
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Anders Storrø

GATT Based Network Solution For
Bluetooth Mesh

Master’s thesis in Electronic Systems Design
Supervisor: Arne Morten Midjo

June 2021

M
as

te
r’s

 th
es

is

Anders Storrø

GATT Based Network Solution For
Bluetooth Mesh

Master’s thesis in Electronic Systems Design
Supervisor: Arne Morten Midjo
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Electronic Systems Design

TFE4930

GATT Based Network Solution For
Bluetooth Mesh

Author:
Anders Storrø

E-mail:
Anders.Storro@nordicsemi.no

Supervisors:
Arne Morten Midjo
Omkar Kulkarni
Trond Einar Snekvik

E-mail:
Arne.Midjo@ntnu.no

Omkar.Kulkarni@nordicsemi.no
Trond.Einar.Snekvik@nordicsemi.no

Norwegian University of Science and Technology
& Nordic Semiconductor ASA

June 9, 2021
Trondheim

Abstract

This thesis presents the exploration, design, and implementation of an alternative network solution

for the Bluetooth mesh standard. This solution aims to provide better performance with regard to

throughput and data consistency compared to the legacy Bluetooth mesh network solution. The

completed implementation is based on the existing GATT bearer feature and is implemented to

comply with the current revision of the Bluetooth mesh specification. The complete implemen-

tation provides all necessary means for establishing, configuring, and maintaining a GATT-based

Bluetooth mesh network. This has been achieved by utilizing existing Bluetooth mesh intrinsic

features and a custom vendor model. The implementation shows promising results concerning

both throughput and data consistency. Further work is necessary to explore the full potential of

this network solution. This thesis provides a foundation for future work that may aim to enhance

the performance and features of the Bluetooth mesh standard.

Sammendrag

Denne avhandlingen presenterer undersøkelser, designet, og implementeringen av en alternativ

nettverksløsning for Bluetoothmesh-standarden. Formåletmeddenne løsningen er å oppnå bedre

ytelse med tanke på utførselshastighet og datakonsistens sammenlignet med den nåværende

Bluetooth mesh-nettverksløsningen. Implementasjonen er basert på den eksisterende GATT-

bearer-funksjonaliteten, og er implementert i samsvar med gjeldende revisjon av Bluetooth mesh-

spesifikasjonen. Den komplette implementasjonen innehar all nødvendig funksjonalitet for etab-

lering, konfigureringogvedlikehold av etGATT-basert Bluetoothmeshnettverk. Dette er oppnådd

ved å ta i bruk eksisterende innebygde Bluetooth mesh-funksjoner og en proprietær leverandør-

modell. Implementasjonen viser lovende resultater med hensyn til både utførselshastighet og

datakonsistens. Ytterligere arbeid er nødvendig for å kunne avdekkepotensialet til dennenettverk-

sløsningen fullt ut. Denne oppgaven danner et grunnlag for fremtidig arbeid som kan ta sikte på

å forbedre ytelsen og funksjonaliteten til Bluetooth mesh-standarden.

1

Contents

Contents 2

List of Figures 4

List of Tables 4

Nomenclature 5

1 Introduction 6
1.1 Background . 6

1.2 Project Scope . 7

2 Theory 8
2.1 Bluetooth Low Energy . 8

2.1.1 BLE Stack . 8

2.1.2 GAP . 10

2.1.3 GATT . 11

2.2 Bluetooth Mesh . 13

2.2.1 General Overview . 13

2.2.2 Bluetooth Mesh Stack . 15

2.2.3 GATT bearer . 17

2.2.4 BTM Advertising Message Format and Capabilities 18

3 Preliminary Research 22
3.1 ADV bearer Performance Assessment . 22

3.2 Device Firmware Update Use-Case . 22

3.3 Implementation Approach . 23

3.3.1 Approach Research . 23

3.3.2 Communication Over GATT . 24

3.3.3 Control of the GATT Network . 25

3.4 GATT Network Topology . 25

4 High Level Modeling and Simulation 27
4.1 Simulation Environment . 27

4.2 General Simulation Conditions . 27

4.3 Modeling Transmission behavior . 28

4.3.1 Common Behavior . 28

4.3.2 ADV bearer Solution . 29

4.3.3 GATT Bearer Solution . 29

4.4 Modeling Noise . 30

4.4.1 Uniform Noise . 30

4.4.2 Internal Noise . 31

4.5 Simulation Output Data . 34

4.6 Simulation Results . 35

4.6.1 Simulations for Network Alpha . 35

4.6.2 Simulations for Network Beta . 41

4.6.3 Topology Exploration for the GATT Bearer 45

2

CONTENTS

4.6.4 Simulation Summary . 48

5 Development 49
5.1 Development Environment . 49

5.2 Proxy Client Module . 49

5.2.1 Beacon Handling . 50

5.2.2 Connection Establishment and Discovery . 51

5.2.3 Interfacing With the Proxy Client Module . 51

5.3 GATT Proxy Configuration Model . 53

5.3.1 Mapping Functionality . 54

5.3.2 Connection Establishment and Maintenance 57

5.3.3 Controlling the ADV bearer . 61

5.4 Utility Tools for Test and Development . 63

5.4.1 GPC Client Terminal . 63

5.4.2 GPC Test Commands . 63

5.4.3 Mapping Assessment Program . 64

5.4.4 Miscellaneous . 66

6 System Testing 67
6.1 Functional Testing of the System . 67

6.1.1 Mapping and Configuration Assessment . 68

6.1.2 Heterogeneous Configuration Testing . 69

6.1.3 Homogeneous Configuration Testing . 70

6.1.4 Introduction of Unforeseen Events . 70

6.1.5 Function Test Summary . 71

6.2 Performance Testing . 71

6.2.1 Test Setup . 71

6.2.2 ADV bearer baseline . 74

6.2.3 GATT bearer baseline . 76

6.2.4 Three Devices GATT Bearer Performance . 77

6.2.5 Four Devices GATT Bearer Performance . 78

7 Discussion 80
7.1 Limitations of the Final Implementation . 80

7.1.1 Internal Routing . 80

7.1.2 Flow Control . 80

7.2 Changing the BTM Specification . 81

7.2.1 Transmission of Data With the Proxy Service 81

7.2.2 GPC Model . 82

7.3 Heterogeneous vs Homogeneous Approach . 84

7.3.1 Homogeneous Evaluation . 85

7.3.2 Heterogeneous Evaluation . 85

7.3.3 Evaluation Summary . 86

7.4 Assessment of the System Testing . 86

7.5 Assessment of the High Level Model . 87

7.5.1 Model Weaknesses, Inaccuracies, and Misconceptions 88

7.5.2 Predicted vs Observed Result . 88

7.5.3 Summary . 90

8 Conclusion 90
8.1 Performance Results . 90

8.2 Implementation Evaluation . 91

Page 3

9 Future Work 92
9.1 Reduction in Power Consumption for BTM . 92

9.2 Mapping and Configuration Algorithm . 92

Bibliography 94

A NCS Source Code 94

B High Level Model Source Code 95

List of Figures
2 The BLE stack . 8

3 Structure of GATT server . 12

4 Bluetooth mesh stack . 15

5 Exemplified Mesh Proxy Service . 19

6 BLE on-air packet . 20

7 Advertising physical channel PDU . 20

8 Non-connectable and non-scannable undirected advertising payload 20

9 Complete on-air packet structure . 21

10 GATT connection topology example . 25

11 Internal Noise Model . 32

12 Regular nodes impact on internal noise . 34

13 Overview of network . 36

14 Overview of network � . 41

15 Advertising chain example network . 42

16 Advertising triangle example network . 43

17 Overview of network �, GATT chain topology . 46

18 Overview of network �, GATT tree topology . 47

19 Mapping procedure between two GPC server models 57

20 Standard connection over GATT proxy . 60

21 Recovery after proxy client reset . 61

22 Recovery after loosing proxy server . 62

23 Initial view of functional test setup . 67

24 Link mapping processing output . 68

25 Functional test setup overview after mapping . 68

26 Functional test configuration solutions . 69

27 Performance test setup . 72

28 Logic pulse sample . 72

29 ADV bearer performance baseline setup . 75

30 Restricted ADV bearer TX period . 75

31 GATT bearer performance test baseline setup . 76

32 GATT bearer performance test setup with three devices 77

33 GATT bearer performance test setup with four devices 79

List of Tables
1 ADV bearer simulation network (1xtransmission) 37

2 GATT bearer simulation network (No buffer restrictions) 38

3 ADV bearer simulation network , node 18 (1-4 x transmission) 39

4 GATT bearer simulation network (Buffer max = 8) 40

5 ADV bearer simulation network � (4xtransmission) 42

6 Advertising chain simulation summary . 43

7 Advertising triangle simulation summary . 43

4

8 GATT bearer simulation network � . 44

9 GATT bearer simulation network �, chain topology 46

10 GATT bearer simulation network �, tree topology 47

11 ADV bearer performance test . 75

12 GATT bearer performance test baseline (Srv->Cli) 76

13 GATT bearer performance test baseline (Cli->Srv) 77

14 GATT bearer performance with three devices. (Node 2 as origin) 78

15 GATT bearer performance with three devices. (Node 1 as origin) 78

Nomenclature

ADV bearer: Legacy BTM advertising bearer

API: Application Programming Interface

ATT_MTU: Attribute Protocol Maximum Transmission Unit

CCCD: Client Characteristic Configuration Descriptor

DFU: Device Firmware Update

DK: Development Kit

DUT: Device Under Test

GPC: GATT Proxy Configuration

GPIO: General Purpose Input/Output

GUI: General User Interface

IoT: Internet of Things

ISM: Industrial, Scientific and Medical

NCS: nRF Connect Software development kit

RSSI: Received Signal Strength Indication

RTOS: Real-Time Operating System

SDK: Software Development Kit

SIG: Special Interest Group

5

1 INTRODUCTION

1 Introduction

1.1 Background

Bluetooth mesh (BTM) is a standard that provides many-to-many communication between Blue-

tooth devices in wireless networks. This standard is a superset of the well-established Bluetooth

Low Energy (BLE) standard and was introduced in 2017. Today, the BTM standard is primarily

utilized commercially in lighting products, replacing traditional electrical wiring in commercial

buildings and private homes. Nevertheless, the standard does also provide a framework that

can be used for many application domains. It could, for example, be used to implement various

sensory network applications, an application field that has exploded after the emergence of the

Internet of Things (IoT). By utilizing a gateway that bridges a BTM network with the Internet, the

BTM standard could compete for the market shares within IoT-related technology.

The desired performance qualities for a sensory network vary, depending on the target application

use case. In some sensory networks, it might suffice to have similar capabilities as for the lighting

application domain. The performance demand identifying the lighting application domain is

a network where the general message workload is small. Each application event may often be

executed by passing a single message in the network, containing a few bytes of application data.

These are often occasional events, causing the network to be idle for large periods. Since all data

may be enclosed by a single message, there are no issues associated with data consistency.

Further, in this domain, it is not critical if a message is sporadically lost in transmission. If the

press of a light switch on rare occasions does not turn the light on, this can be regarded as an

acceptable inconvenience. The requirements mentioned above are all well within the capabilities

a BTM network is capable of providing.

However, other sensor applications might require capabilities that greatly exceed these require-

ments. Some sensory networks require near real-time monitoring capabilities of the sensor data

in the network. This implies that the average message workload is much higher than for the

lighting domain, requiring significantly higher throughput performance. Another challenge is

that some sensory data sets might exceed the number of bytes that a single message transmission

can carry. In this case, the data set must be transmitted as a train of several messages. Losing one

of these messages in transmission might result in inconsistent data on the receiving device. For

such application domains, the BTM standard has certain challenges.

One of the events that led to this thesis’s creation occurred while working on another Bluetooth

mesh related project. In the report Bridging Home Automation and Bluetooth Mesh for Nordic De-
vices[15], I present an implementation solution for creating a gateway that enables interfacing

between BTM networks and a home automation platform using communication over the LTE-

M cellular network. One of the central use-cases that were evaluated during this work was high

throughput sensor applications for BTM. As a part of this evaluation, I investigated the bandwidth

capabilities of a legacy BTM network [15, p. 14]. These findings showed that the throughput ca-

pabilities of a legacy BTM network advertising bearer, henceforth referred to as the ADV bearer,

is restricted, making BTM less suited for communication tasks that require high throughput ca-

pabilities. Additionally, the BTM standard does not guarantee message delivery. This is caused

by limitations in the current communication scheme of the standard. This implies that BTM, as of

now, is neither ideal for applications where data consistency is essential.

Failing to provide a technology that provides satisfactory throughput and data consistency capa-

bilitiesmay exclude BTMas the preferred networking technology for several application purposes.

These shortcomings should be investigated and, if possible, mended to improve the desirability

of BTM as a communication standard.

Page 6

1 INTRODUCTION

1.2 Project Scope

The primary objective of this thesis has been to find and provide a solution that can rectify the

previously mentioned shortcomings of the BTM standard. An ideal in the search for this solution

has been that it should adhere to the existing BTM specification. Failing to find such a solution,

the suggested alternative should have as little impact on the existing specification as possible. The

reason for this criterion is due to the acknowledgment of the fact that changing the existing BTM

specification is a long process. Even small changes or amendments to the specification require

extensive reviews from the Bluetooth Special Interest Group (SIG). In addition to being a time-

consuming process, the outcome of these reviews has a significant chance of ending up discarding

the proposed changes.

This report is structured into eight main sections. Section 2 presents the background theory of

the central concepts and standards utilized in this project. Section 3 presents the research and

assessment that was conducted before starting the main work of the thesis. It initially presents

the shortcomings of legacy BTM concerning throughput performance. Further, it presents a

couple of different approaches to solve this issue before landing on the GATT bearer solution.

Lastly, it suggests how a GATT bearer solution can be implemented using existing BTM features

and discusses different network topology choices that can be utilized for this specific approach.

Section 4 presents high level modeling and simulation for different bearers. Initially, it presents

the theory and methodology used for deriving the different models. This includes modeling of

both the ADV bearer and the proposed alternative GATT bearer. The conducted simulations in

this section focus on comparing the performance metrics between the different bearers. In section

5 the design and implementation phase of the thesis is described. It includes implementing a

proxy client module, a BTM vendor model for the configuration of the GATT bearer network, and

a description of the utility tools implemented and used throughout the development. Section 6

presents the testing that has been conducted on the completed new implementation. It consists

of a compound functional test where all essential features of the implementation are assessed and

certified and performance testing for both the existingADV bearer and the GATT solution. Finally,

section 7, 8, and 9 respectively presents the discussion, conclusion, and future work for the thesis.

The discussion part addresses some of the more interesting and complex aspects associated with

the topic. These are considerations with regard to system performance and configuration, the

impact of the BTM specification, and choices of network topology. The Conclusions summarize

the thesis work result and assess the outcome based on the initial objectives and goals. In the

future work section, I describe potential work that can expand on the work and findings of this

thesis.

Page 7

2 THEORY

2 Theory

2.1 Bluetooth Low Energy

Bluetooth Low Energy (BLE) was introduced as a part of the Bluetooth 4.0 Core Specification,

released in 2010. Compared to classical Bluetooth, the BLE standard is optimized for applications

that need to run on a small power budget. It is well suited for devices that run on small batteries,

making it possible for these devices to run for months or even years without a need to change the

batteries[1].

The most prominent benefit of BLE, in addition to the mentioned low power consumption, is that

it can run on devices that have relatively few resources, making the design cost of various wireless

applications lower. In addition, this standard has become so familiar over the last decade that

most smartphone providers on the market support it. This feature often makes it the preferred

choice among similar wireless technologies. However, BLE also has some drawbacks. The data

throughput is somewhat restricted, with an initial peak performance of 1 Mbit/s. A later revision

of the standard has introduced a high-speed feature, enhancing the maximum throughput up

to 2 Mbit/s. This implies that BLE is best suited for applications that require a relatively low

bandwidth[1].

2.1.1 BLE Stack

The BLE stack can be seen in figure 2. We can see that the majority of the layers are confined

inside either the host or controller block, with the HCI layer linking them together. On the top,

we have the application layer, which contains the actual application. This layer is defined by the

application developers and will not be discussed in this section. Most of the remaining layers will

be described briefly, while some are described in more detail in separate sections.

Application Layer
(APP)

Generic Access
Profile (GAP)

Logical Link Control & Adaptation
Protocol (L2CAP)

Generic Attribute
Protocol (GATT)

Security Manager
(SMP)

Attribute Protocol
(ATT)

Link Layer (LL)

Physical Layer (PHY)

Host Controller Interface (HCI)

Application

Host

Controller

Figure 2: The BLE stack.

2.1.1.1 Physical Layer

The physical layer of BLE utilizes the 2.4 GHz ISM band to communicate. It uses 40 different

channels that are spaced between 2.4000 GHz and 2.4835 GHz. Channels 37, 38, and 39 are

Page 8

2 THEORY

used for advertising, and they are spaced evenly throughout the band to minimize the risk of

all advertising channels being disturbed at the same time. The remaining 37 channels are used

for standard communication in BLE connections. BLE utilizes the frequency hopping spread

spectrum technique to change channels between each connection event on a link. This scheme

reduces the chance of interference on any channel in the 2.4 GHz band. This technique is crucial

since this band is shared with other applications, such as Wi-Fi[6, p. 16].

2.1.1.2 Link Layer

The Link layer interfaces with the physical layer and functions as an abstraction layer to enable

control of the radio on a device[1]. It manages the state of the radio and is the only layer of the

entire stack that handles hard real-time constraints[6, p. 17].

2.1.1.3 HCI Layer

The Host Controller Interface (HCI) layer defines a protocol that allows the Host layer to commu-

nicatewith the Controller layer of the stack. This allows the host and controller block to potentially

exist on separate hardware, communicating through a serial interface [1].

2.1.1.4 L2CAP Layer

The Logical Link Control and Adaptation Protocol (L2CAP) layer have two main tasks. It acts

like a multiplexer that encapsulates the protocols from the upper layers to form standardized BLE

packets. It is also responsible for fragmentation and reassembly of packets that are larger than the

maximum payload size of 27 bytes that a single BLE packet can contain[6, p. 25].

2.1.1.5 ATT Layer

The Attribute Protocol (ATT) defines a stateless client/server protocol. It defines how data is

structured and exposed by a server in order for a client to interact with it[1]. The attribute layer is

further explained in section 2.1.3.2.

2.1.1.6 SMP Layer

The Security Manager Protocol (SMP) is responsible for generating and distributing security ma-

terial in BLE. It supports features like pairing, bonding, authentication, encryption, and message

integrity[1].

2.1.1.7 GATT Layer

(See section 2.1.3.)

2.1.1.8 GAP Layer

(See section 2.1.2.)

Page 9

2 THEORY

2.1.2 GAP

The theory described in this section is in its entirety retrieved from the book Getting Started with
Bluetooth Low Energy[6, p. 35].

The Generic Access Profile (GAP) defines how BLE devices should interoperate with each other.

This framework specifies how a device discovers the presence of other devices, how they should

establish connections to each other, how they broadcast their data, security considerations, and

many other fundamental operations that ensures a standardized way of communication for BLE.

2.1.2.1 GAP Roles

GAP defines four different operational modes. Each role is associated with a set of restrictions

and behavioral requirements. The four GAP roles are:

• Broadcaster – The broadcaster role is mainly used in applications with only a need to

transmit data. It transmits this data through advertisement packets, available to all devices

in proximity of the broadcaster.

• Observer – The observer role is the counterpart of the broadcaster role, intended for appli-

cation where it is only a need to receive data. The observer scans for incoming advertising

packets and extracts data from the packets sent from broadcasting devices.

• Central – The central devices inhabit the link layer "master" role of GAP. Devices with the

central role are responsible for initiating connections to other devices, thus forming the BLE

network. It is capable of maintaining several connections at the same time. The central role

entails a higher demand on computing resources than the link layer "slave" counterpart.

To establish connections, the central listens for incoming advertising packets from nearby

devices. By utilizing the information in these packets, the central can connect to one or more

of these devices.

• Peripheral – Theperipheral role corresponds to the link-layer "slave" role. As the central role’s

counterpart, a peripheral device make its presence known by transmitting advertisement

packets. These packets can be scanned by nearby central devices, which can initiate a con-

nection to the peripheral device. A peripheral device will have lower resource requirements

concerning computing power and memory than the central role.

The BLE specification does not mention that the GAP roles need to be mutually exclusive, I.e., a

device may operate in one or several of these roles at any given time.

2.1.2.2 Modes and Procedures

GAP defines a set of modes and procedures that are associated with one or more roles. This

section will mention the most relevant modes and procedures.

For the broadcaster and observer roles, we have broadcast mode and the observation procedure,

respectively. These define the framework through which a broadcaster may send data that one or

more observers receive. The rest of the modes and procedures mentioned here is associated with

discovery and connection between central and peripheral devices.

For the peripheral role, the two most vital discovery modes are the non-discoverable and general

discoverable modes. The first mentioned is, as the name suggests, a mode where the peripheral

device does not wish to be discovered. In contrast, the general discoverable mode is the most

common mode used when a device wishes to connect to a central device. The central role has

more than one discovery procedure, but it is the general discovery procedure that is of most

Page 10

2 THEORY

interest for most practical purposes. This discovery procedure is the counterpart of the general

discoverable mode, used by devices looking for all possible discoverable peers.

The three connection modes are the non-connectable, directed connectable, and undirected con-

nectable modes. The non-connectable mode is used by peripherals that do not allow connections,

the directed connectable mode is used for rapid reconnection with familiar devices, while the

undirected connectable mode is the standard mode for connection where a peripheral device

makes itself connectable for a longer period of time. The main connection procedures are the

auto-, selective-, direct-, and general connection establishment procedure. Among these four,

the general connection procedure is most commonly used when forming a connection to a new

unknown peripheral.

2.1.3 GATT

The theory described in this section is in its entirety retrieved from the book Getting Started with
Bluetooth Low Energy[6, p. 51].

The Generic Attribute Profile (GATT) defines how data is formatted and exchanged between

connected devices in BLE. While GAP handles the interaction on the base level, GATT manages

the actual structuring and transmission of data. GATT utilizes the Attribute protocol (ATT) to

exchange data between devices.

2.1.3.1 GATT Roles

GATT operates with two distinct roles, the client- and the server role. It is essential to mention

that these roles are completely decoupled from the previouslymentioned GAP roles. E.g., a GATT

client may be present on either a central or peripheral device, depending on the behavior of the

application used.

The GATT client is the one with the initiative in a GATT client/server pair. It is the entity that

sends requests to the server and receives complimentary responses. In some cases, the client

might also receive server-initiated updates, but the key aspect here is that the client is in control of

this relationship. The client does not initially know anything of the composition of attributes that

are contained in the server. To retrieve this information, the GATT client has to perform initial

service discovery. After this procedure is done, the client can start operating on the attributes

provided by the server and receiving server-initiated updates.

The GATT server is responsible for storing and making user data available for the GATT client.

As mentioned, it receives requests from the client to which it responds, with the additional

opportunity to send self-initiated updates.

2.1.3.2 Data Hierarchy

The smallest entity of data in GATT is called an attribute. An attribute consists of the following

fields:

• Handle – The handle can be considered as the address of the attribute.

• Type – The attribute type defines what kind of data that the attribute value represents.

• Permissions – Permissions tell which operations can be performed on the attribute, like

readable, writable, read and writable, or none. It also determines the encryption level that

a client requires in order to access the attribute.

• Value – The value holds the actual data of the attribute. It can contain any data type, like

integers, floats, UTF-strings, and arrays. The maximum size of an attribute is 512 bytes.

Page 11

2 THEORY

The data structure inside a GATT server can be regarded as a list of attributes, where the attribute

is sorted in rising order depending on their handle values.

The structure of a GATT server is exemplified in figure 3. This figure shows that a GATT server

may contain one or more services, where every service may contain zero or more characteristics.

The characteristics can, in turn, contain one or more descriptors.

GATT Server

Service

Characteristic

Descriptor

Characteristic

Descriptor

Service

Figure 3: Structure of GATT server.

A service structure attributes that are conceptually related. The service declaration attribute is

used to define the beginning of a new service. This can either be the primary or the secondary

service UUID, where the first-mentioned is the most common. The permission for this attribute

is read-only since it must be available for clients to read. The value of the declaration refers to the

specific service introduced, E.g., the Heart Rate Service of BLE.

The characteristics are containers for data inside a service. The characteristic consists of at least

two attributes; the declaration and the value. The declaration is of the characteristic type, a

unique UUID type that defines the characteristic attribute. Like the service attribute, this is

also an attribute of the read-only type. The value of this attribute contains three fields of data.

The properties, value handle, and the UUID of the characteristic in question. The properties

consist of a bitfield that defines what operations and procedures that may be performed with the

characteristic. The main properties are:

• Broadcast – Allows this characteristic value to be placed in advertising packets on the server.

• Read – Allows clients to read this characteristic.

• Write without response – Allows clients to use the Write operation on this characteristic (no

acknowledgment).

• Write – Allows clients to use the Write operation on this characteristic (with acknowledg-

ment).

• Notify – Allows the server to send notifications to the client (no acknowledgment)

• Indicate – Allows the server to send indications to the client (with acknowledgment)

• Signed Write Command – Allows clients to use the Signed Write Command operation on

the characteristic.

The value handle contains the attribute address that holds the actual value of the characteristic.

The UUID identifies what type of characteristic this is. It can either be a SIG-defined characteristic

Page 12

2 THEORY

or a vendor-specific characteristic. The value attribute of the characteristic holds the actual data.

The handle and type of this attribute are the same as those defined in the value of the characteristic

declaration. Both the permission and the value field of this attribute can be of any type, depending

on the characteristic type.

In addition to the declaration and value attributes, a characteristic may contain one or more

descriptors that provide additional metadata for the characteristic. I will only mention the Client

Characteristic Configuration Descriptor (CCCD) since it is the only descriptor type of relevance

to this thesis. The purpose of this descriptor is basically to act as an enabling switch for server-

initiated updates, meaning indications and notifications. Since the GATT client has the master

role in the server/client relationship, it needs to manage the server-initiated updates. Using the

CCCD descriptor, it can decide when the server is allowed to send these updates.

In section 2.2.3.2 the Mesh Proxy Server is presented, which may contribute to clarify the concept

of GATT services.

2.2 Bluetooth Mesh

The Bluetooth mesh (BTM) standard is a many-to-many wireless communication protocol. It is

built on top of the Bluetooth Low Energy Core specification. As long as a device supports a

version equal to (or higher) than the 4.0 version of the BLE spec, it can support BTM. Both the

BTM specification, as well as the underlying BLE core specification, is developed and maintained

by the Bluetooth Special Interest Group (SIG)[8].

The introduction of the BTM standard was done to extend the capabilities of BLE also to include

mesh networking. It has the potential to create networks with thousands of devices that can com-

municate and collaborate. Together these devicesmay support amultitude of different application

domains, like collecting sensory data, control and monitoring lighting installations, performing

predictive maintenance, and positioning applications[3].

2.2.1 General Overview

2.2.1.1 Addressing Scheme

There are three different types of addresses used in BTM; unicast, group, and virtual addresses.

Unicast addresses are assigned to elements and always represent a single element in the network.

There are 32767 unicast addresses per mesh network. Group addresses are multicast addresses

that can represent multiple elements in the network. There are 16384 group addresses per mesh

network. The virtual addresses are practically an extension of the group addresses. These

addresses can also represent multiple elements, but the virtual addresses are based on 128-bit

label-UUID’s, making the address space very large[10, p. 23].

Within every BTM device, we have at least one element. Elements define the addressable entities

within a BTM network and are assigned a unique unicast address. The first element in a node is

called the primary element and contains the mandatory foundation models explained in section

2.2.2.2. The primary elementmust possess the lowest assigned unicast address of the device, while

the eventual secondary elements will be assigned the subsequent addresses. Each element may

contain several models but is not allowed to contain more than one unique instance of a single

model[10, p. 22]. Models are described in section 2.2.2.1.

2.2.1.2 Network Communication

The three advertising channels of BLE mainly provide on-air communication in BTM. When the

mesh utilizes this form of communication, it is the ADV bearer that is responsible for transmitting

Page 13

2 THEORY

and receiving messages, as explained further in section 2.2.2.7. Each BTM ADV message can

contain up to 31 bytes of data. This includes all addressing information, securitymaterial, payload,

and other metadata.

Conventionally, BTM utilizes the concept of “Managed Flooding” to pass messages to other

nodes in the network. Using the ADV bearer implies no inherent way of forming links between

communicating devices in a BTM network. Whenever a device wishes to forward a message to

other networkmembers, it has todo this bybroadcasting over the advertising channels. Thismeans

that all devices within radio proximity will receive this message. They receive this regardless of if

it is associated with the device or not. When a message is received, the node needs to check if the

message is associated with any elements located on the device.

To make it possible for a message to travel further than the limitations of the radio range of the

origin device, one or more of the adjacent nodes needs to relay this message. Relaying is a crucial

feature of BTM and can be configured individually for each device in the BTM network. When a

relay node receives a message, it performs a check to see if it should be retransmitted or not. The

criteria it bases this decision on depends on the destination address of the message and the value

of the Time to Live (TTL) parameter contained in the message. The purpose of the TTL value is

explained later in this section. Upon the first setup of a BTM network, it is up to the installer to

provide enough relay nodes to ensure that messages can travel between any two nodes.

Inherently, a transmitting node will not get any verification of whether a message is successfully

received or not. While it is possible to acknowledge messages in a higher layer of BTM, this

involves using two or more base message transmissions to ensure message delivery. To increase

the likelihood of successfully transmitting a single message, BTM is reliant on redundancy. In

other words, a message may be transmitted multiple times to improve the likelihood of successful

message delivery.

To maintain the number of redundant messages that flow in the network at any given time, BTM

specifies a couple of message control mechanisms. The first one is the TTL parameter. Each

message that is transmitted is equipped with this parameter. Each message is initialized with a

TTL value at the origin device. Whenever a relaying node retransmits the message, the TTL value

is decremented. When this parameter reaches a value lower than two, it will be discarded by the

next relaying node that handles it, effectively ending the message’s lifetime in the network. The

other control mechanism is the message cache. The message cache of a device stores a unique ID

for all messages that it accepts. If the same message arrives at the device for a second time, it is

immediately discarded[10, p. 36-101].

2.2.1.3 Additional Features

In addition to the functionality mentioned in section 2.2.1.2, BTM provides some additional

features. The first is the proxy feature. This feature facilitates the forwarding of network PDUs

between GATT andADV bearers. This feature is central for this thesis and is thoroughly described

in section 2.2.3.

The two remaining features are the Friend and Low Power feature. These two features combined

provide the means for having mesh nodes with a significantly lower power consumption than

regular mesh nodes. The concept is that a friend node establishes a bond with a low power

node (LPN). The friend node is responsible for holding and forwarding messages to the LPN

node whenever it polls for information updates. This enables the LPN node to turn off the radio

scanning for a large portion of the execution time, thus saving a significant amount of power.

