Varagnolo [16].
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A CFM is built using various information from the teacher, which includes
a course summary that lists the developed and required KCs, the Intended
Learning Outcome (ILOs) and Teaching and Learning Activities (TLAs).
The teacher also provides a Knowledge Component Matrix (KCM), which
describes the relation between the developed KCs and the prerequisite KCs.
Lastly, information about the developed KCs indicating which knowledge
level student’s should have for each KC [16]. A single course is typically
represented by one CFM (or two complementing ones, as described in Section
3.4).

There exist several challenges regarding modelling higher education pro-
grammes. For an entire study programme there are tens of CFMs and hun-
dreds if not thousands of KCs. Different teachers may construct the CFMs
for different courses in the study program but how well does the knowledge
flow translate between them? The different KCs within the CFMs are given
on different forms of granularity or detail. Consider the two courses Math-
ematics and Chemistry, where Mathematics is a prerequisite for Chemistry.
The Chemistry teacher may not know exactly which concepts are taught
within Mathematics but knows that some of them are needed. Both courses
consist of several KCs, but is every KC in Mathematics a prerequisite for
Chemistry? Perhaps only half of the KCs in Mathematics are needed in
order to learn Chemistry.

Assume then that the Chemistry teacher says in her CFM that her course
needs ’Mathematics’. This means that the students will have a rather coarse
representation of what they actually need to know. Assume moreover that
the database where a university stores all its CFMs there exist the CFM that
details the course ’Mathematics’. This thesis investigates different methods
to expand the CFM of Chemistry by adding to it, in an intelligent way, the
CFM of Mathematics, by finding a purely data driven way to derive the
connections among the KCs within Mathematics and the KCs of Chemistry.
In other words, the thesis’ goal is to help students get a higher detail of which
KCs they need to learn by automatically combining and merging CFMs given
by different teachers that may not have even ever met and discussed about
their courses.

We remark from the beginning that an important challenge arises due to
the fact that CFMs and knowledge flow are subject to personal interpreta-
tion. As a consequence, a potential drawback of modelling study programmes
using CFMs, is that the CFMs have to be constructed by hand. A course
may be taught by several teachers and if they all were to construct a CFM
of the course, the matrices may not be equal. Different teachers can have a
different view on the course content and how the subjects taught within it re-
lates. The student’s opinions might also differ from the teachers as shown by
Varagnolo et al. [14] [11]. These issues are not tackled in this thesis and need
to be addressed in the future. In other words, this thesis shall be intended
as a first step towards a computer assisted strategy for merging CFMs that
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may, if desired by the users, account also for personal opinions.

1.2 The role of this thesis from a graphical perspective

As mentioned above, this thesis investigates different methods of interpreting
and fusing teachers opinions about learning in higher education. The CFMs
provided by teachers may indicate a connection between KCs from different
courses but not necessarily to what extent.

Figure 1: An example figure of how KCs from different courses connect.
The graph on the left show that ‘Mathematics’ is needed in order to learn
‘Controllability’ and ‘Kalman filter’. The figure on the right show some of
the subjects taught in the ‘Mathematics’ course.

The objective of the thesis is to investigate how to translate more abstract
KCs into smaller and more defined KCs. The smaller KCs can be thought
of as a community of categorized KCs described only by an abstract KC.
To make a practical example, consider figure 1, that shows that the KC
‘Mathematics’ can be translated into the smaller KCs ‘Matrix addition’,
‘Eigenvalues’ and ‘Gaussian Elimination’. The CFMs are used to model the
courses as graphs where nodes represent KCs and the dependencies between
the KCs are represented by directed edges. Because the application is made
for knowledge networks in higher education, the questions we seek to answer
are

• how well do the translated KCs reflect the course dependencies?

• how do the graph properties change with the different algorithms?

• which graph properties should the translation be based on?

We are trying to answer these question to see if there is a logical way
to connect KCs given an abstract connection. In detail, we want to look
at different graph theory concepts such as centrality and connectivity to
determine what happens to the graph and what it means from a pedagogical
point of view. If the graph becomes disconnected it means that there are KCs
that have no connection. On the other hand, if the graph becomes strongly
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connected it indicates that there are inconsistencies in the programme. The
centrality indexes indicate what happens to the individual KCs. For instance,
if the Closeness centrality index decreases, it would mean that the KC is less
close to the other KCs. If the PageRank centrality decrease it would mean
the KC is less influential than it was before. Looking at different centrality
metrics and connectivity we want to learn which algorithms provide the most
useful result and see which properties the translation should be based upon.

1.3 FACE-IT

Fostering Awareness on program Contents in higher Education using IT tools
(FACE-IT) is a project funded by Erasmus and Strategic Partnership. The
main focus of the project is to quickly and efficiently get and maintain holistic
maps of program contents. Such a tool would be of practical use to teachers,
program boards and students alike, since they often lack a holistic view-
point. The holistic maps are represented as weighted directed graphs which
are called Domain Model Graphs (DMGs), were nodes represent Knowl-
edge Components (KCs) and the relation between them. A course-wide
DMG (CW-DMG) depicts the knowledge flow through a course and is con-
structed by the teacher. All the teachers within a study program may com-
bine their CW-DMG and together form a program-wide DMG (PW-DMG).
For a study program it usually follows that some courses are prerequisites
for other courses later on in the program and thus the PW-DMG depicts a
knowledge flow the students would usually follow through the program. The
PW-DMGs can be of use to students, universities and industry to detect any
discrepancies in the program, ease communication between universities and
ease the implementation of the Bologna agreements.

1.4 Motivation

In this paper we will investigate how higher education programs can be
modelled as graphs and how different courses and subjects in the education
program are connected. Courses and subjects are represented as graphs con-
sisting of super nodes and atomic nodes. A super node is a node that can be
split into smaller atomic nodes, see section 2.5 for the full definition. A super
node can appear in a graph due to lack of information regarding how certain
subjects are connected. This thesis focuses on how the super nodes and their
super edges are translated into atomic ones using different methods. These
methods are then evaluated using existing graph theory analysis tools such
as connectivity and centrality to analyse the resulting graph. It is important
that the resulting graph properties remain close to the original graph prop-
erties, because the graphs have a pedagogical interpretation. For instance,
a graph should not become less connected after translating the super nodes,
as it would mean that there is less coherence between the subjects in the
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course. Furthermore, a decrease in the PageRank centrality for some node
would result in the subject being less influential in the course. Analyzing
the different centrality indexes and connectivity is therefore useful to deter-
mine the validity of the result and the usefulness of the method. Hopefully,
the methods developed and their results can be used as a tool to aid in the
structuring of courses, semesters and study programs.
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2 Theory

In this chapter, the relevant theoretical background and information will be
given. First off, the fundamentals about graphs, such as structure and other
properties, will be given. Afterwards, the concepts of graph connectivity and
centrality will be defined along with the application for higher-education.

2.1 The Graph

A graph is a mathematical structure used to model objects and the relation
between them. The objects within a graph are most often called nodes (can
also be called vertices or points) and the relation between them are called
edges (can also be called links or lines). The mathematical definition of a
graph G is given by

G = (V,E) (1)

where V denotes a set of nodes and E denotes a set of edges that define the
connection between the nodes in V .

Figure 2: The Diamond graph. The graph is undirected and has four nodes
and five edges.

More specifically, for a graph G with n nodes and m edges, the sets are
given by V = {v1, ..., vn} and E = {e1, ..., em}. The set of edges E for a
graph is defined by

E ⊆ {{u, v} | u, v ∈ V and u 6= v} (2)

where {u, v} is an edge joining the two nodes u and v. An edge can either
be undirected or directed. If the edge is directed, the order of the nodes u
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and v in the edge {u, v} indicate that the edge is directed from u to v. The
set of edges E for a directed graph is defined by

E ⊆ {{u, v} | u, v ∈ V 2 and u 6= v} (3)

A graph is said to be directed if the edges are directed. A graph can be
weighted, in which case each edge e ∈ E has a weight w > 0 associated with
it.

A trail puv is a set of edges Es ⊆ E containing the edges that connect
nodes u and v. A path is a trail where all nodes connected by the set of
edges Es are unique. A shortest path is a path that minimizes the number of
edges in Es. If a graph is weighted, a shortest path is a path that minimizes
the total weight of the edges within the path.

2.2 Connectivity

A graph is said to be connected if every pair of nodes is connected. Any two
nodes u and v are said to be connected if there exists a path from u to v. If
there does not exist a path between them, the nodes are disconnected [5]. If
an undirected graph has any disconnected nodes, the graph is disconnected.

For directed graphs there are three subcategories of connected graphs:

• a graph is strongly connected if every pair of nodes are connected in
both directions.

• a graph is semiconnected if every pair of nodes are connected in either
direction.

• a graph is weakly connected if replacing every directed edge with an
undirected edge yields a connected graph.

