
Efficient area coverage using a network of drones

Erlend Lone, 10046

December 17, 2020

Department of Engineering Cybernetics

Abstract

This report investigates different approaches for solving the area
coverage problem using a network of drones. It is assumed that the
drones have a priori knowledge about the map and should construct a
mesh network to be able to detect and localize first responders in dis-
aster situations. The drones are small and have limited computational
resources. It is therefore assumed that the network communicates with
a powerful base station that does all the computationally expensive
tasks. To ensure that the base can get information from all drones, it
is of importance that the network stays connected at all times. This
means that the distance between drones cannot be greater than a given
threshold, and there must exist a communication path from each drone
to the base.

Four main techniques for multi-agent area coverage that have been
proposed by different researchers are described, and one of them is
simulated using Python. These four techniques are area partitioning
and coordinate calculation, Voronoi diagrams, virtual potential fields,
and the gradient ascent method. The three latter ones are all used ex-
tensively for controlling multi-robot systems. The implementation is
inspired by an algorithm that takes into account how frequently some
event happens in the mission space and maximizes the probability that
the event is detected.

This project has been carried out in collaboration with the INGE-
NIOUS project funded by the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 833435 and the
Norwegian Research Council project “Autonomous Underwater Fleets”
under the grant agreement No 302435.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Related work . 2
1.3 Problem definition . 3
1.4 Report outline . 3

2 Background theory 4
2.1 Graph theory . 4
2.2 Voronoi diagrams . 4
2.3 Virtual potential fields . 4
2.4 Gradient descent/ascent method 6

3 Methods 7
3.1 Literature review . 7

3.1.1 Efficient Deployment Algorithms for Ensuring Cover-
age and Connectivity of Wireless Sensor Networks . . 7

3.1.2 Sensor Deployment and Target Localization Based on
Virtual Forces . 9

3.1.3 Voronoi–based Coverage Optimization for Mobile Net-
works with Limited Sensing Range — A Directional
Search Approach . 13

3.1.4 Distributed Coverage Control and Data CollectionWith
Mobile Sensor Networks 14

3.2 Implementation . 20

4 Results 21
4.1 Reduction factor of 0.5 . 21
4.2 Reduction factor of 0.8 . 23

5 Conclusion 25
5.1 Future work . 25
5.2 Personal reflection . 25

References 26

List of Acronyms

iNGENIOUS Next-GENeration IoT sOlutions for the Universal Supply
chain

IoT Internet of Things

EU European Union

NGIT Next Generation Integrated Toolkit

SINTEF Stiftelsen for industriell og teknisk forskning

MIN Micro Indoor droNe

FR First responder

LiPo Lithium Polymer

PA Power amplifier

USB Universal Serial Bus

CVT Centroidal Voronoi tessellation

VFA Virtual force algorithm

1 Introduction

iNGENIOUS1 is an EU project that aims to assist first responders (FRs)
in disaster scenes and emergency situations. The project consists of devel-
oping, integrating, testing, and validating the Next Generation Integrated
Toolkit (NGIT) for collaborative response. The use of smart uniforms, boots
and helmets, augmented reality, data intelligence and drone swarms are just
some of the tools and services the project wants to implement in what is
called The First Responder of the Future. Out of several tasks SINTEF has
been assigned as part of the iNGENIOUS project, the construction of the
Micro Indoor droNe (MIN) platform is considered the main one. The MINs
will form a swarm of aerial vehicles which will support search and rescue
operations in dangerous areas. The goal is that the MINs should create a
positioning network, helping the FRs localizing themselves indoor.

The MIN that is to be used to perform the task discussed above, is
called Crazyflie 2.1, depicted in fig. 1. This is a small, lightweight drone
developed and manufactured by Bitcraze. There are several ways to control
the Crazyflie 2.1. For the prototyping phase, SINTEF controls the Crazyflies
by Python scripts running on a laptop that send commands to the drones
through the Crazyradio PA. Crazyradio PA is a long-range open USB radio
dongle based on the nRF24LU1+ from Nordic Semiconductor. As the net-
work of MINs should be deployed to disaster areas, it might not be possible
to use a base station that can communicate reliably with the drones. There-
fore, the long-term goal is that the control of the network is implemented
through the embedded software running on each single drone.

Figure 1: Crazyflie 2.1.2

1https://ingenious-first-responders.eu/ingenious-project/
2https://www.bitcraze.io/products/crazyflie-2-1

1

1.1 Motivation

The technological advances within data processing, batteries and drone tech-
nology in general enable the development of collaborating swarms of small,
lightweight drones. The increased energy density in LiPo batteries leads
to increased flight time, which is the main limitation for multirotor drones.
Despite the vast improvements within processing power, most commercially
available computers do not provide enough computational power to make all
the data processing on-board [6]. Because of this, the implementation de-
scribed in section 3.2 assumes that a base station with strong computational
resources is used.

1.2 Related work

The problem of deploying multiple sensors for effective area coverage has
been studied in a variety of different ways over the years. The paradigm of
multi-robot area coverage was introduced in [12], and the material presented
later in the report will investigate what that article defines as blanket cov-
erage. This means that the objective is to reach a static configuration that
maximizes the detection probability of targets in a given area.

Voronoi diagrams partition an area into several regions with respect to
a set of points called generators. Both [10] and [11] construct Voronoi dia-
grams with respect to each robot’s position. [11] lets one agent move at the
time, constrained that the movement of that agent will increase the total
area covered by the network. [10], on the other hand, formulates a sensory
function defined on the mission space, describing its importance density. Lo-
cally optimal coverage is then achieved when the position of each robot is at
the centroid of its Voronoi region.