The LPN feature is ideal for devices that run on a limited power source and is not dependent on

continuously communicating with the rest of the network. An example of such an application can

be a switch in a lighting installation[10, p. 37].

Page 14

2 THEORY

2.2.1.4 Security

BTM offers authentication and security on two levels. First, there is the network level. Using

network keys enables the opportunity to create area isolation in the network. Only devices sharing

the same network key may communicate with each other. A device may belong to one or more

subnets, depending on the number of network keys it owns. The second level is the application

level. Using application keys, a model may communicate with models on other devices that share

the same keys. This level of security enables privacy for different applications that operate on the

same subnet[10, p. 19].

If adevicewishes to join ameshnetwork, itmustundergo theprocess ofprovisioning. Provisioning

is the process of authenticating and providing basic information like unicast addresses and a

network key to a device. When the provisioning process is completed, a node may transmit or

receive messages in a mesh network[10, p. 15]. To ensure that the process of provisioning is

executed securely, BTM utilizes a Security manager protocol derived from the BLE protocol (See

section 2.1.1.6)[10, p. 20].

The security measures of BTM provide protection against known security attacks like eavesdrop-

ping attacks, man-in-the-middle attacks, replay attacks, trash-can attacks, and brute-force key

attacks[10, p. 18]. Detailed information about provisioning and mesh security can be found in the

Mesh Profile spesification[10, p. 229, 101].

2.2.2 Bluetooth Mesh Stack

Foundation Model Layer

Access Layer

Network Layer

Lower Transport Layer

Bearer Layer

Upper Transport Layer

Model Layer

BLE Core Specification

Figure 4: Bluetooth mesh stack.

2.2.2.1 Model Layer

The top layer of the BTM stack is the model layer. Here we differentiate between two different

categories of models; SIG defined models and vendor models. These two categories provide the

communication interface for the application level of a BTM device.

Page 15

2 THEORY

The first category is the SIG-defined models. These are standardized models that are designed to

provide interoperability between BTM devices, regardless of manufacturer. This includes models

that handle generic functionality like basic on/off and level features, models used to gather

sensory data, and models for lighting applications. The specification for these models is defined

and maintained by the BT SIG. Any developer who wishes to utilize these models must abide by

the strict set of rules for state and message interaction when implementing these models.

The second category is the vendor-specific models. These are custom models that can be freely

defined by any developer and can target any application imaginable[9].

2.2.2.2 Foundation Model Layer

The foundation models are mandatory models that are required to make a BTM device functional

and configurable. There are two sets of these models. The Configuration models, as the name

suggests, is used to configure the network. It is used to distribute and set security keys, assign

publication and subscription configurations, and many other parameters for the devices in the

network. The second one is the Health models. These are used to monitor and assess the state of

the network, with the intention to unveil issues and problems on the nodes[10, p. 136].

2.2.2.3 Access Layer

Theaccess layerprovides themeans themodelsuse to communicatewith eachother in thenetwork.

It is in charge of the formatting of the payload and publishing and subscription parameters.

Further, it defines if a message should be acknowledged by the receiver or not and the number of

hops themessage is allowed to takeduring transmission (TTL). It alsohandles sequencenumbering

of messages, ensuring that the network is not prone to replay attacks[10, p. 92].

2.2.2.4 Upper Transport Layer

The upper transport layer handles encryption and authentication of messages delivered from the

access layer. This is the first of two iterations of encryption performed on these messages, the

second one being performed on the network layer. This enables different applications to share

the same network without exposing the internal state to other applications on the network. These

messages are encrypted using an application key boundwith the respectivemodel that passed the

message from the model layer. The exception is the messages associated with the configuration

foundation models secured using the device keys.

This layer also manages a set of control messages. These include messages associated with the

Friend/LPN-node feature and Heartbeat functionality. These messages do not undergo the same

encryption procedure as the access messages on this layer[10, p. 62].

2.2.2.5 Lower Transport Layer

The primary purpose of the lower transport layer is to perform segmentation and reassembly

of outgoing and incoming mesh messages, respectively. Due to the restricted payload a BLE

advertising packet may contain, larger messages must be sent as a train of smaller messages.

Messages smaller than 12 bytes may be passed unsegmented, while messages longer than this

must be sent as two or more segments.

In addition, this layer is responsible for queuing messages associated with the Friend/low power

node feature of BTM[10, p. 49].

Page 16

2 THEORY

2.2.2.6 Network Layer

The network layer is responsible for handling the message traffic flowing through a device. It

performs the following tasks[10, p. 39]:

• Network encryption/decryption – The network layer performs network-level encryption on

all messages passed from the lower transport layer. The message is then either passed to the

bearer layer or an internal interface. This depends on if the message destination is located

outside the origin device or not. For all incoming messages, decryption and authentication

are performed to check if the message is associated with a network key belonging to the

device in question.

• Interface filtering – The network layer facilitates filtering of both incoming and outgoing

messages. The filtering intends to reduce the strain on the on-air medium by reducing

unnecessary message traffic.

• Message relaying – For nodes with the relay feature enabled, the network layer handles

the forwarding of messages. These are messages that are not associated with a unicast

address present on the receiving device or a message addressed to a group address. Before

retransmission, the network layer checks the message’s TTL value to see if it qualifies for

retransmission. If it does, the TTL value is decremented by one, and the message is passed

to the bearer layer.

• Message caching – In order to reduce the number of security checks and retransmissions

in the network, the network layer is equipped with a message cache implemented as a ring

buffer. When a message arrives from the bearer layer, the message cache fetches an ID from

it. It then performs a lookup for this ID in the cache. If the message is already present, it

is immediately discarded. Otherwise, the ID is placed at the head of the cache, potentially

evicting the oldest entry. The message is then passed along to the decryption stage of the

network layer.

2.2.2.7 Bearer Layer

The bearer layer consists of two primary bearer types; the ADV bearer and the GATT bearer[10,

p. 38].

Asmentioned in section 2.2.1.2, theADVbearer is the conventionalway of transmitting data inside

the BTM network. Messages transmitted with the ADV bearer shall be put inside the advertising

data of a BLE advertising PDU. The Mesh Message AD type advertisement packet is used for this

purpose, and it contains a BTM network PDU. Any advertisement using the Mesh Message AD

type shall be non-connectable and non-scannable undirected advertising events. These messages

provide room for 31 bytes of payload. Devices supporting theADVbearer should support both the

GAP Observer role and GAP Broadcaster role, as described in section 2.1.2.1. Since the messages

sent with the ADV bearer are broadcasted, BTM devices should opt for a scanning duty cycle that

is close to 100% to avoid missing incoming messages.

The GATT bearer is initially intended to enable devices that cannot support the ADV bearer to

participate in a mesh network. Due to the relevance the GATT bearer has for this thesis, it is

described separately in section 2.2.3.

2.2.3 GATT bearer

A GATT bearer uses the Proxy protocol to transmit and receive Proxy PDUs between two devices

over a GATT connection. The GATT bearer defines two roles: The GATT Bearer Client and the

GATT Bearer Server. The server instantiates one and only one Mesh Proxy Service, while the

GATT Bearer Client shall support the Mesh Proxy Service[10, p. 38].

Page 17

2 THEORY

2.2.3.1 Proxy Protocol

A GATT bearer utilizes the proxy protocol to exchange data between devices. This protocol

supports the exchange of network PDUs, mesh beacons, proxy configuration messages, and Pro-

visioning PDUs over a GATT connection. The protocol defines two roles: the Proxy server and the

Proxy client. The server must support a bearer using the proxy protocol, typically a GATT bearer,

and at least one additional bearer like the ADV bearer or a secondary GATT bearer. The client

needs to support a bearer using the proxy protocol. A proxy PDU may contain all the four men-

tionedmessage types. The header of the proxy PDU contains information about what type of data

contained in the payload and information regarding segmentation and reassembly[10, p. 262]. The

last-mentioned parameter is used when a message is larger than the maximum allowed payload

size of a proxy PDU.

The proxy protocol supports filtering to reduce the amount of information passed from the server

to the client. This filtering is based on mesh addresses and can either be of the white- or blacklist

type. If the server is configured to use a white list, it will only pass along messages associated

with addresses in the list. If the server uses a blacklist, it will exclude messages associated with

addresses in the list. The default configuration for the server when a connection is established is

an empty white list. Whenever the server receives a valid mesh message from the client, the filter

shall update itself to allow messages with these unicast addresses to be passed from the server to

the client[10, p. 264].

2.2.3.2 Mesh Proxy Service

A general description of GATT services can be found in section 2.1.3.2.

The Mesh Proxy Service is used to enable a proxy server to send and receive data to and from a

proxy client. The service shall be initiated as a primary service, and the type shall be set to the

Mesh Proxy Service[10, p. 275].

This service consists of two characteristics. The first is the Mesh Proxy Data In characteristic

and is used to send proxy PDUs from a client to a server. The mandatory property for this

characteristic isWrite without response. The second characteristic is the Mesh Proxy Data Out. This

characteristic is used to send proxy PDUs from the server to a client. The mandatory property for

this characteristic isNotify. In addition, this characteristic includes the CCCD descriptor to enable

control of when a server may send notifications to the client. In this context, the Proxy client will

enable notifications as soon as the connection is established[10, p. 279]. An exemplified layout of

the attributes inside a Mesh Proxy Service can be viewed in figure 5.

A servermust use the General Discoverablemodewith undirected connectable advertising events,

as described in section 2.1.2.2. There are two ways of advertising the presence of the Mesh Proxy

Service, either by using network IDs or node identity. A server advertising with the network ID

will send advertisement packets periodically for every subnet the server is associated with. This

method is suited for clients that wish to connect to themesh networkwithout concern aboutwhich

device it is connecting to. When advertisingwith the node identity, the packets contain the unicast

address of the primary element of the advertising node. It is originally intended for situations

where we need to deliver large amounts of data to a node that cannot be easily identified or is not

advertising[10, p. 276].

2.2.4 BTM Advertising Message Format and Capabilities

The format and capabilities of a BTM advertising message are relevant to this thesis. This section

clarifies in detail some of the most central aspects regarding advertising in BLE. This theory is a

product of both BLE and BTM specific topics.

Page 18

2 THEORY

Characteristic Read

Primary Service Read Mesh Proxy
Service0x0001

0x0015

0x0020 Mesh Data In Write

WWR|0x0020|
Mesh Data In

In Data

Characteristic Read0x0024

0x0026 Mesh Data Out None

NOT|0x0026|
Mesh Data Out

Out Data

0x0030 CCCD Read/Write CCCD
Value

Service

Characteristic

Characteristic

Descriptor

UUID Permissions ValueHandle

Figure 5: Exemplified Mesh Proxy Service.

2.2.4.1 Minimum Advertising Period

Theminimum time it takes to transmit a single BTMadvertising PDU, further denoted as Amin, can
be derived from the BT Core specification[8, p. 2939]. It states that an advertising interval shall be

in the range of 20 milliseconds to 10485.76 seconds. Furthermore, it states that every advertising

interval should be followed by a pseudo random delay between 0 and 10 milliseconds. Since we

are interested in the peak sending capabilities, we will focus on the minimum advertising interval

of 20 milliseconds, denoted as min. To account for the advertising delay we can add the mean

value of the delay range, denoted as �. This gives us the following equation for the minimal time

it takes to transmit a single BTM advertising PDU:

Amin = min + �

= 20 ms +
10 ms – 0 ms

2
= 25 ms

(1)

2.2.4.2 BLE Transmission Speed

This thesis focuses on the LE 1M physical layer(LE 1M PHY) implementation since this is the only

mandatory physical layer implementation for BLE. The LE 1M PHY has a symbol rate of onemega

symbol per second[8, p. 190]. The LE 1M PHY is uncoded, meaning that each symbol represents

exactly one bit. Since one symbol represents on bit, this correlates to a bit rate of one megabit per
second.

2.2.4.3 BTM Advertising Message Format

The structure of the uncoded physical layer on-air packets is described in Volume 6 part B of the

BT Core specification[8, p. 2865]. Figure 6 shows the format of the packet.

Here is a brief description of the different fields in the packet:

• Preamble — The preamble is used in the receiver to perform frequency synchronization,

symbol timing estimation, and Automatic Gain Control training. For packets transmitted

on the LE 1M PHY, the preamble is 8 bits.

Page 19

2 THEORY

PREAMBLE
(1-2 bytes)

Constant Tone
Extension

(16 - 160 us)
CRC

(3 bytes)
Access Address

(4 bytes)
PDU

(2-258 bytes)

LSB MSB

Figure 6: BLE on-air packet.

• Access address — Primarily used to avoid collisions between different connections on the

link layer of the BLE-stack.

• PDU— The protocol data unit is the payload of the packet. The length of the PDU depends

on the message type it contains.

• CRC— Cyclic redundancy check. Used to detect errors in a received packet

• Constant Tone Extension — Optional field that is associated with location and direction

finding in BLE.

By assessing the different fields of the packet, we can conclude that an uncoded LE 1MPHYpacket

so far will consist of one byte of preamble, four bytes of access address, and three bytes of CRC.

We can disregard the optional Constant Tone Extension field since it is not relevant in this context.

This leaves the PDU, which can be between two and 258 bytes. Since the PDU in this instance

is of the advertising type, we can refer to the advertising physical channel PDU section BT core

specification[8, p. 2871]. Figure 7 shows the fields of an advertising physical channel PDU.

Header
(2 bytes)

Payload
(1-255 bytes)

LSB MSB

Figure 7: Advertising physical channel PDU.

This consists of a two-byte header and a variable payload between one and 255 bytes. The header

contains the PDU type, the byte length of the payload, and three flags called ChSel, TxAdd, and

RxAdd. The three flags have different purposes depending on the PDU type. To obtain the

advertising PDU type used in BTM, we must refer to the BTM profile specification[10, p. 38].

It states that any advertisement using the Mesh Message advertising data type shall be non-

connectable and non-scannable undirected advertising events. Figure 8 shows the fields of a

non-connectable and non-scannable undirected advertising payload [8, p. 2874].

AdvA
(6 bytes)

AdvData
(0-31 bytes)

LSB MSB

Figure 8: Non-connectable and non-scannable undirected advertising payload.

This payload consists of the AdvA and AdvData fields. The AdvA field contains the advertiser’s

public device address if the header’s TxAdd flag is set. Otherwise, it contains the random device

address. The AdvData field holds the data containing the BTM PDU. When fully utilizing a BTM

network PDU the size of the BTM PDUwill have a size of 31 bytes[10, p. 43]. Figure 9 summarizes

the final BLE packet structure considering a AdvData field consisting of 31 bytes.

The figure shows us that a fully utilized non-connectable and non-scannable undirected advertising
message on-air packet will contain 376 bits.

Page 20

2 THEORY

PREAMBLE
(1 byte)

Access Address
(4 bytes)

CRC
(3 bytes)

Header
(2 bytes)

Payload
(37 bytes)

PREAMBLE
(1 byte)

Access Address
(4 bytes)

PDU
(39 bytes)

AdvA
(6 bytes)

AdvData
(31 bytes)

PREAMBLE
(1 byte)

Access Address
(4 bytes)

Header
(2 bytes)

AdvA
(6 bytes)

AdvData
(31 bytes)

CRC
(3 bytes)

LSB MSB

47 bytes = 376 bits

Figure 9: Complete on-air packet structure.

Page 21

3 PRELIMINARY RESEARCH

3 Preliminary Research

3.1 ADV bearer Performance Assessment

As a starting point for this thesis, I need to identify why the ADV bearer struggles to provide

high throughput and data consistency capabilities. Section 2.2.1.2 describes the general commu-

nication scheme that is associated with the ADV bearer. The reason why legacy BTM struggles

to provide these capabilities is caused by how the on-air communication is conducted. The ADV

bearer utilizes BLE advertising packets to convey data between devices. These messages are sent

over the three advertising channels provided by BLE. There is no concept of links between com-

municating devices during a transmission, meaning that there is no session or lower layer concept

of acknowledgment of message delivery. Each mentioned aspects contribute to constraining the

capabilities of a BTM network. The main issues that cause the restricted capabilities are:

• Poor Utilization of the Physical Medium — In this scheme, the ADV bearer only utilizes

three of the total 40 available channels that BLE provides (2.1.1.1). In order to receive an

incoming message, a device must continuously scan for incoming advertisement packets.

A device can only scan one of the channels at a time, meaning that the same packet must

be transmitted on all three channels, one after the other, by the transmitting device. This

means that the ADV bearer effectively uses a single channel for message transmissions.

Compared to connection-based BLE communication, which uses 37 channels, this is quite

poor utilization of the available physical medium. Consequently, the probability of internal

noise disruption on the medium becomes higher, restricting the rate at which messages can

be sent.

• Restricted Transmission Speed of Advertising Packets — As described in section 2.2.4.1,

advertisingpacketsmaybe issued at amaximumrate of onepacket per 25 ms. In comparison,

a connection based BLE link can operate with connection events as small as 7.5 ms, where it

is possible to send a full packet per event [6, p. 7].

• Reliant on Redundancy — Since there is no concept of links or lower layer acknowledgment

for message transmission, there is no inherent way to guarantee that a single message

has arrived at its destination. This is handled by adding redundancy to the transmission,

sending the same information several times in the hope that at least one of the attempts

will succeed. This situation adds to the above-mentioned issue with poor utilization of

the physical medium. Here we are potentially retransmitting information that already

has reached its destination, causing a delayed transmission for any consecutive messages

from the transmitting device. Redundancy may improve the chance for the successful

transmission of a message, but it does not guarantee message delivery.

3.2 Device Firmware Update Use-Case

During the preliminary research, I looked for an application use case where both targeted perfor-

mancemetrics are of high importance. This research aimed to provide an application example that

can be utilized for both simulation and performance assessment purposes. Through this work, I

have found a use case where both throughput and data consistency are paramount. Additionally,

this use-case is valid for all BTM networks, regardless of what functional application task the

network is performing.

From time to time, an electronic device might require an update of its firmware. The underlying

reason for this might be that there are bug fixes that have been applied to the initial firmware or

that a new feature has been added. When BTM devices are shipped from the manufacturer, they

will, inmost cases, already contain the necessary firmware. This enables the installer to deploy the

network without concerns to the device firmware. When the network is operational, the devices

may be scattered across a large physical area, and the placement of the devices may vary greatly.

Page 22

3 PRELIMINARY RESEARCH

Some devices might be easily accessible, while others are placed in environments that require a

great deal of effort to access after deployment. For instance, an example of this could be a BTM

networkmounted in the ceiling of a 12-meter high storage building, only accessible by lift. If these

network devices require a firmware update, it would be cumbersome and costly to access each

device to update the firmware manually. Fortunately, this issue can be solved through the use of

a Device Firmware Update (DFU). A BTM DFU is a procedure where it is possible to utilize the

on-air communication capabilities of the network to swap out the firmware of multiple devices at

the same time. The DFU consists of a train of BTM messages, each containing a small fragment

of the new firmware for the devices in the network. This message train is sent from an origin

device with access to the complete block of data that compromises the new firmware. When all

DFU messages have been received, the devices will reassemble the complete block of data and

overwrite the old firmware memory. For a DFU procedure to succeed, the complete set of data

that each device possesses at the end must be consistent with the block of data on the origin

device. This implies that all devices must receive every single message in the transmission train.

Additionally, the time it takes to transmit the entire DFU depends on the network’s throughput

capabilities.

A BTMDFU procedure is an ideal example of a task where both throughput and data consistency

are most important. It also represents a universal feature applicable to any BTM network. On this

basis, I have decided that the DFU use-case shall be the primary performance benchmark for this

thesis.

3.3 Implementation Approach

3.3.1 Approach Research

To improve the targeted performance metrics, I must find a viable alternative to the ADV bearer

scheme. In the search for this alternative, there are two criteria of importance. The first is that

the alternative solution must solve one or more of the issues that were discovered for the ADV

bearer in section 3.1. The second criterion is that the solution ideally should be possible to utilize

without violating the existing BTM specification.

The first alternative that I exploredwas the concept of extended advertising. Extended advertising is

a feature released as a part of Bluetooth 5, where it is possible to advertise more data than through

legacy advertising. In this scheme, the advertiser can use the 37 data channels as secondary

advertisement channels, thus allowing the advertiser to utilize a larger portion of the available

medium. The concept here is that a regular advertisement packet is first sent on the three

advertising channels. This packet contains a pointer to a secondary channel where additional

data will arrive[11]. Extended advertising could solve a portion of the issues that are associated

with the ADV bearer. In this case, we can utilize the physical medium of BLE to a higher degree

since we are utilizing both the three advertising channels and the 37 data channels. There are,

however, some issues associated with this approach. Since extended advertising was introduced

as a part of Bluetooth 5, there is no guarantee that all existing BTM devices will support a solution

where extended advertising is utilized. This is because BTM is available for all devices that support

Bluetooth version 4.0 or higher. Choosing this implementation approach has a high risk of causing

an incompatibility gap between new and older BTM devices, which would be concerning from a

marketing perspective. Considering this, it is not surprising to see that extended advertisement

currently is not a topic that is covered by the BTM profile specification[10].

Another alternative that presented itself was an approach where the BTM network utilizes link-

based BLE connections over GATT to communicate. In this way, the network would benefit

from all the features that conventional BLE connections inhabit. In GATT based connections,

devices may utilize all 37 data channels that is provided by BLE(2.1.1.1). This greatly improves

the utilization of the physical medium compared with the ADV bearer. All communication over

GATT is acknowledged, meaning that there would be no need for redundancy to ensure that

messages successfully arrive at their destination.

Page 23

3 PRELIMINARY RESEARCH

Furthermore, the maximum theoretical transmission speed over GATT is one message per 7.5 ms,
which is four times faster than the allowed maximum transmission speed of the ADV bearer[6,

p. 7]. If we review the shortcomings of the ADV bearer from section 3.1, we can see that the

properties of a GATT connection solve the complete set of issues that was depicted here. If it is

possible to implement a BTMnetworkwhere the primary communication is performed overGATT

connections, both the throughput and data consistency would most likely improve significantly.

Then comes the question if it is feasible to implement such a solution with respect to the existing

BTM specification. Fortunately, the specification already supports GATT-based connections in

BTM networks. According to the BTM profile specification[10, p. 38], a GATT bearer is provided to

allow devices that can not support the ADV bearer to participate in a BTM network. Through the

associated proxy protocol the GATT bearer facilitates transmission of BTM messages over a GATT

connection.

If we compare the two explored approaches, it seems clear that the GATT bearer approach is the

most promising solution regarding the existing specification. As of today, the BTM specification

does not mention anything about the use of extended advertising, indicating that this approach

is likely to violate the existing specification. Based on these considerations, I have decided to

continue the implementation research focusing on the GATT bearer approach.

3.3.2 Communication Over GATT

The main alteration required to realize the new GATT bearer solution is that the existing GATT

bearer must be altered to possess similar capabilities as the ADV bearer provides. The most

important feature is the ability to transmit and relay messages over several bearer interfaces

simultaneously, allowing the network’s messages to flow freely.

To evaluate if it is possible to achieve the desired behavior without breaking the spec, I have con-

sulted the BTM profile specification. As described in section 2.2.3.1, the proxy protocol provides

all the means for allowing full BTM communication over GATT. The only obstacle that the proxy

protocol presents is that the proxy filter of a proxy server by default should be an empty whitelist.

This would potentially deny free communication between devices in the network if not handled

since the whitelist filter would block most messages from being transmitted from a proxy server.

This issue can, however, be solved. By sending a proxy configuration message from the connected

proxy client, the filter can be altered to an empty blacklist. This filter type allows all BTMmessages

to flow freely as long as the address of the message is not contained in the blacklist. Since the

blacklist is empty, any message is passed from the server to the client. At this point, I am quite

certain that a proxy client/server pair can provide the same communication capabilities as the

ADV bearer.

However, a single proxy client/server bond only represents the communication between two

specific devices in a network. To fully replicate the ADV bearer, the new implementation relies

on several GATT connections to ensure that the BTM messages are allowed to flow freely in the

network. Fortunately, the specification does not restrict how many GATT bearers a single device

can support. Therefore, it is possible to create a BTM network consisting of multiple GATT

connections without violating the specification. A notion of how this could look is exemplified in

figure 10.

At the point where all the necessary GATT connections are established in a network, the last thing

that must be handled is to ensure that all transmission and relaying activity from the upper layers

of the BTM stack is passed to the GATT bearer interfaces. These messages must be transmitted by

any GATT server or client bearer that is present on a device. This behavior is already inherent for

the server roles and therefore needs no alterations to act as intended. For the GATT bearer client,

the specification does not define any specific behavior regarding how and when BTM messages

shall be transmitted over their interface. To allow the GATT bearer client to transmit messages

over the GATT connections freely, I need to implement a function that sends a BTMmessage over

all active client interfaces. This function must be added to all existing modules where the BTM

stack normally would send a message over ADV bearer.

Page 24

3 PRELIMINARY RESEARCH

GATT Bearer
Server

GATT Bearer
Client

GATT Bearer
Client

GATT Bearer
Server

GATT Bearer
Client

GATT Bearer
Server

GATT Bearer
Client

Node

Node

Node

Figure 10: GATT connection topology example.

3.3.3 Control of the GATT Network

To establish and maintain a network that utilizes the GATT bearer solution, I am dependent on a

set of control mechanisms that provides remote control of the GATT connections in the network.

Such mechanisms are typically provided by the configuration foundation model [10, p. 197]. The

most crucial feature that my implementation requires is a configuration message that allows a

proxy client to initiate and maintain a connection to a target proxy server. This is not provided by

any existing model that is defined by the BTM specification.

In this regard, my only option is to implement the control features of the implementation as

a custom vendor model. This situation has an upside and a significant downside. The positive

aspect is that a vendor-specificmodel allowsme to customize the control features to accommodate

the precise needs for the implementation. Additionally, a vendor-specific model is not technically

a violation of the specification. However, using a vendor-specific model has a large impact on the

market value of the implementation. A vendor model is often a custom model created by a single

manufacturer and is in most cases only compatible with devices that that specific vendor creates.

Nevertheless, I have decided to continue the implementation work as planned, using a vendor-

specific model to provide the configuration features of the implementation. In section 7.2.2 I

discuss the implementation of the features for this model if the specification facilitates the means

to provide equal operations and how the specification could be altered to accommodate the same

features.

3.4 GATT Network Topology

Throughout the exploration of the GATT bearer, it has occurred to me that this approach can

provide more than one solution for the BTM network topology. A straightforward approach

would be to utilize the GATT bearer exclusively for the communication between all participating

devices in the network. From this point, this will be referred to as the Homogeneous approach.
Another solution is to utilize a combination of both bearers. A subset of devices forms the main

communication path in the network, enabling non-adjacent devices to communicate with each

other. These devices will act as relay nodes, where the communication between relaying devices

is conducted using the GATT bearer. The remaining devices will act as legacy BTM nodes, where

the communication with the relay nodes is conducted over the ADV bearer. From this point, this

will be referred to as the Heterogeneous approach.

Both approaches possess certain advantages and drawbacks. The homogeneous approach will

most likely be simpler to implement since it will not require interfacing with the ADV bearer.

Page 25

3 PRELIMINARY RESEARCH

On the other hand, this solution will require extensive configuration to form the network since

all communication will require establishing a GATT connection. An additional concern is that a

GATT connection requires one of the devices to take the role of the GAP central.

As described in section 2.1.2.1, a GAP central requires significantly more resources than a GAP

peripheral. In a situation where a single device needs to inhabit the GAP central role for many

connections simultaneously, it might result in a situation where the device cannot cope with the

workload. For the heterogeneous approach, these considerations are of less concern. Since only

the relay nodes of the network will utilize the GATT bearer, the number of GATT connections

that need to be maintained is likely to be reduced. This approach would also be possible to

configure/alter the BTM network without major configuration overhead. The potential drawback

with the heterogeneous approach, in addition to a more intricate implementation, is that the

combination of bearers might affect the enhancement we want to achieve for the throughput and

reliability of the BTM network.

For this thesis’s software implementation, Iwill strive to create functionality that can accommodate

both of these suggested solutions. The evaluation and assessment of the heterogeneous and

homogeneous approach are further discussed in section 7.3 of this thesis.

Page 26

4 HIGH LEVEL MODELING AND SIMULATION

4 High Level Modeling and Simulation

Before implementing the GATT bearer solution, I have decided to do high-level modeling of

the network solution. The model will also include the behavior of the ADV bearer. Together,

these models will provide the basis for collecting simulation data for both implementations. By

conducting simulations of different network topologies, I will be able to compare and assess the

performance of both bearers. The purpose of this work is to obtain data that can provide a

deeper understanding of how the network will behave under a real-world situation, potentially

contributing to better design choices for the actual implementation. Simultaneously, it will es-

timate the performance of the GATT bearer implementation and how it compares to the legacy

implementation.

4.1 Simulation Environment

To create the simulation model, I have decided to use Python as the chosen implementation

language. Python is a software language that I am already familiar with, and in my experience,

it is a suitable language for high-level modeling. Further, I have decided to utilize the NetworkX

package. NetworkX is a Python package for the creation, manipulation, and study of the structure,

dynamics, and functions of complex networks[7]. I believe that this package will provide means

that will make it easier to conceptualize a network of simulated BTM nodes. The complete

simulation module will be composed of custom functionality implemented by me and existing

functionality provided by the NetworkX package.

4.2 General Simulation Conditions

The simulations for both bearer solutions are performed with a couple of shared parameters and

conditions. As mentioned in the introduction, one of my main goals for the implementation is

to enhance throughput and data reliability in a BTM network. With this in mind, I have decided

to simulate a device firmware update for an entire BTM network. The DFU will pass a relatively

large block of data into the BTMnetwork from a single entry point. The intention is to pass all data

from this block to all nodes in the system. The most vital criterion in this operation is that every

node in the network receives the entire data set. A secondary measure is that this distribution of

data should take as little time as possible.

An essential general condition I have chosen for the simulation is that the virtual simulation

network will represent nodes with relay functionality. This has different implications on the

simulation result, depending on which approach we are studying.

For theADVbearer solution andGATT bearer solutionwherewe use the heterogeneous approach,

this decision has a specific impact. Here the simulation will not represent data transmission to

all end-points within a DFU procedure but rather to all relay nodes in that particular network.

For a GATT bearer solution where we use the homogeneous approach, this has no impact on the

simulation. In this instance, all participating devices in a networkwill effectively act as relay nodes

since all communication must be transmitted over the GATT bearer.

The same simulation result for a network using the GATT bearer will be valid for heterogeneous

and homogeneous solutions. It is only the perspective that changes. For the heterogeneous

solution, the results represent the data transmission statistics for transmitting the data to all relay

nodes, not including the transmission to the standard nodes. For the homogeneous solution, the

result represents the complete result. Concerning the differences between the heterogeneous and

homogeneous solution, it is crucial to keep in mind that the simulation model is intended for

comparing the ADV bearer solution against the GATT bearer solution in general, regardless of

which of these two approacheswe are using. Themerits of these two approacheswill be discussed

in section 7.3 of this thesis.

