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Abstract

Snow avalanches are among the most frequent natural hazard events in Norway, posing
a significant threat to human life and a major problem for infrastructure, as avalanches
are among the most common causes of roadblocks. Varsom1 is a monitoring/warning
system developed to predict avalanche danger, relying on weather data, manual sta-
bility tests, and earlier avalanche activity in an area. This thesis develops a statistical
model that predicts the stability of the weakest layer in a snowpack based on numerical
snow cover simulations, weather data, and drone measurements. The numerical data
are calculated with the program SNOWPACK and includes two stability measures of
each layer in a simulated snowpack, SK38 and SSI. SSI is used to locate weak layers
in a snowpack, while SK38 indicates the stability of a weak layer.

An adaptive dynamic linear model is developed to model snow properties over time
sequentially and predict the stability measure SK38 of the weak layer, with its un-
certainty. The snow properties modeled are the weak layer thickness, density, grain
size, and bond size, and new snow thickness and density. The weather input data
are temperature, precipitation, and wind speed. The model parameters are dynamic,
depending on the weather regime on a particular day. The formulation of the model
facilitates experimental design and planning. In particular, the model initiates drone
measurements when necessary and updates the model distribution with the new
measurements. Two strategies for drone data gathering are developed and compared
with a model that does not rely on new drone measurements. The first is an Adaptive
Monitoring strategy, which initiates drones when there is less than 90 % probability
that the predicted stability of a weak layer is above a threshold. The second strategy
is a Value of Information strategy, which initiates drones when the expected value of
a drone measurement is higher than a threshold.

The stability predictions of the adaptive models had less uncertainty than for the
non-adaptive model, especially directly after a drone measurement. The non-adaptive
model was generally pessimistic with its predictions. The two adaptive strategies
resulted in a similar number of drone events, with a fixed stability threshold. An
increase in the stability threshold leads to an increase in drone events for the Adaptive
Monitoring strategy. An increase in the cost associated with keeping a road open
when the predicted stability was lower than a threshold leads to more drone events
for the Value of Information strategy.

1https://www.varsom.no/snoskredvarsling/?ref=mainmenu
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Sammendrag

Snøskred er en av de mest vanlige naturfarene i Norge, med stor trussel mot men-
neskeliv og infrastruktur, siden snøskred er en av de vanligste årsakene for blokkering
av veier. Varsom er et overv̊akings og varslingssystem utviklet for å forutsi snørasfare,
basert p̊a værdata, manuelle stabilitetstester og tidligere skredaktivitet i et omr̊ade.
Denne avhandlingen utvikler en statistisk modell som forutsier stabiliteten til det
svakeste laget i snødekke, basert p̊a numeriske snødekkesimuleringer, værdata og
dronem̊alinger. De numeriske dataene er kalkulert med programmet SNOWPACK, og
inkluderer to mål p̊a stabilitet av hvert lag i et simulert snødekke, SK38 og SSI. SSI
blir brukt til å lokalisere svake lag i snødekke, mens SK38 indikerer stabiliteten til et
svakt lag.

En adaptiv dynamisk lineær modell er utviklet til å sekvensielt modellere snø-
egenskaper over tid og forutsi stabiliteten SK38 av det svake laget, med dets usikkerhet.
Snø-egenskapene som modelleres er det svake lagets tykkelse, tetthet, kornstørrelse og
bindingsstørrelse, og nysnøens tykkelse og tetthet. Værdataen som blir brukt som
input er temperatur, nedbør og vindhastighet. Modellparameterne er dynamiske, og
avhenger av værregimet p̊a en bestemt dag. Modellens formulering tilrettelegger for
eksperimentell design og planlegging. Spesielt setter modellen i gang dronemålinger
n̊ar det er nødvendig, og oppdaterer fordelingsfunksjonen til modellen basert p̊a de
nye målingene. To strategier for dronedata-innsamling er utviklet og sammenlignet
med en modell som ikke er avhengig av nye drone-m̊alinger. Den første er en adaptiv
overv̊akingsstrategi, som starter dronemålinger n̊ar det er mindre enn 90 % sannsyn-
lighet for at den forventede stabiliteten til det svake laget er over en terskel. Den
andre strategien er en Informasjonsverdi-strategi, som setter i gang dronem̊alinger n̊ar
den forventede verdien av å samle inn en dronemåling er høyere enn en terskel.

Stabilitetsforutsigelsene til de to adaptive modellene hadde mindre usikkerhet enn
den adaptive modellen, spesielt direkte etter en dronemåling. Den ikke-adaptive
modellen var generelt pessimistisk med sine forutsigelser. De to adaptive strategiene
resulterte i et tilsvarende antall dronehendelser, n̊ar stabilitetsterskelen var konstant.
En økning i stabilitetsterskelen førte til en økning i antall dronehendelser for den
adaptive overv̊akingsstrategien. En økning i kostnadene knyttet til å holde en vei
åpen n̊ar den forventede stabiliteten var lavere enn en terskel, førte til et større antall
dronehendelser med Informasjonsverdi-strategien.

iii



Preface

This thesis concludes the Master of Science degree in Statistics. It is written for the
Department of Mathematical Sciences at the Norwegian University of Science and
Technology (NTNU). The project constitutes 30 credits in the tenth semester of the
Natural Science with Teacher Education study program, written in the spring of 2021.
The thesis has increased my understanding of applying mathematics to solve real-life
problems, which will help me as a teacher to motivate the students.

First of all, I want to thank my supervisor Jo Eidsvik for his supervision and guidance
throughout this semester. The weekly meetings were both motivating and sometimes
necessary for the progress of the thesis, especially during the strictest lockdown in
Trondheim. I also want to thank the GeoDrone-team at SINTEF-Petroleum, Arnt
Grøver, Bastien Dupuy, and Anouar Romdhane, for biweekly meetings and the inputs
discussions and guidance during the whole semester. This helped me understand the
problem and narrow down the scope of the thesis. Lastly, I would like to thank my
closest friends and family for their guidance, support, and motivation.

Jens Georg Berg-Jensen
Trondheim, June 01, 2021

iv



Contents

Contents

Abstract i

Sammendrag iii

Preface iv

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Snow Stratigraphy 5
2.1 Snow formation and metamorphism . . . . . . . . . . . . . . . . . . . 5
2.2 Snow Avalanche Formation . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 SNOWPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Drone Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Modelling Snow Properties 17
3.1 Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Developing a model . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Expected Value and Variance . . . . . . . . . . . . . . . . . . 19

3.2 Introduction to a Conditional Model . . . . . . . . . . . . . . . . . . 19
3.2.1 Information sets . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Recursive Model . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Drone Assimilation and Adaptive Monitoring 23
4.1 Threshold test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Updating with drone measurements: . . . . . . . . . . . . . . . . . . 24

v



Contents

4.3 Adaptive Monitoring Strategy . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Value of Information Strategy . . . . . . . . . . . . . . . . . . . . . . 28

5 Generating Data 33
5.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Wxgen and Snowpack data . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 New Snow and Weak Layer properties . . . . . . . . . . . . . . . . . 36
5.4 Grouping the snowpack data into regimes . . . . . . . . . . . . . . . . 36

6 Analysis and Results 43
6.1 Model specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.1 Initialising the model . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.2 Determination of Stability metric . . . . . . . . . . . . . . . . 44

6.2 One simulation using the AMA strategy . . . . . . . . . . . . . . . . 44
6.2.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2.3 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3 100 simulations using the AMA strategy . . . . . . . . . . . . . . . . 50
6.3.1 Fixed parameters . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.2 Adjusting parameters . . . . . . . . . . . . . . . . . . . . . . . 51

6.4 VOI approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Discussion and Conclusion 57
7.1 Additional Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Estimated Stability Threshold . . . . . . . . . . . . . . . . . . . . . . 58
7.3 Key results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4 Model limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.5 Further works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Bibliography 63

Appendix A 67

Appendix B 75

vi



List of Figures

List of Figures

1 The Snow Metamorphism Process: The green arrows are the rounding
processes. Red arrows are the faceting processes. The blue arrows are
melting processes. The snow grain types are explained in Table 1. . . 7

2 Slab Avalanche: Requirements for a slab avalanche Müller, 2019a. . . 8
3 Illustration of the different factors that impacts the development of a

snowpack, handled by the numerical snowpack software SNOWPACK
(WSL Institute for Snow and Avalanche Research SLF [SLF], n.d.-b). 11

4 Workflow-illustration of snow cover simulation with WxGen, MeteoIO,
SNOWPACK (SLF, n.d.-c). . . . . . . . . . . . . . . . . . . . . . . . 12

5 Outline of the autonomous drone with its main functions (Dupuy et al.,
2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Picture of the autonomous drone (Dupuy et al., 2021). . . . . . . . . 14
7 Example of using GPR to locate weak layers in snowpack. . . . . . . 15

8 The workflow of the dynamic model. Test is the threshold-test, that
either uses the estimated properties dependent on weather-data or a
drone-measurement in the next iteration. . . . . . . . . . . . . . . . . 28

9 The study area in Stryn, with the two weather stations Kroken and
Fjellet included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

10 Simulated weather scenarios at Fjellet (blue color) and Kroken (red
color) from January 1 to April 30. . . . . . . . . . . . . . . . . . . . . 35

11 Simulation of snowpack at location Kroken a) and Fjellet b) respectively.
The colors correspond to the grain types, see legend on left side of
figure. The different snow grains are specified further in Chapter 2.1
and Table 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

12 New snow layer properties and weak layer properties, as a time series,
from January 18 to April 16. The red lines are for location Kroken, the
blue lines for location Fjellet. . . . . . . . . . . . . . . . . . . . . . . 39

13 Timeseries of the simulated stability measures SK38 and SSI, from
January 18 to April 16. The red lines are for location Kroken, the blue
lines for location Fjellet. . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



List of Figures

14 Cross-plot of new snow thickness in different regimes at Fjellet. The
x-axis is the property value at t, the y-axis the property variable at t+ 1. 41

15 Cross-plot of new snow density in different regimes at Kroken. The
x-axis is the property value at t, the y-axis the property variable at t+ 1. 41

16 Time series of the new snow layer properties for both the adaptive and
non-adaptive models, from January 18 to April 16. The blue line is the
AMA-model, the orange line is the non-adaptive model, yellow points
are drone events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

17 Time series of the the weak layer properties for both the adaptive and
non-adaptive models, from January 18 to April 16. The blue line is the
AMA-model, the orange line is the non-adaptive model, yellow points
are drone events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

18 The predicted stability of the weak layer of the snowpack for each day
t, from January 18 to April 16. The yellow points are the drone events.
The blue line is the AMA-model, the orange line is the non-adaptive
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

19 Predicted stability of weak layer with confidential band of 1 standard
deviation, for the period January 18 to April 16, using the AMA-model. 49

20 Predicted stability of weak layer with confidential band of 1 standard
deviation, for the period January 18 to April 16, using the non-adaptive
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

21 Count data of day of first drone event (left) and number of drone events
(right) over a 100 simulations. . . . . . . . . . . . . . . . . . . . . . . 51

22 Predicted stability of weak layer over a hundred simulations, for the
period January 18 to April 16, using the AMA-model. . . . . . . . . . 52

23 Predicted stability of weak layer over a hundred simulations, for the
period January 18 to April 16, using the AMA-model with different
EST-values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

24 Predicted stability and expected Value of Information over time, using
the VOI-model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

25 Predicted stability using the VOI-model with different C1 parameters. 55

26 Cross-plot of new snow thickness in different regimes at Kroken. . . . 68
27 Cross-plot of new snow density in different regimes at Kroken. . . . . 68
28 Cross-plot of weak layer thickness in different regimes at Kroken. . . 69
29 Cross-plot of weak layer density in different regimes at Kroken. . . . . 69
30 Cross-plot of weak layer grain size in different regimes at Kroken. . . 70
31 Cross-plot of weak layer bond size in different regimes at Kroken. . . 70
32 Cross-plot of new snow thickness in different regimes at Fjellet. . . . 71
33 Cross-plot of new snow density in different regimes at Fjellet. . . . . . 71
34 Cross-plot of weak layer thickness in different regimes at Fjellet. . . . 72
35 Cross-plot of weak layer density in different regimes at Fjellet. . . . . 72
36 Cross-plot of weak layer grain size in different regimes at Fjellet. . . . 73
37 Cross-plot of weak layer bond size in different regimes at Fjellet. . . . 73

viii



List of Tables

List of Tables

1 The different snow grain types found in a snowpack, with a description
of the most relevant properties. . . . . . . . . . . . . . . . . . . . . . 7

2 Weather input required by the numerical snowpack model SNOWPACK. 12
3 The relative permittivity of each layer in the underground-mapping

simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 The snow variables used in the dynamic model, at time t. . . . . . . . 17
5 The weather variables used in the dynamic model. . . . . . . . . . . . 18
6 The weather regimes used to group the data in the dynamic model. . 19

7 Possible scenarios that can be incorporated into a VOI strategy for
further works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ix



List of Tables

x



Chapter 1. Introduction

Chapter 1
Introduction

1.1 Motivation

Snow avalanches occur in areas with terrain suitable for avalanche formation, corre-
sponding to approximately 7 % of Norway. They pose a significant threat to human life
and are a major problem for infrastructure, as avalanches are among the most common
causes of roadblocks. Every winter, roads, and railways are closed as a consequence of
snow avalanches. Suppose a road is a sole connection between towns or regions and has
no alternative roads. In that case, a roadblock can have severe economic consequences
and also lead to the isolation of small towns (Norges Geotekniske Institutt [NGI], n.d.;
Statens Vegvesen, 2014).

