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Sammendrag
Denne masteroppgaven tar for seg problemstillingen om å hente mest mulig
informasjon om korrelasjonen i en binormal fordeling basert på observerte punkter
i planet. Forventningsverdiene og variansene er antatt kjente. Til tross for
denne tilsynelatende forenklingen, er den kjent for å gi komplikasjoner.

Oppgaven er en videreføring av prosjektoppgaven som gikk ut på å finne
de beste metodene for å estimere korrelasjonen. Masteroppgaven utvider dette
temaet ved å i tillegg se på metoder for å beregne usikkerheten. Usikkerheten
blir først og fremst uttrykt ved hjelp av såkalte konfidensfordelinger. Bayesianske,
og frequentistiske metoder blir brukt til både estimeringen av korrelasjonen og
usikkerheten. Fiduse metoder blir også brukt til å utrykke usikkerhet. For
å sammenligne metoder og estimatorer vil tap- og riskfunksjoner bli brukt,
deriblant kvadrattap, Fisher information metric og Kullback-Leibler divergens.
De Bayesianske metodene er basert på objektive priorfordelinger som uniform,
Jeffreys, penalized complexity (PC) og arcsine prior. For usikkerhetsberegning
er en ekstra prior tatt i bruk, her navngitt som arctanh prior. De fiduse
metodene er basert på generalisert fidus inferens.

Analysen for å estimere korrelasjonen viser at Bayesianske estimatorer kan gi
bedre resultater enn frekventististe estimatorer somMLE og empirisk korrelasjon
ved små datasett. Ut av dem, står posterior gjennomsnitt med uniform prior
som en god kandidat.

For usikkerhetsmål vil ikke posteriorfordelingene har tilstrekkelig frekventistisk
dekning og kan ikke brukes for små datasett. Den eksakte konfidensfordelingen
gitt i Teorem 3.2 er den mest konsistente fordelingen og er derfor anbefalt.

Flere av nøkkelresultatene i oppgaven er som følger:

1. Posterior median minimerer forventet Fisher information metric, og Posterior
gjennomsnitt minimerer forventet Kullback-Leibler divergens

2. En rekke konfidensfordelinger kan bli beregnet ved hjelp av pivoter gitt i
ligning (32) og mer generelt ligning (38)

3. Fremgangsmåter for å lage konfidensfordelinger ved hjelp av pivotaler og
data genererende funksjoner i tilfeller hvor en direkte invertering ikke er
mulig.
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Abstract
This master thesis considers inference of the correlation in a binormal distribution

based on observed points in the plane. The means and variances are assumed
known. Despite this seemingly simplification, it is well known to give complications.

The thesis is an continuation of the project report which focused on finding
the best methods for estimating the correlation. It expands this topic by
introducing methods for quantifying the uncertainty. The uncertainty will
first and foremost be expressed in terms of so called confidence distributions.
Bayesian and frequentist methods will be used in both estimation of the correlation
and uncertainty. Fiducial methods will be used for expressing the uncertainty.
To compare methods and estimators, loss and risk functions will be used,
including squared error, Fisher information metric and Kullback-Leibler divergence.
The Bayesian methods are based on objective prior distributoins such as uniform,
Jeffreys, penalized complexity (PC) and arcsine prior. For uncertainty, an
additional prior is used, which will be referred to as the arctanh prior. The
fiducial methods are based on generalized fiducial inference.

The analysis of the point estimators shows that the Bayesian estimators
can outperform the frequentist estimators such as the MLE and empirical
correlation, for small data sizes. Out of the estimators, the posterior mean
using the uniform prior stands out as a good candidate.

For the uncertainty quantification, none of the posterior distributions will
have sufficient frequentistic coverage. The exact confidence distribution here
given in theorem 3.2, performs the most consistently and is therefore recommended.
The thesis introduces a general and a specific methods for creating confidence
distributions using pivotal quantities.

Multiple key results in this thesis is as follows

1. Posterior median minimizes expected Fisher Information Metric and posterior
mean minimizes expected Kullback-Liebler divergence.

2. A collection of confidence distributions can be calculated using the pivots
in equation (32) and more generally equation (38).

3. A Procedure for creating confidence distributions using pivots and data
generating function in cases where a direct inversion is not possible.
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1 Introduction
Parameter inference is an essential part of statistics and is the link between statistical models
and physical processes. By using well defined models that are tailored to a physical process,
it is possible to make further inference about it, including predictions. The validity of such
inference is dependent on how well the model fits the process. While the choice of model is
important, it is just as important to find methods that can give as much information about
the model as possible.

The baseline for making statistical models is the probability space. It consists of the
triplet (Ω,F , P ). Ω is a sample space with all the possible outcomes ω. F is a family of
events in Ω. P is a probability measure on (Ω,F) (Karr 1993, p. 23-24). A random variable
on the probability space X is a function that maps from the sample space Ω to the real line,
where every set (X ≤ x) = {ω ∈ Ω|X ≤ x} is an event in F . By having these criteria in
addition to Kolmogorovs axioms of probability, a statistical model for the random variable
can be denoted P (X ≤ x) = FX(x) (Karr 1993, p. 52). The function FX(x) is known as the
cumulative distribution function (CDF) which states the behaviour of X. If X is said to be
absolutely continuous, then the probability density function (PDF)

fX(x) =
d

dx
FX(x)

exists (Karr 1993, p. 52). If either the CDF or the PDF of a random variable is known, it
is possible to make inference about X. This can be useful in terms of making predictions,
confidence intervals and other means of describing a physical process around X.

Practically, it is usually not possible to fully know the distribution or model of a random
variable. In order to analyse these processes statistically, the distribution of the process
is assumed. Accurately finding a specific distribution for a process is not realistic. The
compromise is to assume a family of distributions given by a set of parameters θ ∈ ΩΘ. ΩΘ

is known as the model parameter space and is the set of all possible parameters θ. We can
define a family of distributions of θ with the CDF FX(x|θ) and the PDF fX(x|θ). A goal
can then be to gain as much information about the parameter θ.

If the results of an experiment is given by a set of n independent data points on the
form (xi, yi), it can be possible to model the data using the binormal distribution. Each
data point is then assumed to be a realization of the vector (X, Y ) where both X and Y are
normally distributed. The parameter in the distribution consists of the mean of X and Y ,
the variance of X and Y and the correlation between X and Y . Out of all the parameters,
only the correlation states the relation and dependency between X and Y . The relation is
such that if X = x is known with mean equal to 0 and variance equal to 1 and the correlation
is ρ, then Y is normally distributed around the line y = ρx with variance (1−ρ2) (Taraldsen
2020). This is visualized for both 100 data points in figure 1 and for 10 data points in figure
2. The black lines display the true line y = ρx. The goal in many cases is to predict y when
x is known. If ρ is known, then the best predictor for y, under some conditions, is along
the line y = ρx (Taraldsen 2020). If ρ is unknown, methods for estimating the correlation
is useful for estimating y. The red lines show the best predictions when the correlation
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is estimated using the empirical correlation, see (40). The two figures shows two different
scenarios in a model problem. One with a large data size and one with a small data size. As
seen, estimation of both ρ and y can be less accurate with less information. The correlation
can also give information about the binormal variables. If the correlation is 0, then X and
Y are independent (Shao 2003, Example 1.17). Finding methods for reliably testing if there
is no correlation can therefore be very useful.

Figure 1: Figure of 100 independent binormal data points (x, y) with known means 0 and
known variances 1. The black line is the line y = ρx and the red line is the line y = rx,
where r is the empirical correlation, see (40).

Work on the correlation of a binormal distribution is not new. The specific problem where
the means and variances are known does also occur in different articles. As late as 2012,
Fosdick and Raftery tested multiple point estimators using both frequentist and Bayesian
estimators. A similar report focusing on uncertainty for the correlation of the binormal was
written by Fosdick and Perlman 2016. This thesis will add to these findings with various
approaches to both point estimation and uncertainty quantification.

A small comment on notation is that random variables or vectors will be denoted using
capital letters such as X. Constant variables or vectors will be written in lowercase such as
x.
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Figure 2: Figure of 10 independent binormal data points (x, y) with known means 0 and
known variances 1. The black line is the line y = ρx and the red line is the line y = rx,
where r is the empirical correlation, see (40).
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2 General theory

2.1 Statistical model

Studying data sets using statistical models is a cornerstone of the field of statistics. They
give a framework that allows for both inference and validity testing of the inference.

A statistical model can be defined using a cumulative distribution function (CDF) also
known as the distribution function. Given the probability measure P and the parameter θ,
the CDF F is defined as F (x|θ) = P (X ≤ x|θ). If X is a random vector, then the event
(X ≤ x) is replaced with (X1 ≤ x1, ..., Xn ≤ xn) (Shao 2003, p. 4). When denoting that X
follows the statistical model F with parameter θ, the notation X ∼ F (x|θ) is used.

For simplicity, from here on we will only consider cases where the data X is continuous.
A statistical model can be described using what is known as the probability density function
(PDF) or the density function. The PDF is defined using the CDF as

f(x|θ) =
d

dx
F (x|θ).

The density function is commonly used as it is very useful in both visualization of the model
and in analytical and numerical inference of the data and parameters.

When studying data in the context of a statistical model, it is assumed to be sampled
given some true value for the parameter θ. Usually, the parameters are unknown and not
directly observable. The goal of a model problem is to gain as much information as possible
about the unknown parameters. One aspect is to find the best guess for the parameter given
the data, known as a point estimator. Another aspect is to expand on the point estimator
by quantifying the uncertainty of the location of a parameter. There are multiple methods
developed for parameter inference. In fact, mulitple statistical fields have been created based
on different aproaches. Two of the larger fields are frequentist and Bayesian statistics which
will be mentioned more later. The field of fiducial inference will also be visited.

2.1.1 Data generating function

A useful way of studying a model problem is to denote the model using a relation between
the observed data X, the parameters θ and some random variable U that is independent of
the parameters. By introducing such a relation, it is possible to study either the data or the
parameters using the known distribution of U . There are a total of three types of relations,
where one of the components are expressed as a function of the others.

The first is the data generating function. It describes how the data is obtained by some
underlying process U which is transformed to the data Y using the true parameter θ. The
definition is as follows:

Definition 2.1. Let θ be a parameter in ΩΘ, X be random data mapping to ΩX and G be
a function G : ΩΘ × ΩU → ΩX . G is a data generating function if

X = G(θ, U),

where U ∈ ΩU is a random variable with distribution independent of θ.
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Data generating functions can be created directly from the observed data or from some
sufficient statistics of the data. There might be multiple ways of generating data, which
means that a data generating function does not need to be unique. An example of non-
uniqueness can be seen in both section 3.7.2 and 3.7.4

A second relation is a pivot or pivotal quantity. A pivot is a function of the data and the
parameter that has distribution independent of the parameter. The definition of a pivot is
as follows

Definition 2.2. A random vector U = Q(X, θ) is a pivotal quantity if the distribution of U
is independent of the parameter θ. That is if X ∼ F (x|θ), then U = Q(X, θ) has the same
distribution for all values of θ (Casella and Berger 2002, Definition 9.2.6).

Out of the three, the pivot is a more common term. That is due to its usefulness in
model testing and uncertainty quantification. These topics will be discussed further later.

The third and final representation is the model generating function. This function
describes the parameter θ as a relation between the observable data and the random variable
U . The definition is as follows:

Definition 2.3. Let Θ be a random parameter in ΩΘ, U be a random variable in ΩU

distributed independently of θ, X = x be a observed data in ΩX and M be a function
M : ΩX × ΩU → ΩΘ. M is a model generating function if

Θ = M(x, U).

The distribution of a model generating function gives a distributions estimator for the
parameter θ. The data is no longer treated as a random variable, but rather observed data
x. Additionally, the model generating function applies a distribution to the parameter given
by U . If no distribution was assumed for the parameter prior to the creation of a model
generating function, M and U can be chosen almost arbitrarily. However, a well constructed
model generating function can prove to give useful inference for the parameter.

There are various advantageous properties to each of these relations. When estimating
parameters, a model generating function is generally the goal. The form Θ = M(x, U) gives
a relation to the data as well as some random process U . This allows for a distribution of
the parameter which is adjusted by the data. However, a well constructed model generating
function is not easily available. Generally they can be obtained using either a pivot or a
data generating function using some form of inversion with respect to the parameter. The
challenge is that they might not be invertible. For example if the dimension of the data
is larger than the dimension of the parameters, solutions to the data generating functions
might not exist. A model generating function can be obtained in other ways as well. It is
for instance possible to create a model generating function based on a distribution of the
parameter, see Bayesian statistics. In some of these situations, finding a density function
for the distribution of Θ might be more fruitful. One of the advantages of model generating
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functions is that they can be used for sampling from the distribution which can be very
efficient.

When inverting either a data generating function or a pivot into a model generating
function, it should be noted that the latter will treat the data as constant and the parameter
as a random variable.

An example of all three relations can be found for a normal distribution with unknown
mean and known variance 1. In that case, a data generating function is

Xi = θ + Ui, Ui ∼ N(0, 1), i = 1, ..., n.

By using the sufficient statistics X̄ =
∑
Xi/n (Casella and Berger 2002, Example 6.2.4) the

data generating function can be reduced to

X̄ = θ + U, U =
1

n

n∑
i=1

Ui ∼ N(0, 1/n).

The dimension of the data and the parameter is equal such that inversions wrt. θ is possible.
A pivot can be calculated as

U = Q(X, θ) = X̄ − θ ∼ N(0, 1/n).

Finally, a model generating function is

Θ = M(x, U) = x̄− U ∼ N(x̄, 1/n),

from either the inversion of the data generating function or the pivot. As these two are
one-to-one, the inversions are the same.

In this case, the inversion from the data generating function into a pivot and a model
generating function is trivial. If the original data generating function was used instead of
the reduced one, then neither the inversion of the pivot nor the model generating function
would be trivial. As there are more data points than parameters, a solution for θ will not
exist for all sets (Y, U). If such a dimension reduction is not available, other methods have to
be used in order to find the model generating function. This is the case in the main problem
of this thesis.

2.1.2 Sufficient statistics

Sufficient statistics is an important quantity in the field of parameter estimation. They can
be interpreted as sufficient amount of information about the observed data that can be used
to estimate an unknown parameter θ (Casella and Berger 2002, p. 272). A more precise
mathematical definition of sufficient statistics is

Definition 2.4 (Sufficient statistics). Statistic T(X) is a sufficient statistic for θ if the
conditional distribution of the sample X given the value T(X) does not depend on θ.
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(Casella and Berger 2002, Definition 6.2.1) A method of determining a sufficient statistic
is based on Fisher’s factorization theorem.

Theorem 2.1 (Fisher-Neyman Factorization theorem). If the density of X given the parameter
θ is f(x|θ), T (X) is a sufficient statistic if and only if

f(x|θ) = h(x)g(T (x), θ).

(Casella and Berger 2002, Theorem 6.2.6)
Sufficient statistics can be anything from scalars to vectors (Casella and Berger 2002, p.

278). However, the dimension of the sufficient statistic does not have an upper bound, only
a lower bound. Adding more information does not limit the sufficiency, however removing
information can. In order to deal with the smallest possible amount of sufficient information,
the term minimal sufficient statistics was introduced. A sufficient statistic is minimal if it
can be written as a function of any other sufficient statistics (Casella and Berger 2002,
Definition 6.2.11). In that regard, it cannot be reduced any further. Another characteristic
of the minimal sufficient statistic is given in the following theorem.

Theorem 2.2. Let X be distributed with density f(x|θ). The statistics S(X) is a minimal
sufficient statistic for the parameter θ if and only if

f(x|θ)
f(y|θ)

independent of θ ⇐⇒ S(x) = S(y).

(Casella and Berger 2002, Theorem 6.2.13)

2.1.3 Frequentist and Bayesian statistics

When studying a model problem from a frequentist perspective, the parameter is treated
as a fixed and unobservable quantity. The inference about the parameter is therefore only
given by the assumed knowledge about the stochastic behaviour of the data. Methods for
working on point estimation and uncertainty will therefore base itself solely on the likelihood
function of the data and other formulations of the model as seen in subchapter 2.1.1. The
definition of a likelihood function is a follows

Definition 2.5 (Likelihood function). Let X = (X1, ..., Xn) be random observable data with
joint distribution fX(x|θ) with parameter θ. The likelihood function of θ is

L(θ) = fX(x|θ).

(Casella and Berger 2002, Definition 6.3.1)
The natural logarithm of the likelihood function is known as the log-likelihood function

l(θ) = lnL(θ).
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Unlike in frequentist statistics, the Bayesian statistician assumes that the parameters can
be described as a random variable or vector. The marginal distribution of these parameters
π(θ) is known as the prior distribution of θ. An interpretation of the prior distribution
represents the prior knowledge about the parameter. The basis of Bayesian statistics is
Bayes rule. It states that for the random variables X and Y , the conditional density

f(x|y) =
f(x, y)

fY (y)
=
f(y|x)fX(x)

fY (y)
.

fX(x) and fY (y) is the marginal densities of X and Y , f(x, y) is the joint density and f(y|x)
is the conditional density of y given x (Casella and Berger 2002, Theorem 1.3.5). If one
assumes the prior distributions of θ, given by the PDF π(θ), the distribution of θ, given the
observed data X = x, can be calculated as

π(θ|x) =
f(x|θ)π(θ)

f(x)
∝ f(x|θ)π(θ).

π(θ|x) is known as the posterior distribution of θ. (Schervish 1995, p. 4) More on posterior
distributions in section 2.3.2

2.2 Point estimators

Assume a statistical model F for the data X with parameter θ. θ can be a scalar or a vector
of parameters. Given the model, a function of the parameters g(θ) can be of interest. Point
estimation denotes the methods for estimating the value of g(θ) using the observed data
X = x. The goal will then be to estimate g(θ) as accurately as possible.

2.2.1 Decision theory

The following is from the book Theory of Point Estimation (Lehmann and Casella 1998, p.
4-7).

One may view the choice of estimator δ(X) for the parameter g(θ) as a decision problem.
The goal of point estimation is to be as close as possible to the true value on average. It
is therefore necessary with a measure of "closeness" which can be used to order the point
estimators. There are many ways of measuring "closeness" or distance such as the squared
distance (δ(X) − g(θ))2. A collective term is loss functions, which measures the loss of
choosing an estimator. The loss of estimating g(θ) by δ(X) is L(θ, δ(X)), where θ is the
"true" paramter value. Loss functions are designed such that they are non-negative and 0
at δ(x) = g(θ). In other words the loss is zero under the correct estimation. The average
(expected) loss is known as the risk. The risk is denoted as

R(θ, δ) = Eθ[L(θ, δ(X))]. (1)

An optimal estimator would be one that minimizes the risk. An issue is that there exists
no estimator that minimizes the risk for all θ, unless g(θ) is constant. This can be proven
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by the estimator δ(X) = g(θ0) which will have 0 risk whenever g(θ) = g(θ0). The decision
of estimators is therefore not trivial and is dependent on prioritization. There are ways
of dealing with this problem. In a more vague formulation, estimators that performs well
for some parameter values but performs significantly worse in other areas can be viewed
as worse. A more precise formulations is to minimize a measure that combines risk for all
parameter values. Two examples are the supremum of the risk over all parameters,

sup
θ∈ΩΘ

R(θ, δ), (2)

and the weighted average risk over all parameters,∫
ΩΘ

R(θ, δ)w(θ)dθ. (3)

Both are arbitrary, but can be interesting in each of their own regard. Choosing the estimator
that minimizes the maximum risk is known as minimaxing, where the estimator is then a
minimax estimator. This is a method that is widely used in many fields such as numerical
mathematics to minimize the worst case scenario. A minimax estimator ensures that the
worst case scenario is restricted as much as possible. However, such a choice can be at the
expense of the risk in general. Minimizing the average weighted risk will handle the downside
of the minimax estimator, but the choice of weighting w(θ) is often arbitrary especially if
there is no information about θ. A Bayesian statistician might use a prior distribution of θ
as the weighting. Such an estimator is known as a Bayesian estimator and will be explored
more.

A second problem is that there are multiple choices of loss and risk which can give
different minimizers. The choice can often be arbitrary. Squared error is a common choice,
however that is mostly due to its simplicity. A philosophy behind the choice of loss function
is that they will represent some actual loss of the choice. An example is to minimize the
loss of the best prediction following an estimated parameter. This is for instance used for
point estimation parameters of an ARMA model in time series modelling (Brockwell and
Davis 2016, Burg’s Algorithm). However, this can open another box of similar problems
with respect to evaluating the best prediction.

2.2.2 Frequentist and Bayesian approach to point estimation

A common choice of parameter estimator for a frequentist, is the maximum likelihood
estimator, or MLE for short. The MLE can be seen as the choice of parameters that
maximizes the likelihood of the observed data.

Definition 2.6 (Maximum likelihood estimator). Let L(θ) be the likelihood function of X.
h(X) is the maximum likelihood estimator, MLE, if

h(X) = arg max
θ

L(θ).
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There are numerous characteristics that have been uncovered for the MLE. Among these
are many asymptotic properties (Lehmann and Casella 1998, p. 444).

In a Bayesian approach to point estimation, more information is available. Under the
assumption of a prior distribution, the distribution of the parameter is expressed by the
posterior distribution. A further development of risk similar to the weighted average risk in
equation (3) is now clearly defined by using the prior distribution π(θ) as weighting. This
will in turn be the total risk of the estimator δ, R(δ). An estimator that minimizes such a
risk is known as a Bayesian estimator.

The total risk of an estimator is not needed when creating a Bayesian estimator. An
estimator that minimizes the Bayes risk for all data points will satisfy the definition of a
Bayesian estimator. The Bayes risk is the expected loss over the posterior distribution. That
is

R(X, δ(X)) =

∫
Θ

L(θ, δ(X))π(θ|x)dθ.

(Lehmann and Casella 1998, p. 225-228) Unlike the total risk, the Bayes risk of an estimator
is given as a function of the data. Minimizing the risk with respect to the function δ is a
much more direct procedure and is a natural setting for finding δ(X).

2.3 Distribution estimators

Uncertainty is given a formal definition by BIPM in their Guide to the expression of uncertainty
in measurement, GUM. BIPM is the international organisation which handles both the
International System of Units (SI) and the international reference time scale (UTC)(BIPM
homepage). The guide defines two types of uncertainty

1. Type A: those which are evaluated by statistical methods

2. Type B: those which are evaluated by other means

(JCGM 2008a, p. IX). The classification of type A and B does not make any statement
of the origin of the error or the nature of the origin. The purpose of the classification is to
separate two approaches for evaluating the uncertainty. Both uses probability distributions
in their evaluation, but the methods used to obtain the distribution can differ. Type A is
based on series of observations and is therefore more of a frequentist view on uncertainty.
Type B is on the other hand based on available information and can therefore be included in
a Bayesian perspective of uncertainty. This interpretation is more clearly stated in 5.1.2 in
the Supplement 1 of the GUM (JCGM 2008b). As both type A and type B uncertainty can
occur for the same measurand, they can be combined. GUM represents this combination as
combined standard uncertainty. In this thesis Type A uncertainty is the main focus. Type B
uncertainty is introduced as well in the form of Bayesian priors, however none of the priors
are based on prior information.

GUM focuses on two ways of reporting uncertainty of a measurement U , standard
uncertainty and expanded uncertainty. Standard uncertainty is the uncertainty expressed as
a standard deviation s and expanded uncertainty is an interval given by [U − k · s, U + k · s],
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where k is the cover factor. This thesis will focus mostly on expanded uncertainty and an
expansion of that term into distributions.

Expanded uncertainty can be described as interval estimators. An interval estimator is
an interval of some quantity as a function of the data X. These intervals are given by some
upper and lower bound on the form

I = [a(X), b(X)],

where X is some observable data (Casella and Berger 2002, p. 414). In terms of uncertainty,
these interval estimators are used to give an expanded estimate of where the true value for the
quantity is located. The cover factor k in expanded uncertainty decides either how often or
the likelihood of the interval covering the true value. Keep in mind that the frequency and the
likelihood of coverage are not necessarily the same. The difference is the characteristic that
separates so called confidence intervals from credibility intervals. Confidence intervals are
the frequentist choice of uncertainty while the credibility interval is for Bayesian statisticians.

The simplest of the two interval estimators are the credible intervals. Given some prior
distribution for the parameter θ and some data X = x, the posterior distribution for θ is
available. By using the posterior, it is possible to assign any interval with a likelihood of θ
being contained by the interval. A credible interval is designed such that the likelihood is at
least some level α. The interval is then known as a α% credible interval (Casella and Berger
2002, p. 435-436).

A credible interval is not possible in a frequentist view. A frequentist cannot assign a
probability distribution to the parameter θ and is unable to give a probability for θ to be
inside any interval. The alternative is a confidence interval. An α% confidence interval is
designed such that the interval will cover the true value in at least α% of the cases. That
is, if the experiment is repeated m times, then this interval estimator will cover the true
parameter value in at least α

100
·m of the cases (Casella and Berger 2002, p. 418-419).

A further expansion on interval estimators are distribution estimators. Instead of describing
the location of the parameter using intervals, distributions can give a much richer information
of where the parameter might be located. Additionally, they can be used to create interval
estimators. One can define a distribution estimator using a distribution function

C(θ|X),

where x is the observed data. It is necessary that C satisfies the criteria for a distribution
function, see (Schervish 1995, Definition B.7). The posterior distribution is an example of a
commonly used distribution estimator. Another example is the confidence distribution.