Page 27

4 HIGH LEVEL MODELING AND SIMULATION

I have decided to include only the relay nodes because the final hop from a relay node to a regular

node member will be common for both of the bearers. Since this factor is common, I have decided

to leave it out of the model for simplicity reasons. The impact this might imply regarding the

internal noise calculations is described in section 4.4.2.3.

In a real-life DFU, every node in the network must receive every single byte of data. In the ADV

bearer solution, there is always a chance that a message won’t arrive at all nodes on the initial

attempt. Since this is an unacceptable situation, most DFU routines are split into several sub-

routines. At the end of each sub-routine, the origin node of the DFU requests a status update from

all nodes in the network. Suppose any node is missing one or more packets from the message

stream of the previous sub-routine. In that case, the origin node will retransmit these packets

to ensure data consistency on every single node in the network. This verification procedure is,

however, costly concerning time consumption.

We can assume that this procedure adds a certain amount of overhead regardless of if all nodes

have received all data in the previous sub-routine. This is because the origin must communicate

with every node to verify that they have received all data. Further, if messages are missing from

one or several nodes, the origin must retransmit these into the network once more and verify

that the nodes now have received all the messages. Retransmitting and verifying the arrival of

messages to nodes that did not receive all messages initially could, in some cases, prove to be

challenging. It might require several attempts before actually mending the issue. This is because

the communication during this verification routine uses the same communication channels as the

actual DFU. If there are nodes that are missing messages, likely, they do not have an optimal path

of communication to the origin. If this is the case, it is more likely that messages sent during the

verification procedure are in transmission, including request, acknowledging, and retransmission

messages.

To summarize, there is currently a need to periodically verify that the DFU is going according to

plan when using the ADV bearer. This adds a certain amount of overhead to the total execution

time of the entire DFU. In cases where one or more nodes are struggling to receive messages on

the initial transmission attempt, it could prove challenging to communicate with them during

the verification procedures, thus prolonging the execution time even more[16]. I choose to leave

the verification and retransmission procedure out of the model. The reason for this is that the

way the verification procedure is executed is an implementation-specific decision. In the model, I

instead focus on how many messages are lost during standard DFU transmission. My statement

is that a large magnitude of lost messages in this phase will imply that there would be required a

substantial amount of execution time overhead to ensure data consistency on all nodes.

4.3 Modeling Transmission behavior

4.3.1 Common Behavior

Both solutions have some common behavior regarding transmission behavior.

4.3.1.1 Message Cache

Both solutions are fitted with a message cache to avoid nodes handling and retransmitting mes-

sages that have already been handled. All unique messages contain a separate transaction ID

(TID), which is used to identify them. After successfully receiving a message, the node will do a

lookup in the message cache to see if the TID is already present. If it is, the incoming message will

be discarded. If it is not present, the incoming message will be accepted and handled for further

relaying, and the cache will add the message’s TID to the message cache. To avoid the message

cache from growing infinitely large, it is designed to grow up to a predetermined configurable

size before it starts acting as a FIFO, discarding the longest living entry to make room for a new

one.

Page 28

4 HIGH LEVEL MODELING AND SIMULATION

4.3.1.2 Message buffer

Both solutions utilize a message buffer. Whenever a node successfully receives and handles an

incoming message that ought to be relayed, this message is put at the end of the message buffer.

At the start of a new transmission event, a node will fetch an entry from this buffer and attempt to

transmit it. Further details of how this buffer is handled are different for the two implementations.

The size of these buffers can be pre-configured at the initialization of the simulations.

4.3.1.3 Connected Nodes & Adjacent Nodes

To fully model the individual impact nodes have on each other, I have introduced the concept of

connected- and adjacent nodes. For the ADV bearer, these two are, for all practical purposes, the

same since there is no concept of connection links in legacy BTM. For the GATT solution, however,

there is a clear difference between adjacency and connections. While a GATT bearer node might

have only a few connections, it might have several adjacent nodes. This has an impact on the

calculations of the internal noise of the system, further explained in section 4.4.2, and therefore it

is essential to distinguish between adjacent nodes and connected nodes.

4.3.2 ADV bearer Solution

For the ADV bearer solution, a single message is transmitted to all adjacent nodes simultaneously.

The number of attempts the transmitting node will try to propagate a single unique message

is decided by the internal transmission state of the individual node[10, p. 153]. If E.g., the

transmission parameter is set to three, the ADV bearer will transmit the message thrice before the

message is discarded from the message buffer. The messages populating the buffer is handled

at the peak theoretical rate of 25 milliseconds per message(4.4.2.1). This means that as long as

the buffer is not empty, the node will advertise a new message every 25 ms. The ADV bearer

will always fetch the messages from the buffer in a first-in, first-out manner, discarding the front

entry of the buffer as soon as it has been transmitted the required amount of times. At the time

of transmission, the likelihood of successfully transmitting the outgoing message is decided by

the receiving node(s), depending on their uniform loss chance and the internal noise calculations.

Since the ADV bearer does not have any concept of acknowledging successful transmission,

the failure of passing a message to one or several of the neighboring nodes will not affect the

transmitting node. As soon as a message has been transmitted the required amount of times,

the message is discarded from the buffer without regard to if the message has been successfully

received or not.

4.3.3 GATT Bearer Solution

In the GATT bearer solution, the propagation of messages throughout the network is done differ-

ently than for the ADV bearer. First, all messages in the GATT bearer are acknowledged, meaning

that the transmitting nodewill identify if the bearer successfully transmitted an outgoingmessage

to a neighboring node.

While the ADV bearer will advertise the outgoing message to all nodes within radio proximity

as a single advertising event, the GATT bearer must pass every message to neighboring nodes

as individual events. This is because the GATT bearer operates on different channels for each

connection. However, these events can co-exist, so for all practical purposes, these events can be

modeled as a single event in time. However, this difference in transmission behavior brings forth a

case that needs to be addressed. While the ADV bearer will advertise a message to all neighboring

nodes regardless, the GATT bearer can choose which of the nearby nodes we wish to relay the

message to. When an ADV bearer relays a message, one of the potential receivers will include the

nodewhichwas the origin of thismessage in the first place. If the origin node successfully receives

this rebound message, it will find the message TID already present in the message cache and thus

Page 29

4 HIGH LEVEL MODELING AND SIMULATION

discard it. This is an innate behavior for the ADV bearer, which fortunately does not come at

an extra cost for the transmitting node. However, imitating this behavior for the GATT solution

would be utterly pointless since we with certainty know that the relay message’s origin node has

already received and handled the message in question. Therefore, I have decided that the passing

of messages in the GATT solutionwill exclude the nodewhichwas the origin of themessagewhen

relaying it. In an actual implementation, this feature would require a routing mechanism on the

bearer layer. I believe that a routing feature could obtain this feature in an actual implementation

with a reasonable amount of effort, and I have therefore chosen to add it to the model.

The rate at which the GATT bearer can transmit messages is dependent on the length of the

connection interval in BLE. According to the BT Core Specification a connection interval can be in

the range of 7.5 ms to 4 s[8, p. 1396]. To model the GATT transmission behavior, I have decided

to use a connection interval of 20 ms. A single connection interval will represent the time it takes

to pass a message over all connections to a neighboring relay node, except the origin node of

the message. Within this window, the receiving node will pass an acknowledge message, telling

the sending node if the transmission was successful or not. As long as a message has not been

successfully transmitted over all the required links, it will remain in themessage buffer. Since each

GATT transmission within the connection interval can be considered individual events, one or

more connections might fail to transmit a message while others were successful. If one connection

fails in transmission, it will have to retransmit the same message at the next available connection

interval, while the others may continue to the next message. This means that each connection can

be handling the same entries at different connection intervals. However, if one connection starts

to lag too far behind the others, it might cause the message buffer to go into saturation. While one

single connection has yet to transmit a message successfully, the buffer can not remove the entry.

This will prevent new messages from entering the buffer, effectively stopping the connections on

track from transmitting any newmessages. Theymust wait until the failing connection eventually

successfully transmits the message occupying the front of the buffer, thus freeing space for a new

message.

On the other hand, losing messages due to buffer overflow on the receiver is not a situation that

is acceptable in this regard either. Fortunately, the introduction of flow control can solve this

problem. Flow control is an opportunity that the GATT bearer presents that is not possible with

the ADV bearer. All GATT messages are acknowledged, which enables the opportunity to give

meaningful feedback to the sender within a communication interval. One of the opcodes in the

acknowledgment messages can be utilized for flow control, making it possible to tell the sending

part in a transmission that the receiver does not have space in its buffer to handle the incoming

message. When the sender receives this ACK, it will keep this message entry stored and transmit

it later.

4.4 Modeling Noise

The modeling of noise enables introducing non-ideal conditions to the simulation environment

and is thus crucial to the model. I have chosen to introduce the noise to the model as the sum of

two different factors; the uniform noise and the internal noise.

4.4.1 Uniform Noise

The uniform noise is a simplified representation of all external factors that might harm the radio

transmission capabilities of the nodes in the network. This represents factors like:

• Physical distance between nodes — The quality of the radio signal will deteriorate as the

distance between two communicating nodes increases.

• Obstacles between nodes — The quality of the radio signal is affected by physical objects in

the traveling path of the radio signal, like walls of different materials, windows, etc.

Page 30

4 HIGH LEVEL MODELING AND SIMULATION

• Noise from third party sources — Since BLE utilizes the ISM-band(2.1.1.1) numerous appli-

cations might be using the same radio frequencies at the same time. One common example

of this is Wi-Fi, which also utilizes the ISM-band. There is also a significant chance that

other BLE applications might be in proximity of the BTM network since BLE has become

a widespread standard for various applications. These other applications may affect the

quality of the communication between nodes.

The uniform noise parameter is set at initialization of the simulation and is for simplicity common

for all nodes in the network.

4.4.2 Internal Noise

Modeling the internal noise of the system is an essential factor in the simulation. Neglecting to

account for internal noise would bias the simulation. A node would have an everlasting higher

probability of receiving a message as the number of other nodes within radio proximity increases,

the reason being that a message has an increasing number of possible paths a message can arrive

through. In reality, there is a compromise between the number of links the node gains from

adjacent nodes and the internal noise that the added link produces. For node A to receive an

incoming message from an adjacent node B, there can be no other on-air traffic on the channel

while the message is transmitted. As soon as another adjacent node C tries to utilize the same

channel within the transmission window, both the message from node B and C can be regarded

as lost.

4.4.2.1 ADV bearer Solution

To model the probability of losing a message due to internal noise, we must find the probability

of a single node not transmitting on a channel at a given time.

We denote the time spent sending on-air data within an advertising period as)t. During an

advertising period the nodewill transmit themessage on all three of the BLE advertising channels.

Since we are interested in the probability of the node sending on a single channel, we can choose

to disregard this. This means that we must find the time spent transmitting on a single channel

during an advertising period. From section 2.2.4we know that an on-air BTMmessagewill contain

376 bits, and that the LE 1MPHY bitrate of onemegabit per second provides the ability to transmit

one bit per microsecond, further denoted as Trate. This gives us the following result for the on-air

time of a single packet on a channel:

)t =
Bitcnt
Trate

=
376 bit

1 bit
µs

= 376 µs
(2)

From section 2.2.4.1 we know that the minimum advertising period is 25 ms. By considering the

result from equation 2 we can now find the fraction of the total advertising period spent sending

data on a single channel. This fraction is equal to the probability of transmitting on a channel at

an arbitrary time within Amin. We will denote this as P().

P() =
)t

Amin
=

376 µs
25 ms

= 0.01504 = 1.504% (3)

Following equation 3, the probability of not transmitting on a channel at an arbitrary time within

Amin is:

P() = 1 – P() = 1 – 0.01504 = 0.98496 = 98.496% (4)

Page 31

4 HIGH LEVEL MODELING AND SIMULATION

If we assume that a node is continuously transmitting data, this wouldmean that there is a 1.504%
chance that the node is utilizing the on-air medium of a single channel at any given time. This

means that there is a 98.496% chance that a node is not sending on that particular channel.

The issue is that it is not a reasonable assumption to think that a node will be continuously

transmitting data throughout an entire DFU. The portion of the time spent transmitting packets

will largely depend on retransmissions, network topology, and packet losses in the network. To

more appropriately model the chance of a node transmitting data, we must consider how many

packets have been transmitted within a given period previous to the current timestamp.

Let the probability for a node N not transmitting on a channel be denoted as P(N), the given time

period as�T, and the packets transmitted within this time period as n. This gives us the following

equation for P(N):

P(N) =
n ·)t

�T
(5)

The probability of a node successfully receiving amessage can be obtained by finding the probabil-

ity that no other adjacent node is transmitting on the same channel simultaneously. To exemplify

this we can review figure 11.

B A

C

D

P(C)

P(D)

P(A)

Figure 11: Example of the internal noise model.

The probability for node A successfully transmitting on a channel to Node B is P(A). The proba-

bility for node C and node D not transmitting on that same channel is P(C) and P(D) respectively.
P(C) and P(D) can be regarded as independent events, giving us the following calculation for P(A):

P(A) = P(C ∩D) = P(C) · P(D). (6)

A generalized formula for calculating the chance of successful transmission due to internal noise

is as following:

P(S) =
j∏

i=1

P(N)(i) (7)

Here P(S) is the probability of successfully transmitting the message, j is the number of other

links that is connected to the receiving node and P(N)(i) is the probability for each of these nodes

not sending in that same time window respectively. The equation can be extended by inserting

equation 5:

P(S) =
j∏

i=1

n(i) ·)t

�T
(8)

Page 32

4 HIGH LEVEL MODELING AND SIMULATION

4.4.2.2 GATT Bearer Solution

Themodel described in section 4.4.2.1 assess the transmittingbehavior of theADVbearer. Accurate

modeling internal noise for the GATT bearer solution is significantly more complex. It operates

on a higher number of channels, and it utilizes frequency hopping to decrease the probability

of on-air collisions(2.1.1.1). To simplify the complexity of the simulation environment, I have

decided to use the model for advertisement bearer solution as the basis for the GATT internal

noise model. While admitting that this will not give a realistic scenario for the internal noise in the

GATT solution, it is reasonable to think that it at least is not biased in the GATT solutions favor.

One of the main differences between the GATT and ADV bearer is that the ADV bearer uses the

three advertisement channels to transmit data. During transmission, there is, in reality, only one

of these channels that are being used to convey data. While the transmitting node will broadcast

the same message on all three channels, the receiver will only scan one of the channels at a time.

The GATT solution has the remaining 37 data channels at its disposal, and in this case, the network

can make full use of every single channel. By assessing these facts, I have come to the following

model for the internal noise of the GATT bearer solution:

P(S)Gatt =
j∏

i=1

n(i) ·)t

�T · $
(9)

Here$ denotes the number of available channels, which asmentioned is 37 in the case of theGATT

solution. This equation is also valid for the advertising solution, wherein reality $ = 1 and does

not affect the calculation as such. Herewe assume that theGATT solution uses the same amount of

time within a connection interval to transmit on a channel. We assume that it randomly picks one

of the 37 available channels, making the 36 other channels available for other transmissions. This

greatly decreases the chance of interference between concurrent transmissions in the network.

4.4.2.3 Noise from the Regular Nodes

As mentioned in section 4.2, I have decided to leave any standard ADV bearer nodes out of the

simulation environment. Standard nodes will only be applicable in a situation where we are

comparing a heterogeneous network solution to the ADV bearer solution. In this situation, we

may consider all participating nodes in the simulation as relay nodes.

To justify this concerning internal noise calculations, we must make certain assumptions about

the network we are performing the DFU in. As both equation 8 and 9 shows us, the internal

noise during transmission is determined by the probability of other adjacent nodes transmitting

messages on the same medium at the same time. To make the simulation model valid, we

must assume that there is minimal or no transmission activity in the network other than the

transmissions associated with the DFU itself. Since regular nodes do not retransmit messages that

they receive, there will be no TX action on their part with regard to the DFU itself. Then we must

ask ourselves if it is reasonable to assume that there is none or minimal other traffic in the network

during the DFU. If we review the lighting application domain, which represents the majority of

the BTM applications used to date, the assumption is reasonable. In a BTMused solely for lighting

control, the transmission rate in the network would, in the majority of cases, be comprised of the

Mesh beacons[10, p. 119] and a handful of lighting commands per day. At least concerning the

model, a transmission workload like this would have a minuscule effect on the internal noise.

While I have decided to leave the regular nodes out of the simulation model for simplicity, I will

still assess how their presence would impact the ADV bearer solutions and the heterogeneous

GATT bearer solution. The assessment will be done by means of the following example:

If we review the exemplified mesh network in figure 12, we can assess how the self-noise is

impacted for both the GATT- and ADV bearer solution. In this figure, we can see relay node A

Page 33

4 HIGH LEVEL MODELING AND SIMULATION

Relay
Node

A

Relay
Node

B

Node Node

Node

Node

Node

Node

Node
Node

Node

Node

Node

Node

Figure 12: Regular nodes impact on internal noise.

and B, surrounded by several ordinary nodes that is also a part of the mesh network. The solid

red arrow represents the link that is used to pass messages between the two relay nodes. This can

either represent passing messages with the ADV bearer or the GATT bearer solution. The smaller

black arrows represent links used by the regular nodes to communicate with the relay nodes. This

communication is exclusively performed by using the ADV bearer.

Let us say that there is some additional transmitting activity going on in the network while

performing a DFU. Relay node A is trying to propagate a DFU message to pass a message over to

relay node B. Let us first assess the regular nodes’ impact on the internal noise for relaying with

the ADV bearer. In this case all communication, both relaying and regular node transmission

is performed using the ADV bearer. All communication in the network shares the three BLE

advertising channels, meaning that the regular node’s transmission behavior affects the internal

noise magnitude for the relay transmission as well. In the case of the mentioned transmission

from relay A to relay B, all the seven regular nodes adjacent to relay node B affect the likelihood

of successful transmission, depending on how much data traffic they generate. In the model,

the impact could be calculated by using the established equation 8 from section 4.4.2.1. Still, as

I have mentioned, I have chosen to leave this out of the simulation for simplicity reasons. Let

us now briefly review how the regular nodes would impact the GATT bearer solution. Since the

GATT bearer and the ADV bearer operates on independent BLE channels, the regular nodes have

practically no impact on the internal noise in this case. This means that if regular nodes were a

part of the simulations, they would not impact the internal noise in the simulations when using

the GATT bearer solution.

If we are considering a simulation for the homogeneous approach, we may ignore the above

considerations completely.

4.5 Simulation Output Data

To assess the outcome of simulations of the different solutions, it is paramount to monitor a

multitude of parameters for the relay network in its entirety and the individual nodes. The most

significant parameters in this regard are, of course, DFU execution time and the total number of

lost messages for each node during the DFU. Each node keeps a record of the timestamp of their

last successfully received message to provide the execution time. Simultaneously, the nodes will

increment a counter tracking the number of unique messages they have received. By comparing

this parameter to the total amount of unique messages injected into the network, we can derive

Page 34

4 HIGH LEVEL MODELING AND SIMULATION

how many messages have been lost for each node. At the end of the simulation, these parameters

can be extracted from the simulation setup.

Other relevant parameters that are monitored are:

• Peak buffer size — The model keeps track of the peak buffer size for both solutions during a

DFU simulation. It does this by assessing how many unique message entries are present in

a node’s message buffer at any given time. However, the peak buffer size will never exceed

the preconfigured maximum allowed buffer size.

• Mean loss chance—Themean loss chance is calculatedbasedon theuniformnoiseparameter

and the mean internal noise chance of each node, respectively. While the uniform noise

chance is constant throughout the entireDFUsimulation, the internal noise of a node changes

dynamically according to the transmission behavior of the adjacent nodes as described in

section 4.4.2.

• Number of links — The number of links for each node is calculated on initialization of the

simulation. It indicates how many nearby nodes a node is communicating with.

• Number of adjacent nodes — The number of adjacent nodes for each node is calculated on

initialization of the simulation. It indicates how many nearby nodes a node is within radio

proximity with. In difference to the number of links, this parameter has implications on the

internal noise for the node.

4.6 Simulation Results

4.6.1 Simulations for Network Alpha

The scenario for the simulation setup is shown in figure 13. It represents the relay nodes of a BTM

network installed in an office building. The network consists of 20 nodes spread across the office

floor. Nodes 0 through 17 have three links to other nodes, while nodes 18 and 19 have two, giving

a reasonably even edge distribution throughout the network. We can imagine that the number of

nodes within radio proximity of any given node in this instance is determined by a combination

of the distance between them and the structural composition of the building’s walls, windows,

doors, etc. Further, I will denote this initial network configuration as the " network".

In the simulations, I have decided that the DFU data will be represented by a 150 kbyte data block.
The simulation will be utilizing unsegmented messages, meaning that each sent BTM network

PDU can carry a payload of 11 byte[10, p. 63]. This gives us the following calculation of the total

number of unique BTM network PDUs that will be needed to pass the data block throughout the

network:

Msgtot = d Datasize
Unsegsize

e = d
150 kbyte

11 byte
e = 13637 (10)

The origin device of the DFU is set to be node 0, located on the left side of the office. Due to

external noise applications in the office area, every node has a 10% uniform chance of failure to

receive any single message transmission. The total chance of failure for all nodes is the sum of

this uniform noise and the internal noise associated with each node, respectively. When setting

the transmission count for the simulations, the same value will be set for all nodes in the network.

Initially, the maximum buffer size of each node is set to a value of 128 entries. This is done to

ensure that we can observe the buffering behavior without any restrictions.

Page 35

4 HIGH LEVEL MODELING AND SIMULATION

18

14

16

15

12

11
8

9

6

7

2

3

4

5

17

0

1

19

13

10

18

14

16

15

12

11
8

9

6

7

2

3

4

5

17

0

1

19

13

10

Figure 13: Overview of network .

Page 36

4 HIGH LEVEL MODELING AND SIMULATION

4.6.1.1 Advertiser Simulation with Single Transmit

I will start by simulating the DFU in network using the ADV bearer with the transmission count

set to the minimum value of one. The simulation is performed 100 times, and the accumulated

result of these simulations is shown in table 1.

As we can see from the results, there is a significant amount of lost messages for every single node

in the network, spanning from 0.761% on node 17 to 2.975% on node 18. Further, the results show

that node 18 is the weakest link in the network. It is the node with the highest amount of message

losses and the node with the highest timestamp of the last received message. By reviewing the

topology of the network in figure 13, this result seems reasonable. Node 18 is located relatively

far from origin node 0 and has only two links connecting it to the rest of the network. One

interesting observation is that both nodes with only two links deliver the poorest performance

in the simulation. Node 19 has the second-worst performance concerning message loss in the

simulation, with a message loss of 2.017%. Compared to node 18, node 19 is located relatively

close to the origin node. If we compare the message loss of node 19 with, E.g., the results for node

14, which is placed significantly farther from the origin, we see that node 14 still outperforms node

19 with a message loss of only 1.728%. This might indicate that the number of links to a node

has a more significant impact on the chance of successful transmission than the number of hops

required to propagate a message. If we review the peak buffer size of the simulation, we can see

that it spans from 7 to 9 entries for the nodes in the network. My conclusion is that the magnitude

of these buffers is within the acceptable range concerning the resource demand it would require

to realize them for each node.

The timestamp for the last message that was transmitted from origin node 0 is 340 925 ms. If we

ignore the latency, which is negligible in this regard, the time to execute this DFU simulation

took approximately 5.7 min to perform. However, this is the execution time before we account for

the significant amount of lost messages in the network. In order for the DFU to be successful,

every single packet must arrive at all the nodes in the network. With the overall performance

of this particular simulation, it would be reasonable to assume that there would be consumed a

substantial amount of time on status updates, retransmission, and verification of data consistency,

as explained in section 4.2. It might even prove to be infeasible in an actual implementation.

Node

ID

Number

of

links

Number of

adjacent

nodes

Single

transmission

loss chance (%)

TS last

msg (ms)

Packets

lost

Packet

loss (%)

Peak

buffer

size

0 3 3 12.766 340925 0.0 0.000 0

1 3 3 12.564 341026 106.1 0.778 8

2 3 3 12.579 341121 140.5 1.030 9

3 3 3 12.669 341089 139.9 1.026 9

4 3 3 12.606 341041 115.3 0.845 8

5 3 3 12.691 341101 138.0 1.012 9

6 3 3 12.750 341143 154.2 1.131 9

7 3 3 12.749 341139 154.1 1.130 8

8 3 3 12.783 341185 167.2 1.226 9

9 3 3 12.701 341191 171.0 1.254 9

10 3 3 12.800 341187 166.9 1.224 8

11 3 3 12.840 341215 176.9 1.297 7

12 3 3 12.696 341185 171.2 1.256 9

13 3 3 12.618 341102 140.1 1.027 9

14 3 3 12.801 341234 235.7 1.728 8

15 3 3 12.890 341233 214.9 1.576 8

16 3 3 12.803 341227 235.4 1.726 8

17 3 3 12.580 341021 103.8 0.761 8

18 2 2 11.458 341255 405.7 2.975 7

19 2 2 11.420 341057 275.0 2.017 7

Table 1: ADV bearer simulation for network , using single transmission.

Page 37

4 HIGH LEVEL MODELING AND SIMULATION

4.6.1.2 GATT Simulation Without Buffer Restrictions

The next simulation for network is performed using the suggested GATT bearer solution. The

GATT solution utilizes all available links between nodes in this instance, imitating the same net-

work composition as theADVbearer. The simulation is performed 100 times, and the accumulated

result of these simulations is shown in table 2.

As we can see from the results, the entire network received every single message of the DFU. This

result was as expected due to theway theGATT bearer solution ismodeled. Section 4.3.3 describes

that a transmitting node will always initiate retransmission upon a failed attempt, thus ensuring

that all messages will arrive at their destination eventually. In this instance, we can see that node

18 has the highest timestamp of the last received message, with a value of 305 329.4 ms. This gives
an execution time of approximately 5.1 min. We note here that node 18 here again seems to be the

weakest link in the network, just like in the previous advertising simulation.

However, if we take a look at each node’s peak buffer size, we see that this simulation reveals a

significant issue. The overall peak buffer size is extremely high, spanning from 71 entries for node

15 to 199 entries on node 1. For actual implementation, the magnitude of these buffers would be

utterly unreasonable concerning the amount of resources it would require.

Node

ID

Number

of

links

Number of

adjacent

nodes

Single

transmission

loss chance (%)

TS last

msg (ms)

Packets

lost

Packet

loss (%)

Peak

buffer

size

0 3 3 10.090 304030.6 0.0 0.0 0

1 3 3 10.082 303146.4 0.0 0.0 199

2 3 3 10.082 304065.4 0.0 0.0 108

3 3 3 10.079 304095.8 0.0 0.0 137

4 3 3 10.084 303428.4 0.0 0.0 162

5 3 3 10.080 304120.0 0.0 0.0 139

6 3 3 10.079 304629.6 0.0 0.0 101

7 3 3 10.079 304622.4 0.0 0.0 117

8 3 3 10.077 304967.4 0.0 0.0 81

9 3 3 10.082 304642.6 0.0 0.0 118

10 3 3 10.077 304908.8 0.0 0.0 89

11 3 3 10.079 305165.4 0.0 0.0 86

12 3 3 10.079 304667.8 0.0 0.0 130

13 3 3 10.085 304133.4 0.0 0.0 114

14 3 3 10.081 305140.4 0.0 0.0 84

15 3 3 10.083 305262.4 0.0 0.0 71

16 3 3 10.085 305184.0 0.0 0.0 133

17 3 3 10.080 303385.8 0.0 0.0 168

18 2 2 10.042 305329.4 0.0 0.0 87

19 2 2 10.039 303768.6 0.0 0.0 87

Table 2: GATT bearer simulation for network with no buffer restrictions.

4.6.1.3 Assessment of Initial Simulations

Let us now compare these first simulation results for the different solutions in network . If we

compare the DFU execution time, we can see that the two solutions had similar performance,

with an execution time of 5.7 min and 5.1 min for the ADV bearer and the GATT bearer solution

respectively.

However, this first comparison is without any regard to the issues associated with the two simula-

tions. For the ADV bearer, the issue was the significant amount of lost messages in the simulation.

As earlier mentioned, the actual execution time of this DFU will most likely have to be consider-

ably larger to ensure that all nodes receive the complete DFU payload. In the GATT solution, we

could see that every single message arrived at its destination, meaning that there is no additional

overhead to consider in this case. The issue for the GATT bearer was that the buffers for each node

grew so large that it would be infeasible to realize it in an actual implementation.

Page 38

4 HIGH LEVEL MODELING AND SIMULATION

Based on this evaluation, I have decided that the simulation must be re-run for a more realistic

scenario. For the ADV bearer, this implies performing multiple simulations with increasing

transmission values. It would be more reasonable to compare the two solutions for a situation

where the amount of lost messages is equal. This implies that we must find a configuration for

the ADV bearer where the amount of lost messages is comparable to the results of the GATT

solution. Since the GATT solution model guarantees delivery of every single message, we need

to find a value for the transmission parameter that gives a simulation result where the ADV

bearer loses approximately zero messages. We can disregard the execution overhead associated

with lost messages for the advertising solution for such a situation. For the GATT bearer, the

simulation needs to be run with restrictions on each node’s maximum allowed buffer size. After

these simulations are performed, we can assess the impact these alterations and restrictions have

on the overall performance for both the advertising- and GATT bearer.

4.6.1.4 Advertiser Simulation with Increasing Retransmits

The new simulation setup for the ADV bearer is conducted using transmission values ranging

from one to four. To simplify the output data representation, I have decided to present the output

parameters for node 18 exclusively since this node consistently gives the worst performance

metrics. The result of these simulations can be seen in table 3.

Retransmit

count

TS last

msg (ms)

Packets

lost

Packet

loss (%)

Peak

Buffer

size

1 341255 405.69 2.9749 7

2 682355.5 2.72 0.0199 5

3 1023243.5 0.04 0.0003 4

4 1364128.75 0.00 0.0000 3

Table 3: ADV bearer simulation for network , using one through four transmissions. The results

displayed are for node 18.

The simulation results show the effect the increasing transmission value has on the network

performance. We can see that by just adding one additional transmission, we can reduce the

number of lost messages to node 18 from 405.69 to just 2.72, which is equal to a 99.33% reduction.