A robust warning and monitoring system, called Varsom, has been developed to
reduce the impact of snow avalanches in Norway. The system is developed by NVE
(The Norwegian Water Resources and Energy Directorate), in partnership with The
Norwegian Public Roads Administration and the Norwegian Meteorological Institute.
Varsom forecasts the avalanche danger at a location for the next two days, based
on weather data, manual snow stability observations, and earlier avalanche activity
(Norges Vassdrag- og Energidirektorat [NVE], 2021).

The formation and development of a layered snowpack over time is an essential
factor in snow avalanche formation. After a snowfall, a new layer adds to the snow-
pack, with different snow properties than the other layers in the snowpack. The layer
properties change over time due to external and internal conditions, increasing the
snowpack’s complexity. Layers weakly bonded with the overlying and underlying
snow are called weak layers. A slab avalanche is an avalanche caused by a weak layer
collapsing due to an increased load on top of the layer, resulting in the overlying
slab falling down the slope. The additional load could be a human on the snowpack
surface or a natural trigger such as a high amount of new snow (Müller, 2019a).

Monitoring the development of a weak layer and its stability over time is vital for

1



1.1. Motivation

the avalanche warning systems, requiring continuous monitoring and testing (Müller,
2019a). A problem in Norway is the low number of available data stations relative
to alpine countries like Switzerland. There are numerous automatic weather stations
monitoring weather conditions, but only a few monitor snow data, such as snow tem-
perature and depth. Manual observation is the usual way to monitor snowpacks and
weak layers in Norway. Stability tests, such as compression tests and hardness tests,
are done by several testers in different parts of Norway. Volunteers are also encouraged
to send in data (pictures, snow information) at Regobs1, a service provided by Varsom.

Numerical modeling of snowpacks in support of avalanche forecasting is a grow-
ing area within Geoscience. A numerical model simulates a developing snowpack
over time, based on meteorological data from automatic weather stations, numerical
weather prediction, or climate models. This provides information otherwise unavail-
able to a forecaster, including properties and stability measures of each layer in the
snowpack (Mayer et al., 2021; Viallon-Galinier et al., 2021). One of the most widely
used numerical models is the detailed snowpack model SNOWPACK2, developed by
WSL Institute for Snow and Avalanche Research SLF (SLF, n.d.-c). This model
makes it possible to simulate the full development of a snowpack over a winter period.
A challenge with SNOWPACK is its relatively high computation cost. Also, even
though its physical representation eases the interpretations of cause and effect, it is
difficult to modify the results coherently, say with uncertain snow measurements.

Different approaches have been made to predict weak layer stability based on the
stability measure calculated by SNOWPACK. No quantitative stability measures can
give an absolute indicator for snowpack stability, given the complex nature within a
layered snowpack (Viallon-Galinier et al., 2021). Some results verify stability patterns
between numerical predictions and manual observations. Mayer et al. (2021) trained
a random forest model on a combination of mechanical stability metrics, weak layer
properties, and overlying slab properties to predict the probability of an unstable layer
in a snowpack with valid results. An article by Bellaire et al. (2006) demonstrated
that the stability metrics SK38 and SSI, as calculated by SNOWPACK, added support
to stability evaluation and suggested that a combination of SK38 and SSI reproduces
observed stability patterns.

A way to obtain additional snow data at a location is by drone monitoring. Drones
equipped with sensors such as Ground Penetrating Radar (GPR), high-resolution
cameras, and Light Detection and Ranging (LIDAR) can retrieve snow depth, layer
thickness, snow density, and possibly other properties in a snowpack. Utilizing drones
could limit the need for manual observations in avalanche-prone areas, limiting the
amount of dangerous manual inspections, potentially saving human life. Drone moni-
toring also allows to cover wide areas and accounts for spatial variability. An example
of practical use of a drone measurement is when a snowpack is deemed potentially

1https://regobs.no
2https://models.slf.ch/p/snowpack/
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Chapter 1. Introduction

unstable. For instance, after an avalanche, a drone could monitor the remaining
snowpack for possible sub-avalanches.

Combining the available data from manual observations, numerical models, and
drone measurements provide a considerable increase of available data. Such data is
essential for the development of data-driven statistical models and their applicability
in Norway. Reliable updating would be much easier in a setting with a statistical
model, which naturally leads to uncertainty statements. Some data-driven models
that can be implemented include time series models that monitor stability over time
and machine learning models that estimate a probability of an avalanche occurring at
a location. Data-based approaches are getting more popular in the field and are a
major focus area for the development of warning systems in Norway (NVE, 2021).

1.2 Goal

The model developed in this thesis is a dynamic time series model that estimates snow
properties and uses the properties to predict weak layer stability. It uses adaptive
strategies to initiate drones that measure the snow properties and updates the model
distribution with new measurements. The model is an adaptive data-driven sequential
model called a Dynamic Linear Model (DLM). The DLM models new snow density
and thickness and weak layer density, thickness, grain size, and bond size over time.
The purpose is to use the snow properties the previous day to one-step forecast the
next day’s properties. The model parameters change dynamically according to the
weather regime on a specific day. The statistical model is trained from SNOWPACK
data and weather data and updates with drone data. The primary goal is a model
that can predict the weak layer stability based on the available data and initiate drone
measurements when a weak layer needs closer monitoring.

Two different adaptive strategies are implemented to initiate drones, obtaining accu-
rate measurements of the snowpack properties. The first strategy is an AMA strategy
(Adaptive Monitoring Algorithm), where the model initiates a drone when there is less
than 90 % probability that the predicted stability is above a threshold. The second
strategy is a VOI strategy (Value of Information), where the model initiates a drone if
the value of a drone measurement is higher than a threshold. Both strategies update
the model distribution based on the drone measurements, utilizing the Bayesian
framework.

The adaptive strategies used to initiate the drone has a practical application in
deciding when a drone measurement is necessary. The model also extends the avail-
able information to a forecaster by applying additional data sources less common in
the Norwegian warning systems, such as numerical models and drone measurements.
This contributes to the warning systems in Norway, especially for avalanche events
such as slab avalanches that rely on snowpack stability.

3



1.3. Structure of thesis

The chosen study area is two locations in Stryn, called Kroken and Fjellet, in Vestland
Fylke. Kroken is approximately 200 meters over sea level, while Fjellet is approxi-
mately 1000 meters over sea level. Both locations are close to national road Rv. 15,
an important transport route between Norway’s eastern and western parts. The road
passes the mountain range Strynefjellet, an avalanche-prone area due to weather and
terrain (Statens Vegvesen, 2014). WxGen3 is used to generate the weather required
to simulate the snowpack with SNOWPACK. WxGen is a weather scenario generator
developed by the Norwegian Meteorological Institute (Norwegian Meteorological Insti-
tute [MI], n.d.). The weather is generated in both locations in the period January 1
to April 30, 2021.

1.3 Structure of thesis

Chapter 2 presents a theoretical overview of snow metamorphism, snowpack stability,
and snow avalanche formation. It also introduces the numerical snowpack simulation
program SNOWPACK, the weather generator program WxGen, and the project
GeoDrone. Chapter 3 is an introduction to DLM and the sequential procedure utilized
in the thesis. Chapter 4 introduces the adaptive strategies AMA and VOI used to
initiate the drone measurements. Chapter 5 presents the data generation part of
the project, which is used in the analysis. In Chapter 6 the adaptive dynamic linear
model is applied to the data, and the results are analyzed. The results, limitations,
and further works of the model are discussed in Chapter 7.

3https://github.com/metno/wxgen
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Chapter 2. Snow Stratigraphy

Chapter 2
Snow Stratigraphy

This chapter introduces the main geophysical theory relevant for snowpack development
and snow avalanche formation. The focus is snow stratigraphy, which concerns
the properties and internal processes occurring within a layered structure of snow
(Pielmeier & Schneebeli, 2003). In Chapter 2.1 the formation of a layered snowpack
and the processes within the snowpack are introduced. Chapter 2.2 introduces some of
the most important processes leading to snow avalanche formation, including theory
on the stability of the weak layer in the snowpack. The mechanical stability measures
SSI and SK38 are presented and discussed in Chapter 2.3. Chapter 2.4 introduces
the numerical model SNOWPACK and the weather generator WxGen. Chapter 2.5
presents the use of drone measurements.

2.1 Snow formation and metamorphism

Precipitation takes the form of snow when the atmospheric temperature is at or below
freezing temperature (National Snow and Ice Data Center [NSICD], n.d.). The water
droplets in the clouds are considered supercooled, and the water vapor freezes, forming
snow crystals. A snow crystal consists of around 100 trillion water molecules, and the
structure and form of a snow crystal are determined by the water molecules’ location
on the crystal, making every crystal uniquely constructed. While falling towards
the ground, external conditions such as temperature, wind, and humidity affect the
crystals’ structure and properties. Some crystals take the form of a pointed star, while
others take the form of sleet. Snow is an accumulation of snow crystals on the ground,
and its structure and properties depend accordingly on the crystals’ structure and
properties (Müller, 2019a; SLF, n.d.-d).

At first glance, snow looks like a monotonous structure, but by digging deeper
into the snowpack, a layered structure appears. On the bottom lies the oldest layer,
the snowpack’s beginning. A new layer appears on top after a snowfall, adding to
the snowpack’s complexity. Each layer consists of different snow grains, but the
primary type of snow grain in a layer gives its categorical name. Table 1 shows the

5



2.1. Snow formation and metamorphism

different kinds of layers in a snowpack. The properties and structure of each layer
change continuously due to a process called snow metamorphism. Snow metamor-
phism concerns the transformation in each layer and the overall snowpack evolution.
Snow is thermodynamically unstable because it exists close to its triple point where
solid, liquid, and vapor exist simultaneously. This leads to constant changes in the
structure and properties of snow, either by melting or by freezing processes (American
Avalance Center & National Avalanche Center [AAC], n.d.-a; SLF, n.d.-a). The snow
temperature at the snowpack surface is quite different from the snow temperature
close to the ground, resulting in large vapor pressure differences across the snowpack.
Water vapor generally flows from areas with high pressure (warm areas) to areas with
low pressure (cold areas) within the snowpack (Müller, 2019a).

The main processes of snow metamorphism are rounding and faceting of snow. Round-
ing is the decomposition of snow crystals into rounder grains, a process beginning
immediately after a snowfall. The pointy, convex areas of a snow crystal are more sus-
ceptible to pressure than the concave areas, so the snow grains decompose to rounder
forms. Rounded grains are small in volume and have strong bonds. The rounding
process occurs when the temperature gradient in the snowpack is low, resulting in
slow water vapor flow from the warm areas to the cold areas within the snowpack.
Rounding also occurs in windy conditions, as wind-drifted snow crystals get rounded
by contact with other snow grains or with the snowpack surface, resulting in rounded
and dense grains (Müller, 2019b; Statens Vegvesen, 2014).

Faceting happens in snowpacks with large temperature gradients, as water vapor flows
quickly from the warm areas to the cold areas of the snowpack. The water vapor con-
denses on the crystals in the cold areas resulting in large and angular crystals, called
faceted crystals. Snow consisting of faceted crystals has weak bonds and strength and
typically low density. Suppose the temperature gradient stays high over a long period.
In that case, the crystals develop into hollow, cup-shaped crystals, resulting in a layer
called depth hoar (see Table 1) (Mayer et al., 2021; Müller, 2019a).

Melt/freeze cycles are central processes in the evolution of a snowpack. If the
snow temperature is close to 0 ◦C, the snow melts. The evaporated water settles in
the spaces between the snow grains, weakening the bonds and creating bigger snow
grains. Freezing temperatures lead to snow turning to ice, creating fixed bonds. When
this happens on the snowpack surface, it creates a crust. These crusts have a crystal
structure with weak bonds to adjacent layers. After a new snowfall buries the crust,
the crust develops weak bonds with the new snow. A usual consequence of melt/freeze
cycles is a layer consisting of faceted crystals with weak bonds, with an ice crust on
the top. The ice crust acts as a vapor barrier and thus supports faceting under the
crust. The layer of faceted crystals is then usually denoted as a weak layer (Mayer
et al., 2021; Müller, 2019a).

Figure 1 depicts the rounding processes, faceting processes, and melt/freeze pro-
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Grain Type Description
PP New Snow Particles New snow
FC Faceted Crystals Large grained, weak bonds
DF Fragmented New Snow Particles Rounded New Snow
DH Depth Hoar Large grains, weak bonds
RG Rounded Grains Small grains, strong bonds
SH Surface Hoar Large grains, weak bonds, thin layer
MF Melt forms Wet snow

Table 1: The different snow grain types found in a snowpack, with a description of
the most relevant properties.

cesses in a snowpack.

Figure 1: The Snow Metamorphism Process: The green arrows are the rounding
processes. Red arrows are the faceting processes. The blue arrows are melting
processes. The snow grain types are explained in Table 1.

2.2 Snow Avalanche Formation

A weak layer is a layer consisting of snow crystals poorly bonded with the snow layers
above and below. There are different kinds of weak layers, consisting of different snow
grains (Avalanche Canada [AC], n.d.). The grains have weak bonds and are fragile
to external pressure. A weak layer in a snowpack is typically created by the snow
metamorphism in the snowpack, as described earlier. If the weak layer resists forming
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strong bonds to adjacent layers over a long period, it is called a persistent weak layer.
Persistent weak layers typically consist of either surface hoar grains, depth hoar grains,
or faceted crystals (see Table 1) and can be buried deep in the snowpack (Schweizer
et al., 2003).

An avalanche is a rapid motion of snow down a steep slope. They occur in slopes
with an angle higher than 30 ◦. Avalanches can be fatal to human life and also
inflicts significant damage on infrastructure. NVE distinguishes between two types of
avalanches, loose snow avalanches and slab avalanches (NVE, 2016; Schweizer et al.,
2003). A loose snow avalanche is a point-release avalanche, meaning it releases from
a point near the snowpack’s surface and then spreads down the slope, increasing in
volume as it collects snow (Statens Vegvesen, 2014).

