
lable at ScienceDirect

Forensic Science International: Digital Investigation 37 (2021) 301188
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
DFRWS 2021 USA - Proceedings of the Twenty First Annual DFRWS USA
Coffee forensics d Reconstructing data in IoT devices running Contiki
OS

Jens-Petter Sandvik a, b, *, Katrin Franke a, Habtamu Abie c, Andr�e Årnes d, a

a Norwegian University of Science and Technology (NTNU), Norway
b National Criminal Investigation Service (Kripos), Norway
c Norwegian Computing Centre, Norway
d Telenor Group, Norway
a r t i c l e i n f o

Article history:

Keywords:
Digital forensics
IoT forensics
Contiki
Coffee file system
File version reconstruction
* Corresponding author. Norwegian University
(NTNU), Norway.

E-mail address: jens.p.sandvik@ntnu.no (J.-P. Sand

https://doi.org/10.1016/j.fsidi.2021.301188
2666-2817/© 2021 The Authors. Published by Elsevier
a b s t r a c t

The ability to examine evidence and reconstruct files from novel IoT operating systems, such as Contiki
with its Coffee File System, is becoming vital in digital forensic investigations. Twomain challenges for an
investigator facing such devices are that (i) the forensic artifacts of the file system are not well docu-
mented, and (ii) there is a lack of available forensic tools. To meet these challenges, we use code review
and an emulator to gain insight into the Coffee file system, including its functionality, and implement
reconstruction of deleted and modified data from extracted flash memory in software. We have inte-
grated this into a forensic tool, COFFOR, and analyzed the Coffee File System to reconstruct deleted and
modified files. This paper presents an overview of the artifacts in the file system and implements
methods for the chronological ordering of the deleted file versions, and discusses these methods’ limi-
tations. Our results demonstrate that forensic acquisition and analysis of devices running the Contiki
operating system can reveal live and deleted files, as well as file version history. In some cases, a
complete, chronological ordering of the version history can be reconstructed.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Internet of Things (IoT) is a term spanning a wide field of
technologies, systems, and application areas. IoT systems are found
in a variety of application areas, from smart homes and smart cities
to agriculture and environmental monitoring. Each IoT system
consists of many parts, from cloud solutions and network infra-
structure to resource-constrained things at the edge of the network.
Mobile phones and computers might also be considered part of the
IoT system, as they are used as gateways (e.g., wearables with a
Bluetooth connection to a mobile phone) and interfaces (e.g., apps
receiving updates from and controlling the IoT system). The dif-
ferences in computing power and resource-constraints among the
parts of an IoT system lead to different requirements for their
operating systems. Many of the more powerful devices are running
Linux or Windows, but specialized operating systems are necessary
for resource-constrained devices.
of Science and Technology

vik).

Ltd. This is an open access article u
Evidence from IoT systems is often found in the connected cloud
platforms or connected applications on a mobile phone or a com-
puter. Evidence in devices is often overlooked with the assumption
that the same data is more accessible in other systems. However,
there are several reasons to examine IoT devices: to validate the
aggregated data's integrity and completeness, find evidence where
devices themselves have been compromised, find irregularities in
the network infrastructure, or collect data that has not yet been
sent to a server.

The current focus on forensic examination of IoT devices is on
more capable devices, such as security cameras and routers, typi-
cally running Linux. This is a natural focus as most active exploits
against IoT systems target these types of devices. As latent faults in
other types of devices will be exploited, it is only a matter of time
before these systems also are attacked.

Resource-constrained devices are often found in devices inten-
ded to run autonomously for long periods on batteries, such as
sensor systems, medical systems, and systems retrofitted with
internet capabilities. The limitations are the amount of volatile and
non-volatile memory, the processing power, and the devices’ po-
wer usage. Contiki OS and its current active development branch,
Contiki-NG, is an operating system designed for resource-
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jens.p.sandvik@ntnu.no
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2021.301188&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2021.301188
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2021.301188

J.-P. Sandvik, K. Franke, H. Abie et al. Forensic Science International: Digital Investigation 37 (2021) 301188
constrained devices (Dunkels et al., 2004). Contiki-NG needs about
100 kB for the code and about 10 kB of RAM for running on mini-
mum requirements. It is found in existing products, e.g., among
products using the Thingsquare platform.1

Contiki-NG defines an application programming interface (API)
for the Contiki operating system's file system, and the Coffee File
System is an implementation of, and extension to, this API. The
Coffee File System introduces micro-logs that write modified pages
of the original file to a micro-log file so that the file system does not
need to rewrite thewhole file on small changes (Tsiftes et al., 2009).
Other popular file systems for resource-constrained devices include
YAFFS2,2 FreeRTOS þ FAT,3 Reliance Edge,4 Reliance Nitro,5 Wind-
River's High Reliability File System (HRFS),6 LittleFS,7 and JFFS2.8 In
addition to these specialized flash file systems, conventional file
systems can be used in managed flash chips. Managed flash refers
to flash memory with an embedded controller for the flash man-
agement layer.

The use of these resource-optimized file systems will be more
abundant with the increase of resource-constrained IoT devices in
common use. Therefore, this work focuses on the Coffee File Sys-
tem, as implemented in Contiki-NG. The resource optimizations in
file systems are often similar given similar resource constraints,
which means that forensic techniques for one file system can be
transferable to other, similar file systems.

Contiki is not currently a widely used operating system for IoT
devices, as many of the contemporary devices have relatively
powerful hardware capable of running more general-purpose
operating systems such as Linux. This might change as more de-
vices are designed to run for long periods on battery and more
constraints to the power and memory usage. The Eclipse founda-
tion's annual developer survey for IoT developers confirms that
most device developers use Linux. In contrast, Contiki is used by 5%
of the developers, and about the same amount as developers using
ARM MBed OS, TinyOS, RiotOS, Huawei LiteOS, VxWorks, and QNX
(Eclipse Foundation, 2019). To complete the list, FreeRTOS and
bare-metal implementations9 are between these and Linux in
popularity.

All types of systems and tools might be used for crimes, either as
a tool or as a target. In addition, the system can sense, or in other
ways, gain information about crimes, even though it has not been
directly involved. IoT systems are no exception to this, and the
ability to find relevant evidence from IoT systems becomes
increasingly important as the number of deployed systems in-
creases. A forensic investigator's work is to ensure that all relevant
aspects of the case are illuminated and that all relevant evidence is
documented, both the evidence that signifies guilt and innocence.