Simultaneously the execution time effectively doubles, from 341 255 ms to 682 355.5 ms. This

increase in execution time is as expected since latency is negligible. The origin node now needs to

send double the amount of messages, which translates to a doubling in execution time. While the

results from the simulation with two transmissions vastly improve the performance, we can still

expect node 18 to lose 2.72 messages on average. This means that we still would require special

routines to ensure data consistency in the network. If we consider the performance when using

three transmissions, we can see that the probability of message loss during the DFU is almost

completely eradicated. Here the probability of losing a single message during a DFU is starting to

become so small that most DFUswould complete without losing a singlemessage. Amessage loss

of 0.04 can be translated to four out of 100 DFU simulations losing a single message for node 18.

Using a transmission count of three gives an effective tripling of the initial execution time, with a

value of 1 023 243.5 ms. We can see that not a single message was lost during the 100 performed

simulations when using four transmissions. By increasing the number of simulation iterations

gradually, we would, of course, see that there is still a tiny chance of losing a message. However,

for all practical uses, we can regard the message loss chance as zero. Here the execution time is

increased to 1 364 128.75 ms.

Another observation that can be made from table 3 is that the peak buffer size decreases as the

transmission value increases. The reason for this is most likely that, as the origin node needs to

push out more and more duplicates of the same message, it leads to a situation where the other

nodes have greater breathing room to propagate their message buffers further in the network.

Page 39

4 HIGH LEVEL MODELING AND SIMULATION

4.6.1.5 GATT Simulation with Buffer Restrictions

Before re-running the network simulation for the GATT bearer, I want to explore the reason for

the wast buffer sizes that we experienced in the previous simulation. Opposite to the ADV bearer,

a GATT bearer keeps messages in its buffer until they are successfully passed to all linked node,

except the origin node of the initialmessage. We can review this by an example. If we take a look at

figure 13we can assess the transmission relationship between origin node 0 and node 1. Whenever

a message is transmitted from node 0 to node 1, this message is put in the buffer. At the next

possible connection interval, node 1 will try to forward this message to nodes 19 and 2. If either

of these attempts fails, the message must be kept in the buffer until the next possible connection

interval. If node 0 simultaneously successfully transmits the following message of the DFU, it will

increase the number of buffer entries in node 1. To decrease the number of entries in this buffer

again would depend on node 0 failing to transmit a future message, while simultaneously node

1 not failing to forward its messages. Since the probability of failing transmission for the origin

and node 1 respectively can be regarded as independent events, this will fluctuate throughout

the entire DFU. This will cause periods within the DFU where node 1 will be struggling to keep

up with the origin, thus making the buffer size high in these periods. Another factor that might

worsen this performance is if the origin node has a noticeably lower probability of transmission

failure than the other node. In this instance, we can expect to see that the peak buffer size will

continue to grow throughout the entire DFU procedure. A solution to this is to take advantage

of the possibility of flow control that the GATT bearer provides. Section 4.3.3 describes how the

acknowledgment messages in GATT can be used to halt the flow of messages whenever the buffer

of a given node grows too large.

The second iteration of the GATT bearer simulation for the network is performed with an

identical configuration as in the first iteration, apart from the maximum allowed buffer size,

which is set to 8 entries. This number is comparable to the buffer sizes we saw for the simulations

of the ADV bearer and is within the acceptable range concerning the resources required to realize

the actual implementation. The result of this simulation can be seen in table 4.

Node

ID

Number

of

links

Number of

adjacent

nodes

Single

transmission

loss chance (%)

TS last

msg (ms)

Packets

lost

Packet

loss (%)

Peak

buffer

size

0 3 3 10.101 312187.0 0.0 0.0 0

1 3 3 10.098 312112.0 0.0 0.0 8

2 3 3 10.099 312203.0 0.0 0.0 8

3 3 3 10.099 312201.2 0.0 0.0 8

4 3 3 10.099 312135.2 0.0 0.0 8

5 3 3 10.099 312194.4 0.0 0.0 8

6 3 3 10.098 312261.2 0.0 0.0 8

7 3 3 10.098 312268.4 0.0 0.0 8

8 3 3 10.098 312316.4 0.0 0.0 8

9 3 3 10.098 312295.6 0.0 0.0 8

10 3 3 10.098 312309.6 0.0 0.0 8

11 3 3 10.098 312355.0 0.0 0.0 8

12 3 3 10.098 312274.8 0.0 0.0 8

13 3 3 10.098 312174.4 0.0 0.0 8

14 3 3 10.097 312359.0 0.0 0.0 8

15 3 3 10.098 312378.2 0.0 0.0 8

16 3 3 10.097 312368.6 0.0 0.0 8

17 3 3 10.098 312079.2 0.0 0.0 8

18 2 2 10.049 312400.6 0.0 0.0 8

19 2 2 10.050 312128.2 0.0 0.0 8

Table 4: GATT bearer simulation for network with a buffer restriction of maximum eight entries

per node.

The results show us that even with a restriction on the maximum buffer size in each node, we

still get a DFU execution time performance comparable to the results in the first iteration. In this

instance, node 18 is still the node with the highest timestamp of the last received message with a

value of 312 400.6 ms. This execution time is approximately 7 s slower than the initial simulation

where we did not have any restrictions on buffer sizes, giving us a total execution time of 5.2 min

Page 40

4 HIGH LEVEL MODELING AND SIMULATION

for the GATT bearer.

4.6.1.6 Simulation Summary for Network Alpha

Let us now summarize the findings for the different simulations in network . If we review the

results from the simulations of table 3, we can see that the ADV bearer has nearly equivalent

message loss performance with the GATT solution if we use three transmissions. With this

configuration, the ADV bearer has an execution time of approximately 17.1 min. Compared to the

GATT bearers execution time of 5.2 min, we can see that the GATT solution has a performance

that is roughly 3.29 times faster than the ADV bearer in network .

4.6.2 Simulations for Network Beta

Let us now reconsider the original network in figure 13 from section 4.6.1. Due to some structural

altering of the office space near node 12, it has suddenly lost its links to nodes 13 and 10. Figure

14 shows the network topology after the structural changes. Further, I will denote this altered

network configuration as the "� network".

18

14

16

15

12

11
8

9

6

7

2

3

4

5

17

0

1

19

13

10

Figure 14: Overview of network �.

In comparison to the network, this network has a higher degree of unbalance regarding the

network connectivity. In this instance, three nodes have only two links, in addition to node

12, which is isolated with only one link to the rest of the network. I will now repeat a similar

simulation setup for network � as the ones in section 4.6.1.

4.6.2.1 Advertiser Simulations

The previous simulations for network showed us that a simulation for the ADV bearer using

four transmissions resulted in zero messages lost for 100 simulations of the DFU. Using the

same circumstances, I have performed the same simulation for network �. The results from the

simulation can be viewed in table 5.

By reviewing the results, we can see that the structural change of the network topology has made

a noticeable impact on the network’s performance. While the execution time, with just a 168.25 ms
increase, is comparable to the equivalent simulation for the network, we see that the amount of

Page 41

4 HIGH LEVEL MODELING AND SIMULATION

Node

ID

Number

of

links

Number of

adjacent

nodes

Single

transmission

loss chance (%)

TS last

msg (ms)

Packets

lost

Packet

loss (%)

Peak

buffer

size

0 3 3 12.960 1363700.0 0.0 0.0 0

1 3 3 12.603 1363629.0 0.0 0.0 3

2 3 3 12.511 1363769.3 0.0 0.0 4

3 3 3 12.520 1363775.0 0.0 0.0 4

4 3 3 12.595 1363628.3 0.0 0.0 3

5 3 3 12.543 1363775.5 0.0 0.0 4

6 3 3 12.532 1363893.5 0.0 0.0 3

7 3 3 12.681 1363893.5 0.0 0.0 3

8 3 3 12.606 1364001.3 0.0 0.0 3

9 3 3 12.579 1363889.0 0.0 0.0 3

10 2 2 11.314 1364015.8 0.0 0.0 3

11 3 3 12.726 1364078.3 0.0 0.0 3

12 1 1 10.0 1364294.0 1.34 0.0098 2

13 2 2 11.387 1363767.3 0.0 0.0 4

14 3 3 12.668 1364214.8 0.0 0.0 3

15 3 3 12.672 1364134.3 0.0 0.0 3

16 3 3 12.629 1364018.3 0.0 0.0 3

17 3 3 12.615 1363629.5 0.0 0.0 3

18 2 2 11.344 1364141.0 0.0 0.0 3

19 2 2 11.497 1363759.3 0.0 0.0 3

Table 5: ADV bearer simulation for network �, using four transmissions.

messages lost for node 12 has dramatically increased in the � network simulation. We can observe

that the majority of the nodes in the network are still receiving every single message. However,

by reviewing the performance of node 12, we can see that it loses on average 1.34 messages

per simulation, which is a substantial increase compared to the equivalent simulation for the
network.

Let us now assess the relationship node 12 has with the rest of the network to comprehend the

relatively poor transmission behavior. Node 12’s sole connection to the rest of the network is

through node 14. Node 14 did not lose a single message for any of the 100 simulations. With an

averagemessage loss of 1.34per simulation, node 12 lost approximately 1340messages in total over

the 100 performed simulations. All these 1340 messages must have been lost in the transmission

from node 14 to node 12. Note that node 14 in this instance has made four attempts to transmit

each of these messages to node 12.

As also discussed in section 4.6.1, we yet again experience that the number of links that connect a

node to the rest of the network seems to have a great impact on the transmission performance. To

better understand this, I have created a simple simulation setup that illustrates the transmission

behavior of a single linked chain network using the ADV bearer. This network is shown in figure

15.

A B C D E

Figure 15: Advertising chain example network.

This simulation is performed as a 100 iteration simulation, with node A as the origin. To make

the result easier to interpret, I disabled the internal noise generation for this simulation session.

This means that the noise in this simulation is equal for all nodes, at a value of 10% loss chance.

In this simulation, we are still using the DFU consisting of 13637 unique messages. The results

are presented in table 6.

Let us first review the column for node B in this simulation. Node B is stationed only one hop away

from the origin node. Still, we can see that the messages lost for this single hop are significant for

transmitting counts spanning from one through three. For a transmission count of four, we can

recognize a similar result to the one we found for node 12 in the � network. At a transmissions

count of five, we can see an average message loss that implies that most DFUwill execute without

Page 42

4 HIGH LEVEL MODELING AND SIMULATION

Retransmits

B

packet

loss cnt

C

packet

loss cnt

D

packet

loss cnt

E

packet

loss cnt

Time to

complete

(min)

1 1365.68 2590.83 3689.43 4683.75 5.68

2 137.13 270.56 401.17 533.08 11.37

3 14.31 28.48 42.97 56.18 17.05

4 1.35 2.61 4.07 5.60 22.73

5 0.12 0.32 0.49 0.59 28.41

6 0.0 0.01 0.02 0.03 34.10

7 0.0 0.0 0.01 0.01 39.78

Table 6: Result summary for the advertising chain simulation. The simulation is performed for

one through seven transmissions.

message loss and a transmission count of six before no messages are lost at all in this first hop. If

we review the development for the transmission performance as the messages are passed to the

remainder of the nodes, we can see that the messages lost increase for each hop in the chain. We

can also see that the number of lost messages for each hop declines as we move farther from the

origin node. This result is as expected since node B will be able to successfully transmit an equal

fraction of its successfully received messages as the origin could do for the entire DFU message

count. Since the number of messages that node B will transmit is less than the complete message

count, it is clear that the number of messages that will be lost during transmission to node C will

be less than the amount lost in the first hop.

This implies that it is the first hop that defines the further development in the chain of nodes. If

we review the overall results for the simulation where six transmissions were used, we can see

that the amount of messages lost between each new hop does change notably.

So why does a single-linked node perform so much worse than a node with two links? To explore

this, I have produced another simple setup to show the behavior of a node that has two links to

the rest of the network. This setup is displayed in figure 16.

F

G

H

Figure 16: Advertising triangle example network.

The setup for this simulation is similar to the setup for the previously linked chain network simu-

lation. The difference for this setup is that node F is the origin for the DFU, and the transmission

loss chance for node G has been configured to be zero. This implies that node H will have the

opportunity to receive the entirety of the DFU from both its links. The results from this simulation

is presented in table 7.

Retransmits

H

packet

loss cnt

Time to

complete

(min)

1 135.76 5.68

2 1.27 11.36

3 0.0 17.05

4 0.0 22.73

5 0.0 28.41

6 0.0 34.09

7 0.0 39.77

Table 7: Result summary for the advertising triangle simulation. The simulation is performed for

one through seven transmissions.

These results reveal an interesting factor. By comparing these results to the results for node B

Page 43

4 HIGH LEVEL MODELING AND SIMULATION

in table 6, we can see that it is a correlation between the results. A single transmission in this

simulation matches the results for two transmissions in the single link simulation. Similarly,

the results for two transmissions in this simulation match four transmissions in the single link

simulation. This situation shows us that the effective retransmit count to a node is equal to the

number of links multiplied by the network’s common transmission count. Here we assume that

the linked nodes have access to all the unique messages in the DFU. This last assumption is

probably highly optimistic, if not unreasonable, in the standard simulation setup. Nevertheless,

this statement gives an implication of why the ADV bearer simulation for network � performed

significantly worse than for the network. By losing two of its links, node 12 has potentially lost

close to
2
3 of its possible attempts to receive any unique message successfully.

Let us consider the retransmission configuration for the network. One might think that this

problem could be solved by introducing a dynamic retransmission count for the network. To

compensate for nodes with a low number of available message paths, adjacent nodes may be

configured to perform a higher number of retransmissions than the rest of the network, increasing

the chance of successful transmission to an isolated node. However, the problem with such an

approach is that it will cause a massive bottleneck. These bottlenecks will occur at nodes with a

higher transmission count than the rest of the network. The time it will take for a node to convey a

single message will be longer than the time it takes before a new one arrives, thus causing a buffer

overflow at some point. This means that this issue can not be resolved by a dynamic configuration

of the transmission count.

The previous section has shown that the ADV bearer simulations are highly topology-dependent.

The likelihood of successful message delivery is highly affected by the number of available paths

a message can take to reach a specific node.

4.6.2.2 GATT Simulation

Just like for the ADV bearer, I have also performed a simulation for network � with the GATT

bearer solution, using the exact same parameters as for the simulation performed in section 4.6.1.5

for the network. The result can be viewed in table 8.

Node

ID

Number

of

links

Number of

adjacent

nodes

Single

transmission

loss chance (%)

TS last

msg (ms)

Packets

lost

Packet

loss (%)

Peak

buffer

size

0 3 3 10.010 312279.6 0.0 0.0 0

1 3 3 10.097 312211.0 0.0 0.0 8

2 3 3 10.099 312301.4 0.0 0.0 8

3 3 3 10.099 312286.6 0.0 0.0 8

4 3 3 10.100 312208.4 0.0 0.0 8

5 3 3 10.098 312254.6 0.0 0.0 8

6 3 3 10.098 312346.0 0.0 0.0 8

7 3 3 10.099 312356.0 0.0 0.0 8

8 3 3 10.098 312414.0 0.0 0.0 8

9 3 3 10.099 312405.0 0.0 0.0 8

10 2 2 10.048 312424.2 0.0 0.0 8

11 3 3 10.097 312471.8 0.0 0.0 8

12 1 1 10.000 312662.8 0.0 0.0 0

13 2 2 10.050 312194.0 0.0 0.0 8

14 3 3 10.048 312590.0 0.0 0.0 8

15 3 3 10.098 312531.0 0.0 0.0 8

16 3 3 10.097 312495.6 0.0 0.0 8

17 3 3 10.099 312112.4 0.0 0.0 8

18 2 2 10.049 312565.2 0.0 0.0 8

19 2 2 10.050 312191.2 0.0 0.0 8

Table 8: GATT bearer simulation for network � with a buffer restriction of maximum eight entries

per node.

Like with the ADV bearer, these results indicate that node 12 is the weakest link in this network

topologybecause it is thenodewith thehighest timestamp for the last reviewedmessage. However,

Page 44

4 HIGH LEVEL MODELING AND SIMULATION

if we compare this execution time of 312 662.8 ms with the results from section 4.6.1.5, we can

see that the execution time has only increased with 262.2 ms in this instance. For all practical

purposes, the result is the same, consuming approximately 5.2 min to execute the entire DFU in

both networks. This tendency reveals something interesting. While the number of links between

nodes seems to be an essential factor for the performance of the ADV bearer, the GATT bearer

seems to be more or less topology independent.

4.6.3 Topology Exploration for the GATT Bearer

The combined results from the and � network show that the GATT solution does not seem to be

highly dependent on the topology of the network when it comes to the transmission performance.

This is most likely since the GATT bearer can guarantee message delivery.

As we can see from the simulations in section 4.6.1 and 4.6.2, the ADV bearer solution benefits

from a topology where there are multiple possible paths from the origin to the destination. This is

because the ADV bearer does not have any inherent way of confirming if amessage transmission is

successful. It is reliant on redundancy to ensure that the messages arrive safely. The redundancy

in this instance is realized by two main factors, as discussed in section 4.6.2.1. The first is the

number of transmissions performed for each unique message, while the other is the number of

possible paths a message can take to reach its destination.

While multiple paths significantly improve the likelihood of message delivery in the ADV bearer,

the GATT bearer does not seem to gain the same benefits. The GATT bearer does not need

additional paths since it will ensure that every message is passed along before it is discarded. The

GATT bearer solution might even be halted when used in a network topology that forms loops in

the communication path because it stores all messages until they are successfully passed along.

An example of this is if node A is trying to forward a message to node B. Node A struggles with

this and cannot successfully transmit this message before its third attempt. In this instance, node B

has already received the same message from node C. Ergo, when node A eventually will pass this

message to node B, it will be discarded since the message is already present in the node Bmessage

cache. This means that the transmission from node A was utterly redundant. Still, node A has

spent time and resources trying to forward this message. In the worst-case scenario, continuous

failed attempts to forward this message to node B might even have caused the internal buffer of

node A to fill up, making a stall for the flow of incoming messages to node A. Another matter that

can be of concern is the number of GATT connections a node has to maintain. While the model

does not account for this issue, each additional GATT connection a node has to maintain puts an

increasingly higher strain on the node itself. By eliminating redundant links in the network, it

might be possible to improve the performance of several nodes for the actual implementation.

With these considerations in mind, it might be reasonable to use a topology that does not provide

multiple paths between nodes for the GATT bearer. Opposite to the ADV bearer, we can choose

which links we want to utilize between nodes in this instance. With this in mind, I want to

explore the possibility of altering the link configuration in the � network and assess the simulation

outcome. The two alternative configurations I have decided to explore are a chain configuration

and a tree configuration.

4.6.3.1 Chain Topology

The chain configuration can be seen in figure 17. We can observe that it is the same physical

network as network �, providing the same number of possible links between each of the nodes.

The main difference in this instance is that we are not utilizing every link possible. This topology

is built by making a single chain of links from the origin node to the last node, which is node 12.

In this instance, the possible number of links for a node spans from one to two links. The majority

of the nodes have two links, while the two nodes located at each end of the chain have only one.

In this way, we distribute the number of GATT connections each node has to maintain evenly.

Page 45

4 HIGH LEVEL MODELING AND SIMULATION

18

14

16

15

12

11
8

9

6

7

2

3

4

5

17

0

1

19

13

10

Figure 17: Overview of network �, using the GATT chain topology.

The simulation is performedwith the same setup as before, running for 100 simulationswith node

0 as the origin. The maximum buffer size of each node has been set to eight entries. The results

from the simulation can be seen in table 9.

Node

ID

Number

of

links

Number of

adjacent

nodes

Single

transmission

loss chance (%)

TS last

msg (ms)

Packets

lost

Packet

loss (%)

Peak

buffer

size

0 1 3 10.000 313290.2 0.0 0.0 0

1 2 3 10.100 313290.2 0.0 0.0 8

2 2 3 10.068 314082.4 0.0 0.0 8

3 2 3 10.101 313978.2 0.0 0.0 8

4 2 3 10.073 313870.2 0.0 0.0 8

5 2 3 10.100 313753.6 0.0 0.0 8

6 2 3 10.069 314509.2 0.0 0.0 8

7 2 3 10.085 314400.6 0.0 0.0 8

8 2 3 10.100 314296.8 0.0 0.0 8

9 2 3 10.099 314200.6 0.0 0.0 8

10 2 2 10.050 314613.8 0.0 0.0 8

11 2 3 10.086 314703.8 0.0 0.0 8

12 1 1 10.000 315115.4 0.0 0.0 0

13 2 2 10.050 313645.0 0.0 0.0 8

14 2 3 10.043 315046.6 0.0 0.0 8

15 2 3 10.099 314796.6 0.0 0.0 8

16 2 3 10.071 314889.2 0.0 0.0 8

17 2 3 10.090 313525.2 0.0 0.0 8

18 2 2 10.049 314972.6 0.0 0.0 8

19 2 2 10.050 313408.4 0.0 0.0 8

Table 9: GATT bearer simulation for network �, using the chain topology. Buffer restriction of

maximum eight entries per node.

Reviewing these results, we can see that the execution time of the DFU is within the same scope

as the previous GATT bearer results for the � network. With an execution time of 315 115.4 ms it

exceeds the previous result by a magnitude of 2452.6 ms, which amounts to an increase of 0.8% in

the total execution time.

4.6.3.2 Tree Topology

The tree configuration can be seen in figure 18. This topology is built bymaking two branches from

origin node 0 and expanding these throughout the network. A general rule that has been used in

Page 46

4 HIGH LEVEL MODELING AND SIMULATION

this instance is that each node on a branch may only create two new branches when extending the

network. This is done to create a network where the number of links for every single node is as

balanced as possible, making the possible number of links for a node span from one to three links.

Similar to the chain topology, the GATT connection each node has to maintain is distributed fairly

even while still keeping some flexibility to arrange the network topology.

18

14

16

15

12

11
8

9

6

7

2

3

4

5

17

0

1

19

13

10

Figure 18: Overview of network �, using the GATT tree topology.

The simulation is performedwith the same setup as before, running for 100 simulationswith node

0 as the origin. The maximum buffer size of each node has been set to eight entries. The results

from the simulation can be seen in table 10.

Node

ID

Number

of

links

Number of

adjacent

nodes

Single

transmission

loss chance (%)

TS last

msg (ms)

Packets

lost

Packet

loss (%)

Peak

buffer

size

0 2 3 10.000 313388.0 0.0 0.0 0

1 3 3 10.051 313270.8 0.0 0.0 8

2 3 3 10.099 313374.8 0.0 0.0 8

3 3 3 10.049 313466.4 0.0 0.0 8

4 1 3 10.064 313537.2 0.0 0.0 0

5 2 3 10.050 312883.2 0.0 0.0 8

6 2 3 10.094 313004.4 0.0 0.0 8

7 2 3 10.026 313538.8 0.0 0.0 8

8 1 3 10.074 313603.4 0.0 0.0 0

9 2 3 10.000 313445.6 0.0 0.0 8

10 2 2 10.050 313103.8 0.0 0.0 8

11 2 3 10.050 313191.8 0.0 0.0 8

12 1 1 10.000 313433.6 0.0 0.0 0

13 2 2 10.050 312763.2 0.0 0.0 8

14 3 3 10.000 313364.4 0.0 0.0 8

15 2 3 10.050 313276.8 0.0 0.0 8

16 1 3 10.033 313504.8 0.0 0.0 0

17 2 3 10.050 312655.0 0.0 0.0 8

18 1 2 10.000 313432.8 0.0 0.0 0

19 1 2 10.022 313344.0 0.0 0.0 0

Table 10: GATT bearer simulation for network �, using the tree topology. Buffer restriction of

maximum eight entries per node.

Reviewing these results, we can see that the execution time of the DFU is within the same scope

as the previous GATT bearer results for the � network. With an execution time of 313 603.4 ms it

exceeds the previous result by a magnitude of 940.6 ms, which amounts to an increase of 0.3% in

the total execution time.

Page 47

4 HIGH LEVEL MODELING AND SIMULATION

4.6.3.3 Assessing the Alternative Topologies

By reviewing the outcome of the simulations of both the chain- and tree topology, we can see

that they both provide a DFU execution time similar to the initial result for network �. The chain
topology gave a simulation result that increased the total execution time by approximately 0.8%,

while the tree configuration increased the total execution time by only 0.3%. By comparing the

results for the two topologies, it is likely that the results would have been more or less alike if

the origin node of the chain topology had been located somewhere in the middle of the chain.

This would have made the maximum amount of hops in the network effectively half, presumably

making the latency impact smaller.

Still, the tree topology has some benefits over the chain solution. Aswe just saw, the overall latency

will most likely be larger in the chain configuration. This is because the number of hops in the

longest path in the network is equal to NodeCnt – 1. Another issue with the chain topology is that

it might prove difficult to realize it for an arbitrary network. Suppose the number of nodes with

only one available link to the rest of the network exceeds two. In that case, it will prove impossible

to realize the chain topology since the number of nodes that may have only one link is restricted

to two for this topology. If there are more than two nodes that only have one link to the network,

the best possible outcome will result in a variant of the tree topology. In a choice between these

two alternative topologies, the conclusion is that the tree topology seems to be the preferable one.

As mentioned earlier, the DFU simulations for the tree topology gave an execution time that

resulted in a 0.3% increase compared to the previous result for network �. For all practical

purposes, we may consider these results as equivalent. Considering this and the issues described

in the introduction to this section, I believe that the tree topology might be worth exploring for

actual implementation.

4.6.4 Simulation Summary

The general tendency observed throughout these simulations is that the GATT bearer on a gen-

eral basis outperforms the ADV bearer concerning both data consistency and throughput. This

difference becomes substantial for networks where we introduce isolated nodes, making the re-

quired transmission count for the ADV bearer large to ensure that we do not lose messages. This

phenomenon shows that the ADV bearer performance is very dependent on the topology of the

network. In comparison, the impact on the GATT bearer’s performance is negligible, regardless

of the number of available message paths to each node. This finding is quite interesting since

it indicates that it is possible to boost the network performance without maintaining numerous

GATT connections on a single device. At this stage, it is unclear how many connections a device

in actual implementation can maintain simultaneously. The topology exploration of section 4.6.3

showed that it might be possible to create larger GATT networks using only two or three GATT

connections per device. Nevertheless, the simulation results indicate that the GATT solution is

likely to enhance both the throughput and data consistency performance of the BTM network,

thus legitimizing a transition into the implementation phase for the GATT approach.

Page 48

5 DEVELOPMENT

5 Development

The results from the simulations in section 4 showed that a GATT communication-based BTM

network might enhance both the throughput and data consistency performance of BTM. The

results also indicated that a GATT solution would not be as topology-dependent as the ADV

bearer solution concerning the mentioned performance metrics. Based on these results, I have

decided to move forward with the GATT-based approach, thus starting the implementation work.

The realization of the GATT bearer solution requires several module alterations and implementa-

tions. First, I need to establish a functioning GATT bearer that can support multiple connections

to other devices. Further, I must implement a configuration tool for the establishment and main-

tenance of the GATT relay network. This tool must be able to initiate connections between the

devices, disable the ADV relay functionality, and perform other utility functions for the network.

5.1 Development Environment

To implement the GATT bearer solution, I have chosen to utilize the nRF Connect Software

development kit (NCS). NCS is distributed and supported by Nordic Semiconductor ASA and

supports many different features and functionality targeted for Nordic hardware. This software

development kit (SDK) consists of a gathering of Git repositories with application code, drivers,

libraries, and forks of open source code[2]. The backbone of NCS is the Zephyr project. Zephyr

is a scalable RTOS that is optimized for devices with constrained resources. It supports multiple

hardware architectures, among them the ARMCortex M-series, which is the architecture of many

Nordic devices. Zephyr provides extensive kernel services likemulti-threading, interrupt services,

memory allocation services, and power management. It also provides a long list of other features

like Multiple Scheduling Algorithms, Memory Protection and Bluetooth support[12].

There are several reasons why I have chosen to use NCS for the implementation. One crucial

factor is that it supports Nordic hardware, which is the preferred hardware considering that this

thesis is written in collaboration with Nordic Semiconductor. It is hardware that I currently have

access to in sufficiently large quantities, a consideration that is important since realistic testing of

the BTM implementation will require several devices to form a BTM network. Another crucial

factor is that Zephyr provides a functioning implementation of the BTM stack, which will provide

the framework for my software development. A final consideration for this choice of development

environment is that it is an SDK that I am already familiar with. I have utilized NCS for several

tasks and projects in the past. Through this work, I have acquired knowledge of the NCS features

on a general level and familiarized myself with the BTM stack provided by Zephyr. I deem that

this factor will contribute to a faster development pace for the implementation.

5.2 Proxy Client Module

The proxy client functionality of BTM is already a well-established feature, implemented for a

multitude of devices on the market. However, it is not currently supported by the BTM module

that Zephyr provides. The consequence of using the Zephyr project as the code base for this thesis

is that I will have to implement the proxy client feature myself.

Most of theworkon this feature iswell establishedanddefinedby theBTMprofile specification[10].

With this in mind, I will strive to keep the implementation description brief for a large portion of

this implementation and instead focus on the specific implementation details for the work on this

thesis.

Page 49

5 DEVELOPMENT

5.2.1 Beacon Handling

For the proxy client to initiate a GATT connection to a proxy server, it must be able to receive and

handle the advertising beacons issued by the server. As described in section 2.2.3.2, themeshproxy

service defines two beacon types for advertising the presence of the service; network beacons and

node ID beacons. Both of these beacons are connectable undirected advertising events, consisting

of the flags, service UUID list, and service data. The initial procedure for handling both of these

beacon types is common. Whenever a connectable undirected advertising packet arrives at the

scanner, the handler starts by parsing through the flags field, checking to see if it is of the expected

length.

Provided that this is in order, the handler moves on to parse the content of the service UUID list.

Here it checks if the UUID list contains the Mesh Proxy Service UUID. If this is the case, the

handler continues to the service data field. First, it conducts a check if the length of the service

data is compatible with the expected length of either beacon type before checking if the first two

bytes of data contains theMesh Proxy ServiceUUID once more. At this point, the handler checks

if the beacon is of the network or node ID type by evaluating the ID type contained in the service

data.

5.2.1.1 Network Beacon Handling

If it is a network beacon, the rest of the service data will contain the network ID the proxy server is

advertising for. By setting a network ID that it wishes to connect to, the proxy client may compare

the incoming network ID to this desired network ID.

The implementation of this feature consists of a function call in proxy client API that can set the

network ID the user wishes to connect to. As soon as this function is called, the handler for

incoming network beacons will use this subnet to check if an incoming network beacon matches

the subnet it wants to connect to. If the two IDs match, the advertising message may be used to

initiate a connection to the advertising proxy server.

5.2.1.2 Node ID Beacon Handling

If it is a node ID beacon, the rest of the service data will contain an eight-byte hash and an eight-

byte random value. Compared to the network beacons, the parameters following the node ID

beacon require a greater extent of handling before they can be utilized for connection purposes.

