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Abstract

The vorticity in near-surface turbulent currents constantly deforms the ocean surface. This phe-
nomenon is important to understand because the surface roughness determines the amount of gas
transfer from the ocean to the atmosphere, and is therefore vital to global warming. The sub-surface
turbulence is represented as a set of discrete eddies using the Helmholtz-Onsager vortex turbulence
model, in order to further understand the interaction, and to investigate how the system scales with
eddy parameters.

The joint Probability Distribution Function (PDF) for the depth and impulse vector of an eddy
interacting with a free surface was found using a Markov Chain Monte Carlo (MCMC) algorithm.
Eddies were subsequently drawn from this distribution and the surface deformation was ensemble
averaged to investigate the surface statistics. Nine different simulations were run with different com-
bination of Bond numbers and turbulent Froude numbers.

It was found that the PDF of an eddy is affected by two competing effects for minimizing the
system energy. On the one hand, the surface repels the eddies due to the energy required to deform
it. On the other hand, the eddy is attracted to the surface because it can cancel more of its velocity
field in closer proximity, given that its impulse vector is oriented normal to the surface. This resulted
in a zone of zero probability near the surface, followed by sharp peaks in the PDFs where the two
effects are in equilibrium. The strength and depth of the peaks depend on the Froude- and Bond
numbers, which control the relative strength of the two effects.

Convergence issues were encountered during the surface statistics analysis because of the steep
gradients above the aforementioned peaks in the PDFs. The result of this analysis is therefore in-
conclusive. However, it was speculated that the surface elevation distribution was negatively skewed
because of the vertical eddy impulse preference found for weak turbulence, and that the higher cor-
responding excess kurtosis signify a less random surface due to the increased anisotropy of the eddy
impulse vectors.
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Sammendrag

Vortisiteten i turbulente strømmer under en fri havoverflate fornyer konstant overflaten. Dette fenome-
net er viktig å forstå fordi ruheten til overflaten bestemmer fluks av gasser fra havet til atmosfæren,
og er derfor viktig for global oppvarming. Turbulensen er modellert som et sett med diskrete vir-
vler ved hjelp av Helmholtz-Onsager vortex modellen, for å forstå interaksjonen ytterligere, og for å
undersøke hvordan systemet skalerer med virvelparametere.

Simultanfordelingen for dybde- og impulsvektoren til en virvel som vekselvirker med en fri over-
flate ble funnet ved hjelp av en MCMC algoritme. Virvler ble deretter hentet fra denne fordelingen,
og overflatedeformasjonen ble beregnet for å undersøke overflatestatistikken. Ni forskjellige sim-
uleringer ble kjørt med forskjellige kombinasjoner av Bond tall og turbulente Froude tall.

Det ble funnet at sannsynlighetsfordelingen for en virvel påvirkes av to konkurrerende effekter
for å minimere systemets energi. På den ene siden dytter overflaten virvler vekk fra seg selv på grunn
av energien som kreves for deformasjon. På den andre siden tiltrekkes virvelen mot overflaten fordi
den kan kansellere mer av hastighetsfeltet sitt der, gitt at impulsvektoren er orientert normalt mot
overflaten. Dette resulterte i en sone med null sannsynlighet nær overflaten, etterfulgt av skarpe
topper i sannsynlighetsfordelingene der de to effektene er i likevekt. Styrken og dybden av toppene
avhenger av Froude- og Bond tallene som styrer den relative styrken til de to effektene.

Konvergensproblemer oppsto under overflatestatistikkanalysen på grunn av de bratte gradientene
over toppene i sansynlighetsfordelingene. Resultatene av denne analysen er derfor inkonklusiv. Likevel
ble det spekulert i at fordelingen av overflatehøyde var negativt grunnet den vertikale virvelimpuls
preferansen som ble funnet for svak turbulens, og at den høyere tilsvarende overflødige kurtosen
betegner en mindre tilfeldig overflate på grunn av den økte anisotropien til virvelimpulsvektorene.
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Chapter 1

Introduction

1.1 Motivation

The shape of the ocean surface controls the flux of heat and gas from the ocean to the atmosphere.
The amount of transport of these properties can affect entire ecosystems [1], and more importantly
still, global warming [2]. A key aspect affecting the surface shape is Near Surface Turbulence (NST),
i.e. turbulent currents in the uppermost layer of the ocean [3]. These currents occur most commonly
due to wind shearing the surface layer and transferring turbulent energy to the ocean, where the NST
then continuously deforms the surface above it [4]. This interaction is not well understood however,
as the literature is lacking in quantifying the types of eddies that constitute the turbulence in this
layer.

In this report, turbulence will be modelled as a system of discrete eddies instead of the turbulent
field quantities normally associated with turbulence modelling, in order to investigate the Free Sur-
face Turbulence (FST). This approach might provide a direct correlation between the eddy properties
and surface imprint. It also reduces the complexity of the system significantly. For this purpose, the
Helmholtz-Onsager vortex model is used, a classic turbulence model that approximate each turbu-
lent eddy as a "blob" of vorticity in an elsewhere inviscid fluid. The vortices constitute a Hamiltonian
system that exchange velocity and impulse with each other.

Obviously, real turbulence does not consist of a system of discrete vortices, as described above.
However, the approximation is not that far-fetched, as vorticity in turbulence is well known to
be highly concentrated in small vorticial structures [5]. Using a simple model such as Helmholtz-
Onsager vortices might therefore approximate the turbulence well enough to gain insights into the
dynamics of the system. A major advantage of this approach is that the theoretical framework is ana-
lytical, reducing the need for complex numerical schemes. The model is also well established due to
the dipole analogy extending to electrodynamics where it has had many applications.

This report then aims to answer the question: By modelling near surface turbulence as a set of
Helmholtz-Onsager vortices, what qualitative correlations could be drawn between the eddies and the
surface imprint?

1



Chapter 1: Introduction 2

1.2 Literary Review

Studying fluid vortex dynamics dates all the way back to the vortex theorems of Helmholtz [6].
Already in 1858, he drew the peculiar analogy between a fluid vortex and an electromagnetic dipole.
Onsager [7] then extended the idea to statistical mechanics. He formulated the evolution of a system
of vortices by means of a conserved quantity from classical mechanics, known as the Hamiltonian
[8]. This meant that turbulence could be heuristically modelled as a finite set of the vortices found by
Helmholtz. Motivated by the innovation in computers, the Hamiltonian formalism was later extended
to numerics by Roberts [9], with notable contributions by Buttke & Chorin [10]. However, this was
largely overshadowed by classic reynold stress turbulence models and Direct Numerical Simulation
(DNS), as computers became more efficient. It should be noted that the Helmholtz-Onsager vortex
model is only one of many attempts to approximate turbulence as a finite set of vortices. For an
extended review, see Pullin & Saffmann [11].

NST has so far never been modelled with Helmholtz-Onsager vortices to the extent of my know-
ledge. The literature of single vortex structures interacting with a free surface seems to be sparse
in general. There are some studies investigating the vortex ring near a free surface, most notably
Bernal & Kwon, Song et al. and Gharib & Weigand [12–14]. They find that vortex filaments near a
free surface break up into tubes ending perpendicular to the surface, in accordance to Helmholtz’s
second theorem. These in turn cause downwellings. Albeit interesting, this mechanism for surface
deformation is different from what is regarded in the present work. There are also some analytical
studies on surface deformation using line vortices, e.g Telste [15] or Tyvand [16]. While these are
useful in investigating for example the vortex shedding of a hydrofoil, they cannot represent the
three dimensional nature of turbulent eddies.

The literature on general FST is considerably richer. There are several studies relating turbulence
to surface deformation both experimentally and using DNS. Savelsberg & Van de Water [17] found
experimentally a strong correlation between a single sub surface vortex and surface deformation.
This correlation was dramatically reduced for fully developed turbulence, because of the turbulent
eddies exciting gravity-capillary wave motion on the surface. Guo & Shen [18] found using DNS
that the surface induced roughness consist of propagating waves at all wavenumbers from FST.
Furthermore, they found that the surface elevation is sensitive to gravitational and surface tension
effects. These studies find correlations between the average turbulent field quantities and surface
crispations. However, measurable parameters of the eddies themselves are harder to extrapolate
from the data. These parameters they conclude are the main contributors to surface renewal, which
emphasizes a need to quantify eddy properties to further understand surface imprints from NST.

1.3 Scope

The report will look at the turbulence-surface interaction in two parts. First, it is investigated how a
free surface affects the turbulent eddies. This will be formulated in a manner of how a free surface
affects the PDF of a turbulent eddy, numerically in terms of a MCMC algorithm. Then the eddies
are drawn from this PDF in order to see how they in turn affect the surface imprint. The goal during
these processes is not to validate the model, as it is excessively simple to realistically accomplish that.
Rather, the aim is to see how the system scales with the turbulence parameters, with an ambition to
find some defining features of the interaction worth looking more into.
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Some key simplifications are made in the theoretical model. The flow is modelled as inviscid,
and as a consequence all eddies must be well separated. The surface is approximated to linear order,
restricting the analysis to non-steep surface deformations. Additionally some simplifications are made
in the numerical model for pragmatic reasons. During MCMC simulations, only a single eddy is
considered in order to save computation time, meaning eddy-eddy interaction is ignored. Also a
kernel smoothing function is used to obtain convergence of the MCMC simulations. Furthermore, it
is assumed without proof that the surface deformation energy enters into the Hamiltonian structure
as to conserve the total energy of the system. When evaluating interaction between eddies for the
surface statistics analysis, a maximum interaction length is set as a cutoff criterion, again to save
computation time.

1.4 Outline

Chapter 2 firstly gives a short review of the Helmholtz-Onsager vortex model, followed by a kernel
smoothing method in order to address a blow-up workaround for MCMC simulations. Then the model
is extended to surface waves, which Simen Ellingsen has developed the theoretical framework for.
This is unpublished work, and is thus included in the report as the subject of sections 2.3, 2.4 and 2.5.
It should be noted that this is entirely his work and it is merely reworded here to fit the context of this
report. Thereafter is a brief review of surface deformation energy and some basic statistical mechanics
for the purpose of implementing the MCMC algorithm. Chapter 3 gives an overview of the numerical
model used to implement the theory along with the decision of some important model parameters
such as domain size, grid resolution and eddy interaction length. Then follows chapter 4, an entirely
separate chapter dedicated to how the model is tailored to implement the MCMC algorithm. Chapter
5 concerns some details as to how the numerical model is implemented in Matlab. The results of the
MCMC simulations and the following Surface Deformation Statistics (SDS) simulations are presented
in chapter chapter 6 and discussed in chapter 7, alongside some ideas for improving the model.



Chapter 2

Theory

2.1 The Helmholtz-Onsager Vortex Model

This is a well established model and thus only the essentials are covered here. Similar, more extensive
reviews can be found in Lamb [19] or Davidson [20].

As a preliminary remark it should be said that throughout the report, a superscript variable rep-
resents the index of an eddy, and must not be confused with an exponent. Consider an incompressible
fluid that is irrotational everywhere except for N "blobs" of vorticity with finite volumes Vn, corres-
ponding to turbulent eddies, like shown in Figure 2.1.

Figure 2.1: Showing a system of turbulent eddies modelled as blobs of vorticity with linear impulse
Le. Figure from Davidson [20]

Outside the eddies where there is no vorticity, the Euler equation can be used. Ignoring gravita-
tional effects, it reads

.
u+ (u · ∇)u= −∇p. (2.1)

4
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Taking the curl of this, and using the definition of voriticity as ξξξ = ∇× u, we are left with the
well known vorticity equation

.
ξξξ+ (u · ∇)ξξξ= (ξξξ · ∇)u. (2.2)

The relationship can be inverted to derive the velocity field in terms of the vorticity distributon,
resulting in the Biot-Savarts law

u(x) =
1

4π

∫

ξ(x′)×
�

x− x′
�

|x− x′|3
d3 x ′, (2.3)

where x′ denotes a position vector inside the eddy. Because the vorticity is zero except for inside
the eddies, Equation 2.3 can be rewritten in terms of each eddy’s vector potential An. This will be
defined as

An(x) =
1

4π

∫

Vn

ξξξ(x′)
|x− x′|

d3 x ′, (2.4)

such that

u(x) =∇×
N
∑

n=1

An(x). (2.5)

We then define a vector from anywhere in the fluid to the eddy centre xn as rn = x−xn, and from
a point within the eddy to the centre as x′′ = x′ − xn. Then, the denominator in Equation 2.4 could
be Taylor expanded to give

1
|x− x′|

=
1

|rn − x′′|
=

1
rn
+

x′′ · rn

rn3 + 4πx′′ ·C (rn) · x′′ + . . . . (2.6)

These terms are called the monopole, dipole and quadrupole moments.C is the Hessian of (4πr)−1,
a rank 2 tensor. This, along with two other tensors that occur from the Taylor expansion are defined
for later use in index notation as

Bi = ∂i
1

4πr
= −

ri

4πr3

Ci j = ∂iB j =
1

4πr5
(3ri r j − r2δi j)

Di jk = ∂iC jk =
3

4πr7

��

riδ jk + r jδki + rkδi j

�

r2 − 5ri r j rk

�

.

(2.7)

Truncating the third and all higher order terms of Equation 2.6, this could be substituted back
into Equation 2.4. The higher order moments we drop are dominant when eddies are close. We have
thus limited ourselves to well separated eddies. Note that the first term, i.e. the monopole moment is
simply zero by using the divergence theorem, because there cannot be any flux of vorticity through
the boundary of the eddy ∂ Vn. The only term left is the dipole moment. In index notation, where
Einstein summation convention is to be understood, the vector potential is then

An
i (x) =

rn
j

rn3

∫

Vn

ω′i x
′
jd

3 x ′. (2.8)



Chapter 2: Theory 6

The linear dipole impulse is defined as

Ln =
1
2

∫

Vn
x×ωd3 x . (2.9)

The relation ∂k x i x jak = ai x j + a j x i holds for divergence free vector fields [21]. Combining this
relation with the diverge theorem, it is possible to show that Equation 2.8 can be rewritten as

An = −
rn × Ln

4π(rn)3
. (2.10)

Finally, curling and summing over the eddies according to Equation 2.5 gives the far-field velocity
field, i.e. far from any particular eddy as

uff(x) =
N
∑

n=1

C (rn) · Ln. (2.11)

The evolution of the system is then given by the Hamiltonian. This is a conserved quantity from
classical mechanics that describes the total energy of the system in terms of coordinates in phase
space, called canonical coordinates. The Hamiltonian formalism here will be that of Oseledets [22].
He showed that the Euler equations can be expressed as a Hamiltonian system with xn

i and Ln
i as the

canonical coordinates as follows

.
xn

i =
∂ H
∂ Ln

i
.
Ln

i = −
∂ H
∂ xn

i
.

(2.12)

Buttke & Chorin [10] then showed that this Hamiltonian could be approximated by the kinetic
energy of the system, which is

H ≈ K =
∑

n

Ln
i Ln

i

2M n
+

1
2

∑

n

∑

m 6=n

Ln
i Cnm

i j Lm
j . (2.13)

Here, the first term is the self induced energy of the eddies, whilst the second term is the interac-
tion energy between the eddies. M n is called the ”inertial mass” of the eddy, and is approximated to
be constant. It is not actually an inertia in the true physical meaning of the word, as it was derived
by an analogy to electrodynamics. Nonetheless it inherits the same properties, such that self motion
is slow with a large M n, and vice versa. Differentiating Equation 2.13 according to Equation 2.12
yields the following time derivatives describing the time evolution of the system

.
xn

i =
Ln

i

M n
+
∑

m 6=n

Cnm
i j Lm

j (2.14)

.
Ln

i = −
1
2

Ln
j

∑

m 6=n

Dnm
i jk Lm

k . (2.15)

It is clear that the system is in full described by the properties xn, Ln and M n. The time evolution is
then given for any time t, provided with the Initial Condition (IC) for these properties of all relevant
eddies. This of course only holds as long as the eddies remain well separated.
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2.2 Kernel smoothing

Under the dipole approximation that was made, we have limited ourselves to well-separated eddies.
However, it will prove impossible to retain this far-field approximation in full during MCMC simula-
tions, as we will see in chapter 4. In order to retain the approximation as well as possible, Qi [23]
proposes a smoothed kernel method in which the vector potential of Equation 2.10 is smoothed by
some core function f ( r

R), i.e. An→ An f ( r
R), where R is the eddy size. Then evaluating Equation 2.5

gives the following expression in index notation

ŭ(rn) =∇×
�

−
f (r)
4πr3

r× Ln
�

= −εi jk
∂

∂ x j

�

f (r)
4πr3

εklmrl L
n
m

�

, (2.16)

where ε denotes the Levi-Civita symbol, and ŭ denotes the smoothed velocity field. Both Ln and
εklm are independent of spacial coordinates, and can be drawn out of the derivative. Furthermore
we utilize the well known property εi jkεklm = δilδ jm −δimδ jl [24] such that

ŭ(rn) = −
Lm

4π

�

δilδ jm
∂

∂ x j

�

f (r)
r3

rl

�

−δimδ jl
∂

∂ x j

�

f (r)
r3

rl

�

�

. (2.17)

The Kroenicker delta is defined to be non-zero for equal indices, such that i = l and j = m for the
first term and j = l for the second. Expanding according to the chain rule then gives

ŭ(rn) = −
Ln

m

4π

�

∂

∂ xm

�

f (r)
r3

�

ri rm +
f (r)
r3

∂ ri

∂ xm
−δim

�

r j
∂

∂ x j

�

f (r)
r3

�

+
f (r)
r3

∂ r j

∂ x j

��

. (2.18)

The tensor ∂ ri
∂ xm

is simply the identity matrix δim, and
∂ r j

∂ x j
is obviously 3. The derivative ∂ j( f /r3)

is easily evaluated to be

∂

∂ x j
=

r ∂ f (r)
∂ r − 3 f (r)

r5
r j . (2.19)

Because r j r j = r2, the last term of Equation 2.18 cancels with the last term of the contribution
from Equation 2.19. After some reshuffeling, Equation 2.18 can be rewritten in the following manner

ŭ(rn) = −
�

− f (r)

�

3ri rm −δimr2

4πr5

�

+ r f ′(r)

�

1
3

�

3ri rm −δimr2

4πr5

�

−
1

6π
δim

r3

��

Ln
m, (2.20)

with f ′ denoting the derivative with respect to r. It is now obvious that the parenthesis terms are
the propagator Cim defined in Equation 2.7, such that

ŭ(rn) =
�

�

f (r)−
r
3

f ′(r)
�

C+
1

6πr2
f ′(r)I

�

· Ln, (2.21)

where I is the identity matrix. Now all that is left is to evaluate in r∗ = r/R. Then f ′(r) = 1
R f ′(r∗)

and C(r) = 1
R3C(r∗) such that the final expression reads
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Figure 2.2: Axisymmetric velocity profile with different core smoothing functions compared to the r−3

dependence of no smoothing. Eddy centre in origin and impulse perpendicular to r-axis with L = 0.1
and R= 0.1 in non-dimensional units.

C̆(rn
∗) =

1
R3

�

�

f (r∗)−
r∗
3

f ′(r∗)
�

C(r∗) +
1

6πr2
∗

f ′(r∗)I
�

. (2.22)

The velocity magnitude from the four different smoothing functions from Qi is plotted in Fig-
ure 2.2 along the perpendicular direction to the impulse vector, for a particular impulse magnitude
and eddy radius. Note that the smoothed velocity profile goes to a finite value for r = 0, in the
opposite direction of the velocity profile without smoothing. This is a result from giving the eddy a
finite size, essentially making it a current loop. In the process above, a spherical shape is assumed.
It is therefore interesting to compare to Hill’s spherical vortex [25], which bears a close resemblance
for the smoothed velocity field. The radial velocity profile is included in Figure 2.2, while the whole
uz , ur velocity profiles are compared in Figure 2.3.