Slab avalanches are considered the more dangerous type of avalanche. A bonded
layer of snow (called the slab) lies on top of a weak layer. The collapse of the weak
layer starts with a minor fracture rapidly propagating through the weak layer. The
collapse of a weak layer can either be human-triggered or triggered by natural causes.
A human trigger could be an additional load of a skier. A natural trigger could be a
large amount of precipitation or wind-drifted snow, leading to rapid changes in the
snowpack stratigraphy. In this thesis, the focus is on natural induced slab avalanches.
An example of a natural trigger is a large amount of new snow, either as precipitation
or drifted by the wind, increasing the stress on the weak layer by the slab above.
Figure 2 shows the requirements for the release of a slab avalanche.

Figure 2: Slab Avalanche: Requirements for a slab avalanche Müller, 2019a.

The formation of a slab avalanche is a complex process depending on interactions
within the snowpack, the terrain, and meteorological conditions. Predicting snow
avalanches requires an understanding of how different factors impact the stability of
the snowpack. Stability is the probability that an avalanche will not occur (AAC,
n.d.-b). Schweizer et al. (2003) consider five essential factors that contribute to the
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stability of a snowpack and, therefore, the avalanche danger: terrain, precipitation
(new snow or rain), wind, temperature, and snowpack stratigraphy.

Terrain: An analysis in the Alps, during the winter of 1999, validated that very few
avalanches occur when the slope is lower than 30◦. There is also evidence that rough
terrain or dense forests inhibit avalanche formation, especially if the snow cover has a
small depth (< 0.3 m), as snow interception hinders weak layer formation.

Precipitation (New Snow): Accumulation of precipitation, especially as new
snow, is critical for avalanche danger, adding weight and therefore stress on the weak
layer. Approximately 30− 50 cm is considered a critical thickness of new snow depth
for naturally released avalanches. The density of new snow also affects the avalanche
formation, and a decreasing density with depth is associated with increased avalanche
activity.

Wind: Variation in wind speed and wind direction leads to different densities and
stress concentrations in the layered snowpack. The snow deposits irregularly, leading
to a snowpack with different loading rates.

Temperature: Snow properties are temperature-dependent. Warming tempera-
tures decrease the mechanical hardness of the slab. It also decreases the weak layer’s
strength and increases the weak layer’s toughness. Warm temperatures overall result
in a decrease in snowpack stability (Schweizer et al., 2003).

Snowpack stratigraphy: The snowpack properties impact snow avalanche for-
mation and snowpack stability. The weak layer’s sheer strength and the grain size
and hardness differences between the weak and adjacent layers significantly impact
the stability. Snowpack stratigraphy depends on the four other factors listed above as
well.

2.3 Stability

An important part of avalanche forecasting, especially for slab avalanches, is stability
evaluation. The weak layer stability depends on the ratio between the weak layer
strength and the stress put on the weak layer by the overlying slab. Experts manually
test the stability with compression tests and hardness tests. Manual tests are time-
consuming, requiring people in multiple places in Norway to test the stability every day.

Some metrics have been introduced to measure the stability of a layer quantita-
tively. Jamieson and Johnston (Jamieson & Johnston, 1998) derived the skier stability
index SK38, a quantitative stability measure of a weak layer for a given depth h:

SK38 =
τ

τxz + ∆τxz
, (2.1)
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where τ is the shear strength per grain type, τxz being the shear stress due to overlay-
ing slab, and ∆τxz being additional stress induced by a skier.

Snowpack properties such as grain size and hardness are important when evalu-
ating the snowpack’s stability, according to Schweizer et al. (2003). As density
increases with increasing depth, Schweizer suggested combining SK38 with a measure
of hardness and grain size difference, resulting in the structural stability index SSI:

SSI = SK38 + ∆R∗ + ∆E∗, (2.2)

where ∆R∗ is the hardness difference across a layer, and ∆E∗ the grain size difference
across a layer, both taken as binary values, depending on the following formulas:

∆R∗ =

{
0 if ∆R ≥ 1.5

1 if ∆R < 1.5,
(2.3)

∆E∗ =

{
0 if ∆E ≥ 0.5

1 if ∆E < 0.5,
(2.4)

The stability metrics SSI and SK38 are both measures of a weak layer’s stability. When
the stress on the weak layer by the overlying slab, τxz, increases, the weak layer’s
stability decreases.

The stability of a weak layer is a highly complex property, depending on numerous
combinations of factors. Stability evaluation requires evaluating different informa-
tion based on equations, observations, and manual stress tests (AAC, n.d.-b). It
is therefore not realistic that one equation gives a fully reliable stability measure.
Bellaire et al. (2006) showed that both SSI and SK38 reproduces reliable stability
patterns compared to observed stability patterns. The skier stability index SK38

performs well in measuring the stability of a weak layer but poorly locating the weak
layer in the snowpack. SSI, on the other hand, performs well in locating the weak
layer. A combination of SSI and SK38 could therefore indicate the weak layer’s stability.

There are few reports on a threshold value of SK38 that separates stable and unstable
layers. The usual way to determine the stability is by a combination of metrics,
for example combining the metrics SSI and SK38. Some report that a layer with
a SK38 < 1 is potentially unstable, while others use a threshold-measure of 0.8 to
differentiate the conditions (Monti & Schweizer, 2013; Monti et al., 2014).

2.4 SNOWPACK

SNOWPACK is a numerical snow cover model developed by WSL Institute for Snow
and Avalanche Research SLF (SLF, n.d.-c). The model uses differential equations and
the finite element method to simulate the snowpack and its development throughout
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a chosen period. The main focus is the various processes happening within the
snowpack, including detailed information about the evolution of grain size, grain
type, density, and hardness of each layer. SNOWPACK calculates a series of layered,
one-dimensional snow profiles over a chosen period. With SNOWPACK, it is possible
to simulate thin layers if needed, such as an ice crust or a layer consisting of depth
hoar grains. Figure 3 shows the different factors impacting the development of a
snowpack, which are handled numerically by SNOWPACK. An interesting application
of SNOWPACK is that it calculates and outputs the stability of each layer, based on
the stability measures SK38 and SSI, as described in Chapter 2.3.

Figure 3: Illustration of the different factors that impacts the development of a
snowpack, handled by the numerical snowpack software SNOWPACK (SLF, n.d.-b).

SNOWPACK uses meteorological data from automatic weather stations, predicted
weather models, or climate models to simulate the snow cover. Table 2 shows the
required inputs to simulate a snow cover model with SNOWPACK. The weather data
needs to be at an hourly time-step. To handle missing data, multiple input formats,
or damaged data sets, SNOWPACK utilizes a preprocessing library called MeteoIO.
MeteoIO preprocesses the data, handles the retrieving, filtering, and resampling of
input data, and interpolates data if necessary at the required timestamps. The focus
is data quality, with a high emphasis on accuracy and consistency, while obeying the
physical laws of nature (Bavay & Egger, 2014).

WxGen is used to generate the meteorological time series data required by SNOW-
PACK. It is a weather scenarios program developed by the Norwegian Meteorological
Institute, which generates and combines weather trajectories stochastically, generating
time series of weather within historical trends. The weather trajectories are based
on the historical 15-day weather forecast database, ECMWF’s (European Centre for
Medium-Range Weather Forecasts). WxGen creates gridded time series that are arbi-
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Input parameter Abbrev.

Air temperature TA
Relative Humidity RH
Wind speed WS
Incoming Short Wave Radiation ISWR
Surface Temperature TSS
Precipiation PSUM

Table 2: Weather input required by the numerical snowpack model SNOWPACK.

trarily long, with multiple weather variables. By specifying longitude and latitude, the
user can generate weather series at specific locations (MI, n.d.). Figure 4 illustrates the
general workflow of producing numerical snowpacks involving WxGen, MeteoIO, and
SNOWPACK. Check out the Snowpack and MeteoIO documentation for more specific
instructions: https://models.slf.ch/docserver/snowpack/html/getting started.html.

Figure 4: Workflow-illustration of snow cover simulation with WxGen, MeteoIO,
SNOWPACK (SLF, n.d.-c).
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2.5 Drone Measurement

A developing focus area within snowpack monitoring and avalanche forecasting is the
use of Geo-referenced data. An example is the growing use of satellite data, such as
the Sentinel satellites, which are part of the Copernicus program by the European
Space Agency (ESA). Sentinel satellites make it possible to monitor certain snowpack
properties with a spatial resolution of only 10 meters. Data such as snow depth,
amount of new snow, and amount of melted snow are continuously monitored and
freely available at a website called xGeo1, developed by NVE (NVE, n.d.).

Another way to provide repeatable and accurate data of a snowpack is by utiliz-
ing drone measurements. SINTEF Industry (Applied Geoscience group) launched
the GeoDrone project in September 2020, a project that aims to utilize drone mea-
surements to forecast and monitor hazard events such as snow avalanches (Dupuy
et al., 2021; SINTEF, n.d.). The project strategy includes building an autonomous
and modular drone platform equipped with multi-purpose sensors, including a GPR
(Ground Penetrating Radar) for underground mapping and LIDAR/ cameras for
surface mapping. Figure 5 displays an outline of the autonomous drone with its
measurement functions, and Figure 6 is a picture of the autonomous drone built by
SINTEF.

Figure 5: Outline of the autonomous drone with its main functions (Dupuy et al.,
2021)

Figure 7 illustrates a simulation of using GPR-data to locate a weak layer in a
snowpack. A drone equipped with a GPR emitter sends a signal from 1 m above the
snow surface, which propagates down in the snowpack. When the wave meets a layer
interface with permittivity contrasts, the signal gets reflected to the GPR emitter,
revealing the location and properties of the weak layer in the snowpack. Table 3 lists

1http://www.xgeo.no/
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Figure 6: Picture of the autonomous drone (Dupuy et al., 2021).

the relative permittivity of each layer in the simulation. The layer of faceted crystals
outlined in the figure is considered a weak layer. An ice crust situated on the top of a
weak layer is common in a snowpack, as described in Chapter 2.1. Faceted crystals
have a low relative permittivity and are therefore difficult to locate using GPR. The
ice crust, however, has a high relative permittivity and is observable by the GPR. As
the snow below the weak layer is dense, the signal gets reflected, revealing a precise
location of the weak layer.

Layer Relative Permittivity
Air 1

Fresh (New) Snow 1.16
Snow 1 2.1

Ice crust 3.13
Faceted Crystals 1.16

Snow 2 2.5
Depth Hoar 1.16

Bedrock 10

Table 3: The relative permittivity of each layer in the underground-mapping simulation.

SINTEF intends to develop innovative real-time data processing- and data analysis
approaches for decision-making to measure the snow properties in real-time. GPR
surveys should provide information about layer density and thickness. Surface map-
ping, using LIDAR or photogrammetry, can also measure the amount of new snow.
Grain size and bond size are, at this point, not possible to measure with drones but
could be measured by using correlating methods. Such a system must balance the
information content of data with the costs of data acquisition and processing. For
this purpose, it is useful to build a decision support system that can wisely plan the
drone data gathering (Dupuy et al., 2021).
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Figure 7: Example of using GPR to locate weak layers in snowpack.
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Chapter 3
Modelling Snow Properties

This chapter introduces the first of two stages involved in predicting the stability of
the weak layer in a snowpack. The first stage is to forecast the snow properties Xt,i,
where the subscript t = 1, 2, . . . is the time index, and the subscript i = 1, 2, . . . , 6
is the property index. Table 4 shows the different properties Xt,i. Properties are
estimated daily at 12:00, t = 1 indicates day one, t = 2 indicates day two etc.

A Dynamic Linear Model (DLM) is utilized to capture the effect of time on the
snow properties. The second stage is to predict the weak layer stability rt at time
t, using a multivariate regression model with the estimated snow properties Xt,i as
predictor variables. This stage is presented in Chapter 4. A sequential approach is
applied to develop the snowpack properties over time. The model parameters are
adjusted depending on the weather conditions at a particular day.

Variable name:
Xt,1 New Snow Thickness
Xt,2 New Snow Density
Xt,3 Weak Layer Density
Xt,4 Weak Layer Thickness
Xt,5 Weak Layer Grain Size
Xt,6 Weak Layer Bond Size

Table 4: The snow variables used in the dynamic model, at time t.

Chapter 3.1 presents the dynamic model used to forecast the snowpack properties.
The conditioning parts of the model ar described in Chapter 3.2.
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3.1 Dynamic Model

3.1.1 Developing a model

Let Xt = (Xt,1, . . . , Xt,6)
T be a vector containing the snowpack layer properties Xt,i,

at time t. This section develops a model that one-step-forecasts Xt,i at any given time
t, that is a function Xt+1 = f(Xt). A simple way to calculate Xt+1, given Xt is by a
univariate regression model:

Xt+1 = γt+1 + At+1 ·Xt + εt+1, εt+1 ∼ N(0,Wt+1), (3.1)

where

• γt+1 is an (6× 1)-vector, containing the intercept at time t+ 1.

• Xt+1 is a (6× 1)-matrix containing the snow properties at time t+ 1, Xt similar
for time t.

• At+1 is a (6× 6)-diagonal matrix containing the model coefficients, linking each
property with itself at the previous time-step, at time t+ 1.

• εt+1 is a (6× 1)-vector assumed to be independent and identically distributed.
Wt+1 is the variance of the snowpack properties at time t+ 1.

There is a priori belief that weather has an effect on the development of Xt,i. By
including weather as covariates, the model accommodates this belief. Let ωt be a
vector containing the weather variables, as listed in Table 5, at time t.

