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Abstract

It is a common goal when doing any task to want to find the approach that gives the best results
without requiring too much effort. For example, modelling the spread of pollutants in the ocean
requires computations of a large number of trajectories, so one would be interested in finding the
most efficient way to compute these trajectories that still gives an accurate enough result. Given
a velocity field one can compute trajectories by setting up an ordinary differential equation and
solving it using numerical integration. The velocity field in the ocean is made up by currents
which can be measured or modelled, but only at discrete positions and times. To be able to use
this velocity field in trajectory computations one must therefore interpolate the data from these
discrete points, and the choice of interpolation scheme affects the accuracy one can obtain from a
given solver.

This study investigates two methods that are commonly used in numerical integration. One is
the well-known fixed-step Runge-Kutta method of order 4, and the other is the variable-step
embedded Runge-Kutta method of order 5(4), known as Dormand-Prince 5(4). These are tested
in combination with linear, quadratic, cubic, and quintic spline interpolation. Since functions
interpolated using spline interpolation have discontinuous derivatives of some order, special-purpose
variants of the two integration methods are created, which are designed to handle the discontinuities
in the spatial dimensions of the velocity field better. The study considers a time-independent
velocity field in two spatial dimensions.

Results show that which solver is the best choice depends on the interpolation scheme. For linear
and quadratic spline interpolation, both special-purpose methods performed better than their reg-
ular counterparts. The special-purpose 4th-order Runge-Kutta method was also found to improve
the order of convergence compared to the regular variant when combined with both linear and
quadratic spline interpolation. For cubic and quintic spline interpolation the regular integration
methods obtained the same accuracy as their corresponding special-purpose variants at a slightly
lower computational cost.

The results found here can be useful for ocean transport problems and other applications where
trajectories are found from discrete velocity fields. However, they would be even more valuable in
combination with a procedure that handles discontinuities in the temporal dimension of a discrete
time-dependent velocity field. Such a study would be a natural follow-up to this work.
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Sammendrag

Et vanlig ønske i mange typer arbeid er å finne den fremgangsm̊aten som gir best resultat uten å
kreve for mye innsats. For eksempel s̊a krever modellering av hvordan forurensende stoffer sprer seg
i havet at man beregner et stort antall baner, og det er derfor av interesse å finne den mest effektive
m̊aten å beregne disse banene p̊a som fremdeles gir nøyaktige nok resultater. Dersom man er gitt
et hastighetsfelt s̊a kan man beregne disse banene ved å sette opp en ordinær differensialligning
og løse den ved hjelp av numerisk integrasjon. Havstrømmene utgjør hastighetsfeltet i havet, og
disse strømmene kan m̊ales, men kun ved diskrete posisjoner og tider. For å kunne bruke dette
feltet i beregninger av baner er man derfor nødt til å interpolere dataene fra de diskrete punktene,
og hvilken type interpolasjon man velger har konsekvenser for hvilken nøyaktighet man kan oppn̊a
med en gitt integrator.

Denne studien ser p̊a to metoder som er mye brukt i numerisk integrasjon. Den ene er den
velkjente Runge-Kutta-metoden av orden 4, implementert med fast tidssteg, og den andre er et
innebygget Runge-Kutta-par av orden 5(4), kjent som Dormand-Prince 5(4), implementert med
varierende tidssteg. Disse metodene er testet i kombinasjon med lineær, kvadratisk, kubisk, og
kvintisk spline-interpolasjon. Siden funksjoner som er interpolert med spline-interpolasjon har
diskontinuerlige deriverte av en viss orden blir det ogs̊a konstruert en spesial-variant av hver av de
to metodene, som er spesialdesignet til å h̊andtere diskontinuiteter i den romlige dimensjonen av
hastighetsfeltet. Studien anvender seg av et hastighetsfelt som er uavhengig av tid og definert i to
romlige dimensjoner.

Resultatene viser at hvilken integrator som er optimal avhenger av valg av interpolasjonsmetode.
For lineær og kvadratisk spline-interpolasjon gir spesial-variantene bedre resultater enn de vanlige
metodene. Det ble ogs̊a funnet at spesial-varianten av den fjerdeordens Runge-Kutta-metoden
ga én orden bedre konvergens enn den vanlige fjerdeordens Runge-Kutta metoden i kombinasjon
med lineær og kvadratisk spline-interpolasjon. For kubisk og kvintisk spline-interpolasjon ble det
funnet at de opprinnelige variantene av integrasjonsmetodene oppn̊adde samme nøyaktighet som
spesial-variantene p̊a en noe mindre kostbar m̊ate.

