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Abstract

This thesis investigates how Micro Indoor droNes (MINs) can be incrementally
deployed into an unknown environment for enabling the localization of First Re-
sponders (FRs). FRs are the first to enter a disaster area and put their own lives
at risk for saving others. As many disaster areas are Global Navigation Satellite
System (GNSS) denied environments, the positions of the FRs are not available.
The goal of the MINs is therefore to deploy into the unknown environment to form
a mesh network that enables localization of the FRs. If the FRs are equipped with
a device that can communicate with the MINs, and that the network is connected
to a base station placed outside the GNSS denied environment, the base station
will be able to generate a good estimate of the positions of the FRs.

Two deployment schemes for the MINs are proposed. As the previous research on
incremental deployment is very limited, the first scheme considers deployment in
1D. A repelling potential field is defined, aiming to ensure that the deploying MIN
explores parts of the real line that has not been explored prior to its deployment.

The second deployment scheme introduces a novel procedure for calculating an
exploration direction and combines this with the classical virtual potential field
method. The deployment scheme assumes that the environment is unknown, and
depends solely on the limited local knowledge of each MIN. This limited knowl-
edge is utilized to the fullest so that the deploying MIN follows an obstacle free
path until it reaches the latest deployed MIN and starts exploring. The way the
deployment scheme is constructed will ensure that the network of MINs will be
connected when the deploying MIN finishes its deployment.
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Sammendrag

Denne avhandlingen undersøker hvordan mikrodroner kan trinnvis bli sendt inn i
et ukjent område for å muliggjøre lokalisering av førsterespondere. Førsterespon-
dere er de første som entrer et katastrofeområde og setter sine egne liv i fare for å
redde andre. Siden mange katastrofeområder er utilgjengelige for globale satellit-
tbaserte systemer for navigering og posisjonering, vil ikke posisjonene til førstere-
sponderene være tilgjengelige. Målet for mikrodronene er derfor å deployere inn
i det ukjente området for å danne et mesh-nettverk som muliggjør lokaliseringen
av førsteresponderene. Dersom førsteresponderene er utstyrt med en enhet som
kan kommunisere med mikrodronene, og nettverket er koblet til en basestasjon
som er tilgjengelig for global posisjonering, så vil basestasjonen kunne estimere
posisjonene til førsteresponderene.

To metoder for å sende mikrodronene inn i det ukjente området er foreslått. Siden
tidligere forskning innenfor trinnvis deployering er veldig begrenset, tar den første
metoden for seg deployering i 1D. Et frastøtende potensialfelt er definert, med det
mål om å sørge for at mikrodronen som for øyeblikket blir deployert utforsker
deler av den reelle linjen som ikke har blitt utforsket før.

Den andre metoden introduserer en ny prosedyre for å finne en retning som skal
undersøkes og kombinerer den med klassisk bruk av potensialfelt. Deployer-
ingsmetoden antar at området er ukjent og avhenger bare av den begrensede lokale
kunnskapen til hver mikrodrone. Denne begrensede kunnskapen er fullt utnyttet
slik at den mikrodronen som for øyeblikket blir deployert følger en kollisjonsfri
bane til den når frem til den forrige deployerte mikrodronen og begynner å ut-
forske videre. Måten deployeringsmetoden er bygget opp vil sørge for at nettverket
av mikrodroner vil være sammenkoblet når hver drone fullfører sin deployering.
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Preface

Problem description
FRs are the first to enter the emergency scene in disaster situations, exposing them-
selves to extreme risks. Developing tools that assist the FRs in these dangerous sit-
uations will not only enable them to work more efficiently, but make sure that their
work can be done in a safer manner. By introducing different types of autonomous
robots equipped with a variety of sensors, the overall perception the FRs have of
the emergency scene can be greatly enhanced [1].

The disaster scenes considered in this thesis will mainly take the form of semi-
collapsed buildings. This leads to that the localization of the FRs becomes a chal-
lenge, as these types of scenes typically are GNSS denied environments. With this
in mind, the project will investigate how MINs can be deployed with the aim of
enabling the localization of the FRs. Assuming that the FRs are equipped with a
device that can communicate with the MINs, the position of the FRs relative to the
mesh network can be estimated. If at least one MIN is within range of a base sta-
tion that is located outside the GNSS denied environment, a fairly good estimate
of the global position of the FRs can be made.

The deployment of the MINs has to take the limited sensing and computation ca-
pabilities of the drones into account. A method that has been used extensively
for deployment and obstacle avoidance in mobile robotics is the virtual potential
fields method [2]. The main advantages of this method is that it does not require
that the robots have thorough knowledge about their surroundings and construct-
ing the potential field is not computationally expensive. The robots typically form
a potential field by using information about the inter-robot distances and measured
distance to obstacles in the environment. The movement of the robots is decided
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by the force that the robots experience as they are placed in the virtual potential
field.

Deploying the MINs incrementally will reduce the complexity of the deployment
in the sense that each MIN does not have to consider the trajectories of the other
MINs while flying. Another benefit of deploying the drones one-by-one is that the
already deployed drones may aid the navigation of the currently deploying one. An
example of this is letting the currently deploying drone follow a path that already
has been taken by previously deployed drones. This will lead to that the currently
deploying drone follows a collision-free path up until it reaches the last deployed
drone.

The main tasks for this thesis can be summarized as:

1. Propose an exploration strategy for MINs that are incrementally deployed
into an unknown environment using virtual potential fields

2. Ensure that the MINs construct a mesh network to aid the localization of the
FRs
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Work description
The work in this thesis started out as a continuation of my semester project [3]. The
goal of that project was to investigate how a network of mobile agents with perfect
circular sensing areas could maximize their combined coverage while remaining
connected. As I started working more closely with the INGENIOUS project at
SINTEF than what was the case for the semester project, the aim shifted from
area-coverage to the construction of a mesh network. These two problems are
related in the sense that the maximum coverage is typically achieved when the
agents are distributed uniformly, and a network operates most energy efficienly
when its nodes are uniformly distributed in the area of interest.

Assuming that the drones that are used in the INGENIOUS project have perfect
information of the area around itself is not feasible. The sensors mounted on the
drone are range sensors with a limited field of view. INGENIOUS also aims to
deploy the drones in unknown environments, which impose further constraints of
the knowledge that is available to the drones.

These restrictions introduced many new challenges compared what was investi-
gated in the semester project. The fact that the environment is unknown and that
the drones will not form any kind of map of the area, results in that the move-
ment of the drones must be decided based on the local knowledge of each drone.
Restricting the sensing information of the drones means that only linear distance
measurements within a limited field of view are available. The reduction in sensor
field of view leads to that each drone is unable to sense obstacles in some directions
relative to itself, leading to an increased risk of collision.

All the removed assumptions mean that the performance of the deployment had
to be reformulated. Defining a new performance metric was therefore also an
important challenge that needed to be addressed.
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Chapter 1

Introduction

INGENIOUS is an European Union (EU) project that aims to assist FRs in crises
and disaster scenarios. The project includes the development, integration, testing,
and validation of the Next Generation Integrated Toolkit (NGIT) for collaborative
response. The use of smart uniforms, boots and helmets, augmented reality, data
intelligence and drone swarms are just some of the tools and services the project
wants to implement in what is called The First Responder of the Future. The main
task that SINTEF has been assigned as part of this project is the construction and
development of the MIN platform. The MINs will form a mesh network, and each
MIN will be equipped with sensory capabilities enabling the network to localize
the FRs within the perimeter.

The MIN that is used in the project is Crazyflie 2.1, depicted in fig. 1.1. This is
a small, lightweight drone developed and manufactured by Bitcraze. In the ini-
tial prototyping phase, SINTEF controls the CrazyFlies by running Python scripts
on a laptop that acts as a base station, communicating with the drones through
the Crazyradio PA. Crazyradio PA is a long-range open USB radio dongle based
on the nRF24LU1+ from Nordic Semiconductor. The MINs should be able to
be deployed in GNSS denied areas, where it is not feasible to assume that the
base station would be able to communicate with each MIN throughout the whole
deployment. The long-term goal is therefore that the control of the network is
implemented through the embedded software running on each individual drone.

1



2 Introduction

Figure 1.1: Crazyflie 2.1.1

1.1 Motivation
Making the use of Unmanned Aerial Vehicles (UAVs) in Search and Rescue (SAR)
missions more efficient have been put forward by several researchers [4–6]. In [4],
Alotaibi et al. propose a new technique where the SAR tasks are distributed among
multiple UAVs in an attempt to save as many victims as possible in the shortest
amount of time. Rivera et al. implements a human detection and geolocation sys-
tem in outdoor environments [5]. The detection system consists of two cameras,
an optical camera that is used during daytime, and a thermal camera aids the detec-
tion during nighttime. The data from the detection system is combined with GPS
data for localizing the detected persons. Kulkarni et al. use reinforcement learning
in [6] with the aim that a single UAV should localize a victim that is trapped in an
indoor environment as fast as possible.

When used in SAR missions, the goal of the UAVs is traditionally to locate persons
in imminent danger. An advantage of using MINs instead of larger UAVs for SAR
missions inside partially collapsed buildings and other disaster areas, is that MINs
are a lot smaller, and are therefore able to enter tighter areas than traditional UAVs.

Technological advances within data processing and drone technology in general,
combined with the increased energy density in LiPo batteries, has enabled the
development of swarms of collaborating MINs. The improvements within battery
technology has lead to increased flight time, which for a long time was - and still
are - the main limitation of multirotor drones.

