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Abstract

This thesis has the overall goal of creating an underwater dataset, complete with sensor data and
ground truth, in cooperation with NTNUs Autonomous Robots for Ocean Sustainability (AROS)
project and the branch of the AROS Vision Group, a subgroup whose main task is egomotion
estimation, 3D reconstruction and environmental awareness. At the time of writing, there are no
synthetic underwater datasets with physically correct images and complete ground truth data, and
as such we hope to be delivering a new benchmark suite to the underwater community.

In order to create this dataset, a framework for trajectory creation and sensor measurement gen-
eration is created. To generate a trajectory, we use a physical model of the vehicle together with a
control system which follows a predetermined path in a virtual underwater environment. Simulta-
neously the states generated from the control system are used to generate synthetic acceleration,
angular velocity and depth measurements.

To be able to create a proper underwater dataset, a proper 3D environment is needed. Taking
inspiration from real-world photogrammetry scans, we are able to submerge real landscapes and
give them textures to suit an underwater environment. In addition, the scene it populated with
various geometry to create a scene with features ranging from a simple sand floor to vertical rocks
and complex geometry with significant amounts of occlusion.

The end result is a framework which is ready to generate longer image sequences, where the entire
range of features in the scene is explored. Two papers are planned from this thesis, one detailing
the dataset and the included data, and one which explains the implementation of the simulation
framework.
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Sammendrag

Denne oppgaven har som m̊al å lage et dataset fra et virituelt undervannsmiljø som inneholder
bilder, sensordata og korrekt refereansedata. Dette gjøres i samarbeid med NTNUs ”Autonomous
Robots for Ocean Sustainability” (AROS) gruppe, og deres undergruppe AROS Vision Group som
fokuserer p̊a bruke et eller flere kamera ombord i roboten til 3D rekonstruksjon og til å spore
hvor roboten er og har vært. N̊ar denne oppgaven ble skrevet finnes det ingen undervanns dataset
laget med syntetiske bilder som b̊ade gir tilgang til fysisk korrekte bilder, sensor data og komplett
referanse data. Derfor h̊aper vi at dette vil være et nyttig verktøy for undervannsmiljøet som
helhet.

For å lage dette datasettet trenger m̊a et rammeverk for generering av kjøretøyets bane i miljøet
og sensor m̊alinger lages. For å generere en bane gjennom det virituelle miljøet brukes en fysisk
modell av kjøretøyet sammen med et styresystem som bruker en grov bane gjennom miljøet som
referanse. Dataen fra styresystemet brukes s̊a til å generere syntetiske m̊alinger for akselerasjon,
vinkel hastighet og kjøretøyets dybde i havet.

Dersom bildene skal være realistiske er det p̊akrevd med et 3D miljø som gjenspeiler det som
kan forventes å finne under vann. Vi benytter 3D modeller som er rekonstruert fra bilder, hvor
teksturene blir tilpasset det som kan forventes for et undervannsmiljø. I tillegg til dette legges
ulike 3D modeller til undervannsmiljøet, slik at det inneholder omr̊ader med alt fra kun en enkel
sandbunn til vertikale steinformasjoner, til omr̊ader med kompleks geometri.

Resultatet av denne oppgaven er et rammeverk som er klar til å generere lengre sekvenser, hvor
alle de ulike omr̊adene i undervannsmiljøet er utforsket. Fra denne oppgaven er det planlagt å
skrive to artikler, en som tar for seg datasettet og inkludert data, og en som beskriver simuler-
ingsrammeverket vi har brukt for å generere denne dataen.
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1 Introduction

1.1 Motivation

There are a number of datasets available today for development of computer vision algorithms
such as Visual Odometry (VO), Structure from Motion (SfM), 3D reconstruction and Visual Si-
multaneous Localization and Mapping (VSLAM). The majority of the datasets consists of recorded
above-water RGB images, with varying degrees of sensor- and ground truth information available.

The datasets KITTI[1] and LiU[2] are made using recorded information from cars augmented
with an array of sensors. They deliver both images and sensor measurements from an inertial
measurement unit, hereafter abbreviated IMU, that measures the vehicles acceleration and angular
velocity, velocity sensors and a GPS to mention the main sensors.

Aerial datasets have been created, one of which is the EuRoC[3] dataset. In addition to providing
images and IMU data, this dataset provides ground truth position and pointcloud measurements
with ≈ 1mm accuracy from a fixed Leica MS50 Multistation.

However, for underwater applications GPS signals are attenuated and cannot be used, and the
use of multistations is impossible. In the underwater dataset AQUALOC[4], Colmap[5] is used
to create a very accurate offline 3D reconstruction of the area surveyed by the camera. Depth-,
IMU and magnetometer measurements are included as well. While Colmap can create very good
results, the ground truth is still based on the camera input, which quality is heavily dependent on
the visual conditions present. Sonar is an underwater alternative which is independent of visual
conditions, and was used in combination with a camera when creating a dataset of an underwater
cave complex[6].

As previously mentioned, one of the larger issues of underwater benchmarks is the lack of proper
absolute ground truth data for positioning. Another key point is that current weather conditions
for sallow waters, algae growth or marine snow1, can significantly impact the visual quality of the
acquired images. As the methods from acquiring ground truth from [4, 6] are both dependent on
camera input, changes in the visual conditions can negatively impact the quality of the generated
ground truth data.

By generating the data for the sequences using simulations and computer generated images, it
is possible to achieve realistic imagery and have access to completely accurate information about
the vehicle’s pose and simulated sensor measurements for every timestep. As the 3D geometry
of the scene is known, this can be used to generate correct pointclouds and depth maps in all
environments that can be simulated. The COnGRATS[7] dataset is one synthetic traffic dataset
including such information coupled with realistic path-traced imagery.

Underwater simulations for generating benchmarking sequences is explored to a much lesser extent.
UWSim[8] is one commonly used simulator which provides a solid simulation framework from
simulated sensors to network interfaces. However, this framework does not create physically correct
path-traced imagery. Another approach commonly used is to use image mosaics from the sea
floor, and generate images with a desired level of turbidity2[9]. This approach does require prior
knowledge of a scene in the form of an image mosaic, which should be as close to the real colors of
the seafloor as possible. However, by using a flat plane the use is severely restricted. It has to be
viewed from the top down, and shadows for a nearby light source will not cast shadows from the
apparent 3D geometry present in the image.

None of the methods above provides access to an underwater simulation environment, complete
with both simple and complex 3D models with physically correct textures, the possibility to place
cameras and lights where needed, and most importantly, physically correct path-traced images.
By creating a simulation framework with these criteria in mind, it is possible to test extensively
test computer vision algorithms with access to complete ground truth data for result comparison.

1Marine snow inorganic matter which sinks to the seafloor looking similar to snow
2Turbidity: Large amounts of suspended particles in the water causes it to be cloudy or hazy.

1



1.2 Objective and Scope

This thesis aims to create a framework for underwater image simulation, together with a proper
benchmark sequence for underwater computer vision applications. Using Blender[10], an open
source 3D software suite capable of 3D modelling, generating physically correct images and physics
simulations, as our simulation tool allows us to create physically correct path-traced image, together
with other types of image data as ground truth information. At the time this thesis is delivered,
this information includes pixel-perfect depth images, surface world-normal vectors for each pixel,
direct light and shadow masks for each pixel, indirect volumetric scattering and uniformly lit RGB
images. In addition to this, sensor measurements from an IMU and depth sensor are generated.
These are delivered as noise-free data, such that they can later be augmented with noise to fit a
wide range of sensor-models depending on the users application.

These sequences require physically correct motion, and the vehicle itself is given a mathematical
model with defined inputs, which is controlled by a control system using a series of waypoints
around the underwater scene as references. Due to the wide scope of the task, the vehicle model
is made to be mathematically simple, yet complex enough to provide physically correct motion.

1.3 Contributions

The main contribution of this thesis is the creation of a underwater sequence benchmark containing
images, IMU and depth data, as well as a series of corresponding ground truth data which pose a
significant challenge to acquire from sequences recorded in a real-world environment.

While each sub-system of the thesis isn’t necessarily a novel idea, the resulting framework provides
data and simulation possibilities that has previously been unavailable.

Initially this framework was intended for internal use in the AROS Project for development of
underwater computer vision algorithms. Due to the limited availability of underwater datasets
with proper ground truth, we now aim to publish this dataset, where we stand to be one of the
first to publish a synthetic underwater dataset with physically correct path traced images. After
some time, the simulation framework will also be made available for the underwater community
at large to use and adapt to their needs.

1.4 Outline

The motivation and objective of the thesis has already been explained in this section. Next is the
vehicle control system, abbreviated VCS, in section 2. This section provides motivation for the
need of a VCS, the system model, controller design and how waypoints are used to generate a path
through the environment.

After the VCS is defined, the IMU is derived in section 3. This section contains an overview of the
coordinate frames and transformations used and discusses the potential for state interpolation for
high-frequency IMU measurements before the derivation of the mathematical model for the IMU
sensor itself.

Section 4 provides an overview and explanation of the data generated by the simulation framework.
This includes sensor data from the IMU and depth sensors, image data, ground truth data, image
naming convention and the final data structure.

Section 5 outlines the requirements and setups for the simulation itself. This includes how the sim-
ulation environment was created, which assets were used and motivates these choices. The section
then provides information on the camera setup to accurately simulate a camera with matching
intrinsic parameters to that of NTNU’s EELY500 Eelume[11] robot. Finally, the image rendering
parameters and an automated render process is discussed.

Finally, section 6 discusses the potential for future improvements of the simulation framework.
The framework in its current state is in no way finished, and has a lot of potential for increased

2



functionality and more complex vehicle models. Plans for paper publishing and dataset availability
wraps up this section.

1.5 Notation

Table 1.1: Commonly used symbols

Symbol Description

c Rotational drag coefficient
Cd Drag coefficient
ζ Water dynamic viscosity [Pa s]
F Force [N ]
Fd Drag force [N ]
I Moment of inertia [kg m2]
m Mass [kg]
Φ Radiant flux [W ]
ρ Density [kg/m3]
r Radius [m]
s, s State, displacement [m]
θ Angle [rad]
τ Torque (VCS), Current timestep (IMU)
t Time [s]
∆t Time-step [s−1]
a Acceleration, sensor measurement
d Depth, sensor measurement
ω, ω Angular velocity, scalar and vector, sensor measurement
A Cross-sectional area
A Linear system matrix
B Linear system input matrix
C Linear system output matrix
K LQR state feedback matrix
η State vector
ηr State reference vector
P LQR feed-forward matrix
Q̄ LQR state weighting matrix
R̄ LQR input weighting matrix
R Rotation matrix
Rn Real coordinate space of dimension n
SE(n) Special Euclidean group of dimension n
SO(n) Special Orthogonal group of dimension n
u,u System input, scalar and vector
v0, v1 Input dynamics states
V Input dynamics system matrix
y Linear system output
λ Eigenvalue of a linear system (VCS), wavelength (Simulation)
x, y, z Coordinate frame axes

3



Table 1.2: Commonly used abbreviations

Abbreviation Description

GPS Global Positioning System
CCW Counter-clockwise
CPU Central Processing Unit
CW Clockwise
GPU Graphics Processing Unit
IMU Inertial Measurement Unit
LQR Linear Quadratic Regulator
RGB Red, Geen, Blue
sRGB Standard RGB
VCS Vehicle Control System
VO Visual Odometry
VSLAM Visual Simultaneous Localization And Mapping

Positive rotation direction: The direction for a positive rotation around a given axis follows
the right hand rule. Point the thumb in the positive direction of the axis of rotation, then the
fingers will point in the direction of a positive rotation. If the axis of rotation comes out of a 2D
plane, then the positive rotation direction is counter-clockwise (CCW) following this convention.

Coordinate frame orientation: All coordinate frames follow the right-hand rule. Unless spec-
ified, an arbitrary coordinate system has a positive z-direction in the ”up” direction, whereas the
xy-plane spans a flat horizontal plane.

Coordinate frame points: A vector v expressed in a coordinate system a is written as va.

Coordinate frame rotations: Unless specified, all rotations are extrinsic. This means, the
frame of which the rotations are performed is fixed, and does not change with each rotation.

A rotation from frame b to a expressed in frame a is written as Ra
ab. The superscript denotes

the rotation frame of reference, whereas the subscript first denotes the end frame, then the start
frame.

Coordinate frame transformations: The same notation as expressed for coordinate frame
rotations applies to coordinate frame transformations.

Forces, torque, inputs and states: Forces, torque, inputs or a givens state that is dependent
on a local axis has the corresponding local axis marked as the last subscript. For instance, the
drag force of an object is denoted Fd. To further specify that it is the drag force along the x-axis,
the axis subscript is appended: Fd,x

4



2 Vehicle control system

The vehicle control system creates a model of the virtual vehicle in the simulation, which is con-
trolled using linear control theory to obtain smooth and continuous motion.

2.1 Motivation

Blender[10] contains tools for animation where objects can move between poses set at different
keyframes, using Bezier-curves[12] where the default interpolation uses with linear acceleration.
These curves can be manually adjusted to create a desired motion, however this is a very time
consuming animation job which doesn’t guarantee a physically correct vehicle trajectory. Please
note that Blender is operating with frames, hence frames is used analogous with time in this
subsection. Let P1, P2 and P3 denote three poses for the vehicle in three consecutive keyframes.
The acceleration a12(t) between P1 and P2 will be linear, with an initial magnitude determined
by the distance between the keyframes and the number of frames between these keyframes. When
P2 is reached, the linear acceleration is set to a23(t). Due to differences in the number of frames
between P2 and P2 compared to P1 and P2, and the possibility of a different distance. For instance,
say that P2 is located at t = τ . In this transition, the identity a12(τ) = a23(τ) does generally not
hold with the exception of a very few corner cases.

2.2 Translation and rotation definitions

In the vehicle control system, hereafter abbreviated VCS, the translation and rotation states are
defined as follows. Translation is measured in meters [m] along their respective axes. Rotations are
defined as total counter clockwise (CCW ) rotation around their respective axes in radians [rad].
Rotation matrices are not used as they can be constructed from the Euler angles, and as well as
storing the total CCW rotation eliminates the previous angle-looping issue discussed in the IMU
measurement generation. For this to work, the rotations in the reference vector exported from
Blender is given in total CCW Euler rotation.

Gimbal lock is another important phenomenon which can cause issues. In this implementation,
each rotation axis is fixed in the world frame. Hence the axes are always orthogonal, avoiding the
issue of certain rotations causing a gimbal lock.

2.3 System model

The system model models a virtual underwater sphere as the vehicle used for moving throughout
the simulation environment. In order to generate physically correct motion, it is given reasonable
size, mass and input limitations. In order to be relatively easily able to linearize the model, the
translational and rotational input is assumed to be decoupled. In this implementation the inputs
are virtual torques and forces acting on each of the vehicle’s axes. To contribute to the realistic
motion, translational and rotational drag forces are included.

2.3.1 Partial 2D model

The version is modeled in the 2D plane to simplify the system matrices during the initial modelling
stage. As a first version, it is desired that the model should be not too complex to derive while
still being sufficiently complex to showcase the desired motion characteristics. Hence a 2D version
is used, showcased in fig. 2.1.

5



Figure 2.1: A 2D version of the vehicle. Here the XY-plane is visible, with the positive z-axis
pointing out of the paper. Fu,x = ux and Fu,y = uy denotes the input forces along the x- and
y-axes respectively. τz is the torque, and ωz is the angular velocity around the z-axis. Fd,ωz denotes
rotational frictional drag forces, and Fd,x and Fd,y denotes the translational drag forces.

First the translational equations of motions are considered. By summing the translational forces
along the x-axis, the acceleration s̈x is found:

∑
F = Fu,x − Fd,x

ms̈x = ux −
1

2
ρCdAṡ

2
x

ms̈x = ux − dṡ2x, d =
1

2
ρCdA

s̈x =
1

m
ux −

d

m
ṡ2x

(2.1)

Where Fd,x is the translational drag along the x-axis and Fu,x = ux is the input force along the
axis. For a small ṡx, it is possible to linearize the equations of motion around ṡx = 0.