For consistency, the propagator Dnm should also be smoothed whenever the induced impulse
is calculated when using smoothing functions. Like in Equation 2.7, the smoothed propagator is
D̆i jk = ∂ j C̆ jk. Some tedious derivation of Equation 2.22 gives

D̆i jk = Di jk

�

g(r)− g ′(r) · r
�

+ g ′(r) · r · Fi jk, (2.23)

where

Fi jk =
3

4πr7

��

rkδi j + r jδki

�

r2 − 4ri r j rk

�

, (2.24)

and

g(r) = f (r)−
r
3

f ′(r). (2.25)
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(a) Smoothing with f3(r) (b) Hill’s spherical vortex

Figure 2.3: Comparing the axisymmetric velocity field of the smoothed kernel to Hill’s spherical vor-
tex, with L = 0.1 and R= 0.2 in non-dimensional units. The dotted circle has radius R.

2.3 Dynamic Vortex Pressure

So far, the eddies have been considered as an isolated system. Introducing them beneath a free
surface, two Boundary Condition (BC) needs to be fulfilled; the kinematic- and dynamic BCs [26].
The kinematic BC states that any particle on the free surface will stay on the surface, meaning that the
surface moves with the flow. The dynamic BC states that the pressure is independent of the surface
elevation, such that the pressure should be continuous on the interphase between air and water.

Surface tension plays an important role in NST however, and therefore sharp discontinuities will
be present across the interphase. The procedure will therefore be to satisfy the BCs in two steps.
First, only the dynamic BC is fulfilled by ignoring surface tension and wave motion, while solving
for the pressure distribution on the surface. This distribution will from now on be referred to as the
Dynamic Vortex Pressure (DVP). Then in section 2.4, the DVP will be applied to the surface as an
externally applied pressure while letting the surface move freely, thus fulfilling the kinematic BC.

Ignoring wave motion is done by mirroring each eddy about the surface, which forces the vertical
velocity at the surface to zero. The surface which we try to mirror about is itself unknown. However,
a low wave steepness is assumed, i.e. ∇ζ� 1, such that the surface can be evaluated to be approx-
imately z = 0. This is a linearization to the first order, and is common in wave theory [26]. The
mirroring is illustrated in Figure 2.4.

First we consider the unsteady potential Bernoulli equation at the interphase with a suitable
constant

gζd +
1
2
|up|2 +

∂ φ

∂ t

�

�

�

�

z=0
= 0. (2.26)

Here ζd(x‖, t) denotes the surface elevation corresponding to the dynamic BC. It is dependent
on time t and the planar coordinates x‖ = [x , y]. up is the velocity at a point p on the surface and
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Figure 2.4: An eddy mirrored about z = 0

φ is the potential function. Note that all parameters are kinematic, i.e. divided by the density of the
water. The DVP is then defined as the non-ζd terms as such:

Pd(x‖, t) :=
1
2
|up|2 +

∂ φ

∂ t

�

�

�

�

z=0
. (2.27)

Note that this is a gauge pressure, i.e. relative to the atmosphere, and can therefore be negative.
The first term of Equation 2.27 can be found directly by using Equation 2.11

1
2
|up|2 =

1
2

� N
∑

n=1

C (rnp) · Ln

�2

=
1
2

∑

n,m

Ln
i Cnp

i j Cmn
jk Lm

k . (2.28)

The second term however requires some more work. As is customary, the potential function φ
is defined as ∂iφ = ui , and the contribution from each eddy likewise ∂iφ

n = un
i . It follows from

Equation 2.11 and the definition of the propagators in Equation 2.7 that

un
i = Cnp

i j Ln
j = ∂i(B

np
j Ln

j ). (2.29)

This makes it obvious that the potential function associated with each eddy is

φn = Bnp
j Ln

j . (2.30)

We see that φ is a function of xn and Ln. Using the product rule we can then find the time
derivative of φ as the following expression

∂ φn

∂ t
=
∂ φn

∂ xn
i

.
xn

i +
∂ φn

∂ Ln
i

.
Ln

i . (2.31)

The time derivatives of this expression has already been established in Equation 2.14 and Equa-
tion 2.15. The remaining terms are found by differentiating Equation 2.30 to be

∂ φ

∂ xn
i
= un

i = Cn
i j L

n
j , (2.32)
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and
∂ φ

∂ Ln
i
= Bn

i . (2.33)

Inserting these into Equation 2.31 we get the full time derivative of the potential function from
each eddy n

∂ φn

∂ t
=

1
M n

Ln
i Cnp

i j Ln
j + Cnp

i j Ln
j

∑

m 6=n

Cmn
jk Lm

k − Bnp
j Ln

j

∑

m 6=n

Dnm
i jk Lm

k . (2.34)

Finally summing Equation 2.34 over n and evaluating at z = 0, the DVP becomes

Pd(x‖, t) =
1
2

∑

n,m

LiC
np
i j Cmn

jk Lm
k +

∑

n

Ln
i Cnp

i j Ln
j

M n
+
∑

n,m6=n

�

Cnp
i j Ln

j Cmn
jk Lm

k − Bnp
i Ln

j Dnm
i jk Lm

k

�

. (2.35)

The first term is caused by velocity induced at the surface. It will henceforth be referred to as
the kinetic pressure. The second term is due to self motion of the eddy. The two last terms are the
pressure due to interaction between eddies, from induced velocity and induced impulse respectively.

The terms
∑

m 6=nC
mn · Lm and Cnp · Ln are the total induced velocity of eddy n and surface

velocity from eddy n respectively, and will be denoted
.
xn and un

p. Equation 2.35 will prove to be
more convenient decomposed as a superposition of all the eddies Pd =

∑

n Pn
d , in vector form

Pn
d (x‖, t) =

1
2

un
p · u

tot
p

︸ ︷︷ ︸

Pn
Kin

+
1

M n
un

p · L
n

︸ ︷︷ ︸

Pn
Sel f

+un
p ·

.
xn

︸ ︷︷ ︸

Pn
Int,Vel

+Bn
p ·

.
Ln

︸ ︷︷ ︸

Pn
Int,Imp

. (2.36)

2.4 Surface Imprint

Now, we demand that the kinematic BC is fulfilled by means of introducing a velocity potential due
to wave motion φw. Consider the Bernoulli equation with this wave potential evaluated just beneath
the surface

gζ+ P +
∂ φw

∂ t
= 0. (2.37)

Now ζ(x‖, t) denotes the true surface elevation. The pressure P just beneath the surface can be
related to the pressure right above it Pd with surface tension by P = Pd − γ∇2

‖ζ [26], such that

gζ+ Pd +
∂ φw

∂ t
= γ∇2

‖ζ. (2.38)

γ is the kinematic surface tension coefficient, and ∇2
‖ is the Laplace operator with respect to the

planar coordinates. The only term unrelated to the desired surface distribution ζ is
.
φw. The kinematic

BC takes care of this as it can be formulated as

∂ φw

∂ z
=
∂ ζ

∂ t

�

�

�

�

z=0
. (2.39)
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Now, two-dimensional spacial Fourier transforms of Equation 2.38 and Equation 2.39 can be done
in the planar coordinates. The Fourier transformed variables will be the wave number components
k‖ = [kx , ky], which together span what is called k-space. The length of the vector k‖ will be denoted
k. The Fourier transformed DVP and surface elevation become respectively

ePd(k‖, t) =

∫

Pd

�

x‖, t
�

e−ik‖·x‖d x2
‖ (2.40)

and
eζ(k‖, t) =

∫

ζ
�

x‖, t
�

e−ik‖·x‖d x2
‖ , (2.41)

where a tilde denotes a variable in Fourier space. The wave potential is in general three-dimensional
in space, with the known form φw(x, t) = A(t)ekzeik‖·x‖ . From this we can rewrite it as a spacial
Fourier transform in the planar coordinates

fφw(x, t) =
1

(2π)2

∫

φw

�

x‖, t
�

ekzeik‖·x‖dk2
‖ , (2.42)

which satisfies φw = F−1{fφw}. The Fourier transforms of equations 2.38 and 2.39 become

ePd + geζ+
.
fφw = −γk2

eζ, (2.43)

and
kfφw =

.
eζ. (2.44)

Note that the k components come from spacial differentiation of the exponents within the integ-
rals from Equation 2.41 and Equation 2.42. Differentiating Equation 2.44 with respect to time and
combining with Equation 2.43 gives a second order PDE for eζ

..
eζ+ω2(k)eζ= −kePd(k‖, t). (2.45)

Here,

ω(k) =
Æ

gk+ γk3 (2.46)

is the well known deep water dispersion relation for gravity-capillary waves [19]. The dispersion
relation is an important equation in wave dynamics, as it governs a direct relationship between the
wavenumber and frequency of a wave. Waves are typically superposed of several monochromatic
waves, i.e. waves of a single wavelength. Each of these waves can move independently with the
frequency given by the dispersion relation. Note that the surface tension term dominate for high
wavenumbers, corresponding to short wavelengths. These types of waves are called capillary waves.
At lower wavenumbers, in what is called the gravity wave regime, gravity effects dominate.

Assuming all waves are caused by the DVP, one can keep the non-homogeneous solution of
Equation 2.45, meaning it is sufficient to find a particular solution. For this we will use a Green
function approach. For the unfamiliar, see [27]. This in principle means we will treat Pd as an infinite
set of Dirac delta functions δ(t) and compute the surface elevation due to the impulses at a later
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time. The linear differential operator D̂ = (∂ 2
t +ω

2) is introduced, such that Equation 2.45 and the
yet unknown Green function propagator G satisfy respectively

D̂eζ= −kePd(k‖, t), (2.47)

and
D̂G = δ(t). (2.48)

Because D̂ is linear, the superposition principle holds, and the particular solution of Equation 2.47
is

eζ(k‖, t) = −
∫ ∞

−∞
G
�

t − t ′
�

kePd(k‖, t)d t ′. (2.49)

Now, it is demanded that the propagator G only propagates forward in time, which is to say that
cause predates effect. To solve Equation 2.48 for G we need two ICs. The first is that G needs be
zero at t = 0 because it cannot react instantaneously to an impulse. The second is obtained from
integrating both sides of Equation 2.48 over the pulse, giving the initial time derivative of G. Then
the ICs are

G(k‖, 0) = 0
.
G(k‖, 0) = 1.

(2.50)

It is obvious that Equation 2.48 is homogeneous for t > 0, which gives the general solution

G(k‖, t) = G1(k‖) cos(ωt) + G2(k‖) sin(ωt). (2.51)

Inserting the ICs from Equation 2.50, the propagator G becomes

G(k‖, t) =
1
ω

sin (ωt), (2.52)

where t > 0. Inserting this into Equation 2.49 gives the final expression for the Fourier transformed
surface elevation

eζ(k‖, t) = −
k
ω

∫ t

−∞

ePd(k‖, t ′) sin[ω(k)
�

t − t ′
�

]d t ′. (2.53)

This represents a direct relationship between the dynamic vortex pressure and the surface elev-
ation in k-space. With the known DVP distribution from section 2.3, we can then Fourier transform
Pd with the Fast Fourier Transform (FFT) algorithm, evaluate the integral in Equation 2.53, and do
the inverse FFT to get the surface elevation.

2.5 Instantaneous Surface Deformation

The expressions for ζ found in section 2.4 are valid, given the assumptions made. However, it will
prove to be useful to do a multiple-scale expansion in order to evaluate the instantaneous surface
deformation. This is done by assuming a timescale for the eddies T that is much slower than the
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capillary waves and non-dimensionalize time as τ = ωt and ε = ωT , such that ε � 1. Then Equa-
tion 2.53 becomes

eζ(k‖,τ,ετ) = −
k
ω2

∫ t

−∞

ePd(k‖,ετ
′) sin

�

τ−τ′
�

dτ′, (2.54)

Tayor expanding the DVP inside the integral we get

ePd(k‖,ετ) = ePd + (ετ)
.
ePd +

1
2
(ετ)2

..
ePd +O((ετ)3) (2.55)

Dropping higher order terms and inserting Equation 2.55 into Equation 2.54 and using the known
integral solutions

∫ t

−∞
t ′ sin

�

ω
�

t − t ′
��

d t ′ = 0 (2.56)

∫ t

−∞
t ′2 sin

�

ω
�

t − t ′
��

d t ′ = −
2
ω3

, (2.57)

we get

eζ(k‖, t)≈ −
k
ω2
ePd(k‖, t) +

2k
ω4

..
ePd(k‖, t). (2.58)

It is now evident that the capillary wave motion is due to the acceleration of the DVP, i.e.
..
ePd .

This term is dependent on
.
xn and

.
Ln, and could be found analytically. However, the time evolution

is ignored in the implementation, which will be elaborated on in section 3.3. This is equivalent to
freezing the system in time. The instantaneous surface deformation can thus be written

eζinst ≈ −
ePd

g + γk2
. (2.59)

2.6 Surface Deformation Energy

The Hamiltonian from Equation 2.13 only considers the energy of the eddies in an isolated system.
However, the eddies interact with the surface and deforms it, which requires energy, both as added
potential energy, and surface tension energy. Because we are only looking at instantaneous surface
deformations, mechanical energy of the surface can be neglected.

Surface tension energy is by definition proportional to the change in surface area as EST = γ∆S
[26], where

∆S =

∫ ∞

−∞

�q

1+ |∇‖ζ|2 − 1
�

d2 x‖. (2.60)

We have already assumed linearized surface waves, which means that the surface is non-steep,
i.e. |∇‖ζ| � 1, which means |∇‖ζ|2≪ 1 and thus

EST = γ∆S ≈ γ
∫ ∞

−∞
|∇‖ζ|2d2 x‖. (2.61)
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The potential energy associated with the surface deformation is simply the evaluated integral

EP =

∫ ζ

−∞

∫ ∞

−∞
ρgzdzd2 x‖ =

1
2
ρg

∫ ∞

−∞
ζ2d2 x‖ (2.62)

Combining, we get the total (kinematic) surface deformation energy

Esur f =
1
2

∫

γ|∇ζ|2 + gζ2d2 x‖. (2.63)

The surface deformation ζ is a function of the state of all the eddies. Adding this term to the
Hamiltonian should then conserve the total energy of the system. Thus the Hamiltonian is

H = Ksel f + Kint + Ede f . (2.64)

In theory, this could be confirmed by integrating H with respect to xn
i and Ln

i and check if the
system in Equation 2.12 is fulfilled. However, this is a cumbersome process, and it will therefore be
an assumption that this system indeed is Hamiltonian.

2.7 Prior Distribution

The parameters yet to be determined are the impulse- and location vectors of the eddies. We now
seek to find a joint PDF for these parameters. This is possible to do using statistical mechanics,
where the energy of a state is associated with the probability of said state. However, the Hamiltonian
describing the energy of the system contains both an interactive term and a surface deformation
term, severely complicating the issue. Therefore, we momentarily ignore these terms and focus only
of the Ksel f term. Later, in chapter 4, the distribution found in this section will then be used as a
prior distribution in a random walk algorithm to find a posterior distribution that includes the other
terms. With these simplifications, the problem becomes very similar to the probability distribution of
a system of particles, which has a well known solution from statistical mechanics. See for example
Mandl for a full review [28].

We want to find the PDF of the state of the system, where the state is defined to be the set of
all position- and impulse vectors for the system θ = {xn,Ln} . Assuming isolated turbulence with
no interaction makes the impulse independent of position. When isolated, the turbulence should
be uniformly distributed, and only the impulse distribution is necessary to find such that θ = {Ln}.
Assuming equilibrium statistical mechanics, the Boltzmann distribution associates the probability of
a certain state to the energy of that state as follows

π(θ ) =
1
Z

e−βKsel f . (2.65)

Here, Ksel f is the total energy of the state and the "inverse temperature" of the system β is a
measure of the degree of chaos. Much like how temperature is a measure of the kinetic energy of a
collection of particles, β is here a measure of the average kinetic energy of the eddies.

Z is a yet undetermined re-normalization constant, such that the total probability is unity

Z =

∫

exp(−β
N
∑

n=1

Kn
sel f )

N
∏

n=1

d3 Ln. (2.66)
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These 3N integrals decouple because of the multiplicative property of sums in exponentials, such
that

Z =

�∫

d3 L1e−βE1

�

. . .

�∫

d3 LN e−βEN

�

(2.67)

Z =

�∫

e−
β L2

2M d3 L

�N

=

�√

√2Mπ
β

�3N

= ZN
0 . (2.68)

The distribution from Equation 2.65 is then

π(Ln) =
1

Z3
0

e−
β

2M

�

L2
x+L2

y+L2
z

�

= π3(Lc). (2.69)

It is now obvious that this is simply three independent normal distributions for the three spacial
components in L, with varianceσ2

c = M/β and mean µc = 0. The second moment of the components
are 〈L2

c 〉= σ
2
c , as is well known for the normal distribution. Therefore utilizing the fact that average

kinetic energy of the eddies is 〈K〉 = 〈L2〉/2M and 〈L2〉 = 〈L2
x〉 + 〈L

2
y〉 + 〈L

2
z 〉 = 3〈L2

c 〉 we get the
useful relationship

〈K〉=
3

2β
, (2.70)

known as the equipartition theorem. The length of the impulse vectors |L| can then be found by
integrating over spherical shells in which, resulting in the Maxwell-Boltzmann distribution

π(L) =

√

√ 2
π

L2

σ3
c

e
− L2

2σ2
c (2.71)
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Numerical Model

It is sought to implement the theory outlayed above in practice. This chapter will go through the
choices made in order to numerically model the theory. Throughout this chapter it will be assumed
that the location- and impulse vectors of the eddies are drawn from some PDF. This PDF is hitherto
undecided, but the entirety of chapter 4 is dedicated to the topic. Note that in general the same
model is followed throughout the report, but some alterations are made in that chapter for practical
reasons.

3.1 Non-dimensional Form

To avoid numerical issues, all governing equations should be non-dimensional before they are im-
plemented. To do this, some reference parameters are needed. Because only kinematic parameters
are considered, all expressions can be rewritten in relation to a lengthscale λ and a timescale τ.

We can rewrite all dimensional quantities as a product of a non-dimensional quantity, and its ref-
erence parameters. For example a parameter a is rewritten as a = âare f , where the non-dimensional
parameter is denoted with a hat. Because all reference parameters are combinations of λ and τ
means that rewriting all dimensional quantities as above and inserting into the equations of interest,
yield the same equations only non-dimensional. The exceptions are the equations with dimensional
constants, namely the dispersion relation, the instantaneous surface deformation and surface de-
formation energy, given from equations 2.46,2.59 and 2.63. Using ωre f = 2π/τ, kre f = 2π/λ and
following the procedure above gives the following non-dimensional versions of the equations;

ω̂(k̂) =
1
F r

√

√ 1
2π

k̂+
2π
Bo

k̂3 =

√

√ 1
We

�

Bo
2π

k̂+ 2πk̂3

�

, (3.1)

êζ≈ −
F r2

1+ 4π2

Bo k̂2
êPd = −

We

Bo+ 4π2k̂2
êPd (3.2)

and

Êsur f =
1
2

F r−2

∫

Bo−1|∇‖ζ̂|2 + ζ̂2d2 x̂‖ =
1
2

We−1

∫

|∇‖ζ̂|2 + Boζ̂2d2 x̂‖. (3.3)

17
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Here, Bo = gλ2/γ is the Bond number, F r = u/
p

gλ is the turbulent Froude number and
We = u2λ/γ is the turbulent Weber number. The Bond number describes the relationship between
gravitational force and surface tension. In effect, it determines the length scale in reference to the
capillary length, where gravity exactly balances surface tension. For water this is approximately
λcap ≈ 2.7mm [29]. The Froude number describes inertial forces compared to gravity, and the Weber
number describes inertial forces compared to surface tension. The inertial forces at play are that of
the turbulence, not the of the surface itself, which is why they are called the turbulent Froude- and
Weber numbers. They give relationship between the strength of the turbulence and the surface.
Which one describes the flow properties the best is dependent on relative effect of surface tension
and gravity, which will be explored further shortly in 3.2.