Resultatene av denne studien kan være nyttige for transportproblemer i havet, og i andre an-
vendelser der man beregner baner fra diskrete hastighetsfelt. De ville imidlertid vært enda mer
verdifulle i kombinasjon med en prosedyre som kan h̊andtere diskontinuiteter i den temporale di-
mensjonen av diskrete tidsavhengige hastighetsfelt. En slik studie ville være en naturlig fortsettelse
av dette arbeidet.
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Chapter 1

Introduction

In April 2010 the oil drilling rig Deepwater Horizon exploded, leading to what is considered the
biggest accidental marine oil spill in history. It has been estimated that somewhere between 3 and
4.5 million barrels of oil leaked out into the Gulf of Mexico [1, 2]. Currents, wind and waves made
the oil spread over a large region of the ocean, causing a lot of damage to a wide range of organisms,
including fish, sea mammals and birds. In total, more than 112 000 km2 of the ocean surface and
more than 2100 km of shoreline across five states in the USA was to some extent covered with oil
as a result of the explosion [1].

In addition to oil spill, another thing that greatly affects ecosystems in the ocean and on the
shoreline is the presence of plastic debris, and in particular microplastics [3]. It has been estimated
that between 1.15 and 12.7 million metric tons of plastic enters the ocean in a year [4, 5], and some
research has found that this plastic debris pollution can have dramatic consequences and be very
dangerous for a number of different species [6]. Since this plastic waste comes from humans it is
our responsibility to address this problem and find a way to solve it.

Hardesty et al. [7] state that the first necessary step in the process of solving the plastic pollution
problem is to obtain more knowledge about the plastic debris in the ocean, including where it
was disposed, where it accumulates, and the pathways it takes to get from where it originated
to where it ends up. For several reasons this knowledge can be difficult to obtain from empirical
observations alone [7], and it is therefore of great benefit for practical purposes to find a way to
compute these pathways numerically based on empirical data.

In the event of an oil spill disaster like the Deepwater Horizon explosion, being able to predict how
the oil spreads can be very helpful when developing cleanup strategies [8]. An effective method
for computing particle pathways in the ocean is thus of great value in connection with oil spill
accidents as well as in studying the microplastic problem. The currents in the ocean make up a
so-called velocity field, which can be thought of as a map describing in what direction a particle
at a certain position will move. Such maps can be used to predict the movements and spreading
of particles in the ocean, including oil droplets and microplastic.

Computing the paths of oil spills and plastic waste numerically from a given velocity field can
be done in several ways, for example by what is called Lagrangian particle tracking. In the
Lagrangian framework one determines the trajectories of individual particles by following them
one by one as they travel through the velocity field [9, 10]. This type of framework has been used
in many applications, including attempts to predict the movement of the Deepwater Horizon oil
spill [11], the pathways of microplastic [12, 13, 14] as well as spreading of other pollutants [15, 16],
icebergs [17], and jellyfish [18] in the ocean.

For all applications it is of interest to make a prediction that satisfies certain requirements in terms
of accuracy and computational cost. In computations of particle trajectories, like in many other
areas of life, one would like to get the best possible result with as little effort as possible. Some
ways of doing things give excellent results but may require a lot of work to get there, while other
ways are easier but produce results that are not as satisfactory. The ideal way is one that gives
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a result we can be satisfied with without having to work too hard for it. This is true in life in
general, as well as in particle trajectory computations.

Finding a particle trajectory from a velocity field essentially means solving an ordinary differential
equation (ODE), which is a common problem that can be solved in many different ways. Ordinary
differential equations are equations on the form

x′ =
dx

dt
= f(x(t), t), x(t0) = x0, (1.1)

where x(t) describes some property at a time t, and f(x(t), t) describes the rate at which x
changes when t changes. If x is an n-dimensional vector, that is, x = (x1, x2, .., xn) ∈ Rn, then
f(x, t) = (f1(x, t), f2(x, t), ..., fn(x, t)). These types of equations are very common in natural
sciences. Examples include Newton’s well-known second law of motion, F = ma (see e.g. [19]
p. 115) which describes how the forces acting on an object affect its movements. Another well-
known example is the logistic equation, y′ = ry(1 − y) where r is some parameter (see e.g. [20]
p. 22), which models the growth rate of a population. Equation (1.1) can also describe how a drop
of oil or some other pollutant moves in the ocean. If x(t) is the position of an oil droplet at time t
and f(x(t), t) is the velocity field describing the ocean currents, then solving Eq. (1.1) will give the
trajectory describing the motion of the droplet. Figure 1.1 shows an example of what a velocity
field might look like if x = (x, y). The longer the arrow at a position is, the faster a particle at
that position will move along the direction in which the arrow points.

