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Abstract

In 2015, 196 countries agreed to the Paris Climate Agreement (Paris Agreement
2015), intending to keep global warming below 2◦C. Two main measures have to
be implemented to reach this goal: more energy production from renewable energy
sources and electrification of sectors with high emissions. This transition will lead
to a higher demand for electricity and the need for a more efficient operation of the
power grid. Micro-grids are distributed power units with internal power produc-
tion and energy storage, which can increase flexibility in the grid. Micro-grids are
therefore suggested as a solution for increasing the use of renewable energy sources
and improving the efficiency of the grid.

However, micro-grids are still a field of research. This thesis proposes to de-
velop a model predictive control (MPC) scheme for micro-grids that reflect the eco-
nomics of being connected to the Norwegian power infrastructure. Furthermore,
data-driven prediction methods are developed for forecasting solar production and
load demands.
The methods are developed and tested on data from a real-life micro-grid, namely
the Skagerak EnergyLab located in Skien, Norway. The micro-grid has a battery
energy storage system with a capacity of 1100kWh and PV-cells with a nominal
power production of 800kW. It supplies energy to two loads; an industrial facility
and a residential neighborhood. A mathematical model was developed and com-
bined with real data measured from the micro-grid to create a realistic simulation
environment. The simulations allowed for the testing of the different controllers.
Furthermore, keeping the computational time low is considered, as the control sys-
tem should be able to operate in real-time.

An economic MPC (EMPC) scheme was developed to balance load demands,
solar generation, battery storage system, and grid connection in an economical
fashion. Furthermore, to handle uncertainty and offer more robust control, the
controller was extended to a scenario-tree EMPC (SEMPC) and tested in three
configurations; 3, 7, and 9 branches.
Two different prediction methods are proposed for load demands and solar produc-
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tion. Load forecasts were implemented with a knowledge-based system. Further-
more, power production from PV cells was calculated with a model found through
multiple linear regression, using air temperature and irradiance data from numeri-
cal weather forecasts.

The results of the simulations compare the different MPC strategies in the con-
text of computational time and operation cost. Two different models for grid tariff
cost are evaluated, the first being the current price model of consumption-based
tariff for grid usage. The second is a proposed tariff model by NVE, aiming for a
more efficient grid operation where the peak power usage sets the basis for the grid
tariff. The baseline used in the results is a rule-based controller, which balances
powers without a battery. With the current tariff models, all MPC schemes im-
plemented have similar performance and reduce the total operation cost by 47%.
Under the future tariff system of peak cost, the SEMPC with seven branches re-
duces the operation costs by 55%.
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Sammendrag

I 2015 underskrev 196 land klimaavtalen i Paris Paris Agreement (2015), med inten-
sjonen om å holde den globale temperaturøkningen under 2 grader. To hovedtiltak
som m̊a tas for å n̊a dette m̊alet er: mer energi produsert fra fornybare kilder og
elektrifiseringen av sektorer med høyt utslipp. Denne overgangen vil lede til høyere
etterspørsel etter strøm og krever en mer effektiv bruk av strømnettet. Mikronett
er distribuerte kraftsystemer med egen kraftproduksjon og energilagring, som kan
øke fleksibiliteten i strømnettet. Mikronett er derfor foresl̊att som en løsning for
økt bruk av fornybar energi og effektiv utnyttelse av strømnettet.

Som reguleringssystem i et mikronett foresl̊ar denne oppgaven å bruke mod-
ell prediktiv kontroll (MPC) som reflekterer økonomien av å være en del av den
norske kraftnettet. I tillegg utvikles metoder for å predikere strømproduksjonen
fra et solcelleanlegg og laster som trekker strøm fra mikronettet. Metodene er
utviklet og testet med data fra Skagerak EnergyLab i Skien, Norge. Mikronet-
tet har et batterilagringssystem med kapasitet p̊a 1100kWh, og solcellepanel med
nominell production p̊a 800kW. Mikronettet leverer strøm til to laster, en indus-
triell bygning og et nabolag. Et realistisk simuleringsmiljø ble utviklet ved å lage en
matematisk modell, og data fra mikronettet. Dette ble brukt til å teste forskjellige
konfigurasjoner av reguleringssystemet. I tillegg er det lagt fokus p̊a å minimere
beregningstiden til systemet, ettersom det skal ha mulighet til å kjøre i sanntid.

En økonomisk MPC (EMPC) ble utviklet for å kontrollere balansering av laster,
strømproduksjon fra solceller, batterisystemet og tilkobling til strømnettet p̊a en
økonomisk m̊ate. Usikkerheter fra prediksjonsmetodene v̊are er adressert ved å
inkludere mulige scenarioer i reguleringssystemet. Dette ga en senario-tre EMPC
(SEMPC), som ble testet i tre konfigurasjoner; med 3, 7, og 9 grener. To forskjellige
prediksjonmetoder er foresl̊att for laster og solcelle-produksjon. Strømforbruket fra
lastene blir predikert ved å bruke et kunnskaps-basert system. Produksjonen fra
solcellene er beregnet ved å bruke lineær regresjon basert p̊a numeriske værvarsler
av solinnstr̊aling og temperatur.

V



Resultatkapittelet sammenlikninger kostnader og beregningstiden til forskjel-
lige konfigurasjoner av EMPC- strategiene. To forskjellige strukturer for nettleie er
testet, hvor den første er den n̊aværende nettleien med en pris per kWh. Den an-
dre er den nye nettleie-strukturen foresl̊att av NVE, hvor maksimalt strømforbruk
bestemmer nettleien. For å sammenlikne de forskjellige konfigurasjonene brukes
et regel-basert reguleringssystem, hvor strømmene er balansert uten bruk av bat-
teriet. Med den n̊aværende nettleien har alle konfigurasjonene relativt lik ytelse, og
kostnadene i systemet er redusert med 47%. Med den nye nettleien er forskjellene
større, men systemet med SEMPC reduserer kostnadene med 55%.
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Chapter 1
Introduction

1.1 Skagerak Energylab

This master thesis is written in cooperation with Centre for Intelligent Electric-
ity Distribution (CINELDI), which is one of the Centers for Environment-friendly
Research. The goal of CINELDI; enable a cost-efficient realisation of the future
flexible and robust power-grid (CINELDI 2020). As a part of this, the micro-grid
Skagerak EnergyLab has been created for research purposes.

The Skagerak Energylab is located in Skien, Norway, at the football stadium
Skagerak Arena. The stadium’s roof is covered with 4300 square meters of pho-
tovoltaic cells, which have a nominal peak power of 800kW. Furthermore, it has
a battery system with 1100kWh storage capacity and a maximum power dispatch
of 800kW. The micro-grid is responsible for supplying energy to both the stadium
and a local residential area. Also, as a micro-grid, it can operate in both island
and grid-connected modes. An illustration of the micro-grid topology is shown in
Figure 1.1.

1.2 Scope

This thesis is centered around a case study of a real micro-grid, where model pre-
dictive control (MPC) and data-driven prediction methods are tested to increase
the economic performance of the micro-grid. A mathematical model of the system
is developed and combined with real data collected from the micro-grid to create
a realistic simulation environment. The simulations allowed for the testing of the
different controllers.

By collecting data and running experiments on the micro-grid, the goal is to
better understand the interaction between solar power generation, battery storage
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Industrial 
Plant PV-Array Battery storage 

system
Residential Sports Arena

Grid

Figure 1.1: Topology of Skagerak Energylab.

systems, and the interaction with the existing power grid.

An economic MPC (EMPC) scheme is developed to balance load demands, solar
generation, battery storage system, and grid connection in an economical fashion.
By comparing the performance of the EMPC with a no-battery controller, the value
of proper scheduling and efficient use of the battery is investigated. The intermit-
tent nature of solar production and load demands make predictions difficult, and
some uncertainty can be expected. To handle this uncertainty and offer robust
control, a scenario-tree EMPC (SEMPC) is developed and tested in three configu-
rations; 3, 7, and 9 branches.

The data-driven methods proposed in this thesis are used to create better pre-
dictions of load consumption profiles and PV production. Different methods have
been examined based on the accuracy of the predictions and computational effi-
ciency. Load forecasts are implemented with a knowledge-based system. Further-
more, power production from PV cells are calculated with a model found through
Multiple Linear Regression and irradiance data based on numerical weather fore-
casts.

The main research questions addressed in this thesis are listed below:

1. Which methods should be used to efficiently forecast solar production and
load demands?

2. What is the value of using an EMPC-scheme as an energy management system

2



at the Skagerak EnergyLab in contrast to more rule-based control strategies?

3. What are the consequences of uncertainties in the EMPC-scheme, and can a
robust/stochastic formulation increase the performance?

1.3 Structure of the Report

This thesis is organised in the following way.

1. Chapter 1 - Introduction, outlines the background and scope for the thesis.

2. Chapter 2 - Background, gives an overview of the Norwegian energy marked
and a literature review of the different MPC-schemes.

3. Chapter 3 - Micro-grids, introduces the concept of micro-grids.

4. Chapter 4 - Time-series Analysis and Forecasting, presents and compares the
different methods for predictions.

5. Chapter 5 - Model Predictive Control, introduces the concept of different
model predictive control methods.

6. Chapter 6 - Methodology, presents the methods used in this thesis.

7. Chapter 7 - Results, presents the results of this thesis.

8. Chapter 8 - Discussion, reflects around the methods and results presented in
the thesis.

9. Chapter 9 - Conclusion and further work, concludes the work with a summary
and suggestions for further work.
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Chapter 2
Background and Literature Review

In this chapter, the contextual background for this thesis is offered. The test sys-
tem for the performed case-study is located in Norway, and the main focus will be
on the Norwegian power market and emissions.
First, a few commonly used terms from the micro-grid literature are defined. Next,
the differences in energy production in Norway and globally are presented. Then
follows an introduction to the transmission grid in Norway and the potential eco-
nomical changes it faces. Next, a technical literature study on the field of model
predictive control in micro-grid. Finally, the chapter is summarized by stating the
motivation for the thesis.

2.1 Definitions

• Effect-based tariff - The proposed new model where the grid tariff is based
on the maximum power drawn from the grid in a month.

• Fixed grid tariff - The current consumption-based grid tariff that has a fixed
price per kWh.

• Grid-connected mode - The micro-grid is connected to the main power grid
and can trade power at certain tariffs. When connected, the main grid is
responsible for primary control.

• Islanded mode - The micro-grid is disconnected from the main grid, and
operates individually with local control.

• Loads - Energy drawn from the micro-grid to the consumer. If the micro-grid
has control over a load, such as a possibility of charging an electric car, the
load is called controllable. In this thesis, all loads are non-controllable, so the
power demanded has to be provided at all times.
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• Power balance - All power systems, for example, a power grid, must have an
equal amount of power supply and power demand at all times. If the power
system is unbalanced, it results in unwanted effects on the power quality and
frequency.

• Predictions/forecasts - The estimated future value of signals or parameters.
The most used examples in this thesis are power generated from photovoltaic
cells and load demands.

• Primary control - Control layer handling power quality and stability. Primary
control usually operates on a resolution of seconds to minutes.

• Secondary control - Often called energy management system (EMS). The
economical layer of control, responsible for reducing the stress for primary
control. Usually operates on a resolution of hours to days.

• Uncertainties - Random variables that can be described by a probability
distribution.

2.2 Energy Production and Emissions

Norway has a unique position in energy production due to the high mountains
and wet climate that facilitates hydropower production. Figure 2.1 illustrates the
fraction of different energy sources used for power production in Norway compared
to the rest of the world. From March 2020 - March 2021, 100% of the national
power production came from renewable energy sources (RES), and hydro accounts
for 89.8% of all production (Statistics 2020). However, on a global scale, this is
not the case. Only 29% of electricity produced in the world originates from RES.
1 However, if the goal of keeping the rise in world temperature below 2 ◦C should
be reached (Paris Agreement 2015), energy production from RES has to increase
significantly. In addition, hydropower is limited to a few countries like Norway.
Removing hydropower, the two main RES left are solar and wind (SW). Although
SW are increasing globally (Ritchie 2021), there are challenges when incorporating
them into the existing power grid.

One of the main tasks of the power grid is to make sure the power balance is
maintained. This entails that electricity produced should be equal to electricity
consumed at any given time and is discussed further in Chapter 2.3. Fossil-fueled
power production has the advantage that it is possible to increase production as
demand increase. SW, however, relies on the weather, and the excess energy under
high production has to be stored so it can be used when the load demands it.

Even though all electricity production in Norway is from RES, there are still
emissions. Figure 2.2 shows which sectors that are responsible for the emissions
in Norway. The oil and gas extraction and industry are together accountable for

1Note: Nuclear production is left out as this is a different discussion.
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Figure 2.1: Percentage energy production in Norway vs. globally. Collected from
Statistics Norway (Statistics 2021) and Our World in Data. (Ritchie 2021)

over 50% of emissions, followed by transportation with ca. 31% (Statistics 2021).
To reduce the emissions in these sectors, they need to be electrified. Electrification
means switching from technology and services that rely on fossil fuels to electricity.
For example, changing from a diesel to an electric vehicle.

2.3 Norwegian Power Marked

As discussed in the previous section, Norway’s power production is mainly hy-
dropower. This gives Norway some of the lowest electricity prices in Europe. Today,
the electricity prices are divided into five bidding zones in Norway, which means
the prices can vary from area to area. The bidding zones are made to reflect the
transmission capacities between areas of production and consumption. Bottlenecks
in the transmission capacity cause different prices. For example, suppose a power
producer can supply cheap power in northern Norway. In that case, this will be of
little help to power demand in southern Norway if there is not enough capacity to
transmit it from producer to consumer.

2.3.1 Spot Market

The electricity bidding market is managed through NordPool 2, a shared electrical
market for all of northern Europe. A day before the production hours, the day-
ahead market, also known as the spot market, holds an auction where bids are
based on the predicted load demand. This auction sets the schedule and the power

2https://www.nordpoolgroup.com/
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Figure 2.2: Percentage emissions in CO2-equivalents from Norway in 2019. Col-
lected from Statistics Norway (Statistics 2021)

price for the next day. Closer to the hour of production, the intraday market al-
lows further trading to correct imbalances. In the last hour before production, the
balancing market tries to fix the previous imbalances between production and de-
mand. In the balancing market, power producers can give bids for flexibility, where
they offer possible up- or down-regulation of the power production. This regulation
is handled by the transmission system operator (TSO), which buys reserve power
to ensure the instantaneous power balance at all times.

2.3.2 Infrastructure and Effect Based Tariff

This section is based on the comprehensive report 3 ordered by The Norwegian
Water Resources and Energy Directorate (NVE) on the current changes in the
Norwegian power market, and specifically how the electrical infrastructure is fi-
nanced.