This linearization requires that the second-degree friction term Fd,x can be expressed linearly in ṡx.
Therefore, the friction model is modified to be linearly dependent on the velocity ṡx, instead of the
quadratic dependency presented in eq. (2.1). If the system were to be linearized around the Origin
before this simplification, the corresponding index for the drag forces in the system matrix As,x

would be zero. As the simulated craft is a relatively slow moving exploring underwater vehicle,
the error resulting from this simplification will stay small. This simplification of eq. (2.1) results
in the following equation:

s̈x =
1

m
ux −

d

m
ṡx (2.2)

Given the system structure:

η̇s,x = As,xηs,x +Bs,xus,x, ηs,x = [sx, ṡx]>, η̇s,x = [ṡx, s̈x]>

the 2-by-2 matrix Ax is found by linearizing as follows:

η̇x =

[ δ
δsx

ṡx
δ
δṡx

ṡx
δ
δsx

(− d
m ṡx) δ

δṡx
(− d

m ṡx)

] [
sx
ṡx

]
+

[
0
1
m

]
ux

=

[
0 1
0 − d

m

] [
sx
ṡx

]
+

[
0
1
m

]
ux

= As,xηs,x +Bs,xux

(2.3)
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Now that a model for the translation is established, it is time to create a model of the rotation.
Let’s examine the rotation around the z-axis in fig. 2.1 with the input torque τu,z. Let I denote
the moment of inertia of the sphere which is modelled as a solid sphere with mass m and radius r.
Then the inertia is given as

I =
2

5
mr2.

When rotating, there is a small amount of rotational friction. Let c denote the drag coefficient for
rotational friction for a sphere. From seqtion 4.3.1: motion of a single hard sphere in [13], we have
that the rotational drag coefficient c is then given by

c = 6πζr (2.4)

where ζ is the dynamic viscosity of water. For a temperature of 5 degrees Celsius, from table 7 in
[14], we have that

ζ = 1519.3µPa s = 1.5193 · 10−3Pa s.

Applying Newtons second law for rotation around the z-axis and applying that τz,d = Fd,ωzr =
(cU)r, where U is the surface velocity U = (ωzr), from [13], we have:

τz = τu,z − τz,d

=
d

dt
(Iωz)− Fd,ωzr

=
d

dt
(Iωz)− cr(rωz)

= Iθ̈z − cr2θ̇z
m

θ̈z = −cr
I
θ̇z +

1

I
τu,z

(2.5)

The resulting linear system of equations is as follows:

η̇θ,z =

[
δ
δθz
θ̇z

δ
δθ̇z
θ̇z

δ
δθz

(− crI θ̇z)
δ
δθ̇z

(− crI θ̇z)

] [
θz
θ̇z

]
+

[
0
1
I

]
τu,z

=

[
0 1
0 − crI

] [
θz
θ̇z

]
+

[
0
1
I

]
τu,z

= Aθ,zηθ,z +Bθ,zτu,z

(2.6)

As the translation and rotation are decoupled in this model, creating the overall model is done by
combining the subsystems for the translation along the x− and y−axes and the rotation around
the z−axis. Let

η̇2D =
[
sx, ṡx, sy, ṡy, θz, θ̇z

]>
denote the state vector for the 2D model in the XY-plane. Note that As,x = As,y = As. This is
also true for Aθ,z = Aθ Then the full 2D model is created:

η̇2D =



ṡx
s̈x
ṡy
s̈y
θ̇z
θ̈z

 =


0 1 0 0 0 0
0 − d

m 0 0 0 0
0 0 0 1 0 0
0 0 0 − d

m 0 0
0 0 0 0 0 1
0 0 0 0 0 − c

I

η2D +


0 0 0
1
m 0 0
0 0 0
0 1

m 0
0 0 0
0 0 1

I


 uxuy
τu,z



=

As 02,2 02,2

02,2 As 02,2

02,2 02,2 Aθ

η2D +

Bs,x

Bs,y

Bθ,z

u2D

(2.7)
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2.3.2 Full 3D model

The 3D model is an expansion of the 2D model, where the only difference is more degrees of
freedom where each extra subsystem is decoupled from the others. The complete model is shown
in fig. 2.2.

Figure 2.2: A 3D version of the vehicle, where τx/τy/τz and ux/uy/uz are the torques and input
forces around each of the x−, y− and z-axes.

The mathematical derivations are similar to that of the 2D model with only different subscripts
for the new axes. Hence the full system will be directly shown as all relevant derivations are found
in the 2D case. First, the state vector η is defined as:

η =
[
sx, ṡx, sy, ṡy, sz, ṡz, θx, θ̇x, θy, θ̇y, θz, θ̇z

]>
Then the full model can be described with the following system:

η̇ =



ṡx
s̈x
ṡy
s̈y
ṡz
s̈z
θ̇x
θ̈x
θ̇y
θ̈y
θ̇z
θ̈z



=



0 1 0 0 0 0 0 0 0 0 0 0
0 − d

m 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 − d

m 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 − d

m 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 − c

I 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 − c

I 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 − c

I





sx
ṡx
sy
ṡy
sz
ṡz
θx
θ̇x
θy
θ̇y
θz
θ̇z



+



0 0 0 0 0 0
1
m 0 0 0 0 0
0 0 0 0 0 0
0 1

m 0 0 0 0
0 0 0 0 0 0
0 0 1

m 0 0 0
0 0 0 0 0 0
0 0 0 1

I 0 0
0 0 0 0 0 0
0 0 0 0 1

I 0
0 0 0 0 0 0
0 0 0 0 0 1

I




ux
uy
uz
τu,x
τu,y
τu,z



=


As 02,2 02,2 02,2 02,2 02,2

02,2 As 02,2 02,2 02,2 02,2

02,2 02,2 As 02,2 02,2 02,2

02,2 02,2 02,2 Aθ 02,2 02,2

02,2 02,2 02,2 02,2 Aθ 02,2

02,2 02,2 02,2 02,2 02,2 Aθ

η +


Bs,x

Bs,y

Bs,z

Bθ,x

Bθ,y

Bθ,z

u
= Aη +Bu

(2.8)
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2.4 Controller design

The purpose of a controller is to control the input u such that the states η approaches desired
references stored in a reference vector ηr. The controller used is an infinite horizon Linear Quadratic
Regulator, hereafter LQR for short. This controller will be introduced in depth in section 2.4.3.

2.4.1 Controllability

Before designing the controller, the system needs to be verified as controllable. That means, the
states can be controlled through the input. From observation it is clear that the system is control-
lable, as the input directly influences the double derivative of every state. From a mathematical
point of view, controllability requires that the rank of the controllability matrix C is equal to the
number of states in the system. For a system to be controllable, it must satisfy the condition
presented in eq. (2.9), where C is a 12× 72 matrix.

C =
[
B AB A2B . . . A11B

]
, rank(C) = 12 (2.9)

Due to the size of the aforementioned controllability matrix, the rank is determined by using Python
and the NumPy library. Using a for-loop the matrix C is generated, where the rank is found by
using the built-in NumPy function numpy.linalg.matrix rank(C). This returns rank(C) = 12, which
means that the system in controllable and a controller can confidently be designed.

2.4.2 Reference states and output matrix

The reference state vector is:

ηr =
[
sx,ref , sy,ref , sz,ref , θx,ref , θy,ref , θz,ref

]>
(2.10)

The controller is an infinite horizon LQR, hence limt→∞ y ⇒ ηr, where y is the measured states.
This way, it is possible to determine the output matrix C such that the equation below holds:

y = Cη = ηr ⇒


1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0





sx
ṡx
sy
ṡy
sz
ṡz
θx
θ̇x
θy
θ̇y
θz
θ̇z



=


sx,ref
sy,ref
sz,ref
θx,ref
θy,ref
θz,ref

 (2.11)

2.4.3 Linear quadratic regulator, LQR

Given the 6 × 6 feed-forward matrix P and the 6 × 12 state feedback matrix K, the controller
determines the input u. The controller is written as

u = Pηr −Kη. (2.12)
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In order to find P and K, it is assumed that the system enters an equilibrium state as t → ∞.
Substituting eq. (2.12) into eq. (2.8) yields:

η̇ = 0 = Aη +Bu

= Aη +B(Pηr −Kη)

= (A−BK)η +BPηr

(2.13)

As an infinite horizon LQR controller is used, let limt→∞ η ⇒ η∞ and rewrite eq. (2.13):

0 = (A−BK)η∞ +BPηr

(BK −A)η∞ = BPηr

η∞ = (BK −A)−1BPηr

(2.14)

The output of the system in eq. (2.8) is given by:

y = Cη

Substituting with limt→∞ η ⇒ η∞ and limt→∞ y ⇒ ηr, and inserting eq. (2.13) yields:

ηr = Cη∞

ηr = C(BK −A)−1BPηr

I = C(BK −A)−1BP

C(BK −A)−1BP = I

P = (C(BK −A)−1BP )−1

(2.15)

From this it is apparent that the state feedback matrix K is needed in order to find the reference
feed-forward matrix P . Finding K requires two additional matrices, the state weight matrix Q
and input weight matrix R. Further use of these two matrices during tuning will be discussed in
section 2.4.5.

K is found through the LQR-solver in the Python Control Systems Library [15], using the function
control.matlab.lqr(A,B,Q,R).

2.4.4 Input dynamics

It is important to address one dynamic not currently modelled: input ramp-up. Allowing the input
torques and forces u to be directly controlled will result in discontinuous jumps in the input when a
new reference is set, which directly translates to discontinuous jumps in acceleration. To avoid this,
input dynamics are added. A physical equivalent to this dynamic is similar to that of a propeller.
When a propeller rotates, it exerts a force on the medium around it, and the medium itself exerts
a force back onto the propeller as stated by Newtons third law. This force is the current input.
However, the propeller cannot go from 0 rotations per minute (RPM) to 800 RPM instantaneously.
A real-world control system would control the voltage to the electric propeller, and the propeller
would spin up to the RPM corresponding to the voltage level set. This is a huge simplification,
as these dynamics encompass are more complex, but it illustrates the effect necessary to emulate
in simulation data. The vehicles’ acceleration should be smooth for the entirety of a simulated
sequence.

Let u denote the forces and torques applied to the vehicle, and ∨ be the input to the input ramp-up
system. Then an expression for u is:

u̇ = V u+ v

where V is a diagonal matrix consisting entirely of the negative eigenvalues of the input ramp-
up system. These eigenvalues determine poles and by extension the speed of the input ramp-up
system. The poles should be chosen to be faster than that of the original system. The poles in
question are found by solving |Iλv − V | and |Iλsys −A| for λv and λsys respectively.

10



Using numpy.linalg.eig(A), the poles for the vehicle dynamics are found to be the following
(rounded to 5 decimals):

λsys =
[
0, −0.07854, 0, −0.07854, 0, −0.07854, 0, −0.00358, 0, −0.00358, 0, −0.00358

]>
The input ramp-up dynamics needs to be significantly faster than the system dynamics, hence
the poles are chosen to lie further away in the left half plane. Introducing an input delay will be
affecting the controller as well. Therefore the poles are chosen such that the input dynamics gives
the desired effect on the acceleration, yet they are fast enough to not significantly interfere with
the control system. The corresponding eigenvalues to u = [ux, uy, uz, τu,x, τu,y, τu,z] are chosen to
be

λv =
[
λux , λuy , λuz , λτu,x , λτu,y , λτu,z

]> [−8, −8, −10, −7, −7, −7
]>

through testing and evaluating the response time for a step-response. The desired response time
is in the interval of 50ms− 120ms.

Saturation limits for the inputs are placed on the input v ∈ [vmin,vmax] to ensure that when the
saturation limit is reached, u transitions smoothly to the saturation limit instead of a sharp cutoff.

This First-order input dynamics did not produce the desired results, as the acceleration still has
an abrupt jump when a new reference is given. Therefore another identical input dynamic system
is added to add a second order response to the acceleration input. This adds the characteristic
S-curve response to the acceleration response.

Let v0 denote the output from the control system, v1 the internal state of the second order system
and let u denote the output from the second order acceleration dynamics. Then the system can
be written as in eq. (2.16) with input limits placed on v1.

v̇1 = V v1 + v0

u̇ = V u+ v1
(2.16)

2.4.5 LQR tuning

Tuning of the LQR controller is done by weighting the matrices Q̄ and R̄. The diagonal entries of
Q̄ correspond to the state in η at the given index. Likewise for the diagonal entries in R̄ and the
inputs v. The cost function which is minimized is shown in eq. (2.17).

J =

∫ ∞
0

(η>Q̄η + v>R̄v)dt (2.17)

By increasing Q̄ or decreasing R̄ the states are penalized. A common method is to set R̄ = I and
tune the state weights in Q̄. However in this implementation they were tuned in tandem. The
values used are shown below:

Q̄ = diag([100, 2000, 100, 2000, 100, 2000, 100, 2000, 100, 2000, 100, 2000])

R̄ = diag([0.005, 0.005, 0.005, 0.05, 0.05, 0.05])

The unit step response for all 6 degrees of freedom with this controller is shown in fig. 2.3.
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Figure 2.3: Unit step response across all 6 degrees of freedom.

2.5 Waypoint handover

As the control system moves towards a reference, using only the set keyframes as references will
result in a ”jagged” motion, even when using a fairly high error threshold. A soft transition between
two consecutive reference poses, hereafter named waypoints, is desired. In this subsection, a method
of smoothly transitioning from one reference to the next is explored.

2.5.1 Hard waypoint handover

The initial waypoint handover was a simple scheme where the next waypoint is activated when the
current pose is within a sphere of the current waypoint, where the radius of the sphere is the norm
of the error. Mathematically, this is expressed as

eτ = ‖ηr − ητ‖2 (2.18)

where ‖·‖2 is the L2-norm and ητ is the pose for the current timestep τ . Let ethreshold ∈ R≥0 be
the threshold for where ηr transitions to the next reference ηr+1. Then the handover is as follows:

when eτ ≤ e ⇒ ηr = ηr+1 (2.19)

The resulting behaviour in this hard handover is shown in fig. 2.4, where ethreshold is tuned to
differentiate between waypoints the vehicle uses as reference for longer trajectories and waypoints
for inspection of scene elements (see the figure for a specific example).
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Figure 2.4: States with the control system active. The ethreshold is set to the values (in order of
appearance) [0.4, 0.4, 0.4, 0.4, 0.125, 0.4, 0.125, 0.4, 0.05] depending on waypoint accuracy require-
ment.

Hard waypoint handover does have its issues. When the control system is approaching the reference
waypoint, the velocity will decrease and the states will approach in a critically damped manner.
This is previously shown in fig. 2.3. The vehicle moves fast when the reference is a distance away,
and slowing down when it is closer. As a result the velocity is low when the hard waypoint handover
takes place, which results in visibly uneven velocities upon playback of the image sequence. By
inspecting fig. 2.4 this effect is most visible as step-responses in the s̈x curve and the resulting
piece-wise linear segments of ṡx.

2.5.2 Soft waypoint handover

When the vehicle is moving through several waypoints, it is desired that this motion is as smooth
as possible. Figure 2.5 illustrates this concept for a path consisting of three waypoints; ηr−1,ηr
and ηr+1, and the current state ητ . Starting at ητ = ηr−1, the initial reference is ηr. However,
when moving towards ηr, the currently used reference should gradually decrease the weights on ηr
and increase the weights for ηr+1. When ηr is reached, the current reference is almost completely
weighted to ηr+1. This makes for a softer handover.

Figure 2.5: Illustration sketch of the waypoint handover function. η0, η1, η2 are waypoints, ηr is
the notation for the current waypoint.
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Figure 2.6: The simple n-degree polynomial used for soft transitioning between waypoints. Here a
4 and 8 order polynomial is shown.

The soft waypoint handover is built around a n-degree polynomial pn(xτ ):

pn(xτ ) = xnτ (2.20)

where xτ is a measure of the normalized distance from the current state and the next waypoint.
This polynomial with n = 4 and n = 8 is visualized in fig. 2.6. Finding the normalized distance is
done through:

xτ =
‖ηr − ητ‖2
‖ηr − ηr−1‖2

=
`τ,r
`r−1,r

, `τ,r ∈ [0, 1] (2.21)

The constraint on `τ,r is applied to ensure that pn(xτ ) ∈ [0, 1] from eq. (2.20). When the waypoint
is updated, due to ethreshold > 0, it is possible that `τ,r > 1 depending on the states ητ when the
handover took place. If `τ,r > 1, then the waypoint weighting will be outside their valid bounds.
As a consequence the waypoint weighting will break down.

