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Abstract

With the end of Dennard Scaling and the imminent end of Moore’s Law, the
search for new ways to improve performance in computing systems is increas-
ing. Nowadays, the main approach is to use hardware accelerations to offload
the application. However, while this is a power-efficient approach, their develop-
ment process is costly and time-consuming. In this Thesis, we have implemen-
ted a hardware accelerator for LBM, what we initially expected to be one of the
most accelerator-friendly benchmarks of SPEC CPU 2017. We have implemented
it in a Field Programmable Gate Array (FPGA) using High-Level Synthesis (HLS),
which simplifies the developing process. With our acceleration strategy we have
achieved speedups between 1.3× and 1.5× relative the software implementation
for realistic data sets. Moreover, we have analyzed HLS and found out that, while
it actually simplifies the developing process, this is still not trivial. Developers still
need to know and understand the target architecture and guide tool if we want
to achieve near-optimal results.
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Sammendrag

Det er ikke lenger mulig å anvende Dennard’s prinsipper til å skalere integrerte
kretser, og det forventes at Moore’s lov snart vil opphøre. Dette har ført til en
voldsom interesse for nye metoder for å oppnå ytelsesforbedring i datamaskiner.
Dagens hovedtilnærming er å benytte akseleratorer — spesialiserte kretser som
er spesielt effektive for en spesifikk applikasjon eller et applikasjonsdomene. Selv
om akseleratorer er effektive, er de også tidkrevende og kostbare å utvikle. I
denne oppgaven har vi implementert en akselerator for den antatt aksellerator-
vennlige SPEC CPU 2017 applikasjonen LBM. Akseleratoren er realisert i en Field
Programmable Gate Array (FPGA), og for å forenkle utviklingsprosessen har vi im-
plementert akseleratoren ved hjelp av High-Level Synthesis (HLS). Akseleratoren
forbedrer ytelsen med mellom 1.3× og 1.5× for et realistisk datasett sammen-
liknet med kjøre applikasjonen på en vanlig prosessor. Videre har vi vurdert HLS
som implementasjonsmetode mer generelt og kommet til at selv om den forenk-
ler utviklingsprosessen betraktelig må utvikleren fortsatt ha en god forståelse av
applikasjon, målarkitektur og utviklingsverktøy for å oppnå et godt resultat.
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Chapter 1

Introduction

1.1 Current Landscape of Computer Architecture

The field of computer architecture has seen a huge development since the creation
of the first general purpose electronic computer in 1945. Parameters such as per-
formance, power consumption and size have been greatly improved since then.
An important factor of this progress is the improvement in manufacturing techno-
logy. Manufacturers were able to constantly increase the transistor density of our
chips, while keeping the power density constant and increasing the frequency at
which they work.

In 1965, Gordon Moore made the observation that the number of transistors
in a chip would double every year [1] and, in 1975, he reviewed his observation,
saying that said number would double every two years [2]. This prediction held
true for several decades, and it is now known as Moore’s Law. In 1974, Dennard
et al. analyzed the scaling of MOSFETs, and how they can be reduced in size [3].
Here they described how threshold voltage can be reduced together with the tran-
sistor size, thus making possible to also reduce voltage supply. Therefore, while
transistors get smaller, and thus transistor density increases, the power density
can remain constant. This is known as Dennard scaling.

We have leveraged Moore’s Law and Dennard scaling for decades, but we are
reaching the end of this ride. Dennard scaling ended around 2004 [4], not be-
ing possible to further decrease the voltage supply due to the proximity of the
threshold voltage. Moreover, we are also facing the imminent end of Moore’s Law.
With this, the performance growth seen in recent decades, with over 50% increase
per year, is stagnating, as seen in Fig 1.1.

Now we are facing the power wall. The end of Dennard scaling meant that
the power density started to increase as the transistor size decreased. This lead to
the point were power dissipation is becoming an issue. Nowadays it is common
to under-utilize the transistors available, being those transistors unused during a
certain application execution known as Dark Silicon [6]. Moreover, with growing
importance of embedded and IoT devices, energy and power have become the
main design constraints.

1
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Figure 1.1: Growth in processor performance over 40 years (Reproduced from
[5])

The approach initially taken to solve this was the use of multicore architec-
tures, no longer focusing only on instruction-level parallelism, but giving more
importance to data- and thread-level parallelism. However, this approach is also
facing limitations, mainly finding applications with a level of parallelism high
enough that can take advantage of hundreds or thousands of cores, as it is ex-
plained by Amdahl’s Law [7]. This was later reviewed by Gustafson [8], in what
is known as Gustafson’s law. This new analysis defends that the parallelism is not
a problem as long as we can scale the data proportionately to the cores, but that
the bottleneck will be in the memory bandwidth, as we may not be able to feed
all the cores.

Against this new obstacle, the approach taken is the use of hardware accel-
erators: circuits highly optimized for executing specific algorithms as fast and ef-
ficiently as possible. This is a trade-off of area against performance and energy
efficiency [9]. These accelerators are also known as Domain Specific Accelerators
(DSAs). They allow to take advantage of the specific characteristics of the target
application, and provide an architecture more suited to it. An important consid-
eration about DSAs is that are not designed to accelerate full applications, but to
target small compute-intensive kernels. This way is possible to obtain the max-
imum performance improvement with minimal area increase. Areas where DSAs
have great importance are machine learning, with special focus on deep neural
networks [10], and Iterative Stencil Loops (ISLs), key kernel in many High Per-
formance Computing (HPC) applications [11].

However, the design process of these accelerators is costly and time-consuming.
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FPGA-based
subsystem

CPU-based
subsystem

Main memory

Figure 1.2: Simplified platform block diagram

While designing DSAs, there are two main obstacles: their complexity and the eco-
nomical feasibility. Overcoming these obstacles is one of today’s main challenges
for computer architects.

1.2 Assignment Interpretation

In this thesis, we will continue with the work done in [12]. The goal is to design
and implement a hardware accelerator for LBM, one of the benchmarks in SPEC
CPU 2017. We chose this specific benchmark because it appeared to be one of
the most accelerator-friendly SPEC benchmark, as it spends 99% of the time in a
single function. However, while we can easily deduce what we need to acceler-
ate, how to do so is not an easy task. Here, we aim to make efficient use of the
bottleneck resources in the target platform. Said platform offers a heterogeneous
architecture, with a processor-based subsystem and a reconfigurable fabric, both
sharing main memory, as seen in Fig. 1.2.

In our previous work we have profiled the application, running it single core
of the target platform. This analysis of both the algorithm and the original imple-
mentation is presented once again in Ch. 3.

For this Thesis, we have interpreted the assignment text to ask us to address the
following three tasks:

T1 Propose and implement a hardware accelerator for LBM.
T2 Evaluate how the accelerator utilizes the resources of the target architec-

ture.
T3 Do so using HLS, and evaluate the utilization of this tool as a way to simplify

the development process.
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1.3 Contributions

To begin with, for addressing task T1, we have proposed several acceleration
strategies. We have initially started with a simple one, implemented it, and then
iterated over it, finding its weak points and trying remove them. For the imple-
mented proposals, we compared them to the original software implementation,
and analyzed the results.

Besides implementing these hardware accelerators and analyzed their results,
we have also analyzed how efficiently they use the resources available, where are
the bottlenecks, and what is the margin for improvement, thus addressing task
T2.

While doing this, we were taking note of the advantages and disadvantages of
using HLS. This way, we have been able to contrast our initial expectations with
our actual experience, as well as answering task T3.



Chapter 2

Background

As we said in the Sec. 1.1, the design process of hardware accelerators is costly and
time-consuming. While designing DSAs, there are two main challenges hardware
developers have to face: overcoming their complexity and doing so while also
being economically feasible.

2.1 Transparent Acceleration

Regarding the complexity, designing no longer requires the traditional skill set
of hardware designers. Until recently, they just needed to focus on the hardware
side, as they had an instruction set architecture to separate them from the soft-
ware. However, nowadays this is not enough, and they require also knowledge of
algorithms and application domains. This is needed to understand which parts of
the application can be offloaded and how this can be done. It is no longer purely
hardware design, but hardware/software co-design.

To solve this problem appears the concept of transparent acceleration, which
aims to offload the application with minimal effort. The ideal would be to write
the code in a high-level language, and then the tool transparently offloads the
application into an accelerator. While there are domain specific frameworks and
languages that can do this, it is not clear if it can be extended to general purpose
code. As it is hardware/software co-design, it is divided in two main areas: the
architecture and the framework.

2.1.1 Architecture

Traditional DSAs sacrifice programmability to improve performance and/or power
efficiency. This implies that it is harder to map different kernels to the same hard-
ware. The more specific an accelerator is, the better it will perform for its target
application, but the more difficult it will be to offload similar applications to it,
and the improvements achieved for these applications will be smaller. If we want
to achieve the highest speedup possible for different applications, we would have

5
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to design different accelerators, which would increase both design and validation
costs and time, as well as area consumption [13].