Figure 3: An illustration of the different subcategories of connectivity for
a directed graph. Left figure: weakly connected. Middle figure: semicon-
nected. Right figure: strongly connected.
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A node u is a neighbor of node v if (u, v) ∈ E. For directed graphs, the
node u is an in-neighbor of node v and the node v is a out-neighbor of node
u if (u, v) ∈ E. Nodes that are in-neighbors are often called predecessors
and nodes that are out-neighbors are often called successors.

A graph G is a Directed Acyclic Graph (DAG) if G is directed and there
exist no cycles in G.

2.3 Adjacency Matrix

The adjacency matrix A of a graph G is a square matrix of size n× n. The
adjacency matrix is denoted by

A = (ai,j), A ∈ Rn×n (4)

where n = |V | is the number of nodes in G and ai,j is the weight for the
edge (i, j) ∈ E. For an unweighted graph the element ai,j is 1 if connected,
i.e (i, j) ∈ E or 0 if not [1]. For a directed graph, the adjacency matrix A is
often asymmetric. The adjacency matrix of an empty graph is a zero matrix.

2.4 Centrality

In a graph some nodes may be more important than other nodes in one
way or another. The importance of a node depends on what property the
graph is evaluated on. This could be how many edges a node has, if it is a
part of several shortest paths, etc. The importance of a node is measured
by different ”centrality indexes” which calculates the importance based on a
certain index. In this paper six such centrality indexes will be considered
and evaluated in order to analyze the CW-DMGs. The different centrality
indexes have a pedagogical interpretation [14] and seeing how the algorithms
affect the different indexes can provide a better view of which ones perform
best.

Degree centrality is simply the sum of all weights of the edges connected
to a particular node, or in the case of unweighted edges it is the sum of edges
[5]. For a node v the degree centrality is defined as

C(v) = deg(v) (5)

For a directed graph, degree centrality can be split into two smaller mea-
sures, indegree and outdegree. The indegree of a node v is equal to the
degree centrality when only taking edges directed to the node v into ac-
count. The outdegree of a node v is equal to the degree centrality of a node
v when only taking edges directed from the node v into account. From a
pedagogical point of view the degree centrality indicate how many courses
a particular concept is relevant for or how many course are connected to a
particular course. The metric is sensitive to the weighting of the connection
as described in [14].
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Closeness centrality ,[6], is the average length of the shortest path be-
tween a specific node and all other nodes in the same graph. For a node u
the closeness centrality is defined as

C(u) =
N − 1∑N−1

v=1 d(v, u)
(6)

where N is the number of nodes and d(v, u) is the shortest path distance
between nodes v and u. For a directed graph, the shortest path distance is
computed as the incoming distance to the node u. An improved improved
method was introduced by Wesserman and Faust for graphs with more than
one connected component

C(u) =
n− 1

N − 1

n− 1∑N−1
v=1 d(v, u)

(7)

where n is the number of reachable nodes and N is the total number of nodes.
The method takes into account the fraction of which nodes are reachable
[7]. The closeness of a particular node roughly express how close that node
is to the other nodes in the graph. The practical meaning is how far a
concept/course is from other concepts/courses. Concepts used over the entire
program in several course have a higher index value, concepts only taken up
in courses close in the program/over a shorter period of time, have a lower
index.

Eigenvector centrality (eigencentrality) assignes a score to each node in
the graph. Higher scoring nodes contribute more to connections than low
scoring nodes (with same weight) [13]. For directed graphs eigenvector cen-
trality can yield negative values if the graph is not strongly connected, see
Section 2.2. The definition of eigenvector centrality is given by

xv =
1

λ

∑
t∈M(v)

xt =
1

λ

∑
t∈G

av,txt (8)

where M(v) is a set of neighbors of v and λ is some constant. The equation
can be rearranged and written as

Ax = λx (9)

where A = (av,t) is the adjacency matrix. For a directed graph the adjacency
matrix is in general asymmetric and there are two leading eigenvectors. The
”left” eigenvector centrality corresponds to the in-edges in the graph and
the ”right” eigenvector centrality corresponds to the out-edges in the graph.
Eigenvector centrality is a measure of how influential a given course/concept
is within the program as a high score indicates that the concept is relevant
in many other courses throughout the program.

PageRank centrality is very similar to eigenvector centrality but uses a
different metric when assigning scores.
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xi = α
∑
j

aji
xj
L(j)

+
1− α
N

(10)

where

L(j) =
∑
i

aji (11)

is the number of neighbors to node j. The practical interpretation and
usefulness of the result is expected to be similar to eigenvector centrality as
the methods are calculated in a similar fashion.

Katz centrality [10] is similar to eigenvector and PageRank centrality and
it is calculated based on the centrality of its neighbors. A node with many
edges will get a high score but a node with a low number of edges may also
have a high score, if its neighbors are high scoring. The method also gives
each node a small amount of centrality for "free", in this way the algorithm
handles directed graphs better than eigenvector centrality. Katz centrality
of a node v is calculated using the formula

CK(vi) = α
n∑

j=1

AjiCK(vj) + β (12)

where A is the adjacency matrix, α is called the damping factor and β is
a bias constant which controls the initial centrality. The damping factor α
satisfies the equation

α <
1

λmax
(13)

where λmax is the largest eigenvalue of the adjacency matrix A [2]. Due
to the similarities with eigenvector and pagerank centrality, the results are
expected to be similarly useful.

Betweenness centrality uses the concept of betweenness, which looks at
how often/how many times a certain node act as a ’bridge’ between any two
other nodes in the shortest path. This metric is expected to be low in most
graphs because the concepts are exclusively connected to courses and vice
versa. From a pedagogical point of view the metric indicate which concepts
have the highest learning outcome based on the other courses or concepts to
come. As a consequence of the metric being low in most graphs, the metric
does not provide as useful results as other centrality metrics. Betweenness
centrality is calculated using the following equation

g(v) =
∑
s,t∈V

σ(s, t|v)

σ(s, t)
(14)

where σ(s, t) is the number of shortest paths from node s to node t, whereas
σ(s, t|v) is the number of those same paths that go through node v [3].
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2.5 Notation

The following notations will be used throughout this paper to differentiate
between nodes and edges which can be translated into different nodes and
edges, and those that cannot. Nodes and edges which can be translated
will be called super nodes and super edges, while those than cannot will be
called atomic nodes and atomic edges. The atomic nodes are denoted with
small letters (and indices where possible), atomic edges are denoted in a
similar fashion. Furthermore, the sets of all atomic nodes and atomic edges
are denoted without any subscript. For instance, the two atomic nodes vi
and vj are elements in the set V and the atomic edge eij between these two
atomic nodes is an element in the set E. The atomic edge eij may also be
denoted as (vi, vj).

A super node is a set consisting of atomic nodes and is denoted with
capital letters Vi, and the set of all super nodes is denoted V̄ . We also
assume that no atomic node is an element of two super nodes, so if we have
T super nodes then

∩Ti=1 Vi = ∅ (15)

In a similar fashion, the set of atomic edges between the atomic nodes in Vi
is denoted as Ei, i.e.

Ei = {(vi, vj) ∈ E | i 6= j, vi ∈ Vi and vj ∈ Vi} (16)

A super node can therefore be interpreted as a subgraph constructed as

Gi(Vi, Ei) (17)

Furthermore, the set of atomic edges between two super nodes Vl and Vk is
denoted as Elk with

Elk = {(vi, vj) ∈ E | vi ∈ Vl, vj ∈ Vk} (18)

Consequently it follows that Ei ⊂ E and Eij ⊂ E.
A super edge is a set consisting of atomic edges and is defined as Ẽ.

A super edge is connected to at least one super node. If a super edge is
connected to an atomic node vi and a super node Vj , all atomic edges ei in
Ẽ are connected to the atomic node vi. The set of atomic nodes in Vj that
the atomic edges ei connect to is undefined.
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3 Algorithms and Data

In this section we will cover the different methods/algorithms used for trans-
lating super nodes into atomic nodes. There are several different ways to do
this translation and for each method the graph properties will change. By
evaluating the different properties of the resulting graph, the validity and
usefulness of the algorithm can be determined. From a pedagogical point of
view, the methods should preserve some graph properties because it has a
practical interpretation. A simplified example is included to illustrate how
CMFs are represented as graphs. The example also illustrates how a su-
per node is translated into atomic ones using a basic method. The results
are then analysed, which forms the basis in the same manner as the results
described in section 4.

3.1 Algorithm Classification

In this thesis, five algorithms are developed to translate abstract KCs into
detailed connections. Each method chooses the atomic nodes to connect to
based on a graph property:

The first method is a naive method that connects to every single atomic
node in the super node. The method is very basic and will serve as a
comparison against the other methods.

The second method connects to the atomic nodes which have the highest
in-degree. Nodes that have a high in-degree can be interpreted as
complex subjects that require a lot of previous knowledge. If there are
multiple nodes that have the highest in-degree, an atomic edge will be
added to every one. The number of atomic edges is expected to be low
for this method.

The third method connects to the atomic nodes which have no outgoing
edges. Nodes that have no outgoing edges can be interpreted as the
learning outcome or learning goals of the course. The method is ex-
pected to yield a low to medium amount of atomic edges.