The Norwegian transmission grid is part of a Nordic synchronous area that
shares a standard frequency, including Sweden, Finland, and parts of Denmark.
This area has common frequency control and power balancing. The TSO handles
the power balance. In Norway and the Nordic area, the TSO is Statnett with
support from Svenska kraftnät. Statnett also owns the central transmission grid
in Norway, which delivers electricity between regions. The regional transmission
grids are regulated such that private companies can own them, but only a single
company can operate in a given area (Regjeringen.no 2016). As this induces a
monopoly, the companies owning the grid are forbidden to profit and only collect

3URL: https://publikasjoner.nve.no/rme hoeringsdokument/2020/rme hoeringsdokument2020 01.pdf
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fees to cover expenses associated with the transmission grid.

The current tariff system has two components. One is constant and is a pay-
ment for being connected to the grid, and the other is a fixed cost for the amount
of energy bought, measured in kWh. However, the way we use energy is changing.
As a measure to reduce greenhouse gas emissions, several sectors of society are get-
ting electrified. The transition leads to higher consumption of electricity, as well
as new ways to utilize the power. For example, over half of the private cars sold
in 2020 in Norway were electric, according to Statistics Norway (Andresen 2021).
Although this is good in an environmental setting, it is raising challenges for the
transmission grid, especially during peak-hours. These are hours where the most
power is drawn from the grid and usually occurs in the morning as people wake up
and in the afternoon when people get home from work.

The costs of the transmission grid can be separated into two components. The
first is transmission loss, which are energy losses that occur as electricity is trans-
ported from production to consumer. The losses are caused by electrical resistance
4 in the transmission lines, following the definition of electrical power

P = V I (2.1)

By inserting Ohms law
V = IR, (2.2)

and the resistance of the transmission line Rtrans we get

Ploss = I2Rtrans (2.3)

The losses increase with the square of the current, which is compensated in the
transmission grid by having high voltage. However, as the demands for electrical
power increase, the current has to increase, and therefore as a consequence the
transmission losses also increase.

The other costs are related to grid capacity, either via investments or mainte-
nance, and are responsible for 80-90% of all expenses. The main challenges occur
in peak hours when the maximum energy is drawn from the grid. As the transmis-
sion lines have a maximum capacity, they are continuously upgraded to keep up
with the increasing energy demand. However, in the off-peak hours, much of the
capacity is not being utilized.

Due to the described capacity situation, NVE is looking into the possibilities
of changing the grid fee to reflect these changes and give incentives to use the
transmission grid more effectively. The new fee is called effect-based tariff and
will, if implemented, replace the current fixed price model. Instead of measuring
the amount of energy used, the fee is determined by the peak power, which is the
maximum energy drawn from the grid. As a customer, it will be economically

4Some losses also come from impedance. However, this is neglected in this thesis.
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beneficial to spread the power consumption throughout the day, for example, by
charging the electric car during the night. The intention behind effect-based tariffs
is to reduce transmission losses and minimize the need for investments in the future.

2.4 Literature Study

This section is meant to introduce Model Predictive Control (MPC) as a control
method for micro-grid operation. Some topics are more advanced and will be
explained in detail later in the thesis.

2.4.1 Model Predictive Control

The method of model predictive control (MPC) is widely studied and applied in the
industry (Qin & Badgwell 2003). Model predictive control for micro-grids has been
researched, and several case studies have been conducted Parisio et al. (2014), Shan
et al. (2018). The goal of the controllers is to balance power and load in the micro-
grid, which is done by stabilizing the system model and satisfying constraints. The
papers presented in this section use a special case of MPC called economic MPC,
where the objective functions seek to maximize the economic profit/ minimize the
costs of a micro-grid.

In their paper, Clarke et al. (2016) simulate an MPC on a micro-grid model
with several different production units. The controller’s goal is to minimize the
operation cost while keeping the system within safety limits. The paper shows that
the controller is successful in this goal, and the article also indicates that increasing
the resolution of the MPC can lead to higher profit. The resolution is increased
from 60 to 5 minutes, which results in a consistent decrease in the operational cost
of the micro-grid. This is mainly due to fluctuations in solar power production,
and by decreasing the sampling time, the controller can better react to changes in
the system.

When there are several loads and production units in the grid, a unit commit-
ment problem can be formulated to assert which units are supposed to be online.
For example, if the power capacity cannot meet the load demand, shedding non-
essential loads is a unit commitment problem. Another example is whether to
start up extra generators or curtail power production. This problem is discussed
in Novickij & Joos (2019) where the authors try to tackle the unit commitment
problem by decoupling from the economic problem and running a two-stage MPC
that handles each of the subproblems separately. The proposed two-stage method
is compared to a single-stage MPC and gives a lower computationally cost. Lower
computationally cost allows for shorter time steps in the MPC. Clarke et al. (2016)
presents how this can provide a decrease in operation cost by reacting more quickly
to changes in the system.
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In Patiño et al. (2014), the MPC objective function is not purely economic.
The paper adds a tracking term that penalizes deviations in the battery state of
charge from a reference value. The reference value is chosen at 50% of max capacity,
where the battery can absorb or feed in extra power to the micro-grid. The tracking
term is implemented to avoid depletion of the battery at the end of each prediction
horizon, which is a consequence of having no terminal cost in the objective function.
It also adds a penalty term for the difference in actuator usage from one time step
to the next. This term helps avoid sudden and abrupt usage patterns of the grid
and the battery, decreasing the wear and increasing safety margins. However, both
these terms come with a trade-off with economic performance. The results show
that the MPC-controlled EMS effectively meets the load demands at all times.

2.4.2 Robust MPC

Most systems include some uncertainty, either through model-plant-mismatch or
due to external stochastic disturbances in the system. A grid-connected micro-grid
faces no severe consequences from breaking the battery constraints since it can
utilize the grid to solve the problem. A micro-grid either in island mode or has a
higher peak demand than the central grid’s transmission lines can supply poten-
tially faces a blackout if the battery is emptied. Other systems can have much more
severe consequences from constraint violation. To deal with dangerous constraint
violation and uncertainty, a controller that can guarantee the constraints is needed.
For this purpose, a robust MPC is proposed. In robust MPC, an early contender is
the min-max MPC that plans the optimal solution based on the worst-case scenario
realization of the uncertainty.

In Carli et al. (2020) a robust MPC is proposed for a micro-grid with both
electrical and thermal loads. The system is modeled with a box-uncertainty set
which accounts for each uncertainty parameter independently. The robust MPC
seeks to safeguard itself from the worst-case realization of the uncertainty in the
system. This means that the solution tries to be feasible for any realization of
the uncertainty set. The paper also presents a way to tune the robustness of the
MPC. It does so by having weights on the predictions and the worst-case scenario.
Giving the predictions full trust results in a deterministic MPC while weighing
the worst-case scenario gives a min-max MPC. The weights allow tuning of the
controller to find an MPC scheme somewhere in between. The paper compares a
robust MPC scheme with a deterministic MPC and shows that the number of times
the controller breaks the constraints drops quickly as the robustness of the system
increases. Over a thousand simulations, the percentage of infeasible solutions is
34% for a deterministic MPC and 0% for the fully robust MPC. This advantage
comes at a cost, and the robust MPC has an operational cost about twice as high
as the nominal MPC.

In the paper by Zhou et al. (2016), the authors compares a min-max MPC to
a certainty equivalent MPC on a micro-grid. The certainty equivalent MPC takes
the probability averaged mean of the forecast and uses that value as the predic-
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tion. The results here are similar to what can be seen in other papers, i.e the
robust min-max method decreases constraint violations but increases cost due to
its conservative solutions.

2.4.3 Scenario MPC

Robust MPC schemes can be very conservative and often sub-optimal in the opti-
mization of the objective function. This is due to the focus on worst-case scenarios.
A more recent implementation of min-max MPC has been studied in scenario-tree
MPC (SMPC), also called feedback min-max MPC. The SMPC models the dif-
ferent realizations of the uncertainty through branches of possible realizations and
optimizes across them. Since it is numerically impossible to model all possible re-
alizations, this technique relies on efficiently choosing the scenarios.

Scenario trees that try to span the entire uncertainty set, faces difficulties when
there is more than one uncertainty parameter. A method that builds branches
with all combinations of the maximum and minimum values for all the parameters
might cover highly unlikely or impossible scenarios. As shown in Krishnamoorthy,
Thombre, Skogestad & Jäschke (2018), the likelihood of an extreme value in all the
uncertainty parameters is quite unlikely. The authors propose a method where a
principal component analysis reveals the correlation and variance of the data and
reduces the size of the uncertainty set.

In Hans et al. (2015) a scenario-based solution is implemented to handle un-
certainty in an islanded micro-grid. The paper first uses Monte Carlo simulations
to represent the probability distribution of the uncertainty. Then a method called
the forward selection algorithm is used to create the scenario tree. A scenario-tree
MPC is compared to an MPC with perfect prediction and a min-max MPC. The
scenario-tree MPC has a lower operational cost than the min-max MPC but also
more constraint violations.

2.5 Motivation

The motivation behind this thesis summarizes the topics that have been discussed
so far. Chapter 2.2 shows that the global use of renewable energy sources has to in-
crease, as well as the challenges associated with solar and wind power generation.
Forecasting power production from solar and wind and using electricity storage
effectively is necessary to incorporate them into the existing power grid. Further-
more, sectors with high emissions of greenhouse gasses are getting electrified, which
is straining the infrastructure that distributes electricity. Therefore, the grid has to
be used more efficiently to reduce losses and limit investments. To give incentive to
the customers of the power grid, Norwegian authorities (NVE 2018) has proposed
to change to an effect-based tariff. Micro-grids offer flexibility with energy storage
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systems and distributed energy generation. This thesis aims to research a controller
that takes advantage of this flexibility, reduces electricity cost, and accommodates
the uncertainty introduced by intermittent RES generation.

The overall objective issued by Skagerak EnergyLab and SINTEF CINELDI is
to reduce the cost of a micro-grid operation. However, doing this entails creating
solutions that incorporate solar power production and is a part of the modern Nor-
wegian power grid. This, again, can lead to reduced emissions. Based on literature
(Chapter 2.4), Economic Model Predictive Control (EMPC) is believed to be a
good solution for an energy management system.
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Chapter 3
Micro-Grids

So far, the challenges with renewable energy sources and power transmission have
been discussed and micro-grids as a possible solution was presented. This chapter
by elaborating on micro-grids and their position in the transmission grid. Then
the central components of a micro-grid are discussed, namely renewable energy
sources, loads, and energy storage systems. The chapter ends by describing the
control hierarchy of a micro-grid and which layer of control is of interest in this
thesis.

3.1 What is a Micro-grid?

Micro-grids have to some degree been around for a long time, but have recently
gained attention as a component of the green shift (Marnay et al. 2015). As dis-
cussed in Chapter 2.2, energy production from renewable energy sources (RES) is
expected to grow. RES has a relatively low production capacity per square kilo-
meter compared to traditional power plants running on fossil fuel. Furthermore,
coal, gas, and oil are easy to transport, which means that fossil energy plants can
be placed almost anywhere. Large, centralized power plants can supply large areas
with electricity, which has led to a top-down design of the power grid. In contrast,
RES depends on local weather conditions for optimal power production and cannot
be placed arbitrarily. Utilizing RES are therefore leading to more distributed en-
ergy production, which offer challenges when incorporated into the existing power
grid.

Micro-grids appear at different scales and with different configurations of com-
ponents. The CIGRÉ Work Group (Marnay et al. 2015) offers the following defi-
nition:

Micro-grids are electricity distribution systems containing loads and dis-
tributed energy resources, (such as distributed generators, storage de-
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vices, or controllable loads) that can be operated in a controlled, coor-
dinated way either while connected to the main power network or while
islanded.

Distributed energy production also leads to prosumers, who are customers who
both buy and sell electricity back into the grid. This bidirectional power flow is
difficult to control centrally, and therefore micro-grids are used as a buffer, provid-
ing decentralized control. If the distributed production can be bundled together
with local loads into micro-grids and controlled locally, the micro-grid can act as a
singular unit connected to the grid.

Another challenge with renewable energy is the intermittency and its effect on
the power balance of the grid. Production is not controllable and does not nec-
essarily align with the demand. Local energy storage systems (ESS) can alleviate
these problems. ESS can mitigate the variable production by supplying power when
the demand exceeds the production and store energy when production exceeds de-
mand. For the micro-grid to solve these problems, it needs a controller to properly
schedule power trade with the main grid and predict load demand and RES.

Marnay et al. (2015) summarizes this into three main benefits of using micro-
grids:

• To better utilize local assets which are difficult to incorporate into the main
grid. Relevant assets are small-scale RES for power production or electric
vehicles as batteries.

• Provide high-quality power and reliability to local services. This is relevant
in areas with poor infrastructure or if the micro-grid is supplying emergency
services.

• Providing a controlled profile to the wider power system, e.g., damping the
variability of local renewable resources and loads.

3.2 Renewable Energy Sources

This section introduces the most commonly used renewable energy sources.

3.2.1 Photovoltaic Generation

Photovoltaic (PV) cells collect energy from the photons coming from the sun. A
typical cell comprises a semiconductor material, most commonly silicon, with a
positive and a negative doped side. Doped in this context means adding small
amounts of atoms of another element that change the material’s electron balance.
The positive side lacks electrons, and the opposing side has an excess. Between
the two layers is a diode allowing one-way travel for electrons. If hit by a photon,
the electrons absorb the energy of the photons and detach from their atoms. The
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electrons can then travel through the diode, which causes a difference in the voltage
between the layers used for electrical work. The photons must be in the suitable
energy range for the electrons to absorb the photon’s energy. The energy range is
determined by the position of the electron in the atom.

3.2.2 Wind Turbines

Wind turbines generate power by harvesting the kinetic energy from the wind. A
wind turbine has rotor blades that are propelled by the pressure difference around
the blades. There is a maximum percentage of the power that can be produced,
which is is called the Betz limit and is 53.9%. Intuitively, the limit comes from
removing the kinetic energy from the wind, slows, or stops the air movement.
Therefore there is a limit to how much the wind can be slowed before it starts
to accumulate and build up pressure behind the wind turbine. Even though wind
turbines are the second-fastest-growing RES, they are not a component in the
Skagerak Energylab and will therefore not be discussed further in the thesis.

3.3 Load Demands

The goal of a power system is to transmit power from energy production to demand.
A load can be an industrial plant, a private household, or anything running on elec-
trical power inside the micro-grid. The loads in the micro-grid are often combined
into a single load since this assumption simplifies the system model. The load can
be split into two categories, controllable and critical/non-controllable loads (Comi-
nesi et al. 2018). Controllable loads can safely turn off without the risk of lives or
significant economic losses. If the total load exceeds the power in the system, it
runs the risk of a blackout if there is no backup power. To avoid a blackout, the
system can turn off or shed controllable loads. In this thesis, it is assumed that all
loads are critical and load shedding will therefore not be discussed any further.

3.4 Energy Storage Systems

An energy storage system is responsible for coordinating the different types of
energy storage in a micro-grid and handle charging/discharging of them. The
ESS can include several energy-storing components, each with its advantages and
disadvantages. Storage methods with large capacity like hydro pumps are slower to
come online and deliver power. In contrast, storage methods with smaller capacity
like flywheels have a low reaction time and can stabilize the power balance for
a short time and avoid grid failure while the slower storage types come online
(Rahman et al. (2020)).

