
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Jonas Ege Carlsen
D

igitalizing the Sheep Supervision D
ocum

entation Process

Jonas Ege Carlsen

Digitalizing the Sheep Supervision
Documentation Process

Master’s thesis in Informatics
Supervisor: Svein-Olaf Hvasshovd

June 2021

M
as

te
r’s

 th
es

is

Jonas Ege Carlsen

Digitalizing the Sheep Supervision
Documentation Process

Master’s thesis in Informatics
Supervisor: Svein-Olaf Hvasshovd
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

A Norwegian sheep spends large parts of the grazing season on outlying fields.
Farmers are mandated by law to conduct weekly supervision trips to ensure the
safety and well-being of their animals, a process currently documented using
pen and paper. Once the grazing season ends, supervision-related documentation
is summarized into a seasonal report and sent to governing bodies as proof of
sufficient supervision and as a basis for potential reimbursement claims. This thesis
aimed to develop a digital system replacing the analog supervision documentation
process, and explore the potential benefits such a solution could provide to farmers,
sheep observers and the well-being of sheep. The project resulted in a cross-platform
mobile application for conducting supervision trips, a server for centrally storing
supervision data and a surrounding cloud infrastructure supporting it.

The ongoing COVID-19 pandemic rendered attempts at usability testing farm-
ers and sheep observers futile. Instead, the usefulness of the system had to be
discovered through other means. By utilizing usability testing, prototypes and
discussions with the project supervisor, a seasoned sheep observer, the project
uncovered several potential benefits the digitalized documentation process could
introduce. Usage of the system can improve the precision, structure and quantity
of collected data, indirectly affecting the well-being of sheep by allowing farmers
and observers to gain a greater overview of the whereabouts of predators and
sheep alike. Furthermore, digital storage and the concept of supervision teams can
facilitate communications between farmers and observers and optimize supervision
routes, improving the overall efficiency of supervision.

Additional benefits can be extracted from the system by developing a web ap-
plication tailored towards farmers, third-party integrations and functionality for
automatically generating supervision reports. In order to facilitate such extensions,
the system has focused on modifiability, extensibility and documentation. In large,
the resulting system serves as a solid and extendable foundation of data creation
and aggregation.

i

Sammendrag

Norsk sau tilbringer store deler av beitesesongen i utmark. Sauebønder er lovpålagt
å føre tilsyn av sau minst en gang i uken for å passe på sikkerheten og velværen til
dyrene deres, en prosess som til dags dato dokumenteres med penn og papir. Når
beitesesongen avsluttes samles all tilsynsdata i en sesongrapport som fungerer som
bevis for tilstrekkelig tilsyn, og som et grunnlag for potensiell kompensasjon for
tapt sau. Denne oppgaven hadde som mål å utvikle et digitalt system for å erstatte
den analoge løsningen for dokumentering av tilsyn, samt å utforske de potensielle
fordelene en slik løsning kunne medføre for sauebønder, tilsynsmenn og sauens
velvære. Prosjektet resulterte i en kryss-plattform mobilapplikasjon til bruk under
tilsynsturer, en server for sentral lagring av tilsynsdata og en sky-infrastruktur som
støtter systemet i sin helhet.

Den pågående COVID-19-pandemien førte til at brukertester ikke kunne gjennom-
føres på bønder og tilsynsmenn; Prosjektet måtte derfor finne resultater på andre
måter. Gjennom brukertester, prototyper og samtaler med veileder, en erfaren
tilsynsmann, fant prosjektet flere mulige fordeler en kunne oppnå ved å digitalis-
ere tilsynsprosessen. Bruk av systemet kan forbedre presisjonen, strukturen og
kvaliteten av den samlede data, noe som indirekte vil påvirke sauens velvære
ved å tillate bønder og tilsynsmenn å få en bedre oversikt over hvor sauer og
rovdyr befinner seg. Videre vil digital lagring av tilsynsdata og digitaliseringen av
beitelag fasilitere kommunikasjon mellom forskjellige ansatte på tvers av gårder
og gjøre det mulig å optimere tilsynsruter, noe som vil forbedre effektiviteten av
tilsynsprosessen.

Videre fordeler kan ekstraheres fra systemet ved å utvikle en nettside rettet mot
sauebønder, tredjeparts-integrasjoner og funksjonalitet for automatisk generering
av tilsynsrapporter. For å legge til rette for slike utvidelser har systemet fokusert
på modifiserbarhet, utvidbarhet og dokumentasjon. Systemet fungerer i stor grad
som en solid og utvidbar plattform for generering og aggregering av tilsynsdata.

ii

Acknowledgements

The author would like to express his gratitude to the project supervisor, Svein-Olaf
Hvasshovd, for his continuous guidance and support. Your domain expertise and
feedback proved to be invaluable.

iii

Contents

Abstract i

Sammendrag ii

Acknowledgements iii

Figures xi

Code Listings xv

Acronyms xvi

Glossary xvii

I Project 1

1 Introduction 2
1.1 Project Description . 3
1.2 Stakeholders . 4

1.2.1 Farmers . 4
1.2.2 Sheep Observers . 4
1.2.3 County Governor . 5
1.2.4 Mattilsynet . 5
1.2.5 Statens Naturoppsyn . 5

1.3 Thesis Structure . 5

2 Background 6
2.1 Shepherding in Norway . 6

2.1.1 Seasonal shepherding . 6
2.1.2 Ties . 6
2.1.3 Loss of Sheep . 7
2.1.4 Supervision . 8

2.2 Existing Supervision Solutions . 10
2.2.1 BeiteSnap . 10
2.2.2 Skandobs . 11

iv

Table of Contents v

2.2.3 Electronic Location Tracking . 12
2.2.4 Map Applications . 13

3 Requirements 15
3.1 Elicitation . 15
3.2 Architecturally Significant Requirements 16

3.2.1 Offline Capability . 16
3.2.2 Cross-platform application . 16
3.2.3 Authentication & Authorization 16
3.2.4 Server capabilities . 17

3.3 Use Cases . 17
3.3.1 Authentication . 17
3.3.2 Download Map . 18
3.3.3 View Downloaded Maps . 18
3.3.4 Team Actions . 19
3.3.5 New Team . 20
3.3.6 View User Invites . 20
3.3.7 Farm . 21
3.3.8 Perform Trip . 22
3.3.9 Perform Sheep Observation . 23
3.3.10 Perform Other Observation . 24
3.3.11 View Previous Trips . 24

3.4 Functional requirements . 25
3.5 Quality attributes . 31

3.5.1 Availability . 31
3.5.2 Modifiability . 34
3.5.3 Security . 36
3.5.4 Usability . 38

4 Development Process 41
4.1 Software Development Methodology 41
4.2 Project Management . 43
4.3 Software Development Life Cycle: Week-By-Week 45

5 Technical Design: An Overview 46
5.1 System Architecture at a Surface-Level 46
5.2 Tools & Technologies . 47

5.2.1 Auth0 . 47
5.2.2 Visual Studio Code . 48
5.2.3 GitHub . 48
5.2.4 SQL . 48

Table of Contents vi

II Mobile Application 49

6 Application Development Approach 50
6.1 A Quick Introduction to Mobile . 50
6.2 Mobile Application Development . 51

6.2.1 Native Development . 51
6.2.2 Cross-platform development . 51
6.2.3 Progressive Web Application . 52
6.2.4 Hybrid Applications . 52
6.2.5 Choosing an approach . 52

6.3 Available cross-platform solutions . 53
6.3.1 React Native . 53
6.3.2 Flutter . 54
6.3.3 Xamarin . 54

6.4 Choosing a framework . 55
6.4.1 Maturity and Adoption . 55
6.4.2 Performance . 56
6.4.3 Documentation . 57
6.4.4 Support for functional requirements 58
6.4.5 Tooling . 58
6.4.6 Choosing Flutter . 59

6.5 Application Development Technologies 60
6.5.1 Android Studio . 60
6.5.2 XCode . 60
6.5.3 Flutter and Dart Plugins for VSCode 60

7 Application Overview 61
7.1 Authentication . 61
7.2 Detail Registration . 62
7.3 Home . 63
7.4 Farms . 64
7.5 My Invites . 65
7.6 Teams . 65
7.7 My Trips . 70
7.8 Offline Areas . 71
7.9 Trip . 74
7.10 Sheep Observations . 75
7.11 Other Observations . 80
7.12 User details and Settings . 81

8 Flutter: Concepts and Packages 83
8.1 Widgets . 83
8.2 State . 84
8.3 Reactive Applications . 85
8.4 Relevant Flutter Files . 85

Table of Contents vii

8.5 Flutter Packages & Plugins . 86
8.5.1 Provider . 86
8.5.2 Flutter_map . 86
8.5.3 Moor . 87
8.5.4 RxDart . 87
8.5.5 Dio . 87
8.5.6 Flutter_appauth . 87
8.5.7 Flutter_secure_storage . 88
8.5.8 Camerawesome . 88
8.5.9 Geolocator . 88
8.5.10 Background_locator . 88

9 Application Architecture 89
9.1 Architectural Patterns . 89

9.1.1 Onion Architecture . 89
9.1.2 Model-View-ViewModel . 91

9.2 Design Patterns . 92
9.2.1 Service Locator . 92
9.2.2 Dependency Injection . 92
9.2.3 Data Access Object . 93
9.2.4 Repository . 93
9.2.5 Observer . 93
9.2.6 Value Object . 94
9.2.7 Singleton . 94
9.2.8 Facade . 94
9.2.9 Mediator . 94

9.3 Architectural Description . 95

10 Application Implementation 101
10.1 MVVM implementation . 101
10.2 Application Database . 103

10.2.1 Moor Usage . 105
10.2.2 Table Structure . 105

10.3 Data Access Objects . 107
10.3.1 Local Data Access Objects . 108
10.3.2 Remote Data Access Objects . 109

10.4 Repositories . 109
10.5 Synchronization . 110
10.6 Navigation . 111
10.7 Snackbars and Dialogs . 112
10.8 Authentication . 112
10.9 Application Services . 113
10.10 Location . 114
10.11 Storage . 114

Table of Contents viii

10.12 Downloading Maps . 115
10.13 Resolving Dependencies . 116
10.14 Networking . 117
10.15 Documentation . 117

11 Application Testing and User Feedback 118
11.1 Unit Testing . 118
11.2 UI Testing . 120
11.3 System Testing . 121

11.3.1 Testing Functional Requirements 121
11.3.2 Testing Non-Functional Requirements 122
11.3.3 Usability Testing . 122

12 Application Discussion 125
12.1 Growing pains . 125
12.2 Problematic Third-party Libraries . 126
12.3 Over-Engineering . 127
12.4 Development Experience . 127
12.5 Tie Registration . 128
12.6 Application Identity and Platform Adaptability 129
12.7 Usability Tactics Usage and Deletion Consistency 130

III Server 131

13 Server Introduction 132

14 Server Technologies 133
14.1 Database Management System . 133
14.2 Docker . 134
14.3 Programming Language . 134

14.3.1 Choosing JavaScript . 135
14.4 JavaScript Packages . 136

14.4.1 Nest . 136
14.4.2 TypeORM . 136
14.4.3 Axios . 136
14.4.4 AWS SDK . 136
14.4.5 Node-cache . 137
14.4.6 Passport . 137
14.4.7 ESLint . 137
14.4.8 Prettier . 137

15 Server Architecture 138
15.1 Server Design Patterns . 138

15.1.1 Data Transfer Object . 138

Table of Contents ix

15.1.2 Chain of Responsibility . 139
15.1.3 Dependency Injection . 139
15.1.4 Repository . 139
15.1.5 Mediator . 139
15.1.6 Template Method . 139

15.2 Server Project Structure . 140
15.3 Description of Server Architecture . 141

16 Server Implementation 146
16.1 Modules . 146
16.2 Dependency Injection . 147
16.3 Identity Provider Communication . 147
16.4 HTTP Controllers . 148
16.5 Application Services . 149
16.6 Documentation . 149
16.7 Authentication and Authorization . 151
16.8 ORM Entities . 152
16.9 Server Repositories . 154
16.10 Responding to Requests . 155
16.11 DTO Validation . 155
16.12 Synchronization . 156
16.13 Image Storage . 157

17 Testing the Server 158

18 Server Deployment 162
18.1 Running Locally . 163

19 Server Discussion 164
19.1 ORM Usage . 164
19.2 Choosing Nest . 165

IV Cloud Infrastructure 166

20 An Introduction to the Cloud 167
20.1 The Cloud: A Primer . 167

21 System Infrastructure 170
21.1 Auto-Scaling Group . 170
21.2 Continuous Deployment . 173
21.3 Auth0 Infrastructure . 175

22 Infrastructure Deployment 176
22.1 Terraform Primer . 178
22.2 Deployment Walkthrough . 179

Table of Contents x

22.2.1 Deploying to Auth0 . 179
22.2.2 Deploying to AWS . 179

23 Infrastructure Discussion 181
23.1 AWS Educate Limitations . 181
23.2 Identity and Access Management . 182

V Closing 184

24 Project Discussion 185
24.1 The Pandemic . 185
24.2 System Composition . 186
24.3 SQL vs NoSQL . 186
24.4 Unimplemented Functional Requirements 187
24.5 Distribution of Quality and Quantity 189
24.6 Future work . 190

24.6.1 Usability Testing Farmers and Sheep Observers 190
24.6.2 Creating a Web Site . 190
24.6.3 Integrating With External Actors 191
24.6.4 Report Generation . 191

24.7 Potential Benefits of Digital Supervision 192

25 Conclusion 195

Bibliography 196

A Usability Testing Script 206

Figures

2.1 Sheep tie colors, as proposed by NSG. 7
2.2 BeiteSnap user inteface [12]. 10
2.3 Skandobs mobile interface. 11
2.4 The Findmy e-bell model 2 [14]. 12

3.1 Use cases related to authentication. 17
3.2 Use case diagram for downloading a map. 18
3.3 Use case diagram for viewing downloaded maps. 18
3.4 Use case diagram showing available actions for a team. 19
3.5 Use case diagram for creating a new team. 20
3.6 Use case diagram for managing user invites. 20
3.7 Use case diagram for farm interactions. 21
3.8 Use case diagram for performing a trip. 22
3.9 Use case diagram for performing a sheep observation. 23
3.10 Use case diagram for performing an "other" observation. 24
3.11 Use case diagram for viewing previously performed trips. . . . 24

4.1 Excerpt of Trello board for project. 44
4.2 A Trello task with sub-tasks. 44

5.1 A high-level overview of the system architecture. 47

7.1 Signing in. 62
7.2 Reset password . 62
7.3 Registering user details. 62
7.4 Normal home. 63
7.5 Home with ongoing trip. 63
7.6 Home with unsent trips. 63
7.7 No farms downloaded. 64
7.8 Downloading farms. 64
7.9 Downloaded farms. 64
7.10 My invites. 65
7.11 Joined teams. 66
7.12 No teams joined. 66
7.13 New team. 67
7.14 Team details. 67

xi

Figures xii

7.15 Administrative team actions. 67
7.16 Team deletion prompt. 68
7.17 Team invites. 68
7.18 New invite. 68
7.19 Transferring team ownership. 69
7.20 Removing team members. 69
7.21 My Trips. 70
7.22 Sheep Observations. 71
7.23 Other Observations. 71
7.24 Offline areas. 72
7.25 Offline area options. 72
7.26 Choosing a team for a trip. 72
7.27 Specifying map selection. 73
7.28 Specifying map name. 73
7.29 Map download indicator. 73
7.30 Trip UI. 74
7.31 Observation type prompt. 75
7.32 Trip pop-up options. 75
7.33 Sheep observation details if distance to observation is more

than 30 meters. 76
7.34 Sheep observation details if distance to observation is less than

30 meters. 76
7.35 Collapsed sheep and tie color sections. 77
7.36 Sheep colors with errors. 77
7.37 Tie color section. 77
7.38 Tie swipe UI. 78
7.39 Farm section with expanded "missing farm" field. 79
7.40 Registering an "other" observation 80
7.41 Camera preview. Camera is emulated. 80
7.42 User profile and actions . 81
7.43 Editing user details. 81

8.1 The resulting user interface of the code listing in Listing 8.1.1. 84

9.1 The Onion Architecture, as presented by Palermo [80]. 90
9.2 The MVVM pattern, as described by Microsoft [81]. 92
9.3 Package diagram of application structure. 95
9.4 Class diagram of a vertical slice of the application architecture. 97
9.5 Class diagram of domain and infrastructure layers of the sheep

observation domain. 99
9.6 Navigating between different views. 100

10.1 Entity relationship diagram of Application database. 106

12.1 First version of application user interface. 129

Figures xiii

15.1 Package diagram of server architecture. 140
15.2 Class diagram of classes relating to entity persistence. 142
15.3 Generic class diagram describing relations between HTTP con-

trollers, DAO’s, the application layer and the domain layer. . . . 144
15.4 Sequence diagram describing object communications in the

happy path of creating an entity. 145

16.1 Swagger user interface. 150
16.2 Swagger UI for getting a specific user. 150
16.3 ER diagram of server. 153
16.4 Error response returned when DTO validation fails. 156

21.1 Deployment diagram of the server infrastructure. 171
21.2 Deployment diagram of the continuous deployment process.

Server infrastructure is simplified. 174

Tables

2.1 Device and subscription prices for a single tracking device. Prices
are in NOK and VAT is excluded. Subscription price is yearly. 13

3.1 Authentication requirements. 25
3.2 User details requirements. 25
3.3 Farm requirements. 26
3.4 Invitation requirements. 26
3.5 Team requirements. 27
3.6 Trip management requirements. 28
3.7 Map requirements. 28
3.8 Trip requirements. 29
3.9 Sheep observation requirements. 30
3.10 Other observation requirements. 30
3.11 Synchronization requirements. 30
3.12 Report generation Requirements. 31
3.13 Availability scenario 1: Executing a trip without internet connectivity. 31
3.14 Availability scenario 2: Verifying load balancing capabilities. 32
3.15 Descriptions of the ACID properties [29]. 34
3.16 Modifiability scenario 1: Replacing the HTTP package. 35
3.17 Modifiability scenario 2: Adding a new query parameter. 35
3.18 Security scenario 1: Rejecting unauthorized database requests. . . . 37
3.19 Security scenario 2: Rejecting unauthorized actors. 37
3.20 Usability scenario 1: Cancellation of long-running task. 39
3.21 Usability scenario 2: Application familiarization. 39

6.1 Stack Overflow Developer Survey 2020 results within the category
of "Most loved, dreaded and wanted - other frameworks, libraries
and tools" [56]. 56

11.1 Average results of the SUS questionnaire answers. 123

24.1 Unmet functional requirements. 188

xiv

Code Listings

8.1.1 Flutter widget example. 83
10.1.1 Parameters and type definition of BaseWidget. 102
10.1.2 How the BaseWidget is built. 102
10.1.3 BaseView definition. 103
10.1.4 A rudimentary view and view model implementation. 103
10.2.1.1 Defining the farm table in Dart code. 105
10.3.1.1 Upserting a list of farms. 108
10.3.2.1 GET request for remotely stored invite. 109
10.4.1 Fetching a stream of a team with memberships. 110
10.9.1 Application-layer logic for deleting an ongoing trip. 113
10.13.1 Instantiating a dependency in the IoC container. 116
10.13.2 Providing dependencies to view model. 117
10.15.1 Example of application documentation. 117
11.1.1 Unit test for the local farm DAO. 119
11.1.2 Example unit test case for the farm repository. 120
11.2.1 Example widget test for the Team List View. 121
16.1.1 Team module. 146
16.2.1 Instantiation of farm service. 147
16.4.1 A handler for a GET HTTP method within the team HTTP

controller. 148
16.6.1 Swagger annotations for a response. Constructor omitted for

brevity. 149
16.7.1 Authentication strategy. 151
16.8.1 Farm ORM definition. 152
16.9.1 Excerpt of abstract repository. 154
16.11.1 Definition of validation logic for team creation. 155
17.0.1 Testing user persistence. 159
17.0.2 Setting up the Team HTTP Controller test. Validation Pipe omit-

ted for brevity. 160
17.0.3 Controller test examples. 161
22.1.1 Provisioning an S3 bucket through Terraform 178

xv

Acronyms

API Application Programming Interface. 35, 48, 51, 57, 58, 87, 88, 94, 98, 104,
113, 114, 121, 122, 125, 136, 137, 148, 170, 175, 176, 178, 182

AWS Amazon Web Services. xvii, 37, 46, 136, 157, 162, 163, 168–183

CI/CD Continuous Integration / Continuous Deployment. 173
CLI Command Line Interface. 142, 179, 182

DAO Data Access Object. xiii, xv, 93, 96, 98, 107–111, 118, 119, 127, 139, 144
DTO Data Transfer Object. xiii, 138, 141, 142, 145, 148, 149, 155, 156, 159

GCP Google Cloud Platform. 104, 168

IDE Integrated Development Environment. 48, 58–60
IETF Internet Engineering Task Force. 87, 112, 175
IoC Inversion of Control. xv, 91, 92, 116, 117, 139, 147

JWT JSON Web Token. 48, 137, 145, 151

MVVM Model-View-ViewModel. xii, 91, 92, 101, 127

NSG Norsk Sau og Geit. xi, 7, 13, 128

ORM Object-Relational-Mapper. xv, 136, 139, 141–143, 145, 152, 154, 155, 164,
165

RDBMS Relational Database Management System. 133, 134, 158

SDLC Software Development Life-Cycle. 15, 16, 41, 42, 47, 125
SNO Statens Naturoppsyn. 5, 8, 9, 191
SQL Structured Query Language. 48, 103, 133, 164, 165

VPC Virtual Private Cloud. 170, 172
VSCode Visual Studio Code. 48, 60

WIP Work In Progress. 42, 44

xvi

Glossary

CRUD The four functionalities required in order to store data: Create, Read,
Update and Delete. 109, 138, 139

EC2 A resizable computing service on AWS. 170

IaaS Providing and maintaining a set of virtualized computer resources for a
premium. 168

IaC The process of creating infrastructure through the use of cloud-provider
specific code, as opposed to utilizing user interfaces. 168, 176, 177

PaaS Providing a fully maintained development environment on a virtual computer
resource. 168

SaaS A fully provided and maintained system that can be configured to fit specific
customer needs. 38, 47, 168

YAGNI An acronym for "You ain’t gonna need it!". Used to promote the practice of
only implementing functionality when it is required. 109, 113

xvii

Part I

Project

1

Chapter 1

Introduction

Tending to domesticated animals is a practice as old as Norway itself, with farms
spread throughout the country. Allowing domesticated animals to graze on outlying
fields is considered a tradition and, at times, a necessity. By allowing their animals
to graze in outlying fields, farmers are able to save money on food, while also
ensuring that the animals are active and content.

The grazing process is different for every kind of domesticated animal. Norwegian
sheep are left to graze on outlying fields throughout the entire grazing season.
While this is beneficial for both farmers and sheep, it is not without its own
problems. Throughout the 2019 grazing season, 1 933 947 sheep and lambs were
released, of which 102 022 never returned [1]. Losses can be attributed to several
factors: illness, separation from the herd, accidents and predators.

Of the aforementioned causes, deaths caused by predators are of special interest
to farmers. Sheep predators are protected by law, and can therefore not simply be
killed. Due to this, the Norwegian government offers reimbursements to all farmers
who have suffered a loss of sheep due to predators. Rovbase, a collaborative tool
for predator monitoring, reported a total of 33,605 sheep deaths that could be
directly attributed to predators in 2019. Of these deaths, a total of 17,569 were
reimbursed by the government [2].

In order to document sheep counts throughout the season, and to ensure their
well-being, farmers have employees who conduct trips in known outlying fields to
observe sheep throughout the season. These employees will be referred to as sheep
observers throughout the rest of the thesis. The Norwegian government mandates
that supervision trips are to be conducted at least once a week [3]. The observer
notes down each and every sheep observation, regardless of whether the sheep are
alive or not. Once the season is over, the observations are converted to a report,
which in turn is used as the basis for any government reimbursements.

2

Chapter 1: Introduction 3

Currently, observations are neither standardized nor mandated; The government
simply requires farmers to perform them in order to prove the well-being of grazing
sheep and be eligible for reimbursements. Each farm has their own way of perform-
ing observations, leading to differing degrees of documentation. By standardizing
observation documentation, the actors associated with the process would be able
to utilize the generated data to a greater extent. It could allow for farmers to gain a
greater overview of where their sheep are at, where predators have been spotted, or
troubling areas where sheep have disappeared. A digital solution for documenting
sheep observations could possibly make supervision trips more effective; Efficient
user interfaces could increase the speed of which observations can be documented.
Furthermore, a standardized and digital solution could automate processes such
as reporting dead sheep or predators to the appropriate organizations. By having
a standardized and thorough way of documenting dead sheep, farmers could
have a better chance of being reimbursed for sheep deaths caused by predators.
Finally, the end-of-season report required by the government can be automatically
generated, significantly reducing the chance of human error.

This thesis will describe the development and usage of a system allowing sheep
observers to digitally document their supervision trips, and share them with other
sheep observers. It will describe the underlying development process, discuss how
and why solutions were chosen, and how the system can be extended for future
use. In doing this, the author aims to answer the following research questions:

– RQ1: What potential benefits can sheep observers and farmers gain by
utilizing digital supervision solutions?

– RQ2: What is to be gained from collecting structured sheep supervision
data?

– RQ3: In what ways can digitalized sheep supervision affect the well-being
of grazing sheep?

1.1 Project Description

The aim of this project is to develop a system that aids sheep farmers and observers
throughout the sheep grazing period. By introducing a cross-platform mobile ap-
plication, sheep observers will be able to document their trips in a standardized
manner through the use of a smart phone. The application will be fully capa-
ble of offline usage, to allow observers to benefit from it regardless of internet
connectivity.

In order to be beneficial to sheep observers, the application must support the
documentation of several key factors of a supervision trip. The user location will
be continuously tracked in order to enable analysis at a later point. Furthermore,
it will allow sheep observers to document several types of observations. Sheep
observations will require the observer to document the number of sheep, their

Chapter 1: Introduction 4

whereabouts and their wool colors. They can optionally also document their tie
colors and what farms the herd belongs to. The application should also support
other types of observations, such as dead sheep and predators.

To allow for an effective method of conducting supervision trips, the system will
support the concept of supervision teams: A group of sheep observers working
together in teams, allowing for a greater overview of all sheep grazing within an
area.

The system will include a cloud-based server, to allow for centralized storage of
the data generated by the mobile application. All requests to this server should be
authenticated.

Farmers will be able to register their farms within the system, allowing for sheep
observers to attribute observations to a specific farm. Furthermore, farmers should
be able to generate a sheep supervision report at the end of the grazing season.

1.2 Stakeholders

In order to create a successful system, one must first consider the different stake-
holders who are intended to interact with it. This subsection details the different
stakeholders surrounding the project and how the system relates to them.

1.2.1 Farmers

The farmers are the ones who own the sheep, and are also the ones who have
the most to lose if a sheep is killed. Farmers are incentivized to keep their sheep
alive through several factors, whether they are economical, legal or emotional.
The main priority of most farmers is to ensure the well-being of their sheep; They
are therefore interested in tooling providing them a greater overview of the threat
level in their grazing areas. The proposed solution could allow for farmers to gain
a greater overview, both through a greater amount of data to analyze, and by
optimizing the sheep observation trips so that they can be performed more often.

1.2.2 Sheep Observers

The sheep observer is the end user of the mobile application. One of the intended
benefits of digitalizing the documentation process is the simplification and opti-
mization of sheep observation registration. The sheep observer is mostly concerned
with ease of use and reliability. Old methods are tried and true; In order to allow
for a smooth transition to a new way of registering observations, the benefits must
be immediately noticeable.

Chapter 1: Introduction 5

1.2.3 County Governor

The county governor wears many hats. The one most relevant for this project,
however, is the reimbursement of sheep that have been killed by predators. In
order to do this, the county governor needs a solid foundation of data that can
confirm claims made by a farmer.

1.2.4 Mattilsynet

The Norwegian Food Safety Authority, Mattilsynet, is a Norwegian organ concerned
with the quality of Norwegian-made food and the well-being of Norwegian farm
animals. As such, Mattilsynet is interested in accessing data regarding sheep
supervision. Having access to consistent and detailed data would simplify the job
Mattilsynet has to do.

1.2.5 Statens Naturoppsyn

The Norwegian Environment Agency, Statens Naturoppsyn (SNO), is concerned
with any sheep deaths that can possibly be attributed to predators. Whenever
grazing personnel encounters a sheep that met a suspicious demise, SNO should be
called to determine the cause of death. As such, SNO is concerned with receiving
reports of dead sheep, their whereabouts, and any other contextual information
SNO deems to be relevant.

1.3 Thesis Structure

Due to the nature of this project, the resulting thesis document is structured in an
unorthodox manner. Each system component is described in its own part. The com-
ponents of the resulting system differ in terms of functionality and implementation;
Grouping them together would not be sensible. As such, the thesis is structured in
the following way:

• Part 1: Introduction - Introduces the project, domain knowledge, method-
ologies, processes, system requirements and an overarching description of
the final solution.
• Part 2: Mobile Application - Provides a detailed description of the supervi-

sion application.
• Part 3: Server - Provides a detailed description of the server concerned with

persisting supervision data.
• Part 4: Cloud Infrastructure - Describes how the system cloud infrastructure

is provisioned and deployed.
• Part 5: Closing Statements - Concludes the thesis with a shared discussion

of the entire thesis, suggestions for future work and a proper conclusion to
the project.

Chapter 2

Background

This chapter will provide an overview of how shepherding is performed in Norway,
the grazing season and the sheep supervision process. Finally, Section 2.2 will
provide an overview of existing solutions that fulfills some of the requirements
this project attempts to fulfill.

2.1 Shepherding in Norway

Of all land mass in Norway, only 3.5 percent are considered to be arable land
[4]. Despite this, Norway manages to contain a large population of farm animals
throughout the entire country. The process of tending to farm animals is greatly
alleviated by allowing animals to graze freely on outlying fields when conditions
allow for it. Approximately 45 percent of Norwegian soil is considered to be
outlying fields, and farmers are encouraged to make use of it [5]. Farmers are
estimated to save approximately one billion NOK on fodder every year they utilize
outlying fields [6].

2.1.1 Seasonal shepherding

Grazing periods in outlying fields vary across the country. In climates with accept-
able weather, such as areas close to the ocean, sheep can be kept outside and active
year-round. In harsher conditions, sheep usually graze outlying fields during the
warm summer months. This is usually in the range of May to October, although it
varies from location to location [7].

2.1.2 Ties

In order for farmers to keep track of how many lambs a specific ewe has, Norwegian
farmers mark ewes with what they refer to as ties, a plastic ribbon attached around
the neck of the sheep. They are shown in Figure 2.1 The usage of ties allows

6

Chapter 2: Background 7

for easier supervision during the grazing season, both for the observer and any
other parties traversing the area. If the number of lambs grazing with an ewe does
not match the amount indicated by the tie, one can assume a lamb is missing.
Norsk Sau og Geit (NSG), an organization for Norwegian sheep- and goat-keepers,
presented the following standard in 2011 [8]:

• 0 lambs: Red tie
• 1 lamb: Blue tie
• 2 lambs: Yellow or no tie
• 3 lambs: Green tie

The standard is followed throughout the entirety of Norway. Oppland county used
to deviate from this standard, but decided to adopt it after the 2019 season [9].

Figure 2.1: Sheep tie colors, as proposed by NSG.

2.1.3 Loss of Sheep

Farmers expect a certain number of sheep to die every grazing season. In the
2019 grazing season, approximately 1 934 000 sheep were released, of which
approximately 102 000 never returned [1]. Causes of death varies, but are most
commonly attributed to illness, herd separation, accidents and predators.

Of the aforementioned causes, farmers are the most interested in deaths caused
by predators. The Norwegian environment is home to several predators, namely
the Eurasian Lynx, Brown Bears, Wolves, Wolverines and Eagles. These species are
protected under Norwegian law and the Bern convention, and can therefore not
simply be killed [10]. However, the Norwegian government wants animals and

Chapter 2: Background 8

predators to live side by side without any major losses.

Thus, a certain number of grazing animals are expected to be killed by preda-
tors every year. As a remedy, the government allows farmers to submit reports
describing animal deaths that can be directly tied to predators. Farmers are then
paid reparations for their losses. However, determining the cause of death can
oftentimes be a challenging procedure. For a farmer to be able to even attempt
to claim predators as the cause of death, the animal in question has to be lo-
cated. Predators are known to move their prey, and even hide it at times. Even if
one were to discover the animal, attributing the death to a predator can still be
challenging. The possibility of the animal dying due to starvation, accidents or
illnesses are always present. Due to the challenges surrounding attributing cause
of death to predators, the Norwegian government requires all carcasses that could
fall within the aforementioned cause of death to be reported to the Norwegian
Nature Surveillance (Statens Naturoppsyn (SNO)), whom in turn will decide the
cause of death.

2.1.4 Supervision

Norwegian law requires one to perform supervision of grazing animals at least once
a week [3]. There are currently no recommendations as to what sheep observers
are to do when animals are separated by large distances. As such, farmers and
observers are left to handle such problems on their own. Areas with proven predator
activity must be visited more often. During these supervision trips, the person
conducting the trip must note every sheep observation. This has traditionally been
done using pen and paper, although some observers have experimented with digital
solutions. For every sheep observation, the observer should document the following
attributes:

• The position of the observation (coordinates).
• The time of the observation.
• The number of sheep.
• The number of sheep separated by wool color (black, gray, brown).
• The number of sheep separated by tie color.
• What farms the sheep belong to.

Some of this information can be difficult to observe from a distance. According
to Svein-Olaf Hvasshovd, the supervisor of this project and an experienced sheep
observer, tie colors and farm colors can normally not be identified if the observer
is more than 30 to 50 meters apart from the sheep in question. For distances larger
than this, observers are not expected to register tie colors and farms.

Farms usually mark their sheep in such a way that they can easily be identified as
theirs. This is usually achieved through the use of ear markings, with two colors

Chapter 2: Background 9

uniquely identifying a farm within the grazing area.

Storing this information allows for the farms to have a certain amount of knowledge
with regards to where their sheep have been observed and how many sheep they
have lost thus far in the season. The observer can determine the intended size of
the flock by using the tie colors, which can then be compared to the actual number
of sheep in the flock. Observing an ewe with a green tie and only two lambs could
be a cause for concern, as green ties indicates the presence of three lambs.

Dead sheep should also be registered. If one were to encounter such an issue, the
color of the sheep tie and details surrounding the ear markings of the sheep should
be documented. The carcass should be photographed in detail to allow for one to
retain as much information as possible. Additionally, the farmer should notify SNO
if the death could have been caused by predators.

Beyond this, there are several other things that are not mandatory, albeit bene-
ficial, to note down. Any observations of predators in the surrounding areas are
extremely relevant for every farmer that has their animals grazing in proximity to
the predator sighting. If one were to discover tracks, carcasses, excrement or an
actual predator, noting it down could allow for farmers to take proactive actions
in order to ensure sheep safety. One could also note down sheep separated from
their herd, or destroyed equipment such as bridges and fences.

Finally, when the grazing season ends and the animals are brought back to their
farms, the supervision trip notes will be combined into a report for the entire
grazing season. A supervision report can either be submitted for individual farmers,
or for a combined team of farmers and sheep observers. The resulting report will
serve as proof of proper supervision throughout the grazing season. If it is not
filled in to the extent the government and Mattilsynet expects, problems regarding
reimbursement for lost sheep may occur. Furthermore, lacking documentation can
incur strong reactions from Mattilsynet with regards to animal health. Thus, it is
very important to keep detailed notes throughout the entire grazing season.

The seasonal reports do not have a standardized format. Instead, the government
provides a list of requirements surrounding the information to include. Every
trip must include the date it was performed at, the total number of sheep and
lamb observed throughout the trip and any occurrences of dead or injured sheep.
Furthermore, the government wants every observer to provide as much details as
possible with regards to the route they took during the trip. Finally, all observations
of potential predators should be included. If an observer spots a predator, it should
note down the type of predator and the location of where it was observed.

Chapter 2: Background 10

2.2 Existing Supervision Solutions

Sheep supervision is a narrow area, with little in the way of existing solutions. At
the time of writing, no solution fulfills every requirement. Nonetheless, this section
will introduce a set of applications that covers some of the functionality required
for documenting sheep supervision.

2.2.1 BeiteSnap

BeiteSnap is developed by farmers, and is a cross-platform application for both iOS
and Android [11]. The application not only supports digital supervision, but also a
plethora of supplementary functionality to allow sheep farmers to be up to date on
the state of grazing sheep. Offline maps can be downloaded before starting a trip
to ensure that observations can be documented even when internet connectivity is
sparse. Furthermore, BeiteSnap can alert other farmers if one of their sheep were
found dead. It also provides functionality for generating seasonal reports to be
sent to the county governor once the season ends. Screenshots of the application
are shown in Figure 2.2.

Figure 2.2: BeiteSnap user inteface [12].

Whereas this project mainly focuses on sheep observers hired by farmers, BeiteSnap
also focused on private individuals not attached to any specific farm. Through the
application, private individuals can alert farmers of dead or lost sheep, allowing
for farmers to either fetch their sheep or gain a greater reimbursement from the
government.

In terms of functionality, BeiteSnap appears to cover most, if not all, of the re-
quired functionality for sheep supervision trips. However, Beitesnap is no longer in

Chapter 2: Background 11

operation. As such, the author is not able to experiment with the application. The
information presented in this section is based on the limited information BeiteSnap
provided on their website.

2.2.2 Skandobs

Skandobs is an application for registering predator observations in Norway, Sweden,
Denmark and Finland [13]. It is available for web, Android and iOS. The application
provides functionality for viewing filtered reports of predator observations in any
of the supported countries, and whether the observations have been investigated or
confirmed. Beyond this, the application allows users to register their observations,
in which they can specify where and what they have observed. The registration
process also allows for uploading images related to the sighting. Screenshots of
the Skandobs user interface are shown in Figure 2.3.

A solution like this is extremely helpful to farmers with regards to being aware of
potential threats in their area, but it cannot be used to simplify the supervision
process. It is entirely reliant on web connectivity, and it has no support for storing
trip data or sheep observations.

Figure 2.3: Skandobs mobile interface.

Chapter 2: Background 12

2.2.3 Electronic Location Tracking

A popular solution for simplifying the process of sheep supervision is the use of
electronic tracking equipment. By fitting sheep with electronic tracking devices,
farmers are able to continuously observe their locations. This space is occupied by
several actors, with notable examples being Findmy [14], Telespor [15], Nofence
[16] and Smartbjella [17]. These solutions provide farmers with electronic tracking
devices and applications enabling them to continuously check the whereabouts
of their sheep. The aforementioned companies implements their tracking devices
as either bells or collars, allowing farmers to place them around the neck of an
animal. For reference, an image of the Findmy product is shown in Figure 2.4.
Findmy, Nofence and Smartbjella provides the user with the option of creating
geofences, a virtual border in which sheep are allowed to graze. If the geofence is
crossed, the farmer is notified.

Figure 2.4: The Findmy e-bell model 2 [14].

The tracking devices are highly customizable. Farmers can for instance choose
how often location updates should be received, or if the devices should notify the
farmer if a sheep has not moved throughout a prolonged time period.

A major benefit of the Findmy product is the way it relays information back to
farmers. Telespor, Nofence and Smartbjella rely on LTE-M or Narrowband IoT
solutions for transporting data to and from the farmer. This connection does not
cover the entirety of Norway. Findmy, on the other hand, relies on a satellite con-
nection, allowing for an increased area in which the tracking devices can function
as intended. Predators usually traverse land where there are none or low signs of

Chapter 2: Background 13

human activity. Such areas often correspond to the areas lacking cellular connec-
tivity. If an attack occurs in such an area, the electronic bells and collars would
be of little use. However, one should note that most areas are covered; Utilizing
electronic tracking devices would, in most cases, provide sufficient tracking.

Utilizing electronic tracking devices allows for farmers and sheep observers to
more easily track and manage grazing sheep. However, equipping every sheep with
a tracking device is not economically sound. Costs related to tracking devices are
shown in Table 2.1. Each device must be purchased at a base price. Furthermore,
the farmer must pay a subscription fee for every device they utilize every season.
NSG estimates the value of a single sheep to be NOK 3585, whereas a single lamb
is worth NOK 1850 [18]. Many farmers are unable to utilize tracking devices due
to the associated costs. Some municipalities are willing to subsidize the purchase
prices of electronic tracking devices, allowing farmers to utilize them for a certain
portion of their sheep. Tracking devices are a great supplement for improving and
simplifying the supervision process, but they cannot replace manual observations.

Brand Device Subscription Note
Findmy [19] 1849 229 Quantity discounts.
Telespor [20] 899 149 Several subscription types.

Quantity discounts.
Nofence [21] N/A 799 Devices are rented or leased.

Quantity discounts. Pay as you
go.

Smartbjella [22] 949 238 Several Subscription types.

Table 2.1: Device and subscription prices for a single tracking device. Prices are
in NOK and VAT is excluded. Subscription price is yearly.

2.2.4 Map Applications

The mobile ecosystems provides an abundance of mapping applications through
their respective app stores. Many of these applications provides some of the func-
tionality required to create an application like the one this thesis intends to create.
By quickly traversing the App Store, one can find map applications that support
offline maps, map markings and trip location saving. The Norwegian space, for
instance, is occupied by the likes of "Hvor?" [23], "Ut.no" [24], "Topokart" [25]
(iOS), "Norgeskart" [26] and "Norgeskart Friluftsliv" [27]. Although these appli-
cations fulfill many of the required functionalities, they were developed for a
completely different purpose. The aforementioned applications focus on traversing
the Norwegian terrain for the purpose of hiking or walking. Map markings are
generally used to save fishing spots, cabins or other points of interest. This does
not exclude the possibility of using the feature to mark sheep locations. However,
if one were to use it to do exactly that, there would not be any standardization

Chapter 2: Background 14

of the noted values, which in turn could lead to a cumbersome process when
creating a report. Furthermore, these applications have little to no support for data
exportation. Report creation would entail a lot of manual entry in order to have
the data in the correct place and format.

Chapter 3

Requirements

In order for a solution to be deemed valuable, a set of high-level requirements
would have to be fulfilled. These requirements were already well-defined for
this project, due to the supervisor’s extensive knowledge of the problem area.
This chapter describes the process of eliciting the requirements for the project,
followed by descriptions of the use cases the author created based on the available
information. The final subsections will then describe the functional and non-
functional requirements of the system in detail.

3.1 Elicitation

Throughout previous research and experience within the field, the project supervi-
sor has gained an extensive amount of information surrounding the problem area.
This information was provided in the description of the project itself, in discussions
between the author and the supervisor before the project started, and in the initial
supervisor meetings. However, such broad requirements oftentimes misses minute
details, and should never be considered to be a final list of requirements.

The meetings, and the provided high-level requirements, provided a great baseline
for the collection and refinement of the project requirements. Initial requirements
were translated into high-level use cases, which in turn would be broken down
into smaller, more defined, functional requirements. This process also resulted in
a set of quality attributes aligning with the goals of the project.