1https://store.bitcraze.io/products/crazyflie-2-1

https://store.bitcraze.io/products/crazyflie-2-1
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1.2 Thesis contribution
FRs have to work in unknown GNSS denied environments. In the absence of
GNSS signals there is no system that provide the locations of the FRs. The idea
that is studied in this thesis is that MINs are deployed incrementally into mission
area to form a mesh network. As the MINs reach their final configuration, they
function as beacons and could support the localization of the FRs. Assuming that
the FRs are equipped with receiving tags, the relative position of the FRs can be
estimated. If at least one MIN in the mesh network is within the range of a base
station that is placed outside the GNSS denied area, the global position of the FR
can be estimated fairly well. This allows the FRs to work more efficiently, and
those who are in charge of the SAR mission will have a better picture of where the
different FRs are located.

Previous research on for incrementally deploying mobile agents into a mission area
is extremely limited. Most authors either assume that the robots are deployed all at
once or that the robots initially are distributed randomly in the mission area. The
majority of the methods that are proposed for mobile robots tries to solve the area-
coverage problem assuming that the robots have perfect circular sensing areas. In
this project however, the drones have limited sensing information, and each drone
must utilize its local knowledge so that all the drones collectively form a mesh
network that enables localization of FRs. This thesis introduces therefore a novel
deployment scheme that can be expanded within several branches within mobile
robotics.

1.3 Report outline
Chapter 2 starts of by providing the necessary background theory needed to get
an introduction to how the virtual potential fields methodology works. After the
background theory is presented, chapter 2 proceeds to give a detailed description
of previous work that has been conducted within multi-robot systems, incremental
deployment and the using potential fields within robotics. Chapter 2 is concluded
by a presentation of how the system is modeled in this thesis.

Chapter 3 presents results for an exploration case in 1D. As the previous work on
initial incremental deployment in very limited, the 1D case was considered as a
starting point, building a theoretical first approach in an oversimplified environ-
ment. The idea was to start from a simple case and proceed to build upon this by
adding complexity to the problem.

Chapter 4 expands the mission area from 1D to 2D. Increasing the dimensionality
posed several new challenges and implied that the approach build in the 1D case
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had to be adapted. Chapter 4 gives a thorough description of the new proposed
deployment scheme, and its performance is then analyzed.

Chapter 5 concludes the thesis by summarizing the work. The results are discussed
in detail, and suggestions on how the novel deployment scheme can be improved
in the future is presented.



Chapter 2

Background

2.1 Background theory
In the subsections below, the terms “agent”, “sensor node”, “mobile robot”, etc.
are used interchangeably. This is done in an attempt to use the same wording as
the referenced articles.

2.1.1 Virtual potential fields

Constructing virtual potential fields is a common technique for deploying sensor
nodes as well as for obstacle avoidance in mobile robotics. The goal is that the
nodes that are placed in the field will be repelled from areas that might cause harm
to the them, and possibly attracted to areas that are considered important [2]. In
most cases, the total potential field repels each agent from obstacles and other
agents in the mission area. If a target position is known to the agents, the total
potential field will also contain an attractive component, which pushes each agent
toward its target position. This means that the total potential field will usually
be Utot = Urep + Uatt. All obstacles within a given threshold distance, do, will
contribute to the repelling field, which can be written as

Uobs,j =

1
2kobs

(
1

‖ri,j‖ −
1
do

)2
if ‖ri,j‖ ≤ do

0 otherwise
(2.1)

leading to
Urep =

∑
j

Uobs,j (2.2)

kobs is a positive constant and ‖ri,j‖ = ‖xi − xj‖ is the shortest distance between
agent i and the jth obstacle..

5



6 Background

The attractive field is traditionally defined as

Uatt =
1

2
katt ‖xi − xg‖2 (2.3)

where katt is a positive constant and xg is the target position.

As the agents are placed in the virtual potential field, they will experience a force
that is defined as

Ftot = −∇Utot (2.4)

∇ is a linear operator, and it can therefore readily be seen that Ftot can be written
as

Ftot = −∇Urep −∇Uatt
= Frep + Fatt

(2.5)

The repulsive force that agent i experiences will be

Frep =
∑
j

Fobs,j (2.6)

where

Fobs,j =

−kobs 1
‖ri,j‖2

(
1

‖ri,j‖ −
1
d0

)
ri,j
‖ri,j‖ if ‖ri,j‖ ≤ do

0 otherwise
(2.7)

The attractive force acting on agent i is expressed as

Fatt = −katt(xi − xg) (2.8)
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2.2 Previous work

2.2.1 Multi-robot systems

The goal of multi-robot systems is to either execute a task more efficiently than
what a single robot is able to do, or perform a mission that simply is not possible
to accomplish using a single robot. Cooperation between the individual robots that
constructs the multi-robot system is crucial for evaluating whether a multi-robot
system performs better than what an equivalent system consisting of a single robot
could. Cooperative robotics is the studied in [7, 8].

Swarm robotics is a sub-domain of multi-robot systems, and has some main char-
acteristics that distinguishes it from general multi-robot systems. According to [9],
these are:

• robots are autonomous;

• robots are situated in the environment and can act to modify it;

• robots’ sensing and communication capabilities are local;

• robots do not have access to centralized control and/or to global
knowledge;

• robots cooperate to tackle a given task.

In [10] Barca and Sekercioglu identifies challenges one is faced with when de-
signing a swarm robotics systems for real-life implementation. The highlighted
challenges are:

1. Selecting appropriate centralized or decentralized communication and con-
trol schemes.

2. Incorporating important behaviours and traits such as self-organization, scal-
ability and robustness.

3. Devising mechanisms that support goal-directed formations, control and
connectivity.

4. Implementing mapping, localization, path planning, obstacle avoidance, ob-
ject transport and object manipulation functions that enable swarms of robots
to interact efficiently with the environment.

5. Addressing problems related to energy consumption.
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Barca and Sekercioglu describe how the challenges have been addressed i previ-
ous research, and come to the conclusion that in most cases, only some of the
challenges have been solved. They proceed to state that in order to successfully
implement a swarm robotics system in real life applications, one has to address
larger number of challenges simultaneously.

A common task for swarm robotics is area coverage. There are mainly three differ-
ent approaches to area coverage using a swarm of mobile agents: blanket coverage,
barrier coverage and sweep coverage [11]. Barrier coverage is distinguished from
blanket and sweep coverage in the way that it aims to prevent unwanted penetration
through the barrier constructed by the swarm, whereas blanket and sweep coverage
aim to maximize the probability that some event in the mission area is detected.
Sweep coverage is characterized by the fact that the swarm moves continuously,
while blanket cover aims to reach a static equilibrium that maximizes the covered
area.

A more recent study from 2017 [12], defines multiple sub-categories of coverage.
For this thesis however, it is sufficient to compare the definitions of blanket and
sweep cover found in [11]. Examples of the blanket cover approach are found in
[13–17]. Repeated sweep coverage is investigated in [18–21], where the authors
try to mimic how ants produce pheromones for navigating the swarm. The robots
leave chemical markings that evaporate with time. Each robot can sense the inten-
sity of the chemical marks in its neighborhood, and based on these measurements,
each robot decide what area that should be covered/explored next. Tasks that re-
quire repeated coverage are typically mine sweeping, surveillance and search and
rescue missions [18].

For a comprehensive review of swarm robotics, the reader is referred to [22].

2.2.2 Potential fields

After being introduced by Khatib in [2], virtual potential fields have been used
extensively for obstacle avoidance in mobile robotics due to its simple structure
and the small amount of calculations needed.1 Even though the method is simple
to implement, it also has some inherent limitations. According to [25] two such
limitations are the presence of local minima and that the agents are not able to pass
between closely spaced obstacles. Khatib developed the potential field approach
with the intent that it should be used for on-line obstacle avoidance in situations
where a robot does not have prior knowledge about the obstacles in its configu-
ration space. The robot would construct a virtual potential field based on what

1Khatib actually introduced the potential field approach as early as 1980 in [23], but [2], that was
published five years later, is the first paper that describes the approach comprehensively [24].
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obstacles it sensed at any given time.

For reference, the repulsive and attractive fields defined in [2] are stated. The total
artificial potential field is the sum of the two.

The repulsive field is

UO(x) =

1
2η
(

1
ρ −

1
ρ0

)2
if ρ ≤ ρ0

0 if ρ > ρ0

(2.9)

where η is a positive constant gain, ρ is the shortest distance between the robot and
an obstacle, and ρ0 denotes the limit distance the the potential field has influence
on the robot.

The attractive field is
Uxd

(x) =
1

2
k (x− xd)

2 (2.10)

where k is a positive constant gain and xd is the goal position of the robot.

The majority of other previous research that has been done for deploying mobile
agents into an area using the potential field method either adopts the original ap-
proach from Khatib, or propose improvements by changing the repulsive field. The
attractive potential field is in most cases the same as what Khatib used. However,
in [26] Mac et al. proposes modifications of the repulsive field as well as the at-
tractive one. They add a term including the velocity of the robot to the attractive
field and multiplies the original repulsive field by the distance between the agent
and the goal position. These modifications result in the new potential fields de-
fined in eqs. (2.11) and (2.12). This ensures that the risk of being trapped in a local
minimum is avoided. The latter modification is also performed in [27, 28].

U∗O(x) =

1
2η
(

1
ρ −

1
ρ0

)2
(x− xd)

2 if ρ ≤ ρ0

0 if ρ > ρ0

(2.11)

U∗xd
(x, ẋ) =

1

2
kp (x− xd)

2 + kvẋ
2 (2.12)

Contrary to the approaches described above, Howard et al. construct only repulsive
potential fields in [13]. The agents in the network are repelled from obstacles in
the environment and each other. This approach can be used in situations where the
each agent does not have a clear target position and the main goal of the network
is to spread out evenly through the environment. As this sounds like a similar
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problem as the problem this thesis studies, it should be noted that Howard et al.
deploys all agents at once. Unfortunately, using their solution in an incremental
deployment scheme where agents are stationary once they finish their deployment
would not be applicable. This is due to the fact that deployed agents would easily
form a “wall” that the next deploying agent is not able to pass. This is illustrated in
fig. 2.1. The forces from ν1, ν2 and ν3 will push ν4 towards the lower left corner,
and the forces from the walls and ν0 will push it towards the upper right corner. ν0

will not be able to pass the red “wall” as the forces will cancel each other out.