3.4.1 Flywheels

Flywheels stores energy as rotational energy. As the name implies, it is made up
of a spinning wheel that can quickly be accelerated or decelerated. When there
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is a sudden need for power in the system, flywheels can quickly be decelerated to
generate power. Though the wheels’ tensile strength limits the amount of energy
stored, flywheels have many advantages over other storage forms. It can operate in
a larger temperature range than batteries, the amount of energy stored can easily
be measured via the rotational speed ω, (3.1), and the flywheel has a very long
lifespan (Khodadoost Arani & Gharehpetian 2014), (Bordons et al. 2020).

1

2
∗ Jm ∗ ω2 (3.1)

3.4.2 Pumped-Storage Hydro power

Pumped-Storage Hydro (PSH) is a method for storing large amounts of energy. If
there is an excess of electricity in the power system, a motor pumps water from a
lower reservoir to an upper reservoir higher in altitude. When energy is needed,
the pump turns into a regular hydropower plant. The water’s potential energy
at the upper reservoir is turned into kinetic energy used in a turbine to generate
power. This method store a large amount of energy, but it takes time to both fill
the storage and discharge it (Chen et al. (2009)). The main problem with PSH is
that it is dependent on a significant drop in altitude and is therefore limited to a
small number of areas.

3.4.3 Batteries

Batteries represent a trade-off, with a medium response and medium storage size.
In this thesis, the ESS will only consist of a single battery to accurately portrait
the case study. There are many types of batteries, though lithium-ion batteries
are the most common. All batteries experience some form of degradation, and
it happens over time for various reasons. This includes calendar aging, which is
degradation due to the passage of time, extreme temperatures, relatively large or
low discharge, operating on the outer edges of the state of charge (SOC) and large
depth of discharge (Vetter et al. 2005). An economic optimization should include
battery degradation to represent the cost of battery usage. Furthermore, there are
methods of mitigating the wear of the battery. One of these methods is avoiding the
outer edges of SOC and keeping within an area where linear operation mechanics
can be assumed. The size of the linear working area varies depending on the type
of battery, but is centered around 50% state of charge (Laresgoiti et al. 2015). In
this thesis, we assume that the linear working area is between 20-80% of SOC.

3.5 Control Hierarchy

Several layers of control are needed to achieve high-quality power in a micro-grid,
each running at different sampling times. There are several ways to define the
control layers, and in this thesis, the definition from Olivares et al. (2014) is used.
The control hierarchy is shown in Figure 3.1.
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Figure 3.1: General micro-grid control hierarchy.

Tertiary Control looks days or weeks into to future to find the optimal set-
points for secondary control. Tertiary control is outside the scope of this thesis.

Secondary Control is the focus of this thesis. In the context of micro-grids, it is
better known as the energy management system (EMS). The EMS schedules and
controls the power balance, assuring that the power produced/imported matches
the power demand. It is also responsible for future economic optimization and
gives charging and discharging set-points for the ESS. An EMS will typically run
several times every hour with fixed intervals and desirably calculate a solution in
seconds. In this thesis, the EMS runs every 10 minutes.

Primary Control is mainly concerned with the power quality and balancing
reactive and active power. Through methods like droop control, the primary con-
troller stabilizes the voltage and the power frequency around the desired value and
handles unforeseen disturbances in the power balance. It needs to act in a matter
of milliseconds, as any large deviations in frequency can damage electrical compo-
nents connected to the grid. In a traditional centralized grid, the primary controller
relies on the system’s inertia in the first few seconds after a power imbalance occurs.
Synchronous generators, which are the backbone of the power industry, spin with
the same frequency as the power frequency in the grid. Due to the inertia of all
the synchronous generators, it takes a few seconds extra for a power imbalance to
increase/decrease the frequency. This inertia is essential since it gives the primary
controller 15-30 seconds to activate its frequency containment reserves, which are
generators with a reserved capacity for production change in case of imbalances
in the grid (ENTSOE 2019). While this effort might be enough, more significant
imbalances need secondary and tertiary reserves. If the imbalance lasts several
minutes, the secondary controller sets a new set-point for the production. There
will often be a large fraction of the power produced by renewable energy sources
that do not have synchronous generators or inertia in a micro-grid. This creates an
extra challenge for the primary controller in micro-grids. Several proposals have
been made, e.g. by Sandelic et al. (2018), Engels et al. (2020), where the energy
storage system (ESS) acts like a primary controller. The lack of inertia in the
power production can be mended by including quick response storage that can
be activated in the matter of seconds, like spinning flywheels or ultra-capacitors.
However, power quality and primary control is outside the scope of this thesis and
will therefore not be discussed any further
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Chapter 4
Time Series Analysis and
Forecasting

For the energy management system of the micro-grid to make economic decisions,
it needs precise knowledge about the future. In this chapter, common methods
used to describe and forecast time series are discussed.

A time series (TS) is a set of values obtained at successive points in time. A TS
is called deterministic if future values are determined by a mathematical function
y = f(x, t). However, if the time-series future values can only be described by a
probability function, the TS is called statistical time-series (Box & Jenkins 1990).
As discussed in Chapter 2, PV production and load demands are intermittent sig-
nals and are in this thesis considered statistical time series.

Some essential definitions in the context of time series is needed for this chapter.

• Stationarity - A time-series is said to be stationary if the probability density
function that describes the time-series is invariant under translation of time
(Brown & Hwang 2012).

• Trend - The general direction of the data values over a period larger than
the sampling time. For example: The stock market moving upwards over a
10 year period.

• Seasonality - Characteristic behaviour repeating itself in a periodic manner.
For example: the sun rising every morning and setting every night.

• Noise - Random and unpredictable behaviour.
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4.1 Evaluation of Time Series Forecasts

This section is based on the work done in the project thesis Husefest (2020).
Some metrics are defined to evaluate a time series forecast. A forecast ŷ looks N
steps into the future, which is called the prediction horizon. ŷk is the prediction
at step k in the prediction horizon. A prediction method is usually tested on a
test-set, where the true signal y is known over the entire prediction horizon. The
prediction error e at time k is defined as in Equation 4.1

ek = yk − ŷk (4.1)

The metric used in this thesis is root mean squared error (RMSE), which is com-
monly used as forecast metrics, e.g. (Hans et al. 2018), (Labeeuw & Deconinck
2013). RMSE is defined as following

RMSE =

√√√√ 1

N

N∑
k=1

(yk − ŷk)2 (4.2)

An average over RMSE is used to evaluate the forecasting method over several
time steps. The average RMSE, denoted A-RMSE, is

A-RMSE =
1

I

I∑
i=0

RMSEi, (4.3)

where P is the number of forecasts, and RMSEi is the RMSE over the entire
prediction horizon at time-step i.

However, the nature of MPC, where only the first control action is chosen,
suggests that the forecasts in the distant future are less important than those for
the near future. Therefore, the one-step RMSE is defined as follows

1-RMSE =

√√√√1

I

I∑
i=0

(yi,1 − ŷi1)2, (4.4)

where yi,1 and ŷi,1 are the true values and the predicted values of the first predic-
tion step respectively, and I is the simulation horizon.

As the system should be able to run on a real plant, computational time C is
also important. C is defined as the average computational time per prediction,

C =
1

I

I∑
i=0

Ci (4.5)

So the three metrics A-RMSE, 1-RMSE, and computational time are used to
evaluate the forecasting method. A-RMSE indicates how well the forecast catches
the signal’s general behavior, while 1-RMSE suggests how well the method performs
in the near future.
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4.2 Time Series Forecasting Methods

This section will be a short intro to different methods commonly used in time-series
forecasting.

4.2.1 Feature-Driven Methods

A feature-driven method relies on external or exogenous time-series, for example,
weather, season, etc. The major challenge that arises when using other exoge-
nous TS for prediction is that these additional features also have to be predicted.
Therefore the uncertainty from the feature prediction is propagated into the overall
prediction method. Also, since the methods do not use any forecasting measure-
ments, the 1-RMSE can be assumed to be high. However, several methods use
this approach, for example, multiple linear regression, random forest, and artificial
neural network (ANN), which was examined in Kayri et al. (2017).

Multiple linear regression (MLR) assumes a linear relationship yt = Wxt be-
tween the exogenous feature-vector xt, and the target time-series yt. The weight-
matrix W is approximated by minimizing the least-square error (y − ŷ)2 in the
training set. Predictions can then be computed by the matrix multiplication
ŷt+1 = Wx̂t+1, where x̂ is a new set of exogenous values. The upside of using
MLR is fast training and predictions, while the major drawback is the assumption
of linear relationship between the features.

Random forest and ANNs are methods for learning nonlinear relationships y =
f(x), where y is the target time-series, x is the exogenous feature and f(x) is an
unknown function. It is outside the scope of this thesis to go into detail with
these methods, despite showing high performance in, e.g., Kayri et al. (2017). The
method demands a larger amount of data than what was available to this thesis.
The authors in Kayri et al. (2017) had a year of data available, while we had less
than two months. Furthermore, the increase in performance is low compared to
the uncertainty in the exogenous features, as shown later in Chapter 6.3.

4.2.2 Stochastic Methods

This section is based on the work done in the project thesis Husefest (2020).

Stochastic methods are models that assume that the signal y is the output from
white noise being fed through a linear filter (Moghram & Rahman 1989). There
are two main models used in stochastic methods; auto-regressive (AR) and moving
average (MA). AR models predict future values based on linear combinations of p
previous values

yt = c+

p∑
i=1

φiyt−i + wt, (4.6)
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where c is a constant, φ are the parameters, and wt is white noise.
MA models uses past errors from q previous predictions to predict future values on
the form

yt = c+

q∑
i=1

θiwt−i (4.7)

where wt is white noise, and θ are the parameters.

AR and MA models can be combined into an ARMA model, where predictions
are made from both Equation 4.6 and Equation 4.7. However, AR, MA, and ARMA
require the TS to be stationary (Box & Jenkins 1990). A non-stationary signal can
be transformed into a stationary signal by differencing. Differencing transforms
the time-series y(t) to the time-series d(t) with the recursive formula

dI(t) = dI−1(t)− dI−1(t− 1),

where I is the number of times the TS is differenced and d0(t) = y(t). If this is
needed, the ARMA model is extended to an ARIMA model. The added I stands for
for integrated, which is the number of times the signal has to be ”un-differenced” to
get the prediction y. If the time-series also has seasonal components, the ARIMA
model can be extended to a seasonal ARIMA or SARIMA.
Moghram & Rahman (1989) shows that ARIMA gives high performance for pre-
dicting load demands on a short-term basis. Also, since they rely on the current
measurement, the one-step predictions are usually good. However, the main draw-
backs are complex models that require high computational power and difficulties
handling noisy signals (Husefest 2020).

4.2.3 Knowledge-Based Methods

Knowledge-based methods are rule-based methods, which are built up from domain
knowledge of the signal. These rules can be simple, for example, power demand on
weekdays is larger than on weekends, or more complex rules and systems like in
Labeeuw & Deconinck (2013). The authors analyze thousands of residential load
profiles and clusters them together as groups of similar behavior within each quarter
of a year. These methods are good at capturing the typical trends over a day and
can be computed offline. However, they neglect measurements and therefore have
lower accuracy for one-step predictions.

4.2.4 Mathematical Models

In some cases, it is possible to express the time-series function mathematically, for
example, in photovoltaic cells. Although a perfect mathematical model will predict
the time series without error, this is not possible in practice due to parameter
uncertainties and modeling assumptions.
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Symbol Explanation Type
I Current Output variable
V Voltage Output variable
G Global horizon irradiance Input variable
T Temperature Input variable
IPV Photovoltaic current PV parameter
I0 Saturation current of PV diode PV parameter
Irs Reverse saturation current PV parameter
Isc Short circuit current PV parameter
VOC Open circuit voltage PV parameter
Ns Number of PV-cells connected in series PV parameter
A Diode ideality factor PV parameter
Rs Series resistance PV parameter
Rp Parallel resistance PV parameter
Eg Energy band gap PV parameter
Ki Model constant PV parameter
Tnom Reference temperature PV parameter
Gnom Reference global horizon irradiance PV parameter

q Electron charge Physical constant
K Boltzmann constant Physical constant

Table 4.1: Parameter for PV model optimization problem.

PV model An initial PV model was developed with the help of SINTEF, was based
on Vinod et al. (2018), Junior (2016) and Villalva et al. (2009). This model was
based around an optimization problem that used air temperature and irradiance
to calculate the power.

IPV =
G

Gnom
(Isc +Ki(T − Tnom)

I0 = Irs(
T

Tnom
)3e

qEg
AK (1/Tnom − 1/T )

Irs = Isce
− qV oc

NsKAT

(4.8)

I = Ipv − I0 ∗ e
V +RsI

Vta
−1 − V +RsI

Rp
(4.9)

The model created an optimization problem, with voltage and current as de-
cision variables, which should satisfy Equation 4.9, and the sub equations in 4.8.
The predicted power production was then calculated by multiplying the voltage V
and current I.
As discussed later in Chapter 6.3, the model provided accurate predictions. How-
ever, the main drawbacks of the method is the computational time needed to solve
the optimization problem and the uncertainty in the parameters.
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Chapter 5
Model Predictive Control

In the literature study (Chapter 2.4), model predictive control (MPC) is proposed
as a control scheme in the energy management system of a micro-grid. However,
there are variations of MPC, and the most relevant in this thesis is the economic
MPC (EMPC).

This chapter starts by going through dynamic optimization and optimal control
problems, which leads to the introduction of MPC. Then an elaboration on the
challenges and advantages of using an EMPC compared to a nominal MPC scheme
is presented. Furthermore, robust and stochastic versions of MPC are discussed,
which leads to the scenario-tree MPC. The chapter ends with a description of direct
shooting methods used to solve optimization problems numerically.

5.1 Dynamic Optimization and Optimal Control Prob-

lems

Optimization problems are also known as mathematical programming problems,
and the task is to find the best values given some criteria. Since most programming
problems cannot be solved explicitly, it is common to use numerical methods, which
is discussed in Chapter 5.5. Comprehensive literature exists on the topic, e.g.
Numerical Optimization by Nocedal & Wright (2006).

A constrained optimization problem can be written as in Equation 5.1, where
L(x) is a function to be minimized, and x is the decision variable. ci(x) are the
constraints, with E being the index set for the equality constraints and I being
the index set for the inequality constraints. L(x) is often called objective or cost
function. The set of values defined by the constraints is called the feasible region
and includes the optimal solution. Note that a maximization problem can easily
be manipulated into the standard form of a minimization problem by changing the
sign of L(x).
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min
x

L(x)

s.t. ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

(5.1)

An fundamental concept of optimization is convexity, which can be used for both
sets and functions. The definitions are collected from Nocedal & Wright (2006).

• A set S ∈ Rn is convex if a straight line segment connecting any two points
in S lies entirely inside S.

• A function f is convex if its domain S is a convex set, and for any two points
x and y, the following property is satisfied.

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) α ∈ [0, 1] (5.2)

If −f is convex, f is said to be concave.