The tools that are commonly used in forensics do not support
the file system used in Contiki. The Contiki source code tree does
include the tool “coffee-manager” to examine and extract files from
a flash memory dump, but this only extracts existing files.

This paper examines the file system artifacts from a digital
1 https://www.thingsquare.com, visited 2021e02e07.
2 https://yaffs.net, visited 2021e02e07.
3 https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_FAT/index.html,

visited 2021e02e07.
4 https://www.datalight.com/products/embedded-file-systems/reliance-edge-

overview/, visited 2021e02e07.
5 https://www.datalight.com/products/embedded-file-systems/reliance-nitro/,

visited 2021e02e07.
6 https://www.windriver.com/products/vxworks/, visited 2021e02e07.
7 https://github.com/ARMmbed/mbed-os/blob/master/storage/filesystem/

littlefsv2/littlefs/DESIGN.md, visited 2021e02e07.
8 http://www.sourceware.org/jffs2/, visited 2021e02e07.
9 No OS, application code runs directly in the device.

2

forensics perspective and creates a tool for extracting both existing
files, deleted files, and previous versions of both deleted and
existing files. This work has three main contributions:

1. Investigate and disseminate forensic knowledge about the Cof-
fee File System used for non-volatile storage in Contiki OS

2. Reconstruct and chronologically order the historical file versions
3. Develop COFFOR, a tool for exporting data from the file system,

both deleted and active, and sort the version history of modified
files

This work's ultimate goal is to increase the value of the evidence
stemming from IoT devices, as the evidence is used during in-
vestigations and in court.

The structure of the rest of this paper starts with related work in
Section 2 and describes the Coffee file system in Section 3. In Sec-
tion 4 two methods for reconstructing the file version history are
described, and the COFFOR program for forensically extracting data
from the Coffee File System is presented in Section 5. Section 6
contains the experiments. Section 7 discuss the results and future
work, and Section 8 concludes the paper.

2. Related work

Forensic research in IoT systems has focused on finding aggre-
gated data in more accessible locations, like cloud and companion
apps on phones, as well as on other connected devices (Oriwoh
et al., 2013; Chung et al., 2017; Kang et al., 2018; Dorai et al.,
2018). Other researchers have focused on the network forensic
part (Kumar et al., 2016; Rizal et al., 2018). Also, there have been
studies on stored artifacts in devices, both in well-known file sys-
tems (Awasthi et al., 2018; Li et al., 2019) and in raw memory
dumps without a known file system (Jacobs et al., 2017). Faults in
devices can lead to erroneous data being recorded, such as failing
power that can affect running clocks and timestamps in systems
(Sandvik and Årnes, 2018). There has not been much research on
the file systems used in resource-constrained devices. One of the
reasons is that many IoT devices, especially the more powerful
ones, use Linux, and therefore well-known file systems such as
ext4.

While there is a lack of literature on the forensic examination of
the Coffee File System, there have been studies using Contiki OS and
the Cooja simulator. These studies have primarily focused on
network forensics and forensic readiness systems. Kumar et al.
focused on RAM acquisition and the artifacts from the IPv6 over
Low-Power Wireless Personal Area Networks (6LoWPAN) network
architecture in RAM (Kumar et al., 2014). They later implemented
rank exploitation attacks against the Routing Protocol for Low Po-
wer and Lossy Networks (RPL), showing how to detect that
particular type of attack (Kumar et al., 2016). As a research platform
for forensic readiness systems, Contiki with the bundled Cooja
simulator has also been used for implementing a proof-of-concept
system for forensic readiness and evidence storage (Hossain et al.,
2018).

The Coffee File System is designed for flash memory with the
peculiarities this storage technology brings. Modifying data stored
on flash memory can only flip individual bits from “1” to “0”, and to
flip bits back to “1”, a whole erase block needs to be reset. An erase
block consists of several pages; for the Flash memory Micron
M25P80, a page is 256 bytes, and an erase block is 65 kB (256
pages). Writing to flash memory thus needs special considerations,
and file systems made for flash memory have similar methods for
handling the flash memory peculiarities. Other research efforts into
flash file system forensics have focused on the YAFFS2 file system.
The YAFFS2 file system is designed for flash memory, and the file

https://www.thingsquare.com
https://yaffs.net
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_FAT/index.html
https://www.datalight.com/products/embedded-file-systems/reliance-edge-overview/
https://www.datalight.com/products/embedded-file-systems/reliance-edge-overview/
https://www.datalight.com/products/embedded-file-systems/reliance-nitro/
https://www.windriver.com/products/vxworks/
https://github.com/ARMmbed/mbed-os/blob/master/storage/filesystem/littlefsv2/littlefs/DESIGN.md
https://github.com/ARMmbed/mbed-os/blob/master/storage/filesystem/littlefsv2/littlefs/DESIGN.md
http://www.sourceware.org/jffs2/

Table 1
The file header structure of the Coffee File System.

Size (bytes) Field

2 LOG_PAGE
2 LOG_RECORDS
2 LOG_RECORD_SIZE
2 MAX_PAGES
1 DEPRECATED_EOF_HINT
1 FLAGS
16/40 NAME

J.-P. Sandvik, K. Franke, H. Abie et al. Forensic Science International: Digital Investigation 37 (2021) 301188
system can be found in, e.g., mobile phones. Quick and Alzaabi
tested various ways of collecting the raw dump of YAFFS2 from
Android (Quick and Alzaabi, 2011). Zimmerman et al. further
examined the functionality of the YAFFS2 file system, focusing on
the forensic analysis of the file system (Zimmermann et al., 2012).

Many options are available for extracting evidence from
embedded systems, each with its own set of advantages and trade-
offs (Sandvik, 2017). Physical acquisition is often considered the
most forensically sound way of collecting evidence from embedded
devices, but it is a resource-demanding task. Breeuwsma et al.
provided an in-depth discussion of the physical acquisition of flash
memory chips and an analysis of the Flash translation layer (FTL).
The paper showed how the spare areas in the flashmemory contain
information for rebuilding the file system from raw flash dumps
(Breeuwsma et al., 2007). Other authors have used statistical
methods to classify pages and recreate file contents from frag-
mented data stored in flash memory (Park et al., 2012).

We are not aware of any paper describing the forensic artifacts
of the Coffee File System used by Contiki nodes. In this study, we
have therefore developed a new method for analyzing scattered
evidence in the Coffee File System, using edit distance to find the
correct sector order for reconstructing the version history of the
files, and a tool for reconstructing file versions from a flashmemory
dump. We have assessed the viability of the method and under
which circumstances the method has a limited effect. Our results
contribute to the forensic investigator's ability to extract evidence
found in IoT devices running Contiki OS and containing non-
volatile memory.