Let η̃r denote the waypoint which is used by the control system. Let ηr and ηr+1 be the current
and next waypoint from the waypoint vector. The waypoint weighting for finding η̃r is done as
follows:

η̃r = (1− pn(xτ ))ηr + pn(xτ )ηr+1 (2.22)

From this equation we have that limxτ→0 η̃r = ηr and limxτ→1 η̃r = ηr+1, which is the desired
behaviour. By using identical parameters as the hard waypoint handover case, setting n = 4 and
updating η̃r at each timestep, the behaviour shown in fig. 2.7 is achieved. The amount of undesired
behaviour which was found in fig. 2.4 has been significantly reduced, resulting in smoother motion.
This becomes more apparent when viewing the playing back the image sequence in real-time.
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Figure 2.7: States with the control system and an active waypoint handover system with polynomial
degree 4.

2.5.3 Additional waypoint handover condition

When creating a waypoint, the ethreshold value for waypoint handover is set. If the distance between
ηr and ηr+1 is large, then the reference trajectory η̃r can fall outside the error threshold ethreshold
to trigger a waypoint handover. This is illustrated in fig. 2.8. However, the VCS uses η̃r as a
reference, a reference it cannot follow with exact accuracy due to the dynamics of the system.
Hence the actual trajectory can take the shape of any smooth trajectory within the gray area in
fig. 2.8.

Figure 2.8: A simplified example showing the trajectory with the soft waypoint handover not
intersecting with the sphere around ηr with radius ethreshold.

If the actual trajectory overshoots the sphere with radius ethreshold, the VCS will either reverse its
direction until the error falls within this threshold or, in the theoretical worst case, converge to a
point outside this sphere. Therefore a second waypoint handover condition is added:

‖ηr+1 − ητ‖2 ≤ ‖ηr+1 − ηr‖2
m

`τ,r+1 ≤ `r,r+1

(2.23)
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Equation (2.23) adds a sphere around the waypoint ηr+1 with radius `r,r+1. If the current state
ητ passes into this sphere, then a waypoint handover is triggered. This way, if the VCS overshoots
with the trajectory for a given reference, it will automatically trigger the next one. An added
benefit of this approach is that the VCS can pass through references at larger velocities without
a direct reference for the state velocities. This is handy for parts of a sequence where the VCS is
supposed to travel along a path at ”travel velocity”.

Figure 2.9: Additional distance constraint for waypoint handover, triggered if ‖ηr+1 − ητ‖2 ≤
‖ηr+1 − ηr‖2.

2.5.4 Creating waypoints for soft handover

When creating waypoints, there exists in general two types of waypoints; One type which serves
as a ”guide-rail” for the VCS trajectory with a large acceptable error, and waypoints where the
error is desired to be small. Instead of manually tuning ethreshold for every waypoint, which is
labor intensive for the person creating the sequence, a less labor intensive approach yielding good
results is to place two waypoints in close succession. The motion through these waypoints will be
more constrained due to the proximity between the two consecutive waypoints.

Remember that the active reference η̃r is calculated using the previous, current and next waypoints;
[ηr−1,ηr,ηr+1]. When the state η is approaching ηr, the reference softly moves towards ηr+1. If
ηr and ηr+1 are chosen to be close together, the VCS will converge to their general area even with
a larger ethreshold. This is visualized in fig. 2.10.

Figure 2.10: Example of the trajectory of the VCS when using close consecutive waypoints to
indicate areas of interest where the VCS should closely follow the waypoints.
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To illustrate the effect of this approach, five waypoints are set:

η0 =


sx,r
sy,r
sz,r
θx,r
θy,r
θz,r

 =


0
0
0
0
0
0

 , η1 =


1
0
0
0
0
0

 , η2 =


1
1
0
0
0
0

 , η3 =


1
1
1
0
0
0

 , η4 =


0
0
0
0
0
0

 (2.24)

The resulting trajectories with the waypoints eq. (2.24) and ethreshold = 0.3 are shown in fig. 2.11.
By comparing the plots, it is apparent that using double waypoints results in a smooth convergence
to the reference values. The only exception is for the translation along the z-axis. With double
waypoints, sz ≈ 0.95, while using single waypoints results in sz ≈ 0.85. The better convergence
achieved by using double waypoints makes this method good for quickly creating points where close
adherence to the waypoint is desired. Likewise, the loose convergence from using single waypoints
indicates that single waypoints is sufficient for use in points along a loose trajectory where pose
requirements are less strict.

Figure 2.11: Trajectory moving through the waypoints defined in eq. (2.24) with ethreshold = 0.3.
The top figure has single waypoints, whereas the last figure has double waypoints for η1,η2,η3
and η4.
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3 Generating IMU measurements

3.1 Coordinate frame overview

The inertial measurement unit (IMU) measures acceleration relative to its own sensor frame[16].
There are several frames that which are relevant for the IMU measurements[17]. Adapted to the
needs of our simulation, these frames are:

World frame w: The coordinate frame of the synthetic simulation environment. All data directly
exported from the simulation without any transformations uses this frame of reference, and the
center of the frame is defined in the center of the virtual environment. In Blender the orientation
follows a right-handed frame with the positive z-direction upwards. The simulation frame is as-
sumed to be smaller in scale such that the gravity vector is facing in the negative z-direction and
is parallel with the z-axis for the entire frame.

Reference frame r: Stationary frame which all motion is relative to. This is initialized as a right-
handed coordinate system at the vehicles’ position at time 0. Different vehicles may have their
own reference frames, as is the case in the EuRoC[3] dataset. This is a deliberate choice to allow
for future expansions of the simulation.

Vehicle frame v: The vehicle’s frame which is moving freely in the reference frame r.

Sensor frame s, c: This is the frame for a sensor attached to the surface or inside the vehicle.
This is the inertial measurement unit (IMU), denoted s for sensor, and the camera, c. This frame
is fixed with respect to the vehicle frame v. While this frame primarily consists of sensors, it
is denoted as the body frame to avoid confusions with the simulation frame. If several IMUs or
cameras are used, sk, ck can be used to address the kth sensor.

Light frame lk: Coordinate frame for a light source, where k indicates the light source number.

3.1.1 Rotation and transformation matrix properties

A rotation matrix R belongs to the Special Orthogonal group SO(3), which is a subspace of
the special Euclidean group SE(3). For a rotation matrix R belonging to the SO(3) group, the
following properties apply:

SO(3) =

{
R ∈ R3×3

∣∣∣∣RR> = I, R>R = I, det(R) = 1

}
Furthermore, SO(3) For a transformation matrix T , with rotation matrix R and translation t,
SE(3) implies the following properties:

SE(3) =

{
T =

[
R t
0> 1

]
∈ R4×4

∣∣∣∣R ∈ SO(3), t ∈ R3

}

3.1.2 Coordinate transformation introduction

A point pa = [x, y, t]> in an arbitrary frame a can be rotated using a rotation matrix R and a
translation vector t, which are shown in eq. (3.1).

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 ∈ SO(3), t =

txty
tz

 (3.1)

The rotation matrix R can represent a rotation form frame b to a as Rab. The corresponding
translation is denoted taab. Here the subscript ab denotes the translation from frame b to a, and
the superscript a denotes that the translation vector is given with respect to frame a. Imagine a
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point pb is given in frame b, and it is to be transformed into frame a. In order to transform pb

into pa, the following equation is used:

pa1 = Rabp
b
1 + taab (3.2)

An arbitrary point p ∈ R3 is converted to homogeneous coordinates by following eq. (3.3).

p̃ = [p, 1]> = [x, y, z, 1]> (3.3)

By using the homogeneous points from eq. (3.3), it is possible to combine eq. (3.2) into a single
expression using a transformation matrix Tab belonging to the special Euclidean group SE(3). This
transformation is shown in eq. (3.4).

p̃a = Tabp̃
b =

[
Rab taab
0> 1

]
p̃b (3.4)

However, if the point pa is given it might be desired to find the point expressed in frame b as pb.
This is done by inverting the transformation in eq. (3.4), resulting in eq. (3.5).

p̃b1 = Tbap̃
a
1 = (Tab)

−1p̃a1 =

[
Rab taab
0> 1

]−1
=

[
R>ab −R>abtaab
0> 1

]
(3.5)

These coordinate transformations are not only valid for points p̃, but also poses P such that:

P a = TabP
b, P =

[
R t
0> 1

]
(3.6)

3.2 Coordinate transformations

3.2.1 A comment on transformations in this section

Near the end of May, my co-supervisor Mauhing Yip found a discrepancy in the notation used in
the transformations between the vehicle- and sensor frames, and the actual transformation which
were made in section 3.2.4. This section uses an implementation yielding seemingly correct results
when the final plots from the IMU is viewed. However this is no guarantee that the output or
the derivations are completely correct despite that the plots at the end of this subsection make
sense when the actual motion is taken into consideration. This discrepancy is further discussed in
section 6.2 with examples.

3.2.2 Pre-processing of imported simulation data

The pre-processing step aims to convert the data exported directly from Blender into a format and
coordinate frames which can be used by the code which generates the IMU measurements. The
data from the VCS is exported as a large 2D array contained in a .csv file. The first step splits the
VCS data into individual vectors for each state time derivative:

s =

sxsy
sz

 ṡ =

ṡxṡy
ṡz

 s̈ =

s̈xs̈y
s̈z

 θ =

θxθy
θz

 θ̇ =

θ̇xθ̇y
θ̇z

 θ̈ =

θ̈xθ̈y
θ̈z
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These vectors are then combined into two 3D arrays for easier processing, S containing s, ṡ and s̈
and Θ containing θ, θ̇ and θ̈. then the structure is as follows:

S =

sṡ
s̈

 , Θ =

θθ̇
θ̈


Using this structure, s can be accessed in code via the command S[0, :, :] for the current imple-
mentation with Python and NumPy.

Figure 3.1: Preprocessing of IMU data illustrated for the first sample of the sequence, as Trr̃ and
Tr̃w are found through the pose data for the first sample. The data is transformed from the world
coordinate frame w to the reference frame r. The orientation of the vehicle in w is arbitrary. The
reference frame r coincides with the vehicle frame v for the first sample.

3.2.3 Converting VCS data from world to reference frames

The information used to generate the IMU measurements is extracted from the simulation in the
world frame w. This data is S and Θ from section 3.2.2.

The measurements data should be transformed such that the initial measurement is at the origin of
a reference frame for the vehicle the sensor is attached. The transformation from the world frame
w to the reference frame r is named Trw. Furthermore, Trw is the product of two transforms, one
that transforms the raw data in the world frame to a temporary reference frame r̃, and finally a
transform which transforms from r̃ into the desired reference frame r. These transformations are
called Tr̃w and Trr̃ respectively.

Tr̃w is generating the pose matrix for the first timestep of the sequence, then inverting this pose
matrix. Let Tw(t = 0) denote the pose matrix at t = 0. Then:

Tr̃w = [Tw(t = 0)]−1 (3.7)

Then Trr̃ must be determined. In this implementation, the reference frame is equal to the vehicle
frame at time t = 0. Therefore Trr̃ is a rotation which realigns the axes such that the z-axis
points forward, the x-axis points to the right and the y-axis points downward. This is illustrated
in fig. 3.1.

When Tr̃w is applied, the coordinate system of the vehicle is oriented as shown in fig. 3.1. In
order to convert the r̃ frame into the reference frame r, the following passive transformation of
coordinate systems is applied:

Trr̃ =

[
Rx(π2 ) 03,1

01,3 1

]−1
=

[
Rx(π2 )−1 03,1

01,3 1

]
=

[
Rx(−π2 ) 03,1

01,3 1

]
(3.8)
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The transformation from the world frame to the reference frame is then found by multiplying
eq. (3.8) and eq. (3.7):

Trw = Trr̃Tr̃w (3.9)

When converting the data to the reference frame, it is important to distinguish between transfor-
mation of translation s, and the transformation of rotation as well as rotational and translational
velocity and acceleration. The former must be calculated on the normal form as Trw may contain
a non-zero translation term. The latter data should only be rotated into the reference frame using
Rrw.

sr = Trw

[
sw

1

]
ṡr = Rrwṡ

w s̈r = Rrws̈
w

Θr = RrwΘw Θ̇r = RrwΘ̇w Θ̈r = RrwΘ̈w

(3.10)

3.2.4 Generating sensor poses from vehicle poses

To reduce the amount of exported data, the pose of the sensor (i.e. IMU or camera) can be derived
with respect to the exported vehicle frame. This way, only one set of exported poses are needed
for generating one or more sets of IMU data and the poses for the camera which is used in 3D
reconstruction or SLAM. In this IMU implementation, the transformation used assumes that the
vehicle frame has its z-direction pointing in the positive forward direction, the positive x-direction
points out of the vehicles’ right hand side, and finally the positive y-direction points downwards,
illustrated in fig. 3.2. This is chosen to comply with the standard set by the KITTI[1] dataset and
the Robot Operating System (ROS)[18].

Figure 3.2: Vehicle frame v to sensor frame s transform. IMU sensor is rotated to point ”upwards”
in the vehicle frame.

To create the sensor coordinate frame s relative to the vehicle frame v, expressed in the sensor
frame s, the transformation matrix Tsv from the vehicle frame to the sensor frame is introduced:

Tsv =

[
Rsv tvsv
0> 1

]
(3.11)

where Rsv and tvsv is the rotation and translation respectively from the source frame v to the
destination frame s. By looking at the previous equation, the rotation can be expressed as a
rotation of 90 deg counter clockwise around xv followed by a 90 deg counter clockwise rotation
around zv. However, the coordinate transformation of the IMU data is passive. We do not wish
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to change the IMU data with respect to the world frame, only the frame of which the IMU data is
expressed within, the sensor frame s. Therefore the described rotation is made in the fixed sensor
frame s. First, a rotation of −π2 [rad] in the right handed coordinate frame is applied around the
xs-axis, then a rotation of −π2 [rad] around the zs-axis using the right-hand rule follows. The
mathematical expression for this rotation is shown in eq. (3.12) and visualized step-by-step in
fig. 3.3:

Rsv = Rz(−
π

2
)Rx(−π

2
)

=

cos(−π2 ) −sin(−π2 ) 0
sin(−π2 ) cos(−π2 ) 0

0 0 1

1 0 0
0 cos(−π2 ) −sin(−π2 )
0 sin(−π2 ) cos(−π2 )


=

 cos(π2 ) sin(π2 ) 0
−sin(π2 ) cos(π2 ) 0

0 0 1

1 0 0
0 cos(π2 ) sin(π2 )
0 −sin(π2 ) cos(π2 )


=

 0 1 0
−1 0 0
0 0 1

1 0 0
0 0 1
0 −1 0


=

 0 0 1
−1 0 0
0 −1 0



(3.12)

Figure 3.3: The coordinate system rotations from eq. (3.12) between the vehicle frame v and the
sensor frame s. The arrows indicate the positive CCW rotation around each axis. Negative angle
values is then rotated in the opposite direction.

Figure 3.4: Translation of the sensor and camera frames, denoted s and c respectively, with respect
to the vehicle frame, v. Rotations are performed relative to the fixed frame s.
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The sensor is offset from the center of the vehicle by the vector eq. (3.13), where the offset is given
with respect to the Origin of the vehicle frame v as shown in fig. 3.4.

tvsv =
[
tvsv,x t

v
sv,y t

v
sv,z

]>
(3.13)

Combining eq. (3.12) and eq. (3.13) it is possible to write the transformation from v to s, where
the rotation is extrinsic and expressed in frame s and the translation from v to s, as Tsv:

Tsv =

[
Rsv tvsv
01,3 1

]
=


0 0 1 tvsv,x
−1 0 0 tvsv,y
0 −1 0 tvsv,z
0 0 0 1

 (3.14)

It is now possible to express the pose of the sensor P s in terms of the vehicle pose P v and the
transformation obtained in eq. (3.14):

P s = TsvP
v (3.15)

3.2.5 Generating camera poses from vehicle poses

For the camera frame c, the same convention as OpenCV[19] is used with a positive z-direction
out of the camera lens. Assuming a horizontal orientation relative to the ground, the positive
x-axis is pointing out to the right of the camera and the positive y-axis points downward into the
ground. Following this convention, the orientation of the front-facing camera is the same as the
vehicle frame for a monocular camera. Hence it is only translated with respect to the vehicle frame
as shown in fig. 3.4. Using this information, an expression for Tcv is found:

Tcv =

[
Rcv tvcv
01,3 1

]
=


1 0 0 tvcv,x
0 1 0 tvcv,y
0 0 1 tvcv,z
0 0 0 1

 (3.16)

3.3 State interpolation for measurements

The simulation operates with a minimum of three different frequencies, as shown in table 3.1. To
ensure that all the states for the various measurements and ground truth data can be exported,
fsim must be chosen such that it is divisible by the other frequencies used, i.e. fs and fc in
table 3.1.