� � �

�

�

�

�

�

�

�

�

Figure 2.1

2.2.3 Incremental deployment

Initial incremental deployment of sensor nodes is not as thoroughly researched as
deployment strategies where all nodes are deployed at the same time. Both [29]
and [30] does however study incremental deployment but they assume that the
mission area contains sensor nodes prior to the execution of the incremental de-
ployment algorithm. In [29] an on-demand strategy is designed, for which a new
sensor node is deployed when the fraction of the functioning sensor nodes in the
network drops below a threshold. The strategy therefore also takes node failure
into account, and aims to maximize the fraction of the sensor network that is oper-
ative at all times. Node failure is also considered in [30], where it is assumed that
the energy level of each node is known. Based on this information, the minimum
number of nodes that have to be deployed for preventing a reduction in covered
area is calculated, and where they should be positioned.
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As stated in [31, 32], the initial deployment of mobile robots is not a topic that has
been researched thoroughly. In most cases it is assumed that the robots already are
placed in the mission area and then have to spread or achieve a given formation
[14, 17, 33, 34]. This is not the case for [35], where a node is assigned to be an
anchor that provides a starting point for the other nodes. The nodes are deployed in
an unknown environment, and the goal of the proposed algorithm is to sequentially
deploy nodes into the area as long as there are nodes available. After each iteration,
the target point of the next deploying agent is computed based on four policies.
Two of which are based on randomness, and the other two select a target position
that maximizes the potential of increasing the covered area. Even if the drones
studied in this thesis only have knowledge about

In [36], Lin et al. propose methods for deploying sensor networks using one or
multiple agents to deploy sensors incrementally. The first sensor is deployed in the
target area using some heuristics. Each agent computes the Voronoi diagram of
the target area using the positions of the deployed sensors as site points. Voronoi
diagrams are partition sets consisting of Voronoi regions, and Voronoi regions are
generated using site points. Each Voronoi region consists of all points that are
closer to its associated site point than to any other site point. The Voronoi region
associated with the site point pi can be expressed as

Vi = {x ∈ Ω | ‖x− pi‖ ≤ ‖x− pj‖ ∀ j ∈ [1, k], j 6= i} (2.13)

Where Ω denotes the target area and pj denotes any other site point than pi located
in Ω. This will result in Vi∩Vj = ∅ for i 6= j and that the Voronoi diagram will then
be {Vi}ki=1. A more detailed description of Voronoi diagrams are found in [37].
[38, 39] are some examples where Voronoi diagrams are used for area coverage.

After each agent has computed the Voronoi diagram of the target area, it computes
its moving target point based on whether or not the Voronoi region that the agent
is located in is fully covered by sensors. If it is not covered, the agent is assigned
a target point based on the point in the Voronoi region with lowest detection prob-
ability. If the Voronoi region on the other hand is fully covered, the agent moves
to an adjacent Voronoi region and is assigned a target point in the same manner as
described. The agent moves towards the target point as long as it is within commu-
nication range of two sensors. New sensors are deployed sequentially using this
scheme until the area is fully covered.

An interesting approach that has been implemented in a real-life environment is
found in [40]. Rybski et al. use Unmanned Ground Vehicles (UGVs) (rangers)
that carries multiple small ground robots (scouts) into the mission area. When
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the rangers have reached their target positions, they deploy the scouts sequentially
using a launcher. The launcher system deploys the scouts into the mission area
by a compressed spring, and a platform that selects the elevation angle at which
the scouts are deployed. The idea of using a UGV as a utility platform for the
drones, and deploy the drones sequentially would be very interesting to pursue
when implementing the problem studied in this thesis in real life. How the drones
are transported to the starting point of the deployment is however beyond the scope
of this thesis.

2.3 Model of the system

2.3.1 Agent

The work done in this thesis has been conducted with development of the Crazyflie
2.1 drone in mind. In an attempt to keep the discussions generic, the drones will
be referred to as agents in the remaining chapters. It should be noted, however,
that the deploying agent is allowed to move “above” an already deployed agent.

2.3.2 Dynamics

Single integrator dynamics are described as

ẋt = u(t) (2.14)

where ẋt is the time derivative of the state of the system at time t and u(t) is the
input at time t. If the state is defined as the position of the system, the input in
eq. (2.14) will directly control the system’s velocity. Newton’s second law states
that the sum of all forces acting on an object equals the mass of the object times
its acceleration. ∑

F = ma (2.15)

For the purpose of evaluating the overall properties of the schemes proposed in
chapters 3 and 4, the agents are modeled as unitary point masses with little to no
inertia. Assuming also that the agents are equipped with powerful actuators and
that lower controllers handles any inherent dynamics, eqs. (2.14) and (2.15) can be
combined to form a simplified model of the system [41]

ẋt = u(t) =
∑

F (2.16)

The position is updated by using Euler’s method, given as

xt+1 = xt + ẋtdt (2.17)

It should be clearly stated that these models are preliminary, and considering more
sophisticated models will be a topic of future work.
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2.3.3 Sensing model

The Crazyflie 2.1 drones have five VL53L1x time-of-flight laser sensors mounted
in five orthogonal directions (front/back/left/right/up). As this thesis only consid-
ers deployment in 1D and 2D, the sensor that points upwards is not taken into
account. The VL53L1x sensors have a maximum field of view of 27◦ and a range
of 4 − 400 cm. In the simulation environment, each of the range sensors are dis-
cretized so that it consists of a total of five rays. One ray points in the direction the
sensor is mounted relative to the Crazyflie 2.1, and two rays are spread out evenly
on each side of the one pointing in the sensing direction. For simplification pur-
poses, it is also assumed that the range sensors return the angle where the closest
obstacle was detected, and not only the distance reading. Figure 2.2 shows the
directions the sensors are mounted and how the field-of-view is discretized.

Figure 2.2: Discretization of sensor field of view

2.3.4 Inverse RSS distance

Signals between two agents will experience fast fading, shadowing and path-loss
[42]. Modeling the path-loss under log-normal shadowing has been used in [42–
44] for predicting the received signal strength when the receiver is placed a given
distance from the sender. [43] also propose several estimators for estimating the
distance a signal has travelled, given the RSS measurement.

An accurate model of the RSS and distance estimation is outside the scope of this
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thesis, and it is therefore assumed that the RSS is described purely in terms of the
distance di,j between νi and νj . Further, the RSS is mapped to an inverse RSS
distance. This distance is denoted ξi,j and ξi,j ∈ [0, ξ], where ξ is a constant. The
mapping is assumed to be monotonically decreasing with respect to di,j , which
can be expressed as

dξi.j
ddi,j

=
dξi,j

dRSSi,j

dRSSi,j
ddi,j

≤ 0 (2.18)

In the simulations described in the succeeding chapters, ξi,j is modeled as shown
in eq. (2.19).

ξi,j =


ξ if di,j ≤ dperf
ξ
2(1 + cos(ωdi,j + φ)) if dperf < di,j < dnone

0 if dnone ≤ di,j

(2.19)

where

ω =
π

dnone − dperf
(2.20)

and
φ = −

πdperf
dnone − dperf

(2.21)

demanding dperf < dnone.

0 dperf dnone
di, j

0

ξ

ξ i
,j

Figure 2.3: Plot of ξi,j as a function of the actual distance between νi and νj
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2.3.5 Reference frames

It is often useful to express positions, motions and directions relative to different
reference frames. In many situations, it is convenient to represent the position of
an entity relative to some fixed frame, whereas sensor measurements usually is
described relative to the position and orientation of the sensor itself. Four frames
are therefore defined below, which will be convenient for the 2D case studied in
chapter 4.

The inertial frame, I, is an East-North (EN) frame with origin at the position of
the SCS, the x-axis is directed towards Earth’s true east and the y-axis towards
Earth’s true north.

The agent frame of νi is denoted Ai, and is also an EN frame. The agents are
modeled as point masses, allowing the origin of Ai to be at xIi .

Bi denotes the body frame of νi, and has the same origin as Ai. Its x-axis points
in the heading direction of the agent, ψh,i. This results in that ψh,i is the angle
between xBi and xAi , and the angle between yBi and xAi can be expressed as
ψh,i + π

2 . Figure 2.4 depicts the relationships between I, Ai and Bi.

Figure 2.4: Inertial frame, agent frame and body frame of νi

The rotation matrix RAi
Bi ∈ SO(2) [45] defined in eq. (2.22) describes the rela-

tionship between Bi and Ai.

RAi
Bi (ψh,i) =

[
cosψh,i − sinψh,i
sinψh,i cosψh,i

]
(2.22)

Assuming that sensor j is mounted on νi, its sensor frame, denoted Si,j has its
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origin at xIi . The angle between xBi and xSj is ψrel,i,j , which is the angle that
sensor j is mounted on νi relative to the heading of νi. The angle between xBi and
ySi,j is defined to be ψrel,i,j + π

2 . For simplicity, assuming that there is only one
sensor mounted on νi, fig. 2.5 shows how I, Bi and Si,1 are related. Ai is omitted
for clarity. The body frame of agent i and the frame of sensor j is described by the
rotation matrix in eq. (2.23).