3. Coffee file system

The Coffee File System was designed for sensor systems that
contain flash memory, and the source code is freely available as a
part of the Contiki OS (Tsiftes et al., 2009). This section is split into
the file system structures in Section 3.1 and the dynamic workings
in Section 3.2.

3.1. File system structures

The file system does not contain any metadata structures in any
reserved areas, such as the $MFT in the NTFS file system or the
superblock in the ext2/3/4 file systems. The file system metadata
structures are built up at boot time by scanning the flash memory
for file header structures. As the on-disk file system does not
contain any metadata structures, the operating system's overview
of the file system is kept in RAM.

A page is the smallest unit that can be written in flash memory,
and bits can only be switched from 1 to 0 (Micron Technology,
2011). The file system inverts all bits when writing to flash, so a
zero in the operating system corresponds to a one in the flash
memory. The emulated flash is not inverted. A page can be written
several times as long as no bits are set from zero to one, which
means that appending to a file and setting (but not clearing) flags
can be done. A whole erase block has to be deleted for bits to be set
from zero to one, and an erase block is called a sector in the Coffee
File System.

The file header structure is found in the source file cfs-coffee.c in
the folder os/storage/cfs/ and the structure is shown in Table 1. The
flags defined in the file header are given in Table 2. An additional
file header structure appears in the log files, which is a file that
stores the modifications to the contents of the base file. This header
immediately follows the file header and is an index of 16-bit in-
tegers corresponding to the modified page number in the original
file. The size of this index is the number of modified pages a log file
contains.
3

The log file has the same file header as a regular file but with the
HDR_FLAG_LOG flag set. After the file header, a log file header
consists of 16-bit page references for which pages are affected in
the original file. The page references are 1-based, which means that
page number 1 is the original file's first page, while 0 means that
the record has not been used. After this header, a page-sized buffer
for each record follows.

The number of records in the log file is given in two different
ways. If the original file header has set the log records and log re-
cord size parameters, these are used for the size and number of
records. Otherwise, the default settings are used. These are four
pages in each log file, and each log record is one page, which means
four records for each log file and five pages allocated in total. After
the records in the log file are written, the last version of the file will
be written to a new file, and a new log is initiated. Thus, the first full
version of the file is the same as the last version in the previous log
file.

One design decision in the file system is that while the header
says how many pages are allocated for the file, the file size is not
described anywhere. The decision reduces the amount of metadata
attached to a file, minimizing disk and memory usage. The actual
file size is found by searching backward from the end of the allo-
cated file until a non-zero byte is found. This method of finding the
end of a file means that files cannot endwith one or more zeroes, as
these will be regarded as slack space.

The file system does not support folders apart from “/” and “.”.
These are used for enumerating the files in the file systemwith the
cfs_opendir and cfs_readdir functions. The lack of folders means
that filenames are essentially unique in the file system. There is a
theoretical possibility for two files with the same name to exist in
the file system, but the identity used when opening a particular file
is its name, and thus, there is no way of creating a new file with the
same name using the storage API.

From the source code, we can see that the sector size is
dependent on the target architecture. Within Contiki, the combi-
nation of a hardware type and configuration is called an architec-
ture. The target architectures Sky, which targets the TelosB/ Tmote
Sky board; Z1, which targets the Zolertia Z1 board; and native,
which targets the native architecture of the computer in which the
simulator is running, all have a sector size of 0x10000 bytes. The
target architecture cc26x0-cc13x0, which targets the Texas In-
struments' CC13xx/CC26xx microcontroller, has a sector size of
0x1000 bytes. It is possible to change this at the Contiki compile
time to match the target hardware. The file name length is also
dependent on the target architecture, where most have a 16-byte
limit, while the cc2538 target, for Texas Instrument's CC2538
development board, has a 40-byte limit, but this is also configurable
at Contiki compile time.

For reference, the list below shows the terms used in this paper
for pages in the file system:

Active: Pages that have been allocated and belong to existing
files.

Table 2
Flags used in the file header, from the file os/storage/cfs/cfs-coffee.c in the contiki source.

Value Flag Description

0x01 HDR_FLAG_VALID Header is completely written
0x02 HDR_FLAG_ALLOCATED File is allocated
0x04 HDR_FLAG_OBSOLETE File marked for garbage collection
0x08 HDR_FLAG_MODIFIED File modified, log exist
0x10 HDR_FLAG_LOG Log file
0x20 HDR_FLAG_ISOLATED A page from a file that started in the previous, garbage collected sector

J.-P. Sandvik, K. Franke, H. Abie et al. Forensic Science International: Digital Investigation 37 (2021) 301188
Obsolete: Pages that have been active but currently not in use.
They are available for garbage collection.
Isolated: Pages that have been active and belonging to a file
starting in the previous sector. They exist as file fragments
without a header at the start of a sector.
Deleted: Pages that are obsolete or isolated.
Unused: Pages that have not been written to after being erased
by the garbage collector.
3.2. File system dynamics

The Coffee File System is similar to YAFFS2, where changes to
files are written to new pages. The file systemwill scan all allocated
pages and use the file version that is not marked as obsolete as the
current version. In addition, there is a lightweight journal that re-
cords and stores modifications to files, called micro-logs.

Whenwriting a file, the file systemwill initially allocate 0x11 �
COFFEE_PAGE_SIZE bytes. The page size is typically 0x100 bytes. If
the file size is too small for the file contents and header, the original
file will be marked as obsolete, and a new file will be created with
twice the allocated size.

Appending to a file, or opening the file for writing with the
COFFEE_FD_APPEND option, will transparently append data to a
file, just as an ordinary write operation. However, this write oper-
ationwill not create a new version of the file unless the file content
size grows more than the allocated file size. If the append extends
beyond the allocated number of pages, the old file version will be
marked as obsolete, and a new file will be created with twice the
amount of allocated pages.

Modifying the existing contents of a file by overwriting the file
or parts of the file will create log file entries if micro logs are
enabled for the Contiki build. When a log file is written, the
HDR_FLAG_MODIFIED will be set, and a pointer to the page where
the log resides will bewritten in the first 2 bytes of the original file's
header, in the field log_page, as described in Table 1. The log file will
get the HDR_FLAG_LOG set, which indicates a log file and the same
file name as the original file.