Although the aforementioned method produced many requirements, additional re-
quirements would be added throughout the entire SDLC by using several elicitation
methods. Prototyping proved to be the most efficient method. Supervision meetings
were held weekly, and allowed the author to regularly present new prototypes. The
prototypes usually consisted of abstract solutions or actual code implementations,
and allowed for the supervisor to give feedback on any additional functionality or

15

Chapter 3: Requirements 16

requirement the prototype needed. This agile and iterative process allowed for the
functional requirements to be refined throughout the entire development period,
and gave the author a clear sense of what functionality to prioritize.

Usability testing proved to be another integral part of eliciting requirements.
Throughout the entire SDLC, the author continuously performed informal usability
tests on potential prototypes. This often led to changes in the user interface of the
application, and even introduced new requirements or functionality at times.

3.2 Architecturally Significant Requirements

System requirements can be separated into several different categories. This sec-
tion provides a list of system requirements significantly impacting the overall
architecture of the system. Each sub-section will present a requirement and detail
how the architecture was adapted to address the requirement.

3.2.1 Offline Capability

Being able to utilize the application without internet connectivity is the most impor-
tant requirement to consider when planning the system architecture. Whenever an
observer conducts a supervision trip, there is no guarantee of internet connectivity.
As such, the mobile application would have to somehow store all required data
locally on the device. Furthermore, the server or database must be able to support
synchronization in some capacity.

3.2.2 Cross-platform application

Many popular mobile applications are available for both iOS and Android devices, a
requirement also faced by this project. This could either be achieved through a cross-
platform framework or by creating two native implementations. Web applications
are not a viable option, as sheep supervision requires system functionality not
available through mobile web browsers. The different approaches will drastically
alter the architecture and development process of the mobile application, although
the system as a whole largely remains unchanged.

3.2.3 Authentication & Authorization

In order to limit resource access to the users who should be permitted to access
them, the system must allow for actors to identity themselves through authentica-
tion. By introducing authentication, the system will also have to support account
registration and account deletion.

Chapter 3: Requirements 17

3.2.4 Server capabilities

The data generated through the application becomes more valuable when it can be
shared with others. Allowing the user to extract this data from the device through
tools would not be very practical, as the sharing process would be too complicated.
As such, a centralized storage solution would be beneficial. Thus, the planned
architecture must consist of some type of central server and storage solution.

3.3 Use Cases

The use cases presented in this section describes the core functionality of the
application, and were mostly generated from data presented in the initial weeks
of the project. If a new requirement appeared throughout the development period
and was deemed to be too large, a new use case would be created and broken
down into smaller requirements later-on. The following subsections will provide
pictures and descriptions of every use case.

3.3.1 Authentication

Figure 3.1 displays a set of use cases relating to user authentication. The use case
features two actors, namely the "user" and the "identity provider". A user within
this context can be any actor utilizing the system to some extent, whereas the
identity provider is an actor concerned with authenticating and authorizing users.

The "log in" use case indicates that the system should support authentication. If a
user has forgotten their password, the "reset password" use case specifies that one
should be able to create a new one. Account creation should be performed in two
steps; Specify login credentials, which will be stored with the identity provider.
Then, specify general user details for usage within the system.

Figure 3.1: Use cases related to authentication.

Chapter 3: Requirements 18

3.3.2 Download Map

Downloading map portions are an integral part of the application, as it allows
sheep observers to utilize the application without any need for internet connectivity.
The "download map" use case, as shown in Figure 3.2, specifies the steps one must
take to download a map for offline usage. The "sheep observer" actor first has to
view the map, and navigate to the specific portion of interest. Then, the actor must
select the portion of the map to be downloaded. Before the download can begin,
the actor must specify a name for the map to be downloaded. Finally, map tiles
are downloaded from the "tile server" actor and stored on the device.

Figure 3.2: Use case diagram for downloading a map.

3.3.3 View Downloaded Maps

Figure 3.3 specifies all the ways one can interact with a downloaded map. One
should be able to delete maps, as specified by the "delete map" use case. Further-
more, users should be able to view downloaded maps, as specified by the "preview
map" use case. Finally, downloaded maps should allow a user to start a new trip
within a specific map. If one is to start a new trip, the observer must first specify
what team the trip should be registered under.

Figure 3.3: Use case diagram for viewing downloaded maps.

Chapter 3: Requirements 19

3.3.4 Team Actions

Teams actions can be described as everything one is allowed to do when interacting
with a specific team, and are shown in Figure 3.4. The user should be able to
perform different actions depending on what role they have within a specific
team. A team owner should be able to view pending invites, add and remove both
members and invites, and delete the entire team. Furthermore, owners should
be able to transfer ownership rights to another team member. Team members,
on the other hand, should only have access to a subset of the available actions,
namely viewing what trips the team have conducted, and leaving the team. These
actions should also be available to the team owner, although leaving a team has
the prerequisite of having to transfer ownership rights before doing so.

Figure 3.4: Use case diagram showing available actions for a team.

Chapter 3: Requirements 20

3.3.5 New Team

Figure 3.5 shows the use case of creating a new team, in which a user specifies a
team name and an optional description.

Figure 3.5: Use case diagram for creating a new team.

3.3.6 View User Invites

The use case of viewing invites are displayed in Figure 3.6. Users should be able to
either accept or decline an invite.

Figure 3.6: Use case diagram for managing user invites.

Chapter 3: Requirements 21

3.3.7 Farm

The system should allow farmers to register their farms for offline usage during
supervision trips. Figure 3.7 also lists the possibility to delete farms, which are
accessed by both sheep observers and farmers. If a farmer chooses to delete their
farm, it will be deleted from the entire system. Sheep observers, on the other hand,
only delete locally stored instances of a farm. In the rest of the system, the farm
remains intact.

Figure 3.7: Use case diagram for farm interactions.

Chapter 3: Requirements 22

3.3.8 Perform Trip

The use case diagram in Figure 3.8 details the available actions when conducting
supervision trips. One can either choose to perform a trip by starting a new trip, or
by resuming a previously started trip.

Figure 3.8: Use case diagram for performing a trip.

Once the trip has started, the user can continuously create map markers, which
allows one to mark where an observation has taken place. This observation can
either be a sheep observation, or an "other" observation. Furthermore, the user
should be able to view previously registered observations for the ongoing trip. This
use case is further expanded upon in Section 3.3.11. Finally, the user should be
able to finish the trip at any time.

Chapter 3: Requirements 23

3.3.9 Perform Sheep Observation

Figure 3.9 breaks down the use case of performing sheep observations. The observer
is required to register the total number of sheep for every observation, as well as
the number of sheep divided by the color of their wool. If the observation is within
30 to 50 meters of the observer, one should be able to specify the number of each
tie color as well. Finally, close observations should allow the observer to register
the farms sheep belongs to. Registering farms should allow the observer to both
specify downloaded (known) farms and unknown farms.

Figure 3.9: Use case diagram for performing a sheep observation.

Chapter 3: Requirements 24

3.3.10 Perform Other Observation

Any type of observation not related to alive sheep falls under the "other" category,
and should follow the same registration procedure. Every observation must specify
the type of observation, and a succinct description of what has been observed.
One can also optionally add observation images, whom in turn can have optional
image descriptions. The use case is shown in Figure 3.10.

Figure 3.10: Use case diagram for performing an "other" observation.

3.3.11 View Previous Trips

The use case of viewing previously performed trips is shown in Figure 3.11. When
viewing previous trips, the user can choose to view details for a specific trip, or
delete it entirely. Trips that are not synchronized to the server yet can simply be
deleted from the device. Synchronized trips, on the other hand, must be deleted
from the server as well. By pressing a specific trip, the user should be able to view
details about the trip observations.

Figure 3.11: Use case diagram for viewing previously performed trips.

Chapter 3: Requirements 25

3.4 Functional requirements

This section will describe the functional requirements of the system: Requirements
describing what type of functionality the system must provide. As stated in Section
3.1, the functional requirements were elicited through several means, namely
prototypes, usability tests, the supervisor and breaking down use cases. Functional
requirements are listed in Tables 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10,
3.11 and 3.12.

ID Priority Description
FR1.0 High The system should allow users to log in with an email and

a password.
FR1.1 High The system should allow users to create accounts with an

email and a password.
FR1.2 High The system should persist a user log-in as long as the

session is valid.
FR1.3 High The system should allow users to reset their password

through email recovery.
FR1.4 High The system should allow a user to log out.
FR1.5 High The system should allow a user to delete their account

and any personally identifiable information.

Table 3.1: Authentication requirements.

ID Priority Description
FR2.0 High The mobile application should allow for users to register

their first and last name.
FR2.1 Medium The mobile application should not grant users access to

the application before first and last name is registered.
FR2.2 Low The mobile application should allow for users to change

their first and last name.
FR2.3 High The mobile application should allow for users to view their

user details.
FR2.4 Low The mobile application should allow for users to view the

first and last name of other team members.

Table 3.2: User details requirements.

Chapter 3: Requirements 26

ID Priority Description
FR3.0 High The system should allow farmers to register their farms.
FR3.1 High The system should allow for farmers to delete a registered

farm.
FR3.2 High The system should allow for farmers to update their regis-

tered farms.
FR3.3 High The mobile application should allow users to search for

registered farms.
FR3.4 High The mobile application should allow for users to download

farms for offline usage.
FR3.5 High The mobile application should allow for users to view

downloaded farms.
FR3.6 High The mobile application should allow for users to remove

downloaded farms.
FR3.7 High The mobile application should allow for users to specify

unknown farms that have not been downloaded.

Table 3.3: Farm requirements.

ID Priority Description
FR4.0 High The system should allow users to send and receive team

invitations.
FR4.1 High The mobile application should allow for users to view their

pending invitations.
FR4.2 High The mobile application should allow for users to accept

or decline a pending invite.
FR4.3 High The mobile application should allow team owners to send

team invites to other users.
FR4.4 Medium The mobile application should allow team owners to

delete pending invites for a team.
FR4.5 Medium The mobile application should allow for team owners to

view a list of pending invites for a team.

Table 3.4: Invitation requirements.

Chapter 3: Requirements 27

ID Priority Description
FR5.0 High The system should allow users to create a new team.
FR5.1 High The mobile application should allow users to define a

name and description for new teams.
FR5.2 High The mobile application should allow for users to view the

teams they are members of.
FR5.3 High The mobile application should allow for users to view the

details of a specific team.
FR5.4 High The mobile application should allow for users to view the

members of a team they are a member of themselves.
FR5.5 High The mobile application should allow for users to leave a

team.
FR5.6 Medium The mobile application should allow team owners to

delete their team.
FR5.7 Low The mobile application should allow team owners to

change the name and description of a team.
FR5.8 Medium The mobile application should allow team owners to re-

move team members.
FR5.9 Medium The mobile application should allow team owners to trans-

fer ownership privileges to another member.
FR5.10 High The mobile application should allow users to view their

teams without internet connectivity.

Table 3.5: Team requirements.

Chapter 3: Requirements 28

ID Priority Description
FR6.0 High The mobile application should allow users to view the

trips they have performed.
FR6.1 Medium The mobile application should allow users to view trips

performed within a specific team.
FR6.2 High The mobile application should allow users to delete trips

they have conducted themselves.
FR6.3 Medium The mobile application should allow users to view team

trips without internet connectivity.
FR6.4 High The mobile application should allow users to view their

own trips without internet connectivity.
FR6.5 High The mobile application should allow users to view all

observations for a specific trip.
FR6.6 High The mobile application should allow users to send their

own trips to the server.
FR6.7 High The mobile application should only allow users to delete

observations for trips not yet sent to the server.

Table 3.6: Trip management requirements.

ID Priority Description
FR7.0 High The mobile application should be able to display a map

to the user.
FR7.1 High The mobile application should allow for users to pan the

map by dragging.
FR7.2 High The mobile application should allow for users to zoom the

map by pinching.
FR7.3 High The mobile application should allow for users to download

specific areas of the map for offline use.
FR7.4 High The mobile application should allow for users to specify a

name for a downloaded map area.
FR7.5 High The mobile application should allow for users to view a

list of downloaded map areas.
FR7.6 Medium The mobile application should allow for users to delete a

specific map area.
FR7.7 High The mobile application should allow for users to view a

downloaded map area.
FR7.8 High The mobile application should display a marker specifying

the current location of the user on the map.
FR7.9 Low The mobile application should allow for users to rename

a downloaded map.

Table 3.7: Map requirements.

Chapter 3: Requirements 29

ID Priority Description
FR8.0 High The mobile application should allow for users to start a

trip for a specific team.
FR8.1 High The mobile application should continuously track and

store the user position throughout a trip.
FR8.2 High The mobile application should allow for users to view

observations for an ongoing trip.
FR8.3 High The mobile application should allow for users to delete

observations during an ongoing trip.
FR8.4 High The mobile application should allow for users to register

observations on a specific map point.
FR8.5 High The mobile application should allow for users to finish a

trip.
FR8.6 Medium The mobile application should allow for users to abort an

ongoing trip.
FR8.7 High The mobile application should allow for users to resume

an ongoing trip.
FR8.8 Medium The mobile application should allow for users to view the

distance between themselves and a potential observation.
FR8.9 High The mobile application should allow for users to view their

route for an ongoing trip.
FR8.10 High The mobile application should allow for users to conduct

trips without internet connectivity.

Table 3.8: Trip requirements.

Chapter 3: Requirements 30

ID Priority Description
FR9.0 High The mobile application should allow for users to register

the total number of sheep in a sheep observation.
FR9.1 High The mobile application should allow for users to register

the number of sheep with a specific wool color in a sheep
observation.

FR9.2 High The mobile application should allow for users to regis-
ter the different tie colors in a sheep observation if the
observation is less than 30 to 50 meters away from the
observer.

FR9.3 High The mobile application should allow for users to add tie
colors without having to look at the screen.

FR9.4 High The mobile application should allow for users to regis-
ter what farms are present in a sheep observation if the
observation is closer than 30 to 50 meters away.

FR9.5 High The mobile application should allow for users to add un-
known farms to the list of observed farms for a sheep
observation.

Table 3.9: Sheep observation requirements.

ID Priority Description
FR10.0 High The mobile application should allow users to specify the

type of observation being made.
FR10.1 High The mobile application should allow for users to describe

the observation.
FR10.2 High The mobile application should allow for users to add an

optional amount of pictures to the observation.
FR10.3 Low The mobile application should allow for users to add a

description for each picture in the observation.

Table 3.10: Other observation requirements.

ID Priority Description
FR11.0 High The mobile application should be able to automatically

synchronize locally stored content to reflect the state of
the server database.

FR11.1 Medium The mobile application should allow users to manually
request server synchronization.

Table 3.11: Synchronization requirements.

Chapter 3: Requirements 31

ID Priority Description
FR11.0 High The system should allow for users to generate supervision

reports based on supervision data at the end of a season.
FR11.1 High Generated supervision reports should be available for

download as a PDF.

Table 3.12: Report generation Requirements.

3.5 Quality attributes

Whereas Section 3.4 describes what the system must be capable of doing in terms
of functionality, this section describes what qualities the entire system should strive
to uphold. The following sections will describe the quality attributes chosen for
this project, namely Availability, Modifiability, Usability and Security.

3.5.1 Availability

The Norwegian environment vastly differs throughout the country, and so does the
cellular reception. In order to ensure high availability, one must plan and design
with this caveat in mind; Internet connectivity is not guaranteed, and should not
be expected. This property aligns well with the description of availability, a quality
attribute focused on ensuring that software is usable whenever one needs it to be
[28].

The best way to avoid catastrophic failures is to expect them. In the case of this
application, relying on internet connectivity would almost certainly result in failure
at some point during the grazing season. By anticipating the lack of internet, the
application would be more tolerant to failures. Tables 3.13 and 3.14 describes two
scenarios for the availability attribute.

ID A1
Source Application
Stimulus Unable to achieve an internet connection
Artifact Application
Environment Degraded operation
Response User is able to start, execute and finish a trip
Response measure Trip is completed without any technical problems

Table 3.13: Availability scenario 1: Executing a trip without internet connectivity.

Chapter 3: Requirements 32

ID A2
Source Load Balancer
Stimulus Unable to reach health check endpoint
Artifact Server
Environment Normal operations
Response Load Balancer redirects traffic to another compute in-

stance
Response measure Without any downtime

Table 3.14: Availability scenario 2: Verifying load balancing capabilities.

In order to ensure high availability, the following availability tactics will be utilized:

Monitor

Ensuring the well-being of an entire system is oftentimes complicated. Bass et al.
suggest employing an entire component solely for this purpose, namely the monitor.
They go on to describe a monitor as a "... component that is used to monitor the
state of health of various other parts of the system..." [28]. Many cloud providers
offers monitors as a service, providing easily configurable monitoring for crucial
resources. In the case of this project, monitors will be used to both route traffic to
and inspect the health of the computational instances the server runs on.

Ping / Echo

The aforementioned monitor is capable of checking the health of a specific com-
ponent. In order to achieve this, it requires a way of ensuring that the monitored
component responds as intended. One way of doing this is by providing the monitor
with the knowledge of how to reach a specific portion of the monitored component,
and describing what the portion should return under normal circumstances. This
process is the "Ping / Echo" tactic; If the monitored component does not respond
as expected, the monitor will know that the component is unhealthy [28]. The
tactic will be used to monitor the health of the system servers.

Exception Detection

Bass et al. defines exception detection as "the detection of a system condition
that alters the normal flow of execution" [28]. Modern programming languages
provides a plethora of tools for detecting such errors even before code is ran
by continuously scanning the code for errors. By detecting possible exceptions
the system can encounter with the written code, the developer is able to either
preemptively handle them or change the code altogether. Another strategy many
programming languages provide as a built-in feature is static typing. When calling

Chapter 3: Requirements 33

a function, the type defined in the function signature must align with the variables
one attempts to pass to it. Using static typing allows for a more rigid final product.

Another strategy within this genre is the use of timeouts. Whenever it becomes
apparent that a service does not return a response within an allotted time slot, it
should be canceled. The application developed in this project utilizes both sensors
on the smart phone and external servers, whom are all capable of failing at any
time. Being able to cancel a failed request if it takes too long, for instance, would
allow the application to go back to a functioning state instead of indefinitely
waiting for the failed request to finish.

Exception Handling

In stark contrast to popular belief, failure is always an option. Applications can
fail at any time, and can be caused by a near unlimited amount of reasons. In
order to provide a rigid application that works as intended, one must account
for such failures and handle them appropriately [28]. The planned application
is dependent on several smartphone-sensors and external resources in order to
function as intended. One cannot simply expect these to work as intended at all
times. Catching and handling such exceptions allows the application to revert to a
functioning state, and is critical in order for the application to be useful.

Rollback

As previously mentioned, failure is imminent. One way to handle failures is to
revert any actions that occurred before the failure, allowing the application state
to remain "correct" [28]. To apply the strategy to the realm of this project, one
could for instance imagine functionality for storing something to two different
database tables. If the second insertion fails, and the first relied on the second,
the database would be in an invalid state. In such a case, the first table should be
reverted to the previously known "correct" state. By allowing the application to
always remain in a "correct" state, one mitigates the chance of a critical failure.

Retry

If a specific part of an application or system fails, an approach to fixing the failure
is to try again in hopes of a success [28]. Failures can have temporary causes,
and the process of simply trying again can be effective at times. In the context of
this project, the retry tactic will be used when the application communicates with
remote resources.

Degradation

The continuous threat of losing internet connectivity is one of the most important
factors to consider during development. As such, some sort of alternative to remote

Chapter 3: Requirements 34

storage must be easily available. This application solves this by managing critical
application features in an "offline-first" approach; The "degraded" state of the
application is the normal state of operation. This fits well under the tactic of
degradation, in which the most important functionality of the system in question
remains operational regardless of any shortcomings of the environment it runs in
[28]. By having an alternative to failing components, the chance of critical failures
is drastically reduced.

Transactions

Bass et al. states that transactions are used to ensure all communications comply
with the ACID properties [28]. The properties were defined by Haerder and Reuter
[29], and are described in Table 3.15.

Name Description
Atomicity A transaction must succeed completely or not succeed at all.
Consistency A transaction can only commit valid results.
Isolation A transaction cannot be aware of the details of other transactions.
Durable Committed results must be able to survive future failures.

Table 3.15: Descriptions of the ACID properties [29].

Transactions are most commonly used within the context of databases, in such a
way that it eliminates the possibility of encountering race conditions. This ensures
a consistent result, no matter how many times a set of operations run. The rollback
tactic, as defined in Section 3.5.1, is dependent on transactions in order to function.
In the case of this application, the tactic will be used to ensure that whatever is
stored to the database is stored correctly.

3.5.2 Modifiability

As previously stated, this project is heavily reliant on utilizing prototypes to ensure
the best possible user experience. In order to allow for easily creating or modi-
fying prototypes, one should strive to create an easily modifiable system. This is
encapsulated within the modifiability attribute, which describes the ease of which
a system can be altered [28]. Some modifiability scenarios are described in Tables
3.16 and 3.17. The following sections will describe the modifiability tactics the
system employs.

Chapter 3: Requirements 35

ID M1
Source Developer
Stimulus Wishes to replace the current HTTP package
Artifact Application HTTP service
Environment Design time
Response HTTP package is replaced, HTTP service is updated and

tested
Response measure In 4 hours without introducing any side effects.

Table 3.16: Modifiability scenario 1: Replacing the HTTP package.

ID M3
Source Developer
Stimulus Wishes to add new query parameters to trip search
Artifact Server code
Environment Design time
Response Query parameter is implemented, tested and deployed
Response measure Within 2 hours without introducing side effects

Table 3.17: Modifiability scenario 2: Adding a new query parameter.

Split Module

Bass et al. suggests that a larger module oftentimes imposes a greater modification
cost than several small modules [28]. This sentiment is shared in others bodies
of work within the field, with a notable example being Robert C. Martin’s "Clean
Code" [30]. Whenever a module grows too large, the developer should consider
whether it should be split into several smaller modules where each module has
high cohesion within.

Increase Semantic Coherence

The tactic of increasing semantic coherence describes how all functionality within
a module should be concerned with the same area [28]. If something breaks this
rule, the functionality in question should be moved to another module. By having
modules operate on a specific area, the likelihood of encountering side effects
when altering a module can be drastically reduced.

Encapsulation

Another well-known tactic to ensure modifiability is encapsulation. By only expos-
ing a certain amount of functionality through an API, the risk of changes within
a module carrying over to other modules is greatly reduced [28]. Furthermore,
encapsulation allows for the developer to constrain what functionality can be

Chapter 3: Requirements 36

accessed from outside the module, allowing the developer to hide functionality
not intended for outside usage.

Intermediaries

Bass et al. suggests utilizing intermediaries to break dependencies between re-
sponsibilities [28]. If an action requires one responsibility to be performed before
another, an intermediary will be able to entirely remove the knowledge of the
other action, thus allowing for lower coupling and higher cohesion. The system
will employ intermediaries whenever a set of operations must be orchestrated in a
specific manner.

Refactor

Throughout the development process, one usually develops a greater understanding
of how the solution should be built, oftentimes resulting in a different solution
than originally planned for. The process of refactoring code allows for a developer
to change certain portions of a code base to better align with what is considered
to be the best solution to a problem. Within any agile project, the size or purpose
of a module usually grows or changes. Refactoring allows for the developer to
extract functionality from a growing component into a new component, allowing
for a higher cohesion within. The prototype-intensive nature of this project would
greatly benefit from refactoring once a final prototype has been settled upon.

3.5.3 Security

In the current age of computing, most systems store some type of information, be
it sensitive or non-sensitive. No matter what, developers should always strive to
keep information out of the hands of unauthorized actors. Bass et al. describes
security as "a measure of the system’s ability to protect data and information from
unauthorized access while still providing access to people and systems that are
authorized" [28]. Ignoring security is a crucial mistake, and can make entire systems
collapse. Data breaches, deletions or modifications can cause major disruptions
within an organization, and occurs frequently. This section will describe what
tactics this project will utilize to properly secure application data and its integrity.
Tables 3.18 and 3.19 describes two security scenarios.

Chapter 3: Requirements 37

ID S1
Source Unauthorized Attacker
Stimulus Access system database
Artifact System database
Environment Online, normal operations
Response Rejected attack
Response measure Rejected 99.99 % of the time

Table 3.18: Security scenario 1: Rejecting unauthorized database requests.

ID S2
Source Rogue farmer
Stimulus Delete competing farm logged in as him or herself
Artifact Server
Environment Online, normal operations
Response Request is rejected, unauthorized for action
Response measure Rejected 99.99 % of the time

Table 3.19: Security scenario 2: Rejecting unauthorized actors.

Detect Service Denial

A common attack vector today is to bring crucial system components down by
flooding it with requests, a process known as a distributed denial of service (DDoS).
Detecting such attacks can be done by continuously checking network traffic
patterns with previously known attack patterns, filtering out all attack-related
traffic [28]. This would allow the attacked service to remain up, mostly unaffected
by the overflow of incoming requests. In the case of this project, such functionality
is handled by AWS, the cloud provider hosting the server.

Identify Actors

The tactic of identifying actors is a crucial one in the modern world of computing.
Bass et al. specifies that the tactic "... is really about identifying the source of
any external input to the system" [28]. When the alternative is to simply trust
every actor interacting with the system, one cannot ignore a tactic such as this. By
requiring actors to provide some sort of identifier for every system interaction, the
system enables functionality such as access logs, data restriction and permission
restrictions.

Authenticate Actors

Identifying actors is of no use unless they are authenticated. By requiring authenti-
cation through the use of a secret, impersonating the identity of another person

Chapter 3: Requirements 38

becomes much more difficult. Every sheep observer and farmer wishing to utilize
the system will have to be authenticated.

Authorize Actors

All actors are not equal; Just because an actor owns one resource does not mean
they can mutate another. By implementing any type of access control, the system
is able to allow or reject requests based on the actions and resources the actor in
question is allowed to interact with.

Limit Access

A very important factor to consider when designing a system is the attack surface
one exposes. The tactic of limiting access specifies that one should strive to only
allow access in a secure manner [28]. By minimizing the possible attack surface of
an application, the risk of being breached is significantly lowered. In the case of
internet-facing resources, developers might apply restrictions as to where and how
the resources can be interacted with, minimizing the risk of unauthorized access.
The backend of this system, as described in Chapter 21, severely restricts access to
server instances and the database.

Change Default Settings

Many Software as a Service (SaaS) and open source solutions are preconfigured
with default credentials, of which many are commonly known across the internet
[28]. By not changing default credentials, an easily exploitable attack vector is
left open. Changing these credentials to hard-to-guess passwords, or other secure
means of access, drastically improves the security of a system.

3.5.4 Usability

In order for a system to reach market acceptance, it has to provide a more enjoyable
experience than existing solutions. Any system should be intuitive, efficient and
easy to use, traits the Usability attribute embodies perfectly [28]. Usability scenarios
are described in Tables 3.20 and 3.21. The following subsections will describe the
tactics this project utilized to create a user-friendly application.

Chapter 3: Requirements 39

ID U1
Source Sheep Observer
Stimulus Wants to cancel an in-progress map download
Artifact Mobile Application
Environment Runtime
Response Map download is canceled
Response measure Canceled within one second

Table 3.20: Usability scenario 1: Cancellation of long-running task.

ID U2
Source Sheep Observer
Stimulus Learn to use the mobile application
Artifact User interface
Environment Runtime
Response Navigates application without problems
Response measure Within 30 minutes

Table 3.21: Usability scenario 2: Application familiarization.

Rapid Prototyping

The project thesis has already mentioned the use of prototyping several times.
Creating good user interfaces is an iterative process, and requires a substantial
amount of experimentation. By continuously gaining user feedback on what is
considered to be good and bad, the developer is able to create effective, easy to
use and enjoyable user interfaces [28].

Support User Initiative

In order to provide a good user experience, an application must allow for the user
to use it effectively, whilst also expecting and allowing user errors. Users should be
able to steer the application in whichever direction the user requires. This project
plans to do this by implementing the cancel and aggregate tactics [28].

Wherever an action expects some sort of user initiative, the ability to cancel the
action should also always be present. The context of the action in question is
usually negligible; It could be caused by user error, a change of heart or any
other factor. Furthermore, many applications usually allows for the addition and
removal of items from a list. The tactic of aggregating actions would allow a user
to select several items at once, and then perform the action on every selected item,
optimizing the time the action takes.

Chapter 3: Requirements 40

Support System Initiative

Any experience with an application is a two-way street. The user provides input, and
the system processes it and acts accordingly. In order to maximize the smoothness
of this interaction loop, the application should have some built-in method of
understanding what the user is attempting to do. This is usually achieved by
maintaining models of the task the user is attempting to perform, or a model of
the overall system [28].

In the first case, the task can be developed to have some contextual knowledge of
what the task requires. For instance, then the application requires the user to fill
out a form, it would be beneficial for the user if form fields could provide automatic
formatting of the input and validate if it is accepted.

On a larger scale, the system could for instance provide the user with feedback on
what it is currently doing. Long-running tasks could provide progress indicators,
whereas failed tasks could provide a notice regarding why it failed.

Chapter 4

Development Process

Developing a product is no easy task. In order to boost the chances of creating
a successful product, one must be able to properly plan and execute the process.
This chapter describes the development methodology utilized throughout the
project. Furthermore, it will describe the process of managing tasks and the regular
day-to-day of the development process.

4.1 Software Development Methodology

The process of managing how software is developed is immensely important.
Everyone involved needs to have a shared vision of the work required to complete
the project. In order to effectively perform such tasks, a set of software development
methodologies emerged. Previous software endeavors have shown that the wrong
choice of methodology could lead to a failed Software Development Life-Cycle
(SDLC). As such, the choice of methodology is not one to be taken lightly.

In the emerging days of software development, most developers utilized a waterfall-
like method, consisting of a set of phases conducted one at a time. Each phase
had to be meticulously planned and executed, seeing as one would not be able
to revisit it once it was finished. Once all steps were finished, the product was
complete. As software grew more complex, developers started adapting different
approaches to developing software, namely agile methodologies. They found that
requirements, technology and best practices changed throughout the SDLC, and
that such an issue could best be addressed by anticipating changes. Whereas a
waterfall methodology could be apt for a specific subset of software development,
it would not be applicable for this project. The project consisted of a set of loose
requirements, and required the development of several prototypes to explore what
the optimal solution would look like. In such cases, opting for an agile approach
would be the sensible choice.

41

Chapter 4: Development Process 42

With regards to development methodologies, this project is in an interesting situa-
tion. Development methodologies are oftentimes applied to projects in which a
group of people need to organize their efforts, whereas this project is conducted
by a sole developer. Many of the practices and values associated with any specific
methodology could provide unnecessary overhead that could slow down devel-
opment. Being the sole developer of a project brings the benefit of not having to
account for the work of others. This was a key factor when choosing the methodol-
ogy for the project. The author chose to focus on the key values and aspects of each
methodology, and what could be applicable and beneficial for a single developer.

Scrum and Kanban are two frameworks often compared when discussing agile
methodologies. Scrum emerged with a focus on iteratively delivering increments
of code in sprints, a short time period usually spanning one to four weeks [31].
Throughout the sprint, the team conducts short daily meetings, in which one
explains what they have done since the last meeting, what is blocking them and
how they are planning to solve it. Once a sprint ends, the new functionality is
demonstrated to the client, and the team goes through a meeting to discuss how
the sprint went and how it could be improved. Sprint tasks are stored in a so-called
backlog, a catalog of tasks one must handle at some point during the SDLC. These
tasks are usually prioritized based on their importance, and are usually allotted
a number corresponding to the expected amount of work it would require to
implement. Once a sprint ends, any unfinished tasks are returned to the backlog,
and the entire process is repeated.

Kanban, on the other hand, functions differently. Instead of opting for sprints,
the Kanban framework aims to create a more continuous flow of releases. This
is primarily done through a Kanban board, which consists of several columns
detailing what phase a task is in. The columns differ from team to team; Usual
columns are "to do", "in progress", "testing" and "done". This approach to tracking
tasks is also implemented in the Scrum framework, although under a different
name. An interesting aspect of the Kanban board is the Work In Progress (WIP)
limit, describing how many tasks one can perform at a time [31]. For instance,
each developer can at most have two tasks in the "in progress" column at one
time. Once a task is moved to the "done" column and the WIP limit is no longer
full, a new task can be chosen from the backlog. This allows for a more reactive
development process than the one provided by Scrum. In stark contrast to Scrum,
new increments of the project are not delivered in set time periods. Instead, the
customer and the development team decides when new deliverables should be
produced.

Both Scrum and Kanban provide more ideas and principles than the ones presented
in previous paragraphs. However, most of these are more applicable in a team
context. Furthermore, Scrum is more prescriptive than Kanban; The framework
provides a set of predefined rules and roles that should be used. By opting out
of any of the prescribed Scrum concepts, one no longer uses Scrum, but rather

Chapter 4: Development Process 43

something inspired by Scrum. Kanban is much more adaptive, in that it does not
describe any necessary roles or delivery strategies.

One of the major benefits of Scrum is the rigid set of ideas which organizes a
team of developers and empowers them to deliver software in a continuous and
predictable manner. The perceived trade-off of choosing Scrum over Kanban for
this project is the loss of flexibility in terms of pulling in new requirements as
they appear, and the general overhead that the prescribed rules and roles would
introduce. In a prototype-reliant project such as this one, where requirements
are continuously added and re-prioritized after feedback, the added flexibility
of Kanban could prove to be beneficial. There is no incentive to provide new
functionality in a predictable time-frame, as the only delivery constraint of the
project is the final delivery date. As such, the author decided to adopt the Kanban
framework.

4.2 Project Management

Project Management tools allows teams to gain a greater understanding of the
current state of a project. In order to achieve everything the author wanted, a
strict time-frame had to be followed. The use of Trello, a collaborative Kanban
board application [32], allowed the author to always stay on top on what had
been done, what should be done, and what is being done. Choosing Trello over
other alternatives did not have any considerable contributing factors behind it.
The author only wanted basic functionality, which most project management tools
provides. It was a free alternative, and the author already had previous experience
with. As such, it was deemed a good choice. Whereas a larger team would require
additional checks and balances, a sole developer really only requires a way to
organize their efforts. A spreadsheet or a todo-list could work just as well as any
other alternative, but the author chose to utilize a more visually appealing tool.

The Trello board consisted of three columns: To-do, Doing, and Done. It is shown in
Figure 4.1. Tasks flowed from left to right, depending on their state of completion.
Completed tasks are archived after being in the done column for some time to
avoid cluttering the board. Each task is labeled with different colors, to add some
additional context to what the task entails.

Chapter 4: Development Process 44

Figure 4.1: Excerpt of Trello board for project.

The author decided to set the WIP limit to three, allowing for some leniency in
what should be worked upon. This also allowed for re-prioritizing tasks on the
fly, in cases where a certain task would be blocked by another. Larger tasks were
sub-divided into to-do lists, where each sub-task would have to be completed
before being moved to done. Usually, large tasks were only sub-tasked right before
they were implemented. An example of such a task can be found in Figure 4.2.

Figure 4.2: A Trello task with sub-tasks.

Beyond the use of Trello, the author also documented what had been done at the
end of each day. In many ways, this documentation can be considered to be the
equivalent of daily stand-ups for solo developers. These writings all followed the
same formula:

Chapter 4: Development Process 45

• What has been done today?
• What reasons lead to implementing something that way?
• What problems occurred today?
• How can one address the problems? How were they addressed?
• Why did the problem occur in the first place?
• What should be done tomorrow?

By detailing the work at the end of the day, the author was able to compartmentalize
the work conducted on any single day. Any potential ideas or solutions were written
down to ensure they would not be forgotten. Furthermore, this allowed the author
to be more organized with regards to how he worked. Finally, it would drastically
simplify the process of writing the actual master thesis, as he would not have to
rely upon his memory to recall the development process.

4.3 Software Development Life Cycle: Week-By-Week

The constant in every development week was the meeting with the project supervi-
sor. This meeting marked the end of the current week, and the beginning of a new
one. The author would present his findings, prototypes and finished functionality
and receive feedback. After these meetings, the author would prioritize the tasks
for the following week. If the supervisor provided constructive criticism towards
the presented work, this would usually be prioritized the highest.

Every day followed the same general outline. Whenever a new task is chosen,
the author would plan the design and implementation through paper sketches
and pseudo-code before actually implementing it. Whenever a new prototype was
developed, it would be user-tested and improved wherever possible. Any finished
or updated tasks would be moved towards the right of the Trello board throughout
the day. Finally, once the day ended, the author would document the day and plan
out the next one.

Chapter 5

Technical Design: An Overview

The final system consists of several different components. Due to this, the author
chose to divide the thesis into several parts. Each part will describe the details
relating to the component it covers. This chapter, on the other hand, will provide
the reader with a surface-level overview of the final system. Furthermore, it will
describe the technologies, tools and architectural patterns shared by all system
components.

5.1 System Architecture at a Surface-Level

The system architecture is shown in Figure 5.1. Supervision documentation is
performed through a mobile Flutter application that can run on both iOS and
Android devices. This part of the system is described in Part II. User Authentication
is performed through Auth0, a managed identity and access management solution
used for authentication and authorization [33]. The backend of the solution is
a RESTful API hosted on Amazon Web Services (AWS). It utilizes a PostgreSQL
database. Furthermore, the backend utilizes the same Auth0 instance to authen-
ticate any incoming requests. The system backend is described in detail in Part
III, whereas the cloud infrastructure of the entire system is detailed in Part IV.
This system can be described as a multi-tier architecture, a pattern that physically
separates system components over numerous computing "tiers" [28]. It can also be
called a three-tiered architecture; Data persistence, business logic and presentation
is physically separated over three separate computational devices.

46

Chapter 5: Technical Design: An Overview 47

Figure 5.1: A high-level overview of the system architecture.

5.2 Tools & Technologies

Utilizing development tools and technologies properly is essential when designing
large systems. Effective usage can drastically increase both productivity and the
quality of the end product. This section describes a set of tools used throughout
the entirety of the SDLC, and provide some reasoning as to why they were chosen.

5.2.1 Auth0

Both the server and the mobile application requires a way to authenticate users,
a very sensitive process one should handle with care. In recent years, products
handling authentication and authorization have grown popular. The author believes
the usage of such solutions allows for a more secure system, as authentication is a
notoriously difficult process to implement securely.

This project utilizes Auth0, an identity management solution providing authenti-
cation and authorization as a service [33]. The platform provides the developer
with a great deal of customization, and provides a fully configurable user interface
for authentication purposes. Furthermore, Auth0 allows for developers to secure

Chapter 5: Technical Design: An Overview 48

their API’s through the use of JSON Web Token tokens, allowing for one to ensure
the validity of every request sent to the server. The platform was chosen largely
due to its ease of use, extensibility and a generous free tier. Further discussion
surrounding the choice can be found in Section 23.2.

5.2.2 Visual Studio Code

The entire system is developed using Visual Studio Code (VSCode), a lightweight
Integrated Development Environment (IDE) developed by Microsoft [34]. Whereas
many IDE’s focuses on a specific programming language or environment, VSCode
provides a platform for a plethora of programming languages. This is achieved
through the use of VSCode extensions, which adds additional functionality to the
IDE. All programming languages utilized throughout the system are fully supported
in VSCode, either through extensions or natively.

Having a lightweight and extensible IDE allowed the author to create efficient
workflows, and gain an extensive knowledge of the baseline capabilities provided
by the IDE. Other IDE’s might provide better experiences within specific domains.
However, this was not applicable for the technologies this project utilized.

5.2.3 GitHub

GitHub is used for source code versioning and storage [35]. There are no real
advantages or disadvantages to choosing GitHub over any other version control
system; The author simply prefers it over the other alternatives.

5.2.4 SQL

Structured Query Language (SQL) is a querying language used by many modern
relational databases. It allows the developer to query and mutate data stored in
relational database tables. Every database present throughout the system uses SQL
for querying data.

Part II

Mobile Application

49

Chapter 6

Application Development
Approach

Due to the remote nature of sheep supervision trips, any device larger than a
handheld would be cumbersome to work with. With smart phones being a com-
modity, choosing it as a development platform is ideal. This section provides a brief
introduction to mobile platforms before describing the different approaches for
mobile development. Finally, it will compare different cross-platform frameworks,
and reason as to why Flutter is the chosen solution for this project.

6.1 A Quick Introduction to Mobile

The modern mobile phone, the smart phone, is a mobile device combining impres-
sive cellular and computing capabilities. The formative years of the smartphone
saw a market share split between several different operating systems. As the years
went on, only two would remain: iOS [36] and Android [37]. At the time of writing,
Android devices claim 72.92% of the global market, whereas iOS takes up 26.53%
[38].

These numbers are not necessarily representative of the Norwegian market. In fact,
October readings show that iOS claims 62.67% of the Norwegian market, whereas
Android takes up 37.2% [39]. Producing the application for a single operating
system could possibly be easier. This would, however, introduce an unnecessary
barrier of entry. In order to keep the application as accessible to the general public
as possible, it should function on both operating systems.

50

Chapter 6: Application Development Approach 51

6.2 Mobile Application Development

The modern mobile development landscape provides several approaches for de-
veloping mobile applications. This section will briefly introduce the different ap-
proaches, before finally providing the reasoning behind choosing a cross-platform
approach.

6.2.1 Native Development

Native development is the process of developing applications for a specific operating
system. Both iOS and Android provides development kits for interacting with the
underlying operating systems in an easy, performant and robust way. Furthermore,
they allow you to easily build user interfaces resembling other user interfaces
already present on the device in question.

Developing mobile applications can be considered a costly affair, both in terms
of time and expenses. Opting to go for the native approach can yield in high-
performance applications with recognizable user interfaces and arguably a better
user experience. However, it comes with the caveat that the application must be
developed from scratch for every supported operating system, drastically increasing
the amount of required work.

6.2.2 Cross-platform development

Cross-platform frameworks allows one to develop application that can be compiled
and ran on several operating systems. How this is achieved differs between frame-
works. Some transpiles code to fit the relevant platform, whereas others creates
a translation layer for system instructions. Using cross-platform frameworks can
allow a developer to drastically reduce time-to-market and costs, due to developers
only having to write code once. This logic can also be applied to testing, although
some specific platform-testing must be conducted.

The major drawback of the aforementioned frameworks is the performance penalty
cross-platform frameworks introduce. Cross-platform frameworks acts as a layer of
abstraction between an application and the underlying operating systems, resulting
in a longer travel time for calls to the native operating system. Another drawback
is platform support. Native applications have full access to the underlying operat-
ing system API’s, whereas cross-platform frameworks must implement their own
API’s for calling the API’s of the underlying operating system. Frameworks solve
this by relying on open-sourced plugins acting as a bridge between the native
operating systems and the cross-platform application. However, if the required
functionality is not available for the framework, the developer will have to write
native implementations for both platforms.

Chapter 6: Application Development Approach 52

6.2.3 Progressive Web Application

Since the arrival of the Smart phone, mobile devices have surpassed the once
dominant computer [40]. This change incentivized companies to adapt their ap-
plications to mobile devices, a problem the Progressive Web Application (PWA)
attempts to solve. PWA’s can be considered to be downloadable websites that can
be ran inside a web view, a bare-bones web browser. By utilizing PWA’s, developers
are able to access a restricted subset of the functionality provided by the underlying
operating system. For instance, PWA’s can run without internet connectivity, store
information on the device and access the camera. If the proposed solution is simple,
or possibly already implemented as a web application, converting it to a PWA could
be a quick and cost-effective solution to bring it to mobile users.