Figure 2.5: Inertial frame, body frame of νi and sensor frame of sensor j

RBiSi,j (ψrel,i,j) =

[
cosψrel,i,j − sinψrel,i,j
sinψrel,i,j cosψrel,i,j

]
(2.23)



Chapter 3

1D

Since the previous work on initial incremental deployment is extremely limited, it
was decided to start from the simplest approach, namely 1D. For simplifying the
problem further, the agents were restricted to only be able to move in one direc-
tion. As the environment is assumed to be unknown prior to the deployment, no
predefined goal configuration exists. A consequence of this is that the agents do
not have target points they may be attracted to, and the potential field has to be
designed to be purely repelling. The potential field defined in eq. (3.1) is therefore
proposed in an attempt to lead νn+1 to a position that ensure exploration. The ex-
ploration condition is stated as ‖xn+1 − x0‖ > ‖xn − x0‖, which in 1D simplifies
to |xn+1 − x0| > |xn − x0|. Assuming x0 = 0, xi ≥ 0 ∀ i ∈ [1, n] simplifies the
exploration condition further, resulting in xn+1 > xn. κi and αi are gains that are
to be chosen so that the exploration condition is satisfied, and ξn+1,i denotes the
inverse RSS distance between νn+1 and νi.

Un+1 =
1

2

∑
i∈Nn+1

κi ‖xn+1 − αi(xi + ξn+1,i)‖ (3.1)

3.1 Equilibrium point
As described in section 2.1.1, agents that are placed in a potential field will expe-
rience a force that is equal to the negative gradient of the potential field. νn+1 will
therefore experience a force that is described as

Fn+1 = −∇xn+1Un+1

= −
∑

i∈Nn+1

κi(xn+1 − αi(xi + ξn+1,i)(1− βi sgn(xn+1 − xi))) (3.2)

17
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where βi = αi
dξn+1,i

ddn+1,i

The equilibrium point of the force described in eq. (3.2) will be a minimum of
the potential field defined in eq. (3.1), and indicate where νn+1 ideally will stop.
For deriving the equilibrium point of Fn+1, the neighbor set of νn+1, denoted
Nn+1, is divided into three subsets, depending on the location of νn+1 relative to
νi.

An+1 := {i ∈ Nn+1 | xn+1 − xi > 0} (3.3a)

Bn+1 := {i ∈ Nn+1 | xn+1 − xi < 0} (3.3b)

Cn+1 := {i ∈ Nn+1 | xn+1 − xi = 0} (3.3c)

Defining these subsets is useful because:

sgn(xn+1 − xi) = 1 ∀ i ∈ An+1 (3.4a)

sgn(xn+1 − xi) = −1 ∀ i ∈ Bn+1 (3.4b)

sgn(xn+1 − xi) = 0 ∀ i ∈ Cn+1 (3.4c)

Utilizing the subsets, eq. (3.2) can be rewritten as:

Fn+1 =−
∑

i∈An+1

κi(xn+1 − αi(xi + ξn+1,i)(1− βi sgn(xn+1 − xi)))

−
∑

i∈Bn+1

κi(xn+1 − αi(xi + ξn+1,i)(1− βi sgn(xn+1 − xi)))

−
∑

i∈Cn+1

κi(xn+1 − αi(xi + ξn+1,i)(1− βi sgn(xn+1 − xi)))

(3.5)
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Inserting eq. (3.4) yields

Fn+1 =−
∑

i∈An+1

κi(xn+1 − αi(xi + ξn+1,i)(1− βi · 1))

−
∑

i∈Bn+1

κi(xn+1 − αi(xi + ξn+1,i)(1− βi · (−1)))

−
∑

i∈Cn+1

κi(xn+1 − αi(xi + ξn+1,i)(1− βi · 0))

=−
∑

i∈An+1

κi(xn+1 − αi(xi + ξn+1,i)(1− βi))

−
∑

i∈Bn+1

κi(xn+1 − αi(xi + ξn+1,i)(1 + βi))

−
∑

i∈Cn+1

κi(xn+1 − αi(xi + ξn+1,i))

(3.6)

Factoring out xn+1 yields:

Fn+1 =− xn+1

 ∑
i∈An+1

κi(1− βi) +
∑

i∈Bn+1

κi(1 + βi) +
∑

i∈Cn+1

κi


+

∑
i∈An+1

κiαi(xi + ξn+1,i)(1− βi)

+
∑

i∈Bn+1

κiαi(xi + ξn+1,i)(1 + βi)

+
∑

i∈Cn+1

κiαi(xi + ξn+1,i)

(3.7)

Setting Fn+1 = 0 and denoting the equilibrium point as x∗n+1 gives:

x∗n+1 =

∑
i∈An+1

κiαi(xi + ξn+1,i)(1− βi)∑
i∈An+1

κi(1− βi) +
∑

i∈Bn+1
κi(1 + βi) +

∑
i∈Cn+1

κi

+

∑
i∈Bn+1

κiαi(xi + ξn+1,i)(1 + βi)∑
i∈An+1

κi(1− βi) +
∑

i∈Bn+1
κi(1 + βi) +

∑
i∈Cn+1

κi

+

∑
i∈Cn+1

κiαi(xi + ξn+1,i)∑
i∈An+1

κi(1− βi) +
∑

i∈Bn+1
κi(1 + βi) +

∑
i∈Cn+1

κi

(3.8)
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3.1.1 Gains that ensure desired convergence

Let xm denote the position of the neighbor of νn+1 that is farthest from x0 = 0.
This is formally expressed as xm = maxi∈Nn+1 x

∗
i . The goal of the potential field

in eq. (3.1) is to ensure that x∗n+1 > xm, which means that x∗n+1 > xi ∀ i ∈ Nn+1.
For xn+1 = x∗n+1, the subsets defined in eq. (3.4) will be An+1 = Nn+1 and
Bn+1 = Cn+1 = ∅, leading to that the expression for the equilibrium point can be
simplified as

x∗n+1 =

∑
i∈Nn+1

κiαi(xi + ξn+1,i)(1− βi)∑
i∈Nn+1

κi(1− βi)
(3.9)

Further, constraints on the different gains can be found by inserting eq. (3.9) into
the exploration condition given as x∗n+1 > xm.

x∗n+1 > xm

x∗n+1 − xm > 0∑
i∈Nn+1

κiαi(xi + ξn+1,i)(1− βi)∑
i∈Nn+1

κi(1− βi)
− xm > 0

(3.10)

Before deriving conditions for κi and αi so that eq. (3.10) is satisfied, it should
be noted that these gains will be dynamic. This is due to the fact that Nn+1 in
most cases will not be static throughout the entire deployment of νn+1. βi was
introduced in eq. (3.2) as

βi = αi
dξn+1,i

ddn+1,i
(3.11)

The fact that ξ(dn+1,i) is a monotonically decreasing function, and demanding
αi ≥ 0, βi will be bounded from above by 0, and −βi ≥ 0. To prevent zero-
division in eq. (3.10), κi must be constrained so that ∃ i ∈ N (n + 1) s.t. κi > 0.
Multiplying eq. (3.10) by

∑
i∈Nn+1

κi(1− βi) results in

∑
i∈Nn+1

κiαi(xi + ξn+1,i)(1− βi)− xm
∑

i∈Nn+1

κi(1− βi) > 0 (3.12)

Defining γi := 1− βi ≥ 1 to simplify notation, eq. (3.12) becomes∑
i∈Nn+1

κiαi(xi + ξn+1,i)γi − xm
∑

i∈Nn+1

κiγi > 0

∑
i∈Nn+1

κiαixiγi +
∑

i∈Nn+1

κiαiξn+1,iγi − xm
∑

i∈Nn+1

κiγi > 0
(3.13)
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Extracting the mth component from
∑

i∈Nn+1
κiαixiγi in eq. (3.13) gives

κmαmxmγm +
∑

i∈Nn+1\{m}

κiαixiγi +
∑

i∈Nn+1

κiαiξn+1,iγi − xm
∑

i∈Nn+1

κiγi > 0

(3.14)
Which is simplified as

xm

κmαmγm − ∑
i∈Nn+1

κiγi

+
∑

i∈Nn+1\{m}

κiαixiγi+
∑

i∈Nn+1

κiαiξn+1,iγi > 0

(3.15)

The bounds on the parameters and variables in the above expressions is summa-
rized as:

κi ≥ 0, αi ≥ 0, γi ≥ 1, x0 = 0, xi ≥ 0 ∀ i ∈ [1, n]

ξn+1,i > ξτ ∀ i ∈ Nn+1
(3.16)

Lower bounds on each of the terms in eq. (3.15) can be found by using eq. (3.16).

Conditions on the second and third term in eq. (3.15)

As γi ≥ 1, the lower bound of
∑

i∈Nn+1\{m} κiαixiγi will simply be∑
i∈Nn+1\{m}

κiαixiγi ≥
∑

i∈Nn+1\{m}

κiαixi · 1 ≥ 0

∑
i∈Nn+1\{m}

κiαixiγi ≥ 0
(3.17)

Proceeding to
∑

i∈Nn+1
κiαiξn+1,iγi, a lower bound can be found as∑

i∈Nn+1

κiαiξn+1,iγi ≥
∑

i∈Nn+1

κiαi · ξτ · 1 ≥ 0 (3.18)

If ∃ i ∈ N (n+ 1) s.t. κi, αi > 0∑
i∈Nn+1

κiαiξn+1,iγi > 0 (3.19)

Conditions on the first term eq. (3.15)

When evaluating xm
(
κmαmγm −

∑
i∈Nn+1

κiγi

)
it should be noted that m ∈

[1, n], and therefore, xm ≥ 0, as stated in eq. (3.16). This leads to the fact that
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κmαmγm −
∑

i∈Nn+1
κiγi must be nonnegative for the term

xm

(
κmαmγm −

∑
i∈Nn+1

κiγi

)
to be nonnegative.