Convexity is useful due to the following statement; if the objective function L
in Equation 5.1 and the feasible region are both convex, then any local solution is
a global solution (Gros & Diehl 2017).

A special case of constrained optimization is linear programming (LP) where the
function L(x) and all the constraints c(x) ∈ {E , I} are linear. LP is well researched
and can be solved efficiently with method such as simplex or interior-point methods
(Nocedal & Wright 2006).

Nonlinear Programming (NLP) problems are more common and occur when ei-
ther L(x) or any of the constraints are nonlinear functions. A special case of NLPs
are quadratic programming (QP) problems. QPs are characterized by a quadratic
objective function and linear constraints. If the objective function is convex, active-
set or interior-point methods can efficiently solve QP problems.
Other types of optimization include integer programming (IP), where the variables
can only take integer values, and mixed-integer programming (MIP), where only
some of the variables must have integer values.

5.1.1 Optimal Control

Optimal control is an optimization method used to derive control policies for sys-
tems on the form

ẋ = f(x, u)

y = g(x),
(5.3)

where x are the states of the system, u are the controllable input to the plant,
f(x, u) is a function that describes the system’s dynamics, and y is the observable
output of the plant.

28



In optimal control, the control policy or trajectory of (x, u) is the sequence of
solutions to the optimal control problem (OCP). Equation 5.4 shows a continuous
OCP, from t = 0 to t = T . Equation 5.4a is the objective function, ` is called the
stage-cost and V (xN ) is a cost on the terminal state. The dynamics of the system
is included as a constraint (Equation 5.4b), which together with path constraints
(Equation 5.4c), and terminal constraint (Equation 5.4d) make up the feasible
region of the problem.

Many control problems are open-ended and has infinite horizon, such as in a
micro-grid operation. Therefore, the prediction horizon N should also be infinite.
However, this is generally not numerically possible to compute. Therefore, the
terminal cost V (xN ) is included to approximate an infinite horizon. This will be
discussed further in Chapter 5.3.3.

min
x,u

∫ T

0

`(x(t), u(t)) dt+ V (x(T )) (5.4a)

s.t. ẋ = f(x(t), u(t)) (5.4b)

0 ≥ h(x(t), u(t)) (5.4c)

x(T ) ∈ T (5.4d)

5.2 Model Predictive Control

Although optimal control can find control policies for dynamic systems, the plant
may behave differently than expected. This behavior is due to differences between
the real plant and the mathematical model used in the optimization, often called
model-plant-mismatch (Gros & Diehl 2017). The approach described in the previ-
ous section is open-loop control, as calculations are done offline, without updates
from the plant. Model Predictive Control (MPC), however, is a closed-loop control
scheme that incorporates feedback from the plant. At every time step, the MPC
recalculates an OCP based on measurements collected from the plant. The general
MPC algorithm is shown in Algorithm 1.

Algorithm 1 General MPC Algorithm

for k = 0,1,2.... : do
1. Get the current state xk
2. Solve a constrained optimization problem on the horizon from k to k+N.
3. Apply first control move uk from the solution above

end for

The objective of a standard MPC is generally to stabilize the states to a given
set-point or trajectory (Angeli et al. 2012). Therefore, the cost function should be
designed such that the optimal state and associated control (x∗, u∗) gives zero cost.

0 = `(x∗, u∗) ≤ `(x, u) x ∈ X , u ∈ U (5.5)
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Mayne et al. (2000) offers stability proofs on several MPC schemes, under the
assumption of Equation 5.5 and enforcing some additional assumptions on the
terminal constraints and costs. Details about these additional assumptions are not
included in this thesis, but recommended literature can be found in Mayne et al.
(2000) and Faulwasser et al. (2018).

5.3 Economic Model Predictive Control

When dealing with the optimization of economic processes, the traditional method
has been to decompose the problem into two stages (Angeli et al. 2012). The first
stage is often called real-time optimization (RTO) and finds optimal steady-state
references. The second stage uses, for example, MPC as described in the previous
section to track the references. The RTO usually recalculates the references on an
hours-to-day basis, while the MPC updates on the rate of seconds to minutes (Ellis
et al. 2014). This method is denoted tracking MPC from this point.
However, an economic MPC (EMPC) removes the steady-state optimization and
minimizes the economic cost directly. Besides removing the RTO, EMPC has
benefits such as allowing for time-varying systems and transient economic control.
Transient economic control means that the EMPC can reach the optimal value and
find the most economical way to get there. This principle is illustrated next with
an example by Rawlings & Amrit (2009), which compares an EMPC and a tracking
MPC.

5.3.1 Example: Tracking vs. Economic MPC

Let us consider the following linear system with the discrete dynamics

xk+1 =

[
0.857 0.0883
−0.0147 −0.0151

]
xk +

[
8.57
0.884

]
u, (5.6)

where x ∈ R2, u ∈ R, and inputs constrains u ∈ [−1, 1]. The economics which
should be minimized are defined as

`eco(x, u) = −[3, 2]Tx− 2u (5.7)

Due to the constraint u ∈ [−1, 1] and the linear economics, the optimal input is
u∗ = 1, which corresponds to the states x∗ = (60, 0). The cost-function for the
tracking MPC is defined as

`targ(x, u) =
[
(x1 − x∗1)2 + (x2 − x∗2)2 + (u− u∗)2)

]
(5.8)
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Figure 5.1: Economic MPC and tracking MPC. The pink vector shows the increas-
ing costs, while the cyan vector shows decreasing set-point error.

Figure 5.1 shows the trajectory of the two MPC schemes, both initialized at
x = (80, 10). The EMPC earned 7943 units, which is a 6% increase of the tracking
MPC’s profit of 7472 units. The EMPC takes a slow path to reach the optimal
set-point while tracking MPC is inconsiderate of the economics and rushes to the
same point fast.

5.3.2 EMPC Stability

Unlike the cost-function in Equation 5.5, the EMPC stage cost is not necessarily
positive. Consequently, classical stability proofs fails (Faulwasser et al. 2018).
Therefore energy-based stability proofs have been researched for EMPC, and Diehl
et al. (2011) shows that the system is stable if the problem is dissipative. An intu-
itive definition of dissipative system is; the rate of increase in energy is no greater
than the input power (Bao & Lee 2007).
To prove dissipativity, one has to find a storage function that satisfies the dissi-
pativity inequality (Faulwasser et al. 2018), which is non-trivial. It is outside the
scope of this thesis to examine this further, but several methods have been pro-
posed to find this storage function in recent literature. Pirkelmann et al. (2019)
proposes to use a sum-of-squares method, Scherer & Weiland (2020) uses linear
matrix inequalities and Koch et al. (2020) uses noisy data from linear systems.

5.3.3 Dynamic Programming and Terminal Costs

Another issue with the non-tracking behavior of EMPC occurs if the prediction
horizon N is short compared to the system dynamics and a terminal cost is not
used. An OCP has a limited prediction horizon, and ideally, the OCP of the
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micro-grid EMPC should have an infinite prediction horizon. Still, it is not com-
putationally feasible to include all time steps in our OCP. The time steps after the
horizon are still a part of our problem, and a short prediction horizon can create
some unwanted effects. An example from using EMPC on micro-grids can illus-
trate these effects, which is demonstrated in Chapter 7.1. With a short horizon,
the controller with a short prediction horizon depletes the battery to earn money.
However, with a long prediction horizon, the EMPC keeps more energy in the bat-
tery, which is more economical in the long run.

Terminal cost is a term or function V (xN ) in the objective function representing
the cost of terminating the optimization horizon at different state values. Ideally,
this term should penalize end states that would be disadvantageous as an initial
value for the OCP. One method for finding the terminal cost expression is dynamic
programming.

Dynamic programming is based on the concept that any sub-sequence of an
optimal sequence is the optimal solution to the sub-problem and vice versa. By us-
ing this principle, complex problems can be divided into sub-problems and solved
separately before re-assembling the solutions. As applied here for terminal cost
calculation, the method finds the optimal action given the state of charge by cal-
culating the cost for the optimal action. The Bellman function, also known as the
value function, is the expression used in dynamic programming. It consists of a
stage cost and a next step cost term.

V (x) = l(x, u) + γV (x+), (5.9)

where x+ is the next value of the state.
The value function iteration method can be used to find the solution of equation

5.9. This method iterates over the function and is shown in Algorithm 2. At each
iteration, all possible value combinations of u and x are calculated and stored.
The algorithm then chooses the smallest value for each state and continues the
iteration until some predefined error bound is reached. The coefficient γ is the
discount factor, enforcing convergence for values between [0,1).

Algorithm 2 Value Iteration Method

Require: V = 0
while Error > ε do

for all states do
for all inputs do
Q(x, u)← l(x, u) + γV (xnext)

end for
V (x)← min

u
Q(x, u)

end for
Error ← V − Vprev
Vprev ← V

end while
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5.4 Scenario-Tree MPC

As mentioned in Chapter 5.2, model-plant-mismatch can happen in the modelling,
either via parameter uncertainty, or via exogenous disturbance w(t). In this thesis
it is assumed that the parameter uncertainty is negligible, which means the dynamic
system in Equation 5.3 can be extended to

ẋ = f(x, u, w) (5.10)

Some of the uncertainties can be mitigated by an MPC scheme due to the
closed-loop control. However, the uncertainties affect performance, and if they are
large, they can push the system outside the constraints and give an infeasible so-
lution. This problem has led to robust and stochastic MPC development, which
incorporates uncertainties into the MPC formulation. In this thesis, scenario-tree
MPC is implemented due to the nature of the disturbances in the system. This is
discussed next in the context of robust and stochastic MPC.

5.4.1 Robust and Stochastic MPC

The difference between robust and stochastic MPC lies in the knowledge about
the uncertainty w(t) ∈ Rp (Mayne 2016). Robust MPC assumes w(t) is con-
tained within a closed set W ∈ Rp. This assumption means that the uncertainty is
bounded, and MPC can ideally find solutions that satisfy the constraints. Raković
(2019) offers literature on several implementations of robust MPC. The main draw-
backs of the methods are concerning the assumption of bounded uncertainties. A
large set W can lead to conservative behavior and bad performance, and even in-
feasible problems.
On the other hand, in stochastic MPC, w(t) is described as a random process
with probability distribution φ, which is generally assumed to be unbounded. This
means that one can no longer guarantee constraint satisfaction, which is solved by
using chance- or expectation constraints (Heirung et al. 2018). Chance constraints
are designed such that the probability of violating constraints is kept under a given
threshold, while expectation constraints force the MPC to satisfy the constraints
in expectation. Another challenge in stochastic MPC is to represent φ in a finite
and computationally tractable way (Mayne 2016).

Scenario-tree MPC can be used to implement both robust and stochastic MPC,
depending on how the scenarios represent the uncertainty. If the disturbance is as-
sumed bounded, the scenarios can span out the most extreme realizations, resulting
in a robust MPC (Raković 2019). Scenario-tree are also used in stochastic MPC,
for example, in Hans et al. (2018), where the authors used Monte-Carlo simulations
to represent the probability distribution. However, accurately representing the un-
certainty via this method requires a large number of simulations. Furthermore,
scenario-reduction (Heitsch & Römich 2003) is used to find a tractable number of
scenarios. Consequently, this method is criticized by Mayne (2016) due to the high
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computational complexity.

A scenario-tree MPC can roughly be split into two parts; creating a scenario
tree that spans different discrete realizations of the uncertainty in the prediction
horizon and solving the OCP that minimizes the expected objective function over
all scenarios.

5.4.2 Scenario Tree

At each time-step, the MPC optimizes over a scenario tree as shown in Figure 5.2.
For each step in the prediction horizon, the tree splits into b branches, where b
is called the branching factor. This leads to an exponential growth in number of
scenarios S, more precisely S = bN . In order to reduce the complexity of the op-
timization problem, a robust horizon Nr is defined. As shown in Figure 5.2, the
tree will create new branches up to Nr, yielding S = bNr . If Nr = 0, the problem
reduces to a nominal MPC. Nr = 2 is called a two-stage MPC, while Nr > 2 is
called a multi-stage MPC.

Figure 5.2: Scenario Tree with b = 3, and Nr = 2
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5.4.3 Optimization Problem

A discrete scenario-tree optimization problem can be written as in Equation 5.11
(Krishnamoorthy, Foss & Skogestad 2018). wj is a weight associated with the
respective scenario and usually reflects the probability of the realization.

min
xj ,uj

S∑
j=1

[
wj

N∑
k=0

J (xj,k, uj,k)

]
s.t. (5.11a)

xj,k+1 = f(xj,k, uj,k, dj,k) (5.11b)

g(xj,k, uj,k) ≤ 0 (5.11c)

S∑
j=1

Ējuj = 0 (5.11d)

The last constraint Equation 5.11d is a non-anticipativity constraint which
couples the scenarios together in the tree structure. Since a node cannot antic-
ipate a future disturbance, all children from a node needs to have the same con-
trol input. uj is the vector containing control inputs for a single scenario j, i.e.
uj = [u0,j , u1,j , . . . , uN−1,j ]. To define the matrices Ēj , Klintberg & Gros (2017)
introduces the notation:

p = nu

S−1∑
j=1

nc,(j,j+1) (5.12)

where nc,(j,j+1) is the number of common nodes in between two consecutive
scenarios. Ēj ∈ Rp×nuN

Ē =


E1,2 −E1,2

E2,3 −E2,3

. . .
. . .

ES−1,S −ES−1,S


Ē =

[
Ē1 Ē2 . . . ĒS

]
(5.13)

and

Ej,j+1 =

 Inu

. . . 0
Inu

 ∈ Rnunc,(j,j+1)×nuN (5.14)

5.4.4 Approximated Scenario MPC

Due to the nature of MPC, where only the first control input is used, the uncer-
tainties in the near future will affect the system more than in the distant future.
A simpler scenario-tree MPC can therefore be formulated to reduce computational
time.
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The non-anticipativity constraint are relaxed, and only the inputs in the root node
u0,j are forced to be equal (Klintberg et al. 2016). This gives us the optimiza-
tion problem in Equation 5.15, where only Equation 5.15d is different from Equa-
tion 5.11.

min
xj ,uj

S∑
j=1

[
wj

N∑
k=0

J (xj,k, uj,k)

]
s.t. (5.15a)

xj,k+1 = f(xj,k, uj,k, dj,k) (5.15b)

g(xj,k, uj,k) ≤ 0 (5.15c)

uj,0 = ul,0, j, l ∈ [0, 1, ..S), j 6= l (5.15d)

5.5 Numerical Optimization

Numerical methods are necessary to solve continuous OCP as in Equation 5.4. Al-
though several methods exist, this section will focus on direct methods. A direct
method aims to parameterize a continuous OCP, which has infinite decision vari-
ables, into a finite-dimensional nonlinear program (Gros & Diehl 2017). In practice,
this translates to ”first discretize, then optimize”. There are three important classes
of direct methods; direct single shooting, direct multiple shooting and direct collo-
cation. However, since shooting methods are used in this thesis, direct collocation
is not discussed further.