All that is left is to choose the scales λ and τ. It is desired to choose them based on the turbulence
only, in order for the non-dimensional groups to represent meaningful relationships between the
turbulence and the surface. The length scale is chosen to beλ= M1/3 as the mass inertia on kinematic
form represent some scale of the volume of an eddy. Next we want to choose a velocity scale for the
turbulence in order the kinetic energy to be O(1). Assuming that the velocity fluctuations for the flow
field u′ are of the same order of the velocity of the eddies themselves u = λ/τ, the kinetic energy
per unit mass is O(u2λ3). We already know the expected value of Ksel f from Equation 2.70 which is
Ksel f ∼ β−1. Relating the two gives a velocity scale u =

p

1/(βM), and a corresponding time scale

τ=
p

M5/3β . The non-dimensional groups thus become

Bo =
gM2/3

γ
, (3.4)

F r =
1

p

β gM4/3
(3.5)

and

We =
1

βγM2/3
(3.6)

Having non-dimensionalized the equations with length- and velocity scales based on the turbu-
lence means that M̂ = 1 and β̂ = 1 because M and β are the reference parameters. Note that we now
have assumed Ksel f to be the dominating term for choosing a velocity scale. This must be the case
in order to maintain K > 0 due to the far-field approximation made by truncating after the dipole
moment. This will be elaborated on further in sections 3.5 and 4.2. If interaction energy would be
more dominant, for example by doing a new analysis with quadruple moments, it might be better
to relate the length scale to the density of eddies instead which says more about average interaction
lengths.

3.2 Test Matrix

Computational resources are limited, such that only a limited number of MCMC simulations can be
performed, and sequentially only the surface statistics from these parameters can be evaluated. The
goal is to find out how the system scales with the non-dimensional groups, and we should therefore
choose parameters over a large range to capture the different effects of the system. Figure 3.1 shows
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a velocity-scale length-scale plot of the relevant scales for NST. The shaded region is what Brocchini &
Peregrine rougly estimated to be the region of marginal breaking where the surface characteristics are
neither flat nor breaking [30]. This is the region of interest for the model used in this paper because
we cannot go beyond wave-breaking due to the linear wave approximation, where it was assumed
|∇‖ζ| � 1, and the surface cannot be too flat, as it leads to convergence issues with the MCMC
simulations. The latter effect will be explained further in chapter 4. Furthermore, there is a limit to
the Bond number we can choose, related to the width of our domain. This is because smaller Bond
numbers means that the large surface tension effect gives large wavelengths which the finite domain
of our choosing cannot capture. That is unless the domain is scaled accordingly large, which would
require a finer discretization and thus more computational resources. The details of this limitation
will be explained in section 3.6.

Figure 3.1: Length-scale velocity-scale phasespace plot with shaded regions indicating region of mar-
ginal breaking for FST as per Brocchini & Peregrine [30]. Dashed lines show constant Froude numbers
and dotted lines show constant Weber numbers. Experiments from from Savelsberg & Van de Water
[17] in red with range from Taylors microscale to integral scale. The simulations of this paper are
represented as blue dots.

To get some indication to relevant length scales for FST we examine the experimental paper by
Savelsberg and Van de Water [17], where different forcing protocols were used to generate homogen-
eous, isotropic turbulence. The Taylor microscales were then in the range 0.95−1.3 cm, and integral
scales ranging from 3.5− 8.1 cm. The model presented here has no viscosity, nor does it assume a
length scale of the forcing. It is therefore logical to assume length scales in the inertial range between
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these two scales. Choosing a typical length scale of the turbulence in this range gives Bond numbers
Bo ∈ [11,729]. Length-scales corresponding to Bo = 10, 100 and 1000 are chosen here to cover
roughly the same range.

The left hand side of Figure 3.1 shows that the region of marginal breaking is dependent on
λ−1/2 i.e. We, while the right hand side shows a dependence on λ1/2, i.e. F r. The relevant length
scales are in-between these regions of clear dominance and it is not obvious which parameter is
most influential. It was chosen to vary the Froude number as this appears to have the widest region
of marginal breaking at these length scales. The paper by Savelsberg and Van de Water also provide
the corresponding turbulent fluctuation velocities to the given length scales; u′ ∈ [0.75, 1.27] cm/s,
giving Fr numbers in the range F r ∈ [0.0081,0.0415]. These F r numbers give surface deformations
too flat for the purpose for this report due to the aforementioned convergence issues. Values of
F r = 0.1,0.2 and 0.3 were chosen to obtain a wide range of values while roughly staying in the
region of marginal breaking.

3.3 Setup

The model described in chapter 2 is entirely analytic. The eddies can thus inhibit any point in R3,
and are not limited to a numerical grid. Technically, this only holds down to the machine epsilon
when implementing numerically, but that is still orders of magnitudes more accurate than what we
require. We need to limit the extent of the eddies however to a finite domain, with width w and
height h, formally D = {x , y ∈ [−w/2, w/2], z ∈ [−h, 0]}.

A 2D surface grid is defined in z = 0 with GP gridpoints in each direction and resolution ∆x =
w/(GP−1). Each point on this grid is also treated analytically and therefore no spacial discretization
error is expected in these points. Inbetween points however, errors are to be expected.

3.3.1 Boundary Conditions

The choice of domain and surface grid is arbitrary, as it captures only a finite volume of a large
sea. Eddies just outside of the domain might influence the surface deformation directly, or it might
interact with an eddy inside the domain. To account for these effects, we utilize the Periodic Boundary
Condition (PBC).

The surface deformation will automatically fulfill the PBCs due to the periodic nature of the
Fourier transform [31]. However, the interaction does not and to account for this, copies of the
eddies are made in 8 pseudo-domains around the main domain, including their respective mirror
eddies. Far from all of these eddies will have any meaningful contribution for the interaction, and
only those eddies within a Sphere Of Influence (SOI) of an eddy of interest n will be included in
the computation of

.
xn and

.
Ln. The radius of this SOI is found in section 3.5. Figure 3.2 shows the

setup from above with the PBCs highlighted. Also a minimum interaction distance is established in
section 3.4, which is shown in the figure.
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Figure 3.2: Setup as seen from above, demonstrating periodic boundary conditions and interaction.
Eddies are depicted as dots and arrows, representing xn and Ln respectively, superimposed on the
surface. The contour plot shows the surface deformation from the eddy in red, and the sphere of
minimum separation is shown as dashed red circle. The interaction sphere of influence for the eddy
in red is shown as the circle in cyan and the interacting eddies within the sphere of influence are
highlighted in cyan.

3.3.2 Statistical Surface Imprint Approach

As the Hamiltonian is given for the system of eddies, propagating the system forward in time should
in theory be no issue. However, eddies that are to close to each might exchange an ever increasing
amount of velocity and impulse, which can make the system blow up. This is a well known issue
called "finite time blowup" and results from the lack of viscosity in the Euler equation which is be-
ing solved by the system [32]. Still, as long as the far-field approximation is retained, the Euler
equations should be satisfactory. Therefore one must assure that the eddies are well separated at
all times. When propagating the system in time, this is practically impossible to do. In section 2.2
a smoothing function was added to the propagators C and D in order to smooth out the effect for
nearby eddies. During MCMC simulations, this kernel smoothing is essential to converge a solution,
but during the surface statistics analysis we can avoid the issue altogether. Instead of numerically
integrating the system in time, we rather generate a large number of systems frozen in time and cal-
culate the instantaneous surface deformation. This approach is called ensemble averaging and each
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system generated is called an ensemble. Provided enough ensembles are generated as to achieve a
statistically steady state, this approach is equivalent to the time integration method [33]. If we make
sure to generate each ensemble with enough spacing between eddies then the far-field approxima-
tion is guaranteed not to be violated as the next ensemble is generated independently. This spacing
is the topic of section 3.4.

Even though the system will not be propagated in time,
.
xn and

.
Ln is still needed, as they have

an effect from the DVP. The time derivatives are affected by the surface, as Esur f is included in the
Hamiltonian. This will be ignored, and the time-derivatives from equations 2.14 and 2.15 are used.
This is not expected to be a major issue, because the eddies are largely unaffected by the surface deep
down whilst for shallower eddy depths, Pkin will dominate due to its r−6 dependence in regard to the
surface. Had the time evolution been considered however, one would have to derive the Hamiltonian
from Equation 2.64 according to Equation 2.12.

Ideally one would like to use a turbulence spectra closely resembling those found in nature, like
for example a Kolmogorov E(k) = k−5/3 spectra. However, our test matrix and thus PDFs in which to
draw the eddies from only have three different length scales. Therefore, during the statistical analysis
all eddies from the same simulation will be drawn from the same PDF distribution which means that
the sea of eddies that is generated has the same length scale. In practice this means fixing the mass
inertia as a constant for all eddies. The resulting energy spectrum should then be peaked around
k ∼ π/λ [20].

3.4 Eddy Separation

It is important to separate the eddies sufficiently during the SDS simulations, as to not encounter
blowup. However, nothing has been said so far about how large this separation distance must be.
One constraint we can enforce is that the total kinetic energy of a system of isolated eddies far from
a surface must be positive. The self energy is strictly positive, but the interaction energy can actually
be negative. The reason for this is that eddies can cancel each others’ velocity fields such that the
system of eddies contain less energy than the eddies separately, i.e. separated an infinite distance
from each other.

Consider two eddies separated at this critical separation distance δ, antiparalell to each other,
which is the orientation with the least interaction energy. The relationship between them is given by
L2 = −cL1, where c is the scaling factor between the two impulse vectors. Then from Equation 2.13
we have

K1,2
int =

−cL2
1

2πδ3
(3.7)

and

K1,2
sel f =

L2
1

2M

�

1+ c2
�

. (3.8)

By enforcing K = Ksel f + Kint > 0 we then get the inequality

δ >

�

M
π

c
1+ c2

�1/3

(3.9)
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This function is maximized for c = 1, i.e. impulse vectors of equal magnitude |L1| = |L2|. Using
this relationship gives

δ >

�

M
π

�1/3

. (3.10)

On non-dimensional form this is a constant δ̂ > π−1/3 ≈ 0.683 because M̂ = 1 with the chosen
length scale.

This does only take into account two eddies. However adding more eddies will increase Ksel f
linearly with the number of eddies, but the interaction energy will not. Say another eddy is added.
The only orientation in which adding an extra eddy will give K1,3

int as large as K1,2
int is placing it on the

line spanned by L1 and L2 in x3 = −δex with L3 = −L1 = L2. Then r2,3 = 2δ and the interaction
energy is K2,3

int = K1,3
int /8. This pattern repeats for adding additional eddies.

Note that even though this δ ensures that the total kinetic energy is always positive, it does not tell
us whether the far-field approximation holds. For this one would need to compare with quadrupole-
and higher order moments and see at what distance they deviate significantly. For now, this δ will
be used as a requirement for spawning the eddies in relation to each other when looking at the
surface statistics. For the Monte Carlo simulations, a similar method will be used, explained further
in section 4.2.

3.5 Interaction Length

A vast amount of the computational effort is devoted to calculating the pressure interaction terms,
as these terms are essentially O(N2). However, these effects are largely affected by only the eddies
closest grouped together. Therefore it is desirable to find a maximum length rc in which eddies that
are separated more than this distance would not contribute significantly to the interactive pressure
terms. From Equation 2.36 we have

Pn
int,vel = un

p ·
.
xn = un

p ·

 

∑

m 6=n

C(rmn) · Lm

!

. (3.11)

It is obvious that just like the energy, introducing more eddies only reduces the relative interaction
pressure compared to self pressure, because it is the total induced velocity vector that matters to
Pint . Thus, the induced velocity from one eddy might cancel some of the velocity from another. The
maximum relative contribution to the DVP is therefore a system of two eddies, separated by the
vector rem,n, where em,n is the unit vector of a line through the two eddy centers. Like in section 3.6,
a fractional pressure is introduced, comparing Pint,vel to the maximum value, where two eddies are
separated by δ;

Pn
f =

un
p ·C(rcem,n) · Lm

un
p ·C(δem,n) · Lm

=
|C(rcem,n) · Lm|
|C(δem,n) · Lm|

, (3.12)

where the vector un
p is independent on the interaction. The fractional pressure is then dependent

on the direction of em,n as the propogatorC is slightly anisotropic. Isosurfaces of the vector magnitude
|C(rcem,n) · Lm] are ellipsoids, with the principal axis parallel to Lm slightly shorter than the others.
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For the purposes of this analysis, they will be assumed spherical such that scaling arguments give
C(rmn)∼ Lm(rmn)−3. Inserting this and solving for Pf = 0.01, which is considered negligible, we get
rc = δ/0.011/3 ≈ 3.17.

It should be noted that this analysis has been done with the interaction velocity term only. How-
ever, doing a similar analysis with the impulse term and cancelling the Bn · Ln terms in its equivalent
to Equation 3.12, the remaining contributing term scales with ∼ (rnm)−4, which result in a shorter
rc .

3.6 Domain Proportions

To capture all the essential details of the surface deformation, it is important to have a surface domain
wide enough that the surface deformation does not interact considerably with its own image through
PBCs. How large this is depends on the depth of the deepest eddy, as the surface deformations
become less and less localized the deeper an eddy is submerged. This section aims to find a semi-
analytic relation for the width to height ratio of the domain to satisfy this condition. It is difficult to
find an analytical expression of the surface elevation, because one needs to go through the Fourier
domain. Therefore we focus the first part of this analysis on the surface pressure. Because the surface
deformation is only a smoothed out version of the DVP for the instantaneous surface deformation,
the general shape will be the same, which means we can extrapolate some useful information used
to do a similar analysis for the surface deformation. In section 3.4 it was argued that the interaction
energy must be smaller than the self energy of the eddies to retain K > 0. It follows then that the
interaction pressure must be smaller than the self pressure. This section therefore focuses solely on
Pkin and Psel f .

There is only one degree of freedom for the pressure terms for an eddy with a fixed distance to
the surface. That is the angle of its impulse vector with the x− y plane. Let’s name this angle α. Now
consider an eddy directly beneath the origin with impulse in the x−z plane. The impulse vectors for
an eddy and its mirror are then Ln = [L cos(α), 0, L sin(α)] and Ln = [L cos(α), 0,−L sin(α)], where n
denotes the mirror to eddy n. Also let’s denote the distance to the surface s, such that xn = [0, 0,−s]
and xn = [0, 0, s] and the relative position vector between a point on the surface p with coordinates
[x , y] and the eddies are respectively rnp = [x , y,−s] and rnp = [x , y, s]. The pressure field terms
along the x-axis evaluated with Equation 2.35 are then

Pn+n
kin,x =

�

L cos(α)(2x2 − s2) + 3xsL sin(α)
�2

8π (s2 + x2)5
, (3.13)

and

Pn+n
sel f ,x =

s3

2

�

cos2(α)(2x2 − s2) + 6xs cos(α) sin(α) + sin2(α)(2s2 − x2)
�

(x2 + s2)5/2
. (3.14)

The maximum for these expression are easily found by evaluating ∂αPn+n
sel f = 0 and ∂αPn+n

kin = 0.
They are respectively

Pn+n
kin,max = Pn+n

kin,x(x = 0,α= 0) =
L2

8π2s6
(3.15)
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and

Pn+n
sel f ,max = Pn+n

sel f (x = 0,α=
π

2
) =

L2

Mπs3
. (3.16)

Note that Pn+n
sel f ,max and Pn+n

kin,max equal at s = (M/8π)1/3, where the maxima of the two terms are
in equilibrium. Below this value, Psel f is the dominating term, and above it, Pkin is dominating. This
depth will be called seq for future reference.

Normalizing Equation 3.13 and Equation 3.14 with their respective maxima from Equation 3.15
and Equation 3.16 means getting rid of the dependence on the magnitude of the impulse L. Then it is
of interest the distance of which the normalized pressure will be at 5% of its maximum, which here
is considered an acceptable cutoff criterion. Unfortunately, Px/Pmax = 0.05 is not easily solvable
analytically for the two cases. However, the solution can be approximated in Matlab by varying
α and using fzero [34], essentially giving a numerical expression for xmax(α). The max value of
xmax is found to be for αmax ≈ π/4 + πq for the kinetic term and αmax ≈ 11π/90 + πq for the
self motion term, where q take integer values. With these α-values, there are several solutions, all
with linear dependence of s. The ones with the largest slopes are respectivly xmax ≈ 1.74s and
xmax ≈ 2.52s. Having only examined the one-dimensional case in the x-direction is no guarantee that
other directions does not give a larger maximum displacement from the origin off course. However,
the x-direction was chosen because it showed the largest displacements, and it is easily confirmed
visually. We have then found a circle with radius as a function of eddy depth s in which 95% of the
DVP is concentrated, regardless of the x − y orientation of the eddy.

Doing the same analysis for the surface elevation is trickier, as mentioned. We do the same pro-
cedure only directly evaluating both terms simultaneously with the numerical procedure explained
above, and once again using fzero to find where the surface elevation crosses our threshold of 5%.
The surface elevation is now calculated with the normalization constant is ζmax = ζ(α= π/2, x = 0)
which comes from the fact that the maxima of the surface elevation will be at the same angle and
surface coordinates as for the DVP, only smoothed. Likewise, αmax = 11π/90 during this analysis as
this produces the largest xmax for the DVP.

The surface deformation transfer function defined in Equation 3.2 is dependent on gravity and
surface tension. The gravity only scales the pressure, while surface tension also smooths it out. It is
therefore expected that the shorter the length scale λ we have, i.e. lower Bond number, the larger
the domain we would require. Figure 3.3 shows the effect of varying Bo on the required width of
our domain. It is clearly visible that for Bo →∞, the result is the 2.52s dependence found for the
pressure analysis. This is unsurprising because Bo → ∞ removes the surface tension smoothing
effect and varying the F r does not scale the normalized surface deformation, such that we obtain
the results from above. Increasing the surface tension, an ever increasing domain width is required.
Note that for shallow eddy submergence there is a steep incline in required domain width. This is due
to the r−6 dependence of the kinetic pressure term in this region. This can safely be ignored because
surface deformations as steep as these require an enormous amount of energy, which is extremely
unlikely. This will be discussed further in chapter 4.
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Figure 3.3: Domain width required to capture the 95% highest surface elevations as a function of
eddy submergence s for different combinations Bo. The dashed line represent the linear relationship
with the slope found from a similar analysis witht the DVP

Now the issue of low Bond numbers raised in section 3.2 is clearer, as the extra smoothing
lengthens the wavelengths of the surface deformation, requiring a larger domain to capture. There
is a significant drawback of having a large domain. This is because a larger domain require more
gridpoints to aquire the same resolution. The computation time scales with GP2 and it is therefore
desirable to limit the domain width as much as possible. Through trial and error, a domain height
h = 1 was chosen as this shows to capture the essential depth dependence fairly well. It is also
far deeper than seq, such that Psel f is dominant, meaning the turbulence at this depth should be
approximately independent of the surface.

The required domain width from Figure 3.3 is wreq = 2xmax(s = h) = 12.8. This is rounded up
to 14 as to avoid errors from surface deformations below 5% adding up at the boundaries due to
PBCs. Figure 3.4 shows that the fractional surface deformations ζ f = ζ/ζmax are indeed bounded to
below 5% within a circle with diameter 6.4 as calculated. Note that the mean surface deformation
is non-zero due to the deformations below the cut-off criterion adding up at the boundaries. This is
not an issue however, as it is the higher order statistical moments that are interesting for the SDS
simulations.
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Figure 3.4: Surface elevation from an eddy and its mirror normalized by the maximum value for
different impulse angles α. Blue contour shows where 5% of maximum surface elevation is, and black
dotted circle bounds this for all α.

3.7 Grid Dependence

To make sure numerical discretization errors are kept to a minimum, a grid dependence study is
performed. Recall that all gridpoints have an analytic solution for ζ, while errors are present in-
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between. The parameter of interest will be the surface deformation energy, as it sums up all these
errors over the surface.

Figure 3.5 shows the surface energy from a single eddy and its mirror, plotted for some different
eddy depths and for the different Bond numbers of our test matrix. This is done at an angle of
α = π/2, because this is the orientation with the most surface deformation as well as having the
strongest gradients ∇‖ζ, meaning it is the most prone to error.
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Figure 3.5: Grid dependence of surface deformation energy with the given domain width for four
different eddy depths and the Bond numbers from the test matrix.