When the advertising proxy server creates a node ID beacon packet, it first creates the eight-byte

random value. A buffer is then filled with six bytes of zero padding, the random value, and the

root source address of the proxy server device. This buffer is then sent through a crypto block,

using an identity key associated with the subnet the proxy server is advertising for. The output

from this procedure is the eight-byte hash that will follow the packet. The hash is put inside the

packet along with the random value and the beacon type.

For the proxy client to recognize the source address in the encrypted hash, it must perform the

same procedure as the server did when creating the packet before comparing the resulting hash to

the hash that followed the beacon packet. To do this, it must have a source address, identity key,

and the random value used in the encryption. The incoming packet already provides the random

value, but the source address and identity key are parameters the proxy client must provide.

These two parameters form the identification context that can be used to precisely decide which

node and subnet the proxy client wants to connect to. The implementation of this feature consists

of a function call in proxy client API that can set this context. As soon as this function is called,

the handler for incoming node ID beacons will use the source address and subnet to check if an

incoming node ID beacon matches the device and subnet that it wants to connect to. When the

two hash values match, the proxy client knows that this beacon comes from the desired device,

meaning that it can use this advertising message to initiate a connection to the proxy server in

Page 50

5 DEVELOPMENT

question.

5.2.2 Connection Establishment and Discovery

All operations regarding proxy connections in the proxy client module utilize an array of server

connection entries as a backbone. Each of these entries represents a single connection between the

client and a corresponding server and contains all information andmetadata required to establish,

configure, andmaintain a connection. The available number of entries in this array is configurable

by the user at code deployment. The number of connections a proxy client module may establish

is restricted by the available number of entries confined in this entry array.

When initiating a new connection, the proxy client will try to acquire an unused server connection

entry. Succeeding in this, it will continue by inserting some metadata for the connection. This

information is provided by the advertising beacon that was used to initiate the connection. It

consists of the subnet index that the connection is associated with, along with the root element

address if the advertising beacon was of the node ID type. At this point, the module will create

the connection to the proxy server. When the connection is established, a connection callback

will trigger inside the module. From here, the module will start by handshaking the Attribute

Protocol Maximum Transmission Unit (ATT_MTU). This is an agreement between the client and

the server for how large a single transmission unit can[10, p. 279]. Following this, the module

will start the GATT discovery procedure, starting by performing primary discovery of the Mesh

proxy service on the target proxy server. It will then perform discovery of the Mesh Proxy Data

In characteristic, storing the characteristic’s attribute value handle inside the associated server

entry in the module. This handle will enable the proxy client to forward BTM messages to the

target proxy server device. In the final step of the discovery procedure, the module will perform

discovery on theMesh Proxy Data Out characteristic of the target proxy server and the CCCD that

follows this characteristic. By using the attribute information generated from this discovery, the

module will subscribe to this characteristic and enable notifications on the proxy server using the

CCCD. The subscription parameters contain a pointer that points to a notification callback inside

the module. From this callback, the proxy server will receive any BTMmessage sent by the target

proxy server.

At this point, we encounter an implementation detail that is specific to this thesis. As described in

section 2.2.3.1, a proxy server will by default initialize a newly created connection with an empty

white list filter. This filter will effectively block all BTM messages that the target proxy server

attempts to pass to the client. In a scenario where the proxy client is meant to function as a stand-

alone device that needs access to a subset of the messages passed in the BTM network, the white

list filter might be of great value. In this instance, however, the proxy clients will act as a vital part

of the BTMnetwork’s infrastructure, meaning that they need to receive all exchanged information.

On account of these considerations, I have utilized the filter type set message described in section

5.2.3.2 to immediately change the filter type of the proxy server to an empty blacklist. This allows

all messages to pass from the proxy server to the client.

At this point, the connection sequence is completed. A flag inside the server connection entry is

raised, indicating that the connection is ready for normal operation.

5.2.3 Interfacing With the Proxy Client Module

5.2.3.1 Connection Control and Observability

The modules API provides several functions and callbacks to enable control and observability of

the initiation and maintenance of the GATT connections in the proxy client module.

In order to enable the module to scan and parse incoming advertising beacons, the API contains

an Advertising Beacon Process function. This function is called from within the scanning callback

of the advertising module, passing all relevant messages to be handled inside the proxy client

Page 51

5 DEVELOPMENT

module. As described in section 5.2.1, the module provides two functions for discovering and

initiating a connection to a proxy server:

• Node ID Connect — Takes a unicast address and a subnet as input. Succeeding this func-

tion call the proxy client module will start scanning for node ID beacons containing these

parameters. Receiving amatching beaconwill initiate a connection to the target proxy server.

• Network ID Connect — Takes a subnet as input. Succeeding this function call, the proxy

client module will start scanning for network ID beacons containing the matching subnet.

Receiving such a beacon will initiate a connection to any proxy server advertising for the

target subnet.

The module provides three callbacks that enable the user to monitor connections to the proxy

servers:

• Connection Established CB — This callback will trigger each time a new connection estab-

lishment procedure has been completed between the proxy clientmodule and a target server.

The parameters following this callback contain the context associated with the connection,

the subnet the connection applies to, the unicast address of the root element on the target

server device1, and an error code that indicates if the connection was successful.

• Disconnection Occurred CB — This callback triggers each time a disconnect event occurs

between the proxy client module and a server. The parameters that follow this callback are

identical to the connection established callback.

• Configuration Completed CB— This callback triggers whenever a discovery and configura-

tion procedure is completed for a GATT proxy connection. The parameters that follow this

callback is identical to the connection established callback, except that it does not contain an

error code.

The user may set these callbacks by calling the Connection Callback Set function provided by the

modules API.

5.2.3.2 Message Transmission

The implementation for handling incoming and outgoingmessages over aGATTproxy connection

is largely a mirrored implementation of the existing proxy server module that Zephyr provides.

The three message types that the proxy client may issue are regular network PDUs, BTM beacons,

and proxy configuration messages. In the case of the network PDUs and BTM beacons, the proxy

client module provides a single API function call that is used to propagate these message types

inside the module:

• Proxy Relay— Like the established proxy server module, this function takes a BTM network

PDU as input. It transmits it to all proxy servers that the proxy client module is currently

connected to. This API function is called from inside the network layer and beacon module

of the existing BTM implementation, ensuring that all message traffic passed by the upper

layers is passed down to the proxy client module.

At this point, the messages are handled by the module. Here it will find the proper server

connection(s) the respective message shall be sent on before passing it to a segmentation handler.

Suppose the outgoing message is larger than the brokered ATT_MTU of the GATT connection. In

1In the case where the connection has been established using a network ID beacon, the unicast address following this

connection will be set to the unassigned unicast address [10, p. 39]

Page 52

5 DEVELOPMENT

that case, this handler must divide the original message into two or more segments to allow the

message to be transmitted. The receiving server will reassemble these segments as soon as they

all have arrived at the destination. The transmission of proxy configuration messages is handled

similarly to the other message types but requires additional preliminary handling before being

transmitted. These details are described further in this section.

Any incomingmessage will arrive as a notification from theMesh Proxy Data Out characteristic of

a connected proxy server. These messages will be propagated to the associated callback that was

described in section 5.2.2. Fromhere, an incomingmessagewill be passed to a reassembly handler.

Suppose the incoming message is a segment of a message larger than the brokered ATT_MTU of

the GATT connection. In that case, this handler will ensure that all partial segments are collected

and reassembled before passing themessage on for further handling. After this stage is completed,

the module will parse the message type parameter contained in the message. These types consist

of regular network PDUs, BTM beacons, provisioning PDUs, and proxy configuration messages.

The three former types are all handled by existing modules of the Zephyr BTM implementation

and can be passed along using their respective API’s:

• Network Receive—Receive handler of the network layer. Here, the networkmodule handles

incoming network PDUs, processing them before passing them to the upper layers and

potentially relaying them.

• Beacon Receive—Receive handler of the BTMbeaconmodule. Here incoming BTMbeacons

are processed.

• Provisioning GATT Bearer Receive — Receive handler for incoming provisioning beacons.

In addition to the three formerly mentioned message types, the proxy client module must also be

able to forward and process a set of proxy configuration messages, in accordance with the BTM

profile specification[10, p. 264]. The four messages it must be able to handle are:

• Set Filter Type — Sent from client to server. Set the filter type of the server. Either white list

or blacklist

• Add Addresses To Filter — Sent from client to server. Add addresses to the servers filter list.

• Remove Addresses From Filter — Sent from client to server. Remove addresses from the

servers filter list.

• Filter Status — Sent from server to client. Status response to the client for the three other

message types.

The three former configuration messages in this list follow a common pattern when issued.

Initially, they are packed with their respective parameters, as described in the BTM profile specifi-

cation. Then theywill receive a transmission context that corresponds to the proxy server targeted.

By using this context, the messages will undergo encryption before sent to the same segmentation

procedure as any other message that the proxy client passes.

Whenever an incoming status message arrives from a connected proxy server, it will initially be

handled in the sameway as any other message. When the reassembly procedure is completed, the

handler will parse the message type and send it for internal processing in the module. Here the

message will undergo decryption and a replay attack check. If both of these procedures succeed,

the status message may be sent to a user-defined callback for further processing.

5.3 GATT Proxy Configuration Model

The proxy client and servermodules combined provides the basemeans to establishGATT connec-

tions between devices. However, in section 3.3.3 I discovered that the BTM specification does not

Page 53

5 DEVELOPMENT

provide any inherent feature enabling remote control of the establishment of GATT connections.

This thesis’s implementation depends on a tool that provides efficient control and observability

of GATT connections on a network level.

With this in mind, I have decided to implement the configuration tool for managing the GATT

relay network as a vendor model, henceforth referred to as the GATT Proxy Relay Configuration

(GPC) model. The GPC model defines two roles; a client model and a server model. The client

model provides an interface of mesh messages that enables the control and observability of every

single GPC server model in the network.

The GPC server model acts as the backbone for interfacing with the proxy server and client

module on each device to control the GATT connections between devices. This model will, in

this instance, be regarded as a foundation model, mandatory to each BTM device along with the

Configuration and Health server models (section 2.2.2.2). The GPC server will be instantiated

in the root element of every participating device in the BTM network. In addition to providing

control over the proxy features, the server model also offers functionality to map the connection

topology between different devices in the network. This feature is crucial to obtain the necessary

information required to choose which devices should act as relay nodes in the network. Lastly,

the server enables control over the ADV bearer, making it possible to alter its behavior.

At the initial creation of a network, the participating devices will be provisioned and configured as

any regular mesh network. At this point, there are no active GATT connections between any of the

mesh devices, and the network communication is fully dependent on the ADV bearer. To prime

the GPC models for the following GATT relay transformation, a set of mandatory configuration

steps needs to be executed. The following steps apply to all GPC servers, as well as the GPC client

that will be used for the GATT relay configuration:

• All models must be bound to a common application key, implicitly meaning that they must

share the same subnet.

• All models must be set to publish and subscribe to a common group address.

After these configuration steps are completed, the network is ready to initiate the GPC process.

This process starts by conducting mapping of the connections between devices in the network.

After the mapping is completed, the installer will utilize this information to decide which nodes

should act as GATT relay nodes in the network and their connections. Using the GPC client, the

installer will issue commandmessages to initiate the connections between the chosen relay nodes.

After this is completed, the network is in its operational state and will start communicating using

GATT relaying.

5.3.1 Mapping Functionality

Themodelmust provide information about the on-air topology between all devices in the network

at the initial establishment. This information is crucial for the installer to make a satisfying config-

uration of relaying devices for the network. The following section describes how the connection

mapping is implemented in the GPC models.

There are two different metrics available in order to assess the quality of a link. Contained

within the metadata of each BTM message, we have the Received Signal Strength Indication

(RSSI) parameter. The RSSI is the power level a message was received with on the radio of the

device. One way to measure the link quality can be executed by evaluating the RSSI value of

several received messages from a single device. The second metric that can be used to evaluate

link quality is message loss. Suppose we can control an environment where we know how many

messages were sent from the origin device. In that case, we can compare the amount of received

messages against the number of expected messages on the surrounding devices.

Between the two approaches for measuring link quality, I have decided to use message loss as

Page 54

5 DEVELOPMENT

the sole metric. The background for this decision is based on several aspects. The first is that

the complexity of such an implementation is lower than an implementation using RSSI. When

measuring the quality based on message loss, the message can either be received or not received.

In comparison, while measuring based on RSSI we also have to consider how well a message has

been received while still considering any lost messages. In reality, we are primarily interested in

knowing if a message will arrive successfully or not, while the RSSI in itself is not of particular

interest as long as the message gets to its destination. I admit that an implementation based on

both message loss and RSSI most likely would provide a solution with a more fine-tuned output.

Still, I deem such a solution somewhat redundant for this particular use case. Another reason

why I have decided to discard RSSI as a metric is that a solution based solely on message loss can

be implemented by using functionality provided by the configuration foundation models of BTM.

This is discussed further in section 7.2.2 of this thesis.

The general idea of a pure message count implementation is to make every participating device of

thenetwork transmit a knownnumber ofmessages. The samedevicesmust also listen for incoming

messages from neighboring devices and keep a log over the messages it receives. All devices must

be able to perform these tasks simultaneously to avoid making the procedure unnecessarily time-

consuming. When all devices have transmitted their messages, the received message log of every

device must be collected by a client and assessed to produce the link topology of the network. A

crucial factor for the solution is that wemust guarantee that eachmessage is received directly from

the origin device of the message. To explain the meaning of this, we must revisit some concepts

explained in section 2.2.1.2. In a regular BTM network, a message can arrive at its destination

through multiple paths, depending on the configuration of the number of relaying nodes. Even

if a message is destined for a device, it might arrive via another relaying device under certain

circumstances. If this is not handled correctly, we might end up in a situation where we get a

false positive for a received message. A situation can occur where the original attempt on the

link in question failed but was successfully transmitted via a relay node. The solution to solve

this issue is to utilize the TTL parameter of the message we are sending. Setting the TTL value

of an outgoing message to zero will immediately be disqualified for retransmission by any relay

node that receives the message. In this way, we can guarantee that a message received by a node

originates directly from the radio of the origin.

The core component for the transmission of link messages from the server model is implemented

as a timer-induced callback associatedwith the servermodel that is instantiated on a device. From

now on, this will be referred to as the mapping timer. A mapping procedure is initiated when

the server receives an initiation message from a client model. Upon receiving this message, the

server will activate the mapping timer and send a status response to the client. The initiation

message contains a parameter that defines how many messages the server shall emit during the

transmission sequence. This value is stored in the server context. When the callback triggers,

a new link message is transmitted from the server, containing the primary element address of

the server device. The message count is then decremented by one, and the mapping timer is

set to trigger a new callback after 200 ms. I have chosen to emit the link messages at a delayed

interval to prevent the effects of internal noise in the system. Since several servers emit link

messages simultaneously, it is wise to distribute the total number of messages over a larger period

of time. During this transmission sequence, neighboring servers will be listening for incoming

link messages. The messages these devices receive are stored in an entry buffer on the server.

When the message count parameter of the server reaches zero, the transmission procedure is at

its end for this device. At this point, the server transmits a status message telling the client that

the procedure is finished. At the end of a mapping procedure, the client will collect the data

from each server by issuing a separate fetch message. The servers will respond to this message by

returning the data it has collected during the mapping procedure.

In order to realize the desired behavior for the mapping between devices, the following model

message types and behaviors have been implemented:

• Link Update Initialize — This message type is sent by the client model and received and

handled by the server model. Amessage contains a single parameter that corresponds to the

number of link update messages that the server will emit during the mapping procedure.

Page 55

5 DEVELOPMENT

Upon receiving a link update initialize message, a server shall clear the content of the link

entry buffer and store the incoming message count parameter to the server model context.

Following this, the server shall activate the mapping timer with a delay of 1 s. This delay

is to ensure that all server devices are primed before the link mapping commence. Lastly,

the server shall issue a status response message to the client containing a successful status

opcode.

• Link Update — This message type is sent, received, and handled by the server model. A

message has a single parameter containing the root element address of the origin device

of the message. When a server transmits a link update message, the destination address

shall be a group address that all GPC server models commonly share in the BTM network2.

Furthermore, the message’s TTL value shall be set to zero to prevent messages from being

relayed in the network. When receiving a link update message, a server shall extract the

primary address contained within the message. It then checks if this address corresponds

to the primary address of its own device. If it does, the message has arrived through the

internal Mesh interface of the device, meaning that the message received was transmitted by

this server instance itself. When this is the case, the message is immediately discarded, as it

has no value for the link assessment. Otherwise, the message is passed to the server’s link

entry buffer. If the address is not already present in the buffer, a new entry is created, using

the address itself as a key. A message count parameter associated with this entry is then

incremented by one, corresponding to one successfully received message. If there already

exists an entry for this particular address, the buffer fetches this entry and increments the

message count by one.

• Link Data Fetch — This message type is sent by the client model and received and handled

by the server model. This message type contains no parameters. Upon receiving a link data

fetch message, a server shall immediately respond by sending a link data message back to

the client.

• Link Data — This message type is sent by the server model and received and handled by

the client model. This message type contains the root element address of the sending server

device, alongwith the entire link entry buffer of the sending server. The number of entries in

this message depends on the number of valid entries contained in the link buffer, making the

length of this message type variable. A receiving client will pass the content of this message

to the application level, where it may be collected for further mapping computation.

Figure 20 shows the intended interaction between different devices during a mapping procedure.

In this example, we have three participating devices; the client (green) and servers 1 and 2 (red).

Here we assume that the servers are within radio proximity of each other. All participants are

configured to share a common group address that they are publishing and subscribing to. The

sequence is initiated when the client issues a link update initialize message to both of the servers.

This message contains a count of N messages that each server shall issue during the mapping

procedure. When the servers receive this message, they will start their mapping timers and issue

a status response back to the client.

Suppose we assume that the application level on the client device can keep track of how many

devices it should expect responses from. In that case, it will now enter a state where it is listening

for incoming update complete status messages from the servers. Simultaneously, the servers will

begin to issue link update messages periodically. Each server is simultaneously scanning for the

issued messages from their server counterpart. Each message that arrives successfully will be

collected by the server and stored in the entry buffer. When the servers have issued the required

number of link update messages, they will stop the mapping timer and issue an update complete

status message to the client. When the client receives the expected number of status messages, it

will start collecting the mapping data from the servers by issuing link data fetch messages to each

of the servers. The servers will respond to this request by transmitting their collected data in a

link data message. At this point, the client device possesses all the data that was generated during

the mapping procedure. This data can now be further processed to obtain an overview of the link

topology in the network.

2This criterion needs to be configured at the initial network set up by the installer.

Page 56

5 DEVELOPMENT

GPRC
Client

All Servers Complete

Listen For Complete
Status Msg

GPRC
Server #1

Periodic Msg
Timer Start

GPRC
Server #2

Periodic Msg
Timer Start

Link Update
Init Msg

Link Update
Started Status Msg

Link Update Msg

Link Update Msg

Link Update Msg

Link Update Msg

Link Update Msg

Link Update Msg

Link Update
Complete Status Msg

Link Update
Started Status Msg

Link Update
Complete Status Msg

Link Data Fetch Msg
Link Data Msg

Link Data Fetch Msg
Link Data Msg

Figure 19: Mapping procedure between two GPC server models.

5.3.2 Connection Establishment and Maintenance

The ability to precisely decide which relay nodes should connect and which should have the

client and server role is crucial to the implementation. Additionally, when the network is in

an operational state, the model must be self-preserving, meaning that it must gracefully handle

certain occasional events. These are events like unexpected disconnections, device reboot, and

connection loss to neighboring devices. The following section describes how the connection

between devices is initiated and maintained by the GPC models.

According to the BTM profile specification, as described in section 2.2.3.2, there are two ways of

advertising the presence of a proxy server. The first one is advertising using network IDs. This

advertising message contains no information about the device that emitted the message, making

it unsuited for this particular implementation. The other choice is advertising using network IDs.

This message type contains the unicast address of the root element of the source device, which

satisfies the requirements for the implementation. Considering this, I have decided to utilize node

ID advertisement for this implementation. The node ID advertisement is not active by default in a

BTMdevice in difference to the network ID type. The legacyway the node ID advertisement is used

is that it is activated for 60 s right after provisioning the device. Apart from this, the advertisement

can be activated by using the foundation configuration models. Since I have chosen to contain all

Page 57

5 DEVELOPMENT

functionality within the same model, the implementation must duplicate the functionality under

other circumstances handled by the configuration model to activate the node ID advertisement at

will.

When a proxy server has been set to advertise with node ID beacons, each beacon will contain the

root element address and the network index of the subnet that it is advertising for. For a proxy

client to initiate a connection to the server, we need to pass this information context to it. The

proxy client module API provides this feature. When this is done, the client will start to listen for

incoming node ID beacons, comparing the address and network index to the context that we have

passed to it. As soon as the client receives a beacon with the correct content, the GATT connection

is initiated and established. After mapping the network topology, the proxy client of each relay

node will be given a fixed set of servers that they should connect to. After this initial setup, it

should not be necessary to alter the connection configuration, given that the chosen relay node

topology is satisfactory. This means that a device should keep the connection configuration in

persistent memory, thus recovering this information after losing power or reboot. Based on this

information, it should then be able to re-establish any connection it had before the reset.

I have decided to implement this as a connection entry list that follows the GPC server model.

Each entry contains the primary address of the proxy server that we want to connect to, along

with the subnet that follows. Any time any of these parameters changes for a given entry, the

entry is saved in persistent storage. Each entry also contains a flag that tells if the connection is

currently active, along with a pointer to the BLE connection context associated with the entry.

The model uses the flag to determine if it needs to re-establish the connection, while the pointer

is used whenever there is a need to terminate the connection from the model level. An example

of when this could be necessary is when we need to delete the connection entry list. On boot up,

the model will retrieve the connection entries from flash memory and initialize the entry list. The

connection flag is set to false, and the connection pointer is set to NULL. Upon a connection event,

the connection flag of the entry will be raised, and the context pointer is set to the BLE connection

context. If a disconnect event occurs, the entry flag will be lowered again and the pointer set to

NULL.

Along with the connection entry list, I have implemented a connection link handler. When called,

this handlerwill process the connection entry list and evaluate if there are connections that need to

be initiated. For each iteration, the handler will attempt initiation of connection for a single entry

before terminating, given that there are unconnected entries in the connection list. The connection

link handler is coupledwith the timer-induced callback. After completing an iteration, the handler

will initiate a recursive delayed call as long as there are unconnected entries in the connection list.

Unless a connection event cancels this timer, the handler will run another iteration 5 s after the

last iteration is completed. If the connection entry list is empty or all entries are connected, the

handler will stop until an event eventually activates it again.

Five events may activate the connection link handler. All these events ensure that the connection

link handler always will be active as long as there are unconnected entries in the list:

• Device boot-up — The GPC server model has been started. Any connection entry stored

before shutdown will be retrieved from flash and placed in the connection entry list. The

handler is called to re-establish these previous connections.

• An incoming new connection entry — A new entry has arrived from a GPC client model.

This connection should be established immediately.

• A connection has been completed — The connection sequence for another entry has been

completed successfully. The handler will check if other entries are still not connected. This

event is provided by the configuration complete callback sent by the proxy client module.

• A connection has been terminated — A previously established connection has been termi-

nated. The handler should try to re-establish this connection. This event is provided by the

disconnect callback sent by the proxy client module.

Page 58

5 DEVELOPMENT

• The preceding connection attempt has timed out. The GPC server has not received any con-

nection event within the 5 s time limit, meaning that the handler should retry the connection

attempt. The connection event is provided as a callback from the proxy client module.

Certain real-world considerations have been taken into account when creating the connection link

handler. In an actual network, a device may suddenly "disappear" out of view from its neighbors.

This can occur for many different reasons, but the important thing is that a GPC server trying to

maintain a connection to this device has no way of knowing if and when the device will reappear.

The time it takes for the target device to reappear can be in the range of milliseconds, hours, or

days, depending on the actual reason for the disappearance in the first place. The device might

never reappear, for instance, if it has malfunctioned beyond recovery and needs to be replaced

by another device. Let us imagine a situation where we have two or more entries that need to

be handled on a GPC server. Suppose a target device "disappears" for good. In that case, the

GPC server model will periodically initiate futile reconnection attempts to this device as long as

the connection entry stays in the connection list. This could potentially be harmful to the rest

of the system if it is not handled carefully. If a device "disappears" for good, the reconnection

attempts to this devicemust not block the reconnection attempt for the other devices present in the

connection entry list. In order to prevent starvation between the connection entries, the connection

link handler is implemented so that it will always start by checking the entry that follows the entry

it previously tried to connect to, treating the connection entry list as a ring. This means that for

every futile attempt of connection to an absent device, the server model will check and reattempt

connection for all other entries once before initiating the next futile attempt.

In order to realize the desired behavior for connection between devices, the following model

message types and behaviors have been implemented:

• Connection Entry Add — This message type is sent by the client model and received and

handled by the server model. A message contains two parameters; the root element address

of the target proxy server and the subnet index that we wish to connect to. Upon receiving

a connection entry add message, the server shall check that the entry is not already present

and that the connection list is not full. If either of these is the case, the message should be

discarded, and the server shall issue a status response message to the client containing an

appropriate error status opcode. Otherwise, the message parameters shall be placed inside

a vacant slot of the server’s connection entry list. The updated connection list shall then

be stored within the server model’s persistent storage. Finally, the handler shall initiate the

connection link handler before issuing a status response message to the client containing a

successful status opcode.

• Node ID Adv Set — This message type may be sent by either a client or server model and is

received and handled by the server model. A message contains two parameters; a boolean

that indicates if we wish to turn the node ID advertising on or off and the subnet index that

we are targeting. Upon receiving a node ID adv set message, the server shall either turn on

or off the node ID advertisement for the targeted subnet, depending on the content of the

boolean parameter contained in the message. This is an unsolicited message.

• Connection List Reset — This message type is sent by the client model and received and

handled by the server model. This message type contains no parameters. Upon receiving a

connection list reset message, the server shall execute a disconnect procedure for all active

BLE connections present in the server’s connection list. Following this, the server shall wipe

every single entry in this list and update the flash memory. Lastly, the server shall issue a

status response message to the client containing a successful status opcode.

Figure 20 shows the intended interaction between different devices and modules during a con-

nection addition on a relaying device. In this example, we have three participating devices; the

GPC client (red), the device that will act as the proxy client (green), and the target device for the

proxy client to connect to over GATT (purple). Here we can assume that the proxy client has

been operative for some time, without any previous entries in the connection list. The connection

Page 59

5 DEVELOPMENT

GPRC
Flash

GPRC Server
Model

Update
Conn Entry

Check Next
Conn Entry

Proxy Client

Initiate
Connection

Target Device
(Proxy Server)

Client
Device

Connection Entry Add Msg

Store Entry

Node ID Adv Set Msg

Set Conn Ctx Scan

Node ID Beacon

Connection

Discovery

Conn CB

Conn CFG CB

No More
Entries
(Idle)

GPRC
Connection

Timer

Timer Start

Timer Stop

Connection Entry Success Status Msg

Figure 20: MSC diagram of standard connection over GATT proxy.

sequence is started when the GPC client issues a new connection entry for the proxy client device.

As soon as this message is received, the connection entry list is updated and stored to the server

models flash context. Then the GPC server will initiate the connection to the target device by

issuing a request to the target to enable node ID advertising and setting the node ID scan context

in the proxy client module. Simultaneously the model connection timer is started. When the

target proxy server receives the initiation message, it will enable node ID advertising and start

emitting beacons. As soon as the proxy client discovers one of thesemessages, it will initiate a BLE

connection to the proxy server. When this connection is completed, the proxy client module will

issue a connection completed callback that the GPC server module will receive. The connection

timer is stopped from this callback, and the entry for the target proxy server is updated to a

connected state. Simultaneously the proxy client is performing attribute discovery on the proxy

server. As soon as this is completed, the proxy client module issues a configuration complete

callback to the GPC server module. This completes the connection sequence between the two

devices. Following this, the GPC server model will recheck the connection entry list to see if any

additional entries are not connected. Since the entry list in this instance only contains one entry,

the list is completed, and the GPC server model enters an idle state.

Figure 21 and 22 is a continuation of the same example described for figure 20. For both cases,

we start in a state where the proxy client and server are in a connected state, and the GPC server

model is idle. In figure 21we can see that the proxy client device undergoes a system reset, causing

the connection to the target proxy server to cease. The system reset also wipes all volatile memory

from the proxy client, including all entries from the connection entry list in the GPC server model.

Upon re-initiating the GPC servermodel instance, themodel will start by retrieving all previously-

stored connection entries from flash memory, thus restoring the connection entry list. After this

task is completed, the model will initiate the same connection procedure as described for figure

20.

Lastly, we have figure 22. The system starts in the same state as in figure 21. In this instance,

the target proxy server device "disappears" out of view for the proxy client. Disappearing in

Page 60

5 DEVELOPMENT

GPRC
Connection

Timer
GPRC Server

Model

Update
Conn Entry

Proxy Client

Initiate
Connection

Target Device
(Proxy Server)

Connected &
Discovered

GPRC
Flash

Device Reset Disconnected
Entries Get

Conn Entries

Timer Start
Set Conn Ctx Scan

Node ID Adv Set Msg

Node ID beacon

Connection
Conn CBTimer Stop

Figure 21: MSC diagram of recovery after proxy client reset.

this instance can imply several different reasons. For instance, the target device can have lost its

power supply, it can have been moved out of radio range or it might be experiencing some faulty

behavior. Since the target device is no longer responsive, the BLE connection will be terminated

shortly after due to missing responses over the connection. This state change will be propagated

to the proxy client module, which will fire a disconnect callback inside the GPC server module.

Here the connection entry will be updated to a non-connected state, which will initiate a new

connection procedure. A node ID advertising request will be issued to the target device, the

node ID scan context in the proxy client module will be set once more, and the model connection

timer is started. However, during these events, the target device has not yet "reappeared". The

issued node ID request message will not be received by the target device, meaning that the proxy

client is currently scanning for a node ID beacon that will never arrive. This will cause the model

connection timer to timeout, creating an event that will restart the connection process. Before this

second attempt, the target device has reappeared, meaning that this second attempt will unfold in

the same manner as previously described, ending in a successful connection to the target device.

5.3.3 Controlling the ADV bearer

In an operational state, the behavior of the ADV bearer needs to be altered. Depending on if we

are using the homogeneous or heterogeneous approach to the GATT bearer implementation, the

transmission behavior of the ADV bearer should either be disabled or reduced.