Figure 1.1: Example of a velocity field f(x, y).

Solving equations on the form of Eq. (1.1) can in some cases be done analytically by integration,
which then yields an exact expression for x(t). However, sometimes analytical solutions are too
difficult, or even impossible, to compute, and in those cases one has to use numerical integration
instead. The concept of numerical integration will be introduced more thoroughly in section 2.1,
but in short it is about using the knowledge of the rate-of-change f of the property x to compute
an approximation of what the value of x will be after some time t. One does this by increasing the
time t by small increments h and evaluating f to see how x changes as a result of the increment.
Some methods use the same increment h throughout the computations, while others adjust the
size of h automatically based on an error estimate that will be explained in detail in section 2.1.3.
The numerical solution is not exact, but by choosing the right method one can in most cases find
an approximation that is accurate enough.

Accuracy of the result of numerical integration depends on what method one uses and how big the
increments h are. The idea is that as h → 0 the approximation will approach the exact solution,
and the rate of convergence depends on the method. The order of a numerical integration method
refers to how fast the approximation converges toward the exact solution when the time increment

2



h is reduced. Methods of higher order can achieve a better accuracy with a bigger time step h,
while lower-order methods must use a smaller increment h to obtain the same accuracy.

Since higher-order methods can achieve higher accuracy with a bigger time step h one might think
that the higher order the better. However, this might not always be the case. Many higher order
methods tend to be more costly per step than the lower-order ones. That is, higher-order methods
usually need to evaluate f more times than the lower-order methods do in order to compute the
next step, and this evaluation can require a lot of work. The higher-order method can obtain a
higher accuracy for a given number of steps than a lower order-method, but if the accuracy of the
lower-order method is sufficient then the additional work associated with the higher-order method
is unnecessary. Hence, to find the best method to solve a given problem, one should think about
how accurate one needs the solution to be, and choose the method that can provide that accuracy
with the least amount of computations.

In most cases when f is given by an analytical expression, like f(y, t) = ry(1− y) for the logistic
equation, the choice of method is the only thing one has to think about when attempting to solve
Eq. (1.1). However, if we want to predict the path of an oil droplet in the ocean things become
more complicated. The reason for that is simply that the function f is then unknown. However,
thanks to organisations like the Norwegian Meteorological Institute [21] and others, some data
describing ocean currents is freely available online.

The data provided by the Norwegian Meteorological Institute describes the ocean currents, but
only at discrete positions and times, not as the analytical expression we need to solve Eq. (1.1).
Luckily, there is a trick one can use in situations like this, and that trick is called interpolation.
The concept of interpolation will be expanded on in section 2.2, but for now it suffices to know
that interpolating a set of given data points (xi,yi), where f(xi) = yi means to create a function
g(x) such that g(xi) = yi for all the given pairs (xi, yi). Going back to the oil droplet again one
can say that we use interpolation to find a function g(x, t) that we can evaluate for any x and
any t, while knowing that if we evaluate g at a point that is given in the set of data for the ocean
currents, then the value g gives us will be the same as the exact value from the data.

The problem with interpolation is that, depending on the order or the type of interpolation scheme,
one might come across discontinuities in the interpolated velocity field. If the velocity field is
discontinuous at a position x = (x, y) it could for example mean that if the particle approaches the
position x from the left it is told to go up when it reaches that point, while if the particle approaches
the same position from the right it is told to go down. Encountering such a discontinuity when
attempting to predict the path of some particle can be problematic, and it tends to affect the
accuracy of the final result. It is therefore important to be aware of the discontinuities and to deal
with them in an appropriate way.

Hairer et al. [22] suggest three ways of dealing with discontinuities:

(i) ignoring them, and letting a variable-step solver adjust the step size to one that gives a small
enough error,

(ii) using a numerical integration routine that detects and handles discontinuities (see e.g. [23]),
or

(iii) stopping and restarting integration at the discontinuities.