Table 3.1: The three different type of frequencies used in the creation of sequences and the corre-
sponding ground truth data.

fsim = 1/∆tsim Internal simulation frequency
fs = 1/∆ts IMU sensor frequency
fc = 1/∆tc Camera frequency

The requirement for divisibility does significantly restrict the available choices for fsim. In order
to increase the flexibility of our simulation framework, it was proposed to use an interpolation
scheme for both the rotation and translation. Sections 3.3.1 and 3.3.2 explains two different
implementations of an interpolation scheme for the translation, velocity and acceleration. However,
rotational interpolation turned out to be non-trivial and section 3.3.3 goes into detail as to why.
Section 3.3.5 contains math which for reconstructing a the ZYX Euler angles from a rotation
matrix, and is included as it can be useful in the future.
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3.3.1 Translational interpolation, polynomial curvefitting

It was proposed by my co-supervisor Rudolf Mester to use a second-order curve-fitted polynomial
on the available data to derive first- and second-order derivatives, where he also kindly provided
the following derivation.

The offline estimator uses, for a velocity and acceleration estimation at time t, samples at t− 1, t
and t+1. Let x = [x−1, xt, xt+1]> denote the sample at given times. Likewise y = [yt−1, yt, yt+1]>

denote the translation or Euler rotation exported from the simulation environment for these mea-
surements.

The second order polynomial for a single sample xτ , τ ∈ [t− 1, t, t+ 1], may be written as

y(xτ ) = yτ = a+ bxτ + cx2τ (3.17)

where a, b and c are coefficients for the polynomial. Using this equation, it is possible to rewrite
set of equations for the three measurements as the system of equations in eq. (3.18).

y =

yt−1yt
yt+1

 =

1 xt−1 x2t−1
1 xt x2t
1 xt+1 x2t+1

ab
c

 = Hη (3.18)

Reordering this equation in order to find η:

Hη = y (3.19)

H−1Hη = H−1y (3.20)

η = H−1y (3.21)

This requires the inverse of the H-matrix to be known. Its inverse is found through the use of
SymPy [20], resulting in eq. (3.22).

H−1 =
1

x2t−1 − xt−1xt − xt−1xt+1 + xtxt+1

 xtxt+1 −xt−1xt+1 xt−1xt
−(xt + xt+1) xt−1 + xt+1 −(xt−1 + xt)

1 −1 1

 (3.22)

By using eqs. (3.19) and (3.22), the second order polynomial coefficients eta are found. It is then
possible to analytically differentiate the second order polynomial function from eq. (3.17) to find
an expression for its single- and double derivatives:

ẏτ = bẋτ + 2cxτ ẋτ = (b+ 2cxτ )∆tx(τ), ÿτ = 2cẋτ = 2c∆tx(τ) (3.23)

Please note that ẋτ = ∆tx(τ), where ∆tx(τ) is the time difference between the previous and current
frame. For symmetric interpolation this is the time difference between the first and second sample,
in a sequence of three samples.

During testing this method provided erroneous results, most likely due to an implementation error.
In the interest of time, the NumPy implementation utilizing the same principle in section 3.3.2
was investigated instead.

3.3.2 Translational interpolation, polynomial curvefitting with NumPy

Due to the previously mentioned issues, curvefitting via the NumPy library is used. The curvefitting
function used is:

numpy.polynomial.Polynomial.fit(x, y, degree, window)
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x denotes the array for the x -axis, namely the timesteps for the three samples in question. y
denotes the measurements at these timesteps, and degree is the degree of the polynomial which is
fitted to the points. window is the active window for the polynomial curve-fitting. This has to
be specified such that it uses a window that coincides with the current sample numbers and the
surrounding samples.

3.3.3 Rotational interpolation

Interpolation of the rotation and its derivatives proved to be non-trivial. A rotation matrix must
adhere to SE(3), which means that it must adhere to the constraints presented in section 3.3.4.
The rotation matrix can be interpolated using Lie-theory, where the velocity between the points of
interpolation is assumed to be constant[21]. Herein lies the first issue, a constant velocity implies
zero acceleration, which will result in invalid IMU data.

The IMU is directly dependent on angular velocity and acceleration, which requires that the angular
velocity and acceleration are both interpolated. This means that the angular acceleration must
be interpolated, and from this the angular velocity is derived. Finally, the interpolated rotation
matrix is found, which must adhere to SE(3).

Due to the added complexity of any rotational interpolation which follows the above requirements,
it was decided that adapting the internal simulation timestep to directly export the states at the
desired frequencies was the most efficient way to go.

While state interpolation is not used in the latest version of the IMU framework, sections 3.3.4
and 3.3.5 are included in case it is needed for future iterations of the framework that builds on
this work.

3.3.4 Verifying the rotation matrix

Before converting a 3x3 matrix to Euler angles, it has to be verified as a rotation matrix. This
means that eq. (3.24) has to be fulfilled for a rotation matrix R.

RR> = I, R>R = I, det(R) = 1 (3.24)

As the two first expressions in eq. (3.24) are equal, they can be expressed as one of the equations.
As such the requirements can be rewritten as:

RR> − I = 0, det(R)− 1 = 0

However, due to numerical and rounding errors a small value ε is introduced as a threshold. If
a value is above this threshold it is treated as non-zero, and if it is below it is treated as zero.
This also requires a scalar representation of the error between the matrices. To find the error, the
L2-norm is used. Hence the code implementation is as follows:

||RR> − I||22 < ε, det(R)− 1 < ε (3.25)

3.3.5 Reconstructing the Euler angles from a rotation matrix

To convert a 3x3 ZYX rotation matrix to Euler angles, [22] is used. However, this article operates
with a XYZ rotation scheme. Blender uses a ZYX convention, and the derivations of this article
is rewritten to follow this convention.

Let [θ1, θ2, θ3] denote the angle for the rotation around the x−, y− and z−axes accordingly. In
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addition, let ck and sk denote cos(θk) and sin(θk) where k ∈ [1, 2, 3].

Rzyx(θ) = Rz(θ3)Ry(θ2)Rx(θ1),

=

c3 −s3 0
s3 c3 0
0 1

 c2 0 s2
0 1 0
−s2 0 c2

1 0 0
0 c1 s1
0 −s1 c1


=

c3c2 −s3 c3s2
s3c2 c3 s3s2
−s2 0 c2

1 0 0
0 c1 s1
0 −s1 c1


=

c3c2 −s3c1 + c3s2s1 c3s2c1 + s3s1
s3c2 c3c1 + s3s2s1 s3s2c1 − c3s1
−s2 c2s1 c2c1


(3.26)

Following the notation of [22] (with a slight index change), given a matrix M(θ):

M =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 (3.27)

The M(θ)-matrix can be viewed as a given pose of the object, where each index contains a value
that is dependent upon the rotations around the x-, y- and z-axes θ. Therefore the problem can
be formulated as; for a θk, k ∈ [1, 2, 3], find θk such that Rzyx(θ) = M(θ).

Let M ′ be another rotation that is the product of the rotation around the first two axes, that is
the z- and y-axes, and the M matrix.

M ′ = [Rz(θ3)Ry(θ2)]>M =

c3c2 −s3 c3s2
S3c2 c3 s3s2
−s2 0 c2

>M
=

c3c2 s3c2 −s2
−s3 c3 0
c3s2 s3s2 c2

m11 m12 m13

m21 m22 m23

m31 m32 m33


(3.28)

If the product is a pure rotation around the x-axis, then M ′ has to have the form:

M ′ =

1 0 0
0 c1 −s1
0 s1 c1

 (3.29)

This is only dependent on θ1 which is the rotation around the x-axis. As we need to find a unique
expression for θ1 we need to find one expression for c1 and s1. By looking at the middle row of
eq. (3.29), and multiplying out the middle row in the left matrix in eq. (3.28), it is found that:

1 0 0
0 c1 −s1
0 s1 c1

 =

 ∗ ∗ c3c2m13 + s3c2m23 − s2m33

−s3m11 + c3m21 −s3m12 + c3m22 −s3m13 + c3m23

∗ ∗ ∗

 (3.30)

This yields two equations:

c1 = −s3m12 + c3m22, −s1 = −s3m13 + c3m23 (3.31)
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By using the trigonometric identity tan(θ) = sin(θ)
cos(θ) and eq. (3.31):

θ1 = atan2(
s1
c1

) = atan2(
s3m13 − c3m23

−s3m12 + c3m22
) (3.32)

This requires θ3, and therefore this variable has to be uniquely determined.

Looking back at eq. (3.30), extract equation at index (1, 0) in both matrices. This yields the
equation:

0 = −s3m11 + c3m21

s3m11 = c3m21

s3
c3

=
m11

m21

tan(θ3) =
m11

m21

θ3 = atan2(
m11

m21
)

(3.33)

From eq. (3.30), extract the equation at index (0, 2), yielding the equation:

0 = c3c2m13 + s3c2m23 − s2m33

s2m33 = c2(c3m13 + s3m23)

s2
c2

=
c3m13 + s3m23

m33

θ2 = atan2(
c3m13 + s3m23

m33
)

(3.34)

From eqs. (3.32) to (3.34) it is possible to reconstruct the Euler angles:

θ =

θ1θ2
θ3

 =

atan2( s3m13−c3m23

−s3m12+c3m22
)

atan2( c3m13+s3m23

m33
)

atan2(m11

m21
)

 (3.35)

3.4 Derivation of the gyroscope

It is assumed that the provided pose sequences are converted to the reference frame, as described
in section 3.2.3. The information from which the gyroscope data is generated is located in the
reference frame r, whereas the gyroscope itself produces data in the IMU sensor frame s. Hence
the gyroscope produces a measurement of the angular velocity of the vehicle frame v with respect
to the reference frame r expressed in the IMU sensor frame s. In mathematical terms it is expressed
as ωsvr. As the IMU sensor is fixed compared to the vehicle, the transform between the angular
velocity of the vehicle frame v and the IMU sensor frame s can be expressed as:

ωsvr = Rsvω
v
vr (3.36)

where Rsv is the rotation matrix from the vehicle frame v to the IMU sensor frame s expressed
as a fixed rotation in s.

3.5 Derivation of the accelerometer

The 3-axis accelerometer measures the acceleration of its own sensor frame. Additionally, it is
affected by gravity, and at rest it will provide a measurement of 1[g] / 9.81[m/s2] in the upward
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direction[23] is the world frame w. As the accelerometer is located in a virtual environment, it is
assumed that this environment is sufficiently small such that the gravity vector is constant across
the entire virtual environment as explained in section 3.1.

Before the following derivation, it must be stated that the rest of this section is based on section
6.4.4 of Barfoot[16] with some minor notation differences to fit the conventions used in this thesis.

The acceleration of the vehicle frame, v, with respect to the reference frame, r, is measured in the
sensor frame s. Hence it can be expressed as

asvr = Rsr(ẗ
r
sr − gr) (3.37)

where ẗrsr is the acceleration from the reference frame r to the sensor frame s expressed in frame
r. Likewise, gr is the gravity vector expressed in frame r. Rsr rotates the two vectors from frame
r into s.

The measurements from the accelerometer now depends on ẗrsr. To find this, trsr is derived:

trsr = trvr + trsv

= trvr +Rrvt
v
sv

= trvr +R>vrt
v
sv

(3.38)

Differentiating trsr with respect to time, the following is obtained:

ṫrsr = ṫrvr + Ṙ>vrt
v
sv +R>vr ṫ

v
sv, ṫvsv = 0

= ṫrvr +R>vr[ω
v
vr]×t

v
sv

(3.39)

Looking back at eq. (3.39), tvsv is zero as it is assumed a constant offset from the vehicle frame
to the sensors’ position on that vehicle. Furthermore, [ω]× is the skew-symmetric matrix of the
vector ω:

[ω]× = S(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , ω =

ω1

ω2

ω3


Further differentiation with respect to time on the velocity found in eq. (3.39) yields the following:

ẗrsr = ẗrvr + Ṙ>vr[ω
v
vr]×t

v
sv +R>vr[ ˙ωvvr]×t

v
sv +R>vr[ω

v
vr]× · 0

= ẗrvr +R>vr[ω
v
vr]×[ωvvr]×t

v
sv +R>vr[ω̇

v
vr]×t

v
sv

(3.40)

Inserting eq. (3.40) into eq. (3.37) results in the following expression for asvr:

asvr = Rsr(ẗ
r
sr − gr)

= RsvRvr(ẗ
r
sr − gr)

= Rsv(Rvr(ẗ
r
vr +R>vr[ω

v
vr]×[ωvvr]×t

v
sv +R>vr[ω̇

v
vr]×t

v
sv)−Rvrg

r)

= Rsv(Rvr ẗ
r
vr + [ωvvr]×[ωvvr]×t

v
sv + [ω̇vvr]×t

v
sv −Rvrg

r)

= Rsv(Rvr(ẗ
r
vr − gr) + [ωvvr]×[ωvvr]×t

v
sv + [ω̇vvr]×t

v
sv

= Rsv(Rvr(ẗ
r
vr − gr) + ([ωvvr]×[ωvvr]× + [ω̇vvr]×)tvsv)

(3.41)
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3.6 Complete IMU model

By combining eqs. (3.36) and (3.41), the complete IMU model is found:

[
asvr
ωsvr

]
=

[
Rsv(Rvr(ẗ

r
vr − gr) + ([ωvvr]×[ωvvr]× + [ω̇vvr]×)tvsv)

Rsvω
v
vr

]
(3.42)

From eq. (3.42) it is seen that several variables are need in order to generate synthetic IMU
measurements. trvr, ˙trvr and ¨trvr are the translation, velocity and acceleration of the vehicle frame
in the reference frame, expressed with respect to the reference frame. Likewise, Rvr is the rotation
from the reference frame to the current vehicle frame, and ωvvr and ω̇vvr are the Euler angular
velocity and acceleration from the reference frame to the vehicle frame, expressed in the vehicle
frame. All the required states for the IMU derivation is extracted directly from the states in the
VCS.

3.6.1 IMU measurement visualizations

To illustrate how the synthetic IMU measurements behaves, visualization of two scenarios are
included. Please note that the gravity vector is nearly two magnitudes larger than the acceleration
information we want to visualize. Therefore the gravity vector is excluded in this example. This
visualization uses the same vehicle, v, and sensor frame s as shown in fig. 3.2. The offset of the
IMU to the vehicle center of mass is: tvsv = [0, 0, −0.5]>[m].