During the development of this feature, I have examined the possibility of altering the operation

of the ADV bearers scanning behavior. After due consideration, I have concluded that this option

most likely is not the wisest choice. The main reason for this conclusion is that the ADV bearer

is crucial for communicating with the BTM network in any situation where the GATT bearer

implementation is not in an operational state. By allowing devices to still scan for and process

incoming messages over the ADV bearer, the user is provided a fail-safe measure that allows

communication with a device if anything with the GATT connections should malfunction. This

gives the possibility of implementing commands that might revert the BTM network to an initial

Page 61

5 DEVELOPMENT

GPRC
Connection

Timer
GPRC Server

Model

Update
Conn Entry

Proxy Client

Connection
Timeout

(Disconnect)

Initiate
Connection

Target Device
(Proxy Server)

Connected &
Discovered

Target Device
"Disappears"

Disconnected
Disconn CB

Set Conn Ctx Scan

Node ID Adv Set Msg

GPRC
Flash

Timer Start

Timeout

Set Conn Ctx Scan

Node ID Adv Set Msg

Node ID Beacon

Target Device
"Reappears"

Connection
Conn CBTimer Stop

Timer Start

Figure 22: MSC diagram of recovery after loosing proxy server.

state where the issue can be corrected using the command message interface. If the ADV bearer

scanning has been disabled and the GATT communication for some reason fails, the user might

have to reset the device manually. In a worst-case scenario, it might even be necessary to update

the software of the device. This can occur if the internal configuration leading to the faulty

behavior is associated with state that is stored persistently and can only be altered using the

command message interface. An additional factor is that the establishment of GATT connections

is dependent on the ADV scanner to receive the beacons that will initiate a GATT connection.

To achieve the desired behavior, I have decided to implement three individual states for the

transmission behavior of the ADV bearer:

• ADV Bearer TX Enabled — The ADV bearer is operating as normal. This state is intended

to be used when the network is in its initial configuration phase and when devices recover

their operational state after, e.g., reboot. In this state, a BTM device will act as any legacy

BTM device.

• ADV Bearer TX Reduced — The ADV bearer’s transmission behavior is reduced. A device

will relay messages on the ADV bearer in this state, but the TTL value of all these messages

is altered to allow only one hop from the transmitting device. This state is intended for a

heterogeneous network solution. In this scenario, relay nodes will be using the GATT bearer

to propagatemessages between each other. In addition to these relay nodes, the networkwill

contain one or more regular nodes utilizing the ADV bearer solely to communicate with the

rest of the network. These devices rely on being adjacent with one or several relay nodes to

enable communication with the entire network. A relay node will inherently not be aware of

Page 62

5 DEVELOPMENT

any regular nodes nearby that depend on it forwarding messages to them. To ensure that no

standard node is denied communication, each relay node must relay all messages over the

ADV bearer. However, since each relay node is only responsible for forwarding messages

to standard nodes adjacent to itself, there is no need to pass it using the original TTL value

of the packet. By altering this parameter only to allow one hop on the ADV bearer, we can

prevent the message from being scanned and relayed by any neighboring relay node, thus

preventing unnecessary internal message handling and redundancy.

• ADV Bearer TX Disabled — The ADV bearer’s transmission behavior is entirely disabled.

This state is intended for a BTM network where all participating devices are interconnected

through the GATT bearer. All outgoing messages will only be passed over the GATT bearer

interface.

The active state is stored persistently by the GPC server model. The following model message

type and behavior has been implemented to enable control of this state for a BTM device:

• ADV State Set — This message type is sent by the client model and received and handled

by the server model. A message consists of one parameter that contains the new state for

the advertising transmission behavior. Upon receiving an ADV state set message, the server

shall update its internal ADV bearer TX state and store it in persistent storage.

As long as a GPC server is in an operational state, the ADV Bearer TX state will be equivalent to

the configured state. However, as long as the connection link handler of a server is processing

unconnected GATT entries, the ADV Bearer TX state will be overridden to the ADV Bearer TX
Enabled state. This is to ensure that the server can pass the necessary Node ID Adv Setmessages to

any target proxy server to initiate a connection since these messages must be passed through the

ADV bearer.

5.4 Utility Tools for Test and Development

Apart from the core functionality of my implementation, I am dependent on specific tools and

functionality in software to enable me to control and observe system behavior under test and

development properly. This section briefly describes the implementation of these tools and their

contribution to the project work.

5.4.1 GPC Client Terminal

The GPC Client Terminal is developed to enable flexible control over all GPC server models at

run time. The base software consists of the legacy implementation of the BTM stack. In this

implementation, I have included an instance of the GPC client model, which provides control over

all GPC commands described in section 5.3. From the application level of this software, I have

implemented an instance of the shell module, provided by Zephyr[13]. This module provides

serial communication over UART from the target device to a terminal program on a computer.

It allows the user to implement custom commands in software that control internal functionality

on the target device. Using this module, I have created a set of shell commands that correspond

to all the GPC model commands. By using the terminal program TeraTerm[17] I can issue GPC

commands to any participating device in the network, containing the appropriate parameters that

follow each command.

5.4.2 GPC Test Commands

Whenever testing in a real network, it becomesmore complicated to get detailed feedback from the

devices. This is because it is not feasible to extract the log from every single device when remotely

Page 63

5 DEVELOPMENT

deployed. In this situation, we must settle for the means that the device itself can provide to

observe the system’s state, commonly provided by controllable LEDs on the devices. By turning

these LEDs on or off in response to certain events, we can at least get an indication of if the system

is behaving as expected.

For functional testing in a real network, I require a way to verify that a specific device can

communicate with the other devices in the network. A crucial criterion for this is that we must

be sure that the observed result from a test is a product of a message sent from the device we are

testing. A simplistic way to solve this could have been to use GPIO induced messages that are

activated directly from the device we are testing. However, this solution would require physical

presence to the device whenever performing a test, which would impede the testing progress.

Instead, I have created a solution where this test can be activated using model messages. The

messages required to perform this feature are implemented as supplement commands to the

GPC model. These messages are only meant for testing purposes and are not a part of the core

functionality that the model provides for the GATT bearer solution.

In order to realize this functionality, the following model message types and behaviors have been

implemented:

• Test Initiate — This message type is sent by the client model and received and handled

by the server model. The message contains a single boolean parameter that represents an

on/off state. Upon receiving a Test Initiatemessage from a client, the server shall retrieve the

boolean parameter value before issuing a Test message containing the same parameter value

that followed the initiation message. This message is sent to the group address commonly

shared by all GPC servers in the network.

• Test — This message type may be sent by the server model and is received and handled

by the server model. The message contains a single boolean parameter that represents an

on/off state. Upon receiving a Test message from another device, the server shall retrieve

the boolean parameter contained in the message. Depending on the value of this boolean,

the server shall either turn on or off a LED located on the server device, henceforth denoted

as the Comm Test LED.

By using the GPC Client Terminal described in section 5.4.1, these message types enables remote

control of this functionality. Since the ADV scanner always will be active when using the GATT

bearer solution (5.3.3), all devices will be able to receive the Test initiate message from the client

device. Upon receiving this, the server device will generate the actual test message, which will

attempt to forward the boolean parameter to the whole network. In this way, we can ensure that

the message that potentially will alter the state of the Comm Test LED originates from the device

that is currently being tested.

A communication test is conducted by following these simple steps:

1. Ensure that the Comm Test LED of every device in the network is in a commonly known state

(On or Off).

2. Issue a Test Initiate message containing the opposite boolean state to the device undergoing

testing.

3. Observe the new state of the Comm Test LEDs on each device. If the state corresponds to the

value sent in the Test Initiate message, we know that the DUT could communicate with that

particular device.

5.4.3 Mapping Assessment Program

As described in section 5.3.1, the GPC models offer the base functionality to provide data for

the available links in the network. Still, the model does not in itself provide centralized control

Page 64

5 DEVELOPMENT

for performing the entire task. Performing this task manually would require multiple commands

from theGPC client andwould be a time-consuming and complex task. Additionally, the data that

the model provides comes in a raw format and needs some additional computation to produce

a result that would be easily readable. With this in mind, I have decided to create a mapping

assessment program. This software will have two main tasks. The first one is to automate the

process of initiating the mapping sequence and collect the mapping data when the sequence is

completed. The second task is to process the raw mapping data and produce a comprehensible

visual result for the human eye.

I have decided to implement this software in Python. The programwill interface with the BTM by

piggybacking on the already implemented GPC Client Terminal. This is done by using the serial

module that Python provides. By parsing the log output typically sent to the terminal program,

we can achieve both TX and RX capabilities for the Python software. The serial receiver handler

can read every single line that is passed from the target to the terminal. These lines scan for a

specific message format and opcode and perform different tasks depending on the actual opcode.

When issuing commands to the target, the Python program utilizes the same shell commands that

are implemented for section 5.4.1.

5.4.3.1 Mapping Sequence and Processing

A mapping sequence is initiated by sending a Link Update Initialize message to the common

group address from the Python API. This message contains the common number of Link Update

messages that each server will emit to their adjacent server peers. By utilizing the status messages

received from the servers, the Python controller can operate as a state machine. Each server

will respond with a status message to the Link Update Initialize message, telling the client that

the mapping sequence has started. The Python controller stores the addresses for each of these

individual status responses in a list called initiated_list. When a server has sent the last LinkUpdate

message, it will send out another status message, telling the client that the Link Update sequence

has been completed. When these messages start to arrive from the different servers, the Python

controller stores each entry in a list called completed_list. For each new entry that is appended

to this list the controller will compare the completed_list to the initiated_list. When these two lists

match, we know that all servers have completed their Link Update sequence.

At this point, the controller will start issuing Link Data Fetch messages, using the addresses

contained in the completed_list. As soon as the client receives the link context from the server, the

controller will store this entry internally in a dictionary and issue a Link Data Fetch message to

the next server. This procedure is continued until the controller has iterated through the entire

completed_list. At this point, all the raw data from the mapping procedure is stored in the internal

Python dictionary. This dictionary is passed to a method that iterates through every entry in the

dictionary, creating a SortedEdge class object for each link between two devices. These objects are

appended to a separate dictionary. The SortedEdge object contains the address information of the

two devices that form the link, as well as information of how many messages it is expected to

receive on the link and the actual number of receivedmessages. Since a link’s state depends on the

link context from both devices that form the link, the class is fitted with an update method. When

the iteration method discovers an address pair that already exists as an SortedEdge object, it uses
the update method instead of creating a duplicate for the link. The SortedEdge object also contains

a weight parameter. This parameter is calculated by dividing the number of received messages by

the number of expected messages. This implies that an ideal link will have a weight value of one.

When the sorting is completed, we have a refined set of link data that can be feed into the Python

module networkx and plotted using the modulematplotlib. A networkX graph object is first created,

then the node and link information is added to this graph as nodes and edges, respectively. The

edges can be drawn with different colors and with their weights as labels in the plot. For this

instance, I have decided that edges with a value greater or equal to 0.95 will be plotted as green,

representing links of Great quality. The edges with a weight between 0.95 and 0.90 will be plotted

as blue, representing links of Intermediate quality, while edges with a weight less than 0.90 will be

Page 65

5 DEVELOPMENT

plotted as red, representing links of Poor quality3.

5.4.4 Miscellaneous

5.4.4.1 All Connections Established LED Indication

As stated in section 5.4.2, the level of observability on a device is significantly reduced when it is

deployed in a real network. I have implemented a LED indicator that is activated whenever this

list is completed, henceforth called the All Connections Established LED. This LED provides a way

to verify that a GPC server is connected to all proxy servers in the connection entry list. As long as

the GPC server is in its operational state, this LED indicator will be turned on. If the server loses

the connection to a target proxy server, the LED will immediately turn off.

3The choice of range for the quality of the links in this instance is picked pseudo-randomly to get a better visual view

of the links. Generally, the assessment should be based solely on the weight value of the link.

Page 66

6 SYSTEM TESTING

6 System Testing

6.1 Functional Testing of the System

At this point, I have concluded the design and implementation of the proxy clientmodule, theGPC

model, and the required interfacingwith the rest of the BTM stack. In order to assess the quality of

my implementation’s functional behavior, I have decided to perform a behavioral test conducted

in a realistic environment using proper hardware. In this setup, I will test the mapping feature

of the GPC model. Based on this data, I will find and apply a sufficient configuration scheme to

the network. This includes a solution for both the homogeneous and heterogeneous approaches.

When the network is in its operational state, I will conduct tests to see if the participating devices

can pass messages throughout the network using the respective solution for each approach. In

addition, I will introduce scenarios that will show if the network is capable of recovering following

an unforeseen event.

The network consists of seven nRF52 development kits (DK)[5] containing the proposed GATT

bearer implementation, including an instance of the GPC server model placed in the primary

element of each device respectively. These DKs are placed throughout an office space with a fairly

even distribution. This placement intends to provide a BTM network that depends on relaying

messages to ensure that messages can be passed between any two participating nodes. The setup

can be viewed in figure 23. Initially, I have no knowledge of which devices can communicate

directly or the quality of these links. At the starting point of this test, all nodes are configured as

relay nodes using the ADV bearer. This is to ensure that it is possible to control any node using

the GPC client model remotely.

3

8

2

7

6

5

4

Figure 23: Initial view of the functional test setup.

The controlling GPC client model is set up on an additional DK. This kit is connected to a laptop

through the shell serial interface described in section 5.4.3. This enables control of the client

model commands directly through a terminal and the Python mapping assessment software. The

initial configuration of each device entails provisioning and configuration through the nRF Mesh

mobile application[4]. All GPC models are bound to the same application key, and both the

server and client models have been set to publish and subscribe to a common group address. This

configuration ensures that all GPC messages will flow as intended in the network.

Page 67

6 SYSTEM TESTING

6.1.1 Mapping and Configuration Assessment

Using the Python mapping assessment program, I have conducted a mapping sequence with

a message count of 100 messages per server. The resulting network topology can be viewed

in figure 24. The plot is created using a planar layout for the network, preventing intersection

between edges. I have converted the results to a representation that adheres to the devices’ actual

placement in the network. I have done this in order to get a better overview of the topology. This

representation can be seen in figure 25.

0.9950.4
65

0.02

0.965

0.
98

5
0.0

5

0.
99

0.895

0.94

0.985

0.970.93

0.975

0.7
9

3

5

2

8

7

6

4

Figure 24: Link mapping processing output.

The left side of this figure shows every single link detected by the GPC server models, while the

right side excludes all links that have a Poor link quality (5.4.3.1). By assessing the right side,

we can quickly see that nodes 2 and 4 should be a part of the relay network since these are the

only nodes that can provide links of higher quality to bridge the communication to node 3. In a

situation where no link assessment tool was available, it would be reasonable to guess that these

nodes would be the best candidates for the role of relay nodes. They are located reasonably close

0.02

0.995

0.465

3

0.985

8
0.99

0.895

2

7

0.97

0.975

0.79

6

0.965

0.985
0.05

5

0.93

0.94
4

0.995

3

0.985

8
0.99

2

7

0.97

0.975

6

0.965

0.985

5

0.93

0.94
4

0.995

3

0.985

8
0.99

2

7

0.97

0.975

6

0.965

0.985

5

0.93

0.94
4

Figure 25: Functional test setup overview after mapping.

Page 68

6 SYSTEM TESTING

3

8

2/s

7/s

6

5

4/c

(a) Heterogeneous configuration solution.

3/c

8/s

2/s

7/s

6/c

5/c

4/c

(b) Homogeneous configuration solution.

Figure 26: Functional test configuration solutions.

to each other, in addition to being in a line of sight.

More than one configuration might provide robust connectivity for the five remaining nodes

located in the upper part of the figure. Here we may choose either node 7 or 8 to link with node

4. By, e.g., choosing node 7, we end up with a configuration where nodes 2, 4, and 7 provide the

relaying backbone of the network. In this situation, all other nodes are within a single hop from

one of the three relay nodes, making this a valid configuration for a GATT bearer network using

the heterogeneous approach. In this instance, I have decided that node 4 will act as the sole proxy

client device, maintaining two GATT connections to a proxy server on nodes 2 and 7, respectively.

The remaining node (3, 5, 6, 8) will act as regular ADV bearer nodes without relaying capabilities.

The heterogeneous configuration is shown in figure 26a. Here we can see the GATT connections

represented as larger arrows spanning between the three relay nodes.

In comparison, the dashed smaller arrows represent communication that is provided over the

ADV bearer4. A c or s is attached to each of the relay nodes. These letters mark the role of the

relay nodes

For the homogeneous solution, we can use the same base assessment for the heterogeneous

solution, where the same three nodesmake the foundation for the base relay network. To complete

the solution, we need to choose GATT connections to link the remaining four nodes to one of the

three base relay nodes. The chosen configuration is shown in figure 26b.

6.1.2 Heterogeneous Configuration Testing

The configuration of the heterogeneous solution is performed using the following steps:

1. Two Connection Entry Add messages are issued to node 4, telling it to establish GATT con-

nections to the proxy server on nodes 7 and 2, respectively.

2. The ADV transmission behavior state of nodes 4, 7, and 2 is changed from the ADV Bearer
TX Enabled state to the ADV Bearer TX Reduced state, using the ADV State Setmessage.

3. The remaining nodes are configured to disable the relay feature, making themact as standard

BTM nodes.

4In figure 26a all ADV bearer links of lesser quality has been removed to provide a cleaner representation. Note that

they are still present.

Page 69

6 SYSTEM TESTING

At this point, the configuration of the heterogeneous solution is completed. By monitoring the

All Connections Established LED indicator (5.4.4.1) on node 4 I am able to confirm that all GATT

connections is successfully established.

Proceeding, I start to utilize the GPC Test Commands (5.4.2) to check if every device can commu-

nicate with the rest of the network. This is performed by issuing a Test Initiate message to each

device iteratively and confirming that the other devices received this message by checking the

Comm Test LED. After completing this procedure, I can confirm that all devices can communicate

in the network.

6.1.3 Homogeneous Configuration Testing

Configuration of the homogeneous solution is performed as an extension of the configuration of

the heterogeneous solution. Node 2, 4, and 7 keeps their current configuration, in addition to the

following configuration steps:

1. Node 3, 5, 6, and 8 are configured to enable their relay feature.

2. A Connection Entry Addmessage is issued to node 5, telling it to establish a GATT connection

to the proxy server on node 7.

3. A Connection Entry Addmessage is issued to node 6, telling it to establish a GATT connection

to the proxy server on node 7.

4. A Connection Entry Addmessage is issued to node 3, telling it to establish a GATT connection

to the proxy server on node 2.

5. A Connection Entry Addmessage is issued to node 4, telling it to establish a GATT connection

to the proxy server on node 8.

6. The ADV transmission behavior state of all nodes is changed to the ADV Bearer TX Disabled
state, using the ADV State Set message.

After completing the configuration, I proceed by checking the All Connections Established LED

indicator on all nodes, successfully verifying that all GATT connections are established. At this

point, I repeat the procedure, checking if every device can communicate with the rest of the

network using the GPC Test Commands. Like for the heterogeneous configuration, I can verify

that every device can communicate in this network.

6.1.4 Introduction of Unforeseen Events

After verifying that the network can function in a normal state for both the heterogeneous and

homogeneous configuration, the time has come to introduce some obstacles and see how the

network handles them. At this time, the network uses the homogeneous configuration, which

should provide a sufficient basis to check the behavior under non-ideal circumstances for both

solutions. The argument for this statement is that the heterogeneous solution is a subset of the

configuration for the homogeneous solution. This implies that if the network can recover in this

scenario, it should also recover in the heterogeneous configuration.

In this part of the functional test, I will introduce the following two unforeseen events:

• Power loss for node 4 — I will turn off node 4 for 30 s before turning it on again. At reboot, I

will check if node 4 can re-establish its previous connections to nodes 2, 7, and 8. Succeeding

in this, I will continue by checking if node 4 can still relay messages throughout the network.

Page 70

6 SYSTEM TESTING

• Power loss for node 7 — I will turn off node 7 for 30 s before turning it on again. At

reboot, I will check if nodes 4, 5, and 6 can re-establish their previous connection to node 7.

Succeeding in this, I will continue by checking if all these nodes can still communicate with

the rest of the network.

I have started by performing the power loss for node 4. After turning off node 4, I have waited

for approximately 30 s before turning it on again. While monitoring the device’s All Connections
Established LED indicator, I can confirm that the LED turns on after a couple of seconds, indicating

that all prior connections have been re-established. By using the GPC Test Commands (5.4.2), I

can confirm that the devices in the network are still able to communicate with each other. After

completing this test, I continue by performing the power loss test for node 7. Following turning

off node 7, I have verified that the All Connections Established LED indicator of nodes 4, 5, and 6

have turned off. After 30 s has elapsed, I turn the device on again. Upon rebooting node 7, I have

checked the LED indicators for the connecting nodes once more and confirmed that they have

re-established their prior connection to node 7. Using the GPC Test Commands, I can still verify

that the devices in the network can communicate with each other.

6.1.5 Function Test Summary

The combined results of this functional test sequence are promising. It has shown that it is

possible to form, configure, and maintain a BTM network based on GATT connections. The test

has also shown that the utility tools are working as intended and that the network can recover

from unforeseen events. I will state that this confirms the proof of concept for a BTM network

based on several GATT connections on a functional level.

However, this test setup can by itself not verify any eventual performance improvement of the

BTM network. Section 6.2 will cover the performance testing of this thesis, where I evaluate if

the GATT bearer implementation can provide better capabilities concerning both throughput and

data consistency.

6.2 Performance Testing

At this point, I have been able to prove that the GATT bearer solution can replace the ADV bearer

in the network on a functional level. However, the functional tests conducted do not provide

any insight into the potential performance enhancement that the GATT solution can provide for

throughput and data consistency. In order to evaluate these performance metrics, I need to create

an appropriate test environment. I have decided to establish a scenario similar to those used in

the simulations in section 4.6.

6.2.1 Test Setup

6.2.1.1 General Setup Conditions

An initial challenge for this test scenario is to provide sufficient monitoring capabilities for the

participating deviceswhile deployed in a realistic network topology. While these difficulties could

be overcome in the functional testing by utilizing primitive LED monitoring, this issue is not as

easily overcome for the performance testing. In this scenario, we rely on a much higher degree of

monitoring, especially concerning timing-sensitive matters. This entails using proper measuring

equipment, which provides the required timing resolution for the performance test. In a realistic

network topology, this creates a problem since the measuring equipment needs to be connected

to two or more devices with a substantial physical distance between each other.

My proposed solution to this issue is to utilize a desktop setup for performance testing. The

Page 71

6 SYSTEM TESTING

Figure 27: Performance test setup.

devices under test are placed in direct proximity to each other and are connected to a logic

analyzer. The setup is shown in figure 27. The hardware used in this setup consists of four nRF52

DKs[5] connected to a Saleae Pro 16 logic analyzer[14], providing the potential to test network

performance for up to four BTMnodes simultaneously. The scheme in this setup is to utilize GPIO

traces that can be placed inside relevant function calls in the BTM stack that wewish tomonitor. A

GPIO trace is created by toggling a GPIO pin twice immediately inside the function call, creating

a small square pulse signal that the logic analyzer can register. A sample of this pulse is depicted

in figure 28.

Figure 28: Logic pulse sample.

By simultaneously monitoring pulses on both transmitting and receiving devices, we can now

monitor the time it takes to transmit a train of messages and how many of them that successfully

reached the destination device. The logic analyzer provides a shared timeline for the measure-

ments, making it easy to extract the exact time it took to perform the message transmission.

This setup choice has some benefits and some drawbacks. The benefit is that this setup provides

optimal monitoring capabilities of the network behavior, giving us a looking glass directly inside

the BTM stack of several devices simultaneously with a common time reference. In a setup with

satellite devices, the issue with the common timeline would become very hard to overcome since

all devices operate with a different system clock. The main drawback is that we do not have a

network that has a realistic network topology in this scenario. This means that the test results will

not account for all the effects that normally are present in a network, like physical obstructions,

long distances between devices, and other considerations. Another consequence is that it becomes

challenging to perform elaborate testing on the ADV bearer since it broadcasts all its messages to

any device that is within radio proximity.

At this point, I need to review these circumstances and assess if they are acceptable with regard

to the purpose of the performance test. The test aims to produce performance data for the

Page 72

6 SYSTEM TESTING

ADV bearer and the new GATT bearer solution. The results will be compared to see if the

GATT bearer solution performs better than the ADV bearer with respect to throughput and data

consistency. Since this will be a relative comparison between two solutions that have been in the

same environment, I deem it acceptable that the test is performed in a setup where the network

topology is not realistic. I admit that an ideal test solutionwould be to conduct the test in a realistic

environment, but due to restrictions in equipment, time, and convenience, it is not feasible at this

time. The most important aspect is that this setup will produce valid results. When it comes

to the restrictions concerning the ADV bearer testing, I think that this setup can provide an

adequate environment to produce the required results. In this setup, I am not trying to provide

extensive data on the ADV bearer performance in different network setups. What I require is a

suitable frame of reference from the ADV bearer that can be compared to the performance of the

GATT bearer. Such a frame of reference can be provided by executing a message transmission

between only two devices, which this test setup can provide. When it comes to testing the GATT

bearer, the same issue will not be present since the GATT bearer utilizes links between devices,

meaning that we can perform more elaborate testing. I have chosen to utilize the homogeneous

network approach explicitly for the GATT bearer testing. The reason for this decision is that I am

mainly interested in comparing the performance between the different bearers in this instance,

making the homogeneous approach the preferred choice among the two possibilities. I admit that

performance testing of the heterogeneous approach is also of interest, but due to time restrictions,

I have decided that this matter must be regarded as future work.

For the test scenario, I have decided to use a similar setup as the one used in the simulation

section of this thesis(4.6). A single test will consist of a train of messages sent from a single

origin device, emulating a DFU procedure. Every single message should ideally be received

by all other participating devices in the network. Each message is an unsegmented message

containing 11 bytes of data and will be sent from the model layer of the BTM stack. The speed

at which the messages are issued from the origin device is variable, providing the possibility

to test the procedure at different rates. In a situation where the speed of the DFU exceeds the

capabilities of the BTM implementation, we should expect to see some failure or error from

the participating devices. At this point, we will know that we have reached the system’s peak

throughput performance. In the simulation setup, 13637 messages were used to simulate the DFU

procedure. Here I will reduce this amount to 5000 messages. This decision is based solely on

convenience since wemust experience the DFU emulation in real-time. I deem that 5000messages

are sufficient to prove if the network can handle the workload of a DFU procedure under a specific

TX rate. Simultaneously, this will spare enormous amounts of time since the testing will be

conducted for several scenarios and TX rates.

6.2.1.2 Test Scenarios

There are two primary purposes for conducting performance testing for this implementation. The

first one is to see if the actual performance results comply with the results that were produced

under the modeling and simulation of this thesis(4). The results can either validate or reject

the initial assumptions made during the thesis’s preliminary modeling stage. The other reason

for the performance testing is to see if the implementation can provide the desired performance

enhancement that is a central goal of this thesis.

The tests I have decided to perform are divided into two categories. The first is a baseline test,

where I wish to test and compare the relative performance of the ADV and GATT bearer for a

similar test scenario. The purpose of these tests is to determine if the GATT bearer is better suited

to provide the properties that we desire in this instance. The second category is an extension of

the first one, where I wish to see how the performance of the GATT bearer is impacted when it

has to handle more than one GATT connection at the same time.

The test scenarios that will be conducted during the performance testing are:

• ADV bearer baseline — This test will provide the baseline for the legacy ADV bearer, used

for further comparison with the other tests in this section. This setup will consist of two

Page 73

6 SYSTEM TESTING

participating BTM devices, where one device will use the ADV bearer to forward the DFU

message train to the other device.

• GATT bearer baseline — Similar to the ADV bearer baseline, this scenario will show the

performance of the GATT bearer in a single connection environment. While these results

may not fully apply to the GATT bearer network solution, they will provide an important

insight into the relative performance between the ADV bearer and the GATT bearer.

• Three deviceGATTnetwork—This test will show the network’s performancewhen utilizing

two GATT connections on a single device.

• Four device GATT network— This test will show the network’s performance when utilizing

three GATT connections on a single device.

6.2.1.3 Tracing and Measurement Methodology

Four main GPIO traces will be utilized under testing. One trace is placed inside the message

handler on the model layer. This will enable me to monitor the exact timestamp of arrival for each

unique message. The three remaining traces are placed inside the sending call of the ADV bearer,

proxy server, and proxy clientmodule, respectively. The total execution time of theDFU emulation

will be found by measuring the time elapsed between the first sent message and the last received

message. The first sending pulsewill be registered in either of the three sending calls, while the last

received message pulse is registered in the receiving device model handler. Two considerations

need to be addressed here. The first is that the measurement of the completion time will not

account for any lost messages during the DFU emulation. The number of successfully received

messages during the test will be registered at the model layer and extracted upon test completion.

The other is that the completion time is dependent on the rate at which the transmitting device is

issuing themessages. This means that the completion time is likely to be comparable to N · TXRate,
where N denotes the total number of messages in the DFU and TXRate denotes the rate at which

the messages are issued.

In the initial testing of this setup, I discovered some inaccuracy between the applied transmission

rate and the actual transmission rate. The output of the logic analyzer shows that the time-delta

between some successive messages tends to be slightly larger than the applied rate. This is likely

due to some implementation-specific circumstances either within the Zephyr implementation or

the Nordic Hardware. To account for this, I have decided to present both the applied and effective

transmission rates to avoid inaccuracy in the presented results.

6.2.2 ADV bearer baseline

The ADV bearer baseline test consists of two devices utilizing the legacy ADV bearer. One device

will transmit the entire DFU to the other device, using a transmission count of a single message.

The reason for this decision is based on the findings of the simulation setup. In section 4.6 I have

shown that the likelihoodof successfulmessage transmissionwith theADV increaseswhenadding

message retransmissions. Retransmitting messages does, however, increase the execution time,

where we can expect to see a linear relationship between the execution time and the number of

retransmissions per message. Since we here are interested in comparing the relative performance

of the ADV and GATT bearer, I deem that it is sufficient to perform a real test for only a single

message transmission. I have decided to start the testing at a TX rate of 100 ms. Assuming that

the initial test is successful, I will continue to perform tests for lower TX rates until I reach the

theoretical peak rate of 25 ms.

In the initial testing on the ADV bearer, I have discovered something noteworthy. During the

first attempted test with a message rate of one message per 50 ms, the transmitting device has

suddenly prompted an error message. This message indicates that the ADV bearer has run out of

space in the transmission buffer. By reviewing the output of the logic analyzer, I have discovered

that the transmitting device cannot transmit messages at a rate faster than approximately 62

Page 74

6 SYSTEM TESTING

ADV bearer

Node 1

ADV bearer

Node 2

Figure 29: ADV bearer performance baseline setup.

ms per message. A snip out of this measurement is shown in figure 30. This indicates that

something within the BTM implementation restricts the maximum rate at which messages can be

sent. Attempting to issue messages at a higher rate than this will effectively cause a bottleneck at

the transmitting ADV bearer, eventually overflowing the transmission buffer. Since the theoretical

maximum speed for advertisement transmission is 25 ms, I need to investigate the reason why the

ADV bearer is limited to a peak rate poorer than this.

Figure 30: Restricted ADV bearer TX period.