However, Progressive Web Applications does have cons. Seeing as the application
is, in essence, a web application, it must be run within a web view. This additional
layer of abstraction introduces some performance penalties. Additionally, a PWA
will not be able to make use of the same extent of functionality as native or
cross-platform applications.

6.2.4 Hybrid Applications

An alternative to the aforementioned PWA approach is to build a hybrid application.
These applications work by displaying content through a web view integrated into
the application. In contrast to PWA’s, hybrid applications are able to access the
underlying platform to a much greater extent through the use of plugins. One of
the major benefits of hybrid applications is the freedom of choice with regards to
how they choose to develop their solution. Hybrid Frameworks such as Ionic allows
you to use web frameworks such as React, Vue, Angular or Svelte [41]. If a web
developer wanted to create a mobile application, familiar frameworks could lower
the barrier of entry. As with PWA’s, the major drawback of hybrid applications are
performance. With PWA’s, the application simply runs within a web view. However,
the hybrid application runs within a web view, which in turn runs inside the hybrid
framework run-time.

6.2.5 Choosing an approach

In order to decide what type of application one should choose to develop, there are
several factors one must consider. The first, and possibly biggest constraint, is time.
This master thesis has a hard deadline. If one were to choose native development,
one should expect to spend more time on application development. On the other
hand, if you were to choose a cross-platform or web application approach, you
would have more time to tweak, perfect and test the application. With the very
limited time constraints of this project, a quick development process is crucial.
This would also be beneficial with regards to creating functional prototypes.

Chapter 6: Application Development Approach 53

Another factor to consider is performance requirements. The goal of the application
is to provide a simplified way of conducting sheep supervision. Without a pleasant
user experience, the benefit of the application could be lost to the target users. The
author believes current cross-platform solutions to be performant enough for the
purposes of this application. Furthermore, he believes the performance trade-off
is worth the reduction in development time. PWA’s are not a viable option, as
the application requires platform functionality not supported by PWA’s. Choosing
hybrid applications is a possibility. However, the hybrid approach comes with a
larger performance penalty than cross-platform frameworks, with no additional
benefits.

The author believes utilizing a cross-platform framework would allow for a much
shorter development time, which in turn would free up time for fine-tuning and
tweaking to ensure a good user experience. As such, the cross-platform approach
was chosen.

6.3 Available cross-platform solutions

The mobile development community has provided several cross-platform frame-
works throughout the previous years. This section will describe and discuss the
most popular frameworks, before finally explaining why Flutter was chosen.

6.3.1 React Native

React Native [42] has been the front-runner for cross-platform development since
its inception in 2015. The framework, developed by Facebook, allows the developer
to write their application using JavaScript. UI is defined through React Native’s
templating language, JSX.

React Native makes use of native UI components; The appearance of components
will depend on what operating system the application is running on. The use of the
aforementioned native components allows the JSX UI definitions to be compiled
into native code, improving performance. Business logic, on the other hand, is ran
in a separate thread, and remains as JavaScript code. This leads to a problem: UI
and business logic does not run in the same thread. React Native addresses this by
creating a bridge between UI and business logic, allowing the application to send
messages between the UI and the business logic.

React Native was the most popular cross-platform framework for an extended
period of time. Due to this, the surrounding ecosystem is very strong. Support and
packages are easily available. Packages are hosted using npmjs.com, a package
manager for JavaScript.

https://www.npmjs.com/

Chapter 6: Application Development Approach 54

6.3.2 Flutter

One of the newer frameworks in the cross-platform ecosystem is Flutter, developed
by Google and released in 2017 [43]. The framework is quite unique, as source
code is compiled into native machine code. Furthermore, the framework does
not make use of native UI components whatsoever, instead opting to draw all
components through the use of Skia, a graphics 2d library. With these two unique
quirks, many consider Flutter to be more performant than its competitors.

The framework allows the developer to write their application using Dart, a type-
safe language written by Google themselves [44]. Although the language is not
developed exclusively for use with Flutter, the two are often associated. This can
be both a pro or a con, depending on the eye of the beholder. Future development
of the language will always account for how it will affect Flutter. However, a niche
language like Dart may not see as rapid development as more popular languages.

Flutter has seen an extreme growth in the last two years, surpassing React Native
in terms of popularity [45]. The growth has allowed for the community to develop
a plethora of third-party packages for the framework, with Google maintaining a
list of "core plugins" they choose to officially support themselves. All packages are
hosted on pub.dev, a website with the sole purpose of providing Dart packages.

6.3.3 Xamarin

One of the oldest frameworks within the cross-platform space is Xamarin [46].
The framework is built upon the Mono project, which aimed to bring the Microsoft
.Net framework to other operating systems. The development of Mono eventually
led to "Mono for Android" and "Xamarin.iOS", implementations of the framework
which allowed for developers to create Android or iOS applications with C#. The
two frameworks were eventually consolidated into one, simply named Xamarin.

The framework provides cross-platform solutions not only for mobile, but also
for web, MacOS and Windows. While the business logic can be entirely shared
between all platforms, Xamarin provides several ways in which one can create
user interfaces. A subset of Xamarin, named Xamarin.forms, allows one to create
platform-adaptable user interfaces.

Packages are provided through nuget.org, the package management solution for
the .Net Core framework. Being able to use C# packages drastically increases the
functionality provided by Xamarin.

https://www.pub.dev/
https://www.nuget.org/

Chapter 6: Application Development Approach 55

6.4 Choosing a framework

Choosing a framework is possibly the most important decision when developing
cross-platform applications. There is usually no clear-cut answer to such a question;
The answer entirely depends on the requirements of the application to be developed.
In order to gain a better understanding of what framework would be the most
beneficial for this project, the following sections will describe a set of properties
the author compared the frameworks through.

6.4.1 Maturity and Adoption

Every framework in contention has already underwent several major releases. In
terms of maturity, all frameworks have shown to be production-ready.

The framework with the most impressive "resume" of applications is React Native,
having been utilized by many major organizations. Their showcase includes appli-
cations such as Facebook, Instagram, Skype and Shopify [47]. Airbnb famously
chose to abandon the framework in 2018 in a collection of blog posts detailing
their reasoning behind their choice [48]. The company listed numerous technical
and organizational challenges influencing their decision, citing immaturity of the
framework and its surrounding tooling as some of the root technical causes [49].
However, the article also points out that a majority of Airbnb engineers considered
their experiences with the framework to be positive. Furthermore, they consid-
ered the framework to be approaching maturity [50]. This sentiment appears to
be reflected in other companies using React Native. Shopify describes successful
implementations of two of their most popular applications, with the framework
allowing Shopify to share over 95 % of their total lines of code between Android
and iOS [51].

Flutter is another contender with an impressive customer showcase. It has already
been adopted by giants like Alibaba, eBay and Google [52]. eBay released a
breakdown of their experiences with Flutter, in which they claim that 99 % of the
lines of code in their eBay Motors application is shared between the two mobile
platforms [53]. Alibaba has also praised Flutter, and even wrote articles about how
the framework outperforms React Native [54].

Xamarin also boasts some impressive applications, including the likes of the UPS
application and Alaska Airlines [55]. Being the oldest framework of the four,
it would be reasonable to assume that it is at the very least as mature as its
competitors. Whereas both React Native and Flutter has detailed blog posts about
framework adoption, the writer was unable to find any such posts for Xamarin.
Microsoft has published several articles about its usage within applications like
the ones mentioned above, although one could argue for the inherent bias of such
praises. However, seeing as the framework has been relevant for as long as it has
been, calling the framework mature cannot be considered to be unreasonable.

Chapter 6: Application Development Approach 56

Stack Overflow provides an interesting data source through the Stack Overflow
Developer Survey. The 2020 survey generated a total of 65 000 replies, and asks
questions regarding demographics, technologies and work [56]. All frameworks
appears within the "Most loved, Dreaded, and Wanted Other Frameworks, Libraries
and Tools" category. The "loved" category describes the percentage of developers
using "x" framework and would like to continue doing so, whereas the "dreaded"
category describes the percentage of developers using "x", but would like to stop
doing so. The "wanted" category describes the percentage of developers interested
in trying out "x" framework.

Within the loved category, Flutter is ranked third overall, followed by React Native
in 10th and Xamarin in 16th. Within the "dreaded" category, Xamarin ranks 4th,
React Native 10th and Flutter 17th. In the "wanted" category, React Native ranks
third, Flutter fourth and Xamarin 12th.

Framework Loved Dreaded Wanted
React Native 57.9% (10th) 42.1 % (10th) 14.0 % (3rd)
Flutter 68.8% (3rd) 31.2 % (17th) 10.7 % (4th)
Xamarin 45.4 % (16th) 54.6 % (4th) 4.5 % (12th)

Table 6.1: Stack Overflow Developer Survey 2020 results within the category of
"Most loved, dreaded and wanted - other frameworks, libraries and tools" [56].

6.4.2 Performance

In order to provide a good user experience, an application must perform well.
Slow frame-rates and unresponsive user interfaces can cause both frustration and
confusion, detracting from the perceived usefulness of a solution. Cross-platform
frameworks usually introduces a performance penalty, but a well-developed appli-
cation can still provide enough performance to function well. The field of research
surrounding cross-platform framework performance is somewhat sparse. Currently,
no scientific papers have compared the three frameworks considered by this thesis.
Bjørn-Hansen et al. conducted an experiment in which they compared the perfor-
mance of cross-platform frameworks, with React Native and Flutter as some of the
participants [57]. The study compares the performance of calling different native
functionalities on physical Android devices. Flutter and React Native are scored
nearly identically with 15 and 16 points, respectively. The Native approach is, in
comparison, scored at 24 points out of 30.

Xamarin is the framework with the most research surrounding its performance, as
it is the oldest of the considered frameworks. Willocx et al. found that Xamarin
applications on iOS devices nearly matched native implementations on high-end
devices for UI interactions, whereas lower-end devices usually saw a performance
drop [58]. Interestingly, Corbalán et al. showed that computationally intensive
tasks performed better on Xamarin than on their native counterparts [59].

Chapter 6: Application Development Approach 57

Research surrounding the performance of Flutter has not yet been covered by
anyone but Bjørn-Hansen et al. However, several companies and developers have
created articles about its performance. De Coninck recreated a native application in
React Native, Flutter and Xamarin, and compared the CPU usage differences of the
implementations [60]. Flutter appeared to outperform the native implementation
in both mean and max CPU usage, whereas Xamarin and React Native placed third
and fourth, respectively. Additionally, De Coninck described Flutter as the only
framework to not show any noticeable frame rate drops during the testing. Similarly,
Alibaba compared the efficiency of React Native and a Flutter implementations of
their product details page [54]. Flutter outperformed or matched React Native on
nearly every test, with the only exception being peak memory usage on low-end
iOS devices.

After reviewing the available experiments within the space of performance com-
parisons of cross-platform frameworks, every considered framework appears to be
successful in providing enough performance for a good user experience. Flutter
appears to outperform React Native in terms of drawing to the screen, whereas the
opposite is true for calling native API’s. One could also make a case for Flutter and
Xamarin outperforming React Native in terms of performing CPU-intense tasks not
dependent on calling native API’s, due to the frameworks being compiled to native
code instead of being run as a JavaScript process within a virtual machine.

6.4.3 Documentation

In order to utilize a framework properly, documentation is key. Being able to
understand why, how or what needs to be done in order to achieve a task allows
for quick development times, and usually a better end product. The frameworks
considered for this project all provide extensive documentation.

Flutter has an especially impressive amount of documentation. The official doc-
umentation website provides guides for getting started, including tailor-made
documentation for those who are already familiar with other cross-platform frame-
works. Furthermore, it provides tutorials, samples and extensive documentation of
the functionality the framework provides. Finally, it provides a set of tips and refer-
ences one can use to create better applications. Guides for application optimizations,
testing, debugging and deployment are all part of the official documentation.

React Native also provides documentation, albeit with the more focused scope of
describing what the framework provides and how it can and should be used. Their
documentation provides a generic guide for getting started, an overview of the
provided components and descriptions of their API’s. Every component and API
provides example usages.

Xamarin documentation covers a much broader scope than the aforementioned
frameworks. Their documentation provides a detailed, albeit generic, guide for

Chapter 6: Application Development Approach 58

getting started. Both components and API’s are detailed within the same collection,
making the process of navigating the options somewhat more difficult. Examples
are not always present within a specific component or API description, oftentimes
being explained in separate code samples or in the "getting started" guide. Overall,
the Xamarin documentation proved to be more difficult to navigate than the ones
of Flutter and React Native.

6.4.4 Support for functional requirements

In order for a framework to be a viable option, it should be able to fulfill the
functional requirements of the project. In order to assess this, the author read
the documentation provided by every framework and explored their respective
package managers. The following functionality was what the writer deemed to be
absolutely mandatory for a framework to be deemed viable:

• Support for maps. Should support custom tile providers and offline tile
storage.
• A database solution.
• Location tracking, both when the application is active and inactive.
• Camera support.

Every framework appeared to support the required functionality, either provided
directly by the framework or through third-party packages. In general, the packages
provided by React Native had the overall best quality in terms of documentation
and active maintenance. Most packages had reached maturity, and had an active
community surrounding it. Flutter packages were all actively maintained, although
with a lower quality of documentation. This is to be expected, seeing as the
framework is newer than React Native. Xamarin proved to be a mixed bag. Some
packages appeared to be well maintained, with ample documentation. Deprecated
and migrated packages proved to be a reoccurring theme, making it hard to
understand what packages were up-to-date.

In large, no framework showed a large advantage in terms of support for the
functional requirements, besides the fact that Xamarin would require the developer
to do some additional development in order to display offline maps.

6.4.5 Tooling

One of the major benefits of cross-platform development is the drastically reduced
time-to-market. Good tooling enables developers to write code more effectively.
Code formatting, code suggestions, hot reloading and a well-functioning IDE can
drastically accelerate development.

React Native provides an extensive set of tooling, with the most important one
possibly being the hot reload functionality. Hot reloading allows a developer to

Chapter 6: Application Development Approach 59

automatically inject changed source code into a running application while retaining
the current state of the application, all without having to rebuild and re-run
anything. This drastically increases development downtime and improves overall
efficiency. The framework is supported in several IDE’s. By having framework
support, the developer will gain access to code suggestions, linting and built-in
tooltips. Debugging can be performed through Google Chrome’s developer tools
or through a standalone application.

Flutter also provides excellent tooling. The Flutter plugin [61], available for Visual
Studio Code and Android Studio, introduces several helpful features: Code auto-
formatting, code suggestions, code linting and built-in tooltips. Furthermore, Flutter
is the only framework to support both hot reloading and hot restarting. Whereas
hot reloading retains the state of the application, a hot restart injects changes
into the running application whilst also resetting the state. Performing such an
action in React Native or Xamarin would have the developer stopping, rebuilding
and restarting the application. Furthermore, the framework provides excellent
debugging tools, which can be used to debug code or inspect a number of things. At
the time of writing, one can inspect memory usage, performance, network activity,
app size and widget states.

Xamarin allows for developers to develop in Visual Studio or IntelliJ Rider, with
only the former providing a free tier. The free tier lacks several important features
with regards to Xamarin tooling, with the biggest losses being the Xamarin Profiler,
Xamarin Inspector and code coverage. Besides the aforementioned constraints,
Visual Studio provides code formatting, static code analysis and tooltips. Like the
other frameworks, Xamarin provides hot reloading capabilities, albeit with less
power; Only certain changes to the application user interface is supported.

6.4.6 Choosing Flutter

Choosing a cross-platform framework is an important decision, and not one to
be taken lightly. In this project, the framework was chosen through a process of
elimination.

Xamarin is the oldest of the frameworks, and has been used by several successful
companies since its inception. However, continuous and major changes within the
structure of Xamarin is considered to be somewhat worrying, introducing fears
with regards to the possible longevity of the developed solution. Furthermore, the
placement of the framework within the "dreaded" category in Stack Overflow’s De-
veloper Survey is worrisome, and possibly a reflection of the developer experience.
Finally, the lacking hot reload functionality is considered to be a major drawback,
as it will decrease developer productivity. Due to the aforementioned factors, the
writer decided to not choose Xamarin.

Chapter 6: Application Development Approach 60

Flutter and React Native both appear to be proven frameworks with widespread
adoption. The writer considers React Native to be slightly more mature, mostly due
to it’s age and the amount of high-quality third-party packages within its ecosystem.
However, Flutter appears to have many packages of the same quality, and possibly
better tooling than its competitor. Furthermore, with the rapid popularity of Flutter,
the amount of high-quality packages are certain to increase. Flutter also appears
to have a slight advantage in terms of UI performance and application smoothness,
causing the writer to lean towards the framework. In the end, the choice came
down to the development experience. After experimenting with both frameworks,
the author ended up preferring Flutter. The choice is mainly affected by a perceived
productivity increase, as he was able to create user interfaces more easily using
Flutter. With the planned project being heavily reliant on prototypes, choosing the
framework with the highest productivity boost is sensible.

6.5 Application Development Technologies

This section will provide brief descriptions of the technology used to enable or
simplify the development of the mobile application.

6.5.1 Android Studio

Android Studio is an Integrated Development Environment (IDE) focused on
Android development, and provides an extensive set of tools that simplifies the
process of developing Android applications [62]. In the case of this project, Android
Studio is only used for creating and managing Android Emulators, which allows
developers to run Android applications on computers.

6.5.2 XCode

In the same vein as Android Studio, XCode is an IDE provided by Apple for devel-
oping applications for Apple devices [63]. This application mainly utilizes XCode
for iOS simulator access. Furthermore, XCode is utilized to enable iOS-specific
settings only available through XCode.

6.5.3 Flutter and Dart Plugins for VSCode

The entirety of the project has been exclusively developed through the use of Visual
Studio Code (VSCode), a lightweight IDE fit for several development processes.
Support for Dart and the Flutter framework is not available by default. Instead, it
is provided through two VSCode plugins, named "Flutter" [61] and "Dart" [64]. By
utilizing the two plugins, the developer is able to perform every action required
for Flutter development inside VSCode.

Chapter 7

Application Overview

This chapter provides the reader with a full overview of the user interfaces available
throughout the mobile application. Every section is dedicated to a specific domain
within the application, and will describe how the user can interact with it, why
certain choices were made, and any associated problems that required solving.
The application features a dark theme and a light theme, conforming to settings in
the underlying operating system. This overview will only provide screenshots of
the light theme.

7.1 Authentication

The Application landing page only provides the user with a single option: signing
in. By pressing the sign-in button, the application launches an in-app browser,
allowing the user to sign in, sign up, or reset their password. Mobile development
best practices states that browser-based login authentication solutions are preferred
[65]. Sign-up, login and forgot password-functionality were all initially intended
to be embedded into the application. However, this was later changed to conform
to RFC 8252.

The user interface for authentication is provided by Auth0, an Identity and Access
Management solution. Figures 7.1 and 7.2 displays the views for logging in and
resetting password, respectively. The UI for signing in is omitted, as it is nearly
identical to the user interface used for signing up.

61

Chapter 7: Application Overview 62

Figure 7.1: Signing in. Figure 7.2: Reset
password.

7.2 Detail Registration

Figure 7.3: Registering user details.

Once a user has created an account, the appli-
cation prompts the user for additional details.
The only requested user information is the first
and last name of the user, allowing one to easily
identity users within teams. The user interface
simply consists of input fields for the aforemen-
tioned values and a confirmation button. It is
shown in Figure 7.3. Once the user submits
their details, they are redirected to the Home
View.

Chapter 7: Application Overview 63

7.3 Home

Logged-in users are immediately navigated to the home screen, which provides
access to every other view in the application. The layout of the home view conforms
to the state of the application. When everything is normal, the home screen simply
provides navigation to other views, as shown in Figure 7.4. In cases where the ap-
plication is closed during an ongoing trip, an additional UI component is appended
atop the navigation options, allowing the user to either continue the trip or abort
it. This is shown in Figure 7.5. The ability to start a new trip is completely removed
until the ongoing trip has been addressed. Completed trips must be synchronized
with the server state. In order to remind the user of this task, another item is
shown on the home screen whenever the user has unsent trips, as shown in Figure
7.6. The only way of removing the "unsent trips" component is by uploading the
trips to the server, ensuring synchronization between the local state and the server
state. Alternatively, the user can choose to delete the trips locally, in which case
the upload option will disappear.

Figure 7.4: Normal
home.

Figure 7.5: Home
with ongoing trip.

Figure 7.6: Home
with unsent trips.

Chapter 7: Application Overview 64

7.4 Farms

When conducting supervision trips, the farms a herd of sheep belongs to should be
registered whenever possible. In order to enable a single source of truth for farms,
and to reduce the chance of human error, all farms are stored on the database. The
Farm view is used for downloading these farms locally to a device, enabling sheep
observers to use them during supervision without a need for network connectivity.
If no farms have been downloaded, the view simply describes the implications it
will have when conducting supervision trips. This is shown in Figure 7.7.

Figure 7.7: No
farms downloaded.

Figure 7.8:
Downloading farms.

Figure 7.9:
Downloaded farms.

By tapping the search input, the user is taken to a search view. Whenever the query
string changes, the server responds with a list of farms matching the query. Tapping
any query item will result in it being selected for download. Selected farms are
indicated through the use of a check symbol within the circle on the left-hand side
of the item. In Figure 7.8, both farms are selected and ready to be downloaded.
Once the user presses the confirmation button at the bottom of the screen, the
farms are stored locally on the device and the user is navigated back to the initial
farm view. The farm view automatically updates to display downloaded farms.
A locally stored farm can be removed by swiping an item towards the left. The
swiping motion will enable a hidden delete button, a common deletion method
occurring throughout the application. Figure 7.9 shows the UI of downloaded
farms and the appearance of the slide-to-delete action.

Chapter 7: Application Overview 65

7.5 My Invites

The invite view displays a list of pending invites to sheep supervision teams. Each
invite can either be accepted or declined. If the invite is accepted, the team will
be downloaded and made available throughout the application. By declining, the
invite is simply removed from the application. The invite view is displayed in Figure
7.10. If one wishes to send an invite, the inviter must be an administrator of a
supervision team.

Figure 7.10: My invites.

7.6 Teams

This section describes all views relating to the concept of supervision teams. When
navigating from the home view, the user will be met with a list of the teams they
are a member of. This is displayed in Figure 7.11. If the user is not a member of
any teams, a placeholder text will appear instead, as shown in Figure 7.12. By
pressing the plus sign in the top-right corner, the user can create a new team.
They are then navigated to a new view, in which one can provide a team name
and an optional description. If the user chooses to create the team, they will

Chapter 7: Application Overview 66

be automatically navigated to a detailed view of the team information and the
available team actions. The team creation view is shown in Figure 7.13.

Figure 7.11: Joined teams. Figure 7.12: No teams joined.

By pressing one of the teams in the team list, the user is navigated to a view
providing additional details about the team and a set of actions one can perform
within the team. The available actions differ based on whether the user is a team
administrator or a regular member. A regular team member can only view the team
description, the team members and the trips performed by the team. They may
also leave the team. Administrators, on the other hand, are allowed to manage
invites, transfer administrative privileges to another team user, remove members,
leave the team or delete the team. The administrator team view is shown in Figure
7.14, whereas the administrative actions are shown in Figure 7.15.

Chapter 7: Application Overview 67

Figure 7.13: New team. Figure 7.14: Team details.

The "Team Trips" button allows the user to view trips performed within a team.
This view is identical to the one discussed in Section 7.7, albeit with a different set
of trips. Trips cannot be deleted within "Team Trips". Deleting trips can only be
achieved from "My Trips", and can only be done by the original performer.

Figure 7.15: Administrative team actions.

Attempting to leave or delete a team results in the application prompting the user
to confirm or cancel their choice. The prompt adapts itself to match the underlying
operating system, and is shown in Figure 7.16. Administrators can only leave a
team after transferring administrative privileges to another member. The team can
be deleted if the administrator is the only remaining member.

Chapter 7: Application Overview 68

Figure 7.16: Team deletion prompt.

Team administrators can administer team invites by pressing the "Invites" button
on the detailed team view. Pressing the button brings the user to a view displaying
pending invites, as shown in Figure 7.15. The user can delete multiple invites at
a time by using selection functionality akin to the one used when downloading
farms. New members can be invited by tapping the "New Invite" button in the
top-right corner, and will bring the user to the "New Invite" view. The view only
allows the user to provide an email address and submit it, as shown in Figure 7.18.
Email validation is performed automatically to ensure data validity. Once the email
is submitted, the user is redirected back to the team invite overview.

Figure 7.17: Team invites. Figure 7.18: New invite.

Chapter 7: Application Overview 69

Transferring team ownership can be achieved by tapping the "Transfer Ownership"
button, as shown in Figure 7.15. By tapping the button, the user is navigated to a
new view listing all team members excluding the team administrator. This view is
shown in Figure 7.19. If the team only consists of the team owner, the ownership
transfer view will explain why no items are shown. By tapping a membership, the
user will be prompted with a confirmation dialog. By accepting, the ownership of
the team is transferred to the selected member. This action is effective immediately;
The previous team owner will no longer have access to administrative actions.

Removing members from a team can only be performed by the team administrator,
and can be achieved by tapping the "Manage" button shown in Figure 7.14. The
button will navigate the administrator to a new view displaying all removable team
members, as shown in Figure 7.20. By tapping a membership, it will be marked as
selected. Once a membership is selected, the bottom of the screen will display a
deletion button. Tapping the button will remove the members from the team and
navigate the administrator back to the detailed team view.

Figure 7.19: Transferring
team ownership.

Figure 7.20: Removing
team members.

Chapter 7: Application Overview 70

7.7 My Trips

This view displays the trips conducted by the logged-in user, and is shown in Figure
7.21. Each trip item displays the date of the trip, and at what times it started
and ended. Furthermore, the icon on the left denotes whether the trip has been
submitted to the server or not. Clicking on a specific trip navigates the user to a
new view, in which one can view the trip observations.

Figure 7.21: My Trips.

Trip observations are separated by type, as shown in Figures 7.22 and 7.23. This
separation is consistent throughout the entirety of the application. In the case of
the detailed trip view, they are separated into different tabs, providing a clear
overview of what observations have been made. A sheep observation lists the time
of which the observation was made, how many sheep were observed and their
sheep colors. If the observation occurred reasonably close to the sheep observer,
the observation may also include tie colors and farm colors. An observation within
the "other" category lists the type of observation, a description of the observation
and an optional list of images and image descriptions. Locally stored images are
loaded from the file storage and displayed immediately, whereas remotely stored
images can be loaded by pressing a button. Observations can only be deleted before
they are submitted to the server. Once submitted, they are considered to be final.

Chapter 7: Application Overview 71

Figure 7.22: Sheep Obser-
vations.

Figure 7.23: Other Obser-
vations.

7.8 Offline Areas

In order to perform a supervision trip, the user must first download a map selection.
A stable internet connection is not a given during supervision trips; Having a
locally stored map would allow trips to be performed without any need for internet
connectivity. The "Offline Areas" view lists every downloaded map portion. Tapping
a list item displays a list of map options in a bottom sheet. Each map can be deleted,
viewed or used for starting a trip. If the user chooses to view an offline map, they
are navigated to a view displaying the downloaded map selection. By choosing
to start a new trip, the bottom sheet prompts the user to choose a team for the
upcoming trip. Once a team has been chosen, the user is navigated to a new view
and the trip is started. This process is displayed in Figures 7.24, 7.25 and 7.26.

Chapter 7: Application Overview 72

Figure 7.24: Offline
areas.

Figure 7.25: Offline
area options.

Figure 7.26: Choos-
ing a team for a trip.

The "Offline Areas" view is only available to users when a trip is not currently in
progress. If an ongoing trip is present, the only way to navigate to "Offline Areas"
again is by finishing or aborting the ongoing trip.

In the top-right corner of the view, the user can tap the "plus" button to create a
new offline area. This will redirect the user to a new view, in which a map area
can be selected and downloaded. The map supports the same types of interaction
as most other mobile map applications: drag to scroll and pinch to zoom in or out.

Chapter 7: Application Overview 73

Figure 7.27: Speci-
fying map selection.

Figure 7.28: Speci-
fying map name.

Figure 7.29: Map
download indicator.

A map selection can be made by pressing the "plus" sign in the bottom-right corner.
Pressing the button enables marking mode, and is communicated to the user
through text. Marking mode locks the map in the current position, and allows for
the user to mark a portion of the map by dragging from one screen position to
another. This is shown in Figure 7.27. Once a selection has been made, the user can
choose to save their selection by pressing the "save" button on the bottom of the
view. By pressing the button, a bottom sheet is shown, prompting the user to enter
a name for the map and to either download it or cancel the map creation process.
This is shown in Figure 7.28. If saved, the application will display a progress
indicator until the map has been downloaded, as shown in Figure 7.29. Pressing
the cancel button will cancel the entire download process and remove any map
tiles associated to this specific download. Once a map has been downloaded, the
progress indicator disappears, and the newly downloaded area will be listed once
the user navigates back to the "Offline Areas" view.

Chapter 7: Application Overview 74

7.9 Trip

The trip view is the main hub during supervision trips. Once a trip has started,
the user is only able to exit the trip by finishing it. The exception to this rule is
whenever the application is closed, either by the user or the operating system. In
such cases, the user is presented with the option of resuming or aborting the trip
when the application is opened again. The trip view is displayed in Figure 7.30.

Figure 7.30: Trip UI.

During a trip, the application continuously tracks the user location in order to
provide a list of coordinates covered throughout the trip. Whenever a user observes
something noteworthy, it can be selected by tapping the "plus" button in the bottom
right of the view. This enables a draggable selection cross-hair. When the user lets
go of the cross-hair, a selection is made. The application then displays a bottom
sheet detailing the distance between the selected point and the person conducting
the supervision trip. Furthermore, it prompts the user to specify what type of
observation the selection is. This is shown in Figure 7.31. Once a selection is made,
the user is navigated to the view representing the observation type. Currently, the
application supports sheep observations and "other" observations.

Chapter 7: Application Overview 75

Figure 7.31: Observation
type prompt.

Figure 7.32: Trip pop-up
options.

The user is represented as a blue dot on the map, and updates itself in real-time.
Whenever the user moves, a purple line is drawn to indicate previous user locations.

Trip actions can be accessed by pressing the button in the top-right corner, which
will display the pop-up menu shown in Figure 7.32. This menu provides the user
with the option of either viewing previous trip observations or ending the trip. The
trip observations view is the same one as described in Section 7.7, and will not be
discussed further. If the user chooses to end the trip, the application will navigate
back to the Home view.

7.10 Sheep Observations

The primary goal of the application is to simplify and improve the process of
registering sheep. As such, the sheep observation view has to be as efficient as
possible. The sheep observation view only requires the observer to register the
total number of sheep and the number of sheep divided by wool color. In fact, if
the observation is more than 30 to 50 meters away, the user is unable to register
anything else. The project supervisor specifies that registering sheep details from

Chapter 7: Application Overview 76

distances further than 30 to 50 meters introduces a significant margin of error. As
such, a choice to simply disallow additional information on long distances was
made. The difference between the two user interfaces are shown in Figures 7.33
and 7.34.

Figure 7.33: Sheep obser-
vation details if distance to
observation is more than 30
meters.

Figure 7.34: Sheep obser-
vation details if distance to
observation is less than 30
meters.

If the distance to the observation is small enough to observe details, the observer
should strive to do so. Each optional detail section is capable of expanding or
collapsing to reduce the amount of UI clutter as the registration process goes on.
Once a section is finished, it can be collapsed and hidden from the user interface.
This can be observed in Figure 7.35, where both the sheep color and tie color
sections have been collapsed.

Chapter 7: Application Overview 77

Figure 7.35: Collapsed sheep and tie color sections.

The process of registering a sheep color requires two inputs: a color and an amount.
Sheep colors are predefined, and selected from a drop-down list. Every color value
throughout the application provides a textual counterpart to accommodate for
color-blindness. The amount is a simple integer input field. No sheep color can
appear more than once, and the amount must be greater than zero. The application
notifies the user of invalid values, as shown in Figure 7.36. Once the list reaches
the same length as there are values in the drop-down menu, the ability to add new
rows are removed. Figure 7.37 shows the button used for adding more values.

Figure 7.36: Sheep
colors with errors.

Figure 7.37: Tie color
section.

Chapter 7: Application Overview 78

The process of registering sheep ties is, in principle, equal to registering sheep
colors. Sheep ties are quite small, and oftentimes hard to keep track of. Furthermore,
sheep are not guaranteed to stay still while being observed. Attempting to register
ties without constantly looking at the herd can be an error-prone process. Due to
this, the application allows the observer to register tie details by swiping. Sheep
can have four different tie colors. By assigning one color to each screen edge, the
observer can simply swipe to the screen edge corresponding to the tie color. The
approach to tie swiping is shown in Figure 7.38.

When swiping, the application also provides a text-to-speech functionality speci-
fying how many times a direction has been swiped. If one were to swipe left for
green, the application would respond "Green one". If the next swipe also corre-
sponds to green, the application would respond "two", omitting the color and only
mentioning the count. This expedites the swiping process, as the user already
knows what direction they are swiping. If a new swipe has a different direction
than the previous, both the color and count would be spoken again. By combining
swiping and text-to-speech, the application simplifies the process of registering ties
without looking at the screen. The text-to-speech is able to confirm what color and
amount has already been registered. In order to provide additional confirmation to
the user, the amount of times a direction has been swiped is also shown in the UI.

Figure 7.38: Tie swipe UI.

Chapter 7: Application Overview 79

The final optional value is farms. As described in Section 7.4, farms are intended
to be downloaded before a trip has begun. Only allowing one to specify down-
loaded farms would be very naive; The chance of encountering sheep belonging to
unknown farms is always present. As such, this section allows the user to define
unknown farms by adding the two colors that identifies the farm. The farm section
is depicted in Figure 7.39.

Downloaded farms appear in a drop-down list. By pressing an item in the list, they
are added to a list of farm observations. This same list houses all unknown farms.
When an unknown farm is defined, it is simply added to the list like a downloaded
farm, only with a placeholder name of "Unknown".

Figure 7.39: Farm section with expanded "missing farm" field.

The observer is only able to save the observation if all details are valid. If not, the
invalid fields will provide an error message, describing why they are invalid. Once
everything is valid and the observation is saved, the application navigates the user
back to the trip view.

Chapter 7: Application Overview 80

7.11 Other Observations

Whereas sheep observations have very specific requirements, "other" observations
do not. There are a number of things observers might find noteworthy to register
during a supervision trip. Predator sightings and dead sheep, for instance, are two
important events one should register.

The "other observation" view requires the observer to register what type of observa-
tion is being made. Furthermore, it allows the user to provide a description of what
has been observed. It also allows for the observer to append a number of images
of the observation. Viewing a full-sized image can be achieved by tapping one of
the observation image items. Each picture allows for an optional description of the
image. A picture of the user interface is provided in Figure 7.40, whereas the view
for taking pictures is shown in Figure 7.41. When taking photos, the user is able
to enable and disable flash, as well as swap between the front- and back-facing
cameras.

As with the sheep observations view, all fields must be valid before submitting.
Once the user has successfully submitted the observation, the application navigates
back to the trip view.

Figure 7.40: Registering an
"other" observation

Figure 7.41: Camera pre-
view. Camera is emulated.

Chapter 7: Application Overview 81

7.12 User details and Settings

The User view can be accessed by pressing the gear icon at the top-right corner of
the Home view, and provides access to user details and application settings.

User information is displayed at the top of the view. By tapping the edit icon, the
user is able to change their first and last name. All input fields must be valid in
order for changes to be stored. The differences between the normal state and the
editing state are shown in Figures 7.42 and 7.43.

Figure 7.42: User profile and ac-
tions

Figure 7.43: Editing user de-
tails.

Available user actions are listed at the bottom of the view, and currently consists of
three choices. The "Clear Storage" button allows the user to delete all data stored
on the device, with the exception of the user session and downloaded maps.

Logging out of the application clears the application data and navigates the user

Chapter 7: Application Overview 82

to the authentication view. If the user chooses to log back in later-on, user data
will be fetched from the server. The only data that cannot be retrieved from the
server are pictures and downloaded map areas. It is important to note that data
deletion only occurs when the user chooses to log out. If the user is logged out
due to an expired session, all data remains intact.

Deleting the currently logged in user account can be achieved by pressing the
"Delete Account" button. This will delete all application data. Furthermore, the
server will modify any database table containing personally identifiable information
to comply with GDPR, before marking the account as deleted. Finally, the identity
provider account is deleted.

Chapter 8

Flutter: Concepts and Packages

In order to gain a better understanding of certain choices made throughout the
development process, it is important to understand the core principles and concepts
Flutter is built upon. This section is dedicated to providing the reader with succinct
explanations of central concepts that can provide additional context to the rest of
this part. Furthermore, it will describe important packages utilized by the project.

8.1 Widgets

"Everything is a widget" is a common saying within the Flutter community. Where
similar frameworks would instruct the user to add styling through cascading style
sheets, Flutter tells the user to wrap the target widget in another widget.

Code listing 8.1.1: Flutter widget example.

class Example extends StatelessWidget {
@override
Widget build(BuildContext context) {
return Center(
child: SizedBox(
height: 100,
width: 100,
child: Container(
padding: const EdgeInsets.all(5),
decoration: BoxDecoration(
borderRadius: BorderRadius.circular(5),
color: Colors.blue,

),
child: Center(
child: Text("Hello"),

),
),

),
);

}
}

83

Chapter 8: Flutter: Concepts and Packages 84

Listing 8.1.1 describes this approach well. The build function returns a padded
blue box with circular corners and the text "Hello" centered inside of it. At the
top-level, the Center widget ensures that the output will be centered in the middle
of the screen. Following this, SizedBox ensures that the created widget has a height
and width of exactly 100 units. A Container is a convenience widget, and allows
for the developer to add common properties, defined as widgets, to itself. In this
case, it allows the developers to pad the child of the container with 5 units on all
sides. Furthermore, it allows the developer to specify container decorations; The
background color should be blue, and the borders of the container should have
rounded corners. Finally, the text inside the widget is defined by a Text widget,
which itself is centered within the container by wrapping it with yet another Center
widget. The final result of the aforementioned code can be seen in Figure 8.1.

Figure 8.1: The resulting user interface of the code listing in Listing 8.1.1.

The Flutter team describes this as "aggressive composability": All widgets should
be composed of smaller widgets, all the way down to the smallest possible widget
[66]. In fact, most standard Flutter widgets are based on the concept of aggressive
composability. By creating small and focused widgets, the developer promotes
code reuse. Having an arsenal of composable widgets allows for rapid future
development, by creating large widgets through a composition of smaller ones.

8.2 State

In many cases, an application has to respond a certain way to user interactions.
When flipping a switch within an application, the user expects the application to
remember the action and update the user interface accordingly. Choices similar
to this one can be described as state, a piece of information the application must
somehow keep in memory and display to the user. State may change any number of
times throughout the life-cycle of the application. Flutter addresses state through
stateful and stateless widgets. A stateless widget is simply a widget with no state;

Chapter 8: Flutter: Concepts and Packages 85

The contents of the widget will never change throughout the application lifecycle.
Stateful widgets are able to remember state and rebuild themselves to reflect
changes within the state.

8.3 Reactive Applications

An important programming paradigm to understand before reading about the
implementation of this application is reactive programming. The paradigm revolves
around programming systems through the use of asynchronous streams of data. As
opposed to the imperative way of having to request data every time it is needed,
reactive programming allows one to receive a continuous stream of data as it is
added to the stream. By utilizing streams, one can ensure the user interface is
always reflective of the underlying data. This concept is heavily utilized throughout
the application. Nearly all data displayed throughout the application is provided
by streams, allowing for dynamic and up-to-date user interfaces at a low cost.

8.4 Relevant Flutter Files

In simple use cases, Flutter developers can avoid touching any native Android
or iOS code. For more complex projects, however, some modification is required.
Throughout the development of the mobile application, the only need for native
code were modifications of platform configuration files. In Android, this is done
through a file named AndroidManifest.xml, whereas iOS uses a file called Info.plist.
For the most part, changes revolved around adding permission requests. Apple is
very particular about requesting permissions; If a permission is to be granted, it
must be for a good reason. As such, every permission request has added transparent
descriptions surrounding their usage.

Platform configuration files have also been modified to enable certain Flutter
plugins. The plugin used for background location tracking, background_locator
[67], requires several modifications to configuration files. For Android, one simply
has to specify a service in AndroidManifest.xml. The iOS implementation requires
the developer to enable background modes and location updates in XCode, followed
by registering the plugin in the AppDelegate of the XCode project. AppAuth [68],
the authentication plugin utilized by the application, requires the developer to
specify URL schemes for authentication. This is specified in the Gradle build file
for Android, and the aforementioned Info.plist file for iOS.

Project dependencies are defined in pubspec.yaml. This file is also responsible for
defining project-specific settings, such as name, description, version and static
assets. Furthermore, the project utilizes custom analysis and build options, which
can be found in analysis_options.yaml and build.yaml, respectively.

Chapter 8: Flutter: Concepts and Packages 86

8.5 Flutter Packages & Plugins

Flutter is written using Dart, a programming language developed by Google [44].
Like most programming languages, Dart allows for the use of packages and plugins
to add new functionality to the language. In fact, essential functionality is not
always implemented into Flutter directly. For instance, camera functionality is only
provided as a standalone plugin. The Flutter team distinguishes between packages
and plugins in the following way: "A plugin package is a special kind of package
that makes platform functionality available to the app" [69]. By this definition, the
aforementioned camera package would be considered a plugin, as it enables the
application to utilize native camera functionality. This section will describe the
most important packages and plugins the application makes use of, why they were
chosen, and how they are used.

8.5.1 Provider

As an application increases in size, the process of managing state can increase
in complexity. The "solution" to this problem has been to create packages for
managing state. The Flutter development environment has provided a plethora
of state management solutions, where each developer favors one over the other.
The author chose to utilize Provider [70], a solution recommended by the Flutter
team [71]. In comparison to other alternatives within the space, it requires less
boilerplate code, and does not force the developer to develop in a specific way.
Furthermore, Provider is quite simple. Opting to go for a more complex solution
could potentially introduce additional complexity with no additional benefit.

Provider is a mix between state management, service location and dependency
injection. It simplifies the process of utilizing InheritedWidget, a Flutter widget
allowing a widget to expose information to descendant widgets. Utilizing such
widgets are usually known as "lifting state up": Two widgets can utilize shared
state stored in a parent widget. Usage of Provider within this application is further
described in Sections 10.1 and 10.13.

8.5.2 Flutter_map

Reading and navigating a map is a vital piece of functionality in the application.
In order for the application to function as intended, a solid map is essential. The
Flutter team provides a package for Google Maps integration which cannot be used
for this application, as it does not support custom tile providers nor offline map
storage. The only map plugin supporting offline tile storage is Flutter_map [72],
which offers more flexibility and customization than any other existing solution. In
fact, it is the only available map plugin supporting the usage of tiles stored locally
on the device file system.

