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Markus Löschenbrand
Energy Systems
SINTEF Energy

Trondheim, Norway
markus.loschenbrand@sintef.no
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Abstract—In this paper we present a simple and intuitive
method for fitting a non-linear Bayesian regression model on
short-term load forecasts. Such models have been implemented
via Bayesian neural networks, which are known for their hyper-
parameter sensitivity. We instead show a more general method
to fit any regression model and demonstrate this by using a
tree-model. Further, we evaluate the results against non-linear
quantile regression, a common technique in probabilistic load
forecasting. The resulting model allows to generate samples for
future scenarios and thus can be applied to operations problems
such as dynamic control of battery storage, an application that
quantile regression is unfit for.

Index Terms—load forecasting, Bayesian regression, non-linear
regression, scenario generation

I. INTRODUCTION

Load forecasting, i.e. the accurate prediction of future load
patterns, plays a critical role in the planning and operation
of electric power systems. Generally, and as shown in Ref.
[1], such load forecasts can be classified as long-, medium-
and short-term. The related horizons are years for long-term,
betweena week up to years as medium-term and horizons
below a week as short-term.

A. Motivation and Background

Various forecast horizons also have different applications.
Long-term load forecasting, for example, is used in network
planning activities. Medium-term load forecasts are applied
in seasonal generation planning [2]. Short-term forecasts are
used in the operation and control of power systems. An
example of such is given by a cost-effective operation of a
battery storage system, a dynamic operations problem. Early
works on this topic highlight the dependency on uncertainty,
specifically in form of scenarios [3]. This is also supported by
current works which use similar scenario formulation of load
uncertainties [4]. This means, that optimal operation of such
systems requires accurate representation of uncertainty.
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Nomenclature
t period
x input matrix
f function
y output matrix
ξ error/noise
M mapping
R region
j variable index

s branching values
a, b matrix index
L loss function
q quantile
P probability
τ percentile
N Gaussian
σ2 standard deviation

B. Relevant Literature

A common technique to consider future uncertainty in
forecasting is that of probabilistic forecasting. Ref. [5] pro-
vides an overview of probabilistic load forecasting techniques.
It discusses a wide range of methods. The later presented
regression trees are, however, only discussed in the context
of clustering. Similarly, in the literature on deterministic load
forecasting, regression trees have mostly been used as non-
linear regressors [6]. Current state-of-the-art methods which
consider uncertainty are however build on neural networks as
non-linear regressors.

Most of the existing approaches for probabilistic forecasting
are built on the concept of quantile regression, which will be
used as a baseline model to assess the performance of our
proposed algorithm. Examples of such models are provided in
Refs. [7]–[11]. Similarly, Ref. [12] applies the linear version
of quantile regression on the problem of probabilistic load
forecasting.

As mentioned above, such multi-period samples of potential
outcomes of electric loads, labelled scenarios here, are crucial
to optimize the system operation over multiple future peri-
ods at once [13], and are especially important for problems
considering electricity storage (e.g. via batteries or electric
vehicles) [14]. However, quantile regression, as mentioned a
popular technique for probabilistic load forecasting, does not
allow to sample scenarios from the resulting prediction. This
is the problem that we attempt to solve in this paper.

Due to the popularity of quantile regression, however, this
paper still utilizes it as a baseline model. Specifically we
present a Bayesian model and show how it can perform
similar to quantile regression whilst allowing for sampling of
individual scenarios.
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approximators have been proposed in the literature [15]–
[17]. However, beyond the issue of interpretability of neural
networks, such models are inherently hard to train and are
additionally sensitive to hyperparameters. Other probabilistic
approaches for load forecasting such as Gaussian process
regression suffer from similar issues [18], [19].

C. Contributions and Organization

Instead of such deep learning-based approaches instead
we present a simple extension to traditional decision tree
regression that allows for approximation of a parameterized
distribution. This in turn allows to sample scenarios which
can then be used in operational problems, which will be
demonstrated by applying it on real-world data from a system
utilized to test optimal battery control methods on.