The second strategy is useful when the exact locations of the discontinuities are unknown. However,
as will become clear in section 2.2, the locations of the discontinuities are known when we are
dealing with interpolated velocity fields. Nordam and Duran [24] have applied the third strategy to
discontinuities in the temporal dimension, but not in space. They did however suggest an approach
to dealing with the discontinuities in spatial dimensions, and it is this suggested approach that
will be applied here. In short the approach makes use of the fact that when the velocity field is
defined on the corners of the cells in a 2D grid, discontinuities occur on the boundaries of the cells.
By combining a procedure that detects boundary crossings with an iterative root-finding method
and a so-called dense output solution, one can determine the exact time at which the discontinuity
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Figure 1.2: Illustration of an integrated trajectory where integration is stopped and restarted at
the discontinuity at x∗ in the velocity field f(x, t). The dots represent steps taken by the solver,
and the dashed line indicates the position x∗.

is crossed and adjust the time step h in order to stop and restart integration at that exact point.
The approach will be explained in detail in section 3.1.

The same procedure is also mentioned by Hénon [25] when discussing how to create exact Poin-
caré maps, which are mappings of the intersections between the trajectory of an N -dimensional
dynamical system and an (N−1)-dimensional surface-of-section S known as a Poincaré section. In
nonlinear dynamics Poincaré maps are a useful tool for studying for example periodicity of orbits,
stability of fixed points, or the flow of chaotic systems (see e.g., [20]), and studying the Poincaré
map can often be both simpler and more enlightening than studying the actual trajectory.

In the same note Hénon also mentions the case of discontinuities in f or its low-order derivatives.
He suggests an alternative method for stopping and restarting integration at certain positions
that is applicable both for Poincaré section intersections and discontinuities, and while his method
seems very promising for such applications, it may not always be applicable. Therefore, this study
will apply the dense output procedure mentioned above.

1.1 Outline of This Study

The aim of this study is to create special-purpose numerical integration methods that can solve
ODEs like Eq. (1.1) using strategy (iii) above. That is, the size of the increments h is controlled to
make sure that integration is stopped and restarted at the discontinuities in the spatial dimension
of the interpolated velocity field. Figure 1.2 illustrates the situation when x = x, that is, when
x is a scalar. The solid line represents the trajectory, the dots on the line represent steps taken
by the integrator, and the dashed line marks a position x = x∗ where the velocity field f has a
discontinuity. For x ≤ x∗ the field is given by f = f1(x, t) while for x ≥ x∗ the field is given by
f = f2(x, t), where f1 6= f2. Taking a step that lands exactly at x∗, as in figure 1.2, ensures that
f is continuous within each step.

As will become clear in section 2.3 of chapter 2, the stopping and restarting at the discontinuities
is expected to affect the accuracy compared to when the discontinuities are simply stepped over.
This work will therefore assess the performance of the special-purpose methods in comparison with
two common numerical integration methods. In particular, their performance in terms of accuracy
and computational effort will be studied. The methods will be combined with different orders of
spline interpolation with the goal of finding the optimal combination of integration method and
interpolation scheme for applications where interpolation of the velocity field is necessary. To test
whether the procedure that is used to detect and locate the boundary crossings works, an attempt
is made to recreate some results from a study on the Lorenz attractor.

The numerical methods applied in this study are a 4th-order Runge-Kutta method and an embed-
ded Dormand-Prince method of order 5(4), both of which are popular choices for solving ODEs
numerically in general [22, 26, 27], and in Lagrangian ocean modelling in particular [12, 28, 29, 30].
A description of both methods in some detail will be provided in section 2.1. The construction of
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the special-purpose variants of both methods will be described in detail in section 3.2. All meth-
ods will be combined with spline interpolation of order 2 (linear), 3 (quadratic), 4 (cubic), and 6
(quintic), which will all be introduced in section 2.2, after a general introduction to interpolation.
Section 2.3 will discuss how the order of spline interpolation method affects the order of integra-
tion. In addition to the special-purpose integrators, chapter 3 will also describe the event location
procedure in detail, and explain how errors are estimated from the numerical results. In chapter 4
numerical results will be presented and discussed, and chapter 5 will present the conclusion and
suggest some ideas for future work on this topic.
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Chapter 2

Theory

This chapter will first give a brief introduction to numerical integration in general, as well as
provide details of the Runge-Kutta methods used in this study. Next, a general description of the
concept of interpolation will be given, before the spline interpolation schemes used here will be
explained in some detail. The final section will then explain how the order of the interpolation
scheme affects the effective order of the numerical integration method.