To solve this issue there are approaches such as LSSD [14, 15]. In this work,
Nowatzki et al. propose a programmable architecture which achieves good per-
formance and efficiency while still providing a certain degree of programmability.
Although it is not as area efficient as a traditional DSA, it can be used to replace
several of them, thus achieving a better area efficiency in total. This way, the effort
needed to develop several highly specific accelerators can be reduced to develop a
more programmable one, but still obtaining good performance and power results.

2.1.2 Framework and other software tools

On the software side, the idea is to use frameworks and other software tools to
simplify the offloading process. Frameworks which support this are able to com-
pile the code and map the algorithm to the target application, or make use of HLS
to generate the Register-Transfer Level (RTL). They can also handle the hard-
ware/software interfaces, as well as the memory accesses. In short, they bring the
problem to a higher abstraction level. This way, many of the hardware details that
would have been taken care of manually are simplified out of the development
process. In this area there are some works [16–18], but in most of the times these
tool are not yet enough. The designer still needs to adapt the algorithm so that the
tool can properly map it onto the target architecture, or generate the RTL design
for the kernel and the hardware/software interface. Commercial approaches, such
as Xilinx’s Vitis, also suffer from these problems.

Other software tools that can be used are Domain Specific Languages (DSLs).
General purpose languages may not be able to express the particularities of the
target architecture, so that the algorithm cannot be properly mapped, or the gen-
erated hardware is not the one the developer had in mind. The use of DSLs can
help overcoming this barrier, as they can properly express the inherit parallelism
of the application.

2.2 Field-Programmable Gate Arrays

In addition to the increased complexity, the other main barrier for hardware ac-
celerators is to design and produce them while being economically viable. The
non-recurring engineering costs for designing and manufacturing the Application-
Specific Integrated Circuits (ASICs) are really high. Therefore, they need a high
volume domain such as graphics or machine learning to be amortized [11, 19,
20].

For low and medium volumes, a feasible alternative is to use reconfigurable
chips, such as FPGAs. These devices are integrated circuits composed mainly of
multiple Configurable Logic Blocks (CLBs), an interconnect network and I/O ports.
Programming these devices means configuring the logic blocks so that they will
behave according to the RTL. How this blocks are configured is vendor dependent.
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CLB CLB

CLB CLB

Figure 2.1: Simple FPGA layout

While their performance is not as good as their ASIC equivalent (with the same
manufacturing technology), they have lower non-recurring engineering costs and
are more flexible, being possible to reuse them in the future without needing
to buy new devices. Moreover, nowadays manufactures produce hybrid archi-
tectures, providing both CPU and FPGA on the same chip, such as the Zynq-
UltraScale+ from Xilinx.

As we just mentioned, FPGAs consist in several CLBs connected with an inter-
connect network, not only with other CLBs, but also with I/O ports, as exemplified
in Fig. 2.1. As for what it is inside the CLBs, it is vendor dependant. In the case of
Xilinx UltraScale+, it implements function generators as six-input Look-Up Tables
(LUTs), with two independent outputs each. Each CLB contains 8 LUTs and 16
flip-flops, as well as arithmetic carry logic and multiplexers. Moreover, some CLB
slices contain distributed RAM, bringing memory next to computation. Another
important component of Xilinx FPGAs’ fabric are Digital Signal Processing (DSP)
slices, which implement operations in hardwired hardware. In this architecture,
DSPs implement a 27x18-bit signed multiplication, followed by a 48-bit adder/ac-
cumulator. Moreover, they have a 27 bit pre-adder. Besides the distributed RAM
in the CLBs, UltraScale+ devices come with block RAM: dedicated 36kb blocks,
with two read and write ports. By cascading them, we can generate much more
larger memories on the fabric. Regarding the frequency, this is customizable in
the FPGA. It has specific clock busses, but we can configure which frequency goes
through them.
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2.3 Benchmark suites

Up until now we have discussed the development of computer architecture un-
til today, as well as the challenges we are currently facing. A key parameter to
analyze this development has been the performance. Therefore, it is needed to
establish a way to measure it. Performance can be defined as the reciprocal of
execution time, and the best way to measure it is to benchmark it against real
applications [4]. While benchmarking individual applications can lead to unfair
situations, specially for general purpose architectures, they can be collected to-
gether in benchmark suites. These suites have the advantage that the weakness
of any individual benchmark can be compensated by the others. Examples of this
are PARSEC, Rodinia and MachSuite.

Between the most popular benchmarks suites are the ones provided by SPEC, a
non-profit organization formed in 1988 to establish, maintain and endorse stand-
ardized benchmarks [21]. Their benchmarks have evolved together with the com-
puter architecture, and nowadays they offer a wide range of benchmark suites to
cover multiple areas and requirements.

2.4 Accelerating LBM

Among the different benchmarks suits provided by SPEC, one of the most known
ones is SPEC CPU, dating its last version from 2017. One specific benchmark in-
cluded in this suite is LBM. This algorithm is presented in detail in Ch. 3.

Being part of this popular suite, starting from the 2006 version, there is already
previous work in accelerating algorithm. Sano et al. proposed an acceleration
strategy, although for the 2D version of the problem, using an FPGA[22]. In their
work, they propose to stream the data in multiple cycles (3 values in parallel per
cycle), to optimize the bandwidth usage without saturating it. In later work, they
extended this to a cluster of FPGAs [23]. While they have done so using different
vendors for both the actual hardware and IPs, they still had to write low level HDL
code in Verilog.

Leaving FPGAs, Ren et al. proposed an optimized implementation in GPUs
[24]. In this case, they used the 3D version of the algorithm, as in the SPEC CPU
benchmark. This work also places great importance in establishing a good memory
strategy.



Chapter 3

Lattice Boltzmann Method

In this chapter we will analyze the LBM algorithm, as well as its software imple-
mentation. The contents of this chapter were the focus of our previous work [12],
which this Thesis continues. We have included this here for completeness. Secs.
3.1 and 3.2 have been barely changed, while Sec. 3.3 is the summarized version
of the corresponding section in the previous work.

3.1 The Mathematical Model

The Lattice Boltzmann Method (LBM) is an algorithm widely used in the field
of computational fluid dynamics (CFD) for fluid simulation. Compared to tradi-
tional algorithms in this field, which do the calculations based on macroscopic
properties, LBM makes use of micro-particles to establish a velocity model. Then,
based on the statistical physics method, it obtains the macro-flow characteristics
according to probability distribution functions [25].

In the computational model, the simulated fluid is placed into a grid, repres-
enting the simulation space, and divided into cells placed at its nodes, representing
the particles. The distribution function used can be expressed as f (~x , ~u, t), where
~x represent the position in the space, ~u represents the particle’s velocity and t
represent the time [27]. With this, the idea is to calculate the probability f of a
particle with speed ~u appearing in position ~x at time t. Here, the micro-particle
motion model is obtained from the Boltzmann equation:

δ f
δt
+


~u , ∇ f
·

=
1
λ

�

f − f (0)
�

(3.1)

Particles move in the discrete space with a certain probability and in several
directions, colliding with others. This is done with two operations per time step:
stream, where the data from neighbouring cells are retrieved, and collide, where
the new values are computed. This update process is represented in Fig. 3.2a
for a 2D space with 9 speed directions (D2Q9). However, this can also be done
otherwise, reading the values from the central cell and calculating the values for
the neighbouring cells, as seen in Fig. 3.2b.

9



10 M. Vázquez Maceiras: Accelerating LBM

Figure 3.1: Flow of a fluid through a space with spherical obstacles (Reproduced
from [26])

There are different space models for LBM, both in 2D and in 3D. In this case,
a D3Q19 model is used: it represents a 3D space and every cell has 19 speed
directions. A cell in this model is represented as seen in Fig. 3.3. Here it is possible
to observe that every speed vector points to the opposite one in the neighbouring
cell (except the one in the center), thus modeling collisions.

3.2 SPEC CPU Implementation

The LBM algorithm to optimize is the one provided by SPEC CPU, and developed
by Thomas Pohl in C [28]. This is a problem based on an ISL, key kernel in many
HPC applications [11]. This type of kernel iteratively modifies the elements of an
array, taking the values from the current iteration step to compute the values of
the next one.

In this specific implementation of LBM, it works as shown in Alg. 1. In this
case, the stencil is the collide-stream operation and the iteration step is the time
step. Then, there are two possible variations of the kernel: the Bhatnagar Gross
and Krook (BGK) and the Two-Relaxation-Time (TRT). The latter is the one used
in the SPEC benchmark and, therefore, the one that will be analyzed here. The
pseudo-code for this stencil is in Algorithm 2. Fig. 3.4 is the data dependency
graph for this kernel.