Chapter 8: Flutter: Concepts and Packages 87

8.5.3 Moor

The application must allow allow for users to perform trips without internet
connectivity. In order to achieve such a task reliably, data must somehow be
persisted to local storage. This application solves this problem by using a SQLite
database, and is discussed further in Section 10.2. Flutter does not provide an
official solution for working with databases, but third party packages are available.
The author chose to utilize Moor [73], a database persistence library built on top
of the most popular Flutter library for handling SQLite databases, sqflite [74].

Moor provides additional functionalities that makes working with SQLite databases
easier. Defined database tables can be analyzed by Moor, which in turn generates
Dart API’s. This removes the need to write SQL queries by hand, expediting the
development process. Furthermore, Moor automatically transforms query results
into Dart types. It even allows for queries to be returned as streams, simplifying the
process of synchronizing application and database state. In comparison to Moor,
sqflite is verbose. It allows for much greater flexibility at the cost of development
time, due to an abundance of boilerplate code. The author believes the flexibility
trade-off to be worth it, as Moor appeared to cover any functionality the application
might require.

8.5.4 RxDart

Streams are an important part of Flutter, and allows one to listen to a sequence of
events as they appear. Flutter provides support for streams out of the box. However,
as with many other modern programming languages, ReactiveX improves upon it.
The application utilizes RxDart [75] to perform complex stream operations not
covered by the standard streams library.

8.5.5 Dio

Being able to perform network requests is a crucial part of the application, and
is something Flutter does not provide out of the box. Although Flutter provides
the official http plugin, many prefer Dio [76] due to a larger feature set. This
application chose Dio due to the support for request and response interceptors,
automatic JSON parsing and simplified request timeouts.

8.5.6 Flutter_appauth

According to the Internet Engineering Task Force (IETF), mobile authentication is
best performed through the use of external user-agents [65]. AppAuth, an open-
source library for doing exactly this, is referenced within the recommendation.
Thus, choosing the Flutter implementation of AppAuth could be considered a
sound choice. Flutter_appauth [68] simply provides a wrapper around the iOS and
Android implementations of AppAuth, and allows the authentication process to be

Chapter 8: Flutter: Concepts and Packages 88

performed in an external user agent. It handles the entirety of the authentication
process in the application. The authentication implementation for the application
is described in Section 10.8.

8.5.7 Flutter_secure_storage

Most of the data the application stores is not sensitive. However, some data should
be kept secret from the user. More specifically, access tokens and refresh tokens
should not be known to any other entity than the system. The application enables
this by utilizing Flutter_secure_storage [77], a plugin exposing API’s to the native
implementations of secure storage for the underlying operating system.

8.5.8 Camerawesome

The official Flutter camera plugin was not production-ready during development.
Due to several crucial bugs and missing features, the author opted to choose a
third-party plugin, Camerawesome [78], for accessing the camera. At the time, it
appeared to be the most flexible and well maintained option, and is simply used
for accessing native camera functionality.

8.5.9 Geolocator

The user location is accessed through the use of GeoLocator [79], a plugin providing
easy access to the underlying native location implementations. It allows developers
to listen to a stream of location updates, and many other utility functionalities
that expedites the development process. Although other options are present, none
are as well maintained and documented as GeoLocator. Location usage for the
application is described in Section 10.10. Furthermore, problems surrounding
location is discussed in Section 12.2.

8.5.10 Background_locator

Location tracking when the application is inactive or killed is handled through
the use of background_locator [67]. It allows for one to spawn an isolated process
with the sole responsibility of receiving location updates. The mobile application
will encapsulate library usage into a service capable of stopping and starting
background location tracking whenever the application can no longer do so itself.

Chapter 9

Application Architecture

Having a well-planned architecture is key when it comes to designing modifiable
and extensible applications. This section describes the different patterns utilized
by the mobile application to allow for a modular and scalable solution. Finally, it
presents a set of diagrams describing the overall structure of the architecture.

9.1 Architectural Patterns

Bass et al. defines architectural patterns and tactics as "... ways of capturing proven
good design structures, so that they can be reused" [28]. By relying upon tried
and true knowledge, one is able to create better end products. This section will
describe the architectural patterns used throughout the mobile application.

9.1.1 Onion Architecture

The Onion architecture was defined by Jeffrey Palermo as a direct response to the
tight coupling layered architectures often led to [80]. In the layered architecture,
each layer depends on the layer beneath it, in addition to a set of common infras-
tructural and utility functions. The Onion architecture combats this by proposing a
different way of coupling layers together. Instead of the top-down approach the
layered pattern utilizes, the onion architecture specifies layers as rings, where
a layer is only allowed to access resources within itself or layers closer to the
core of the "onion". Layers in the Onion architecture can be separated in two: the
application core and the outer layer. The original representation of the architecture
is shown in Figure 9.1.

89

Chapter 9: Application Architecture 90

Figure 9.1: The Onion Architecture, as presented by Palermo [80].

The application core consists of several layers, and defines what entities, business
logic and application logic the application requires in order to function. The
innermost layer, the domain layer, defines domain entities, business logic and
interfaces for functionality a domain relates to or depends on. Such an interface
could for example be persistence related. The inner layer only depends on itself,
and rarely changes. Following the domain layer is the application layer, a layer
concerned with application rules, a set of actions one must perform in order to
successfully perform an application use case. Such rules are usually implemented
by orchestrating domain services in order to achieve the specified end result. The
application core specification is not rigid, and can contain more layers if required.
However, for the purposes of this application, the aforementioned ones proved to
be sufficient.

The outer layer is home to rapidly changing components. Figure 9.1 provides
user interfaces, tests and infrastructure components as examples, something that
is reflected in the actual implementation of the architecture. Anything stored in
this layer is allowed to access all layers within the application core. The user
interface aspect of the example contains things like views, view models, widgets
and interaction logic, whereas the test example simply contains tests for the entire
application.

Chapter 9: Application Architecture 91

Infrastructure, on the other hand, is a much more abstract concept. It contains
a wide range of responsibilities, but no business-critical logic. Any business or
application logic dealing with I/O will be defined here. For instance, if an entity in
the domain layer requires persistence, an interface for the persistence requirements
would be defined within the domain services layer. The actual persistence implemen-
tation would be defined in the infrastructure layer. In this case, the infrastructure
is coupled to the domain, not the other way around.

The Onion architecture allows for loosely coupled layers. By keeping rapidly
changing components in the outermost layer and requiring all dependencies to
point towards layers closer to the core, change propagation is kept to a minimum.
Changes within the application core will propagate outwards, but such occurrences
are more rare. The separation of concerns between layers also allows one to more
easily switch out any external dependencies or frameworks, as it should not affect
the application core. Furthermore, the usage of the Inversion of Control principle
allows for low coupling between dependencies. By depending on interfaces instead
of actual implementations and avoiding any instantiation logic within dependents,
the ease of which one can swap components or mock them for testing is greatly
increased. The author believes the Onion architecture to bring enough flexibility
to future-proof the application, both in terms of extensibility and scalability.

9.1.2 Model-View-ViewModel

The separation between user-interface code and business logic is handled with
the Model-View-ViewModel (MVVM) pattern. Whereas traditional Model-View-
Controller and Model-View-Presenter approaches create a tight coupling between
views, models and controllers, MVVM focuses on separating the view and the
business logic entirely [81]. The concept is based on three components: Models,
Views and View Models.

The view is responsible for defining user interfaces and handling user interactions,
and contains as little logic as possible. Every view has a corresponding view model,
which can be viewed as a handler for the state of a view. View Models provides a
set of properties the view can bind to. Whenever the state of a view model changes,
it will emit an event the view can listen to. This allows for views to dynamically
rebuild themselves whenever the state of the view model changes. View models
should contain as little logic as possible; An ideal view model should primarily be
concerned with calling models and maintaining the state of a view.

View Models are also responsible for interacting with the models throughout an
application. In simple terms, a model encapsulates the data of the application [81].
Views are able to interact with the models through the use of functions exposed by
the view model. Models have no knowledge of view models, and view models have
no knowledge of views. Both Models and View Models can be considered to be
observable objects simply emitting events without knowing who will receive them.

Chapter 9: Application Architecture 92

Figure 9.2: The MVVM pattern, as described by Microsoft [81].

The relations between the components of the MVVM pattern is shown in Figure 9.2.
This description of the pattern mostly aligns with the implementation of the pattern
in the application. The only change between the figure and the implementation is
that view models does not update models directly. Such logic is instead handled
by intermediaries located in the application and infrastructure layers of the Onion
Architecture pattern.

9.2 Design Patterns

Many of the problems one faces when developing software has predefined solutions
to them, as they have been encountered many times before. Such solutions are
oftentimes called design patterns, a term coined by Gamma et al [82]. This section
will describe the design patterns used throughout the application, and reason as
to why they were chosen.

9.2.1 Service Locator

The service locator pattern describes an object with the knowledge of how to
retrieve instances of system services [83]. This is usually implemented through
the use of an IoC container, in which one can instantiate and store instances of an
object. The container is able to receive requests for the stored instances and return
a reference to it. Whenever a service is needed, the application can simply call
the service locator to get a reference to the needed interface, without necessarily
knowing what the underlying implementation is. In the case of this application,
the pattern is used to provide services and repositories to view models without
instantiating them inside the view model.

9.2.2 Dependency Injection

Dependency Injection is another pattern used for achieving Inversion of Control
(IoC). The main difference between Dependency Injection and the Service Locator
pattern is one of knowledge. Classes using the Service Locator pattern are fully
aware of the existence of the IoC container. When using dependency injection, on
the other hand, the knowledge of the IoC container is completely removed [83].

Chapter 9: Application Architecture 93

Within the context of this application, dependency injection is preferred wherever
possible, as it simplifies testing. Testing classes relying on a service locator will
require one to create a service locator and fill it with mock versions of the required
dependencies. With dependency injection, on the other hand, mocked instances of
the required dependencies can instead be instantiated directly. Service location
is only used in the application views; Throughout the rest of the application,
dependencies are provided through injection.

9.2.3 Data Access Object

A Data Access Object (DAO) provides an abstraction layer on top of a persistence
mechanism [84]. Instead of providing direct access to a persistence solution, the
DAO pattern explicitly states that all persistence interactions should be performed
through a list of API calls the DAO exposes through an interface. Using Data Access
Objects allows the developer to hide implementation details of any’ particular
persistence solution from the rest of the system. If one were to switch the persistence
implementation, the DAO would ensure that no modifications would have to be
made for the rest of the system. All entity persistence within the application is
performed through the use of Data Access Objects.

9.2.4 Repository

Hieatt and Mee defines the Repository pattern as such: "A Repository mediates
between the domain and data mapping layers, acting like an in-memory domain
object collection" [85]. Whereas a DAO acts as a persistence abstraction of a specific
entity, a repository acts as an abstraction of the storage of an aggregate root: A
collection of domain entities that can be treated as a single entity. A repository
implementation can, and often does, use several Data Access Objects to achieve its
purpose. Each aggregate root within the final application has its own repository.

9.2.5 Observer

In order for the view to listen for changes in the view model state, a solution for
notifying listeners must be created. Such solutions are oftentimes implemented
with the observer pattern, in which an observable class is allowed to have zero to
many listeners who will receive notifications of any events the observable object
emits [82]. In the application, every view model is by default an observer, whereas
each view is a listener. This allows views to rebuild themselves whenever a change
in the view model state occurs. Furthermore, the streams used throughout the
application are largely based on the observer pattern.

Chapter 9: Application Architecture 94

9.2.6 Value Object

Comparing the equality of two objects can be achieved in several ways. In many
languages, objects are equal when they reference the same object. Another way to
look at object equality is to compare the actual values that comprises the object.
In this context, the object can be described as a value object: An immutable object
that should be equal to any other objects with equal values [86]. The application
will utilize value objects wherever equality of value is more correct than referential
equality.

9.2.7 Singleton

According to Gamma et al, the Singleton pattern is used to "Ensure a class only has
one instance, and provide a global point of access to it" [82]. The pattern prohibits
the instantiation of new class instances; Instead, the class is only instantiated when
first accessed. If one were to create a new reference to the class later on, the previ-
ously created instance would be returned. Since its inception, the Singleton pattern
has been criticized for being an anti-pattern. Safyan claims that Singletons reduces
the testability and modifiability of systems [87]; Similar sentiments are shared
across the web. The application only utilizes the pattern indirectly. Third-party
packages oftentimes exposes Singleton instances of their provided functionality.
When used in the application, Singleton usage is hidden in implementation details
behind interfaces, allowing for one to easily switch to a different alternative if
necessary.

9.2.8 Facade

Oftentimes, the consumer of a subsystem is not interested in complex implemen-
tation details. If given the choice, it is reasonable to assume a simple set of API’s
would be the preferred choice over having to grasp how a system works. The facade
pattern describes the process of restricting access to complex subsystems through
the use of a simpler, shared interface [82]. Many of the subsystems throughout the
system are not accessed directly, but instead through the use of interfaces. Reposi-
tories are a good example; A repository interface provides no details surrounding
how an entity is persisted or mutated.

9.2.9 Mediator

The mediator pattern allows one to orchestrate a set of object functionalities in such
a way that a specific goal is achieved [82]. Having direct dependencies between ob-
jects would create a tight coupling; By making the objects completely independent
of one another, and instead opting to create a separate object orchestrating the
relationship between them, the system will have a lower coupling. Complex use
cases requiring interacting with different application responsibilities will utilize
the mediator pattern to orchestrate the interactions.

Chapter 9: Application Architecture 95

9.3 Architectural Description

Project structure oftentimes correlates with the architectural patterns the system
employs. Since the mobile application utilizes the onion architecture, separating
source code by layer would be sensible. Code is mainly divided into four folders:
domain, infrastructure, application and presentation. Each layer is subdivided by
domain; A farm folder is present in all layers, albeit with different concerns. This
approach allows clear separation between layers, while still ensuring maintainable
folder sizes.

Figure 9.3: Package diagram of application structure.

Chapter 9: Application Architecture 96

A package diagram of the project structure is shown in Figure 9.3. The figure
only displays relations within layers to avoid clutter. Cross-layer dependencies are
abstracted away into the arrows shown in the center and sides of every layer.

At the very core of the architecture lies the domain layer. It stores domain entities,
business logic and interfaces defining domain-specific service requirements. A
folder within the domain layer can contain any of the following folders:

• entity Definitions of persistable objects.
• enum Special classes with a set of predefined values.
• interface Interfaces for repositories and business logic the infrastructure

layer should implement.
• vo Value Objects: A simple, immutable object compared to other value objects

by the values stored within, as opposed to by reference.
• model Objects only utilized throughout the domain.

Following domain is the application layer, which mostly deals with receiving data
from the presentation layer, and orchestrating resources in order to achieve the
desired end result. The layer only contains service interfaces and implementations.

The infrastructure layer is part of the outermost layer of the onion. Any code
relating to external services, storage or platform operations are stored here. A
folder in the infrastructure layer can contain any of the following sub-folders:

• dao Data Access Objects for fetching locally and remotely stored data.
• model Database table definitions.
• repository Implementations of repository interfaces defined in domain.
• service Service implementations relating to external resources.

Finally, the presentation layer contains code relating to views, view models, widgets,
interaction services, navigation services and themes. The presentation layer is not
divided in sub-folders by domain, but rather by concept:

• i18n Code related to the internationalization of the user interface.
• interaction Services used to display snack bars, alerts and dialogs.
• navigation View names, navigation services and navigation arguments.
• theme Theme definitions for light and dark mode.
• util Various utility functions used in several views.
• view Views, view models and domain-specific widgets grouped by domain.
• widget Generic widgets used throughout the application.

Source code can also be found in two additional folders. The di folder is responsible
for instantiating injectable resources, whereas the common folder contains models
not belonging to any particular domain.

Chapter 9: Application Architecture 97

Figure 9.4 displays a generic vertical slice of the architecture, and describes the
relationships between classes. The presentation layer contains domain-specific
widgets, a view and a corresponding view model. View models interact with the
underlying layers through the use of an entity service providing functionality for
domain-specific use cases. This is usually achieved through the use of the entity
repository, which is used to query locally or remotely stored entities. Whether
an action must fetch or mutate entities locally or remotely is decided within the
repository.

Figure 9.4: Class diagram of a vertical slice of the application architecture.

Chapter 9: Application Architecture 98

Repository implementations usually references DAO’s for both local and remote
data access. In Figure 9.4, these are represented by EntityLocalDao and EntityRe-
moteDao, respectively. Local DAO’s utilize the Database for entity access, whereas
remote DAO’s utilizes a service for performing HTTP requests. In the case of this
diagram, the local DAO also implements the ISynchronizable interface. This indi-
cates that the entities stored locally on the device should be synchronized with the
server. The database uses the EntityTable to generate Dart API’s for use within the
local DAO.

Repositories, services and DAO’s all have interfaces and corresponding implemen-
tations. The actual implementations are not referenced throughout the entire
application; They are only used to instantiate instances of an interface for injection
later-on.

Some simplifications of the vertical slice of the architecture have been made to
ensure the readability of the diagram. Views and view models oftentimes utilize
several resources located within the presentation layer; Navigation services, inter-
action services, generic widgets and custom themes are all common things views
and view models utilize. Furthermore, the usage of the actual entity is not mapped,
due to the fact that every class expect for the EntityTable uses it to some extent.

Both sheep and other observations are comprised of several sub-domains. A decom-
position of the sheep observations folder for the infrastructure and domain layers
are shown in Figure 9.5. Relations between layers have been removed once again
in order to avoid clutter. In short, a DAO will always utilize its corresponding entity.
The figure shows that every entity used within the sheep observation entity has a
corresponding DAO interface. Directly accessing DAO’s through these interfaces are
not encouraged. Instead, one is encouraged to store sheep observations through
the sheep observation repository, which in turn utilizes the different DAO’s. The
actual implementation of the DAO’s is abstracted away in the diagram. Instead,
the EntityLocalDao is shown. In order to keep the diagram at a manageable size,
this abstraction is meant to represent implementations of every DAO interface.
The same applies to EntityTable, which is meant to represent the database table
definitions for each entity.

Chapter 9: Application Architecture 99

Figure 9.5: Class diagram of domain and infrastructure layers of the sheep obser-
vation domain.

Another important concept to decompose is views. As previously stated, views are
divided in terms of what domain they belong to. Thus, a folder within a specific
domain might contain several view folders. A good example of this is the team
folder, which contains a total of eight views. Figure 9.6 details all of the views
available throughout the application, and how one can navigate between them.
The figure is slightly simplified. It does not display the flow for navigating back to
the previous view; However, one can always navigate back to the previous view,
with the exception of the authentication view. The only way to navigate back to
the authentication view is by logging out.

Chapter 9: Application Architecture 100

Figure 9.6: Navigating between different views.

Chapter 10

Application Implementation

This chapter describes the most important implementation details of the mobile
application. Each section covers a vital part of the application through textual
descriptions and code snippets.

10.1 MVVM implementation

The MVVM pattern is implemented through the use of the Provider package and
ChangeNotifier, the Flutter equivalent of an observable object. ChangeNotifier
exposes a set of functions for adding and removing listeners, and notifying them
of any changes. Every view model extends the ChangeNotifier class.

Whenever a user navigates to a new screen, Flutter adds a new view to the stack
of the Flutter Navigator. Thus, the view has to instantiate its corresponding view
model. The base of any view is a ChangeNotifierProvider, which the Provider docu-
mentation describes as an object that listens to a ChangeNotifier, exposes it to any
of its descendants and rebuilds whenever the ChangeNotifier notifies its listeners
of a change [70].

ChangeNotifierProvider expects two parameters: a ChangeNotifier and a child widget.
The child widget will be recreated whenever the ChangeNotifier changes. By passing
a view model as the ChangeNotifier to provide, the child widget will be able to
access the view model and rebuild whenever it changes.

The aforementioned usage of ChangeNotifier and Consumer is encapsulated in a
widget named BaseWidget. Every widget utilizing a view model has this widget as
their root widget. BaseWidget exposes four variables: model, onModelReady, builder
and child. An excerpt of the parameter definitions of BaseWidget is shown in Listing
10.1.1, whereas the build function is shown in Listing 10.1.2.

101

Chapter 10: Application Implementation 102

Code listing 10.1.1: Parameters and type definition of BaseWidget.

class BaseWidget<T extends ChangeNotifier> extends StatefulWidget {
final Widget Function(BuildContext context, T model, Widget child) builder;
final T model;
final Widget child;
final Function(T) onModelReady;

...
}

The model variable expects an instantiated ChangeNotifier to be used as a view
model for the widget. Instantiation logic can be passed into the onModelReady vari-
able. onModelReady exposes the instance passed into the model variable, allowing
one to call its methods. If provided, the onModelReady function will only be called
when the view model is instantiated.

The builder variable expects a function returning the widget BaseWidget should
display, and is called when the corresponding view model emits a change. Within
the provided builder method, one is able to access all public properties of the
corresponding view model. Furthermore, it exposes the child variable, a widget
which will not change during the lifespan of the view. This is mostly used for
optimization purposes, as the child will not have to be rebuilt every time the builder
widget is.

Code listing 10.1.2: How the BaseWidget is built.

Widget build(BuildContext context) {
return ChangeNotifierProvider<T>(
create: (context) => model,
child: Consumer<T>(
builder: widget.builder,
child: widget.child,

),
);

}

Even though the BaseWidget provides a nice simplification of view and view model
instantiation, the author believed a further simplification to be beneficial. As
such, the BaseView widget was created. BaseView allows the developer to specify
commonly used widgets within a view through the use of parameters, all whom
have default values. This allows for a more uniform look for each view. Furthermore,
it hides several layers of code indentation caused by wrapper widgets, increasing
the readability of the source code. The definition of the BaseView class can be seen
in Listing 10.1.3, and a rudimentary view and view model is shown in Listing
10.1.4.

Chapter 10: Application Implementation 103

Code listing 10.1.3: BaseView definition.

class BaseView<T extends BaseViewModel> extends StatelessWidget {
final T model;
final Widget Function(BuildContext, T model, Widget) builder;
final Widget child;
final Function(T) onModelReady;
final bool safeAreaTop;
final bool safeAreaBottom;
final bool safeAreaLeft;
final bool safeAreaRight;
final EdgeInsets basePadding;

...
}

Code listing 10.1.4: A rudimentary view and view model implementation.

class TestViewModel extends BaseViewModel {
String get exampleText => "hello";

}

class TestView extends StatelessWidget {
@override
Widget build(BuildContext context) {
return BaseView<TestViewModel>(
model: TestViewModel(),
builder: (context, model, child) => Text(model.exampleText),
onModelReady: (model) => print(model.exampleText),
basePadding: const EdgeInsets.all(20),
safeAreaTop: false,
safeAreaBottom: false,

);
}

}

10.2 Application Database

The application utilizes a SQLite database to locally store data the application
requires in order to function without internet access. This section describes why
the project uses a relational database, and why it uses Moor over Sqflite. Finally, it
will describe how the database is structured and accessed.

In terms of database types, one can choose two very different approaches for mobile:
A relational SQL database, or NoSQL. The traditional approach to implementing
databases is the relational approach, allowing the developer to store data in
predefined schemas that can have relations to one another. It allows for a great
amount of query variability, and has excellent, battle-tested tooling. Most relational
databases uses the Structured Query Language (SQL) language for querying data.

NoSQL, on the other hand, is a more modern approach, and not as easy to describe.
In essence, NoSQL (Not only SQL / Not SQL) is any database approach that stores
data in another format than relational tables. The way data is read and modified
differs drastically from each implementation and type of NoSQL database.

Chapter 10: Application Implementation 104

Both approaches are used heavily within the Flutter community. For NoSQL im-
plementations, many choose to use Firebase, Google’s approach to simplifying
application development. It provides a plethora of services interlinked with other
Google Cloud Platform (GCP) services. In terms of storage, Firebase provides Real-
time Database [88] and Cloud Firestore [89], whom are both NoSQL databases
supported by Flutter. Furthermore, the solutions provides offline storage and
synchronization out of the box.

Several packages are available within the relational space as well. However, only
two have gained major traction: Sqflite [74] and Moor [73]. Sqflite provides the
necessary classes and functions to interact with a SQLite database. The developer
is expected to define all queries and transformations themselves, allowing the
developer a great deal of flexibility with regards to implementation. On the other
hand, it introduces a lot of boilerplate code, increasing the overall development
time.

Moor, on the other hand, is a database library built on top of Sqflite. It provides
additional functionality that removes a lot of the boilerplate associated with using
Sqflite. This is primarily solved through the use of code generation. Moor allows the
developer to generate Dart API’s through database table definitions. The generated
code provides type-safe transformations and queries. Furthermore, Moor allows
users to utilize streams, a central concept in Dart. This would allow for an easy
way for the user interface to always show the most recent data from the database
in the user interface.

Choosing any Firebase approach could be beneficial, as it would remove the need
for integrating synchronization support for both the mobile application and the
server backend. The possible trade-off is that the stored data would not be as
structured as a relational database. Furthermore, choosing a NoSQL solutions
cannot provide as complex and granular querying capabilities as that of relational
databases. The querying potential of relational databases, and the ability to utilize
it to use the data in different ways, proved to be the deciding factor in the choice
of database technology. As such, the author chose to use a relational SQL database.

After having experienced Moor and Sqflite, the author preferred Moor. The loss of
flexibility the automatically generated code introduced never became a problem,
as Moor proved to contain functionality for every requirement. Furthermore, it
drastically reduced development time, resulting in nearly no boilerplate code. The
maintainer of the project proved to be very active, and continuously updated the
framework.

Chapter 10: Application Implementation 105

10.2.1 Moor Usage

Moor allows for the creation of database tables through both SQL and code. The
author chose to use code, as it would allow one to separate each table into their
own file. An example of this approach is shown in Listing 10.2.1.1, where the Farm
table is defined through Dart code.

Code listing 10.2.1.1: Defining the farm table in Dart code.

class Farm extends Table {
IntColumn get id => integer()();
TextColumn get color1 => text()();
TextColumn get color2 => text()();
TextColumn get name => text().customConstraint("collate nocase")();
DateTimeColumn get createdAt => dateTime()();
DateTimeColumn get modifiedAt => dateTime()();

@override
Set<Column> get primaryKey => {id};

}

The actual database object is defined as a class, and is responsible for the creation of
the database, the database connection and any other operations directly associated
with the actual database. The object instance is made available to the application
through the use of Provider, allowing it to be injected into repositories and services
when needed.

Moor will only generate code for the tables specified in the Database class. Gen-
eration is done through the Flutter build_runner, a Dart package responsible for
automatically generating Dart code [90]. The developer can start the build_runner
with the command flutter pub run build_runner. One can also append the watch
and delete-conflicting-outputs arguments, allowing for code regeneration every time
the project is saved.

10.2.2 Table Structure

An entity relationship diagram of the table structure is shown in Figure 10.1.
The following paragraphs provides short descriptions of each table. All fields are
non-nullable, unless explicitly stated otherwise.

Chapter 10: Application Implementation 106

Figure 10.1: Entity relationship diagram of Application database.

offline_map Contains maps downloaded to the device. It specifies the map name,
the coordinate bounds of the downloaded map and what zoom levels have been
downloaded. The map name has a "NOCASE" collation, allowing queries to ignore
letter casings when filtering rows by name.

sheep_color Contains the number of sheep with a specific wool color within
a sheep observation, and references the sheep observation it belongs to. It is
automatically deleted when the referenced sheep observation is deleted.

sheep_tie Contains the number of sheep with a specific tie color within a sheep
observation, and also references the sheep observation it belongs to. It is automati-
cally deleted when the sheep observation is deleted.

farm_observation A bridge table used to associate a known farm to a sheep
observation. It references the sheep observation it belongs to and the observed
farm, and is deleted if either of them are deleted.

Chapter 10: Application Implementation 107

unknown_farm Used for storing farms that have been observed in a sheep ob-
servation, but is not available as a known farm. It references the sheep observation
it belongs to, and is deleted alongside it.

farm Specifies the name and identifying colors of a farm, and is used for storing
known farms. Farm names have a collation of "NOCASE". Any table row can be
referenced in zero to many farm_observation rows.

other_observation Contains all observations not concerned with live sheep. The
table specifies the type of observation, where and when it was observed, and a
description of the observation. It references the trip it belongs to, and is deleted
when the trip is. Can be referenced in zero to many other_observation_photo rows.

other_observation_photo Contains an image reference and an optional image
description. It references the observation it belongs to, and is deleted alongside it.

sheep_observation Describes a sheep observation within a supervision trip. A
row specifies when and where the observation occurred and the total number of
sheep within the observation. It references the trip it belongs to, and is deleted
alongside it. It is referenced at least once in sheep_color rows, and zero to many
times in sheep_tie, sheep_color, observation_unknown_farm and observation_farm.

trip Describes what team the trip belongs to, whom it is performed by and when
it started and ended. server_id is nullable, and is set when the trip has been sent to
the server. end_date_time is also nullable, and is set when the trip ends. trip_points
is a serialized list of latitude and longitude pairs, and is set when the trip ends.
The table references the team the trip belongs to, and is deleted alongside it.

team Specifies the name, owner ID and description of a team. It is referenced in
at least one membership row. The team name has a "NOCASE" collation for ignoring
letter casing during queries.

membership Describes what team a user is a part of. The table references both
a team and a user, and is deleted whenever one or the other is deleted.

user Details the first and last name of a user, along with their email address.

10.3 Data Access Objects

Data Access Objects come in two different flavors: remote and local. Remote
DAO’s are responsible for mutating the entities stored server-side, whereas the
local ones are responsible for mutating the local database. Both remote and local

Chapter 10: Application Implementation 108

DAO’s are only accessed through the interfaces they implement, leaving the actual
implementation details completely encapsulated within the DAO. All knowledge
of DAO’s are encapsulated within the infrastructure layer; No other layers are
dependent on, or aware, of the existence of any DAO.

10.3.1 Local Data Access Objects

Every database table has a corresponding local DAO. The DAO’s are defined as
classes whom implement an interface specifying what operations the DAO must
support. The actual implementation is highly dependent on the code generated by
Moor, which allows for type-safe queries that can be developed and altered quickly.

Database tables only used within aggregate roots barely requires functionality
within their respective DAO’s. Currently, this applies to entities used within ob-
servations. These DAO’s only expose functionality for getting and batch inserting
entities. "Select" functions allows the developer to specify a set of parameters to
constrain the result. Furthermore, query results are returned as a stream, meaning
any modifications to the database will result in a new set of values being emitted.

Batch insertions expect to receive a list of entities that should be inserted within the
same transaction. If one of the insertions within the transaction fails, all insertions
are reverted, ensuring the database remains in a valid state. If such an error occurs,
it will bubble up to the aggregate root that initiated the insertion, leading to the
entire insertion being rolled back.

More advanced DAO’s usually exposes functionality for entity deletion, with support
for entity specific parameters. Furthermore, many of the advanced DAO’s favors
the usage of upserts instead of inserts. An upsert will, much like an insert, insert a
new entity into a table. The major difference between the two is that an upsert
updates the entity if it already exists, where an insert would simply throw an error.
An example of batch upserting is shown in Listing 10.3.1.1, in which a list of farms
are transformed into insertable Moor-objects and persisted to the database.

Code listing 10.3.1.1: Upserting a list of farms.

Future<void> upsertFarms(List<Farm> farms) async {
return await batch(
(batch) => batch.insertAllOnConflictUpdate(
db.farmTable,
farms.map(_toCompanion).toList(),

),
);

}

Upserting simplifies the synchronization process, as one no longer has to check
whether an object already exists before deciding if it should be inserted or updated.
Synchronization is discussed further in Section 10.5. Upserts are only available
for synchronizable entities. If an object is not synchronized, it provides an insert

Chapter 10: Application Implementation 109

instead. Trips are the exception to this rule. Most entities throughout the system
receive an unique identifier when being persisted to the server, ensuring the
uniqueness of the identifier throughout the entire system. This approach works
well with network-reliant entities. Trips, on the other hand, are first created on
the device. Although the uniqueness of the trip identifier is guaranteed within
the context of the application, no such promises can be made for the system as
a whole. In order to avoid identifier collisions, locally stored trips are instead
updated to contain the identifier they receive on the server-side as well as their
original identifier.

10.3.2 Remote Data Access Objects

Remote DAO’s provide the application with the ability to mutate the state of the
server database. These DAO’s are implemented using the YAGNI (You ain’t gonna
need it!) principle: Functionality should only be implemented when it is actually
required [91]. Thus, some entities do not have their own remote DAO. The ones
that do require it only implements required functionality.

As previously stated, remote DAO’s exposes a subset of Create, Read, Update,
Delete (CRUD) functionality. Every implementation depends on an HTTP service,
which handles the entirety of the request; The DAO implementation only prepares
the request data and parses the response, as shown in Listing 10.3.2.1. HTTP is
further discussed in Section 10.14.

Code listing 10.3.2.1: GET request for remotely stored invite.

Future<HttpResponse<Invite>> getInvite(int id) async {
var result = await _httpService.getRequest("${APIEndpoints.invites}/$id");
if (!result.success) {
return result.convert<Invite>();

}
try {
return HttpResponse<Invite>(
result.statusCode,
data: Invite.fromJson(result.data),

);
} catch (e) {
return HttpResponse<Invite>(
HttpStatus.unprocessableEntity,
error: "Failed to parse invite: $e",

);
}

}

10.4 Repositories

Repository implementations are stored within the infrastructure layer. Their in-
terfaces, on the other hand, are stored within the domain layer. This allows for

Chapter 10: Application Implementation 110

the domain layer to be completely independent of any other layer, and hides the
knowledge of where and how entities are actually stored.

The application repositories orchestrates entity DAO’s to react to user interactions
throughout the application. It abstracts away the knowledge of whether a user
action results in a changes within the local database, the remote database or both
databases. Furthermore, it is responsible for collecting all entities used within
an aggregate root. It does this by utilizing several DAO’s to collect streams for
each entity within the root. Finally, it combines the streams into a single stream
of the root entity, which will emit a new value if any of the underlying entity
streams emits a new value. This process is shown in Listing 10.4.1, in which a
list of memberships are added to a team. Reactive streams are only available for
entities stored locally on the device. At the time of writing, every entity besides
invites provide reactive streams.

Code listing 10.4.1: Fetching a stream of a team with memberships.

Stream<Team> getTeam(int id) =>
Rx.combineLatest2<Team, List<Membership>, Team>(
_teamLocalDao.getTeam(id),
_membershipRepository.getMemberships(teamId: id),
(team, memberships) {
team.members = memberships;
return team;

},
);

10.5 Synchronization

In order to maintain consistency between the state of the local database and the
remote database, synchronization is performed regularly. The application attempts
to synchronize every time it is opened. Furthermore, user actions resulting in large
state changes, such as leaving a team, will result in a full synchronization due to
the amount of data changes.

Synchronization functionality is provided through the use of three components:
The synchronization service, the synchronizable interface and the synced_at object.
Every object implementing the synchronizable interface must provide functionality
for safely upserting and deleting a set of entities within the same transaction.
The synced_at object is responsible for keeping track of when a synchronizable
entity was last synchronized with the server, and is persisted to local storage after
every synchronization. These two parts are utilized by the synchronization service.
It sends a request to the /synchronize endpoint of the server and provides the
synced_at object as query parameters. The server reads the times at which the
application last synchronized, and returns all changes newer than the provided
times. It will return a json object separated by entity, where each entity has a
created, modified, and deleted field. Once the synchronization service receives a

Chapter 10: Application Implementation 111

response, it will initiate a transaction, in which it will call all synchronizable DAO’s
and repositories. In order for the synchronization to be considered successful, all
operations within the transaction must be successful. If one fails, the synchro-
nization is considered a failure, and any local database changes are reverted. If it
succeeds, the service creates a new synced_at object and persists it to local storage.

Offline areas and invites are not synchronized with the server. Instead, offline
areas are kept entirely local. Besides avoiding the process of re-downloading maps
when switching mobile devices, there are no benefits to storing the areas on the
server-side. Similar reasoning was used when deciding on invite synchronization.
Invites are not required for offline usage, and provides no real benefit besides a
reduction in HTTP requests towards the server.

10.6 Navigation

In Flutter, navigation is performed through the Navigator widget. Every MaterialApp
has an implicit Navigator accessible through the build context, which is usually only
available in widget build functions. Thus, in order to navigate, one would have to
mix UI code with navigation logic, which in turn would have to be called from a
callback in the view model. In short, it would break the separation between UI code
and logic. An alternative is to utilize a GlobalKey, a key guaranteed to be unique
across the entire application. The MaterialApp Navigator accepts a GlobalKey as
a parameter. Through the use of the GlobalKey, one is able to programmatically
navigate using the navigator it is associated with. If one were to make this GlobalKey
global, all view models would be able to access it. This approach is not very
beneficial, as navigation logic would have to be rewritten every time one has to
navigate in a new view model, resulting in code duplication and implementation
variance. Furthermore, usage of global variables can quickly become hard to keep
track of. Finally, navigation is such an unique concern that it should be handled
separately from everything else.

This application solves this problem by creating a service dedicated to navigation.
It exposes a set of predefined functions one can use to navigate throughout the
application, and can be injected into view models with Provider. The navigation
service exposes a GlobalKey, which the Navigator of the root MaterialApp uses as
its key. With the navigation service, the developer is able to programmatically
navigate from one view to another through the use of named routes. Every view
within the application has an associated route name. Whenever a new named route
is pushed on top of the Navigator, it creates the view associated with the specified
route name. Mapping a route name to a view is done using an application router.
The router is a static switch function, in which every case handles a single route
name. When the correct switch case is found, the associated view is instantiated
and pushed on top of the Navigator stack.

Chapter 10: Application Implementation 112

10.7 Snackbars and Dialogs

Section 10.6 describes the problem of having navigation logic within UI classes.
Several other aspects of Flutter faces the same challenges, albeit with much more
complex solutions. Snackbars, alerts and dialogs are core concepts within many
apps, and Flutter requires all of them to have access to the current build context.

A Snackbar requires a Scaffold in order to display itself. A Scaffold can be viewed
as the base for any screen in Flutter. It provides the default layout for a Material
application. Every view has their own scaffold. The approach chosen for navigation
would not work, seeing as each scaffold must have a unique key. One could make
every view call the "snackbar" service to register the new key, and call the service
again when it is removed. This, however, seems overtly complex, and would
introduce an unnecessary risk of error. Another solution would be to nest scaffolds,
with one scaffold containing the entire application. This is not recommended, as
nesting scaffolds can lead to undefined behavior.

Luckily, Flutter released a solution for this during the development period of this
project. ScaffoldMessengerState allows one to define a snackbar service in the same
way the navigation service is implemented. By passing it as a parameter to the
MaterialApp, all scaffolds will be registered with this key as its "messaging key". A
snackbar is a widget, and should therefore not be created in any view models. The
author solved this by defining a factory for snackbar creation. The factory expects
a set of snackbar specific option objects the developer can utilize to customize the
snackbar. Snackbars can be programmatically shown by utilizing a set of functions
provided by a service dedicated to UI interactions, encapsulating the entire creation
process. This still introduces some coupling between UI and logic within the service,
but at a much smaller rate.

Dialogs and alerts are implemented in the same way as the snackbars, with the view
model simply needing to call the service with the function exposing the desired
dialog or alert. The only difference between the two is that dialogs and alerts uses
the navigation key, whereas snackbars uses the aforementioned ScaffoldMessenger-
State. Snackbars, dialogs and alerts are used in nearly every view model. Seeing
as their use cases are so similar, they are grouped in the same service to simplify
view model dependencies.

10.8 Authentication

Authentication is implemented through the use of the popular AppAuth library,
which is directly mentioned in the best practices document outlined by the IETF in
RFC8252 [65]. The library is encapsulated within an authentication service, which
exposes functionality for logging in, logging out and refreshing access tokens. The
service is agnostic with regards to identity providers. Actual configuration details

Chapter 10: Application Implementation 113

for the identity provider are defined in a separate configuration file.

AppAuth provides functionality for automatically opening a web browser with the
login page for the configured identity provider. Successful logins are automatically
detected by AppAuth, which closes the web browser and returns the user to the
application. The authentication flow results in an access token and a refresh token.
Access tokens are short-lived, and are used for accessing a specific API. In order to
enable offline applications, the refresh token has a much longer life-span, and can
be sent to the identity provider in exchange for a new set of tokens. These tokens
are stored securely on the device through the SecureStorageService, which will be
discussed further in Section 10.11. The process of logging out is less complicated;
The service simply clears all user data from the system memory and navigates the
user to the initial application view.

10.9 Application Services

The application services available throughout the application are only concerned
with use cases with the need to orchestrate several separates pieces of logic in a
specific order. An example of this is shown in Listing 10.9.1, in which the use case
of aborting the ongoing trip is achieved by orchestrating the preferences service
and the trip repository.

Code listing 10.9.1: Application-layer logic for deleting an ongoing trip.

Future<Response> deleteOngoing() async {
var tripId = await _preferences.readInt(PreferenceKeys.ongoingTripId);
if (tripId == null) {
// Trip must actually exist.
return Response(error: "No trip is currently ongoing");

}
var trip = await _tripRepository.getTrip(tripId).first;
return await _tripRepository

.deleteTrip(trip)

.then((value) => _preferences.delete(PreferenceKeys.ongoingTripId))

.then((value) => _preferences.delete(PreferenceKeys.ongoingTripMapId))

.then((value) => Response())

.catchError(
(err) => Response(error: "Failed to delete ongoing trip: $err"));

}

As the development progressed, application service usage proved to be less preva-
lent than expected. The development process proved that most use cases throughout
the application can be achieved by calling a single repository function. Introducing
a mediator would provide no immediate benefits; Instead, the author decided
to follow the principle of YAGNI, and only create application services when it
provided a benefit not already available through other means. If a specific use case
ever grows to require more functionality, converting it to an application service
would be a small task.

Chapter 10: Application Implementation 114

10.10 Location

Retrieving an accurate representation of the user location is vital in order for
the application to function as intended. When running in the foreground, the
application utilizes a location service for receiving a continuous stream of location
updates. The service mostly acts as an encapsulation of GeoLocator [79], the
framework used for accessing native location services. By default, location updates
are emitted periodically, regardless of whether the user has moved or not. In
order to allow for minimal location update duplicates, one can choose to pass
in a distance filter, which in turn will ensure that the stream only emits location
updates when a new user location is farther away from the previously emitted
value than the distance provided as a filter.

Whereas this approach works well when the user is actively using the application,
it stops working once the application is moved to the background, or when the
phone is locked. The moment a user navigates away from the application, all
running business logic is paused until the application returns to the foreground.
Thus, background location tracking must be performed in an isolated thread to
ensure continuous location updates regardless of the current application state.
This is handled by a background location service encapsulating usage of the
background_locator package [67]. The service is started when the application enters
a paused state and stopped once the application returns to the foreground. Because
the background location update functionality runs in an isolated thread, it cannot
access any application functionality. Location updates are instead persisted to a
file to allow for the application to retrieve them once it returns to the foreground.

10.11 Storage

In order to fulfill every requirement, the application provides services for file
storage, secure storage and preference storage. The file storage service is used for
storing downloaded map tiles and images taken during supervision trips. It exposes
API’s for retrieving, modifying, deleting and writing to files. Furthermore, it allows
one to create, delete and rename entire directories. The application is only allowed
to access a specific portion of the underlying platform storage. Storage allotted to
the application is located through the use of the path_provider [92] plugin.