2.3.1 Confidence distribution

The idea of confidence intervals can be expanded further into what is known as confidence
distributions, or CDs. They can be defined using both hypothesis tests and confidence
intervals. We will here focus on the relationship to confidence intervals for a one-dimensional
parameter, as this is the most relevant. In Definition 3.1, Schweder and Hjort 2016 defines
a confidence distribution as
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Definition 2.7 (Confidence distribution). A non-decreasing right-continuous function of
the one-dimensional θ, depending on the data X , say C(θ|X), is the cumulative distribution
function for a confidence distribution for θ provided it has a uniform distribution as function
of X.

A confidence distribution, like a posterior distribution, is a distribution estimator dependent
on some observed data. With respect to the data, a CDF C(θ|X) is a stochastic variable for
each parameter value θ. As the definition states, at the true parameter value for θ the CD is
a uniform distribution for the data. This is a necessary condition that allows the quantiles
of the CD to be confidence intervals. The reason is that the α quantile of the CD is given
by the inverse C−1(α|x) such that

P (θ0 ≤ C−1(α|X)) = P (C(θ0|X) ≤ α) = α.

This only holds if C(θ0|X) is uniform with respect to the data X. As a result, the CD is
a cumulative distribution for the confidence of a scalar parameter. Quantiles of the CD is
equivalent to one-sided confidence intervals for the parameter. Any two-sided confidence
interval can also be created by combining one-sided confidence intervals. Similarly, p-values
of any test of the parameter can be calculated using the CD.

As for confidence intervals, confidence distributions can be calculated using pivots. Given
the pivot Q(X, θ) with distribution function G independent of θ, a CD for Θ at X = x is
then C(θ|x) = G(Q(x, θ)). This CD will satisfy the definition 2.7 (Schweder and Hjort 2016,
p. 59). It can also be represented using a model generating function, by inverting the pivot
U = Q(X, θ) at X = x wrt. θ. A confidence distribution can be created by inverting certain
data generating function wrt. θ as described in proposition 1 by Taraldsen 2021.

2.3.2 Posterior distribution

The Bayesian posterior is also a distribution estimator which could be used for uncertainty
quantification. In a Bayesian context, it can be used to assign probabilities to sets of the
parameter. It will therefore give a more direct picture of the location of the parameter.
Unlike the confidence distribution, the posterior distribution is given by some choice of prior
distribution.

The choice of prior distribution is an important part of Bayesian statistics. Different
choices can at worst give significantly different results. In certain cases where prior knowledge
about a parameter is available, a prior distribution can be used to represent that knowledge.
The prior can in that case improve the analysis by using additional information outside
of the base model for the data. An issue is the objectivity of the inference using a prior
distribution. Especially when no information of the parameter is known.

The alternative is to choose priors that do not represent any prior knowledge. These are
known as objective priors and are the essential components in objective Bayesian. As the
priors do not represent any prior knowledge, a bigger question about their legitimacy arises.
Additionally, capturing objectivity in a prior is not a trivial task. That is due to the fact that
formally defining objectivity with regards to priors has proven challenging. (Consonni et al.
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2018). As a result, there are many different approaches to an objective prior. Alternatives
will be studied in 2.5.

A problem that arises in objective Bayesian is improper priors. A prior is said to be
improper if the integral of the prior is not finite. As a result, the prior is not a density
function. Despite an improper prior, it is possible that the posterior is proper. The question
is the validity of the inference made using such a posterior. There are differing views on
how to deal with improper priors. Some argue that they should never be used. Others
try to create frameworks which allows for improper priors. A typical approach is to use
limiting distributions of posteriors with proper priors to define posteriors with improper
priors (Bioche and Druilhet 2016)(Taraldsen, Tufto, and Lindqvist 2018). A more detailed
view of the validity of improper priors will not be the focus of this report.

2.3.3 Generalised fiducial distribution

In the early 20th century, R.A. Fisher proposed a method for creating probability distributions
for a parameter θ using the likelihood function of the data. This distribution could be used
to create interval estimators for the parameter similar to Bayesian methods using posteriors.
The difference was that the fiducial distribution would not be based on a choice of prior. In
the one-dimensional parameter case the fiducial distribution is what we now name confidence
distribution. Fisher did not like the term confidence and argued that the fiducial distribution
was a probability distribution similar to a Bayesian posterior. When studying the fiducial
methods in multi-parameter problems arose such as nonuniquenes of the distributions and
nonexactness of the interval estimators. After a loss of interest during the late 20th century,
there was a resurgence in the early 21th century with different approaches to the fiducial
argument. Amongst them were the confidence distribution, but also the generalised fiducial
inference.(Schweder and Hjort 2016, Chapter 6)

In 2009, Hannig proposed an expansion of the fiducial argument, which was expanded on
further in 2016(Hannig et al. 2016). The focus was on problems where a model generating
function might not be easily available. Let

Y = G(θ, U)

be a data generation function. If there exists a unique solution for θ for all U and Y ,
then a model generating function can be constructed using the inversion. If not, other
approaches are necessary. Hannig et al. 2016 mentions two possible scenarios. Either there
exists multiple solutions or there exists no solution for a given set Y and U . For the former
problem, Dempster-Shafer calculus is mentioned as a solution. The latter problem is the
focus of the generalised fiducial inference.

Given the observed data Y , if there exists no inversion of the data generating function
wrt. θ for some U = u then u is removed from the possible sample space of U . In order to
avoid what is known as the Borel paradox, the set of admissible U are defined as

Uy,ε = {U : ||y −G(θ, U)|| ≤ ε for some θ}.
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The inversion of the data generating function can in turn be based on the set U |U ∈ Uy,ε.
Let A be the event s.t. Ay,ε = (U ∈ Uy,ε). Using this condition the GFD is defined by the
model generating function

Θ = lim
ε→0

[
arg min

θ
||y −G(U, θ)||

∣∣∣∣Ay,ε]
(Hannig et al. 2016). The random variable on the right hand side converges in distribution.

An explicit formula for solving this problem with various choices for norm || · || is also
presented by Hannig et. al.. The formula is on the form similar to a transformation from
the likelihood function to a distribution of θ. That is

r(θ|y) ∝ f(y|θ)J(y, θ),

where J is similar to a Jacobian. J(y, θ) is defined as

J(y, θ) = D

 d

dθ
G(u, θ)

∣∣∣∣∣
u=G−1(y,θ)

 .

If one compared to the Bayesian approach to distribution estimators, J(y, θ) can be viewed as
a data dependent prior. The function D(A) takes in a matrix and return a scalar. Different
choices of norm || · || will give different functions D(A). If θ is a scalar parameter and the
dimension of y is a vector, then d

dθ
G(u, θ) is also a vector. If A is a vector, D(A) takes the

following expressions under different norms:

1. l2 norm: D(A) =
√∑

iA
2
i

2. l∞ norm. D(A) =
∑

i |Ai|.

(Hannig et al. 2016).
Like posteriors under Jeffreys prior, the GFD is invariant with respect to smooth reparametrization.

An important note about the GFD is that it is not unique. As shown, different choices
of norm can result in different distribution functions. Similarly, different data generating
functions can give different GFD.(Hannig et al. 2016)

2.3.4 Decision theory for distribution estimators

Similarly to point estimator, there is a goal to find the best method to quantify the uncertainty.
Loss and risk can be used to evaluate distribution estimators, similarly to point estimators.
Similar definitions to loss and risk from Bayesian statistics can be applied to confidence
distributions in order to create confidence loss and confidence risk. The following definitions
are given the parameter θ, confidence distribution C(θ|x) and data X = x. Confidence loss
is

L(θ, C(x|θ)) =

∫ ∞
−∞

L(θ, s)dC(s|x)
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and the confidence risk is

RF (θ, C( · |θ)) = EθL(θ, C(X|θ)), (4)

where Eθ is the expectation over the data X given the true parameter θ. As for point
estimators, the confidence distribution with smallest risk is preferred. A confidence distribution
is denoted as uniformly better than another confidence distribution if the risk is not greater
for all true parameter values. (Schweder and Hjort 2016, p. 161-163)

2.4 Alternatives for loss functions

The following loss functions are examples that will be used further in this report.

• Mean squared error: L(θ, θ̂) = (θ − θ̂)2,

• Mean absolute error: L(θ, θ̂) = |θ − θ̂|,

• Fisher information metric: L(θ, θ̂) =
∣∣∣∫ θ̂θ √I(s)ds

∣∣∣,
• Kullback-Leibler divergence: L(θ, θ̂) = κ(f( · |θ)||f( · |θ̂)).

I(θ) is the Fisher information of the distribution and κ(f( · |θ)||f( · |θ̂)) is the Kullback-
Leibler divergence of the model. Both of these will be studied further. One minor comment
is that all of these loss functions are symmetric with the exception of the Kullback-Leibler
divergence. It is therefore important to use θ and θ̂ appropriately.

2.4.1 MAE and MSE

The mean absolute error (MAE) and mean squared error (MSE) are two direct distance
measures of the parameters. Unlike the Fisher information metric and the Kullback-Leibler
divergence, they are independent of the model in question. Of the two, the mean squared
error is the more common, as it is used in many types of regression. The expectation of
the mean squared error, Eθ(θ − θ̂(X))2, is the variance of the estimator θ̂ if Eθ(θ̂) = θ. As
variance (or the standard deviation) is often used as a measure of uncertainty, optimizing a
parameter based on minimal variance is a natural choice.

2.4.2 Fisher information and Fisher information metric

The Fisher information metric is a distance in Fisher information between two different
parameter choices. It is based in the field of information geometry, which is an overlap
between differential geometry and statistics. The purpose of Fisher information metric is
to measure the shortest distance between two parameters and can therefore be used as a
similarity between the respective two models. (Taylor 2019)

The Fisher information, or more generally the Fisher information matrix plays a major
role in the asymptotic behaviour of the maximum likelihood estimate. It is also generally used
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in information theory. It measures the expected information that is given by the observed
data about the parameter θ. Some of the useful properties of the Fisher information is that
it is invariant to reparametrization and is positive semi-definite. Lehmann and Casella 1998,
p. 115-116 defines the Fisher information I(θ) of a one-dimensional parameter θ as

Definition 2.8 (Fisher information). Let X be distributed with density f(x|θ), where θ is
a one-dimensional parameter. The Fisher information is

I(θ) = Eθ

[(
∂l(θ|x)

∂θ

)2]
,

where l(θ|x) = ln(f(x|θ)) is the log-likelihood function of the data x.

With the Fisher information defined, the Fisher information metric is expressed in the
following definition.

Definition 2.9 (Fisher information metric). Let I(θ) be the Fisher information of parameter
θ. The Fisher information metric is

L(θ, θ̂) =

∣∣∣∣∣
∫ θ̂

θ

√
I(s)ds

∣∣∣∣∣.
(Taylor 2019)
The following are some properties of the Fisher information that are useful.

Corollary 2.2.1. The Fisher information I(θ) is non-negative.

Proof. For any non-negative random variable Y , the expectation Y is also non-negative. If
E(Y ) = 0, then Y = 0 almost surely. (Karr 1993, Proposition 4.11)

This implies that

I(θ) = E

[(
∂l(θ|x)

∂θ

)2]
≥ 0,

with equality if
∂

∂θ
l(θ|x)

∣∣∣
θ=θ0

= 0

for all x.

Corollary 2.2.2 (Reparametrization of the Fisher information). Let the IΘ(θ) be the Fisher
information of f(x|θ) for the parameter θ. For every parameter φ such that θ = θ(φ), where
θ(φ) is continuously differentiable, the Fisher information of φ is

IΦ(φ) = IΘ

(
θ(φ)

)(∂θ(φ)

∂φ

)2

.
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Proof. The proof follows from the chain rule. For the log-likelihood functions l(φ) = ln f(x|φ)
and l(θ) = ln f(x|θ)

∂l(φ)

∂φ
=
∂l(θ)

∂θ

∂θ(φ)

∂φ
.

Inserting this expression into the definition of Fisher information gives

I(φ) = E

[(
∂l(φ)

∂φ

)2]
= E

[(
∂l(θ)

∂θ

)2](
∂θ

∂φ

)2

Another property of Fisher information is that if X and Y are independent random
variables with respective Fisher information IX and IY , then the joint (X, Y ) has Fisher
information IX,Y = IX + IY .

Theorem 2.3. Let X and Y be independent with probability densities fX(x|θ) and fY (x|θ)
and their respective Fisher informations IX(θ) and IY (θ) exists. Then the joint Fisher
information IX,Y (θ) is given by

IX,Y (θ) = IX(θ) + IY (θ)

(Lehmann and Casella 1998, Theorem 5.8).

Theorem 2.3 is based on Theorem 5.8 of Lehmann and Casella 1998. They present extra
conditions which will be satisfied in this thesis. For simplicity, those conditions are left out,
but can be found in the book.

2.4.3 Kullback-Leibler divergence

The Kullback-Leibler divergence, also known as Relative Entropy, is the divergence or
"difference" of one distribution to a reference distribution. The mathematical definition
is as given

Definition 2.10 (Kullback-Leibler divergence). For the two models with probability density
functions f(x) and g(x), the Kullback-Leibler divergence of g with respect to f is

κ(f ||g) = −
∫

ΩX

f(x) ln
g(x)

f(x)
dx = Ef [ln f − ln g].

The divergence can be interpreted as the information loss that follows from approximating
the distribution f with the distribution g (Simpson et al. 2017). The loss function should
therefore bring a different type of loss than MSE and MAE. It is crucial to note that this
measure is not a distance measure as it does not uphold the criteria of symmetry, that is
κ(g||f) 6= κ(f ||g). It does however hold the property of non-negativity, with κ(f ||g) = 0
only for f = g, like the other loss functions. Additionally, if X and Y are independent with
respective Kullback-Leibler divergence κX and κY , then the Kullback-Leibler divergence of
the joint (X, Y ) is κX,Y = κX + κY .
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Theorem 2.4. The Kullback-Leibler divergence of any two models with probability density
function f and g is non-negative and is only zero when f = g almost everywhere. If X and
Y are independent with respective Kullback-Leibler divergence κX and κY , then the Kullback-
Leibler divergence of the joint (X, Y ) is

κX,Y = κX + κY .

(Schervish 1995, Theorem 2.93)

2.5 Alternatives for objective priors

This section will go through the different choices of priors that will be used in this report.

2.5.1 Jeffreys prior

Jeffreys prior is defined as

Definition 2.11 (Jeffreys prior). Let I(θ) be the Fisher information of the one-dimensional
parameter θ. Then Jeffreys prior is defined as

πj(θ) =
√
I(θ)

(Schervish 1995, p. 122). In addition to its simplisity, Jeffreys prior holds the property of
invariance under injective transformation. This property means that calculating the Jeffreys
prior for a parameter φ(θ), where φ is injective, is equivalent to conduct the transformation
φ(θ) on the prior πj(θ), i.e. πj(φ) = πj(θ(φ))| ∂θ

∂φ
|.

Corollary 2.4.1. Jeffreys prior is invariant to injective transformations.

Proof. The corollary follows directly from corollary 2.2.2.

πj(φ) =
√
I(φ) =

√
I(θ)

∣∣∣∂θ
∂φ

∣∣∣ = πj(θ)
∣∣∣∂θ
∂φ

∣∣∣

2.5.2 Penalised complexity prior

Another choice of prior is the Penalised complexity prior or PC prior for short. This is a
more recent prior which was introduced in the mid to late 2010s. The goal of the prior is to
contrast priors that are too flexible or complex which can lead to over-fitting. It is inspired
by the principle of Occam’s razor which states that a simple model should be chosen as long
as there is not a sufficient reason to choose a more complex one (Simpson et al. 2017). The
principle is applied by penalizing the divergence from the standard model/simplest model.

The PC prior uses the Kullback-Leibler divergence to measure the loss of a simple model
compared to a more complex and flexible one. The Kullback-Leibler divergence is not a
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distance as it does not uphold symmetry, however Simpson et al. 2017 argues that the
asymmetry is benifitial as Occam’s razor is also an asymmetric principle. The complexity
measure of the parameter θ is denoted as

d(θ) =
√

2κ(f( · , θ)||f( · , θ0)),

where f(x|θ0) is the least complex variation of the family f(x|θ), and kappa(f( · , θ||f( · , θ0))
is the Kullback-Leibler divergence.

The penalization on the complexity d is defined such that if a prior of d is π(d) and
r ∈ (0, 1)

π(d+ δ)

π(d)
= rδ,

for every δ > 0. For smaller values of r, the faster the prior will go to zero as the complexity
increases. This means that smaller values of r will give a larger penalization. Simpson et al.
2017 states that the solution is that d has to be exponentially distributed with rate-paremeter
λ = − ln r. Here, large values for λ will imply larger penalization on complexity. The PC
prior of the parameter θ is then defined using the transformation d(θ).

Definition 2.12 (Penalized complexity prior). For the penalization parameter λ ∈ (0,∞)
and distribution f(x|θ) with θ0 being the least complex choice of θ, the penalized complexity
prior is

π(θ) = λe−λd(θ)

∣∣∣∣∂d(θ)

∂θ

∣∣∣∣ ,
for d(θ) =

√
2κ(f( · |θ0)||f( · |θ))

(Simpson et al. 2017).
There are some variations of the PC prior that occurs for different scenarios. If d has

an upper bound, the exponential distribution is not an accurate fit. In these situations, the
truncated exponential is a more suited solution. This will not alter the shape of the prior,
but rather the normalization. Another case is when d(θ) is not monotone, but piecewise
monotone. In that situation, the equality of the prior in Definition 2.12 is exchanged with a
proportionality. The normalization of that prior can be calculated by studying the disjoint
intervals where d(θ) is monotone (Simpson et al. 2017).

2.5.3 Uniform prior

A natural choice of objective prior is the uniform prior, which gives the same amount of weight
to each possible outcome. This prior will not add any information about the parameter and
is independent of the model of the observable data. The uniform prior is defined as

Definition 2.13 (Uniform prior). The uniform prior of parameter θ ∈ ΩΘ is

π(θ) =
1

|ΩΘ|
I{θ∈ΩΘ},

where |ΩΘ| is the Lebesque measure of the ΩΘ.
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The uniform prior is proper as long as |ΩΘ| < ∞, that is if ΩΘ is bounded. In the
continuous univariate case the set ΩΘ is on the form (a, b). The Lebesque measure of ΩΘ is
then b− a. The interval ΩΘ can also be closed.

An issue with the uniform prior is that it is not invariant under most bijective transformations.
The choice of focus parameter can therefore significantly determine the analysis.

2.5.4 Reference prior

The idea behind the reference prior is to find a prior that maximizing the information gained
from the observed data. An alternative perspective is that the prior is the prior with least
amount of information. The expected information gain is calculated using the Kullback-
Leibler divergence. Bernardo 2005 argues that the reference prior appears to be the only
known objective prior distribution which satisfy four "reasonably" necessary conditions of
objectivity. Those are Generality, Invariance, Consistent marginalization and Consistent
sampling properties.

In 2009, Berger, Bernardo, and Sun presented a formal definition of the reference prior
including a formula for constructing them. A prior is defined as a reference prior for a model
if it is a permissible prior and has the MMI property (Berger, Bernardo, and Sun 2009,
Definition 8). Both permissible priors and the MMI property is defined in the article. As the
reference prior is not calculated directly, details will be spared. However a short description
of the terms will be presented.

The term permissible priors includes all proper priors, but can also be used for certaint
improper priors. The idea is to justify the use of proper posterior distributions with improper
prior using a convergence of a sequence of posteriors with proper priors. The convergence is
based on expected Kullback-Leibler divergence as "distance" measure. Each proper prior in
the sequence of posteriors are defined as the improper prior restricted to a compact set of
the parameter space. See Definition 4 and 5 for further details (Berger, Bernardo, and Sun
2009).

The MMI, or Maximizing Missing Information, property is related to the potential
information gain for a prior relative to others in the class of prior functions P . The
information gain, or expected information, is measured in terms of the expected Kullback-
Leibler divergence between a prior and a posterior after k experiments. Finally, a prior
p ∈ P satisfies the MMI property if, given the class of priors P , the difference in expected
information between p and any other in prior in P on any compact subset of the parameter
space is non-negative as the number of experiments k goes to infininty. See definition 6 and
7 for more details (Berger, Bernardo, and Sun 2009).

Berger, Bernardo, and Sun 2009, p. 905 argues that the reference prior is reduced to
Jeffreys prior in the continous one-dimensional case, under asymptotic posterior normality.

2.5.5 Invariant prior

Let X be the random observable data of some distribution F (x|θ). The family F is a group
family if under some group of transformation G, the distribution of Y = gX is still in the
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family F for all g ∈ G. Let Ḡ be the group of corresponding transformation for G over
the parameter space. The prior distribution Π of θ is invariant with respect to Ḡ if the
distribution of ḡθ is also distributed by Π for all ḡ ∈ Ḡ.

An invariant prior is a natural choice for prior if a group G exists as it will reflect the
invariance of the model in general. Of course, if no such group exists, then an invariant prior
of this kind is not possible. (Lehmann and Casella 1998, p. 245-246)
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3 Binormal distribution with known mean and variance

3.1 The base model

The two-dimensional vector (X, Y ) follows a binormal distribution with mean µ and covariance
matrix Σ

(X, Y ) ∼ N(µ,Σ)

if the density function is

fX,Y (x, y|µ,Σ) =
1

2π
|Σ|−1/2e−

1
2

((x,y)−µ)TΣ−1((x,y)−µ)

(Casella and Berger 2002, Definition 4.5.10). Assuming known mean equal to zero and known
variance equal to 1 for both X and Y , the density function is given as

fX,Y (x, y|ρ) =
1

2π

1√
1− ρ2

exp

(
− 1

2(1− ρ2)
(x2 + y2 − 2ρxy)

)
, (5)

where ρ is the correlation between X and Y . In certain cases, the correlation is treated as
a random variable and will be denoted as P . This can be confused with the probability
measure P , however no situation from here on will occur where P is used as anything but a
random correlation.

It should be noted that any binormal distribution with known means and variances can
be transformed into the case with mean 0 and variance 1.

3.2 Change of variables

It is possible to make a linear transformation of the random variables in a binormal distribution
such that the new variables are uncorrelated and therefore also independent. For the
binormal with known means 0 and known variances 1, the transformations U = X + Y ,
V = X − Y satisfies that property. That is

Corollary 3.0.1. Let (X, Y ) be a binormally distributed vector with means 0, variances 1
and correlation ρ. Define U = X + Y and V = X − Y . Then U and V are independent and
U ∼ N(0, 2(1 + ρ)), V ∼ N(0, 2(1− ρ)).

Proof. In order to prove the relation, it is sufficient to show that

E(U) = E(X + Y ) = 0, E(V ) = E(X − Y ) = 0,

V ar(U) = V ar(X) + V ar(Y ) + 2E(XY ) = 2 + 2ρ = 2(1 + ρ),

V ar(V ) = V ar(X) + V ar(Y )− 2E(XY ) = 2(1− ρ).

Cov(U, V ) = E(UV ) = E((X + Y )(X − Y )) = EX2 − EY 2 = 0.

As any linear combination of jointly normally distributed random variables are also normally
distributed (Casella and Berger 2002, Definition 4.5.10), the corollary is proven.
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Corollary 3.0.1 implies that it is possible to study the properties of the distribution of X
and Y through the transformation U = X +Y and V = X−Y . The independence of U and
V in addition to their very familiar univariate normal distribution can be used further in
analysis. This is both with regards to studying properties and analysis as well as simulation
of the data. Some of the beneficial properties that will be used is that the Fisher information
and Kullback-Leibler divergence of the joint of two independent random variables is the sum
of the separate information as seen in 2.3 and 2.4.

3.3 Sufficient statistics

Let U, V be the transformation of X and Y given in 3.0.1. We can find the minimal sufficient
statistics of both the X, Y system and the U, V system. For the U, V system, one can find
sufficient statistic using knowledge about the normal distribution. A minimal sufficient
statistic of a normally distributed variable Z with mean 0 and unknown variance σ2 is∑

i Z
2
i . The proof follows from the density of the vector (Z1, ..., Zn)

f(Z1,...,Zn)(z1, ..., zn|σ2) = (2πσ2)−n/2 exp

(
− 1

2σ2

∑
z2
i

)
.

Using Fisher-Neymanns factorization theorem, it is clear that the statistic
∑

i Z
2
i is sufficient.

It will also be minimal as the ratio of the densities between the data (z1, ..., zn) and (z̃1, ..., z̃n)
boils down to exp(−(

∑
i z

2
i −

∑
i z̃

2
i )/(2σ

2)).
As the correlation occur in the variance of U and V separately, the same minimal sufficient

statistic apply separately to U and V . Let (X{n}, Y {n}) be a vector of n independent data
points of the binormal in (5) on the form (X1, Y1, ..., Xn, Yn), and U{n} = X{n} + Y {n} and
V {n} = X{n} − Y {n}. Then sufficient statistics of the data can be expressed as

S1 =
n∑
i=1

U2
i =

n∑
i=1

(Xi + Yi)
2

S2 =
n∑
i=1

V 2
i =

n∑
i=1

(Xi − Yi)2.

(6)

It is possible to test if these sufficient statistics are in fact minimal using theorem 2.2.
The joint density function of (U{n}, V {n}), with realization (u, v) = (u1, v1, ..., un, vn) can

be written in terms of the respective sufficient statistics s1(u, v) =
∑n

i=1 u
2
i and s2(u, v) =∑n

i=1 v
2
i . The density is then

fU{n},V {n}(u, v|ρ) =

(
1

2π
√

1− ρ2

)n

exp

(
−1

4

n∑
i=1

(
u2
i

1 + ρ
+

v2
i

1− ρ

))
.