The sectors are written sequentially in increasing address order
until the end of the file system is reached. A garbage collection (GC)
routine deletes the sectors containing nothing but unlinked data
before the file system starts writing from the first available sector.
As the file system has to delete the whole sector during the garbage
collection, the file versions existing in sectors that still have active
pages will survive the garbage collection. The sectors containing
live data at the time of the GC run will be present during the next
cycle of writes, mixing sectors containing older versions of the
unlinked files with the newer versions of the files. There is no
shuffling of active pages to free up sectors in the file system, which
saves the cost of locating live data and moves this to new sectors
but results in less inactive sectors that can be collected. The
ordering of write operations is, therefore, kept intact within each
sector.

Coffee has extended wear leveling enabled by default, which will
4

postpone garbage collection until a file allocation fails due to
insufficient number of free pages. The garbage collection routine
will then erase as many sectors as it can. If extended wear leveling
is not enabled, the garbage collection will erase a sector when a
sector becomes available for garbage collection. According to the
source code comments, the extended wear leveling setting is better
for wear leveling, but it can use more time before the garbage
collection is finished.

Files written close to a sector boundary can start in one sector
and continue into the next. If the first sector is garbage collected
and erased, but the next sector is not, then the pages belonging to
this file will be marked as isolated with the HDR_FLAG_ISOLATED
flag in byte 9 of the page. This bit set on pages following a sector
boundary tells the file system that the page is free to be collected.

An interesting artifact in the file system is that when a file is
written the first time, a base file without a log file is written. The log
file is first written at the first file modification. When all records in
the log file have been filled, and the file is modified once more, the
previous version is copied to a new base file, and the log file is
immediately created to hold the last changes. The consequence of
this copy process is that the last version of a base and log file couple
is the same as the first version of the following base file and log file
couple.

4. Reconstructing file versions

In this section, two methods for chronologically ordering the
version history of existing and deleted files are described. The first
method uses file content similarities to establish the order, while
the other uses the file offset analysis.

4.1. File content similarities

Since we know that the write operation order is kept within a
sector, the next question is how to find the ordering between the
sectors. If content data contains timestamps or other references to
external events, the content data can be used to establish a tem-
poral order between sectors. Another way to establish the temporal
order between sectors is to check the file version similarities, where
the difference between two consecutive versions is smaller than for
more distant versions. The last version of a file in a sector is thus
more similar to the first version of the file in the following sector
than in other sectors. There are several ways of measuring simi-
larities, including the Levenshtein distance, which finds the mini-
mal edit distance between two strings (Levenshtein, 1966), and
various diff algorithms, such as Myers, which finds the longest
common substrings between two strings together with the shortest
edit script (Myers, 1986).

In general, we do not have a priori knowledge of an application's
writing strategy on the device. An application can use many small
write operations or process the file contents in memory and write
to flash memory when it reaches checkpoints or is finished pro-
cessing. If a file contains structured data with a slowly changing or
static structure, we can measure differences through edit distances.

Table 3
Defaults used in COFFOR.

Pagesize 0x100

Sectorsize 0x10000
FS start offset 0x10000
Header size 0x1a

J.-P. Sandvik, K. Franke, H. Abie et al. Forensic Science International: Digital Investigation 37 (2021) 301188
If the file is a dynamic file where huge parts change rapidly or are
shuffled around, it might be better to use diff algorithms, as these
tend to look for blocks of similarity rather than comparing the byte
differences in a file. For the writing strategy in our experiments,
there were no differences with regard to their performance. How-
ever, we note that there might be a difference between the algo-
rithms for other file-changing patterns. For this work, we use
Radare2's radiff2 programwith the Myers distance. Radiff2 can also
use Levenshtein distance and its own distance implementation.10

Edit distances are suitable for a subset of files where the changes
happen gradually and change the contents away from the original.
A ring buffer is an example of a file that gradually changes over
time. In a ring buffer, the file is a set size. Upon reaching the end of
the file, the write operations wrap around and start over from the
beginning. However, it will not work for files where only a single
value is updated independently of the time and earlier values or
where the file changes completely between each write. In these
cases, the edit distance between versions will have the same vari-
ability, whether the file versions are close or distant. For files that
are gradually changing away from the original, the first and last
versions within the sectors can be compared to reveal the internal
order.

4.2. File offset analysis

It is possible to calculate at which offsets the files are written to
a virtual infinite address space because of the deterministic allo-
cation strategy and the lack of fragmentation, where the offset is
the number of pages from the sector boundary. The allocation of a
file only reserves a continuous set of pages for a file, prohibiting
fragmentation of active files. This virtual, infinite address space can
then be mapped to the limited address space of the physical
memory, which will be reused as the writing operations reach the
end of the file system and the garbage collection frees up sectors for
reuse.

The default allocation size of a file is 17 pages plus five pages for
the log-file, in total 22 pages, and the sector size is typically 256
pages. The files within one sector are written consecutively and are
only erased when all pages in the sector are deleted. As files are
written consecutively, and the first file in the first sector starts at
offset 0, the 11th file will cross over into the following sector, and
the first file in the new sector will start at offset 22� 12� 256 ¼ 8 in
the sector for a sector size of 256 pages.

In general, the offset of the first file in a sector, n, is given by the
equation:

A0 ¼0 (1)

An ¼
��

An�1 þ
�
SS
SF

��
ðmod SSÞ

�
ðmod SFÞ (2)

Where An is the offset of the first file in the virtual sector n, SS is the
sector size in pages, and SF is the file size in pages. The ceiling
function, denoted by Q:/S, is the lowest whole number greater than
or equal to its argument. Setting SS to 256, and FS to 22, gives a
sequence of 11 possible first file offsets in consecutive written
sectors: [0, 8, 16, 2, 10, 18, 4, 12, 20, 6, 14], before the sequence starts
over again.

One assumption made here is that files and the log file have the
same size throughout the device's lifetime. As a typical device using
Contiki is resource-constrained and has limited storage, it is
reasonable to believe that file writing will be held to a minimal size.
10 https://rada.re/n/radare2.html, visited 2021e02e07.

5

Another assumption made in this analysis is that all file modi-
fications result in a base file and a log file for storing the changes.
The assumption has been observed to break when the write oper-
ation causes a search for free sectors. When the search skip used
sectors, somewriting operations only write a base file and continue
to write a new base file instead of a log file. For a single occurrence,
this can be detected by the file offsets starting at an odd-numbered
offset, as the sizes of the base file and the log file both being odd-
numbered.