In summary, we propose a simple framework that allows
generating samples from a non-linear probabilistic forecast
which does not require adjustments characteristic for deep-
learning approaches such as using special loss functions to
accurately model distributions or introducing additional hy-
perparameter sensitivity and difficulties in learning weights.
Similarly, the framework could also be applied on determin-
istic neural network models, allowing probabilistic sampling
from such models as well, providing a starting point for future
research.

The paper is organized the following: In section II we
introduce the problem analyzed in the paper. In section III we
introduce decision trees and the comparison model we validate
our proposed solution against. In section IV we introduce
Bayesian regression in order to extend the previously defined
comparison model. In section V we compare the models
on a case study based on industry data. Finally, section VI
concludes the paper.

II. THE PROBLEM

Consider a decision vector y where the entries yt correspond
to a single load value for a given time t, and an input matrix x
where each column xt corresponds to a vector of coefficients
(e.g. day of the week, hour of the day, etc.). The regression
problem can be formulated as finding the parameterized func-
tion f that solves the following approximation problem best:

y = f(x) + ξ (1)

Here, the residuals ξ has to be minimized under some
penalty functions by adjusting the parameters of function f ,
with ξ = 0 meaning a perfect fit of the approximation to the
data.

For the specific application of load forecasting, there exist
numerous techniques ranging from linear to non-linear mod-
els, with or without exogeneuous variables or auto-regressive
components [5]. For the sake of simplicity, in this paper we
will focus on traditional regression with purely exogeneuous
variables as described in Eq. 1. However, the proposed ap-
proach can similarly applied on auto-regressive or ARX-style
models (with latter being a mixture of both models), and are
expected to perform well. Further we assume f to be non-
linear, in line with the recent literature in load-forecasting,

where the focus is mainly on non-linear regression models
such as deep neural networks. For the sake of simplicity
and to not encounter the above mentioned issues connected
to hyperparameter sensitivity in probabilistic methods, we
will utilize a decision tree regressor over neural networks.
Nonetheless, future research could build on the here presented
method and train probabilistic forecasts based on deterministic
neural networks.

III. PROBABILISTIC DECISION TREES

A decision tree can be formulated as a mapping M that
returns a given value for the specific region R (a subset
constrained by boundaries) which the values of x are located
in.

f(x) = M(R)
x ⊆ R (2)

Fig. 1: Regression Tree Example

An example of such is provided by Fig. 1, which shows
a regression tree consisting of three regions. xj corresponds
to the variable j of the input. In this example tree, there
are (at least) three input variables: x1, x2, x3. s1 and s2
are the branching values that decide which region (out of
regions R1, R2, R3) a specific data set x belongs to. In the
given example tree, only the input variables x3 and x1 are
used to define the regions, whereas the classification happens
independent of value x2.

This figure also highlights the main advantage of decision
trees over neural networks as non-linear approximators, i.e.
the interpretability of the results.

In literature several algorithms to yield decision trees that
focus on dealing with large data sets can be found. In its
essence, the process of deriving such decision trees can be
described as in Ref. [20]. This principle is shown in Algorithm
1. Such a branching method starts with empty sets B∗ and
M∗ and the input variables in set B. Then, the algorithm uses
an optimization problem minimizing the distance of the real
output point y to the mean of the respective region ȳR1 or
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Fig. 2: Quantile Regression Results

Fig. 3: Bayesian Regression Results

ȳR2 that branches from the given point. This is done until all
values are sufficiently branched, as shown in Fig. 1.

A more in-depth discussion on such tree based algorithms
is presented in Ref. [21].

Independent of the algorithm, however, the result of this
procedure is a tree B∗ consisting of a number of regions R ∈
B∗ that are mapped via M to specific outcome predictions.