Variable name:
ω1 Temperature
ω2 Precipitation
ω3 Wind Speed

Table 5: The weather variables used in the dynamic model.

An expansion of Equation 3.1, includes the weather as a factor:

Xt+1 = γt+1 + At+1 ·Xt + Bt+1 · ωt+1 + εt+1, (3.2)

where Bt+1 is a (p× 3)-matrix containing the weather-coefficients at time t+ 1 and
ωt+1 is a (3× 1)-vector containing the weather-data at time t+ 1.

Different weather patterns affect the snow properties in different ways, as described
in Chapter 2. There is, therefore, a prior belief that X develops differently when the
external weather patterns change. A combination of temperature, precipitation, and
wind speed indicates a weather pattern, further called a weather regime. There are
eight weather regimes included in the model. Table 6 shows the different weather
regimes used in the model.
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Regime Temperature Precipitation Wind Speed
HHH High High High
HHL High High Low
HLH High Low High
HLL High Low Low
LHH Low High High
LHL Low High Low
LLH Low Low High
LLL Low Low Low

Table 6: The weather regimes used to group the data in the dynamic model.

The DLM has time-dependent parameters and error terms, depending on the weather
regime at a specific day. The parameters γt+1, At+1 and Bt+1 all depend on the
weather ωt+1 at day t+ 1, and therefore changes according to the regime. The noise
term εt+1 also depends on the weather regime at day t+ 1.

3.1.2 Expected Value and Variance

It is important to be able to estimate the mean value and variance of Equation 3.2.
Let the expected value E(Xt) be denoted as µ̂t and the variance Var(Xt) at time t be
denoted as Σ̂t. Then,

µ̂t+1 = E(γt+1 + At+1 ·Xt + Bt+1 · ωt+1 + εt+1)

= E(γt+1) + E(At+1 ·Xt) + E(Bt+1 · ωt+1) + E(εt+1)

= γt+1 + At+1 · E(Xt) + Bt+1 · ωt+1

= γt+1 + At+1 · µ̂t + Bt+1 · ωt+1, (3.3)

Σ̂t+1 = Var(γt+1 + At+1 ·Xt + Bt+1 · ωt+1 + εt+1)

= Var(γt+1) + Var(At+1 ·Xt) + Var(Bt+1 · ωt+1) + Var(εt+1))

= At+1Σ̂tA
T
t+1 + Wt+1. (3.4)

3.2 Introduction to a Conditional Model

3.2.1 Information sets

This section introduces sequential modeling, based on the work of West and Harrison
(1997). Let θt be the model parameters at time t, the index t indicating that the
parameters are dynamic and depends on time. For Equation 3.2, this is given by the
set

θt = {γt,At,Bt, εt} (3.5)

A DLM has a sequential approach, which means that the model focuses on predictive
statements of future development, as well as conditioning on existing information.
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The information available to a forecaster develops as time evolves. Let Dt be the
information available at time t. The initial information available and recognized to a
forecaster at t = 1 is:

D1 : initial information set at t = 1 (3.6)

D1 contains all relevant initial information for forecasting, including the model
parameters θ1 and an initial measurement X1. For forecasting, the objective is
to calculate the forecast distribution (Xt|D1), the distribution of Xt conditional on
D1, where t > 1. At time t, denote the information set available as

Dt : information set at time t (3.7)

One-step forecasting to time t involves calculating the forecast distribution (Xt|Dt−1),
that is the distribution of Xt, conditional on Dt−1. The forecast distribution develops
with time, updating when new information is available. After observing Xt, the
relevant information Dt at time t contains both the previously available information
Dt−1 and the observation Xt. Let It be all additional relevant information at time
t. This includes the new observations Xt, and possibly revised model parameters at
time t, as the parameters are dynamic and depend on the weather regime. Then all
the relevant information at time t is

Dt = {It, Dt−1} t = 1, 2, . . . (3.8)

The sequential approach makes it possible to describe the development of a series
by using a probability distribution for Xt, Xt+1, . . . , conditional on past information
Dt−1. By restricting the model to focus on one-step-predictions, the forecaster’s
predictive belief is

p(Xt|Dt−1,θt), (3.9)

where θt is the parameter vector at time t, indicating dynamic parameters, and
Dt−1 is the information set available prior to observing Xt. The predictive density
is p(Xt|Dt−1,θt). After observing Xt, the posterior distribution is p(Xt|Dt). The
exchange between prior and posterior distribution provides an effective transfer of
information through time, making a sequential procedure possible.

3.2.2 Recursive Model

The DLM expressed in Equation 3.2 develops sequentially over time, based on initial-
izing the model, one-step forecasting the model at time t+ 1 and updating the model
distribution given new measurements.

Assume that the property X1 is known initially, by either some inspection (drone, man-
ual snowpack inspection) or calculated with a numerical model such as SNOWPACK.
Then the starting information available at time t = 1 is

D1 : {X1, θ1} (3.10)
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where θ1 = {A1,ω1,B1,γ1} is the parameters at t = 1. (X1|D1) is the posterior
distribution of X1, conditional on the available information D1, at time t = 1. The
prior distribution p(X2|D1,θ2) is calculated by

(X2|D1,θ2) ∼ N(µ̂2, Σ̂2), (3.11)

where µ̂2 and Σ̂2 are calculated by Equation 3.3 and Equation 3.4. The posterior
distribution at time t = 2, after obtaining observation X2, is p(X2|D2). To separate
predicted and updated mean and variance, the following notation is introduced:

• µ̂t+1|t and Σ̂t+1|t is the predicted mean and variance at time t+ 1, given all the
data available at time t, and θt+1, calculated by equation 3.3 and 3.4.

• µ̂t+1|t+1 and Σ̂t+1|t+1 is the updated mean and variance at time t+ 1, given all
the data available at time t+ 1, including measurement Xt+1.

The procedure of using posterior, prior, one-step-forecast, and updating the posterior
are used recursively for every t, resulting in the sequential model. In general, the
recursion follows the three steps:

1. Posterior for Xt: (Xt|Dt) ∼ N(µ̂t|t, Σ̂t|t)

2. (One-step forecast) Prior for Xt+1: (Xt+1|Dt,θt) ∼ N(µ̂t+1|t, Σ̂t+1|t)

3. (Update) Posterior for Xt+1: (Xt+1|Dt+1) ∼ N(µ̂t+1|t+1, Σ̂t+1|t+1)

Algorithm 1 shows the sequential procedure.

Algorithm 1 Sequential procedure
Inputs:

X1, A, w, B, γ, T
Output:

X, µ̂, Σ̂
Initialize:

X = [X1, 0, . . . ], µ̂ = [µ̂1|1, 0, . . . ], Σ̂ = [Σ̂1|1, 0, . . . ], t = 2
while t < T do

µ̂t|t−1 ← E(Xt), Σ̂t|t−1 ← Var(Xt) . using Equation 3.3 and 3.4

Xt ← N(µ̂t|t−1, Σ̂t|t−1)

X[t]← Xt, µ̂[t]← µ̂, Σ̂[t]← Σ̂
t← t+ 1

end while
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Chapter 4
Drone Assimilation and Adaptive
Monitoring

The second stage of the model concerns predicting the weak layer stability rt, based on
the estimated snow properties Xt. Chapter 2.2 describes how the weak layer stability
depends on both weak layer properties and new snow layer properties. A multivariate
regression model is proposed:

rt = f ·Xt + τt, τt ∼ N(0, Vt), (4.1)

where f is a (1× p)-coefficient matrix constant for all t, and τt is the associated error
of the predicted stability at time t, assumed to be normal distributed with variance
Vt.

4.1 Threshold test

For each day t, the model predicts the weak layer stability rt, based on the one-step-
forecasted snow properties Xt as calculated in Equation 3.2. Assume at a time t, the
expected value and variance of Xt+1 are estimated as µ̂t+1|t and Σ̂t+1|t respectively,
using the sequential procedure introduced in Chapter 3.2. At time t, the available
data is the information set Dt. Using equation 4.1, the model calculates

rt+1|Dt ∼ (f̂t+1|t, Q̂t+1|t), (4.2)

where

f̂t+1|t = f · µ̂t+1|t (4.3)

Q̂t+1|t = fT Σ̂t+1|tf + Vt+1. (4.4)

The goal is to subject the estimated stability to a threshold test. Let the Estimated
Stability Threshold, further denoted as EST, be the lowest possible stability measure
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before a weak layer is deemed potentially unstable. The prior probability that the
predicted stability at time t+ 1 is higher than EST is given by

p = P (rt+1 ≥ EST|Dt) = P (−rt+1 ≤ EST|Dt) = P

(
Z ≤

f̂t+1|t − EST√
Q̂t+1|t

)
. (4.5)

That is the probability that the predicted stability is higher than the EST given
information Dt.

4.2 Updating with drone measurements:

The model is further developed to update the model distribution with drone measure-
ments. Using the Bayesian framework, the model updates its posterior distribution
based on drone measurements dt. The equations for the updated drone measurements
is given by

dt+1 = G ·Xt+1 + δt+1, δt+1 ∼ N(0,Rt+1), (4.6)

where Xt+1 ∼ N(µ̂t+1|t, Σ̂t+1|t) and Rt+1 is the variance accociated with the drone.
The updated posterior distribution after receiving a drone measurement is calculated
by

Xt+1|Dt+1 ∼ N(µ̂t+1|t+1, Σ̂t+1|t+1), (4.7)

where

µ̂t+1|t+1 = µ̂t+1|t + Σ̂t+1|tG
T · [GΣ̂t+1|tG

T + Rt+1]
−1 · (dt+1 −Gµt+1|t), (4.8)

Σ̂t+1|t+1 = Σ̂t+1|t − Σ̂t+1|tG
T [GΣ̂t+1|tG

T + Rt+1]
−1GΣ̂t+1|t︸ ︷︷ ︸

St+1

. (4.9)

The updated stability rt+1 after a drone measurement is calculated by

E(rt+1|Dt,dt+1) = f̂t+1|t+1 = f · µ̂t+1|t+1, (4.10)

Var(rt+1|Dt,dt+1) = Q̂t+1|t+1 = fT Σ̂t+1|t+1, f + Vt+1 (4.11)

Then the updated stability is calculated by

(rt+1|Dt,dt+1) ∼ N(f̂t+1|t+1, Q̂t+1|t+1). (4.12)

4.3 Adaptive Monitoring Strategy

This section presents an adaptive monitoring strategy useful for deciding when to
initiate drone events. The strategy is based on standard event-based decision strategies,
as described by Shi, Shi, and Chen (2016). This section introduces the Adaptive
Monitoring (AMA) strategy. With the AMA strategy, the model updates with
either drone-measured properties dt+1 or the estimated properties Xt+1, depending
on the predicted stability. The AMA strategy is structured the following way:
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• Predict the probability p that the predicted weak layer stability is higher than
EST.

• If the probability p is lower than a threshold L, monitor snowpack with drone,
obtain drone measurement dt+1

• Update model with drone data dt+1, so posterior distribution is
p(Xt+1|Dt−1,dt+1)

Let L be a probability threshold, indicating the probability required to start a drone
event. Then for time t the following decision rule is given

• p > L: Do not inspect snowpack-properties with drone.

• p ≤ L: Inspect snowpack-properties with drone.

The extended model using the AMA strategy are summarised by the following
equations.

rt+1 = f ·Xt+1 + τt+1, τt+1 ∼ N(0, Qt+1) (4.13)

Xt+1 = At+1 ·Xt + Bt+1 · ωt+1 + εt+1, εt+1 ∼ N(0,Wt+1) (4.14)

Below is an outline of a sequential procedure incorporating the dynamic part of
Equation 4.14 and the stability part of Equation 4.13. The procedure is inspired by
the work of West and Harrison concerning sequential procedures for DLM’s (West
& Harrison, 1997). a) and b) describes the first stage of the procedure (forecasting),
while c) and d) describes the second stage of the procedure (updating).

First, the model uses the prior distribution, based on the available information
at time t, to forecast Xt+1. Then the model predicts the stability measure rt+1 and
calculates the probability p that the predicted stability is higher than EST. If the
probability is less than a probability threshold L, a drone is initiated to measure the
snow properties. The model uses the new measurement (either a drone mesasure-
ment or Xt+1 depending on the result of the decision rule) to update the posterior
distribution for t+ 1. The following notation is introduced to separate if the updated
distribution uses a drone measurement or an estimated snow property:

• µt+1|t+1 and Σt+1|t+1 means mean and variance given data available at time
t+ 1, when updated with estimated properties.

• µt+1|0 and Σt+1|0 means mean and variance given data available at time t+ 1,
when updated with drone measurements.
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Sequential Procedure:

a) Posterior at time t:
Given information set Dt, with some known mean µ̂t and variance Σ̂t.

(Xt|Dt) ∼ N(µ̂t|t, Σ̂t|t). (4.15)

b) Prior for time t+ 1:

Let µ̂t+1|t = At+1µ̂t|t+Bt+1ωt+1 and Σ̂t+1|t = At+1·Σt|tAt+1
T +Wt+1, estimated

by Equation 3.3 and Equation 3.4 respectively. Then

(Xt+1|Dt,θt+1) ∼ N(µ̂t+1|t, Σ̂t+1|t). (4.16)

c) One-step forecast (Event trigger):

Let f̂t+1|t = fµ̂t+1|t and Q̂t+1|t = fT Σ̂t+1|tf + Vt+1, estimated by Equation 4.3
and Equation 4.4 respectively. Then

(rt+1|Dt,θt+1) ∼ N(f̂t+1|t, Q̂t+1|t). (4.17)

d) Posterior at t+ 1 (Updating):
If p(rt+1 ≥ EST|Dt,θt+1) > L : Let Dt+1 be the updated information set
for t + 1, containing the predicted mean and variance, as estimated earlier:
µ̂t+1|t+1 = µ̂t+1|t and Σ̂t+1|t+1 = Σ̂t+1|t.