The changes in the file offsets due to the changes in the file sizes
can be accounted for by calculating all possible combinations of file
offsets given the possible file sizes. This can result in several
possible sequences of sectors, and these can be further analyzed to
filter out low probability ones, such as no log files written in the
sectors.

Given a constant file size, the difference in the first file offset
between two consecutive written sectors is constant, and can be

found by A1 � A0 ¼
�
SS
SF
ðmodSSÞ

�
ðmodSFÞ. If one sector deviates

from this by missing a log file, all following offsets will be offset by
subtracting the missing log file size from these sectors. The first file
offset series depends on the number of missing log files, and is
given by a modulus subtraction:

An;new ¼ðAn � kSLÞðmodSFÞ (3)

Where An;new is the new offset, k is the number of missing log files,
and SL is the size of the log file.

One missing log file in the first sector results in this sequence of
offsets: ½0;3;11;19;5;13;21;7;15;1;9;17;3;/�. An analysis of the
sector offsets can thus find the possible locations of missing log
files.

5. COFFOR

For this study, we focus on the emulated flash memory from a
Contiki device. For the forensic examination, a tool called COFFOR,
short for Coffee Forensics, was developed. COFFOR consists of two
programs: a program for extracting files and file fragments from a
flash memory dump (coffee_file_extract) and a program for
comparing the similarity of file versions (combinefiles.py). The
program suite can be found on Github and is released under
GPLv3.11

The program for examining the coffee file system, “coffee_fi-
le_extract”, traverses a memory dump from a Contiki device. Cof-
fee_file_extract is written in C, and it needs a flash memory dump
as input. Options to the program are –pagesize if the default page
size is incorrect, –sectorsize for giving the sector size, –coffeestart
to set the start offset of the file system in the flash memory dump,
and –directory for the output directory. The defaults are given in
Table 3.

Information from Coffee_file_extract execution is written to
stdout. If the –directory option is given, the files and file fragments
are written to the specified directory. The files are named in
11 https://github.com/jenspets/coffor.

https://rada.re/n/radare2.html
https://github.com/jenspets/coffor

Fig. 1. The functional architecture of COFFOR, including coffee_file_extract and combinefiles.py. The main part is the array of page types and metadata that are used for analyzing
the pages.

J.-P. Sandvik, K. Franke, H. Abie et al. Forensic Science International: Digital Investigation 37 (2021) 301188
according to the format <filename>_<status><startpage>_
V<version>. The filename is the original filename of the file, and the
status is either “A” for active, “D” for deleted, or “I” for isolated
pages.12

The architecture of the program is relatively uncomplicated. It
will first map the image file in memory and then process all pages
in the disk image. Each page is analyzed and categorized into page
types: an active base file, an active log file, a deleted base file, a
deleted log file, a file fragment, a zero-page, or an isolated page.
This generated list of page types is stored as an array of page type
structures, including some metadata from the pages as they are
interpreted. The next step is to go through the file type list,
exporting the files found to the specified directory. Fig. 1 shows this
architecture.

The similarity measures described earlier were not imple-
mented during testing for file version reconstruction, but we used
the software suite Radare2's radiff2 for similarity measurements. A
small Python script called combinefiles.py was written to combine
the filenames given as command line parameters into pairs and
compare these pairs of files. The comparison was made by
executing the radiff2 program and reformat the output to facilitate
plotting the results. An example of using the python script is
combinefiles.py -sss -t a.txt_A065c_V0001 a.txt_*_V0005, where
-sss is the option passed to radiff2, -t is the target file to compare all
others against, and the rest is a list of the files that are to be
12 Isolated pages lack a file header, so these files are just without the original file
name.

6

compared against the target. We see that the last version for a
particular log file (version 5: “V0005”) is used to compare against
the first version of the set of files belonging to the target, the active
file.
6. Experiments

In order to test the file system, the Cooja simulator was used. A
mote is a short form for remote and is often used to describe a
sensor node or a network-connected device with some computing
abilities. A mote that will write files to the file system, append,
delete, and overwrite files were created and implemented as an
emulated device. For the tests, an emulated “Sky mote” was used.
The emulated Sky mote offers a 1 MB M25P80 flash memory
interface that can easily be exported and analyzed.

The experiments were performed to validate the documented
file system functionality, describe forensic artifacts found after file
operations, test the ability to reconstruct file versions' temporal
order, and test the developed COFFOR tool's performance.
6.1. File operations

The following actions were taken in the first file system test:

1. File 1 was written and closed
2. File 1 was appended to and closed
3. File 2 was written and closed
4. File 2 was overwritten and closed

J.-P. Sandvik, K. Franke, H. Abie et al. Forensic Science International: Digital Investigation 37 (2021) 301188
5. File 3e12 were written and closed
6. Odd-numbered files between 3 and 12 were deleted
7. File 13e22 were written and closed
8. Odd-numbered files between 13 and 22 were deleted
9. Flash memory was exported

The first file header starts at 0x100000, and the first 32 bytes are
as shown in Fig. 2. We can see that there are 17 (0x11) pages allo-
cated to this file, and header flags are 0x3, or Valid and Allocated, as
described in Table 2. The file name is file001.txt, and the 16-byte file
name field is zero-padded. The first 6 bytes of the file content here
is “File1␣”.

The append operation in step 6.1 resulted in a write operation
on the same page as the existing page. This is possible because an
append operation only affects unwritten parts of the page; the rest
of the file is still the same as before. As long as the append operation
does not increase the file size more than the allocated number of
pages (max_pages), the append operation is indistinguishable from
a single write operation.

The second file was overwritten, and the micro-logs showed
several versions of the file. The logs showed, in addition to the
programmed versions, several of the individual write operations.
Themicro-logs arewritten sequentially and start with a header that
shows the page number of the change. The log files observed had 4
write operations recorded before a new file is written. Another set
of write operations were done for establishing log file operations.
These were:

1. file001.txt was written and fit in one page
2. file001.txt was overwritten
3. file002.txt was written, this file was 0x100 pages and spanned

one sector
4. file002.txt was partly overwritten
5. file003.txt was written, this file spanned 6 pages
6. file003.txt was modified on page 5
7. file003.txt was modified on page 3
8. file003.txt was modified on page 5

Fig. 3 shows file003.txt that has been updated and the corre-
sponding micro-log. At offset 0x32600, the log page field shows
0x0237, and this is the page relative to the start of the file system at
0x10000, which means that the log starts at
0x10000þ ð0x0237�0x100Þ ¼ 0x33700, as marked in red. After
the filename field (16 bytes), the log file contains four 16-bit fields
corresponding to the relative page number in the base file that is
modified. In the table, the four values are 0x0005, 0x0005, 0x0003,
and 0x0003, marked green. This base and log file compound are
obsolete, so the table only shows the changes from step 6.1 and 6.1
listed above. Onewrite operation in the source code resulted in two
write operations, as seen by the double entries for each page in the
list of relative page numbers starting at offset 0x3371a in Fig. 3.
After this list, the four modified pages follow and replace the base
file's corresponding pages.