The domain of secure storage is solved natively on both iOS and Android; There is
no need to implement it again. The flutter_secure_storage plugin allows access to
the native encrypted storage solution of the underlying platform [77]. Usage of
the plugin is encapsulated within a service, exposing API’s for writing, deleting
and retrieving values stored under a key name. The service only accepts a set of
predefined keys as valid key values. Preference storage is implemented in the same
manner. It simply acts as a wrapper around a plugin for accessing platform-specific
preference implementations, reducing the cost of switching libraries.

Chapter 10: Application Implementation 115

10.12 Downloading Maps

Downloading and managing offline maps is one of the more complex domains
the application handles. Functionality for downloading maps for offline use is not
available in any Flutter mapping package; Thus, it had to be implemented from
scratch. Luckily, the flutter_map [72] package allows one to read map tiles from
the file system. Therefore, the author only had to implement a way to calculate,
download and store map tiles in such a way that flutter_map can retrieve them.
This section describes how maps are stored locally and how the required map tiles
are calculated and downloaded.

In order to understand the decisions made in this section, one must have a rudimen-
tary understanding of internet mapping technologies. Internet maps are oftentimes
projected from a sphere shape to a flat, rectangular shape. The Web Mercator (EPSG
3857) projection has become the standard projection method for the web. Web
maps are usually shown as a set of images, each representing a portion of an
entire map. These portions are named map tiles. In order to allow for zooming
in or out, map tiles are provided for a set of predefined zoom levels. Zoom level
0 usually represents the entirety of the available map. That is to say, combining
every map tile available for zoom level 0 would form a complete map. As the zoom
levels increase, a map tile comprises a smaller portion of the map. For instance,
each additional zoom layer could halve the covered area of any map tile. The Web
Mercator allows one to convert a coordinate to a specific map tile at any zoom level,
and vice versa. As such, by having a set of coordinates, one is able to transform
the map bounds into a set of tile coordinates.

In the application, map portions can be selected for download by dragging from one
screen position to another. The start- and end positions of the drag action are stored
as screen coordinates, with no association to actual map coordinates. Flutter_map
allows one to retrieve map coordinates for the center and the boundaries of the
currently displayed map portion. As such, one can convert a screen position to a
map coordinate by transforming the map center coordinate into a screen position,
detract the marked screen position and convert it back into a map coordinate.

Once map bounds have been defined in terms of map coordinates, all the required
information for storing a map to the database is ready. However, before this can
be done, one has to download the required map tiles. If one were to store the map
as-is at the current zoom level, the selection would not be able to fill out the entire
screen. Therefore, the application scales up the selection until it is large enough to
fill the entire screen.

Once the minimum zoom level has been adapted to fit the screen size, the map
can be downloaded and stored. Seeing as the bounds of the selection are already
defined, this is a simple process. The north-eastern and the south-eastern selection
points are converted into tile coordinates. By combining the two points, one is able

Chapter 10: Application Implementation 116

to extract the two other corners of the selection and calculate every tile contained
within the calculated bounds.

The tile images are stored to the file system portion belonging to the application.
Each tile will be stored as $HOME/maps/$NAME/$Z/$X/$Y.png, where Z is the
zoom level, X and Y the tile coordinates, and NAME the map name.

Tile images are downloaded from a tile server belonging to Kartverket at the
behest of the project supervisor. Images can be downloaded through GET requests.
Throughout the development period, the author found the Kartverket tile server to
be unreliable. At random points of the download process, a tile download would
halt entirely, causing the entire download process to stop. In order to alleviate
this problem, a time-out boundary of 10 seconds was introduced. If the request
exceeded the boundary, it would be retried once before being considered a failure.

All logic surrounding image tile storage and downloading is contained within a
service. This service exposes a stream when map downloads are being performed.
The stream emits a new event every time a new map tile is downloaded, providing
the data one requires to display a progress indicator in the user interface. The
progress indicator dialog also allows the user to cancel the download process. A
download cancellation terminates active tile downloads and deletes any locally
stored tiles associated with the current map download.

10.13 Resolving Dependencies

The onion architecture is entirely dependent on Inversion of Control (IoC). For
services, repositories and DAO’s, the dependency resolution process is implemented
with an IoC container, a lightweight container in which one can register dependency
instances for retrieval later-on. The instances are created and provided using the
Provider package [70]. An example of instantiating and providing a service is shown
in Listing 10.13.1. Once the instance has been created, other instances depending
on it will be able to reference it through Provider resolution. All instances created
within the IoC container follows the dependency injection pattern. They are entirely
unaware of where their dependencies are coming from.

Code listing 10.13.1: Instantiating a dependency in the IoC container.

Provider<INavigationService>(
create: (context) => NavigationService(),
dispose: (context, navigatorService) => navigatorService.dispose(),

),

This does not apply to view models, unfortunately. A new view model is created
every time a new view is pushed onto the application navigator. Thus, dependency
resolution is bound to be present whenever a view creates a new instance of its
view model, resulting in views having explicit knowledge of the service locator.

Chapter 10: Application Implementation 117

This is shown in Listing 10.13.2. The downside to this approach concerns widget
testing, in which the developer will have to create an IoC container with mock
implementations of the dependencies the widget requires.

Code listing 10.13.2: Providing dependencies to view model.

return BaseView<RegisterDetailsViewModel>(
model: RegisterDetailsViewModel(
Provider.of(context),
Provider.of(context),
Provider.of(context),

),
...

);

10.14 Networking

A large portion of the functionality provided by the application is dependent on
accessing the server, and requires network connectivity. Server communications
are provided through a generic HTTP service, allowing one to perform POST,
GET, PUT and DELETE requests towards a specific URL. Most of the available
server endpoints requires the user to be authenticated. The HTTP service handles
this by intercepting every outbound request in order to add an access token as
an authorization header before it is sent. By appending an access token as an
authorization header, every request will have all the information required by the
server in order to authenticate and authorize a request. If the provided access
token is expired, another interceptor is able to request a new access token and
retry the request with the newly provisioned access token. If the new request also
fails, the request is returned as a failure.

10.15 Documentation

The entire application is documented through the use of dartdoc, Dart’s documen-
tation generation tool. Whereas other tools often utilize symbols to define specific
properties in their documentation, Dart opts for a simpler approach. Dartdoc
comments are specified by the /// delimiter; References to parameters, variables,
functions and classes are all placed within brackets, as shown in Listing 10.15.1.

Code listing 10.15.1: Example of application documentation.

/// Creates an instance of [OfflineMapArea] that can be persisted later-on.
/// It is primarily a helper function to keep logic out of the view model;
/// The function creates and adjusts an [OfflineMapArea] to the
/// nearest [zoom] level suited for the [selectedBounds].
OfflineMapArea createMap(

LatLngBounds selectedBounds,
double zoom,
String name,
LatLngBounds mapBounds,

);

Chapter 11

Application Testing and User
Feedback

This chapter describes the different types of testing the mobile application under-
went, and details how they were performed. Furthermore, the chapter provides
details surrounding system and usability testing for the entire project, and will
therefore not be covered when discussing server testing in Chapter 17.

11.1 Unit Testing

Unit tests allows one to assert that a piece of code returns an expected output
when provided with a specific input. Writing unit tests for a code base allows for
one to ensure the system behaves as intended, both when first creating it, and
when modifying it later-on.

The mobile application is unit tested through the use of flutter_test, a testing
framework built into Flutter. Furthermore, Mockito [93] is used to create mock
implementations of dependencies outside the scope of the piece of code in question.

Tests are stored in a completely separate folder from the actual mobile application,
aptly named "test". The internal folder structure of the "test" folder closely resembles
the one described for the mobile application; The difference between the two is
the existence of helper classes used for generating test data in the test folder.

All Flutter tests must have a file name ending in "_test.dart" in order for Flutter to
register them as tests. The ending is prepended by the file name of the class being
tested. If a class is stored in a file named "widget.dart", the test class would be
named "widget_test.dart". An example of a unit test is shown in Listing 11.1.1, and
asserts that a farm local DAO should allow for one to successfully insert several
farms into the database at the same time.

118

Chapter 11: Application Testing and User Feedback 119

Code listing 11.1.1: Unit test for the local farm DAO.

void main() {
Database database;
IFarmLocalDao farmLocalDao;

setUp(() {
database = Database.test();
farmLocalDao = FarmLocalDao(database);

});

tearDown(() async {
await database.close();

});

test(’can insert several valid farms’, () async {
await farmLocalDao.upsertFarms([farm, farm2]);
var farms = await farmLocalDao.getFarms().first;
var farmIds = farms.map((farm) => farm.id);
expect(farms.length, 2);
expect(farmIds, [1, 2]);

});
}

The aforementioned test also details the creation of the test database. Every unit
test should, in theory, only test the code within the class in question. Testing local
DAO’s, on the other hand, makes little sense if one cannot ensure data is persisted
to the database. The database should be recreated before every single test to ensure
consistent results, a process that introduces a lot of overhead in terms of resource
usage. This problem can be greatly alleviated by using in-memory databases, a
quick and light-weight alternative to traditional databases. By using an in-memory
database during testing, the application is able to utilize an actual database without
the added performance penalty. The test database is set up in the "setUp" function,
and destroyed in the "tearDown" function; Both are called before and after every
test, respectively.

An example of the usage of Mockito to mock dependencies is displayed in Listing
11.1.2. The farm repository depends on a local DAO for database access, and a
remote DAO for server communications. The only class being tested within this
test is the farm repository. Thus, it would be beneficial to specify exactly what
the aforementioned DAO’s should return. After all, the unit test should only be
concerned with the functionality within the farm repository. By injecting mocked
instances of the DAO’s into the farm repository, the developer is able to specify
what each function call should return. In the case of this example, any calls to the
local DAO regarding the removal of the farms with ID’s 1 and 2 will be considered
successful.

Chapter 11: Application Testing and User Feedback 120

Code listing 11.1.2: Example unit test case for the farm repository.

class MockFarmRemoteDao extends Mock implements IFarmRemoteDao {}
class MockFarmLocalDao extends Mock implements IFarmLocalDao {}
void main() {
IFarmLocalDao farmLocalDao = MockFarmLocalDao();
IFarmRemoteDao farmRemoteDao = MockFarmRemoteDao();
IFarmRepository farmRepository = FarmRepository(

farmLocalDao,
farmRemoteDao,

);
test(’Successful farm removal should return success response’, () async {
when(farmLocalDao.removeFarms(ids: [1, 2]))

.thenAnswer((_) => Future.value());
var res = await farmRepository.removeFarms(ids: [1, 2]);
expect(res.success, true);

});
}

11.2 UI Testing

Whereas unit tests are concerned with the correctness of logic, UI testing is con-
cerned with user interfaces being displayed as intended. Changes within shared UI
components could potentially propagate throughout the application, and break
at a certain point. Having to manually test every user interaction throughout the
application is time-consuming; Thus, the author decided to utilize widget tests, a
Flutter functionality allowing for automated UI testing.

Flutter provides a simplified testing environment for testing the correctness of
widgets, allowing one to perform UI tests without having to instantiate the entire
application. This simplified testing environment allows widget tests to be less
resource intensive and time consuming. Widget tests are ran inside of a MaterialApp,
just like the regular application. This is required in order to to allow widgets to
render as they would normally. Furthermore, it is required to ensure the validity of
the internationalization aspects of the application. Actual implementations of user
interaction services are also made available for injection to ensure user actions
will result in correct outcomes with regards to navigation, snack bars and dialogs.

Testing the views of the application automatically instantiates their corresponding
view models as well. View models usually interacts with several services and repos-
itories. Relying on actual implementations of such classes could be error-prone;
Therefore, mock implementations of the dependencies are injected into the testing
environment. This grants the developer full control over the test environment,
allowing for one to solely focus on UI correctness.

An example widget test is shown in Listing 11.2.1. The test begins by specifying
that the team service utilized by the view model should return two teams. The
following line specifies the dependencies injected into the test environment, before
finally specifying what widget should be rendered. tester.pumpAndSettle() ensures

Chapter 11: Application Testing and User Feedback 121

the user interface has fully loaded before allowing the rest of the test to proceed.
Finally, the last line asserts that two instances of the TeamListItem is present within
the view.

Code listing 11.2.1: Example widget test for the Team List View.

class MockTeamService extends Mock implements ITeamService {}

void main() {
ITeamService teamService = MockTeamService();

testWidgets(
’should contain two teams’,
(tester) async => await tester.runAsync(() async {
when(teamService.getTeams())

.thenAnswer((_) => Stream.value([team1, team2]));
await tester.pumpWidget(MultiProvider(
providers: [
Provider<ITeamService>(create: (_) => teamService),

],
child: createWidget(TeamListView()),

));
await tester.pumpAndSettle();
expect(find.byType(TeamListItem), findsNWidgets(2));

}),
);

}

11.3 System Testing

Before delivering a product, one should strive to gain an overview of whether
the product fulfills the requirements it is meant to fulfill. This process is known
as system testing, and usually consists of an amalgamation of different types of
testing. Throughout this section, every type of test used to ensure the validity of
the system will be described.

11.3.1 Testing Functional Requirements

The fulfillment of required functionality was tested by creating a set of test cases
for every functional requirement listed in Section 3.4. Every test case would be
predefined with expected results, and later updated to include the actual result.
A functional requirement would only be considered to be valid if all test cases
associated with it resulted in the expected result. Testing was mostly conducted
through the use of the mobile application UI. Eligible functional requirements were
also tested directly through the API UI provided by Swagger [94], a feature of the
server later described in Section 16.6. In total, 72 of 79 functional requirements are
fully implemented and error-free. The remaining seven functional requirements are
either not implemented or only partially implemented, and are discussed further
in Section 24.4.

Chapter 11: Application Testing and User Feedback 122

11.3.2 Testing Non-Functional Requirements

Testing the availability of the system as a whole largely revolved around intention-
ally breaking parts of the system to see how the rest would react. The scenario
listed in Table 3.13 surrounding the scenario of performing trips while offline was
tested by simply turning all network capabilities of the test device off completely
and performing a trip. The load-balancing capabilities described in Table 3.14 were
tested by manually stopping a running server instance without terminating the
computational instance it was running on within the cloud provider. In large, the
author found no indications of a lack of availability, as the system proved to handle
everything thrown at it.

Modifiability has been an ever-present focus throughout the development of the
system, and has therefore been extensively tested. Constant refactors to improve
the quality of the system has led the author to test the modifiability scenarios listed
in Tables 3.16 and 3.17. The amount of encapsulation present throughout the
server made it easy to change and extend the inner workings of a class without
having the change propagate throughout the system.

The system has not been extensively penetration tested, although the author has
performed rudimentary tests to ensure the security of every system component.
For the most part, this revolved around attempting to modify the state of the
server database and access API’s without the sufficient permissions. The security
scenarios listed in Tables 3.18 and 3.19 were both fulfilled, as the author could
neither access the database nor modify a farm not belonging to the user he logged
in as. A more structured form of penetration testing should be performed before
the system is released to the general public. The rudimentary penetration testing
performed throughout the system testing is not guaranteed to have covered every
attack surface.

11.3.3 Usability Testing

The concept of usability testing aims to figure out whether the product in question
is easy to use and understand. Usability tests are usually performed on subjects
likely to use the product. However, this proved to be difficult due to the ongoing
COVID-19 pandemic. As such, usability tests were instead performed on subjects
convenient to the author. In total, three subjects were tested.

The usability testing performed within this project can be divided in two. Through-
out the development process, the author continuously tested new functionality on
several test participants, albeit in a very informal manner. The main purpose of
these informal usability tests were to quickly assess the pros and cons of different
approaches in order to quickly eliminate sub-par concepts. Once the application
became more complete, usability tests were performed in a more formal manner.
This approach will be discussed in the following paragraphs.

Chapter 11: Application Testing and User Feedback 123

Before formal usability testing started, the author meticulously planned the test
structure. Seeing as the test subjects were likely to have no prior knowledge of
sheep supervision, a brief introduction of the problem area would introduce the
test. Following this, the author provided a brief overview of usability testing, and
why it was required for this project. The information provided to the test subjects all
followed the script shown in Appendix A. Once the subjects had an understanding
of the problem area and the concept of usability testing, they were asked to perform
a set of tasks through the use of the mobile application.

Once the tasks were completed, each participant were asked to fill out a System
Usability Scale (SUS): a 10 item questionnaire measuring the usability of the
system [95]. Each question is scored on a scale between one and five, in which one
represents "strongly disagree", whereas five represents "strongly agree". The SUS
questions, along with the average score of the collected answers, are displayed in
Table 11.1. Decimal values were rounded to their nearest integer. As prescribed
by Brooke, the SUS test were filled out immediately after performing the afore-
mentioned tasks. The subjects were encouraged to answer the questions without
deliberation.

No. Question 1 2 3 4 5
1 I think that I would like to use this system fre-

quently
X

2 I found the system unnecessarily complex X
3 I thought the system was easy to use X
4 I think that I would need the support of a tech-

nical person to be able to use this system
X

5 I found the various functions in this system were
well integrated

X

6 I thought there was too much inconsistency in
this system

X

7 I would imagine that most people would learn
to use this system very quickly

X

8 I found the system very cumbersome to use X
9 I felt very confident using the system X
10 I needed to learn a lot of things before I could

get going with this system
X

Table 11.1: Average results of the SUS questionnaire answers.

Chapter 11: Application Testing and User Feedback 124

Brooke also provided a way to produce a singular number result representing
the overall usability of the product. This is performed by transforming every
response value, adding them all together and multiplying the end sum by 2.5. The
transformation an answer goes through depends on their placement within the
SUS form. Responses for questions 1, 3, 5, 7, and 9 are transformed by detracting
one from their initial response, whereas responses to every other question is
transformed by detracting the initial response from 5 [95].

The overall SUS score for the usability tests performed within this project was 83
out of 100, indicating a good user experience. However, some improvements were
still present.

A reoccurring theme throughout the usability tests related to the deletion of
different items throughout the application. Some subjects completely ignored
"remove" buttons and immediately attempted to remove items by swiping, whereas
others reacted in the opposite manner. When asked, the subjects simply explained
their behavior to be habitual.

Another subject pointed out that managing the selection reticle for observation
selection was hard due to their thumb overlapping it. The author noted this, and
immediately changed it to instead be displayed above the thumb of the subject.

A subject also showed uncertainty surrounding the process of registering sheep
ties through the use of swiping, claiming that they were uncertain of whether one
should swipe towards or away from the color they wanted to register. In order to
rectify this, the author added a description in the middle of the view, describing
that one should swipe towards the color one wished to register.

In large, the usability testing appeared to prove the user-friendliness of the system.
The usability scenario listed in Table 3.21 appeared to have been fulfilled, as the
test subjects were able to comfortably navigate the application well within the
30 minute time constraint. Cancellation of map downloads, as prescribed by the
scenario in Table 3.20, also proved to be intuitive for every user.

Chapter 12

Application Discussion

The development of the Flutter application took place between September 2020
and May 2021. Within this time span, both Flutter and the experience the author
had with the framework grew significantly. This section will discuss several key
aspects of the development process, and the challenges the author faced throughout
it.

12.1 Growing pains

Flutter was released in May of 2017. Since then, the framework has grown mas-
sively. In March of 2021, the framework received a new major version, 2.0 [96].
This version had the goal of stabilizing the Flutter API: Breaking changes would be
less frequent. The upgrade process proved to be successful, with the entire process
requiring few changes within the application. This could be attributed to the fact
that the author worked on a beta version of Flutter throughout most of the SDLC.
The application required snack bars to remain on screen even after navigating
from one view to another, something which was not possible on the stable release
at the time of development. Thus, the beta channel had to be used. As of Flutter
2.0, this is no longer required, as the aforementioned snack bar functionality has
been added to the stable release. It is important to note that Flutter still has several
flaws; The growing pains the framework experiences can be very noticeable at
times.

A good example of these growing pains is the performance of iOS animations.
In short, iOS animations are susceptible to lower frame-rates the first time an
animation is shown, and occurs every time the application is opened. At the time of
writing, the Flutter team are unsure of how the issue can be resolved [97]. Although
such issues do not affect this application significantly, they do raise concerns with
regards to the longevity of the framework.

125

Chapter 12: Application Discussion 126

A more critical issue surrounds the "official" Flutter packages. Google provides
several business-critical packages for Flutter. However, many of them are in various
states of disrepair. An example of this is the official camera plugin, an essential
functionality for many applications. During development, the package did not
provide crucial camera functionality, leaving the author to opt for a third-party
solution. The official plugin has since improved, and is now a viable alternative.
Nonetheless, such growing pains are apparent after working with the framework
for some time.

In retrospect, the author still believes Flutter to have been a good choice. Even
though the aforementioned issues are a cause for concern, they do not invalidate
the framework as a whole. The author still believes the productivity increase from
creating user interfaces in Flutter is unparalleled, and plays a large part in the
success of the project as a whole.

12.2 Problematic Third-party Libraries

In order for Flutter to be a viable solution, it requires an active developer community
surrounding it. Many of the business critical functionalities within this application
utilizes third-party packages where Flutter does not provide official solutions. This
was known when first choosing Flutter, and has for the most part been a pain-
free experience. Packages have proven to be well-documented and applicable to
the problems this application had to solve. However, some problems did present
themselves, with the most apparent ones relating to location and permissions.

Throughout the development period, the application experimented with a plethora
of packages for requesting user permissions and acquiring the user position. At
one point during the development, the location library the application utilized
completely stopped emitting location updates. If this issue would not be resolved,
the author would have to implement native location implementations for both
platforms. This would have led to a considerable loss in valuable development
time. Luckily, the author was able to resolve the problem by switching to another
package and upgrading Flutter. At another point, location permission prompts
stopped functioning entirely. These occurrences are rare, but not unheard of. If
such business-critical packages were to be actively maintained by Flutter staff, the
framework could be considered to be more stable. Relying on volunteer work on
open-source solutions is risky, especially if the package is not overtly popular.

These problems taught the author a valuable development lesson: Always encapsu-
late business-critical dependencies in such a way that they can be easily replaced.
Having a change within a package ripple through the entire project is a major
inconvenience; Changing the implementation of a service is a minor change.

Chapter 12: Application Discussion 127

12.3 Over-Engineering

Some of the focal points of the application are modifiability and extensibility. The
entire application has loose coupling, with the majority of implementation details
being hidden behind interfaces. Adding, changing or entirely removing a DAO, for
example, can be achieved without the rest of the application having any knowledge
of the change. Furthermore, internationalization, dynamic theming and resizing
are all supported.

The focus on extensibility and modifiability also bled into the application architec-
ture. At the start of the project, the application architecture was much simpler than
it currently is. It evolved from being a simple MVVM architecture into a layered
architecture, before finally being changed to the implementation of the Onion
architecture it is today. One could argue that the Onion Architecture is unnecessary
for this application; The lack of concrete business rules removes a lot of the value
brought by the Onion Architecture. Furthermore, application services are not used
to the extent they usually are throughout most other Onion architectures. Many
view models directly references repositories, as no additional logic is required
to fulfill a use case. The author believes these to be valid points, yet he chose to
utilize the onion architecture nonetheless, under the assumption that it would
be beneficial if the application were to be developed further and placed into a
production environment. Essential architectural choices should be made early;
Introducing such abrupt changes late in the development process could result in
an unmanageable amount of technical debt. Ensuring the architecture is able to
handle modification and extensions in the future is considered crucial. Thus, the
author believes the current architecture to be a good fit.

12.4 Development Experience

After having spent the better part of a year experimenting with Flutter, the author
is left with an impressive opinion of the framework. The way UI is declared,
combined with the predefined widgets Flutter provides, makes UI development
into a trivial process. Having previous experiences with both React Native and
Xamarin, the author strongly believes Flutter increases developer productivity more
than the alternatives. The Dart language is also quite interesting. It is designed to
be instantly recognizable for developers with previous programming experiences.
In many ways, the language syntax can be compared to Java or C#. Being able to
write production-ready code within the first week of picking up the framework is
an impressive feat.

Although Dart can feel familiar to most developers with an object-oriented back-
ground, it does lack some functionality. After all, it is still a young language.
Features like data classes and static reflection have still not been fully added.
Null safety was added to both Dart and Flutter throughout the development pro-

Chapter 12: Application Discussion 128

cess, something which the author has not been able to migrate to yet, due to
business-critical packages not being migration-ready.

The tooling provided by Flutter also proved to be of great help. Hot restarting and
reloading greatly increased productivity. Being able to instantly experience changes
in code without having to restart the application is a welcome optimization. There
is almost never a need to restart the application entirely, something which the
other frameworks have failed to deliver on in previous projects the author has
experiences from.

12.5 Tie Registration

As previously stated in Section 3.4, the observer must be able to conduct sheep tie
registration without having to look at the screen. This proved to the most challeng-
ing user interface design to plan throughout the entire development process. In
order to solve the problem, several prototypes had to be created. The first area the
author explored was speech-to-text; If the observer could simply specify a color
and an amount by voice, the entire problem would be solved. However, such a
solution is susceptible to background noise. Windy days, sheep bells and other
natural causes of sound could make such a solution cumbersome to use. As such,
the idea would be abandoned.

Further exploration led to the process of registering details by swiping. The process
of swiping is natural to every smartphone user, and does not necessarily require
one to look at the screen. Within the area of swiping, two different solutions were
explored.

A smartphone screen has four sides, perfectly corresponding to the number of
tie colors present in the NSG standard. If one were to allot one color to each
side of the screen, the observer could simply swipe in the direction of the desired
color. Such an approach would require the observer to remember what side of the
screen each color is allotted to. The association between color and swipe direction
could be strengthened by having the entire swipe-to-register process in a dedicated
view, allowing one to spread the colors across the entire screen. Furthermore,
text-to-speech could be utilized to continuously tell the user what number has
been specified for any color.

The other swipe approach also utilizes all sides of the screen, although in an
entirely different way. By devoting the entire screen to a specific color, the observer
could swipe up or down to change the current color to the next or previous color.
Swiping right and left could add or detract from the color currently shown on
screen. This approach would rely on an additional way to make the user aware of
what color is currently selected. The most obvious solution is to inform the user of
what color is currently selected through text-to-speech functionality triggered by a
change in color.

Chapter 12: Application Discussion 129

Both swipe approaches can be considered to be viable solutions. Usability testing
showed that the subjects preferred the first swipe solution over the other, as they
did not have to rely on the text-to-speech functionality to know what color was
currently selected. Although the second solution provides the user with the ability to
detract from the registered number for a specific color, the process of continuously
changing colors were deemed to be less user-friendly than the first solution.

12.6 Application Identity and Platform Adaptability

A major choice with regards to the design of the application was that of choosing
whether or not to commit to using platform-specific UI components. Flutter provides
different kinds of widgets intended for different operating systems. Swapping
widgets depending on the underlying user interface requires additional work. The
author decided to implement core UI components as adaptable widgets, whereas
others would have a custom design. By following this approach, the application
would be able to have an unique identity, while still conforming to the guidelines
outlined for both Android and iOS. Adaptable components would be provided for
alerts and dialogs, whereas everything else would be platform-independent.

The application features a "home" view, acting as the central hub for the entire
application. Earlier revisions instead utilized bars at the top and bottom of every
screen, allowing for tab navigation. An excerpt of this UI is shown in Figure 12.1.

Figure 12.1: First version of application user interface.

Chapter 12: Application Discussion 130

Switching between tabs is a common feature in many applications; In the case of
this application, one does not need to switch between different contexts. If the
user is conducting a trip, there is no need to manage teams, view previous trips
or log out. Furthermore, the navigation and application bars takes up valuable
screen real estate; Moving them would allow the map to take up more screen
space. Finally, only utilizing a single stack of views greatly reduced the complexity
of the application, as the support for managing several navigation stacks proved
to be lacking at the time the author decided to implement it. With the arrival of
Flutter 2.0, support for tab-based navigation appears to have improved. However,
the author still believes that utilizing tabs would provide no additional benefits
to this application. The different use cases are too specialized to gain any benefit
from quickly switching contexts.

12.7 Usability Tactics Usage and Deletion Consistency

The author believes that usability tactics could have played a larger part in the
application, especially with regards to undoing specific user actions. Large, con-
sequential tasks within the application utilize confirmation dialogs to ensure the
user actually wishes to perform the action. For such tasks, the "undo" tactic can be
considered inconsequential. Smaller actions, such as handling invites, provide no
confirmation dialogs. These cases could have benefited from the "undo" tactic to
account for any potential user errors. The tactic was removed due to a lack of time;
Exploring it further is an avenue worth considering if the application is developed
further.

At the time of writing, how an entity is deleted within the application differs
drastically from item to item. In some situations, items can be deleted from a list
through the aggregation tactic, in which several items can be selected and deleted
in the same action. Other situations allows the deletion of items through swiping
or tapping. The author fears that this inconsistency can lead to confusion among
potential users. A wiser approach could possibly be to standardize the deletion
method across the entire application. Choosing one over the other is a difficult
decision. During usability testing, the test subjects appeared to have differing views
on how items should be deleted, with some favoring singular deletion whereas
other favored aggregation. None, however, mentioned the inconsistency between
deletion methods. As such, the author has decided to leave it as is until a more
conclusive answer to the deletion tactic debate is uncovered.

Part III

Server

131

Chapter 13

Server Introduction

The focal point of this system is the mobile application; It is the piece that allows
sheep observers to switch from analog solutions to a digital one. If one were to only
store observation data directly on the device, the overall usefulness of the system
would be severely reduced. To allow for a greater level of usefulness, the data
generated through supervision trips are centrally stored on a server, which will be
described throughout this part. The part will go on to describe the technologies the
server and database utilizes, important implementation details and how the server
is tested. Finally, it will describe how the server is deployed, before concluding the
part with a discussion surrounding the development of the server.

132

Chapter 14

Server Technologies

There are usually no clear-cut answer to choosing a technology stack, and this
project is no exception. The server would have to be developed at a more rapid
rate than the mobile application due to time constraints; Technologies allowing
for rapid and scalable development could therefore prove to be beneficial. This
chapter will describe the different technologies the server utilizes, and reason as
to why they were chosen.

14.1 Database Management System

As previously discussed in Section 10.2, the data generated by the system is stored
in relational databases. The section goes on to describe the usage of SQLite [98], a
light-weight Relational Database Management System (RDBMS) perfect for use in
mobile applications. At larger scales, however, other alternatives are more capable.
The server utilizes PostgreSQL, a free and open source RDBMS boasting a near full
compliance with the SQL standard [99].

In terms of performance, most RDBMS are on equal terms. In large, the performance
gains or losses are nearly irrelevant for systems of this scale. Functionality, on
the other hand, is of the utmost importance. At the time of writing, the system
does not make use of many complex SQL functionalities. However, the ability
to utilize complex functionalities later-on without having to migrate would be
very beneficial. Furthermore, PostgreSQL provides a set of extensions introducing
additional functionality. Seeing as the system generates a lot of geospatial data,
the ability to analyze it further could be of interest as the system grows. Utilizing
PostgreSQL would allow for such functionality to easily be added.

Finally, PostgreSQL is entirely free, and supported by nearly every cloud vendor.
Whereas large competitors, such as Oracle and Microsoft, charges licensing fees for
scaling, PostgreSQL will always be free. One should mention that this is irrelevant if

133

Chapter 14: Server Technologies 134

the application will be hosted through a cloud vendor, as the pricing model changes
to pay-as-you-go. However, choosing a fully free RDBMS like PostgreSQL provides
one with the ability to choose to self-host at a later point. This same argument can
be made for MariaDB, a fully free and open-source fork of MySQL [100]. However,
PostgreSQL remained the preferred choice due to the author wanting to keep the
possibility of utilizing advanced functionality not yet present in MariaDB. One
could also make a case for choosing cloud-vendor specific RDBMS. However, the
author wanted to remain as cloud-agnostic as possible, and therefore chose to
utilize PostgreSQL due to it being supported nearly everywhere.

14.2 Docker

Docker is a service that allows for one to run isolated applications through the use
of virtualization [101]. By utilizing Docker, developers are able to ensure consistent
environments regardless of the underlying operating system and environment.
Docker has been used extensively throughout the server development; Both the
server and local PostgreSQL test databases are ran through Docker. This is achieved
through the use of Docker Compose, which Docker describes as "... a tool for
defining and running multi-container Docker applications" [102]. Docker Compose
allows one to specify what resources Docker should provide. Furthermore, it allows
one to start and stop resource provisioning through the use of the command line.

14.3 Programming Language

Choosing the programming language of a project is a difficult decision to make. The
programming language itself is oftentimes not the most important factor; Instead,
one should decide what specific requirements the project has, and whether a
language provides sufficient support for it. In the case of the server, the single
most important requirement proved to be at what speed one could develop in. The
allotted time for server development was lesser than what was allotted for the
mobile application. Languages that would allow the author to develop quickly, yet
still in a scalable manner, could prove to be a good option.

The need for a quick development period removed several alternatives. Choosing a
language the author already had experience in would allow for a shorter ramp-up
time; Being effective from the get-go is invaluable. The following languages were
considered when planning the server:

• JavaScript (Node.js)
• Python
• Java
• Kotlin
• Dart

Chapter 14: Server Technologies 135

The mobile application is developed through the use of Flutter, which utilizes Dart.
Being able to utilize the same programming language throughout the system would
decrease the knowledge gap between any future frontend and backend developers
if the project were to be continued. However, it is rarely used for backend purposes.
Mature and efficient web application frameworks are non-existent. Choosing Dart
would leave the author with the task of developing solutions for problems the
other languages already solved. As such, Dart proved to be a bad fit for the project.

In the same vein of developer productivity maximization, the author decided to
remove Java as an alternative. Kotlin is a programming language built upon the
Java virtual machine. The language has achieved a meteoric rise in popularity, with
many choosing to abandon Java for it. It is less verbose, allowing for developers to
write less code. Kotlin even allows for Java and Kotlin interoperation, meaning that
any Java features are available in Kotlin. Furthermore, it both addresses current
issues with Java as a language, as well as adding several improvements and new
concepts, as listed in [103]. One can certainly make a case for choosing Java over
Kotlin, but the author believed that Kotlin would be the better choice of the two in
the context of this application, as it would reduce the development time.

14.3.1 Choosing JavaScript

Having eliminated both Java and Dart, the author chose to utilize JavaScript. The
main motivator behind the choice is developer experience. Of the three remaining
options, the author feels most productive when using JavaScript. In the modern
age, development costs are much higher than the cost of computational power;
Even if Python or Kotlin proved to be more performant, the author believed that
the boost in productivity would be worth it. The application will never scale to a
size in which language performance will cause a considerable impact. Furthermore,
the author prefers to utilize languages with support for static typing, a feature
Python does not provide. As such, JavaScript felt like the most natural choice.

JavaScript has traditionally been utilized to perform scripting on websites. However,
as time went on, the language has grown to accommodate several other runtimes
as well. One of these run-times are Node.js [104], a runtime environment allowing
JavaScript to be ran outside of a web browser.

JavaScript is dynamically typed; The type of a variable is not known until the system
is running and ready to interpret it. The author is of the firm belief that static type
checking improves the quality of code, a sentiment reflected in previous research
[105] [106]. In recent years, supersets of JavaScript supporting static typing have
emerged, with TypeScript [107] being a popular example. The language allows for
seamless transpilation between itself and JavaScript, allowing for the benefits of
static typing while still being in the realm of JavaScript. The choice of JavaScript
came with the caveat that TypeScript had to be used to allow for static typing. Had
it not been for TypeScript, the project would have utilized Kotlin.

Chapter 14: Server Technologies 136

14.4 JavaScript Packages

The JavaScript environment provides a plethora of packages expediting the devel-
opment process. This section will briefly describe the most essential packages the
server utilizes to speed up, improve or simplify the development process.

14.4.1 Nest

The choice of web application framework usually shapes the final implementation
of any project to a considerable extent. Within the Node.js ecosystem, express [108]
is the most popular web application framework. The framework describes itself as
minimalistic and unopinionated, allowing the developer to utilize it in a plethora
of ways. However, as previously stated, the server had to be developed under
strict time constraints. As such, minimalism would not be a good fit. Instead, the
author chose to utilize Nest.js, a feature-rich web application framework built on
top of express [109]. Whereas express is very lenient, Nest provides the developer
with a set of tools and features that encourages a very specific architecture. This
architecture is later discussed in Chapter 15.

14.4.2 TypeORM

TypeORM [110] is an Object-Relational-Mapper (ORM) for TypeScript, and ab-
stracts away the process of mutating the database. The framework allows one to
define database schemas through the use of code. Furthermore, it allows for one
to perform type-safe database mutations and queries specific to the object one is
operating on. Within the ORM space of Node.js, TypeORM appeared to be the most
mature option. Furthermore, it covered server requirements other ORM’s did not.

14.4.3 Axios

Machine-to-machine interactions are handled through the use of Axios [111], a
HTTP client providing simplified HTTP functionality over the default functionality
provided by Node. The library was chosen due to the ease of which one can
intercept requests and responses before they are sent and received, respectively. It
is only used for interacting with the identity provider the system utilizes.

14.4.4 AWS SDK

The majority of the cloud infrastructure of this system is hosted on AWS. In order
to effectively communicate with provisioned AWS resources, Amazon created the
AWS SDK, a set of API’s allowing the developer to perform actions related to a
resource directly from JavaScript [112]. The server uses the library to store images
to an S3 bucket, and is discussed further in Section 16.13.

Chapter 14: Server Technologies 137

14.4.5 Node-cache

The system utilizes Auth0 to store user credentials. Auth0 allows one to retrieve
specific user information through the use of a management API, which the server
utilizes to retrieve and manage users. The retrieval process is largely mitigated
through the use of caching; Every time a new user is fetched from Auth0, it is
stored in an in-memory cache provided by Node-cache [113]. By caching the user
information, future requests can be fulfilled at a greater speed by eliminating the
round-trip to Auth0.

14.4.6 Passport

When creating secure applications, authentication is a must. This server utilizes the
Passport [114] framework to authenticate every request that mutates the database.
The framework serves as middleware, a piece of functionality with the choice of
either handling, transforming or forwarding a request before it is handled. Before
every request is handled, the server utilizes the Passport-jwt strategy to verify the
validity of the JWT identifier included in the request.

14.4.7 ESLint

ESLint [115] allows the developer to ensure that the project is following the
best available development practices by introducing a set of static analysis tools.
Furthermore, ESLint provides the developer with tooltips and automatic code
changes whenever a known error is encountered. By utilizing ESLint, the developer
not only ensures the quality of the code, but also a consistent style throughout the
entire project.

14.4.8 Prettier

Prettier is a tool that enables consistent code formatting throughout a project
[116]. In this project, Prettier is utilized in such a way that code is automatically
formatted to conform to a specific style whenever a file is modified and saved.
ESLint and Prettier are configured to work together, allowing one to conform to
the rules outlined by both Prettier and ESLint without conflict.

Chapter 15

Server Architecture

The architecture of the server largely reflects the mobile application architecture
discussed in Chapter 9. They do, however, serve drastically different purposes. The
mobile application is tailored towards performing a specific subset of tasks required
for digital sheep supervision, and therefore has a more defined set of requirements
than the server. At the time of writing, the server mostly handles CRUD concerns.
However, ensuring that it can be expanded upon to include additional functionality
later-on is of the utmost importance. As with the mobile application, the author
believed that utilizing the Onion architecture would prove to be the most scalable
solution. The Onion architectural pattern is described in detail in Section 9.1.1,
and will therefore not be detailed here. In short, the pattern separates code in
layers that are only allowed to access layers closer to the core of the application
than the current layer. A correct implementation of the pattern allows for each
layer to be completely unaware of the technology used within the other layers.
Seeing as the server utilizes a plethora of packages, ensuring that one can be easily
swapped out without causing a rippling effect throughout the system is important.

15.1 Server Design Patterns

The following subsections will describe the different design patterns used through-
out the server, and how they are utilized.

15.1.1 Data Transfer Object

Fowler describes a Data Transfer Object (DTO) as "an object that carries data
between processes in order to reduce the number of methods calls" [117]. DTO’s
are usually capable of serialization and deserializing its content, making them
perfect for receiving and transmitting data in a web server. Most of the server
endpoints only accepts data that can be deserialized into a predefined DTO.

138

Chapter 15: Server Architecture 139

15.1.2 Chain of Responsibility

Every request the server handles goes through a variable amount of steps before
being processed; User input must be validated, and requests must be authorized.
Performing several of the aforementioned checks for every request can quickly
become difficult to maintain or extend. The Chain of Responsibility pattern handles
this by allocating such tasks to a handler, an object that can either choose to
forward, alter or handle a request [82]. Handlers are linked together in a chain
that ends when a handler decides to handle the request instead of forwarding it. In
this server, the chain of responsibility consists of a set of middleware; Functionality
performed before a request is handled by the actual endpoint handler. Using the
Chain of Responsibility pattern can simplify the addition or removal of handlers.

15.1.3 Dependency Injection

As previously stated in Section 9.2.2, dependency injection aims to achieve Inver-
sion of Control. In short, the pattern separates instantiation and usage of objects,
allowing for a testable system with low coupling [83]. Dependency injection is an
integral part of Nest, and is used throughout the server to inject resources.

15.1.4 Repository

The repository pattern is already described in Section 9.2.4, and will not be de-
scribed here. Usage of the pattern largely correlates to the mobile application
usage: It serves as an abstraction for aggregate root persistence. Whereas the
mobile application repositories utilizes dedicated DAO’s to mutate the database,
the server repositories utilizes an ORM.

15.1.5 Mediator

As stated in Section 9.2.9, the mediator pattern is used to orchestrate a set of
objects to achieve a specific goal. Usage of the pattern within the server corresponds
to its usage in the mobile application: Application services orchestrates the order
in which a set of objects are called to remove any dependencies between them.

15.1.6 Template Method

Performing CRUD operations on a set of database tables through a repository
patterns oftentimes requires one to create functionality only differing from one
another in a single step. Gamme et al. suggests the usage of the Template Method
pattern to solve such problems [82]. The pattern describes the creation of an
abstract super-class specifying all non-varying steps, and defers the varying steps
to implementation classes. This not only reduces code duplication, but also allows
for one to easily change the behavior of all sub-classes. Every repository within
the server extends an abstract repository class, and only specifies a certain amount
of properties to modify the super repository to fit the targeted database entity.

Chapter 15: Server Architecture 140

15.2 Server Project Structure

As stated in Section 9.3, project structure often corresponds to the chosen archi-
tectural patterns. Both the server and the mobile application utilizes the Onion
pattern, but are structured in different ways. Nest requires the developer to sep-
arate domains into specific modules that can be utilized throughout the system,
and is required in order to enable the dependency injection functionality provided
by the framework. Every module is stored in their own folder, which in turn is
separated into sub-folders representing layers. The available packages within the
system are shown in Figure 15.1. Packages are not actually separated by layer; The
figure simply chooses to display them as such in order to showcase the different
packages utilized within every layer. Furthermore, cross-layer usage has been
generalized to the arrows shown between layers in order to increase readability.
The following paragraphs will describe the folders available within any single layer.

Figure 15.1: Package diagram of server architecture.