κmαmγm −
∑

i∈Nn+1

κiγi ≥ 0

κmαmγm − κmγm −
∑

i∈Nn+1\{m}

κiγi ≥ 0

κmγm(αm − 1) ≥
∑

i∈Nn+1\{m}

κiγi

(3.20)

The way ξn+1,i is modeled in eq. (2.19), it can be shown that

− ξ

2
ω ≤ d

ddn+1,i
ξ(dn+1,i) ≤ 0 (3.21)

Defining δ = ξ
2ω, the inequality can be written as −δ ≤ dξn+1,i

ddn+1,i
≤ 0. Together

with the fact that γi = 1− βi = 1− αi dξn+1,i

ddn+1,i
, this inequality can be utilized as

−δ ≤ dξn+1,i

ddn+1,i
≤ 0 Multiplying by (−αi)

0 ≤ −αi
dξn+1,i

ddn+1,i
≤ αiδ Adding 1

1 ≤ 1− αi
dξn+1,i

ddn+1,i
≤ 1 + αiδ

1 ≤ γi ≤ 1 + αiδ Multiplying by (κi)

κi ≤ κiγi ≤ κi(1 + αiδ)

(3.22)

Choosing αm ≥ 1 and restating that γm ≥ 1, will lead to

κmγm(αm − 1) ≥ κm(αm − 1) ≥ 0 (3.23)

It can be seen from eq. (3.22) that κiγi ≤ κi(1 + αiδ), which results in∑
i∈Nn+1\{m}

κiγi ≤
∑

i∈Nn+1\{m}

κi(1 + αiδ) (3.24)

Combining eqs. (3.23) and (3.24), if κi and αi are chosen so that

κm(αm − 1) ≥
∑

i∈Nn+1\{m}

κi(1 + αiδ) (3.25)
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Then

κmγm(αm − 1) ≥ κm(αm − 1) ≥
∑

i∈Nn+1\{m}

κi(1 + αiδ) ≥
∑

i∈Nn+1\{m}

κiγi

(3.26)
Which will lead to

xm

κmγm(αm − 1)−
∑

i∈Nn+1\{m}

κiγi

 ≥ 0

xm

κmαmγm − ∑
i∈Nn+1

κiγi

 ≥ 0

(3.27)

Restating eq. (3.15) for reference

xm

κmαmγm − ∑
i∈Nn+1

κiγi

+
∑

i∈Nn+1\{m}

κiαixiγi+
∑

i∈Nn+1

κiαiξn+1,iγi > 0

(3.28)

Looking at eq. (3.16), it can be seen that κi, αi, xi ≥ 0 and γi ≥ 1, giving∑
i∈Nn+1\{m}

κiαixiγi ≥ 0 (3.29)

As ξn+1,i > ξτ ∀ i ∈ Nn+1 and demanding that ∃ i ∈ N (n+ 1) s.t. κi, αi > 0∑
i∈Nn+1

κiαiξn+1,iγi > 0 (3.30)

If κi and αi is chosen so that

κm(αm − 1) ≥
∑

i∈Nn+1\{m}

κi(1 + αiδ) (3.31)

the below inequality will hold

κmγm(αm − 1) ≥ κm(αm − 1) ≥
∑

i∈Nn+1\{m}

κi(1 + αiδ) ≥
∑

i∈Nn+1\{m}

κiγi

(3.32)
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This will guarantee that

xm

κmγm(αm − 1)−
∑

i∈Nn+1\{m}

κiγi

 ≥ 0

xm

κmαmγm − ∑
i∈Nn+1

κiγi

 ≥ 0

(3.33)

Summarizing the findings

Equation (3.33) concludes the analysis of conditions that need to hold for ensuring
desired covergence of νn+1. The parameters used for simplifying notation are
summarized in eq. (3.34), and the conditions that need to be satisfied is shown in
eq. (3.35).

βi = αi
dξn+1,i

ddn+1,i
≤ 0

γi = 1− βi = 1− αi
dξn+1,i

ddn+1,i
≥ 1

−δ = −ξ
2
ω ≤ dξn+1,i

ddn+1,i
≤ 0

(3.34)

x0 = 0

xi ≥ 0 ∀ i
κi ≥ 0

αi ≥ 0

∃ i ∈ Nn+1 s.t. κi, αi > 0

m = arg max
i∈Nn+1

xi

αm ≥ 1

γi = 1− βi = 1− αi
d

ddn+1,i
ξ(dn+1,i) ≥ 1

ξn+1,i > ξτ ∀ i ∈ Nn+1

κm(αm − 1) ≥
∑

i∈Nn+1\{m}

κi(1 + αiδ)

(3.35)
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3.2 Simulation
For implementing the deployment scheme, a simulator has been developed using
Python. The simulator is available at [46].

3.2.1 Simulation setup

The SINTEF Control Station (SCS) is denoted ν0, and placed at x0 = 0. For
simplification purposes, this point will be the entrance point of all agents. The
agents will be incrementally deployed, meaning that there is at most one moving
agent at any given time.

As an agent is deploying, it will be subject to the field and force described in
the previous section. The fact that the gains used in the potential field will be
dynamic, leads to that the force experienced by the deploying agent will vary quite
a lot depending on its neighbors. The deployment of νn+1 will continue until
|Fn+1| < Fτ and/or ξn+1,i < ξstop ∀ i ∈ Nn+1. The constraint on ξn+1,i ensures
that the networks stays connected throughout the entire deployment.

3.2.2 Parameters and results

Choosing κi = 0 ∀ i ∈ Nn+1 \ {m}, κm = 1, αi = 0 ∀ i ∈ Nn+1 \ {m} and
αm = 1 satisfy the conditions in eq. (3.35). By selecting these gains, the original
expression of Fn+1 in eq. (3.2) is simplified to

Fn+1 = −(xn+1 − (xm + ξn+1,m))(1− βm sgn(xn+1 − xm)) (3.36)

Parameter Fig. 3.1
rmax 3.0

dperf 0.1

dnone 2.5

ξ 1.0

ξτ 0.2

ξstop 0.22

Fsat 3.0

Fτ 0.1

κi ∀ i ∈ Nn+1 \ {m} 0

κm 1.0

αi ∀ i ∈ Nn+1 0

δ = ξ
2ω

5
24π

Table 3.1
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Using the above-mentioned gains and the parameters shown in table 3.1, the final
configuration ends up being as shown in fig. 3.1. It can be seen that the agents
are nicely spread and that the simple exploration condition given as xn+1 > xn
is satisfied. Figure 3.2(a) shows the force that is applied to each of the agents.
It should be noted that the force which ν6 experiences is plotted last, and it is
therefore partially plotted on top of the other forces. Let k be an arbitrary index
such that k < n+ 1, where n+ 1 is the index of the currently deploying agent. In
the given setup it will always be the case that Fn+1 = Fk up until νk+1 becomes a
neighbor of νn+1, i.e. up until k + 1 ∈ Nn+1.

� � � � � ��
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Figure 3.1: Final configuration when deploying six agents using the potential field
proposed for 1D

The vertical increases in force occurs when the deploying agent detects a neighbor
that is positioned farther from ν0 than any of its current neighbors. As the signal
strength threshold for what is considered to be neighbors, ξτ , is set to be 0.2, it
is nicely illustrated in figs. 3.2(a) and 3.2(b) that the rapid increases in F6 occurs
the first time ξ6,i = 0.2 ∀ i ∈ [1, 5]. Such aggressive increases in applied force
is of course only theoretically possible, and if this approach is to be extended, a
maximum change in applied force has to be added.
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(a) Force exerted on each agent during its deployment.
t = 0 denotes the time νi starts its deployment
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(b) The development of the inverse RSS distance between ν6 and the other
agents during the deployment of ν6.

t = 0 denotes the time instant ν6 starts its deployment

Figure 3.2





Chapter 4

2D

4.1 Directly expanding exploration condition
As described in chapter 3, the main goal for the potential field Un+1 is to guide
νn+1 to x∗n+1 so that the network has explored more area when νn+1 stops than
what it did prior to the deployment of νn+1. The exploration condition defined
in chapter 3 was given as ‖xn+1 − x0‖ > ‖xn − x0‖. Directly expanding this in
2D will be ‖xn+1 − x0‖ > ‖xn − x0‖, which will severely constrain the feasible
landing positions of the deploying agent. Figure 4.1(a) illustrates that when νn+1

finishes its deployment, it has to be positioned outside the circle that is centered at
x0 and has a radius of ‖xn − x0‖. In situations where ν0 is placed in the lower left
corner of the environment its get even clearer why it is not applicable to directly
expand the exploration condition. This is shown in fig. 4.1(b), and it is clear that
the area where the next deploying agent is allowed to position itself eventually will
become infinitely small.

4.2 Investigating other exploration conditions
The aggregation index r derived by Clark and Evans in [47] is a metric that often
is used for evaluating the spatial relationship in a population [48, 49]. The index
is defined as the ratio between the average distance from each node to its nearest
neighbor, rO, and the expected mean distance between each node and its nearest
neighbor in a Poisson distribution, denoted rE .

29
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Figure 4.1

rO =

∑N
i=1 ri
N

rE =
1

2
√
N/A

r =
rO
rE

(4.1)

ri is the distance between agent i and its nearest neighbor, and N is the number of
agents in the area A.

As r > 1 indicates dispersion and r < 1 indicates clustering, investigating how
the aggregation index could be used for defining an exploration condition seems
tempting. However, as the area of the mission space is unknown to the agents,
it would be hard to find a valid way to calculate rE . Computing the minimum
bounding rectangle [50] could be a possible workaround, but in the given setup,
and considering the limited knowledge of each agent, this would not be applicable.