2.1 Numerical Integration

To explain the concept of numerical integration, it is convenient to begin with a general example.
Assume that we have an ordinary differential equation

dx

dt
= f(x, t), x(t0) = x0, (2.1)

giving the time evolution of some physical system described by x. There are many ways to solve
such an equation numerically, and a simple but instructive example is what is best known as Euler’s
method.

To understand Euler’s method it is instructive to think of the derivative f(x, t) as a velocity field.
That is, we imagine that a particle at the position x at time t is moving with a velocity given by
f(x, t). Recall for example figure 1.1 from the previous chapter, which shows an example of what
such a vector field might look like in the case that x = (x, y). The arrows represent the velocity
vectors at the given positions.

A particle at a point x in the field will move along the velocity vector at that point. At constant
velocity v, distance = velocity × time, or ∆x = v∆t, when assuming that x denotes position and
t denotes time. This means that after a period of time ∆t, a particle with initial position x0 will
have moved to the position

x1 = x0 + ∆x = x0 + v∆t = x0 + f(x0, t0)∆t.

This is of course not true if the velocity v is not constant during the period ∆t, but for small
enough ∆t it is an acceptable approximation. Euler’s method follows this reasoning; Given an
initial position x0 and time t0 we evaluate the velocity field f(x0, t0), take one small step of
duration ∆t along the direction of f(x0, t0), and end up at the position x1 = x0 + ∆tf(x0, t0). At
x1 we take a step in the direction given by f(x1, t0 +∆t) and end up at x2 = x1 +∆tf(x1, t0 +∆t),
and so on. The general rule for step n+ 1 can be written as

xn+1 = xn + ∆tf(xn, t0 + n∆t), (2.2)

which is the formula for Euler’s method for the differential equation in Eq. (2.1) with initial con-
dition x(t0) = x0. The generalisation to problems where x is multidimensional is straightforward.
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Figure 2.1: Top: Example of ODE solved with Euler’s method with different step sizes h. Bottom:
Global error versus step size h for Euler’s method.

A common convention is to denote the step size in numerical integration methods by h instead of
∆t, and from now on this report will follow that convention.

Euler’s method has the benefit of being simple and intuitive, and since it only requires one eval-
uation of the function f per step, it is also computationally efficient compared with higher order
methods with the same fixed step size, as we will see later. However, the weakness of this method
will soon become clear.

Figure 2.1 shows an example of how well Euler’s method approximates the solution

F (x) = y(x) = x2

to the ODE
dy

dx
= f(x) = 2x,

from y(x0 = 0) = 0 to x = 5. The top panel shows the exact solution as well as two numerical
approximations with different step sizes h, and the bottom plot shows how the global error scales
with h. The global error is the difference between the numerical value yN at simulation time tN = 5
and the exact solution y(5) = 25. Section 2.1.2 will say more about error estimates in numerical
integration. The dashed line in the bottom plot in figure 2.1 indicates a slope proportional to the
step size h, and it is clear that the global error scales with h1. This means that Euler’s method
is a method of order 1. In order to obtain high accuracy in the numerically computed result with
Euler’s method one would therefore need a quite small step size and hence a large number of steps.
As a result, if high accuracy is required, the benefit of the few function evaluations per step is lost
because the total number of needed steps becomes large.

Luckily, more sophisticated methods have been developed, that require fewer steps to obtain the
same, or even better, accuracy as Euler’s method. One example is the Runge-Kutta family of meth-
ods, and in particular the well-known and popular 4th-order Runge-Kutta method, often referred
to as ”the” Runge-Kutta method, or just RK4. When Runge-Kutta methods are introduced and
studied in more detail in section 2.1.1 it will become clear that Euler’s method is in fact included
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in the Runge-Kutta family, although when we refer to Runge-Kutta methods we typically only
think about the higher order methods.

Another thing that can improve the ratio of accuracy to computational cost is the use of a variable-
step method. In Euler’s method and the other standard Runge-Kutta methods, the time step h is
usually kept fixed. However, if the solution to the ODE has regions with slow change as well as
regions with fast change, it could be a good idea to implement a step size control in the ODE solver,
that adjusts the step size based on what the solution looks like. This allows the solver to take
longer steps if the solution for example remains constant for some time, making it more efficient
than a fixed-step method in this region, while also allowing it to take shorter steps in regions
where the solution increases or decreases abruptly, thus potentially increasing both accuracy and
efficiency compared to a fixed-step method. Such a step size selection algorithm will be explained
in section 2.1.3.