The concept of virtual potential forces was first presented in [8] and has
been widely used in obstacle avoidance and local navigation. [9], [13] and
[19] are all examples where this technique has been utilized for deployment
of sensor nodes.

Formulating the area coverage as an optimization problem to maximize
detection probability has also been studied thoroughly. In [14] Li and Cas-
sandras introduced the idea of combining a gradient based update scheme
of the state of the sensors, while implementing a routing protocol so that all
sensor nodes could communicate with a base station. This work was further
expanded to include minimization of communication to preserve energy in
[16], and connectivity preservation in [17].

2

1.3 Problem definition

The overall problem discussed in this report is how a network of drones ef-
ficiently can cover a known map while ensuring that the drone network is
connected at all times. The coverage part of this problem is reminiscent
of the well-studied facility location problem [4], [5], which aims to optimize
the placement of facilities to minimize the weighted Euclidean distance be-
tween the facilities and points that can be interpreted as users. Due to the
connectivity constraint, the problem that is researched in this report differs
somewhat from the facility location problem.

LetM be the map of the area of interest, Ci denote the area covered by
drone i and L be the Laplacian matrix of the graph that is constructed by
the network. λ1 and λ2 are the lowest and second lowest eigenvalue of L.
The problem can then be formulated as

max M∩
⋃
i

Ci

s.t. λ1(L) = 0

λ2(L) > 0

(1)

It is assumed that the mapM is provided by other robots or drones and
therefore known to the drone network prior to the entry. A powerful base
station is assumed used to handle the computationally expensive tasks, and
the connectivity constraint ensures that all the drones can send information
to the base station through the network.

Throughout this report, what is defined to be drones in the above for-
mulation is referred to as agents, robots, sensors, and nodes. The map to
be covered is also called mission space, sensing area, sensing field and region
under surveillance.

1.4 Report outline

Section 2 presents relevant background theory so that the reader should
have a decent understanding of what is described later in the report, with-
out having prior knowledge of the topics presented. Section 3 delves into
four solutions of how the area coverage problem can be solved. Section 4
presents the performance of the implemented approach, while section 5 con-
cludes the work done in this project and discusses several interesting paths
to investigate in the future.

3

2 Background theory

This section presents theory that is used in the approaches that are described
in section 3. For a more in-depth explanation of this theory, the reader is
referred to the given references.

2.1 Graph theory

A graph is defined as G = (V, E), where V is a set of n vertices and E is a
set of edges such that E = {vi, vj} with i 6= j, i, j = 1, . . . , n. The graph is
undirected if (vi, vj) ∈ E and (vj , vi) ∈ E . If x, y ∈ V and (x, y) ∈ E then
the nodes x, y are said to be connected. A path of length r is a sequence of
r + 1 distinct and adjacent vertices. If there is a path between any pair of
vertices, then the graph is connected.

The adjacency matrix of a graph G is a symmetric [n× n] matrix where
all elements are either 0 or 1. A(i, j) = 1 if (vi, vj) ∈ E and A(i, j) = 0
if (vi, vj) /∈ E . The degree matrix of G is a diagonal [n × n] such that
D(i, i) = d(vi), where d(vi) is the number of vertices adjacent to vi.

Using A and D one can define what is known as the Laplacian matrix
as L = D −A. This matrix is symmetric and positive semi-definite and can
be used to analyze whether the graph is connected or not. The graph is
connected if the smallest eigenvalue of L is λ1 = 0, and the second smallest
eigenvalue is λ2 > 0.

2.2 Voronoi diagrams

Let Ω ⊆ Rn and P = {p1, . . . , pk} where all pi are distinct points in Ω and
referred to as generators. The Voronoi region corresponding to point pi is
then defined as:

Vi =
{
q ∈ Ω | ‖q − pi‖2 ≤ ‖q − pj‖2 for j = 1, . . . , k, j 6= i

}
(2)

Each Vi is a polyhedron and Vi ∩ Vj = ∅ for i 6= j. The Voronoi diagram of
Ω is then the set {Vi}ki=1. Optimal placement of resources is just one of a
variety of applications where Voronoi diagrams are useful [5].

Voronoi regions are sometimes referred to as Voronoi cells, and Voronoi
diagrams are also called Voronoi tessellation, Voronoi decomposition or Voronoi
partition. If the centroid of a Voronoi region is used as generator, the tessel-
lation is called Centroidal Voronoi tessellation (CVT).

2.3 Virtual potential fields

The material presented here is found in [7]. The use of virtual potential
forces for obstacle avoidance is common in mobile robotics. This is achieved
by constructing the potential field U so that each robot is repelled from the

4

other robots and obstacles in the mission space. Each robot is then subjected
to a force

F = −∇U (3)

The potential field is divided into two components. Uo describes the field
that is due to the presence of obstacles in the environment, and Ur represent
the field that results from other robots. U can therefore be rewritten as
U = Uo + Ur, which results in F = Fo + Fr.

Uo is constructed in a similar manner as the electrostatic potential be-
tween two electrically charged particles. Let ko be a constant describing the
strength of the field and xi and x denoting the position of the obstacle i
and the position of the robot, respectively. Then ri = ‖xi − x‖2 will be the
Euclidean distance between the robot and obstacle i. The potential field
resulting from all observable obstacles can then be defined as

Uo = ko
∑
i

1

ri
(4)

The potential field due to other robots can be constructed in the same
way but summing over all visible robots j instead of summing over all visible
obstacles.