The dependence on Bo is visible, as higher Bond numbers means higher surface gradients and
thus more error. The dips in the curves is simply a result of overshooting, making an impression of
low error on the way over the line. It is clear that the closer an eddy is to the surface, the more
discretization errors there will be. This is due to the r−3 and r−6 dependencies of the DVP. The error
will be infinite for z→ 0 and we can therefore only set a limit on discretization error below a certain
threshold of depth.

During MCMC simulations, computing the surface grid is without a doubt the clear bottleneck.
Then, as we will see in chapter 4, computing the energy is essential. Computing self energy and
interaction energy needs only be done at the eddy center, a single point in R3 for each iteration.
The surface deformation energy needs to be computed at all GP2 gridpoints, in addition to then
numerically computing the gradient field and integrate. The computation time is on the order of days,
and we are therefore forced to accept a relatively coarse resolution. It was decided to accept surface
discretization errors up to 5% below a depth of z = 0.2. Using 81 gridpoints in each direction will
then be satisfactory. When examining the final surface statistics, we can allow for a higher resolution,
as the computation is more efficient. Then a 1% error is accepted up to z = 0.2, corresponding to
101 gridpoints.

An idea that was explored to ease computational cost was to calculate the surface deformation
in a relatively rough grid and interpolate in-between. The idea was however disgarded because the
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added computational cost of interpolating coincidentally turned out to cancel the benefit for the
specific number of gridpoints chosen here. It might be worth investigating further in the future if
other domain sizes or error thresholds are chosen.



Chapter 4

Markov Chain Monte Carlo

The statistical description in section 2.7 assumed no interaction energy between eddies, nor surface
deformation energy, for the sake of simplicity. It is desirable to perform a similar analysis with these
effects accounted for, but the integrals will not decouple and are difficult, if not impossible to solve
analytically. MCMC is a family of computational methods to circumvent these integrals. The idea
is to "walk" through phase space using a Markov Chain and approximate the target distribution
with the samples collected, like one does in Monte Carlo simulations. By assigning a state of the
system with a probability, the chain spends the most time in high probability state areas, so-called
typical sets [35]. These regions will thus be sampled more frequently, in accordance to the probability
distribution. MCMC methods are often used in Bayesian statistics to find a probability distribution
for high dimensional state-spaces in this manner.

The distribution from section 2.7, i.e. Lc ∼ N (0,
Ç

M
β ) and xc ∼ U(−dz , 0) will be used as the

prior distribution, a first guess in the MCMC methods in order to find more likely states of the system
including surface deformation energy and interaction energy. The state of the system θ is defined
as a point in the 6N dimensional phase-space containing position and momentum vectors for all N
eddies, i.e. θ = {x1,x2, ...xN ,L1,L2, ...LN}. The distribution we would like to sample, the posterior,
is in our case only 4N -dimensional, because the x − y plane is arbitrarily defined. Eddies should
therefore have no preference to their position in x or y , nor should L be dependent on them. One
should neither expect any preference in Lx and L y . Technically one could thus combine these two
impulse components to a single parameter and perform the simulations in the 3-dimensional phase-
space, but as a redundancy measure we rather use this to evaluate convergence.

Ideally, one would like to do the MCMC simulations with several eddies to get a full picture.
However, each eddy added to the simulation adds 6 dimensions to step around in phase space,
which dramatically slows down computational efficiency. Therefore, only one eddy plus its mirror
is regarded during this MCMC analysis. The valid information lost in this simplification will be the
surface deformation energy due to the interaction term of the DVP. However, as we saw in section 3.4,
the interaction pressure terms must be smaller than the kinetic- and self term under the dipole model
as to assure positive kinetic energy. What will be included is the interaction between an eddy and its
appropriate mirror, as this can impact both the depth distribution p(z) and the impulse distribution
p(L|z).

30
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4.1 Random Walk Metropolis

Random Walk Metropolis (RWM) is the oldest and simplest of the MCMC algorithms, introduced in
the classical paper by Metropolis et.al. [36]. The algorithm is designed to suggest a new state and
accept the step based on the probability associated with it.

An eddy is drawn from the prior distribution. Then a step to a new proposed state θ∗ is sugges-
ted with a jumping distribution J(θ∗|θ ). This jumping distribution must be symmetric, i.e. J(θ∗|θ ) =
J(θ |θ∗). To meet this demand, a normal distribution centered arund the current state is used J(θ∗|θ )∼
N (θ ,Σ). This jumping distribution is in theory 4-dimensional, but each component is independent,
i.e. the covariance matrix Σ for the 4 variables is purely diagonal. So in practice each proposed
component is drawn from its marginal normal distribution, J(z∗|z) ∼ N (z,∆z) and J(L∗c |Lc) ∼
N (Lc ,∆L). The probability of the step p(θ∗) is then calculated with regards to the energy of the
system, i.e. the Hamiltonian from Equation 2.64 for the proposed state compared to the current
state as

p(θ∗) =
e−βHn

∗

e−βHn = e−β∆H , (4.1)

where

∆H =∆Ksel f +∆Kint +∆Ede f . (4.2)

The step is then accepted with a probability p(accept) = min[1, p(θ∗)], assuming the step is
legal. A legal step in this context means that the eddy remains in the domain. The process is then
repeated many times, until we have reached a statistically steady state for the parameters of interest.
The algorithm tailored to this paper is summed up in Algorithm 1.

Algorithm 1 Random Walk Metropolis

1: Draw θ from π(z,L)
2: for i t = 1 : i terat ions do
3: Draw θ n

∗ from J(θ∗|θ )
4: θ n

∗ ←mirror(θ n
∗ )

5: Update
.
xn,

.
Ln with Equation 2.14 and Equation 2.15

6: Pn
d ← Equation 2.36 with utot

p = un
p + un

p
7: ζn← Equation 2.59
8: ∆H ← Equation 4.2
9: if U(0,1)< e−β∆H && z∗ ∈ D then

10: θ n = θ n
∗

11: end if
12: end for

4.2 Constraining Interaction Energy

During MCMC simulations, one cannot use the separation distance found in section 3.4. This is
because the eddy position changes during the simulation based on the current step. Because δ is a
discrete cutoff-value one would lose all information about the posterior distribution above z = −δ/2.
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Still, for the Monte Carlo simulations not to diverge, it is essential to bound the kinetic energy
K > 0. The reason is that by design, any step in the direction of less energy ∆K < 0 is accepted,
which is clear from Equation 4.1. An eddy has an opposite Lz-component to its mirror, an orientation
with negative interaction energy. A step in phase-space will therefore further minimize this energy
by either increasing the magnitude of the Lz component, or by decreasing the distance to the surface.
The former means that K →−∞ for L→∞, meaning the simulations diverge, in addition to being
a clear violation of physics. Therefore we must ensure that the self energy is at least as large as the
minimum value for the interaction energy, in order for the total kinetic energy to always be positive,
such that K → +∞ for L → ∞. Instead of separating the eddies with a minimum distance, we
utilize kernel smoothing, as described in section 2.2 and bound the eddy radius R.

With smoothing, the minimum interaction energy configuration is an eddy on the surface with
an impulse vector in the z-direction, such that the mirror is anti-parallel. This gives

Kn+n
int,min = Ln · C̆(~0) · Ln = −C̆33(~0)|Ln|2 (4.3)

The corresponding self energy to the same configuration is Kn+n
sel f = |L

n|2/M . Setting Ktot > 0
results then in the inequality

R>

(
� M

2π

�1/3
for f1(r), f2(r)

�5M
4π

�1/3
for f3(r), f4(r)

(4.4)

Because we would want to retain the far-field approximation as well as possible, smoothing
function f2(r) will be used for the simulations. It is the one approaching the far-field the quickest,
while also limiting the size of the eddies by Equation 4.4.

Figure 4.1 show a particular segment of iterations for a typical MCMC simulation with the inter-
action energy bounding method. It is evident that whenever the z-component of the impulse vector
start to grow, and correspondingly the interaction energy begins to diverge, the self energy grows in
the positive direction and keeps the total energy above zero. This shows that the self energy success-
fully bounds the interaction energy with the given smoothing radius.
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Figure 4.1: Demonstrating effect of bounding interaction energy for a typical simulation. Top fig-
ure showing impulse components over a segment of iterations. Bottom figure showing terms of the
Hamiltonian for the same iterations.

4.3 Parameter Tuning

For the RWM algorithm we have yet to tune the covariance matrix of the jumping distribution, which
in practice is the two parameters σ∆z and σ∆L . Setting these parameters too small will lead to slow
exploration of phase space, resulting in a need for more iterations. Larger steps will converge faster
toward the typical sets, but will tend to get stuck there because the steps away will be very unlikely.
Finding this balance is called the optimal scaling problem [37]. Gelman et. al. found that the optimal
acceptance rate to be about 44% for one dimension, and about 23% for the infinite dimensional
problem [38]. The optimal acceptance rate for this 4-dimensional problem should then be somewhere
in-between these extremes.

By trial and error, it was found that σ∆x = 0.5h, σ∆L = 0.5σc generally produces consistent
acceptance ratios in this range. Table 4.1 shows the acceptance ratio of the simulations performed. All
the simulations ended up in the desired range, meaning that the chosenσ∆z andσ∆L are satisfactory
for fast convergence.
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Acceptance Ratio

F r
Bo

10 100 1000

0.1 0.371 0.375 0.370
0.2 0.375 0.372 0.363
0.3 0.375 0.369 0.357

Table 4.1: Acceptance ratio at final iteration for RWM simulations with different parameters

4.4 Convergence

Judging convergence of MCMC methods is by no means trivial. One approach is to monitor a para-
meter of interest until it does not longer oscillate, and settles down to sort of a steady state situation.
Muller found this approach to be satisfactory despite its simple nature [39]. Here, this means mon-
itoring the maximum change in z for p(z) and p(L|z), where the latter we monitor the Standard
Deviation (SD) of the distribution. For simplicity, only ∆σ|L| is shown, as this incorporates all the
errors from each impulse component. In Figure 4.2 we see that the maximum change in the sampled
∆p(z) decays smoothly and flattens out. The same applies for max(∆σ|L|), albeit in a noisier manner.

The simulations in the figure are grouped by color and color intensity, where the lower Froude
number simulations have a lighter color. Note that it is these simulations which show the greatest
changes, and are the slowest to converge. This is because the weaker surface allows eddies closer
to itself, as well as larger impulse vectors. Hence there is a larger phase-space to explore and less
samples are recorded in each state. The flatter the surface characteristics, the more difficult it is to
converge the MCMC simulations. This is the reason it proved disadventageous in section 3.2 to use
simulations below the region of marginal breaking.
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Figure 4.2: Monitoring change in the maximum change over z in sampled parameters of interest p(z)
and σ|L|(z) for an increasing number of iterations for all 9 simulations in the test matrix.

In addition to monitoring the convergence of the parameters of interest, it is crucial to check that
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the assumptions we have made are correct in order to be confident of convergence. Firstly we must
make sure that the Markov Chain has forgotten all about the initial conditon, since this was randomly
chosen. A way to do this is to check the AutoCorrelation Function (ACF) to see how correlated the
Hamiltonian is to itself from previous iterations. Figure 4.3 depict a typical ACF for the simulations,
where it is obvious that the correlation becomes insignificantly low after the initial period of about
150 iterations.
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Figure 4.3: Autocorrelation function of the Hamiltonian for a typical simuation. Here, the first 300
iterations are shown to demonstrate the burn-in period.

Secondly we must check that the assumption of independent Lx and L y components holds. For
a simulation to have converged to a statistically steady state one would expect Corr(Lx , L y) = 0. We
cannot use the Pearsons correlation coefficient as per usual, because it assumes that the parameters
constitute a bivariate normal distribution [40], while our distribution is z-dependent. Instead, the
Spearman correlation coefficientis used, as it does not assume a probability distribution [40].

Figure 4.4 shows how the Spearman correlation evolves with the number of iterations. All sim-
ulations stabilize around a correlation coefficient of less than 0.025. By itself, this value does not
mean much, and it would therefore be desirable to perform a hypothesis test to confirm whether or
not these correlations are statistically insignificant. However, such a test requires independence of
observation [41]. A Markov chain is by its very nature dependent on some earlier iterations. The ACF
for Lx and L y shows that they have completely "forgotten" about their previous states after about 250
iterations. In evaluating the p-value therefore, we only use every 250th iteration of the simulation to
calculate the Spearman correlation coefficient. The p-values of the simulations for the final iteration
are summarized in Table 4.3. They are computed with a 95% confidence interval. All of them are
comfortably above the significance level of 0.05, meaning we can reject the null-hypothesis that Lx
and L y are correlated. It is important to note that there is always a chance of type I I errors, so-called
false negatives [41].
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Figure 4.4: Evolution of absolute value of Spearman correlation between Lx and L y for an increasing
number of iterations. Subfigure shows a zoomed in version of the final 300,000 iterations

Corr(Lx , L y)

F r
Bo

10 100 1000

0.1 -0.010 0.001 0.016
0.2 0.005 -0.012 -0.018
0.3 -0.006 0.001 -0.004

Table 4.2: Spearman correlation between Lx
& L y at final iteration for RWM simulations

p-value

F r
Bo

10 100 1000

0.1 0.454 0.952 0.228
0.2 0.727 0.338 0.167
0.3 0.666 0.956 0.781

Table 4.3: p-value of Spearman correlation
between Lx and L y at final iteration for RWM
simulations with 95% confidence interval

4.5 A Note on Hamiltonian Monte Carlo

It would be interesting to examine a system with more eddies in order to include interaction. Then
however, RWM would probably be insufficient. Due to the randomness in the jumping distributions,
the RWM algorithm is known to struggle in high dimensional cases, as the number of directions
in phase space to step in increases [35]. It is therefore advantageous to use a method that glides
smoothly through the typical sets of high probability. This is the idea of Hamiltonian Monte Carlo
(HMC). Because the Hamiltonian is conserved during a trajectory through phase space, it will move
on a hypersurface of constant probability density. Another major flaw in the RWM algorithm is that
it does not account for the dynamics of the system. This will tend to propagate the system to a lower
energy state regardless of the physics involved.

In theory, HMC solves both of these problems. A full review of the algorithm is outlayed in Neal
[42]. In short, the algorithm updates only the impulse variables independently of the current impulse.
Then the system is propagated in time with step-size∆t for S number of steps using

.
x and

.
L from the

Hamiltonian dynamics. The final step on this trajectory is then the proposed new state θ∗, however
with flipped sign for the impulse as to keep the proposal symmetric. Then a Metropolis update is done,
like in the RWM method outlayed above. HMC is expectedly also easier to tune, as the timestep ∆t
can be fixed to yield an acceptable error, such that only S is tuned.
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Whilst the algorithm looks promising for the present case, one would need to overcome one im-
portant obstacle in addition to finding

.
x and

.
L including Esur f . The numerical integration method

used to update the system must be symplectic in order to remain stable for Hamiltonian systems [42].
This means it should preserve volume in phase space under integration, like the Hamiltonian equa-
tions do. When constructing a symplectic integrator it is common to separate the Hamiltonian into
terms containing each of the canonical vectors. The Hamiltonian examined here has an interaction
term and a surface deformation term, both of which are not separable. MacLachlan & Atela presents
some implicit methods to generate symplectic integrators for non-separable Hamiltonians [43]. How-
ever, it requires high order derivatives of Equation 2.64, which is cumbersome to do analytically.
Nevertheless, with the benefits of faster convergence of higher dimensional probability distributions,
it is undeniably worth the effort for further work on the topic.
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Numerical Implementation

This chapter will look at how the numerical model in chapter 3 was implemented in Matlab. Firstly,
section 5.1 explains the class structure of the code. Then some non-trivial details about the code
implementation is discussed in section 5.2. Lastly the efficacy of the code is discussed in section 5.3,
alongside some efficiency improvements. The main scripts are attached in Appendix A, with the
necessary classes, scripts and functions.

5.1 Class Structure

In the code, there are many variables to keep track off. The object oriented functionality in Matlab was
used to better keep track. The code uses three main classes; Eddy, Turbulence and SurfaceSection.
The Eddy class contains the properties defining a single eddy; xn,Ln,

.
xn,

.
Ln, as well as a reference to

a SurfaceSection object. Note that M̂ is set as constant in the class with value 1 because of the way
the system is non-dimensionalized. In the future if more length-scales were present, it could easily
be set as a class variable instead. The Eddy class also contains useful member-funtions. Among other
things these functions can produce a mirror eddy, calculate surface pressure terms evaluated at the
SurfaceSection grid, calculate the energy terms and calculate interaction properties given other Eddy
objects.

The Turbulence class contains a collection of Eddy objects as well as overall turbulence paramet-
ers common to all eddies, namely δ,rc , R, smoothing function number and domain. No smoothing
is equivalent to specifying 0 for the smoothing function, such that the same layout can be used with
or without smoothing. All the eddies are collected in a matrix of Eddy objects, where the first row
contains the real eddies in the domain, the next 8 rows contains the copies around the domain to
fulfill PBCs, and the rest are the respective mirror eddies of the first 9 rows of eddies. This way it is
easy to keep track of what copies and mirrors correspond to which eddy. The copies and mirrors are
made upon construction of the object, using the domain parameters and the mirror function of the
Eddy objects. The Turbulence class contains member-funtions that can easily sum up the Pn

d terms
or Hamiltonian terms of the eddies. The class can also update

.
xn and

.
Ln for all eddies at once, with

a member-funtion that uses the SOI method outlayed in section 3.3.
The SurfaceSection class contains the gridpoints for the 2D surface grid, both in real space and in

wavenumber space. How the wavenumber grid is made is described in subsection 5.2.2. The class also

38
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contains the surface parameters Bo and F r such that a SurfaceSection object can calculate surface
deformation and surface deformation energy with a given DVP from the Eddy or Turbulence class.

All the member variables of the SurfaceSection class remain constant during each SDS and MCMC
simulation. However, all Eddy objects need to access the SurfaceSection object to calculate the DVP
and surface deformation. To avoid unnecessarily many copies of this SurfaceSection object to be
stored in memory, the SurfaceSection class is set to be pass-by reference, which in Matlab means
deriving from the handle class [34]. It could be useful in the future to define also the Eddy class to be
pass-by-reference, especially if propagating the system forward in time, which would eliminate the
need to make new objects every time the state is changed. With the ensemble averaging approach
presented, the eddies only change state during MCMC, and using the Eddy class as pass-by-reference
then surprisingly slowed computation by a little margin.

There is a large interplay of member-funtions and member variables which all communicate and
it is thus hard to keep track of and update all member variables. Therefore, many of the variables are
set to be dependent properties, which means the variables are "pulled" by a predefined get-function
when the parameter is requested. For example, when calculating the kinetic term of the DVP, the
induced velocity components from an eddy at the surface are needed in all GP2 gridpoints, as a cell
array un

p. To compute this cell array, another cell array is needed in turn, the vectors describing the
position vector from each gridpoint to the eddy rn

p. Say an eddy is moved, as is the case during MCMC
simulations. Without dependent variables one would need to update these arrays sequentially before
computing the DVP components of interest, allthewhile needing additional variables to keep track of
which variables have already been updated from calls in other functions. With dependent properties,
all the necessary variables are updated automatically when called.

5.2 Code Implementation

5.2.1 Computing Dynamic Vortex Pressure

Only the self motion term in Equation 2.36 is completely independent of other eddies, as the kinetic
term needs the total induced velocity at the surface from all eddies, and the interaction terms depend
on induced velocity and momentum. Pn

sel f , Pn
int,vel&Pn

int,imp are set as dependent properties for the

Eddy class, with the requirement that
.
xn and

.
Ln are updated. This requirement is checked with

some boolean values, which will be described in subsection 5.2.4. Pn
kin is calculated using a separate

function with a cell array utot
p containing the total surface velocity from all other eddies, as an input.

If an eddy is considered in isolation, then this is simply a cell array filled with the zero-vector. In the
case of the Turbulence class, Pkin is set as a dependent property because utot

p is itself a dependent
property in the class, which is computed by summing up the un

p contributions from all eddies with a
Turbulence class get-function.