The ratio of the density under two realizations of the data (u, v) and (ũ, ṽ) = (ũ1, ṽ1, ..., ũn, ṽn)
is

fU{n},V {n}(u, v|ρ)

fU{n},V {n}(ũ, ṽ|ρ)
= exp

(
−1

4

(
1

1 + ρ

(
n∑
i=1

u2
i −

n∑
i=1

ũi
2

)
+

1

1− ρ

(
n∑
i=1

v2
i −

n∑
i=1

ṽi
2

)))
.
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The ratio is independent of ρ if and only if the sufficient statistics of (u, v) equals the sufficient
statistics of (ũ, ṽ), that is s1(u, v) = s1(ũ, ṽ) and s2(u, v) = s2(ũ, ṽ). S1 and S2 are therefore
minimal sufficient statistics.

It is also possible to find minimal sufficient statistics directly from the (X, Y ) using
Fisher-Neyman factorization theorem, 2.1. The joint density of n binormal vectors (Xi, Yi),
denoted (X{n}, Y {n}), with realization (x, y) = (x1, y1, ..., xn, yn) is

fX{n},Y {n}(x, y|ρ) =

(
1

2π
√

1− ρ2

)n

exp

(
− 1

2(1− ρ2)

n∑
i=1

(
x2
i + y2

i + ρxiyi
))

.

It is possible to express the data in the density as the two functions
∑n

i=1(x2
i + y2

i ) and∑n
i=1 xiyi. If the pair of statistics for (X, Y ) are defined as T1 =

∑n
i=1(X2

i + Y 2
i ), T2 =∑n

i=1XiYi,then it is possible to rewrite the density of the data into fX{n},Y {n}(x, y|ρ) =
1 ·h(T1(x, y), T2(x, y), ρ). Under Fisher-Neymann factorization theorem, T1 and T2 are sufficient
statistics. It is possible to write T1 and T2 as linear combinations of S1 and S2. That is

T1 =
S1 + S2

2
, T2 =

S1 − S2

4
.

As there is a one-to-one relation between the two pairs of statistics, T1 and T2 are necessarily
minimal as well.

A benefit of using S1 and S2 is that they are both independently gamma distributed.
The distribution is given by the standardization of U and V ,

1√
2(1 + ρ)

U ∼ N(0, 1) =⇒ 1

2(1 + ρ)

n∑
i=1

U2
i ∼ χ2

n = Γ
(n

2
, 2
)
,

where Γ(α, β) is the gamma distribution with shape parameter α and scale parameter β.
Finally, the distribution of S1 and S2 are given by

S1(U) =
n∑
i=1

U2
i ∼ 2(1 + ρ)Γ

(n
2
, 2
)

= Γ
(n

2
, 4(1 + ρ)

)
and

S2(V ) =
n∑
i=1

V 2 ∼ Γ
(n

2
, 4(1− ρ)

)
.

A benefit of working with the gamma distribution is that it is a familiar distribution with
significant work behind it. Methods for simulating the gamma distribution is well formulated
and implemented in various programming languages. Some transformations of the gamma
distribution is also known, and can be of help (Gamma distribution). Additionally, the
sufficient statistics can be used to make a data generating function. The data generating
function is in that case

S1 = 2(1 + ρ)Z1, S2 = 2(1− ρ)Z2,

where both Z1 and Z2 are chi-square distributed with n degrees of freedom.
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3.4 Symmetry conditions for estimators

When studying estimators for the correlation, it is important that they hold properties that
one would expect given the data. The base model for our data is that the vector (X, Y ) is
binormally distributed with unknown correlation ρ and known mean 0 and variance 1. The
definition of the correlation ρ is

ρ =
E[XY ]√
E[X2]E[Y 2]

(7)

(Casella and Berger 2002, p. 169). Assume that ρ is the correlation of the vector (X, Y ). It
is of interest to study the correlation of the vector (Y,X), (−X,−Y ), (−X, Y ) and (X,−Y ).
All of these are different variations of the vector (X, Y ) which will follow the same model
however with potentially different correlations. Using equation (7), it is apparent that (Y,X)
and (−X,−Y ) will have correlation ρ. For (X,−Y ) or (−X, Y ) the correlation can be
calculated as

ρ̃ =
E[X(−Y )]√
E[X2]E[(−Y )2]

= − E[XY ]√
E[X2]E[Y 2]

= −ρ.

In other words, if either X or Y changes sign, the sign of the correlation will change.
Estimators of the correlation should keep these properties.

Before expressing these properties more precisely for estimators, the multiple ways of
expressing estimators will be described. Firstly, the point estimator is denoted as ρ = h(X).
For the distribution estimators, one could either define it using the density f(ρ|x) or the
model generating function P = M(x, U).

The properties will first be expressed for the original data, that is for (x1, y1), ..., (xn, yn)
which are n realizations of (X, Y ). If the data was transformed to the vectors (y1, x1), ..., (yn, xn),
it is equivalent to assuming the data is n realizations of the vector (Y,X). Here the
correlations should be assumed to act similarly. The same holds for the data (−x1,−y1), ..., (−xn, yn).
However, if the data is changed to (−x1, y1)..., (−xn, yn), that is if all the Xi changes sign,
the data can be assumed to be realizations of (−X, Y ). This model has opposite sign for the
correlation compared to (X, Y ). All estimators should therefore make sure that if all the xi
changes sign, so should the correlation. The same applies to the data (x1,−y1), ..., (xn,−yn).

All of these properties can be expressed for each type of estimator as shows in definition
3.1.

Definition 3.1 (Symmetry conditions for estimators of (X, Y )). Let (x, y) be realization
from the density (5) on the form ((x1, y1), ..., (xn, yn)). If h(X, Y ) is a point estimator for
the correlation ρ, it satisfies the symmetry conditions if

h(x, y) = h(y, x) = h(−x,−y) = −h(−x, y) = −h(x,−y).

If f(ρ|x, y) is a density function of a distribution estimator for the correlation ρ then it
satisfies the symmetry conditions if

f(ρ|x, y) = f(ρ|y, x) = f(ρ| − x,−y) = f(−ρ| − x, y) = f(−ρ|x,−y).
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If P = M([x, y], U1) is a model generating function for the correlation, then it satisfies the
symmetry conditions if

P = M([x, y], U1) ⇐⇒ P = M([y, x], U2) ⇐⇒ P = M([−x,−y], U3) ⇐⇒

P = −M([−x, y], U4) ⇐⇒ P = −M([x,−y], U5),

where all Ui are identically distributed.

In terms of the minimal sufficient statistics S1 and S2 in (6), the properties are expressed
more effectively. Expressed in terms of (X, Y ) = ((X1, Y1), ..., (Xn, Yn)), S1 and S2 are

S1(X, Y ) =
n∑
i=1

(Xi + Yi)
2, S2(X, Y ) =

n∑
i=1

(Xi − Yi)2.

It is apparent that S1(X, Y ) = S1(Y,X) = S1(−X,−Y ) and similarly for S2. This means
that some of the symmetry conditions in definition 3.1 are necessarily satisfied using S1

and S2. If either X or Y changes sign then S1 and S2 are swapped. That is S1(X, Y ) =
S2(−X, Y )) = S2(X,−Y ) and vice versa. This implies that any estimator based on S1 and
S2 should satisfy the property where swapping S1 and S2 should change the sign of the
correlation. The properties for S1 and S2 are expressed in definition 3.2.

Definition 3.2 (Symmetry conditions for estimators of (S1, S2)). Let (X, Y ) be realization
from the density (5) on the form ((x1, y1), ..., (xn, yn)). Also let s1(x, y) =

∑
i(xi + yi)

2 and
s2(x, y) =

∑
i(xi− yi)2. If h(S1, S2) is a point estimator for the correlation ρ then it satisfies

the symmetry conditions if
h(s1, s2) = −h(s2, s1).

If f(ρ|s1, s2) is a density function of a distribution estimator for the correlation ρ then it
satisfies the symmetry conditions if

f(ρ|s1, s2) = f(−ρ|s2, s1).

If P = M([s1, s2], U1) is a model generating function for the correlation, then it satisfies the
symmetry conditions if

P = M([s1, s2], U1) ⇐⇒ P = −M([s2, s1], U2),

where U1 and U2 are identically distributed.

Both of the corollaries expresses a kind of symmetry conditions for the estimators which
are necessary for each estimator. There are other possible conditions that could be studied.
For instance, scaling either X and/or Y with a constant a. The issue in that case is that
the distribution of the vector will change. If X is scaled with a, then the variance of X will
change. This will not change the correlation, unless a is negative, but the model will change.
If the model was different, say there were assumed to be a unknown common variance, then
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scaling is possible. If both X and Y are scaled with a, then the common variance and the
correlation will remain unchanged. Expressing this in terms of S1 and S2 is also possible as
this will imply that the scaling a2S1 and a2S2 should not change the correlation.

All the symmetry conditions are actually invariance properties of the model under a
group of transformations. These transformations are expressed earlier for both the original
data (X, Y ) and the suffucient statistics (S1, S2). Because of lack of time, these will not be
expressed formally. However, estimators that keep the symmetry conditions should be so-
called equivariance estimator (Casella and Berger 2002, p. 333). The symmetry conditions
of the estimators can be seen in section 3.8.3 and 3.10.6. Additionally, any prior that is
invariant under the transformations g̃ρ = −ρ, that is π(ρ) = π(−ρ), should also satisfy the
definition of an invariant prior in section 2.5.5. The posteriors of these priors will then satisfy
the symmetry conditions in definition 3.1 and 3.2. This can be seen in section 3.6.6.

3.5 Loss functions

The loss functions that will be used are the same as mentioned in 2.4. For the case with
binormal with known mean and variance, the loss funcions are as follows:

Mean squared error:
L(ρ, ρ̂) = (ρ− ρ̂)2.

Mean absolute error:
L(ρ, ρ̂) = |ρ− ρ̂|.

Fisher information Metric:

L(ρ, ρ̂) = |f(ρ)− f(ρ̂)|,

where f(x) =
√

2arctanh(
√

2x/
√

1 + x2)−arcsinhx is the anti-derivative of
√

1 + s2/(1−s2)
at x.

Kullback-Leibler divergence:

L(ρ, ρ̂) = κ(ρ||ρ̂) = −1

2
ln

1− ρ2

1− ρ̂2
+

1− ρρ̂
1− ρ̂2

− 1.

It should be noted that as the Kullback-Leibler divergence is not symmetric, it is important
to note that ρ is the "true" correlation and ρ̂ is an approximation or estimator.

There are also other possibilities for loss function. An issue with using squared errors
or absolute errors is that they do not account for bounded parameter spaces. For instance,
a distance of 0.1 might be more consequential along the boundary of the parameter space
rather than near the center. If the parameter space is transformed to the real line, this
is no longer an issue. There are multiple options for transformation. A common choice
of transformation used to approximate confidence intervals for the correlation is Fisher’s
z-transform z(ρ) = arctanh(ρ). One of the properties of the z-transform is that given the
empirical correlation r, z(r) is approximately normally distributed around z(ρ) (Taraldsen
2020). By applying the squared error on the parameter space of z = z(ρ), the issue of a
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bounded parameter is no longer there. The resulting loss function is

z-Mean squared error:

L(ρ, ρ̂) = (arctanh(ρ)− arctanh(ρ̂))2.

Graphs of the loss functions can be seen in figure 3 for ρ = 0.0 and in figure 4 for ρ = 0.9.

Figure 3: Loss functions for ρ = 0.0

3.5.1 Calculating Kullback-Leibler divergence

The Kullback-Leibler divergence (KLD) can be calculated using Corollary 3.0.1 and Theorem
2.4. Firtly, the KLD of V can be calculated using the KLD of U . If we view the distribution of
the densities of U and V as fU(u|ρ) and fV (v|ρ) respectively, the relation fV (v|ρ) = fU(v|−ρ)
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Figure 4: Loss functions for ρ = 0.9

holds. The KLD of V is then

κ(fV ( · |ρ)||fV ( · |ρ̂)) = κ(fU( · | − ρ)||fU( · | − ρ̂)).

The first step is to calculate the KLD of U . The Kullback-Leibler divergence of a
univariate normal distribution with variance σ2 is

κ(f( · |σ1)||f( · |σ2)) =
1

2

(σ2
1

σ2
2

− 1− ln
σ2

1

σ2
2

)
.

(Robert 1996, p. 203). By inserting σ1 = ρ and σ2 = ρ̂, the Kullback-Leibler divergence of
U is

κ(fU( · |ρ)||fU( · |ρ̂)) =
1

2

(1 + ρ

1 + ρ̂
− 1− ln

1 + ρ

1 + ρ̂

)
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The Kullback-Leibler divergence of V is then

κ(fV ( · |ρ)||fV ( · |ρ̂)) = κ(fU( · | − ρ)||fU( · | − ρ̂)) =
1

2

(1− ρ
1− ρ̂

− 1− ln
1− ρ
1− ρ̂

)
.

The final expression for the join Kullback-Leibler divergence can be calculated using theorem
2.4. The joint divergence is

κ(f( · |ρ)||f( · |ρ)) =
1− ρρ̂
1− ρ̂2

− 1− 1

2
ln

1− ρ2

1− ρ̂2
. (8)

To be clear, ρ will represent the "true" model while ρ̂ represents the approximated model.

3.5.2 Calculating Fisher information and Fisher information metric

It is possible to calculate the Fisher information using the transformation in 3.0.1 and
Theorem 2.3.

For univariate normal distributions with mean 0 and variance σ2, the Fisher information
is I(σ2) = 1/(2σ4) (Schervish 1995, Example 2.82). The Fisher information is invariant
under reparametrization, see corollary 2.2.2. The Fisher information of parameter ρ under
the transformation σ2 = 2(1 + ρ) is

IU(ρ) =
1

2
(
2(1 + ρ)

)2

(∂ 2(1 + ρ)

∂ρ

)2

=
1

2(1 + ρ)2
.

Similarly,

IV (ρ) =
1

2(1− ρ)2

The Fisher information for the joint distribution is then the sum of IU(ρ) and IV (ρ). That
is

I(ρ) =
1 + ρ2

(1− ρ2)2
. (9)

In order to find the Fisher information metric, it is necessary to find the anti-derivative
of the square root of the Fisher information. That is∫ √

I(ρ)dρ =

∫ √
1 + ρ2

1− ρ2
dρ.

First, one can rewrite the expression above.√
1 + ρ2

1− ρ2
=

1 + ρ2

(1− ρ2)
√

1 + ρ2
=

2

(1− ρ2)
√

1 + ρ2
− 1− ρ2

(1− ρ2)
√

1 + ρ2

The integral of the second term is known as arcsinh.∫
1√

1 + ρ2
dρ = arcsinh(ρ) + c
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(Gradshteyn and Ryzhik 2007, p. 2.261). The challenge is then the first term. The solution
is to use the transformation u =

√
2ρ/
√

1 + ρ2.∫
2

(1− ρ2)
√

1 + ρ2
dρ =

√
2

∫
1 + u2

2−u2

1− u2

2−u2

du =
√

2

∫
1

1− u2
du =

√
2arctanh

( √
2ρ√

1 + ρ2

)
+ c

(Gradshteyn and Ryzhik 2007, p. 2.172).
Finally, the Fisher information metric is

L(ρ, ρ̂) = |f(ρ)− f(ρ̂)|, where

f(x) =
√

2arctanh
( √

2x√
1 + x2

)
− arcsinh(x).

(10)

3.6 Choice of priors for the correlation

This subsection will go through the different priors that will be discussed in the report.
Firstly, all the priors will be introduced before the calculations of the priors are presented.
S1 = s1 and S2 = s2 are the sufficient statistics defined in (6).

The first prior is the uniform prior

πu(ρ) =
1

2
∝ 1,

with the following posterior

πu(ρ|s1, s2) ∝ 1

(1− ρ2)n/2
exp

(
− 1

4

( s1

1 + ρ
+

s2

1− ρ

))
.

The second prior is Jeffreys prior

πj(ρ) ∝
√

1 + ρ2

1− ρ2
, (11)

with the following posterior

πj(ρ|s1, s2) ∝
√

1 + ρ2

(1− ρ2)n/2+1
exp

(
− 1

4

( s1

1 + ρ
+

s2

1− ρ

))
. (12)

The third prior is the PC prior

πpc(ρ) =
1

2

λ|ρ|
(1− ρ2)

√
− ln(1− ρ2)

exp(−λ
√
− ln(1− ρ2)), (13)
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where λ is a parameter that penalizes complexity of the prior. The following posterior is

πpc(ρ|s1, s2) ∝ λ|ρ|√
− ln(1− ρ2)

1

(1− ρ2)n/2+1
exp

(
− 1

4

( s1

1 + ρ
+

s2

1− ρ

)
− λ
√
− ln(1− ρ2)

)
.

(14)
The choice of penalization in this report will be λ = 10−4. Section 3.6.2 discusses why this
choice is approximately equivalent to the limit of the PC prior as λ→ 0. The expression of
the limit is given in (20).

The fourth prior is the arcsine prior

πas(ρ) =
1

π

1√
1− ρ2

, (15)

with the following posterior

πas(ρ|s1, s2) ∝ 1

(1− ρ2)n/2+1/2
exp

(
− 1

4

( s1

1 + ρ
+

s2

1− ρ

))
. (16)

The final and fifth prior is the arctanh prior

πat(ρ) ∝ 1

1− ρ2
(17)

with the following posterior

πat(ρ|s1, s2) ∝ 1

(1− ρ2)n/2+1
exp

(
− 1

4

( s1

1 + ρ
+

s2

1− ρ

))
. (18)

All the priors are plotted in figure 5. In order to compare their shapes, the improper
priors are multiplied by a constant. The graphs shows that the different priors weigh larger
values of the correlation differently.

All of the posteriors are visualized in figure 6. The figure shows that all the posteriors
will have similar behaviour. In the posteriors, it is possible to see the effect of priors shapes.
Jeffrey is the prior that prefer largest correlations, then arctanh, PC, arcsine and uniform
follow in the given order.
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Figure 5: Figure of all the priors as functions of ρ (left) and as functions of z(ρ) = arctanh(z)
(right). All priors are scaled such that they equal 1 at ρ = z(ρ) = 0.
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Figure 6: The posteriors for different data samples as function of ρ (left) and z(ρ) =
arctanh(ρ) (right). Each row are based on the data sets given in appendix A.1
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3.6.1 Jeffreys prior

As the Fisher information of the model is known, see (9), Jeffreys prior can be calculated.

πj(ρ) ∝
√

1 + ρ2

1− ρ2
.

The expression for the prior is only a proportional expression as it is improper. This can be
seen in the following calculations.∫ 1

−1

√
1 + ρ2

1− ρ2
dρ ≥ 2

∫ 1

0

1

1− ρ2
dρ =

∫ 1

0

(
1

1 + ρ
+

1

1− ρ

)
dρ

≥
∫ 1

0

1

1− ρ
dρ = − lim

ρ→1
ln(1− ρ) =∞.

In fact, the Fisher information metric from end to end is the area of Jeffreys prior. If L(ρ, ρ̂)
is the Fisher information, then ∫ 1

−1

πj(ρ)dρ = L(−1, 1) =∞.

3.6.2 Penalized complexity prior

In the binormal case, the parameter in questions can appear as both the correlation in the
original case and in the variances of U and V under the transformation in 3.0.1. There are
therefore two ways of arguing for the least complex choice of ρ.

The least complex choice will however be the same for both, which is when X and Y are
independent and identically distributed. If that is the case, U = X +Y and V = X −Y will
also be independent and identically distributed as the variances will be equal.

By inserting ρ̂ = 0 into (8), we get the complexity

d(ρ) =
√

2κ(f( · |ρ)|f( · |0)) =
√
− ln(1− ρ2).

The absolute derivative of d with respect to the correlation is∣∣∣∣∣∂d(ρ)

∂ρ

∣∣∣∣∣ =

∣∣∣∣∣ 2ρ

2(1− ρ2)
√
− ln(1− ρ2)

∣∣∣∣∣ =
|ρ|

(1− ρ2)
√
− ln(1− ρ2)

.

The PC prior is therefore given as

πPC(ρ) ∝ λ|ρ|
(1− ρ2)

√
− ln(1− ρ2)

e−λ
√
− ln(1−ρ2).(19)

It is important to note that the prior is only proportional to the expression above and not
equal. The reason is that the transformation d(ρ) is not injective. This means that the
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transformation does not satisfy the change of variables formula. It is therefore necessary to
study if the prior is proper.

The PC prior is proper with normalization constant 1/2. This is apparent as the
transformation d(ρ) is bijective for ρ ≥ 0 and ρ < 0 separately. The area of the expression
given in (19) for ρ ≥ 0 and for ρ < 0 are both 1. That implies that the total area of the
expression is 2. The normalization constant will therefore be 1/2.

The exact expression for the PC prior is therefore

πPC(ρ) =
λ|ρ|

2(1− ρ2)
√
− ln(1− ρ2)

e−λ
√
− ln(1−ρ2).

One problem of the PC prior in (13) is that the denominator is zero as ρ = 0. It is
therefore necessary to study the limit of the distribution as ρ→ 0. Neither exp(−λ

√
− ln(1− ρ2))

nor (1− ρ2) converges to zero, i.e. they are not of interest. It is therefore only necessary to
study the limit limρ→0 |ρ|/

√
− ln(1− ρ2).

lim
ρ→0

πPC(ρ) = lim
ρ→0

λ

2

|ρ|√
− ln(1− ρ2)

As both the numerator and the denominator converges to 0, it is possible to use L’Hôpital’s
rule (Marsden and Weinstein 1985b, p. 522).

= lim
ρ→0

λ

2

ρ

|ρ|
(1− ρ2)

√
− ln(1− ρ2)

ρ
=

λ2

4 limρ→0 πPC(ρ)
.

Here, the rule that if limx→0 f(x) exists and is non-zero, then

lim
x→x0

1

f(x)
=

1

limx→x0 f(x)

(Marsden and Weinstein 1985a, p. 60). The solution of the limit is then

lim
ρ→0

πPC(ρ) =
λ

2
.

Existence of the PC prior is therefore ensured for ρ ∈ (−1, 1).
The PC prior creates a family of prior distributions where the penalisation parameter

defines it’s shape. For large values of λ, the smaller correlations will be weighted. For small
values of λ, the correlation around the boundaries will be weighted.

Two scenarios that are interesting in theory, are the two limits of the PC prior. That
is for λ → 0 or λ → ∞. For λ → ∞, the prior will converge pointwise to zero everywhere
except at ρ = 0. This is a result of e−aλ being the dominating factor of the sequence for
any a > 0. The prior will however diverge to infinity at ρ = 0 as πPC(0) = λ/2. As long
as the distribution of the observed data is non-zero at ρ = 0, the posterior distribution will
also diverge to infinity at ρ = 0 and will therefore not exist there. For that reason, it is not
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viable to study that case where λ → ∞. An additional comment is that the situation with
infinite penalization would necessarily result in a point mass.

For λ → 0, the prior will converge pointwise to 0 everywhere except at -1 and 1. The
prior will diverge to infinity at both -1 and 1 as limρ→±1 πPC(ρ) = ∞ for any λ. The
PDF of the observed data converges to zero as ρ → ±1 faster than the PC prior diverges,
exp(−s1/(1+ρ)−s2/(1−ρ)) will dominate. This implies that the posterior will also converge
to zero at these points. The posterior is therefore bounded and proper. By using a first order
Taylor expansion of exp(−λ

√
− ln(1− ρ2)) with respect to λ = 0, the PC prior equals

πλ(ρ) =
λ|ρ|

2(1− ρ2)
√
− ln(1− ρ2)

(1− λ
√
− ln(1− ρ2) + o(λ)),

where o is the little o notation (Little-O Notation). Although πλ(ρ) converges to 0 almost
everywhere as λ→ 0, the sequence 1

λ
πλ(ρ) will converge point wise to

|ρ|
2(1− ρ2)

√
− ln(1− ρ2)

.

This will holds for any value ρ ∈ (−1, 1). The pointwise convergence can be seen in figure
7. Using this sequence it is possible to show that the PC prior converges to

πPC(ρ) ∝ |ρ|
(1− ρ2)

√
− ln(1− ρ2)

(20)

q-vaguely. The q-vague convergence is often used with regards to prior distribution. Under
the conditions of the binormal distribution, the posterior distribution converges q-vaguely
if the prior converges q-vaguely. This will in turn ensure beneficial properties for the
convergence of estimators. The q-vague convergence is also used to define improper priors as a
limit of proper priors (Bioche and Druilhet 2016). The properties of the q-vague convergence
will not be discussed further. By proposition 2.10 of (Bioche and Druilhet 2016), the sequence
πn(ρ) converges q-vaguely to (20) if

1. there exists a sequence of positive real numbers {an}n such that the sequence {anπn}n
converges pointwise to (20)

2. for any compact set K, there exists a scalar M and some N ∈ N such that for n > N ,
supθ∈K anπn(θ) < M .

We will define set λ = 1/n. As n → ∞, λ → 0. The first criteria is already satisfied under
the sequence {1/λ(n)}n = {n}n. For the second, it is possible to say that along any compact
set K ∈ (−1, 1), the supremum of πλ(ρ) is given by the largest correlation, ρ̃ = maxρ∈K |ρ|.
The supremum is bounded if

|ρ̃|
2(1− ρ̃2)

√
− ln(1− ρ̃2)

exp
(
−λ
√
− ln(1− ρ̃)

)
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is bounded for all λ > 0. As the exponential is always less than 1 for λ ∈ (0,∞), then the
supremum is bounded by

M =
|ρ̃|

2(1− ρ̃2)
√
− ln(1− ρ̃2)

.