5.5.1 Direct Single Shooting

Single shooting, e.g. (Hicks & Ray 1971), starts by parametrizing the control
inputs u(t) into polynomials, where piecewise constant controls are most often
used (Gros & Diehl 2017). The discrete input parameters are called q, giving the
resulting control function u(t, q). The time horizon T is divided into N intervals,
where 0 = t0 < t1... < tN = T . The discrete input parameter can then be denoted
qk = u(t, q). By using an ordinary differential equation (ODE) solver, the dynamics
of the system (Equation 5.4b) substituted into the the cost and path constraints of
the OCP. This gives the NLP shown in Equation 5.16. Since the problem is only
dependent on q, it can be solved by NLP methods such as Sequential Quadratic
Programming (SQP) or IPOPT (Chapter A.1), and integrating forward from the
initial value x(0).

min
q

∫ T

0

`(x(t, q), u(t, q)) dt+ Ψ(x(T, q)) (5.16a)

s.t. 0 ≥ h(x(t, q), u(t, q)) (5.16b)

x(T, q) ∈ T (5.16c)
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5.5.2 Direct Multiple Shooting

Direct multiple shooting uses the same constant input parametrization of u(t) as
single shooting, u(t) = qi, t ∈ [ti, ti+1]. However, unlike single shooting, each
interval solved the ODE separately with the arbitrary initial values si.

ẋi(t, si, qi) = f(xi(t, si, qi), t ∈ [ti, ti+1] (5.17)

xi(t, si, qi) = si (5.18)

Furthermore is the cost-function integrated in equation 5.19

`i(si, qi) :=

∫ ti+1

ti

L(xi(ti), si, qi)dt (5.19)

This results in the discrete OCP

min
s,q

N−1∑
k=0

`(si, qi) + Ψ(sN ) (5.20a)

s.t. 0 = x0 − s0 (5.20b)

0 = xi(ti+1, si, qi)− si+1 (5.20c)

0 ≥ h(si, qi) (5.20d)

sN ∈ T , (5.20e)

where Equation 5.20b is for initial value, Equation 5.20d are the path con-
straints and Equation 5.20e is the terminal constraint. Since each interval is solved
individually, Equation 5.20c is required to ensure continuity over the trajectory.
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Chapter 6
Methodology

This chapter presents the methods used to address the research questions in Chap-
ter 1. A mathematical model of the Skagerak EnergyLab is developed and presented
as an optimal control problem. Next, a time series analysis of solar production and
load demands is discussed, culminating in the prediction methods used in the re-
sults. Next, the mathematical model is extended to incorporate the uncertainties
from the prediction methods in the form of a scenario-tree MPC. Finally, the un-
certainties are analyzed, and the methods for selecting scenarios are presented.

Figure 6.1 shows the overall architecture of the system. The sections of this
chapter detail each component of the system, while the next paragraph gives a
brief overview of the system.
At every time step, the system starts by collecting measurements and numerical
weather predictions from the external source. Predictions of PV production and
load demands are then calculated and fed into the energy management system
(EMS), together with the current state of charge (SOC). The EMS is where the
developed MPC scheme runs on a 10 minute sampling time and calculates optimal
setpoints for the battery and grid. If the EMS fails to balance the powers after the
real PV production and load, the error is fixed by a primary controller. This is
done by buying extra or selling surplus energy to the grid. The new state of charge
of the battery is then simulated based on the battery inputs.

6.1 Mathematical Modeling

The mathematical formulation for an economic model predictive control (EMPC)
scheme should reflect the real-life economics of micro-grid. As discussed in Chap-
ter 2.3.2, the current economics are dependent on a consumption-based fixed grid
tariff, denoted qfixed. However, this will most likely change to an effect-based tariff
NVE (2018), denoted here as qpeak.
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Figure 6.1: System Architecture.

6.1.1 Topology

Skagerak Energylab consists of a battery energy storage system, an array of photo-
voltaic (PV) cells, and loads. Figure 1.1 shows the original topology of the system.
However, the system can be configured as to virtually be represented as in Fig-
ure 6.2.

From Kirchhoff’s junction law, the sum of all currents, I, should be zero in
a node. Furthermore P = V I and the voltage is kept constant at V = 0.4kV.
Therefore, the sum of all powers should also be zero. This leads to the topology
constraint

PG + PPV − PB − PL = 0, (6.1)

where PG, PB are the powers exchanged with the grid and battery respectively.
PPV is the power delivered from the photovoltaic cells and PL are the load demands.
PG is defined such that positive values refer to buying energy, and consequently
negative values means selling. Furthermore, PB is defined such that positive values
refer to charging, and negative values means discharging the battery.

6.1.2 Inputs

The inputs PG and PB are split into two positive signals, defined in Equation 6.2
and Equation 6.3 (Husefest 2020). For the grid signals, PG, the separation is done
as a lower price is assumed when selling compared to buying. The main reason the
battery signals are split is due to the degradation model, which is proportional to
the absolute charge/discharge of the battery. Newton-based solvers, for example,
IPOPT Chapter A.1, which is used in this thesis, require the cost function to be
differentiable. Therefore the absolute value cannot be used directly. Splitting the
signal into two positive signals avoids using the absolute value function. Another
reason for splitting the signals is that the battery coefficient can vary for charging
and discharging.
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The constraints Equation 6.2b and Equation 6.2c are to ensure that one cannot
exceed the maximum capacity of the grid PG,max. Equation 6.3c and Equation 6.3d
are to ensure the maximum charge and discharge power of the battery is not ex-
ceeded.

PG = PGb
− PGs

(6.2a)

0 ≤ PGb
≤ PG,max (6.2b)

0 ≤ PGs
≤ PG,max (6.2c)

PB = PBc − PBd
(6.3a)

|PB | = PBc + PBd
(6.3b)

0 ≤ PBc ≤ PB,max (6.3c)

0 ≤ PBd
≤ PB,max (6.3d)

To simplify notation going further the input-vector u is defined as

u = [PBc
, PBd

, PGb
, PGs

]T

6.1.3 States and Differential Equation

The first state in the system is the battery state of charge (SOC), which is a
percentage of the maximum capacity Cmax. Mathematically the battery works as
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a pure integrator, as it only depends on the power accumulated and dissipated.
The resulting continuous differential equation is

ẋ =
ηcPBc

Cmax
− PBd

ηdCmax
, (6.4)

where ηc and ηd are the charge and discharge coefficient respectively. The bat-
tery coefficients ηi ∈ [0, 1] i ∈ {c, d} reflects the efficiency of the battery , and that
some energy is lost during charging and discharging. Recall from Equation 6.3
that PBc

and PBd
are non-negative. Therefore the first term charges the battery

in Equation 6.4, giving an increase in SOC, while the second term discharges the
battery.

The second system state is the grid peak power GP , which is the maximum
power drawn from the grid. The controller should minimize the peak due to the
effect-based tariff discussed in Chapter 2.3.2. The state evolution GP,k+1 is defined
as the maximum of the power bought from grid PGb

and the peak power at the
previous time-step as in Equation 6.5

GP,k+1 = max

{
GP,k

PGb,k

}
(6.5)

However, since max is a non-differentiable operator, it cannot be used directly
in the solver. In implementation, Equation 6.5 is therefore transformed to two
inequality constraints as in Equation 6.6. Since GP,k+1 is minimized in the cost
function, GP,k+1 will always be equal to one, and not greater than both of PGb,k

and GP,k.
GP,k+1 ≥ GP,k

GP,k+1 ≥ PGb,k

(6.6)

To simplify notation going further the state-vector x is defined as

x = [SOC,GP ]T

6.1.4 Stage Costs

The cost function in an EMPC should reflect the economics of the system directly.
This section is therefore based on the discussions in Chapter 2.3.

The first term in the state-cost is related to the battery degradation, which
is assumed equal and linear for charging and discharging, and proportional with
a degradation coefficient Cdeg. The battery stage-cost is therefore defined as in
Equation 6.7, where the second step follows from Equation 6.3.

`B(uk) = Cdeg|PB,k|
= Cdeg(PBc,k + PBd,k)

(6.7)

The grid costs include two terms. The first term is the exchange with the grid,
where the costs are defined by the spot-price E. The TSO usually requires a fee
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for energy sold to the grid (Berg et al. 2021), which is dependent on the amount of
energy sold. It is here simplified by assuming a 10% tax for selling electricity.

The other cost is the grid tariff. Both the current consumption-based fee and
the future effect-based fee is modeled. The fixed fee is a fixed price per kWh bought
from the grid qfixed, and we assume there is no tariff when selling to the grid. This
gives the stage-cost

`Gf
(uk) = Ek(PGb,k − 0.9PGs,k) + qfixedPGb,k, (6.8)

where the term 0.9PGs,k reflects the 10% tax discussed earlier.

The new price model is the effect-based tariff, where the peak GP should be
kept as low as possible. In practice, this cost is billed once a month and should
therefore be modeled as a terminal cost qpeakGP , where qpeak is the effect fee.
However, this is unpractical in an MPC that operates with a prediction horizon
that is hours-to-day. Therefore the terminal cost is transformed into a stage cost
qpeak(GP,k+1 −GP,k). This gives the grid stage-cost

`Gp
(u, k) = Ek(PGb,k − 0.9PGs,k) + qpeak(GP,k+1 −GP,k) (6.9)

This gives two expressions for the stage-costs, summarized in Equation 6.10.

Lm(u) =

N−1∑
k=0

`B(uk) + `Gm(uk) m ∈ {p, f} (6.10)

6.1.5 Terminal Cost

The terminal cost was found by using dynamic programming and the Bellman equa-
tion as discussed in 5.3.3. The Bellman equation implementation for calculating
the terminal cost was 6.11.

V (x) = min
PG,PB

EPG + CdegPB + Sx + γV (x+), (6.11)

where E is spot-price, Cdeg is the degradation coefficient, PG and PB are the powers
exchanged with grid and battery. Sx is penalty on values outside the allowed range.

The solution was found using the value iteration method (Algorithm 2). Before
the algorithm was used, the states and the inputs were discretized. The state x is
a set of discrete SOC values in the range [0,1] and the inputs of the system is a
set of discrete grid values, PG, from [-1000, 1000]. The battery PB was determined
by the Equation 6.1, where the load and PV where given by their expected values.
The next value of of the state, x+ is determined by the battery, according to
Equation 6.4. If x+ is outside [0,1], then Sx is an infinitely large value and if it is
not outside its bound, Sx is 0. This term penalizes the constraint violations of the
state of charge. The result of the algorithm is an array of values with corresponding
states, x. The array was interpolated to find a linear function V(x) (Equation 6.12),
that was used as the terminal cost function in the OCP.
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V (x) = ax+ b (6.12)

6.1.6 Optimal Control Problem

The micro-grid optimal control problem stated in Equation 6.13 summarizes the
Equation 6.1 - Equation 6.11. The economic cost function makes the resulting
MPC-scheme an EMPC. Since there is no uncertainty handling in the EMPC, it is
called deterministic EMPC (DEMPC).

min
x,u

N−1∑
k=0

`B(uk) + `Gm(uk) + V (xN ) ,m ∈ {p, f}

s.t.

SOCk+1 =
ηcPBc,k

Cmax
− PBd,k

ηdCmax

GP,k+1 ≥ GP,k

GP,k+1 ≥ PGb,k

0 = −PBc,k + PBd,k + PGb,k − PGs,k + P̂PV,k − P̂L,k

SOCmin ≤ SOCk ≤ SOCmax

0 ≤ PBc,k ≤ PB,max

0 ≤ PBd,k ≤ PB,max

0 ≤ PGb,k ≤ PG,max

0 ≤ PGs,k ≤ PG,max

(6.13)

6.2 Metrics

Evaluating the closed-loop performance is an essential part of developing an MPC
scheme. This section aims to develop relevant metrics which can be used in the
experiments and address the importance of each metric. All metrics or objectives
should be aligned with the overarching goal of the thesis, namely to reduce the cost
while securing safe operations.

6.2.1 Operational Costs

The operations costs of the system are cost directly associated with the inputs,
selling and buying energy to/from the grid, grid tariff, and battery degradation.

Energy Net Cost - The energy net cost is the net sum of the energy trading
with the main grid and is determined by the spot price (Chapter 2.3.1) multiplied
with power bought or sold. It is assumed a 10% tax from the TSO when selling to
the grid. This results in the following metric for grid cost.
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Energy Net Cost =

I∑
i=0

Ei(PGb,i
− 0.9PGs,i

) (6.14)

where I is number of time steps in the entire simulation. Ei, PGb,i
and PGs,i

is the
spot-price, grid bought and sold at time-step i, respectively.

Grid tariff - There are two types of grid tariffs, fixed and effect-based. The
fixed tariff is defined as following

Grid Tarifff =

I∑
i=0

qfixedPGb,i
, (6.15)

where again I is the simulation horizon, and PGb,i
is electricity bought at time-step

i. The effect-based tariff is calculated at the end of the simulation, and is defined
as

Grid Tariffp = qpeakGP,I , (6.16)

where qpeak is the effect-based tariff.

Battery costs - The costs associated with the battery are degradation costs.
However, these costs are difficult to estimate and outside the scope of this thesis
(Hoel 2020). Therefore the work done by Berg et al. (2021) on the Skagerak Ener-
gylab is used for degradation cost, where a linear cost model is assumed inside the
operating area. This results in the following cost for the battery.

Degradation Cost =

I∑
i=0

Cdeg(PBc,i + PBd,i
), (6.17)

where Cdeg is the battery degradation coefficient.

Furthermore, energy stored in the battery at the end of the simulation should
be accounted for in the operational costs. The energy is converted to kWh and
multiplied with the spot price at the end of the simulation horizon I.

Battery Cost = EI(SOCstart − SOCend)Cmax, (6.18)

where SOCstart and SOCend is the state of charge at the start and end of the
simulation period. Cmax is the maximum capacity of the battery.

This results in the following expression for operational cost:

Operational cost = Energy Net Cost+Grid Tariff+Battery cost+Degradation Cost
(6.19)

where the grid tariff can be either fixed, or effect-based.
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6.2.2 Computational Time

If the EMPC should be deployed on the actual power plant, the time used to find
a solution must be sufficiently small. The computational time for a single solution
starts when measurements are collected and stops when the control actions are cal-
culated. This includes the time it takes to make predictions and select scenarios.
In a real-life application, more overhead can be expected, but this is assumed zero.
All computational times are calculated with MacBook Pro 16-inch (2019), with a
2.6GHz 6-Core Intel i7 processor.

There are two measures of computational time that are of interest in this thesis,
average and worst case. Average computational time is the time it takes on average
to solve the OCP at each time step over the entire simulation horizon I. The other
measure is the worst-case computational time. This is the solution that took the
longest time in the simulation horizon. Both these measures need to be sufficiently
small compared to the sampling time for the EMPC to operate smoothly in a
real-time situation.

6.2.3 Benchmarks

The benchmarks presented here are used in the case study and provides insight
into the performance of the different MPC schemes.
As a lower benchmark on performance, a no-battery controller is implemented. In
a no-battery controller, the goal of the controller is to balance the load and PV
power. The balancing is done by exchanging energy with the grid. This is inspired
by Kumar et al. (2019), where the authors compare the value of the battery on
different MPC schemes.