When evaluating the pressure terms, one needs to compute the propagators C for all points
on the surface, and additionally B and D for the interaction terms. Instead of computing all these
propagators, storing them in cell arrays and then iterate through points on the surface, it is both
convenient and computationally more efficient to use the built in Matlab function cellfun. This way,
all elements of the rn

p cell array are subject to the same function, taking in a vector and outputting
the scalar pressure value after evaluating the tensors in a function called within cellfun. Because rn

p
is a dependent property, it is pulled whenever the pressure terms are called, such that the pressure
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is guaranteed to use the updated state of the eddy. For example, calculating Pn
sel f can be evaluated

in a single line of code as such

1 function P_SELF_n = get.P_SELF_n(obj)
2 P_SELF_n = cellfun(@(r_np) (1/obj.massInertia)*dot(obj.imp,C_point(r_np)*obj.imp

') , obj.eddy2surfaceVecs);
3 end

5.2.2 Computing Surface Elevation

Having Pd evaluated over the surface grid, the theory from section 2.5 can be utilized. However,
first we need to map the spacial coordinates into k-space coordinates. The number of gridpoints
will remain the same as in the spacial domain, but the spacing ∆k and limits will obviously not.
We have a spacial resolution to sample wavelengths l down to ∆x . To avoid aliasing effects, the
wavenumber k = 2π

l should be at a maximum half the sampling wavenumber. This is known as the
Nyquist sampling theorem and the maximum wavenumber is analagous to the Nyquist frequency in
the time-frequency domain [44]. Thus the maximum wavenumber is kmax =

π
∆x . With the same

number of gridpoints GP, the k-space resolution becomes ∆k = 2π
GP∆x .

With the proper k-space grid, k =
q

k2
x + k2

y can be evaluated over the grid, which is done upon
construction of the SurfaceSection object. Note that the fraction term in Equation 2.59 is a transfer
function, completely independent of any of the eddies. It is therefore defined to be a dependent prop-
erty matrix in the SurfaceSection class. A member-function in the SurfaceSection class can thence
take in the DVP from an Eddy or Turbulence object and return the corresponding surface elevation.
This is done by doing a 2D FFT of the DVP, piece-wise multiplying it with the transfer matrix, and
returning the inverse 2D FFT of this matrix product.

When the surface elevation is calculated, it is fairly straight forward to compute the surface
energy. The gradient vector field is calculated with the built in Matlab-function gradient, then Equa-
tion 3.3 is evaluated and integrated numerically using the trapz function in both dimensions.

5.2.3 Generating Turbulence From a Posterior Distribution

The sampled posterior distribution for our simulations is essentially a collection of vectors for z and L,
for a long list of iterations. For each ensemble, a list of random indices are generated, corresponding
to the number of eddies in the main domain. Then a vector of empty Eddy objects is created, which
is to be filled with eddies containing the z and L values corresponding to the random indices. Recall
that the eddies must be separated by at least δ from each other. The x − y coordinates, drawn from
a uniform distribution are therefore generated within a while-loop, until this separation condition
is maintained in accordance to all other eddies in the Eddy-vector. Only then is the Eddy object
constructed and added to the Eddy-vector. When all entries are filled, a Turbulence object is created,
which automatically generates all copies and mirrors in the class constructor.
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5.2.4 Updating Interaction Properties

The interaction variables for the Eddy class
.
xn and

.
Ln cannot be set as dependent, because they

are functions of properties of other Eddy objects. Because the interaction variables are outdated
whenever an eddy changes its state, two boolean variables are introduced to tell when an eddy is in
its updated state. To switch these variables off when updating the state of the eddy, all updates need
to be performed in a custom update-function, instead of the pre-defined set-operator "=". The access
of the state variables are set to private in order to assure this operator is not used. All eddies may
be updated at once with the Turbulence object member-funtion updateInteractionProperties(). This
function loops through each Eddy object in the main domain and sums up the induced properties
from all other Eddy objects within its SOI, using equations 2.14 and 2.15. Then the copies and mirrors
of the updated eddies are also updated.

5.3 Computational Efficiency

We have already made some simplifications in the numerical model to achieve shorter run-times. This
included using a relatively course grid resolution, as well as using only interaction between eddies
within a SOI. Additionally, some time saving methodologies could be used during the implementation
of the code without loss in accuracy.

5.3.1 Parallelization

In order to best utilize the computational power, it is desirable to parallelize the code in order to
run loops on multible cores simultaneously. This requires that the loops are completely independent
of each other. Because Markov chains in their very nature depend on the iteration before, it was
not possible to run the MCMC simulations in this manner. The SDS simulations however are run
over ensembles that are generated completely independently of each other. The Parallel Computing
Toolbox was used for this, as Matlab only utilizes a single computer core by default.

5.3.2 Vectorization

Matlab is optimized for operations involving matrices and arrays [34]. There are therefore possib-
ilities of gaining computational efficiency by replacing for-loops with vectors and matrices, which
is a process called vectorization. This can be done in the present case by using array multiplication
instead of index-notation.

It was mentioned above how the propagation tensor C must be calculated in each gridpoint on
the surface for each eddy when evaluating all the terms of the DVP. Additionally, B and D must be
calculated when including the interaction pressure. The evaluation of these propagators is the process
taking the longest to compute, and a small gain in efficiency for computing these might therefore
greatly boost performance. Calculating and using this on array form instead of with index notation
in for-loops saw a 40% and 30% boost in calculating B and C respectively. The former propagator is
evaluated directly as a vector, but for the latter we must first compute the outer tensor product ri r j in
matrix form, i.e. r⊗r, before performing the desired calculation. This premeasure slightly counteracts
the gain from vectorization, but the gain is clearly higher than the loss. This is however not the case
for D, because both the tensor product ri r j rk as well as the three Kronecker delta functions δi j ,
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δik and δ jk needs to be defined in 3D arrays before computing the desired propagator. Doing this
annuls the gain in vectorization, and the propagator calculations is thus left in index notation. Also
the pressure terms are computed in vector form for the same purpose, using Equation 2.36 instead
of Equation 2.35.

5.3.3 Performance

The computational resources available was a 12-core computer with Intel Xeon Gold 5218 processors
running at 2.30GHz. The MCMC simulations were run simultaneously in separate Matlab programs,
each simulation using a single core. The running time for the 1,500, 000 iterations that it was run
for took about 5 days. The SDS simulations which were run in parallel took about a day and a
half, simulating 20 main eddies for 5000 ensembles. These run-times are after the aforementioned
simplifications and time-saving methodologies, which goes to show the importance of optimizing
efficiency.
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Results

6.1 Posterior Distribution

Figure 6.1 shows p(z) in the posterior distribution for the different simulations. The simulations are
grouped in color by Bo and in F r by color strength, which is the trend throughout this chapter. All
parameters are non-dimensional, such that the hat notation is dropped in this chapter.

Note that all the PDFs experience a "buffer zone" near the surface where the probability of finding
an eddy is zero. They also have a peak more or less around seq. The lower Froude number simulations
have more distinct peaks, and they are situated at slightly lower depths. The effect of the Bond
number is a larger buffer zone and less distinct peaks.
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Figure 6.1: Normalized frequency distribution histograms of sampled p(z) for the different simula-
tions parameters in the test matrix. The dotted line is the uniform distribution for the spacial prior
distribution, and the dashed line is the equilibrium depth discussed in section 3.6

Figure 6.2 and Figure 6.3 gives an overview of the sampled p(L⊥, z) and p(L‖, z) distributions for
all the simulations as 2D normalized histograms. L‖ is the horizontal impulse component parallel to
the surface and L⊥ is the vertical component normal to the surface. For each slice in z, the impulse
component distributions appear to be normal distributions centred in zero for both cases. It is obvious
that the shape of the histograms are quite dependent on F r and Bo for the p(L⊥, z) case, whilst in
the p(L‖, z) case there are no clear qualitative differences. To distinguish the simulations in a clearer
manner, the SD of p(L⊥|z) and p(L‖|z) are plotted in Figure 6.4, denoted by the shorthand notation
σ‖(z) and σ⊥(z). Because there are far less sample points for eddies close to the surface, the SD will
not be statistically meaningful there, and thus only those z-bins with more than 100 samples are
considered.
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Figure 6.2: Two-dimensional normalized histograms of the p(L⊥, z) distributions for the different
simulations. The red dashed lines show the 99.7% confidence interval of the prior distribution.
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Figure 6.3: Two-dimensional normalized histograms of the p(L‖, z) distributions for the different
simulations. The red dashed lines show the 99.7% confidence interval of the prior distribution.
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(a) Horizontal impulse component
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(b) Vertical impulse component

Figure 6.4: Standard deviation of impulse components as a function of depth for the different simu-
lations in the test matrix. The dotted line represents the standard deviation of the prior distribution.
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Note that σ‖(z) shows little variance between simulations, while σ⊥(z) vary greatly. However,
there are slight peaks also for σ‖(z) below seq. For the vertical component, note that the peaks
correspond to those of the p(z) distribution. The peaks in σ⊥(z) are affected in the same manner by
the non-dimensional groups as the p(z) distribution, i.e. deeper and less distinct peaks for increasing
Bo and F r. Furthermore, σ⊥(z) ≈ σ‖(z) for Bo = 1000, F r = 0.2 and for Bo = 1000, F r = 0.3 the
parallel component is slightly higher around the peak value. All SDs from the simulations approach
the prior distribution σc for z→−h.

6.2 Surface Statistics

Figure 6.5 shows the normalized frequency distributions of the surface elevation for eddies drawn
from the different posterior distributions found in section 6.1. 5000 iterations were run with 20
eddies in the main domain. Due to time constraints it was not feasible to run more ensembles that
this, nor a different number of eddies. The simulations are grouped by Bo for demonstrative purposes.
Because of the issue with a finite domain described in section 3.6, the simulations all have a non-zero
mean, and they are therefore centered in µζ to easier compare their characteristics. Note that the
histograms in general become flatter and wider for increasing F r, with the exception of for the two
lowest Froude numbers for Bo = 10.

The second, third and fourth central statistical moments of ζ at the end of the simulations are
listed in tables 6.1, 6.2 and 6.3. To judge convergence of the simulations, Figure 6.6 presents these
moments for an increasing number of ensembles, giving an indication on the convergence of the
simulations. Notice how some of the simulations, especially those with F r = 0.1 experience sharp
jumps in skewness and kurtosis. A table of the maximum value of |∇ζ| for the different simulations
is also presented in Table 6.4 in order to see whether the linear surface wave approximation is kept.
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Figure 6.5: Normalized histograms of sampled surface elevation distributions away from mean. The
different simulations are grouped by Bond number.
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Figure 6.6: Statistical central moments for an increasing number of ensembles
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Var[ζ̂] ×104

F r
Bo

10 100 1000

0.1 0.24 0.06 0.04
0.2 0.21 0.19 0.19
0.3 0.25 0.39 0.49

Table 6.1: Variance of sampled surface de-
formation distribution

Skew[ζ̂]

F r
Bo

10 100 1000

0.1 -3.43 -1.98 -0.99
0.2 -0.8 -1.09 -0.59
0.3 -0.58 -0.43 -0.49

Table 6.2: Skewness of sampled surface de-
formation distribution

Kurt[ζ̂]

F r
Bo

10 100 1000

0.1 26.99 15.51 4.84
0.2 3.48 6.24 3.44
0.3 2.87 3.37 3.20

Table 6.3: Kurtosis of sampled surface de-
formation distribution

Max[|∇ζ̂|]

F r
Bo

10 100 1000

0.1 0.04 0.01 0.03
0.2 0.03 0.03 0.03
0.3 0.15 0.02 0.13

Table 6.4: Maximum surface gradient
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Discussion

7.1 Posterior Distribution

Both the surface and the eddies try to minimize their energy during the MCMC simulations, resulting
in two competing effects. The surface repels eddies so that its deformation and thus deformation en-
ergy decreases. Meanwhile, the eddy will minimize its energy by decreasing interaction energy with
its own mirror image. Like already mentioned, two anti-parallel eddies will have negative interac-
tion energy between them, as some of the velocity field is cancelled. The system of an eddy and its
mirror which naturally has opposite L⊥ components will therefore further minimize the interaction
energy by reducing the distance between each other, or by maximizing the impulse components nor-
mal to the surface. An eddy is therefore attracted to the surface. The mirror image is of course not a
real eddy but rather a tool to satisfy the dynamic BC. The attraction to the surface can therefore be
interpreted as a way for the eddy to cancel some of its velocity field.

The peaks in the p(z) and p(L⊥, z) distributions are located at the depth in which these two effects
are in equilibrium. Recall that in the limit Bo →∞, the surface deformation is a scaled version of
the DVP, and it is therefore logical that the peak of the distributions then closely approximate seq
for the higher Bo simulations. It is also logical that decreasing the Bond number, i.e. smoothing
out the surface should result in a shallower peak, because the flatter surface have less potential
energy to drive the repulsion of the eddy. The same goes for decreasing the Froude number, as the
weaker turbulence deforms the surface less, resulting in less repulsion from the surface. We can see
that the effect of the two non-dimensional groups are similar, although they occur through different
phenomena.

These competing effects also explain the strong preference for perpendicular impulse compon-
ents, as the peaks inσ⊥(z) coincide with the peaks in p(z), signifying that the eddy-mirror interaction
is the main reason the eddies are observed more frequently in this region. Another tell-tale sign is
that the strength of this interaction effect coincides with the relative strength of the eddy in relation
to the surface, as seen by varying F r and Bo. The difference across the simulations in σ⊥(z) can be
explained in the same manner as for the p(z) distribution, i.e. a stronger surface has further reach
in depth to repulse an eddy, and kill its impulse.

Recall from section 3.6 that above seq, the maxima of Pn+n
kin is forα= 0, i.e. L= Le‖, whilst for Pn+n

sel f
it is for α= π/2, i.e. L= Le⊥. It is therefore to be expected that the surface energy will be minimized
by horizontal impulse components below seq and by vertical impulse components above. This effect is
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hard to distinguish for most of the simulations because of the strong interaction effect concealing it.
However in the simulation with the highest relative surface energy Bo = 1000, F r = 0.3, the effect is
visible, as σ‖(z)> σ⊥(z) below seq as opposed to above, where the opposite is observed. This effect
is also likely the reason that there are small peaks also in the σ‖(z) distribution below seq. They are
likely much smaller because of the r−3 dependence of the self-motion term of the DVP compared to
the r−6 dependence of the kinetic term. In the future if the model is expanded beyond linear order,
it would be interesting to examine higher Froude numbers to see this effect more clearly.

7.1.1 Limitations

In the grid dependence study, it was decided to accept 5% errors up to z = −0.2. It is clear that
all the p(z) distributions to some degree surpass this threshold, more so for the simulations with
the flatter surface characteristics. Regardless, for this part of the analysis, the errors are deemed to
be at an acceptable level because the intended objective to see how the system scales is achieved.
However, this resolution makes it hard to converge the SDS simulations because of an issue which
will be discussed shortly.

Another source of error to the results presented above could be the kernel smoothing used during
MCMC simulations. As seen from Figure 2.2, deviations from the far-field velocity field occur for
r ® R. For the simulations presented here, R̂ = (2π)−1/3 ≈ 0.54, which means some errors for the
interaction energy is expected when ẑ ¦ −0.27. This is around the peak of the uppermost distribution.
The surface velocity and the following surface energy was not calculated with smoothing however,
and does not suffer errors. The model does throughout assume that the eddy maintains an enclosed
volume of vorticity. In nature, it is observed that eddies break up and connect with the surface
as discussed in section 1.2. Because the eddies throughout the MCMC simulations are presumed
spherical under kernel smoothing, this effect is ignored, and could be another source of error.

7.2 Surface Statistics

Because of the r−6 dependence of the kinetic pressure, there is a heavy bias for the surface deform-
ations by eddies close to the surface. Although the probability of eddies close to the surface go to
zero as we have seen in the posterior distributions, the few outlier eddies that are sampled close
to the surface will drown out the effects of those further down. We can see from the skewness and
kurtosis in Figure 6.6, that whenever an eddy gets sampled close to the surface, the whole distribu-
tion changes drastically. The effect is less substantial when the surface is strong, as we can see from
larger jumps for the simulations with lower Froude numbers. This is likely from the fact that flatter
surface characteristics allow for eddies closer to the surface, where the bias is stronger. It could also
result from a low resolution in this area from the higher discretization errors, which was discussed in
section 7.1. A lot of eddies in this region closest to the surface needs to be examined in order to com-
pensate for the bias, which in turn requires a huge number of ensembles. Running more ensembles
was not feasible however, due to the limited time frame. These unforeseen convergence difficulties
means that not all the simulations are sufficiently converged to a statistically steady state. As a result,
the statistics presented from the SDS simulations will contain large errors.

Having said this, there are still some notable trends in the data worth mentioning. The flatter
p(ζ̂) distributions for lower Froude numbers, fits well with the definition of the Froude number. The
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variance trend in Table 6.1 confirms the visual. Furthermore, all simulations are negatively skewed,
i.e. longer left tails, indicating that the surface experience more downward than upward surface
deformations. A vertical impulse vector for an eddy corresponds to a sharp dip in the surface, like
shown in Figure 3.4d. One would therefore expect a preference for vertical impulse components
to give a stronger preference for downward surface deformations. Table 6.2 shows that skewness
become monotonically more negative for decreasing Froude numbers, which fits with this idea of
lower Froude numbers having a stronger preference for vertical impulse. One would also expect
more randomly oriented impulse vectors to give a more random surface distribution. For increasing
Froude-number, also the excess kurtosis drops monotonically, indicating a surface distribution more
closely resembling a random sea. This again fit nicely with the lower vertical impulse preference for
stronger surfaces with higher Froude numbers. The points made in this paragraph is only speculation
however until more converged simulations are obtained.

The heavy depth dependence in the SDS simulations suggest that Pkin is the dominating term
for the surface crispations, as all p(z) distributions have a region of non-zero probability above seq.
This could also indicate that the effect of eddy-eddy interaction on the surface is negligible, in which
case would simplify the surface statistics analysis significantly. Nevertheless, the simulations were
only run with a single eddy density, so a more densely packed domain of eddies should be examined
before drawing any conclusions. To obtain faster convergence one might also draw eddies exclusively
from the uppermost part of the posterior distributions, where the kinetic term dominate, i.e. above
seq. In order to do this however, one still needs a good resolution in the posterior, such that a more
refined grid should be used either way.

It is common to denote waves with a length to height ratio below 1/7≈ 0.143 to be linear [45].
Table 6.4 show that the highest surface gradient during the surface statistics simulations is 0.15,
right above this value, such that the linear approximation in this case might not be appropriate.

7.3 Suggested Model Improvements

It has been a theme throughout this report that we can only perform simulations from a narrow
range of values in the λ− u phase space, due to issues with the surface being too flat or too steep.
The latter issue can be resolved by extending the model to second order steepness.

To address the former issue, we need a better grid resolution, because as we have seen, a flatter
surface repels eddies less and therefore observe more localized surface disturbances. An idea worth
pursuing in the future to counteract this problem is to use an adaptive depth dependent grid when
running MCMC simulations, refining the grid when an eddy is close to the surface. This can improve
performance because one would only use a fine surface grid when it is needed. To avoid infinitely
many gridpoints when an eddy is close to the surface, the grid might perhaps be refined only when
the course grid gives an acceptance-probability for the MCMC simulations above a certain threshold.

By covering more scales, one could simulate more realistic turbulence with power-law scaling.
In practice, this could be done by choosing eddies with length- and velocity scales across a whole
spectrum in the u−λ phase space for MCMC simulations. Experiments might be useful to determine
the relevant values for this spectrum.