After reviewing theADVbearer implementation, I have found two factors that affect themaximum

transmission rate of theADVbearer. Three different factors in this implementationdefine thedelay

between consecutive outgoing messages. The first one is a 20 ms advertising interval, which is

in compliance with the minimal advertising interval as described in section 2.2.4.1. The second

factor is a 10 ms constant that represents the adverting delay. This discovery is interesting since

this represents a worst-case adverting delay rather than the mean adverting delay that has been

utilized in the simulation assessment for this thesis. The last factor is a 30 ms delay, which

represents an adverting scanning window. I have found that the reason for this additional delay

is to account for some BLE implementations that require a scanning window to complete before

taking on a new transmission[16].

I have decided to disable this scanning window for testing purposes since this particular imple-

mentation is not dependent on it. In this way, I will be able to assess the performance of the ADV

bearer down to a rate of 30 ms per message. In addition, I have decided to alter the adverting

delay compensation down to 5 ms in order to see how the implementation will behave when the

peak 25 ms transmission rate is applied.

Msg

TX Speed

Applied(ms)

Msg

Loss Cnt

Msg

Loss(%)

Execution

Time(ms)

Effective Mean

TX Speed(ms)

100 133 2.66 501846 100.37

50 103 2.06 253590 50.72

35 331 6.62 179310 35.86

30 219 4.38 154026 30.81

25 2381 47.62 130798 26.16

Table 11: ADV bearer performance test.

Table 11 shows the combined results for the adverting bearer performance. In an initial assessment

of these results, there are a couple of circumstances that are worth mentioning. The first is that

none of the tests could complete the entireDFUemulationwithout considerablemessage loss. This

circumstance was not entirely unexpected since the simulation results in section 4.6 showed that

Page 75

6 SYSTEM TESTING

the ADV bearer would struggle to deliver all messages without any redundant retransmissions. I

did, however, not expect the magnitude of lost messages to be this high, considering that this test

is performed on a desktop setup with only two devices.

Another interesting aspect is the result for the 25 ms transmission rate. This test shows that the

transmitting device can successfully deliver roughly half of the messages in the DFU emulation.

This is a quite poor result, indicating that it is not feasible to transmit messages at the theoretical

peak rate, at least not for this particular implementation. The reason for this issue might be

related to the advertising delay. In my assessment of the peak transmission rate for the ADV

bearer, I have considered the mean time for the advertising delay. Perhaps we must consider

the worst-case advertising delay instead, making the theoretical peak rate 30 ms. The result for

the 30 ms transmission rate shows a considerable better performance than the 25 ms rate, losing

approximately
1

10 of the messages in comparison.

6.2.3 GATT bearer baseline

The GATT bearer baseline test is conducted by setting up two devices running the GATT bearer

implementation. Both devices have been configured to disable the ADV bearer, and one device is

set to establish a GATT connection to the other.

GATT Bearer
Client

Node 1

GATT Bearer
Server

Node 2

Figure 31: GATT bearer performance test baseline setup.

In order to assess if the GATT role has any impact on the performance under test, I have decided

to run each test for two scenarios; one where the server device is the origin of the DFU emulation,

and another where the client device is the origin. With the assumption that the GATT bearer

will perform better than the ADV bearer, I have decided to start the testing at a TX rate of 25 ms.
Assuming that the initial test is successful, I will continue to perform tests for lower TX rates until

I reach a point where the implementation cannot handle the workload.

Msg

TX Speed

Applied(ms)

Msg

Loss Cnt

Execution

Time(ms)

Effective Mean

TX Speed(ms)

Note

25 0 129427 25.89

10 0 54781 10.96

9 0 50065 10.01

8 0 45494 9.10

7 - - - Failure

Table 12: GATT bearer performance test baseline. Server transmitting to client.

The results for the GATT baseline test is shown in table 12 and 13. Table 12 presents the result for

the test where the server was the origin of the DFU emulation, while table 13 shows the results

for when the client inhabits this role. If we compare these two tables, we can see that they are

quite similar, indicating that the GATT role does not significantly impact the performance on a

single connection basis. Acknowledging this, we can move on to the more interesting aspects

of the results. The first important observation is that every successful test did not lose a single

message of the DFU emulation. The second is that the GATT bearer can handle a considerably

higher transmission speed than the ADV bearer.

In this test setup, I was able to run successful tests down to an effective transmission speed of

approximately 9.10 ms. If we consider the results from section 6.2.2, this is a transmission rate that

Page 76

6 SYSTEM TESTING

Msg

TX Speed

Applied(ms)

Msg

Loss Cnt

Execution

Time(ms)

Effective Mean

TX Speed(ms)

Note

25 0 129302 25.86

10 0 54772 10.95

9 0 49991 10.00

8 0 45043 9.01

7 - - - Failure

Table 13: GATT bearer performance test baseline. Client transmitting to server.

is 3.38 times faster than the ADV bearers peak effective rate of 30.81 ms. Let us simultaneously

consider that the ADV bearer lost a considerable amount of messages at its peak rate, while the

GATT bearer lost none. This consideration indicates that the GATT bearer is inherently better

suited for conducting a DFU than the ADV bearer. Based on the baseline testing, it has been

shown that it can provide both better throughput and data consistency performance than the

ADV bearer.

At applied TX rates lower than 8 ms the implementation started to experience issues in several

ways. These issues consisted of either buffer overflows or loss of connection over GATT. While it

would be interesting to explore the possibility of achieving even higher transmission speeds than

this, time limitations prevented me from exploring these matters further. The primary purpose of

this benchmark was to provide data to analyze the relative performance of the GATT bearer and

ADV bearer, which I deem that it has done successfully.

6.2.4 Three Devices GATT Bearer Performance

Extending the baseline performance test for the GATT bearer, I have now set up a test scenario

where the performance of the implementation will be tested for a more realistic setup. In this

scenario, we have three devices participating in the DFU emulation. An overview of this setup can

be viewed in figure 32. One of the devices must, in this instance, handle GATT communication

over two links simultaneously. While the baseline testing showed promising results for the GATT

bearer regarding both throughput and data consistency, the system must still prove that it can

provide similar results for a situationwhere it is handlingmultiple GATT links at once. This test is

a critical point in the thesis work since two GATT links per device are the minimum requirement

needed to facilitate any network topologywith theGATT bearer. In section 4.6.3.1 a potential chain

topology was discussed for the GATT bearer. This scheme could be utilized if the implementation

can provide acceptable performance under these circumstances.

GATT Bearer
Server

Node 1

GATT Bearer
Client

GATT Bearer
Client

Node 2

GATT Bearer
Server

Node 3

Figure 32: GATT bearer performance test setup with three devices.

As a starting point for this setup, I will start at the same transmission speed as for the GATT

baseline test and gradually increase it if the system can handle the applied speed. This will

eventually reveal if the two-link configuration can provide similar performance, as shown in the

baseline testing. For this test setup, I will run two DFU emulations for each applied transmission

rate. The first one will be executed using node 1 as origin, which is located on one of the ends of

the network chain. The second emulation will be performed with node 2 as origin, located in the

center of this three device chain.

The results of the performance testing for the three-device GATT network is presented in table

14 and 15. By comparing the results of these two tables, we can see that both test scenarios

Page 77

6 SYSTEM TESTING

Msg

TX Speed

Applied(ms)

Msg

Loss Cnt

Node 1

Execution

Time(ms)

Node 1

Msg

Loss Cnt

Node 3

Execution

Time(ms)

Node 3

Effective Mean

TX Speed(ms)

Note

25 0 129947 0 129972 25.99 -

20 0 104956 0 104984 20.99 Sporadic Failure

17 0 89996 0 90001 18.00 Sporadic Failure

15 0 80269 0 80288 16.05 Sporadic Failure

12 - - - - - Failure

Table 14: GATT bearer performance with three devices, with Node 2 acting as DFU origin.

Msg

TX Speed

Applied(ms)

Msg

Loss Cnt

Node 2

Execution

Time(ms)

Node 2

Msg

Loss Cnt

Node 3

Execution

Time(ms)

Node 3

Effective Mean

TX Speed(ms)

Note

25 0 129224 0 129250 25.84 -

20 0 104977 0 105052 21.00 Sporadic Failure

17 0 89889 0 89916 17.98 Sporadic Failure

15 0 80132 0 80158 16.03 Sporadic Failure

12 - - - - - Failure

Table 15: GATT bearer performance with three devices, with Node 1 acting as DFU origin.

provide similar results concerning both message loss and execution time. This shows us that the

amount of hops between the origin and the furthest device in the network has little impact on

the total execution time of the DFU. The testing showed that it is possible to perform successful

DFU emulations down to effective transmission rates of approximately 16.05 ms. In this instance,

we are executing the entire DFU procedure in roughly half the time compared to the 30 ms ADV

bearer baseline test, not losing a single message in the process. There is, however, a significant

catch to this presented result.

Themost crucial revelation the result provides is that the implementation starts to struggle as soon

as we move past the 25 ms transmission rate. For the testing conducted with the 20 ms, 17 ms,
and 15 ms transmission rates, I experienced that approximately

1
3 of the tests performed failed

similarly as the test for the 7 ms transmission rate in the GATT baseline setup. At a rate of 12 ms
seconds, the setup was not able to complete a single test without the implementation crashing on

one or several of the participating devices. Considering that I was able to conduct tests with TX

rates as high as 8 ms in the baseline setup, these results indicate that maintaining several GATT

connections has a substantial impact on the capacity of the devices in the network. An interesting

observation is that the GATT bearer solution either executes the DFU emulation perfectly or fails.

Nevertheless, this setup was still able to provide consistent results for the 25 ms transmission rate.

At this rate, the GATT bearer can still provide better throughput and data consistency compared

to the ADV bearer baseline.

6.2.5 Four Devices GATT Bearer Performance

In this scenario, we have four devices participating in the DFU emulation. An overview of

this setup can be viewed in figure 33. One of the devices must, in this instance, handle GATT

communication over three links simultaneously. Promising results for this setup will show if

the current implementation is capable of handling a network solution that is based on the tree

configuration, as earlier discussed in section 4.6.3.2. Taking the observations from section 6.2.4

into account, we might expect to see a decreasing overall performance of this setup compared to

both the GATT baseline testing and the three device setup. However, as long as the system can

still improve data consistency and throughput, I will consider the result promising.

In this setup, I will start by applying transmission speeds similar to those used for the three-device

test. If the system should fail under these rates, I will gradually decrease the transmission rates

to find a rate where the implementation can handle the DFU emulation workload. For this test

setup, I will run DFU emulations for a situation where node 1 acts as the origin and another for

where node 2 acts as the origin.

Page 78

6 SYSTEM TESTING

GATT Bearer
Server

Node 4

GATT Bearer
Server

Node 3
GATT Bearer

Client
GATT Bearer

Client
GATT Bearer

Client

Node 2

GATT Bearer
Server

Node 1

Figure 33: GATT bearer performance test setup with four devices.

The outcome of the four device testing did not provide the result that I was hoping for. It proved

to be quite challenging to perform any successful DFU emulation at higher speeds without the

system crashing. The testingwas conducted for several reconfigurationswhere the different GATT

roles were changed for node 2, but this effort did not provide any changes for the final result. After

a failed completion of a test for transmission at a rate of 200 ms, I have concluded that the system

must undergo a thorough investigation to see if it is possible to identify the reason for these failed

performance tests.

I have not been able to identify the exact reasonwhy the implementation crashes for higher speeds

in the four device configuration. However, it is clear that it is associated with the coexistence

of several GATT connections simultaneously. One observation that I have made is that node 2

experiences a tremendous flow of messages it has to handle. I suspect that the reason for this is

partially caused by the lack of an implemented routing control mechanism, as discussed in section

7.1.1. The consequence of the absence of this feature is that node 2 has to forward the combined set

of DFU messages over all available GATT interfaces, even if one of these interfaces was the origin

of the message. To get a complete overview of this circumstance, I will review a test that was

partially completed for a DFU emulation with a transmission rate of 50 ms. In this instance, the

origin node was node 1, passing messages through node 2, which then extended these messages

to nodes 3 and 4. In an ideal situation, it would have sufficed that each message is passed by node

1 to node 2, which passes the message further to nodes 3 and 4. The observed behavior is that

node 1 passes the message to node 2. When node 2 receives this message, it not only relays the

message to nodes 3 and 4 but also back over the GATT interface to node 1. In addition, node 3 and

4 relays the message back to node 2 again, completing the entire flow cycle for a single message. If

we consider that this flow will repeat for all messages in the DFU emulation, it is easy to see that

the workload of node 2 is considerable. In this instance, it has to handle a situation where wewant

to simultaneously send and receive messages on all three GATT interfaces at the same time. It is

not unlikely that these circumstances contribute to the system failures I am experiencing for this

test setup. In a scenario where the routing mechanism is present, the total workload would have

been reduced. In this situation, the system might have been able to handle the workload during

the DFU emulation for higher transmission rates.

The conclusion for the four device testing is that the system cannot perform any high throughput-

related work due to the instability observed under these conditions. A full evaluation of the

system testing is discussed in section 7.4 of this thesis.

Page 79

7 DISCUSSION

7 Discussion

7.1 Limitations of the Final Implementation

In the later stages of the implementation phase of this thesis, I realized that I would not be able to

implement all desired features within the set time constraints of the assignment. After completing

the GATT solution’s core functionality, there are a couple of central features that are not yet

accounted for.

7.1.1 Internal Routing

As described in section 4.3.3, there is no reason for a BTM node to relay an incomingmessage over

the same GATT connection from where the message initially arrived since we can guarantee that

this message already has been handled by the origin of the message. Sending the message over

this link will be utterly redundant and should, therefore, ideally be avoided. In order to achieve

this, there must exist some message entry for each connection interface at the GATT bearer layer.

These entries must register any incoming message over their respective connection, using a tag

that must follow the incoming message when it is passed to the network layer. If the network

layer decides that this message qualifies for relaying, it will be sent back to the GATT bearer layer.

Here the associated message tag must be compared against the message entry list of each active

GATT connection, ensuring that the message is only relayed on the interfaces where the tag is not

present in the associated entry list. My initial idea was that these entry lists could be implemented

like the message cache, where each entry buffer can hold a small set of tags. Whenever a new

message arrives over the connection interface, the oldest existing in the entry will be discarded

to make room for the new one. Since the time that expires between the arrival of an incoming

message and an eventual relaying of the same message is small, I deem it sufficient to store a tag

for only a short amount of time.

The consequence of the absence of this feature is that a device will relay messages over all

available GATT interfaces, even the interface the message originally arrived over. This contributes

to additional strain on each device that utilizes the GATT bearer, using a significant portion of the

network combined resources on unnecessary and redundant transmissions. This shortcomingwill

likely have a negative impact on the overall network performance. Admitting this shortcoming,

it is clear that an eventual continuation of this thesis work should strive to provide this desired

routing feature.

7.1.2 Flow Control

A flow control feature for the GATT bearer implementation is a subject that has been recapitu-

lated several times throughout the thesis work. At the simulation stage(4.3.3), I was under the

impression that flow control could be easily provided by inherit GATT functionality. In section

7.2.1 it is however revealed that this assumption was incorrect when taking the BTM specification

into account.

The consequence of this realizationwas that an eventual implementation of flow control was likely

to consume significantlymore time than initially expected. Additionally, the quality of an eventual

implementation was uncertain, as described in section 7.2.1. Based on these considerations, I

decided to degrade the priority level of the flow control implementation. While the significance

of flow control could be considerable in an ideal GATT bearer solution, the time it would require

to implement it could not be justified within the time limitations of this thesis.

The risk of lacking flow control was initially discussed in the simulation chapter of this thesis(4).

An implementation that lacks flow control might experience that message buffers overflows for

higher transmission rates in the network, potentially causing data loss. Like for the routing feature,

Page 80

7 DISCUSSION

future work should aim to provide flow control for the GATT bearer solution since it is expected

to contribute to the network’s overall performance.

7.2 Changing the BTM Specification

As stated in the introduction to this thesis, one of my main goals for the GATT bearer imple-

mentation software development was to strive to use implementation choices that heed the BTM

specification. I set this goal because I recognize that an eventual request to change the specification

would involve a comprehensive, time-consuming process with an uncertain outcome. Failing to

implement a solution that agrees with the specification would devalue it since the interoperability

between BTM devices manufactured by different vendors is crucial for the market value of these

products.

To the best of my knowledge, the final implementation for this thesis complies with the BTM

specification. In order to achieve this, I have been forced to make certain sacrifices concerning

performance and implementation quality to heed the specification. Nevertheless, since I had to

use a vendor-specific model to control the implementation, I fear that sticking to the specification

did not have the completely intended effect on the final result. While vendor models are within

the confines of the specification, they are not in any way mandatory in an arbitrary BTM product.

Since this alternative bearer solution is dependent on functionality thatmaybe considered optional

from a specification point of view, the commercial value is likely to be significantly less than a

solution where all utilized functionality is mandatory. However, the need for the GPCmodel was

identified already at the preliminary research stage of this thesis(3.3.3), and I can now state that

the implementation would have been unattainable without it.

In this section, I will discuss topics regarding the specification. I will discuss how it has impacted

my work, its potential to provide the functionality I needed, and how the specification could be

changed to enable a simpler and better implementation solution.

7.2.1 Transmission of Data With the Proxy Service

Section 4.3.3 describes how the introduction of BLE connections between devices had the potential

to offer inherent opportunities for flow control in the network. The results of the simulation

chapter showed that the GATT bearer solution encounters buffering issues when running close to

the maximum capable throughput rate. The solution to this problemwas solved in the simulation

model by introducing flow control functionality that ensured that the data flow in the network

would halt if a device’s buffer were full, thus preventing losing messages during the DFU.

When the simulation work was conducted, I was under the impression that the flow control func-

tionality could be provided directly from the BLE core specification. Since the general communica-

tion in GATT is performed over an established link, every message transmission is acknowledged

by the receiver. This enables the possibility for a receiving device in transmission to respond with

an error code if the receiving device’s buffer was full. Whenever the transmitting device receives

this error code, it will know that the target device cannot handle any newmessages at themoment,

making the transmitting device responsible for holding on to the message and retry transmission

at a later time. This would offload the buffering strain to the transmitting device, which in turn

might reject incomingmessages from another device if its buffer is filled. In the DFU scenario used

in the simulation chapter (4.6), the continuation of buffers filling in the network would eventually

propagate back to the origin of the DFU. This would make it stall further message transmissions

until the network has processed and passed a portion of the messages that are filling the buffers.

An issue with this initial plan was discovered during the development phase of the proxy client

module. The BTM profile specification defines the behavior of the Mesh Proxy Data In and Out

characteristics. It states:

«When the client sends a Proxy PDU to the server by executing a GATTWrite Without

Page 81

7 DISCUSSION

Response procedure on this characteristic, the Attribute Value field of the ATT Write

Command packet contains the Proxy PDU.

...

The server can send a Proxy PDU to the client by executing a GATT Notification

procedure on this characteristic. The Attribute Value field of the ATT Handle Value

Notification packet contains the Proxy PDU.»

– BTM Profile Specification[10, p. 279] .

While all messages sent over a GATT connection are acknowledged, certain behavioral differences

depend on the utilized property. As described in section 2.1.3.2, the Write Without Response and
Notify property are unacknowledged properties. They still perform acknowledgment on the radio

level but do not propagate these events to the higher levels of the stack. Therefore, using these

properties to convey messages will make it impractical to introduce flow control using the initial

suggested approach.

Changing these properties to Write and Indicate would solve the issue. Both of these properties

allow the acknowledgment message to be propagated to the GATT level of the stack. This is,

however, a clear violation of the specification. Changing these properties in the specification

would require substantial alteration to any existing implementation of the BTM proxy module.

TheWriteWithout Response andNotify properties are, as of now, themandatory properties required

by the Mesh proxy service. Just swapping these to the Write and Indicate property would most

likely not be possible. The reason for this is that such a solutionwould not be backward compatible

with previous revisions of the specification, meaning that existing BTMproducts using a previous

revision for the proxy modules would not be able to communicate over GATT with the new

revision. A specification revision that requires software updates for all existing BTM products

is not feasible. A more viable alternative would be to include these new properties as optional

to their respective characteristics. Such a solution might be used for a revision that would be

backward compatible with existing BTM products. In this way, the user could choose the new

way of communicating over GATT whenever the hardware allows it and resort to the legacy

solution whenever older devices are present in the network.

Other approaches might provide the desired flow control functionality. One way to solve this

could be achieved by using the GPC to monitor the buffer’s state in the GATT bearer and issue

a message to the sounding devices whenever this buffer is full. This solution is, however, not as

prominent as the original idea. Such a solution would not act directly in response to the ongoing

transmission, meaning that a transmission conducted while the receiver’s buffer is full potentially

would lead to losing messages. When the buffer gets full, the GPC model needs to detect that

the buffer is full and then issue the message telling connected devices to halt the message flow.

The connected devices must then receive these messages before halting the message flow to the

device in question. This procedure will consume a certain amount of time, in which it may

have received several additional messages that might have been discarded due to insufficient

buffer space. Another potential issue is if one or several connected devices simultaneously are

experiencing full buffers. In this instance, a situation can occur where the initial flow control

message is lost by a connected device where the buffer is also full, meaning that it will continue

to forward messages to the origin device. A solution to prevent this situation is to let the devices

issue the message when the buffer is nearly full. This would provide a buffer within the buffer

that gives the devices a small window of time to issue the buffer full message before it is full. The

downside of this approach is that it will cause a poorer message buffer utilization.

As I have shown, it is possible to provide flow control for the system without breaking/changing

the BTM specification. However, such a solution will most likely be of poorer quality than a

solution that could have been provided by using acknowledged GATT properties.

7.2.2 GPCModel

The tasks of GPC the model can be divided into three categories of responsibility:

Page 82

7 DISCUSSION

• Mapping of the network.

• Establishing and maintaining connections.

• Control the ADV bearer.

Here I will go through each of these categories and evaluate what functionality the BTM speci-

fication already can provide and what alterations it needs to undergo to provide the rest of the

required functionality.

7.2.2.1 Mapping of the Network

The mapping of the connection links in the network is a task that can be performed solely using

existing functionality provided by the BTM profile specification. Prior to this thesis, I have

implemented a system that performs similar results as the mapping functionality in the GPC

model. This work has been conducted for Nordic Semiconductor ASA while employed as a part-

time student. This implementationwas based on the functionality of the foundation configuration

models of BTM, more precisely, the heartbeat feature of this model.

According to the BTM profile specification[10, p. 90], the heartbeat feature is originally intended

for two purposes; to see if a node is still active in the network and to tell how far apart (hops) nodes

are from each other. This suggests that the heartbeat feature originally is not intended formapping

the links in a network. It is, however, possible to tweak the feature to provide this information.

Like other BTMmessages, the heartbeat message contains a TTL value that defines how far it can

travel. Setting this parameter to zero ensures that a message may not travel farther than one hop

from the origin. By sending a known number of messages periodically from a transmitting device,

we can see howmany of these messages arrive at the surrounding devices and then assess the link

quality based on the received messages.

While this approach produces comparable data as the implementation of the GPC module, it

comes with a couple of unavoidable drawbacks. The specification states that the minimum period

that must elapse between two heartbeat messages from a single device must be one second [10,

p. 149]. Additionally, a device can only process incoming heartbeats from a single device at a

time. This means that the mapping process must be conducted iteratively. A single iteration

consists of a single device publishing heartbeats while the rest of the devices listen for them. Both

these conditions cause this approach to be considerably more time-consuming than the mapping

implementation of the GPC model. To obtain a sufficient set of data, we must send a certain

amount of heartbeats from the origin device. The time it takes to issue these messages for a

single iteration is defined by IterT = N ∗ 1 s, where N is the number of heartbeats issued. The total

execution time, not accounting for the overhead associated with setup between each iteration, is

defined by TotT = M ∗ IterT, where M denotes the number of devices participating in the network.

To exemplify the impact this has on the execution time we can imagine a network of 100 nodes,

where we want to assess the links based on 50 heartbeat messages. This setup would result in an

execution time of 5000 s ≈ 1.4 h, not including overhead.

I deem it reasonable to state that this execution time is far from ideal. The GPC model can

perform a similar mapping in a fraction of this time because it can parallelize the process and

has no lower restrictions on the period that must pass between issued messages. Reviewing the

development process, I think it was wiser to utilize the vendor model implementation for the

mapping functionality. It enabled me to develop and test the mapping swiftly, making it possible

to complete this work in a reasonable amount of time.

If I were to suggest an alteration to the BTM specification regarding the mapping functionality, I

would have proposed updating the existing heartbeat feature to rectify the shortcomings I have

discussed in this section. This would make it able to offer an inherent mapping feature that can

execute within a reasonable amount of time. I believe that this alteration should be possible to

apply without major alterations to the specification. In my opinion, this is a feature that is not

Page 83

7 DISCUSSION

only relevant for the implementation of this thesis. It would also be quite useful for legacy BTM

use-cases.

7.2.2.2 Establishing and maintaining connections

The task of connection establishment and maintenance is, as stated in section 3.3.3, not provided

by any existing BTM functionality. In general, all BTM configuration tasks are handled by the

configuration models. By reviewing the message specification of this model[10, p. 156], I found

that there are no current messages that are associatedwith the proxy client functionality. I assume

that the reason for this is that the need for GATT proxy connection control on a network level has

not been a commonly requested feature until now. Still, the proxy feature has been present in the

specification for several years and is a commonly used feature. This means that connections must

be controlled in some manner. I believe that the most common way to control the proxy client for

most existing implementations is done through an internal API of each device. This is because the

GATT proxy feature has primarily been used to enable singular devices to access the mesh. The

BTM profile spec confirms this:

«The GATT bearer is provided to enable devices that are not capable of supporting the

ADV bearer to participate in a mesh network.»

—BTM Profile Specification[10, p. 38].

This shows us that the GATT bearer originally is not intended to provide primary communication

in the network but is rather a supplement for devices that cannot communicate with the network

using the ADV bearer.

I would suggest that all messages and their associated behavior described in section 5.3.2 should

be included as a part of the configuration foundation models. This would accommodate generic

network-level control over the GATT connections in the network.

7.2.2.3 Control of the ADV bearer

As for the connection establishment and maintenance functionality, there is currently no way to

control the ADV bearer using existing BTM specification functionality.

As the implementation of this thesis has shown, control of the ADV bearer behavior is a vital

feature to prevent unnecessary strain on the network when utilizing the GATT bearer solution.

While it might be possible to let both bearers coexist, this will be completely redundant in the

homogeneous GATT approach and should therefore be avoided.

Thesemessages and their associated behavior should also be included as a part of the configuration

foundation models to provide this functionality.

7.3 Heterogeneous vs Homogeneous Approach

The implementation of this thesis has strived to provide and support two different topology

approaches for the GATT bearer solution, namely the heterogeneous and homogeneous approach.

In this section, I will assess and discuss the merits and drawbacks of these two approaches,

comparing them with each other. The details of these two approaches are described in section 3.4

of this paper.

Page 84

7 DISCUSSION

7.3.1 Homogeneous Evaluation

The homogeneous approach is the simplest of the two approaches from an implementation point

of view. In this instance, we utilize the GATT bearer exclusively, forming GATT connections

between every participating device in the network. Every device under normal operation will

know the devices it is connected to. This facilitates the implementation of both routing and flow

control in the system. This is because all communication is performed by one bearer, and all links

to other devices are known. Since all devices in the homogeneous approach utilize the GATT

bearer, it is expected that the performance enhancement for throughput and data consistency

will be in accordance with the results that are shown in section 6.2. This results in a significant

performance boost compared to the capabilities of the ADV bearer.

A weakness that the homogeneous approach possesses is that it requires a substantial amount

of initial configuration. This requirement can be expected to grow linearly with the number of

devices in the network. This is because every single link that the network will utilize must be

configured by the user, a procedure that will be time-consuming for larger networks. Additionally,

any alteration, additions, or removals in an existing networkwould require reconfiguration. All in

all, this approach implies a considerable amount of attention from the user that is maintaining the

network. Another consideration is that the network potentially would require devices to maintain

a higher amount of GATT connections on average than the heterogeneous approach requires. As

discovered in section 6.2, the number of GATT connections a single device has to maintain has

a negative impact on the throughput capabilities, potentially decreasing the overall performance

of the network. In general, it should be avoidable to have singular devices that have to maintain

more than three connections in any network(4.6.3.2), but keepingwithin these limitations requires

significant evaluation of the network topology as the magnitude of BTM devices increases.

7.3.2 Heterogeneous Evaluation

Compared to the homogeneous approach, the heterogeneous approach provides a network solu-

tion that presumably will be easier to install, maintain and alter. The reason for this is that this

approach only utilizes GATT connections between the relay nodes of the network, which implies

that a smaller number of nodes needs to be configured to establish GATT connections at the initial

setup. This might also affect the average number of GATT connections each device would need

to maintain, decreasing the strain the device must endure under normal operations. Further,

alteration such as adding, moving, or removing devices in the network is less likely to require

substantial reconfiguration of the network, as long as the device in question is a standard node

that communicates over the ADV bearer. The network will only require reconfiguration if the

changes impact the relay topology in the network. This is the greatest benefit the heterogeneous

approach has over the homogeneous approach, providing a solution that will require significantly

less interaction from the user through the networks’ lifetime.

Unlike the homogeneous approach, this implementation requires both bearers to convey the mes-

sages in the network. This makes the implementation more complex, making it more complicated

to introduce features like routing and flow control. However, the most critical drawback of the

heterogeneous approach is that a combination of both two bearers is likely to have an unfortunate

impact on the overall network performance. This occurred to me while I was conducting the

performance testing for this thesis. Even though the performance testing did not include any

specific testing on the heterogeneous approach itself, the baseline tests’ results alone are enough

to support this claim. I will demonstrate this through an example:

Let us imagine that we are performing a DFU procedure, the example application that has been

utilized for both the simulation and performance testing in this thesis. In section 6.2 we have

established that the GATT bearer can provide a significantly higher throughput performance than

the ADV bearer on a general basis. In a heterogeneous GATT network, the DFU messages will

start from the origin node, flowing through the network’s relay nodes over the GATT bearer.

The message transmissions between relay nodes do not by themselves present any issues. The

problem occurs when we consider that the relay nodes are required to forward all these messages

Page 85

7 DISCUSSION

to the regular nodes surrounding them. This forwarding has to be performed with the ADV

bearer, with the associated communication limitations that this entails. This will effectively create

a bottleneck at each relay node. The incoming DFU messages from adjacent relay nodes arrive

at a rate significantly faster than the rate the node itself can forward messages through the ADV

bearer. After some time, the outgoing message buffer of the ADV bearer on the relay nodes will

be full. At this point, the origin node will have to halt the train of messages, or the DFU procedure

will crash. The conclusion that can be drawn from this is that the network’s throughput
performance is defined by the weakest link in the chain, in this case, the ADV bearer. This

circumstance was not initially accounted for in the simulationmodel and is therefore addressed in

section 7.5 which evaluates the design of the high-level simulation model. I have now shown that

the heterogeneous approach most likely will not benefit from the same throughput performance

enhancement expected for the homogeneous approach.