Ur = −kr
∑
j

1

rj
[sic] (5)

Using the definitions of the potential fields, the virtual force field that
the visible obstacles exerts on each robot is given as

Fo = −∇Uo = −dUo
dx

= −
∑
i

dUo
dri

·
dri
dx

(6)

Which results in

Fo = −ko
∑
i

1

r2
i

·
ri
ri

(7)

and the force exerted by the other robots

Fr = −kr
∑
j

1

r2
j

·
rj
rj

(8)

Combining eqs. (7) and (8) gives

F = −ko
∑
i

1

r2
i

·
ri
ri
− kr

∑
j

1

r2
j

·
rj
rj

(9)

5

2.4 Gradient descent/ascent method

When finding the optimal solution f(x∗) of a convex objective function f(x),
it is natural to search in the direction of the gradient of f(x), denoted ∇f(x).
The search direction is decided by whether the goal is to maximize or min-
imize f(x). The maximum of f(x) can be found by the gradient ascent
method, while the minimum of f(x) can be found by the gradient descent
method. The only difference between these two methods is whether the
search direction is along +∇f(x) or −∇f(x). If the objective function is
non-convex, gradient descent/ascent might converge to a stationary point
that is not the global minimum/maximum.

Given a starting point x for the unconstrained maximization problem
maxx∈Rn f(x), the working steps of the gradient ascent method is to first
evaluate ∇f(x), then choose step size α > 0 either by exact or backtracking
line search [1] and update x according to x = x+α∇f(x). This procedure is
repeated until a stopping criterion is satisfied, which usually is on the form
‖∇f(x)‖2 ≤ η, where η is a small, positive number.

6

3 Methods

3.1 Literature review

The work on this thesis started out with a literature review to get a good
understanding of what research that has been done previously on the area
coverage problem. Not only did the literature review provide information
about how different researchers have attacked the problem, but it also pro-
vided insight into how the problem stated in section 1.3 could be solved
most efficiently. Four different approaches will now be presented, as well as
explanations why the methods described in the first three articles were not
pursued.

3.1.1 Efficient Deployment Algorithms for Ensuring Coverage and
Connectivity of Wireless Sensor Networks

Efficient Deployment Algorithms for Ensuring Coverage and Connectivity
of Wireless Sensor Networks by You-Chiun Wang, Chun-Chi Hu and Yu-
Chee Tseng [15] solves the deployment of sensor nodes by partitioning the
sensing area into small and large regions and finds the coordinates of the
sensor nodes. It is assumed that each sensor node has circular sensing and
communication ranges centered at the node’s position and with radius rs
and rc, respectively. The placement of the sensor nodes depends on the
relationship between rs and rc and is different for small and large regions.
Small regions are defined as areas where the distance between individual
obstacles and between obstacles and the boundary of the sensing area is less
than

√
3rmin, where rmin = min(rs, rc). Large areas are simply areas that

are not small.

Figure 2: Partition of sensing field in [15].

For small regions, the bisector of the region is found by triangulation,
and sensors are placed along this bisector, a distance of rmin apart. Note
that if the bisector intersects with a corner, a sensor is placed in the corner
as well. This procedure ensures both connectivity and coverage, as shown in
fig. 3.

7

Figure 3: Coverage of small regions in [15].

For the large regions, the first sensor is placed at an arbitrary point,
and then the coordinates where six potential neighbors should be placed is
calculated according to table 1. Each Ni in table 1 are placed in a queue Q
and the algorithm enters a loop. For each iteration, a point (x, y) is dequeued
from Q, and a sensor is placed at (x, y) if the point is inside the region, and
not inside an obstacle. The last step of the iteration is to calculate the six
potential neighbors of the sensor placed at (x, y) and add them to Q if their
positions are feasible. This procedure repeats until Q is empty.

Neighbor rc ≤
√

3rs rc >
√

3rs
N1 (x+ rc, y)

(
x+
√

3rs, y
)

N2

(
x+ rc

2 , y −
√
r2
s −

r2c
4 − rs

) (
x+

√
3rs
2 , y − 3rs

2

)
N3

(
x− rc

2 , y −
√
r2
s −

r2c
4 − rs

) (
x−

√
3rs
2 , y − 3rs

2

)
N4 (x− rc, y)

(
x−
√

3rs, y
)

N5

(
x− rc

2 , y +

√
r2
s −

r2c
4 + rs

) (
x−

√
3rs
2 , y + 3rs

2

)
N6

(
x+ rc

2 , y +

√
r2
s −

r2c
4 + rs

) (
x+

√
3rs
2 , y + 3rs

2

)
Table 1: Coordinates for the six potential placements of the next sensors
[15].

When all the regions in fig. 2 are covered, the final configuration of the
sensor network will be as shown in fig. 4. It should be noted that even though
the final configuration of the network will be connected, there is nothing that
ensures that it is connected throughout the execution.

8

The procedure described above was implemented at an early stage of this
project. The connectivity constraint specified in section 1.3 was not consid-
ered, and the implementation was mostly done for illustration purposes. This
was a useful experience, as it became apparent that it would be hard to de-
sign a control scheme that ensured connectivity throughout the deployment.
Because of this, and that the problem solved in [15] is difficult to express
mathematically, lead to the conclusion to not pursue this approach for the
implementation part.