Another idea is to extend the model to quadruple moments. This way, one might not need kernel
smoothing for the MCMC simulations, if the surface is strong enough to repel the eddies significantly.
This would remove an element of uncertainty in the simulations as the interaction energy calculations
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would be more accurate. Furthermore, if one were to also find the the expressions for
.
xn and

.
Ln

including surface deformation, in addition to a proper symplectic integrator, the system could be
properly propagated in time. One would still need some way to limit eddy interaction, but it is likely
that a similar kernel smoothing method to that presented here with quadrupole moments would
suffice with a smaller smoothing radius, such that the smoothing would rarely be needed. Even
then there would still be a strong resemblence to the Hill’s spherical vortex, which is a solution to
the Navier Stokes equations. One could then also use HMC as described in section 4.5 to include the
dynamics of the system in order to obtain more accurate posterior distributions including interaction.
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Conclusion

It was found that there are two competing effects determining the shape of the joint probability
distribution for the depth and impulse vector of an eddy, both effects seeking to minimize the en-
ergy of the system. The energy of the surface is minimized by repelling eddies away from itself due
to the energy it requires to deform. The energy of the eddy is minimized by cancelling some of its
velocity field. That happens when the eddy is oriented close to the surface, with its impulse-vector
normal to the surface, due to the dynamic BC. When these two effects are in equilibrium, a peak
occurs in the probability distribution for the depth and vertical impulse of the eddy, whilst the hori-
zontal impulse is largely unaffected. This equilibrium point depends on the relative strength of the
surface compared to the turbulence, controlled by the non-dimensional groups Bo and F r. For the
higher Bond numbers, i.e. longer turbulence length-scales, the peaks in the distribution were situ-
ated around ŝeq = (8π)−1/3, which is the equilibrium depth between the respective maxima for the
self-motion- and kinetic terms of the DVP. When decreasing the relative strength of the turbulence,
the peaks are observed increasingly higher than ŝeq while also being more distinct. Below this equi-
librium depth, the impulse components have a slight preference for horizontal impulse components,
because of the lower self-motion pressure associated with it. Further down, all the probability distri-
butions approach the prior distribution which is an isotropic state where the eddy is unaffected by
the surface.

It was found that convergence of the SDS simulations was particularly sensitive on the resolution
of the posterior distribution close to the surface, which is inconveniently also the region most prone
to error under the current numerical model. This sensitivity is attributed to the steep probability
density gradients close to the surface because of the r−6 dependence of induced velocity at the
surface. In order to draw any conclusions from the surface statistics, one must therefore simulate the
posterior distributions anew with a greater resolution. An adaptive depth dependent grid method
was proposed for achieving a better resolution in this area while limiting computational cost.

Although the simulations were not properly converged and the uncertainty in the data are large,
some trends were found that are in line with the results found in the posterior distributions. All
simulations resulted in a negatively skewed ζ distribution, which might indicate that downward sur-
face deformations are more frequent on the surface, due to the vertical impulse preference outlayed
above. Furthermore the simulations with the stronger surface characteristics gave less excess kur-
tosis, which might indicate less deviation from a Gaussian sea. This is consistent with the posterior
distributions because the eddies are repelled further down to where the orientation of the impulse
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vectors are more isotropic, resulting in a more random DVP profile.
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Appendix A

Matlab Code

A.1 Classes

1 classdef Eddy %Not pass-by-reference for computing time reasons
2
3 properties(SetAccess = private) %Read only
4 loc(1,3) double = [nan,nan,nan] %Changed with updateLoc or updateState
5 imp(1,3) double = [nan,nan,nan] %Changed with updateLoc or updateState
6 massInertia (1,1) double {Eddy.mustBePositiveOrNan(massInertia)} = nan
7 inducedVel(1,3) double = [0,0,0] %Changed with updateInducedVel
8 inducedImp(1,3) double = [0,0,0] %Changed with updateInducedImp
9 updatedInducedVel (1,1) logical = false

10 updatedInducedImp (1,1) logical = false
11 end
12
13 properties
14 Surface SurfaceSection = SurfaceSection.empty %Default value is empty object
15 end
16
17 properties(Dependent) %Updated with get methods when called
18 eddy2surfaceVecs cell
19 selfEnergy(1,1){mustBeNonnegative}
20 interactionEnergy(1,1)
21 SURFVEL_n cell
22 P_SELF_n double
23 P_INTVEL_n double
24 P_INTIMP_n double
25 ZETA_SELF_n double %Surface elevation due to self motion DVP
26 ZETA_KIN_n double %Surface elevation due to kinetic DVP w/o other eddies
27 end

62
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28
29 methods
30
31 % Constructor
32 function obj = Eddy(loc,imp,M,Surface)
33
34 switch nargin
35 case 0
36 obj.loc=[nan,nan,nan];
37 obj.imp=[nan,nan,nan];
38 obj.massInertia = nan;
39 obj.Surface = SurfaceSection.empty;
40 case 3
41 obj.loc=loc;
42 obj.imp=imp;
43 obj.massInertia = M;
44 obj.Surface = SurfaceSection.empty;
45 case 4
46 obj.loc=loc;
47 obj.imp=imp;
48 obj.massInertia = M;
49 obj.Surface = Surface;
50 otherwise
51 error("Invalid number of input arguments");
52 end
53
54 end
55
56 % Get functions
57 function eddy2surfaceVecs = get.eddy2surfaceVecs(obj) %Cell of r^np vectors
58 gp = obj.Surface.gridPoints;
59 eddy2surfaceVecs = cell(gp);
60 for xNode=1:gp
61 for yNode=1:gp
62 eddy2surfaceVecs{xNode,yNode} = [obj.Surface.X(xNode,yNode)-obj.

loc(1), obj.Surface.Y(xNode,yNode)-obj.loc(2), -obj.loc(3)];
63 end
64 end
65 end
66
67 function selfEnergy = get.selfEnergy(obj)
68 selfEnergy = dot(obj.imp,obj.imp)/(2*obj.massInertia);
69 end
70
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71 function intEnergy = get.interactionEnergy(obj) %Requires updated inducedVel
72 if ~obj.updatedInducedVel
73 warning("InducedVel not updated -> Outdated info")
74 end
75 intEnergy = 0.5.*dot(obj.imp,obj.inducedVel);
76 end
77
78 function SURFVEL_n = get.SURFVEL_n(obj) %Assumes no smoothingFunciton
79 SURFVEL_n = cellfun(@(r_np) (C_point(r_np)*(obj.imp'))', obj.

eddy2surfaceVecs, 'UniformOutput',false);
80 end
81
82 function P_SELF_n = get.P_SELF_n(obj)
83 P_SELF_n = cellfun(@(r_np) (1/obj.massInertia)*dot(obj.imp,C_point(r_np)

*obj.imp') , obj.eddy2surfaceVecs);
84 end
85
86 function P_INTVEL_n = get.P_INTVEL_n(obj) %Requires updated inducedVel
87 if obj.updatedInducedVel
88 P_INTVEL_n = cellfun(@(r_np) dot(obj.inducedVel,C_point(r_np)*obj.

imp') , obj.eddy2surfaceVecs);
89 else
90 P_INTVEL_n= zeros(obj.Surface.gridPoints);
91 warning("Induced velocity not updated, setting all elements to zero

");
92 end
93 end
94
95 function P_INTIMP_n = get.P_INTIMP_n(obj) %Requires updted inducedImp
96 if obj.updatedInducedImp
97 P_INTIMP_n= cellfun(@(r_np) -dot(obj.inducedImp,B_point(r_np)) , obj

.eddy2surfaceVecs);
98 else
99 P_INTIMP_n= zeros(obj.Surface.gridPoints);

100 warning("Induced impulse not updated, setting all elements to zero")
;

101 end
102 end
103
104 % Updating functions
105 function newObj = updateLoc(obj,loc)
106 newObj = obj;
107 newObj.loc = loc;
108 newObj.updatedInducedVel = false;
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109 end
110
111 function obj = updateImp(obj,imp)
112 obj.imp = imp;
113 obj.updatedInducedImp = false;
114 end
115
116 function obj = updateState(obj,loc,imp) %Updates both location and impulse
117 obj.loc = loc;
118 obj.imp = imp;
119 obj.updatedInducedVel = false;
120 obj.updatedInducedImp = false;
121 end
122
123 function newObj = updateInducedVel(obj,interactionEddies,smoothingFunc,R)
124 if ~obj.updatedInducedVel
125 obj.inducedVel = obj.calculateInducedVel(interactionEddies,

smoothingFunc,R);
126 obj.updatedInducedVel = true;
127 newObj = obj;
128 else
129 warning("InducedVel already updated");
130 end
131 end
132
133 function obj = updateInducedImp(obj,interactionEddies,smoothingFunc,R)
134 if ~obj.updatedInducedImp
135 obj.inducedImp = obj.calculateInducedImp(interactionEddies,

smoothingFunc,R);
136 obj.updatedInducedImp = true;
137 else
138 warning("InducedImp already updated");
139 end
140 end
141
142 function newObj = updateInducedProperties(obj,interactionEddies,

smoothingFunc,R)
143 newObj = obj.updateInducedVel(interactionEddies,smoothingFunc,R);
144 newObj = newObj.updateInducedImp(interactionEddies,smoothingFunc,R);
145 end
146
147 function updatedObj = updateInducedState(obj,otherEddies)
148 obj = calculateInducedImp(obj,otherEddies);
149 obj = calculateInducedVel(obj,otherEddies);
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150 updatedObj = obj;
151 end
152
153 function newObj = resetUpdatedInducedProperties(obj)
154 obj.updatedInducedVel = false;
155 obj.updatedInducedImp = false;
156 newObj = obj;
157 end
158
159 % Other functions
160 function inducedVel = calculateInducedVel(obj,interactionEddies,

smoothingFunc,R)
161 inducedVel = [0;0;0];
162 x_n =obj.loc;
163 for m=1:length(interactionEddies)
164 eddy_m = interactionEddies(m);
165 x_m = eddy_m.loc;
166 L_m = eddy_m.imp;
167 inducedVel = (inducedVel + C_point_smoothed(x_m-x_n,R,smoothingFunc)

*L_m');
168 end
169 end
170
171 function inducedImp = calculateInducedImp(obj,interactionEddies,

smoothingFunc,R)
172 x_n = obj.loc;
173 DL_n = zeros(3);
174 for m=1:length(interactionEddies)
175 eddy_m = interactionEddies(m);
176 x_m = eddy_m.loc;
177 L_m = eddy_m.imp;
178 D_nm = D_point_smoothed(x_n-x_m,R,smoothingFunc);
179 DL_n = DL_n + (D_nm(:,:,1).*L_m(1) + D_nm(:,:,2).*L_m(2) + D_nm

(:,:,3).*L_m(3));
180 end
181 inducedImp = -0.5.*DL_n*obj.imp';
182 end
183
184 function P_KIN_n = calculateKineticPressure(obj,SURFVEL_NOTSELF) %P_KIN_n

given total surface velocity field from all eddies
185 if nargin == 1
186 SURFVEL_NOTSELF = cell(obj.Surface.gridPoints);
187 SURFVEL_NOTSELF(:,:) = {[0,0,0]};
188 end
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189 SURFVEL_SELF = obj.SURFVEL_n;
190 P_KIN_n = cellfun(@(v_n,v_not_n) 0.5*(dot(v_n,v_not_n) + dot(v_n,v_n)),

SURFVEL_SELF,SURFVEL_NOTSELF);
191 end
192
193 function P_TOT_n = calculateTotalPressure(obj,SURFVEL_NOTSELF)
194 if nargin == 1
195 SURFVEL_NOTSELF = cell(obj.Surface.gridPoints);
196 SURFVEL_NOTSELF(:,:) = {[0,0,0]};
197 warning("Other velocity contributions ignored because no SURFVEL_tot

was provided");
198 end
199 eddySurfaceVels = obj.eddy2surfaceVecs; %Only calculate once
200 pSELF_n = cellfun(@(r_np) (1/obj.massInertia)*dot(obj.imp,C_point(r_np)*

obj.imp') , eddySurfaceVels);
201 pINTVEL_n = cellfun(@(r_np) dot(obj.inducedVel,C_point(r_np)*obj.imp') ,

eddySurfaceVels);
202 pINTIMP_n= cellfun(@(r_np) -dot(obj.inducedImp,B_point(r_np)) ,

eddySurfaceVels);
203 pKIN_n = calculateKineticPressure(obj,SURFVEL_NOTSELF);
204
205 P_TOT_n = pSELF_n + pINTVEL_n + pINTIMP_n + pKIN_n;
206 end
207
208 function ZETA_SELF_n = get.ZETA_SELF_n(obj)
209 ZETA_SELF_n = ifft2( obj.Surface.TRANSFER.*fft2(obj.P_SELF_n));
210 end
211
212 function ZETA_KIN_n = get.ZETA_KIN_n(obj)
213 ZETA_KIN_n = ifft2( obj.Surface.TRANSFER.*fft2(obj.

calculateKineticPressure()));
214 end
215
216 function ZETA_n = calculateSurfaceElevation(obj,SURFVEL_NOTSELF)
217 if nargin == 1
218 SURFVEL_NOTSELF = cell(obj.Surface.gridPoints);
219 SURFVEL_NOTSELF(:,:) = {[0,0,0]};
220 end
221 P_TOT_n = obj.calculateTotalPressure(SURFVEL_NOTSELF);
222 ZETA_n = obj.Surface.calculateZetaFromPressureDistribution(P_TOT_n);
223 end
224
225 function E_def_n = calculateDeformationEnergy(obj,SURFVEL_NOTSELF)
226 if nargin == 1
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227 SURFVEL_NOTSELF = cell(obj.Surface.gridPoints);
228 SURFVEL_NOTSELF(:,:) = {[0,0,0]};
229 end
230 ZETA_n = obj.calculateSurfaceElevation(SURFVEL_NOTSELF);
231 E_def_n = obj.Surface.calculateDeformationEnergy(ZETA_n);
232 end
233
234 function mEddy = mirror(obj) %Makes a mirror eddy
235 mEddy = obj;
236 mEddy.loc = [obj.loc(1), obj.loc(2), -obj.loc(3)];
237 mEddy.imp = [obj.imp(1), obj.imp(2), -obj.imp(3)];
238 end
239
240 function bool = isInsideDomain(obj,domain)
241 bool = (obj.loc(1) >= domain(1) && obj.loc(1) <= domain(2)...
242 && obj.loc(2) >= domain(3) && obj.loc(2) <= domain(4)...
243 && obj.loc(3) >= domain(5) && obj.loc(3) <= domain(6));
244 end
245
246 function [newPos,newImp] = integrateOverTimestep(obj,dt) %Time integration

for isolated eddies
247 newPos = [0;0;0];
248 newImp = [0;0;0];
249 for i=1:3
250 xDot = @(t,x) obj.inducedVel(i) + obj.imp(i)/obj.massInertia;
251 lDot = @(t,x) obj.inducedImp(i);
252 [~,xOverTimeStep] = ode45(xDot,[0 dt],obj.loc(i));
253 [~,lOverTimeStep] = ode45(lDot,[0 dt],obj.imp(i));
254 newPos(i) = xOverTimeStep(end); %Update location
255 newImp(i) = lOverTimeStep(end); %Update momentum
256 end
257 end
258
259 function bool = isInFarfield(obj,otherEddies,delta) %Boolean value

specifying if eddy is further away than delta from other eddies
260 x_n =obj.loc;
261 bool = true;
262 for m=1:length(otherEddies)
263 eddy_m = otherEddies(m);
264 x_m = eddy_m.loc;
265 if norm(x_n-x_m) < delta
266 bool = false;
267 break;
268 end
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269 end
270 end
271
272 function bool = isEmpty(obj) %Boolean value specifying if object is empty
273 bool = any(isnan(obj.loc)); %Checks if any of the loc properties are nan
274 end
275
276 function otherEddies = extractFromVec(obj,eddyVec) %Extract eddy from vec
277 isSame = arrayfun(@(other) all(obj.loc == other.loc),eddyVec );
278 otherEddies = eddyVec(~isSame);
279 end
280
281 % Plotting functions (requires cbrewer)
282 function plotSurfaceVelocities(obj,col)
283 U = cellfun(@(v_p) v_p(1), obj.SURFVEL_n);
284 V = cellfun(@(v_p) v_p(2), obj.SURFVEL_n);
285 plotEddies(obj,2,'ImpulseColor','r');
286 quiver(obj.Surface.X,obj.Surface.Y,U,V,0,'color',col);
287 end
288
289 function plotPressureTerms(obj,contourLevels,SURFVEL_NOTSELF)
290 if nargin <3
291 SURFVEL_NOTSELF = cell(obj.Surface.gridPoints);
292 SURFVEL_NOTSELF(:,:) = {[0,0,0]};
293 end
294 cMap = flip(cbrewer('seq','Reds',contourLevels,'PCHIP'));
295 subplot(2,2,1);
296 contourf(obj.Surface.X,obj.Surface.Y,obj.P_SELF_n,contourLevels);
297 title("$P_{self}^n$");colormap(cMap);colorbar;axis equal;
298 subplot(2,2,2);
299 contourf(obj.Surface.X,obj.Surface.Y,calculateKineticPressure(obj,

SURFVEL_NOTSELF),contourLevels);
300 colormap(cMap);colorbar;title("$P_{kin}^n$");axis equal;
301 subplot(2,2,3);
302 contourf(obj.Surface.X,obj.Surface.Y,obj.P_INTVEL_n,contourLevels);
303 colormap(cMap);colorbar;title("$P_{int,vel}^n$");axis equal;
304 subplot(2,2,4);
305 contourf(obj.Surface.X,obj.Surface.Y,obj.P_INTIMP_n,contourLevels);
306 colormap(cMap);colorbar;title("$P_{int,imp}^n$");axis equal;
307 end
308
309 function plotTotalPressure(obj,contourLevels,SURFVEL_NOTSELF)
310 if nargin <3
311 SURFVEL_NOTSELF = cell(obj.Surface.gridPoints);
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312 SURFVEL_NOTSELF(:,:) = {[0,0,0]};
313 end
314 P_tot = obj.calculateTotalPressure(SURFVEL_NOTSELF);
315 cMap = flip(cbrewer('seq','Reds',contourLevels,'PCHIP'));
316 figure;
317 contourf(obj.Surface.X,obj.Surface.Y,P_tot,contourLevels);
318 title("$P_{self}^n$");colormap(cMap);colorbar;axis equal;
319
320 end
321
322 function plotSurfaceElevationTerms(obj,contourLevels,SURFVEL_NOTSELF)
323 if nargin <3
324 SURFVEL_NOTSELF = cell(obj.Surface.gridPoints);
325 SURFVEL_NOTSELF(:,:) = {[0,0,0]};
326 end
327 pKIN_n = calculateKineticPressure(obj,SURFVEL_NOTSELF);
328 ZETA_self_n = calculateZetaFromPressureDistribution(obj.P_SELF_n);
329 ZETA_kin_n = calculateZetaFromPressureDistribution(pKIN_n);
330 ZETA_intvel_n = calculateZetaFromPressureDistribution(obj.P_INTVEL_n);
331 ZETA_intimp_n = calculateZetaFromPressureDistribution(obj.P_INTIMP_n);
332
333 cMap = cbrewer('seq','Blues',contourLevels,'PCHIP');
334 figure;
335 sgtitle(sprintf("$$Bo_{\\lambda}$$ = %.1f",obj.Surface.Bo));
336 subplot(2,2,1);
337 contourf(obj.Surface.X,obj.Surface.Y,ZETA_self_n,contourLevels);
338 title("$\zeta_{self}^n$");colormap(cMap);colorbar;axis equal;
339 subplot(2,2,2);
340 contourf(obj.Surface.X,obj.Surface.Y,ZETA_kin_n,contourLevels);
341 colormap(cMap);colorbar;title("$\zeta_{kin}^n$");axis equal;
342 subplot(2,2,3);
343 contourf(obj.Surface.X,obj.Surface.Y,ZETA_intvel_n,contourLevels);
344 colormap(cMap);colorbar;title("$\zeta_{int,vel}^n$");axis equal;
345 subplot(2,2,4);
346 contourf(obj.Surface.X,obj.Surface.Y,ZETA_intimp_n,contourLevels);
347 colormap(cMap);colorbar;title("$\zeta_{int,imp}^n$");axis equal;
348 end
349
350 function plotSurfaceElevation(obj,contourLevels,SURFVEL_NOTSELF)
351 if nargin < 3
352 SURFVEL_NOTSELF = cell(obj.Surface.gridPoints);
353 SURFVEL_NOTSELF(:,:) = {[0,0,0]};
354 end
355 ZETA_n = obj.calculateSurfaceElevation(SURFVEL_NOTSELF);
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356 cMap = cbrewer('seq','Blues',contourLevels,'PCHIP');
357 contourf(obj.Surface.X,obj.Surface.Y,ZETA_n,contourLevels);hold on;
358 colormap(cMap);colorbar;
359 end
360
361 function plotSurfaceElevationWithMirror(obj,contourLevels,SURFVEL_NOTSELF)
362 if nargin < 3
363 SURFVEL_NOTSELF = cell(obj.Surface.gridPoints);
364 SURFVEL_NOTSELF(:,:) = {[0,0,0]};
365 end
366 ZETA_n = obj.calculateSurfaceElevation(SURFVEL_NOTSELF) + obj.mirror().