Figure 3.5 visualizes the acceleration measured in the IMU in frame s when the vehicle moves 1m
along each of the Z, Y and X-axes of the vehicle frame v. Angular velocity and acceleration during
a −180degree (clockwise following the right-hand rule) rotation around the Y-axis in the vehicle
frame v with no translation is shown in fig. 3.6. No translational acceleration takes place in the
vehicle body, all acceleration measured in the IMU are due to centripetal forces arising from the
rotation of the vehicle and the offset IMU relative to the vehicle. Figure 3.7 shows the motion in the
two previous examples relative to the vehicle and IMU bodies and their corresponding coordinate
frames.
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Figure 3.5: IMU measurements for 1m translation along the positive ZYX axes in the vehicle
coordinate frame v, in that order. The orientation of the IMU sensor frame s relative to v and
the translations relative to frame v is shown in fig. 3.7. Note: The gravity-vector is not included
for visualization purposes due to the low magnitude of the acceleration in the visualized data.
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Figure 3.6: IMU measurements for a negative 180-degree rotation (clockwise following the right-
hand rule) around the Y-axis in the vehicle frame v, which is parallel with the Z-axis in the IMU
sensor frame s. The orientation of the IMU sensor frame s relative to v and the rotation relative
to frame v is shown in fig. 3.7. Note: The gravity-vector is not included for visualization purposes
due to the low acceleration magnitude of the visualized data.
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Figure 3.7: Left: The translation of the vehicle, the yellow sphere, with the attached IMU plotted
in fig. 3.5 visualized. Right: Clockwise rotation around the vehicle y-axis, corresponding to the
plot in fig. 3.6

3.7 Pressure sensor

Most underwater vehicles are equipped with a pressure sensor which derives the depth based on the
pressure the water exerts. A pressure sensor measures the pressure, and converts the measurement
to SI units as [Bar] or [Pa]. This data is then electronically converted to a depth estimate in
meters based on the properties of water. The depth estimate in the simulation case is the world-
frame z-axis position plus a desired depth offset as the simulation environment geometry is closely
aligned to z = 0.
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Let dwv be the depth of the vehicle extracted from the simulation expressed in the world frame
w. Let d̃wv be the depth-corrected vehicle depth. Finally, d̃w is the virtual depth offset to achieve
realistic depth levels. Note that the world- and depth sensor frames are defined with the positive
z-direction upwards. Then the raw depth data can be synthesized as follows:

d̃wv = dwv + d̃w (3.43)

3.8 Measurement resolution

The exported IMU data doesn’t have any constraints for its resolution to allow for the user to
adapt this to their own requirements. A real sensor will have a limited resolution. This means that
the measurements is not a continuous curve, but instead are confined to values that are determined
by the resolution step size. First, set the desired resolution and find the residual of a given value
through eq. (3.44), where % is the modulo-operator.

residual = value % resolution (3.44)

If the residual is smaller than the half of the resolution step and larger than 0, the residual is
subtracted. If the residual is larger, then the residual is subtracted and the resolution step is
added. In code, the logic is as follows:

Algorithm 1: Measurement resolution augmentation

Input: V alue, Resolution
Output: DiscretizedV alue

1 Residual ← V alue modulo Resolution
2 if Residual == 0 then
3 Donothing

4 else if Residual ¡ Resolution/2 then
5 V alue← V alue−Residual
6 else
7 V alue← V alue−Residual +Resolution

8 DiscretizedV alue← value

3.9 Measurement noise

IMU measurement noise is found to be white Gaussian through experiments[24]. Furthermore, this
noise can be unbiased or biased, where a bias will result in measurement drift. This is dependent
on the properties of the sensor used. As there are a wide variety of different IMU sensors on
the market, from cheap low-end and less accurate to expensive high-end and very accurate, the
sensor data is generated without any noise augmentation. Further noise augmentation is done in
post processing, where a wide array of noise models can be used depending on the sensor noise
characteristics that are needed.
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4 Simulation data

4.1 Non-image sensor data format

4.1.1 IMU measurements

IMU measurements are given at a sample frequency of 200Hz, which includes acceleration and
angular velocity of the vehicle expressed in the sensor frame s, asvr and ωsvr respectively. These
vectors consists of the following components:

asvr = [asx,vr, a
s
y,vr, a

s
z,vr]

> ωsvr = [ωsx,vr, ω
s
y,vr, ω

s
z,vr]

>

Every IMU measurement is then exported as a Comma Separated Value (CSV) file such that each
line reads:

timestamp[ns], asx,vr, a
s
y,vr, a

s
z,vr, ω

s
x,vr, ω

s
y,vr, ω

s
z,vr

4.1.2 Depth gauge measurements

Depth gauge measurements are given at the same sample frequency as the IMU, which is 200Hz.
The depth measurement, d̃wv , is exported as a CSV file on the following form:

timestamp[ns], d̃wv

4.2 Image data format

4.2.1 RGB images

The raw RGB images are exported as OpenEXR files, which stores the value in each channel for
every pixel as a 16-bit float. These images contain the uncompressed render output without dis-
cretization of the pixel values, allowing for auto-exposure in post-processing without causing band-
ing in an image’s histogram due to modification of discretized values. After post-processing, the
images are exported as lossless 8bit sRGB PNG files for the benchmark sequence, corresponding to
the standards used by KITTI[1], LiU[2] datasets. These images are easily converted to monochro-
matic 8bit PNG images that are used by datasets such as the underwater dataset AQUALOC[4]
and the aerial dataset EuRoC[3]. The color management settings are shown in table 4.1.

Table 4.1: Export setup for RGB images

Filetype 16bit OpenEXR
View transform Filmic

Sequencer sRGB

4.2.2 Depth images

Depth images store the distance from the camera to each pixel. Following the standard format
set by datasets such as the KITTI[1] dataset, this data is extracted as a 16-bit integer in 16-bit
grayscale PNG images, with export settings as listed in table 4.2. Using this standard, the distance
to a given pixel is mapped to a value in [0, 216 − 1] ⇔ [0, 65535]. By choosing a start- and end
distance, the resolution is determined through eq. (4.1). Here it is important to choose the start-
and end distance such that the resolution remains sufficiently small. While 16bit OpenEXR files
were considered, we decided to opt with 16-bit PNG as it is the established standard for the
majority of the available datasets which provides depth data.

resolution =
end distance− start distance

2bit depth
(4.1)
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Table 4.2: Export setup for depth images

Filetype 16bit PNG
View transform Raw

Sequencer Linear

4.2.3 Normal images

Normal images store the world-space surface normal in each pixel of the image. Blender uses
OpenGL, hence the normal vector in world space, nw, uses the following encoding[25]:

nw =
[
nwx n

w
y n

w
z

]> {nwx , nwy , nwz } ∈ [0, 1] (4.2)

Normal images following the OpenGL standard stores nw directly in the RGB channels of the
image, such that:

nwx → R

nwy → G

nwz → B

(4.3)

An example image following eq. (4.3) is illustrated in fig. 4.1. It is important to note that many
scenes will contain geometry which will have sharp edges visible in the normal image if no normal
smoothing is applied before rendering. Normal smoothing is an operation done to smooth the
transition between two surfaces, creating the appearance of a smooth surface with a relatively low
resolution model. In Blender, the threshold angle for normal smoothing can be set according to
scene requirements. The image export settings used is shown in table 4.3.

Figure 4.1: Normal map in the world space. The axes in the image correspond the the x−, y− and
z−axes in the world frame w. Note that this world-space normal map has been post processed to
remove a black background.

Table 4.3: Export setup for normal images

Filetype 16bit PNG
View transform Raw

Sequencer Linear

4.3 Ground truth data format

Ground truth data for the vehicle pose for every sensor sample (camera, IMU, depth) is provided
in the world frame. Each sensor type will have a file with ground truth pose information in the
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corresponding sensor-folder. When the stream-file format, which is discussed later in this section,
is used, the ground truth information will also be baked into this file.

4.4 Image naming convention

The filename for the images in the dataset should be chosen such that the origins of the image
and its placement in a given benchmark sequence can be identified outside its original folder
structure. Therefore the naming scheme must fulfill the following requirements with respect to
present identifiers in the filename:

• Sequence ID

• Vehicle number

• Image type

• Camera type

• Camera number

• Separator to split identifiers from frame number

• Frame number

4.4.1 Sequence ID

The sequence ID is proposed to include the leading characters ”seq” to indicate that the image
comes from a sequence and to make it easily legible. Following are two ASCII character for
enumerating this sequence, encompassing numbers as well as lowercase and uppercase letters.
This gives the available enumeration symbols listed in table 4.4. By having a total of 62 available
IDs for every character, using two characters translates into 622 = 3844 unique sequence IDs.

Table 4.4: Available ASCII letters for enumeration and identification purposes.

Letter type Range Number of IDs

Numbers 0-9 10
Lowercase a-z 26
Uppercase A-Z 26
Total (0-9, a-z, A-Z) 62

4.4.2 Vehicle number

The vehicle number is included to allow for separation between multiple vehicles operating simul-
taneously. The vehicle number is enumerated with a single ASCII character, and allows for up to
62 vehicles as outlined in table 4.4.

4.4.3 Image type

The image type specifies what type of data is contained within each image. At the time of writing,
the following image types are planned:

• RGB images with water, illuminated with vehicle spotlights

• RGB images without water, uniformly illuminated

• Depth images
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• Normal images

• Direct volumetric lighting

• Indirect volumetric lighting

From table 4.4, a single ASCII character gives 62 possible IDs. When taking into account the
possibility of other common data formats such as sonar or RGB-D, 62 different image types is still
provides a large buffer of empty IDs. Hence a single ASCII character will be used to differentiate
between the image types.

4.4.4 Camera type

The camera type specifies the camera type used to generate the image. This includes, but is not
limited to, the following camera types:

• Monocular camera

• Stereo left camera

• Stereo Right camera

• Downward facing camera

• Multi-camera 1

• Multi-camera 2

Using a single ASCII character, it is possible to encode for 62 different camera types. Multi-
cameras are included as the camera-number will serve as an ID to an individual camera of the
multi-camera setup. This is to make it easier to differentiate between a multi-camera setup and
monocular cameras placed at points of interest.

4.4.5 Camera number

The camera number is the number of a given camera type on a vehicle. For example, a single
vehicle may have several monocular cameras pointed in various directions. The camera number
would then point to which monocular camera the image belongs to. For a multi-camera setup the
image number points to a specific camera in a given multi-camera.

4.4.6 Separator

A unique ASCII character is used in the filename as a separator between the identifiers in the
filename and the frame number. The hyphen character, ”-”, is used as a separator since it is
easily legible, unique to the filename and will not cause issues in Windows, iOS or Linux-based file
systems.

4.4.7 Frame number

The frame number must contain enough digits to allow for both path-traced- and real-world image
sequences. Due to the computational requirement for path-traced images, the number of real-world
images will determine the digits available for frame numbering. By using 8 digits, there is room
for 463 hours of footage at 60Hz.
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4.4.8 Final image naming convention

Finally, the image filenames will contain two strings to make it more legible without the need of a
look-up table of the ASCII character encoding. The first three characters are ”seq”, indicating that
the sequence number follows. Likewise, the camera type and camera number is preceded by the
three characters ”cam” indicating that camera information follows. The image naming convention
is as follows:

seq[SeqNumber] veh[VehicleNumber] cam[CameraType][CameraNumber] [ImageType]-
########.[Ext]

A table of codes for the image naming convention is listed in table 4.5. To demonstrate the name
of an image belonging to:

• SeqNumber: 02

• VehicleNumber: 0

• ImageType: A (RGB images, with water)

• CameraType: M (Monocular camera)

• CameraNumber: 0 (First monocular camera)

• FrameNumber: 00000000 (First frame in the sequence)

• Ext: png (Image file extension)

Then the image filename would be:

seq02 camM0 A-00000000.png

Table 4.5: Description of the codes used in the image filenames to reduce the filename length.

Tag Code Text description

SeqNumber
01 Vasquez test sequence
02 Vasquez, first proper underwater render

ImageType
A RGB images, with water
B RGB uniformly lit images, no water
C World-space normals viewed by the camera
D Pixel accurate depth map
E Shadow-map
F Direct volumetric lighting
G Indirect volumetric lighting

CameraType
M Monocular camera
L Stereo left camera
R Stereo right camera
D Downward facing camera
A Multicamera 1
B Multicamera 2

CameraNumber
0 First camera of a given CameraType
1 Second camera of a given CameraType
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4.5 Data structure

4.5.1 Structure motivation

The data structure of the dataset is made with inspiration primarily from the LiU[2], traffic scenes,
and EuRoC[3], containing micro aerial vehicle footage, datasets. KITTI[1], traffic scenes, and
AQUALOC[4], underwater dataset, was used as additional references for the format of the included
data to ensure maximum compatibility with already existing datasets.

4.5.2 LiU Stream Format

A group from the Linköping University (LiU) proposed in 2013 a framework for storing dataset
data named the LiU Stream Format [2]. The main file in the LiU Stream Format is a main file in the
root folder of the dataset, a streamfile. This consists of a header containing version information for
compatibility checks, and after that sequential entries containing data information. The sequential
entries are composed of either pointers to external data such as images or they consist of data
from sensors. We aim to include this format in future iterations of the framework such that we
can provide a single sequential file with pointers to relevant data. However at the time of writing
this thesis, this is not yet ready.

Table 4.6: A single message in the LiU stream file format[2].

Messagestart ID Length of Payload Payload

4x uint8 ’$BST’ uint32 uint32 Dependent on message

4.5.3 Folder structure

Our initial version of the stream format is supposed to be a more simple version of the LiU stream
file format, consisting of a binary stream file with the structure in table 4.6, and no ceiling on the
max number of files in a single folder.

It is going to contain pointers to images, and include the IMU and depth sensor data as well as
ground truth data directly as a payload. However, due to time restrictions, this functionality has
been put on hold. The folder structure will however remain as planned, where the IMU, depth
and camera sensor data is stored in their respective folders to allow for easy extraction of data.
Coincidentally this folder structure is very similar to that of EuRoC[3] as we, in contrast to LiU,
wish to include support for data from multiple vehicles operating simultaneously in a single dataset.

Continuing the image filename example from section 4.4.8, the final folder structure is illustrated
in fig. 4.2.
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Figure 4.2: Simulation data folder structure without the sequential streaming file in the current
stage of development. The sequential file containing image pointers, sensor data and ground truth
will be included at a later stage in development.
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5 Simulation settings and setup

5.1 Water light scattering and absorption properties

In order to properly understand the requirements of a physically correct water scattering medium,
the physical properties must first be examined. Light is influenced through absorption and scat-
tering when traveling through a volume which is not under a perfect vacuum. The following
explanation is closely based on the Ocean Optics Web Book[26].

Light can be expressed as radiant flux Φ [W ] which is the radiant energy per time unit. When
an incoming radiant flux Φi(λ) of a wavelength λ enters a scattering volume V , three separate
phenomena takes place. A part of the energy is absorbed and converted to chemical or thermal
energy, denoted as Φa(λ). The amount of energy which is absorbed is dependent on the properties
and matter composition of the scattering medium and the wavelength of incoming light, λ.

Furthermore, a portion of the radiant flux will scatter and exit the scattering volume with an angle-
difference of ψ compared to that of the incoming flux. This scattered flux is denoted Φs(λ, ψ).
The scattering property gives rise to a very important phenomena, namely ambient illumination.
Scattered light bounces inside or outside the direct cone of light, illuminating occluded parts of
the volume or surfaces in addition to the volume and surfaces inside the cone of light[27, 28]. This
is illustrated in fig. 5.2.

The remainder of the radiant flux, Φt(λ) is transmitted through the scattering volume. The entire
scattering and absorption process is illustrated in fig. 5.1.

5.1.1 Suspended particles and absorption

The ocean contains a lot of organic matter such as plankton, algae or other biologic material. In ad-
dition, underwater currents can disturb the seabed, introducing suspended sediments in the water
volume. All of these suspended particles will hereafter be referred to as suspensoids. These suspen-
soids will affect the absorption differently for each wavelength depending on their composition[26],
altering the perceived color of the scattering medium when illuminated.

5.1.2 Suspended particles and backscattering

Suspensoids does create another important phenomena; backscattering[27, 28]. This is light bounc-
ing back towards its source as it is reflected by microscopic particles or suspensoids in the scattering
medium, or by the scattering properties of the scattering medium itself. As the camera and light
source often is placed close together to minimize shadows, the effect of severely backscattered light
is similar to that of driving in dense fog with high beams on.

Figure 5.1: Simplified model of incoming radiant flux of wavelength λ, denoted Φi(λ), being
absorbed, Φa(λ), and scattered Φs(λ, ψ) by an angle ψ in a volume V . The radiant flux which is
transmitted through the volume is denoted Φt(λ). Figure is inspired from [26].
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Figure 5.2: Ambient illumination outside the direct cone of light resulting from scattered light in
the main light cone, which enters the occluded area providing some level of illumination.

5.2 Blender interface

Blender[10] 2.81 and 2.92 has been used during development of the simulation environment. The
Blender releases of 2.8x and 2.9x both share a very similar interface, where 2.9x versions feature
various render optimizations. One key aspect of Blender is that both materials for 3D objects
and compositing of export data is node-based. Materials for objects are used using material nodes,
discussed in section 5.2.1, and image export of multiple image requires use of the compositor nodes,
discussed in section 5.2.2.

5.2.1 Material nodes

Materials in Blender is what decides the visual properties of an object. Materials are node based,
and are found in Blenders shading editor. The default node for materials in Blender 2.8+ is
the ”Principled BSDF” shader as seen in fig. 5.3a. This node can either use image textures or
procedural colors made from combining noise and object parameters as inputs to ”Base Color”,
”Metallic”, ”Roughness” and ”Normal”. The base color is the true color of the object, and the
metallic property is the metallicity. Roughness reflects all light at a value of 0, and is completely
non-reflective at a value of 1. The normal input takes a map of the objects surface normal vectors,
and uses this to create shadows or highlights independent of the underlying mesh.