An upper benchmark is also interesting and for this purpose, a deterministic
EMPC-scheme with perfect predictions, denoted DEMPC-PP, is used. Perfect
prediction is when historical data is used as predictions, and the controller knows
the future. This creates a useful upper benchmark for how well the controller can
perform.

6.3 Time Series Analysis

This section will detail how the time series used in this thesis was cleaned, analyzed,
and predicted. Theory and definitions are explained in Chapter 4.
The relevant time-series are summarized in Table 6.1. The signals used in the MPC
scheme are PV generation PPV and load demands PL.

6.3.1 Data Cleaning

The data used in this thesis was collected from the Skagerak EnergyLab in the
period from March 17th to May 7th. The raw data first needed to be cleaned,
as each time series had a different sampling rate and time-stamps. Furthermore,
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Name Symbol Unit Type
Photovoltaic Power PPV kWh Cumulative

Load Power PL kWh Cumulative
Air Temperature AT ◦C Non-Cumulative

Global Horizontal Irradiance GHI W/m2 Non-Cumulative
Plane of Array Irradiance PAI W/m2 Non-Cumulative

Table 6.1: Time-series used in thesis.
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Figure 6.3: Measured PPV plotted over 7 days in April 2021. Collected from
Skagerak Energylab.

PPV and PL is measured cumulatively. Therefore, using the data analysis library
Pandas (Pandas 2020), data cleaning was done with the following steps:

1. Interpolate missing values.

2. Re-sample the data to 10-minute resolution. The non-cumulative TS was
aggregated with the mean over the 10 minutes, while the cumulative used
the last measured value.

3. The cumulative TS was made non-cumulative by subtracting the value at
time t with the value at t − 1. Furthermore, all values with unit kWh were
divided with 10minutes

60minutes/hour to get the correct unit kW.

At the end of the data cleaning, all of the time series were non-cumulative, with
equal time-stamps and corresponding units.
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6.3.2 Photovoltaic Forecasting

Figure 6.3 is a snippet from the data set and shows the measured power production
from the PV-cells over a week in April. To develop accurate prediction methods
for PV production, data over a whole year is desirable to catch seasonal differ-
ences. However, this was not available for this thesis work. By observation, PPV

is periodic, which can be expected as solar production follow the cycle of the sun.
Furthermore, the production can have large fluctuations, which can be seen on, for
example, April 13th. The source for this behavior is most likely cloudy weather
that blocks the sun. There are no apparent trends in PPV in this plot, but seasonal
differences between summer and winter should be expected.

Feature- and auto-correlations are calculated to understand the time series bet-
ter and discuss which forecasting method best suits the problem. In Figure 6.4, the
correlation between the time-series available is plotted. The first columns show the
PV correlation coefficients and show high values with global horizontal irradiance
(GHI) and the plane of array irradiance (PAI). Also, there is some correlation be-
tween the air temperature (AT) and the load. These findings have also been found
in Chen et al. (2020). Since PAI is highly correlated with GHI, the information
relevant to predicting PV power is already incorporated into GHI. AT and GHI
are used in the prediction methods, as these contain the most information, and
numerical weather predictions are available.

Furthermore, the auto-correlation for one day is plotted in Figure 6.5. From
the plot, periodic behavior can be observed, which is expected due to the day and
night variation and can also be seen in Figure 6.3. Furthermore, a high correlation
is seen between the first samples. This means that the current value can contain
information about the following values, so the prediction method should utilize the
ability to measure the signals at each time step.

Based on Figure 6.4 and Figure 6.5, we propose to use a method that relies
on current measurement for short term prediction, and features for the long term
predictions.
The available data was divided with a 50-50 split into two separate sets, denoted
training set and test set, to evaluate the methods. The methods are not exposed
to the test set during training, and unless otherwise stated, the test set is used.

Prediction Pipeline

Step 1 - Collecting Numerical Weather Predictions NWP are collected from the
third-party company called Solcast (Solcast 2021), which updates their forecasts
every hour. Figure 6.7 shows a typical forecast, which also provides the 10th and
90th percentiles for the predictions.
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Figure 6.4: Correlation between features. PV - Photovoltaic Power, GHI - Global
Horizontal Irradiance, PAI - Plane of Array Irradiance.
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Figure 6.5: PV Auto-correlation over 144 lags, which is one day with 10 minute
resolution. The bars represent correlation with first sample, and the blue shaded
area is the 95% confidence interval.
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Figure 6.6: Prediction pipeline from numerical weather predictions to PV-
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Figure 6.7: Example of Solcast forecast. The blue line is the main prediction, and
the shaded red area is between 10th and 90th percentile value.

A mean prediction is used as a baseline in this step to evaluate the numerical
weather prediction. A mean prediction entails calculating the average day of the
observed values in the training set and using it as the prediction. The resulting
root mean squared errors (Chapter 4.1) are shown in Table 6.2. The RMSE is still
high, though this is due to the noisy real-world signals, shown in Figure 6.3.

Step 2 - Feature-based Method Two methods were examined for predicting PPV

based on NWP, multiple linear regression (MLR), as described in Chapter 4.2.1,
and a mathematical model (Chapter 4.2.4). The features selected were GHI and
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Signal Metric Baseline Solcast Improvement
GHI A-RMSE 125.8 W/m2 91.4 W/m2 27.3 %
GHI 1-RMSE 110.1 W/m2 84.8 W/m2 23.0 %
AT A-RMSE 3.71 ◦C 2.41 ◦C 35.0 %
AT 1-RMSE 3.52 ◦C 2.01 ◦C 42.8 %

Table 6.2: Comparison of Solcast and baseline forecasts. A-RMSE is calculated
with 10h prediction and 1-RMSE is the one-step RMSE over the test-period.

Metric MLR PV-Model Improvement
A-RMSE 10.3 kW 8.7 kW 15.5 %
1-RMSE 8.9 kW 7.3 kW 18.0 %

Computational time 0.6 ms 291 ms -

Table 6.3: Comparison of Multiple Linear Regression (MLR) and mathematical
PV-model. Computational time is calculated as the average computational time
per prediction. A-RMSE and RMSE1 are the root mean square error over a 10h
prediction horizon and the first step respectively.

AT, as these are a part of the mathematical expression in Equation 4.9. MLR
was implemented with the Python package SciKit-Learn (Pedregosa et al. 2011)
and trained with the observed values in the training set. The PV model was
implemented with Casadi (Andersson et al. 2012). Both methods were evaluated
on the observed values in the test set for GHI and AT for comparison. The results
are summarized in Table 6.3.

Table 6.3 shows that the mathematical PV model is better than MLR, both over
the entire prediction horizon and at the first prediction step. The main difference
between the methods is in computational time, although both are insignificant to
the MPC sampling time of 10min. Furthermore, if comparing the errors in Table
6.2 and Table 6.3, the errors caused by the weather predictions far exceed the errors
caused by the prediction method. Therefore, the method chosen is MLR.

Step 3 - Linear Mixture Following the discussion based on the auto-correlation
(Figure 6.5), the one-step error 1-RMSE can be reduced by utilizing the measure-
ment. A method is to weigh the measurement more heavily early in the prediction
horizon and gradually trusting the feature-based method further in the future. Lin-
ear mixture was implemented using the two functions shown in Figure 6.8. After
16 time-steps (2.5 hours), only the feature-based predictions are used, and 16 was
chosen as auto-correlation was still high (Figure 6.5).

Table 6.4 shows the errors with and without linear mixture when using numer-
ical weather predictions and MLR. There is a significant improvement in one-step
predictions, which also gives a slight improvement in A-RMSE.
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Figure 6.8: The two weight functions used in to combine measurement and predic-
tion.

RMSE Type Without LM With LM Improvement
A-RMSE 46.1 kW 43.6 kW 5.4 %
1-RMSE 55.0 kW 31.5 kW 42.7%

Table 6.4: Comparison of Multiple Linear Regression PPV predictions with and
without linear mixture (LM).
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Figure 6.9: PL plotted over a 10 day period in April. Collected from Skagerak
Energylab.

6.3.3 Load Forecasting

Figure 6.9 shows a plot of the load time-series for 10 days in April. The plots show
periodic behavior, although with different behavior on April 10th and April 11th.
This is most likely due to less activity on the weekend. As with PPV , there does
not seem to be a trend that affects the load, but it will decrease in summer and
increase in winter due to heating. Furthermore, there appears to be some noise in
the time series.

Based on Figure 6.9, knowledge-based predictions is used with two clusters in
which a day can belong to; weekday or weekend. This method was inspired by
Labeeuw & Deconinck (2013), which creates clusters from thousands of residential
houses. The clusters are updated every day and collect the days from the three
previous weeks. The predictions are then calculated by taking the average of the
relevant cluster. The averaging is performed to remove noise and outliers, for
example, the one that occurs on April 12th.

The load auto-correlation in Figure 6.10 looks similar to the PPV , which is
expected due to the period behavior. The high auto-correlation early also suggest
using the linear mixture method that was used to predict PPV . The results of the
prediction method are shown in Table 6.5, and significant improvement can be seen
when using the linear mixture.

53



0 20 40 60 80 100 120 140
Lags

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

Load - Autocorrelation

Figure 6.10: Load auto-correlation over 144 lags, which is one day with 10 minute
resolution. The bars represent correlation with first sample, and the blue shaded
area is the 95% confidence interval.

RMSE Type Without LM With LM Improvement
A-RMSE 52.1 kW 49.4 kW 5.2 %
1-RMSE 50.1 kW 13.0 kW 74.1 %

Table 6.5: Comparison of PL predictions with and without linear mixture (LM).
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6.4 Handling Uncertainty

As can be seen in Table 6.4 and Table 6.5, the predictions are far from perfect.
These uncertainties are modeled by redefining the signals PPV and PL as following

PPV = P̂PV + P̃PV , (6.20a)

PL = P̂L + P̃L, (6.20b)

where P̂PV and P̂L are the predicted PV and load signals. The uncertain-
ties P̃PV and P̃L are stochastic variables with unknown probability distributions
φPV and φL. The error or effective disturbance on the system is the difference
e = P̃PV − P̃L, which comes from the topology constraint (Equation 6.1). In our
simulations, the effective disturbance is fixed with a recourse action. It can be
viewed as a primary controller which steps in after the energy management system
has failed to balance the power and demand. The power balance is restored by
trading energy with the main grid.

φPV and φL are estimated using the kernel density estimation (KDE), which
uses observed data to approximate a probability distribution. KDEs are calculated
by first collecting the observed error into bins, resulting in a histogram. Then the
histogram translated into a continuous function by approximating each bin with
kernel. Choosing the correct kernel is necessary to get a good estimate of the prob-
ability distribution. To implement the KDE, we used the Python package Scipy
(Virtanen et al. 2020), which automatically finds the best kernel.
Both the marginal and joint KDE of φPV and φL is shown in Figure 6.11. Since
there is no solar production at night, P̃PV = 0 in these hours. Then the joint KDE
reduces to the marginal distribution of P̃L, and are therefore left out of Figure 6.11.

Since the effective disturbance appears as the difference between P̃PV and P̃L,
the extreme scenarios appear when the two signals are oppositely large. Figure 6.11
shows these scenarios in the upper left corner if PV prediction overestimates and
the load prediction underestimates, and the lower right corner where the opposite
happens. However, the KDE plot shows that the likelihood of that happening is
relatively low.

6.4.1 Scenario-tree EMPC

P̃PV and P̃L are modeled as scenarios and will be detailed in the next section. They
reflect different realizations of the uncertainty and can be included in a scenario-tree
formulation as discussed in Chapter 5.4. Because computational speed is relevant
in this context, the approximated scenario-tree scheme that was discussed in Chap-
ter 5.4.4 is used.
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Figure 6.11: Marginal and joint kernel density estimate of P̃PV and P̃L. Darker
color suggests a higher density in the joint KDE plot.

56



min
xj ,uj

S∑
j=0

wj

[
N−1∑
k=0

`B(uj,k) + `Gm
(uj,k) + V (xj,N )

]
,m ∈ {p, f} (6.21a)

s.t. SOCj,k+1 =
ηcPBc,j,k

Cmax
− PBd,j,k

ηdCmax
(6.21b)

GP,j,k+1 ≥ GP,j,k

GP,j,k+1 ≥ PGb,j,k (6.21c)

0 = −PBc,j,k + PBd,j,k + PGb,j,k

− PGs,j,k + P̂PV,j,k − P̂L,j,k (6.21d)

SOCmin ≤ SOCj,k ≤ SOCmax (6.21e)

0 ≤ PBc,j,k ≤ PB,max (6.21f)

0 ≤ PBd,j,k ≤ PB,max (6.21g)

0 ≤ PGb,j,k ≤ PG,max (6.21h)

0 ≤ PGs,j,k ≤ PG,max (6.21i)

PBc,j,0 = PBc,l,0 j, l ∈ [0, 1, ..S), j 6= l (6.21j)

PBd,j,0 = PBd,l,0 j, l ∈ [0, 1, ..S), j 6= l (6.21k)

The equations in 6.21 show the resulting scenario-tree OCP, where S is the
number of scenarios. The cost-function Equation 6.21a is the accumulated cost
over all scenarios weighted with wj , which will be discussed in the next section.
Equation 6.21b and Equation 6.21c, shows the state evolution of SOC and grid
peak respectively. Equation 6.21e-Equation 6.21i shows the constraints in the sys-
tem.

However, the formulation above is different from what was discussed in Chap-
ter 5.4, in the sense that the disturbances occur in the topology constraint and not
in the differential equation. This creates an issue with the non-anticipativity con-
straints. Different realizations of the uncertainty require a unique combination of
inputs to satisfy the topology constraint. If all the first inputs are forced to be equal
between the scenarios, this will result in an infeasible problem. Therefore only the
battery inputs PB has non-anticipativity constraints, as shown in Equation 6.21j
and Equation 6.21k. As a result, the grid inputs can vary between the scenarios to
make sure the topology constraint is maintained and the problem remains feasible.

6.4.2 Selecting Scenarios

Following the discussion in Chapter 6.4, the scenarios can be chosen either in a
robust or stochastic fashion. Figure 6.11 the estimates of the probability distribu-
tions φPV and φL. However, creating discrete scenarios from φPV and φL require
computationally expensive methods, for example, Monte Carlo simulations and
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scenario-reduction.

Therefore, a relaxed robust formulation with soft bounds on the uncertainty is
used, inspired by Carli et al. (2020). This entails creating an upper and lower bound

on P̃PV and P̃L, but it does not require the set to contain the most extreme values of
the uncertainty. Due to the primary controller, there will never be severe constraint
violations, and an extremely conservative controller is unnecessary. However, the
grid peak GP is modeled as a soft constraint. Breaking the constraint comes with
an economical penalty and a robust formulation will therefore be able to reduce
the cost.