The fourth method connects to the atomic nodes that have the highest
degree. The nodes that have the highest degree will typically be central
subjects which require previous knowledge but also is a requirement
for other subjects. As with the second method, the method is expected
to yield a small amount of atomic edges.

The fifth and final method connects to the atomic nodes that have both
incoming and outgoing edges. These nodes require previous knowledge
and is a requirement for other subjects as with the fourth method, but
the amount of connections is of no concern. The number of atomic
edges is expected to be medium high.
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The methods are expected to yield a different amount of atomic edges and
connect to different atomic nodes.

3.2 Property Preservation

In order to analyse the validity and usefulness the different methods de-
scribed in Section 3.1, an analysis of how different centrality indexes change
is made. For a method to be valid, it should preserve some graph property.
This is the result of the graph properties having a pedagogical interpreta-
tion. Subjects that are important before the translation should not become
less important. A graph should also not become less connected as a re-
sult of the translation. Depending on the method, certain centrality indices
may change more than others. The result could be used to determine which
method to choose for the translation based on the need to preserve a given
property. The centrality indexes evaluated in this thesis are degree central-
ity, PageRank centrality, Katz centrality and closeness centrality, described
in Section 2.4. The eigenvector and betweenness centrality measures will
not be evaluated for the methods because they are expected to yield poor
results. Eigenvector centrality is based on the centrality of their neighbors
and is suitable for undirected graphs or strongly connected directed graphs.
The graphs used throughout this thesis are directed but not expected to be
strongly connected and the metric will therefor yield poor results. PageR-
ank and Katz centrality is evaluated instead, both of which are variants
of eigenvector centrality. Beetweenness centrality has also been omitted as
the results are expected to be low or zero. This is the result of the typical
graph structure for a knowledge graph, where subjects are exclusive to a
course. For more information on the different centrality indexes and their
interpretation, see Section 2.4.

Additionally, the graph connectivity should preferably not change, but
at the very least not decrease. If the graph becomes disconnected, there are
subjects which are not connected or have no overlap. On the other hand if the
graph become strongly connected, there are inconsistencies in the problem.

Seeing how the different properties change using a particular method
is useful as it can help determine which method to choose based on which
properties are desired in a certain graph.

Remark (on the parameters of the Katz and PageRank centrality in-
dexes) we note that both Katz and PageRank centrality utilize the damping
parameter α. The initial centrality given to nodes is calculated using α in
PageRank centrality (see eq. 10), but Katz centrality use the β parameter
(see eq. 12). In this thesis the damping factor for PageRank centrality is
set to α = 0.85, following the justifications of the choice made by [4]. The
damping factor for Katz centrality is set to α = 0.1, which was the default
value for the method used for evaluation. The initial centrality β is set to 1
for simplicity.
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3.3 The dataset used to tune the algorithms

For the evaluation of the different merging algorithms two courses are mod-
elled as graphs. Each course have two graphs associated with it. The first
graph describes the different subjects and topic thought within the course.
This graph is represented as a tree with each child being a sub topic of its
parent. The other graph describes what subject or topic is needed to learn
which other subjects. This graph may contain nodes from its own subjects
and subjects from other courses. If a node is not present in the graph it
means that nothing is needed in order to learn that subject.The first graph
is known as the specification graph and the latter as the learning graph. The
two courses used throughout this thesis is a representation of the Systems
Theory course and Algebra course. The Systems Theory graph will have red
nodes and edges while the Algebra course will have blue nodes and edges.
The translated atomic edges are represented with dashed black edges.

3.3.1 Systems Theory

Steffi Knorn, a professor at the Technische Universität Berlin, compiled a
CFM for the ‘Systems Theory’ course with the aid of Magnus Axelson-Fisk.
The author modified the CFM by reducing the amount of KCs. The reason
for this was to gain a smaller graph for better visualization and interpreta-
tion.

It is important to note that some of the KCs from this course depend
on the rather generic concept ’Algebra’. This, as shown below, is actually a
course by itself.

Figure 4: The specification graph for the Systems Theory course.
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Figure 5: The learning graph for the Systems Theory course. The generic
concept ‘Algebra’ is represented by the blue node.

3.3.2 Algebra

Following up the comment above, we exploit the fact that Algebra is a course
by itself in higher education. We thus consider a CFM for the ‘Algebra’
course that was compiled by the author based on data provided for a similar
course used by Emil Wengle in [15]. The CFM was designed to be of similar
size as the CFM for ‘Systems Theory’.

We may then rephrase the purpose of the thesis based on the two CFMs
above in these terms: expand the CFM of ’Systems Theory’ by expanding
its ’Algebra’ node with the CFM of Algebra, and by adding an opportune
set of edges that connect the super-set of nodes obtained in such a way.
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Figure 6: The specification unit graph for the Algebra course.

Figure 7: The learning graph for the Algebra course.

3.4 Illustrating the example above in a graphical way

This section generalizes and visualizes the problem stated above through
an example that we perceive is clearly illustrating, in a generic way, how
courses are represented as graphs. Assume a course to be represented using
two graphs:

1. the first, that we may call the hierarchy of the contents of the course,
containing the information about each KC taught within the course
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through a tree structure (i.e., a graph where each child node should be
intended as a smaller subject within its parent);

2. the second connecting what KC or courses are needed in order to be
able to learn another given KC. For this we may call this graph the
logical flow of the course, i.e., how one should proceed in a temporal
way in her/his learning efforts.

Figure 8: A simplified graph representing the course A and the subjects B-F
taught within the course. The subjects B and C are direct subjects of course
A, while D and E are smaller subjects of B.

Figure 8 illustrates what subjects are taught within course A. The course
A and the subjects B, C are considered super nodes as they have smaller
subjects contained within them. The subjects F, D and E have no smaller
subject contained within them so they are considered atomic nodes.
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Figure 9: A simplified graph representing the course P. The course consist
of the subjects Q and R, where both Q and R consist of smaller subjects.

Figure 9 illustrates the same as figure 8, but for course P. In this graph
the course P and subjects Q and R are super nodes, and as a consequence
the subjects T, S, U and V are atomic nodes. From a pedagogical point of
view the atomic nodes are essentially everything that is taught in the course
and therefore make up the entire course.

Figure 10: A simplified graph representing what is needed in order to be
able to learn certain subjects in course A.

What subjects or courses are needed to learn a specific subject within
course A is illustrated in Figure 10. Course P is connected to every node in
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the graph so a student must have had course P to be able to learn any other
subject in the graph. Subject D, which is taught in course A, is needed to
learn subject F in the same course.

Figure 11: A simplified graph representing what is needed to learn the dif-
ferent subjects in course P. The subjects S and T taught within course P are
needed in order to learn subjects U and V from the same course.

Figure 11 shows what subjects or courses are needed in order to learn
subjects within course P. Both U and V are dependant on subjects S and T
from course P. The subjects taught in course P therefore does not require
the student to have taken any other courses.
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Figure 12: A graph representing the A course learning information shown
in Figure 10, after replacing the super nodes and edges with atomic ones.
The super nodes are replaced with all the atomic nodes contained within the
subgraph of the specific node. Red nodes and edges represent course A and
the blue nodes and edges represent course P. The dashed black edges are
added atomic edges when replacing super nodes and edges.

From figure 10 it can be seen that the nodes within course A depend
on the contents from the P course. The graph in Figure 12 illustrates the
same learning graph from Figure 10 but the super nodes and edges have been
replaced with atomic ones. For this example there was just a single super
node, namely P, but for larger graphs there may exist several super nodes
and edges. A graph may contain super nodes from itself, i.e subjects within
the course or it may contain super nodes from other subjects or courses.
Analysis of the merged graph is done using different centrality measures such
as degree centrality, PageRank centrality, Katz centrality, etc. Eigenvector
centrality and betweenness centrality are expected to yield poor results, but
are included in this simplified example to verify this. The different centrality
measures used have different pedagogical interpretations and it is therefore
useful to look at each of them to see what happens to the course in different
aspects.
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3.4.1 Degree Centrality

Figure 13: Degree centrality calculated on the learning graph of course A,
before and after having replaced super nodes and edges.

Figure 13 show how the degree centrality change when replacing super nodes
and edges with atomic ones. It can be seen that each nodes index increase
with the same magnitude. The atomic nodes T, V, S and U that replace the
super node P each has their magnitude increased by 3. This makes sense
since node P had a degree centrality of 3. The other nodes also have their
index value increased by 3, this is because one node and edge is removed and
four new are added. The nodes that have their index increased are the nodes
that have are connected to the super node, which in this case is every node.
The centrality measure tells us about how important a given subject is in a
given course. It is an indication on how many subject it is relevant for or
how many other subjects are needed to be taught for this particular subject.
This metric will remain the same or increase for all subjects. The metric
can help identify subjects that previously were thought to not be important
because they were connected to a super node, but after replacing the super
node the index value increases and it can be seen that the subject is more
important than previously thought.
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3.4.2 Eigenvector Centrality

Figure 14: Eigenvector centrality calculated on the learning graph of course
A, before and after replacing super nodes and edges.