The most common [27] variable-step approach is to use so-called embedded formulae, which are
methods of order p(p̂) that compute a second approximation x̂1 of order p̂ in addition to the main
approximation x1 of order p. The difference between these approximations is used in the step
size selection algorithm as an error estimate. A popular choice among embedded Runge-Kutta
formulae is the Dormand-Prince method of order 5(4), which will also be explained in further
detail in section 2.1.1.

2.1.1 Runge-Kutta Methods

Since the Euler method given by Eq. (2.2) was first described, many other, more accurate methods
for numerical integration have been introduced. What many of these methods have in common
is that the Euler step is part of their basis. By adding extra Euler steps with different step sizes
Runge [31] and Heun [32] were able to construct new, more accurate methods. Later Kutta [33]
then constructed the general formulation of what is now known as Runge-Kutta methods, which is
a family of methods of different orders, which are all based on Euler steps. The simplest method
in the Runge-Kutta family is in fact the original Euler method, which can now be described as a
1-stage 1st-order Runge-Kutta method.

Generally, an s-stage explicit Runge-Kutta method, where s is an integer, can be defined as

k1 = f(x0, t0 + c1h)

k2 = f(x0 + ha21k1, t0 + c2h)

k3 = f(x0 + h(a31k1 + a32k2), t0 + c3h)

. . .

ks = f(x0 + h(as1k1 + ...+ as,s−1ks−1), t0 + csh)

x1 = x0 + h(b1k1 + ...+ bsks),

(2.3)

where a21, a31, a32, ..., as1, as2, ..., as,s−1, b1, ..., bs, c2, ..., cs are method-specific real coefficients. Usu-
ally [22], the coefficients ci, aij satisfy c1 = 0 and the relation

ci =

i−1∑
j=1

aij ,

for i = 2, ..., s, which expresses that all the points where the function f is evaluated are first-order
approximations to the exact solution.

It has become customary to write Runge-Kutta methods in a so-called Butcher tableau. Table 2.1
shows the Butcher tableau representation of the general s-stage method in Eq. (2.3).
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0

c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

Table 2.1: Butcher tableau representation of the general formulation of explicit Runge-Kutta
methods (Eq. (2.3)).

This study will consider two Runge-Kutta methods, one with a fixed time step and one with varying
time step. The fixed step method is the method that is commonly referred to as ”the” Runge-
Kutta method, and best known as RK4. RK4 is a 4th-order method introduced by Kutta [33],
with coefficients given in table 2.2. This is not the most precise 4th-order Runge-Kutta method,
but it is very popular [22].

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

2
6

2
6

1
6

Table 2.2: Coefficients for ”the” Runge-Kutta method, RK4.

The variable-step method considered in this study is the 7-stage embedded Runge-Kutta formula
of order 5(4), introduced by Dormand and Prince [34]. The idea behind embedded Runge-Kutta
formulae is to find two Runge-Kutta methods that both use the same function values, i.e. the same
coefficients ci and ai in table 2.1, but different coefficients bi 6= b̂i. The coefficients bi, b̂i must be
chosen such that

x1 = x0 + h
∑

biki

is of order p and

x̂1 = x0 + h
∑

b̂iki

is of order p̂, where usually p̂ = p− 1 or p̂ = p+ 1 [22].

The method considered here is known as Dormand-Prince 5(4) or DOPRI5, and has coefficients
as given by table 2.3. The formula gives a 5th-order approximation x1 as well as a 4th-order
approximation x̂1, and integration is continued with the 5th-order approximation. This is called
local extrapolation [22].

One of the benefits of the DOPRI5 method is that it can be implemented with something called
the First Same As Last (FSAL) principle. Notice in table 2.3 that the coefficients ai of the 7th

stage, k7, are equal to the coefficients bi in the 5th-order approximation x1. This means that k7
of one step is equal to k1 of the next step. If k7 is passed on from one step to the next one does
therefore not have to compute k1 in the next step. This is the FSAL principle. As a result, every
step except the first one will only need to evaluate f 6 times, instead of 7.

The DOPRI5 method is commonly used and is for example implemented in the ode45 solver
in MATLAB [26] and in the scipy.integrate.RK45 solver for Python [35]. It is implemented
here with a variable step size h, meaning that h will be adjusted automatically based on an error
estimate. The step size selection algorithm will be described in section 2.1.3, but first some concepts
used in error estimates will be introduced.
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0

1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729

1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

113
125
192 − 2187

6784
11
4

x1
35
384 0 500

113
125
192 − 2187

6784
11
4 0

x̂1
5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

Table 2.3: Coefficients for the Dormand & Prince method of order 5(4), DOPRI5.