The five versions corresponding to this base file and log file pair
Fig. 2. The headers of two files. At the top, a header and first 6 bytes of contents of an existi
seen by the flags at offset 9, marked red, of the file header.

7

can be recreated by first restoring the original file, which is the first
version. The second version is the original file with the first log-
page written at the specified page number. The third version of
the file is based on the second version, but with the second log-
page written at the specified page number. The process continues
until reaching the last log-page.
6.2. Garbage collection

To better understand the garbage collection mechanism, a new
mote was created. This mote was designed to trigger garbage
collection for various file write strategies. The garbage collector's
default settings were tested by writing and deleting files until the
write pointer reached the end of the file system. The first test
showed that the garbage collection was not performed before the
file writes reached the end of the file system's address space, free
sectors were purged, and writing started on the first free page. This
behavior was as expected. There was no sorting and copying of
existing files in order to create more free sectors.

The second experiment was writing small files, deleting every
second file after they had beenwritten. This led to a state where all
sectors contained both deleted and active files. When the write
operation reached the end of the file system, the garbage collector
was unable to free up any sectors, and the write operation failed
due to no space left on the file system.

The third experiment was writing huge files, such that each file
would span at least one sector. When files were deleted, the
garbage collection routine was able to free up pages. Fig. 4 shows
the result after garbage collection. The figure shows the end of one
file, two deleted sectors, then continues in the middle of a file. The
figure is shown in the format of the program hd (hexdump), where
an asterisk means that the previous line, in this case, all zeroes, is
repeated until the next displayed line.
6.3. File version reconstruction using file offset analysis

For this experiment, a node writing two files was used. One of
the files was modified each second, while the other was modified
every 100 s. This would ensure that they, for most parts, existed in
different sectors.

The file os/storage/cfs/cfs-coffee.c in the Contiki OS source tree
was patched to print the offset of the created base files to the Cooja
simulator's log. The simulation was then run for 2 h simulation
time, and at the end of the run, the flash memory was collected.

Table 4 shows the resulting data from the flashmemory, and one
immediate interesting finding is the odd offsets in sector 0x0d. This
indicates a base file written in an earlier sector that does not
include a log file. A thorough examination of the simulation log
revealed that this had happened several times during the simula-
tion where the allocation algorithm had to skip used sectors before
finding the required number of consecutive pages. However, the
two sectors, 0 and 1, seem to be consecutive, and an examination of
the simulation log validated this.
ng file. The second file is the header and first 6 content bytes of a deleted file, as can be

Fig. 3. A modified (and obsoleted) file header with a page address to the log, and the start of the microlog file.

Fig. 4. Result after garbage collection. Note that the sector at 0x40000 starts in the middle of a file, without any file headers in the start of the page. The only header information is
in byte at offset 9 of the isolated file, where the file header flag is set for an isolated page (marked red).

Table 4
Offsets to first and last base files in sectors containing data.

Sector First file Last file

0x00 0x00 0xf2
0x01 0x08 0x8c
0x06 0x04 0xf6
0x0d 0x01 0xdd

Fig. 5. File version history similarities for a file that are changing gradually from the
original (red line), a file where only 1e2 bytes are changing between versions (blue
line), and where the whole file changes between versions (green line). The leftmost is
the newest version, and the similarity between the active version and the obsolete
versions is falling gradually with higher age only for the gradually changing file.

J.-P. Sandvik, K. Franke, H. Abie et al. Forensic Science International: Digital Investigation 37 (2021) 301188
6.4. File version reconstruction using file content differences

Amotewas programmed,mimicking a generic application on an
IoT node, and it was run in the Cooja simulator as an emulated Sky
Mote. After the mote had finished the write operations, the flash
memory was exported and analyzed.

The following file operations were performed to test the
viability of ordering file versions, even when missing sectors be-
tween file versions:

1. Small changes to a value between versions
2. Gradual changes over time
3. Whole file changes between each version

Old file versions disappear when a sector is erased, and the
number of file versions within a sector is dependent on the file size
of the files written and the number of files being written. The
number of file versions in a sector is highly variable, and for our
analysis, we therefore only take into account the number of missing
file versions, not the number of erased sectors. The file version
order is fixed within a sector, so the last version in one sector
should be compared to the first versions in other sectors. For this
analysis, we instead look at how many missing versions can be
erased before the original order cannot be established.

The program radiff2 from the Radare2 software suite was used to
compare the similarities between the file versions. This program
can be run with Radare's original diff algorithm, the Levenshtein
edit distance, or the Myers difference algorithm.

The first version in the active (last) set of base and log files was
compared with the last version in all other sets of base and log files.
Fig. 5 shows the similarity between file versions for three files with
different modification strategies. The red line shows a 99-byte file,
where a 1-byte location is changed for every write. The blue line
shows a file of the same length, where only one value (a counter
8

counting from 0 to 99) is changed for every modification. The green
line shows a file modification strategy where all the 99-byte file
contents are modified for each writing operation.

We see that the gradually changing file is the only file writing
strategy that can use the file similarities for establishing an order
between versions in different sectors. There is one exception to this
observation: The last version in a compound base and log file set is
identical to the base file in the following version. If the last version
of the last base and log file set in one sector is identical to the first
base file in another sector, there is a high probability that the two
sectors are chronologically ordered unless the file in question is
reset to an earlier version at regular intervals. If a sector containing
a file version has been deleted, the erasurewill break the equality of
the last and first version of the compound files.

An artifact was encountered when reconstructing files spanning
more than one sector. If the file is deleted and the sector containing

Fig. 6. A deleted file spanning into next sector, which has been erased and overwritten by a newer file.