Tweaking the repelling potential field was also looked into. The main idea was that
νn+1 should be repelled from each of the already deployed agents in such a way
that it sequentially visited xI1 ,x

I
2 , . . . ,x

I
n. After νn+1 had reached xIn, it would

then proceed to explore the unknown environment. This proved to be a difficult
task using solely a repelling field, and mathematically expressing the conditions
that had to be fulfilled ended up being hard. Therefore, it seemed reasonable to use
a more classical potential field approach for solving the 2D exploration problem.
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4.3 Exploration in 2D using classical potential fields
The majority of previous research that has been done on deploying agents into an
area using potential fields defines some sort of target position of the agents. As the
problem discussed in this thesis assumes that there is no knowledge available about
the environment prior to the deployment, it is not feasible to define a unique target
position for each agent. The only knowledge each agent has about its surroundings
is the position of its neighbors and the measurements from its sensors. Using this
information, a scheme that is somewhat inspired by how the each agent calculates
a moving target point in [36] (see Incremental deployment) is proposed. During the
deployment, the deploying agent is placed in the classical potential field described
in section 2.1.1. This field, and the resulting forces are restated here for reference.

Utot = Urep + Uatt (4.2)

Urep =
∑
j

Uobs,j (4.3)

Uobs,j =

1
2kobs

(
1

‖ri,j‖ −
1
d0

)2
if ‖ri,j‖ ≤ d0

0 otherwise
(4.4)

Uatt =
1

2
katt ‖xi − xg‖2 (4.5)

The total virtual force experienced by agents placed in the potential field will be
Ftot = −∇Utot. The fact that∇ is a linear operator gives

Ftot = −∇Urep −∇Uatt
= Frep + Fatt

(4.6)

The repelling force will be
Frep =

∑
j

Fobs,j (4.7)

where

Fobs,j =

−kobs 1
‖ri,j‖2

(
1

‖ri,j‖ −
1
d0

)
ri,j
‖ri,j‖ if ‖ri,j‖ ≤ d0

0 otherwise
(4.8)
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kobs is a positive constant gain and ri,j is the Euclidean distance between νi and
obstacle j. The attractive force is given as

Fatt = −katt(xi − xg) (4.9)

where katt is a positive constant and xg is the target position of νi.

As mentioned in the problem description, the overall goal of this thesis is to pro-
pose an exploration strategy for deploying agents incrementally into a disaster area.
The environment where the mesh network is to be constructed is unknown, but the
initial search direction is assumed to be easily available (i.e. the SCS, denoted ν0,
is placed in the opening of the unknown area or close to a door leading into an
unknown room).

4.3.1 Workflow of the incremental deployment scheme

Throughout the deployment, the agents go through four states; spawned, following,
exploring and stopped. The SCS is placed at xI0 which is defined as the origin of
the inertial frame. For simplification purposes, it is also assumed that xI0 is the
entrance point of the agents. Since I andAi are EN frames, the choice of entrance
point results in that the two frames will be aligned before νi starts its deployment.
As the agents are placed at xI0 , all agents except ν1 are assigned the spawned state.
ν1 is the first agent to deploy, and is therefore directly assigned the exploration
state.

For the novel target direction approach presented here to be compatible with the
virtual potential field in eq. (4.2), ν1 has to be assigned a target point. Utilizing
the fact that the agent frame of ν1 is aligned with the inertial frame, the initial
search direction can be expressed directly in the A1 frame. The SCS, denoted ν0,
generates a target point for ν1, given as

xA1
g,1 =

dg cos
(
θA1
init

)
dg sin

(
θA1
init

)
 (4.10)

where dg is a pre-defined distance from ν0 the target point is to be generated at,
and θA1

init is the initial search direction.

Being subjected to the force in eq. (4.6), ν1 will move towards xA1
g,1. For the target

point defined in eq. (4.10) to be used so that ν1 moves in the initial search direction,
the target point has to be updated at each time step. Let ∆x be the displacement
of ν1 between t = t1 and t = t2 and the target point at t = t1 be denoted xA1

g,1,t1
.

The target point at t = t2 then relates to the target point at t = t1 as
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xA1
g,1,t2

= xA1
g,1,t1

+

‖∆x‖ cos
(
θA1
init

)
‖∆x‖ sin

(
θA1
init

)
 (4.11)

Updating the target point of ν1 as shown in eq. (4.11) enables the target direction
approach to be implemented using the classical potential field method.

ν1 will be in the exploring state as long as the magnitude of the force exerted on it
is above a threshold Fτ , and the inverse Received Signal Strength (RSS) distance
between ν1 and the SCS is larger than ξstop. For ν1 to be connected to the SCS,
ξstop must be designed such that ξstop + ε > ξτ , where 0 < ε� ξ.

When the force that ν1 is subject to or the inverse RSS distance between ν1 and the
SCS drops below their given threshold, ν1 will stop and be assigned the stopped
state. The agent will then send its position to the SCS and proceed to calculate the
target direction of ν2, and ν2 is assigned the following state.

Since the SCS is a neighbor of ν1, the SCS will know the position of ν1 relative
to itself. To keep the below derivations generic, assume that the index of the agent
that finished its deployment is n. The final position of νn is the transmitted to the
SCS through the network, so that the SCS can build a path tree consisting of the
positions of all the previously deployed agents. When the SCS receives informa-
tion about the position of νn, the path tree will be {xI1 ,xI2 , . . . ,xIn}. The inertial
frame and all the agent frames are EN frames, and it is assumed that all agents
know the relative position of its neighbors. This results in that the position of νn
can be sent to the SCS in a relative simple manner, assuming effective routing. 1

In the following state, the target position of νn+1 will sequentially be assigned
the positions in the path tree. The first target position will be xI1 , and as νn+1

moves towards xI1 , the inverse RSS distance will decrease. When ξn+1,1 becomes
smaller than a threshold ξsw, the target position of νn+1 switches from xI1 to xI2 .
This procedure will continue until νn+1 has reached xIn. As the environment is
assumed to be static, the path between xIi−1 and xIi ∀ i ∈ [1, n] is obstacle free
since it already has been traveled by νi. Therefore, the target point assignment
procedure ensures that νn+1 follows an obstacle free path from the SCS to xIn.

After νn+1 has reached the position of νn, it enters the exploring state. When νn
finished its deployment, it computed a target direction based on the measurements
from its sensors and the positions of its neighbors. This procedure is described
below.

1How the routing is to be implemented is beyond the scope of this thesis. In the simulations, νn
does not transmit its position through the network, xI

n is appended directly to the path tree.
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Computing the target direction

Sensor j returns the distance to the closest sensed obstacle, rs,j , and the corre-
sponding angle, ψs,j , in sensor frame. If the sensor does not sense an obstacle
within its sensing range, its measurement is labeled invalid. Assuming that the
measurement returned from sensor j is valid, a vector corresponding to the mea-
surement can be defined as

o
Sj
j =

[
rs,j cos(ψs,j)

rs,j sin(ψs,j)

]
(4.12)

Using eqs. (2.22) and (2.23), oSjj is then described in the agent frame of νn by

oAn
j = RAn

Bn (ψh,n)RBnSj (ψrel,j)o
Sj
j (4.13)

It is desirable that the exploration direction of νn+1 should be away from the ob-
stacles that νn senses, and that obstacles close to νn should have greater impact
on the calculation of the exploration direction. oAn

j is therefore scaled and rotated
such that

ôAn
j = R(π)

(
rmax − ‖oAn

j ‖
) oAn

j

‖oAn
j ‖

=−
(
rmax − ‖oAn

j ‖
) oAn

j

‖oAn
j ‖

(4.14)

where R( · ) ∈ SO(2) and rmax is the upper limit in the sensing range of the range
sensors.

The total obstacle vector defined by the valid measurements from the sensors
mounted on νn is then expressed as

oAn
n =

∑
j

ôAn
j (4.15)

The agent frame of agent νn has its origin at xIn. Each agent knows the position
of its neighbors relative to itself, meaning that νn knows xAn

i ∀ i ∈ Nn. A vector
nAn
i is then defined as

nAn
i = xAn

i (4.16)
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Let m = arg mini∈Nn
‖xAn

i ‖ be the index of the neighbor that is positioned clos-
est to νn. The vector corresponding to this neighbor is denoted nAn

m . To prevent
clustering, nAn

m is scaled and rotated so that

n̂An
m = R(π) rmax

(
dτ − ‖nAn

m ‖
dτ

)
nAn
m

‖nAn
m ‖

= −rmax
(
dτ − ‖nAn

m ‖
dτ

)
nAn
m

‖nAn
m ‖

(4.17)

where dτ is the distance satisfying ξ(dτ ) = ξτ , i.e. the maximum Euclidean dis-
tance between neighbors. The scaling differs from what is done in eq. (4.14) so
that ‖n̂An

m ‖ and ‖ôAn
j ‖ are within the same range.

The total obstacle vector and the vector from the closest neighbor are summed to
form an exploration vector as shown in eq. (4.18). This vector is formed as an
attempt to use the local knowledge of νn to calculate a direction that points away
from sensed obstacles and the neighbors of νn.

eAn
n = oAn

n + n̂An
m (4.18)

Writing eAn
n in polar coordinates gives

eAn
n =

(∥∥eAn
n

∥∥ , θAn
e

)
(4.19)

Using θAn
e as exploration direction works well when at least one sensor mounted

on νn returns a valid measurement. In situations where all sensors return invalid
measurements and |Nn| = 1 however, using θAn

e will lead to deployments similar
to what is shown in fig. 4.2(a).