2.1.2 Error Estimates

There are two important measures for the error in numerical integration. One is called the local
error and the other is called the global error. The local error, also called the one-step error, is the
error in just one step using a numerical integration method. Assume that the exact solution at t0,
denoted x(t0), equals the starting point x0 of the numerical solution. That is, x0 = x(t0). After
one step of size h, the numerical solution x1 is, in Henrici’s [36] notation,

x1 = x0 + hΦ(t0, x0, h),

where Φ is called the increment function. For Runge-Kutta methods,

Φ(t0, x0, h) =

s∑
i=1

biki(t0, x0, h).

The local error e after this one step is given by

e = |x(t0 + h)− x1|, (2.4)

i.e. the difference between the numerical approximation x1 and the exact solution evaluated at
t0 + h. Note the requirement x0 = x(t0) for this to be true.

The global error E of a numerical method is defined as the error of the computed solution after
several steps. Mathematically it can be expressed as

E = |x(tN )− xN |, (2.5)

where x(tN ) denotes the exact solution x(t) evaluated at t = tN and xN denotes the numerically
computed solution after N steps. It is still assumed that x(t0) = x0. Note that the global error
is not simply a sum of local errors, because of the assumption in the local error that the starting
point of the step is exact. If the local error of any step is nonzero, then this error will affect every
subsequent step.

2.1.3 Step Size Selection

The DOPRI5 method is implemented here with a variable time step, meaning that

tn = tn−1 + hn,

where in general hi 6= hj for i 6= j. The step size hn is updated at each step, based on an error
estimation procedure. The procedure used here is described by Hairer et al. in [22] (pp. 167–168).
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Given some starting step size h one may compute the two approximations x1 and x̂1. If the order
of x̂1 is higher than the order of x1 then the difference |x1− x̂1| is an estimate of the local error in
x1. In the case that x is a vector we want this error to satisfy

|x1,i − x̂1,i| ≤ sci,

with
sci = Atoli + max(|x0,i|, |x1,i|) ·Rtoli,

componentwise, where Atoli and Rtoli are user-specified tolerances. If Atoli = 0 relative errors
are considered, and if Rtoli = 0 absolute errors are considered, but usually both are nonzero [22].
This algorithm ensures that the local error estimate is lower than the given tolerance.

Note that in DOPRI5 integration is continued with the higher-order approximation. That is, the
order of x1 is higher than the order of x̂1. This is called local extrapolation. In that case the
difference |x1− x̂1| is not an estimate of the local error [22], but it can still be used for the purpose
of step size control in the same way.

Given the values sci one may now compute a normalised measure of the error

e =

√√√√ 1

n

n∑
i=1

(
x1,i − x̂1,i

sci

)2

.

In order to find an optimal step size, e is compared to 1. That is,

hopt = h ·
(

1

e

) 1
q+1

,

where q = min(p, p̂), and we recall that h is the starting step size. For DOPRI5, q = min(5, 4) = 4.

Before proceeding, we should introduce a safety factor, in order to make sure that the probability is
high that the ”error” e will be acceptable in the next step, and to make sure that h is not increased
or decreased too fast. Introducing the safety factors fac and facmax we may now compute the
next step

hnew = min(facmax · h, fac · hopt).

For suggestions on choices for the values of fac and facmax, see e.g., [22] p. 168. In this work, the
values fac = 0.8 and facmax = 2.5 are chosen, and they are kept constant for all computations.

If e ≤ 1 the step is accepted, and the solution is advanced with x1. A new step is then tried with
h = hnew. If, however, e > 1, the step is rejected and the same computations as described above
are repeated with hnew as h.

2.2 Interpolation

As mentioned in chapter 1, velocity fields in the ocean are not given by analytic expressions.
Rather, they are given by discrete sets of measured or modelled data representing the momentary
field f(xn, tn) at discrete positions xn and times tn. To be able to evaluate the field at an arbitrary
position x and time t one must therefore turn to interpolation.

Interpolating a set of data points means to find a function that passes through those points. It
may even be described as the opposite of function evaluation, in which a function is given and one
wishes to compute points on the curve given by that function. Any function that passes through
the set of data points is said to interpolate the points, regardless of how it looks in between the
points. Interpolation is thus not the same as function approximation, although the concepts are
related.