The PC prior will therefore converge to (20) q-vaguely as λ→ 0.

Figure 7: Plot showing the PC prior (in blue) from (13) for λ = 10−4 and the asymptotic
PC prior (in red) from (20).

From the asymptotic expression in (20), the PC prior looks similar to Jeffreys prior. They
are not the same, which is especially apparent when studying the priors around ρ = ±1.
Figure 8 compares the two priors and shows the convergence of the PC prior. In this figure
both priors are fixed such that they equal 1 at ρ = 0.

A small note: There is reason to believe that all PC prior of a one-dimensional parameter
will converge q-vaguely to the prior

π(θ) ∝
∣∣∣∣∂d(θ)

∂θ

∣∣∣∣ , (21)

as λ → 0 if ∂d(θ)/∂θ is bounded. The proof is similar to the case for the specific prior for
the correlation. The Taylor exansion for the exponential function in the PC prior is similar
and the sequence

πλ(θ)

λ
=

∣∣∣∣∂d(θ)

∂θ

∣∣∣∣ (1− d(θ)λ+ o(λ))

converges point wise to (21). Additionally, the exponential is bounded by 1 as both d(θ) and
λ are non-negative. As a result, the supremum of the sequence πλ(θ)/λ along K is bounded
if |∂d(θ)/∂θ| is bounded along K for any compact set K. If the derivative is bounded as
well, then the PC prior will converge q-vaguely.
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Figure 8: Comparison between Jeffreys prior and PC prios as λ equals 1, 0.1 and 0.01.

3.6.3 Uniform prior

As the parameter space ΩΘ = (−1, 1), the size of the set is
∫ 1

−1
dρ = 2. This implies that the

uniform prior is

πU(ρ) =
1

2
Iρ∈(−1,1),

where Iρ∈(−1,1) is the indicator function for the set ρ ∈ (−1, 1). As the normalization constant
is finite, the prior is also proper. It should be noted that the posterior function with the
uniform prior will be equal to the pdf of the observed data, however the normalization may
differ.

3.6.4 Arcsine prior

The arcsine prior is a prior that is specified for this case and was proposed by Jeffrey. The
prior is defined as

πAS =
1

π
√

1− ρ2
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(Fosdick and Raftery 2012). One of the benefits of the arcsine is that it is a proper prior
with similar shape to Jeffreys prior.

3.6.5 Arctanh prior

Similarly to the arcsine prior, the arctanh prior is specified for this problem. It is the uniform
prior under the transformation z(ρ) = arctanh(ρ). The arctanh prior is then calculated to
be

πat(ρ) ∝ 1

1− ρ2
.

The prior is not proper as the anti-derivative of the prior is naturally the arctanh(x) function,
which diverges at x = −1 and x = 1.

One of the reasons the prior was chosen, is that an expansion of it will create a confidence
distribution for the correlation as a marginal posterior distribution. The expansion is

1

σ2(1− ρ2)
,

under the binormal model with known means, unknown common variance and unknown
correlation. The marginal posterior of the correlation can be shown to be the CVCD, see
theorem 3.2 and page 47.

3.6.6 Conjugate priors

One could state that all the priors are part of a conjugate family. If a prior distribution is
of a conjugate family for the model, then the posterior is also part of that conjugate family
(Casella and Berger 2002, Definition 7.2.15). This implies that the posterior distribution of
one experiment, can be the prior for a new experiment. In many ways, objective conjugate
priors create a true objective prior as it will keep information to the next set of observations
while the only biased information in the prior comes from the model choice. There are
multiple ways of formulating conjugate prior families. For instance, one could generalize
with a family of distributions covering all priors. Instead, an expanding family of conjugate
priors will be introduced iteratively.

The first conjugate family to be introduced is on the form

π(ρ|α, σ1, σ2) ∝ (1− ρ2)−α exp

(
−1

4

(
σ1

1 + ρ
+

σ2

1− ρ

))
.

This prior will cover the uniform, the arcsine and the arctanh priors with parameters α = 0,
α = 1/2 and α = 1 respectively, and σ1 = σ2 = 0.

The parameters of the prior will determine whether it is proper of not. The exponential
term of the density will dominate for ρ → ±1 as long as σ1 or σ2 are non-zero. If they
are both positive the prior is proper for all α as it is bounded. If at least one is zero, the
parameter α will determine if the prior is proper. For α < 1, the prior is proper and for
α ≥ 1, the prior is improper. The argument is based on the conjugate prior’s relation to the
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beta distribution. Without loss of generality, we assume σ1 > 0 and σ2 = 0. A lower bound
of the integral of the prior is∫ 1

−1

(1−ρ2)−α exp

(
−1

4

σ1

1 + ρ

)
dρ ≥

∫ 1

0

(1−ρ2)−α exp

(
−1

4

σ1

1 + ρ

)
dρ ≥ e−

σ1
8

∫ 1

0

(1−ρ2)−αdρ

=
1

2
e−

s1
8

∫ 1

−1

(1− ρ2)−αdρ = e−
s1
8

∫ 1

0

x−α(1− x)−αdx.

The last step used was the transformation ρ = 2x−1. The result is a proportional expression
to the density of the beta distribution with both parameters equal−α+1 (Beta Distribution).
It is known that the beta distribution is only proper when both parameters are positive, which
implies that α ≥ 1 gives an improper conjugate prior. A upper bound can also be found
using ∫ 1

−1

(1− ρ2)−α exp

(
−1

4

σ1

1 + ρ

)
dρ ≤

∫ 1

−1

(1− ρ2)−αdρ = 2

∫ 1

0

x−α(1− x)−αdx.

The conjugate prior is therefore also proper if α < 1. This result can be compared to the
uniform, arcsine and arctanh prior. Both uniform and arcsine are proper as they use α < 1,
and arctanh is improper as it uses α = 1.

An interesting comment about the conjugate prior, is that it is closely related to the beta
distribution, as seen in the calculations above. In fact, if σ1 = σ2 = 0 they are equivalent.
This implies that both the uniform and the arcsine priors are part of the beta distribution
family and the arctanh prior is the limit of the beta distribution density as both parameters
goes to 0.

The posterior distribution after n data points with sufficient statistics S1 = s1 and S2 = s2

on the form (6), is

π(ρ|s1, s1, α, σ1, σ2) ∝ (1− ρ2)−α−n/2 exp

(
−1

4

(
σ1 + s1

1 + ρ
+
σ2 + s2

1− ρ

))
.

This conjugate family is consistent with Theorem 2.25 presented by Schervish 1995. As
seen in the expression above, the posterior is equivalent to the prior, with parameter updates
as follows: α→ α+n/2, σ1 → σ1+s1 and σ2 → σ2+s2. It will therefore represent a conjugate
family. It should also be noted that if σ1 and σ2 are non-negative, the posterior is always
proper as s1 and s2 are positive. Only situations with positive σ1 and σ2 will therefore be
considered.

An expansion of the family above can be made to include either Jeffrey’s prior or the PC
prior. In order to include Jeffreys prior, some factor (1 + ρ2)β can be included in the prior,
where Jeffreys prior is given β = 1/2. For the PC prior one can include (− ln(1− ρ2)/ρ2)−γ

into the prior. A collective conjugate family of distribution is then given by the density

π(ρ|α, β, γ, σ1, σ2) ∝ (1− ρ2)−α(1 + ρ2)β
(
− ln(1− ρ2)

ρ2

)−γ
exp

(
−1

4

(
σ1

1 + ρ
+

σ2

1− ρ

))
.

(22)
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The conditions for a proper prior is similar to the smaller family described first. It is proper
if σ1 and σ2 are positive. If either or both equals zero, then the other factors will decide if the
prior is proper. The factor (1+ρ2)β will not affect the existence of a normalization constant.
For the parameter γ, it is more difficult to asses which choices that gives proper or improper
priors. It is possible to show that (1− ρ2)−1 ≥ (− ln(1− ρ2)/ρ2)−1 for all ρ ∈ (−1, 1). This
would imply that the prior is proper at least for α+ γ < 1. However, it is not unlikely that
the prior is proper for a larger values for α + γ as the logarithm increases relatively slowly.
The prior is at least improper if α ≥ 1 and γ > 0.

Given n observed data points with sufficient statistics S1 = s1 and S2 = s2 on the form
(6), the posterior distribution of (22) is

π(ρ|s1, s1) ∝ (1− ρ2)−α−n/2(1 + ρ2)β
(
− ln(1− ρ2)

ρ2

)−γ
exp

(
−1

4

(
σ1 + s1

1 + ρ
+
σ2 + s2

1− ρ

))
.

These are the same parameter updates as for the first conjugate prior family. In other
words, only α, σ1 and σ2 are updated. β and γ, on the other hand, will remain constant.
This means that they will not reflect the data, but rather the choices of the user. As more
data is introduced, α, σ1 and σ2 will be updated and dilute the users initial choices for those
parameters. A comment is that as data is added, each of these three parameters increase in
value. As α increases the factor (1− ρ2)−α will be more heavily weighted for larger ρ. The
posterior will remain bounded because the exponential will always dominate.

The parameter β will not have a large impact on the shape of the prior as (1+ρ2) ∈ (1, 2).
γ on the other hand will have a greater affect as − ln(1−ρ2) will diverge to infinity as ρ→ ±1.
The rate of divergence is slower than for (1−ρ2). As a result, the effect of γ will be diminished
as α increases. Another comment about − ln(1− ρ2)/ρ2 is that it converges to 1 as ρ → 0.
This is shown in the subchapter about PC prior, see 3.6.2. The general argument is that
using the Taylor expansion around ρ = 0, − ln(1− ρ2) = ρ2 + o(ρ) ≈ ρ2 for sufficiently small
ρ.

The shape of the family of priors are primarily given by σ1 and σ2, and their relative size
to α. Firstly, if σ1 = σ2 = 0, then the prior is convex. If σ1 and σ2 are positive, then the
prior changes shape and is bounded at ρ = ±1. Secondly, the number of modes can vary
between one or two depending on the size of σ1 and σ2 relative to α.

It is in place to comment on the symmetry conditions in definition 3.2 of posterior
distributions generated using the conjugate prior family. As mentioned, the posterior distribution
given n data points with sufficient statistics s1 and s2 is

π(ρ|s1, s2) ∝ (1− ρ2)−α−n/2(1 + ρ2)β
(
− ln(1− ρ2)

ρ2

)−γ
exp

(
−1

4

(
σ1 + s1

1 + ρ
+
σ2 + s2

1− ρ

))
.

If the symmetry is to be satisfied, then π(ρ|s1, s2) = π(−ρ|s2, s1). As all the factors using
α, β and γ includes only ρ2, the sign will not matter there. Only the exponential will affect
the symmetry properties. That is

−1

4

(
σ1 + s1

1 + ρ
+
σ2 + s2

1− ρ

)
= −1

4

(
σ1 + s2

1− ρ
+
σ2 + s1

1 + ρ

)
.

42



The equality holds only if σ1 = σ2. In other words, the symmetry condition in definition 3.2 is
satisfied for all of the conjugate priors as long as σ1 = σ2. More specifically, all the objective
priors introduced earlier satisfy the symmetry conditions as they use σ1 = σ2 = 0. These
conditions will also correspond to the conjugate prior being an invariant prior as described
in section 2.5.5 and 3.4.

3.7 Confidence distributions

A great number of confidence distributions are available through calculations. Only a few
of them will be studied. The following confidence distributions will be used in the thesis.
Each distribution will be presented using a theorem. Calculations for the distribution can be
found in the various subchapters and will be referred to in each theorem. A final overview of
the distribution can be seen in section 3.7.6. A greater family of confidence distributions that
satisfies the symmetry conditions in definition 3.2 or definition 3.1 is available and described
in both section 3.7.2 and 3.7.3.

The first four distributions are exact confidence distributions, that is, all confidence
intervals created using them will have exact coverage.

Theorem 3.1 (Unknown Variance Confidence Distribution (UVCD)). If r is the empirical
correlation on the form (40) of n data points from the binormal with known mean 0, then a
confidence distribution for the correlation is given by the density

f(ρ) =
1√

2B(n+ 1
2
, 1

2
)
(1− r2)

n−1
2 (1− ρ2)

n−2
2 (1− rρ)

1−2n
2 F (

3

2
,−1

2
, n+

1

2
;
1 + rρ

2
),

and model generating function
P =

γ√
γ2 + U

,

where
γ =
√
V

r√
1− r2

+ Z,

where U ∼ χ2
n, V ∼ χ2

n−1, Z ∼ N(0, 1), B is the beta function and F is the Gaussian
hypergeometric function.

Proof. The proof can be seen in section 3.7.1 from page 45. The density is provided by
Taraldsen 2020, which is the reason for the naming.

Theorem 3.2 (Common Variance Confidence Distribution (CVCD)). If s1 and s2 are
minimal sufficients statistics on the form (6) of n data points, then a confidence distribution
for the correlation is given by the density

f(ρ) =
2

B(n/2, n/2)

1

1− ρ2

(
1 +

s2

s1

1 + ρ

1− ρ

)−n
2
(

1 +
s1

s2

1− ρ
1 + ρ

)−n
2 (23)
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and the model generating function

P =
s1U1 − s2U2

s1U1 + s2U2

,

where U1 ∼ χ2
n, U2 ∼ χ2

n and B is the beta function.

Proof. The proof can be seen in section 3.7.1 from page 46.

A novel CD is presented next.

Theorem 3.3 (Difference Confidence Distribution (DiffCD)). If s1 and s2 are minimal
sufficients statistics on the form (6) of n data points, then a confidence distribution for the
correlation is given by the density

f(ρ) =
2−n√
πΓ(n/2)

∣∣∣∣ s1

2(1 + ρ)
− s2

2(1− ρ)

∣∣∣∣n/2−1/2

K1/2−n/2

(
1

2

∣∣∣∣ s1

2(1 + ρ)
− s2

2(1− ρ)

∣∣∣∣)
·
(

s1

2(1 + ρ)2
+

s2

2(1− ρ)2

)
and model generating function

P = −1

4

s1 + s2

U2 − U1

+ sgn(U2 − U1)

√(
1

4

s1 + s2

U2 − U1

)2

+ 1− 1

2

s2 − s1

U2 − U1

where U1 ∼ χ2
n, U2 ∼ χ2

n, Γ is the gamma function and K is the modified Bessel function of
the second kind

Proof. The proof can be found in section 3.7.2 from page 55.

Theorem 3.4 (CD1). If (x1, y1), ..., (xn, yn) are n data points given the model (5), then a
confidence distribution for the correlation is given by the model generating function

P =
1− ξ
1 + ξ

,

where

ξ =
n∏
i=1

(
Z1,i

Z2,i

xi − yi
xi + yi

) 2
n

and all Z1,i and Z2,i are standard normally distributed.

Proof. Proof can be seen i section 3.7.2 from page 62.

The following two distributions are generalized fiducial distributions derived in section
3.7.4.
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Theorem 3.5 (2-norm Fiducial Distribution). If s1 and s2 are minimal sufficients statistics
on the form (6) of n data points, then a generalized fiducial distribution for the correlation
is given by the density

r(ρ|s1, s2) ∝

√(
s1

2(1 + ρ)

)2

+

(
s2

2(1− ρ)

)2

(1− ρ2)−n/2 exp

(
1

4

(
s1

1 + ρ
+

s2

1− ρ

))
. (24)

Proof. The proof can be seen in section 3.7.4.

Theorem 3.6 (Infininty-norm Fiducial Distribution). If s1 and s2 are minimal sufficients
statistics on the form (6) of n data points, then a generalized fiducial distribution for the
correlation is given by the density

r(ρ|s1, s2) ∝
(

s1

2(1 + ρ)
+

s2

2(1− ρ)

)
(1− ρ2)−n/2 exp

(
−1

4

(
s1

1 + ρ
+

s2

1− ρ

))
. (25)

Proof. The proof can be seen in section 3.7.4.

Two other fiducial distributions were also created. Their performance was so poor that
they will not be used any further. They are however calculated in section 3.7.4.

3.7.1 CD for expanded models

It is possible to expand on the binormal model with known means and variances. The
expansions consist of models with additional unknown parameters to the correlation. Two
expanded models that will be used: 1) the binormal with known means and unknown
variances and 2) the binormal with known means and unknown common variance. Model
1) will in that case have three unknown parameters and model 2) have two. The confidence
distribution of both model 1) and 2) are independent on the true values of the other
parameters. They should therefore also be confidence distribution when only the correlation
is unknown. As the second model uses less information about the data than the first, it is
not unreasonable that the distribution of the second model is more precise.

The distribution of the first model is obtained by Taraldsen 2020. The distribution follows
from the known relation

√
U

ρ√
1− ρ2

−
√
V

r√
1− r2

= Z ∼ N(0, 1), (26)

where U ∼ χ2
n, V ∼ χ2

n−1 and r is the empirical correlation, see section 3.8. The relation
above is given by the empirical correlation, which cannot be expressed in terms of the minimal
sufficient statistics of our problem. This is due to the fact that the expanded model will have
three minimal sufficient statistics and not two. The confidence distribution can either be
defined using the model generating function or the corresponding density function. The first
can be found by solving (26) with respect to ρ. The solution is then

P =
γ√

γ2 + U
,
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where
γ =
√
V

r√
1− r2

+ Z.

Taraldsen 2020 provides the density of the CD as

f(ρ) =
n(n− 1)Γ(n− 1)√

2πΓ(n+ 1
2
)

(1− r2)
n−1

2 (1− ρ2)
n−2

2 (1− rρ)
1−2n

2 F (
3

2
,−1

2
, n+

1

2
;
1 + rρ

2
),

where Γ(x) is the gamma function and F is the Gaussian hypergeometric function. A small
comment about the normalization constant is that it can be rewritten slightly using the
beta function. Firstly, Γ(n − 1)(n − 1)n = Γ(n + 1) and

√
π = Γ(1/2) (Gamma function

Calculator). Secondly, the fraction Γ(α)Γ(β)/Γ(α + β) = B(α, β), where B is the beta
function (Beta function Calculator). It is therefore possible to rewrite the normalization
constant into

n(n− 1)Γ(n− 1)√
2πΓ(n+ 1

2
)

=
Γ(n+ 1)√

2Γ(1
2
)Γ(n+ 1

2
)

=
1√
2

1

B(n+ 1
2
, 1

2
)
.

The distribution will satisfy the symmetry condition in definition 3.1 as the only cases
where the correlation is not squared, is when it is multiplied with r. The empirical correlation
satisfies the symmetry conditions of an estimator, see 3.8.3. If r changes sign due to the
symmetry, ρ has to do the same if the density should not change. This will then imply that
f(ρ|x, y) = f(−ρ| − x, y) and so on.

The second model has the same sufficient statistics as the nested model, which are
similarly distributed. That is

S1

2σ2(1 + ρ)
= U1 ∼ χ2

n,
S2

2σ2(1− ρ)
= U2 ∼ χ2

n.

By dividing the two pivots on each other, the following expression is the pivot

S2

S1

1 + ρ

1− ρ
=
U2

U1

∼ β′(n/2, n/2), (27)

where β′(n/2, n/2) is the beta prime distribution with both parameter as n/2 (Beta prime
distribution). By solving equation (27) with respect to ρ under data S1 = s1 and S2 = s2,
the model generating function is

P =
s1U2 − s2U1

s1U2 + s2U1

.

The density function for ρ is

f(ρ) =
2

B(n/2, n/2)

1

1− ρ2

(
1 +

s2

s1

1 + ρ

1− ρ

)−n
2
(

1 +
s1

s2

1− ρ
1 + ρ

)−n
2
. (28)
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One comment about the above CD is that under the transformation

z(ρ) = arctanh(ρ) =
1

2
ln

1 + ρ

1− ρ
,

the distribution is symmetric around the point ln(s1/s2). This is apparent by taking the
logarithm of (27) as U1 and U2 are identically distributed. The transformation z(x) is
a commonly used transformation when studying the correlation in a binormal model. It
is known as Fisher’s z-transformation (Fosdick and Perlman 2016). The CD is also a
marginal posterior distribution for the correlation under model 2) with prior 1

σ2(1−ρ2)
. The

join posterior for ρ and the common variance σ2 is

π(ρ, σ2|s1, s2) ∝ 1

σ2(1− ρ2)

1

(2π)n
1

σ2n

1

(1− ρ2)n/2
exp

(
− 1

4σ2
(
s1

1 + ρ
+

s2

1− ρ
)

)
given n data points (xi, yi) with sufficient statistics s1 and s2 on the form

s1(x1, y1, ..., xn, yn) =
n∑
i=1

(xi + yi)
2, s2(x1, y1, ..., xn, yn) =

n∑
i=1

(xi − yi)2.

The posterior can be rewritten into

π(ρ, σ2|s1, s2) ∝ 1

(2π)n
1

σ2n+2

1

(1− ρ2)n/2+1
exp

(
− 1

4σ2
(
s1

1 + ρ
+

s2

1− ρ
)

)
.

With respect to σ2, the posterior is a inverse-gamma distribution with parameter α = n
and β = 1

4
(s1/(1 + ρ) + s2/(1 − ρ)). By integrating out σ2, the marginal posterior for the

correlation is

π(ρ|s1, s2) ∝ 1

(2π)n
1

(1− ρ2)n/2+1

(
1

4

(
s1

1 + ρ
+

s2

1− ρ

))−n
Γ(n).

By rewriting the expression into

π(ρ|s1, s2) ∝ 1

(1− ρ2)n/2+1

(
s1

1 + ρ
+

s2

1− ρ

)−n/2(
s1

1 + ρ
+

s2

1− ρ

)−n/2

=
1

1− ρ2
(s1s2)n/2

(
1 +

s2

s1

1 + ρ

1− ρ

)−n/2(
1 +

s1

s2

1− ρ
1 + ρ

)−n/2
,

one can see that the marginal posterior for the correlation is the CVCD.

3.7.2 CD from pivots

As mentioned in section 2.1.1, pivots and data generating functions can be used to create
model generating functions. Similarly as mentioned in 2.3, pivots are a common method for
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creating confidence distributions. Pivots are therefore a natural base for creating CDs either
through the approach of finding a density or creating a model generating function.

One could create pivots in multiple ways, for instance using either a data generating
function of the original data or data generating function of the minimal sufficient statistics
S1 and S2. For simplicity, the sufficient statistics will be used as basis. Using the original
data or some other transformation of the data is possible. However, the difficulties in the
following analysis will only be exacerbated as the dimension of the data is significantly larger.
A pivot for S1 and S2 can be written as

S1

2(1 + ρ)
= U1 ∼ χ2

n,
S2

2(1− ρ)
= U2 ∼ χ2

n.

In terms of model generating function, it is necessary to have a solution for ρ for any
given set S1 = s1, S2 = s2, U1 = u1 and U2 = u2. An issue is that there are more sufficient
statistics than parameters. In addition, if either u1 ≤ s1/4 or u2 ≤ s2/4 no solution can exist.
As a result, most sets will not give a solution. By reducing the two equations above down
to one through an appropriate function φ : R+ × R+ 7→ R, solutions might exist. Applying
φ to both sides, the following expression is then also a pivot.

φ

(
S1

2(1 + ρ)
,

S2

2(1− ρ)

)
= φ (U1, U2) . (29)

Not all choices for φ are admissible. An example is the function φ(x, y) = x. A framework for
φ such that the pivot in (29) is invertible is needed. The definition 3.3 expresses conditions
for φ that, along with theorem 3.7, implicitly defines a confidence distributions.

Definition 3.3. A function φ : R+ × R+ 7→ (a, b) ⊆ R, is an admissible pivot function or
APF if it satisfies the following properties:

1. φ(x, y) is increasing wrt. x

2. φ(x, y) is decreasing wrt. y

3. limx→∞ φ(x, y) = b independent of y

4. limy→∞ φ(x, y) = a independent of x.

Theorem 3.7. Let S1, S2 be defined as in (6) and U1 and U2 are identically and independently
chi-square distributed with n degrees of freedom. If φ(x, y) satisfies 3.3 then the inversion of

φ

(
S1

2(1 + ρ)
,

S2

2(1− ρ)

)
= φ(U1, U2)

wrt. ρ at the data points S1 = s1 and S2 = s2 is a model generating function for a confidence
distribution of ρ.
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Proof. As both S1

2(1+ρ)
= U1 and S2

2(1−ρ)
= U2 are pivots, then

Q(S1, S2, ρ) = φ

(
S1

2(1 + ρ)
,

S2

2(1− ρ)

)
= φ(U1, U2)

is also a pivot. An inversion of Q wrt. ρ exists if Q it is a bijective transformation of ρ and
it spans the space of φ(U1, U2) for any S1 = s1 and S2 = s2. If φ satisfies 3.3, then Q is a
decreasing function for ρ and therefore a bijection. Additionally, Q will span the space of
φ(U1, U2).

Definition 3.3 and theorem 3.7 gives a framework for creating confidence distribution for
the correlation. Even though the theorem only mentions the creation of a model generating
function, it is possible to create a density and distribution function as described in section
2.3.1. Finding the density of φ(U1, U2) is necessary for finding the density of the CD.

Not all CDs created using theorem 3.7 will satisfy the symmetry conditions in definition
3.2. An example is the function φ(x, y) = x/y2. It is an APF, however the corresponding
CD will not satisfy the symmetry conditions. The respective pivot function is

S1

S2
2

(1− ρ)2

1 + ρ
=
U1

U2
2

.