calculateSurfaceElevation(SURFVEL_NOTSELF);
367 cMap = cbrewer('seq','Blues',contourLevels,'PCHIP');
368 contourf(obj.Surface.X,obj.Surface.Y,ZETA_n,contourLevels);hold on;
369 colormap(cMap);colorbar;
370 end
371
372 end
373
374 % Static methods
375 methods(Static)
376 function mustBePositiveOrNan(var) %Function for property validation
377 if ~(var>0 || isnan(var))
378 error('Must be positive or nan');
379 end
380 end
381 end
382
383 end

1 classdef Turbulence
2 %Collection of Eddy objects and their respective periodic and mirror

counterparts
3 properties
4 RealCenterEddies Eddy %Real Eddy objects in domain of interest
5 RealPeriodicEddies Eddy %Real Eddy objects around with periodic BCs. Columns

: Different eddies, Rows: copies in order C->E->NE->N->NW->W->SW->S->SE
6 MirrorCenterEddies Eddy %Mirrors of RealCenterEddies
7 MirrorPeriodicEddies Eddy %Mirrors of RealPeriodicEddies
8 AllEddies Eddy %[RCE; RPE; MCE; MPE]
9

10 smoothingFunc (1,1) single {mustBeMember(smoothingFunc,[0,1,2,3,4])} = 0
11 R (1,1) double {Turbulence.mustBePositiveOrNan(R)} = nan %Smoothing radius
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12 maxInteractionLength (1,1) double {Turbulence.mustBePositiveOrNan(
maxInteractionLength)} = nan %Radius of SOI

13 N_main (1,1) single {mustBeInteger,mustBeNonnegative} = 0
14 N_all (1,1) single {mustBeInteger,mustBeNonnegative} = 0 %Total number of

eddies
15
16 domain (1,6) double {mustBeReal} %[xMin,xMax,yMin,yMax,zMin,zMax]
17 Surface SurfaceSection %Surface grid and parameters
18 end
19
20 properties (Dependent)
21 P_SELF
22 P_INTVEL
23 P_INTIMP
24 P_KIN
25 SURFVEL
26 P_TOT
27 ZETA
28 ValidEddies %All eddies to evaluate pressure terms for
29 selfEnergy (1,1) {mustBeNonnegative}
30 interactionEnergy (1,1) %Can be negative
31 deformationEnergy (1,1) {mustBeNonnegative}
32 end
33
34 methods
35
36 %Constructor
37 function obj = Turbulence(RealCenterEddies,domain,Surface,smoothingFunc,

maxInteractionLength)
38 if nargin<2
39 error("Turbulence must have RealCenterEddies and domain");
40 else
41 if ~all(arrayfun(@(objct)isInsideDomain(objct,domain),

RealCenterEddies)) %Check that all eddies are within domain
42 error("All Real Center Eddies must be within domain")
43 end
44 obj.RealCenterEddies = RealCenterEddies;
45 obj.domain = domain;
46 obj.N_main = length(RealCenterEddies);
47 obj.N_all = 18*obj.N_main;
48 %Copying
49 RPE(8,obj.N_main) = Eddy(); %Empty 8*N array
50 obj.RealPeriodicEddies = RPE;
51 for n = 1:obj.N_main
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52 obj.RealPeriodicEddies(:,n) = makePeriodicCopies(
RealCenterEddies(n),domain(2));

53 end
54 obj.MirrorCenterEddies = arrayfun(@(o) mirror(o), obj.

RealCenterEddies);
55 obj.MirrorPeriodicEddies = arrayfun(@(o) mirror(o), obj.

RealPeriodicEddies);
56 obj.AllEddies = [RealCenterEddies;obj.RealPeriodicEddies;obj.

MirrorCenterEddies;obj.MirrorPeriodicEddies];
57 switch nargin
58 case 2
59 obj.Surface = SurfaceSection.empty;
60 obj.smoothingFunc = 0;
61 case 3
62 obj.Surface = Surface;
63 obj.smoothingFunc = 0;
64 case 4
65 obj.Surface = Surface;
66 obj.smoothingFunc = smoothingFunc;
67 case 5
68 obj.Surface = Surface;
69 obj.smoothingFunc = smoothingFunc;
70 obj.maxInteractionLength = maxInteractionLength;
71 otherwise
72 error("Invalid number of arguments")
73 end
74 if nargin < 5; obj.maxInteractionLength = (3/sqrt(2))*(domain(2)-

domain(1)); end %Interaction with all eddies
75 if nargin < 4
76 switch smoothingFunc
77 case 0
78 obj.R = nan;
79 case {1,2}
80 obj.R = (1/(2*pi))^(1/3);
81 case {3,4}
82 obj.R = (5/(4*pi))^(1/3);
83 otherwise
84 error("smoothingFunc must be integer in range [0,4]")
85 end
86 end
87
88 end
89 end
90



Chapter A: Matlab Code 74

91 % Get functions
92
93 function P_SELF = get.P_SELF(obj)
94 P_SELF = sum(cat(3,obj.ValidEddies.P_SELF_n), 3); %Cocatinate P_SELF

arrays for all Eddy objects in ValidEddies in 3rd dimension and sum
over 3rd dimension

95 end
96
97 function P_INTVEL = get.P_INTVEL(obj)
98 P_INTVEL = sum(cat(3,obj.ValidEddies.P_INTVEL_n), 3);
99 end

100
101 function P_INTIMP = get.P_INTIMP(obj)
102 P_INTIMP = sum(cat(3,obj.ValidEddies.P_INTIMP_n), 3 );
103 end
104
105 function SURFVEL = get.SURFVEL(obj) %u^tot cell from all ValidEddies
106 gp = obj.Surface.gridPoints;
107 SURFVELs = cat(3,obj.ValidEddies.SURFVEL_n); % Cocatinating SURF_VEL

cell arrays in third dimension
108 U = sum( cellfun(@(v_p) v_p(1),SURFVELs), 3); %Break down cell array to

U,V and W components and sum in third dimension
109 V = sum( cellfun(@(v_p) v_p(2),SURFVELs), 3);
110 W = sum( cellfun(@(v_p) v_p(3),SURFVELs), 3); %Not 0 for eddy w/o mirror
111 SURFVEL = cell(gp);
112 for xNode = 1:gp
113 for yNode = 1:gp
114 SURFVEL{xNode,yNode} = [U(xNode,yNode), V(xNode,yNode), W(xNode,

yNode)];
115 end
116 end
117 end
118
119 function P_KIN = get.P_KIN(obj)
120 P_KIN = cellfun(@(v_p) 0.5*dot(v_p,v_p),obj.SURFVEL);
121 end
122
123 function P_TOT = get.P_TOT(obj) %Requires updated imp and vel
124 if all([obj.ValidEddies.updatedInducedVel,obj.ValidEddies.

updatedInducedImp])
125 SURFVEL_TOT = obj.SURFVEL;
126 N_valid = length(obj.ValidEddies);
127 P_TOT_ns = zeros(obj.Surface.gridPoints,obj.Surface.gridPoints,N_valid

);
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128 for n=1:N_valid
129 P_TOT_ns(:,:,n) = obj.ValidEddies(n).calculateTotalPressure(

SURFVEL_TOT);
130 end
131 P_TOT = sum(P_TOT_ns,3); %Sum up pressure over 3rd dimension
132 else
133 error("Induced properties not updated")
134 end
135 end
136
137 function ZETA = get.ZETA(obj)
138 ZETA = obj.Surface.calculateZetaFromPressureDistribution(obj.P_TOT);
139 end %Total surfdef from all ValidEddies
140
141 function ValidEddies = get.ValidEddies(obj)
142 ValidEddies = [obj.RealCenterEddies,obj.MirrorCenterEddies];
143 end
144
145 function E_def = get.deformationEnergy(obj)
146 E_def = obj.Surface.calculateDeformationEnergy(obj.ZETA);
147 end
148
149 function K_self = get.selfEnergy(obj)
150 K_self = sum([obj.RealCenterEddies.selfEnergy]);
151 end
152
153 function K_int = get.interactionEnergy(obj) %Requires updated induced props
154 K_int = sum([obj.RealCenterEddies.interactionEnergy]);
155 end
156
157 %Other functions
158 function IE = InteractionEddies(obj,n) %Eddies within SOI of eddy n
159 AllEds = obj.returnAllOtherEddies(n); %Do not include itself
160 interactionBool = arrayfun(@(ed) norm(obj.ValidEddies(n).loc - ed.loc) <

obj.maxInteractionLength, AllEds); %Bools with eddies inside SOI
161 IE = AllEds(interactionBool); %Extracting eddies from interactionBool
162 end
163
164 function allOtherEddies = returnAllOtherEddies(obj,n) %Returns 1D vector

with all eddies except eddy n
165 AllEddiesVec = reshape(obj.AllEddies',1,obj.N_all); %1D vec with correct

indexing
166 allOtherEddies = AllEddiesVec(setdiff(1:end,n)); %Excluding eddy n
167 end
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168
169 function newObj = changeSingleEddyCopies(obj,n,eddy_n) %Changes all copies

of real eddy with index n
170 newObj = obj;
171 newObj.RealCenterEddies(n) = eddy_n;
172 newObj.MirrorCenterEddies = arrayfun(@(ed) mirror(ed), obj.

RealCenterEddies);
173 newObj.RealPeriodicEddies(:,n) = makePeriodicCopies(eddy_n,obj.domain(2)

);
174 newObj.MirrorPeriodicEddies(:,n) = arrayfun(@(ed) mirror(ed),newObj.

RealPeriodicEddies(:,n)); %Only mirror updated eddies
175 newObj.AllEddies(:,n) = [newObj.RealCenterEddies(:,n);newObj.

RealPeriodicEddies(:,n);newObj.MirrorCenterEddies(:,n);newObj.
MirrorPeriodicEddies(:,n)];

176 end
177
178 function newObj = updateInteractionProperties(obj) %Updates interaction

properties of all eddies
179 newMainEddies(1,length(obj.RealCenterEddies))=Eddy();
180 for n=1:obj.N_main
181 eddy_n = obj.RealCenterEddies(n);
182 interactionEddies = obj.InteractionEddies(n);
183 eddy_n = eddy_n.updateInducedVel(interactionEddies,obj.smoothingFunc

,obj.R); %Calculating x_dot_t and L_dot_t
184 eddy_n = eddy_n.updateInducedImp(interactionEddies,obj.smoothingFunc

,obj.R);
185 newMainEddies(n) = eddy_n;
186 end
187 newObj = Turbulence(newMainEddies,obj.domain,obj.Surface,obj.

smoothingFunc,obj.maxInteractionLength);
188 end
189
190 function plotTurbulence(obj,dim,arrowScale) %Plots the location and impulses

of all eddies in either 2 or 3 dimensions
191 plotEddies([obj.RealCenterEddies'; obj.RealPeriodicEddies(:)],dim,'

ArrowScale',arrowScale);
192 xline(obj.domain(1));xline(obj.domain(2));
193 yline(obj.domain(3));yline(obj.domain(4));
194 axis equal;
195 xlim(3.*obj.domain(1:2));ylim(3.*obj.domain(3:4));
196 end
197
198 function plotTurbulenceAndHighlightEddyN(obj,arrowScale,n) %Plots loc/imp

vec of all eddies and highlights eddy n + SOI



Chapter A: Matlab Code 77

199 obj.RealCenterEddies(n).plotSurfaceElevation(20);hold on;
200 plotEddies(obj.RealCenterEddies,2,'ArrowScale',arrowScale);
201 plotEddies(obj.InteractionEddies(n),2,'ImpulseColor','c','ArrowScale',

arrowScale); %Plot eddies in interaction range in cyan
202 plotEddies(obj.RealCenterEddies(n),2,'ImpulseColor','r','ArrowScale',

arrowScale);
203 for i=1:9
204 plot(obj.AllEddies(i,n).loc(1) + obj.maxInteractionLength.*cosd

(0:360),...
205 obj.AllEddies(i,n).loc(2) + obj.maxInteractionLength.*sind

(0:360),'c','LineWidth',2); %Circles with
maxInteractionlength

206 end
207 axis equal;axis tight;
208 xlim(obj.domain(1:2));ylim(obj.domain(3:4));
209 hold off;
210 zVal = obj.RealCenterEddies(n).loc(3);
211 ax=gca; ax.Title.String = sprintf('$$z_n = %.2f$$',zVal);
212 end
213
214 function plotSurfaceVelocities(obj,col) %Vector plot of u^tot
215 U = cellfun(@(v_p) v_p(1), obj.SURF_VEL);
216 V = cellfun(@(v_p) v_p(2), obj.SURF_VEL);
217 plotEddies(obj.RealCenterEddies,2);
218 quiver(obj.Surface.X,obj.Surface.Y,U,V,'color',col);
219 end
220
221 function plotPressureTerms(obj,contourLevels,plotEds)
222 cMap = flip(cbrewer('seq','Reds',contourLevels,'PCHIP'));
223 subplot(2,2,1);
224 contourf(obj.Surface.X,obj.Surface.Y,obj.P_SELF,contourLevels);
225 title("$P_{self}^n$");colormap(cMap);colorbar;axis equal;
226 subplot(2,2,2);
227 contourf(obj.Surface.X,obj.Surface.Y,obj.P_KIN,contourLevels);
228 colormap(cMap);colorbar;title("$P_{kin}^n$");axis equal;
229 subplot(2,2,3);
230 contourf(obj.Surface.X,obj.Surface.Y,obj.P_INTVEL,contourLevels);
231 colormap(cMap);colorbar;title("$P_{int,vel}^n$");axis equal;
232 subplot(2,2,4);
233 contourf(obj.Surface.X,obj.Surface.Y,obj.P_INTIMP,contourLevels);
234 colormap(cMap);colorbar;title("$P_{int,imp}^n$");axis equal;
235 if plotEds
236 subplot(2,2,1); hold on; plotEddies(obj.RealCenterEddies,2,'

ImpulseColor','c'); axis(obj.domain(1:4));
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237 subplot(2,2,2); hold on; plotEddies(obj.RealCenterEddies,2,'
ImpulseColor','c'); axis(obj.domain(1:4));

238 subplot(2,2,3); hold on; plotEddies(obj.RealCenterEddies,2,'
ImpulseColor','c'); axis(obj.domain(1:4));

239 subplot(2,2,4); hold on; plotEddies(obj.RealCenterEddies,2,'
ImpulseColor','c'); axis(obj.domain(1:4));

240 end
241 end
242
243 end
244
245 methods(Static)
246
247 function mustBePositiveOrNan(var) %Function for property validation
248 if ~(var>0 || isnan(var))
249 error('Must be positive or nan');
250 end
251 end
252 end
253
254 end

1 classdef SurfaceSection < handle
2
3 properties
4 xVec
5 kVec
6 X %Real space meshgrid
7 Y
8 KX %Wavenumber space meshgrid
9 KY

10 K % Length of kVec over grid
11 gridPoints (1,1) single {mustBeInteger}
12 dx (1,1) double {mustBeNonnegative} %GridSpacing
13 Bo double {mustBeNonnegative} %Bond number
14 Fr double {mustBeNonnegative} %Turbulent Froude number
15 width
16 end
17
18 properties(Dependent)
19 TRANSFER %Non dimensional transfer function k/omega^2(k). Not evaluated

directly to avoid nan at origin
20 OMEGA %Non dimensional dispersion relation
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21 kSpaceAxis %k-space limits in imagesc plots
22 midNode %Node corresponding to middle of domain
23 end
24
25 methods
26
27 %% Constructor
28 function obj = SurfaceSection(width,gridPoints,Bo,Fr)
29 if nargin < 2
30 error("Grid parameters must be provided")
31 end
32 obj.gridPoints = gridPoints;
33 obj.xVec = linspace(-width/2,width/2,gridPoints);
34 obj.dx = width/(gridPoints-1);
35 obj.width = width;
36 [obj.X,obj.Y] = ndgrid(obj.xVec);
37 [obj.KX,obj.KY] = build_k_mesh(gridPoints,gridPoints,obj.dx);
38 obj.kVec = sort(obj.KX(1,:));
39 obj.K = sqrt(obj.KX.^2 + obj.KY.^2);
40 if nargin == 4
41 obj.Bo = Bo;
42 obj.Fr = Fr;
43 else
44 obj.Bo = [];
45 obj.Fr = [];
46 end
47 end
48
49 %% Get-functions
50
51 function TRANSFER = get.TRANSFER(obj)
52 TRANSFER = -obj.Fr^2./(1 + (4*pi^2/obj.Bo).*obj.K.^2);
53 end
54
55 function kSpaceAxis = get.kSpaceAxis(obj)
56 kSpaceAxis = [min(min(obj.KX)),max(max(obj.KX)),min(min(obj.KY)),max(max

(obj.KY))];
57 end
58
59 function OMEGA = get.OMEGA(obj)
60 OMEGA = obj.Fr^(-1).*sqrt((2*pi)^(-1).*obj.K + (2*pi/(obj.Bo)).*obj.K

.^3);
61 end
62
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63 function midNode = get.midNode(obj)
64 midNode = ceil(length(obj.xVec)/2);
65 end
66
67 %% Other functions
68
69 function ZETA = calculateZetaFromPressureDistribution(obj,DVP)
70 ZETA = ifft2( obj.TRANSFER.*(fft2(DVP)));
71 end
72
73 function gradZETAmax = calculateMaxSurfaceGradientMagnitude(obj,ZETA)
74 [gradZETAx,gradZETAy] = gradient(ZETA,obj.dx);
75 gradZETAmag = sqrt(gradZETAx.^2 + gradZETAy.^2);
76 gradZETAmax = max(gradZETAmag,[],'all');
77 end
78
79 function E_ST = calculateSurfaceTensionEnergy(obj,ZETA)
80 [gradZETAx,gradZETAy] = gradient(ZETA,obj.dx); %2D gradient
81 eps_ST = 0.5*obj.We^(-1).*((gradZETAx.^2 + gradZETAy.^2) );
82 E_ST = trapz(obj.xVec,trapz(obj.xVec,eps_ST,2)); %Integrating surface

energy density over whole domain
83 end
84
85 function E_pot = calculateSurfacePotentialEnergy(obj,ZETA)
86 [gradZETAx,gradZETAy] = gradient(ZETA,obj.dx); %2D gradient with spacing

dx
87 eps_pot = 0.5*obj.We^(-1).*(obj.Bo.*ZETA.^2 + (gradZETAx.^2 + gradZETAy

.^2) );
88 E_pot = trapz(obj.xVec,trapz(obj.xVec,eps_pot,2));
89 end
90
91 function E_def = calculateDeformationEnergy(obj,ZETA)
92 [gradZETAx,gradZETAy] = gradient(ZETA,obj.dx); %2D gradient
93 eps_ST = 0.5*obj.Fr^(-2).*(obj.Bo^(-1).*(gradZETAx.^2 + gradZETAy.^2) );
94 eps_pot = 0.5*obj.Fr^(-2).*(ZETA.^2);
95 eps_def_n = eps_ST + eps_pot;
96 E_def = trapz(obj.xVec,trapz(obj.xVec,eps_def_n,2));
97 end
98
99 function ZETA_FINE = refineSurfaceElevation(obj,ZETA,GPfine) %Interpolate a

refined version of input matrix ZETA
100 xVecFine = linspace(obj.xVec(1),obj.xVec(end),GPfine); %Refine xVec
101 [Xfine,Yfine] = ndgrid(xVecFine); %Refine grid
102 ZETA_FINE = griddata(obj.X,obj.Y,ZETA,Xfine,Yfine);
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103 end
104
105 function [Xfine,Yfine] = finerMesh(obj,gp) %Function for refining mesh
106 [Xfine,Yfine] = ndgrid(linspace(obj.xVec(1),obj.xVec(end),gp));
107 end
108
109 function E_def = calculateDeformationEnergyWithRefinedSurface(obj,ZETA)
110 gpFine = size(ZETA,1);
111 dxFine = obj.width/(gpFine-1);
112 xVecFine = linspace(-obj.width/2,obj.width/2,gpFine);
113 [gradZETAx,gradZETAy] = gradient(ZETA,dxFine); %2D gradient
114 eps_pot_n = 0.5*obj.Fr^(-2).*(ZETA.^2 + obj.Bo.*(gradZETAx.^2 +

gradZETAy.^2) );
115 E_def = trapz(xVecFine,trapz(xVecFine,eps_pot_n,2));
116 end
117 end
118
119 end