In this implementation, cells are sorted starting by their z coordinate, then by
their y coordinate and finally by their x coordinate, as exemplified in Fig. 3.5.
Each cell consists of 20 values: 19 for the speed vectors, as seen in Fig. 3.3, and
one extra to use as a flag. All of this is stored into a 1D array instead of on a 4D
one, thus being needed just one pointer for the whole grid. The data type used is
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Algorithm 1 Main LBM ISL

1: for step in time_steps do
2: for cell in array do
3: col l ides t ream(src[], dst[])
4: end for
5: Swap arrays
6: end for

Algorithm 2 Collide-stream kernel

1: if cell is obstacle then
2: dst[] = src[]
3: end if
4: ρ =

∑

(src[])
5: ux =

�∑

(src[i] · Cx i)
�

/ρ

6: uy =
�∑�

src[i] · Cyi

��

/ρ

7: uz =
�∑

(src[i] · Czi)
�

/ρ

8: if cell is accel then
9: ux = 0.005

10: uy = 0.002
11: uz = 0.000
12: end if
13: u2 = 1.5 ·

�

ux · ux + uy · uy + uz · uz

�

14: for vector in cell do
15: f eqs[vector] = f (ρ, ux , uy , uz , u2)
16: f eqa[vector] = f (ρ, ux , uy , uz)
17: f s[vector] = f (src)
18: f a[vector] = f (src)
19: end for
20: for vector in cell do
21: dst[vector] = f (src, f eqs, f eqa, f s, f a)
22: end for
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(a) Stream - Collide

(b) Collide - Stream

Figure 3.2: Operations performed by LBM

Figure 3.3: D3Q19 cell

double floating precision, for both the speed vectors and for the flags. With all of
this, a grid is represented as an array such that Arra y Size = dx × dy × dx ×20×
sizeo f (double). The memory for this array is allocated dynamically with malloc.
Moreover, extra space is allocated for supporting padding, thus solving the issue of
dealing with the borders. As the grid is stored in a 1D array, calculating the index
for the required speed vector is not trivial. Thus, several macros are provided for
handling this complexity.

In each iteration step, the grid is traversed through all its cells. After doing the
computations for the corresponding cell, the speed vectors of the neighbouring
cells have to be updated. While the classic and intuitive stream-collide approach
would be to update the central cell with values from the neighbouring cells, this
would have some negative implications: for each time step, a single cell would take
part in the update process of 19 different cells, including itself. Thus, all its values
would have to be loaded 19 times. However, these values are used to calculate
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src(19)

rho

u_x
u_y
u_z

u_2

feqs(19) feqa(19)

fs(19) fa(19)

dst(19)

Figure 3.4: LBM Kernel data dependency graph. Between brackets, number of
elements in the array.

some intermediate parameters, which are then used to update the speed vector of
the central cell, all within the same kernel. These intermediate parameters are the
same for all the update cases, and thus loading the needed values and calculating
them every time should be avoided. By calculating the intermediate parameters
of the central cell and then sending the value to the neighbouring cells, this is
avoided. Therefore, this algorithm implements the collide-stream method shown
in Fig. 3.2b, and not the classical stream-collide method as in Fig. 3.2a.

Also, the update cannot be done overwriting the values of the currently tra-
versed grid, as some of those values still need to be read within the same iteration.
The approach taken here is to have the array duplicated, using a source grid and
a destination grid. Data is read from the former and written into the latter. At the
end of each iteration, the pointers to the grids are swapped, and thus in the next
iteration the source grid will have the values written in the previous one.

To describe the space, an obstacle file is used. It is a text file with one character
for every position in the grid. The dot character represents a fluid cell, while other
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Figure 3.5: Grid distribution in memory

characters refer to obstacles. During initialization, this file is read, and the flag is
set to its obstacle value when needed. Besides this obstacles, all the borders of
the grid are also set up as obstacles, thus creating a closed environment. Also, the
inner side of one of the border faces is flagged as acceleration particles. They are
used for simulating an input flow.

Regarding the speed vectors, they are initialized with constant values. This is
done independent of their position and their flag. These constants are given by
the application for every type of speed vector.

In each iteration the first task is to check whether the current cell is an obstacle
or not. If it is, the speed vector’s directions from the cell are directly transmitted
to the neighbouring cells, and the calculations are omitted.

3.3 Profiling

In our previous work we have analyzed and profiled this implementation of LBM in
the target platform (see Sec. 6.1) [12]. We showed that execution time is directly
proportional to the number of time steps, as well as directly proportional to the
number of nodes in the grid. Moreover, we found that the execution time was
shorter for grids with greater percentages of obstacle particles. For a fixed size,
the best case would be when the grid is full of obstacles (although this is not a
realistic data set), and the worst case would be when the grid is empty of obstacles.
We can see this in Fig. 3.7.

The key main point about this kernel is that it is heavily memory bound. In Fig.
3.7a it is possible to see how the cache size architecture affects the instructions
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Figure 3.6: Runtime vs radius (Cubic grid with side size 100, centered spherical
obstacle) [12]

(a) IPC (b) L1 cache misses

Figure 3.7: Effects of problem data size [12]

per cycle. Moreover, in Fig. 3.7b we can also see how the L1 cache misses greatly
increase at the same size at which the previous parameter has its first step. To give
a better description on how heavily memory bound this problem is, we can look
back to Fig. 3.7. Points in the left represent the worst case scenario, while points
in the right represent the best case scenario. In the latter, the grid is completely
full of obstacle particles. Due to this, there is no actual computation: the flag is
checked and, as it is an obstacle, the read speed vectors are immediately written
to their corresponding position in the destination grid. However, even if there is
no computation besides one comparison, the execution time is only 70% of the
most computational demanding case.





Chapter 4

Accelerating Applications with
High-Level Synthesis

As discussed in Ch. 2, designing an accelerator is not an easy task. One of the
approaches we mentioned to reduce complexity is to use High-Level Synthesis
(HLS). This technology allows to convert algorithmic descriptions written in high
level languages, such as C/C++, into hardware description (RTL), thus elevating
the abstraction level from RTL to algorithms. We can see how this works in Fig.
4.1. Ideally, we no longer need to worry about implementation details such as
clocks or technology, following the concept of transparent acceleration (Sec. 2.1).

The tool is capable of extracting the control- and data-flow from the source
code, and implement designs based on them. Moreover, it is possible to use direct-
ives to inform the tool about specific ways how we want it to behave. This allows
to get multiple different implementations form the same source description, thus
optimizing design exploration.

However, as we can see in Fig. 4.1, while HLS in an important part of the
process, it is not the end. Once it has generated the hardware specification, the
tool still needs to execute other steps, such as logic synthesis and implementa-
tion. This means that the hardware details, such as resource consumption and
delays given by the HLS tool are just indicative. The actual results are given in the
implementation report.

This is important because there can be huge differences between what re-
sources HLS estimates and what resources are actually used after implementation.
This means that is not trivial to know if the resources available on the actual FPGA
will be enough based on the HLS report. However, HLS takes much less time com-
pared to logic synthesis and implementation. Therefore, it is good to know how
to estimate the actual resource consumption based on the HLS results. This can
be done by having a reference result, and doing an estimation based on them.

Besides the hardware side, we also need to handle the software side. For this,
parallel to HLS, a compiler is in charge of generating the binary file. It will be the
one to offload the data to the reprogrammable fabric. For doing so, the accelerator
has to be exposed to the software. The way this is done depends on the specific

17
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Figure 4.1: HLS process flow

tool. It can be done by simply calling C/C++ functions, or by using other standards
such as OpenCL.

4.1 Stages of HLS

The process of HLS can be divided in two main steps or stages: the scheduling
and the allocation and binding.

Scheduling

Scheduling consists in arranging the operations on a time scale, assigning them
to specific clock cycles, while fulfilling the inter-dependencies between them, that
is, respecting the precedence constraints. The goal is to execute all the operations
in the shortest time possible. Moreover, the tool also has to consider how long
operations take, as they can take several cycles, and if there is also any resource
constraints.

Allocation and Binding

The next step is to build a datapath based on the given schedule. Here, operations
are mapped to actual hardware cores. These cores are taken from the hardware
library of the corresponding target device.
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Code listing 4.1: Source code for Vitis HLS example

int foo(char x, char a, char b, char c) {
char y;
y = x*a+b+c;
return y;

}

Figure 4.2: Scheduling and Binding example for Vitis HLS [29]

4.2 Vitis HLS

Once knowing how HLS works, we can familiarize ourselves with how the specific
tool we are working with uses it. As our target platform will be based on a Xilinx’s
chip (see Sec. 6.1), we will use the manufacturer’s tool, Vitis HLS. In this tool, the
HLS process consists on three different stages:

1. Scheduling.
2. Binding.
3. Control logic extraction

While the first to stages correlate to the ones mentioned before, the last one
creates a finite state machine in order to sequence the operations in the RTL
design, so that the schedule can be fulfilled. One example of how the tool would
operate is shown in Fig. 4.2, were we can see how the tool would do the schedul-
ing and binding stages for the C function showed in Lst. 4.1.