Without showing a proof, the model generating function is

P =
U1

2U2
2

s2
2

s1

+ 1−

√(
U1

2U2
2

s2
2

s1

+ 1

)2

+ 1− U1

U2
2

s2
2

s1

. (30)

If one would like a proof, it follows the same line of arguments as for the diff CD, as one has
to solve a quadratic equation in both situations. Figure 9 shows the distribution of P under
S1 ≈ 2.43 and S2 ≈ 0.73 and −P under S1 ≈ 0.73 and S2 ≈ 2.43. These distributions do
not match, which they should do under the symmetry conditions.

The following corollary poses a reformulation of the symmetry conditions in terms of the
pivotal equation.

Corollary 3.7.1. Let P = M([s1, s2], Z) be a model generating function for the correlation
such that

φ

(
s1

2(1 + P )
,

s2

2(1− P )

)
∼ φ(U1, U2),

where U1 and U2 are independently chi-square distributed with n degrees of freedom. The
symmetry conditions in definition 3.2 are satisfied if and only if

φ

(
s1

2(1 + P )
,

s2

2(1− P )

)
∼ φ

(
s2

2(1− P )
,

s1

2(1 + P )

)
.

Proof. The proof follows closely to definition 3.2. If the definition is satisfied, then the
following two model generating functions satisfy

M([s1, s2], Z) ∼ −M([s2, s1], Z),
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Figure 9: Histogram of the model generating function (30). Green histogram is for the model
generating function with data S1 ≈ 2.43 and S2 ≈ 0.73 and the blue histogram is for the
negative model generating function with data S1 ≈ 0.73 and S2 ≈ 2.43.

where M([s1, s2], Z) is the model generating function of (29) given observed data S1 = s1

and S2 = s2. If this relation holds true, −M([s1, s2], Z) is a model generating function for
(29) under data S1 = s2 and S2 = s1. As the right hand side of the pivotal equation remains
the same between the two scenarios, the distributions of the pivot should not change. In
other words, it is necessary that

φ

(
s1

2(1 +M([s1, s2], Z))
,

s2

2(1−M([s1, s2], Z))

)
∼ φ

(
s2

2(1−M([s1, s2], Z))
,

s1

2(1 +M([s1, s2], Z))

)
.

If instead, the expression above is true, andM([s1, s2], Z) is the model generating function
of (29) under S1 = s1 and S2 = s2, then −M([s1, s2], Z) is a model generating function under
S1 = s2 and S2 = s2. In other words, it is necessary that

M([s1, s2], Z) ∼ −M([s2, s1], Z)

and definition 3.2 is satisfied.

One can compare the conditions in corollary 3.7.1 to the pivot

s1

s2
2

(1− P )2

1 + P
(31)
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with model generating function P as given in (30). The distribution of the pivot is visualized
in figure 10 alongside the distribution of U1/U

2
2 . If φ(x, y) = x/y2 was such that 3.7.1 is

satisfied, then the two histograms should be equal. That is clearly not the case.

Figure 10: Two histograms of (31). P̃ is the model generating function (30) for s1 = 2.43
and s2 = 0.73. Green histogram is for (31) with data s1 ≈ 2.43 and S2 ≈ 0.73 and P = P̃ .
The blue histogram is for (31) with data s1 ≈ 0.73 and s2 ≈ 2.43 and P = −P̃ .

Corollary 3.7.1 does not provide any clear conditions with respect to the APF φ. It is
however possible to expand on 3.7.1 with conditions on φ(x, y).

Theorem 3.8. Let φ be an APF as defined in 3.3. The model generating function defined
as the inversion of

φ

(
S1

2(1 + ρ)
,

S2

2(1− ρ)

)
= φ(U1, U2)

wrt. ρ satisfies the symmetry conditions of definition 3.2 if φ(x, y) = h(φ(y, x)). h is a
decreasing involution. That is, h is it’s own inverse.

Proof. It is necessary that h is an involution as φ(x, y) = h(φ(y, x)) = h(h(φ(x, y)). Secondly,
h is decreasing to make sure that φ(x, y) and φ(y, x) both satisfy 3.3.
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Let P = M([s1, s2], φ(U1, U2)) be the model generating function of (29) with observed
data S1 = s1 and S2 = s2. If φ satisfies φ(x, y) = h(φ(y, x)), then

φ

(
s1

2(1 + P )
,

s2

2(1− P )

)
∼ φ(U1, U2)

⇐⇒ h

(
φ

(
s2

2(1− P )
,

s1

2(1 + P )

))
= h(φ(U2, U1)).

By applying the function h to the expression above, the equation is

φ

(
s2

2(1− P )
,

s1

2(1 + P )

)
∼ φ(U2, U1) ∼ φ(U1, U2).

Corollary 3.7.1 is therefore satisfied.

Theorem 3.8 provides an implicit definition of a group of pivots. Each group is given by
the involution h. There are many possible choices for h, which can complicate the process
of defining "every" confidence distribution given by theorem 3.7. However it is possible
to show that any APF ψ(x, y) = h(ψ(y, x)) can be reduced to φ(x, y) = t(ψ(x, y)) such
that φ(x, y) = −φ(y, x). Lemma 3.9 and theorem 3.10 demonstrates the relation and the
consequences..

Lemma 3.9. For any decreasing involution h(x) there exists an increasing function t(x)
such that t(x) = −t(h(x)).

Proof. The function t(x) = x− h(x) satisfies the proof for any h. That is

t(h(x)) = h(x)− h(h(x)) = h(x)− x = −t(x).

t is also increasing as h(x) is decreasing. At least one solution will therefore exist.

Theorem 3.10. Let P = M([s1, s2], Z) be a model generating function created using theorem
3.7 with any APF ψ satisfying theorem 3.8. There exists an APF φ satisfying φ(x, y) =
−φ(y, x) with model generating function P̃ = M([s1, s2], Z ′) created using theorem 3.7 such
that P̃ also is a model generating function under ψ. That is P ∼ P̃ .

Proof. For any APF ψ(x, y) such that ψ(y, x) = h(ψ(x, y)), there exists an APF φ such that
φ(x, y) = −φ(y, x) and t(φ(x, y)). The proof follows from lemma 3.9. The lemma states
that for any involution h there exists a t such that t(x) = −t(h(x)). φ(y, x) = t(ψ(y, x)) =
t(h(ψ(x, y))) = −φ(x, y). The equation

ψ

(
S1

2(1 + ρ)
,

S2

2(1− ρ)

)
= ψ(U1, U2)

can be applied t to both sides which results in the pivotal equation

φ

(
S1

2(1 + ρ)
,

S2

2(1− ρ)

)
= φ(U1, U2).

Both pivotal equations will necessarily have the same solutions as t is monotone and therefore
also bijective.
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An example of, and the inspiration for, theorem 3.10 is APFs ψ(x, y) such that ψ(x, y) =
1/ψ(y, x). It can be applied the logarithm, such that φ(x, y) = lnψ(x, y) = − lnψ(y, x) =
−φ(x, y). This example will also show that the function t(x) in lemma 3.9 does not have to
be unique.

Given 3.10, it is sufficient to only use the APF φ(x, y) = −φ(y, x). A simple and explicit
functions φ that satisfies theorem 3.8 under h(x) = −x is given in the following corollary.

Corollary 3.10.1. φ(x, y) = g(x) − g(y), where g(x) is increasing and limx→∞ g(x) = ∞,
satisfies definition 3.3 and satisfies the conditions in theorem 3.8.

Proof. The function φ(x, y) = g(x)−g(y) is a increasing function of x and decreasing function
of y as g is increasing. Because limx→∞ g(x) = ∞, the limit of φ(x, y) as either x or y goes
to infinity, will be ∞ or −∞ respectively. φ(x, y) will therefore be an APF. It also satisfies
the involution φ(x, y) = h(φ(y, x)) with h(x) = −x.

An example of a CD which can be created using the function in corollary 3.10.1 is the
CVCD. It can be defind under the APF φ(x, y) = lnx− ln y. The proof is tied to the one in
section 3.7.1. As shown previously, φ(x, y) = lnx − ln y is equivalent to using ψ(x, y) = x

y
.

The resulting pivot equation is then

S1

S2

1− ρ
1 + ρ

=
U1

U2

.

This is equivalent to (27) which is the source for the CVCD.
It would be useful if it is possible to expand theorem 3.10 to state if all φ symmetric

over h(x) = −x could be reduced to φ(x, y) = g(x)− g(y). No counter examples have been
made, however it is not unlikely that one will exist. The theorem will in either case reduce
the scope of the problem significantly. An interesting conjecture would be that theorem 3.8
is not only sufficient, but also necessary. If both conjectures are true, all CDs satisfying
the symmetry conditions which originates in theorem 3.7, can be created using the simpler
formulation in corollary 3.10.1.

A final question is whether all CDs for the correlation using S1 and S2 can be created
using the pivotal function in theorem 3.7. Unfortunately there are only one other CD created
for this problem using S1 and S2 without using theorem 3.7. That is the CVCD. The CVCD
can be created using theorem 3.7 with APF φ(x, y) = x/y. The resulting pivotal is equivalent
to (27).

Although there is no proof of uniqueness, the function φ(x, y) = g(x)− g(y) opens up to
great possibilities. The respective pivotal equation is

g

(
S1

2(1 + ρ)

)
− g

(
S2

2(1− ρ)

)
= g(U1)− g(U2). (32)

The issue is to express any model generating function or density function calculated using
the inversion of (32). The density of ρ can be calculated by first calculating the distribution
of Z = g(U1)− g(U2) and conducting the transformation from Z to ρ using (32). The issue
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is that calculating the density of Z can be challenging as one needs to integrate out one
variable. An expression for the density of Z is available given by an intergral, as seen in
corollary 3.10.2. The density of the corresponding confidence distribution is also expressed.

Corollary 3.10.2. The density of Z = g(U1) − g(U2), where U1 and U2 are chi-square
distributed with n degrees of freedom, can be expressed as

fZ(z) =

∫ ∞
−∞

1

Γ2(n/2)
2−n

(
g−1(|z|+ t)

)n/2−1 (
g−1(t)

)n/2−1

· e−
1
2(g−1(|z|+t)−g−1(t)) ∣∣g−1′(|z|+ t)g−1′(t)

∣∣ dt. (33)

The density of ρ under the transformation

Z = g

(
s1

2(1 + ρ)

)
− g

(
s2

2(1− ρ)

)
is

f(ρ) =

∫ ∞
−∞

1

Γ2(n/2)
2−n

(
g−1

(∣∣∣∣g( s1

2(1 + ρ)

)
− g

(
s2

2(1− ρ)

)∣∣∣∣+ t

))n/2−1

(
g−1(t)

)n/2−1
exp

(
−1

2

(
g−1

(∣∣∣∣g( s1

2(1 + ρ)

)
− g

(
s2

2(1− ρ)

)∣∣∣∣+ t

)
− g−1(t)

)
∣∣∣∣g−1′

(∣∣∣∣g( s1

2(1 + ρ)

)
− g

(
s2

2(1− ρ)

)∣∣∣∣+ t

)
g−1′(t)

∣∣∣∣ dt(
g′
(

s1

2(1 + ρ)

)
s1

2(1 + ρ)2
+ g′

(
s2

2(1− ρ)

)
s2

2(1− ρ)2

)
.

(34)

Proof. The density of Z is calculated using the formula which states that the density of the
sum of two independent random variables is a convolution. Z can be expressed as the sum
of X and Y where X = g(U1) and Y = −g(U2). As Z necessarily is symmetric as U1 and U2

are identically distributed, it is only necessary to do the convolution for positive z and state
the distribution by replacing z with |z|. The distribution of g(U1), and g(U2), is

f(x) =
1

Γ(n/2)
2−n/2g−1(x)e−

1
2
g−1(x)g−1′(x).

The convolution is then as given in (33). The expression of (34) follows directly using the
transformation from Z to ρ.

As the corollary shows, the general expressions for both Z and ρ are not simple. Using
them is therefore impractical. Similarly, calculating the model generating function can be
challenging. In fact, even simple situations like g(x) = x2 leads to a polynomial equation of
fourth degree. These two issues hinders a more exact expression for the corresponding CDs
for ρ. Making any analytical evaluation of the CD is therefore at best challenging. Hence,
finding an optimal choice of g might not be fully possible. Even comparing two CDs can
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be time consuming as all tests will require some use of numerical simulation. Secondly, the
choice of the function g is in many ways arbitrary.

A choice of g that gives both a density function and model generating function is identity
function g(x) = x. The pivotal equation (29) can be rewritten into

s1

2(1 + ρ)
− s2

2(1− ρ)
= U1 − U2. (35)

By using the formula in 3.10.2, the density of Z = U1 − U2 is given by∫ ∞
0

1

Γ2(n/2)
2−n (|z|+ t)n/2−1 tn/2−1e−

1
2

(|z|+t+t)dt =
1

Γ2(n/2)
2−ne−

1
2
|z|
∫ ∞

0

(|z|+t)n/2−1tn/2−1e−tdt.

By using solution 8. from 3.383 in (Gradshteyn and Ryzhik 2007), the solution to the intergal
above is

fZ(z) =
2−n√
πΓ(n/2)

|z|n/2−1/2K1/2−n/2

(
1

2
|z|
)
,

where K is the modified Bessel function of the second kind. Transformed to ρ by using (35),
the density function of the corresponding CD is

f(ρ) =
2−n√
πΓ(n/2)

∣∣∣∣ s1

2(1 + ρ)
− s2

2(1− ρ)

∣∣∣∣n/2−1/2

K1/2−n/2

(
1

2

∣∣∣∣ s1

2(1 + ρ)
− s2

2(1− ρ)

∣∣∣∣)
·
(

s1

2(1 + ρ)2
+

s2

2(1− ρ)2

)
.

The model generating function can also be solved. First step is to rewrite (35) by
multiplying with 2(1− ρ2) and ordering the expressions into

2ρ2(U2−U1)+ρ(s1 +s2)+s2−s1 +2(U1−U2) = 0 ⇐⇒ ρ2 +ρ
1

2

s1 + s2

U2 − U1

+
1

2

s2 − s1

U2 − U1

−1 = 0,

as long as U1 6= U2. For U1 = U2, the solution is given by

ρ(s1 + s2) + s2 − s1 = 0 ⇐⇒ ρ =
s1 − s2

s1 + s2

.

For U1 6= U2, there are two possible solutions

P = −1

4

s1 + s2

U2 − U1

±

√(
1

4

s1 + s2

U2 − U1

)2

+ 1− 1

2

s2 − s1

U2 − U1

. (36)

Figure 11 shows the two solutions given in (36) as functions of x = U2 − U1. s1 and s2

are set to 3.4 and 2.6 respectively, however the same result can be seen for any value of s1

and s2. The choice of which solution to use is dependent on the sign of U2 − U1.
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Figure 11: Visualization of the two solution from (36). Red graph represents solution using
positive term and blue graph is for negative term. x is the value of U2 − U1. Observed data
for curve is s1 = 3.4 and s2 = 2.6

Using that knowledge, the model generating function of ρ can be rewritten into

P = −1

4

s1 + s2

U2 − U1

+ sgn(U2 − U1)

√(
1

4

s1 + s2

U2 − U1

)2

+ 1− 1

2

s2 − s1

U2 − U1

. (37)

There are many other possible choices for g. One general comment about each of these
possible CDs, is that the median is common for all of them. To calculate the median, the
following lemma is necessary.

Lemma 3.11. Let X ∼ F (x) be a continous random variable with median mX , and t(x) is
a continuous monotone transformation. The median of Y = t(X) is then

mY = t(mX).

The inverse expression
mX = t−1(mY )

also holds.

Proof. The relation of the Lemma was presented by Gunnar Taraldsen during a meeting.
As I was unable to find any references, I constructed the following proof.

The median of X can be defined as

FX(m) =
1

2
⇐⇒ xmed = F−1

X

(
1

2

)
.

The CDF of Y = t(X) is given by the transformation

FY (y) = FX(t−1(y)).
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As t is monotone, the inverse exists. The median of Y is then defined as

FY (mY ) = FX(t−1(mY )) =
1

2
.

The median of Y can then be expressed as

t−1(mY ) = F−1
X (

1

2
) = mX .

Similarly, mY = t(mX).

The common median can then be expressed in the following theorem.

Theorem 3.12. Let P = M([s1, s2], Z) be the model generating function defined in theorem
3.7 with APF defined in corollary 3.10.1. The median of P is then

Median(P ) =
s1 − s2

s1 + s2

=
2
∑n

i=1 xiyi∑n
i=1(x2

i + y2
i )
.

Proof. The proof is based on Lemma 3.11. Assume the conditions of this theorem. Let
Z = g(U1)− g(U2). Then P is given by the transformation

Z(P ) = g

(
s1

2(1 + P )

)
− g

(
s2

2(1− P )

)
.

As discussed earlier, this transformation is monotone. The median of Z is naturally 0 as
U1 ∼ U2. The median for P , mP , will therefore satisfy the equation

g

(
s1

2(1 +mP )

)
− g

(
s2

2(1−mP )

)
= 0.

The solution is for the point where

s1

2(1 +mP )
=

s2

2(1−mP )
⇐⇒ mp =

s1 − s2

s1 + s2

.

The median expressed in Theorem 3.12 is the empirical correlation when the variances
are assumed to be equal but unknown. Other characteristics of the CDs such as the mean
and mode are not generally shared. The fact that the median is shared across all of these
confidence distributions could imply that it would suit as a good estimator for the correlation.
This has not been focused on, but similarly to how Bayesian estimators are calculated,
estimators based on CDs can be created. This estimator would then be such an estimator
under all the CDs described by corollary 3.10.1. There have not been any attempts at testing
the estimator.
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Expressing the most optimal confidence distribution created using these methods, are
challenging as most CDs are expressed implicitly. One can set up an optimality function
given the loss function L(ρ0, ρ), where ρ0 is the true correlation. Given the density function
(34), the risk of the CD is

R(ρ0) =

∫ ∞
0

∫ ∞
0

∫ 1

−1

L(ρ0, ρ)

∫ ∞
−∞

1

Γ2(n/2)
2−n

(
g−1

(∣∣∣∣g( s1

2(1 + ρ)

)
− g

(
s2

2(1− ρ)

)∣∣∣∣+ t

))n/2−1

·
(
g−1(t)

)n/2−1
exp

(
−1

2

(
g−1

(∣∣∣∣g( s1

2(1 + ρ)

)
− g

(
s2

2(1− ρ)

)∣∣∣∣+ t

)
− g−1(t)

))
dt

·
(
g′
(

s1

2(1 + ρ)

)
s1

2(1 + ρ)2
+ g′

(
s2

2(1− ρ)

)
s2

2(1− ρ)2

)
dρ

·
1

Γ2(n/2)

(
4(1− ρ2)

)−n/2
s
n/2−1
1 s

n/2−1
2 exp

(
− s1

2(1 + ρ)
− s2

2(1− ρ)

)
ds1ds2.

Optimizing the risk wrt. the function g is far from trivial as the risk is expressed using
the inverse of g, the derivative of the inverse as well as four integrals. No attempts to solve
that problem will be attempted.

An alternative to creating pivots using the minimal sufficient is to use the original data
directly. For each data point there is the data generating function

Xi = Z1,i, Yi = ρZ1,i +
√

1− ρ2Z2,i, for i = 1, ..., n

where Z1,i ∼ Z2,i ∼ N(0, 1) (Taraldsen 2020). This holds for all data points and can be
reduced to n pivots

Yi − ρXi√
1− ρ2

= Z2,i.

A similar approach as the APF can be applied to these pivots as well to create the
collective pivot

ψ

(
Y1 − ρX1√

1− ρ2
, ...,

Yn − ρXn√
1− ρ2

)
= ψ(Z1, ..., Zn),

where Zi ∼ N(0, 1) are independent. As the dimension of the domain of ψ is significantly
larger than φ, the complexity is greater. Additionally, the shape of the separate pivots is
dependent on the values of Xi and Yi, unlike the case for S1 and S2. Designing ψ in order to
always give a unique solution, is therefore not a simple task if even possible. Even satisfying
the symmetric conditions in definition 3.1 might not be possible as Xi and Yi are not treated
similarly.

A solution is to use the transformation of the data in corollary 3.0.1 instead. On that
form, the following pivots are true

Xi + Yi√
2(1 + ρ)

= Z1,i ∼ N(0, 1),
Xi − Yi√
2(1− ρ)

= Z2,i ∼ N(0, 1).
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An issue with these pivots is that they can have both positive and negative signs. This
implies that for some sets Xi, Yi, Z1,i and Z2,i, a solution does not exist. A possible step is
to apply the absolute value function to both pivots. That is∣∣∣∣∣ Xi + Yi√

2(1 + ρ)

∣∣∣∣∣ = |Z1,i| ∼ N(0, 1),

∣∣∣∣∣ Xi − Yi√
2(1− ρ)

∣∣∣∣∣ = |Z2,i| ∼ N(0, 1).

This case is quite similar to the one with the sufficient statistics. In fact, if the pivots are
squared, the sum of each type will result in the pivots of the sufficient statistics. This fact
will be expressed further. This is not surprising as these steps are the ones used to create
the statistics in the first place. It is possible to approach this problem similarly to the one
for sufficient statistics. Instead of the function φ(x, y), this problem needs a more general
function ψ(u1, v1, ..., un, vn) which takes in all data points (xi, yi). The resulting pivot can
be seen in the next equation.

ψ

(∣∣∣∣∣ X1 + Y1√
2(1 + ρ)

∣∣∣∣∣ ,
∣∣∣∣∣ X1 − Y1√

2(1− ρ)

∣∣∣∣∣ , ...,
∣∣∣∣∣ Xn + Yn√

2(1 + ρ)

∣∣∣∣∣ ,
∣∣∣∣∣ Xn − Yn√

2(1− ρ)

∣∣∣∣∣
)

= ψ(|Z1,1|, |Z2,1|, ..., |Zn,1|, |Zn,2|).

(38)
As for φ(x, y), it is necessary to define which functions for ψ that can be used to create
confidence distributions.

Definition 3.4. A function ψ : R+2n 7→ I, where I = (a, b) ⊆ R, is an admissible pivot
function or APF if it satisfies the following properties:

1. ψ increases wrt. all ui

2. ψ decreases wrt. all vi

3. limui→∞ ψ(u1, v1..., ui, ..., un, vn) = b independent of all vj for at least one i

4. limvi→∞ ψ(y1, v1..., vi, ..., un, vn) = a independent of all uj for at least one i.

Theorem 3.13. Let x1, y1, ..., xn, yn be n realizations of the distribution (5) and
Z1,i,Z2,i,...,Z2n−1,i,Z2n,i are identically and independently standard normally distributed. If
ψ(u1, v1, ..., un, vn) satisfies definition 3.4 then the inversion of

ψ

(∣∣∣∣∣ X1 + Y1√
2(1 + ρ)

∣∣∣∣∣ ,
∣∣∣∣∣ X1 − Y1√

2(1− ρ)

∣∣∣∣∣ , ...,
∣∣∣∣∣ Xn + Yn√

2(1 + ρ)

∣∣∣∣∣ ,
∣∣∣∣∣ Xn − Yn√

2(1− ρ)

∣∣∣∣∣
)

= ψ(Z1,1, Z2,1, ..., Zn,1, Zn,2)

wrt. ρ is a model generating function for a confidence distribution of ρ.

Proof. The arguments of this proof is essentially the same as for theorem 3.7. The main
difference is that mapping onto I wrt. ρ will now depend on multiple variables. As ρ either
converges to 1 or -1, either all the ui or all the vi will diverge towards infinity. It is therefore
necessary that ψ(u1, v1, ..., un, vn) converges to the boundaries of I for at least one ui or one
vj.
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The definition of an APF in 3.4 is more general than necessary in the definition of the
limits. As either all ui or all vi will diverge to infinity simultaneously, at different speeds,
it is possible to assert the condition that ψ converges to b when all ui diverges to infinity
and likewise for all vi and the limit a. This is also a reasonable criteria considering the next
point that will be brought up.

There is one type of symmetry that is not mentioned in definition 3.1 which often applies
to all estimators. As all the data points (xi, yi) are assumed to be sampled independently,
the ordering of the points should not matter. Similarly to corollary 3.7.1 and theorem 3.8, a
theorem for satisfying the symmetry conditions in definition 3.1 as well as the new condition
can be assembled.

Corollary 3.13.1. The symmetry conditions in definition 3.2 are satisfied for the model
generating function defined by the inversion of equation (38) if and only if

1. ψ(U1, V1, ..., Un, Vn) ∼ ψ(V1, U1, ..., Vn, Un)

2. ψ(U1, V1, ..., Ui, Vi, ..., Uj, Vj, ..., Un, Vn) ∼ ψ(U1, V1, ..., Uj, Vj, ..., Ui, Vi, ..., Un, Vn)

for all i, j = 1, ..., n, where

Ui =
|xi + yi|√
2(1 + P )

, Vi =
|xi − yi|√
2(1− P )

and P is given by the model generating function and inversion of (38) wrt. ρ with data
Xi = xi and Yi = yi for i = 1, ..., n.

Proof. The proof follows the same line of arguments as for corollary 3.7.1 in terms of the
symmetry conditions in definition 3.1. The first criteria of definition 3.1 where the correlation
does not change, will be satisfied automatically using the pivots above as the pivots will not
change if xi and yi are swapped or both change signs simultaneously. If either all xi or all yi
changes sign, the two separate pivots for each data points (xi, yi) will be swapped. This is
the same argument used for symmetry conditions of the sufficient statistics S1 and S2. As a
result, the same condition as in corollary 3.13.1, will have to be true for each pair of pivots.
Collectively, this results in condition 1.