Figure 4: Final coverage of sensing field [15].

3.1.2 Sensor Deployment and Target Localization Based on Vir-
tual Forces

A virtual force algorithm (VFA) is presented by Yi Zou and Krishnendu
Chakrabarty in Sensor Deployment and Target Localization Based on Virtual
Forces [19]. The pseudocode is shown in fig. 5. The algorithm assumes that
there is a given number of sensors placed randomly in a sensing field and aims
to maximize the covered area. The sensors do not move during the execution
of the VFA. The algorithm generates trajectories between the initial and final
positions. After the algorithm is finished, each sensor follows its generated
path. The sensing area is modeled as a circle centered at the sensor’s position.
Zou and Chakrabarty presents both a binary (detected/not detected) and
a probabilistic model of the sensing capabilities. The probabilistic model is
more realistic in regard to how the sensors will behave in real life, but to
keep things simple, only the binary model will be taken into account here.

[19] uses a cluster-based network architecture, which means that there is
a cluster head in the network that has more computational resources than
the sensor nodes. This cluster head is the one that executes the VFA and
generates the paths of the sensor nodes. It is further assumed that all sensor
nodes can communicate with the cluster head from the initial deployment,
and that the sensor nodes only send messages to the cluster head indicating
whether a target is detected/not detected. The cluster head will then query
more information if necessary.

9

Figure 5: Pseudocode of the virtual force algorithm proposed in [19]. The
input parameters are a grid representation of the sensing field and the initial
positions of the sensor nodes.

The sensor nodes will be subject to repelling forces from obstacles and
other sensor nodes that are within a given threshold. What [19] does differ-
ently than what is described in section 2.3, is that nodes that are in areas
with low coverage will exert attractive forces on the sensor nodes that are in
more clustered areas. This leads to a uniform coverage. The sensors will also
experience attractive forces from areas that are defined of higher importance
to cover.

Let the sensor node i be placed at si, P be a point in the sensor field
and r be the radius of the sensing range of node i. Then the binary sensing
model is expressed as

cxy(si) =

{
1, if ‖si − P‖ < r

0, otherwise
(10)

10

The force ~Fi denotes the force that sensor i experiences. This will be the
sum of the force exerted on sensor i by the other sensors, the total repulsive
force from obstacles and the total attractive forces. This can be written as

~Fi =

k∑
j=1, j 6=i

~Fij + ~FiR + ~FiA (11)

To express the force between node i and j, polar coordinates are used,
where the format is (‖~Fij‖,∠~Fij). The Euclidean distance between sensor
i and j is denoted dij and the distance dth (threshold) is the minimum
separation distance of the nodes. ωA and ωR are measures for the attractive
and repulsive forces, respectively. αij is the angle of the line between node i
and j.

~Fij =

(wA (dij − dth) , αij) , if dij > dth
0, if dij = dth(
wR

1
dij
, αij + π

)
, otherwise

(12)

Figure 6 shows four sensors and the forces that act on S1. S2 is attracting
S1, S3 is repelling S1, and S1 is not experiencing any force from S4. F1 is
not drawn in fig. 6, but will in this case be F1 = F12 + F13.

Figure 6: Virtual forces acting on S1, as described in [19].

With the initial deployment as shown in fig. 7 and using the binary

11

sensing model eq. (10), Zou and Chakrabarty achieved the coverage that is
shown in fig. 8.

Figure 7: Initial deployment of sensors in [19].

Figure 8: Final deployment of sensors in [19].

12

Looking at the final configuration of the sensor network, it would be
tempting to implement the VFA to solve the problem defined in section 1.3.
The VFA assumes that each sensor in the cluster can communicate directly
with the cluster head. This imply that the sensor nodes will have a com-
munication range that is far beyond what is applicable for the problem that
this project tries to solve. Even though it was of great interest early in this
project to implement the VFA, the above-mentioned drawbacks made it clear
that it would be better to look for other approaches to implement.

3.1.3 Voronoi–based Coverage Optimization for Mobile Networks
with Limited Sensing Range — A Directional Search Ap-
proach

In Voronoi–based Coverage Optimization for Mobile Networks with Limited
Sensing Range — A Directional Search Approach by John Stergiopoulos and
Anthony Tzes [11], a given number of agents are placed arbitrarily in the
region under surveillance Ω. Ω is then partitioned using Voronoi tessellation,
where the positions of the agents are used as generators (section 2.2). Two
different algorithms are applied as control policies for coverage optimization,
and their performance is compared and analyzed. The trajectories and final
positions the two algorithms produce are shown in figs. 9 and 10.

The first algorithm selects, at each time step, an agent that performs
an optimization problem for finding the direction within its Voronoi region
that increases the total area covered by the network the most. This approach
guarantees that the total area covered by the sensor network will increase for
each time step, as well as guaranteeing that it increases as fast as possible.

The second approach moves the agents toward the centroid of their R-
limited Voronoi region. This region is defined as Vi ∩ Ci, where Vi is the
Voronoi region of agent i and Ci is the uniform circular sensing region cen-
tered at the agents position. As the agents move, the Voronoi region for the
different agents will necessarily also change, until the sensor network reaches
its final state. It is worth noting that this approach follows a scheme called
CVT, and is known to not reach optimum coverage, but instead optimize
some symmetry criterion.