Eigenvector centrality is calculated by assigning a relative score to each node
with the idea that connections to high-scoring nodes provides a higher score.
The results shown in Figure 14 show that for most nodes the value does
not change or change minimally if so. The exceptions are node U which
increases by 0.75 and the node V which goes from 0 to -0.75. The index
value is calculated using the adjacency matrix of the graph, see eq. 9. Eq. 8
show that the value is calculated by taking the sum over all other nodes index
value and multiplying it with the corresponding adjacency matrix element.
This number will be zero if there is no incoming edge or 1 if there is an
incoming edge, as a consequence most of the nodes in the graph will have an
index value of zero since they have no incoming edges. Node E will have a
zero index score because all its neighbors have a zero index score. The only
node which has an index value larger than zero is node F. This is because
it has an incoming edge from node D which has four incoming edges. The
connection is therefore considered high scoring and will yield a high index
score for node F. As explained in Section 2.4 the eigenvector centrality works
poorly for directed graph, especially acyclic ones. The index value for node
V before the merge is also observed to be negative which should not occur,
and is an indication that the result is flawed. Eigenvector centrality can be
interpreted as a measure of how influential a subject or course is, but because
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the result is flawed or zero it does not provide any meaningful insight. This
problem is solved by the use of PageRank and Katz centrality.

3.4.3 PageRank Centrality

Figure 15: PageRank centrality calculated on the learning graph of course
A, before and after replacing super nodes and edges. The index values are
calculated using a damping factor of α = 0.85.

From Figure 15 it can be seen that the PageRank centrality measure de-
creases for every node in the graph, but the magnitude differ. It is clear
from the figure that the result from PageRank centrality differ from that of
eigenvector centrality, since the method is able to account for link direction.
PageRank also uses a scaling factor given by eq. 11 when calculating its
index values. From Figure 15 there seems to appear only 4 distinct index
values among the nodes. The inserted atomic nodes V, U, T and S each have
an index value of 0.1 and 0.8 respectively. It is expected that these nodes
should have the similar index value as they each have 3 outgoing edges to
the same nodes. The difference comes from nodes U and V having incoming
edges from nodes S and T. The nodes D and E share the same index value as
well, but higher than the 4 other nodes. These nodes have 4 incoming edges
which will contribute differently to the score than outgoing edges. Node D
also have an outgoing edge to node F which will yield a higher score for node
F which can be seen in Figure 15.

PageRank is an adaptation of the eigenvector centrality measure and can
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also be interpreted as how influential or important a subject is within the
given course. The highest scoring node is node F which has 5 incoming
edges, this subject is considered important as it requires 4 not as important
subjects together with subject D, which is considered by subject F to be high
scoring. A possible interpretation is that subject F is the learning outcome
of course A. Subjects D and E also have a higher score and can be considered
to be smaller learning goals of course A.

3.4.4 Katz Centrality

Figure 16: Katz centrality calculated on the learning graph ofcourse A, before
and after replacing super nodes and edges. The index value is calculated
using a damping factor of α = 0.1 and an initial centrality of β = 1.0

Figure 16 shows the Katz centrality index values before and after merge. Like
PageRank centrality, it is an adaptation of eigenvector centrality but differs
in the way the value is calculated. Katz centrality does not use a scaling
factor like PageRank centrality, but like PageRank centrality it does give
some centrality to each node by default. This is done with the β parameter
in eq. 12. Because the way both PageRank and Katz centrality are calculated
it is expected that the result will be similar. By comparing Figure 15 and
16 it can be seen that the overall trend in the change of index values are the
same. What differs is the magnitude at which they change which is caused
by the scaling factor in PageRank centrality and the choices for the damping
factor α and initial centrality β. The pedagogical interpretation of the result
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will be similar to that of PageRank and eigenvector centrality. Because the
resulting index values are close to the values from PageRank centrality the
same conclusion of the results can be made.

3.4.5 Closeness Centrality

Figure 17: Closeness centrality calculated on the learning graph of course A,
before and after replacing super nodes and edges.

Closeness centrality is a measure of the average shortest path to a node
from the other nodes. Since the graph is directed the method calculates the
incoming distance, i.e it follows the direction of the edges or the flow. From
Figure 17 it can be seen that the index value of the nodes S and T are zero.
This is because each of these nodes only have edges directed outwards and
are therefore unreachable. The value for nodes D and E increase after having
replaced the super nodes and edges, both of these nodes have four incoming
edges after merge and their value is expected to be equal. As we are looking
at incoming edges, outgoing edges are of little value to the respective nodes.
The node F has five incoming edges after merge and two incoming edges
before. The value is therefore expected to be high and to increase after the
merge. An interpretation of this result is that subject F is close to a lot of
other subjects, the same goes for subjects D and E. For subjects S and T, the
index value tells us about how close they are to the other subjects, except
that they have no incoming edges. It is possible to invert the direction of the
edges, which would also reverse the result. The index value indicates which
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subjects are close to other subjects and vice versa. For larger and highly
connected graphs, this metric will provide more useful results.

3.4.6 Betweenness Centrality

Figure 18: Betweenness centrality calculated on the learning graph of course
A, before and after replacing super nodes and edges.

The results when calculating the betweenness centrality are shown in Figure
18. For all nodes the index value is zero, both before and after merge.
This is a consequence of the structure of the graph. Beetweenness centrality
is calculated by taking the number of shortest paths that goes through a
certain node divided by all shortest paths. Because nodes U, V, T and S
are unreachable they will get a value of zero. Nodes D, E and F also have
a value of zero, as the shortest path between any two nodes in the graph
is 1, consequently no shortest path will go through an intermediate node
and all values will be zero. As for closeness centrality, for a larger and
highly connected graph this metric will provide more insight. This metric
is interpreted as which subjects are often needed in order to learn other
subjects, but as a result of most graph structures in learning graphs, this
metric will give limited insight.
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4 Results on the field examples

In this chapter the results obtained from the algorithms described in section
3.1 are presented.

4.1 Naive merge

The first algorithm implemented is a basic method which simply replaces
each super edge with atomic edges connected to every atomic node in the
Algebra course. The algorithm is naive and will serve as a base algorithm for
which the other algorithms will be compared against. The algorithm will find
every atomic node from the specification graph and replace the super node,
connecting the new nodes to each node that the super node was originally
connected to. If any atomic node has any dependencies in the learning graph,
then these will be present in the new graph given the dependant nodes are
present.

Figure 19: The merged graph for the Systems Theory course using the naive
method.

Figure 19 represents the same course as Figure 5 after replacing the ‘Alge-
bra’ super node. Since each atomic node will have the same edges as the super
node, the amount of edges will increase with a factor of |V̄ |(deg(Algebra)−1).
Additional edges may also come from dependencies caused by the atomic
nodes. This is the case in Figure 19 and is observed by the blue edges.
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4.1.1 Degree Centrality

Figure 20: Degree centrality calculated on the ‘Systems Theory’ learning
graph before and after replacing super nodes, using the naive method.

From Figure 20 it can be seen that all nodes except ‘BIBO Stability’ have
their degree increased. This is because every node present in the original
learning graph for the ‘Systems Theory’ course, shown in Figure 5, is con-
nected to the ‘Algebra’ super node, except for ‘BIBO stability’. The magni-
tude at which they increase comes from the number of atomic nodes replacing
the super node. The atomic nodes share the same connections since they
are all connected to the same nodes as the super node they replaced. Their
respective degree may however be different because of dependencies among
the atomic nodes, as shown in figure 7. As a consequence of replacing each
super edge with atomic edges connected to every atomic node, the degree
will increase by a large margin. Comparing the index values before replacing
the super node and after, the difference from lowest scoring node to high-
est scoring node increases. Nodes from the Systems Theory course that are
connected to the super node will have their index value increased by nine.
Nodes from the Algebra course will have their index value increased by six,
which is equal to the degree of the super node deg(Algebra) = 6.
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4.1.2 PageRank Centrality

Figure 21: PageRank centrality calculated on the ‘Systems Theory’ learning
graph before and after replacing super nodes, using the naive method. The
values are calculated using a damping factor of α = 0.85.

PageRank centrality gives each node some centrality based on the damping
factor α. This results in each node having some influence by default when
calculating the score. It is expected that the index value will decrease as
a consequence of several new nodes and edges being added. The atomic
nodes from the Algebra course have their index value decreased the most,
and all the nodes have close to the same index value after merge. The index
value for the nodes from the Systems Theory course also decrease but with a
smaller magnitude than the nodes from the Algebra course, except for ‘BIBO
stability’. This node decreases more because it is not directly connected to
the super node before the merge. Pagerank centrality offers insight into how
influential a subject is within the course. As a consequence of the number of
new nodes and edges being added from the merging algorithm, each subject
can be interpreted as less influential than before. The subjects from the
Algebra course are equally influential in the Systems Theory course. The
nodes from the Systems Theory course are more influential than the subjects
from the Algebra course.
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4.1.3 Katz Centrality

Figure 22: Katz centrality calculated on the ‘Systems Theory’ learning graph
before and after replacing super nodes, using the naive method. The values
are calculated using a damping factor of α = 0.1 and an initial centrality of
β = 1.0.