5.2.2 Compositing nodes

Compositing post-processes the raw data from a render, and is used for setting up multiple image
outputs if this is required. This is done with the compositor editor in Blender. The main nodes
in the compositor is the ”Render Layers” and the ”Composite” node, pictured in fig. 5.3b. By
default, Blender uses the Composite node for the RGB image output. The ”Render Layers” makes
it possible to access the various render layers produced during the render process. These passes
are further discussed in section 5.6.1.
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(a) Shader editor: Principled BSDF material
node

(b) Composite editor: ”Render Layers” and
”Composite” node.

Figure 5.3: The shader editor material node (left) and the composite editor nodes (right).

5.3 Environment requirements

5.3.1 Water properties

The scattering volume must be able to recreate the physical properties of water as discussed in
section 5.1, while also being able to create images in a reasonable timeframe as we aim to produce
hundreds to thousands of images in different image sequences.

5.3.2 Object textures

The textures used on models in the scene should have colors corresponding to the true color of the
object. If an object is viewed underwater, the colors can be distorted if the water is very turbid or
has a high concentration of algae. This color warping should be performed indirectly through the
use of a scattering medium instead of altering the texture colors. Object textures is also required
to be physically accurate with respect to color, uneven surfaces that cast very small amounts of
shadows, amount of light reflected and metallicity.

5.3.3 Environment geometry

The underwater environments we aim to replicate should contain both flat areas that are similar
to a simple seafloor, and more complex geometry building in all three dimensions. By including
these different environment characteristics, it is possible to both use the same environment for
different shorter sequences of each individual area, as well as longer sequences visiting each area.
The latter would allow for creating a single sequence with quite different scenarios for testing of
3D reconstruction, VO and SLAM algorithms.
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5.3.4 3D asset geometry

3D assets used in the environment should also have as realistic shapes as possible. If a 3D model
has a sharp 90-degree corner or edge, no light will be reflected from this edge. In the real world,
edges are slightly rolled over from the manufacturing process or due to paint layers. As a result,
90-degree edges on structures will reflect some light as shown in fig. 5.4 This reflection has to
be included as the images of these 3D assets will be used for 3D reconstruction, VO and SLAM
purposes. Therefore care has to be taken to ensure that the assets used have beveled edges.

Figure 5.4: Two models with different edge geometry to showcase the effect different effects it has
on shading and light reflections. Model on the left features sharp 90-degree edges, and the model
on the right features smooth rounded edges.

5.4 Environment setup

5.4.1 Photogrammetry 3D model

Photogrammetry is process of creating 3D objects from images, and is synonymous with 3D recon-
struction with textures in this thesis. 3D reconstructions can yield very good models with both
geometry and textures that are a good representation of the real-world object with modern camera
equipment and software.

There are many photogrammetry models posted online of different scenes, many of which are
posted under a Creative Commons Attribution 4.0 license[29]. This license requires that credit
must be given to the original author(s), and we are free to adapt the material to our needs.

A photogrammetry model which fulfilled our requirements was a model of the Vasquez Rocks in
California USA by Austin Beaulier[30], visualized in fig. 5.5. The model measures 632m× 598m×
57.9m (width × length × height) before scaling. Due to the limited speed of an underwater
vehicle, the environment was reduced in size to 191m × 161m × 17.5m using the scaling factors
(0.302147×0.268642×0.302147). The length was scaled down more to increase the steepness of the
angled surfaces present in the model. Hereafter the original Vasquez Rocks model will be referred
to as the original mesh.
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Figure 5.5: The Vasquez Rocks photogrammetry model from [30] scaled to 191m× 161m× 17.5m.
Completely white areas of the model are holes.

5.4.2 Importing the photogrammetry model

Blender: Merge photogrammetry objects into one object. Two common file formats for
3D reconstructed objects using photogrammetry are glTF[31] or Wavefront OBJ[32] files. glTF
files often consists of several separate meshes, and must be merged into one object. In Blender,
this is done by importing the glTF file, and merging the different meshes in the model. Then,
the glTF orientation matrix, model correction matrix and model.obj.cleaner.materialmerger.gles
is deleted. This will reset the orientation of the model, so it may have to be rotated back into the
desired orientation. If any rotations are applied, make sure to apply the rotation, such that the
objects current pose becomes the new ”Origin pose” without any transformation applied. A step
by step example from Blender’s UI is shown in fig. 5.6.

Figure 5.6: From left to right: Merging of the different sub-meshes in the imported glTF model
into a single mesh, then deletion of the various orientation matrices present in the glTF file.

Blender: Merge vertices to make a watertight mesh. When the sub-meshes are merged
into a single object, the vertices of each sub-mesh remain unchanged if Blender is used. This will
result in edges where the mesh surface looks continuous, but in reality there is a small separation
of the vertices at that location. In order to merge all vertices of an active object in Blender, ensure
that the original mesh is selected. Then add a ”Weld” modifier from ”Add Modifier → Deform
column → Weld”. Set the merging distance ”Distance” to a value large enough such that near
overlapping vertices are merged, but yet small enough so no mesh details are lost due to merging.
Making the mesh watertight means that all faces are properly connected. When surface smoothing
is applied, it creates a smooth transition between the surface normal of two connected faces. As
a result, the lighting visible on the model becomes more smooth without sharp transitions. This
is illustrated in fig. 5.7. The mesh with merged vertices is then exported to a .obj or, preferably,
.fbx file.
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Figure 5.7: Left: the original model, right: model where vertices closer or equal to 0.1m distance
are merged. Smoothed normals are enabled, smoothing the transition between two faces.

5.4.3 Post-processing: re-meshing the photogrammetry model

With a watertight model of the environment available, it will be re-meshed to increase the mesh
resolution, and to create an optimized UV map.

What is UV unwrapping and mapping? UV mapping is the mapping the faces on a 3D
model on to a corresponding set of faces on a 2D texture. This is used to store information about
textures, roughness (or reflectivity), metallicity, surface normals and height displacement. The
different types of information needed is dependent on the 3D rendering application. To use the 2D
texture information, the 3D object has to be laid flat on a 2D plane through UV unwrapping. To
exemplify the procedure, use a tetrahedron as illustrated in fig. 5.8. In order to lay this object flat
on the plane of its base, three cuts must be made to separate two or more faces. In fig. 5.8 these
are visualized as dotted lines. The same principle applies for any 3D surface or object.

Figure 5.8: UV unwrapping process of a tetrahedron. The dashed lines indicate seams along the
edges. These seams are cut to place the faces flat onto a planar surface.

Zbrush: Creating a new high-resolution mesh. The original mesh is triangulated, and will
heavily distort if it is subdivided3 further if we want to add more complexity. A mesh consisting
of only faces with four corners, named quadrilaterals or ”quads” for short, will subdivide without
distortion.

To get a very high-resolution mesh, the digital sculpting software Zbrush[33] is used as it supports
manipulation of very dense meshes with tens of millions of vertices. The original mesh with merged

3Subdivision is the process where a face is split into sub-faces. A triangle will split into three faces with four
sides each, and a quadrilateral will split evenly into four faces.
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vertices is imported, and a new flat mesh is created and scaled to the size of the imported mesh
in Zbrush. The new mesh is UV-unwrapped at the lowest subdivision level before it is subdivided
to approximately 250.000 vertices. A version of the new mesh at each subdivision stage is stored
automatically by Zbrush in what can be described as a resolution pyramid4. At the different
resolution levels, the mesh is either sculpted akin to digital clay or manipulated with dragging and
pulling to roughly match the shape of the original mesh. Doing this step will reduce the probability
of surface artifacts in the next step.

Next the features of the original mesh is projected to the newly created mesh. Starting at the
lowest subdivision level, project the details from the original mesh to the new mesh. By doing
this first at a low resolution ensures that the new mesh follows the surface of the original mesh as
closely as possible. If the distance between the original mesh and the corresponding surface in the
new mesh is too big, the projection algorithm can mistakenly use another surface as a reference.
This is especially common for areas with a lot of 3D structure, like cliffs or pits in the ground
with steep edges. If errors from projection arise, then adjust the maximum projection distance
or modify the new mesh accordingly. After the highest subdivision level is reached, the mesh is
further subdivided to make it more smooth, but the original mesh is no longer projected on to it.
Doing so can make the new mesh project several polygons on to a single polygon in the original
mesh, reducing the smoothness of the model. For the Vasquez Rocks, a total of 16.6million vertices
was used at the highest subdivision level.

Before exporting, the mesh has to be decimated. This is the process of triangulating the mesh,
where detail is preserved such that detailed areas contains a higher number of vertices than areas
without significant details. Figure 5.9 showcases the effect of the decimation operation. As a result,
the mesh has a much smaller memory footprint while the majority of the detail is preserved. Render
setup times are impacted by the density of the model, hence the model should be decimated as
much as possible while retaining the desired details.

Figure 5.9: From the viewport in Zbrush. Left: All quad-mesh with a total of 16.6million vertices,
where each large black square is an area of 32 × 32 vertices. Right: Decimated with a total of
250.000 vertices. Notice that the curved surfaces contain a larger number of vertices in a given
area than the surrounding flat areas. Note: Only a small section of the mesh is imaged.

4As Zbrush is closed source, this is only an assumption to better explain how it works in practice.
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5.4.4 Post-processing: Using a photogrammetry model directly

As a much simpler alternative to section 5.4.3, it is possible to use the photogrammetry model
directly given that the original mesh has a sufficient resolution to allow for smooth surface shading.
For reference, the model in fig. 5.7 has a too low resolution for our use, resulting in several areas
with 90-degree changes in the face orientation in parts of the mesh. The sharp angles can cause
shading artifacts which can create unrealistic features in the environment which can be detected
by computer vision algorithms.

Blender: UV unwrap If the model is fairly flat such that it doesn’t contain significant geometry
in the z-direction, it is possible to UV unwrap the model directly in Blender. This is done by
selecting all vertices and then selecting the standard UV unwrap option. If the model does have
a lot of overlapping geometry, some seams will have to be placed in order to lie the model down
flat without texture distortions. Here care has to be taken such that these seams are placed in
areas where they are not easily visible as the textures rarely properly line up where these seams
are placed.

Blender: Smart UV Project Smart UV Project is an alternative UV wrapping method which
automatically creates seams if the angle between two faces are more than a set threshold. If the
standard UV unwrap procedure fails, then this can be used. Again, care should be taken to ensure
that the threshold angle is set high enough to avoid unnecessary seams.

5.4.5 Surface normal-weighted texturing

Texture requirements: The underwater environment consists of two different textures for the
ground; sand for flat areas, and a rocky surface for angled surfaces. The textures should ideally
not contain repeating patterns. This is a problem which must be considered due to the size of the
environment. Using a single non-tiled texture for the entire area at its current size will require a
square texture with a size of minimum 40960×40960 pixels, ideally 102400×102400 pixels or more
for sufficient resolution when passing close to the surface. Even if a GPU had enough memory for
these textures, the render times would slow down to a halt, making such large textures impossible
to use in practice. Instead, 4096 × 4096 pixel tile-able textures are tiled 50 times to achieve a
sufficient resolution when the camera is close to the surfaces with a relatively small memory and
performance footprint. The blending between sand and rock textures is done by using a surface
normal-weighted mask.

If the environment consists of a smaller with highly area specific textures, then it is possible to
manually paint the environment using proper UV unwrapping and a texture painting suite such
as Substance Painter[34]. This is very time consuming, but should be mentioned as an alternative
should it be needed by future requirements.

Creating a surface normal-weighted mask: The surface normal vectors of the faces on a
given object can be used to extract information whether or not a face is lying horizontally in the
xy-plane, vertically along the z-axis, or somewhere in between. The normal vector of an object
is given in the object’s local coordinate system. Therefore, for consistency in this method, any
rotation done to the object should be applied. This aligns the object’s local coordinate system with
the world coordinate system. Any normal vectors belonging to a flat surface should now contain a
large z-component in the normal vector:

n =
[
nx ny nz

]> −→ [
R G B

]>
The z-component, nz, is visible in fig. 5.10 as a blue surface. This component is separated and
modified for greater contrast between horizontal and vertical areas in the ”ColorRamp” node. By
mapping the values in nz ∈ [0, threshold] → 0, the areas with nz ≤ threshold is excluded from
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the mask, represented as the color black. For this specific environment object, threshold = 0.836
is used. Nodes for these operations is shown in fig. 5.11.

Figure 5.10: Upper: Surface normal vectors of the object used for the environment, where a normal
vector n = [0, 0, 1]> → [R,G,B]> indicates a planar horizontal surface. Middle: Green channel
isolated, where white is value 1, and black is value 0. Bottom: Mask from the middle with adjusted
value-mapping (output from fig. 5.11). This is the normal based mask for separating between two
different materials. Note that the images have been enhanced for increased contrast.

Figure 5.11: Material node setup for generating a normal based texture mask. The blue chan-
nel from an object’s normal vector, stored as a 3-dimensional ”RGB” vector, is extracted. The
ColorRamp adjusts the value mapping for increased contrast in the final mask.
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Using the surface normal-weighted mask for texture blending: The normal-weighted
mask are connected to ”MixRGB” nodes, denoted as ”Mix [TextureType]” in fig. 5.12, through
the factor input, abbreviated ”Fac” in the figure. If Fac = 0, then the first color input ”Color1”
is used as output. Likewise, if Fac = 1, the second color input ”Color2” is used. The surface
normal-weighted mask from fig. 5.11 is a 2D mask for the entire environment, and weighs small
patches of the area corresponding to these factor values. Figure 5.13 shows how the final seafloor
after the normal based texturing is applied. The blending of the two textures reduces the perceived
presence of a repeating pattern.

Figure 5.12: Node setup in Blender’s material editor for the normal-weighted textures of the sea
floor. The collections ”Textures Rock” and ”Textures Sand” both contain base color, metallicity,
roughness (inverse reflectivity), normal and displacement (height) images for the corresponding
textures. The ”Mix [TextureType]” nodes mixes between the textures based on the surface normal-
weighted mask. The ”Principled BSDF” node creates the actual material from the different texture
inputs. The complete node setup is shown in fig. A.1.
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Figure 5.13: Top: Seafloor with normal based texture blending. Bottom: World-space normal
image as seen by the camera, where blue areas contain surface normal vectors pointing in the
positive z-direction.

5.4.6 Seafloor textures

The textures used on the seafloor has to be complete with image files for base color, roughness
(equivalent to inverse reflectivity), metallicity, normal and is possible, height maps (named dis-
placement in Blender). For acquisition of quality textures, the material library Substance Source
in the Substance 3D suite[34] is used. This library provides access to hundreds of high-quality
photoscanned materials and textures, ensuring that the textures we use properly represents the
real-world material.

The main issue of using these textures is that there are little to no textures available from un-
derwater scenes. Therefore we use fairly smooth and wavy sand pattern together with an eroded
rock coastal cliff texture, shown in fig. 5.14. In Substance Source, these are named ”Wavy Sand
Beach 02” and ”Eroded Coastal Boulder Rock” respectively. Both textures are photo-scans of real
textures, that has been post-processed to allow for seamless tiling.

Figure 5.14: Textures used from the Substance Source[34] library. The images are created in
Blender Cycles using these textures on a planar surface and a tilted area light.

5.4.7 3D assets

Due to the need for proper edge geometry as introduced in section 5.3.4, it was more efficient to
create 3D assets tailored to our needs instead of downloading assets found online. A total of six
assets was created, as listed in table 5.1. All pipes, bolts and support structures are made such
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that they can be tiled with an array-modifier in Blender. This makes the process of populating a
scene time efficient.

The materials used are mostly procedural, with the exception of the concrete for the support
pillars and the ArUco markers on the marker platform. A procedural material is created using
noise patterns to generate texture, roughness, surface normal and height features. While it requires
more effort to set up, they can create these features at a very high resolution for a low memory
footprint compared to an image texture with a corresponding level of detail. Most importantly
however: by including the location of an object in the noise generation, two identical objects with
the same material placed side by side will contain different texture features. When these features
are used to generate dirt or rust, this translated into non-repeating high-resolution patterns. These
non-repeating patterns are used for rust on the pipes and dirt on the concrete support pillars in
fig. 5.15.

The textures for the 3D pipe assets was created following a tutorial5 for procedural rust, only
modified to fit our needs. The paint was made to be procedural with slight roughness variations,
and the rust has been modified such that the procedural rust is only applied in a procedural mask
created by a larger, more blocky, musgrave noise texture. The final material nodes for the pipe
texture is shown in fig. A.2 and the material nodes for the pipe supports is shown in fig. A.3.

Table 5.1: Assets created and used in the simulation environment. Procedural is abbreviated ”Pr.”.