This corollary does also have an additional condition. The order of the data points (xi, yi)
should not alter any estimators if they are independent. In terms of a model generating
function that is, if P = M([x1, y1, ..., xi, yi, ..., xj, yj, ..., xn, yn, ], Z) is a model generating
function and the inversion of (38) wrt. ρ at data Xi = xi and Yi = yi, i = 1, ..., n, then

M([x1, y1, ..., xi, yi, ..., xj, yj, ..., xn, yn, ], Z) ∼M([x1, y1, ..., xj, yj, ..., xi, yi, ..., xn, yn, ], Z).

Under these conditions, condition nr. 2 will necessarily and sufficiently hold.

Theorem 3.14. Let ψ satisfy 3.4. The model generating function defined as the inversion
of (38) wrt. ρ satisfies the symmetry conditions in definition 3.1 if ψ(u1, v1, ..., un, vn) =
h(ψ(v1, u1, ..., vn, un)) and ψ(u1, v1, ..., ui, vi, ..., uj, vj, ..., un, vn) = ψ(u1, v1, ..., uj, vj, ..., ui, vi, ..., un, vn)
for any i, j = 1, ..., n. h is a decreasing involution, that is h is its own inversion.
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Proof. The proof follows the same lines of arguments as in theorem 3.8. The main difference
is that the value of ψ is independent on the ordering of the data points (xi, yi). It is self
evident that if ψ(u1, v1, ..., ui, vi, ..., uj, vj, ..., un, vn) = ψ(u1, v1, ..., uj, vj, ..., ui, vi, ..., un, vn)
then they share model generating function.

A generalization of the reordering of data points can be expressed using the increasing
involutions hi,j. hi,j will in that case be such that

ψ(..., ui, vi, ..., uj, vj, ...) = hi,j(ψ(..., uj, vj, ..., un, vi, ...)).

However, it is not unlikely that it is necessary that all hi,j are the identity function. This
assumption was used when formulating theorem 3.14. In either case, the theorem will hold.

From theorem 3.14 there are multiple approaches to formulate pivots. As mentioned
earlier, all CDs created using the sufficient statistics can be expressed as

ψ

(∣∣∣∣∣ X1 + Y1√
2(1 + ρ)

∣∣∣∣∣ ,
∣∣∣∣∣ X1 − Y1√

2(1− ρ)

∣∣∣∣∣ , ...,
∣∣∣∣∣ Xn + Yn√

2(1 + ρ)

∣∣∣∣∣ ,
∣∣∣∣∣ Xn − Yn√

2(1− ρ)

∣∣∣∣∣
)

= φ

 n∑
i=1

∣∣∣∣∣ Xi + Yi√
2(1 + ρ)

∣∣∣∣∣
2

,
n∑
i=1

∣∣∣∣∣ Xi − Yi√
2(1− ρ)

∣∣∣∣∣
2
 .

A more general approach is

ψ

(∣∣∣∣∣ X1 + Y1√
2(1 + ρ)

∣∣∣∣∣ ,
∣∣∣∣∣ X1 − Y1√

2(1− ρ)

∣∣∣∣∣ , ...,
∣∣∣∣∣ Xn + Yn√

2(1 + ρ)

∣∣∣∣∣ ,
∣∣∣∣∣ Xn − Yn√

2(1− ρ)

∣∣∣∣∣
)

= f

(
λ

(∣∣∣∣∣ X1 + Y1√
2(1 + ρ)

∣∣∣∣∣ , ...,
∣∣∣∣∣ Xn + Yn√

2(1 + ρ)

∣∣∣∣∣
)
, λ

(∣∣∣∣∣ X1 − Y1√
2(1 + ρ)

∣∣∣∣∣ , ...,
∣∣∣∣∣ Xn − Yn√

2(1 + ρ)

∣∣∣∣∣
))

,

where f is an APF defined in 3.3. λ is necessarily increasing wrt. all of its variables. It
is also necessary that λ keeps the property of the limits given in definition 3.4. Another
possibility is to combine each data point (xi, yi) into separate pivots and apply a function to
each pivot. That is

ψ

(∣∣∣∣∣ X1 + Y1√
2(1 + ρ)

∣∣∣∣∣ ,
∣∣∣∣∣ X1 − Y1√

2(1− ρ)

∣∣∣∣∣ , ...,
∣∣∣∣∣ Xn + Yn√

2(1 + ρ)

∣∣∣∣∣ ,
∣∣∣∣∣ Xn − Yn√

2(1− ρ)

∣∣∣∣∣
)

= λ

(
f

(∣∣∣∣∣ X1 + Y1√
2(1 + ρ)

∣∣∣∣∣ ,
∣∣∣∣∣ X1 − Y1√

2(1− ρ)

∣∣∣∣∣
)
, ..., f

(∣∣∣∣∣ Xn + Yn√
2(1 + ρ)

∣∣∣∣∣ ,
∣∣∣∣∣ Xn − Yn√

2(1− ρ)

∣∣∣∣∣
))

,

where f and λ is defined as mentioned above. The two latter approaches are ways of
combining the pivots. The first separates the data points into two types of pivots which
are combined separately across data points. The other approach combines the pivots of each
data point first. Each approach will possibly result in two different confidence distributions.
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The involution conditions set in theorem 3.14 should be satisfied for both variations of ψ. For
the first of the two cases, it is sufficient that f satisfies the involution condition in theorem 3.8
similarly to φ(x, y). In fact, as stated in theorem 3.10, it is possible to only study cases for f
such that f(x, y) = −f(y, x). For the latter of the two, it is not as simple. The condition of λ
and f has to be such that h(λ(f(u1, v1), ..., f(un, vn))) = λ(f(v1, u1), ..., f(vn, un)). Similarly
to the other scenario, it is sufficient to study λ and f such that λ(f(u1, v1), ..., f(un, vn)) =
−λ(f(v1, u1), ..., f(vn, un)).

A final approach is based on combining confidence distributions (Singh, Xie, and Strawderman
2005). Each data point can be used to create separate CDs. Because of the similarity
between the pivots of the original data (xi, yi) and their respective sufficient statistics s1 and
s2, theorem 3.8 can be applied to

φ

(∣∣∣∣∣ Xi + Yi√
2(1 + ρ)

∣∣∣∣∣ ,
∣∣∣∣∣ Xi − Yi√

2(1− ρ)

∣∣∣∣∣
)

= φ(|Z1,i|, |Z2,i|).

This will result in n confidence distributions. All of these CDs can then be combined using
the methods described in (Singh, Xie, and Strawderman 2005) to create a collective CD for
all the data. No attempts at the method will be conducted.

It is possible to create multiple distributions using the approaches above. For instant, one
can take inspiration from CVCD by creating pivots for each data point using f(u, v) = u2/v2

and ψ(u1, v1, ..., un, vn) = λ(f(u1, v1), ..., f(un, vn)). The separate pivots for each data point
will be equivalent with the pivot used to create CVCD using just one data point. Two
possible choices for λ is in λ(ξ1, ..., ξn) =

∑
i ξi or λ(ξ1, ..., ξn) =

∏
i ξi. It is difficult to tell if

the composition of λ and f will satisfy the symmetry across any involution for

λ(ξ1, ..., ξn) =
∑
i

ξi

. For
λ(ξ1, ..., ξn) =

∏
i

ξi

the involution is h(x) = 1/x. If the product is chosen the complete pivot is

n∏
i=1

(Xi + Yi)
2

(Xi − Yi)2

(
1− ρ
1 + ρ

)n
=

n∏
i=1

Z2
1,i

Z2
2,i

.

If the logarithm is applied, then it is apparent that the resulting CD will be symmetric wrt.
the reparametrization z(ρ) = arctanh(ρ), similar to CVCD. Calculating the density function
of the resulting CD is challenging. The model generating function is however easily available.
Solving the equation above gives that

P =
1− ξ
1 + ξ

,
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where

ξ =
n∏
i=1

(
Z1,i

Z2,i

xi − yi
xi + yi

) 2
n

.

As the density is not available, it is not as simple to state whether it is unimodal or not.
However, it seems to be under simulations, see section 3.7.6.

If λ is chosen to be the sum instead, the pivot is

n∑
i=1

(Xi + Yi)
2

(Xi − Yi)2

1− ρ
1 + ρ

=
n∑
i=1

Z2
1,i

Z2
2,i

.

The model generating function for the resulting CD is then

P =
1− ε
1 + ε

, (39)

where

ε =

∑n
i=1

Z2
1,i

Z2
2,i∑n

i=1
(xi+yi)2

(xi−yi)2

.

For the second model, it is necessary to test if the symmetry conditions in definition 3.1 are
satisfied. Figure 12 shows the density of the model generating function P under data (x, y)
and the model generating function −P under (−x, y). As the figure shows, the two are not
similarly distributed and the symmetry is not satisfied.

Both of these model generating functions are on a similar form to the one for CVCD
although the distributions should be significantly different. Both of the pivots used to create
the CDs will also work in the setting of a common unknown variance just like the CVCD.

3.7.3 Method of regions

There exists an alternative perspective to the method described in the previous subchapter.
Instead of inverting a pivot, it is possible to invert a data generating function instead. Take
the data generating function for the sufficient statistics S1 and S2, defined by (6),

S1 = 2(1 + ρ)U1, S2 = 2(1− ρ)U2,

where U1 and U2 are independent chi-square distributed variables with n degrees of freedom.
Inversion of the data generating function does not exist for all sets S1, S2, U1 and U2. A
solution is to define a set A ⊆ ΩU of U = (U1, U2) and create the set of all solutions to the
data generating function wrt. ρ and U ∈ A. The set of solutions is then defined as

B = {ρ ∈ (−1, 1)|S1 = 2(1 + ρ)U1, S2 = 2(1− ρ)U2, (U1, U2) ∈ A}.

If A is chosen carefully, B can be an interval estimator for the correlation, and possibly also
a one-sided interval estimator. If the frequentistic coverage of B is sufficiently large given
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Figure 12: Histogram of the model generating function given in (39). The green histogram
is P under data (x, y) and the blue histogram is −P under data (−x, y).

the chosen coverage of A, then B could be a confidence interval estimator. Before studying
the coverage, the relation between B and A needs to be studied. Given S1 = s1 and S2 = s2,
the two solutions for ρ of the two separate equations of the data generating functions are

ρ =
s1

2U1

− 1, ρ = 1− s2

2U2

.

The only sets (U1, U2) that unites the two solutions are given by the relation

U2 = g(U1) =
s2

4− s1
U1

.

The function g is decreasing with respect to U1 such that U1 ≥ s1/4 and U2 ≥ s2/4. As
U1 →∞, ρ→ −1 and as U1 → S1/4, ρ→ 1. This will also imply that U1 < s1/4 or U2 < s2/4
does not allow for any solution for ρ. The relation between the sets along U2 = g(U1) and
the corresponding correlation ρ is visualized in figure 13.

If B should be a lower one-sided interval, then A must cover the "point" (U1, U2) =
(∞, S2/4). By defining A as

A = {(U1, U2)|U2 ≤ f(U1; a)},
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Figure 13: Figure of the line U2 = g(U1), where the dashes represents corresponding solutions
of the correlation ρ.

where a is a scalar and f(x; a) is an increasing function that diverges to ∞ with x for all
permissible a, B will always be a lower one-sided interval. As g(x) is decreasing, f and g
will have a unique intersection. This intersection will correspond to some correlation ρ̂. Any
correlation ρ ≤ ρ̂ will be covered by B as A will cover all sets along U2 = g(U1) with U1

larger than in the intersection. In other words A will always create lower one-sided intervals.
Figure 14 shows the function f(x; a) = ax, the set A and the line U2 = g(U1).

The next step is to study the coverage of B as a function of the coverage of A. Firstly,
it is necessary that A can have any coverage between 0 to 1 by varying a. Secondly, the
coverage of A should be increasing with a. If f(x; a) is increasing wrt. a for all x, then if
a1 < a2, A1 = {U |U2 ≤ f(U1; a1)} ⊂ {U |U2 ≤ f(U1; a2)} = A2. This results in P (U ∈ A1) <
P (U ∈ A2) i.e. the coverage of A increases with a. If the permissible set for a is (amin, amax),
then it is reasonable to define f(x; a) such that it divirges to infinity for all x if a ↓ amax

and f(x; a) converges to 0 for all x if a ↑ amin. This will imply that if a ↓ amin, A ↓ ∅ and if
a ↑ amax, A ↑ ΩU . The coverage of A can vary therefore vary with a from 0 to 1.

Let all the above criteria be satisfied for f(x; a). To summarize

1. f(x; a) is increasing wrt. x for all a
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Figure 14: Figure showing different aspects of the method of regions. x-axis is U1 and y-
axis is U2, however they are interchangable. Green line is U2 = g(U1), blue dotted line is
U2 = aU1, green field is the set A and blue field is the complementary set Ã. S1 = 2.1 and
S2 = 3.7.

2. f(x; a) is increasing wrt. a for all x

3. limx→∞ f(x; a) =∞ for all a

4. lima↑amax f(x; a) =∞ for all x

5. lima↓amin f(x; a) = 0 for all x.

If B covers ρ0, then the point (U1, U2) = (S1/(2(1 + ρ0)), S2/(2(1− ρ0))) satisfies

S2

2(1− ρ0)
≤ f

(
S1

2(1 + ρ0)
; a

)
.

This means that the probability of B covering ρ0 is given by

P

(
S2

2(1− ρ0)
≤ f

(
S1

2(1 + ρ0)
; a

))
.
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If ρ0 is the true parameter then S2

2(1−ρ0)
∼ S1

2(1+ρ0)
∼ U1 ∼ U2. As a result

P

(
S2

2(1− ρ0)
≤ f

(
S1

2(1 + ρ0)
; a

))
= P (U2 ≤ f(U1; a)) = P (U ∈ A).

This means that the frequentistic coverage of B equals the coverage of A. By changing
a ∈ (amin, amax), one-sided lower confidence interval for the correlation of any level can be
created. Potentially, each function f satisfying the criteria can result in different confidence
interval estimators.

It is possible to rewrite the confidence intervals into a confidence distribution. In order
to do that, an expression for the upper bound of the confidence intervals is needed. This is
ρ0 such that f(S1/(2(1 + ρ0)); a) = g(S1/(2(1 + ρ0))) or

f

(
S1

2(1 + ρ0)
; a

)
=

S2

2(1− ρ0)
.

This can be rewritten into

a = φ

(
S1

2(1 + ρ0)
,

S2

2(1− ρ0)

)
,

using the inversion a = φ(x, · ) of f(x; a) with respect to a. φ will always exist as f is
monotonic with respect to a. Some intrinsic properties of φ(x, y) is that it is decreasing for
x and increasing with y. This is due to y increasing with a and if x increases for constant
y, then a has to be decreasing. Additionally, φ(x, y) will need to cover all values of a in a
reasonable manner. φ(x, y) should converge to amax if y divirges to infinity for all values for
x. Similarily, φ(x, y) should converge to amin if y is finite as x→∞. In terms of the inversion
the limit x→∞ implies that φ(x, y)→ amin and y →∞ implies that φ(x, y)→ amax. These
conditions are equivalent with the definition of an APF in definition 3.3, however with the
properties of x and y switched.

Let a be defined such that the coverage of A is α. It is then necessary that P (U2 ≤
f(U1; a)) = P (a ≤ φ(U1, U2)) = α. This means that the distribution of a is given by
a = φ(U1, U2), where U1 ∼ U2 ∼ χ2

n. Inserting this into the equation above, we get that the
inversion of

φ

(
S1

2(1 + ρ0)
,

S2

2(1− ρ0)

)
= φ(U1, U2)

wrt. ρ defines the model generating function of a confidence distribution. This is the same
definition of a confidence distribution as given in theorem 3.7. Using regions will therefore
give an alternative argument for the framework presented in definition 3.3 and theorem 3.7.
It could be interpreted such that the relation U2 = f(U1; a) defines level curves in the space
of (U1, U2) with level φ(U1, U2). If no solution of the data generating function exists for the
pair U1 and U2, two alternative values along the level curve of (U1, U2), named (V1, V2) are
chosen as a reasonable alternative. The only V1 and V2 along the level curve which allow an
inversion of the data generating function wrt. ρ, are the two pivots

V1 =
S1

2(1 + ρ)
, V2 =

S2

2(1− ρ)
.
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The matching of the two methods, shows a bridge between inverting the data generating
function and the pivotal function. In this case, they have a one-to-one relation, which could
be the explanation.

In terms of the symmetry conditions in definition 3.2, they are defined slightly different
for this method. The idea is that a confidence distribution created by using regions, should
not be dependent on how A is defined with respect to the order of U1 and U2. Previously
A was defined as the set A = {(U1, U2)|U2 ≤ f(U1; a)}. A just as valid definition would be
Ã = {(U1, U2)|U1 ≤ f(U2; b)}. An important difference is that the corresponding interval B̃
will then be upper one-sided confidence intervals on the form (ρ0, 1). If these two definitions
of A should create the same distributions, then A and Ã should be complementary in the
space of U . In that case, the lower and upper one-sided intervals for the correlation will also
be complementary for all S1 = s1 and S2 = s2. The two distributions should therefore align.

A and Ã are complementary if the boundaries of the two sets match. That is if U1 =
f(U2; a) = f(f(U1; b); a). An example of the two is shown in figure 14. For this to be possible
f( · ; a) is the inverse of f( · ; b) and vice versa. This will lead to some intrinsic properties of
φ. First of all, if it is possible to define the relation between U1 and U2 as both U1 = f(U2; a)
and U2 = f(U1; b), then the following should be true for the inversion

φ(U1, U2) = a ⇐⇒ φ(U2, U1) = b.

Secondly, there needs to be a relation between a and b such that f(f( · ; b); a) is the identity
function. Using the inversion wrt. a,

φ(f(U1; b), U1) = a, φ(f(U2; a), U2) = b.

In general, a = φ(f( · ; b), · ) = h(b). Additionally, this relation should go both directions,
that is b = h(a), such that a = h(b) = h(h(a)). a and b are therefore related across an
involution. h is decreasing as φ(x, y) is decreasing wrt. x and f( · ; b) is increasing wrt. b. If
applied further, then

φ(U1, U2) = a = h(b) = h(φ(U2, U1)).

It is therefore necessary that φ(x, y) is symmetric along a decreasing involution h, as was
given previously in theorem 3.8. Without making the assertion, it seems as if this condition
is not only sufficient but also necessary.

A final, and important point is to make sure that the symmetry of this method aligns
with the symmetry defined in definition 3.2. One would assume so, as the conditions for the
pivotal equation (29) are the same as in section 3.7.2, however a formal bridge should be
made. Assume the two scenarios, S1 = s1, S2 = s2 and S1 = s2, S2 = s1. If S1 = s1 and
S2 = s2, the set of all (U1, U2) such that the data generating function is invertible are along
the graph

U2 = g(U1) =
s2

4− s1
U1

.

The inverse is
U1 = g̃(U2) =

s1

4− s2
U2
.
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If S1 = s2 and S2 = s1, then the set of all (U1, U2), such that the data generating function
is invertible, are along the graph

U1 = g(U2) =
s2

4− s1
U2

.

It is apparent that swapping S1 and S2 is equivalent to reflecting the graph U2 = g(U1) across
the line U1 = U2. One could therefore study the case of S1 = s2 and S2 = s1 by swapping
U1 and U2 and use the data S1 = s1 and S2 = s2. There is however a small difference, the
correlation decreases with U1 and increases with U2. In fact, the correlation can be expressed
as

ρ =
s1

2U1

− 1 = 1− s2

2U2

.

If U1 and U2 are swapped, then the correlation under the same data is

ρ̃ =
s1

2U2

− 1 = 1− s2

2U1

.

As U1 ∼ U2, ρ ∼ −ρ̃. Swapping S1 and S2 would therefore result in the same model
generating function, however with opposite sign. Figure 3.7.3 illustrates the two scenarios.
As seen, under data S1 = 2.3 and S2 = 1.2, the lower confidence distributions for a = 2.3
using f(x; a) = ax is (−1, 0.63). The lower confidence distributions for data S1 = 1.2,
S2 = 2.3, b = h(a) = 1/a using f(x; b) = bx, is (−1,−0.63). The symmetry conditions of
the method of regions are therefore equivalent to the symmetry conditions in definition 3.2.

Figure 15: The two figures show the calculation of one-sided intervals under both data
S1 = 1.2, S2 = 2.3 and S1 = 2.3, S2 = 1.2.

It would be interesting if a similar approach could be used for the data generating
functions posed in 3.7.2 for the original data. This will be a much more complex case,
where a relation between 2n random variables Z1,i, Z2,i, i = 1, ..., n has to be defined. It
is not unlikely that this method is applicable for the second data generating function using
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3.0.1 and will result in the method using pivots described in definition 3.4, theorem 3.13 and
theorem 3.14. That is, use the data generating functions

Xi + Yi =
√

2(1 + ρ)Z1,i Xi − Yi =
√

2(1− ρ)Z2,i.

where (Xi, Yi) are independently binormally distributed with means 0 and variances 1.
Trying to set up the framework will be time consuming and therefore not attempted.

An interesting question, is if such a method is more generally applicable in cases where
the inversion of the data generating function does not always exist. Secondly, it is also
interesting to see if it will coincide with the method of inverting pivot distributions. The
example used in this thesis is also one where the parameter is of one dimension. Is such
a method viable if there are multiple unknown parameters? Questions like these would be
useful to answer.

3.7.4 Generalized fiducial distribution

An alternative method for inverting the data generating function is the generalized fiducial
distribution. The basis for a GFD is the data generating function. For the minimal sufficients,
the data generating function is

S1 = 2(1 + ρ)U1, S2 = 2(1− ρ)U2,

where U1 and U2 are chi-square distributed with n degrees of freedom. Before creating the
GFD it is necessary to calculate the Jacobian like function

J(S1, S2, ρ) = D
(
∇ρG(ρ, (U1, U2))|(U1,U2)=G−1((S1,S2),ρ)

)
,

where ∇ρG(ρ, (U1, U2)) is the gradient matrix calculated with respect to ρ. There is only a
scalar parameter, which means that the gradient matrix is the vector

∇ρG(ρ, (U1, U2)) = 2(U1, U2).

The inverse G−1((S1, S2), ρ) is the pivots

G−1((S1, S1), ρ) =
1

2

(
s1

1 + ρ
,
s2

1− ρ

)
.

The jacobian J is then given by
J(y, θ) = D (A) ,

where
A =

(
s1

1 + ρ
,
s2

1− ρ

)
.

As mentioned in 2.3.3 the function D(A) is dependent on a choice of norm and can give
different solutions. Two possible choices for D(A) following the 2-norm and infinity norm
are respectively

D2(A) =

√√√√ n∑
i=1

A2
i , D∞(A) =

n∑
i=1

|Ai|,
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when Ai is element i of the vector A. The Jacobian can then be calculated as respectively

J2(y, θ) =

√(
s1

1 + ρ

)2

+

(
s2

1− ρ

)2

=
1

1− ρ2

√
ρ2(s2

1 + s2
2) + 2ρ(s2

2 − s2
1) + s2

1 + s2
2,

J∞(y, θ) =
s1

1 + ρ
+

s2

1− ρ
=

1

1− ρ2
(ρ(s2 − s1) + s1 + s2) .

The absolute value function in the last expression was removed as both s1/(1 + ρ) and
s2/(1−ρ) are positive. For both the 2-norm and the infinity-norm, the symmetry conditions
in definition 3.2 are satisfied.

It is also possible to calculate the GFD using the original data and the data generating
function

Xi = Z1,i, Yi = ρZ1,i +
√

1− ρ2Z2,i,

where Z1,i ∼ Z2,i ∼ N(0, 1). The derivative of the first relation with Xi will necessarily be 0
and will not affect the GFD. We will therefore only look at the gradient using the function
for Yi. The gradient is then 

Z1,1 − ρ√
1−ρ2

Z2,1

...
Z1,n − ρ√

1−ρ2
Z2,n

 .
The inverse of the data generating functions with respect to Z1,i and Z2,i are

Z1,i = xi, Z2,i =
yi − ρxi√

1− ρ2
.

For each i

Z1,i −
ρ√

1− ρ2
Z2,i =

1

1− ρ2

(
xi(1− ρ2)− ρ(yi − ρxi)

)
=
xi − ρyi
1− ρ2

.

The Jacobians under the 2-norm and infinity-norm are then respectively

J2 =

√√√√ n∑
i=1

(
xi − ρyi
1− ρ2

)2

=
1

1− ρ2

√√√√ n∑
i=1

(xi − ρyi)2,

J∞ =
n∑
i=1

∣∣∣∣xi − ρyi1− ρ2

∣∣∣∣ =
1

1− ρ2

∑
i=1

|xi − ρyi|.

One issue is that the Jacobian will treat xi and yi differently. For instance, in the infinity
norm, if |xi| ≥ |yi|, then the value of ρ will not affect the sign of xi − ρyi. If |yi| ≥ |xi|, then
the value of ρ will affect the sign of xi − ρyi. The distribution of ρ will therefore not satisfy
the symmetry conditions in definition 3.1.
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A different approach to a data generating function for the original data is based on
corollary 3.0.1. This relation can be rewritten into Xi + Yi =

√
2(1 + ρ)Z1,i and Xi − Yi =√

2(1− ρ)Z2,i, where Z1,i ∼ Z2,i ∼ N(0, 1). By inverting them wrt. Xi and Yi, we get the
data generating function

Xi =
1

2

(√
2(1 + ρ)Z1,i +

√
2(1− ρ)Z2,i

)
, Yi =

1

2

(√
2(1 + ρ)Z1,i −

√
2(1− ρ)Z2,i

)
.