(Xt+1|Dt+1) ∼ N(µ̂t+1|t+1, Σ̂t+1|t+1). (4.18)

If p(rt+1 ≥ EST|Dt,θt+1) ≤ L : Let D̄t+1 be the updated information set for
t+ 1, containing the drone-measurements given by equation 4.7. The variance
Σt+1|0 depends on the drone resolution. If there are missing drone-data, the
model uses the estimated properties for the specific variables.

(Xt+1|D̄t+1) ∼ N(µt+1|0, Σt+1|0). (4.19)

As the model develops over time, the variance propagates, yielding more uncertain
forecasts. Inspecting the snowpack properties with a drone should give more accurate
measurements than estimation by the dynamic model, especially at higher t-values.
Thus, an adaptive model that updates its distribution based on drone measurements
should provide more reliable results than a non-adaptive model. The determination
of the EST value is important in this regard, as it impacts when the model initiates a
drone. Figure 8 shows the model workflow, and Algorithm 2 is the pseudocode for
the DLM using the AMA strategy.
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Algorithm 2 AMA-Algorithm
Inputs:

L, EST, T , F , X1, A, ω, B, γ
Output:

X, r
Initialize:

r ← [0, . . . ]
X = [X1, 0, . . . ]
D = ∅

while t < T do
Xt, µ̂t, Σ̂t ← Sequential Procedure(Xt−1, A, w,B, γ, T )[t] . See Algorithm 1
f̂t ← E[rt|D], Q̂← Var[rt|D] . See Equation 4.3 and 4.4
rt ← N(f̂t, Q̂t)
r[t]← rt
p← P (rt ≥ EST)
if p ≤ L then

Inspect with drone, obtain measured snowpack properties dt
X[t]← dt
D = D ∪ dt

else
Use estimated snowpack properties Xt

X[t]← Xt

D = D
end if
Update distribution P (Xt) = P (Xt|D)
t=t+1

end while

27



4.4. Value of Information Strategy

Figure 8: The workflow of the dynamic model. Test is the threshold-test, that either
uses the estimated properties dependent on weather-data or a drone-measurement in
the next iteration.

4.4 Value of Information Strategy

Another strategy to initiate drones is using Value of Information (VOI). VOI
is a useful way to quantify the value of a drone measurement before it is acquired.
With a VOI strategy, the goal is to use the expected value of information in a drone
measurement to decide if a drone should be initiated. Eidsvik et al. (2015) describe
three relevant conditions that affect the value of information, contained into the
pyramid of conditions :

1. Relevancy: Is the information relevant to the value?

2. Material: Can the information change the decision?

3. Economic: Is the value of information higher than the cost of the information?

Assume there is a high probability that an avalanche occurs and blocks the road if
the predicted weak layer stability is less than EST. Discussion around the validity
of using a single stability prediction to predict avalanches is discussed in Chapter 7.
There are two actions available, either close the road or keep the road open and risk
that the stability is lower than the stability threshold:

• Alternative 1: Close road

• Alternative 2: Keep road open

With a VOI-strategy, it is possible to find the expected cost of each alternative given
an unobserved drone measurement. It can therefore be used as a decision rule, by
choosing the cheapest alternative every day. Closing the road will naturally have
a higher cost than keeping the road open, as closing roads stops traffic. Let C0 be
the cost of closing the road. The expected cost of alternative 2 however depends on
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the probability P (rt+1 ≤ EST), that is the probability that the predicted weak layer
stability is less than the threshold EST. C1 is the cost associated with a blocked road.
The expected cost of alternative 2 is then C1 · P (rt+1 ≤ EST). The Prior Value (PV)
is given by

PV = min{C0, C1 · P (rt+1 ≤ EST|Dt))} (4.20)

= min

{
C0, C1 · Φ

(
EST− f̂√

Q̂t+1|t

)}
(4.21)

The next step is to assume a drone has obtained new data dt+1. The Posterior Value
(PoV) is

PoV(dt+1) = min{C0, C1 · P (rt+1 ≤ EST|Dt,dt+1))} (4.22)

The Value of Information is defined as the expected gain in value

VOI(dt+1) = E[PoV(dt+1)]− PV (4.23)

VOI(dt+1) measures how valueable the drone measurement dt+1 is to the belief of rt+1.
Large VoI(dt+1)-values indicates that the measured properties has a large impact on
the belief about rt+1. The expected PoV of a drone measurement is given by

E[PoV(dt+1)] =

∫
min{C0, C1 · P (rt+1 ≤ EST|Dt,dt+1))} · p(dt+1|Dt)dt+1, (4.24)

=

∫
min

{
C0, C1 · Φ

(
EST− f · µ̂t+1|t+1√

Q̂t+1|t+1

)}
· p(dt+1|Dt)dt+1, (4.25)

=

∫
min{C0, C1 · Φ(w)} · p(w)dw, (4.26)

where

w =
EST− f · µ̂t+1|t+1√

Q̂t+1|t+1

, (4.27)

The expected value and variance of w given the information Dt is given by

E(w|Dt) = µw =
EST− f · µ̂t+1|t√

Q̂t+1|t+1

(4.28)

Var(w|Dt) = σ2
w =

f · St+1 · fT

Q̂t+1|t+1

, (4.29)

where St+1 is given by equation 4.9. Let

w∗ = Φ−1
(
C0

C1

)
(4.30)
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The extension of Equation 4.26 is given by

E[PoV(dt+1)] = C0

∫ ∞
w∗

p(w)dw + C1

∫ w∗

−∞
Φ(w) · p(w) · dw (4.31)

= C0

[
1− Φ

(
w∗ − µw

σw

)]
+ C1 · P (Z < W,W < w∗), (4.32)

Let now

Z1 =
Z −W − (0− µw)√

1 + σ2
w

∼ N(0, 1) (4.33)

Z2 =
W − w∗ − (µw − w∗)

σw
∼ N(0, 1), (4.34)

The covariance between Z1 and Z2 is given by

δ = Cov(Z1, Z2) = Cov

(
− w√

1 + σ2
w

,
w

σw

)
(4.35)

= − 1

σw
√

1 + σ2
w

· Var(w) = − σw√
1 + σ2

w

(4.36)

Define that

a1 =
µw√

1 + σ2
w

(4.37)

a2 =
w∗ − µw

σw
(4.38)

The expected PoV is then given by

E[PoV(dt+1)] = C0Φ

(
µw − w∗

σw

)
+ C1Φ2

((
a1
a2

)
;

(
0
0

)
,

(
1 δ
δ 1

))
, (4.39)

where Φ2 is the bivariate cumulative distribution function. The expected VOI of an
observation dt+1 is then given by

E[VOI(dt+1)] = E[PoV(dt+1)]− PV (4.40)

This expected value can be used as a criteria to decide if a drone-inspection is needed.
Finally, the criteria is subjected to the threshold value LVOI, using the following
decision rule:

E[VOI(dt+1)] ≥ LVOI =⇒ Gather data with drone (4.41)

E[VOI(dt+1)] < LVOI =⇒ Do not gather data with drone (4.42)

Some important considerations need to be taken into account with a VOI-strategy
model. The parameters LVOI, EST, C0 and C1 all impact when the drone is initiated
and needs to be determined carefully. For example, if the cost of C0 and C1 is close,
there would be less gained by obtaining a drone measurement, as it has less financial
significance to send out a drone. If the cost C1 is much higher than C0, however, there
is more value to a drone measurement, as the cost associated with predicting stability
lower than the threshold is higher.
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Algorithm 3 Information-based-monitoring
Inputs:

LVOI, EST, T ,X1, A, ω, B, γ, C0, C1

Output:
X, r

Initialize:
r ← [0, . . . ]
X = [X1, 0, . . . ]
D = ∅

while t < T do
Xt, µ̂t, Σ̂t ← Sequential Procedure(Xt−1, A, w,B, γ, T )[t] . See Algorithm 1
f̂ ← E[rt|D], Q̂← Var[rt|D] . See Equation 4.3 and 4.4
rt ← N(f̂ , Q̂)
Calculate E[PoV(dt+1)] with Equation 4.39
E[VOI(dt)]← E[PoV(dt)]− PV
if E[VOI(dt)] ≥ LVOI then

Inspect with drone, obtain measured snowpack properties dt
X[t]← dt
D ← D ∪ dt

else
Use estimated snowpack properties Xt

X[t]← Xt

D ← D
end if
Update distribution P (Xt) = P (Xt|D)
t = t+ 1

end while
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Chapter 5
Generating Data

This chapter presents the data used in the analysis in Chapter 6. Chapter 5.1
introduces the general study area. The generated weather scenarios and the simulated
snowpacks are presented in Chapter 5.2. Chapter 5.3 presents the snow properties
and the stability measures calculated by SNOWPACK. Finally, Chapter 5.4 describes
the grouping of data into weather regimes. The code used to extract and generate the
data described in this chapter are included in Appendix B.

5.1 Study Area

The chosen Study Area is Stryn, a municipality in Vestland county, in the western
part of Norway, alongside the national road from Lom to Stryn (Riksvei 15). The road
passes the mountain range Strynefjellet, an avalanche-prone area with frequent strong
winds. It is the fastest road between Nordfjord and Indre Østlandet, the fastest winter
road between Vestlandet and Trøndelag, and a popular tourist road connecting the
southern mountain ranges with the fjords in Nordfjord and Sunnmøre. Two locations
in Stryn are included in the data set: Kroken and Fjellet. Kroken is the name
of a weather station operated by the Norwegian Meteorological Institute. Fjellet is
a shortening of the name Strynefjell-Kvitenova, and is a weather station operated
by The Norwegian Public Roads Administration. Figure 9 shows the two weather
stations alongside Riksvei 15. Kroken is around 200 meters above sea level, while
Fjellet is situated higher in the mountain, at around 1000 meters above sea level.

5.2 Wxgen and Snowpack data

Figure 10 shows the generated weather sequences of four different weather variables
at Kroken and Fjellet in Stryn, generated with WxGen (see a description of WxGen
in Chapter 2.4). The simulation period of weather scenarios is between January 1
and April 30. The geographical closeness between Kroken and Fjellet explains the
apparent correlation for each weather variable.
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Figure 9: The study area in Stryn, with the two weather stations Kroken and Fjellet
included.

The average temperature varies a lot every day but has an overall rising trend, as ex-
pected in the spring. There are some indications of a seasonal trend, with consecutive
days of either cold temperatures or warm temperatures. The precipitation graph shows
that January and late March (and onwards) were the driest periods. There is also
an apparent wet period from the middle of February to the beginning of March with
consecutive days with a large amount of precipitation. The wind speed varies a lot
over the whole period. The average wind speed is higher in January, February, and the
beginning of March than in the later periods. The incoming solar radiation rises over
the spring, as expected due to the seasonal change. The trends described supports the
idea of grouping data into weather regimes, which are described further in Chapter 5.4.

The weather sequences provide input for the numerical model SNOWPACK (see
further details on SNOWPACK in Chapter 2.4). Figure 11 shows the simulated snow-
packs at Kroken (a) and Fjellet (b). The colors correspond to the grain type of each
snowpack layer (see further descriptions about the different grain types in Chapter
2.1). The light blue layers consist of faceted crystals, the dark blue layers consist of
depth hoar crystals, and the light green layers consist of new snow grain types. These
three layers are the main focus of this thesis, as weak layers often consist of depth
hoar or faceted crystals, and new snow adds to the load on the weak layer, affecting its
stability. See more on the different factors affecting weak layer stability in Chapter 2.2.

The similarities between the simulated snowpacks at Kroken and Fjellet result from
similarities in the generated weather sequences at the two locations. The snowpack
at Fjellet has a higher snow height than at Kroken during most of the winter. The
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Figure 10: Simulated weather scenarios at Fjellet (blue color) and Kroken (red color)
from January 1 to April 30.

difference in snow height is most likely due to Fjellet being situated at a higher altitude
than Kroken and therefore exposed to a harsher climate.

Two important outputs of SNOWPACK are the mechanical stability measures SSI and
SK38 of each layer in the snowpack. SSI and SK38 are described in Chapter 2.3. SSI
is used to determine the snowpack’s weakest layer, as the layer with the lowest SSI, is
determined as the weakest layer. The weakest layer changed between multiple layers
during the simulation period. To focus on one layer, the layer that most frequently
had the lowest SSI was determined as the snowpack’s weakest layer. As this layer
was prominent over the whole winter period, it is denoted as a persistent weak layer.
SNOWPACK also provides the other stability output SK38. The determination of
which stability measure to use as the response when predicting the stability is done in
Chapter 6.
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5.3 New Snow and Weak Layer properties

Figure 12 shows the new snow layer and weak layer properties at both Kroken and
Fjellet as time series from January 18 to April 16. SNOWPACK was first able to
produce reliable stability output from January 18, as the snowpack was too small and
undeveloped before that. The change of end date happened because a majority of the
snow had turned into melting forms in the middle of April due to high temperatures
and a high amount of incoming solar radiation (see Figure 10). This lead to an absence
of new snow grains, which is one of the main focus areas in this project. The end date
was therefore pushed to April 16.

Notice in Figure 12 that the thickness of the new snow is highest in February. February
is a period with cold weather and a moderately high amount of precipitation, resulting
in a rapid build-up of snow height. The thickness of new snow decreases sharply in
March. While March has the highest amount of precipitation over the whole period,
it is also a much warmer month. Warm temperatures cause a rounding effect on the
snow grains, turning the new snow grains into rounded grains, as described in Chapter
2.1. The new snow density varies around 100 kg/m3, with some outliers reaching
300 kg/m3. The density necessarily decreases to 0 kg/m3 when there are no new snow
layers in the simulated snowpack.