Chapter 15: Server Architecture 141

The common folder is home to anything not fit for a singular domain or layer. For
the most part, it contains base classes that one or several objects within every
domain extends. It contains the following folders:

• domain: Base classes for entities and repository interfaces.
• extension: Extensions for TypeScript classes.
• infrastructure: Base implementations of repositories, mappers, ORM entities

and HTTP responses. It also contains database configuration files, exception
interceptors and HTTP clients.

The innermost layer of the onion is domain. It is home to entities, domain models,
business logic and interfaces defining repositories and services. Following the
domain layer is the application layer, in which services used for mutating and
accessing entities are stored. Furthermore, the application layer is home to a set
of Data Transfer Object’s used for defining what can and cannot be passed into a
repository.

The final layer within the server architecture is the infrastructure layer. In terms of
code organization, the layer is split in two: Code relating to the database and code
relating to handling HTTP requests. HTTP folders contains a single HTTP controller
and a set of DTO’s documented and tailored towards the web framework the HTTP
controller utilizes. The database folder consists of an ORM entity definition, an
entity-specific mapper and the repository used for mutating and accessing the
entity the folder relates to.

15.3 Description of Server Architecture

Figure 15.2 displays a class diagram consisting of classes related to entity persis-
tence. The figure only displays domain classes related to the infrastructure layer,
and is separated into domain-specific and common classes. Common classes usu-
ally serve as abstract base classes extended by domain-specific implementations.
IBaseRepository defines a set of functions every repository must support, whereas
IEntityRepository defines entity-specific repository functionality. Most repository
functionality is defined in the abstract BaseRepository class, which every EntityRepos-
itory extends. The usage of an ORM allows for one to create generic functionality
for persisting, finding and deleting entities. This is largely achieved through the use
of the template pattern, allowing base classes to delegate entity-specific function-
ality to the concrete implementation of the class. Entity-specific repositories will
only have to implement the functionality specified in IEntityRepository, in addition
to functionality for specifying entity-specific query parameters.

OrmEntity serves as a representation of a single database table and any relations
it might have. It extends BaseOrmEntity, which defines a set of properties shared
by every ORM entity throughout the server. In order for a domain entity to be

Chapter 15: Server Architecture 142

persisted to the database, it must first be converted to an ORM entity. Mapping
between the two entity types are handled automatically within the BaseRepository
through the use of an abstract BaseOrmMapper. The class provides functionality
for mapping between base entities; Mapping between entity-specific properties is
handled by an EntityMapper, a concrete implementation of the template functions
defined in BaseOrmMapper.

Figure 15.2: Class diagram of classes relating to entity persistence.

Figure 15.3 displays the relations between HTTP Controllers, application services,
entities and repositories. The EntityController is responsible for receiving and
responding to HTTP requests. Requests are received, parsed and validated using
dedicated entity DTO’s. Every DTO within the infrastructure layer implements a
corresponding DTO interface from the application layer. DTO’s stored within the
application layer are technology-agnostic, and are only used to define the properties
required in order to perform a specific action. This separation allows for one to
completely encapsulate any HTTP-related DTO details within the infrastructure
layer, allowing for one to replace the method of how to receive data without having
to modify the application layer. If one were to change the input type from HTTP
requests to CLI commands, the application layer would not be affected.

Chapter 15: Server Architecture 143

HTTP controllers make use of an application service dedicated to mutating and
accessing a single underlying domain entity and a corresponding ORM entity. Every
application service is only accessed through the interface it implements, allowing
for one to easily change the underlying implementation if need be. The entity
service will perform a set of operations to ensure the requester is authorized to
perform the intended action. Furthermore, it orchestrates a set of other services
in order to achieve the goal. A function within an entity service usually results in
a call to an entity repository, which once again is hidden behind the interface it
implements. The repository interface also specifies the two generic types IReposito-
ryBase requires. More specifically, it specifies the entity the repository handles and
EntityQueryParams: A set of parameters the repository should filter query results
by.

Every entity extends the abstract BaseEntity class, which contains a set of properties
and functions every entity throughout the server shares. The actual implementation
of an entity is represented by the Entity class, a generic class expecting a set of
entity-specific properties as its type. The separation between the base of an entity
and the actual entity properties allows for one to reduce the amount of boilerplate
code present throughout the server.

The server never returns entities as a HTTP response; Instead, they are transformed
into an EntityResponse: An object used to whitelist the entity attributes to include
in a response. EntityResponse extends a base class that specifies properties every
entity shares, allowing for less boilerplate code.

Chapter 15: Server Architecture 144

Figure 15.3: Generic class diagram describing relations between HTTP controllers,
DAO’s, the application layer and the domain layer.

Chapter 15: Server Architecture 145

A generic POST request is shown in Figure 15.4. In order to keep the figure at
a maintainable size, it only displays the happy path. Early returns are instead
described textually. The request starts when the HTTP Controller receives a new
request. Once received, the controller attempts to transform and validate the
request body into a predefined DTO. The controller returns an error response
if the response is invalid. Requests that will mutate the database state must be
authenticated through a JWT. If a JWT is attached to the request, it is sent to
the identity provider for validation. Invalid JWT’s will result in the controller
returning an error response. Once validated, the DTO is forwarded to the entity
application service, which will check if the requester is permitted to perform the
intended action. Unauthorized requests will be returned as error responses. If
the request is authorized, the DTO is converted into a domain entity and sent
to the entity repository. The repository converts the domain entity into an ORM
entity and persists it to the database. Once persisted, the repository converts the
ORM entity back into a domain entity and returns it. Before responding to the
request, the HTTP controller transforms the domain entity into a response object
only containing a subset of the entity properties.

Figure 15.4: Sequence diagram describing object communications in the happy
path of creating an entity.

Chapter 16

Server Implementation

This chapter will describe how the core concepts of the server is implemented. The
implementation of the Onion architecture found within the server is largely based
on a TypeScript implementation of the best practices surrounding the Hexagonal
architecture, a pattern with many similarities to the Onion architecture. It can
be found at https://github.com/Sairyss/domain-driven-hexagon. The reference
implementation has been adapted to fit the requirements of this system. The choice
of adapting it to the Onion architecture was made to allow for some consistency
between the mobile application architecture and the server architecture, in hopes
of lessening the required amount of knowledge new developers have to learn.

16.1 Modules

Modules are a core concept of the Nest Framework. In the context of Nest, a module
is a logical grouping of code related to a specific domain [118]. A Nest module
allows the developer to specify what modules a module depends on and which
HTTP controllers it contains. Furthermore, they allow developers to specify what
module resources are available for injection outside of the module. An injectable
resource is called a provider. By default, module providers are only available within
the module they are instantiated in. However, they can be made available for use
in other modules by explicitly exporting them.

Code listing 16.1.1: Team module.

@Module({
imports: [TypeOrmModule.forFeature([TeamOrmEntity]), UserModule],
controllers: [TeamController],
providers: [TeamRepository, teamServiceProvider],
exports: [teamServiceSymbol, TeamRepository],

})
export class TeamModule {}

146

https://github.com/Sairyss/domain-driven-hexagon

Chapter 16: Server Implementation 147

An example of a module definition is shown in Figure 16.1.1. The team module
imports a user and a TypeORM module, allowing it to access any providers exported
by them. Furthermore, it explicitly declares what providers and controllers the
module provides. Finally, it declares a set of providers that can be used in other
modules. The aforementioned usage of modules are described by the Nest team as
"feature modules" [118]. Nest also provides a root module, which is responsible
for specifying and instantiating the modules provided by the system.

16.2 Dependency Injection

Nest provides built-in dependency injection capabilities through the use of an
IoC container. When the application is first started, Nest inspects every module
definition and instantiates the providers the modules define. Classes can be marked
as providers through the Injectable annotation. The actual instantiation of a provider
is handled by Nest, but can be altered by the developer.

Code listing 16.2.1: Instantiation of farm service.

export const farmServiceSymbol = Symbol(’farmService’);
export const farmServiceProvider: Provider = {
provide: farmServiceSymbol,
useFactory: (
farmRepo: IFarmRepository,
userService: IUserService,

): IFarmService => {
return new FarmService(farmRepo, userService);

},
inject: [FarmRepository, userServiceSymbol],

};

Listing 16.2.1 details how the developer is able to specify how a provider should be
instantiated, what dependencies it requires and what token it should be provided
as. To allow for retrieval later-on, every provider is associated with an unique token
specified in the provide parameter. Provider instantiation is consistent throughout
the system, and is only accessed through the use of symbols. The farm service is
dependent on a farm-specific repository and the user service, represented through
the symbol associated with it. Whenever another provider requests the farm service
symbol, the useFactory function will run again, and return a new instance of the
provider to the requester.

16.3 Identity Provider Communication

Registering a new user for the system is a two-step process. The user must first
register an account with Auth0, the identity provider used throughout the system.
Through the Auth0 user interface, the user is only able to register an email and
a password. The system also requires users to define their first and last name, to
allow for team members to identify one another. The author decided to split these

Chapter 16: Server Implementation 148

two tasks entirely; Storage of user credentials are handled by Auth0, whereas the
server stores personally identifiable information. User credentials are very sensitive,
and should be handled with care. By delegating the storage of sensitive information
to a specialized service, like Auth0, the chance of experiencing a credentials leak
is significantly reduced.

The major drawback introduced by choosing to separate the collection of user
information in such a way is the synchronization between the two parts. This is
solved by introducing a backend service solely dedicated to communicating with
the identity provider, and orchestrating the user service to act in such a way that
changes within the identity provider always carries over to the server database, and
vice versa. At the time of writing, this is mostly related to deleting user accounts,
although the application might grow to include functionality such as changing
login credentials at a later point.

The separation of user information storage could have been entirely avoided by
creating custom functionality within the identity provider. However, the author
believed this to be a bad idea, as it would create a tight coupling between the
server and the identity provider. By separating the registration process into two
steps, changing the identity provider is an implementation change, as opposed to
a complete overhaul.

16.4 HTTP Controllers

Within the context of most RESTful API’s, a controller is a class handling incom-
ing requests and returning corresponding responses. Nest allows developers to
define an API controller by annotating a class with the @Controller() decorator.
A controller can in turn expose a set of functions corresponding to REST HTTP
methods. An example of this is shown in Listing 16.4.1, in which a GET endpoint
for a specific team is shown.

Code listing 16.4.1: A handler for a GET HTTP method within the team HTTP
controller.

@Get(’:id’)
async findOne(@Param(’id’, ParseIntPipe) id: number): Promise<TeamResponse> {
const res = await this.teamsService.findOne(+id);
return new TeamResponse(res);

}

The function in question is able to automatically parse and validate an ID integer,
and forward the request to the team service. Once a response is received from
the service, the function transforms it into the correct format and returns it to the
requester. Within this application, controllers serve very specific purposes. They
are entirely unaware of how any underlying processes are performed. A controller
should only be concerned with authentication, DTO validation and service response
transformation. Any other logic should be delegated elsewhere.

Chapter 16: Server Implementation 149

16.5 Application Services

Whereas application services in the mobile application usually centered around
achieving specific use cases, the ones present on the server are more tailored
towards achieving mutations within the domain it is placed in. Application services
are mostly concerned with transforming DTO’s into a format expected by the repos-
itory it relates to. Application service functionality related to database mutation
also introduces a set of authorization checks to ensure that the requesting user is
allowed to alter the affected entities through ownership or administrative rights.

16.6 Documentation

Server documentation is created through the use of TypeDoc, a library allowing
one to convert TypeScript comments into HTML documentation [119]. TypeDoc
documentation can be generated by running the command npx typedoc src. The
server also provides documentation through the use of Swagger, a specific type of
documentation describing the available endpoints, their parameters and their pos-
sible response types [94]. Endpoints and response types are documented through
the use of Swagger annotations provided by Nest, and are shown in Listing 16.6.1.

Code listing 16.6.1: Swagger annotations for a response. Constructor omitted
for brevity.

export class InviteResponse extends ResponseBase {
constructor(props: InviteEntity) {
...

}

@ApiProperty({ type: () => UserResponse })
user: UserResponse;
@ApiProperty({ type: () => TeamResponse })
team: TeamResponse;

@ApiProperty({ example: true })
pending: boolean;

@ApiProperty({ nullable: true })
accepted?: boolean;

}

In order to encapsulate package usage as much as possible, Swagger annotations
are only utilized throughout the infrastructure layer; They are only used on HTTP
Controllers, DTO’s and response objects. The package also allows one to serve the
automatically generated Swagger documentation in a Swagger user interface, as
shown in Figures 16.1 and 16.2. By interacting with the user interface, the user
is able to view extensive details about the available or required user inputs, and
what every call to the server might result in. Every endpoint specifies response
types and example values for different HTTP response scenarios. Finally, Swagger
UI allows one to send actual requests to the server.

Chapter 16: Server Implementation 150

Figure 16.1: Swagger user interface.

Figure 16.2: Swagger UI for getting a specific user.

Chapter 16: Server Implementation 151

16.7 Authentication and Authorization

In order to ensure that an actor interacting with the system is authorized to perform
an action, the actor must first be identified and authenticated. Throughout the
system, authentication is performed through the use of Auth0. Once authenticated,
the actor receives a JSON Web Token (JWT), an encrypted token meant for verifying
the identity of a user. The JWT can be used to interact with the server.

Code listing 16.7.1: Authentication strategy.

export class JwtStrategy extends PassportStrategy(Strategy) {
constructor() {
super({
secretOrKeyProvider: passportJwtSecret({
cache: true,
rateLimit: true,
jwksRequestsPerMinute: 5,
jwksUri: ‘${process.env.AUTH0_ISSUER_URL}.well-known/jwks.json‘,

}),

jwtFromRequest: ExtractJwt.fromAuthHeaderAsBearerToken(),
audience: process.env.AUTH0_AUDIENCE,
issuer: ‘${process.env.AUTH0_ISSUER_URL}‘,
algorithms: [’RS256’],

});
}

validate(payload: ApiUser): ApiUser {
return payload;

}
}

Server-side authentication is performed through the use of Passport.js, an authenti-
cation middleware for Node [114]. Nest provides functionality for easily integrating
Passport.js with any Nest application. Every mutation function defined within an
HTTP Controller is annotated with Passport-specific annotations. Whenever a
request is received on an annotated endpoint, it is passed to an authentication
strategy responsible for verifying the validity of the JWT. This strategy is shown in
Listing 16.7.1. It fetches a set of keys from the identity provider (Auth0) that are
used for verifying the validity of the JWT in question. Invalid JWT’s will result in
an error, and the request will be rejected by the server. If the JWT is valid, on the
other hand, the JWT will be deserialized and passed on to the next handler in the
chain of responsibility. As shown in Listing 16.7.1, the JWT verification strategy
has been extensively parameterized. If one were to switch identity providers, one
would only have to change the values of the utilized environment variables.

Once the validity of the JWT token has been asserted, and the request has made it
to the endpoint handler, authorization is performed. The deserialized JWT contains
an unique user identifier, which is also stored within the server database to simplify
the authorization process. Whenever a request attempts to mutate an entity, the
server checks whether the requesting user is allowed to mutate the affected entities.

Chapter 16: Server Implementation 152

16.8 ORM Entities

TypeORM allows for one to define ORM entities through the use of code, which
in turn are used to generate database tables. Listing 16.8.1 shows the definition
of the Farm ORM entity. Simple types, such as strings, are implicitly converted
into their corresponding database types. More complex values, like enums, require
some extra type specification in order for TypeORM to understand what type it
should be. Due to the usage of PostgreSQL, TypeORM is able to create a specific
database type for every object, ensuring that only valid values are stored. TypeORM
also allows for one to define the relations an entity has to other entities. In the
aforementioned example, the farm entity specifies a many-to-one relation to the
User ORM entity and a one-to-many relation to the Farm Observation ORM entity.

Code listing 16.8.1: Farm ORM definition.

@Entity(’farm’)
export class FarmOrmEntity extends BaseOrmEntity {
constructor(props: FarmOrmEntity) {
super(props);

}
@Column({ length: 100 })
name: string;

@ManyToOne(() => UserOrmEntity, (user) => user.farms, {
eager: true,

})
@JoinColumn({ name: ’owner_id’ })
owner?: UserOrmEntity;

@Column({ name: ’owner_id’ })
ownerId?: number;

@Column({ type: ’enum’, enum: FarmColors, name: ’first_color’ })
firstColor: FarmColors;

@Column({ type: ’enum’, enum: FarmColors, name: ’second_color’ })
secondColor: FarmColors;

@Column({ name: ’sheep_amount’ })
sheepAmount: number;

@Column({ name: ’sheep_adult_amount’ })
sheepAdultAmount: number;

@OneToMany(() => FarmObservationOrmEntity, (obs) => obs.farm, {
cascade: [’soft-remove’],

})
farmObservations?: FarmObservationOrmEntity[];

}

Chapter 16: Server Implementation 153

Figure 16.3 displays all database tables the server utilizes. The structure of the
tables largely resembles the ones described for the mobile application in Section
10.2.2, albeit with some slight exceptions. As such, the purpose of every table will
not be discussed to the same extent.

The mobile application tables were constrained in terms of available SQLite data
types, whereas the server utilizes a broader range of values. Furthermore, the
server database contains a table used for keeping track of team invites. By default,
a new invitation has pending set to true, and accepted set to null.

Figure 16.3: ER diagram of server.

Chapter 16: Server Implementation 154

16.9 Server Repositories

In contrast to the mobile application, the server repositories are directly responsible
for persisting data to the database. This is largely caused by the usage of TypeORM;
The ORM allows the developer to define database tables through the use of code.
Once the tables are generated, TypeORM provides the developer with a set of
functions for mutating the database. For common use cases, ORM usage abstracts
away the entire database layer, allowing for a more efficient development process.

At the very core of the infrastructure layer is an abstract and generic base reposi-
tory, defining functionality for persisting, fetching and deleting entities from the
database. Every repository within the server extends this class. In order to extend
it, a set of types must first be provided: The domain entity, the ORM entity and a
set of query parameters capable of constraining entity query results. Furthermore,
every repository implementation must provide an implementation of prepareQuery,
a function that converts a set of query parameters into a format TypeORM accepts.
Every entity repository implementation must provide a set of relations used for
loading and deleting entities, to ensure that all required tables are included in the
query results. Listing 16.9.1 provides an excerpt of the base repository, and details
functionality for persisting and finding entities.

Code listing 16.9.1: Excerpt of abstract repository.

export abstract class BaseRepository<
Entity extends BaseEntityProps,
Params,
OrmEntity

> implements IBaseRepository<Entity, Params> {
constructor(
protected readonly repository: Repository<OrmEntity>,
protected readonly mapper: BaseOrmMapper<Entity, OrmEntity>,

) {}
protected abstract relations: string[] = [];
protected abstract prepareQuery(
params: QueryParams<Params>,

): WhereCondition<OrmEntity>;

async save(entity: Entity): Promise<Entity> {
const ormEntity = this.mapper.toOrmEntity(entity);
const result = await this.repository.save(ormEntity);
return this.mapper.toDomainEntity(result);

}

async find(params: QueryParams<Params> = {},withDeleted = false,)
: Promise<Entity[]> {
const where = this.prepareQuery(params);
const found = await this.repository.find({
withDeleted: withDeleted,
relations: this.relations,
where,

});
return found.map((e) => this.mapper.toDomainEntity(e));

}
}

Chapter 16: Server Implementation 155

In trivial cases, the abstract repository enables one to create a repository with only
a few lines of code. For more complex use cases, a specific repository can either
choose to override the default implementations or define new functionality.

Another core component of the abstract repository implementation is the entity
mapper. Domain and ORM representations do not always align. Thus, one must
be able to transform domain entities to ORM entities and vice versa. The abstract
repository makes use of an abstract entity mapper, whereas every repository imple-
mentation provides an actual implementation of an entity-specific mapper. In order
to reduce boilerplate code, the abstract entity mapper maps properties shared by
all entities, namely the ID and the created, modified and deleted dates.

Entities within the server are never deleted; Instead, they are omitted from query
results, a functionality provided by TypeORM. Due to the need for synchronizing
the state of a mobile application with the state of the server, the server must be able
to keep track of what entities have been deleted since a user last synchronized.

16.10 Responding to Requests

The user should not always receive a directly serialized version of the actual entity
in response to a request. In order to decouple the actual implementation of an
entity and the values returned to the user, entities are transformed to dedicated
response objects. Every response object specifies a set of properties a successful
response should return. By utilizing such an approach, the developer ensures that
responses only contains data intended for the end user. Alternatively, one could
choose to omit specific properties of an entity. The author believed this approach to
be more error-prone; Adding new properties could suddenly impact the response.

16.11 DTO Validation

As mentioned in Section 15.1.1, user input is handled through the use of Data
Transfer Objects. Every DTO contains data validation rules to ensure the correctness
of any data processed by the server.

Code listing 16.11.1: Definition of validation logic for team creation.

export class CreateTeamDto {
@ApiProperty()
@IsString()
@Length(2, 500)
name: string;

@ApiProperty()
@IsOptional()
@IsString()
@Length(0, 500)
description: string;

}

Chapter 16: Server Implementation 156

The server utilizes class_validator, a JavaScript library allowing for one to validate
the contents of an object. When combined with NestJS, DTO validation can be
performed automatically whenever a request is received. An example of DTO
validation is shown in Listing 16.11.1. If the user input in a DTO breaks a validation
rule, the request is aborted and a descriptive error message is returned to the
requester. An example of this is shown in Figure 16.4.

Figure 16.4: Error response returned when DTO validation fails.

16.12 Synchronization

In order to enable offline capabilities for the mobile application, the server must
be able to provide a user with all changes in database state relating to the user
since the last time a synchronization occurred.

All entities are synchronized at the same time; The application does not allow for
synchronizing one entity at a time. This approach was chosen due to the nature of
the relationships between entities. A change in one entity often results in changes
in another. If a user has joined a team since last synchronizing, the synchronization
process must provide the new memberships, users and team trips for that team.
Database synchronization is already a complicated process. It is possible to optimize
it further than it currently is, but the author believes the performance-to-complexity
trade-off to not be worth it at the current time.

As discussed in Section 10.5, the synchronization endpoint expects to receive a set
of dates representing the time the user last synchronized with the server. The dates
are separated by entity to allow for the implementation to fetch entities in separate
queries if required, ensuring the validity of the results with regards to database
changes happening throughout the synchronization process. Furthermore, the
synchronization functionality also allows for the user to pass in a list of locally
downloaded farms that should be synchronized. The synchronization endpoint
requires authentication, allowing the server to extract the authentication ID of
the user performing the request. This ID is utilized to fetch the teams the user is
a member of, and acts as the foundation for the entire synchronization process.
Based on the results of the team retrieval process, the synchronization service

Chapter 16: Server Implementation 157

fetches, filters and partitions memberships, users, farms and trips. Each entity
is separated into three distinct categories, namely created, modified or deleted.
Created and modified entities are returned in their entirety; Deleted entities are
only returned as identifiers to allow for a lower amount of transferred data.

16.13 Image Storage

"Other" observations should allow for the sheep observer to attach images of their
findings. As such, the system must support the storing and sharing of images.
The author decided to offload the task to AWS S3, an AWS service for storing
objects [120]. The server receives images whenever a user decides to upload a
trip. Once received, images are processed and uploaded to S3 one by one. Finally,
the image data is replaced with the URL of the stored S3 object before being
persisted to the database. This approach brings several benefits over simply storing
the images in a database. The size of the database would increase drastically if
one were to store images within it. This could be somewhat mitigated through
image compression, but not nearly enough to warrant the cost. The performance
penalties usually involved with storing files in databases are growing smaller, but
can still be felt once a critical mass is reached. Furthermore, database storage
tends to be more costly than file system storage in cloud services. Finally, and
possibly most importantly, offloading the process of image retrieval to another
service would increase the throughput of server requests. By not having to perform
costly read operations with regards to images, the server will have more resources
for handling simpler requests. This implementation introduces the drawback of
having to synchronize the state of the database with the state of the remote file
storage system. However, the author believes this to be a negligible drawback
compared to the benefits brought by the approach.

Chapter 17

Testing the Server

The process of testing the server is somewhat intertwined with the mobile appli-
cation testing process described in Chapter 11; System testing either directly or
indirectly makes use of the server. As it is already covered in Chapter 11, it will not
be discussed here. This chapter will describe the process of checking the logical
soundness of the server source code.

Server tests are performed through the use of jest [121], a testing framework for
JavaScript. It is used alongside ts-jest [122], which allows for TypeScript code to be
tested through jest. Dependency stubs are created through the use of sinon [123],
a package for creating fake, mocked or partial implementations of JavaScript and
TypeScript classes. In order for a test to be picked up by jest, it has to be appended
with a .spec ending. This naming is consistent through the server; A test suite
testing user.repository.ts would be named user.repository.spec.ts. Tests are stored in
a separate folder mirroring the actual structure of the server source code.

In order to ensure the correctness of the server persistence implementation, one
must test the integration between the server repositories, TypeORM and the under-
lying database. Persistence is tested against an actual PostgreSQL database solely
dedicated to testing. This is largely related to the use of TypeORM; If one were to
mock out the entire TypeORM library, there would be no way to actually ensure
that entities are persisted, mutated and retrieved correctly. The mobile application
utilizes SQLite, a lightweight database RDBMS with the capability of running
entirely in-memory. Creating and destroying in-memory databases is faster than
creating a traditional database. However, PostgreSQL cannot be ran in-memory. As
such, persistence-related tests are ran against a fully-fledged PostgreSQL instance.

158

Chapter 17: Testing the Server 159

The persistence tests expects a PostgreSQL test instance to be available locally at
port 5443. This project has handled database instances through the use of Docker
Compose, a tool allowing for the developer to provision several resources at a time.
The test database has, for the most part, been provisioned together with the rest
of the server development environment. However, it can also be provisioned as a
standalone instance with the command docker-compose up test_db.

An example of a persistence test is shown in Listing 17.0.1. The first part of the
listing shows how the database is handled in-between tests. Before any test within
a test suite is ran, a new connection to the database is created. Before every test
is ran, the database is dropped and rebuilt to ensure that tests do not affect one
another. After all the tests in the test suite has completed, the database connection
is closed. The latter part of Listing 17.0.1 displays a typical persistence test. It
simply creates a new user entity, persists it to the database and asserts that it has
been given an identifier.

Code listing 17.0.1: Testing user persistence.

describe(’The User Repository’, () => {
let conn: Connection;
let userRepo: IUserRepository;
beforeAll(async () => {
await connection.create();
conn = getConnection();

});

afterAll(async () => {
await connection.close();

});

beforeEach(async () => {
await connection.clear();
userRepo = new UserRepository(conn.getRepository(UserOrmEntity));

});

it(’should be able to insert unique user’, async () => {
const props: UserProps = {
authId: ’auth0||asdasdsa’,
email: ’test@test.com’,
firstName: ’Jonas’,
lastName: ’testing’,
picture: ’https://test.com/this.png’,

};
const user = new UserEntity(props);
const res = await userRepo.save(user);
expect(res.id).not.toBeNull();

});
});

HTTP controllers are tested through the use of supertest [124], a framework
allowing for one to easily test HTTP endpoints. A controller test suite contains
tests for every responsibility a controller can have: It asserts if the controller is
capable of parsing and validating DTO’s, transforming responses and rejecting

Chapter 17: Testing the Server 160

invalid requests. Listing 17.0.2 describes the process of instantiating the Team
HTTP controller inside of a test module. Controller dependencies are replaced
with stubbed versions, allowing for one to specify the outcome of every service
response. Authentication is also mocked. Whether a request is authenticated or not
is controlled through the use of two mock functions, each changing the outcome
of the authentication process.

Code listing 17.0.2: Setting up the Team HTTP Controller test. Validation Pipe
omitted for brevity.

describe(’Team Controller’, () => {
let app: INestApplication;
const teamService = sinon.createStubInstance(TeamService);
let returnMock = jest.fn();
let throwMock = jest.fn();
beforeEach(async () => {
returnMock = jest.fn();
throwMock = jest.fn();
const testAppModule = await Test.createTestingModule({
controllers: [TeamController],
providers: [
{
provide: teamServiceSymbol,
useValue: teamService,

},
],

})
.overrideGuard(AuthGuard(’jwt’))
.useValue({
canActivate: (context: ExecutionContext) => {
if (throwMock()) {
throw new UnauthorizedException();

}
const req = context.switchToHttp().getRequest();
req.user = validUser;
return returnMock();

},
})
.compile();

app = testAppModule.createNestApplication();
await app.init();

});
});

Listing 17.0.3 provides two examples of controller tests. The first test checks
whether the deletion endpoint requires an user to be authenticated. If the endpoint
is annotated correctly, the authentication mock solution will result in the endpoint
returning a 401 error, indicating that the request was unauthorized. The second
test checks whether the controller will call the underlying team service with the
correct parameters when provided with valid inputs. It specifies a predefined team
that the team service mock should return whenever the create method is called
with a set of specific values.

Chapter 17: Testing the Server 161

Code listing 17.0.3: Controller test examples.

describe(’Team Controller’, () => {
beforeEach(async () => {
...

});

describe(’delete’, () => {
it(’requires authentication’, async () => {
throwMock.mockReturnValueOnce(true);
await request(app.getHttpServer()).delete(’/teams/1’).expect(401);
expect(throwMock).toHaveBeenCalledTimes(1);

});
});

describe(’create’, () => {
it(’can successfully call service’, async () => {
throwMock.mockReturnValueOnce(false);
returnMock.mockReturnValueOnce(true);
const team = createTeam(1);
const res = JSON.stringify(new TeamResponse(team));
const dto = {
name: ’My Team’,

};

const actualDto: CreateTeamHttpDto = {
name: ’My Team’,

};

teamService.create
.withArgs(sinon.match(actualDto), validUser.sub)
.resolves(team);

await request(app.getHttpServer()).post(’/teams’).send(dto).expect(res);
});

});
});

Chapter 18

Server Deployment

In order to allow for one to easily modify or extend the server, the process of
deploying a new and production-ready version of the server has to be as easy as
possible. This project realizes this through the use of continuous deployments
whenever a new revision of the source code is pushed to the master branch of the
source code repository. In short, AWS fetches new commits, builds a new server
artifact and runs it. The infrastructure making this possible is described later-on in
Section 21.2. This functionality is realized through the use of a set of files written
with the sole purpose of simplifying deployment to the AWS infrastructure, and
will be described in the following paragraphs.

The source code repository has a so-called web-hook: A specific functionality that
is performed every time an action occurs. In the case of the server repository, this
web hook is responsible for notifying AWS whenever a new revision of the source
code is pushed to GitHub. AWS will in turn fetch the new source code revision and
build a new server artifact from it. The artifact build process is controlled through
the use of buildspec.yml, a file specifying a set of steps that will result in a new
server artifact.

In large, the artifact build process specified in buildspec.yml consists of two phases.
The first phase solely consists of downloading every project dependency, and is
required in order for the artifact to be built. In the second phase, the actual server
artifact is built. This is achieved through a command specified in package.json, a
file home to a set of scripts the server supports. This script is later copied over
to the artifact to allow for it to understand how to start itself later-on. Once the
server artifact has been created, the process goes on to remove the dependencies
that were only required for the artifact build process. Runtime dependencies are
copied over into the build artifact.

The build process also consists of creating a file filled with environment variables

162

Chapter 18: Server Deployment 163

not known at the time of deployment. These variables mostly revolve around
non-static or secret values fetched from AWS, such as database passwords, Auth0
credentials and the port the server should receive requests from. Sensitive variables
are fetched from a secure storage solution provided by AWS, as discussed in Section
22.2.2 later-on. Non-sensitive values are simply injected into the build environment.

A set of AWS-specific files are also copied over to the build artifact, namely app-
spec.yml and corresponding installation scripts. The file simply serves as a place
in which one can define a set of scripts to be ran at different parts of the server
instantiation process. Once the build process is complete, the artifact will be stored
within AWS, which in turn will notify the computational devices the server runs on.
These devices will fetch the newly created server artifacts, and perform the set of
scripts specified in appspec.yml. As with the build process, the initalization process
consists of two phases. The first phase simply downloads and installs Node so
that the server can run. Furthermore, it runs a set of commands that allows Node
processes to listen to privileged ports without being ran as an elevated process.
The second phase simply kills all running node instances before finally starting a
new server instance.

18.1 Running Locally

The server can also be ran locally during development. This has been achieved
through the use of Docker compose, which creates three Docker containers: A
PostgreSQL database used for testing, a PostgreSQL database used for running the
application locally and a container for running the actual server. The entire stack
can be started by running docker-compose up within the server directory.

The server expects a set of environment variables to be present in order to run
locally. The non-test database utilizes database.env, which defines a database
username, a database password and a database name. Server-related environment
variables are defined in a file named .env. It expects an environment variable
specifying what port the server should run on locally, and the name of the AWS S3
bucket to store images to. Furthermore, it expects a set of environment variables
relating to Auth0, so that incoming requests can be authenticated. In order to
enable identity provider communications, one must provide the URL of the token
issuer, the audience requesting access tokens and the client credentials the server
uses to communicate with Auth0. Finally, the server requires the same environment
variables as the database does, so that it can correctly connect and perform queries.

Chapter 19

Server Discussion

The server was developed at a more rapid than the mobile application, a process
largely expedited through the use of powerful packages and familiar technology.
This chapter will provide a retrospect of the choices the author felt to be the most
consequential for the final product.

19.1 ORM Usage

Choosing a persistence solution is a highly contested topic within the Node com-
munity, with every developer favoring different approaches. In the grand scheme
of things, the community is split on the usage of ORM’s, query builders and pure
SQL, ranked descending in terms of their level of abstraction. The author decided
to utilize an ORM due to the increase in developer productivity it could provide.
Furthermore, using an ORM would allow for one to switch out the underlying
database without having to make any changes within the code base, increasing
the flexibility of the system. The author found the ORM usage to be very beneficial
when developing the server, and can largely be attributed to two factors: Soft
deletion and entity insertion.

Due to the synchronization requirement of the system, the server must be able to
keep track of deleted entities. An entity cannot simply be deleted, as it would make
the state of every mobile application storing the entity invalid. As such, the server
must be able to "soft delete" entities, a process in which the entity is persisted
in the database, but not accessible through ORM queries. This functionality can
be implemented without the usage of ORM’s, but there are a lot of caveats one
will have to keep in mind. This was, in fact, a large reason as to why the author
decided to utilize TypeORM, as it had built-in support for cascading soft deletes.

The benefit of ORM insertion is best described through the process of inserting a
trip. Every trip can have a number of sheep observations and "other" observations.

164

Chapter 19: Server Discussion 165

A sheep observation can have several sheep ties, sheep colors, farm observations
and unknown farm observations. Furthermore, an "other" observation can contain
several observation photos. One can image inserting the data related to a trip to
be a complicated process including a lot of SQL statements. Instead of inserting
every entity sequentially in different statements, an ORM allows the developer to
insert the entirety of the trip entity with all related data in one single function,
without having to write any insertion logic.

ORM usage does have some caveats. Utilizing an ORM usually involves a perfor-
mance penalty, as generated queries are not optimized for the table it targets. One
could make a case for taking a more bare-bones approach to entity persistence,
by for instance utilizing an approach more akin to prepared SQL statements. A
similar case could be made for query builders, which acts as a middle ground
between prepared SQL statements and ORM’s. Constraints introduced by ORM
usage are not necessarily transparent when choosing the approach. If the project
at any time encounters a constraint large enough to invalidate the choice of an
ORM, the technical debt attributed to switching approaches could be large. This
is somewhat alleviated by the choice of encapsulating ORM usage, allowing for
portions of the server to be modified independently.

Utilizing an ORM can greatly reduce development time as long as the intended
functionality is common and supported by the ORM. For more complex and uncom-
mon functionality, raw SQL queries might be the better choice. The aforementioned
drawbacks have not affected the server at the time of writing. However, one should
be aware of their existence, and always look for better options.

19.2 Choosing Nest

The overall composition of package choices made throughout the server is largely
associated with the choice of utilizing Nest as the web application framework.
In large, the choice of Nest has proven to be sound, as it has been able to fulfill
every server requirement through custom functionality or integrations with other
packages. Nest was simply chosen due to it providing integrations with a set of
functionalities the server would require at some point. The built-in support for
Swagger, request validation, authentication and dependency injection provided a
drastic reduction in development time over more bare-bones alternatives.

Arguments could be made for choosing other frameworks over Nest. The benefit
of choosing Nest is that it primarily builds upon popular packages in the Node
ecosystem. As long as Nest usage is kept somewhat concentrated, one can migrate
away from it at a later point. Nest migration can be performed incrementally, by
refactoring integrations to instead rely directly on the package Nest utilizes. For
the most part, Nest usage has been contained within the infrastructure layer. The
application core would remain largely unaffected if one were to switch frameworks.

Part IV

Cloud Infrastructure

166

Chapter 20

An Introduction to the Cloud

In the modern landscape of applications and systems, usage of "the cloud" has
become nearly ubiquitous. As systems and requirements grew to be more complex,
the traditional approach of simply hosting it yourself became a major roadblock to
many. Can your infrastructure withstand an attack? How are the different attack
surfaces protected? Will the server be able to scale in response to an increase or
decrease in traffic? How will it handle failure? In the recent decade, the most
common solution has been to choose a cloud provider: A vendor offering servers
and flexible solutions allowing developers to easily host anything. The larger cloud
providers have a plethora of different solutions, ranging in size and complexity. As
a developer, you are able to choose between a fully preconfigured solution only
requiring the push of a button to host an application, all the way down to a fully
configurable computational instance.

This part will detail the cloud infrastructure this thesis utilizes. It will first provide
a quick primer on cloud technology before describing the infrastructure this system
provisions. Following this, it will detail how the infrastructure can be deployed.
The part is concluded with a discussion surround the choices made when creating
the cloud infrastructure.

20.1 The Cloud: A Primer

The cloud can, in simple terms, be described as a set of servers connected through
the internet, allowing world-wide access to whatever the servers in question
provides. In the early days of the internet, many companies hosted their systems on
their own hardware. This eventually lead to data centers, a set of servers owned and
maintained by a company. The server operating systems allowed for a technology
called virtualization, a concept allowing several systems to share the underlying
machinery. Through the use of virtualization, data centers could rent out a slice of

167

Chapter 20: An Introduction to the Cloud 168

a server to a company. The data center could charge a premium for providing and
maintaining the servers, essentially removing the need for the renting companies
to maintain their own server infrastructure. In the rest of this thesis, this practice
will be referred to as Infrastructure as a Service (IaaS).

As the internet grew in size and complexity, as did the requirements of the systems
running on these servers. In the past two decades, the practice of IaaS has been
expanded upon and simplified for more specific use cases. For instance, Platform as
a Service (PaaS) provides a deployment-ready development environment, allowing
customers to not have to worry about the configuration and maintenance of the
underlying operating system. An even simpler "as a service" solution is the category
of Software as a Service (SaaS), in which a company provides a production-ready
software solution the customer can configure to their specific needs. In the context
of this project, a viable SaaS solution could for instance be a storage solution.

Companies providing IaaS, PaaS or SaaS have come to be known as cloud providers.
Within this category, the three biggest companies are Amazon (Amazon Web
Services), Microsoft (Azure) and Google (Google Cloud Platform). Each provider
boasts a large amount of services at comparable prices. Thus, choosing one over
the other can be a difficult affair. In all but the most specific cases, each cloud
provider has a service fulfilling any requirement. If the system is Windows-based,
one could make a sound argument for choosing Microsoft Azure, although both
AWS and GCP also provides Windows-based resources.

Having previous experience with AWS, the platform was deemed to be the most
appealing to use as the learning curve would be lower. However, the author decided
to research all three providers before making a final decision. After all, cloud
provider services are similar enough to allow for a transferal of knowledge. The
research process consisted of mapping out the required infrastructure resources and
services the project required, followed by reading about the alternatives each cloud
provider offered. No cloud provider stood out in particular, as all requirements
were covered by each of them. If one were to simply choose a cloud provider to
have a place to host a simple system, Microsoft Azure provides what the author
considers to be the best solution due to a simple and clear user interface. However,
this project will provision all infrastructure through the use of code, using a process
known as Infrastructure as Code (IaC). As such, the simple user interface Azure
provided added no benefit to the project.

The choice eventually boiled down to price. Each provider offers a generous free
tier, allowing new users to utilize certain services and resources in a limited manner.
If you utilize the platform in a way not covered under the free tier, you will be
charged. However, Microsoft Azure and AWS provides student tiers, allowing one
to have more freedom to experiment. Microsoft Azure provides students with
free tier usage and $100 in credits, whereas AWS provides $30 of credits. Any
action outside of the free tier would detract from the credits. Once the credits are

Chapter 20: An Introduction to the Cloud 169

depleted, the account is closed. The author considered these tiers to be the best
option, as they would allow for experimentation without unforeseen monetary
ramifications. After testing both student tiers, the author found Microsoft Azure
student accounts to not provide sufficient permissions to provision the required
infrastructure for the system, leaving AWS to be the most viable option. As such,
the author chose to utilize AWS.

Chapter 21

System Infrastructure

This section describes the infrastructure that is provisioned for both AWS and
Auth0. Nearly all infrastructure utilized by the system is provisioned through AWS.
The entirety of the server lives within a Virtual Private Cloud (VPC), a virtual
network isolating its resources from anything outside of the VPC unless explicitly
stated otherwise. In this case, some exceptions are made to allow for everything to
work as expected.

21.1 Auto-Scaling Group

The Application Programming Interface (API) is created using Elastic Compute
Cloud (EC2), a compute service AWS bases most of their other compute services
on. EC2 allows a user to provision a resizable virtual machine at a desired size.
This flexibility allows developers to scale up the computational capacity of their
instance when a bottleneck is encountered.

AWS provides a plethora of compute services, where many of them allows a
developer to create clusters of compute instances with the capability of scaling
up or down based on demand. This application uses an auto-scaling group to
achieve this, as shown in Figure 21.1. Amazon defines an Auto-scaling group as "a
collection of EC2 instances that are treated as a logical grouping for the purposes
of automatic scaling and management" [125]. The developer can choose a set of
constraints that, when met, can increase or decrease the amount of EC2 instances
within the group. Furthermore, by using an auto-scaling group, AWS allows the
developer to specify an API endpoint for verifying the health of an instance. If
the endpoint does not respond as expected, the auto-scaling group considers the
instance to be unhealthy, and replaces it with a new instance.

170

Chapter 21: System Infrastructure 171

Figure 21.1: Deployment diagram of the server infrastructure.

Being able to provision or decrease computational power on the go is very beneficial.
If the system is under heavy load, a new instance can be created to allow new
requests to still be met at full speed. The opposite also applies; If the system is
under low load, superfluous instances can be terminated to save costs.

AWS categorizes their data centers in geographical regions, which in turn are
divided in different availability zones. The auto-scaling group spans several avail-
ability zones to ensure availability even if one availability zone encounters a catas-
trophic failure. By covering several availability zones, the application is guaranteed
the highest possible availability.

In order to be able to access the instances, one has to be able to locate them and
delegate traffic appropriately. AWS provides this functionality through the use of

Chapter 21: System Infrastructure 172

their Elastic Load Balancer, a vital piece of infrastructure automatically distributing
traffic to the aforementioned compute instances. By connecting the load balancer
to an auto-scaling group, compute instances are automatically registered by the
load balancer. Furthermore, the auto-scaling group can utilize metrics provided by
the load balancer to scale the instance count of the auto-scaling group up or down.
The load balancer is also able to pick up on failed instances, and will stop routing
traffic to them. In addition to the previously mentioned benefits, the load balancer
is able to scale itself to match the amount of incoming requests.