J.-P. Sandvik, K. Franke, H. Abie et al. Forensic Science International: Digital Investigation 37 (2021) 301188
the last part of the file is erased, a new file can bewritten at the start
of the erased sector. This state leads to two hypotheses for recon-
struction: The old file is either correct and continues into the
following sector or overwritten by the new file in the other sector.
In this case, we need to assess the probabilities for the two hy-
potheses by looking at sector ordering or which of the hypotheses
result in the most sensible result. Fig. 6 shows an example of this in
the flash memory. The value marked in blue contains the flags of
the file header showing a deleted file, and the value marked in red
(0x44) is the number of allocated pages for this file. The old file
would thus span to 0x2cb00þ ð0x44�0x100Þ ¼ 0x30f00, but the
newer file starts at offset 0x30000, at a sector boundary.

The coffee_file_extract program takes this into account by
checking the pages in deleted files that cross the sector boundaries.
If the start of the page looks like a file header, this is marked as a file
header, and the program shortens the previous file accordingly
with a notice that a new file header is found.

6.5. Coverage of forensic extraction

COFFOR's coverage is quantified by counting the number of
pages not categorized. The coverage is given as the number of pages
classified by the program divided by the total number of pages. A
perfect coverage means all pages containing existing data are
extracted and categorized by COFFOR.

The tests were done on ten different flash memory dumps,
written by ten different nodes, and all pages in these flash dumps
were correctly categorized. This result is promising, but a wider
variety of tests need to be performed on different flash memories
and for other types of nodes.

7. Discussion and future work

The current research has been done on an emulated device and
has not considered flash-specific challenges, such as flash cell
failures, bad block handling, address reordering, or other flash
management artifacts. There are two reasons for this. The flash-
specific challenges happen at a layer below the file system, and
they are dependent on the flash memory technology/ chip manu-
facturer. The added complexity of this should be further analyzed in
future work.

Temporal ordering of different files can be done in a similar
fashion to the temporal ordering of file versions, as all the differ-
ences between files that are spanning more than one sector can
create a global ordering of the sectors, thereby ordering all indi-
vidual files. This technique was not pursued in this article but
should be included in a future study. Ordering all files and sectors
possible might help order the subset of files where consecutive
differences are variable as more distant versions.

The techniques described in this study for ordering the file
versions can be used for other flash-aware file systems, but it de-
pends on how data is moved when garbage collection runs. If the
garbage collection algorithm moves active pages into new erase
blocks, then the historical versions in inactive pages will not be
moved with it. They will, therefore, be erased during the garbage
9

collection.

8. Conclusion

We have shown how the non-volatile memory of devices
running the Contiki operating system and the Coffee File System
can be examined for a forensic investigation. The file system is a
minimal file system for resource-constrained devices designed for a
flash memory architecture. The period fromwhen a file is modified
until the garbage collection runs, together with the probability for
inactive pages to be in the same sector as active pages, make it
possible for deleted pages to be available for a time after the page
has become deleted.

Due to the existence of deleted pages, modified and deleted files
can be reconstructed, including file version history. For files within
the same erase block or sector, the file version history is chrono-
logically ordered. The chronological order between sectors is more
challenging to establish but can be analyzed given file content
changes, timestamps in the file, or the other files’ chronological
ordering.

This study's scientific contribution is a newmethod of analyzing
scattered evidence in the Coffee File System, using edit distance to
find the correct sector order for reconstructing the version history
of the files. The contribution includes an assessment of the viability
of the method and under which circumstances the method has
limited effect. For the subset of files that gradually change from the
original, the method can establish the order between sectors,
thereby substantiate the file version order for gradually changing
files.

Also, the scientific contribution includes the development and
documentation of COFFOR, a tool for reconstructing file versions
from a flash memory dump. Coffee_file_extract, a part of the COF-
FOR tool, was able to extract and categorize all pages that were in
the memory dump. A Python script for ordering intersector ver-
sions is also a part of COFFOR, and this script uses the radiff2 pro-
gram from Radare2. The file ordering method described above is
implemented in COFFOR, using the Myers diff algorithm.

The description of the functionality and artifacts of the Coffee
File System, as described here, can be used as a reference for the
forensic investigator facing these systems, together with a tool for
extracting historical versions of the files in the file system.

This study contributes to the forensic investigator's ability to
extract evidence found in IoT devices running Contiki OS and
containing non-volatile memory. It also showed how to find his-
torical versions of files stored on the device. By improving the
amount of evidence from IoT devices and the investigators' ability
to determine the order of file versions, court cases will be better
illuminated, strengthening the rule of law.

Acknowledgement

The research leading to these results has received funding from
the Research Council of Norway program IKTPLUSS, under the R&D
project “Ars Forensica e Computational Forensics for Large-scale
Fraud Detection, Crime Investigation & Prevention”, grant

J.-P. Sandvik, K. Franke, H. Abie et al. Forensic Science International: Digital Investigation 37 (2021) 301188
agreement 248094/O70.

References

Awasthi, A., Read, H.O., Xynos, K., Sutherland, I., 2018. Welcome pwn: almond smart
home hub forensics. Proceedings of the Digital Forensic Research Conference,
DFRWS 2018 USA 26, S38eS46. https://doi.org/10.1016/j.diin.2018.04.014. URL.

Breeuwsma, M., Jongh, M.D., Klaver, C., van der Knijff, R., Roeloffs, M., 2007. Forensic
data recovery from flash memory. Small Scale Digital Device Forensics Journal 1
(1), 1e17.

Chung, H., Park, J., Lee, S., 2017. Digital forensic approaches for Amazon Alexa
ecosystem. Digit. Invest. 22, S15eS25.

Dorai, G., Houshmand, S., Baggili, I., 2018. I know what you did last summer: your
smart home internet of things and your iPhone forensically ratting you out. In:
SeriesProceedings of the 13th International Conference on Availability, Reli-
ability and Security. https://doi.org/10.1145/3230833.3232814.

Dunkels, A., Gr€onvall, B., Voigt, T., 2004. Contiki - a lightweight and flexible oper-
ating system for tiny networked sensors. In: Proceedings - Conference on Local
Computer Networks, LCN, pp. 455e462.

Eclipse Foundation, 2019. Eclipse IoT Developer Survey 2019. Tech. Rep. April.
Eclipse Foundation. URL. https://www.slideshare.net/Eclipse-IoT/iot-developer-
survey-2019-reporthttps://iot.eclipse.org/resources/iot-developer-survey/iot-
developer-survey-2019.pdf.

Hossain, M., Karim, Y.K., Hasan, R.H., 2018. FIF-IoT: a forensic investigation frame-
work for IoT using a public digital ledger. In: Proceedings - 2018 IEEE Inter-
national Congress on Internet of Things, ICIOT 2018 - Part of the 2018 IEEE
World Congress on Services, pp. 33e40.