Minimizing the approximation loss requires the utilization
of a loss function L. For traditional, deterministic regression,
a popular loss function is the Mean Squared Error (MSE).
Using ya and yb as the two different series that are to be
evaluated against each other (e.g. ya being real values and yb

being values generated by the tree, or vice versa), this loss
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Fig. 4: Bayesian Regression - Single Sample

ALGORITHM 1
Decision Tree Regression for Tree B∗

1: initialize B = {x}, B∗ = {∅}, M = {∅}
2: while B 6= {∅} do
3: for all b ∈ B do
4: solve

min
s,j

L([yt∀t ∈ R1], ȳR1) + L([yt∀t ∈ R2], ȳR2)

s.t. R1 = {t|bjt ≤ s}
R2 = {t|bjt > s}

ȳR1
= mean([yt∀t ∈ R1])

ȳR2
= mean([yt∀t ∈ R2])

(3)
5: remove b from B
6: for all R = R1, R2 do
7: if yt = ȳR∀t ∈ R then
8: add R to B∗

9: add mapping M : R→ ȳR
10: else
11: add R to B
12: end if
13: end for
14: end for
15: end while

function can be described in the following:

L(ya, yb) = E((ya − yb)2) (4)

The results of a tree trained via MSE will thus be a fit to
the mean of the given data. However, in order to accurately

model uncertainty, single point estimates are not sufficient. In
load forecasting, a popular method to describe the uncertainty
in future loads is via quantile regression. This method can be
applied via adjusting the loss function.

Following the notation found in the introduction of Ref. [10]
a quantile qτ can be described the following:

P (f(x) ≤ qτ ) ≤ τ (5)

where P labels a probability and 0 < τ < 1. The quantile loss
function can then be formulated by selecting a specific τ :

Lτ (ya, yb) =

E
({

τ(ya − yb) if (ya − yb) ≥ 0
(1− τ)(ya − yb) if (ya − yb) < 0

) (6)

A special case is given by τ = 0.5 which then results in
this quantile loss function returning the same results as using
the mean squared error as a loss function.

However, fitting such a quantile regression model has a
crucial downside in using it in operational models: in order
to formulate the loss function, a specific numerical value for
τ has to be selected. This means that the problem cannot be
solved continuously, but instead the tree algorithm has to be
conducted again for any desired change in τ .

Thus, albeit such quantile regression models provide useful
tools to predict uncertainty in load problems, they do not
provide useful tools to provide scenarios to operational prob-
lems. Ref. [22] goes further into detail on these stochastic
optimization models and the role of scenarios in them.

We thus propose an extension of the deterministic tree
model using the loss function from Eq. (4) that is able to
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approximate the distributions, specifically expressed via loca-
tion and scale parameters of a Bayesian regression problem.
We introduce this method next.

IV. BAYESIAN REGRESSION

The Bayesian regression model can be formulated as finding
the optimal parameters for the location function f and the scale
given by standard deviation σ for a given distribution (here a
Gaussian). This is done by sampling the error term ξ from this
distribution:

y = f(x) + ξ
where ξ ∼ N (0, σ2)

(7)

Assuming the regression problem yields optimal parameters
for the function f (’optimal’ as in minimizing the loss function
from Eq. (4)) allows taking the residuals and yielding the
minimum difference ξ as y−f(x) = ξ. The standard deviation
can then be calculated via approximating it similarly via the
mean squared error:

σ2 = E((y − f(x))2) (8)

This approximation is also referred to as the squared error risk.
In this specific case, however, Algorithm 1 results in a

perfect fit with L(ya, yb) = 0. The additional risk to such
a perfect fit on the test set is the risk of overfitting, which
will here not be addressed and instead interested readers be
referred to Ref. [20]. To circumvent the issue of not having a
perfect fit of y = f(x) and thus variance σ2 = 0, the data y
and coefficients x can instead be split into two sets y1, x1 and
y2, x2. Thus, Algorithm 1 can be applied on y1, x1 to yield
the parameters for f . Then, Eq. (8) can be solved via y2, x2

to yield the solution for σ2 = 0. In the here provided case
study, the data sets were split randomly into both sets.