The question now is if the heterogeneous approach gains any improvement compared to a legacy

BTM network. Fortunately, the benefits regarding data consistency performance are still present

in the heterogeneous approach. By communicating over GATT, the relay nodes can provide a

much higher probability of successful message delivery than relay nodes in a legacy ADV bearer

network. Additionally, the likelihood of successfully delivering messages over the ADV bearer is

also expected to increase to some degree in this scheme since a significant portion of the networks’

communication is offloaded to a separate part of the BLE physical medium. However, it is the

homogeneous approach that will provide the best performance regarding data consistency. This is

because the heterogeneous approach is still dependent on the partial passing of networkmessages

over the ADV bearer, which inevitably has a larger chance of losing messages than the GATT

bearer.

7.3.3 Evaluation Summary

Throughout this evaluation, I have concluded that the homogeneous approach is the preferred

choice in any system where share performance is emphasized. It is the approach that is likely to

provide the best performance with regard to both throughput and data consistency. This comes at

the cost of significant configuration requirements for larger networks. However, in reality, it is the

only one of the two suggested approaches that can provide improved throughput performance.

While the heterogeneous approach will provide improved data consistency for a network com-

pared to a legacy BTM network, the combination of both bearers prevents it from enhancing the

throughput capabilities. Still, this approach could be of interest in networks where throughput

performance is not paramount.

7.4 Assessment of the System Testing

The system testing in this thesis has been crucial to assess the final implementation quality. It

has provided results on both a functional and performance-based level. Here I will evaluate the

combined result of the system testing and discuss how the outcome correlates to the initially set

goals for this thesis.

The functional testing in section 6.1 showed that all aspects of the functional behavior are working

as intended for the implementation. The combined functionality showed that it is possible to form,

configure, and maintain a BTM network partially or solely built on GATT connections between

the participating devices. To the best of my knowledge, all implementation details heed the BTM

specification, meaning that I have achieved the initial goal of an implementation that complies

with the specification.

The functional testing alone has provided proof of concept for a BTM network solution based

on GATT but does not guarantee performance improvement. In difference to the functional test

results, the outcome of the performance testing is more complex and ambiguous. The initial

baseline testing in section 6.2 has, to a large extent, confirmed the assumptions that were made

Page 86

7 DISCUSSION

for the high-level modeling. Here we can see that the GATT bearer can provide a significant

performance boost concerning both throughput anddata consistency compared to theADVbearer,

at least on a single connection basis.

However, the performance testing has shown that the system starts to experience instability at

higher TX rates as soon as more than one GATT connection is maintained by one device. This

instability was already discovered for the three device testing and proved to make it infeasible

to extract consistent performance results for the implementation when introducing a third GATT

connection to a device(6.2.5). The full explanation for why the system starts to struggle under a

higher number of GATT connections is not yet unveiled. It is a field that should be thoroughly

examined in any continuation of this thesiswork. However, certainmeasures can definitely lighten

the workload of devices maintaining several GATT connections. As discussed in section 6.2.5, the

introduction of the routing mechanism would significantly decrease the strain on the devices in

the network. This measure in itself might not be sufficient to ensure complete stability in the

implementation, but it is without a doubt a step in the right direction.

If I were to assess the value of the implementation based on the performance test results alone, I

would claim that implementation as a whole is not ready for actual deployment at this point. The

instability issues under testing for multiple GATT connections have been too severe to be ignored

on that account. Nevertheless, the combined result has shown potential in a BTM network

solution based on GATT connections. Every successfully conducted DFU emulation showed that

the GATT bearer could provide near-perfect data consistency performance. In contrast, the ADV

bearer lost a significant portion of the messages in every test case conducted. The GATT bearer

also showed a much higher potential concerning throughput on a general basis. However, this

assessment is much more uncertain whiøe the instability issues are present in the system. Still,

I am confident that it is possible to provide a BTM network solution that can utilize GATT to

enhance both throughput and data consistency. The testing conducted in section 6.2.4 showed

that a device maintaining two GATT connections was able to perform consistently at a TX rate of

25 ms. Already at this rate, the GATT solution provided a throughput improvement of roughly

15.62%, and a reduction in messages lost from 4.38% to 0%, compared to the 30 ms baseline test

for the ADV bearer5. This result by itself shows a noteworthy improvement in throughput and

a significant improvement in data consistency. If each device is capable of handling two GATT

connections at this transmission rate, it should be possible to form a complete BTM network that

utilizes the chain topology discussed in section 4.6.3.1 of the high-level modeling and simulation.

Full-scale tests for this situation must, however, be performed in order to verify this statement.

Concerning the suggested tree structure from section 4.6.3.2, the current implementation has

shown that it is not capable of supporting this network structure for higher transmission speeds.

Since thiswas evaluated as thepreferable topology solution compared to the chain structure, Imust

concede that it is a shortcoming of the implementation that this topology can not be supported.

However, I believe that it should be possible to realize a solution capable of handling more than

two GATT connections per device for higher transmission speeds. In addition to introducing a

routing mechanism, several configurable parameters inside the BLE stack might help improve the

coexistence of multiple GATT connections. However, exploring this will require more time than

is permitted within the limitations of this thesis.

7.5 Assessment of the High Level Model

After completing the implementation and the associated system testing, I would like to review

the quality of the high-level model and the simulation work for this thesis. The creation of the

high-level model was done in the early stages of this work. It has acted as a guideline for many

decisions made during the process. It was the results of these simulations that finalized the

decision to use the GATT solution as the target approach for the implementation. At this stage,

we can see if the results for the high-level simulation are comparable to the observed results that

are provided by section 6. This enables me to evaluate the merit of the assumptions made for the

5These results are derived from table 11 and 14.

Page 87

7 DISCUSSION

high-level model. Additionally, several realizations have been made during the implementation

work that needs to be addressed concerning this process.

7.5.1 Model Weaknesses, Inaccuracies, and Misconceptions

Here I will present the weaknesses, inaccuracies, and misconceptions that I have discovered

regarding the HL model throughout the thesis work:

7.5.1.1 Heterogeneous Throughput Modeling

One apparent misconception made for the HL model was that the simulation could assess the

throughput capabilities for a heterogeneous network solution. As discussed in section 7.3.2, a

network solution that utilizes both bearers will effectively restrict the throughput capabilities

to the peak performance of the weakest bearer, which in this instance is the ADV bearer. This

realization became clear to me at a late stage in the thesis work, making the initial assumption

for the HL model invalid. The HL model can still provide valid results for data consistency, but

concerning throughput performance, the model cannot assess this metric for a heterogeneous

network solution.

7.5.1.2 Flow Control Assumption

Concerning the introduction of flow control, there was made an inaccurate assumption in the

HL model. In section 4.3.3 I have stated that all GATT messages are acknowledged, an inherent

feature that efficiently can be utilized to introduce flow control in the implementation. While this

statement technically is true, section 7.2.1 reveals that the utilized GATT procedure for communi-

cation is crucial if wewant to exploit this opportunity for flow control. Since the BTM specification

does not permit the use of the required procedures to facilitate flow control, the assumption made

was not entirely accurate. It is possible to introduce flow control for the implementation, but

the assumption of how easily this could be provided in the implementation was not correct. In

difference to the HL model, the actual implementation does not provide any means of regulating

the message flow in the network at this point. This means that any buffer restrictions that were

applied during simulation would not apply to a real scenario with the current implementation.

7.5.1.3 Impact of Multiple GATT Connections

As revealed by the performance testing conducted in section 6.2.5, the number of GATT connec-

tions a single device has to maintain has a significant impact on the throughput capabilities of the

system. The HL model does not account for this, which is a weakness in the model. It would,

however, require a large amount of effort to account for this aspect, which I deem would not have

been feasible within the time limitations of the thesis work. This was a model limitation that I

accepted already at the HLmodeling stage. Ameasure that was taken during the simulation stage

was to ensure that I did not conduct simulations for scenarios where an unreasonable amount of

connections was maintained for a single device.

7.5.2 Predicted vs Observed Result

Two main aspects must be considered when we compare the simulation results to the actual per-

formance results. The first is a comparison for data consistency, while the second is a comparison

where we review throughput performance.

Page 88

7 DISCUSSION

7.5.2.1 Data Consistency

For the simulation result, we have a situationwhere all performed simulations for theGATT bearer

have provided a result where not a single message is lost during execution. By reviewing the per-

formance test results in section 6.2, we can observe that all successfully conducted DFU emulation

provided the same result, not losing a single message during transmission. This indicates that

the HL modeling for the GATT bearer provides a realistic representation for simulation, at least

concerning data consistency.

Assessment of the model for the ADV bearer is a little more complex. The reason for this is that

the simulation environment assumes a constant noise level in the BTM devices soundings of 10%,

which is added to the internal noise created by the BTM network itself. In the simulations, the

average chance of losing a message was roughly between 10% and 13%. The decision of choosing

a constant noise level of 10% was somewhat arbitrary since the main point of the simulation was

to compare the performance between the two bearers in the same environment. Therefore, it is

hard to compare the simulation results directly to the performance results since we do not know

the expected loss chance in the performance setup for the ADV bearer. We must instead see if we

can identify the same tendency in both results.

In table 1 we can see the result from a DFU simulation conducted for the ADV bearer using a

single transmission per message. Node 4 in this simulation is the node adjacent to the origin that

delivered the worst data consistency, with a message loss of 0.845%. If we compare this message

loss to any of the conducted performance tests for the ADV bearer in table 11, we can see that

the simulation result is considerably better than any of these tests. In comparison, the best data

consistency result of these tests was observed at a 2.06% message loss. Keeping in mind that

the performance test was conducted on a desktop setup, where the chance of message delivery

should be near ideal, the assumed message loss chance for the simulation was perhaps somewhat

optimistic. However, both the simulations and the performance testing show the same tendency,

where the ADV bearer struggles to deliver all messages when we are not utilizing retransmission

redundancy. With this in mind, I am satisfied with the data consistency predictions that the

simulation model provided.

7.5.2.2 Throughput

The throughput modeling for both the ADV bearer and the GATT bearer was based on theoretical

throughput capabilities derived from the BLE and BTM specifications. For all ADV bearer simu-

lation the 25 ms peak TX rate was used, in accordance with the findings in section 2.2.4.1. While

the ADV bearer baseline testing in section 6.2.2 showed that it is technically possible to run DFU

emulation at this speed, the message loss at this rate is so high that it for all practical purposes

is infeasible. The testing showed that the Zephyr BTM implementation at most could handle a

TX rate of 30 ms without losing a considerable portion of the messages. In this way, the ADV

bearer baseline test showed that the original assumption for the peak TX rate might have been too

optimistic, using the mean advertising delay to find the peak rate. A better assessment might have

been to use the worst-case advertising delay for the HL modeling, making the peak TX speed for

the ADV bearer model 30 ms.

The TX rate that was used for the GATT bearer modeling was 20 ms. This was a cautious choice

since the research of the BLE specification indicated that the rate could potentially be as low as

7.5 ms(4.3.3). Let us consider only the GATT bearer baseline testing first. In this context, it is clear

that the set TX rate during simulation is well within the boundaries of the capabilities of the actual

implementation. In table 12 we can see that a single connection was able to handle effective TX

rates up to 9.1 ms, which is near the predicted rate of 7.5 ms. However, this assessment does not

consider the instability issues experienced during tests for several GATT connections on a device.

As discussed in section 7.4, the issues associated with multiple GATT connections have a negative

impact on the throughput performance. This is a shortcoming of the model that is described in

section 7.5.1.3.

Page 89

8 CONCLUSION

7.5.3 Summary

To summarize the quality of theHLmodel behavior, I will start by admitting that it has someweak-

nesses. This is mainly associated with the instability issues experienced under the performance

testing, which is an issue that is not yet completely explored. Before this issue is investigated

thoroughly, it is hard to assess the HL model’s quality fully. Still, I think that it has provided

a reasonably accurate depiction of the relative performance between the GATT and the ADV

bearer.

8 Conclusion

The goal of this thesis has been to find an alternative network solution for BTM. This solution

has aimed to rectify the shortcomings that the standard currently inhabits concerning throughput

and data consistency performance. A secondary goal has been to create this solution within the

confines of the BTM specification. Here I will assess and draw a final conclusion for to what extent

the suggested GATT solution has achieved the thesis goals.

8.1 Performance Results

Throughout this thesis, I have shown that it is possible to create a network solution for BTM

that partially or fully utilizes GATT connections for communication between devices. Through

modeling, simulation, and testing, I have shown that a solution based on GATT has considerable

potential for enhancing network performance for both data consistency and throughput.

The observed results from both simulations and performance testing have shown that the GATT

bearer can deliver almost ideal performance when it comes to data consistency, not losing a single

message in any simulation or successfully performed test scenario. This result is achievedwithout

compromising the throughput performance of the system. The simulation work has shown that

the ADV bearer depends on multiple retransmissions to provide similar results as the GATT

bearer, which drastically reduces the throughput performance. With this in mind, it is clear that

the implementation of this thesis is capable of providing significantly better data consistency than

the legacy BTM implementation. Improving the data consistency performance metric has been a

central goal of this thesis. In this regard, I am confident that I have provided an alternative BTM

implementation that has achieved this goal.

The final implementation has also shown promising results when it comes to throughput perfor-

mance. An assessment of this implementation quality is, however, more complex than for the

data consistency performance. The reason for this is because of the instability issues that were

experienced under the performance testing.

As discussed in section 7.4, higher TX rates for test scenarios with multiple GATT connections on

a single device caused the system to fail, either sporadic or consistently depending on the number

of GATT connections maintained. This is an issue that has not been fully investigated or resolved

at this time. The testing for two GATT connections on a single device did, however, provide

consistent results for a TX rate of 25 ms, a rate that provides better throughput performance than

was observed for the ADV bearer testing in section 6.2.2. A configuration that can support two

GATT connections will be sufficient to create a chain network as described in section 4.6.3.1.

This means that it could be possible to achieve a complete BTM network that can provide better

throughput performance than the ADV bearer, but this statement is uncertain until an actual

full-scale test is performed.

Further, the comparison between the baseline testing for both bearers showed that the GATT

bearer, in general, can perform at a significantly higher TX rate than the ADV bearer. Suppose

it is possible to solve the issues related to maintaining several GATT connections. In that case,

Page 90

8 CONCLUSION

I am confident that the GATT bearer solution can provide a substantial boost in throughput

performance. On the background of this evaluation, I have concluded that the results regarding

throughput performance are promising but inconclusive. More research and development are

needed to either verify or reject the idea of utilizing GATT to improve throughput performance

in BTM. I am, however, cautiously confident that further work will prove the merit of the GATT

network solution in this regard.

8.2 Implementation Evaluation

Apart from the performance results, the functional testing has shown that the current implemen-

tation can establish, configure, and maintain a GATT-based BTM network. The implementation

is made so that the network can sustain itself after initial configuration, just like for the legacy

BTM solution. I assess that the combined features of the implementation provide a complete

interface that enables relative ease-of-use for a potential consumer of the product. Nevertheless, I

am concerned that the current solution will not be eligible for the commercial market at this point.

This statement is caused by the current state of the BTM specification.

The main reason it is infeasible to commercialize the implementation of this thesis is not caused

by lacking coverage with the core GATT bearer functionality within the BTM specification but

rather due to the absence of mechanisms to control and maintain a network consisting of GATT

connections. Throughout this thesis, I have shown that it is possible tomaneuver within the GATT

bearer specification boundaries to provide a BTM network that can benefit from a larger portion

of the combined resources that BLE offers. However, the issue occurs as soon as we take the

network configuration into account. As I discovered early on, there is no way to manage GATT

connections on a network level. As discussed in section 7.2.2, the current BTM specification does

not only lack the essential functionality to establish GATT connections in the network. It also lacks

proper coverage of important convenience features like the mapping tool and control of the ADV

bearer behavior. It is now clear that the implementation would have been unattainable without

adding the GPC vendor model. This model has provided near all control features that have made

the implementation functional. Since vendor models are an established concept within the BTM,

I can also claim that the use of this model is within the boundaries of the specification.

Nevertheless, using a vendor model makes this implementation significantly less appealing from

a commercial point of view. Since there is no requirement for any BTM device manufacturer to

add specific vendor models to their products, this solution breaks the concept of interoperability.

Since interoperability is a cornerstone of the BTM specification, the implementation of this thesis

is likely to end up as a novelty from a commercial point of view.

With this in mind, it is appropriate to review the initial goals set for this thesis. In section 1.2 I

stated that the implementation of this thesis should strive to heed the BTM specification. This goal

was set to avoid a situation where the implementation depended on alterations or amendments

to the existing BTM specification. While I have provided an implementation that is technically

within the specification boundaries, I have still concluded that the final solution is deficient from

a commercial point of view. The commercial aspect was one of the main reasons for this goal

in the first place. In pursuing this goal, I have been faced with several decisions throughout

the implementation work where performance considerations have yielded to benefit specification

compliance. The most prominent example in this regard is the facilitation of flow control that is

discussed in section 7.2.1. Deviating from the specification in this instance would have made it

significantly easier to implement flow control and would most likely provide a better solution.

Another example is extended advertising, an option that was disregarded early on since the BTM

specification did not cover it. Since the specification compliance goal did not provide a completely

satisfactory result, it would have been interesting to see what solution could have been realized if

performancewas the only emphasizedmetric. Most of the improvementsmentioned abovewould

have been possible by changing the specification compliance goal from the BTM specification to

the BLE core specification, still providing a BLE-compatible solution.

Page 91

9 FUTURE WORK

However, the work of this thesis has shown the potential that a GATT bearer network solution

inhabits. While the complete implementation is not a finalized product, it has proved the concept

of creating a BTM network solution that utilizes the GATT bearer. In this way, the thesis has

established a foundation that future work might expand on.

9 Future Work

9.1 Reduction in Power Consumption for BTM

A drawback of using the ADV bearer in BTM is that this entails almost constant monitoring of the

scanner to ensure that a device can receive any incoming message:

«A device supporting only the advertising bearer should perform passive scanning

with a duty cycle as close to 100 percent as possible in order to avoid missing any

incoming mesh messages or Provisioning PDUs.»

—BTM Profile Specification[10, p. 38].

Running the radio module of a device is generally a power-consuming task, making the opera-

tion time of any battery-driven device relatively short compared with other devices that utilize

conventional BLE operations. Even though BTM does provide a low power feature(2.2.1.3), it

is commonly known that the standard, in general, is associated with high power consumption.

Swapping the ADV bearer with a network solution that solely utilizes the GATT bearer could

facilitate an implementation where it is possible to save considerable amounts of power in a BTM

network. As the name implies, BLE is a standard that emphasizes low power consumption during

operation. With the introduction of link-based communication, it could be possible to let the

devices of a BTM network sleep for a large portion of the operation time, thus reducing the power

consumption considerably.

While this concept has not been targeted in this thesis, it is potentially an addition to the list of

performancemetrics that can be improved by changing the bearer layer operations of BTM. Future

work expanding on this thesis could examine if it could be possible to implement a BTM network

where it is possible to operate with considerably lower power consumption.

9.2 Mapping and Configuration Algorithm

Section 5.3.1 and 5.4.3 describes the mapping functionality, and the mapping tool I developed

during this thesis. These tools were crucial in providing data that enabled me to find a suitable

connection topology between the devices in the network. However, selecting the topology in this

instance had to be done manually, selecting each link before issuing the command to establish the

connection. This task is cumbersome and time-consuming and also requires a decent amount of

experience and know-how from the configurator.

A wast improvement to this scheme would be to develop and implement an algorithm that

autonomously could execute the mapping sequence, find a connection configuration that allows

communication between all devices before issuing the connection configuration to the devices of

the BTM network. Depending on the use case and requirements of the network, the algorithm

may be set to find a solution that fulfills a minimum requirement. For BTM networks that are not

required tooperate at peakperformance, itwouldbe sufficient for the algorithm tofindandprovide

one of several possible configuration schemes that fulfill the set requirements. This approach

might result in a less computationally heavy algorithm than an algorithm that always opts for the

ideal configuration solution, making the demand on hardware resources and computation time

significantly less. It might even be possible to make the algorithm so lightweight that it could

be implemented directly in BTM devices, making the need for third-party device involvement

Page 92

9 FUTURE WORK

obsolete. Alternately, the algorithm could also be implemented on a smartphone and interact

with the BTM network over a GATT connection.

An integrated solution for this functionality would be beneficial from a marketing point of view.

An attractive feature of electronic products on the market is that they are implemented with plug-

and-play principles, meaning that the product should require as little interaction with the user as

possible to reach its operational state. Suppose a mapping and configuration algorithm could be

integrated directly into a participating device of the network. In that case, the consumer might

utilize a smartphone application to start the mapping sequence, and the device will take care of

the rest.

Alternatively, if the implementation of a functioning lightweight algorithm should prove to be

difficult, the algorithm could be implemented for a smartphone application and interact with the

BTM network over a GATT connection. The common smartphones of today are equipped with

hardware that is capable of handling a much larger workload than the hardware that a traditional

BTM device can handle. By following this approach, we would offload the computationally heavy

tasks of the algorithm from the BTM network.

Interestingly enough, the benefits of a mapping and configuration algorithm might also prove to

be useful for legacy BTM networks. As described in section 2.2.1.2, a traditional BTM network

mainly utilizes the ADV bearer, which does not in itself require any particular configuration to

communicate with other devices. However, there are several configuration features and param-

eters that affect the performance of these networks as well. The main configurable feature is the

relay node feature. The relay nodes are responsible for propagating messages throughout the

network, with a similar role as the proxy client module inhabits in the implementation of this

thesis. The selection of the number and distribution of relay nodes is crucial for the network to

operate properly. Too few relay nodes might result in messages not reaching their destination,

while too many may cause a higher degree of internal noise which will stress the network. An-

other configurable parameter is the retransmission count, which has similar concerns as for the

selection of relay nodes.

When configuring a legacy BTM network, the goal is to find a configuration that balances the

network’s need for redundancy to ensure message delivery while simultaneously preventing that

the network produces so much traffic that it starts to experience problems with internal noise.

Just like for the GATT bearer solution, this could be provided by a mapping and configuration

algorithm. It could be built on the same principle of collecting data for the links in the network

and produce a sufficient configuration based on this data. The complexity of such an algorithm

could vary, spanning from a simple algorithm for picking the right relay nodes to an algorithm

that accounts for the relay nodes, retransmission count, and even TTL values of different models

on each device.

Page 93

A NCS SOURCE CODE

Bibliography

[1] Mohammad Afaneh. Bluetooth Low Energy: A Primer. Retrieved: 2021-03-16. url: https:
//interrupt.memfault.com/blog/bluetooth-low-energy-a-primer.

[2] Nordic Semiconductor ASA.About the nRF Connect SDK. Retrieved: 2021-05-12. url: https:
//developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/introduction.
html#.

[3] Nordic Semiconductor ASA. Bluetooth mesh – A scalable mesh technology. Retrieved: 2020-10-
07. url: https://www.nordicsemi.com/Products/Low-power-short-range-
wireless/Bluetooth-mesh.

[4] Nordic SemiconductorASA.nRFMesh. Retrieved: 2021-03-25.url:https://www.nordicsemi.
com/Software-and-tools/Development-Tools/nRF-Mesh/GetStarted.

[5] Nordic SemiconductorASA.nRF52DK. Retrieved: 2021-05-10.url:https://www.nordicsemi.
com/Software-and-Tools/Development-Kits/nRF52-DK.

[6] K. Townsend - C. Cufi - Akiba - R. Davidson. Getting Started with Bluetooth Low Energy.
O’Reilly, 2014.

[7] NetworkX developers. NetworkX – Network Analysis in Python. Retrieved: 2021-05-12. url:

https://networkx.org/.

[8] Bluetooth Special Interest Group. Bluetooth Core Specification. Retrieved: 2021-03-16. url:

https://www.bluetooth.com/specifications/bluetooth-core-specification/.

[9] Bluetooth Special Interest Group. Mesh Model Specification 1.0.1. Retrieved: 2021-03-16. url:

https://www.bluetooth.com/specifications/mesh-specifications/.

[10] Bluetooth Special Interest Group. Mesh Profile Specification 1.0.1. Retrieved: 2021-03-16. url:

https://www.bluetooth.com/specifications/mesh-specifications/.

[11] NovelBits. Bluetooth 5 Advertisements: Everything you need to know. Retrieved: 2021-05-01. url:

https://www.novelbits.io/bluetooth-5-advertisements/.

[12] Zephyr Project. Zephyr Project Documentation – Introduction. Retrieved: 2021-05-12. url:

https://docs.zephyrproject.org/latest/introduction/index.html.

[13] Zephyr Project. Zephyr Project Documentation – Shell. Retrieved: 2021-04-21. url: https:
//docs.zephyrproject.org/latest/reference/shell/index.html.

[14] Saleae. Saleae Technical Specification. Retrieved: 2021-05-10. url: https://www.saleae.
com/.

[15] A. Storrø. Bridging Home Automation and Bluetooth Mesh for Nordic Devices. NTNU, 2020.

[16] Nordic Semiconductor ASA Trond Einar Snekvik. Inteview – Trond Einar Snekvik. Retrieved:
2021-05-05.

[17] Wikipedia. Tera Term. Retrieved: 2021-04-21. url: https://en.wikipedia.org/wiki/
Tera_Term.

A NCS Source Code

The final code from the development in this thesis can be found on GitHub.

For the GPCmodel implementation and application code, the source code can be found under the

following link:

https://github.com/Andrewpini/sdk-nrf/tree/anders_master_nrf_rev2

As a guideline for finding the relevant code, any reviewer can look at the following source files.

• include/bluetooth/mesh:

Page 94

https://interrupt.memfault.com/blog/bluetooth-low-energy-a-primer
https://interrupt.memfault.com/blog/bluetooth-low-energy-a-primer
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/introduction.html#
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/introduction.html#
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/introduction.html#
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/Bluetooth-mesh
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/Bluetooth-mesh
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Mesh/GetStarted
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Mesh/GetStarted
https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52-DK
https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52-DK
https://networkx.org/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/mesh-specifications/
https://www.bluetooth.com/specifications/mesh-specifications/
https://www.novelbits.io/bluetooth-5-advertisements/
https://docs.zephyrproject.org/latest/introduction/index.html
https://docs.zephyrproject.org/latest/reference/shell/index.html
https://docs.zephyrproject.org/latest/reference/shell/index.html
https://www.saleae.com/
https://www.saleae.com/
https://en.wikipedia.org/wiki/Tera_Term
https://en.wikipedia.org/wiki/Tera_Term
https://github.com/Andrewpini/sdk-nrf/tree/anders_master_nrf_rev2

B HIGH LEVEL MODEL SOURCE CODE

– gpc.h — Common header file for the GPC model (new)
– gpc_srv.h — Header file for the GPC server (new)
– gpc_cli.h — Header file for the GPC client (new)

• subsys/bluetooth/mesh:

– gpc_srv.c — Source file for the GPC server (new)
– gpc_cli.c — Source file for the GPC client (new)

• samples/bluetooth/mesh:

– gatt_cfg — Folder for the GATT solution configuration tool application (new)
– proxy_cfg_srv — Folder for the GATT solution device application (new)

For the BTM stack implementation and modification, the source code can be found under the

following link:

https://github.com/Andrewpini/sdk-zephyr/tree/anders_master_rev2

As a guideline for finding the relevant code, any reviewer can look at the following source files in

the subfolder subsys/bluetooth/mesh:

• proxy_client.h — Header file for the proxy client (new)

• proxy_client.c — Source file for the proxy client (new)

• net.c — Source file for the network layer module (modified)

• beacon.c — Source file for the beacon module (modified)

• adv.c — Source file for the adverting bearer (modified)

For any questions regarding this code, please refer the contact information provided on the front

page of this paper.

B High Level Model Source Code

The high level model source code from the development in this thesis can be found on GitHub

under the following link:

https://github.com/Andrewpini/mesh_hl_sim

For any questions regarding this code, please refer the contact information provided on the front

page of this paper.

Page 95

https://github.com/Andrewpini/sdk-zephyr/tree/anders_master_rev2
https://github.com/Andrewpini/mesh_hl_sim

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Anders Storrø

GATT Based Network Solution For
Bluetooth Mesh

Master’s thesis in Electronic Systems Design
Supervisor: Arne Morten Midjo

June 2021

M
as

te
r’s

 th
es

is

	Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Project Scope

	Theory
	Bluetooth Low Energy
	BLE Stack
	GAP
	GATT

	Bluetooth Mesh
	General Overview
	Bluetooth Mesh Stack
	GATT bearer
	BTM Advertising Message Format and Capabilities

	Preliminary Research
	ADV bearer Performance Assessment
	Device Firmware Update Use-Case
	Implementation Approach
	Approach Research
	Communication Over GATT
	Control of the GATT Network

	GATT Network Topology

	High Level Modeling and Simulation
	Simulation Environment
	General Simulation Conditions
	Modeling Transmission behavior
	Common Behavior
	ADV bearer Solution
	GATT Bearer Solution

	Modeling Noise
	Uniform Noise
	Internal Noise

	Simulation Output Data
	Simulation Results
	Simulations for Network Alpha
	Simulations for Network Beta
	Topology Exploration for the GATT Bearer
	Simulation Summary

	Development
	Development Environment
	Proxy Client Module
	Beacon Handling
	Connection Establishment and Discovery
	Interfacing With the Proxy Client Module

	GATT Proxy Configuration Model
	Mapping Functionality
	Connection Establishment and Maintenance
	Controlling the ADV bearer

	Utility Tools for Test and Development
	GPC Client Terminal
	GPC Test Commands
	Mapping Assessment Program
	Miscellaneous

	System Testing
	Functional Testing of the System
	Mapping and Configuration Assessment
	Heterogeneous Configuration Testing
	Homogeneous Configuration Testing
	Introduction of Unforeseen Events
	Function Test Summary

	Performance Testing
	Test Setup
	ADV bearer baseline
	GATT bearer baseline
	Three Devices GATT Bearer Performance
	Four Devices GATT Bearer Performance

	Discussion
	Limitations of the Final Implementation
	Internal Routing
	Flow Control

	Changing the BTM Specification
	Transmission of Data With the Proxy Service
	GPC Model

	Heterogeneous vs Homogeneous Approach
	Homogeneous Evaluation
	Heterogeneous Evaluation
	Evaluation Summary

	Assessment of the System Testing
	Assessment of the High Level Model
	Model Weaknesses, Inaccuracies, and Misconceptions
	Predicted vs Observed Result
	Summary

	Conclusion
	Performance Results
	Implementation Evaluation

	Future Work
	Reduction in Power Consumption for BTM
	Mapping and Configuration Algorithm

	Bibliography
	NCS Source Code
	High Level Model Source Code