Scenarios

The scenarios for PPV are created from the interval between the 10th and 90th
percentile provided along with the main predictions collected from Solcast (2021).
These can be seen in Figure 6.7, and are illustrated as the edges of the red shaded
area. The optimistic and pessimistic scenarios are denoted PPV,upper and PPV,lower

respectively. Together with the main prediction P̂PV , we get three scenarios for
PV. An example of a cloudy day is shown in the top plot in Figure 6.12, where the
predictions and scenarios are plotted at 00.00 and 10.00. The jump at 10.00 is due
to updated weather forecasts and linear mixture. Though the clouds give a noisy
behavior, the observed value is usually inside the interval between PPV,upper and
PPV,lower.

The scenarios for PL are created similar to the predictions (Chapter 6.3.3),
where weekdays and weekends are separated. Then, based on the previous three
weeks, the day with the highest and lowest load demands are used as upper PL,upper

and lower PL,lower scenario, respectively. Again this results in three scenarios,
which are shown in the lower plot in Figure 6.12. In this plot, the prediction is
quite good, and PL,upper provides a reasonable upper bound for the uncertainty.
However, PL,lower is a conservative scenario, which can happen if there are holidays
or days where the Skagerak EnergyLab is not active in the previous three weeks.
Better methods for generating these scenarios can be researched further, but an
acceptable performance was achieved using this method.

Three scenarios for both PPV and PL gives nine possible combinations. Follow-
ing the discussion from Chapter 6.4, the extreme combinations of scenarios happens
in the upper left or lower right corner in Figure 6.11. In contrast, the errors will
cancel each other out in the lower left and upper right corners. In Figure 6.13 the
KDE of P̃PV and P̃L is plotted with an optimistic and a pessimistic scenario. The
optimistic scenario is the event of PPV,upper and PL,lower, and the pessimistic sce-
nario the opposite PPV,lower and PL,upper. The optimistic and pessimistic scenarios
have estimated densities that are shifted such that they cover the uncertainty of
the original prediction.

Three different scenario-tree EMPCs are compared in this thesis; 3, 7, and 9
branches denoted SEMPC-3, SEMPC-7, and SEMPC-9. SEMPC-3 contains the
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Figure 6.12: Comparison of predictions, scenarios, and observation on April 13th.
Predictions and scenarios are plotted at 00.00 and 10.00, with a 10 hour prediction
horizon.
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Figure 6.13: Kernel distribution estimates of the uncertainties in the original pre-
diction method P̃PV and P̃L, together with optimistic and pessimistic scenarios.
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Figure 6.14: Standard deviation of prediction error given time-of-day for the un-
certainties P̃PV and P̃L.

predictions as well as an optimistic and a pessimistic scenario as shown in Fig-
ure 6.13. SEMPC-9 includes all nine combinations of the scenarios, while the
SEMPC-7 has only left out PL,lower-PPV,lower and PL,upper-PPV,upper, since these
are scenarios where the disturbances cancels each other out.

Weighting

Next, the weighting wj for each scenario has to be calculated based on the prob-
ability distributions ΦPV and ΦL of the uncertainty. To do this, we make use of
another component; time. Since both PPV and PL are non-stationary signals, ΦPV

and ΦL are dependent on time. This can also be seen in Figure 6.12, and especially
in PPV , where the power generated varies greatly during the day and is always
zero at night. This is demonstrated in Figure 6.14, where the standard deviation
of P̃PV and P̃L is plotted. Higher standard deviations at certain times suggest
the prediction method gives worse forecasts and less trust in the prediction around
these times.
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6.5 Methodology Summary

This chapter started by formulating an optimal control problem for the Skagerak
EnergyLab used in a controller. Which further resulted in a deterministic EMPC
with two different price models for grid tariff. Next, the prediction methods for
PPV and PL were developed, where the predictions P̂PV are calculated using nu-
merical weather predictions and multiple linear regression. The load predictions
P̂L are based on a knowledge-based system, where days are separated into two
clusters; weekday and weekend. Both predictions were also passed through a linear
mixture to reduce the one-step error, which is beneficial for the EMPC-scheme.

Next, the prediction errors P̃PV and P̃L were investigated, and a scenario-tree
formulation was developed to model the uncertainties into the EMPC scheme. Then
the scenarios were presented with the calculation of probabilities for each scenario
based on available data. The scenarios were chosen to cover the uncertainty, and
by using the time component, probabilities was calculated for each time step of the
day.
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Chapter 7
Results

The deterministic EMPC implemented is based on the one used in the project thesis
Husefest (2020). However, it has been greatly improved upon, both by parameter
tuning and new prediction methods. Further, all results are obtained from the
code developed throughout this thesis work. The code was programmed in CasADi
Andersson et al. (2012) were the systems given by 6.13 and 6.21 were implemented.

This chapter presents the results obtained throughout this thesis. Experiment
1 shows the effect of terminal cost on the EMPC scheme, which is previously dis-
cussed in Chapter 6.1. Afterward, the economic performance of the EMPCs are
evaluated. Since there are two different economic situations, these will be presented
separately. Experiment 2 shows the performance with a fixed grid tariff, while ex-
periment 3 presents the effect-based tariff. Both experiments 2 and 3 are tested
over 30 days, from April 7th to May 7th, in order to get a realistic impression of
the monthly costs. Snippets of the simulation are presented with comments on the
behavior of the different EMPC-schemes. The spot prices are assumed known since
the day-ahead market decides the price and closes around 24 hours beforehand. All
other constants used in the experiments are summarized in Table 7.1.

7.1 Experiment 1 - Terminal Cost

The importance of a terminal cost in an EMPC-scheme is discussed in Chap-
ter 5.3.3, and is demonstrated in this section. The optimal terminal cost used
is calculated with the method described in Chapter 6.1.5.
The EMPC scheme used is a deterministic EMPC scheme with a fixed grid tariff
and perfect predictions. Ideally, an infinite horizon would be used. However, the
longest prediction horizon that was computationally feasible was 72 hours, which
is 432 steps with a sampling time of 10 minutes.
The three configurations used in the experiment are summarized in Table 7.2.
Configuration a) tries to approximate an infinite horizon by having a long pre-
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Symbol Description Value
I Simulation Horizon 30days / 720 hours

Ts Sampling Rate 10Min
N Prediction Horizon 6 hours

Cmax
Maximum capacity of
battery storage system

1100 kWh

ηc Battery charge coefficient 0.91
ηd Battery discharge coefficient 0.91

PG,max Maximum power to/from the grid 1000kW
PB,max Maximum power to/from the battery 800kW
SOCmin Minimum state of charge 20%
SOCmax Maximum state of charge 80%
Cdeg Battery degradation coefficient 0.064NOK/kWh
qfixed Consumption/fixed based grid tariff 0.36NOK/kWh
qpeak Effect based grid tariff 51 NOK/kW/month

Table 7.1: Parameters used in the experiments. The charge and discharge coeffi-
cients ηc and ηd were calculated in the project thesis by Hoel (2020). Cmax, PG,max,
PB,max, Cdeg, qfixed and qpeak are collected from the economic evaluation of the
Skagrak EnergyLab in Berg et al. (2021). SOCmin and SOCmax are based on the
assumption on linear working area for the battery and degradation, discussed in
Chapter 3.4.3.

diction horizon and no terminal cost. b) uses a six-hour prediction horizon, but
no terminal cost, while c) has an optimal terminal cost, which was found to be
V (xN ) = −812SOC. The negative coefficient translates to rewarding a high state
of charge.

In Figure 7.1, the DEMPC with a short prediction horizon and no terminal-
cost (configuration b) is more willing to deplete the battery and is, therefore, more
often at a lower state of charge. This strategy provides less flexibility later in
the day, where it is forced to buy electricity at a higher price than the two other
configurations. This gives a slightly higher operational cost in this example.
The two configurations a) and c) follow each other more closely and are more
conservative using the battery. Table 7.2 shows that short prediction horizon and
terminal cost have a lower operational cost than long prediction horizon. However,
two days is not enough to conclude that this is true in general. The most significant
difference is the computational time, where configuration b) and c) are magnitudes
faster than a). Therefore, we can say that the terminal cost significantly reduces
computational time over these two days without a loss in performance.
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Configuration Hours N
Terminal

Cost

Average
Computational

Time

Operational
Costs

a) 72 432 No 1.94s 1848.6 NOK
b) 6 36 No 0.053s 1938.0 NOK
c) 6 36 Yes 0.048s 1840.6 NOK

Table 7.2: Parameters used in the different configurations and corresponding re-
sults. Operational costs from the period April 13th to April 15th, with 10 minute
sampling time.
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Figure 7.1: Comparison of terminal costs, given configurations a) - long prediction
horizon - no terminal cost, b) - short prediction horizon - no terminal cost and c)
- short prediction horizon - with terminal cost.
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Grid Tariff Cost Energy Net Cost Total Costs
DEMPC-PP 18914 NOK 3141 NOK 22536 NOK
No Battery 22249 NOK 21110 NOK 43359 NOK

Table 7.3: Operational costs for the 30 days simulation with DEMPC and no-
battery controller.

7.2 Experiment 2 - Fixed Tariff

In this experiment, the EMPC-schemes are tested with the consumption-based
fixed grid tariff. This means the OCP in Equation 6.13 is used with the grid-costs
as in Equation 6.8. First, the performance of the deterministic EMPC with perfect
predictions (DEMPC-PP) is tested before uncertainties are included. Then the
performance of DEMPC with uncertainties is compared to the SEMPC, which uses
the OCP in Equation 6.21 with the fixed grid tariff (Equation 6.8).

7.2.1 Experiment 2.1 - Fixed Tariff, Perfect Predictions

To show how the DEMPC-PP behaves, a two-day snippet from the month simu-
lation is extracted in Figure 7.2. These days were chosen because the spot prices
(Figure 7.2c)) varies more than usual. The grid and battery usage is plotted in
Figure 7.2a), where negative grid means selling, and negative battery values are
equivalent with discharging. In Figure 7.2b) the SOC is plotted.

In Figure 7.2a), there is no power sold to the grid due to the extra cost of
selling. This leads to storing and load covering being the optimal solution, despite
the battery losses, where some energy is lost when charging and discharging, and
degradation cost, discussed in Chapter 6.10. This means that buying energy for the
purpose of selling it later requires a larger difference in spot prices than observed
in this example. However, it still uses the battery to reduce operational costs by
covering the load. In the mornings on both April 7th and 8th, energy is bought
cheap to charge the battery. As spot prices increase around 06.00, the controller
uses the battery to cover the load and avoid buying expensive electricity. Around
12.00, as PV production surpasses load demands (Figure 7.2d), the DEMPC-PP
finds it optimal to use excess PV production to charge the battery.

DEMPC-PP was earlier introduced as an upper benchmark, and in table 7.3 it
is compared to the lower benchmark, the cost of the system with no battery, for a
30 days simulation. The cost of these two systems differs greatly and highlights the
need for an efficient micro-grid with a battery and a controller. The main difference
between the two controllers is in energy net cost, meaning that DEMPC-PP can
take advantage of the differences in spot prices.
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Figure 7.2: Snippet (April 7th to 9th) from experiment 2.1 - Fixed grid tariff and
perfect predictions. Subplot a) shows the grid and battery actions, b) shows the
state of charge, c) spot-prices and PV-production and load demands in d).
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7.2.2 Experiment 2.2 - Uncertainties

In this experiment, perfect predictions are no longer assumed, and the prediction
methods discussed in Chapter 6.3 are used instead. Recall that the effective dis-
turbance is defined as the difference P̃PV − P̃L, which is the errors corrected by the
primary controller.
The benchmark is the DEMPC with perfect predictions (DEMPC-PP), which is
compared to DEMPC without perfect predictions, as well as the three configura-
tions of SEMPC, discussed in Chapter 6.4.

In Figure 7.3, April 15th is extracted from the 30day simulation, since this was
a cloudy day with high variance in PV-production, which can be seen in Figure 7.4.
In Figure 7.3a), the grid actions are shown. Both DEMPC and SEMPC-9 fluctuate
more than DEMPC-PP, which can to some degree be explained by the influence of
the primary controller, which corrects the effective disturbance (Figure 7.3d). Pos-
itive disturbance corresponds to a surplus of energy, and negative a deficit. Around
12.00, large spikes in the effective disturbance are corrected by selling or buying
energy. The DEMPC-PP is able to use all the PV production for charging the bat-
tery, but the disturbances force the primary control to sell energy at a relatively
low price for both DEMPC and SEMPC. Therefore the DEMPC-PP is able to fully
recharge the battery in (Figure 7.3b), which is sold to a higher price around 18.00.

However, in the morning, the three controllers behave differently. Neither
DEMPC nor SEMPC-9 follows DEMPC-PP, even though the disturbance is low.
This is the consequence of poor predictions, which can be seen in Figure 7.4. In
the morning, the predictions overestimate PPV , and the DEMPC expects that it
can use that energy to cover the load without buying from the grid. As it gets
closer to the peak in spot price at 06.00, the predictions get better, and it rushes
to purchase energy. However, the price has already started to increase, and the
controller is forced to buy energy at a slightly higher price than DEMPC-PP. The
SEMPC-9 also expects it can cover the load. However, as the controller realizes
this is not the case, but unlike the DEMPC, it maxes out the grid right before the
spot prices increase.

Table 7.4 summarizes the performance of the controllers with fixed tariff. All
of the EMPC schemes have a significant increase in performance compared to the
no-battery controller. Furthermore, there is a slight difference between DEMPC
and SEMPC, where the DEMPC has the lowest operational cost. This is because
even though the DEMPC sometimes ends up buying energy at a higher price, it
does not severely affect the total costs. However, the conservative approach of the
SEMPC with buying a lot of energy before periods with high uncertainty results in
a higher total cost due to the battery cycle’s losses. Over a full month, the three
EMPC schemes seem to give approximately the same cost.
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Figure 7.3: Snippet (April 15th to 16th) from experiment 2.2 - Fixed tariff for
the DEMPC-PP, DEMPC and SEMPC-9. Subplot a) shows the grid and battery
actions. Subplot b) shows the state of charge, spot-prices are plotted in c) and
PV-production and load demands in d).
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Figure 7.4: Predicted and observed values for PPV and PL on April 15th. Predic-
tions are plotted every third hour and with a six hour horizon.

Operational
Costs

Improvement
Average
Comp.
Time

Worst Case
Comp.
Time

No Battery 43359 NOK - - -
DEMPC-PP 22536 NOK 48.0% 0.042s 0.108s

DEMPC 23003 NOK 47.0% 0.041s 0.121s
SEMPC-3 23091 NOK 46.9% 0.138s 0.276s
SEMPC-7 23149 NOK 46.6% 0.330s 1.32s
SEMPC-9 23224 NOK 46.4% 0.370s 1.45s

Table 7.4: Comparison of the different EMPC-schemes using fixed grid tariff.
DEMPC with perfect predictions is used as benchmark for percentages.
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Grid Tariff Cost Energy Net Cost Total Costs
DEMPC-PP 8007 NOK 3111 NOK 11275 NOK
No Battery 15249 NOK 21110 NOK 36359 NOK

Table 7.5: 30 days simulation with DEMPC and the system with no battery.