As earlier, the Jacobian can be obtained by inverting with respect to Z1,i and Z2,i,

Z1,i =
xi + yi√
2(1 + ρ)

, Z2,i =
xi − yi√
2(1− ρ)

,

and differentiate the data generating function wrt. ρ

1

2

(
Z1,i√

2(1 + ρ)
− Z2,i√

2(1− ρ)

)
,

1

2

(
Z1,i√

2(1 + ρ)
+

Z2,i√
2(1− ρ)

)
.

Combining the two, the vector A consists of n pairs of the two following expressions

1

2

(
xi + yi

2(1 + ρ)
− xi − yi

2(1− ρ)

)
,

1

2

(
xi + yi

2(1 + ρ)
+

xi − yi
2(1− ρ)

)
.

Both of these can be rewritten into

1

2(1− ρ2)
(yi − ρxi),

1

2(1− ρ2)
(xi − ρyi)

respectively.
The two Jacobian are

J2 ∝
1

1− ρ2

√√√√ n∑
i=1

(xi − ρyi)2 +
n∑
i=1

(yi − ρxi)2

for the 2-norm, and

J∞ ∝
1

1− ρ2

(
n∑
i=1

|xi − ρyi|+
n∑
i=1

|yi − ρxi|

)
for the infinity-norm. These Jacobian are similar to the previous ones found for the original
data. The main difference is that these will satisfy the symmetry conditions in definition 3.1.
By rewriting the 2-norm Jacobian, it is apparent that it is similar to the 2-norm Jacobian of
the sufficient statistics. If the expression inside the square root of the 2-norm is rewritten,
we get that

ρ2

n∑
i=1

(x2
i + y2

i )− 4ρ
n∑
i=1

(xiyi) +
n∑
i=1

(x2
i + y2

i ),
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where
∑n

i=1(x2
i + y2

i ) = t1 and
∑n

i=1(xiyi) = t2 are minimal sufficient statistics on the form
(3.3). As noted in section 3.3, they can be expressed as s1 and s2. Inserting this into
the expression above, the 2-norm for the original data can be expressed using the minimal
sufficient statistcs

ρ2t1 − 4ρt2 + t1 = ρ2 s1 + s2

2
− ρ(s1 − S2) +

s1 + s2

2
.

The Jacobian for the 2-norm is in that case

J2 ∝
1

1− ρ2

√
ρ2(s1 + s2)− 2ρ(s1 − s2) + s1 + s2,

which is similar to the Jacobian for the sufficient statistics, however with s1 and s2 instead
of s2

1 and s2
2. Rewriting the infinity-norm Jacobian is more of a challenge as the shape of

J∞ varies greatly with the data points (xi, yi). The numerator for the Jacobian is piece wise
linear.

3.7.5 Bayesian posteriors as confidence distributions

In order for a posterior distribution to be a confidence distribution, the credible intervals
created using the posterior have to satisfy the definition of confidence intervals. Given the
cumulative distribution of a posterior distribution Π(ρ), the lower one-sided credible interval
of level p is given by (−1, ρp], where Π(ρp) = p. Unfortunately, none of the cumulative
functions for any of the posterior distributions in section 3.6 have been found. Testing
whether they are confidence distributions or not is therefore limited to numerical methods.

An opposite position is to find confidence distributions that can be defined as posterior
distributions. If the form of the distributions is a result of (32), then it is possible to study
which g that can result in a Bayesian distribution. One initial note to make is that, in
order to have a posterior distribution, the posterior needs to include a prior. Unless it is the
uniform prior, the prior will have to be a function of the parameter and not the data. This
is a necessary condition as long as the prior is not uniform.

Say that the density function of φ = g(U1)− g(U2) is given by h(φ). The density of ρ is
then calculated using the transform φ(ρ) = g(s1/(2(1 + ρ)))− g(s2/(2(1− ρ))). That is, the
density of the CD is

f(ρ) = h(φ(ρ))

∣∣∣∣−g′( s1

2(1 + ρ)

)
s1

2(1 + ρ)2
− g′

(
s2

2(1− ρ)

)
s2

2(1− ρ)2

∣∣∣∣
= h

(
g

(
s1

2(1 + ρ)

)
− g

(
s2

2(1− ρ)

)) ∣∣∣∣g′( s1

2(1 + ρ)

)
s1

2(1 + ρ)2
+ g′

(
s2

2(1− ρ)

)
s2

2(1− ρ)2

∣∣∣∣ .
The density consists of two factors. The first is h(φ(ρ)). The only case for which h(φ(ρ))
can produce a factor that is only dependent on ρ and not the data, is when h(φ) is constant.
Which means that φ is uniformly distributed. The remaining factor would in that case have
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to include the density function of the base model. The other option is that the second factor
will give a prior distribution of ρ. That is∣∣∣∣g′( s1

2(1 + ρ)

)
s1

2(1 + ρ)2
+ g′

(
s2

2(1− ρ)

)
s2

2(1− ρ)2

∣∣∣∣ = γ(s1, s2)π(ρ).

First, let γ(s1, s2) ∝ 1. The only possible solution for g is that g(x) = x−1. This solution can
be found directly, but also using differential equations (derivative of γ(s1, s2)π(ρ) wrt. s1

and s2 is 0). Given g′(x) = x−1, δ(ρ) = 1/(1+ρ)+1/(1−ρ) = 2/(1−ρ2). That is g(x) has to
be on the form g(x) = lnx. This is an admissible function and will result in the CD named
CVCD. Unfortunately, the density is not a posterior distribution of the binormal with known
means 0 and known variances 1. It is however the marginal posterior distribution using the
prior 1

σ2(1−ρ2)
under the binormal with known means 0 and unknown common variance σ2,

see Appendix ??. The alternative is that γ(s1, s2) is not constant. This implies that the two
following factorizations should hold,

g′
(

s1

2(1 + ρ)

)
s1

2(1 + ρ)2
= γ1(s1)δ(ρ)

and
g′
(

s2

2(1− ρ)

)
s1

2(1− ρ)2
= γ2(s2)δ(ρ).

However, this will further imply that the ratio of the two is independent of ρ, that is

g′
(

s1
2(1+ρ)

)
s1

2(1+ρ)2

g′
(

s2
2(1−ρ)

)
s1

2(1−ρ)2

=
s1

s2

(
1− ρ
1 + ρ

)2 g′
(

s1
2(1+ρ)

)
g′
(

s2
2(1−ρ)

) = f(s1, s2).

The solution with respect to g has to be such that

g′
(

s1
2(1+ρ)

)
g′
(

s2
2(1−ρ)

) ∝ (1 + ρ

1− ρ

)2

.

The solution is then g′(x) = x−2 and g(x) = x−1. x−1 is not an admissible solution. Either
way, this solution will also correspond with the uniform prior.

The only possible prior that will result in a confidence distributions on the form (32) is
given by the uniform distribution. Because of a lack of any proof of uniqueness, there might
exist suitable confidence distributions that are not on the form derived from (32). Priors
that lead to confidence distributions can therefore exist.

3.7.6 Comparing the CDs

Before conducting any analysis on the confidence distribution, it is useful to visualize and
compare them. The density alone can show issues and benefits with the various distributions.
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The exact confidence distributions proposed in section 3.7 are the ones that will be studied
in this subchapter. Characteristics one can look for is the spread of the density and whether
the density is unimodal, which means it has a unique maximum.

All the exact CDs presented in section 3.7 are visualized in figure 16 and 17. From the
figures, it is clear that the only multimodal distribution is diffCD, which has two modes.
The others seem to have only one mode. For the UVCD and CVCD, an exact expression for
the density exists, which can be used to verify that claim. For CD1, that is not the case and
can only be assumed based on a series of simulations.

It is also possible to compare the CDs with posterior distributions. A figure of all the
posteriors alongside the diff CD can be seen in figure 18. The figure shows that the posteriors
and the diff CD hold similar shapes.

The fiducial distributions for the sufficient statistics are also shown in figure 19. It
is apparent that the fiducial distribution are not as focused as the difference confidence
distribution.

Figure 16: Sampled density for all four CDs proposed in section 3.7 under the parameter ρ
and z(ρ) = arctanh(ρ). The densities are given data set 1 in the Appendix A.1.
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Figure 17: Samples density for all four CDs proposed in section 3.7 under the parameter ρ
and z(ρ) = arctanh(ρ). The densities are given data set 3 in the Appendix A.1.
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Figure 18: Density of all posterior distributions and the CVCD as functions of ρ (left) and
z(ρ) = arctanh(ρ) (right). The densities are given data set 3 in Appendix A.1
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Figure 19: Density of the two fiducial distributions in theorem 3.5 (fiduc_2) and theorem
3.6 (fiduc_2) alongside the CVCD. The densities are given data set 3 in Appendix A.1
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3.8 Frequentist point estimators

The following estimators will be used in this report. For simplicity, SSX =
∑n

i=1 x
2
i , SSY =∑

i=1 y
2
i and SSXY =

∑n
i=1 xiyi. Each estimator is obtained from (Fosdick and Raftery

2012).
The empirical correlation, also known as sample correlation.

ρ̂EMP =
SSXY√
SSXSSY

. (40)

This is the maximum likelihood estimator when the means are known and variances are
unknown.

The empirical correlation with variance 1,

ρ̂EMP2 =


−1, for SSXY < −n
SSXY
n

, for − n < SSXY < n

1, for n < SSXY .

(41)

The final choice is the maximum-likelihood estimator for known mean and variance.

ρ̂MLE := solution of ρ3 − SSXY
n

ρ2 − n− SSX − SSY
n

ρ− SSXY
n

= 0.

3.8.1 Empirical correlation with variance 1

It is possible to use the empirical correlation where it is also assumed that the variance is 1.
With that in mind, the empirical correlation would be

SSXY
n

.

However, the estimator are no longer bounded between -1 and 1. The solution is to simply
truncate the estimator at these bounds. Which gives the estimator in (41).

3.8.2 Maximum-likelihood estimator

The maximum-likelihood estimator when all means and variances are known, is given as the
solution of a third degree polynomial equation. The equation is

ρ3 − SSXY
n

ρ2 − n− SSX − SSY
n

ρ− SSXY
n

= 0.

Figure 20 shows the polynomial that determines the MLE. All the possible solutions are
known. They are

ρ̂MLE,1 =
SSXY

3n
+

21/3ψ

3n
(
γ +

√
4ψ3 + γ2

)1/3
−
(
γ +

√
4ψ3 + γ2

)1/3

3 · 21/3n
,
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ρ̂MLE,2 =
SSXY

3n
− (1 + i

√
3)ψ

3 · 22/3n
(
γ +

√
4ψ3 + γ2

)1/3
+

(1− i
√

3)
(
γ +

√
4ψ3 + γ2

)1/3

6 · 21/3n
,

ρ̂MLE,3 =
SSXY

3n
− (1− i

√
3)ψ

3 · 22/3n
(
γ +

√
4ψ3 + γ2

)1/3
+

(1 + i
√

3)
(
γ +

√
4ψ3 + γ2

)1/3

6 · 21/3n
,

where
ψ = −3n(n− SSX − SSY )− SS2

XY ,

γ = −36n2SSXY + 9nSSXSSXY + 9nSSY SSXY − 2SS3
XY

(Fosdick and Raftery 2012). Out of the three solutions, it is possible that some are complex
numbers. Which solutions that are complex or not, is fully dependent on ψ and γ. In
the case displayed in figure 20, there are only one real solution. If there are multiple real
solutions, the one that maximizes the likelihood is naturally the MLE estimator. A small
note is that there are methods of determining which solution is the MLE, see (Fosdick and
Raftery 2012).

Figure 20: Plot of polynomial that determines the MLE.

3.8.3 Symmetry conditions for the estimators

All the estimators will satisfy the symmetry conditions in definition 3.1 and definition 3.2.
For the empirical correlation, changing the sign or swapping the Xi and Yi will affect

SSX or SSY . The sign of SSXY will however change if and only if either all the Xi or all
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the Yi changes sign. This implies that the symmetry conditions should hold for both the
empirical correlation and the empirical correlation for known variances 1.

For the MLE, one can study the equation that defines it. That is

ρ3 − SSXY
n

ρ2 − n− SSX − SSY
n

ρ− SSXY
n

= 0.

Let ρ̂ be a solution for the equation. If SSXY changes sign, then −ρ̂ would be a solution, as
seen below

(−ρ̂)3 +
SSXY
n

(−ρ̂)2 +
n− SSX − SSY

n
ρ̂+

SSXY
n

= −
(
ρ̂3 − SSXY

n
ρ̂2 − n− SSX − SSY

n
ρ̂− SSXY

n

)
= 0.

This implies that the symmetry conditions holds for the MLE.

3.9 Bayesian point estimators

The second batch of estimators is the Bayesian estimators.
The first estimator is the posterior mean.

ρ̂E = E(ρ).

This estimator is the minimizer of both expected mean squared error, but also the expected
Kullback-Leibler loss κ(f( · |ρ)||f( · |ρ0). The proofs can be seen in section 3.10.2 and section
3.10.3.

The second choice of estimator is the posterior median.

ρ̂M = Median(ρ).

The median is the minimizer of both the expected absolute error and the expected Fisher
information metric. The proof for both are given in section 3.10.1.

The third estimator is denoted as the FI2 estimator.

ρ̂FI2 = f−1
(
E
(
f(ρ)

) )
,

where

f(x) =
√

2 arctan(

√
2x√

1 + x2
)− arcsinx.

The estimator is the minimizer of the expected squared Fisher information metric. Proof in
section 3.10.2.

The fourth estimator is denoted as the KL2 estimator.

ρ̂KL2 := solution of − ρ0
1− E(ρ)ρ0

1− ρ2
0

+
1

2
ρ0E(ln(1− ρ2))− ρ0 ln(1− ρ2

0) + ρ0

+
E(ρ)− ρ0E(ρ2)

1− ρ2
0

+
1

2
E(ρ) ln(1− ρ2

0)− 1

2
E(ρ ln(1− ρ2))− E(ρ) = 0
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Proof in section 3.10.4.
The final estimator is the maximum a posteriori estimator, or MAP.

ρ̂MAP = arg max
ρ0

g(ρ),

where g(ρ) is the posterior of ρ.

3.10 Proofs of Baysian estimators

This subsection will go through the results that determined the choice of Bayesian estimators.

3.10.1 Fisher information metric and MAE as loss

The following proof shows that the median is the minimizer of the mean absolute error and
the Fisher information metric.

Corollary 3.14.1. Let f(x) be a monotone continuous function and X be distributed by the
density π(x) on the space ΩX . Then the median of X is the unique minimizer of∫

ΩX

|f(x)− f(x0)|π(x)dx

with respect to x0.

Proof. Firstly, the expected loss can be written as∫ ∞
−∞
|f(x)− f(x0)|π(x)dx =

∫ x0

−∞
(f(x0)− f(x)))π(x)dx−

∫ ∞
x0

(f(x0)− f(x))π(x)dx

= f(x0)(2Π(x0)− 1)−
∫ x0

−∞
f(x)π(x)dx−

∫ x0

∞
f(x)π(x)dx,

where Π(ρ) is the cumulative function of pi(x). The extreme points of the expected loss
function can be found by taking the derivative

f ′(x0)(2Π(x0)− 1) + 2f(x0)π(x0)− f(x0)π(x0)− f(x0)π(x0) = f ′(x0)(2Π(x0)− 1) = 0.

As long as f ′(x) 6= 0 for all x, the only solution to the problem is Π(x0) = 1/2 or x0 equals
the median of π(x).

The next step is to show that x0 is a minimizer. As there is only one expremal point, it
is only necessary to study the twice derivative of the expected loss at the extremal point. If
it is positive, then the point is a minimum. The second derivative wrt. x0 is

f ′′(x0)(2Π(x0)− 1) + f ′(x0)π(x0).

At the median, 2Π(x0)− 1 = 0. The remaining part is necessarily positive. In other words,
the solution x0 = Median(X) has to be the minimizer.
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Corollary 3.14.2. The median of Θ is the minimizer of expected Fisher information metric
if the Fisher information is non-zero on the sample space of Θ. That is, the median is a
minimizer if there does not exist a θ such that

∂

∂θ
l(θ) = 0

for all x.

Proof. The proof follows directly from 2.2.1 and 3.14.1.

3.10.2 MSE and squared Fisher information metric as loss

The following corollary given the estimator for minimizing MSE and squared Fisher information
metric.

Corollary 3.14.3. Let f(x) be a monotone continuous function and X be distributed by the
density π(x) on the space ΩX . Then f−1(Ef(X)) with respect to π(x) is the minimizer of∫

ΩX

(
f(x)− f(x0)

)2
π(x)dx

with respect to x0.

Proof. First, the expected loss is∫ ∞
−∞

(f(x0)− f(x))2π(x)dx =

∫ ∞
−∞

(f(x0)2 − 2f(x0)f(x) + f(x)2)π(x)dx

= f(x0)2 − 2f(x0)E(f(X)) + E(f(X)2).

The extreme points can be found by taking the derivative of the expected loss with respect
to x0. This gives the equation

2f(x0)f ′(x0)− 2f ′(x0)E(f(X)) = 2f ′(x0)(f(x0)− E(f(X))) = 0.

As long as f ′(x0) 6= 0 for all x, the only solution is f(x0) = E(f(X)) or x0 = f−1(E(f(X))).
The next step is to show that x0 is a minimizer. As there is only one expremal point, it

is only necessary to study the twice derivative of the expected loss at the extremal point. If
it is positive, then the point is a minimum. The second derivative wrt. x0 is

f ′′(x0)(f(x0)− E(f(X))) + f ′(x0)2.

At the minimizer, f(x0)−E(f(X)) = 0. The remaining part is necessarily positive. In other
words, the solution x0 = f−1 (E(f(X))) is the minimizer.
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3.10.3 Kullback-Leibler divergence as loss

Corollary 3.14.4. Let π(ρ) be the distribution of the correlation ρ in a binormal distribution
with known mean and variance. Then the posterior mean is the minimizer of the expected
Kullback-Leibler divergence. That is

E(ρ) = arg min
ρ0

E

(
κ
(
f( · |ρ)||f( · |ρ0)

))

Proof. The expected loss using Kullback-Leibler divergence as loss function is∫ 1

−1

(−1

2
ln

1− ρ2

1− ρ2
0

+
1− ρ0ρ

1− ρ2
0

− 1)f(ρ)dρ = −1

2
E(ln(1− ρ2)) +

1

2
ln(1− ρ2

0) +
1− ρ0E(ρ)

1− ρ2
0

− 1.

The extreme points can be calculated by finding the derivative with respect to ρ0

− ρ0

1− ρ2
0

+
−2ρ0(1− ρ0E(ρ))− E(ρ)(1− ρ2

0)

(1− ρ2
0)2

= −(E(ρ)− ρ0)(1 + ρ2
0)

(1− ρ2
0)2

= 0.

The only real solution to this equation is for ρ0 = E(ρ). That is, the estimator is equal to
the expected value of ρ given the distribution f(ρ).

The next step is to show that ρ0 is a minimizer. If we let ρ0 → 1, then the Kullback-
Leibler divergence goes to infinity. The solution ρ0 = E(ρ) is therefore a minimizer.

A small note, there are reasons to believe that the above is true of the Kullback-
Leibler divergence of any distribution from the exponential family. This will in that case
be because of the connection between Kullback-Leibler divergence and Bregman divergence.
The minimizer of the expected Bregman divergence is always the mean. For further reading,
see (Exponential family) and (Bregman divergence). It is also possible that this can hold for
the curved exponential family, as the binormal with known means and variances are part of
it.

3.10.4 Squared Kullback-Leibler divergence

Corollary 3.14.5. Let π(ρ) be the distribution of the correlation ρ in a binormal distribution
with known mean and variance. Then the minimizer of the expected squared Kullback-Leibler
divergence solves the equation

−ρ0
1− E(ρ)ρ0

1− ρ2
0

+
1

2
ρ0E(ln(1− ρ2))− ρ0 ln(1− ρ2

0) + ρ0

+
E(ρ)− ρ0E(ρ2)

1− ρ2
0

+
1

2
E(ρ) ln(1− ρ2

0)− 1

2
E(ρ ln(1− ρ2))− E(ρ) = 0

(42)

with respect to ρ0.
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The minimizer of the squared Kullback-Leibler divergence can be found by solving the
equation

∂

∂ρ0

∫ 1

−1

κ2(ρ||ρ0)f(ρ)dρ = 2

∫ 1

−1

κ(ρ||ρ0)
∂

∂ρ0

κ(ρ||ρ0)f(ρ)dρ = 0. (43)

From section 3.10.3, we know that

∂κ(ρ|ρ0)

∂ρ0

= −(ρ− ρ0)(1 + ρ2
0)

(1− ρ2
0)2

.

By inserting the expressions into (43), the equation for the minimizer ρ0 is∫ 1

−1

2κ(ρ|ρ0)

(
− (ρ− ρ0)(1 + ρ2

0)

(1− ρ2
0)2

)
f(ρ)dρ = 0.

The factors (1 + ρ2
0) and 1/(1− ρ2

0)2 are both independent of ρ and non-zero on (-1,1). They
will therefore have no affect on the solution and can be removed. The remaining equation is
then ∫ 1

−1

(
− ρ0

1− ρρ0

1− ρ2
0

+ ρ0
1

2
ln

1− ρ2

1− ρ2
0

+ ρ0 + ρ
1− ρ0ρ

1− ρ2
0

− ρ

)
f(ρ)dρ = 0

By splitting up the terms and calculating the expectancy, the equation is

−ρ0
1− E(ρ)ρ0

1− ρ2
0

+
1

2
ρ0E(ln(1− ρ2))− 1

2
ρ0 ln(1− ρ2

0) + ρ0

+
E(ρ)− ρ0E(ρ2)

1− ρ2
0

+
1

2
E(ρ) ln(1− ρ2

0)− 1

2
E(ρ ln(1− ρ2))− E(ρ) = 0.

No explicit expressions for the solution have been found.

3.10.5 Estimators with regards to priors

As all the priors are part of the conjugate family given in equation (22), it can be seen as
the posterior distribution without any information. It is therefore of interest to apply the
estimators to the conjugate priors to see the estimates with no information given. This can
imply the bias of the prior. Some initial comments to make about the priors is that they
are all symmetric around 0 and some are improper. For the proper priors symmetry implies
that the expectation of any odd function is 0. Similarly, the median will be 0. This implies
that ρ̂E = ρ̂M = ρ̂FI2 = 0. For the improper priors, neither the median nor the expectation
in general exists.

3.10.6 Additional comments about the Bayesian estimators

There are some additional comments to be made about the Bayesian estimators. These
comments are made based on studying the estimators for different observed data. General
assumptions will be made.
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The Bayesian estimators generally follow a specific order for any prior. The order from
smallest to largest is ρ̂E, ρ̂M , ρ̂FI2 and ρ̂MAP . There are no proof of this, however I have
yet to see a counter-example. Figure 21 shows an example. The order is believed to be a
result of the posterior’s shapes. For all the posteriors, the density is skewed towards larger
correlations, as can be seen in figure 6.

Secondly, the median and the minimizer of the squared Fisher information metric, ρ̂FI2
will hold similar values. Whether they are equal or not remains to be proven.

Figure 21: Bayesian estimates with the uniform prior and n = 3 data points. The simulated
data can be found in A.1.

All the Bayesian estimators will satisfy the symmetry conditions in definition 3.2. Firstly,
all the posterior distributions satisfy the symmetry. Let L(ρ, ρ̂) be any loss function. The
Bayesian risk of the estimator h is

R(S1, S2, ρ̂) =

∫ 1

−1

L(x, ρ̂)π(x|S1, S2)dx.

Let ρ̂ = h(s1, s2) be the minimizer of the risk for data S1 = s1 and S2 = s2. Under the data
S1 = s2 and S2 = s1, the risk is given as

R(s2, s1, ρ̂) =

∫ 1

−1

L(x, ρ̂)π(x|s2, s1)dx.

If the loss function is such that L(x, ρ̂) = L(−x,−ρ̂) for all x, ρ̂ ∈ (−1, 1), then the risk
equals

R(s2, s1, ρ̂) =

∫ 1

−1

L(−x,−ρ̂)π(−x|s1, s2)dx =

∫ 1

−1

L(x,−ρ̂)π(x|s1, s2)dx.

The mimimizer would necessarily be h(s2, s1) = −h(s1, s2) and the symmetry conditions are
satisfied. A final step is to show that for all the loss functions, L(x, y) = L(−x,−y). For the

86



MAE and MSE, the criteria necessarily holds. For the Fisher information metric, the criteria
will hold if |f(x)| = |f(−x)|. As f is odd, this is satisfied. Finally, the Kullback-Leibler
divergence will also satisfy the condition as κ(x||y) is a function of x2, y2 and xy.
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4 Data analysis
The data analysis of this thesis will consist of two main parts. The first is point estimation
of the correlation and the other is confidence distribution for the correlation. Both will
have a focus on calculating average risk in order to evaluate the different point estimators
and distribution estimators. These tests will be taken from a frequentist perspective using
frequentist versions of average risk as seen in (1) and (4). For each estimator, multiple tests
will be conducted to calculate the performance for different situations, that is for different
true values for the correlation. In addition to calculating risks for the distribution estimators,
the frequentist coverage will be tested for multiple of them.

There are two approaches that are used for the analysis. One approach is to use strictly
numerical methods to estimate different quantities. The other approach is to use samples
from a distribution in order to estimate quantities. The latter will create samples using
either model generating functions developed in the theory section or Markov Chain Monte
Carlo (MCMC).