In Vitis HLS, user directives can be given as pragmas embedded inside the
code or throught the user interface. This way, depending on their placement, they
will affect specific parts of the code. Besides doing the HLS process, the tool also
offers a Graphical User Interface (GUI) that gives information about the resulting
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schedule. We can see the schedule itself, the inter-dependencies between opera-
tions, the allocated hardware resource for each operation, the bit width and the
delay, among other parameters.

4.2.1 Resource Limitation in Vitis HLS

When developing for FPGAs, one of the tasks is to make our implementation fit
into the target platform. While Vitis HLS has its information, this does not imply
that it will make any code fit in it by default. We need to know how to reduce the
resource consumption.

One of the simplest ways is to make use of the allocation pragma. With it, we
can limit the resource consumption of the units used during the binding stage.
While this may lead to the original schedule not being fulfilled, the tool will just
generate a new one. Following an iterative process, it will end up finding an sched-
ule that can be satisfied in the binding stage while also respecting the resources
limitation. The main penalty for doing so is not being able to achieve the desired
number of pipeline stages (which is 1 by default). To transition between pipeline
stages, registers will have to be instantiated for temporary storage.

Other option is to change the data type. For example, if the base algorithm
works with floating point data types, the tool will use the DSPs slices. As they have
hardware multipliers, the tool tries to map multiplications to them. For dealing
with floating point numbers, several multiplications are needed, so their usage
increases greatly. To solve this, we can use fixed point data types. For that, Xilinx
provides its custom implementation of fixed point data types. Besides the potential
precision loss, this will greatly decrease the DSP usage in exchange of LUT usage.
This trade-off shall be analyzed for the specific case.

4.3 OpenCL

Regarding HLS, last, but not least, we need to know how to integrate its kernels
into our code. This is important, because by this we will also be describing how the
offloading is done. This depends on which options are supported by the developer
of the tool.

In the case of Xilinx, this is done in their Vitis IDE tool (which internally calls
Vitis HLS and other tools needed). This software platform supports for accelera-
tion normal C/C++ functions. We just need to select the function we want to be
accelerated, and the tool will do so for us. However, this approach is supported
because it is inherited from the previous tool, which Vitis has replaced. In Vitis, it
is encouraged to use OpenCL for handling the offloading.

OpenCL is an open standard for parallel programming in heterogeneous archi-
tectures. It uses C/C++, and it is widely supported by the industry. This way, Vitis
adopts the industry standard, thus allowing code compatibility with applications
originally targeted at other hybrid architectures.



Chapter 4: Accelerating Applications with High-Level Synthesis 21

Code listing 4.2: OpenCL example

std::vector<DATA_TYPE, aligned_allocator<DATA_TYPE>> grid_0_HW(DATA_SIZE);
std::vector<DATA_TYPE, aligned_allocator<DATA_TYPE>> grid_1_HW(DATA_SIZE);
size_t vector_size_bytes = sizeof(DATA_TYPE) * DATA_SIZE;

// Allocate Buffer in Global Memory
OCL_CHECK(err, cl::Buffer buffer_0(

context, CL_MEM_USE_HOST_PTR | CL_MEM_READ_WRITE,
vector_size_bytes, grid_0_HW.data(), &err));

OCL_CHECK(err, cl::Buffer buffer_1(
context, CL_MEM_USE_HOST_PTR | CL_MEM_READ_WRITE,
vector_size_bytes, grid_1_HW.data(), &err));

DATA_TYPE inc = INCR_VALUE;
int size = DATA_SIZE;

// Set the Kernel Arguments
int narg = 0;
OCL_CHECK(err, err = krnl_adder.setArg(narg++, buffer_0));
OCL_CHECK(err, err = krnl_adder.setArg(narg++, buffer_1));
OCL_CHECK(err, err = krnl_adder.setArg(narg++, inc));
OCL_CHECK(err, err = krnl_adder.setArg(narg++, size));

for(int t=0;t<TIME_STEPS;t++){
// Copy input data to device global memory
OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_0},

0 /* 0 means from host*/));

// Launch the Kernel
OCL_CHECK(err, err = q.enqueueTask(krnl_adder));

// Copy Result from Device Global Memory to Host Local Memory
OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_1},

CL_MIGRATE_MEM_OBJECT_HOST));

// Swap the arrays
std::swap(buffer_0,buffer_1);

// Update the arguments
narg = 0;
OCL_CHECK(err, err = krnl_adder.setArg(narg++, buffer_0));
OCL_CHECK(err, err = krnl_adder.setArg(narg++, buffer_1));

}

// Wait until all queued tasks are finished
q.finish();

}
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In Lst. 4.2 we can see an example of how Xilinx’s implementation of OpenCL
can be used to offload a simple application into the reprogrammable fabric, and
swap the input and output arrays after each iteration (thus behaving like an ISL).
The swapping is done in the processor.

From this code, it is important to understand what memory migrations means:
copying data to and from hardware memory. In Xilinx’s hybrid architectures, the
processor-based subsystem and the FPGA-based subsystem share main memory.
However, the tool divides this memory, assigning a specific memory region for
the hardware fabric. As the swapping is done in processor, for each iteration the
application needs send the data to the processor memory, swap the arrays, and
sent it back to the fabric again. Moreover, while the swapping is done in constant
time, moving the data in memory is not, requiring linear time. Therefore, the
bigger the array, the more time is spent doing this.

4.4 Our Experience with HLS

One of the goals of this Thesis was not only use HLS, but also to evaluate it. While
in theory it was promising, this does not necessarily correlates with reality, and
one of the tasks of this Thesis is to verify this.

From our experience during this work, HLS has advantages over traditional
hardware design procedures, but also drawbacks. Between its main advantages,
it raises the level of abstraction, taking care of many low level details. Program-
ming this tool is more similar to traditional high-level programming than to pro-
gramming RTL. Moreover, it handles many important elements, such as memory
accesses and interrupts, that otherwise would have to be manually configured.

However, while doing many things for us, it does not always do what we
wanted or expected from it. This should be added to the fact that we still need be
knowledgeable about the target architecture. While by default it offloads applica-
tion in a way that they work (even though correctness it is not guaranteed, cases
were this does not happen are very rare exceptions), to achieve optimal imple-
mentations we need to know how to express this in a way that the tool will make
use of the hardware resources that we want it to use. This implies not only that,
but also that we need to know which hardware resources are available, and how
to use them efficiently, as the tool will not do this for us. Also, debugging tools can
still not handle all the different layers present and, although it is possible to see
the RTL code generated, it is far from readable. Moreover, as we are programming
at high levels of abstraction, it is not possible to implement all we want and how
we want. We are limited, for example, by the usage of high level languages, which
do not allow us to express everything that Verilog or VHDL would. Other problem
we faced was hardware optimization. When dealing with issues such as resource
consumption or timing constraints, the approaches found were quite limited. As
we cannot go to the lower level, we cannot do small improvements to handle such
issues.
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As a summary, HLS left us a lukewarm impression. While raising the abstrac-
tion level reduces the complexity of designing hardware accelerators, it is not
trivial to make the tool generate the hardware we actually want, and sometimes
being able to do lower level modifications would be helpful. However, it remains
to see if the problem lies in HLS being flawed as a concept, or if this applies only
for Xilinx’s implementation.





Chapter 5

Acceleration Strategies

Once having analyzed LBM, and knowing the target platform, we can move on
to proposing how to accelerate it. First we will go over the general approach and
then we will go into the implementation details.

5.1 Memory Model

As discussed in Sec. 3.3, LBM is a memory bound problem (for interesting data
sets, cache bound if the data set is small enough). If we analyze the memory
model shown in Fig. 3.5 we can see that, while it works well for reading the
values from source grid, the same does not apply for writing into the destination
grid. As explained in Ch. 3, in each iteration step the kernel works with the speed
vector of one cell to then transfer the results to the neighbouring cells. Therefore,
it needs to read the 20 values that compose a cell, which in this memory model
are in consecutive memory positions. However, for writing, it needs to access 19
different cells. Taking as reference the central cell, two more destination cells will
be in the same row, placed right before and right after in memory. 6 more cells
will be in different rows within the same plane, and the 10 remaining cells will be
in different planes. Therefore, these cells are placed within a range equivalent to
2 planes and 2 rows. While some cells are pretty close one to each other, in most
cases they will be too far away to the system to fetch a cache block including more
than one of them. Moreover, out of the 19 possible values of those target cells, we
only need to write one. This means that, when working with non-unitary cache
blocks, we will be fetching elements which are not needed.