The weak layer properties seem to follow the same trends at the two locations.
The thickness decreases by some millimeters at Kroken, while it stays quite constant
at Fjellet. The density increases over the whole period for both locations. The grain
size and bond size increase at the beginning and then stabilize at both Kroken and
Fjellet. These two properties vary slightly in scale, as the one at Fjellet has larger
grain sizes and bond sizes overall.

Figure 13 depicts the two stability measures SK38 and SSI, as calculated by SNOW-
PACK, at both Kroken and Fjellet. The stability measure SK38 increases until the
beginning of February, where it decreases until the end of February. After this, the
measure stays quite constant, with some small fluctuations. The SSI follows the trend
of the SK38 until the beginning of March for both locations. At this point, the SSI at
Kroken increases by 1 for the rest of the simulation. The increase by 1 is a result of
either a small hardness difference or grain size difference across the layer, as calculated
by Equation 2.2.

5.4 Grouping the snowpack data into regimes

The new snow data and weak layer data are grouped into different regimes depending
on the weather at a specific day t, as described in Chapter 3.1. Table 6 shows the
different weather regimes. The effect of grouping the data into weather regimes
impacts the model in different ways. Figure 14 shows a cross-plot for the new snow
thickness in each regime at Fjellet, illustrating the relationship between the variable
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at day t and day t+ 1. The point size indicates the amount of precipitation at day
t+ 1. The point colors indicate the average temperature at day t+ 1.

The grouping of regimes has an apparent effect on the new snow thickness at Fjellet.
Some of the most apparent effects are

• LLH: The points above the straight line show the effect of wind on the new
snow thickness. As there is a low amount of precipitation in this regime, the
increase must result from high wind speed. Wind-drifted snow is a common
cause of increased new snow thickness, especially when the wind speed is high.

• LHH: The points above the straight line show the effect of precipitation and wind
on the new snow thickness. Precipitation and wind-drifted snow are common
causes of increasing new snow thickness.

• HHH: The points below the straight line show the effect of warm temperatures on
the new snow thickness. There is a high amount of wind and precipitation, which
would typically increase the snow height. The snow thickness decreases in this
regime, probably due to melting processes induced by the warm temperature.

Figure 15 shows the effect of grouping the data into different regimes on the new snow
density at Kroken. The grouping of regimes has an apparent effect on the new snow
density at Kroken. Some of the most apparent effects are

• LLH: The points above the straight line show that the combination of low
temperatures, low amount of precipitation, and high wind speed increases the
new snow density.

• HHH: The points above the straight line show that the combination of high
temperatures, a high amount of precipitation, and high wind speed increases
the new snow density.

Similar plots for the other variables are shown in Appendix A. Some regimes consist of
fewer data entries, as the weather conditions of these regimes appeared less frequently
over the simulation period. Careful analysis of this plot and the different crossplots in
Figure 7.5 helped to determine threshold values for the regimes.
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Figure 11: Simulation of snowpack at location Kroken a) and Fjellet b) respectively.
The colors correspond to the grain types, see legend on left side of figure. The different
snow grains are specified further in Chapter 2.1 and Table 1.
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Figure 12: New snow layer properties and weak layer properties, as a time series,
from January 18 to April 16. The red lines are for location Kroken, the blue lines for
location Fjellet.
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Figure 13: Timeseries of the simulated stability measures SK38 and SSI, from January
18 to April 16. The red lines are for location Kroken, the blue lines for location Fjellet.
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Figure 14: Cross-plot of new snow thickness in different regimes at Fjellet. The x-axis
is the property value at t, the y-axis the property variable at t+ 1.

Figure 15: Cross-plot of new snow density in different regimes at Kroken. The x-axis
is the property value at t, the y-axis the property variable at t+ 1.
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Chapter 6
Analysis and Results

This section presents the results of applying the Adaptive DLM to the data introduced
in Chapter 5, focusing on Kroken. Chapter 6.1 presents the model and the determina-
tion of stability response variable, between SK38 and SSI. Two adaptive strategies are
applied to the adaptive model. Let the adaptive model using the AMA strategy and
the VOI strategy be denoted as the AMA-model and the VOI model, respectively.
Chapter 6.2 analyses the results of a simulation with the AMA-model, compared to
a non-adaptive model. Chapter 6.3 analyses the results of 100 simulations with the
AMA-model, with both a fixed EST and an adjusted EST. Chapter 6.4 analyses the
results of a simulation of the VOI-model, compared to a non-adaptive model.

The model uses simulated drone measurements, as the drone is not yet operational and
ready to measure snowpack properties (as of May 2021). The proper data value at day
t, with an assumed variance Σt|0 linked to the drone, are used as drone measurements
dt. See further discussion around this choice in Chapter 7. Initiation of a drone
measurement is further denoted as a drone event in this thesis. The simulation period
used in the results is from January 18 to April 16, 2021.

6.1 Model specifications

6.1.1 Initialising the model

Matrices A and B and the intercept γ are fitted on the data for each weather regime in
R, using the method of ordinary least squares. Assume that the snowpack properties
X1 is known at time t = 1, set to snowpack properties at Kroken at time t = 1.

X1 = (5.525, 149.06, 215.8, 2.97, 1.49, 0.67)T (6.1)

Assume the weather data ωt+1 is known for every t. The available initial information
is then as in Equation 3.10.
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6.1.2 Determination of Stability metric

For each iteration, the DLM predicts rt+1, the persistent weak layer’s stability, as
according to Equation 4.13. Both stability measures, SK38 and SSI, were fitted as
a response variable using multivariate regression, with the snowpack variables as
predictors. Both models had significant P-values, indicating correlations between the
stability measures and the snowpack properties.

The SSI-metric determines the weak layer in the model and depends on discrete
factors not included in the stability regression, such as hardness and grain size dif-
ference (see more in Chapter 2.3). As SK38 is simpler than SSI, it was determined
more suitable as a response. The weak layer properties were the most significant
variables for the model. Especially the thickness, grain size, and bond size showed
high significance. Both new snow thickness and density showed the least amount of
significance. The P -value showed that the model was overall highly significant. It
also explained a large percentage of the variance; AdjR2 = 0.7086.

6.2 One simulation using the AMA strategy

This section presents the analysis and results of using an adaptive DLM with an AMA
strategy, as described in Chapter 4.3. See Algorithm 2 for details. The value of EST is
set to 0.75. Chapter 7 discusses determining the EST-value. The probability threshold
L is set to L = 0.9, so that the model initiates a drone event when P (rt ≥ 0.75) ≤ 0.9.
A simulation using a non-adaptive model is included to see the effect of the AMA
strategy on the estimation.

Chapter 6.2.1 analyses the estimated properties of the simulation, and Chapter
6.2.2 analyses the predicted stability. Chapter 6.2.3 analyses the uncertainty of the
stability predictions. It is important to clarify that this is one possible realization
of the property estimation, based on ultimately a low amount of data. Another
simulation of the model could therefore produce somewhat different results. This is
further discussed in Chapter 7.

6.2.1 Properties

Figure 16 shows the new snow properties, and Figure 17 shows the weak layer snow
properties for both the adaptive and non-adaptive models. The blue line is the mod-
eled properties using the AMA-model, while the orange line is the modeled properties
of the non-adaptive model. The yellow points indicate the days of a drone event.

The model initiates the first drone event on February 25. After the drone event, the
model updates the snow properties using the newly obtained drone measurement,
which significantly impacts the modeled snow property distributions. Figure 16 shows
the effect of the updated model distribution on the new snow thickness and density.
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The new snow thickness, in particular, shows apparent differences between the AMA-
model and the non-adaptive model. After a drone measurement, there is a decrease in
new snow thickness for the AMA-model, while for the non-adaptive model, it increases
a significant amount. At a particular time, the non-adaptive model estimates the
new snow thickness to be over 2 m high, while it decreases to close to 0 m for the
AMA-model.

A reason for the high increase in estimated new snow thickness by the non-adaptive
model directly after the first drone event could be the weather conditions. The weather
conditions in this period consist of a high amount of precipitation, high wind speed,
and warm temperatures, which normally lead to an increase in new snow thickness.
The non-adaptive model may exaggerate weather effects when estimating new snow
thickness. The AMA model’s decrease in estimated new snow thickness shows the
strength of updating the model with more accurate drone measurements.

Another reason for the difference in estimated new snow thickness after a drone
event is the uncertainty of the models. The estimation by the non-adaptive model
fluctuates a large amount compared to the AMA-model in March. This suggests
that the variance is substantially higher for the non-adaptive model in this period
compared to the AMA-model, making the estimations less reliable. In April, the new
snow thickness of both the non-adaptive and the AMA-model drops to zero. This
is probably due to April being a spring month, where the most prominent weather
regimes have high temperatures. It could also be because the weather in April was
quite dry (see Figure 10).

Uncertainty propagation could explain the differences in the new snow thickness
between the two models. The estimated variance Σ̂t+1|t at time t + 1 depends on

the variance Σ̂t|t at time t. Thus as the model develops with time, the uncertainty
propagates, leading to less accurate predictions. After a drone event, however, the
variance seems to decrease, resulting in less fluctuation. The decrease is due to the
drone measurements having less uncertainty compared to the estimated properties.
Chapter 6.2.3 further analyses the predicted stability uncertainty.

Another explanation for the high variance in the non-adaptive model in March
is the weather regimes prominent in this period. The data was fitted on the grouped
data, corresponding to the 8 different weather regimes. Some of the regimes consisted
of fewer data entries, leading to a higher variance in these regimes (see Table 6 for the
different weather regimes). The period between the end of February and the beginning
of March had a high amount of precipitation and moderately high temperatures (see
Figure 10). This regime was less common in the dataset, resulting in more variance.

There are fewer differences in the new snow densities, as estimated by the two
models. Compared to the AMA-model, the non-adaptive model estimates higher
densities at the beginning of March and lower densities at the end of March. The
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Figure 16: Time series of the new snow layer properties for both the adaptive and
non-adaptive models, from January 18 to April 16. The blue line is the AMA-model,
the orange line is the non-adaptive model, yellow points are drone events.

AMA-model remains relatively consistent throughout the simulation. An apparent
problem with the AMA-model is noticeable in April. A drone monitored the snow
thickness to zero, leading necessarily to the density decreasing to zero. As there are
many drone events in this period, there are also many zero-values in the estimated
densities.

Figure 17 shows the modeled weak layer properties by the adaptive and non-adaptive
models. The weak layer thickness decreases over time, while the grain size, bond size,
and snow density increase over time. The faceting processes discussed in Chapter 2.1
explain the development of weak layer properties and indicates that the weak layer
plotted is a persistent weak layer buried in the snowpack. The weak layer properties
show less fluctuation than the new snow properties, indicating less variance.

Some important results of updating the model with drone measurements are ap-
parent when comparing to the non-adaptive model. After the first drone event, the
AMA-model estimates a larger weak layer thickness, grain size, and bond size than
the non-adaptive model. The adapting model consecutively estimates the thickness
higher than the non-adaptive model. There is also less fluctuation in the estimated
thickness of the AMA-model compared to the non-adaptive model. Bond size and
grain size curves flatten earlier for the AMA-model than for the non-adaptive model.
The smaller fluctuation and earlier flattening are possibly due to frequent drone events,
decreasing the model uncertainty. The density plot shows fewer differences between
the two models.
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Figure 17: Time series of the the weak layer properties for both the adaptive and
non-adaptive models, from January 18 to April 16. The blue line is the AMA-model,
the orange line is the non-adaptive model, yellow points are drone events.

6.2.2 Stability

Figure 18 shows the predicted stability for every day in the simulation for both the
adaptive and the non-adaptive model. The dotted red line indicates the EST, set
to EST = 0.75. The predicted stability is every day put to a threshold-test, testing
whether P (rt > EST) < 0.9 (see Chapter 4.1). The arrow in the plot points to the
first drone event initiated by the model.

There is a noticeable difference in the predicted weak layer stability, as predicted
by the adaptive and the non-adaptive model after the first drone event. The AMA-
model predicts that the weak layer stability increases, while the non-adaptive model
predicts that the weak layer stability decreases. The predicted stability stays above
the threshold for multiple weeks for the AMA-model, while for the non-adaptive
model, the stability fluctuates and quickly drops beneath the threshold line. After
the second drone event in March and beyond, the non-adaptive model predicts weak
layer stability below EST, indicating that the layer is potentially unstable. The
AMA-model, meanwhile, predicts stability above the threshold, indicating that it
is stable. It is apparent that the non-adaptive model is somewhat pessimistic and
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Figure 18: The predicted stability of the weak layer of the snowpack for each day t,
from January 18 to April 16. The yellow points are the drone events. The blue line is
the AMA-model, the orange line is the non-adaptive model.

generally predicts lower stability compared to the AMA-model.

The AMA-model predicts stability above the threshold in most of March, while
the non-adaptive model predicts stability below the threshold in the same period.
March is, however, a period of frequent drone events, indicating that the model
predicts that there is less than 90 % probability that the stability is higher than the
EST. Notice that the stability predicted by the non-adaptive model fluctuates much
more than the stability predicted by the AMA-model. There is more variance when
simulating with the non-adaptive model than with the AMA-model. One reason is
the high number of drone events, resetting the variance propagation. Another reason
is the large fluctuations in the new snow properties in March, as described in Chapter
6.2.1.