Katz centrality is a variant of Eigenvector centrality and is also calculated
based on the centrality of a nodes neighbors. The results shown in figure 22
are observed to be similar to those of PageRank centrality shown in Figure 21.
The magnitude at which the index values change is different from PageRank
centrality. Katz centrality uses the parameter β as default centrality to each
node, while PageRank centrality calculates the initial centrality based on the
damping factor and the total number of nodes (see equation 10). From Fig-
ure 22 it can be seen that index values for every node is reduced after merge.
This is also the result of the super edge being replaced with atomic edges
connected to every atomic node in the Algebra course. The nodes ‘Periodic-
ity’, ‘Linearity and Superposition principle’, ‘Time invariance’, ‘Causality’,
‘Signal definition’ and ‘System definition’ have their index value decreased
but by a small margin compared to the other nodes. This is because they
are present in the learning graph before the merge and will have a direct
edge to every node from the Algebra course, see figure 5. ‘BIBO stability’
is also present in the original learning graph but the index value decreases
more then the other nodes because does not have a direct link to the nodes
from the Algebra course. The subjects present in the Systems Theory course
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learning graph before merge seems to be almost as influential after replacing
the super node. The exception is ‘BIBO stability’ as mentioned before. The
subjects replacing the super node becomes less influential than they were in
the Algebra course. Subjects from the same course have almost the same
influence as the other subjcets.

4.1.4 Closeness Centrality

Figure 23: Closeness centrality calculated on the ‘Systems Theory’ learning
graph before and after replacing super nodes, using the naive method.

Closeness centrality offers a different view on the graphs properties as the
metric is flow based. Unlike the results from the link based methods, some
nodes closeness centrality have their index value increased after merging as
seen in Figure 23. The nodes that have their index value increased are
the nodes that are present in the Systems Theory learning graph before
merging, shown in figure 5. The reason for this is that the average distance
to all other nodes,

∑N−1
v=1 d(v, u), is decreased because there is a direct link

to every node from the Algebra course. The node ‘BIBO stability’ does not
increase as much as the other nodes because it is not directly connected
to the nodes from Algebra, there are two edges between the nodes. For
the atomic nodes replacing the super node, the index value decreases. For
these nodes, no new nodes can be reached and the average shortest distance
remain the same. The total number of nodes N in the graph increases which
results in the index value decreasing. The node ‘Commutative’ have an index
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value of zero before and after merge, this is due to the being unreachable.
Subjects already present in the Systems Theory learning graph will have a
higher index after merge and will be closer to other subjects. The subjects
that replace the super node becomes less close to other subjects than they
were before. For the subject ‘Commutative’, there is no information on how
close it is to the other subject, other than it only having outgoing edges.
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4.2 Connect to nodes with highest indegree

This method looks at which atomic nodes has the highest indegree. This can
be interpreted as replacing the super node with subjects that are complex
or require the most previous knowledge. The method is expected to reduce
the number of atomic edges replacing the super edges in comparison to the
naive algorithm described in Section 4.1, unless every atomic node has the
same indegree.

Figure 24: The merged graph for the Systems Theory course, using the
method that connect to the nodes with the highest indegree.

From Figure 24 it can be seen that the super edges translates into atomic
edges connected to the two atomic nodes ’Jordan normal form’ and ’Cayley-
Hamilton theorem’. The atomic nodes have an indegree of value 2, calculated
on the corresponding learning graph shown in Figure 7. Every other atomic
node has an indegree of either 0 or 1. The algorithm reduces the number of
translated atomic edges compared to the naive method.
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4.2.1 Degree Centrality

Figure 25: Degree centrality calculated on the ’Systems Theory’ learning
graph before and after replacing super nodes, using the method that connect
to the nodes with the highest indegree.

The method reduces the number of atomic nodes which the translated atomic
edges connect to, compared to the naive algorithm described in Section 4.1.
Therefore the degree centrality is also expected to increase by a smaller
amount. Figure 25 shows that the in degree is increased by 1 or stay the
same for most nodes. The nodes that have their index value increased by one,
were connected to the super node and will therefore have their degree index
increased by one since two atomic nodes replace the super node. The node
’BIBO stability’ is again unaffected because the node was not connected to
the super node. The two atomic nodes ’Jordan normal form’ and ’Cayley-
Hamilton theorem’ have their index increased by 6. This is a consequence of
the super node having a degree deg(Algebra) = 6, see Figure 7. The other
atomic nodes from the Algebra course have the same index value as no new
edges are connected to them.
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4.2.2 PageRank Centrality

Figure 26: PageRank centrality calculated on the ’Systems Theory’ learning
graph before and after replacing super nodes, using the method that connect
to the nodes with the highest indegree. The values are calculated using a
damping factor of α = 0.85.

The PageRank centrality is expected to decrease because the total number
of nodes N increases. This is a consequence of the initial centrality for the
nodes being reduced following the definition of PageRank centrality given by
eq. 10. Figure 26 shows that the for every node the index value decreases.
The magnitude at which the index value decrease vary for the nodes in the
range of 0.04 − 0.1. The nodes that have the highest degree also seem to
have their index value decreased the most. There is a correlation between the
index value before merge and the magnitude at which the value decreases.
The ranking of the index nodes is the same before and after merge, with
the exception of ‘BIBO stability’. The node’s index value decreases more
than nodes of similar score, this is due to node not being connected to the
super node before merge. Nodes that have the same indegree have similar
scores, the difference comes from the score of the connected nodes. The
results indicate that every subjects is less influential than they were before,
but the ranking of which subject are the most influential is the same, with
the exception of ‘BIBO stability’.
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4.2.3 Katz Centrality

Figure 27: Katz centrality calculated on the ’Systems Theory’ learning graph
before and after replacing super nodes, using the method that connect to the
nodes with the highest indegree. The values are calculated using a damping
factor of α = 0.1 and an initial centrality of β = 1.0.

From Figure 27 it is observed that for each node the index value is reduced
after merge. The index value decreases with a magnitude of 0.08− 0.09 for
all nodes. Compared to PageRank centrality, the magnitude range is much
smaller (0.01 compared to 0.06). The ranking of the index nodes is also
the same before and after merge, with the exception of ‘BIBO stability’,
‘Cayley-Hamilton theorem’ and ‘Jordan normal form’ which decreases more
than nodes of similar score. As with PageRank centrality, ‘BIBO stability’
decreases more because it is not connected to the super node before merge.
The index value of ‘Cayley-Hamilton theorem’ and ‘Jordan normal form’
decreases more than ‘System definition’ and ‘Signal definition’ because the
latter two nodes have their indegree increase by two, due to the ‘Algebra’
super node being replaced with two atomic nodes. The results indicate that
every subjects is less influential than they were before, but the ranking of
which subject are the most influential are the same, with the exception of
‘BIBO stability’, ‘Cayley-Hamilton theorem’ and ‘Jordan normal form’.
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4.2.4 Closeness Centrality

Figure 28: Closeness centrality calculated on the ’Systems Theory’ learning
graph before and after replacing super nodes, using the method that connect
to the nodes with the highest indegree.

The closeness centrality index decreases for most nodes with the exception of
three nodes. The nodes with the highest score are nodes that are connected
to the super node. The nodes ‘System definition’ and ‘Signal definition’ have
their index value increased and the only incoming links are to the super node.
They will have their values increased because more nodes can reach them
after the super node has been replaced with atomic ones. This is not the case
for the other nodes connected to the super node because they have another
incoming link from a node. The total shortest path distance,

∑N−1
v=1 d(v, u),

for these nodes is therefore increased and the index value reduces. For the
node ‘Commutative’ the index value is zero before and after merging. This
is a consequence of the node having no incoming links. For the atomic nodes
that replace the ‘Algebra’ super node, the index value decreases because
the total number of nodes in the graph N increases after the merge, while
the number of nodes that can reach these nodes remain the same. The
result of the merge is that all subjects are less close to other subjects with
the exception of ‘Signal definition’ and ‘System definition’ which are a bit
closer.
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4.3 Connect to nodes with no outgoing edges

This method looks at which atomic nodes has no outgoing edges or an out-
degree of zero. This can be interpreted as the ultimate learning goal of the
course/subject because it is not needed to learn anything else in the same
course. This method is expected to reduce the number of translated atomic
edges compared to the naive merge method described in Section 4.1.

Figure 29: The merged graph for the Systems Theory course using the
method that connect to nodes with no outgoing edges.

Figure 29 show that each super edge is translated into six atomic edges
connected to the nodes ’Jordan normal form’, ’Addition’, ’QR decomposi-
tion’, ’LU decomposition’, ’Multiplication’ and ’Cayley-Hamilton theorem’.
Each of these nodes have no outgoing links which can be seen in Figure 7.
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4.3.1 Degree Centrality

Figure 30: Degree centrality calculated on the ’Systems Theory’ learning
graph before and after replacing super nodes, using the method that connect
to nodes with no outgoing edges.