Calculating the average risk for any estimator, either point or distribution, might not have
an explicit expression. The risk under some true parameter ρ0 will therefore be calculated
by iterating the following three steps:

1. Simulate the data

2. Calculate the estimators, either point or distribution, given the data

3. Calculate the loss or risk of the estimator.

For each value of ρ0, these steps will be applied iteratively a given number of times, often
105 times. The average risk is the mean of the losses or risks calculated. The algorithm
for testing frequentistic coverage will be discussed further in section 4.3.1. All numerical
analysis is produced using python.

4.1 Simulation of data

The data can either be expressed as the original binormal data or the minimal sufficient
statistics. In most cases, the minimal sufficient will suffice, however some estimator uses the
original data. In either case, the package numpy.random is used for simulations.

4.2 Estimation of Bayesian point estimators

Estimating the Bayesian point estimators in this thesis requires numerical methods. It
is possible to use MCMC to calculate most of the estimators, but this can be very time
consuming. The alternative is to use strictly numerical methods.

The first barrier for each estimator is that even the normalizing constant for any of the
posteriors are known. This can be solved by integrating over the posterior using any kind of
quadrature. For the point estimators in question, different approaches are necessary. Some

88



can be calculating by integration, but most might require some kind of optimization. Each
method will be discussed separately in the following subchapters.

The numerics will be conducted primarily using the python package scipy. Quadrature
is from the package scipy.integrate under the function quad. The function fsolve from
scipy.optimize is used for solving equations and the function mimize from the same package
is used for solving mimization problems.

4.2.1 Numerical estimation of ρ̂E

The mean is one of the simpler estimators to calculate as the only numerical process needed
is a numerical integration. As the normalization constant is not known, it is crucial to
calculate that as well using quadrature.

4.2.2 Numerical estimation of ρ̂M

The median poses more difficulty as it uses the cumulative function, which is not available
analytically. It is however possible to find the median by solving the equation Π(ρ)−1/2 = 0
numerically, where Π(ρ) is the cumulative distribution function estimated numerically using
a quadrature. This will mean that the algorithm is dependent on the convergence of two
numerical methods which can become both time consuming and unstable. A good initial
guess is therefore important to ensure convergence.

4.2.3 Numerical estimation of ρ̂FI2

In order to calculate the minimizer of squared Fisher information metric, both E(f) and
f−1 of the function 10 needs to be calculated. As neither of these have clear analytical
expressions, it is necessary to use numerical estimations. Firstly E(f) can be calculated
using quadrature. Finally, the estimator can be approximated by solving the equation

f(ρ̂FI2)− E(f) = 0

numerically. This method will naturally be less time consuming than the median, as it is
only necessary to do numeric integration ones. A good initial guess is also useful, however
not as necessary as the convergence is mostly defined by the properties of f(x) which is fairly
well behaved.

4.2.4 Numerical estimation of ρ̂KL2

For ρ̂KL2 it is most useful to use the equation given in (42). Each of the expectations can be
calculated using quadrature which leaves an equation that can be solved numerically.

4.2.5 Numerical estimation of ρ̂MAP

The last estimator is then the MAP estimator. This estimator was calculated by numerical
optimization, that is by minimizing the negative posterior. Choosing a good initial guess

89



for the optimization is essential as the posterior can be very thin in some situations. If the
initial guess misses the spike of the curve in these situations, the algorithm can have a too
slow convergence.

4.2.6 Choices of initial guesses for point estimators

For both the MAP estimator and the median estimator, an optimization problem has to
be solved. This will require an initial guess which can heavily affect the convergence of the
numerical methods. The two estimators have two different choices of initial guesses based on
fast but crude and inaccurate methods. Both will divide the parameter space into equidistant
points. The choice was set to m = 50 points.

For the MAP, the initial guess is the point with the largest density value. For the median,
a discretization of the density is created over each point and is normalized. The initial guess
for the median is then the median of the discretized distribution.

4.3 Simulating confidence distributions

As mentioned in the introduction to this chapter, calculating the risk analytically for the
distribution estimators will generally pose a challenge. Approximations to the risk can be
calculated using samples drawn from the distribution estimator. For the posterior distributions,
Markov Chain Monte Carlo (MCMC) with Metropolis-Hastings algorithm is necessary (JCGM
2008b, p. 5.9.6). The technicalities of MCMC and Metropolis-Hastings algorithm will not
be explained, just like the numerical estimation for point estimators. Important information
about MCMC is that it can be used to simulate from a distribution using the density function.
This method is a common and flexible tool but it is computationally heavy. If a more direct
method of simulating from a distribution is available, it should be chosen. For all of the
exact confidence distributions it is possible to establish a model generating function. In
some cases, it is expressed indirectly as the solution to an equation. These equations are
generally on the form

φ

(
S1

2(1 + ρ)
,

S2

2(1− ρ)

)
= φ(U1, U2),

where U1 ∼ U2 ∼ χ2
n. The correlation can be calculated by sampling U1 and U2 and solving

the equation above using some numerical equation solver. An advantage is that the solution
is known to lie in the interval (-1,1) and where the left hand side is decreasing as a function
of ρ. There are methods that utilizes such knowledge to improve performance. The method
found to perform the best is Brent’s method brentq. In python, the package scipy.optimize
offers the method under the function named brentq. Although solving an equation for each
simulated point can be cumbersome, it is significantly more efficient than using MCMC in
many cases. This is especially true due to the speed of Brent’s method.
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4.3.1 Testing confidence of distribution estimators

Given a distribution estimator with distribution function C(x) it is possible to create interval
estimators of different levels given by I = (a, b], where a ≤ b. The level of these intervals are
given by C(b)−C(a) = α. For any distribution estimator it is possible to study whether it is
able to create confidence intervals. That is if the frequentistic coverage of the interval is at
least as large as the level of the interval. This is a frequentist perspective and the coverage will
be a function of the true parameter value ρ0. If the interval estimators are confidence intervals
independent on ρ0 the distribution estimator can create confidence interval estimators. To be
clear, a beneficial and general test is to see whether a distribution estimator is a confidence
distribution as defined in 2.7. In that case, it is sufficient to test whether all one-sided
interval estimators are confidence distributions.

The following test can be used to test both one-sided and two-sided interval estimators,
with a small alteration. For simplicity, the test will be written specifically for one-sided
intervals.

The coverage of the interval estimators given true correlation ρ0 consists of m simulations
of the data, where the coverage of the interval estimator is tested for the data. Each
simulation consists of the following steps

1. Simulate data given ρ0

2. Calculate and save C(ρ0)

3. If C(ρ0) ≤ α, the α level interval estimator covers ρ0.

The amount of simulations where ρ0 is covered gives the frequentist coverage. For one-sided
α level interval estimator, a point ρ is covered if C(ρ) ≤ α. In that case, calculating C(ρ0)
for each distribution is sufficient to testing the coverage for any level. If one wants to do
the same for two-sided intervals, a point ρ is in an α level two-sided interval estimator if
α/2 ≤ C(ρ) ≤ 1 − α/2. An upside to using C(ρ0) to test for coverage, is that it is not
dependent on α. If all C(ρ0) for each simulation is stored, the coverage can be calculated
for each level.

4.4 Problems of the data analysis

As mentioned in section 4.2.6 about the initial choice, some of the numerical methods are
less stable. Problems occurred more frequently with the convergence of the estimator ρ̂KL2.
Because of lack of time, finding methods to ensure the convergence of the estimations were
not finished. This can imply that the data is not trustworthy. Neither the results nor the
further discussion will include the ρ̂KL2.
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4.5 Results

4.5.1 Comparing point estimators

Generally throughout the results, the Bayesian estimators will be named something similar
to "uniformE". The names imply the use of prior and the use of estimator. The names are
generally written "<name of prior><name of type of estimator>".

In this problem there are 19 estimators, 16 of which are Bayesian (not including ρ̂KL2).
The average loss of each of the estimators has been estimated for ρ = 0.0, 0.1, ..., 0.9, for
both sample size 3 and 10. Presenting all of these results here will only hide the important
information. In order to present useful characteristics of the estimators, only some results
are shown in figures. The full data sets will not be presented in this report, see appendix
A.2.

The following four figures shows the loss of various estimators. Each figure will include
four plots, each showing the loss under a specific loss function. Here, FIM stands for Fisher
Information Metric and KL stands for Kullback-Leibler divergence. Figure 22 shows the loss
of the frequentist estimators. The goal of this figure is to show the characteristics of the
frequentist estimators. Figure 23 shows the loss of the Bayesian estimators using uniform
prior. The goal of this figure is to demonstrate the behaviour of the types of estimators for
any given prior. Figure 24 shows the loss of all the posterior means of each prior. The goal of
this figure is to demonstrate the relation between different priors using the same estimators.
Figure 25 shows the loss of the posterior mean with uniform prior, posterior median with
Jeffreys prior and empirical correlation with variance 1. The goal of this figure is to show
the relationship between Bayesian estimators and the special empirical correlation.

Finally, the next three figures will demonstrate the distribution of various estimators.
These comparisons will be used to show how some estimators are better than others. The
distribution can also be used to compare estimators. Figure 26 shows the distribution of the
posterior mean with uniform prior alongside the frequentist estimators. Figure 27 displays
how the Bayesian estimators will change with correlation and sample size. Lastly, figure 28
shows the distribution of both the posterior median and ρ̂FI2 with uniform prior.
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Figure 22: Loss of frequentist estimators for n = 3 data points
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Figure 23: Loss of the Bayesian estimator with uniform prior for n = 3 data points
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Figure 24: Loss of the posterior means for n = 3 data points
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Figure 25: Loss of the posterior mean with uniform prior, posterior median with Jeffreys
prior and empirical correlation with variance 1.

Figure 26: Distribution of the posterior mean for uniform prior, and both the MLE and
empirical correlation with variance 1.
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Figure 27: Distribution of the posterior mean for both Jeffreys prior and uniform prior.

Figure 28: Distribution of the posterior median and ρ̂FI2 for uniform prior.
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4.5.2 Testing coverage of distribution estimators

The frequentist coverage can be plotted as a function of the levels α. If the distribution is
an exact confidence distribution, the empirical coverage equals the assumed level α. The
distribution is also a CD if the empirical coverage is at least the assumed level α. The
coverage is displayed in figure 29, 30 and 31 as the difference between the frequentistic
coverage and the assumed level. These results are calculated using 1000 simulations. More
simulations would be optimal, however time consuming. In each figure, all posteriors are
displayed. The coverage error of the fiducial distributions from equation (24) and (25) can
be seen in figure 4.5.2, 4.5.2 and 4.5.2. Fiduc2 and fiducinf are the names of the 2-norm
fiducial and the infinity-norm fiducial, respectively.

Figure 29: Error in frequentist convergence as a function of the levels α for various posterior
distributions under n = 3 data points sampled for correlation ρ = 0.0. The error is calcualted
as the difference between frequentist coverage and level of one-sided interval estimators.
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Figure 30: Error in frequentist convergence as a function of the levels α for various posterior
distributions under n = 3 data points sampled for correlation ρ = 0.5. The error is calcualted
as the difference between frequentist coverage and level of one-sided interval estimators.
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Figure 31: Error in frequentist convergence as a function of the levels α for various posterior
distributions under n = 3 data points sampled for correlation ρ = 0.8. The error is calcualted
as the difference between frequentist coverage and level of one-sided interval estimators.
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Figure 32: Figures of the error in frequentist convergence as a function of the levels α for
two GFDs using sufficient statistics. The figures are for n = 3 data points using the 2-norm
(left) and infininty-norm (right). The error is calcualted as the difference between frequentist
coverage and level of the interval estimator after 1000 simulations.

Figure 33: Figures of the error in frequentist convergence as a function of the levels α for
two GFDs using sufficient statistics. The figures are for n = 10 data points using the 2-norm
(left) and infininty-norm (right). The error is calcualted as the difference between frequentist
coverage and level of the interval estimator after 1000 simulations.
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Figure 34: Figures of the error in frequentist convergence as a function of the levels α for
two GFDs using sufficient statistics. The figures are for n = 20 data points using the 2-norm
(left) and infininty-norm (right). The error is calcualted as the difference between frequentist
coverage and level of the interval estimator after 1000 simulations.
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4.5.3 Comparing confidence distributions

As for the point estimators, the confidence distributions will be compared with respect to
risk. Risk is calculated using simulations as presented earlier. Each risk will be presented
as a function of the true correlation. As none of the Bayesian distributions are confidence
distributions, they will not be included. The fiducial distribution will however be relevant
as they can create confidence intervals. Each of the risks are presented for each of the four
loss functions

1. MSE

2. z-MSE

3. Fisher information metric

4. Kullback-Leibler divergence.

Each figure have a different data size varying from 3, 10 and 20 points.

Figure 35: Four plots of the total risks of the five exact confidence distributions and the two
fiducial distributions with n = 3 data points. Each plot has a different risk based on the loss
function
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Figure 36: Four plots of the total risks of the five exact confidence distributions and the two
fiducial distributions with n = 10 data points.

Figure 37: Four plots of the total risks of the five exact confidence distributions and the two
fiducial distributions with n = 20 data points.
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5 Discussion
The following chapter will discuss the results of the data analysis. Any conclusion is based
on multiple types of visualizations, where the most important are shown in the Results part
of the Data Analysis chapter.

5.1 Performance of point estimators

Each Bayesian point estimator is defined by the choice of loss function and prior. If either
the loss function or prior is chosen, then it is possible to order the estimators by risk. It so
happens that this order is independent of either the loss or the prior chosen. For instance, the
posterior mean will always perform better for small correlations than the posterior median
if they have the same prior. Another example is that an estimator of the uniform prior
will always perform better for small correlations than one for Jeffreys prior if they minimize
the same Bayesian risk. The effect of the choice of loss function and prior can therefore be
discussed separately.

5.1.1 Performance of the Bayesian point estimators

The first thing to note about the Bayesian point estimators, are that the MAP performs
the poorest. Despite it performing well for large correlations, the loss is too significant for
most other correlations. Therefore, the MAP will not be discussed further as a reasonable
candidate.

Of the remaining Bayesian point estimators, the properties are very similar. The biggest
difference is which estimators that favors larger or smaller correlations. The posterior median
and ρ̂FI2 are almost indistinguishable. Figure 28 illustrates the similarities. Whether they are
actually equal has not been proven. Either way, as their characteristics are almost identical,
the discussion will only focus on the posterior median after this point. Any comments about
the posterior median should apply for the FI2 estimator as well.

The remaining two estimators to compare are the posterior mean and the posterior
median. In section 3.10.6, it is argued that the posterior mean is never larger in size than
the posterior median. As a result of this property, the spread around 0 of the posterior mean
is also smaller than the posterior median for any correlation. This implies that for smaller
correlations, the average loss of the mean is smaller than that of the medians. This can be
seen in the risks of figure 23. An important question is then for how large portion of the
correlations will the mean perform the best? From the results of the data analysis, the mean
will perform the best until about ρ = 0.6 for n = 3 data points and ρ = 0.4 for n = 10 data
points. In the latter case, the difference in risk is sufficiently smaller. The risks of the two
types of estimators are also very similar for ρ ∈ (0.6, 0.7) when n = 3.

Interestingly, the mean has almost always smaller average Kullback-Leibler divergence.
An interpretation is that it is almost always better to approximate the true model with a
model that underestimates the correlation. Using this logic, the posterior mean is a better
choice than the posterior median.
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5.1.2 Discussing the choice of prior

Similar arguments as in section 5.1.1 can be used for the choice of prior distributions. The
main difference between each prior is how much they weigh larger correlations. This ordering
can be seen in figure 6. For smaller correlations, the uniform prior performs best, followed
by arcsine, PC and finally Jeffreys prior. Performance is opposite for larger correlations.
Figure 27 exemplifies the difference of the prior choice. The example is for the posterior
mean, however, the same holds for all other types of estimator. It also highlights how the
differences in the estimators decrease as the data size increases.

Similar to the types of point estimators, the Kullback-Leibler divergence prefers smaller
correlations. The uniform prior will always perform best in that regard. Using the Kullback-
Leibler divergence, the best choice of prior is therefore the uniform prior.

5.1.3 Comparing the Bayesian and frequentist estimators

Finally, the frequentist estimators will be compared to the Bayesian. The Bayesian estimators
will generally perform better. Keep in mind that the MLE is equal to the MAP for the
uniform prior. As noted in section 5.1.1, the MAP performs poorly. For the same reason,
the MLE also performs poorly. As seen in figure 22, the performance of the empirical
correlation is similar to the MLE. This will also imply that the empirical correlation will
perform poorly. The remaining frequentist estimator is then the empirical correlation with
variance 1.

The empirical correlation with variance 1 does compare to the Bayesian estimators for
small correlations. This can be seen in figure 25. In the figure, it is compared to posterior
mean with uniform prior and posterior median with Jeffreys prior. These two estimators are
supposed to be the opposite limits of the Bayesian estimators, without MAP. From the figure,
it is possible to argue that the special empirical correlation can be used as an alternative to
other Bayesian estimators. However, the performance does deteriorate significantly for larger
correlation. Additionally, it is categorically worse than the posterior mean with uniform
prior.

If the sample size is 10, the above arguments still hold. In that case, the empirical
correlation with variance 1 is actually outperformed by the posterior median with Jeffreys
prior. On the other hand, the MLE will perform significantly better. Despite this, it will
be categorically outperformed by the posterior median with Jeffreys prior. The Bayesian
estimators will therefore outperform the frequentist for 10 data points, however the difference
is not large in many cases.

5.1.4 Final comments on point estimators

All Bayesian estimators, except the MAP, outperform or perform as well as the frequentist
estimators. While I do believe the posterior mean with uniform prior is the best choice,
other choices of Bayesian estimators can perform better. If one assumes that the correlation
is large, another estimator might be better without significant loss. Keep in mind, if it is
known that the correlation is large, a subjective prior might be a better choice. The question
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will come down to preferences. Generally, I will advocate for choosing less complex models
over more complex ones. This is not an uncommon position to take. Criterion such as the
AIC, which is based on the Kullback-Leibler divergence, are examples of this. I will therefore
go back to the argument used earlier, based on the Kullback-Leibler divergence, the posterior
mean with uniform prior is the best choice of estimator.

5.2 Performance of distribution estimators

5.2.1 Coverage properties of posterior and fiducial distributions

Figure 29, 30 and 31 shows graphs of the frequentist coverage of one sided interval estimators
against their level created for each posterior and fiducial distribution. None of the Bayesian
posterior have sufficient frequentist coverage to create one-sided confidence intervals. In
general, there seems to be no consistent method for creating confidence intervals across all
true correlations. Out of the five choices of priors in this thesis, Jeffreys prior is the one
performing the best in terms of coverage. Even at only 3 data points, the posterior will
resemble a CD as the greatest error in coverage based on the simulations is 5%. Despite this,
it is clear that Jeffreys prior does not give a confidence distribution.

The fiducial distribution are similar in the sense that they do not satisfy definition 2.7
of a confidence distribution. However, it seems to be possible to create two-sided confidence
intervals of all levels consistently using the fiducial distribution. These intervals will have a
frequentist coverage far greater than the level of the intervals. This can be a sign that the
intervals are not as efficient as they could be if they were exact. As the results are based on
only 1000 simulations, there might be slight inaccuracies. As it is not certain the coverage
is always sufficient, as seen in figure 4.5.2, it does however seem like it. More simulations
should be used to be make a stronger conclusion. The distributions will however be seen
as having sufficient coverage. As the data size increases, it seems as though the two-sided
frequentist coverage is converging towards the assumed level.

When studying the fiducial distribution, there is a possible need to expand the definition
of a confidence distribution posed in definition 2.7. While precise, it is also a very narrow
definition. Taraldsen 2021 expresses in Definition 1 an expansion of the confidence distribution
that will include all distributions that can generate confidence intervals consistently, even if
the coverage does not span (0, 1). Such a definition would cover the fiducial distributions
here. Definition 2.7 is however important in it’s own regard. It will describe a class of
distributions that have a greater flexibility in creating confidence intervals.

5.2.2 Comparing confidence distributions

When studying the confidence distributions, the fiducial distributions will be included as
well. This is due to their ability to produce confidence interval consistently, even though
they are not confidence distribution wrt. definition 2.7.

The risk of the confidence distribution will be used to order them from best to worst
performing out of the bunch. As the risk varies with the true correlation, the ordering will
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consider the overall performance. It is possible to combine all the risks for different true
parameters into a collective risk. The two approaches of minimizing maximum risk, (2), and
average weighted risk, (3), can be applied. An issue is that the risk for all true correlations
is not available, only at some points where the risk is simulated. Additionally, there are no
clear choice for weights to use. The focus will therefore be on a more overall evaluation of
the risk.

The risks are seen in figures 35, 36 and 37. With very small data sizes, the diff CD
will perform better for most true correlations. However, as the correlation increases, it’s
performance will significantly deteriorate. In fact, as the data size increases, the ill-performance
of the distribution increases. The benefits of using the diff CD will also be reduced as the
data size increases. It can therefore be useful in very small data samples, but if the data size
increases, other CDs are more reliable.

For the remaining CDs, the UVCD and CVCD is uniformally better than CD1 with a
significant margin. Amongst the former two, UVCD is uniformally outperformed by CVCD.
This is not as surprising as CVCD utilizes additional information about the data. The
difference is significantly reduced when the data size increases. For n = 10 and n = 20
data points, they are almost interchangeable. In terms of the densities of the distributions,
it is clear that they generally are very similar. However, in the situations that they differ,
the UVCD performs better than CVCD. CD1 is the distribution that performs the worst of
them all. It is possible that this is a sign that the general method in theorem 3.14 does not
perform as well as the more specific theorem 3.8.

The risk of both fiducial distributions behaves very similarly to the diffCD. In fact, they
are slightly better. This would imply that they are a good source of confidence intervals.
One should remember the limitations of the interval estimators, as they can only be two-
sided with equal probability on each side. These interval will also have a too large coverage
compared to the level of the intervals. As the data size increases to n = 10 and n = 20, they
will perform similarly to both CVCD and the UVCD. If fact, the fiducial distributions seems
to perform the best. The difference is not large and it might be better to choose the CVCD
as a safer choice due to it’s beneficial properties. The fiducial distributions does however
look like good candidates. However, one should also run larger simulations for the risk of
the fiducial distributions to ensure that the coverage is sufficient for all true correlations.

One would assume that there exists an exact CD that can outperform CVCD as it does
not use all the available information about the model. However, the distribution is based
on the minimal sufficient statistics, which could imply that the improvement is minimal.
Despite this, it would still be of interest to find other choices of g in corollary 3.10.1 such
that a better performing confidence distribution can be created. This is mainly important
in cases with a small sample size. If the sample size is larger the advantage of knowing the
variance is reduced as the information from the data is sufficient. In that case, CVCD is
a good candidate for a confidence distribution because of its properties. It is a unimodal
distribution and symmetric under the transformation z(ρ) = arctanh(ρ). In terms of the
expanded model with common unknown variance, it is also a marginal posterior distribution
for the correlation using the prior 1

σ2(1−ρ2)
, see page 47. This confidence distribution is
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therefore a good choice for uncertainty quantification even without the assumption that the
variances are 1.
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6 Conclusion
In terms of point estimation, multiple objective priors and Bayesian estimators have been
introduced. The analysis showed that for small data sizes these will generally out-perform
conventional frequentist estimators under multiple choices of loss. Out of the Bayesian
estimators, the posterior mean with uniform prior is recommended for small sample sizes.
Other choices of Bayesian estimators are possible. These can improve the loss for larger
correlations, but perform worse for smaller correlations. The maximum a posteriore estimator
is the only choice that is not recommended.

In terms of uncertainty quantification, the most consistent confidence distribution is the
distribution named CVCD. When there is a very small data size, n=3, then the diff CD
can be used instead. There is however a great potential for creating confidence distributions
using theorem 3.7 and theorem 3.13, which can result in a more powerful distribution than
CVCD. As the data size increases it is assumed that much improvement on CVCD is unlikely
as the data will contain sufficient information.
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A Appendix

A.1 Data sets for visualization

Data set 1: n = 3, S1 = 9.83, S2 = 9.01

X Y
1 -1.73 -0.41
2 -0.85 0.57
3 2.28 -0.01

Data set 2: n = 3, S1 = 7.16, S2 = 3.71

X Y
1 0.20 1.08
2 -0.39 0.35
3 -1.95 -0.40

Data set 3: n = 3, S1 = 11.87, S2 = 3.44

X Y
1 1.01 1.19
2 -0.74 -0.23
3 2.12 0.35

Data set 4: n = 3, S1 = 6.97, S2 = 0.61

X Y
1 0.98 0.96
2 -0.11 0.67
3 0.87 0.82

A.2 Data set for results

The full results will not be presented here as there is too much information. The results
for point estimation can be found in https://github.com/OlavHel/Prosjektoppgave and
the results for the distribution estimators can be found in https://github.com/OlavHel/
Masteroppgave.

For the point esitmators, the results can be visualized using the file plotting_results.py.
For the distribution esitmators, the two files plot_risks.py and view_CD_samples.py can
be used to visualize the risks and the coverage respectively.

A.3 Code

The code is separated into two "projects" First, the code used for the point estimation can
be found on github under the url: https://github.com/OlavHel/Prosjektoppgave. This
was created for the project thesis in the fall semester. It has not been updated since then.
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The code for distribution estimation can be found in https://github.com/OlavHel/
Masteroppgave. This has been created for the master thesis. There are some overlap as
certain files for the point estimation were reused for the distribution estimation. All files
found in the code for master thesis will be the newest versions of any file.

Because of a lack of time, no code will be put here. The most important files to study
for the distribution estimators are the files MCMC_test2.py and simulate_CD.py for the
simulations. The file test_region.py will also include a function for simulating from any CD
defined by theorem 3.7 with APF from corollary 3.10.1.
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