6.2.3 Uncertainty

Figure 19 shows the predicted stability using the AMA-model, alongside a prediction
interval with a confidence band of one standard deviation. The variance seems to
increase as the model develops with time, resulting in more uncertain predictions.
Notice immediately after the first drone event, at the end of February, the uncertainty
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decreases. After receiving more accurate measurements from the drone, the uncer-
tainty propagation resets, leading to more accurate stability predictions and decreased
variance.

Figure 20 shows a similar plot for the non-adaptive model. Notice that the uncertainty
seems to increase over the whole simulation period. The increasing uncertainty results
in less accurate predictions as time develops. The difference in uncertainty between the
two models shows the AMA-model’s strength: the AMA-model yields more accurate
stability predictions by resetting the uncertainty propagation after a drone event.

Figure 19: Predicted stability of weak layer with confidential band of 1 standard
deviation, for the period January 18 to April 16, using the AMA-model.
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Figure 20: Predicted stability of weak layer with confidential band of 1 standard
deviation, for the period January 18 to April 16, using the non-adaptive model.

6.3 100 simulations using the AMA strategy

This section shows some general results of the AMA-model, after running 100 simu-
lations. The focus is the predicted weak layer stability, the number of drone events,
and how many days until the first drone event. In Chapter 6.3.1 the threshold EST is
fixed, to EST = 0.75. Chapter 6.3.2 explores the model performance when adjusting
the threshold EST.

6.3.1 Fixed parameters

Figure 21 shows two bar plots. The bar plot on the left shows the number of first
drone events on a particular day over the 100 simulations. The range of the first
drone event is between day 32 and 44 (February 19 to March 3), while a majority
occur between day 35 and 38 (February 22 to February 25). Day 38 (February 25) has
the highest counts of first drone events overall. The bar plot on the right shows the
number of drone events over the 100 simulations. All the simulations initiate between
14 and 20 drone events, and a majority of the simulations initiate 17 or 18 drone events.

Figure 22 shows the predicted stability of 100 simulations of the AMA-model. The
blue line is a smoothed trend line, indicating the general trend of the simulations.
Notice the similarities between the predicted stability using 100 simulations and the
predicted stability of the single simulation described in Chapter 6.2. The predicted
stability decreases until late February, where the curve flattens. Late February is
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Figure 21: Count data of day of first drone event (left) and number of drone events
(right) over a 100 simulations.

when most first drone events occur, showing the impact of a drone event. In March,
the predicted stability starts to decrease before it again flattens in the middle of
March. From April and onwards, the stability decreases slowly. The predicted stability
decreases when not updated with drone measurements and stays flat when updating
with drone measurements. This shows that the non-adaptive model is quite pessimistic
compared to the AMA-model.

The curve fluctuates close to the EST between the middle of March and the be-
ginning of April. This is a period of frequent drone events, routinely updating the
model with more accurate measurements. The fluctuation is highest from the middle
of February to the middle of March, and the lowest from the middle of March to the
end. As time develops, the fluctuations increase, a result of uncertainty propagation.
In the last period of March and beyond, the fluctuations are much smaller, most likely
because of frequent drone events, updating the model distribution with less uncertain
data.

6.3.2 Adjusting parameters

The determination of a suitable threshold-value EST plays an important part in
the AMA-model (see Algorithm 2). In the simulations described previously, the
stability threshold was fixed to EST = 0.75, as multiple sources reported a stability
measure of 0.75 or lower as potentially unstable. The choice EST = 0.75 is derived
from a combination of reports and therefore noted as an expert choice. However,
some conflicting reports indicate different thresholds for a potentially weak layer (see
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Figure 22: Predicted stability of weak layer over a hundred simulations, for the period
January 18 to April 16, using the AMA-model.

Chapter 2.3). Chapter 7 discusses the determination of EST further. This section
investigates how the AMA-model performs with different EST-values in regards to
the number of drone events and how long time before the first drone event.

Figure 23 shows the average day of the first drone event and the number of drone events
for different EST-values after running 100 simulations for each value. EST-values
used in the simulations are in the range [0.6, 1.1]. The figure on the left shows that
lower EST-values delay the initiation of drone events. As the EST-value increases, the
days before the first drone event decreases linearly. The figure on the right shows that
lower EST-values result in fewer drone events and that the number increases when
EST increases. The steepest increase of drone events happens when EST increases
from 0.65 to 0.80. In this period, the number of drone events increases from 4 events
to 22 events. The maximum number of drone events happen when the EST = 1.1,
with over 40 initiated events.
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Figure 23: Predicted stability of weak layer over a hundred simulations, for the period
January 18 to April 16, using the AMA-model with different EST-values.

6.4 VOI approach

This section presents the results of using a Value of Information strategy to model
the stability (see Algorithm 3). This model requires the determination of certain
parameters, including LVOI, EST, and the costs C0 and C1. Figure 6.4 shows a
simulation of the VOI-model with fixed parameters EST = 0.75, LVOI = 0.5, C0 = 1
and C1 = 100. The cost parameters indicate that the cost associated with keeping a
road open when unstable is 100 times larger than closing the road. This approach
is important regarding snow avalanche probability, as there is a high cost associated
with a road blocked by an avalanche. The figure on the left is the snowpack stability
over the whole period, with a confidential band of one standard deviation. Here, the
yellow points are the days of drone events during the simulation.

The figure on the right is a plot of expected VOI over time. When the VOI is
higher than LVOI, the VOI-model initiates a drone event. The first drone event occurs
at the end of February. After the event, the stability increases directly, as for the
AMA-model. As the VOI drops down to 0 after the first drone event, there is not
much value in initiating new drone events at this time. From the middle of March
and further, the VOI stays high, initiating frequent drone events. As there are more
drone events in the latter part of the simulation, it is apparent that the value of a
drone measurement is high at this point. The VOI-model initiates 20 drone events
with the fixed parameters, similar to the number of drones initiated with the AMA
strategy, as described in Chapter 6.3.1.
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Figure 24: Predicted stability and expected Value of Information over time, using the
VOI-model.

Figure 25 illustrates the effect that the cost-parameters has on the VOI-model,
where C0 is fixed to 1. When the cost C1 is low, the VOI-model delays initiating the
first drone event. Notice that for low C1-values, when C1 = 4 and C1 = 5, the first
drone event is initiated after the predicted stability is less than the threshold-line.
When the cost C1 increases, there is more value in a drone measurement. Notice
that when C1 = 10 and C1 = 100, the first drone event happens when the predicted
stability is far from the threshold line. There is an intuitive reason for the effect
of cost on the initiation of drone events. When there is a low cost associated with
keeping the road open, even though the predicted stability is low, there is less value
of information in the drone measurement. The VOI-model then waits until critical
conditions regarding the predicted stability to initiate the drone. When the cost C1

is high, there is more value of information associated with a drone measurement,
resulting in earlier drone events and a higher number of drone events.
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Figure 25: Predicted stability using the VOI-model with different C1 parameters.

55



6.4. VOI approach

56



Chapter 7. Discussion and Conclusion

Chapter 7
Discussion and Conclusion

This thesis has developed a data-driven statistical model that predicts the stability
of a weak layer in a snowpack based on estimated weak layer properties and new
snow properties. SSI is a stability measure used to determine the weakest layer in
the snowpack. The model predicts the stability by a multivariate regression model,
with the estimated snow properties as predictors and the stability measure SK38 as a
response.

This chapter discusses some of the main points of this thesis. Chapter 7.1 dis-
cusses the use of uncommon data sources such as SNOWPACK, WxGen, and drone
measurements when predicting stability. The determination of EST used in the results
of this thesis is discussed in Chapter 7.2. The key results of the model are presented
in Chapter 7.3. Some limitations of the model are discussed in Chapter 7.4, and some
further works of the model are discussed in Chapter 7.5.

7.1 Additional Data Sources

An important motivation for this thesis is incorporating data not typically used in
Norway’s monitoring systems. This includes weather data generated from WxGen,
numerical snowpack properties simulated by SNOWPACK, and the properties mea-
sured using a drone from the GeoDrone-project. WxGen is primarily used to get
the weather data required by SNOWPACK, including incoming solar radiation, a
measurement not typically monitored at the weather stations in Norway. WxGen
allows the user to generate numerous independent weather scenarios, each within
historical trends, for arbitrarily selected locations. Therefore, it should be easy to
change the study area and add more data to the model if necessary. Varsom, the
primary warning/monitoring system in Norway, relies on weather data and manual
stability tests. Using numerical models and drone measurements provides information
otherwise unavailable, such as the snowpack properties and quantitative stability
measures for each layer, increasing the data available to the forecaster.
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Simulating the snow cover with SNOWPACK and extracting the chosen proper-
ties was more time-consuming than anticipated, requiring a great effort by the user.
Hopefully, some of the work done in this thesis can help others using similar methods.
First, the user must preprocess the weather data into a file format permitted by
SNOWPACK. Most weather data is in a NetCDF format, including the weather data
from WxGen or JSON (Javascript Object notation). SNOWPACK has some plugins
available for NetCDF, but the program requires a good knowledge of C++ to compile
the plugins. The recommended file format is called SMET, a format developed by
the SNOWPACK authors. SNOWPACK produces hourly measurements of numerous
properties for each layer in a snowpack over the whole simulation period, resulting
in a large dataset. Post-processing is required to get the chosen properties for the
specific snowpack layers at 12 : 00 every day, including finding the weak layer in the
snowpack and extracting its properties. Appendix B includes the code in R used to
extract the NetCDF file from WxGen and convert it to the SMET format, and also
the code used in extracting the relevant properties from the output of SNOWPACK.

7.2 Estimated Stability Threshold

The model incorporates two strategies to initiate and update the model with drone
measurements, denoted as an AMA-model and a VOI-model. The AMA-model initi-
ates drone events when there is less than 90 % probability that the predicted stability
is higher than the EST. The VOI-model initiates drones when the expected value of
information in a drone measurement is higher than a threshold. A model utilizing a
non-adapting strategy without any external drone measurements is included in the
results to compare the models.

Both the AMA-model and the VOI-model depend on the determination of EST.
EST is a threshold that indicates that a layer is potentially unstable. In this thesis,
EST is mainly fixed to EST = 0.75. This fixed value was a result of studying different
reports using similar thresholds for potential instability. There are some limitations of
the SSI and SK38 measures, as there is no physical sense that the weak layer stability
has a decreasing trend over the whole winter period. The stability should rather
have some cycles of increase and decrease over the winter. There are probably some
limitations to the physical model of SK38 and SSI. It is therefore not reasonable to
predict that a weak layer will collapse solely based on the stability metric SK38. Still,
the predicted stability and its development over time indicate the instability of a weak
layer. To get additional information about the snowpack stability, one could use the
drones to investigate the snowpack surface with the drone cameras for potential signs
of avalanche formation and fractures, in addition to monitoring the properties.
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7.3 Key results

The results compared the model performance of both the AMA-model and the VOI-
model with a non-adaptive model.

7.3.1 Properties

The results include an extensive comparison between estimated snow properties by the
AMA-model and the non-adaptive model. New snow thickness and density showed
large differences, most noticeably directly after the first drone event. A reason for the
differences could be that the non-adaptive model exaggerates the effect of weather on
the snow properties. This was most apparent after the first drone event in March,
where the non-adaptive model estimated a high increase of new snow thickness while
the adaptive model decreased. The estimated new snow properties of the non-adaptive
model also fluctuated more prominently than for the AMA-model. There were also
some differences in the weak layer properties estimated by the two models. The
properties estimated by the AMA-model generally fluctuated less than the properties
estimated by the non-adaptive model.

7.3.2 Stability

The predicted stability was higher for both the AMA-model and the VOI-model com-
pared to the non-adaptive model. It seems that the non-adaptive model exaggerates
the instability of a weak layer in general. This exaggeration was most apparent right
after the first drone event, where the predicted stability increased for the adaptive
model and decreased for the non-adaptive model. A possible explanation for the dif-
ference is that the non-adaptive model has a continuous uncertainty propagation over
time, resulting in more uncertain stability predictions as time develops. By updating
the model distribution with more accurate drone measurements, the adaptive models
predicts weak layer stability with less uncertainty.

7.3.3 Parameters

The number of drone events and the number of days before the first drone event for the
AMA-model depends on the EST-value. Low EST-values resulted in few drone events
and a long time before the first drone event. Meanwhile, high EST-values resulted in
a high number of drone events and a low number of days before the first drone event.
For the VOI-model, the cost parameters C0 and C1, in particular, affected the number
of drone events and the number of days before the first drone event. When the cost
C1 of keeping a road open when predicted stability is less than EST was similar to
the cost of closing a road, the expected value of information in a drone measurement
was smaller, resulting in a late first drone event and few drone events overall. When
the cost parameter C1 was much larger than C0, however, there was a higher number
of drone events and an earlier date for the first drone event.
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7.4 Model limitations

The dataset used to generate the dynamic model is based on snowpack properties and
weather data mainly linked with a single study area in Stryn, not analyzing different
areas in Norway. The data is obtained from two locations in Stryn, Kroken, and
Fjellet, over a single winter period, consisting of 89 days. The results show only one
realization of estimated snow properties and predicted stability. The weather regimes
and the strategies developed could work differently for other weather, snow, and risk
simulations, which need to be explored for further use. A natural extension of this
model is to incorporate spatial features, such as spatial correlations and clustering
between different locations to make the model regional. The same strategy used in
this thesis should be applicable elsewhere, as the data generators SNOWPACK and
WxGen can be used in arbitrary locations.

A limitation of the model is the small amount of data, leading to high variances in
some weather regimes. A larger dataset, consisting of multiple locations in the area,
and an extension of the simulation periods, could decrease the model uncertainty,
resulting in more accurate predictions. It is not much extra work to simulate multiple
snowpacks using SNOWPACK, given that the weather scenarios generated by WxGen
are independent and stays within historical trends.