The super node is replaced with one or more atomic nodes and hence the
degree centrality is expected to increase or stay the same for all nodes. Figure
30 show that the index increases for every node from the Systems Theory
course except for ’BIBO stability’, which is the result of it being the only
node not connected to the super node. The index value also stay the same for
the nodes ‘Matrix multiplication’, ‘Matrix definition’, ‘Matrix addition’ and
‘Commutative’ which are the atomic nodes which does not connect to the
nodes in the Systems Theory course. All nodes from the Systems Theory
except for ‘BIBO stability’ course have their index value increased by 5,
because each super edge is translated into six atomic edges connected to six
atomic node from the Algebra course. These six atomic nodes have their
index value increased by 6 which equals the degree, deg(Algebra), of the
super node. A high amount of atomic edges replace the super edge result in
the degree increasing by a high amount for several nodes.
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4.3.2 PageRank Centrality

Figure 31: PageRank centrality calculated on the ‘Systems Theory’ learning
graph before and after replacing super nodes, using the method that connect
to nodes with no outgoing edges. The values are calculated using a damping
factor of α = 0.85.

The PageRank centrality decreases for all nodes as shown in Figure 31. The
behaviour is the same as it was for the method in section 4.2 even though
the number of atomic nodes replacing the super node increases. The total
number of nodes N in the graph increases after the merge which causes the
initial centrality of each node to be lowered, see equation 10. Because the
initial centrality for each node is lowered the index value is decreased for the
nodes. The nodes ‘Jordan normal form’ and ‘Cayley-Hamilton theorem’ have
a higher index value than the other atomic nodes from the Algebra course,
because they can be reached by a higher amount of nodes. For this method
the ranking of the node centrality index does not remain the same. After
the merge, every node from the Systems Theory course have a higher index
value compared to the nodes from the Algebra course, with the exception
of ‘BIBO stability’. Both the subjects originally within the course and the
subjects merged seem to loose their influence after the merge. The subjects
in the graph before the merge loose less influence than the subjects from the
Algebra course, with the exception of ‘BIBO stability’. This is a consequence
of the subjects being highly influential within the Algebra course shown in
figure 7 and the fact that no new subjects can reach them due to the direction
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of the super edges.

4.3.3 Katz Centrality

Figure 32: Katz centrality calculated on the ’Systems Theory’ learning graph
before and after replacing super nodes, using the method that connect to
nodes with no outgoing edges. The values are calculated using a damping
factor of α = 0.1 and an initial centrality of β = 1.0.

The Katz centrality decreases is expected to decrease for all nodes as it did
with Pagerank centrality. Figure 32 show that this is the case and what
differs is the magnitude at which the index change. The six atomic nodes
from the Algebra course that have no outgoing edges have the index value
decreased by the same amount. The nodes ‘Cayley-Hamilton theorem’ and
‘Jordan normal form’ have a higher index value than the other atomic nodes
from the Algebra course because they have have two incoming edges. For
the nodes present in the graph before the merge, the index value reduces the
least. The only exception is ’BIBO stabilty’ which index value is reduced by
about 0.14, compared to 0.05. The reason for this is that the node is not
connected to a super node before the merge and will have the same neighbors
after the merge. The subjects present in the graph before the merge have a
little less influence in the course than before. The subjects that replace the
super node also have less influence in the Systems Theory course than they
did in the Algebra course.
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4.3.4 Closeness Centrality

Figure 33: Closeness centrality calculated on the ’Systems Theory’ learning
graph before and after replacing super nodes, using the method that connect
to nodes with no outgoing edges.

Figure 33 show that the nodes present in the graph before merge has their
index value increased, while the atomic nodes from the Algebra has their
index value decreased. The node ‘Commutative’ has an index value of zero
because it only has outgoing edges. The nodes present in the graph before
merge will have their index values increased because the total number of
nodes that can reach it N increases, several nodes from the Algebra course
can reach every node from the Systems Theory course and the average short-
est path to any other node N−1∑N−1

v=1 d(v,u)
increases. The index value for the

nodes ‘System definition’ and ‘Signal definition’ increases more because the
nodes only have an incoming edge from the super node. The index value of
‘BIBO stability’ increases the least because there is two edges between the
node and the super node. For the subjects with an index value of zero, it
is impossible to tell how close the subject is to other subjects. The subjects
are however not dependant on any other subject as they have an in-degree
of zero. The subjects present in the graph before the merge are much more
central than they were before. The atomic nodes from the Algebra course
are however not as close as they were before, although by a small margin.
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4.4 Connect to nodes with highest degree

This method looks at which atomic nodes have the highest degree. The de-
gree of a node is given by equation 5 and is equal to the total number of edges
or the weighted sum if the edges are weighted. A practical interpretation is
to find the subjects which are the most influential in the graph. The number
of atomic nodes that have the highest degree is expected to be low.

Figure 34: The merged graph for the Systems Theory course using the
method that connect to the nodes with the highest degree.

Figure 34 show that the super edge was replaced with atomic edges con-
nected to only one atomic node. From figure 7 it is observed that the ’Matrix
multiplication’ node has a degree of deg(v) = 5 which is the highest in the
graph.
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4.4.1 Degree Centrality

Figure 35: Degree centrality calculated on the ’Systems Theory’ learning
graph before and after replacing super nodes, using the method that connect
to the nodes with the highest degree.

The method results in the super edges being translated into atomic edges
connected to only one atomic node from the Algebra course. The degree is
expected to only increase for that single node from the Algebra course, which
is the case as shown in figure 35. The index value increases by a magnitude
of six, because this is the degree of the super node deg(Algebra) = 6. The
centrality index is unaffected for every other node from the Systems Theory
and Algebra course.
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4.4.2 PageRank Centrality

Figure 36: Pagerank centrality calculated on the ’Systems Theory’ learning
graph before and after replacing super nodes, using the method that connect
to the nodes with the highest degree. The values are calculated using a
damping factor of α = 0.85.

The Pagerank centrality is observed to decrease for every node as shown
in figure 36. The magnitude in the decrease vary from the different nodes.
Nodes from the Systems Theory course decreases more than the nodes from
the Algebra course, which is reflected in the ranking of the index values. The
reason for this is that there are several nodes that have a high score that
links to other nodes. Nodes with a high score that are linked include ‘Com-
mutative’, ‘Matrix definition’, ‘Matrix addition’ and ‘Matrix multiplication’.
The node ‘Periodicity’ from the Systems Theory course have a high score
because it has a link to the ‘Signal definition’ node, in addition to the super
node. Every subjects loose influence after the merge, but subjects from the
Systems Theory course loose more than subjects from the Algebra course.
There is also not a clear distinction of which course has the most influential
nodes, as both courses have subjects with high influence and subjects with
low influence.
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4.4.3 Katz Centrality

Figure 37: Katz centrality calculated on the ’Systems Theory’ learning graph
before and after replacing super nodes, using the method that connect to the
nodes with the highest degree. The values are calculated using a damping
factor of α = 0.1 and an initial centrality of β = 1.0.

As with Pagerank centrality, the Katz centrality decreases for every node.
The index value for the nodes decreases by either 0.08 or 0.11, depending on
what graph the node is from. The nodes from the Systems Theory course
decrease by a magnitude of 0.11, because they are connected to the super
node. Although ‘BIBO stability’ is not connected to the super node it will
still loose centrality because ‘System definition’ loose centrality. Every node
from the Algebra course decrease with a similar magnitude. The nodes that
have the highest centrality score have an incoming edge from the ‘Matrix
multiplication’ and one other node. After the merge there are three groups
of nodes with similar index scores. Subjects from either course become less
influential after the merge, and the index score ranking of the nodes remain
the same after the merge.
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4.4.4 Closeness Centrality

Figure 38: Closeness centrality calculated on the ’Systems Theory’ learning
graph before and after replacing super nodes, using the method that connect
to the nodes with the highest degree.

For this method, the closeness centrality index decreases for every node.
The index value decreases for the nodes from the Systems Theory graph
because the super edge is only replaced with six atomic edges connected
to one atomic node from the Algebra course. As a consequence, the nodes
from Algebra that can reach the nodes in the Systems Theory graph are
‘Matrix multiplication’, ‘Matrix definition’ and ‘Commutative’. Therefore,
both the total number of nodes N increases and the average shortest path
will decrease, which results in the index value decreasing. The index value for
the nodes from the Algebra course will decrease because no new nodes can
reach these nodes and the total number of nodes in the graph N increases.
The node ‘Commutative’ have an index value of zero both before and after
merge because it cannot be reached. All subjects are less close than they
were before, except for ‘Commutative’. The subjects in the Systems Theory
course are less close because the nodes in Algebra that can reach them are
not close. The subjects in Algebra are equally close to the other subjects
in Algebra, but no nodes in the Systems Theory course can reach them and
the overall closeness will decrease.
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4.5 Connect to nodes with incoming and outgoing edges

This method looks at which atomic nodes have both an incoming edge and
an outgoing edge, regardless of either degree. Subjects which have both
incoming and outgoing edges are central in the course because they require
previous knowledge and they are needed to learn other subjects.