Asset type Textures Dimensions

Pipe, straight Pr. paint and rust 3m long, 0.5m pipe diameter
Pipe, 90deg bend Pr. paint and rust 1m long in each bend direction, 0.5m diameter
Pipe support Concrete texture, Pr. dirt 2m high, 0.8m wide, 0.2m deep
Bolts, pipe joints Pr. metal and rust
Bolts, pipe support Pr. metal and rust

ArUco markers ArUco markers, Pr. paint
ArUco marker size (black area): 0.5m x 0.5m
Square of 4 ArUco markers: 2.0m x 2.0m

Figure 5.15: Assets listed in table 5.1 viewed with uniform lighting.

5.4.8 Water shader

It is important that the water shader has the properties of a true scattering medium, as outlined
in section 5.1. The path-tracing render engine in Blender named Cycles traces paths out of the
camera, where light intensity and color values are calculated each time the path hits a surface or a
scattering medium and bounces. As such, it can emulate the phenomena discussed in section 5.1
with a sufficient amount of samples per pixel.

5Procedural rust tutorial available at: https://www.youtube.com/watch?v=YTMdF6lOOsw
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The scattering medium is created by applying a ”Principled Volume” volume shader to the world-
shader. This ”submerges” the entire scene in a uniform scattering volume. This volume contains
four parameters of interest; color, density, anisotropy and absorption color. The final parameters
for the scattering volume is listed in table 5.2.

Scattering volume color: The volume color determines the color of the scattering volume itself.
For a completely clear volume, this color is completely white, where the red, green, blue and alpha
(RGBA) channels have an intensity of 1. In order to replicate the visual properties of the reference
image in fig. 5.17, a saturated dark blue with RGBA = (0.014061, 0.146473, 0.34509, 1) is used.

Scattering volume density: The density in the scattering volume determines the amount of
light attenuation. If the medium is very turbid, then this property is increased. A higher density
will make the scattering volume color more intense, which must be taken into consideration. To
achieve a sufficient level of light attenuation compared to the reference image in fig. 5.17, a density
value of 0.125 was used.

Scattering volume anisotropy: The anisotropy value determines the amount of forward light
scattering. Looking back at fig. 5.1, a larger positive anisotropy value is equivalent with the
scattering angle ψ covering a smaller interval in the forward direction, where the majority of the
light scatters forward. A negative anisotropy value scatters light primarily back in the direction
where it came from, and an anisotropy value of zero scatters light uniformly, as illustrated in
fig. 5.16.

For our use, the anisotropy value is important for achieving the desired backscattering effect. A
lower value will increase the amount of backscattering. We are using an anisotropy value of 0.8,
which is lower than that of clean water as we want to include the effect of microscopic suspensoids
which are too small to simulate as individual objects.

Scattering volume absorption color: The absorption color emulates the effect where the
perceived color of objects further away is changed due to absorption of different wavelengths in the
scattering volume. Water absorbs red and green wavelengths to a larger degree than blue, hence
objects further away appear blue. Various microscopic particles absorb different wavelengths of
light and can further alter the absorption spectrum. In Blender the absorption color works the
opposite way around. Instead of defining which colors are absorbed, the color tint given objects
further away is defined. Using the reference image in fig. 5.16, it was found that the absorption
color RGBA = (0.0, 0.394458, 1.0, 1) provided the desired effect.

Scattering volume limitations: It must be noted that the scattering medium is only an ap-
proximation of the real-world. There is no built-in functionality for taking into account water
density changes or temperature. Therefore the scattering volume is constructed to be valid only
for a smaller region of operations. It is possible to merge different scattering volumes, using 3D
fractal noise as a mask, which can open up more complex non-homogeneous volumes in later
iterations of the environment.
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Anisotropy: 0.9 Anisotropy: 0.0 Anisotropy: -0.9

Figure 5.16: Light scattering for three different levels of anisotropy, a ∈ (−1, 1). Left: Mostly
forward light scattering with a = 0.9. Middle: Uniform light scattering in all directions with
a = 0. Right: Backward scattering with a = −0.9.

Table 5.2: Scattering volume parameters for a uniform water shader.

Parameter Value Description

Color (0.014061, 0.146473, 0.34509, 1) (R, G, B, A)
Density 0.125 In range [0, 1]
Anisotropy 0.8 In range (0, 1)
Absorption color (0.0, 0.394458, 1.0, 1) (R, G, B, A)

Figure 5.17: Left: Reference footage from NTNUs EELY500 robot provided by [11, 35, 36], recorded
at a depth of 90m in the Trondheim Fjord. Right: Simulation environment with a water shader
designed to closely match the properties of water in the reference footage.

5.5 Camera setup

The front-facing camera is modeled after the intrinsic parameters of the camera present on NTNUs
EELY500 robot supplied by Eelume[11]. This camera consists of two parts, the image sensor is a
CIS VCC-HD3 camera[37] with a HF3417D-12MPIR wide angle lens[38]. The intrinsic parameters
of the front facing camera system is listed in table 5.3, and provides all necessary information to
set up the camera parameters in Blender.

Table 5.3: Front facing camera parameters of NTNU’s 6m EELY500 robot.

Parameter Value Citation

Pixel size 3.45µm× 3.45µm [37]
Effective pixels 2064× 1544 [37]
Output resolution 1920× 1080 [37]
Output format 1080p [37]
Shutter type Global Shutter [37]
Focal length 3.4mm [38]
Focal-stop 1.7 [38]
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5.5.1 Auto-exposure

Images taken by a real camera is subject to exposure correction by the camera itself. Exposure
correction aims to use the entire value range of an image, while at the same time retaining details
in areas of high and low light intensities. It is possible to use methods that naively fills the entire
histogram or more sophisticated methods such as estimating a non-linear intensity mapping curve
based on the intensity of several regions in the images[39].

Blender does not contain automatic exposure correction, but it is possible to add exposure cor-
rection through post-processing on lossless raw data. The raw data from underwater RGB images
are exported as 16-bit OpenEXR files where each pixel consists of a 16-bit float for each channel.
This way, there is no discretization which is present in other image formats where the intensity is
mapped to a predetermined range, i.e. [0, 255] in 8-bit files or [0, 65535] in 16-bit files. Therefore
heavy exposure correction with OpenEXR files results in no banding in the histogram, which may
occur in images operating with a discretized value range, illustrated in fig. 5.18.

An added benefit gained from storing the raw image data is that various exposure correction
algorithms and their impact on computer vision algorithms can be tested. This is important, as
demonstrated by [39], exposure correction is a control problem of its own.

Figure 5.18: Illustration of the banding effect when applying exposure correction post-process,
brightening the image. 8bit PNGs are used as a counter example to show the banding effects in
the form of sharp peaks and valleys. This effect will be much less severe for 16bit PNG files.

5.5.2 Focus and depth of field

The camera has a limited depth of field which has to be taken into consideration. By default,
all rendered images are completely sharp. Adding depth of field in post processing using the
compositing system in Blender yields sub-par results. Therefore the active camera in Blender is
given DoF parameters to accurately simulate this effect. The depth of field is determined by the
focal length, distance from the lens to the focal point in front of the sensor, and the Focal-stop
(F-stop) value of the lens. The F-stop value is the ratio found when dividing the focal length by
the diameter of the aperture opening in the lens. A smaller F-stop value will cause a greater level
of blur outside the forward focus distance. The focal length and F-stop used is listed in table 5.3

5.5.3 Active sensor size

Based on the provided pixel size and output resolution in table 5.3, the active sensor size is found:

sensor width = pixel size width · output resolution width = 3.45µm · 1920 = 6.624mm

sensor width = pixel size height · output resolution height = 3.45µm · 1080 = 3.726mm

The derived sensor size of 6.624mm×3.726mm is corresponding to the sensor size of the images with
resolution 1920× 1080 from the front-facing camera of the EELY500 robot. Due to computational
complexity images with a resolution of 1280 × 720 pixels are used, as they contain less than half
of the pixels of a 1920× 1080 image and nearly halves the rendering time requirement. Shrinking
the sensor-size to just contain a sensor array of 1280× 720 without changing the lens parameters,
results in the image zooming in - effectively cropping the original 1920 × 1080 image. Instead,
the parameters for a 1920 × 1080 image is used to ensure that the field-of-view remains constant
with a render-resolution set to 1280 × 720. In practice, this means that the output is essentially
1920× 1080 pixel images re-scaled to 1280× 720 pixels.
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5.5.4 Downward facing camera

The downward facing camera, a Sony FCB-EV7520 camera[40], is not included in the initial simula-
tion environment, and the intrinsic parameters are not derived here. However, the same principles
apply for this camera.

5.6 Render setup

In order to produce the different images needed for the sequences, Blender’s rendering settings
must be set up properly. Settings related to the needed render layers, which are direct outputs
from the layered render process, and the settings used in Cycles and Eevee is discussed in this
subsection.

5.6.1 Render passes

A computer generated image in Blender is a composite of several different render passes, where
each pass contribute with different types of information. By default, the final image, the alpha
channel and the depth-buffer, hereafter named the Z-buffer, is made available. All render passes
needed in our setup is listed in table 5.4.

Table 5.4: Overview of the different render passes that are enabled for image export in our setup.
Names under ’Render pass’ is corresponding to the names used in Blender’s node-based image
compositing system.

Render pass Description

Image Denoised image, default output
Noisy Image Noisy image, no denoiser applied
Depth Image Z-buffer, depth to each pixel in scene units
Normal World-space surface normals for each pixel
Shadow Mask containing only light from light-sources
VolumeDir Direct volumetric lighting present in the image

5.6.2 Cycles settings

Cycles is the path-traced renderer i Blender, and can utilize either GPUs or CPUs to render
images. Path-tracing uses Monte Carlo simulation to repeatedly calculate the path of a ray out
from a single pixel, the ray picks up light intensity and color information from each bounce. The
average of all the bounces is then used as the final pixel intensity and color. Settings for number
of path tracing integrator, samples per pixel and the tile size is listed in table 5.5. The integrator
determines the bounce characteristics of a path-traced ray. Pure path tracing follows a single
ray until it terminates. Branched path tracing is an alternative, where the ray splits into several
rays upon a bounce for increased sample accuracy. This is currently not supported with GPU
rendering, but it is a strong tool to consider if CPU rendering is used. As we utilze GPUs for our
task, leveraging the GPGPU cluser IDUN[41], pure path tracing is used. In order to optimize the
render times for each image, a maximum number of bounces per ray is set as shown in table 5.6.

The tile size determines the size of a tile in the image to be rendered, which is delegated to an
available device. One tile is assigned per GPU, where all GPU cores work in parallel on a single
tile, hence the tile size is relatively large. The tile size is chosen as

(TileX, T ileY ) ≤ (256, 256)

where the total tiles in the image is divisible by the number of available GPUs. This is done to
avoid idling, where GPU0 may render the final tile, while GPU1 idles and waits for GPU0 to finish.
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During CPU rendering, each CPU thread is assigned a tile. Hence the tile size is chosen to be
approximately (16, 16), which is the default value.

Table 5.5: Cycles render pixel sampling settings.

Setting Value Description

Integrator Path tracing Pure path tracing, no branching
Samples Quality 375 Path-traced samples per pixel
Samples Fast 20 Path-traced samples per pixel
TileX GPU 256 Tile size width, GPU rendering
TileY GPU 180 Tile size height, GPU rendering
TileX CPU 16 Tile size width, CPU rendering
TileY CPU 16 Tile size width, CPU rendering

Table 5.6: Maximum number of bounces for each pure path-traced ray in cycles.

Bounce type Number of bounces

Total 16
Diffuse 4
Glossy 4
Transparency 2
Transmission 2
Volume 14

5.6.3 Depth-, normal- and uniformly lit RGB images

Cycles is used to generate depth-, normal and uniformly lit RGB images, as the quality of the
world-space normals are higher than that of Blenders hybrid rasterization render engine Eevee.
Cycles is set to use the ”Fast” preset for samples per pixel in table 5.5. Using the ”Fast” preset,
the render time per image using Cycles is comparable to that of Eevee when time for scene setup
is included, resulting in approximately 10 seconds per render.

5.7 Automated image rendering

In order to expedite the water setup and rendering process, an automated render script was created.
The idea behind the script is to use the dictionaries in table 5.7 as inputs. These provide all the
necessary information for the setup of:

• Water parameters

• Uniform light color and brightness

• Render parameters

• Camera parameters for depth of field effects

• Output folder- and name structure

Due to limitations in Blender’s Python API the water and uniform light world shaders must be
setup each time the script is run. This is due to the inactive world shader is being removed if
the Blender process is stopped in the middle of a render job, which is very likely to happen if you
only can render in batches of a given time duration. While bugs for other settings has not been
encountered yet, all other parameters are also set each time the script is run as a precaution -
overwriting the settings in the Blender file. Therefore it is important that the global variables in
the automated script is updated with the most recent values from the Blender file prior to runtime.
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The automated render script contains a lot of verbose code to set all the required parameters. The
main functionality of the program is shown in algorithm 2. Functions for rendering images of the
underwater scene is shown in algorithm 3, and uniformly lit scene in algorithm 4.

5.7.1 Compositor node setups

The compositor setup will mainly be shown through images as it is trivial, with one exception.
The underwater RGB image will not use the denoised ”Image” output, as that denoiser takes
the surface albedo and normals into account. For parts of the image occluded by the scattering
medium, this will introduce denoising artifacts where details of the environment is ”stamped” on
to parts of the image which should be without details. Instead, only the ”Noisy Image” output is
used as input to a ”Denoise” node which removes the noise in the image, yet does not introduce
any significant artifacts. The three different node setups used are shown in fig. A.4. It is important
to note that the three different node structures are automatically generated through code for every
rendered frame in order to extract the various types of image data.

Table 5.7: Parameters used to automate uniform light, water and render initialization.

Dictionary name Key Value Description

PARAMS UNIFORM LIGHT
Color (1,1,1,1) RGBA values
Strength 1 Brightness, range [0,1]

PARAMS WATER
Color (R,G,B,A) RGBA values of the scattering volume color
Density 0.1 Determines light attenuation, range [0,1]
Anisotropy 0.8 Forward light scattering, range (-1,1)
Absorption Color (R,G,B,A) RGBA values of the volume absorption color

PARAMS RENDER
ResolutionX 1280 With of the image in pixels
ResolutionY 720 Height of the image in pixels
ResolutionScaling 1.0 Resolution scaling factor, 1.0 ⇔ 100%
CyclesRenderDevice GPU If GPU or CPU is used during rendering
CyclesSamplesCPU 30 Samples per pixel, CPU rendering
CyclesTileXCPU 16 Tile size width, CPU rendering
CyclesTileYCPU 16 Tile size height, CPU rendering
CyclesSamplesGPU 375 Samples per pixel, GPU rendering, Quality preset
CyclesSamplesGPU 20 Samples per pixel, GPU rendering, Fast preset
CyclesTileXGPU 256 Tile size width, GPU rendering
CyclesTileYGPU 256 Tile size height, GPU rendering
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Algorithm 2: Automatic render script

Output: Image output, timestamped filenames
1 FrameStartGlobal← 0 // Starting frame of the entire sequence

2 OverrideDefaultImageNumbering() // Allow for custom image enumeration

3 SetRenderParameters(PARAMS RENDER)
4 CreateUniformLightShader(PARAMS UNIFORM LIGHT )
5 CreateWaterShader(PARAMS WATER)
6 Timestamps← Timestamps from file with Blender camera poses
7 ImageNames← Data structure of filenames
8 ExportTimestampedFilenames(Timestamps, ImageNames)
9 if RestartRender == TRUE then

10 SetCurrentFrame(FrameStartGlobal)

11 FrameEnd← Last frame of active Blender scene timeline
12 for FrameCurrent in [FrameStart, FrameEnd+ 1] do
13 RenderWater()
14 RenderUniformLighting()
15 SetSceneFrameCurrent(FrameCurrent)
16 if FrameCurrent ≤ FrameEnd then
17 SetSceneFrameStart(FrameCurrent) // Set the animation start to FrameCurrent

18 SaveBlenderFile() // Save blender file for automatic resumption of FrameCurrent

Algorithm 3: RenderWater(): Render images of the underwater scene, shadow maps, and
volumetric scattering with path-tracing in Cycles.