In addition, a starting point for future research might be
also provided in experimenting with using the same data set
for both algorithms, but this was considered out of scope of
the here presented work.

The non-linear Bayesian approach introduced here will be
applied on real load data with its results being shown and
compared to non-linear quantile regression in the next section.

V. CASE STUDY

The utilized data set was two sets of (non-residential) load
data from a commercial site in Norway managed by the
company Lede (formerly Skagerak Nett) over the course of
11 months in 2020. The data series are from an office block
(series 1) and a commercial sports facility (series 2), with latter
showing a higher variance of the loads due to sports events
requiring more electricity.

The original data set consisting of two time series was each
split into three series of even length and predictions were
made on each separate series individually. The length of the
prediction was a single week with a minute resolution, i.e.
7×1440 data points. The requirement for the resolution came
from the potential application in real-time systems.

TABLE I: Values outside of 95% Quantile

data Bayesian regression Quantile regression
series 1.1 0.218 0.024
series 1.2 0.051 0.059
series 1.3 0.125 0.077
series 2.1 0.056 0.241
series 2.2 0.058 0.109
series 2.3 0.218 0.162

TABLE II: Mean Error

data Bayesian regression Quantile regression
series 1.1 3.133 2.064
series 1.2 1.95 1.996
series 1.3 2.478 2.556
series 2.1 20.801 18.275
series 2.2 32.737 35.413
series 2.3 52.014 51.24

The results of the quantile decision tree regression as
described above can be observed in Fig. 2. The results are
shown within a confidence interval of 95%.

Similarly, the results of the Bayesian decision tree regres-
sion is shown in Fig. 3. The figure shows the 95% confidence
interval for 1000 taken samples.

The ratio of values outside of the 95% intervals are given
in Tab. I.

The errors for both of the algorithms is compared in Tab. II.
Both data sets show comparable error values. However, and
as mentioned in the method description above, the Bayesian
approach has an advantage over the quantile regression method
in that it allows for sampling.

This is demonstrated in Fig. 4 which shows a single sce-
nario sample drawn from the Bayesian regression results. As
discussed previously, being able to sample from the resulting
distribution (here a Gaussian distribution parameterized with
a non-linear function for its location) is an important feature
in utilizing these load results in operational models. Examples
of such operations are scheduling of charging and discharging
of batteries or electrical vehicles.

The correlation coefficients of the models are shown in Tab.
III. Similar to the error values in Tab. II and the visual results
in Fig. 3, these results also indicate a good fit of the prediction.

Nonetheless, this approach has a single disadvantage over
the quantile regression method. This can be observed by
comparing the confidence intervals of Fig. 3 with that of Fig.
2. Since the Bayesian regression in Eq. (7) is formulated via
normal distributions, these tails will be symmetrical. However,
series 2 indicates this to not be the case but instead the distribu-
tion to be skewed towards lower values. In practice, this could

TABLE III: Correlation Coeffients

data Bayesian regression Quantile regression
series 1.1 0.602 0.607
series 1.2 0.63 0.62
series 1.3 0.626 0.608
series 2.1 0.531 0.537
series 2.2 0.54 0.498
series 2.3 0.659 0.628
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be solved via utilizing different distributions (such as Poisson
for a skewed representation). This can be considered a starting
point for future research on the topic. Nonetheless, and as
discussed in this section, the current results still indicate good
performance using Gaussian distributions as approximations.

VI. CONCLUSION

In this paper, we expand on the current literature on
probabilistic load forecasting by proposing an extension via
Bayesian regression to traditional non-linear methods. We
show that a tree-based non-linear regression method can be
utilized to incorporate uncertainty with no conceivable loss in
accuracy compared to models using quantile loss functions.

The resulting model is simple to apply and less hyperparam-
eter sensitive than other Bayesian methods such as Bayesian
neural networks. We demonstrate the capabilities visually and
quantitatively by using two heterogeneous series from a com-
mercial site in Norway. Further, we discuss the strengths and
weaknesses. In this process we find non-Gaussian distributions
to be a viable starting point for future research.
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