Figure 39: The merged graph for the Systems Theory course using the
method that connect to the nodes with incoming and outgoing edges.

Figure 39 show that the super edge is translated into atomic edges con-
nected to the three nodes ‘Matrix multiplication’, ‘Matrix addition’ and
‘Matrix definition’. Both the nodes ‘Matrix addition’ and ‘Matrix multi-
plication’ have an incoming edge from the ‘Matrix definition’ node which is
also present in the graph. Figure 7 show that these are the nodes that have
both an incoming and an outgoing edge.
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4.5.1 Degree Centrality

Figure 40: Degree centrality calculated on the ’Systems Theory’ learning
graph before and after replacing super nodes, using the method that connect
to the nodes with incoming and outgoing edges.

The degree centrality is expected to increase because edges are only added.
Figure 40 show that the degree increases by a magnitude of two for every
node present in the graph, except for ‘BIBO stability’. The index value
for ‘BIBO stability’ does not increase because it is not connected to a super
node. The three nodes ‘Matrix addition’, ‘Matrix multiplication’ and ‘Matrix
definition’ from the Algebra course have their index value increased by five,
because deg(Algebra) = 6. Nodes from the Algebra course that does not
have both an incoming and an outgoing edge will have the same index score.
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4.5.2 PageRank Centrality

Figure 41: Pagerank centrality calculated on the ’Systems Theory’ learning
graph before and after replacing super nodes, using the method that connect
to the nodes with incoming and outgoing edges. The values are calculated
using a damping factor of α = 0.85.

For the Pagerank centrality index the values are observed to decrease for
each node as shown in figure 41. Pagerank centrality assigns some centrality
for each node which is why no node has an index value of zero. The initial
centrality for each node decreases because the total number of nodes N in-
creases and the damping factor α stay the same, see eq. 10. ‘Periodicity’ has
a high score because it has an incoming edge from the ’Signal definition’ node
which has a high score. The node ‘BIBO stability’ decreases more than the
other nodes present in the graph before merge because it gains no new edges
after the merge. The ranking order of the index value changes. The index
value decreases more for nodes from the Algebra course than from the Sys-
tems Theory course. The subjects are not as influential as they were before
the merge. Subjects from the Systems Theory course are more influential
than the subjects from the Algebra course, with the exception of ‘BIBO sta-
bility’. The subjects from the Algebra course are also less influential in the
Systems Theory course than they were in the Algebra course.
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4.5.3 Katz Centrality

Figure 42: Katz centrality calculated on the ’Systems Theory’ learning graph
before and after replacing super nodes, using the method that connect to the
nodes with incoming and outgoing edges. The values are calculated using a
damping factor of α = 0.1 and an initial centrality of β = 1.0.

The Katz centrality index values are also observed to decrease as with Pager-
ank centrality. Both Pagerank and Katz centrality are variations of Eigen-
vector centrality but are calculated differently. The index value for each node
decreases with a similar magnitude of 0.08 − 0.09. The node ‘BIBO stabil-
ity’ decreases a bit more because it does not have a direct edge to the super
node and the connection is therefore weighted less than for the other nodes
in the Systems Theory graph. The nodes ‘System Definition’ and ‘Signal
definition’ decreases less than the other nodes. As with Pagerank centrality,
the ranking order of the index centrality changes. Subjects from the Algebra
course are not as influential as subjects from the Systems Theory course,
although every subject has less influence in the Systems Theory course after
the merge. The node ‘BIBO stability’, which has no direct connection to the
subjects replacing the super node, loose more influence than other subjects
that have a direct connection.
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4.5.4 Closeness Centrality

Figure 43: Closeness centrality calculated on the ’Systems Theory’ learning
graph before and after replacing super nodes, using the method that connect
to the nodes with incoming and outgoing edges.

In contrast to the other indexes the Closeness centrality index values increase
for some nodes and decrease for others. Figure 43 show that the index value
for nodes present in the graph before merge decreases by a magnitude of
0.2−0.25, except for the nodes ‘System definition’ and ‘Signal definition’ for
which the index increases by 0.6. The index value decreases for ever atomic
node in the Algebra course, but with different magnitude. It decreases the
most for the nodes ‘Cayley-Hamilton theorem’ and ‘Jordan normal form’ by
a magnitude of 0.12, compared to 0.5 − 0.7 for the other nodes. The index
value for the ‘Commutative’ node is zero before and after merge, since the
node has no incoming edges. The index value increases for ‘Signal definition’
and ‘System definition’ because the number for reachable nodes increases,
even tho the average shortest path increases. For the other nodes in the
Systems Theory course the value decreases for the same reason the other
nodes index value increases, but the nodes can be reached by two nodes
before merge with a single edge compared to just one node. The index value
decreases for every node in the Algebra course because the total number of
edges N increase, while the other factors remain the same. For the subjects
in the Systems Theory course, some subjects are less close than they were
before and others are closer than before. The average combined closeness
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for the nodes is almost the same. The subjects in the Algebra course are
less close than they were before, due to no new subjects being able to reach
these subjects.
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5 Discussion

This section discusses the results and observations from Section 4. The
change in each centrality index is discussed for very method. The resulting
graphs for each method is compared to see how well the translated subjects
reflect the course dependencies.

5.1 Degree Centrality index performance

(a) Naive method. (b) Connect to the nodes with the
highest indegree

(c) Connect to nodes with no outgo-
ing edges.

(d) Connect to the nodes with the
highest degree.

(e) Connect to the nodes with incom-
ing and outgoing edges.

Figure 44: Degree centrality index comparison showing how the index
changes for every method.

For each method the degree centrality for each node either increases or stay
the same. The only edges that are removed are the super edge connected
to a super node, but they are replaced with one or more atomic edge. As

54



a consequence, the methods that replace the super edge with atomic edges
which connect to many atomic nodes, will affect the degree centrality the
most. The method that affect the degree centrality the most is the naive
method, for which every index value increases except for ‘BIBO stability’.
This is because the node is the only node not connected to the ‘Algebra’
super node in the Systems Theory learning graph. The centrality metric
also increases for most nodes when connecting the super edge with atomic
edges to the nodes with no outgoing edges. This method translates the
super edge into atomic edges connected to six atomic nodes, for these specific
graphs. The method for which the index increases the least is the method
that connect to nodes with the highest degree. There is only one node with
the highest degree, so the degree will remain the same for every node from
both the Algebra and the Systems Theory course, except for this node. For
the last two methods, connecting to the nodes with the highest indegree and
connecting to the nodes with both incoming and outgoing edges, the degree
centrality increases for half the nodes. For most nodes the index value stay
the same or increases by one. The methods connect two and three nodes
respectively to atomic nodes in the Systems Theory course, for all of which
the degree increases by six.
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5.2 Pagerank Centrality index performance

(a) Naive method. (b) Connect to the nodes with the
highest indegree

(c) Connect to nodes with no outgo-
ing edges.

(d) Connect to the nodes with the
highest degree.

(e) Connect to the nodes with incom-
ing and outgoing edges.

Figure 45: Pagerank centrality index comparison showing how the index
changes for every method.

The Pagerank centrality index value decreases for all nodes and all methods.
What differs between the methods, is for which nodes the value decreases
the most and how the index ranking of the nodes change. The results from
the naive method and the method that connect to nodes with no outgoing
edges are similar. The index ranking of the nodes change, with the index
value of the nodes from the Algebra course decreasing more than the nodes
from the Systems Theory course. The exception for both cases is for ‘BIBO
stability’, for which the index value decreases similarly to nodes from the
Algebra course. The index ranking also changes for the method that connect
to nodes with incoming and outgoing edges, but with a smaller margin than
the other two methods. For the method that connect to nodes with the
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highest degree, the index rankings barely change. However, not every node
from the Systems Theory have a higher score compared to the nodes from
the Algebra course as with the two first methods. For the last method, the
method that connects to the nodes with the highest indegree the ranking of
the nodes stay the same, except for ‘BIBO stability’. For every method the
lowest scoring node is the ‘Commutative’ node.

5.3 Katz Centrality index performance

(a) Naive method. (b) Connect to the nodes with the
highest indegree

(c) Connect to nodes with no outgo-
ing edges.

(d) Connect to the nodes with the
highest degree.

(e) Connect to the nodes with incom-
ing and outgoing edges.

Figure 46: Katz centrality index comparison showing how the index changes
for every method.