The work done in [11] is interesting and it would be appealing to im-
plement the discussed algorithms. With that being said, the algorithms do
not take a connectivity constraint into account, and each agent is assumed
to compute its Voronoi region and keep track of the positions of the agents
in its neighboring Voronoi regions. It is uncertain whether the Crazyflie 2.1
is capable of this, and as the algorithm proposed in the article described in
section 3.1.4 is more clearly defined, implementing the approach in [11] was
not pursued.

13

Figure 9: Trajectories and final positions of the agents using the first algo-
rithm presented in [11].

Figure 10: Trajectories and final positions of the agents using the second
algorithm presented in [11].

3.1.4 Distributed Coverage Control and Data Collection With
Mobile Sensor Networks

The fourth and final article that will be presented in this section is Dis-
tributed Coverage Control and Data Collection With Mobile Sensor Networks
by Minyi Zhong and Christos G. Cassandras [18]. As the implementation
described in section 3.2 is very similar to the algorithm presented by Zhong
and Cassandras, this article will be described in more detail compared to the
three preceding ones.

Distributed Coverage Control and Data Collection With Mobile Sensor
Networks builds upon the work done by Li and Cassandras in [2] and [14].
[2] gives an overview of what a sensor network is, described from a system
and control theory perspective. [14] on the other hand, looks at the network
as a data collection network, with multiple data sources and a single base
station, and designs a gradient based algorithm to maximize the probabil-
ity that the network detects random events. The gradient based coverage
control scheme used in Distributed Coverage Control and Data Collection
With Mobile Sensor Networks was first presented in [3], and uses the rout-
ing information from each node to a base station. The routing information

14

is conserved by a wireless routing algorithm that runs in parallel with the
optimization process.

Figure 11: Mission space as defined in [18].

The authors states that a sensor network has to perform three tasks
simultaneously. These tasks are coverage control, data source detection and
data collection, where the two first-mentioned ones are most relevant for the
problem defined in section 1.3. How these two tasks are solved in Distributed
Coverage Control and Data Collection With Mobile Sensor Networks are
presented below.

The mission space is defined as a non-self-intersecting polygon Ω ⊂ R2.
R(x) is a function that describes the event density, and maps x ∈ Ω to R.
Further, R(x) ≥ 0 ∀x ∈ Ω and

∫
ΩR(x)dx <∞.

Obstacles in the mission space are also modeled as non-self-intersecting
polygons, denoted Pj ⊂ Ω, j = 1, . . . ,m, where m is the number of obstacles.

The interior of each obstacle is infeasible for the sensors and denoted
◦
P j .

Hence, the feasible part of the mission space can be formulated as
F = Ω\

(◦
P 1 ∪ · · · ∪

◦
Pm

)
. As the infeasible points are not of interest, the

event density is defined as R(x) = 0 for x /∈ F . Let N sensors be deployed,
then the location vector for the sensor network is given as s = (s1, . . . , sN)
where si ∈ F , i = 1, . . . , N . If there are no obstacles present and the
mission area is convex, the sensing capabilities of each sensor in the network
is modelled as

pi(x, si) = p0ie
−λi||x−si|| (13)

where p0i ∈ (0, 1] and λi is a positive constant.
∂ is often used as prefix to describe the boundary of a topological set.

Therefore, the boundary of the feasible set F can be written as
∂F = ∂Ω ∪ P1 · · ·Pm. T is defined as the set of vertices of ∂F . A reflex

15

vertex is a vertex v in T where two edges inside F intersect at v and form
an angle θ > π.

For a point x ∈ F to be visible from y ∈ F , all points on the line between
x and y have to be inside F . This is expressed as (αx+ (1− α)y) ∈ F
∀α ∈ [0, 1]. The set of all such lines associated with x is defined as the
visibility polygon at x and expressed as V (x) ⊂ F . Leading directly from
this definition, the invisibility polygon at x is defined as V (x) = F\V (x).
V1, V2 and V3 in fig. 11 are called impact points. If v is a reflex vertex and
the point x is visible from v and inside the feasible part of the mission space,
then the ray between v and ∂F can be expressed as

I(v, x) = {q ∈ V (v) : q = λv + (1− λ)x, λ > 1} (14)

The sensors are modeled as

p̂i(x, si) =

{
pi(x, si) if x ∈ V (si)

p̃i(x, si) if x ∈ V (si)
(15)

Further, it is specified that p̃i(x, si) ≤ pi(x, si) since the article also
takes into account that the sensors can detect events through obstacles.
In this report it is assumed that all obstacles are non-transparent, hence
p̃i(x, si) = 0.

The coverage optimization problem is constructed by assuming that the
probability of each sensor detecting an event is independent of the probability
that any of the other sensors detect the event. P (x, s) is used to denote this
and is given by

P (x, s) = 1−
N∏
i=1

[1− p̂i(x, si)] (16)

Using P (x, s) together with the event density function R(x) the opti-
mization problem is given as

max
s

∫
Ω
R(x)P (x, s)dx

s.t. si ∈ F, i = 1, . . . , N

(17)

For simplifying notation, the objective function is defined as H(s), and
the fact that the events that occur outside the feasible area F are not of
interest, simplifies the integration area. H(s) can therefore be written as

H(s) =

∫
F
R(x)P (x, s)dx (18)

The derivative of eq. (18) is derived in [2], and is shown to be

16

∂H(s)

∂si
=

∫
Ωi

R(x)
∏
k∈Bi

[1− pk (x, sk)]
dpi (x, si)

ddi(x)

si − x
di(x)

dx (19)

In eq. (19) di(x) is the Euclidean distance between x and si, and Ωi is
the circle centered at si, with a radius of δ, which is the sensing radius of
the node. Bi is a set containing the neighbors of node i, given by
Bi = {k : ‖si − sk‖2 < 2δ, k = 1, . . . , N , k 6= i}.