AWS provides several load balancers one can consider to be relevant to this project,
namely the application, network and classic load balancers. The classic load bal-
ancer is considered legacy, and should not be used unless the system has other
legacy infrastructure not supported by other load balancers. As for the network and
application load balancers, the choice is more nuanced. The network load balancer
operates on the transport layer of the OSI model, and is not able to make sense of
any incoming requests. It simply receives the request and forwards it to an instance
in the target group it points to. The Application Load Balancer, on the other hand,
operates on the application layer, and is therefore able to understand the entirety
of a request. This enables the developer to add additional functionality to the
load balancer, such as authentication. The additional layers the application load
balancer has to handle does come with a slight penalty in terms of total throughout,
but it could be considered a negligible difference in the use cases of this system. In
cases where throughput is high, such as video streaming or messaging, a network
load balancer could provide a slight edge, but the author believes the extensibil-
ity provided by the application load balancer made it the better choice for this
system. Choosing it over the network load balancer would allow for one to add
authentication and authorization directly into the load balancer at a later stage.

Each availability zone covers a public subnet containing the compute instances
created by the auto-scaling group. By being in a public subnet, the compute
instances are able to access the internet at large, with incoming and outgoing traffic
being allowed. Private subnets, on the other hand, disallows all traffic outside of
the VPC. The server utilizes an external identity provider, and is therefore reliant on
being able to perform network requests to it. Furthermore, the compute instances
must be able to download necessary software when initially launched. As such,
the compute instances will require internet access. One should be careful about
granting access directly to key components of the infrastructure, as it increases the
potential attack surface. AWS offers several solutions to such problems.

A potential solution is to utilize a NAT gateway, an AWS service providing instances
within a private subnet access to the internet without allowing the internet to
access them. This would allow the compute instances to be contained within a
private subnet, whose only option of accessing the outside internet would be
through the NAT gateway. However, NAT gateways could not be utilized by student
accounts throughout the development period, and is therefore not utilized.

Chapter 21: System Infrastructure 173

This application utilizes a public subnet with access restrictions. All outbound
traffic is allowed, and routed through the internet gateway, whereas each compute
instance only allows incoming HTTP traffic from the load balancer. With this
approach, the compute instances are just as restricted as they would be with the
NAT gateway approach, only with fewer resources. The trade-off is a loss in security
configuration, but the configuration provided by the current solution has proven
to be sufficient.

The final piece of the server infrastructure is the database. It is provided by the
AWS Relational Database Service (RDS). As with everything else in the application,
it is hosted in several availability zones, and can scale according to the required
capacity. It is stored in a private subnet, and can only be accessed by instances
within the server security group.

21.2 Continuous Deployment

In order to make the deployment of a new version of the server as quick and easy
as possible, the infrastructure allows for automatic deployment whenever a new
change is pushed to the master branch of the source code repository. The entire
process is described in Figure 21.2. In the case of the server, source code is stored
on GitHub. GitHub provides web-hooks that can be configured to fire whenever a
specific condition is met. The server repository is configured to fire whenever a
commit is pushed to the master branch of the server repository.

AWS provides a set of services that allows one to control the entirety of the CI/CD
process. The most central service within this category is CodePipeline, which offers
capabilities to enable the entirety of a CI/CD process, all the way from hosting a
repository to deploying it to production.

CodePipeline acts as an intermediary between more specific services, namely
CodeCommit, CodeBuild and CodeDeploy. CodeCommit is a Git implementation
hosted by AWS, and is not used within this application. The author chose to store
all source code on GitHub, mostly due to habit and familiarity.

Chapter 21: System Infrastructure 174

Figure 21.2: Deployment diagram of the continuous deployment process. Server
infrastructure is simplified.

As previously stated, a GitHub web-hook fires an event whenever a new change is
pushed to the master branch. CodeBuild, an AWS service, listens for these events,
and responds by fetching the newest version of the source code. It then proceeds to
use a build specification file stored in the source code to create an artifact. In the
case of this project, the build process consists of installing all of the required node
modules, transpiling the TypeScript files to JavaScript files and moving them to a
distribution folder. Furthermore, the build process fetches sensitive information
from the AWS parameter store and stores them in an environment file.

Chapter 21: System Infrastructure 175

GitHub also provides excellent tooling for creating build artifacts through the use
of GitHub Actions. As previously stated, the build process requires one to download
and bundle all node modules required for the server to run. The author believed
that it would be inefficient to do this using GitHub, and then transfer all of the node
modules over the internet to AWS. Instead, the entire process could be handled
within the AWS ecosystem, which would result in having to transfer less data from
GitHub to AWS. One could argue that using CodeBuild ties one up too tightly with
the AWS ecosystem, but the author believed this to be void. If required, the process
of switching from CodeBuild to GitHub actions would be trivial.

Once CodeBuild completes the artifact, it is encrypted and stored in a private S3
bucket. CodePipeline then notifies CodeDeploy, which in turn notifies the auto-
scaling group. The auto-scaling group fetches the new artifact from the S3 bucket,
stops any running processes, and starts new processes with the newest source code
revision.

21.3 Auth0 Infrastructure

Protecting resources from ill-intended actors is of the utmost importance in most
systems. This project is no exception. The infrastructure of the provisioned Auth0
resources is much less complicated than the one provided for AWS, mostly due
to the fact that Auth0 implicitly provisions most resources automatically upon
creation of others. In fact, the project only explicitly provisions four resources: two
clients, an Auth0 API and a client grant.

In order to allow the mobile application to communicate with the rest of the system,
Auth0 requires one to define a client that allows for one to log in through the use
of the native authentication flow, as defined by the IETF in RFC 8252 [65].

The server requires a different type of client in order to communicate with Auth0,
namely a machine-to-machine client. This client allows two machines to communi-
cate securely through the use of shared credentials, which both parties are able to
store securely.

Finally, a custom Auth0 API is provisioned to allow the server to access Auth0.
Limiting what Auth0 API’s are allowed to call are specified through the use of the
aforementioned client grant. In the case of this system, the server is only allowed
to create, update, delete and retrieve users.

Chapter 22

Infrastructure Deployment

With the rise of cloud providers, provisioning and managing an infrastructure
gradually became easier. Most cloud providers allows the user to utilize an user
interface to provision resources. This allows for a simple creation process, albeit
not a reusable one. If one were to clone an infrastructure to allow for different
development environments, for instance, the user would have to simply remember
how the original infrastructure was provisioned and copy the steps. This can
oftentimes become difficult for larger infrastructures, and introduce unnecessary
complexity and confusion. Thus, the principle of Infrastructure as Code (IaC) was
born.

Instead of provisioning resources through user interfaces or command lines, IaC
allows the user to provision resources using code. Leveraging this principle provides
a plethora of benefits. For instance, one can gain a much greater overview of an
infrastructure by simply reading resource definitions, as opposed to traversing
user interfaces and creating a mental model. Furthermore, code usually allows
for some level of variability. To expand on a previous example, creating a new
environment could for instance be done by changing a variable in the code. Finally,
modern IaC tools removes the need for developers to get familiarized with new user
interfaces and consoles. Although the underlying resources change, the concepts
of IaC remains the same.

AWS supports several IaC tools, with the first being AWS CloudFormation [126].
This service allows for users to define infrastructure using either JSON or YAML. The
user creates a CloudFormation template describing the properties a certain AWS
service should have. AWS allows the user to provision the requested infrastructure
through the use of either the command line, their API or their user interface.

Amazon released an alternative to CloudFormation in 2019, the Cloud Development
Kit (CDK) [127]. The CDK allows for developers to define their user infrastructure

176

Chapter 22: Infrastructure Deployment 177

using several popular programming languages, such as Python, TypeScript and
Java. This provides developers with familiar programming language tooling; Type
checking, code suggestions and automatic linting both simplifies and expedites
the development process.

Another popular IaC tool is Terraform [128]. Unlike the previously mentioned
tools, Terraform is a third-party solution, and is entirely cloud-agnostic. It achieves
this by offering providers: plugins capable of creating resources on a specific
platform. Each plugin provides a list of supported resources, examples of how
a specific resource can be created, and a list of available parameters. Terraform
allows developers to define infrastructure through a domain-specific language
specifically created for Terraform, namely the HashiCorp Configuration Language.

Choosing the right IaC tool would allow for a quicker and easier development
experience. The author extensively researched each tool before making a final
choice. CDK appeared to be a good choice, mainly due to being able to utilize
programming language tooling to expedite the development. Furthermore, by
choosing to define the infrastructure in TypeScript, the infrastructure and the
server would be written in the same language. However, the infrastructure needs to
provision resources from outside of the AWS ecosystem. Splitting the infrastructure
in two could be an alternative, where AWS resources could be defined in CDK or
CloudFormation, and everything else could be defined using Terraform. This would,
however, introduce unnecessary complexity and confusion, and would detract from
the added benefit of being able to gain an overview of the infrastructure through
reading code. This eventually led to choosing Terraform.

The author also considered two additional options: The Terraform CDK [129]
and Pulumi [130]. Both options aim to solve the same problem as the AWS CDK:
Define infrastructure through programming languages. However, both options are
still new and unproven. Choosing a battle-tested solution ensures the rigidity of
the infrastructure and lowers the chance of encountering unexpected surprises.
As such, Terraform with the HashiCorp Configuration Language remained the
preferred choice.

Chapter 22: Infrastructure Deployment 178

22.1 Terraform Primer

Terraform is an orchestration tool enabling the user to provision infrastructure
through a domain-specific language. Under the hood, Terraform is able to make
sense of the aforementioned language, and figure out what actions needs to be
performed in order to reach the desired state. The AWS provider achieves this by
planning a set of calls one must make to the AWS API. An example of a resource
definition can be found in Listing 22.1.1, and describes the creation of an S3
storage bucket.

Code listing 22.1.1: Provisioning an S3 bucket through Terraform

resource "aws_s3_bucket" "codepipeline_bucket" {
bucket = "${var.environment}-${var.app_name}-codepipeline-bucket"
acl = "private"

tags = {
Environment = var.environment

}
}

The concept of state is of the utmost importance within the Terraform environment.
Terraform is able to inspect the current state, notice changes between the last
deployment of the infrastructure and the current revision, and give the developer
feedback as to what has changed or will change when a command is ran. Prior to
each Terraform action, the state is refreshed against the utilized providers.

The Terraform command line exposes several key commands one must know before
deploying. This project utilized the following commands:

• init: Initializes a terraform directory. Downloads required providers.
• plan Displays a list of the resources Terraform would provision if the current

configuration were to be ran.
• apply Provision the resources defined in the configuration.
• destroy Destroys all previously provisioned resources by this configuration.

Another important concept to grasp is Terraform Modules. Terraform allows devel-
opers to structure resource definitions in folders, named modules. These modules
can be reused throughout the entire configuration, or even shared on the internet.
This allows for more concise resource definitions. In the case of this project, for
instance, a database module has been created. All resources tied to the creation of
an RDS are contained within this module. The module is then simply imported
and configured through variables when it is provisioned for use with the server.

Chapter 22: Infrastructure Deployment 179

22.2 Deployment Walkthrough

This section will describe how the cloud infrastructure can be deployed. It will
describe how to deploy infrastructure for both Auth0 and AWS. The guide assumes
that the Terraform and AWS CLI’s are installed.

22.2.1 Deploying to Auth0

As previously mentioned, Auth0 is responsible for authentication and authorization.
Due to the limited responsibility of Auth0, very little infrastructure is provisioned.

In order to be able to deploy the infrastructure, an Auth0 account must be cre-
ated. Terraform requires access to an Auth0 application with elevated privileges.
This can be achieved by creating a machine-to-machine application with a client
credentials grant. The generated client credentials are then passed to Terraform
when provisioning the resources. In order to deploy the Auth0 infrastructure, the
following steps must be performed:

1. Create an Auth0 Account. All provisioned resources are within the free tier.
2. Create a machine-to-machine application in Auth0.
3. Give the application access to the Auth0 Management API. Select all scopes.
4. Navigate to the Infrastructure folder in a CLI.
5. Navigate to the Auth0 folder.
6. Run terraform apply. Pass in the client ID and secret of the application that

was created in step two. They can be found under the settings tab in the
Auth0 console.

22.2.2 Deploying to AWS

The initial deployment of the AWS portion of the infrastructure is a three-step
process. This subsection will describe how to configure the GitHub account, how
to store secrets in Parameter Store, and how to deploy the actual infrastructure.

Setting up GitHub

This walkthrough assumes that a GitHub repository has already been set up, and
will therefore not cover it. CodePipeline requires an access token to the GitHub API
in order to fetch code from repositories. The token will also be used to provision
GitHub resources. Generating an access token can be achieved by navigating to
developer settings in a GitHub account. Copy the generated token and store it for
the next step.

Chapter 22: Infrastructure Deployment 180

Storing Secrets in Parameter Store

Sensitive information required by either the infrastructure or the applications
running on it are all stored in the AWS Parameter Store. By storing sensitive
information in a secure place, like the Parameter Store, the chances of experiencing
a security breach is reduced drastically.

The Parameter Store definitions are stored in a separate folder from the rest of
the infrastructure. This choice was made to allow developers to not have to in-
put all secrets every time a new revision of the infrastructure is applied. Secrets
can be defined by simply passing in the variables the command line prompts
when terraform apply is ran within the Parameter Store folder. By default, Ter-
raform assumes that all variables should be changed when running terraform
apply. Changing a single variable can be achieved by running terraform apply
target=aws_ssm_parameter.${PARAMETER_NAME}. The following list will pro-
vide a brief description of the parameters that must be passed in when provisioning
system secrets:

1. Navigate to the Infrastructure folder.
2. Navigate to the ssm folder.
3. Run terraform apply in the command line.
4. The database password can be anything. A secure password is recommended.
5. Client ID and Client Secret can be found in Auth0. They can be found under

the SuperSau Server application.
6. The GitHub Oauth Token variable is the access token created in Section

22.2.2.

Deploying the AWS Infrastructure

Deploying the actual AWS infrastructure is also done through Terraform. By nav-
igating to the server folder and running terraform apply, everything should be
provisioned automatically. All variables used within the server infrastructure has
been given sensible default values, so that they do not have to be altered unless
the developers requires a change.

Chapter 23

Infrastructure Discussion

This chapter will discuss some of the choices made during the cloud infrastructure
development process. It will mostly detail what could have been done differently,
and what should be done to further improve the end result.

23.1 AWS Educate Limitations

The AWS account used throughout the development period was a so-called AWS
Educate account, intended for use by students who are learning how to use cloud
providers. It offers students $30 in credits, as well as the regular free tier usage
AWS offers to all new users.

Choosing an Educate account proved to be very useful to the author, as the de-
velopment period saw several unexpected spikes in cloud costs. Knowing that
no matter what, unexpectedly high costs would only result in a closed account
provided a sense of comfort. However, Educate accounts do have some restrictions.
The first, and most noticeable, is that you are constrained to only using availability
zones in North Virginia, USA. Seeing as the system is intended for use in Norway,
this could prove to be confusing to anyone not familiar with the project. If one
were to actually deploy this application to another region, it would be as simple as
changing a few lines of code in the Terraform project.

AWS Educate accounts also provides several restrictions on what resources can be
used. For instance, domain name registration is entirely blocked. If one were to
point a domain to the cloud infrastructure resources, it would have to be registered
somewhere else. The author considered purchasing a domain for this reason, but
opted to not do it. If the system were to ever be placed in a production-ready
environment, adding a domain and SSL should be highly prioritized, as it drastically
increases the overall security of the project.

181

Chapter 23: Infrastructure Discussion 182

A problem that did affect the author during development was Identity Access
Management. Educate accounts are not allowed to create new user accounts with
programmatic access to AWS. When using Terraform, it is considered best practice
to run Terraform commands using an account with only the privileges required
in order to run Terraform. However, being unable to do so, this project had to
run all Terraform commands with the default AWS administrator account. If the
project were to be moved over to a non-Educate account, this should be addressed.
It can be solved by simply creating a new IAM account within the AWS console,
and replace the credentials stored in the AWS CLI.

Another problem somewhat affecting the security of the infrastructure is the way
CodePipeline is linked to GitHub. In the current infrastructure project, CodePipeline
is able to access GitHub through the use of an access token. Although this access
token only grants access to creating web hooks and reading repositories, it is
applicable for an entire GitHub account. Having the access token leaked would not
only provide attackers with access to this GitHub project, but all projects under this
GitHub account. This way of connecting CodePipeline and GitHub is considered
to be deprecated, and has since been improved through the use of a CodeStar
connection, which allows a connection between a specific external source code
repository and AWS resources. Once the connection has been created, it simply
has to be authorized within the AWS console. However, Educate accounts were not
authorized to create CodeStar connections throughout the development process. If
one were to transfer away from the Educate account, the author suggests switching
to CodeStar connections.

23.2 Identity and Access Management

Using Auth0 as an Identity and Access Management solution was a decision made
prior to choosing a cloud provider. In hindsight, choosing the IAM solution provided
by AWS, Cognito, could have been a better choice. Cognito tightly integrates with
several other AWS resources, and would ensure that the entire infrastructure
would be hosted within the AWS ecosystem. Furthermore, this would enable
one to authorize all requests passed through the load balancer, as opposed to
implementing authorization logic on every API endpoint.

The major benefit of Auth0 is the ease of use. Auth0 provides a detailed API
providing access to the entire Auth0 platform, if desired. Furthermore, it provides
a fully configurable and customizable hosted UI. Cognito, on the other hand,
is reliant on utilizing the AWS Software Development Kit, which exposes AWS
endpoints. Their hosted UI is not nearly as configurable as the one provided by
Auth0. Aesthetically, the Cognito UI can appear unprofessional and insecure to a
new user. Furthermore, it does not provide support for localization. If one were
to utilize the Cognito hosted UI, the user interface would only be available in
English. The alternative would be to implement a custom login user interface. AWS

Chapter 23: Infrastructure Discussion 183

provides Amplify, a tool for building mobile and web applications, for this very
purpose.

The author found this solution to be out of scope for the current system revision.
The author is not able to find any specific reason to keep identity and access-
management within the AWS environment, especially when more suited alterna-
tives exists outside of the ecosystem. Furthermore, the process of creating a custom
login page could prove to be too time-consuming, and could detract from the
overall time allotted for critical system components. Instead, the author chose to
not depend on Auth0 too strongly. Migrating to Cognito later-on would therefore
be rather simple.

Part V

Closing

184

Chapter 24

Project Discussion

This section provides a discussion surrounding the system as a whole, and mostly
revolves around key factors that affected the process. Furthermore, it will discuss
a set of functional requirements that could not be implemented within the time
constraints of the project. Finally, the chapter provides a discussion surrounding
potential future work and a discussion surrounding the potential benefits the
system could bring to the sheep supervision process.

24.1 The Pandemic

The entirety of the project was conducted during the COVID-19 pandemic, which
affected several aspects of the project. In the early stages of the project, the author
and the supervisor discussed the possibility of meeting farmers and sheep observers
in order to gain a greater insight into their needs and to demonstrate the developed
system. However, this never came to fruition; The ongoing pandemic made meeting
farmers in person unsafe. Had it not been for the domain knowledge held by the
supervisor, this project would have been much harder to achieve. His extensive
knowledge and experience within the sheep supervision domain allowed for the
author to gain insightful knowledge as to how sheep observers would benefit from
the developed system. Seeing as the mobile application is mostly targeted towards
sheep observers, the supervisor was able to provide feedback on nearly every
area. The author still believes that meeting sheep observers and farmers could
have expedited and improved the development process, especially with regards to
tailoring the system towards the needs of the ones who will be actually using it.
At the current time, the system appears to fulfill most needs, but one cannot be
certain until the actual users voice their opinions.

The pandemic also largely affected the communication between the supervisor and
the author. In the early stages of the project, the two met in-person every week,

185

Chapter 24: Project Discussion 186

allowing the supervisor to test new prototypes on physical devices. As the pandemic
grew worse, meetings had to be conducted remotely. This lead to the supervisor
losing the ability to actually test the prototypes; Instead, the author would simply
have to display them through a video feed. The core concepts within the prototypes
could still be validated by the supervisor, but the act of physically experiencing
them was lost. In large, the author believes this to have been inconsequential,
largely thanks to supplementary usability testing. Test results indicates that the
final product is user-friendly to an acceptable extent.

24.2 System Composition

An interesting position to consider when discussing the system as a whole is the
choice of technologies for the backend and the mobile application. The author
ultimately decided to utilize the tools he felt were most suited for the task at hand.
Several other technologies and approaches could have provided similar results.
In hindsight, knowing that the system could benefit from a separate website, one
could have made a stronger argument for choosing React Native. The framework
originated from React, a commonly used framework for creating web sites. Since
being created, React Native has returned to its web roots through the framework
"React Native for Web". By utilizing it, some mobile components could also have
been utilized on the web site. The same logic applies to the server: Domain and
infrastructure layers could nearly be copied from the mobile solution to the server.

Having finished the development of both the mobile application and the server,
the author believes the aforementioned approach to provide little benefit over the
chosen one. In terms of user interface reuse, very few components would be directly
transferable to the web. In terms of functionality, the two system components are
concerned with different things. The website would primarily be concerned with
reviewing supervision data, and requires drastically different types of interaction
on different devices. In large, the perceived benefit of such an approach would be
a reduced amount of technologies for future developers to learn.

24.3 SQL vs NoSQL

The choice of using relational databases over non-relational ones was decided early
in the project, and is possibly the technology choice one can most easily argue
against. By choosing a relational approach, the application gains several benefits:
Table relations, cascading deletes, improved query support and transactional con-
sistency are all benefits only brought by relational databases. However, one can
also make a sound argument for choosing NoSQL for this system; Many NoSQL
solutions provide native support for state synchronization between devices. This
would essentially remove the need for writing synchronization support entirely. Not
only would this be a reduction in development time, but also in system complexity.

Chapter 24: Project Discussion 187

Another benefit brought by NoSQL is scalability. Relational databases are hard to
scale out: Separating a relational database over several computational instances are
notoriously difficult. Non-relational databases, on the other hand, can handle such
difficulties with ease. In the context of this project, relational database scalability
will never be a concern. The sheep supervision field is finite in size and will never
scale beyond a certain point. A relational database will be able to handle a workload
much greater than what is required within the context of sheep supervision.

The obvious benefit of utilizing a relational database is relations. Every entity
throughout the sheep supervision domain is somehow connected; Changes within
one entity can and will propagate to other entities. Deleting a farm should result
in all observations of that farm being deleted as well. Relational databases allows
for one to resolve such problems through the use of foreign keys and cascading
deletes, and ensures the soundness of the database at any given time. By utilizing
a non-relational approach, this responsibility would be transferred to the devel-
oper, increasing the overall complexity of the system and essentially negating the
reduction in complexity offered by the built-in synchronization functionality.

Relations also provides a significant benefit with regards to querying data. Due
to the structural integrity provided by relational databases, performing complex
queries can be encapsulated entirely within SQL. By choosing a non-relational
approach, this responsibility would be shifted over to the developer.

The field of sheep supervision has a ceiling cap with regards to the amount of
resources that will be stored within the system. Non-relational databases allows
one to easily scale the database, and would be an interesting choice if the data
requirements of the system were larger. However, this is not a realistic situation
within the context of this project. The author believes the benefits brought by
relational databases largely outweighs the scalability benefits provided by non-
relational databases. Complex querying capabilities and transactional soundness
are too beneficial for the system quality as a whole. As such, he still believes the
relational approach to be the correct choice at the end of the project.

24.4 Unimplemented Functional Requirements

At the time of writing, seven of the 79 function requirements listed in Section 3.4
are not entirely fulfilled. These requirements can be found in Table 24.1, and are
unmet due to two different reasons. FR 5.7 and 7.9 were left unimplemented due
to a lack of time. Both requirements will allow for an improved user experience,
but are not required in order for the application to function as intended. The
functionality for achieving FR 5.7 is available throughout the backend, but has no
user interface to access it.

Chapter 24: Project Discussion 188

ID Priority Description
FR3.0 High The system should allow for farmers to register their

farms.
FR3.1 High The system should allow for farmers to delete a registered

farm.
FR3.2 High The system should allow for farmers to update their regis-

tered farms.
FR5.7 Low The mobile application should allow team owners to

change the name and description of a team.
FR7.9 Low The mobile application should allow for users to rename

a downloaded map.
FR11.0 High The system should allow for users to generate supervision

reports based on supervision data at the end of a season.
FR11.1 High Generated supervision reports should be available for

download as a PDF.

Table 24.1: Unmet functional requirements.

FR 3.0, 3.1, and 3.2 are left unmet not only due to time, but also due to the original
vision of the system as a whole. The author had envisioned farm management-
related functionality to only be available through a website. The mobile application
is primarily intended for usage by sheep observers; Requiring farmers to download
the application for the sole purpose of creating, editing and deleting farms would
be cumbersome. Furthermore, the author believed that the time it would take to
temporarily add this functionality to the mobile application could be better spent
elsewhere. As such, he decided to leave them unimplemented. The functionality is
fully supported on the server; It simply needs an accompanying user interface. If
need be, farms can always be added, modified and deleted through the Swagger
UI described in Section 16.6 until a proper user interface is created for it.

Functionality surrounding the automatic generation of supervision reports, as
listed in FR11.0 and FR11.1, could not be implemented within the time constraints
of this project. Furthermore, the author believes the report generation process
to be complicated enough to warrant a complex user interface requiring a larger
screen size than what most mobile devices provide. Before generating a report, the
author assumes that the farmer would like to review every supervision trip made
throughout a season so that obvious errors could either be omitted or modified.
Such work can be both precise and time-consuming, and does not lend itself
well to small, mobile user interfaces; A web user interface could prove to be more
beneficial, as the screen sizes are larger. As such, the process of creating a generated
report is tied up to the process of creating a website.

The author also believes the process of report generation to be more reliant on
feedback from project stakeholders than any other functionality the system cur-

Chapter 24: Project Discussion 189

rently provides. Whereas the creation of the server and mobile application could
largely be validated through the project supervisor, the requirements of report
creation cannot be solidified without having continuous communications with
farmers and the governing bodies receiving the reports. Creating functionality
relating to report generation without first having established the requirements of
every interested stakeholder could result in functionality that could prove to be
more proof-of-concept than anything else. Instead, the author chose to focus on
allowing for report generation functionality to be created at a later point as easily
as possible.

24.5 Distribution of Quality and Quantity

As the project progressed, the author faced the crossroads of choosing between
creating new functionality and improving upon what has already been created.
At the time, the author had planned to create a website tailored towards farmers
and various government employees. As discussed later-on in Section 24.6.2, the
web site would provide users with the ability of adding farms, generating reports
and gaining a greater overview of events within a map area. Implementing this
functionality would certainly increase the usefulness of the system, albeit at the
cost of a reduction in quality for the rest of the system.

Through discussions with the project supervisor, the author decided to further
improve existing functionality. The reasoning behind this choice mostly relates
to extensibility; Having a strong foundation to build upon would allow for new
functionality to be added at a more rapid pace. Ideally, one would be able to choose
both quality and quantity. However, time constraints often forces one to choose one
over the other. Delivering a system full of features with low quality could potentially
detract from the perceived usefulness of the product. By choosing to reduce the
amount of technical debt associated with the system, future development can solely
focus on extending instead of refactoring. The time gained by not implementing new
functionality was instead spent on improving the architecture, infrastructure and
documentation. In hindsight, the author believes this to have been the better choice
between the two. He is hopeful for the future of the system; As such, preparing it
for further development can be considered to be a sound choice. A well-defined
architecture with extensive documentation will allow future developers to quickly
gain an understanding of the system, and extend it in any way necessary. Choosing
to implement new functionality would have provided more immediate benefits.
However, the author believes such actions to be harmful to the project in the long
run, as technical debt could accrue to the extent that the system would require
major refactoring.

Chapter 24: Project Discussion 190

24.6 Future work

This project had a strict deadline on June 1st, 2021. As such, the author had to
come to terms with limiting the scope of the project. This section will describe
functionality the author had envisioned as being an integral part of the system,
but had to be omitted due to time constraints.

24.6.1 Usability Testing Farmers and Sheep Observers

The entirety of this project was conducted during the COVID-19 pandemic. As such,
some precautions had to be taken. In terms of working on the project, the pandemic
proved to be largely irrelevant. It did, however, significantly impact the possibility of
meeting sheep observers and farmers. As such, every usability test had to performed
on subjects with no relation to the sheep supervision process. In order to gain
a greater and more accurate understanding of the usefulness of the developed
system, usability tests with farmers and sheep observers should be conducted. The
usability tests performed throughout this project can be considered to provide
some context with regards to the potential benefits of a digital supervision system,
but cannot be considered to be absolute before the actual users can voice their
opinions.

24.6.2 Creating a Web Site

Throughout the master thesis, the author and his supervisor discussed the creation
of a website tailored towards the farmers that utilize the system. The web site
was intended to be based around an interactive map that allowed farmers to view
sheep supervision trips within a specific map area. This functionality could have
allowed for farmers to gain a greater understanding of the current whereabouts of
grazing sheep, and a greater overview of any potential threats within those areas.

Functionality relating to the creation and modification of farms were to be placed
within the web site. If one were to move the responsibility of farm management over
to the website, farmers would no longer need to download the mobile application;
Management-related tasks could be performed solely through the website. The
backend already fully supports farm creation, modification and deletion, but are
not currently available through any user interface. Farm-related functionality must
be completed in order to fulfill the unmet functional requirements listed in Table
24.1. If they are not made available through the website, they must be made
available through the mobile application.

Report generation was another set of functionality intended solely for the web
application. The choice of placing it within the domain of the website is two-fold:
It only relates to farmers, and it is an involved process. A farmer cannot simply
assume that all data provided throughout a grazing season is valid. Every trip
must be reviewed to some extent, and even possibly modified or removed. The

Chapter 24: Project Discussion 191

author believes such concerns to be better suited for a larger user interface, making
the website a perfect fit; The average computer display is much larger than the
average smartphone. Furthermore, data manipulation is a task much better suited
for computers. Displaying and altering a large set of fields and columns on a mobile
user interface can become confusing due to the size of the screen.

24.6.3 Integrating With External Actors

This project is not the only one concerned with the supervision and general well-
being of sheep; Integrating this system with other systems could prove to bring
several benefits. Rovbase and Skandobs are primarily concerned with keeping track
of predator observations throughout Norway and Sweden. Any observations of
predators registered within this system could automatically be sent over to either
party, and could potentially increase the overall awareness of the whereabouts of
predators in Norway and Sweden. Furthermore, integrating with the aforemen-
tioned observation systems could allow for farmers to be automatically notified
whenever a new predator observation is registered in their systems. Observations
within Rovbase and Skandobs could possibly even be displayed on the maps used
within both the map application and the website, allowing for farmers to more
easily adapt their supervision frequency.

Integrating the system with electronic tracking services could also prove to be very
beneficial for sheep observers and farmers alike. The mobile application could
display the last known whereabouts of tracked sheep, which would aid sheep
observers when they are planning a supervision trip. Furthermore, farmers could
benefit from viewing live tracking data through the use of the web site described
in Section 24.6.2, allowing farmers to gain a greater understanding of the current
and past whereabouts of their sheep.

Sheep observers should notify Statens Naturoppsyn any time the death of a sheep
could be possibly linked to a predator. At the time of writing, this process is
conducted manually. Allowing the server to automatically notify SNO of any sheep
deaths linked to predators would reduce the workload of the sheep observer, and
possibly even reduce the chance of human error.

24.6.4 Report Generation

When the grazing season ends, farmers are expected to create and send a sheep
supervision report to several governing bodies, a process currently being conducted
manually. The project originally intended to create functionality for automatically
generating reports once the grazing season ended, but ultimately had to be cut
due to a lack of time. If the project were to ever be continued, report generation
should be a top priority. The author has imagined this functionality to be available
through the use of a website, as it would allow for one to more easily modify the
contents of the report to generate. A farmer should ideally be able to modify or

Chapter 24: Project Discussion 192

omit any trip data they see fit, which could prove to become disorganized and
confusing on smaller user interfaces.

At the time of writing, the mobile application is able to generate every type of data
the government is interested in receiving, allowing for a large foundation of data to
choose from when generating reports. Furthermore, the server provides extensive
querying and filtering capabilities. Creating functionality for report generation
simply requires one to splice them together, and allow for the functionality to
be accessed through a user interface. In order for the generated report to bene-
fit as many stakeholders as possible, the development process surrounding the
functionality should strive to include the stakeholders to the largest extent possible.

24.7 Potential Benefits of Digital Supervision

At the beginning of the project, the author expected to be able to perform usability
tests on actual farmers at some point during the master thesis. Unfortunately, this
never came to fruition due to the ongoing COVID-19 pandemic. Instead, subjects
unrelated to the supervision process had to be chosen. As such, their experiences
with the system might not be representative for farmers and sheep observers. The
feedback received from usability testing mostly reflected the feedback from the
supervisor, granting it some validity due to the extensive experience the supervisor
has with the current supervision process. Throughout usability tests, prototypes and
discussions with the project supervisor, the author uncovered numerous potential
benefits one could gain by conducting supervision trips through the use of the
developed system. This section will separate the potential benefits into three
categories, each corresponding to a research question.

What is to be gained from collecting structured sheep supervision data?

One of the biggest benefits a digital supervision solution can provide is data con-
sistency. Whereas the current method of performing supervision trips provides
loose guidelines for data collection and supervision details, this system forces
every user to provide the same data, thus standardizing the collected data and the
supervision process. A consistent set of data lays the groundwork for performing
data analysis at a later point. For instance, analyzing the movement of herds of
sheep for abnormal movement patterns might allow farmers to gain a greater
understanding of whether something is amiss. Furthermore, having a set of his-
torical sheep locations can allow sheep observers to optimize their supervision
routes to increase supervision efficiency. This benefit could be further extended by
combining application data and data generated from electronic tracking devices.

Digitally storing supervision data will also allow for actors and external services to
access it more easily, enabling actors such as Mattilsynet and the county governor
to continuously monitor supervision data. Furthermore, third-party services con-
cerned with managing other aspects of tending to sheep can seamlessly poll for

Chapter 24: Project Discussion 193

updated sheep data. Livestock management services can for instance periodically
check for dead sheep observations and automatically update their state.

Standardizing the set of data a sheep observer must register might also alleviate
problems surrounding a lack of data when submitting seasonal reports, especially
with regards to monetary reimbursements for sheep lost to predators. Every farmer
will have submitted data in the same format, thus allowing for one to more
easily make a decision that aligns with previous results in cases with similar data.
Furthermore, a larger set of data to analyze will allow Mattilsynet and the county
governor to gain a greater understanding of whether the performed supervisory
work is up to standards.

In what ways can digitalized sheep supervision affect the well-being of graz-
ing sheep?

The well-being of sheep grazing on outlying fields can be affected in a multitude of
ways by utilizing this system, with the most transparent one being an increase in
information sharing between farmers and sheep observers. An isolated or ill sheep
can be registered by any observer within a supervision team, in turn allowing the
relevant farmer to act on the observation.

Furthermore, making observation data immediately available to any farmers and
observers within a supervision team will allow for sheep observers to plan their
trip routes around points where previous sheep observations have occurred. The
process of doing so can ensure that every sheep receives more supervision, and
also improve the efficiency of the route of the observer.

One could also argue that improving the efficiency of the overall supervision
process might allow sheep supervision to occur more frequently, or in the least
cover more ground throughout a single trip. The author believes this to be largely
irrelevant, as the increase in efficiency is akin to a decrease in tediousness more
than anything else.

The process of registering "other" observations can also increase the well-being of
grazing sheep to some extent. At the time of writing, farmers already employ a
tactic of increasing supervision trips in areas where predators have been sighted.
The knowledge of predator sightings can be more easily shared by utilizing the
application, thus allowing farmers to be more aware of when additional supervision
is required. This benefit can be further increased by integrating the server with
Rovbase or Skandobs, third-party services for registering predator sightings. Any
predator observations registered within the application could be automatically sent
to the aforementioned services, removing the need of registering said sightings
within Rovbase or Skandobs manually. Furthermore, any sightings registered within
the Rovbase system could be displayed within this system, allowing for a greater
overview of predator sightings.

Chapter 24: Project Discussion 194

On the topic of third-party services, integrating the application with systems for
electronic sheep tracking can further increase the efficiency of the observation
route, whilst also ensuring that as many sheep as possible are checked up on in
every supervision trip.

What potential benefits can sheep observers and farmers gain by utilizing
digital supervision solutions?

Digitally storing sheep supervision details can allow farmers to gain a greater
overview of where their sheep are at any given time. Furthermore, digital storage
completely removes the risk of losing sheep supervision notes. Lost supervision
notes could not only lead to fines due to breaching the guidelines of sheep supervi-
sion, but it could also impact the user in terms of monetary compensation for sheep
deaths caused by predators. To build upon this, digital supervision registration
allows one to consolidate all supervision note-taking into the same process. The
application can allow an observer to automatically store geospatial data about
what areas a trip covered, a process previously dependent on external systems.

Furthermore, conducting sheep supervisions through the application can allow
the sheep observers to register observations at a more rapid pace. The mobile
application is capable of automatically retrieving the time and location of both
trips and observations, completely eliminating the need to manually register them.
Additionally, the application may reduce the amount of inaccurate observation
data, especially with regards to sheep ties and locations. A set of coordinates
are very precise, and writing the wrong number can easily occur. The applica-
tion negates this risk of human error entirely, as coordinates are automatically
retrieved by the application. With manual registration, the sheep observer has to
memorize the number of ties per color in their head while counting; By using the
mobile application, the responsibility of remembering the count is transferred to a
computer.

Communication between farmers and sheep observers could also benefit from this
system through the concept of teams. The supervision teams the system provides
can greatly alleviate the amount of communication between farmers and observers
across several different farms. Phone calls, text messages and emails can be avoided
by simply checking the trips for a specific team. The same logic applies for "other"
observations. Instead of manually notifying all nearby farmers of predator sightings,
farmers can instead simply check the system.

The most interesting potential benefits of the created system, however, are the
ones further extensions can introduce. Section 24.6 discusses several extensions to
the system, allowing for potential benefits for many different stakeholders. The
aforementioned extension points are the main driver behind the system architec-
ture: Extensibility. Every component has an extensible architecture, allowing one
to easily add and remove additional system components.

Chapter 25

Conclusion

This project explored the concept of digitalizing the sheep observation documenta-
tion process during government-mandated sheep supervision trips to discover what
benefits it could provide over the currently analog process. The developed system
consists of a mobile application for performing sheep supervision trips, a server for
centrally storing data, and a cloud infrastructure supporting the system. In large,
the system serves as a base on which one can extract additional benefits through
extension; Instead of quickly creating functionality of sub-par quality, development
time was spent refining the system architecture and documentation.

The usability tests conducted throughout the thesis proved that the system is easy
to use and understand. Testing could not be performed on the actual users of the
system due to COVID-19. As such, perceived benefits cannot be viewed as absolute.
If system development is continued, it would be wise to conduct interviews and
usability tests on the intended system users. In order for the system to function
as envisioned, functionality for report generation and farm mutation should be
implemented. Furthermore, a website tailored towards farmers could be beneficial.

By creating prototypes and conducting formal and informal usability tests, the
author discovered the benefits a digitalized supervision process could entail. These
findings were further validated by the supervisor, a seasoned sheep observer.
System usage could increase and standardize supervision trip data. Centrally
storing data can make it more accessible and reduce the chance of data loss. It can
also serve as a foundation for data analysis. The mobile application can facilitate
the registration process by automatically generating required supervision data,
lowering the chance of human error. An increased amount of data can in turn
benefit system stakeholders and the well-being of sheep, by allowing for optimized
supervision routes and improved communications. Implementing the functionality
suggested in Section 24.6 could yield additional benefits; To accommodate such
functionality, the system has been designed with extensibility in mind.

195

Bibliography

[1] Mattilsynet. (Mar. 2020). Årsrapport 2019 - mattilsynet, [Online]. Avail-
able: https://www.mattilsynet.no/om_mattilsynet/aarsrapport_
2019 _ _mattilsynet . 38708 / binary / %C3 % 85rsrapport % 202019 % 20 -
%20Mattilsynet (Accessed 6 Nov. 2020).

[2] Rovbase. (2020). Erstatning for sau (Norge 2019), [Online]. Available:
https://rovbase.no/erstatning/sau (Accessed 7 Nov. 2020).

[3] Lovdata. (Feb. 2005). Forskrift om velferd for småfe, [Online]. Available:
https://lovdata.no/dokument/SF/forskrift/2005-02-18-160 (Ac-
cessed 6 Nov. 2020).

[4] Statistisk Sentralbyrå. (2020). Land use and land cover, [Online]. Avail-
able: https://www.ssb.no/en/arealstat (Accessed 30 Mar. 2021).

[5] J. Schärer. (Dec. 2016). Norge - et utmarksland, [Online]. Available: https:
//www.nibio.no/nyheter/norge--et-utmarksland (Accessed 5 May
2021).

[6] Norsk Sau og Geit. (n.d). Verdien av beitebruk, [Online]. Available: https:
//www.nsg.no/beitebruk/beiterett/verdisetting-av-beitebruk/
verdien-av-utmarksbeite/ (Accessed 11 Mar. 2021).

[7] G. Austrheim, L. Asheim, G. Bjarnason, J. Feilberg, A. M. Fosaa, O. Holand,
K. Høegh, I. Jónsdóttir, B. Magnusson, L. Mortensen, A. Mysterud, E. Olsen,
A. Skonhoft, G. Steinheim, and A. Thorhallsdottir, “Sheep grazing in the
north atlantic region: A long term perspective on management, resource
economy and ecology,” Vitenskapsmuseet, Rapport Zoology Series, vol. 2008,
3, Jan. 2008.

[8] Norsk Sau og Geit. (n.d). Bjelleslips - kodemerking for lammetall på beite,
[Online]. Available: https://www.nsg.no/a-a/merking-av-smafe/
bjelleslips/ (Accessed 28 Nov. 2020).

[9] Norsk Sau og Geit. (Jun. 2020). Slips og fargekoder, [Online]. Available:
https://www.nsg.no/Oppland/slips-og-fargekoder (Accessed 28 Nov.
2020).