As with the Pagerank centrality, the index value decreases for all nodes and
all methods. What differs between the methods, is for which nodes the value
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decreases the most and how the index ranking of the nodes change. For
the naive method the index value decreases the most for nodes from the
Algebra course. The nodes from the Systems Theory course barely decrease
in value, except for ‘BIBO stability’ which decreases in a similar fashion
as the subjects from the Algebra course. There is only a small difference
between the nodes that are high scoring, as well as between the nodes that
are low scoring. The same result is observed with the method that connect
to nodes with no outgoing edges. The index value for the nodes from the
Systems Theory decreases with a magnitude twice as large as for the naive
method. The index value decreases by a similar amount for the nodes from
the Algebra course and for the ‘BIBO stability’ node. The results are similar
for the method that connect to nodes with the highest degree and for the
method that connect to the nodes with incoming and outgoing edges. The
index value decreases by a similar amount for all nodes with the exception
of ‘BIBO stability’, ‘Cayley-Hamilton theorem’ and ‘Jordan normal form’,
which decreases a bit more. The ranking of the index value stay the same
with the exception of the previous nodes mentioned. For the method that
connect to the nodes with the highest degree the index value decrease by the
same amount for all nodes in the Systems Theory course and by the same
amount for nodes from the Algebra course. The index ranking stay the same
after merge but there are two clear groups of nodes with almost equal index
value. For every method the lowest scoring node is the ‘Commutative’ node.
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5.4 Closeness Centrality index performance

(a) Naive method. (b) Connect to the nodes with the
highest indegree

(c) Connect to nodes with no outgo-
ing edges.

(d) Connect to the nodes with the
highest degree.

(e) Connect to the nodes with incom-
ing and outgoing edges.

Figure 47: Closeness centrality index comparison showing how the index
changes for every method.

The closeness centrality increases for some nodes and decreases for other
nodes, depending on the method. With the naive method, the index values
for the nodes from the Systems Theory course increases by a large amount,
except for ‘BIBO stability’ which increases by a small amount. For the
nodes in the Algebra course, the index value decreases for every node by
a small amount with the exception of ‘Commutative’ which has an index
score of zero. The same behaviour is observed with the method that connect
to nodes with no outgoing edges. The difference is that for this method
the index value for nodes from the Systems Theory course increase by a
smaller amount. For the method that connect to the nodes with the highest
degree, the index value decreases for every node except for ‘Commutative’
which has an index score of zero. The magnitude at which the index value
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decreases is not dependant on which graph the node was originally from.
The behaviour of the method that connect to the nodes with the highest
indegree and the method that connect to nodes with incoming and outgoing
edges is mixed. For the nodes from the Systems Theory course, the index
value increases for ‘System definition’ and ‘Signal definition’ but decreases
for every other node. For the first method the index value decreases more for
the nodes in the System Theory course than the other nodes increase. The
behavior is opposite for the method that connect to nodes with incoming
and outgoing edges. The nodes from the Algebra course decrease for both
methods with a similar magnitude. For every method the lowest scoring
node is the ‘Commutative’ node which has an index value of zero.

5.5 How well do the translation represent the course depen-
dencies

In this section the translated atomic edges and the nodes they connect to
are discussed.

The amount of atomic nodes which the translated atomic edges connect
to differs for the methods. The naive method connect the atomic edges to
every atomic node within the Algebra course. The result is that the atomic
edges are connected to ten atomic nodes. This would probably not be the
case for real subject dependencies within a course. Every single subject
within a course is most likely not a prerequisite for every subject the super
node is connected to. On the other hand, the method that connect to the
nodes with the highest degree only connect to a single atomic node. This
result in the degree being the same for every node except that atomic node.
This is also not a likely scenario, all subjects from the Systems Theory course
that connect to the super node would most likely not depend on the same
single subject. For the method that connect to nodes with highest indegree,
the method that connect to nodes with no outgoing edges and the method
that connect to nodes with incoming and outgoing edges the number of
atomic nodes connected are two, six and three respectively. This is a more
likely scenario regarding the course dependencies. The method that connect
to nodes with highest indegree, connects to the subjects which require the
most previous knowledge. This would be subjects that are complex and
depending on complexity of subjects in the Systems Theory course, could
provide intuitive connections. The method that connect to nodes with no
outgoing edges, looks at which atomic nodes has an outdegree of zero. This
would be subjects that are late in the respective course and can be interpreted
as the learning outcome of the course, which is an intuitive way to connect
the subjects. The last method which connect to the nodes with incoming and
outgoing edges, the method connect to subjects that are central in a course.
The atomic nodes that have incoming and outgoing edges are subjects that
require previous knowledge but is also needed in order to learn something
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else. From an intuitive perspective, it is a better choice than the naive
method and the method that connect to the highest degree, but a worse
choice than the other two methods.

5.6 Which method offers the best translation

Each method has benefits and drawbacks, depending on the desired be-
haviour. The translated atomic edges should result in course and subject
dependencies that intuitively makes sense. The centrality metrics also change
differently for each method. The naive merge is a poor choice as it translates
the super edges into too many atomic edges. The influence of each subject
decreases but the method result in subjects from the System Theory course
having higher influence than the subjects from the Algebra course. The
subjects from the Systems Theory course are also much closer to the other
subjects than before, while the subjects from the Algebra course are less
close. The method that connects to the highest degree is also a poor choice,
because it translates every atomic edge to just a single atomic edge. The
influence of each node also decrease and the ranking of the nodes remain al-
most the same. Subjects from the Systems Theory course are not necessarily
more influential than subjects from the Algebra course. All the subjects are
also less close to the other subjects than they were before. The method that
connect to nodes with the highest indegree make intuitively more sense as it
connects to the subjects that are the most complex. The degree increases by
a small amount for a few nodes, stay the same for most nodes and increases
by a good margin for the nodes with the highest indegree. All subjects from
both courses become less influential, by a similar amount. The ranking of
the most influential nodes also stay the same. Most subjects are less close
to the other subjects. The method that connect to nodes with no outgoing
edges is the method that intuitively makes the most sense, as it connects to
subjects which can be interpreted as the learning goals of the course. The
method does however increase the amount of connection by a large amount.
Subjects from both courses become less influential but the subjects from the
Systems Theory course are more influential than subjects from the Algebra
course. The nodes from the Systems Theory course are much closer to the
other subjects than they were before. The subjects from the Algebra course
are a little less close to the other subjects. Lastly, the method that connect
to the nodes with incoming and outgoing edges is not as intuitive. For a
larger course graph the number of nodes that have both an incoming and
an outgoing edge is expected to be high. The subjects from both courses
are less influential than before but the ranking changes. The subjects from
the Systems Theory course are more influential than the subjects from the
Algebra course, but by a small margin. Most subjects are less close to the
other subjects. Subjects from the Systems Theory course change less than
the subjects from the Alegbra course. Depending on the desired effect on the
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graph, i.e what properties is desired to be preserved, the different methods
have positives and negative sides. The choice of method used for translating
super edges should be chosen based on the desired effect and interpretation.

5.7 Katz centrality parameterization

It is worth commenting that the result from the Katz centrality is based on
the initial centrality β and the damping factor α. Depending on the desired
weighting of the paths, the damping factor α can be adjusted.
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6 Conclusion

In this thesis we have explored different methods for translating abstract
connections in knowledge graphs into more detailed ones. Each method leads
to a different result, both in terms of how many connections are added and
among which subjects. Summarising, the method that connect to nodes that
have the highest indegree resulted in a lowest number of added connections,
and to making the influence of the subjects decreasing the least. The method
also preserves the ranking of which subjects are the most influential, for
almost every subject. This is also observed to happen with the ranking
of which subjects are closest to the other subjects. The intuition of the
method is that the connections should be based on which nodes require the
most previous knowledge.

Relatively to the field example used throughout the thesis, if the desired
outcome of the translation is the preservation of the subjects from the Sys-
tems Theory course, the method that connect to nodes with no outgoing
edges is a valid method. The method results in a lot of connections, which
is not an ideal outcome, but the influence and closeness of the subjects from
the Systems Theory course are high. The closeness will increase for every
subject within the Systems Theory course but decrease with a small margin
for subjects from the Algebra course.

Applying the methods to a pedagogical problem such as learning graph
for higher education, the methods can aid in translating abstract connections
between courses. The methods gives an intuition of how a course is connected
in terms of subjects and the relation between them, as well as how subjects
from different courses relate. The graph models are subject to personal
interpretation, as the CFMs are designed by hand, which should be kept in
mind.

Summarizing, the proposed methods enable to interpret and fuse teachers
opinions about the learning outcome into higher detail. Teachers or the
programme board of a university can thus use the propose methods to find
the appropriate connection between courses and subjects. The results could
then be used to help structure semesters and study programmes.

6.1 Future Work

Throughout this thesis the methods are tested on unweighted graphs. The
application of weights in a knowledge graph is used to indicate how relevant a
subject is to its connected components. An analysis of how well the methods
perform for weighted knowledge graphs would provide additional insight into
their performance. Implementing methods based on other metrics, such as
flow, could provide additional information into which metric the translation
should be based upon.

63



64



A Figures

A.1 Graph comparison

(a) The original learning graph. (b) Naive method.

(c) Connect to the nodes with the high-
est indegree.

(d) Connect to nodes with no outgoing
edges.

(e) Connect to the nodes with the high-
est degree.

(f) Connect to the nodes with incoming
and outgoing edges.

Figure 48: The Systems Theory learning graph compared to the resulting
graph for each method.
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