1 Activate water shader
2 Enable vehicle lights
3 Delete all compositor nodes
4 Setup and create compositor nodes for water output images in Cycles
5 Set Cycles to ”Quality” samples per pixel preset.
6 Set color management for sRGB images
7 Render images and write to disk

Algorithm 4: RenderUniformLighting(): Render uniformly lit images, depth- and normal
maps with Cycles.

1 Activate world shader with uniform light
2 Disable vehicle lights
3 Delete all compositor nodes
4 Setup and create compositor nodes for depth- and normal images
5 Set Cycles to ”Fast” samples per pixel preset.
6 Set color management for non-color images
7 Render images and write to disk
8 Delete all compositor nodes
9 Setup and create compositor nodes for RGB images

10 Set color management for sRGB images
11 Render images and write to disk

57



6 Discussion, shortcomings and future work

The thesis is split into three distinct parts: Derivation of the vehicle control system, generation
of synthetic IMU measurements and finally setup of the simulation environments. This section is
split into three separate corresponding parts, and is discussing the intention behind each section
as well as potential shortcomings and future work.

6.1 Vehicle control system

Section 2 introduced a control system which uses waypoints consisting of desired vehicle poses
as a reference for the generated trajectory. The aim of this approach is to reduce the human
effort needed to create sequences with physically correct motion. Using this system, the user sets
a number of waypoints creating a desired trajectory. Then the VCS creates a physically correct
trajectory from these waypoints.

In its current state, the vehicle control system, VCS, is dependent on careful placement and
orientation of waypoints in order to produce motion which is to be expected from an underwater
vehicle. The reason is the simplicity of the vehicle model, where each degree of freedom is controlled
independently with no dependencies on other states and exerts an input directly along or around
each axis. This is a significant simplification of a standard underwater remotely operated vehicle
(ROV) or Eelume’s EELY500 robot which is shown in fig. 6.1. Therefore the vehicle model itself
is a weakness of the current implementation. In the next iteration of the simulation framework,
this model should be replaced with a more complicated model which is correct with respect to an
existing underwater vehicle. Not only will this result in motion corresponding to the vehicle WP1
and WP2 of the AROS project will be using in live tests, but it will also reduce the probability of
human error during waypoint creation.

A different approach which allows for greater movement flexibility is to create trajectories by
manually piloting the vehicle, such that the user sets a velocity reference for the VCS using a
joystick and allowing the VCS to set the inputs accordingly. This approach was used in the
creation of the COnGRATS[7] dataset with great success, where Unity[42] served as an interface
for creating trajectories with direct user input.

Figure 6.1: Image of the EELY500 robot provided by Eelume[11]. Note that the modules attached
to the robot in this image is for illustration purposes and is not a 1:1 representation of NTNU’s
EELY500 robot.

6.2 Generating IMU measurements

6.2.1 Coordinate transformations

In section 3.2.1 there was briefly mentioned a discrepancy in the transformations used to transform
data in the vehicle frame v to the sensor frame s. More precisely, this discrepancy revolves around
eqs. (3.11) to (3.14) and the corresponding figures in figs. 3.2 to 3.4.

Rotation and translation frame of reference discrepancy: The rotation Rsv in eq. (3.12)
rotates from the source frame v to the destination frame s, and this rotation is expressed with
respect to the fixed frame of s. Deviating from the notation in [16], Rsv can be rewritten as Rs

sv,
where the superscript denotes the frame of reference for the rotation. Meanwhile the translation
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in eq. (3.13) is given as tvsv, which is the transformation from frame v to the destination frame s,
expressed in frame v. Rewriting Tsv in eq. (3.14), we now have to possibilities; use either frame v
or frame s as the reference for the transformations.

Using the vehicle frame as reference: First, let us examine using the vehicle frame v as the
frame of reference. Now we have:

T vsv =

[
Rv
sv tvsv

01,3 1

]
(6.1)

where tvsv is already given in eq. (3.13), and Rv
sv is expressed as

Rv
sv = Ry(−π

2
)Rx(

π

2
) (6.2)

where the order of rotations is visualized in fig. 6.2 and the resulting IMU measurements are plotted
in fig. 6.3.

Figure 6.2: Visualization of Rv
sv, the rotation from frame v to frame s expressed in frame v.

Rotation order is left to right, and the corresponding equation is found in eq. (6.2).
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Figure 6.3: IMU acceleration measurements when using the transformation matrix T vsv from
eq. (6.1). The actual translation and coordinate frames for the IMU is shown in fig. 3.7. Note: The
gravity-vector is not included for visualization purposes due to the low acceleration magnitude of
the visualized data.

Using the sensor frame as reference: Now, let us examine the case where the sensor frame s
is the frame of reference. We already have Rs

sv = Rsv from eq. (3.12). The translation vector tvsv
is expressed in the vehicle frame v, but it must be converted to the sensor frame s. This is done
by reversing its direction and rotating it into the sensor frame. Hence we have that

tssv = −Rs
svt

v
sv
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and it is now possible to express T ssv as:

T ssv =

[
Rs
sv tssv

01,3 1

]
=

[
Rs
sv −Rs

svt
v
sv

01,3 1

]
(6.3)

After applying this transformation, the acceleration measurements for linear motion without rota-
tion is correct, as shown in fig. 6.4. However, when viewing the plots where the vehicle is rotated
with a negative 180-degree rotation clockwise around the Y-axis in the vehicle frame v, the plot
in fig. 6.5 does not correspond to the actual motion of the IMU when tvsv = [0, 0,−0.5]> is used.
For reference, the plots in fig. 3.6 correspond to the IMU at the intended placement. Whereas the
acceleration in fig. 6.5 corresponds to a different IMU placement.
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Figure 6.4: IMU acceleration measurements when using the transformation matrix T ssv from
eq. (6.3). The actual translation and coordinate frames for the IMU is shown in fig. 3.7. Note: The
gravity-vector is not included for visualization purposes due to the low acceleration magnitude of
the visualized data.
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Figure 6.5: IMU measurements for a negative 180-degree rotation (clockwise following the right-
hand rule) around the Y-axis in the vehicle frame v. The orientation of the IMU sensor frame s
relative to v and the rotation relative to frame v is shown in fig. 3.7. Note: The gravity-vector
is not included for visualization purposes due to the low acceleration magnitude of the visualized
data.

Discussion of the observations above: By using the same transformation convention as in
eq. (3.7) for finding Trw, it would seem reasonable that using T vsv from eq. (6.1) should provide
correct results. However, as shown previously, this is not the case. As both eqs. (6.1) and (6.3) pro-
vide wrong results, there is an error somewhere in my implementation or mathematical derivations
of the coordinate transformations. Where this error is located is unknown at the time of writing.
Due to the presence of this discrepancy, it is even more important that the correctness of the IMU
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data is verified by calculating the vehicle’s pose and trajectory from the IMU data alone, and
compare it to the ground-truth trajectory. Using plots for verification is subject to human error,
likewise human error is a factor in this proposed verification method during implementation of the
testing framework. However cross-checking the verification results from these methods should be
done, as that could quickly point out potential flaws which are difficult to spot with just using one
method.

6.2.2 Sensor noise augmentation

The derivation of synthetic measurements are introduced in section 3. As the data used to generate
these measurements is noise-free data straight from the VCS, the IMU data does not contain any
noise. At the time of writing, whether or not noise-free IMU and depth data that can be augmented
with noise by the end user, or data with pre-augmented noise should be included is still a point of
discussion. Allowing the end user to augment the data themselves would allow them to customize
the data to match the noise characteristics of the equipment they will be using. However, it would
make it difficult to compare results from VSLAM systems tested on the dataset using IMU and
depth data, as the noise levels will vary between different users. This could lower the benchmark
value of the dataset due to the inconsistency in the IMU data used for testing in published results
using this dataset.

Publishing the dataset with IMU data augmented with noise will ensure that all published results
using this dataset is using IMU measurements with identical noise. This will keep the data used in
published results consistent, increasing the validity of the dataset as a benchmark. However, this
approach will then limit the customizability of the data for the user.

While this topic is still undecided, we are inclined to publish the dataset with sensor data aug-
mented with noise. The reason is that providing a dataset which can serve as a benchmark will
provide useful for comparing different VSLAM approaches if our dataset is a part of the datasets
used for testing.

6.3 Simulation settings and environment

6.3.1 Scattering properties of water

The most important aspect of the simulation environment is the scattering properties of the water
volume, as this is the main distinction between an above-water and underwater scene. The ren-
der engine Cycles in Blender uses path-tracing to generate imagery. However, in practice it is an
approximation to the real world, as already discussed under scattering volume limitations in sec-
tion 5.4.8. In short, the parameters set for the scattering volume are approximations, set by using
a reference image and a general range of acceptable values for the parameters involved. However,
these simplifications allow for lower rendering-times compared to a very accurate physically based
model. Given a high enough number of samples per pixel, the Monte Carlo sampling process in
Cycles will return a good approximation of the actual color and value of a given pixel. As we may
require several thousand images for a single sequence, reasonable render-times are a necessity as
hardware accessibility for extended periods of time is limited.

6.3.2 Scattering properties of water using rasterized render methods

Rasterization is a render technique commonly used in games due to the very low computational
complexity compared to path-tracing which is used by the Eevee renderer in Blender. Briefly
explained, rasterization maps the 3D objects to a 2D plane and changes the pixel color and value
intensity based on the lights in the scene. While it is significantly faster, it is not feasible to create
physical correct light scattering akin to what is possible through Cycles. Without proper scene
setup effects such as ambient illumination and light reflections are missing. It is possible to enable
screen-space reflections and screen-space global illumination (the latter through a community ad-

61



don), however these effects are based on what is visible in the camera. If scene geometry which is
reflecting light exits the camera frame, then the reflected light from that geometry is completely re-
moved from the scene, resulting in sudden illumination changes. Due to the importance of lighting
in computer vision algorithms, this inconsistency is unacceptable for use in benchmark sequences.

6.3.3 Marine growth

Another point of interest with respect to accurately replicate underwater scenery is that under-
water structures are prone to be covered in marine growth, i.e. barnacles, algae or other growths
protruding from the surface of an object as seen in fig. 6.6. This is not currently modeled on the
objects in the simulation environment, and could be included in the future. However, objects such
as vegetation growth that grow to several centimeters in length has to be modeled as separate
objects or as particle systems (in essence as modified hair). When applied to a large surface in
a reasonable density, this has a significant impact on the required VRAM6 in the GPUs used to
render the images. If the VRAM budget is limited, this may be more feasible to use on smaller
and more specialized ”inspection scenes”, where the simulation environment only contains one
structure of interest.

Figure 6.6: Marine growth present on a subsea structure. Footage from NTNU’s EELY500 robot
[11, 35, 36].

6.3.4 Marine snow

Marine snow is not currently included in the current environment. In some scenarios, marine snow
can be the dominating visual features in an image, as illustrated in fig. 6.7. This poses a serious
challenge for computer vision algorithms due to their high contrast and motion when the vehicle is
moving. The SLAM framework developed by the AROS group will have to work with these type
of images at a later stage in the development, and as such the simulation framework should be
expanded to allow for generating synthetic images with various levels of marine snow.

Figure 6.7: Presence of heavy marine snow in an underwater environment. Footage from NTNU’s
EELY500 robot [11, 35, 36].

6Video Random Access Memory, memory on-board the graphics card directly accessed by the GPU.
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6.4 Dataset availability and render times

The dataset will not be ready at the time of finishing this thesis due to the time consuming renders
required for proper imagery. Using Blender 2.92 with the OptiX Cycles render back-end together
with an Nvidia RTX 3080 GPU and a 16core AMD R9 3950X CPU, an image rendered on the
GPU with the settings from table 5.5, a resolution of 1280× 720 and depth-of-field parameters as
listed in table 5.3 takes 1 minute and 7 seconds to complete.

Our resources for rendering the sequence is primarily the AIRLARON[43] project’s server, which
has 2x Nvidia RTX 2080Ti GPUs available, and the NTNU IDUN/EPIC computing cluster[41],
which has more than 70 nodes and 90 GPGPUs. Every node is equipped with two Intel Xeon
cores, a minimum of 128GB main memory, and they are connected to an Infiniband network. The
storage consists of two storage arrays and a Lustre parallel distributed file system. From IDUN
we asked for 4 GPGPUs, where we were allocated either an Nvidia P100 or V100 GPU. Both
come equipped with 16GB of VRAM. Generating the images for the dataset will be done over the
summer when the load on these services are lower.

6.5 Future articles

Two articles are planned to be created from this thesis. First is the simulation benchmark paper,
detailing how to use the dataset and what information is included. The second paper will explain
the implementation of the simulation framework and how the data was generated. The outline for
these papers are included as attachments to the final thesis. It is important to note that these
papers are currently only drafts, and their content are subject to change before the respective
submission deadlines.

6.5.1 Benchmark paper

This paper will include all relevant information to allow any user to properly use the data included
in the dataset. It will give an overview of the vehicle and the coordinate frames used by the camera,
vehicle and sensor. Then, the sensor data, image data and ground truth data will be explained in
detail, detailing what the data is and how it is structured in the included files. Finally we will give
a short overview of the underwater environment, and discuss the model used and the properties
of the scattering medium used to simulate the water in the scene. This paper is planned to be
submitted to the 2022 IEEE International Conference on Robotics and Automation, ICRA[44].

6.5.2 Simulation backend paper

This paper delves into detail of how the data in the benchmark paper was created. The vehicle
model is introduced, followed by an explanation of the vehicle control system and the waypoint
handover system. Then a in-depth explanation of the sensor data generation follows, before a recap
of the included simulation data is given. Finally the simulation environment is discussed, where
the environment requirements and setup, as well as the render settings are discussed. This paper
is planned to be submitted to the 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS[45]
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7 Conclusion

I have with this thesis created a framework for creating benchmarks image sequences accompanied
with sensor and ground truth data. The framework takes trajectory waypoints from Blender and
uses a control system complete with a vehicle model to generate a physically correct trajectory.
This trajectory is then used to generate sensor data and it is imported back into Blender to move
the vehicle in the simulation environment.

The benchmark sequences created with this framework is intended to be published such that they
can be used by the underwater community at large for development of algorithms for underwater
computer vision, egomotion estimation and environmental awareness. At the time of writing, no
other synthetic benchmark sequence possesses physically correct path-traced images combined with
simulated IMU data. As a result, we aim to publish two articles based on this thesis. The first is a
short paper detailing the benchmark and included data, which we aim to submit to the 2022 IEEE
International Conference on Robotics and Automation, ICRA[44]. The journal paper detailing the
simulation framework, including the trajectory generation using the vehicle control system and
IMU data generation, is planned for submission to the 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS[45].
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Appendix

A Simulation environment
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Figure A.3: Blender node tree for the procedural pipe support material as seen in fig. 5.15.

71



F
ig

u
re

A
.4

:
B

le
n

d
er

co
m

p
os

it
or

n
o
d

e
tr

ee
of

d
iff

er
en

t
se

tu
p

s
u

se
d

fo
r

im
a
g
e

ex
p

o
rt

o
f

th
e

va
ri

o
u

s
im

a
g
e

ty
p

es
d

is
cu

ss
ed

in
se

ct
io

n
5
.7

.

72



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

Peder Georg Olofsson Zwilgmeyer

Creating a Synthetic Underwater
Dataset for Egomotion Estimation
and 3D Reconstruction

Master’s thesis in Cybernetics and Robotics
Supervisor: Assoc. Prof. Annette Stahl
Co-supervisor: PhD. Student Mauhing Yip, Prof. Rudolf Mester

May 2021

M
as

te
r’s

 th
es

is


	Preface
	Abstract
	Sammendrag
	Introduction
	Motivation
	Objective and Scope
	Contributions
	Outline
	Notation

	Vehicle control system
	Motivation
	Translation and rotation definitions
	System model
	Controller design
	Waypoint handover

	Generating IMU measurements
	Coordinate frame overview
	Coordinate transformations
	State interpolation for measurements
	Derivation of the gyroscope
	Derivation of the accelerometer
	Complete IMU model
	Pressure sensor
	Measurement resolution
	Measurement noise

	Simulation data
	Non-image sensor data format
	Image data format
	Ground truth data format
	Image naming convention
	Data structure

	Simulation settings and setup
	Water light scattering and absorption properties
	Blender interface
	Environment requirements
	Environment setup
	Camera setup
	Render setup
	Automated image rendering

	Discussion, shortcomings and future work
	Vehicle control system
	Generating IMU measurements
	Simulation settings and environment
	Dataset availability and render times
	Future articles

	Conclusion
	Bibliography
	Appendix
	Simulation environment