As νn+1 does not know its position in the inertial frame, trilateration is assumed
used by νn+1 for localizing itself while deploying. In 2D, νn+1 needs minimum
three neighbors to determine its own position. Trilateration requires that the points
used are non-collinear. Therefore, eAn

n is rotated by a random angle, θAn
rand, that is

defined to be in the interval
[
−θAn

∆ , θAn
∆

)
. 2 This leads to

êAn
n = R

(
θAn
rand

)
eAn
n (4.20)

2The interval excludes +θAn
∆ because θAn

rand is generated by numpy.random.uniform(), see the
documentation (link).

https://numpy.org/doc/stable/reference/random/generated/numpy.random.uniform.html
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(a) Collinear deployment
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(b) Including θAn

rand aids the trilateration
of νn+1

Figure 4.2

Defining θAn
tot = θAn

e + θAn
rand and writing êAn

n in polar coordinates yields

êAn
n =

(∥∥êAn
n

∥∥ , θAn
tot

)
(4.21)

By introducing the random angle, it is less likely that three consecutive drones land
at positions that are collinear, which ease the localization of νn+1 during deploy-
ment. It should be noted until there has been deployed sufficiently many agents,
agent νn+1 will not have a minimum of three neighbors during its deployment. An
example where θAn

rand ∈
[
−π

4 ,
π
4

)
is shown in fig. 4.2(b)

Exploring

As briefly discussed above, for the target direction approach to be used with the
virtual potential field in eq. (4.2), νn+1 has to be assigned a target point. νn there-
fore generates a target point for νn+1, expressed in the agent frame of νn

xAn
g,n+1 =

dg cos
(
θAn
tot

)
dg sin

(
θAn
tot

)
 (4.22)

where dg is the same pre-defined distance as used in eq. (4.10).
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As νn will be a neighbor of νn+1 when νn+1 starts the exploration phase, xAn+1
n

will be known to νn+1. All agent frames are EN frames, leading to that An+1 and
An are related by pure translation. In An+1, the target point defined in eq. (4.22)
will therefore be described as

x
An+1

g,n+1 = xAn
g,n+1 + xAn+1

n (4.23)

Assuming that νn transmits θAn
tot to νn+1, the deploying agent will have all required

information to follow the target direction. In the same way as in eq. (4.10), let ∆x
denote the displacement of νn+1 between t = t1 and t = t2, and the target point
of νn+1 at t = t1 be denoted x

An+1

g,n+1,t1
. The target point at t = t2 is then expressed

as

x
An+1

g,n+1,t2
= x

An+1

g,n+1,t1
+

‖∆x‖ cos
(
θAn
tot

)
‖∆x‖ sin

(
θAn
tot

)
 (4.24)

Moving towards its target point, νn+1 will experience the force defined in eq. (4.6),
and the target point will be pushed in the target direction as the deployment of νn+1

proceeds. If there are obstacles present in the environment, the repelling forces
they exert on νn+1 will prevent the agent to move in the target direction. In the
absence of obstacles, however, νn+1 will converge nicely to the target direction
calculated by νn.

The deploying agent will go from the exploring state to the stopped state when
the magnitude of the force it experiences becomes smaller than Fτ or the inverse
RSS distance between itself and any of its neighbors drops below ξstop. The way
ξstop is designed, and assuming that the RSS only depend on distance between
two agents, the network is ensured to be connected when νn+1 stops. If there are
spawned agents available, the position of νn+1 will be sent to the SCS through the
network, and νn+1 proceeds to calculate the target direction for νn+2 in the same
manner as νn did for νn+1.

4.3.2 Evaluating the deployment scheme

It is desirable that the agents should be uniformly spread in the mission area so
that the total energy of the network is spent more evenly [51, 52]. The uniformity
metric will therefore be used for evaluating the performance of the deployment
scheme, and the achieved results will be compared to what Heo and Varshney
achieved in [51]. Uniformity of the network can be defined as the average local
standard deviation of the distances between agents, which is expressed as
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U =
1

N

N∑
i=1

Ui

Ui =

 1

|Ni|

|Ni|∑
j=1

(‖xi − xj‖ −mi)
2

 1
2

mi =
1

|Ni|
∑
j∈Ni

‖xi − xj‖

(4.25)

whereN is the total number of deployed agents andmi is the mean of the distances
between νi and its neighbors [51]. A lower value of U means that the agents are
positioned more uniformly in the mission space.

In [51], Heo and Varshney use uniformity to evaluate how their Distributed Self
Spreading Algorithm (DSSA) performs compared to a simulated annealing based
algorithm. The nodes are assumed to have sensing, communication, computational
and locomotion capabilities. Prior to the execution of the DSSA, the nodes are ran-
domly distributed in the area of interest. The DSSA aims to improve the topology
for increasing the expected lifetime of the network. The nodes have perfect cir-
cular communication ranges, and two nodes are considered neighbors if they are
within each other’s communication range. Using the nomenclature of this thesis to
prevent confusion, an arbitrary sensor node is denoted νi in the below description.
During the execution of the DSSA, each neighbor of node νi exerts a repelling par-
tial force on νi. The partial force that a neighbor produces depends on the density
of all the neighbors and the inverse of the distance between νi and the given neigh-
bor. The sum of all partial forces exerted on νi will then decide the movement on
νi. For a more in-depth explanation of the algorithm, the reader is referred to [51].

4.4 Simulation
In the same manner as for the 1D case, a simulation environment has been devel-
oped for implementing the novel incremental deployment scheme. This simulation
environment is found at [46].

4.4.1 Simulation setup

In all simulations that has been conducted, the SCS is assumed to be placed inside
the mission area, and its position is defined as the origin of the inertial frame. The
position of the SCS is for simplification purposes, also considered the entrance
point of all agents. Starting from the entrance point, the agents will proceed to be
incrementally deployed, resulting in that there is at most one moving agent at any
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Figure 4.3: The initial uniformity, the resulting uniformity of running a simulated
annealing based algorithm (SA) and the uniformity achieved by DSSA (Our) [51]

time during the deployment.

The fact that the work in this thesis mainly is based on that the agents are MINs,
it is assumed that a deploying agent may move “above” an agent that already is
deployed. This means that xIn+1 and xIi are allowed to be equal as long as νn+1 is
the deploying agent and νi is already deployed (or is still at the entrance point).

4.4.2 Evaluating achieved uniformity

Heo and Varshney evaluates the performance of the DSSA in a 10 × 10 obstacle
free environment. The communication radius is 4 units and the sensing radius is
2 units. They run the DSSA with a network size varying between 10 and 50, and
averages the uniformity achieved by each network size over 100 runs.

Directly comparing the uniformity achieved by the DSSA and the incremental de-
ployment scheme is not appropriate. The DSSA assumes that the mission area is
known and uses information about the size of the mission area when computing
the partial forces each neighbor exerts on node νn. The incremental deployment
scheme that is proposed in this thesis however assumes that the area is unknown
and will therefore also aim to explore the mission area.

Using rmax = 2 and designing ξi,j so that dτ = 4, it is inevitable that the agents
will cluster near the boundary of the mission area as shown in fig. 4.4. Let νn+1

denote the currently deploying agent. With the above-mentioned rmax and dτ , the
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inverse RSS distance between νn+1 and its neighbors will be of such a magnitude
when νn+1 reaches the center region that the agent will continue to move in its
target direction until the force from the boundary becomes sufficiently large. The
parameters used for the deployment shown in fig. 4.4 are found in table 4.1.

� � � � �

�

�

�

�

�

�
�

�

�
�

�
�

�

�

	

��

��

��
��

�� ��

Figure 4.4
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Parameter Fig. 4.4 Figs. 4.5, 4.8 and 4.10
rmax 2.0 2.0

dperf 0.18 0.1

dnone 5.6 2.8

dτ 4.0 2.0

ξ 1.0 1.0

ξτ 0.2 0.2

ξsw 0.95 0.95

ξstop 0.22 0.22

Fsat 2.0 2.0

Fτ 0.5 0.5

kobs 1.2 1.2

katt 1.0 1.0

d0 2.0 2.0

θAn
rand π/4 π/4

dg 1.0 1.0

Table 4.1: Parameters used for simulating deployment in 2D

As the deploying agent will move in the target direction as long as ξn+1,i ≥
ξτ ∀ i ∈ Nn+1 and ‖Ftot‖ ≥ Fτ , the only form of “coverage” each agent provide
is the area where it can transmit sufficiently strong signals. If ξi,j is modified so
that dτ equals the sensing radius used in [51] and keeping rmax = 2, it is ex-
pected that the agents will form a more uniform configuration in the mission area.
A deployment where these parameters are used is shown in fig. 4.5. From visual
inspection one can conclude that the agents are more spread and do not end up
clustering. Figure 4.5(b) also displays the trajectories of the agents, and it can be
seen that the agents follow trajectories that already has been taken by the previ-
ously deployed ones.

In the same way as what Heo and Varshney did for evaluating the uniformity in
[51], 100 simulations were run. It should be emphasized that Heo and Varshney av-
erages the total uniformity achieved by each network size, whereas fig. 4.6 shows
the average uniformity after each agent has stopped. Even though it is not appli-
cable to compare the DSSA and the incremental deployment scheme directly, an
average total uniformity of 0.136 when deploying fifteen agents confirms that the
incremental deployment scheme places the agents uniformly in the mission space.

As the agents are deployed incrementally, the first few agents will not have many
neighbors when they finish their deployment, and might even end up having only
one neighbor until sufficiently many agents have been deployed. A consequence
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(a) Final configuration
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(b) Final configuration and the trajectories
followed by each agent

Figure 4.5
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Figure 4.6: Average uniformity over 100 runs

of this is that the local uniformity for each of these agents are 0. In fig. 4.6 it can
be seen that the total uniformity of the network is close to 0 after the deployment
of each of the first five agents, but increases steadily for the remaining agents.