Due to this we can see that we need to optimize data locality in order to
achieve a better access pattern an reduce the amount of unused fetched data.
Our proposal for this is to organize the memory placement in an element-major
fashion. We can do this by using individual arrays for each speed vector, as well
as one for the flags. Instead of creating an array of structures (although the actual
implementation is a 1D array, conceptually it is an an array of structures), we will
create a structure of arrays. This will allow sequential memory access not only
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when reading, but also when writing. Moreover, this way we can minimize the
amount of unused data fetched from memory.

Not only that, but this approach will also allow us to remove the flag duplicity.
In the original memory model, they were always read from the source grid, and
thus they needed to be stored in both grids. In this proposed model, flags can be
stored in an array independent of both grids, thus saving not only unnecessary
fetches, but also memory space.

5.2 Kernel Computation

Another important part to analyze is how to increase the number of operations
without a bandwidth increase, i.e. to improve the operational intensity. This would
increase the arithmetic intensity, moving closer to the compute-bounded area of
the Roofline model [30]. With ISLs, one common way to do this is to calculate
more than one iteration at the same time, and only saving to memory the results
of the last iteration. We can see this in proposals such as SST [31], CA [32] and
DCMI [11]. However, this approach relies on the intra- and inter-cell data depend-
encies and, in this case, they are not trivial. There are two main obstacles for this
approach: multiple origins for the source and a division of sums.

Regarding the former, the speed vectors from the source cell come from 19
different cells. For the computation of the collide-stream operation of cell (x , y, z)
in time t+n, we would need to use the values from as many cells as 20

3 n3+8n2+
10
3 n+ 1 cells. Besides this, the intermediate calculations would also be required

for other cells, moving in every direction. This values would have to be calculated
again for those cells, unless we implement some sort of intermediate storage in
the fabric. Handling all of this is far from trivial.

Regarding the latter issue, in the data dependency for the LBM kernel there
is a division of sums. rho is the sum of all the coefficients of the source array,
while ux , uy , and uz are different sums of the source values multiplied by a coef-
ficient (±1), and then divided by rho. For this to be correct, we need to add all
the summands before the division is done, at least for rho. Therefore, it is chal-
lenging (if not even mathematically impossible) to compute the partial results of
the individual speed vectors, each of them being received from a unique neigh-
bouring cell in the previous time step. Moreover, as we can see in Fig. 3.4, the
output values directly depend on the input ones, so it is also not possible to do
some precomputation before hand and reduce the data describing each cell into
some intermediate values present inside the kernel.

Therefore, we propose to accelerate the algorithm by streaming the data se-
quentially, while also reducing the amount of unused data fetched.
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5.3 Data Types

Data representation is an important part to consider in computing systems. Not
only they define the precision of the data, but may also affect the execution time
and memory utilization. In hardware accelerators, they also affect the resource
consumption.

In the original implementation form SPEC CPU, all the data uses the double
floating data type. While this format provides high precision, it also consumes
quite a lot of memory compared to other possible alternatives. For example, by
using single floating point, we could save not only 50% of memory space, but
also of memory bandwidth, which is key in a memory bound problem like this.
Moreover, this would also allow us to reduce resource consumption, as arithmetic
units would be smaller.

Despite that, we are not going to change the grid’s data type. Changing it to
one with a narrower bit width would reduce its precision, thus achieving worse
results. As we are no expects in the field of fluid dynamics, is not up to us to decide
acceptable error margins. Being faithful to the original implementation, we have
decided to continue using this data type, and aim for the lowest possible error, if
any.

However, this does not apply to the flags. They are used for comparison and
have integer values given upon initialization. Thus, precision will not be a prob-
lem. As they have only three possible values, we have decided to use 8-bit un-
signed integers. This is the smallest data type provided by standard C/C++. With
this, we will not have only removed the flag duplicity, as explained in Sec. 5.1,
but also have greatly reduced the contribution to memory space and bandwidth
of the remaining flag array.

5.4 Accelerators

Now that we know how we want to accelerate LBM, we can go to the specific
implementation details. We started with an simple initial implementation that
could offload the algorithm. Once this first implementation was working correctly,
we analyzed it (Sec. 7.2). Then, with the newly gathered information we were able
to improve our original proposal.

5.4.1 LBM-S

With the use of an FPGA, new possibilities for dealing with memory appear. While
the FPGA does not have a dedicated cache, as we will see in Ch. 6, we could
emulate this with the resources available in the chip. However, as our proposed
memory model allows data to be accessed sequentially, we can stream the data in
and out of the fabric (thus the “S” in LBM-S). We will do this following the idea
of decoupled access/execute architectures presented in [33].
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Figure 5.1: Scheme for streaming implementation

In order to do so, we will implement two units for communicating with the
main memory: an input unit, composed by 19 + 1 input buffers for the values of
the current cell and the flags, and an output unit, composed by 19 output buffers
for writing the new values back to memory. We can see this in Fig. 5.1. The buffers
in both units will act as FIFOs. The input data will be read from memory and stored
in the corresponding buffer. Then it will be processed by the computing unit when
all the needed data is in the inputs. When there is space available, the system will
fetch new data from memory before it gets fully emptied. This will be done in
parallel to the computing. This way, data will be fetched from main memory before
the compute module runs out of data available and needs to wait for new data. The
equivalent process applies for the output buffers, which allow the compute module
to write data without having to wait for it to be properly stored, as the buffers will
be the ones handling that. However, instead of having one processor focused on
computing addresses and performing read/write requests and a second processor
focused on doing the main computations, this time we have an input unit in charge
of reading from memory filling the 19 + 1 input buffers, a computation unit, and
an output unit in charge of writing to memory the data stored in the 19 output
buffers. In this case, the computational unit is completely isolated from memory,
and communicates only with the input and output units. Despite this, the main
condition remains: the units communicating with the main memory need to be
ahead the computing unit. If one of the input buffers is empty or one of the output
buffers is full, the computing unit will have to wait. Ideally, the units should work
at an equivalent rate, so that none of them have any dead time.

Moreover, with how the data is placed in memory, consecutive values are in
consecutive positions, so handling this is quite straight-forward. Besides, there
are no control conditions for reading data: since the initial position until the end,
all data is needed, we will not need to handle flushing elements out of the input
FIFOs.
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Figure 5.2: Memory subsystem

5.4.2 LBM-SM

As we will see in Sec. 7.2, our first implementation approach was not accelerating
the application. This was due to the data being read and pushed to the FIFOs
value by value, accessing to non-consecutive memory positions. In this second
accelerator, we will focus on improving the memory system (thus the “M” in LBM-
SM).

Going back to the decoupled access/execute architecture mentioned previ-
ously, the problem in our first implementation is that units in charge of accessing
memory cannot keep with the compute unit due to the delays derived from the
bad access pattern.

In order to improve this, we have to use burst accesses from and to memory for
reading and writing. We have seen that the implemented FIFOs are working with
single values. Therefore, one possible approach would be to read bigger chunks
of data from memory, store them in an intermediate storage, closer to the buffers,
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and push it from there (equivalent would be done for writing). As we will see in
Tab. 7.1, we have barely used the BRAMs. Therefore, we could copy bigger parts
of the input arrays into the BRAMs, using bursts to read/write the data. These
storage units would be much closer to the buffers, so the delay for the unitary
push/pop operations would be much smaller.

Fig. 5.2 shows how this new memory subsystem would be implemented (in
this specific case, for reading the value of one array). The first thing to notice is
that there is only one bus which comes from memory, and it is in the FPGA where
the data is redirected to the specific BRAM. This means that the BRAMs cannot
communicate with main memory in parallel. However, once the data is on the
fabric, it can move from BRAMs to FIFOs (and vice versa) in parallel. When it is
the turn of the corresponding BRAM, it will be filled/emptied, and then it will
continue interacting with its corresponding FIFO while waiting for its next turn.

These way, there will be burst accesses from and to memory, providing a better
utilization of the memory model. Then the push/pop operations will interact not
with main memory, but with the BRAMs. This will not only be done in parallel,
but the delays involved will be much shorter.