The gradient ascent method described in section 2.4 is used to update
the state of node i at the next time step, using ηk as step length

sk+1
i = ski + ηk

∂H(s)

∂ski
(20)

When it comes to network connectivity preservation, Zhong and Cassan-
dras define c1(si, sj) and c2(si, sj) which are boolean variables that specifies
whether two sensor nodes are within communication range and line-of-sight.
With C denoting the communication radius, these variables are given as

c1(si, sj) =

{
1, ‖si − sj‖2 ≤ C
0, otherwise

(21)

c2(si, sj) =

{
1, αsi + (1− α)sj ∈ F ∀α ∈ [0, 1]

0, otherwise
(22)

The link between two nodes is defined as strong if both c1(si, sj) and
c2(si, sj) equal 1. Indicating whether or not a link is strong can therefore be
defined as c(si, sj) = c1(si, sj) · c2(si, sj).

Figure 12: Graphical representation of strong links defined in [18]. The
communication range for node 0 (base station) and node 5 are shown as
dotted circles.

As the goal of the sensor network is stated, and how the connectivity
of the sensors is defined, Zhong and Cassandras proceed to present how
the network itself is represented. The graph G(s) = (N , E(s)) is used to

17

model the sensor network, where N = 0, 1, . . . , N is a set containing all
the node indices. The base station is assigned the index 0. The edges
of the graph are all edges between strongly connected nodes, defined as
E(s) = {(i, j) : i, j ∈ N , i 6= j, c(si, sj) = 1}. Instead of using the Laplacian
matrix L of the graph to preserve connectivity, Zhong and Cassandras aim to
keep the set of all loop-free paths from node i to the base station non-empty.
This is stated as Πi 6= ∅, ∀i ∈ N .

The article further assumes that there is a routing algorithm that runs in
parallel with the optimization procedure. The goal of the routing algorithm
is to ensure that there exists a set of paths that enables node i to send data
to the base station. This set is denoted as Π̂i, and the set of paths in Π̂i

that consists of only strong links is defined as Πi = Πi ∩ Π̂i. Path k in Πi

is denoted πi,k and contains an ordered set of the node indices in this path.
The indices are ordered by their hop counts from node i to the base station.
The jth element in path k is denoted πji,k. It is also assumed that the routing
algorithm keeps track of the indices of the nodes that are one step further
away from the base station than what i is, as well as the indices of the nodes
that are one step closer to the base. These two sets are called the upstream
Ui and downstream Di of node i, and given as Ui = ∪j,kωi(πj,k), where

ωi(πj,k) =

{
πl−1
j,k , if i ∈ πj,k, i 6= j and i = πlj,k
∅, otherwise

(23)

and Di = {j : i ∈ Ui, j ∈ {0, ..., N}}, respectively.
The last things to define before presenting the algorithm that is used are

the projection of x ∈ R2 on a set S ⊂ R2 as PS(x) = arg miny∈S ‖x− y‖2
and X (s) =

{
x : x ∈ R2, c(x, s) = 1

}
is the region in which all the points can

form a strong link with s. The algorithm Zhong and Cassandras proposes is
displayed in fig. 13.

Theorem 1 in in the article states “Assuming only one node performs a
state update at any given time and Πj 6= ∅ for all j ∈ 1, . . . , N before the
state update, an iteration of Algorithm 1 preserves the connectivity of G(s).”.

Figure 14 shows the coverage that the authors of [18] are able to achieve
when ensuring that each node has at least one other node inside its commu-
nication range and in its field of view.

18

Figure 13: Algorithm 1 defined in [18].

Figure 14: Covered area achieved in [18].

19

3.2 Implementation

A similar approach that Zhong and Cassandras proposed in [18] is imple-
mented using Python, and resulted from further developing the code pro-
vided by Magnus Berdal3. It should be noted, as stated in [12], that the
algorithm in fig. 13 only ensures that the network reaches a local optimum.
This will also be the case for the implementation described below. The
source code is found at https://github.com/erllon/Project-thesis.git.

The Python package Shapely is used for constructing the mission space
and the obstacles, as well as analyzing different properties with these geo-
metric objects. Scipy.spatial is used for spatial operations such as Delaunay
triangulation and computing distances between points. For numerical in-
tegration, the package Quadpy is used. Matplotlib.pyplot is utilized for
visualization of the network’s final configuration and how the covered area
develops during the deployment.

Each agent has a uniform circular sensing area with radius 4, and a
communication radius of 8. The relationship between the sensing and com-
munication radii is designed this way to improve the visualization but is
unfortunately not achievable for the drones described in section 1. The laser
sensors that are mounted on the Crazyfies used by SINTEF can measure dis-
tances up 4 meters and the communication range of the Crazyflies is about
2 meters, depending on the environment.

As defined in eq. (15), the sensing capability of sensor i is modeled as
p0ie

−λi||x−si|| for all visible points from si. It is assumed that the sensors
on all agents are equal, meaning p0i = 1 and λi = 10−5 for all i. Similar to
[18], the base station is placed in a corner and all the agents will initially be
located there as well. The event density is uniform, hence R(x) = 1.