4.4.3 Deployment in more challenging areas

It can be concluded that the incremental deployment scheme performs well in a
mission area without obstacles. To assess what the deployment scheme would
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accomplish in more complex environments, the mission areas shown in fig. 4.7
was constructed. Both environments are challenging in the sense that they consist
of relatively small openings that the agents have to navigate through. This is a
demanding task as the target direction of the next deploying agent is calculated
using only the local knowledge of the latest deployed agent.
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(a) Environment with vertical obstacles
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(b) Environment mimicking Stripa

Figure 4.7: Challenging environments for testing the incremental deployment
scheme

The aim of the environment in fig. 4.7(a) is simply to investigate how the deploy-
ment scheme performs when the agents have to be deployed in areas where the
boundary is not the only obstacle. Figure 4.7(b) on the other hand, tries to mimic
the ground floor hallway connecting Central Building 1 and 2 at NTNU - Gløshau-
gen. This hallway is known as Stripa, which translates to the Strip.3 Stripa is a
challenging environment because the three larger regions are separated by narrow
passages. As it is hard for the agents to detect these passages, the agents might end
up being trapped in each of the regions.

Using the same parameters as what was used in fig. 4.5, thirty agents are deployed
into the environment with two vertical obstacles. The final configuration of the
agents is shown in fig. 4.8, and it can be seen that the incremental deployment
scheme manages to navigate the agents around the two obstacles, and the agents
end up begin spread. Figure 4.9 displays the uniformity for the deployment in
fig. 4.8,and it can be seen that the uniformity reaches its maximum as ν6 stops.
This happens due to that the agents end up being a bit clustered near the entrance
point. It can be seen in fig. 4.8 that the agents deployed after ν10 manages to
navigate to the open region in the upper left part of the mission area. When agents
first are deployed to the open region, the incremental deployment scheme manages
to deploy agents in such a way that the obstacles are smoothly avoided. Looking

3Blueprint of Stripa is found at [53]
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at the uniformity plot, one can see that the uniformity decreases steadily when the
first obstacle is passed.
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Figure 4.8: Final configuration when deploying thirty drones in the environment
with two vertical obstacles
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Figure 4.9: Uniformity vs. number of incrementally deployed agents in the mis-
sion area shown in fig. 4.7(a)
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For simulating a deployment in the Stripa environment, the discretization of the
sensors was changed so that each sensor only measured the distance that is directly
in the direction of which it is mounted on the agent. This had to be done to limit
the simulation time. The number of sensing rays was the only parameter that was
changed from the simulation in the environment with two vertical obstacles. In
fig. 4.10 it can be seen that the incremental deployment scheme is able to overcome
the challenge of being stuck in one of the two leftmost regions, and is able to
deploy the agents throughout the entire environment.
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Figure 4.10: Final configuration when deploying eighty agents into the Stripa en-
vironment. The IDs are omitted for clarity.

The uniformity plot in fig. 4.11 shows that the deployment also manages to produce
a satisfactory total uniformity value.
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Figure 4.11: Uniformity vs. number of incrementally deployed agents in the Stripa
environment
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4.4.4 The effect the random component has on the deployment

The fact that a random component is used for generating the target direction re-
sults in that two deployments in the same mission environment will differ, even if
all other parameters are kept constant. The incremental deployment scheme does
manage to avoid the obstacles very well in both figs. 4.12 and 4.13, but the agents
end up being somewhat clustered. Comparing fig. 4.12 with fig. 4.8 and fig. 4.13
with fig. 4.10, it is evident that the final configuration clearly depends on the ran-
dom component.
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Figure 4.12
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Figure 4.13

Considering the novelty of the incremental deployment scheme, the final configu-
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rations shown in figs. 4.12 and 4.13 have to be considered satisfactory. However,
when improving the deployment scheme in the future, the calculation of the target
direction and how the random component is to be utilized, will be considered a
good starting point.





Chapter 5

Summary and Conclusion

5.1 Summary
This report started out giving an introduction of how UAVs previously have been
used in SAR missions, and explained potential benefits of using MINs instead of
traditional UAVs. After the introduction of the problem, the theory behind the
virtual potential field method was presented. This specific method was chosen
to be investigated as it does not depend on extensive knowledge of the mission
area, and the calculations needed are limited. This was considered ideal, as the
Crazyflie 2.1 drones, which the work initially was aimed to be used for physical
implementation, have limited sensory and computational capabilities.

Previous research on the use of multi-robot systems, potential fields and incremen-
tal deployment was then described in detail. It became apparent that multi-robot
systems often are used for different types of area-coverage. Even if this is a differ-
ent problem than what this thesis tries to solve, it was explained how research on
area-coverage provides useful insights in how the robots could spread uniformly in
the environment. This has to to with the fact that if the robots have to remain con-
nected during the execution, they robots typically cover the largest area possible if
they are uniformly spread.

For potential fields, it was presented how most of the previous work either assumed
that some final configuration was known to the robots prior to the deployment or
proposed improvements on the original repelling potential field defined in [2]. The
fact that it would be infeasible to directly implementing previously used methods
for potential fields was then put forward, as it is desirable that the problem in this
thesis is solved by deploying the agents incrementally.

49
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When describing the previous work on incremental deployment, it became ap-
parent that only a limited amount of previous research had been done on this
topic. Especially, it was concluded that the general initial deployment problem
was something that barely had been studied. Most previous research assumes that
the agents are spread randomly in the environment prior to the deployment.

As there was a limited amount of previous work that could be used for solving
the problem in this thesis, an approach for for incremental deployment in 1D was
proposed. This approach utilized a repelling potential field that aimed to ensure
that each agent landed farther from the SCS than any of its neighbors. Conditions
that had to be fulfilled for this to be guaranteed was derived, and a deployment was
simulated in a self-made simulator [46]. The simulation showed that the potential
field did what it was intended to to do, and managed to push the deploying agent
to a position that satisfied the exploration condition.

The approach taken for the 1D case proved to be hard to extend to 2D due to
the fact that mathematically expressing an exploration condition is difficult in 2D.
Therefore, a novel deployment scheme were presented, where the agents were
subjected to the more classical potential forces. The novelty about the deploy-
ment scheme was the way the agents were assigned a target direction instead of
a target point. The calculation of the target direction was calculated based purely
on local knowledge and the assumption that neighboring agents could communi-
cate with each other. The deployment strategy was then tested in an obstacle free
mission environment, as well as two mission environments containing obstacles.
The simulator used for the deployments was similar to the the one used for the
1D case. As the task of the agents is not to provide area-coverage, but to spread
out to enable localization of FRs, a fitting performance metric had to be chosen.
The metric that ended up being used is called uniformity, which is defined as the
average local standard deviation of the inter-agent distances. The motivation be-
hind the use of this metric was that uniformly distributed networks tend to be more
energy efficient than networks that are spread non-uniformly [51, 52].
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5.2 Conclusion
This thesis proposed two novel approaches for incrementally deploying agents in
an unknown environment. Due to the lack of previous work on initial incremental
deployment, the first proposed approach assumed that the agents only could move
in 1D. A repelling potential field was designed so that it would ensure exploration
along the real line. The conditions that had to be satisfied for the potential field
was derived, and simulations showed that the proposed potential field ended up
distributing the agents nicely along the real line.

The second proposed deployment scheme assumed a planar mission environment.
As a justifiable exploration condition was hard to define, the deployment scheme
had to be adapted. This led to that for the 2D case, a deployment strategy which
took inspiration from the traditional use of potential fields was presented. The
novelty of this strategy is not only that it considers initial incremental deployment,
but also that it implements a target direction instead of a target point. The vast
majority of previous research on the virtual potential field method that includes an
attractive force assume that the agents are assigned a target point. The target di-
rection is calculated solely based on local knowledge of the latest deployed agent.
More specifically, the target direction is calculated by using the information the
latest deployed agent has about the position of its neighbors and the obstacles that
it senses.

The deployment scheme was simulated in an obstacle free 10 × 10 environment
as well as two environments that provided a greater challenge for agents. Visually
inspecting the final configurations, it became evident that the deployment scheme
distributed the agents well in the mission area. However, visual inspection is not
satisfactory when the performance of the deployment scheme is to be evaluated.
Therefore, the average standard deviation of the inter-agent distances ended up
being used. This metric is named uniformity, and measures how uniform the ge-
ographical distribution of the agents is. The uniformity achieved in the different
environments confirmed that the incremental deployment scheme ended up spread-
ing the agents uniformly in the mission area.

5.3 Future work
Given the novelty of the two presented deployment schemes and the limited previ-
ous work regarding initial incremental deployment, leads to that there are several
ways the work presented in this thesis can be extended. For the scheme that de-
ploys agents along the real line, more work can be done on defining an exploration
condition that enables the approach to be extended into 2D. With that being said,
a suggested exploration condition is not immediately clear.
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Regarding the approach that considers planar mission areas, there are multiple pos-
sible topics that could be studied in the future. One such topic is how the deploy-
ment scheme should deal with energy depletion of the agents, which potentially
can lead to that the network structure is broken. [30] and [54] can be considered
good starting points for attacking this problem.

The calculation of the target direction is one of the major contribution of this thesis.
It would therefore be of great interest to investigate if there are other ways the local
knowledge of the agents can be used to improve this calculation. One suggestion
is that the agent calculating the target direction receives information about the
obstacles sensed by its neighbors.

If the mission area is small compared to the number of available agents, it will be
inevitable that the agents end up being clustered. Examining if there exist some
other applicable termination criteria could therefore be something to study in the
future. As the uniformity of the network can be calculated when the deploying
agent stops, identifying an applicable uniformity value could be a promising start-
ing point for this task.

The uniformity gives information about the geographical distribution of the agents,
and not necessarily how well the environment is explored. Identifying other ways
to evaluate the performance of the deployment might therefore be of great value.

Even if it would require a lot of work, the ultimate goal must be to implement the
proposed deployment scheme for 2D using a swarm of Crazyflie 2.1 drones.
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