The drone measurements had to be simulated, as the real-time processing part of the
GeoDrone project is still in the developing stage (spring 2021). The accuracy and
uncertainty associated with the drone measurements had to be chosen based on the
drone resolution. A drone equipped with GPR should have a small uncertainty when
measuring some properties, such as thickness and density. Measurements of grain size
and bond size would probably have more associated uncertainty, as they would need
to be calculated by some correlation methods. Nevertheless, drone measurements
should be more accurate than the estimated snow properties, so updating the model
using simulated drone measurements is comparable with actual drone measurements.
This aspect needs to be inspected more carefully when the real-time processing part
of the GeoDrone project is available.

Snow avalanche formation is a highly complex process involving weather effects,
metamorphism effects within the snowpack, and a weak layer’s development over time.
The Adaptive Dynamic Linear Model used to develop the snowpack properties over
time is simplified, only including some of the factors and properties linked with the
stability of a weak layer. It is not wholly reasonable to believe that the predicted
mechanical stability measure can predict critical stability and avalanches. More ex-
tensive models need to be implemented, adding more features and more sophisticated
data-driven methods, such as a neural network and random forest over more extensive
data sets. The simple model was chosen due to the short time frame of the master
thesis and a large amount of time used to generate the data. It was also chosen
because it easily could incorporate the updating part of the model and supported
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using different strategies to initiate the drones. A more data-extensive model would
need a different approach regarding updating with drone measurements.

The adaptive model developed in this thesis can indicate the potential instabil-
ity of a weak layer. It should be possible to combine this model with other forecasting
models used in Norway. The data uses numerical snowpack data, drone data, and
weather data, making it an interesting addition to the warning system in Norway, as
they mainly rely on weather data and manual stability tests.

7.5 Further works

A natural extension of the model is to add spatial effects, making the model applicable
regionally in Norway. Adding spatial correlations and clustering effects for different
parts of Norway should be possible, as the data used in the model can be generated
at arbitrary locations. WxGen generates data in a gridded spatial data format if
requested by the user, which could be used as input to simulate snow covers with
SNOWPACK in different locations in Norway. Another interesting spatial extension
could be to model different locations in a snowpack and add spatial correlations
between the different locations, especially as drone measurements allow more in-
formation about the spatial variability of the snowpack. For example, if a large
snowpack is situated on a slope with a road beneath. The model could then predict
the stability at different locations in the snowpack and choose the most critical part to
monitor. SNOWPACK allows gridded data as input and makes it possible to simulate
2D-gridded snowpacks, which can be helpful in this regard.

Another extension is further developing the strategies initiating drone events. The VOI
strategy is especially interesting, as it can have a substantial financial impact, helping
those responsible for closing roads and monitoring road safety. In this thesis, the
decision rule depends on the possible cost of predicted low stability when not closing
the road, compared to the cost of closing the road. Other possible alternatives could
be added to the strategy so that different VOI thresholds initiate different methods to
monitor the snowpack or trigger the avalanche artificially (using explosives). Examples
of strategies that could add to the VOI strategy are listed in Table 7. These strategies
would each have an associated cost, resulting in a practical and financial application
of the model.
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Alternative 1: Drone - GPR
Alternative 2: Drone - GPR, LIDAR
Alternative 3: Drone - GPR, LIDAR, Manual stability tests
Alternative 4: Launch the avalanche with explosions
Alternative 5: Close road
Alternative 6: Do nothing - Let Avalanche Fall (blocking road)

Table 7: Possible scenarios that can be incorporated into a VOI strategy for further
works.
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Appendix A

Figures of the weather scenarios.
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Figure 26: Cross-plot of new snow thickness in different regimes at Kroken.

Figure 27: Cross-plot of new snow density in different regimes at Kroken.
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Figure 28: Cross-plot of weak layer thickness in different regimes at Kroken.

Figure 29: Cross-plot of weak layer density in different regimes at Kroken.
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Figure 30: Cross-plot of weak layer grain size in different regimes at Kroken.

Figure 31: Cross-plot of weak layer bond size in different regimes at Kroken.
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Figure 32: Cross-plot of new snow thickness in different regimes at Fjellet.

Figure 33: Cross-plot of new snow density in different regimes at Fjellet.
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Figure 34: Cross-plot of weak layer thickness in different regimes at Fjellet.

Figure 35: Cross-plot of weak layer density in different regimes at Fjellet.
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Figure 36: Cross-plot of weak layer grain size in different regimes at Fjellet.

Figure 37: Cross-plot of weak layer bond size in different regimes at Fjellet.
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Appendix B

This appendix contains some of the code used to extract and generate the data sets
used in the model. This includes the extracting and conversion of data obtained from
wxGen, which is used as input for SNOWPACK. It also includes the extraction of
data from SNOWPACK, and the grouping of the data into weather regimes.

R-code to extract data from Wxgen (.nc-file):

library(ncdf4)

data <- nc_open("name.nc") #.nc file obtained from wxGen.

ts=function(longitude , latitude , data){

lon <- ncvar_get(data , "longitude")[,1]

lat <- ncvar_get(data , "latitude")[1,]

lon.index=which.min(abs(lon -longitude))

lat.index=which.min(abs(lat -latitude))

temp = ncvar_get(data , "air_temperature_2m")

temp_array = array(temp[lon.index , lat.index , ])

psum = ncvar_get(data , "precipitation_amount") #mm

psum_array = array(psum[lon.index , lat.index , ])

xwind = ncvar_get(data , "x_wind_10m") #x-wind

xwind_array = array(xwind[lon.index , lat.index , ])

ywind = ncvar_get(data , "y_wind_10m") #y-wind

ywind_array = array(ywind[lon.index , lat.index , ])

wind_array = array(dim=length(xwind_array))

for(i in 1:120){wind_array[i]=sqrt(xwind_array[i]^2+ ywind_array[i

]^2)}

isrw = ncvar_get(data , "downwelling_shortwave_flux_in_air") #iswr

isrw_array = array(isrw[lon.index , lat.index , ])

df = data.frame(cbind(temp_array , psum_array , wind_array , isrw_

array))

return(df)

}

R-code to convert from .nc-file to .csv-file format:

tocsv=function(lon , lat , data , outputfile){

df = ts(lon , lat , data)

csv_path = "" #choose output path of file

csvname <- outputfile #name of file

csvfile = paste(csv_path , csvname , sep="")

write.table(inputdf , csvfile , row.names = FALSE , sep = ",")

}

75



R-code to convert from .xlsx-file to .smet file:

my_data = read_excel("filename.xlsx")

dat=data.frame(my_data , row.names = NULL)

write.table(dat , file="sim2loc6376187.smet", row.names=FALSE , col.

names = FALSE)

R-code to extract the snowpack properties of the different layers at Kroken is shown.
Similar code was used for Fjellet:

library(data.table)

dataKroken=read.csv("SNSTRYN1.csv", sep=",")

#file above is the .pro output from SNOWPACK , converted to .csv -file

#code below extracts specific properties of the different layers in

the snowpack

densdatakrok= data.frame(setDT(dataKroken , key="X.DATA.")[.(0502)

][, -(1:2)]) #density

ssidatakrok= data.frame(setDT(dataKroken , key="X.DATA.")[.(0604)

][, -(1:2)]) #ssi

skdatakrok= data.frame(setDT(dataKroken , key="X.DATA.")[.(0533)

][, -(1:2)]) #sk38

bondsizekrok=data.frame(setDT(dataKroken , key="X.DATA.")[.(0511)

][, -(1:2)]) #bondsize

graindatakrok= data.frame(setDT(dataKroken , key="X.DATA.")[.(0513)

][, -(1:2)]) #graintype

heightdatakrok= data.frame(setDT(dataKroken , key="X.DATA.")[.(0501)

][, -(1:2)]) #height (for thickness)

grainsizedatakrok= data.frame(setDT(dataKroken , key="X.DATA.")

[.(0512) ][ ,-(1:2)]) #grainsize

R-Code to find the primary grain-type of each layer:

for(i in 1:ncol(graindatakrok)){

for(j in 1:nrow(graindatakrok)){

graindatakrok[j,i]= substr(graindatakrok[j,i], 0, 1)

}}

R-Code to find density of the layers consisting of new snow:

denspplayers=matrix(ncol=ncol(densdatakrok), nrow=nrow(densdatakrok)

)

graindatakrok[graindatakrok ==0]= NA

for(j in 1:ncol(densdatakrok)){

for(i in 1:nrow(densdatakrok)){

if(graindatakrok[i,j]==1|| is.na(graindatakrok[i,j])){

denspplayers[i,j]= densdatakrok[i,j]

}}}

density=as.matrix(apply(denspplayers , 1, mean , na.rm=TRUE))

density[is.na(density)]=0

density=matrix(density)[-112,] #only include

R-Code to find thickness of the layers consisting of new snow:

heighpptlayers=matrix(ncol=ncol(densdatakrok), nrow=nrow(

densdatakrok))

for(j in 1:ncol(heighpptlayers)){
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for(i in 1:nrow(heighpptlayers)){

if(graindatakrok[i,j]==1|| is.na(graindatakrok[i,j])){

heighpptlayers[i,j]= heightdatakrok[i,j]

}}}

heightmaxmin=as.matrix(cbind(as.matrix(as.numeric(apply(

heighpptlayers , 1, hich.min))),as.numeric(apply(heighpptlayers ,

1, which.max))))

thickness = matrix(ncol=1, nrow =111)

thickness [1]= heighpptlayers [1,1]

for(i in 2:nrow(thickness)){

if(heightmaxmin[i ,1]== heightmaxmin[i ,2]||is.na(heightmaxmin[i,1])

||is.na(heightmaxmin[i,2])){

tryCatch ({

thickness[i]= heighpptlayers[i,heightmaxmin[i,1]]-(

heightdatakrok[i, heightmaxmin[i,1] -1])},

error=function(e){})

}

else{thickness[i]= heighpptlayers[i,heightmaxmin[i,2]]-

heighpptlayers[i,heightmaxmin[i ,1]]}

}

thickness[is.na(thickness)]=0

Determining the weakest layer of the snowpack (at Kroken) based on the SSI-index,
and then extracting properties of the weakest layer:

wlkroken= as.matrix(apply(ssidatakrok , 1, which.min))

wlindexkrok=as.numeric(tail(names(sort(table(wlkroken))), 1))

weakestkrok=matrix (0L, nrow = dim(ssidatakrok)[1],ncol =6)

for(i in 1:nrow(weakestkrok)){

weakestkrok[i,1]= densdatakrok[i, wlindexkrok] #DENSITYWL

weakestkrok[i,2]= ssidatakrok[i, wlindexkrok] #SSIWL

weakestkrok[i,3]= abs(heightdatakrok[i, wlindexkrok +1]-

heightdatakrok[i, wlindexkrok ]) #THICKNESSWL

weakestkrok[i,4]= grainsizedatakrok[i,wlindexkrok] #grainsize

weakestkrok[i,5]= bondsizekrok[i,wlindexkrok] #bondsize

weakestkrok[i,6]= skdatakrok[i, wlindexkrok] #SK38

}

Extracting weather data (from WxGen) at Kroken:

library(readxl)

library(dplyr)

fileinput=read_excel("Krokenweather.xlsx")

#file above is obtained by converting the input to .smet file used

as input for SNOWPACK into a .xlsx -file

krokenweatherdata = data.frame(fileinput , row.names = NULL)

weatherkroken = matrix(nrow = nrow(krokenweatherdata), ncol= 3)

weatherkroken [1 ,1]= krokenweatherdata [1,2]

weatherkroken [2 ,1]= krokenweatherdata [1,2]

weatherkroken [1 ,2]=0

for(i in 3:nrow(krokenweatherdata)){

weatherkroken[i,1]= krokenweatherdata[i,2]#temperature

weatherkroken[i-1 ,2]= krokenweatherdata[i-2,3] #precipitation

weatherkroken[i,3]= krokenweatherdata[i,4] #windspeed
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}

Function used to regime the data, based on weather, precipitation and wind speed
thresholds:

#thirdstage is a dataset that contains all the information ,

including weak layer properties , new snow properties and weather

data for both Kroken and Fjellet.

optim=function(ta, psum , ws){

for(i in 1:nrow(thirdstage)){

if(thirdstage[i,8]<=ta & thirdstage[i,9]<= psum & thirdstage[i

,10] <=ws){ #LowLowLow

thirdstage[i ,11]=1

}

else if(thirdstage[i,8]>ta & thirdstage[i,9]<= psum & thirdstage[i

,10] <=ws){ #HighLowLow

thirdstage[i ,11]=2

}

else if(thirdstage[i,8]<=ta & thirdstage[i,9]>psum & thirdstage[i

,10] <=ws){ #LowHighLow

thirdstage[i ,11]=3

}

else if(thirdstage[i,8]>ta & thirdstage[i,9]>psum & thirdstage[i

,10] <=ws){ #HighHighLow

thirdstage[i ,11]=4

}

else if(thirdstage[i,8]<=ta & thirdstage[i,9]<= psum & thirdstage[i

,10]>ws){ #LowLowHigh

thirdstage[i ,11]=5

}

else if(thirdstage[i,8]>ta & thirdstage[i,9]<= psum & thirdstage[i

,10]>ws){ #HighLowHigh

thirdstage[i ,11]=6

}

else if(thirdstage[i,8]<=ta & thirdstage[i,9]>psum & thirdstage[i

,10]>ws){ #LowHighHigh

thirdstage[i ,11]=7

}

else if(thirdstage[i,8]>ta & thirdstage[i,9]>psum & thirdstage[i

,10]>ws){ #HighHighHigh

thirdstage[i ,11]=8

}}

return(thirdstage)

}
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