Jacobs, D., Choo, K.K.R., Kechadi, M.T., Le-Khac, N.A., 2017. Volkswagen car enter-
tainment system forensics. In: Proceedings - 16th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications, 11th IEEE
International Conference on Big Data Science and Engineering and 14th IEEE
International Conference on Embedded Software and Systems, pp. 699e705.

Kang, S., Kim, S., Kim, J., 2018. Forensic Analysis for IoT Fitness Trackers and its
Application. Peer-To-Peer Networking and Applications. May.

Kumar, V., Oikonomou, G., Tryfonas, T., 2016. Traffic forensics for IPv6-based
wireless sensor networks and the internet of things. In: 2016 IEEE 3rd World
10
Forum on Internet of Things (WF-IoT), pp. 633e638.
Kumar, V., Oikonomou, G., Tryfonas, T., Page, D., Phillips, I., 2014. Digital in-

vestigations for IPv6-based wireless sensor networks. Digit. Invest. 11 (Suppl. 2),
S66eS75. https://doi.org/10.1016/j.diin.2014.05.005. URL.

Levenshtein, V.I., 1966. Binary codes capable of correcting deletions, insertions, and
reversals. Sov. Phys. Dokl. 10 (8), 707e710.

Li, S., Choo, K.-K.R.C., Sun, Q., Buchanan, W.J.B., Cao, J., 2019. IoT forensics: amazon
echo as a use case. IEEE Internet of Things Journal 6 (4), 6487e6497.

Micron Technology, 2011. Micron M25P80 Serial Flash Embedded Memory.
Myers, E.W., 1986. An O(ND) difference algorithm and its variations. Algorithmica 1

(1e4), 251e266. URL. http://link.springer.com/10.1007/BF01840446.
Oriwoh, E., Jazani, D., Epiphaniou, G., Sant, P., 2013. Internet of things forensics:

challenges and approaches. In: Proceedings of the 9th IEEE International Con-
ference on Collaborative Computing: Networking, Applications and Work-
sharing, pp. 608e615. URL. http://eudl.eu/doi/10.4108/icst.collaboratecom.2013.
254159.

Park, J., Chung, H., Lee, S., 2012. Forensic analysis techniques for fragmented flash
memory pages in smartphones. Digit. Invest. 9 (2), 109e118. https://doi.org/
10.1016/j.diin.2012.09.003. URL.

Quick, D., Alzaabi, M., 2011. Forensic analysis of the Android file system Yaffs2.
Proceedings of the 9th Australian Digital Forensics Conference (December),
100e109.

Rizal, R., Riadi, I., Prayudi, Y., 2018. Network forensics for detecting flooding attack
on internet of things (IoT) device. In: International Journal of Cyber-Security
and Digital Forensics (IJCSDF), vol. 7, pp. 382e390.

Sandvik, J.-P., 2017. Mobile and embedded forensics. In: Årnes, A. (Ed.), Digital Fo-
rensics. John Wiley & Sons, Ltd. Ch. 6.

Sandvik, J.-P., Årnes, A., 2018. The reliability of clocks as digital evidence under low
voltage conditions. Digit. Invest. 24, S10eS17. URL. http://linkinghub.elsevier.
com/retrieve/pii/S1742287618300355https://linkinghub.elsevier.com/retrieve/
pii/S1742287618300355.

Tsiftes, N., Dunkels, A., He, Z., Voigt, T., 2009. Enabling large-scale storage in sensor
networks with the coffee file system. In: 2009 International Conference on
Information Processing in Sensor Networks, IPSN 2009, pp. 349e360.

Zimmermann, C., Spreitzenbarth, M., Schmitt, S., Freiling, F.C., 2012. Forensic
analysis of YAFFS2. In: SICHERHEIT 2012 e Sicherheit, Schutz und Zuverl€as-
sigkeit, pp. 59e69.

https://doi.org/10.1016/j.diin.2018.04.014
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref2
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref2
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref2
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref2
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref3
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref3
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref3
https://doi.org/10.1145/3230833.3232814
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref5
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref5
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref5
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref5
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref5
https://www.slideshare.net/Eclipse-IoT/iot-developer-survey-2019-reporthttps://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2019.pdf
https://www.slideshare.net/Eclipse-IoT/iot-developer-survey-2019-reporthttps://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2019.pdf
https://www.slideshare.net/Eclipse-IoT/iot-developer-survey-2019-reporthttps://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2019.pdf
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref7
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref7
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref7
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref7
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref7
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref8
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref8
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref8
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref8
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref8
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref8
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref9
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref9
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref10
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref10
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref10
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref10
https://doi.org/10.1016/j.diin.2014.05.005
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref12
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref12
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref12
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref13
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref13
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref13
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref14
http://link.springer.com/10.1007/BF01840446
http://eudl.eu/doi/10.4108/icst.collaboratecom.2013.254159
http://eudl.eu/doi/10.4108/icst.collaboratecom.2013.254159
https://doi.org/10.1016/j.diin.2012.09.003
https://doi.org/10.1016/j.diin.2012.09.003
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref18
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref18
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref18
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref18
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref19
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref19
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref19
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref19
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref20
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref20
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref20
http://linkinghub.elsevier.com/retrieve/pii/S1742287618300355https://linkinghub.elsevier.com/retrieve/pii/S1742287618300355
http://linkinghub.elsevier.com/retrieve/pii/S1742287618300355https://linkinghub.elsevier.com/retrieve/pii/S1742287618300355
http://linkinghub.elsevier.com/retrieve/pii/S1742287618300355https://linkinghub.elsevier.com/retrieve/pii/S1742287618300355
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref22
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref22
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref22
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref22
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref23
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref23
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref23
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref23
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref23
http://refhub.elsevier.com/S2666-2817(21)00096-2/sref23

	Coffee forensics — Reconstructing data in IoT devices running Contiki OS
	1. Introduction
	2. Related work
	3. Coffee file system
	3.1. File system structures
	3.2. File system dynamics

	4. Reconstructing file versions
	4.1. File content similarities
	4.2. File offset analysis

	5. COFFOR
	6. Experiments
	6.1. File operations
	6.2. Garbage collection
	6.3. File version reconstruction using file offset analysis
	6.4. File version reconstruction using file content differences
	6.5. Coverage of forensic extraction

	7. Discussion and future work
	8. Conclusion
	Acknowledgement
	References