A.2 RWM script

1 close all
2 clear all
3 clc
4
5 saveSim = false;
6 Bo = 10;
7 Fr = 0.1;
8 IT = 100;
9 simName = sprintf("MCMCruns/RWM_gen7_%d",simNum);

10 simNum = 9;
11
12 %Global parameters
13 w = 14; %Width of domain
14 h = 1; %Height of domain
15 gridPoints = 81;
16 smoothingFunc = 2; %Set to 0 for no smoothing
17
18 %Eddy parameters
19 M = 1;
20 N_real = 1;
21 beta = 1;
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22
23 %Monte Carlo parameters
24 sigmaLc = sqrt(M/beta); %Std of L components
25 stdJump_x = 0.5*h;
26 stdJump_L = 0.5*sigmaLc; %Normalized wrt sigmaL
27
28 if smoothingFunc == 1 || smoothingFunc == 2
29 R = (M/(2*pi))^(1/3);
30 elseif smoothingFunc == 3 || smoothingFunc == 4
31 R = (5*M/(4*pi))^(1/3); %One eddy on top of mirror
32 elseif smoothingFunc == 0
33 R=nan;
34 minSep = (M/(2*pi))^(1/3); %Allowable separation distance during MCMC
35 end
36
37 %Distributing initial eddies
38 domain = [-w/2 w/2 -w/2 w/2 -h 0];
39 spawnDomain = [domain(1:5) -0.2]; %Fist iteration away from surface
40 SS = SurfaceSection(w,gridPoints,Bo,Fr); %Constructing Surface Section object
41
42 %Pre allocating
43 dK_int = zeros(1,IT);
44 N = 1;
45 K_self = zeros(1,IT); K_int = zeros(1,IT); dE_defs = zeros(1,IT);
46 L_mags = zeros(N,IT); Lx = zeros(N,IT); Ly = zeros(N,IT); Lz = zeros(N,IT);
47 x = zeros(N,IT); y = zeros(N,IT); z = zeros(N,IT);
48 dH_props = zeros(1,IT);
49 alphas = zeros(N,1); avgAlphas = zeros(1,IT); alpha = 0;
50 inducedVel_mag=zeros(N,IT); inducedVel_mag_prop=zeros(N,IT);
51 accepted = 0; rejected = 0;
52 acceptanceRatio = zeros(1,IT);
53 dE_defs = zeros(N,IT);
54
55 % Make jumping distributions
56 pdJump_x = makedist('Normal','mu',0,'sigma',stdJump_x);
57 pdJump_L = makedist('Normal','mu',0,'sigma',stdJump_L);
58
59 %Make initial eddy from prior, mirror and update induced properties
60 eddy_n = distributeEddies(N_real,spawnDomain,beta,M,SS,0);
61 eddy_n = eddy_n.updateLoc([0,0,eddy_n.loc(3)]);
62 mirror_n = eddy_n.mirror();
63 eddy_n = eddy_n.updateInducedVel(mirror_n,smoothingFunc,R);
64 SURFVEL_NOTSELF = mirror_n.SURFVEL_n;
65 E_def_init = eddy_n.calculateDeformationEnergy(SURFVEL_NOTSELF);
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66
67 fprintf("Sim number %d: Bo=%1.f, Fr=%.1f \n",simNum,Bo,Fr);
68 disp(simName)
69 %% Loop
70 for it = 1:IT
71
72 %Drawing from jumping distribution
73 dRvec_prop = [0,0,pdJump_x.random()];
74 dLvec_prop = [pdJump_L.random(),pdJump_L.random(),pdJump_L.random()];
75
76 %Attributing new values to proposed new eddy
77 eddy_prop = eddy_n;
78 eddy_prop = eddy_prop.updateState(eddy_n.loc + dRvec_prop, eddy_n.imp +

dLvec_prop); %->UpdatedInducedVel/UpdatedInducedImp = false
79
80 if eddy_prop.isInsideDomain(domain) %Check for allowed move
81 mirror_prop = eddy_prop.mirror();
82 eddy_prop = eddy_prop.updateInducedVel(mirror_prop,smoothingFunc,R);
83 SURFVEL_NOTSELF_n = mirror_n.SURFVEL_n;
84 SURFVEL_NOTSELF_prop = mirror_prop.SURFVEL_n;
85
86 % Calculate change in energy
87 dK_self = eddy_prop.selfEnergy - eddy_n.selfEnergy;
88 dK_int = eddy_prop.interactionEnergy - eddy_n.interactionEnergy;
89 dE_def = eddy_prop.calculateDeformationEnergy(SURFVEL_NOTSELF_prop) - eddy_n

.calculateDeformationEnergy(SURFVEL_NOTSELF_n);
90 dH = dK_self + dK_int + dE_def;
91
92 alpha = exp(-beta*dH); %Probability of proposed state
93 q = unifrnd(0,1);
94
95 if alpha>q %Accept or reject based on acceptance probability
96 eddy_n = eddy_prop;
97 mirror_n = eddy_n.mirror();
98 dE_defs(it) = dE_def;
99 accepted = accepted+1;

100 else
101 rejected = rejected+1;
102 end
103
104 else
105 alpha = 0;
106 dH = 0;
107 rejected = rejected+1;
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108 dE_def = 0;
109 end
110 dH_props(it) = dH;
111
112 % Store values for post-processing
113 acceptanceRatio(it) = accepted/(accepted+rejected);
114 impVecs = eddy_n.imp'; %Matrix with eddy impulse vecs
115 locVecs = eddy_n.loc';
116 L_mags(:,it) = norm(eddy_n.imp);
117 Lx(:,it) = impVecs(1,:); Ly(:,it) = impVecs(2,:); Lz(:,it) = impVecs(3,:);
118 x(:,it) = locVecs(1,:); y(:,it) = locVecs(2,:); z(:,it) = locVecs(3,:);
119 K_self(it) = eddy_n.selfEnergy;
120 K_int(it) = eddy_n.interactionEnergy;
121 avgAlphas(it) = alpha;
122
123 if floor(it*1000/IT) == it*1000/IT %Printing progress
124 % Compute correlations for preliminary convergence evaluation
125 itVecCondensed = 1:250:it; % Containing only every 250th iteration in order

to forget about the autocorrelation
126 LxCondensed = Lx(itVecCondensed);
127 LyCondensed = Ly(itVecCondensed);
128 try
129 [corrXY,pValue] = corr(LxCondensed',LyCondensed','Type','Spearman');
130 catch
131 warning("Could not compute correlation, assigning nan");
132 corrXY = nan;
133 pValue = nan;
134 end
135 fprintf("Completed %d/%d iterations. AR = %.2f, Corr(L_x,L_y) = %.2f, p-

value = %.2f \n",it,IT,acceptanceRatio(it),corrXY,pValue);
136 end
137 end
138 E_def = E_def_init + cumsum(sum(dE_defs,1)); %Sum up cumulative changes in E_def
139 if saveSim
140 save(simName);
141 end
142 fprintf("Computation complete \n")

A.3 SDS script

1 clear all
2 close all
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3 clc
4 set(0,'defaultAxesFontSize',20);
5 set(0,'defaultTextFontSize',20);
6 set(0,'defaultTextInterpreter','latex');
7 set(0,'defaultLegendInterpreter','latex');
8 set(0,'DefaultFigureWindowStyle','normal');
9

10 %Loading simulation
11
12 N_real_posterior = 20; %Number of real eddies per ensemble
13 ENS = 5; %Number of ensembles
14 histBins = 300; %Number of histogram bins hist(zeta)
15 minSepDist = (3/(2*pi))^(1/3);
16 saveSim = false;
17 interaction = true;
18 simNamePosterior = "SurfaceStatistics_runs/gen_7"; %File name of SDS simulations
19 thresholdDepth = -(8*pi)^(1/3); %s_eq
20 maxInteractionLength = 3.17; %r_c
21 smoothingFuncPosterior = 0;
22
23 gp = 101; %Overwrite gridpoint values from MCMC calculations
24 w = 14; h=1;
25 domain = [-w/2,w/2,-w/2,w/2,-h,0];
26
27 %Creating a cell array of the relevant MCMC simulations to draw posterior from
28 gen = 7;
29 filenms = {sprintf('MCMCruns/RWM_gen%d_1',gen),sprintf('MCMCruns/RWM_gen%d_4',gen),

sprintf('MCMCruns/RWM_gen%d_7',gen),...
30 sprintf('MCMCruns/RWM_gen%d_2',gen),sprintf('MCMCruns/RWM_gen%d_5',gen),sprintf(

'MCMCruns/RWM_gen%d_8',gen),...
31 sprintf('MCMCruns/RWM_gen%d_3',gen),sprintf('MCMCruns/RWM_gen%d_6',gen),sprintf(

'MCMCruns/RWM_gen%d_9',gen)};
32
33 %Pre-allocating
34 zeta_mean = zeros(1,9); zeta_variance = zeros(1,9); zeta_skewness = zeros(1,9);

zeta_kurtosis = zeros(1,9); %Vectors with surface statistics
35 maxGradZeta = zeros(1,9);
36 gradZETAmag = cell(1,9);
37 ZETA_ens_f = cell(1,9);
38 for f=1:length(filenms)
39 load(filenms{f});
40
41 SSposterior = SurfaceSection(w,gp,Bo,Fr); %Overwrite SS object from MCMC sims to

include more gridPoints
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42 ZETA_ens = zeros(SSposterior.gridPoints,SSposterior.gridPoints,ENS); %3D array
with ens as third dimension

43
44 parfor ens=1:ENS %Running for-loops in parallel
45
46 itVec = 1:IT;
47 itsAboveThreshold = itVec(z>thresholdDepth); %Extract indecies of iterations

with z>threshold
48 it_indecies = randi(length(itsAboveThreshold),1,N_real_posterior); %Drawing

N_real random indices
49 zVals_ens = z(it_indecies); %Using z-value from p(z)
50 LxVals_ens = Lx(it_indecies); %Using L-values from p(L|z)
51 LyVals_ens = Ly(it_indecies);
52 LzVals_ens = Lz(it_indecies);
53
54 %Spawning eddies
55 RCE = Eddy.empty; %Empty Eddy vector
56 for n = 1:N_real_posterior
57 eddy_n_imp = [LxVals_ens(n),LyVals_ens(n),LzVals_ens(n)];
58 locOK = false; %Enter while loop
59 while ~locOK
60 eddy_n_loc = [random('uniform',domain(1),domain(2)),random('uniform'

,domain(3),domain(4)),zVals_ens(n)]; %Assign x-y coords
61 RCEnonEmpty = RCE(~(arrayfun(@(ed) isEmpty(ed),RCE))); %Extracting

only non-empty Eddy objects
62 locOK = all(arrayfun(@(ed) norm(eddy_n_loc - ed.loc) > minSepDist,

RCEnonEmpty)); %Spawning location OK if all eddies further away
than delta

63 end
64 RCE = [RCE,Eddy(eddy_n_loc,eddy_n_imp,1,SSposterior)]; %Make Eddy object

and append RCE
65 end
66
67 TURB = Turbulence(RCE,domain,SSposterior,smoothingFuncPosterior,

maxInteractionLength); %Construct Turbulence object
68 TURBupdated = TURB.updateInteractionProperties(); %Update interaction props
69 ZETA_ens(:,:,ens) = TURBupdated.ZETA; %Calculate total E_surf
70 end
71 ZETA_ens_f{f} = ZETA_ens; %Save all ZETA ensembles for sim f to cell array
72 ZETAavg = mean(ZETA_ens,3); %Mean surface deformation matrix
73
74 fprintf("Sims completed: %d \n",f);
75 end
76
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77 if saveSim
78 save(simNamePosterior);
79 end

A.4 Supporting functions

1 function B_np = B_point(r_np)
2 r_length = norm(r_np);
3 B_np = -(1/(4*pi* (r_length^3)) ).*r_np;
4 end

1 function C_np = C_point(r_np)
2
3 r_length = norm(r_np);
4 outer = [[r_np(1)*r_np(1), r_np(1)*r_np(2), r_np(1)*r_np(3)];...
5 [r_np(2)*r_np(1), r_np(2)*r_np(2), r_np(2)*r_np(3)];...
6 [r_np(3)*r_np(1), r_np(3)*r_np(2), r_np(3)*r_np(3)]]; %Outer product of

r_np with itself
7 C_np = (1/ ( 4*pi*( r_length^5) ) ).* (3.*outer - eye(3).*(r_length^2));
8
9 end

1 function D_np = D_point(r_np) %Function returning propogator C_np, i.e C_n(r_n)
evaluated in point p

2 %Initializing D as 3x3x3 array
3 D_np = zeros(3,3,3);
4 r_length = norm(r_np);
5 for i=1:3
6 for j=1:3
7 for k=1:3
8 delta_ij = (i==j); %Kroeniker delta
9 delta_jk = (j==k);

10 delta_ik = (i==k);
11 D_np(i,j,k) = (3/(4*pi*r_length^7)) *( ((r_np(i)*delta_jk + r_np(j)*

delta_ik + r_np(k)*delta_ij))*r_length^2 - (5*r_np(i)*r_np(j)*r_np(k
)) );

12 end
13 end
14 end
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15
16 end

1 function C_np = C_point_smoothed(r_np,R,coreFunctionNumber)
2
3 if norm(r_np)==0
4 r_np=1e-10*[1;1;1]; %Avoiding Nan at origin
5 end
6
7 switch coreFunctionNumber
8 case 0
9 f = @(r) 1;

10 dfdr = @(r) 0;
11 R = 1;
12 case 1
13 f = @(r) 1 - exp(-r.^3);
14 dfdr = @(r) 3.*(r.^2)*exp(-r.^3);
15 case 2
16 f = @(r) tanh(r.^3);
17 dfdr = @(r) 3*r.^2*(1-tanh(r.^3));
18 case 3
19 f = @(r) 1 + exp(-r.^3).*(1.5.*r.^3 - 1);
20 dfdr = @(r) -3*r.^2*exp(-r.^3)*((3*r.^3)/2 - 1) + (9.*r.^2*exp(-r.^3))

./2;
21 case 4
22 f = @(r) tanh(r.^3)+ 1.5.*(sech(r.^3))^2.*r.^3;
23 dfdr = @(r) 3*r^2*(1 - tanh(r^3)^2) + (9*r^2*sech(r^3)^2)/2 - 9*r^5*sech

(r^3)^2*tanh(r^3);
24 otherwise
25 error("Input valid coreFunction number")
26 end
27 r = norm(r_np);
28 r_star = r/R;
29
30 C_np = R^(-3)* ( (f(r_star) - (r_star*dfdr(r_star)/(3)) ).*C_point(r_np./R) +

( (dfdr(r_star)) /(6*pi*r_star^2)).*eye(3));
31 end

1 function D_np = D_point_smoothed(r_np,R,coreFunctionNumber)
2 if norm(r_np)==0
3 r_np=1e-10*[1;1;1]; %Avoiding Nan at origin
4 end
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5
6 switch coreFunctionNumber
7 case 0
8 f = @(r) 1;
9 dfdr = @(r) 0;

10 ddfdr = @(r) 0;
11 R = 1;
12 case 1
13 f = @(r) 1 - exp(-r.^3);
14 dfdr = @(r) 3.*(r.^2)*exp(-r.^3);
15 ddfdr = @(r) 6*r*exp(-r^3) - 9*r^4*exp(-r^3); %Second derivative
16 case 2
17 f = @(r) tanh(r.^3);
18 dfdr = @(r) 3*r.^2*(1-tanh(r.^3));
19 ddfdr = @(r) 6*r*(1 - tanh(r^3)^2) - 18*r^4*tanh(r^3)*(1 - tanh(r^3)^2);
20 case 3
21 f = @(r) 1 + exp(-r.^3).*(1.5.*r.^3 - 1);
22 dfdr = @(r) -3*r.^2*exp(-r.^3)*((3*r.^3)/2 - 1) + (9.*r.^2*exp(-r.^3))

./2;
23 ddfdr = @(r) -6*r*exp(-r^3)*((3*r^3)/2 - 1) + 9*r^4*exp(-r^3)*((3*r^3)/2

- 1) - 27*r^4*exp(-r^3) + 9*r*exp(-r^3);
24 case 4
25 f = @(r) tanh(r.^3)+ 1.5.*(sech(r.^3))^2.*r.^3;
26 dfdr = @(r) 3*r^2*(1 - tanh(r^3)^2) + (9*r^2*sech(r^3)^2)/2 - 9*r^5*sech

(r^3)^2*tanh(r^3);
27 ddfdr = @(r) 6*r*(1 - tanh(r^3)^2) - 18*r^4*tanh(r^3)*(1 - tanh(r^3)^2)

+ 9*r*sech(r^3)^2 - 72*r^4*sech(r^3)^2*tanh(r^3) ...
28 + 54*r^7*sech(r^3)^2*tanh(r^3)^2 - 27*r^7*sech(r^3)^2*(1 - tanh(r^3)

^2);
29 otherwise
30 error("Input valid coreFunction number")
31 end
32 r = norm(r_np);
33 r_star = r/R;
34
35 g = @(r) f(r) - (r/3)*dfdr(r);
36 dgdr = @(r) (1/3)*(2*dfdr(r) - r*ddfdr(r));
37 D_np = R^(-4).*( D_point(r_np./R).*g(r_star) + dgdr(r_star)*F_point(r_np./R) ) ;
38 end

1 function F_np = F_point(r_np)
2 %Initializing F as 3x3 array
3 F_np = zeros(3,3,3);
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4 r = norm(r_np);
5 for i=1:3
6 for j=1:3
7 for k=1:3
8 delta_jk = (j==k);
9 F_np(i,j,k) = (3/(4*pi*(r^6))) * (r_np(i)*r_np(j)*r_np(k) - (r_np(i)*

delta_jk*(r^2)) );
10 end
11 end
12 end
13 end

1 function PeriodicEddies = makePeriodicCopies(eddy_n,R_xy)
2 east = eddy_n; west = eddy_n; north = eddy_n; south = eddy_n;
3 northEast = eddy_n; northWest = eddy_n; southEast = eddy_n; southWest = eddy_n;
4
5 east = east.updateLoc(east.loc + [2*R_xy,0,0]);
6 west = west.updateLoc(west.loc - [2*R_xy,0,0]);
7 north = north.updateLoc(north.loc + [0,2*R_xy,0]);
8 south = south.updateLoc(south.loc - [0,2*R_xy,0]);
9

10 northEast = northEast.updateLoc(northEast.loc + [2*R_xy,2*R_xy,0]);
11 northWest = northWest.updateLoc(northWest.loc + [-2*R_xy,2*R_xy,0]);
12 southEast = southEast.updateLoc(southEast.loc + [2*R_xy,-2*R_xy,0]);
13 southWest = southWest.updateLoc(southWest.loc + [-2*R_xy,-2*R_xy,0]);
14
15 PeriodicEddies = [east;northEast;north;northWest;west;southWest;south;southEast];
16 end
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