Compared to the work done in [18], there is no routing algorithm running
in parallel with the optimization procedure. When each agent is updating its
position, it performs the following steps, which is run until the convergence
criterion is fulfilled for all agents.

1) Use eq. (20) to generate a new position candidate

2) Check if the position candidate is feasible and get the objective function
value at that point.

3) If the position candidate is a feasible point, the objective function value
at the position candidate is greater than at the current position and
the position candidate is inside the communication range of at least
one other agent, go to step 4), else, decrease the step size and go to
step 1).

4) Move to the position candidate and check if some convergence criterion
is fulfilled.

3https://github.com/mBerdal/master_project_coverage.git

20

4 Results

The results that the abovementioned implementation produced are presented
below. Two step size reduction factors are used for deciding a new position
candidate for the agents when the conditions in step 3) fail. Changing the
optimization tolerance did not make much difference in performance.

The base station is located in the lower left corner and is represented by a
red triangle. As there is not used any routing algorithm, the red lines indicate
what [18] defines as strong connections. For some network configurations
this will be equal to the communication paths, but not always, as it is not
guaranteed that this will produce loop-free paths.

4.1 Reduction factor of 0.5

Figures 15 and 16 shows the initial and final positions of the drones in the
network when the step size was reduced by one-half each iteration. The net-
work of three drones ended up covering an area of 150.5 out of a theoretically
possible area of 150.8. The five drones in fig. 16 covers a total area of 216.5
but could theoretically cover an area of 251.3. As there is some overlapping in
the sensor regions for this network, and that two of the drones are positioned
too close to an obstacle to fully utilize their sensing capabilities, the ratio
between covered area and theoretically possible covered area is considerably
lower for the five-drone-network.

Figure 15: Initial and final positions using a step size reduction factor of 0.5.

How the amount of covered area develops over time is shown in fig. 17.
The network of three drones converges to its final configuration in 42 itera-
tions, and when deploying five drones, the network converges in 85 iterations.

21

Figure 16: Initial and final positions using a step size reduction factor of 0.5.

� �� �� �� ��

�

��

���

���

���

	�������
��

�������
�������

Figure 17: Comparison of covered area using 3 and 5 drones, reduction factor
of 0.5.

22

4.2 Reduction factor of 0.8

Changing how the step size is reduced changes the behavior of the network.
Using the same initial step size as for the networks shown in figs. 15 and 16
but multiplying the step size by 0.8 instead of 0.5 after each iteration, yielded
the results shown in figs. 18 and 19.

It is clear from figs. 18, 19 and 20 that the selection of step size has a
big impact of the final area the network covers. The network of three drones
in fig. 18 covers an area of 124.4. This is almost 20% less than what was
achieved in fig. 15.

Figure 18: Initial and final positions using a step size reduction factor of 0.8.

When deploying five drones, an area of 194.7 ended up being covered,
which also is considerably less than what was covered in fig. 16. Figure 19
also displays how the strong connections might form paths containing loops
and can therefore not be used directly as communication paths to the base
station.

Comparing the performance when 0.8 is used as step size reduction fac-
tor with what was used in section 4.2, it is worth noting that the network
consisting of three drones takes longer to reach its final configuration. For
the five-drone-network on the other hand, the amount of time steps is the
same.

23

Figure 19: Initial and final positions using a step size reduction factor of 0.8.

� �� �� �� 	�

�

��

��

��

���

���

���

���

���

��������

�������
�������

Figure 20: Comparison of covered area using 3 and 5 drones, reduction factor
of 0.8.

24

5 Conclusion

This report has provided a thorough description of the area coverage prob-
lem using a multi-agent network and presented how four research papers
have solved it. A similar approach to what was presented in one of these ar-
ticles was then implemented as a simulation using Python. The article that
inspired the simulated algorithm formulated the coverage problem as a max-
imization problem and solved it by using the gradient ascent method, as well
as utilized a routing algorithm to ensure connectivity. How the implemented
algorithm performed using different parameter values was then analyzed, and
one could definitely see that the choice of parameters impacted how well the
network covered the given area.

5.1 Future work

There are multiple paths that can be further explored from this work. It
would be very interesting to try to implement a routing algorithm in the
same way as done in [18] to see how the connectivity can be ensured in
a better way, leading to a more efficient coverage. Investigating how one
could develop an algorithm to get the three other approaches to guarantee
connectivity at all times would also be an interesting path to follow in the
future.

It would of course be of interest to study how one could apply a coverage
algorithm in real life, using the Crazyflie 2.1. If one is able to achieve this, a
natural next step is to get one or mulitple robots to map an area and letting
the network of drones use the provided data in a known-map algorithm.

5.2 Personal reflection

Working with this project has been exciting from start to end. At times, it
has been demanding to get my head around all the different topics that one
needs to have a decent understanding of when working with the multi-agent
area coverage problem. With that being said, it has been of great interest to
be able to get a detailed look at how researchers present their findings and
how they present the associated theory.

It has also been very interesting to see how the discussed problem can
be solved in many different ways. All the articles that I have read as part
of this work have of course not been as relevant for the problem defined in
section 1.3 as the four presented in section 3. Even if there are many articles
that I have read and studied that have not provided some visible results,
they have given me a broader understanding of how the general problem
of area coverage can be solved. This understanding is something that I will
take with me in future work and has definitely given me ideas of what I want
to further study.