5.4.3 LBM-SMS

With the kernel computation being more efficient, the main problem of the second
version of our accelerator is that it uses the processor for swapping the grids, which
incurs in some overhead (see in Figs. 7.8 and 7.13 for a quantitative analysis).
Although physically there is only one main memory, Xilinx’s OpenCL implement-
ation divides it in different regions for the processor and the hardware fabric. As
in the previous accelerators, the swapping is done by software, the data is sent
back and forth processor memory in every time step. However, we don’t need
to swap the whole arrays, just their pointers. And right now we are moving the
whole arrays just for swapping their pointers. Therefore, in order to save the time
spent by doing this, we shall do this on the reprogrammable fabric, without hav-
ing to go back to the processor (from here comes the second “S” in LBM-SMS).
Moreover, by doing this, we will improve the pipeline on the memory subsystem.
In the previous accelerators, when the data arrived from memory first we needed
to fill the BRAMs. As this cannot be done in parallel, the computing unit will be
starving data until the last BRAM can read new data and push it into the FIFO.
The equivalent happens when writing. However, if we are doing the swapping in
hardware, we could create a better pipeline, where the elements of one time step
can be loaded into the BRAMs while the values from the previous time step are
still being calculated.
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Experimental Setup

6.1 Target Platform

The target platform in which the hardware accelerator was implemented is the Ul-
tra96v1 development board from Avnet. It is based on a Zynq UltraScale+MPSoC
ZU3EG SoC from Xilinx [34]. It provides an heterogeneous architecture with an
ARM-based side, denominated as Processing System, and a FPGA side, denom-
inated as Programmable Logic. In order to connect all the components, ARM’s
AMBA interconnect is used, together with ARM’s AXI protocol, a burst-oriented
protocol intended for high bandwidth while providing low latency.

The processing system contains on four ARM Cortex-A53 cores for general
purpose, with their own L1 cache and a shared L2 cache. As for the FPGA, this
platform provides the UltraScale+ FPGA technology we explained in Sec. 2.2.
Regarding the frequency, we have chosen the lowest one configured in our plat-
form: 100MHz. While choosing higher frequencies would help achieving better
performance, it would be more prone to timing issues, and we wanted to priorit-
ize a working implementation. Table 6.1 contains the main technical specifications
of the board, while Fig. 6.1 shows a simple block diagram of the platform.

As for the software side, the board was used running a Linux kernel, generated
with Petalinux. Besides, the original implementation was not build on the board,
but cross-compiled with the Vitis tool together with the hardware build. The Linux
image is stored in a SD card from which the system boots.

6.2 Parameters to Analyze

When evaluating the hardware accelerator, we are going to measure the impact of
the following parameters on the execution time: time steps, grid size and obstacle
size.

31
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Table 6.1: Ultra96v1 specifications

Processing System
CPU Quad-Core Cortex-A53
Frequency 1.2GHz
L1d Cache 32 kB
L1i Cache 32 kB
L2 Cache 1 MB
On-Chip Memory 256 kB

Programmable Logic
Frequency 100MHz
Logic cells 154.350
Flip-flops 141.120
LUTs 70.560
Distributed RAM 1.8 Mb
Block RAM (block) 36 kb
Block RAM (total) 7.6 Mb
DSP Slices 360

Memory

RAM
2GB LPDDR4

533 MHz
SD Card 16 GB

6.2.1 Time Steps

The first parameter to analyze is the number of time steps. Although it does not
affect the kernel itself, it determines how many times it is executed. Thus, it will
have significant effects on the execution time.

6.2.2 Grid Size

Other important parameter is the data size, which in this case is defined by the grid
size. It will define how many iterations are done in each time step. For simplicity,
we will use cubic grids (except when using the original reference grid, which
is 100×100×130). Testing all possible relations between the three dimensions
of the grid is not feasible and, as the implementation actually works over 1D
arrays, it does not matter now the elements are actually distributed. The only
difference would be upon initialization, since some shapes with the same size
would have more borders, i.e. bigger perimeter with the same volume. However,
this would be an issue of obstacle particles compared to the total (as explained in
Sec. 3.2, border particles are initialized as obstacles), which we can better analyze
by means of the obstacle file. A cubic shape is the best one, since it minimizes the
effect of the border obstacles, and we can refer to it based on its size length, which
makes it easier to compare to spherical obstacles measured by its radius. This is
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Figure 6.1: Target platform’s block diagram

important because we can test obstacles with radius bigger than half the grid
size, and thus comparing volumes would not be correct, since part of the obstacle
would be out of the grid.

6.2.3 Obstacle Size

The last important parameter to analyze is the obstacle size. However, more than
the absolute size, the key part is its relative size compared to the grid in which it
is place. That is important because it defines the ratio between free and obstacle
particles. Besides the original reference data set, the custom ones will be spher-
ical obstacles placed in the middle of the grid, and we will change their radii.
Moreover, we will allow these radii to be bigger than half the grid size, thus hav-
ing the sphere going out of the grid. While this is not a realistic data set, it is
interesting for a computational analysis, and can give some useful insight.

6.3 Measuring Execution Time

Until now we have mentioned that we are going to measure the execution time,
but we have not defined what it is. Also known as wall-clock time, response time
or elapsed time, it is the latency to complete to fully complete the task, including
memory accesses, input/output activities, operating system overhead, etc. That
is, including everything that causes a delay in the response [4].
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6.3.1 Tools

We have used three different tools for trying to measure the execution time.

Unix time Command

One of the simplest ways to measure execution time in an UNIX-based operating
systems is to use the time command. It does not only give the real (execution) time,
but also user time and system time. However, this applies to the whole command
line, and cannot be used for finer grained time analysis [35].

C++ ctime Library

Inherited from the C time.h library, this library provides its timing functionalities
[36]. From it, we have used the clock function, which returns the processor time
used by the process since the beginning of the program’s execution. This time is
given in clock cycles, but can be easily converted to seconds by diving it by the
CLOCKS_PER_SEC macro. Moreover, as this is a C/C++ function, we can place
it in the middle of the code and get partial timing results. However, this only
measures processor time. Therefore, when computation is done outside it, this
time will not be counted. This applies to kernels executed in the FPGA.

C++ chrono Library

Due to the previous issue with ctime library, the alternative is to use the chrono
library [37]. This library allows us to access to different system clocks, and get
their absolute times. Knowing this time points, we will be able to get the differ-
ent duration measurements we are interested in. As it works with the absolute
time points of system clocks, this method will provide the actual execution time,
independent of some computation being offloaded to the hardware fabric.

6.3.2 Measuring the Execution Time of LBM

Regarding how execution time was measured, we have used the three options we
just presented. While the time command measures the whole program, we used
the ctime and chrono libraries to measure only the main loop in which the kernel
is executed. With this setup, we were able to find out several observations.

In first place, we found out that the ctime library did not work as expected.
It did not report the same as the chrono library or the real time from the time
command. However, what it reported was equivalent to the addition of the system
and user time reported by said command. This means that for some time, which
is the difference between the value measured by the chrono library and the one
measured by ctime, the program is not being executed in the processor. This shows
that our program has been successfully offloaded.

Also, while the values measured by chrono and time, they are not exactly the
same. That difference is due to the initialization. In this case, initialization means
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not only initializing the arrays with data, but also preparing the system to the
offloading. Detecting and setting up the accelerator is constant for any grid size,
while initializing the data depends on its size. However, this time is quite small,
in most cases smaller than 1% (exceptions are for small grids, where it can go
slightly higher). Compared to the total time, this time in negligible, and thus it
will not be considered.

With this in mind, we would have to choose between chrono and time. The
former has the advantage that we can measure specific parts of the code, provid-
ing more flexibility. It is even possible to measure both the original implementa-
tion and the offloaded one using the same binary file. Therefore, we will use as
execution time the one measured by the chrono library.

Finally, it is important to notice that the measured times are not fully consist-
ent, with differences of up to 5% with regards to the average value for the same
test. This does not happen for grids with size equal or smaller than 20. For grids
with size between 30 and 50 this starts happening, but it is specially seen in the
first execution after start up. For greater grids, this no longer matters. As the ab-
solute difference increases with the grid size, interrupts are not enough to explain
this. Also, we know this happens in the processor and not in the FPGA, as this
difference is also observed in the time measured using ctime. With this inform-
ation, we think it is a memory-related issue. For each time step, data is copied
(we will explain this more in detail in Ch. 7), and the difference is likely to be
here. Moreover, as we were dealing with some problems deallocating memory,
the cases were the first test is the fastest can be due to the data being allocated in
favourable memory positions for that initial test, while that position is no longer
available for the next tests.

While appropriate would be to do intensive testing to get maximums and min-
imums, as well an accurate standard deviation, this would have taken too much
time, which we could not afford. With a few tests per case we can still get results
relevant enough seeing the main trend, as the difference between test cases was
big enough. Thus, we decided to measure 5 executions for grids up to size 60 and
3 for bigger ones.