196

https://www.mattilsynet.no/om_mattilsynet/aarsrapport_2019__mattilsynet.38708/binary/%C3%85rsrapport%202019%20-%20Mattilsynet
https://www.mattilsynet.no/om_mattilsynet/aarsrapport_2019__mattilsynet.38708/binary/%C3%85rsrapport%202019%20-%20Mattilsynet
https://www.mattilsynet.no/om_mattilsynet/aarsrapport_2019__mattilsynet.38708/binary/%C3%85rsrapport%202019%20-%20Mattilsynet
https://rovbase.no/erstatning/sau
https://lovdata.no/dokument/SF/forskrift/2005-02-18-160
https://www.ssb.no/en/arealstat
https://www.nibio.no/nyheter/norge--et-utmarksland
https://www.nibio.no/nyheter/norge--et-utmarksland
https://www.nsg.no/beitebruk/beiterett/verdisetting-av-beitebruk/verdien-av-utmarksbeite/
https://www.nsg.no/beitebruk/beiterett/verdisetting-av-beitebruk/verdien-av-utmarksbeite/
https://www.nsg.no/beitebruk/beiterett/verdisetting-av-beitebruk/verdien-av-utmarksbeite/
https://www.nsg.no/a-a/merking-av-smafe/bjelleslips/
https://www.nsg.no/a-a/merking-av-smafe/bjelleslips/
https://www.nsg.no/Oppland/slips-og-fargekoder

Bibliography 197

[10] Regjeringen. (n.d). Rovdyr i noreg, [Online]. Available: https://www.r
egjeringen.no/no/tema/klima-og-miljo/naturmangfold/innsiktsar
tikler-naturmangfold/rovvilt-og-rovviltforvaltning/id2076779/
(Accessed 5 May 2021).

[11] Beitesnap. (n.d). En revolusjonerende beiteapp! [Online]. Available: http
s://www.beitesnap.no/ (Accessed 24 Nov. 2020).

[12] (Sep. 2017). Nyttig app til beitesesongen, [Online]. Available: https:
//www.bondevennen.no/aktuelt/nyttig- app- til- beitesesongen/
(Accessed 24 Nov. 2020).

[13] Rovdata and Naturvårdsverket. (n.d). Skandobs, [Online]. Available: htt
ps://www.skandobs.no/#showAbout (Accessed 24 Nov. 2020).

[14] Findmy. (n.d). Produkt, [Online]. Available: https://www.findmy.no/
nb/produkt (Accessed 7 Apr. 2021).

[15] Telespor. (n.d). Telespor, [Online]. Available: https://telespor.no/
(Accessed 7 Apr. 2021).

[16] Nofence. (n.d). Nofence, [Online]. Available: https://www.nofence.no/
(Accessed 7 Apr. 2021).

[17] Smartbjella. (n.d). Smartbjella, [Online]. Available: https://smartbjell
a.no/ (Accessed 7 Apr. 2021).

[18] Norsk Sau og Geit. (n.d). Verdisatser for småfe, [Online]. Available: https:
//www.nsg.no/a-a/okonomi/verdisatser/ (Accessed 11 May 2021).

[19] Findmy. (n.d). Bestill e-bjella model2 nå! [Online]. Available: https:
//www.findmy.no/shop/ (Accessed 17 May 2021).

[20] Telespor. (n.d). Radiobjella, [Online]. Available: https://nettbutikk.
telespor.no/categories/radiobjella (Accessed 17 May 2021).

[21] Nofence. (2021). Gjeldende prismodell for bruk, [Online]. Available: http
s://www.nofence.no/fakturainfo (Accessed 17 May 2021).

[22] Smartbjella. (n.d). Bestill - smartbjella sporing, [Online]. Available: https:
//smartbjella.no/butikk/ (Accessed 17 May 2021).

[23] Kartverket. (2020). Hvor?-appen, [Online]. Available: https://www.kart
verket.no/til-lands/kart/hvor-appen (Accessed 25 Nov. 2020).

[24] Ut.no. (n.d). Ut.no, [Online]. Available: https://apps.apple.com/no/
app/ut-no/id510575024 (Accessed 25 Nov. 2020).

[25] I. L. Hjelmeland. (n.d). Topokart - ditt turkart, [Online]. Available: https:
//apps.apple.com/no/app/topokart-ditt-turkart/id1090025147
(Accessed 25 Nov. 2020).

[26] Norgeskart. (n.d). Norgeskart, [Online]. Available: https://apps.apple.
com/no/app/norgeskart/id727189627?l=nb (Accessed 27 May 2021).

https://www.regjeringen.no/no/tema/klima-og-miljo/naturmangfold/innsiktsartikler-naturmangfold/rovvilt-og-rovviltforvaltning/id2076779/
https://www.regjeringen.no/no/tema/klima-og-miljo/naturmangfold/innsiktsartikler-naturmangfold/rovvilt-og-rovviltforvaltning/id2076779/
https://www.regjeringen.no/no/tema/klima-og-miljo/naturmangfold/innsiktsartikler-naturmangfold/rovvilt-og-rovviltforvaltning/id2076779/
https://www.beitesnap.no/
https://www.beitesnap.no/
https://www.bondevennen.no/aktuelt/nyttig-app-til-beitesesongen/
https://www.bondevennen.no/aktuelt/nyttig-app-til-beitesesongen/
https://www.skandobs.no/#showAbout
https://www.skandobs.no/#showAbout
https://www.findmy.no/nb/produkt
https://www.findmy.no/nb/produkt
https://telespor.no/
https://www.nofence.no/
https://smartbjella.no/
https://smartbjella.no/
https://www.nsg.no/a-a/okonomi/verdisatser/
https://www.nsg.no/a-a/okonomi/verdisatser/
https://www.findmy.no/shop/
https://www.findmy.no/shop/
https://nettbutikk.telespor.no/categories/radiobjella
https://nettbutikk.telespor.no/categories/radiobjella
https://www.nofence.no/fakturainfo
https://www.nofence.no/fakturainfo
https://smartbjella.no/butikk/
https://smartbjella.no/butikk/
https://www.kartverket.no/til-lands/kart/hvor-appen
https://www.kartverket.no/til-lands/kart/hvor-appen
https://apps.apple.com/no/app/ut-no/id510575024
https://apps.apple.com/no/app/ut-no/id510575024
https://apps.apple.com/no/app/topokart-ditt-turkart/id1090025147
https://apps.apple.com/no/app/topokart-ditt-turkart/id1090025147
https://apps.apple.com/no/app/norgeskart/id727189627?l=nb
https://apps.apple.com/no/app/norgeskart/id727189627?l=nb

Bibliography 198

[27] Ture Apps AS. (n.d). Norgeskart outdoors, [Online]. Available: https:
//ture.no/en/norgeskart-english/ (Accessed 25 Nov. 2020).

[28] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd.
Addison-Wesley Professional, 2012, ISBN: 0321815734.

[29] T. Haerder and A. Reuter, “Principles of transaction-oriented database
recovery,” ACM Comput. Surv., vol. 15, no. 4, pp. 287–317, Dec. 1983,
ISSN: 0360-0300. DOI: 10.1145/289.291.

[30] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship,
1st ed. USA: Prentice Hall PTR, 2008, ISBN: 0132350882.

[31] H. Kniberg and M. Skarin, Kanban and Scrum - Making the Most of Both.
Lulu.com, 2010, ISBN: 0557138329.

[32] Trello. (n.d). What is trello? [Online]. Available: https://help.trello.
com/article/708-what-is-trello (Accessed 7 Apr. 2021).

[33] Auth0. (n.d). Auth0, [Online]. Available: https://auth0.com/ (Accessed
21 May 2021).

[34] Microsoft, Visual studio code - code editing. redefined, version 1.51.0, Oct.
2020. [Online]. Available: https://code.visualstudio.com/ (Accessed
21 May 2021).

[35] GitHub. (n.d). Github: Where the world builds software, [Online]. Avail-
able: https://github.com/ (Accessed 21 May 2021).

[36] Apple. (n.d). Ios 14 - apple developer, [Online]. Available: https://
developer.apple.com/ios/ (Accessed 29 May 2021).

[37] Google. (n.d). What is android, [Online]. Available: https://www.androi
d.com/what-is-android/ (Accessed 29 May 2021).

[38] StatCounter. (2020). Mobile operating system market share worldwide,
[Online]. Available: https://gs.statcounter.com/os-market-share/
mobile/worldwide/#monthly-200901-202010 (Accessed 3 Dec. 2020).

[39] StatCounter. (2020). Mobile operating system market share norway, [On-
line]. Available: https://gs.statcounter.com/os- market- share/
mobile/norway/#monthly-200901-202010 (Accessed 3 Dec. 2020).

[40] StatCounter. (2021). Desktop vs mobile vs tablet market share worldwide,
[Online]. Available: https://gs.statcounter.com/platform-market-
share/desktop-mobile-tablet/worldwide/#monthly-200901-202104
(Accessed 29 May 2021).

[41] Ionic. (n.d). Open-source ui toolkit to create your own mobile or desktop
apps, [Online]. Available: https://ionicframework.com/docs (Accessed
22 May 2021).

[42] Facebook. (n.d). React native - learn once, write anywhere, [Online].
Available: https://reactnative.dev/ (Accessed 21 May 2021).

https://ture.no/en/norgeskart-english/
https://ture.no/en/norgeskart-english/
https://doi.org/10.1145/289.291
https://help.trello.com/article/708-what-is-trello
https://help.trello.com/article/708-what-is-trello
https://auth0.com/
https://code.visualstudio.com/
https://github.com/
https://developer.apple.com/ios/
https://developer.apple.com/ios/
https://www.android.com/what-is-android/
https://www.android.com/what-is-android/
https://gs.statcounter.com/os-market-share/mobile/worldwide/#monthly-200901-202010
https://gs.statcounter.com/os-market-share/mobile/worldwide/#monthly-200901-202010
https://gs.statcounter.com/os-market-share/mobile/norway/#monthly-200901-202010
https://gs.statcounter.com/os-market-share/mobile/norway/#monthly-200901-202010
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide/#monthly-200901-202104
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide/#monthly-200901-202104
https://ionicframework.com/docs
https://reactnative.dev/

Bibliography 199

[43] The Flutter Team, Flutter - beautiful native apps in record time, version 2.0.2,
Mar. 2021. [Online]. Available: https://flutter.dev/ (Accessed 21 May
2021).

[44] Google, Dart programming language | dart, version 2.12.1, Mar. 2021.
[Online]. Available: https://dart.dev/ (Accessed 23 May 2021).

[45] T. Sneath. (May 2021). Announcing flutter 2.2 at google i/o 2021, [Online].
Available: https://medium.com/flutter/announcing-flutter-2-2-at-
google-i-o-2021-92f0fcbd7ef9 (Accessed 22 May 2021).

[46] Microsoft. (n.d). Xamarin | open-source mobile app platform for .net,
[Online]. Available: https://dotnet.microsoft.com/apps/xamarin
(Accessed 21 May 2021).

[47] Facebook. (n.d). Who’s using react native? - react native, [Online]. Avail-
able: https://reactnative.dev/showcase (Accessed 22 May 2021).

[48] G. Peal. (Jun. 2018). React native at airbnb, [Online]. Available: https:
//medium.com/airbnb-engineering/react-native-at-airbnb-f95aa
460be1c (Accessed 5 Dec. 2020).

[49] G. Peal. (Jun. 2018). React native at airbnb: The technology, [Online].
Available: https://medium.com/airbnb-engineering/react-native-
at-airbnb-the-technology-dafd0b43838 (Accessed 5 Dec. 2020).

[50] G. Peal. (Jun. 2018). Sunsetting react native, [Online]. Available: https:
//medium.com/airbnb-engineering/sunsetting-react-native-1868b
a28e30a (Accessed 5 Dec. 2020).

[51] F. Thawar. (Jan. 2020). React native is the future of mobile at shopify,
[Online]. Available: https://shopify.engineering/react- native-
future-mobile-shopify (Accessed 5 Dec. 2020).

[52] The Flutter Team. (n.d). Showcase - flutter, [Online]. Available: https:
//flutter.dev/showcase (Accessed 22 May 2021).

[53] C. Sprague and L. McKenzie. (Sep. 2020). Ebay motors, accelerating with
flutter, [Online]. Available: https://tech.ebayinc.com/product/ebay-
motors-accelerating-with-fluttertm/ (Accessed 5 Dec. 2020).

[54] H. Wang. (Jan. 2019). Competing frameworks: Alibaba puts sdk flutter
to the test, [Online]. Available: https://medium.com/hackernoon/c
ompeting- frameworks- alibaba- puts- sdk- flutter- to- the- test-
88eb8cf1f35a (Accessed 5 Dec. 2020).

[55] Microsoft. (n.d). Xamarin customer showcase, [Online]. Available: https:
//dotnet.microsoft.com/apps/xamarin/customers (Accessed 22 May
2021).

[56] Stack Overflow. (May 2020). Developer survey, [Online]. Available: https:
//insights.stackoverflow.com/survey/2020 (Accessed 14 Mar. 2021).

https://flutter.dev/
https://dart.dev/
https://medium.com/flutter/announcing-flutter-2-2-at-google-i-o-2021-92f0fcbd7ef9
https://medium.com/flutter/announcing-flutter-2-2-at-google-i-o-2021-92f0fcbd7ef9
https://dotnet.microsoft.com/apps/xamarin
https://reactnative.dev/showcase
https://medium.com/airbnb-engineering/react-native-at-airbnb-f95aa460be1c
https://medium.com/airbnb-engineering/react-native-at-airbnb-f95aa460be1c
https://medium.com/airbnb-engineering/react-native-at-airbnb-f95aa460be1c
https://medium.com/airbnb-engineering/react-native-at-airbnb-the-technology-dafd0b43838
https://medium.com/airbnb-engineering/react-native-at-airbnb-the-technology-dafd0b43838
https://medium.com/airbnb-engineering/sunsetting-react-native-1868ba28e30a
https://medium.com/airbnb-engineering/sunsetting-react-native-1868ba28e30a
https://medium.com/airbnb-engineering/sunsetting-react-native-1868ba28e30a
https://shopify.engineering/react-native-future-mobile-shopify
https://shopify.engineering/react-native-future-mobile-shopify
https://flutter.dev/showcase
https://flutter.dev/showcase
https://tech.ebayinc.com/product/ebay-motors-accelerating-with-fluttertm/
https://tech.ebayinc.com/product/ebay-motors-accelerating-with-fluttertm/
https://medium.com/hackernoon/competing-frameworks-alibaba-puts-sdk-flutter-to-the-test-88eb8cf1f35a
https://medium.com/hackernoon/competing-frameworks-alibaba-puts-sdk-flutter-to-the-test-88eb8cf1f35a
https://medium.com/hackernoon/competing-frameworks-alibaba-puts-sdk-flutter-to-the-test-88eb8cf1f35a
https://dotnet.microsoft.com/apps/xamarin/customers
https://dotnet.microsoft.com/apps/xamarin/customers
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020

Bibliography 200

[57] A. Bjørn Hansen, C. Rieger, T.-M. Grønli, T. A. Majchrzak, and G. Ghinea,
“An empirical investigation of performance overhead in cross-platform
mobile development frameworks,” Jun. 2020. DOI: https://doi.org/10.
1007/s10664-020-09827-6.

[58] M. Willocx, J. Vossaert, and V. Naessens, “Comparing performance param-
eters of mobile app development strategies,” in 2016 IEEE/ACM Interna-
tional Conference on Mobile Software Engineering and Systems (MOBILESoft),
2016, pp. 38–47. DOI: 10.1109/MobileSoft.2016.028.

[59] L. Corbalán, P. Thomas, L. Delia, G. Cáseres, J. Fernandez Sosa, F. Tesone,
and P. Pesado, “A study of non-functional requirements in apps for mobile
devices,” in. Jul. 2019, pp. 125–136, ISBN: 978-3-030-27712-3. DOI: 10.
1007/978-3-030-27713-0_11.

[60] B. De Coninck. (Dec. 2019). Flutter versus other mobile development
frameworks: A ui and performance experiment. part 2, [Online]. Available:
https://blog.codemagic.io/flutter- vs- android- ios- xamarin-
reactnative/ (Accessed 5 Dec. 2020).

[61] D. Tuppeny, Flutter - visual studio marketplace, version 3.17.1, Dec. 2020.
[Online]. Available: https://marketplace.visualstudio.com/items?
itemName=Dart-Code.flutter (Accessed 21 May 2021).

[62] Google, Meet android studio | android developers, version 4.1, Aug. 2020.
[Online]. Available: https://developer.android.com/studio/intro
(Accessed 21 May 2021).

[63] Apple, Xcode, version 12.4, Jan. 2021. [Online]. Available: https://
developer.apple.com/documentation/xcode/ (Accessed 21 May 2021).

[64] D. Tuppeny, Dart - visual studio marketplace, version 3.17.1, Dec. 2020.
[Online]. Available: https://marketplace.visualstudio.com/items?
itemName=Dart-Code.dart-code (Accessed 21 May 2021).

[65] W. Denniss, Google, J. Bradley, and Ping Identity, “Oauth 2.0 for native
apps,” RFC Editor, RFC 6749, Oct. 2017. [Online]. Available: https://
tools.ietf.org/html/rfc8252.

[66] The Flutter Team. (n.d). Inside flutter, [Online]. Available: https://flutt
er.dev/docs/resources/inside-flutter#aggressive-composability
(Accessed 2 Apr. 2021).

[67] Background_locator | flutter package, version 1.2.2+1, Aug. 2020. [Online].
Available: https://pub.dev/packages/background_locator (Accessed
29 May 2021).

[68] M. Bui, Flutter_appauth | flutter package, version 0.9.2+6, Oct. 2020.
[Online]. Available: https://pub.dev/packages/flutter_appauth (Ac-
cessed 21 May 2021).

https://doi.org/https://doi.org/10.1007/s10664-020-09827-6
https://doi.org/https://doi.org/10.1007/s10664-020-09827-6
https://doi.org/10.1109/MobileSoft.2016.028
https://doi.org/10.1007/978-3-030-27713-0_11
https://doi.org/10.1007/978-3-030-27713-0_11
https://blog.codemagic.io/flutter-vs-android-ios-xamarin-reactnative/
https://blog.codemagic.io/flutter-vs-android-ios-xamarin-reactnative/
https://marketplace.visualstudio.com/items?itemName=Dart-Code.flutter
https://marketplace.visualstudio.com/items?itemName=Dart-Code.flutter
https://developer.android.com/studio/intro
https://developer.apple.com/documentation/xcode/
https://developer.apple.com/documentation/xcode/
https://marketplace.visualstudio.com/items?itemName=Dart-Code.dart-code
https://marketplace.visualstudio.com/items?itemName=Dart-Code.dart-code
https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/html/rfc8252
https://flutter.dev/docs/resources/inside-flutter#aggressive-composability
https://flutter.dev/docs/resources/inside-flutter#aggressive-composability
https://pub.dev/packages/background_locator
https://pub.dev/packages/flutter_appauth

Bibliography 201

[69] The Flutter Team. (n.d). Using packages, [Online]. Available: https://flu
tter.dev/docs/development/packages-and-plugins/using-packages
(Accessed 14 Mar. 2021).

[70] R. Rousselet, Provider, version 4.3.3, Jan. 2021. [Online]. Available: https:
//pub.dev/documentation/provider/4.3.3/ (Accessed 2 Apr. 2021).

[71] The Flutter Team. (n.d). List of state management approaches, [Online].
Available: https://flutter.dev/docs/development/data-and-backen
d/state-mgmt/options#provider (Accessed 2 Apr. 2021).

[72] J. Ryan, Flutter_map | flutter package, version 0.11.0, Jan. 2021. [Online].
Available: https://pub.dev/packages/flutter_map (Accessed 21 May
2021).

[73] S. Binder, Moor | flutter package, version 3.4.0, Oct. 2020. [Online]. Avail-
able: https://pub.dev/packages/moor (Accessed 21 May 2021).

[74] A. R. Tekartik, Sqflite | flutter package. [Online]. Available: https://pub.
dev/packages/sqflite (Accessed 21 May 2021).

[75] ReactiveX, Rxdart | flutter package, version 0.24.1, May 2020. [Online].
Available: https://pub.dev/packages/rxdart (Accessed 21 May 2021).

[76] Flutter China, Dio | flutter package, version 3.0.1, Sep. 2019. [Online].
Available: https://pub.dev/packages/dio (Accessed 21 May 2021).

[77] G. Saprykin, Flutter_secure_storage | flutter package, version 3.3.5, Oct.
2020. [Online]. Available: https://pub.dev/packages/flutter_secure_
storage (Accessed 21 May 2021).

[78] Appearance, Camerawesome | flutter package, version 0.1.2+1, Nov. 2020.
[Online]. Available: https://pub.dev/packages/camerawesome (Ac-
cessed 21 May 2021).

[79] Baseflow, Geolocator | flutter package, version 6.2.1, Feb. 2021. [Online].
Available: https://pub.dev/packages/geolocator (Accessed 21 May
2021).

[80] J. Palermo. (Jul. 2008). The onion architecture: Part 1, [Online]. Available:
https://jeffreypalermo.com/2008/07/the- onion- architecture-
part-1/ (Accessed 4 Apr. 2021).

[81] Microsoft. (Jul. 2017). The model-view-viewmodel pattern, [Online]. Avail-
able: https://docs.microsoft.com/en-us/xamarin/xamarin-forms/
enterprise-application-patterns/mvvm (Accessed 4 Apr. 2021).

[82] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, ser. Addison-Wesley Professional Com-
puting Series. Pearson Education, 1994, ISBN: 9780321700698.

[83] M. Fowler. (Jan. 2004). Inversion of control containers and the dependency
injection pattern, [Online]. Available: https://martinfowler.com/arti
cles/injection.html (Accessed 5 Apr. 2021).

https://flutter.dev/docs/development/packages-and-plugins/using-packages
https://flutter.dev/docs/development/packages-and-plugins/using-packages
https://pub.dev/documentation/provider/4.3.3/
https://pub.dev/documentation/provider/4.3.3/
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options#provider
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options#provider
https://pub.dev/packages/flutter_map
https://pub.dev/packages/moor
https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite
https://pub.dev/packages/rxdart
https://pub.dev/packages/dio
https://pub.dev/packages/flutter_secure_storage
https://pub.dev/packages/flutter_secure_storage
https://pub.dev/packages/camerawesome
https://pub.dev/packages/geolocator
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html

Bibliography 202

[84] Oracle. (n.d). Core j2ee patterns - data access object, [Online]. Available:
https://www.oracle.com/java/technologies/dataaccessobject.htm
l (Accessed 9 Apr. 2021).

[85] E. Hieatt and R. Mee. (2002). Repository, [Online]. Available: https:
//martinfowler.com/eaaCatalog/repository.html (Accessed 4 Apr.
2021).

[86] M. Fowler. (Nov. 2016). ValueObject, [Online]. Available: https://marti
nfowler.com/bliki/ValueObject.html (Accessed 8 Apr. 2021).

[87] M. Safyan. (n.d). Singleton anti-pattern, [Online]. Available: https://
www.michaelsafyan.com/tech/design/patterns/singleton (Accessed
8 Apr. 2021).

[88] Google. (n.d). Firebase realtime database, [Online]. Available: https:
//firebase.google.com/docs/database (Accessed 24 May 2021).

[89] Google. (n.d). Cloud firestore | firebase, [Online]. Available: https://
firebase.google.com/docs/firestore (Accessed 24 May 2021).

[90] Google, Build_runner | flutter package, version 1.11.1, Feb. 2021. [Online].
Available: https://pub.dev/packages/build_runner (Accessed 31 May
2021).

[91] M. Fowler. (Jun. 2015). Yagni, [Online]. Available: https://martinfowl
er.com/bliki/Yagni.html (Accessed 4 Apr. 2021).

[92] The Flutter Team, Path_provider | flutter package, version 1.6.27, Jan.
2021. [Online]. Available: https://pub.dev/packages/path_provider
(Accessed 21 May 2021).

[93] The Flutter Team, Mockito | flutter package, version 4.1.4, Jan. 2021.
[Online]. Available: https://pub.dev/packages/mockito (Accessed 20
May 2021).

[94] Smartbear. (n.d). Api documentation & design tools for teams | swagger,
[Online]. Available: https://swagger.io/ (Accessed 21 May 2021).

[95] J. Brooke, “Sus: A quick and dirty usability scale,” Usability Eval. Ind.,
vol. 189, Nov. 1995. DOI: 10.1201/9781498710411-35.

[96] C. Sells. (Mar. 2021). What’s new in flutter 2, [Online]. Available: https:
//medium.com/flutter/whats-new-in-flutter-2-0-fe8e95ecc65
(Accessed 31 May 2021).

[97] The Flutter Team. (May 2019). Automatic/scalable shader warm-up, [On-
line]. Available: https://github.com/flutter/flutter/issues/32170
(Accessed 4 Apr. 2021).

[98] SQLite Consortium, Sqlite home page. [Online]. Available: https://www.
sqlite.org/index.html (Accessed 21 May 2021).

https://www.oracle.com/java/technologies/dataaccessobject.html
https://www.oracle.com/java/technologies/dataaccessobject.html
https://martinfowler.com/eaaCatalog/repository.html
https://martinfowler.com/eaaCatalog/repository.html
https://martinfowler.com/bliki/ValueObject.html
https://martinfowler.com/bliki/ValueObject.html
https://www.michaelsafyan.com/tech/design/patterns/singleton
https://www.michaelsafyan.com/tech/design/patterns/singleton
https://firebase.google.com/docs/database
https://firebase.google.com/docs/database
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://pub.dev/packages/build_runner
https://martinfowler.com/bliki/Yagni.html
https://martinfowler.com/bliki/Yagni.html
https://pub.dev/packages/path_provider
https://pub.dev/packages/mockito
https://swagger.io/
https://doi.org/10.1201/9781498710411-35
https://medium.com/flutter/whats-new-in-flutter-2-0-fe8e95ecc65
https://medium.com/flutter/whats-new-in-flutter-2-0-fe8e95ecc65
https://github.com/flutter/flutter/issues/32170
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html

Bibliography 203

[99] The PostgreSQL Global Development Group. (n.d). Appendix D. SQL con-
formance, [Online]. Available: https://www.postgresql.org/docs/
current/features.html (Accessed 11 Apr. 2021).

[100] MariaDB Foundation, Mariadb foundation - mariadb.org. [Online]. Avail-
able: https://mariadb.org/ (Accessed 21 May 2021).

[101] Docker Inc. (n.d). Docker overview, [Online]. Available: https://docs.
docker.com/get-started/overview/ (Accessed 11 Apr. 2021).

[102] Docker Inc. (n.d). Overview of docker compose, [Online]. Available: https:
//docs.docker.com/compose/ (Accessed 11 Apr. 2021).

[103] JetBrains. (n.d). Comparison to java, [Online]. Available: https://kotl
inlang.org/docs/comparison-to-java.html#what-kotlin-has-that-
java-does-not (Accessed 11 Apr. 2021).

[104] OpenJS Foundation, About | node.js, version 15.1.0, Nov. 2020. [Online].
Available: https://nodejs.org/en/about/ (Accessed 24 May 2021).

[105] B. Ray, D. Posnett, P. Devanbu, and V. Filkov, “A large-scale study of pro-
gramming languages and code quality in github,” Commun. ACM, vol. 60,
no. 10, pp. 91–100, Sep. 2017, ISSN: 0001-0782. DOI: 10.1145/3126905.

[106] Z. Gao, C. Bird, and E. T. Barr, “To type or not to type: Quantifying de-
tectable bugs in javascript,” in 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering (ICSE), 2017, pp. 758–769. DOI: 10.1109/
ICSE.2017.75.

[107] Microsoft, Typescript: Typed javascript at any scale, version 4.0.5, Oct. 2020.
[Online]. Available: https://www.typescriptlang.org/ (Accessed 24
May 2021).

[108] OpenJS Foundation. (n.d). Express - node.js web application framework,
[Online]. Available: https://expressjs.com/ (Accessed 21 May 2021).

[109] NestJS, Nestjs - a progressive node.js framework, version 7.5.1, Nov. 2020.
[Online]. Available: https://nestjs.com/ (Accessed 21 May 2021).

[110] TypeORM, Typeorm - amazing orm for typescript and javascript (es7, es6,
es5). supports mysql, postgresql, mariadb, sqlite, ms sql server, oracle, websql
databases. works in nodejs, browser, ionic, cordova and electron platforms.
Version 0.2.32, Mar. 2021. [Online]. Available: https://typeorm.io/
(Accessed 21 May 2021).

[111] Axios, Axios, version 0.21.1, Dec. 2020. [Online]. Available: https://
axios-http.com/ (Accessed 21 May 2021).

[112] Amazon Web Services, Aws sdk for javascript, version 2.872.0, Mar. 2021.
[Online]. Available: https://aws.amazon.com/sdk-for-javascript/
(Accessed 21 May 2021).

https://www.postgresql.org/docs/current/features.html
https://www.postgresql.org/docs/current/features.html
https://mariadb.org/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://kotlinlang.org/docs/comparison-to-java.html#what-kotlin-has-that-java-does-not
https://kotlinlang.org/docs/comparison-to-java.html#what-kotlin-has-that-java-does-not
https://kotlinlang.org/docs/comparison-to-java.html#what-kotlin-has-that-java-does-not
https://nodejs.org/en/about/
https://doi.org/10.1145/3126905
https://doi.org/10.1109/ICSE.2017.75
https://doi.org/10.1109/ICSE.2017.75
https://www.typescriptlang.org/
https://expressjs.com/
https://nestjs.com/
https://typeorm.io/
https://axios-http.com/
https://axios-http.com/
https://aws.amazon.com/sdk-for-javascript/

Bibliography 204

[113] node-cache, Node-cache/node-cache: A node internal (in-memory) caching
module, version 5.1.2, Jul. 2020. [Online]. Available: https://github.
com/node-cache/node-cache (Accessed 21 May 2021).

[114] J. Hanson, Passport.js, version 0.4.1, Sep. 2019. [Online]. Available: https:
//www.passportjs.org/ (Accessed 21 May 2021).

[115] OpenJS Foundation, Eslint - pluggable javascript linter, version 7.12.1,
Oct. 2020. [Online]. Available: https://eslint.org/ (Accessed 21 May
2021).

[116] Prettier, Prettier - opinionated code formatter, version 2.1.2, Sep. 2020.
[Online]. Available: https://prettier.io/ (Accessed 21 May 2021).

[117] M. Fowler. (n.d). Data transfer object, [Online]. Available: https://
martinfowler.com/eaaCatalog/dataTransferObject.html (Accessed
13 May 2021).

[118] NestJS. (n.d). Modules, [Online]. Available: https://docs.nestjs.com/
modules (Accessed 1 May 2021).

[119] TypeStrong, Home | typedoc, version 0.20.36, Apr. 2021. [Online]. Avail-
able: http://typedoc.org/ (Accessed 25 May 2021).

[120] Amazon Web Services. (n.d). Amazon s3, [Online]. Available: https:
//aws.amazon.com/s3/ (Accessed 25 May 2021).

[121] Facebook, Jest - delightful javascript testing, version 26.6.3, Nov. 2020.
[Online]. Available: https://jestjs.io/ (Accessed 27 May 2021).

[122] K. Kabra, Ts-jest: A jest transformer with source map support that lets you use
jest to test projects written in typescript, version 26.4.3, Oct. 2020. [Online].
Available: https://github.com/kulshekhar/ts-jest (Accessed 27 May
2021).

[123] Sinon.JS, Sinon.js - standalone test fakes, spies, stubs and mocks for javascript.
works with any unit testing framework. Version 10.0.0, Mar. 2021. [Online].
Available: https://sinonjs.org/ (Accessed 27 May 2021).

[124] Vision Media, Supertest: Super-agent driven library for testing node.js http
servers using a fluent api, version 6.0.0, Oct. 2020. [Online]. Available:
https://github.com/visionmedia/supertest (Accessed 27 May 2021).

[125] Amazon Web Services. (n.d). Auto scaling groups, [Online]. Available:
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoSca
lingGroup.html (Accessed 4 Mar. 2021).

[126] Amazon Web Services. (n.d). Aws cloudformation - infrastructure as code
& aws resource provisioning, [Online]. Available: https://aws.amazon.
com/cloudformation/ (Accessed 25 May 2021).

[127] Amazon Web Services. (n.d). Aws cloud development kit, [Online]. Avail-
able: https://aws.amazon.com/cdk/ (Accessed 13 Apr. 2021).

https://github.com/node-cache/node-cache
https://github.com/node-cache/node-cache
https://www.passportjs.org/
https://www.passportjs.org/
https://eslint.org/
https://prettier.io/
https://martinfowler.com/eaaCatalog/dataTransferObject.html
https://martinfowler.com/eaaCatalog/dataTransferObject.html
https://docs.nestjs.com/modules
https://docs.nestjs.com/modules
http://typedoc.org/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://jestjs.io/
https://github.com/kulshekhar/ts-jest
https://sinonjs.org/
https://github.com/visionmedia/supertest
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cdk/

Bibliography 205

[128] HashiCorp. (n.d). Introduction to terraform, [Online]. Available: https:
//www.terraform.io/intro/index.html (Accessed 13 Apr. 2021).

[129] R. Wang and A. Mishra. (Jul. 2020). Cdk for terraform: Enabling python &
typescript support, [Online]. Available: https://www.hashicorp.com/b
log/cdk-for-terraform-enabling-python-and-typescript-support
(Accessed 30 May 2021).

[130] Pulumi. (n.d). Pulumi - modern infrastructure as code, [Online]. Available:
https://www.pulumi.com/ (Accessed 30 May 2021).

https://www.terraform.io/intro/index.html
https://www.terraform.io/intro/index.html
https://www.hashicorp.com/blog/cdk-for-terraform-enabling-python-and-typescript-support
https://www.hashicorp.com/blog/cdk-for-terraform-enabling-python-and-typescript-support
https://www.pulumi.com/

Appendix A

Usability Testing Script

The following pages describes the script the author used when performing usability
testing. It outlines the information provided to the user surrounding the sheep
supervision process, usability testing and the system usability scale. Actual email
addresses have been removed from the transcript, and are instead replaced with
placeholder values.

206

1 An Introduction to Sheep Supervision

Norwegian sheep graze unsupervised on outlying fields throughout the warmer
months of the year. In order to ensure animal wellness, farmers are required
to check up on them several times a week. Farmers usually solve this problem
by teaming up with other farmers, and sharing the responsibility of performing
sheep supervision. For every sheep observation, the observer will note down the
amount of sheep in the observation, their geographical location and the number
of sheep separated by wool color. Adult female sheep will have a color tie placed
around their neck, denoting the amount of lamb they originally had when leav-
ing the farm. Furthermore, bi-colored strips attached to the ear of the sheep
indicates the farm they belong to. If possible, the observer should attempt to
register this information as well. In addition to registering sheep observations,
observers should also strive to note down dead sheep, broken equipment and
predator sightings. The information gathered throughout the supervision trips
is condensed into a report at the end of the season, and is sent to the ap-
propriate authorities to prove the well-being of the sheep, and possibly receive
reimbursement for dead sheep.

At the time of writing, registering supervision details are most commonly
performed through the use of pen and paper. This solution aims to digitalize
the supervision registration process through the use of smartphones in order
to improve the process of sheep supervision. By digitalizing the process, this
project aims to not only simplify the data collection process, but also increase
the amount and quality of data being collected.

2 What is Usability Testing?

Usability testing is the process of verifying the effectiveness and perceived ease of
use of a product. In the case of this project, the usability test aims to ensure that
the functionality provided by the application is user-friendly, understandable
and pleasant to interact with.

3 What Am I Going to Do?

Throughout the test, you will be given a set of tasks related to the application.
You are encouraged to think aloud when performing said tasks. There are no
wrong answers; Try solving the task by yourself at first. If you are completely
stuck, ask for advise.

Once the tasks have been completed, you will be asked to fill out a System
Usability Scale, a form consisting of 10 questions with the aim of gaining an
understanding of the overall usability of the system. Every question is weighed
on a scale from one to five - one indicating ”strongly disagree” and five indicating
”strongly agree”. The questions are designed in such a way that they expect
you to answer them without deliberation. As such, please pick the number
corresponding to your immediate reaction.

1

4 Tasks

• Register an account with the application. For the sake of convenience,
please utilize this email address: ”Y@Y.com”.

• You have received an invite for the team ”Trondheim beitelag”. Please
join it.

• Create a team named ”My Team”.

• Invite me to the team named ”My Team”. My email address is ”X@X.com”.

• Download a map area of Trondheim and name it ”Trondheim”.

• Cancel the pending download of the map area.

• Download the previously selected map. Do not cancel the download.

• Prepare for conducting an offline trip by downloading any farms containing
the word ”G̊ard”.

• Remove the downloaded farm named ”Min G̊ard”.

• Start a new supervision trip within the map area named ”Trondheim”.

• Register a sheep observation distanced far away from your position. Spec-
ify the sheep amount as 10. Five of the sheep are gray, whereas the
remaining 5 are black.

• Register a sheep observation right on top of yourself. You observe 10
sheep, all of whom are gray.

– Specify sheep ties through the use of swiping. You observer one blue
tie, two yellow ties and three red ties.

– Add the farm ”Trondheim G̊ard” to the sheep observation.

– Add an unknown farm to the sheep observation. The identifying
colors of the farm are red and blue.

• Register an ”other” observation right on top of yourself. The observation
is concerned with a dead sheep.

– Add an image to the ”other” observation. Specify that the sheep in
the picture is killed by a wolf.

• View the observations for the currently ongoing trip.

• Remove the first sheep observation registered for the ongoing trip.

• Finish the ongoing trip.

• Find the previously finished trip you conducted.

2

• Send the finished trip to the server.

• Find the previously finished trip you conducted.

• Change your name to ”Ola Nordmann”.

• Delete the previously conducted trip.

• Transfer administrative privileges of your team to me.

• Leave the team you created.

• You have been granted ownership rights to the team ”Trondheim Beite-
lag”. Remove me from this group.

• Invite me back to the team ”Trondheim Beitelag”.

• Delete the invite you sent me to the team ”Trondheim Beitelag”.

• Delete the team ”Trondheim Beitelag”.

• Delete the downloaded map area.

• Log out of the application.

5 SUS Form

Please fill out the form. A score of one represents Strongly Disagree, whereas
five represents Strongly Agree.

No. Question 1 2 3 4 5
1 I think that I would like to use this system frequently
2 I found the system unnecessarily complex
3 I thought the system was easy to use
4 I think that I would need the support of a technical

person to be able to use this system
5 I found the various functions in this system were well

integrated
6 I thought there was too much inconsistency in this

system
7 I would imagine that most people would learn to use

this system very quickly
8 I found the system very cumbersome to use
9 I felt very confident using the system
10 I needed to learn a lot of things before I could get

going with this system

3

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Jonas Ege Carlsen
D

igitalizing the Sheep Supervision D
ocum

entation Process

Jonas Ege Carlsen

Digitalizing the Sheep Supervision
Documentation Process

Master’s thesis in Informatics
Supervisor: Svein-Olaf Hvasshovd

June 2021

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Acknowledgements
	Figures
	Code Listings
	Acronyms
	Glossary
	I Project
	Introduction
	Project Description
	Stakeholders
	Farmers
	Sheep Observers
	County Governor
	Mattilsynet
	Statens Naturoppsyn

	Thesis Structure

	Background
	Shepherding in Norway
	Seasonal shepherding
	Ties
	Loss of Sheep
	Supervision

	Existing Supervision Solutions
	BeiteSnap
	Skandobs
	Electronic Location Tracking
	Map Applications

	Requirements
	Elicitation
	Architecturally Significant Requirements
	Offline Capability
	Cross-platform application
	Authentication & Authorization
	Server capabilities

	Use Cases
	Authentication
	Download Map
	View Downloaded Maps
	Team Actions
	New Team
	View User Invites
	Farm
	Perform Trip
	Perform Sheep Observation
	Perform Other Observation
	View Previous Trips

	Functional requirements
	Quality attributes
	Availability
	Modifiability
	Security
	Usability

	Development Process
	Software Development Methodology
	Project Management
	Software Development Life Cycle: Week-By-Week

	Technical Design: An Overview
	System Architecture at a Surface-Level
	Tools & Technologies
	Auth0
	Visual Studio Code
	GitHub
	SQL

	II Mobile Application
	Application Development Approach
	A Quick Introduction to Mobile
	Mobile Application Development
	Native Development
	Cross-platform development
	Progressive Web Application
	Hybrid Applications
	Choosing an approach

	Available cross-platform solutions
	React Native
	Flutter
	Xamarin

	Choosing a framework
	Maturity and Adoption
	Performance
	Documentation
	Support for functional requirements
	Tooling
	Choosing Flutter

	Application Development Technologies
	Android Studio
	XCode
	Flutter and Dart Plugins for VSCode

	Application Overview
	Authentication
	Detail Registration
	Home
	Farms
	My Invites
	Teams
	My Trips
	Offline Areas
	Trip
	Sheep Observations
	Other Observations
	User details and Settings

	Flutter: Concepts and Packages
	Widgets
	State
	Reactive Applications
	Relevant Flutter Files
	Flutter Packages & Plugins
	Provider
	Flutter_map
	Moor
	RxDart
	Dio
	Flutter_appauth
	Flutter_secure_storage
	Camerawesome
	Geolocator
	Background_locator

	Application Architecture
	Architectural Patterns
	Onion Architecture
	Model-View-ViewModel

	Design Patterns
	Service Locator
	Dependency Injection
	Data Access Object
	Repository
	Observer
	Value Object
	Singleton
	Facade
	Mediator

	Architectural Description

	Application Implementation
	MVVM implementation
	Application Database
	Moor Usage
	Table Structure

	Data Access Objects
	Local Data Access Objects
	Remote Data Access Objects

	Repositories
	Synchronization
	Navigation
	Snackbars and Dialogs
	Authentication
	Application Services
	Location
	Storage
	Downloading Maps
	Resolving Dependencies
	Networking
	Documentation

	Application Testing and User Feedback
	Unit Testing
	UI Testing
	System Testing
	Testing Functional Requirements
	Testing Non-Functional Requirements
	Usability Testing

	Application Discussion
	Growing pains
	Problematic Third-party Libraries
	Over-Engineering
	Development Experience
	Tie Registration
	Application Identity and Platform Adaptability
	Usability Tactics Usage and Deletion Consistency

	III Server
	Server Introduction
	Server Technologies
	Database Management System
	Docker
	Programming Language
	Choosing JavaScript

	JavaScript Packages
	Nest
	TypeORM
	Axios
	AWS SDK
	Node-cache
	Passport
	ESLint
	Prettier

	Server Architecture
	Server Design Patterns
	Data Transfer Object
	Chain of Responsibility
	Dependency Injection
	Repository
	Mediator
	Template Method

	Server Project Structure
	Description of Server Architecture

	Server Implementation
	Modules
	Dependency Injection
	Identity Provider Communication
	HTTP Controllers
	Application Services
	Documentation
	Authentication and Authorization
	ORM Entities
	Server Repositories
	Responding to Requests
	DTO Validation
	Synchronization
	Image Storage

	Testing the Server
	Server Deployment
	Running Locally

	Server Discussion
	ORM Usage
	Choosing Nest

	IV Cloud Infrastructure
	An Introduction to the Cloud
	The Cloud: A Primer

	System Infrastructure
	Auto-Scaling Group
	Continuous Deployment
	Auth0 Infrastructure

	Infrastructure Deployment
	Terraform Primer
	Deployment Walkthrough
	Deploying to Auth0
	Deploying to AWS

	Infrastructure Discussion
	AWS Educate Limitations
	Identity and Access Management

	V Closing
	Project Discussion
	The Pandemic
	System Composition
	SQL vs NoSQL
	Unimplemented Functional Requirements
	Distribution of Quality and Quantity
	Future work
	Usability Testing Farmers and Sheep Observers
	Creating a Web Site
	Integrating With External Actors
	Report Generation

	Potential Benefits of Digital Supervision

	Conclusion
	Bibliography
	Usability Testing Script