25

References

[1] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.

[2] C. G. Cassandras and Wei Li. “Sensor Networks and Cooperative Con-
trol.” In: Proceedings of the 44th IEEE Conference on Decision and
Control. 2005, pp. 4237–4238.

[3] C.G. Cassandras. “Distributed Coverage Control in Sensor Network
Environments with Polygonal Obstacles.” In: vol. 41. July 2008, pp. 4162–
4167.

[4] Z. Drezner and H. Hamacher. “Facility location - applications and the-
ory.” In: 2001.

[5] Qiang Du, Vance Faber, and Max Gunzburger. “Centroidal Voronoi
Tessellations: Applications and Algorithms.” In: SIAM Rev. 41.4 (Dec.
1999), 637–676. url: https://doi.org/10.1137/S0036144599352836.

[6] M. Elbanhawi et al. “Enabling technologies for autonomous MAV op-
erations.” In: Progress in Aerospace Sciences 91 (2017), pp. 27 –52.
url: http : / / www . sciencedirect . com / science / article / pii /
S0376042116300367.

[7] Andrew Howard, Maja J. Matarić, and Gaurav S. Sukhatme. “Mo-
bile Sensor Network Deployment using Potential Fields: A Distributed,
Scalable Solution to the Area Coverage Problem.” In: Distributed Au-
tonomous Robotic Systems 5. Ed. by Hajime Asama et al. Tokyo:
Springer Japan, 2002, pp. 299–308.

[8] O. Khatib. “Real-time obstacle avoidance for manipulators and mo-
bile robots.” In: Proceedings. 1985 IEEE International Conference on
Robotics and Automation. Vol. 2. 1985, pp. 500–505.

[9] Guilherme Pereira et al. “Decentralized motion planning for multiple
robots subject to sensing and communication constraints.” In: Depart-
mental Papers (MEAM) (Apr. 2003).

[10] M. Schwager, J. Slotine, and D. Rus. “Decentralized, Adaptive Control
for Coverage with Networked Robots.” In: Proceedings 2007 IEEE In-
ternational Conference on Robotics and Automation. 2007, pp. 3289–
3294.

[11] Yiannis Stergiopoulos and Anthony Tzes. “Voronoi-based Coverage
Optimization for Mobile Networks with Limited Sensing Range - A
Directional Search Approach.” In: July 2009, pp. 2642 –2647.

[12] Xinmiao Sun, C.G. Cassandras, and Kagan Gokbayrak. “Escaping Lo-
cal Optima in a Class of Multi-Agent Distributed Optimization Prob-
lems: A Boosting Function Approach.” In: Proceedings of the IEEE
Conference on Decision and Control 2015 (Sept. 2014).

26

https://doi.org/10.1137/S0036144599352836
http://www.sciencedirect.com/science/article/pii/S0376042116300367
http://www.sciencedirect.com/science/article/pii/S0376042116300367

[13] H. Tnunay et al. “Distributed collision-free coverage control of mobile
robots with consensus-based approach.” In: 2017 13th IEEE Interna-
tional Conference on Control Automation (ICCA). 2017, pp. 678–683.

[14] Wei Li and C. G. Cassandras. “Distributed Cooperative coverage Con-
trol of Sensor Networks.” In: Proceedings of the 44th IEEE Conference
on Decision and Control. 2005, pp. 2542–2547.

[15] You-Chiun Wang, Chun-Chi Hu, and Yu-Chee Tseng. “Efficient de-
ployment algorithms for ensuring coverage and connectivity of wireless
sensor networks.” In: First International Conference on Wireless In-
ternet (WICON’05). 2005, pp. 114–121.

[16] M. Zhong and C. G. Cassandras. “Asynchronous distributed optimiza-
tion with minimal communication.” In: 2008 47th IEEE Conference on
Decision and Control. 2008, pp. 363–368.

[17] M. Zhong and C. G. Cassandras. “Asynchronous distributed optimiza-
tion with minimal communication and connectivity preservation.” In:
Proceedings of the 48h IEEE Conference on Decision and Control (CDC)
held jointly with 2009 28th Chinese Control Conference. 2009, pp. 5396–
5401.

[18] M. Zhong and C. G. Cassandras. “Distributed Coverage Control and
Data Collection With Mobile Sensor Networks.” In: IEEE Transactions
on Automatic Control 56.10 (2011), pp. 2445–2455.

[19] Y. Zou and Krishnendu Chakrabarty. “Sensor deployment and tar-
get localization based on virtual forces.” In: IEEE INFOCOM 2003.
Twenty-second Annual Joint Conference of the IEEE Computer and
Communications Societies (IEEE Cat. No.03CH37428). Vol. 2. 2003,
1293–1303 vol.2.

27

	Introduction
	Motivation
	Related work
	Problem definition
	Report outline

	Background theory
	Graph theory
	Voronoi diagrams
	Virtual potential fields
	Gradient descent/ascent method

	Methods
	Literature review
	Efficient Deployment Algorithms for Ensuring Coverage and Connectivity of Wireless Sensor Networks
	Sensor Deployment and Target Localization Based on Virtual Forces
	Voronoi–based Coverage Optimization for Mobile Networks with Limited Sensing Range — A Directional Search Approach
	Distributed Coverage Control and Data Collection With Mobile Sensor Networks

	Implementation

	Results
	Reduction factor of 0.5
	Reduction factor of 0.8

	Conclusion
	Future work
	Personal reflection

	References