6.4 Other considerations

In order to simplify the evaluation process, our implementation has a key differ-
ent compared to the original one: while on the SPEC implementation the grid size
was fixed in a config file, in ours it is given through the terminal. This is different
because in the former case it was needed to recompile the program in order to
change it. However, this approach would not be feasible for the hardware accel-
erator. While it is not an ASIC, but a FPGA, so it is reprogrammable, building the
project consumes a considerable amount of time, and the board would have to be
rebooted with a new boot file and kernel image. Changing the grid size is actually
just changing the number of iterations inside the kernel, and this can be done by
changing a value in a register, which will be compared to the counter. However,
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when the tool detects any change in the kernel, it builds it again and, although
does not need to be a clean build, it still takes a considerable amount of time.
Therefore, we have decided to implement generic version which can work with
different grid sizes, being given its x , y and z coordinates through the command
line. Besides, during the initial tests we could compare both approaches, a fixed
accelerator against a flexible one, and both resource consumption and execution
time were equivalent, so this gain in flexibility came at no cost.
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Results

Finally, we have implemented the hardware accelerator in the target platform. As
explained in Ch. 5, we have conceived three different accelerators: LBM-S, which
implements streaming as a way to feed data to the compute kernel, LBM-SM,
which adds a custom memory system, and LBM-SMS, which moves the swapping
from the processor to the reprogrammable fabric. We have implement the two
first proposals, while we did not have time to successfully implement the last one,
facing issues with unfulfilled timing constraints.

In this chapter, first we will present the high-level results, comparing our im-
plementations to the original one. Then, we will go into detail with the individual
implementations, analyzing what is happening and how we could improve this.

7.1 Accelerator Performance

Having implemented two accelerators, we can compare them to the original soft-
ware implementation at the same time. In Fig. 7.1a we can see how, even in the
best case scenario, LBM-S does never achieve its goal, while LBM-SM does so for
grid sizes from 30 over, where the software implementation can no longer take
advantage of the cache. Moreover, the latter accelerator provides almost double
the performance of the former one. In Fig. 7.1b we can see how this relationship
stays, and how LBM-SM barely decelerates in the worst case scenario of the grid
being full. In Fig. 7.1c we can see how the transition from an empty grid to a full
one affects the performance. As we can see in these three figures, the new cus-
tom memory subsystem has allowed LBM-SM to achieve a performance two times
better than LBM-S.

However, this does not mean there is still no room to improve in term of
memory bandwidth. Fig. 7.2 shows the bandwidth utilization for the two acceler-
ators. Here, only the kernel execution has been considered, not taking into account
reading and writing data between memory regions for swapping in the processor.
This way, we can analyze the bandwidth utilization comparing it to the maximum
available for the reprogrammable fabric. As we can see, while LBM-SM has more

37
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Figure 7.1: Speedup results (relative to software implementation)
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Figure 7.2: Bandwidth analysis with FPGA bandwidth as reference

than doubled the bandwidth utilization of the first one, it still has margin to im-
prove. In order to improve this we do not need to apply conceptual modifications
yet: there is still margin in the technical side. For example, we could increase
the port width of the AXI memory module. We tried to implement it, but faced
resource and timing constraints which did not allow us to do so. We considered
changing to an equivalent platform with more resources, so that we could apply
all that we have learned while avoiding resource limitations. However, due to the
restrictions enforced by the COVID-19 pandemic, we could not have access to said
platform.

Beside, this applies when comparing only to the maximum bandwidth utiliz-
ation we have achieved with the FPGA. We have tested the maximum bandwidth
on the processor side, and it is considerable higher. We can see the same results,
but this time taking the processor bandwidth as a reference, in Fig. 7.3.

This difference can mean two things: either we are not being able to use the
maximum bandwidth even in our reference tests, or the FPGA cannot make full
use of the memory bandwidth (or both). What we found out is that achieving the
maximum bandwidth possible in the FPGA is far from trivial, specially with HLS,
as there are many elements and configurations which take part in this. Here, one
of the parameters which may be causing this difference is the frequency, as the
one of the reprogrammable fabric is 1/12 th of the processor’s.

7.2 LBM-S

For an initial implementation, we wanted to have one that would be able to run all
the needed tests successfully, but without going far into optimization. We wanted
to have an initial reference point, as well as understanding of how the tool worked,
and were we needed to focus our efforts.
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Figure 7.3: Bandwidth analysis with CPU bandwidth as reference

Table 7.1: Resource consumption

Resource type LBM-S (%) LBM-SM (%) Abs. difference Rel. difference
CLB 99.04 97.29 -1.75 -1.77
LUT 65.99 73.34 7.35 11.14

As Logic 59.32 66.18 6.86 11.56
As Memory 16.34 17.54 1.2 7.34

Registers 39.96 41.47 1.51 3.78
BRAM 0.93 18.98 18.05 1940.86
DSP 31.11 31.11 0 0

7.2.1 Resource Consumption

First point to analyze is the resource consumption. When we first tried to imple-
ment the kernel, it turned out to be too big for the board. Specially critical was
the usage of DSPs slices. As discussed in Sec. 4.2.1, we first tried changing the
data type, but the increase in LUT utilization was to high, so we moved to using
allocation pragma. With it, we managed to get the resource consumption seen in
Tab. 7.1.

As we can see, the CLB utilization is almost at 100%. However, this does not
mean that they are being fully utilized. For example, LUT utilization is only 66%.
A CLB has several LUTs. What we are seeing in this table means that, while al-
most all of the CLBs are being used, not all of their LUTs are. While we could
improve even more the resource consumption, doing so was starting to lead to
timing errors. Dealing with them was not a priority at the time, as we had a work-
ing implementation, so we decided to remain with the current values and start
testing.

Moreover, this resource limitation will not allow us to make better use of data-
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level parallelism. While the intra-cell data dependencies are quite strict, and the
inter-cell data dependencies between different iterations are too, there are no data
dependencies between cells in the same iteration. This means that it would be
possible to compute the collide operation for the same time step of two different
cells at the same time in parallel. However, as we do not have enough resources,
we will not be able to benefit from this.

Another thing to observe is that the BRAM utilization is almost 0. This, mixed
with other observations we have done while developing, indicates that the FIFO
buffers are not being implemented in BRAM, but in the memory inside the CLBs.

7.2.2 Error

Once we implemented the LBM-S accelerator, we evaluated it. In first place, we
checked its correctness. For this, we have compared the obtained results with
the ones produced by the original implementation. For both the reference data
set, as well as for empty arrays, errors were in the order of 10-13%. We have
considered this a satisfactory result. In the other hand, for full grids, errors rose
up to more than 1%, despite using the same data type and not having altered
the computational part of the code. However, full grids are not a realistic data
set and, while they are helpful for understanding how the implementation works,
they will not be used in real cases. Therefore, as the error values for realistic cases
are satisfactory, we consider no issues in this regards.

7.2.3 Sensitivity Analysis

Once we verified its correctness, we used the original data set to verify the effect of
changing the number of time steps. As in the original implementation, execution
time changes linearly with the number of time steps, as we can see in Fig. 7.4. Thus
speedup is constant. However, we can see that this speedup is around x0.65, thus
being not an accelerator, but a decelerator.

Next we tested how changing the grid size would affect the execution time.
As we saw in Sec. 3.3, it depended not only on the grid size, but also on the
percentage of obstacle particles. Thus, for each size, we did two types of tests:
with the grid being fully empty and with the grid being completely full. We can
see the results of these tests in Figs. 7.5 and 7.6 respectively. As in the original
implementation, execution time increases cubically with the grid side size, which
is the same as a lineal relationship with the volume.

Regarding the speedup, we can see that it is specially lower for small grid
sizes. This is to be expected as for those sizes the cache utilization in the software
version is much better. Then it increases until reaching a peak at size 60, to then
slightly lower down and remain at its final value.

However, while the trends are equivalent for the empty and full grids, the
speedup values are not the same. Contrary to the original implementation, in ours
the execution time for both test cases is the same. That is, the hardware takes the
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Figure 7.4: Execution time vs. number of time steps for LBM-S (speedup relative
to processor execution time)

same time to compute the whole collide step than to just redirect the values. This
can be explained by the hardware avoiding synchronization issues.

Let us consider the case where one particle is an empty one and the next is an
obstacle. Being this a pipelined implementation, if the latter were sent directly to
the output of the compute unit, it would reach the FIFO buffer sooner than the
empty one. This would break the sequential order, and we would have to handle
it. However, if we just enforce a sequential output at the compute unit, this would
not happen. This approach is much easier than dealing with non-sequentiality in
the FIFO. Thus, free and obstacle particles shall take the same time in the compute
unit. We have checked this in the HLS scheduling, and this proved to be true. For
the case where the particle is an obstacle one, the inputs are directly sent to the
outputs, but this is not scheduled to happen until after all the computations for
the collide step would have taken place.