7.3 Experiment 3 - Effect Based Tariff

Next, the effect-based tariff is used. This means using the OCP in Equation 6.13,
with the peak-power cost function (Equation 6.9) in the EMPC schemes. Snip-
pets are presented with comments on the behavior, while the operational costs are
calculated over a month.

7.3.1 Experiment 3.1 - Perfect Predictions

The introduction of peak cost changes the behavior of the MPC, as can be seen
in Figure 7.5, which shows the first two days in the simulation period. To keep
the peak low, the DEMPC-PP finds it optimal to consistently buy energy at a low
peak value, as long as the spot prices are relatively low. In the morning on April
8th, the spot-prices increase, and therefore the DEMPC-PP uses the battery (Fig-
ure 7.5b)) and PV-production to cover the load. As power production surpasses
the load demands (Figure 7.5d)), the energy is used to charge the battery.

In table 7.5 the DEMPC-PP is compared with the lower benchmark, which
is the cost of the system with no battery. With the effect-based tariff model, the
advantages of peak shaving with a battery are highlighted. Without using a battery,
the largest peak is decided by the maximum difference between the production and
the demand. This creates an arbitrary peak cost that can change widely from one
month to the next. With a battery, the micro-grid can perform peak shaving to
save on cost while still using the battery for load covering and energy trading. The
result is a monthly cost of only a third of the system with a no-battery controller.

7.3.2 Experiment 3.2 - Uncertainties

Next, uncertainties are introduced into the system with an effect-based tariff. In
the previous section, the controller was able to minimize the grid peak when hav-
ing perfect predictions. However, DEMPC-PP usually operates close to or on the
current peak values, and with disturbance, the primary controller may push the
peak upwards.

Figure 7.6 shows the evolution of the peak over the test month. As expected,
DEMPC-PP keeps the peak far lower than the other EMPC-schemes. Further-
more, the SEMPC-7 and SEMPC-9 keep the peak relatively low, while the DEMPC
achieves poor performance. Next, the difference between the EMPC-schemes is ex-
plored.
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Figure 7.5: Snippet from experiment 3.1 - Effect-based grid tariff and perfect predic-
tions. Grid actions, state of charge, spot-prices, PV-production and Load demands
from April 7th to April 9th.
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Figure 7.6: Comparison of peak power from April 7th to May 7th.

Figure 7.7 shows the SOC for different EMPC-schemes under uncertainty. The
SEMPC follows the same strategy as DEMPC with perfect predictions and uses
the battery to avoid the peak around 12.00 on April 12th. However, the next day
the SEMPC follows the same pattern, while the other two rely on buying from the
grid. DEMPC-PP knows it will cover the load without using the battery signifi-
cantly, while the DEMPC believes it can do the same. The SEMPC, on the other
hand, uses the battery more when the uncertainty is high. By distributing the load
between the battery and the grid, the errors corrected by the primary controller
have a smaller impact on the peak power. Since the DEMPC-PP does not use the
battery to cover the peak on April 13th, the SEMPC’s strategy turned out to be
unnecessary in this particular case. However, this conservative behavior shows to
be beneficial in the long run.

Figure 7.8 shows the three-hour window from 11.00 to 14.00 on April 7th, which
also illustrates the difference between the DEMPC and SEMPC in regards to re-
ducing the peak. The DEMPC is willing to operate closer to the current peak
and buys as much power as possible to charge the battery. However, due to a dis-
turbance, the primary controller is forced to buy more energy and push the peak
upwards. In contrast, the SEMPC-9 has a more conservative approach, where it
does not risk charging the battery and breaking the peak.

The performance of the different EMPC schemes is summarized in Table 7.6.
Unlike the same experiment with a fixed tariff (Table 7.4), there are significant
differences in operational costs. The main contribution is the maximum power
drawn from the grid, which the SEMPCs are better at keeping low, as shown in
Figure 7.6. Again this comes at the cost of a higher computational cost, but is well
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Figure 7.8: Snippet of two hours from 11.00 to 14.00 on April 7th. Grid optimal
and grid primary refers to PG before and after the primary control.
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Operational
Costs

Improvement
Average
Comp.
Time

Worst Case
Comp.
Time

No Battery 36359 NOK - - -
DEMPC-PP 11275 NOK 69.0% 0.049s 0.118s

DEMPC 40903 NOK -12.5% 0.049s 0.118s
SEMPC-3 25526 NOK 29.8% 0.156s 0.372s
SEMPC-7 16701 NOK 54.1% 0.390s 0.995s
SEMPC-9 16711 NOK 54.0% 0.542s 1.01s

Table 7.6: Comparison of the different EMPC-schemes with effect-based tariff.
DEMPC with perfect predictions is used as benchmark for percentages.

within a reasonable real-time demand.
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Chapter 8
Discussion

This section revisits the research questions presented in the introduction (Chap-
ter 1).

1. Which methods should be used to efficiently forecast solar production and
load demands?

2. What is the value of using an EMPC-scheme as an energy management system
at the Skagerak EnergyLab in contrast to more rule-based control strategies?

3. What are the consequences of uncertainties in the EMPC-scheme, and can a
robust/stochastic formulation increase the performance?

These questions will be discussed in light of the utilized methods and achieved
results obtained and presented in this thesis.

8.1 Forecasting

The objective of forecasting the time series PPV and PL was to use them in an
MPC scheme, and it was therefore focused on keeping computational time low and
minimizing errors of the near future prediction. The method of weighing the mea-
surement of the prediction of the near future time steps significantly reduced the
one-step error. It was implemented using linear weights, and this method could be
improved further, for example, by using ARIMA models that better utilize high
auto-correlations. However, ARIMA models introduce more computational com-
plexity and are therefore not used in this thesis.

PPV and PL are quite different time-series. PV production is dependent on
solar radiation, which can give significant and sudden changes on cloudy days. On
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the other hand, PL is dependent on the behavior of the users of the Skagerak En-
ergy Lab. This caused the need for two different prediction methods.

One of the challenges of developing the prediction methods was the lack of
data since only data from mid-March to the beginning of May was available. Load
demands and PV power generation will likely differ between summer and winter,
which the prediction methods should handle. For PPV , the idea of using multiple
linear regression (MLR) was to learn the relationship between the weather and
production. The weather predictions are updated throughout the year, and the
method should, therefore, still be accurate. However, since the MLR was trained
in the same season it was tested, it may not be sufficiently accurate when applied
to other seasons. Other factors may also affect PV production, for example, if snow
covers the cells during winter.

The seasonal argument also follows for load forecasting. It was therefore pro-
posed using a rolling prediction method that collects the previous three weeks.
However, three weeks was only used due to lack of data, and taking into account
several weeks for predictions may improve the accuracy.

8.2 The Value of EMPC in Skagerak Energylab

The results compared the performance of the EMPC-scheme with a no-battery
controller for both fixed grid tariff (Experiment 2.1) and effect-based tariff (Ex-
periment 3.1). This comparison showed that efficient use of the battery leads to
significantly lower operational cost for both tariffs when using perfect predictions,
compared to selling and buying energy in the moment. However, the alternative
to using EMPC as an energy management system is not necessarily no controller
nor battery, but rather some less complex control algorithm.

Furthermore, the introduction of uncertainties complicated the control. For the
fixed tariff, the EMPC scheme is efficient and much cheaper than a no-battery
controller. However, by modeling the effect-based tariff, ignoring uncertainty han-
dling, the operational costs increase compared to the no-battery controller. This
is because the DEMPC operates close to the peak, and the uncertainties push it
upwards, ultimately reaching a higher peak value than the no-battery controller.
This results from our choice in recourse action, where the grid is used to correct the
disturbances. A different primary controller can be used, for example, the battery
storage system, for correcting the power imbalance.

Also, our models for battery degradation and dynamics are simplified, because
they are assumed linear, and parameters are assumed known. However, a model-
plant mismatch between the battery model and plant can be expected and affect the
performance of the controllers. If the mismatch is small, it may be mitigated by the
feedback control in the MPC. However, if there is a significant drop in performance,
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the scenario-tree formulation may be extended to include parameters uncertainties.
Furthermore, with more data on the battery, a more realistic degradation model
can be developed.

8.3 Uncertainties

The consequences of having uncertainties in the EMPC-schemes variate depending
on the two price models for grid tariff. For the fixed grid tariff, the consequence of
uncertainties was minor. Compared to the upper benchmark, DEMPC-PP, none
of the EMPC-schemes were significantly more expensive. Although the effective
disturbance can be high, the added cost of buying energy at the wrong time is
not severe enough to substantially affect the total cost. Also, the SEMPC-schemes
are more robust, but the recourse action ensures no constraint violations and is
therefore not strictly necessary. However, in an island-mode configuration of the
micro-grid, or if only using the battery as the primary controller, the robustness of
the SEMPC could be beneficial.

The behavior of the controller changed when using the effect-based tariff. As
already discussed, the DEMPC performs worse than the no-battery controller. In
contrast, the SEMPC is efficient in minimizing the peak due to the robustness of
the controller. The robust scenarios in Chapter 6.4 cover much of the uncertainty
in the predictions P̂PV and P̂L. In experiment 3.2, two examples of conservative
behaviour of the SEMPC is shown. Furthermore, the scenarios were weighted based
on the time-of-day. This allowed the controller to stay conservative in periods with
high uncertainty, while resembling a DEMPC by trusting predictions more in peri-
ods with low uncertainty. The weights are calculated on the training set, which is
limited in its time-span. The weights should, therefore, be re-calculated to reflect
the uncertainty throughout the year. Overall, this method combines the abilities
of deterministic EMPC and robust MPC, which gives good performance on mini-
mizing peak power, without increasing other operational costs significantly.
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Chapter 9
Conclusion

This thesis has presented a robust scenario-tree economic model predictive control
scheme that effectively minimizes the grid peak values when running simulations
on real data from Skagerak Energylab. The controller should be able to operate
in real-time on the micro-grid because the worst-case computational time is well
within the sampling time. The fast performance was achieved by using prediction
techniques that are computationally efficient and keeping the complexity of the
scenario-tree EMPC low.

A literature study was performed discussing the energy situation in Norway
and globally, with a focus on the different challenges that need to be addressed to
reduce greenhouse gas emissions. Globally, most of the emissions originate from
energy production, which calls for more renewable energy sources. On the other
hand, in Norway, reducing emissions is mainly solved by an increase in electrifica-
tion. This will lead to larger power consumption, which will lead to higher pressure
on a limited power grid. A possible solution to both these challenges is micro-grids,
which enable distributed energy production. A short intro to the Skagerak Ener-
gyLab micro-grid, the case study used in this thesis, was presented. Further, the
economics of being part of the central power grid was discussed and the implica-
tion of a future effect-based tariff. Then followed a literature study with the recent
economic model predictive control (EMPC) successes in a micro-grid operation.

The following section went into detail about micro-grids before theory on both
time-series analysis and model predictive control was presented. In Chapter 6 a
mathematical model for the Skagerak micro-grid was developed, and analyses of
real data were done to forecast power produced from PV-cells and load demands.
This was followed by a thorough examination of the forecast errors or uncertainties
that remained in the system. These were incorporated into the control scheme as
scenarios, resulting in a scenario-tree EMPC. Finally, the results were presented in
Chapter 7.
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The key findings from the thesis work are summarized below:

• A robust scenario-tree EMPC is efficient in minimizing peak power, which
leads to more efficient use of the power infrastructure.

• Efficiently using the battery with an EMPC-scheme can reduce operational
costs compared to a no-battery controller.

• Using a DEMPC without uncertainty handling and modeling of peak power
resulted in increased operational costs compared to a non-battery controller.

• The new effect-based grid tariff encourages more sustainable and economical
use of the power grid. If the control system is able to keep the peak power
low, the new tariff can reduce operational costs.

9.1 Further work

For further research, it would be of great interest to look into the following:

• This thesis handling of uncertainties and scenario selection was done pri-
marily to keep the computational cost low while achieving acceptable perfor-
mance. This is, however, a wide field of research, and there are methods where
the controller better includes the probability distribution of uncertainty in a
scenario-tree EMPC.

• The prediction algorithms presented in this work were trained on three weeks
of data and then tested on a month. As weather and seasons change, the
solutions found are not necessarily as effective. More data and rigorous testing
should therefore be done on the system.

• To test if the system performs in real-life, it can be implemented on the
Skagerak EnergyLab. Collecting data from a test period could give interesting
information that can be used to improve the system further.

• The control system developed in this thesis was fast, so decreasing the sam-
pling time should be possible. This could give an increase in performance.

• Using the battery as a primary controller can be another interesting approach
to reduce peak power.

82



Bibliography
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driven scenario selection for multistage robust model predictive control’, IFAC-
PapersOnLine 51(20), 462–468. 6th IFAC Conference on Nonlinear Model Pre-
dictive Control NMPC 2018.
URL: https://www.sciencedirect.com/science/article/pii/S2405896318327046

Kumar, R., Jalving, J., Wenzel, M. J., Ellis, M. J., ElBsat, M. N., Drees, K. H. &
Zavala, V. M. (2019), ‘Benchmarking stochastic and deterministic MPC: A case
study in stationary battery systems’, AIChE Journal 65(7), 1–16.

Labeeuw, W. & Deconinck, G. (2013), ‘Residential electrical load model based on
mixture model clustering and markov models’, IEEE Transactions on Industrial
Informatics 9(3), 1561–1569.

85
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Appendix A
Appendix

A.1 Software and Solver

In this thesis, the software tool CasADi (Andersson et al. 2012) has been used for
the implementation and simulation of the system. CasADi is an open source tool
offering a symbolic framework for setting up and solving numerical optimization.
CasADi comes with several different solvers for the optimization and in this thesis
the IPOPT solver has been used. The explanation given here is based on Nocedal &
Wright (2006) and some of the IPOPT documentation, Wätcher & Biegler (2005),
Wächter (2009), Nocedal et al. (2008). IPOPT is an interior point line search filter
method for nonlinear programming problems. The algorithm considers the problem
formulated as in A.1. IPOPT introduces slack variables to transform the inequality
constraints into equality constrains.

min
x,s

f(x)

s.t.

cE(x) = 0,

cI(x)− s = 0,

s ≥ 0

(A.1)

A.1.1 Interior Points methods

Interior point methods, also known as barrier methods is the main component in
the IPOPT algorithm. A barrier problem is formulated as [A.2], with µ as the
barrier parameter. IPOPT reformulates it into a primal-dual method, by applying
Newton’s method to the KKT conditions.
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min
x,s

f(x)− µ
∑

ln(si)

s.t.

cE(x) = 0,

cI(x)− s = 0,

(A.2)

A.1.2 Line Search

To decide the step length, line search is used. Line search methods finds a step
length from the current point that results in a next point (sufficiently) closer to the
optimal solution. IPOPT uses a Newton-type method to find the direction of the
next step.

A.1.3 Filters

After finding where the next step should be taken, the new point must be evaluated
to see if it did bring the algorithm closer to the optimal solution. Here IPOPT uses
a method called filters, where a multi objective problem is evaluated. The problem
consist of two objective functions, one is the objective function from the original
problem and the other is the norm of the constraints. The filter ensures that a step
decreases either the objective function or the norm of the constraints.
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