Therefore, while the execution time for both test cases is the same, the speedup
is not, being lower for full grids. This means that, the emptier a grid is, the better
the accelerator will work (or, for the time being, the less it will decelerate the
application).

To have more insight about this, we have evaluated how the execution time
is affected by changes in the obstacle size for a fixed grid size. For this, we have
chosen 50 as grid size. This value is big enough that the software implementation
does not have extra benefits due to the cache, but also small enough so that we
can do the tests in a reasonable amount of time. We have started the tests without
any obstacle, and then increasing the obstacle size, an sphere, up to a radius of 45
units, point at which the grid is full. As we can see in Fig. 7.7, while the execution
time is constant, the speedup decreases as the obstacle size increases (because the
processor time becomes smaller).
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Figure 7.5: Execution time vs array size (with empty grid) for LBM-S (speedup
relative to processor execution time)
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Figure 7.6: Execution time vs array size (with full grid) for LBM-S (speedup rel-
ative to processor execution time)

7.2.4 Breakdown

Knowing this data, we want to know exactly where time is going. For that, we
have repeated the tests doing a more fine grained time analysis using the chrono
library. For each time step, our implementation does four tasks:

1. Migrate memory objects to the FPGA.
2. Execute the kernel.
3. Migrate memory objects from the FPGA.
4. Swap the grids.

We have measured this four tasks, for each iteration and averaged them. We
did the tests with 3000 time steps, and standard deviations were in an accept-
able range. We show the obtained results in Fig. 7.8. As we can see, most of the
time corresponds to kernel execution, while a smaller part corresponds to memory
migrations. Swapping time itself is negligible.
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Figure 7.7: Execution time vs obstacle size (array size = 50) for LBM-S (speedup
relative to processor execution time)
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Figure 7.8: Fine-grained time analysis for LBM-S

Comparing this results with what we can see in Figs. 7.5b and 7.6b, we can
see that the speedup peak at a size of 60 mentioned before corresponds to a lesser
memory migration time. While this is copying data, and should be lineal, it did
not behave exactly as that.

However, even if we solved this memory migration issue, it would not be ac-
celerating. Therefore, we need to analyze why the kernel is not being executed
faster. Regarding the compute, although the frequency at which the FPGA is work-
ing is just 1/12 th of the processor frequency, parallel computation should be able
to counter this. Moreover, as the original problem was heavily memory bound,
memory is quite likely to be main issue in our implementation. Looking more in
detail into what is going at the memory level, we saw that the memory accesses
are being done individually: more than reading from memory, we are pushing
individual values into the FIFOs directly from memory. This is far from being an
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optimal memory utilization, specially because it is not taking advantage of the
elements that correspond to the same FIFO being placed in order, not doing burst
reads. Therefore, the current reading pattern is a bad one.

7.3 LBM-SM

After analyzing the results from the LBM-S accelerator, we have proposed im-
provements in Sec. 5.4.2, and in this section we will analyze their results.

7.3.1 Resource Consumption

First we need to analyze the new resource consumption. Looking at the data
in Tab. 7.1, we can see that, besides the BRAMs, there has not been any ma-
jor changes in the resource consumption. This means that the BRAMs have suc-
cessfully been implemented in the design. The consumption of LUTs has also in-
creased, specially for their usage as logic. This was expected, as extra logic is
needed to handle the BRAMs.

Also it is interesting to note that, while we have not removed anything, just
added, the usage of CLBs have decreased. This means that the tool has been able
to map more LUTs into less CLBs, while still respecting timing constraints.

7.3.2 Sensitivity Analysis

Now that we have successfully implemented this second iteration of the acceler-
ator, we can move on to testing it. The same tests used for the initial implement-
ation were used here. As we can see in Figs. 7.9, 7.10, 7.11 and 7.12, the trends
observed in the original accelerator remained, while the execution times lowered
(thus, achieving a higher speedup). Therefore, the analysis we have done of them
for LBM-S still holds. Moreover, we can see that creating a custom memory sub-
system for the accelerator has given us the results we expected: now, for realistic
data sets (except the smallest grids, where the processor still takes advantage of
the cache), the accelerator is actually accelerating.

7.3.3 Breakdown

Moreover, in Fig. 7.13 we can see how the time distribution between the four dif-
ferent parts of each iteration has changed. While the swapping remains constant,
the contribution made by the kernel execution has been significantly reduced. In
this implementation, it represents between 70 and 80% of the total time, while
moving the data from and to memory now gets to represent even more than
30%. This means that the more we optimize the kernel, the more the moving
data between memory regions weight. Thus, the more optimized the kernel is,
the more important is to avoid this, as we have proposed in Sec. 5.4.3.
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Figure 7.9: Execution time vs number of time steps for LBM-SM (speedup relative
to processor execution time)
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Figure 7.10: Execution time vs array size (with empty grid) for LBM-SM (speedup
relative to processor execution time)

However, this does not imply that the execute stage cannot be improved. For
example, we could increase port width of the AXI memory modules. By default
they take the width of the data type they are working with (in this case, 64 bits for
being double). However, it is possible to increase this width in order to read faster.
The maximum port width available is 512. While we have done some testing in
this direction, and it has actually improved the bandwidth utilization, we have not
been able to add it to our accelerator due to problems with timing constraints and
lack of time. These same reasons are also why we cannot present the implementa-
tion results for LBM-SMS. Going back two Fig. 7.13 we can see that we can expect
a reduction of 20 to 30% of the total execution time over our second accelerator,
that is, without even taking into account possible improvements in the memory
system.
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Figure 7.11: Execution time vs array size (with full grid) for LBM-SM (speedup
relative to processor execution time)
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Figure 7.12: Execution time vs obstacle size (array size= 50) for LBM-S (speedup
relative to processor execution time)
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Figure 7.13: Fine-grained time analysis for LBM-SM





Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this work we have proposed and implemented a hardware accelerator for LBM,
one of the benchmarks in the SPEC CPU benchmark suit.

In Ch. 5 we have initially proposed a general approach to accelerating this
application. Then we have gone into more specific implementation details, and
proposed three accelerators: LBM-S, which implements streaming as a way to feed
data to the compute kernel, LBM-SM, which adds a custom memory system, and
LBM-SMS, which moves the swapping from the processor to the reprogrammable
fabric. As the names suggest, LBM-S was the initial one, and the other two add
improvements to it. Out of these three, we have implemented the two first, thus
addressing task T1.

In Ch. 7 we have addressed task T2, discussing the results for the actual imple-
mentations, evaluating their usage of the resources of the target architecture, and
finding their bottlenecks. For realistic data sets big enough to not fit in processor
cache, we have achieved speedups between 1.3× and 1.5×. Moreover, there is still
room to improvement while keeping the proposed acceleration strategy. Due to
lack of time and the inability to have access to a bigger platform (yet with the same
architecture) due to the COVID-19 pandemic, we have left on the table improve-
ments for LBM-SM and the implementation of LBM-SMS. Despite being margin
for improvement, we could have achieved some insightful conclusions. The main
one was the importance of implementing memory systems that take advantage of
the characteristics of the data. A good one will allow us to take advantage of the
data locality, and achieve more efficient read and write patterns. Moreover, de-
coupled access/execute architectures have yet again shown to be good at hiding
latencies of memory accesses.

Moreover, all of this has not been done using traditional hardware description
languages such as Verilog or VHDL for designing the RTL, but with the use of HLS,
which we have analyzed and evaluated in Ch. 4, answering task T3. This tool has
reduced the complexity of designing the hardware, and also dealt with intricate
details such as handling the communication with memory. It reaches the level of

49
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abstraction bringing this process to a high-level domain. However, it is not free
of disadvantages: it is not trivial to make the tool implement what we want the
way we want it, there are challenges for debugging and, as we have raised the
abstraction level, it is not possible to express everything we would have been able
to express using lower-level languages.

8.2 Future Work

The first step to do after this work would be to polish the LBM-SM accelerator,
as explained at the end of Sec. 7.3, and to implement LBM-SMS based on this.
Other possible improvements would be statically storing the flags in the BRAMs,
as they do not change over time steps. After this, we should analyze more in depth
the memory subsystem. Among the first tests to do, we should test how changes
in FIFO and BRAM sizes affect our accelerator. While we have done some brief
checks of it while developing, we have not appreciated any relevant changes and,
as it was not our priority, we have postponed it.

On the platform side, we should analyze why we are not able to achieve the
same bandwidth in the FPGA as in the processor system (not even with tests de-
signed to get the highest memory bandwidth possible). Also, we should analyze
the possibility of using other platforms. Without leaving aside tightly-coupled FP-
GAs, other platforms can bring to the table architectures better suited for our
application, or even just more raw power by providing more resources in the re-
programmable logic. For example, Xilinx provides systems-on-chip that come with
high-bandwidth memory, from which our application could greatly benefit.
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