There are many ways to perform interpolation, for example nearest neighbour interpolation, poly-
nomial interpolation, and spline interpolation, and they all have both benefits and drawbacks.
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Nearest neighbour interpolation is an interpolation method that only uses the value at one single
point to approximate the value at points nearby. If the point x is closer to the point xi than
any other point in the data set, it is simply assigned the value f(xi). The benefit of nearest
neighbour interpolation is that it requires very little work, but the potential disadvantage is that
the interpolated curve is discontinuous.

A more popular choice is polynomial interpolation, a method that constructs a polynomial that
passes through all the data points. According to the Main Theorem of Polynomial Interpolation
(see e.g., [27] p. 141) there exists a unique polynomial P (x) of degree n−1 or less that interpolates a
set of n data points (xi, yi), where the xi are distinct. Two popular methods for finding this unique
polynomial are Lagrange interpolation and Newton’s divided differences. The clear advantage
of polynomial interpolation is that there always exists a solution that interpolates all the data
points, and that this solution - being a polynomial - is continuous and smooth. A disadvantage
of polynomial interpolation is what is known as Runge’s phenomenon, which may occur when the
data points are equally spaced and the polynomial degree is high.

Runge’s phenomenon is nicely demonstrated by the Runge example, where the function

f(x) =
1

1 + 12x2

is interpolated at evenly spaced points in the interval [−1, 1]. Figure 2.2 shows the function f(x) as
well as the so-called Lagrange polynomial interpolated from 20 evenly spaced points. We see that
the interpolated polynomial oscillates a lot near the ends of the interval, and it is this oscillation
that is known as Runge’s phenomenon.

Figure 2.2: Illustration of Runge’s phenomenon in the interpolated function PL(x).

Luckily, there are ways to avoid Runge’s phenomenon. If one is free to choose the spacing of the
data points, one can avoid Runge’s phenomenon by choosing the optimal spacing; This is known
as Chebyshev interpolation. However, as mentioned above, in many real-life applications one only
has a given set of data points, and no known analytical expression and hence no option to choose
other data points. If this is the case, a good alternative to polynomial interpolation is spline
interpolation.

Spline interpolation is a lot like polynomial interpolation, but instead of using just one (usually
high-degree) polynomial to interpolate all data points one uses several low-degree polynomials.
Keeping the polynomial-degree low reduces the possibility of the wild oscillations observed in
Runge’s phenomenon. Splines produce smooth solutions with continuous derivatives up to some
order, and are thus a good alternative in situations where this is a concern.

How many derivatives are continuous depends on the order of the spline. When the method is of
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order 2 the first derivative is discontinuous, when the method is of order 3 the second derivative
is discontinuous, and so on. In other words, if one requires n continuous derivatives, one should
choose a spline interpolation method of order n+ 2. The order of an interpolation scheme is equal
to the polynomial degree plus one [37]1. This study will consider spline interpolation of order 2
(linear splines), 3 (quadratic splines, sometimes also called parabolic splines), 4 (cubic splines) and
6 (quintic splines), all of which will now be presented.

2.2.1 Linear Splines

Linear spline interpolation can be thought of as simply ”connecting the dots”. Imagine that we are
given a set of data points (x1, y1), ..., (xn, yn), where the xi are distinct and in increasing order. If
we draw a straight line from point (x1, y1) to point (x2, y2), another line from (x2, y2) to (x3, y3),
and so on, we end up with n − 1 separate line segments connecting the n points. Straight lines
are the same as polynomials of degree 1, so linear spline interpolation is an interpolation scheme
of order 2.

With n data points, a linear spline S(x) consists of n− 1 line segments Si(x) on the general form

Si(x) = aix+ bi, on [ki, ki+1], (2.6)

for i = 1, ..., n − 1. The points kj are called the knots of S(x). The knots of a spline are the
points at which the different segments are connected to each other, and in the case of linear spline
interpolation, the knots are at the same positions as the data points xj . That is, ki = xi.

The coefficients ai, bi in Eq. (2.6) can be determined by imposing the continuity conditions

Si(xi) = yi,

and
Si(xi+1) = yi+1

for i = 1, ..., n− 1. Inserting these conditions in Eq. (2.6) we get the equations

Si(xi) = aixi + bi = yi

Si(xi+1) = aixi+1 + bi = yi+1.
(2.7)

Solving Eqs. (2.7) for bi gives the equations

bi = yi − aixi (2.8)

bi = yi+1 − aixi+1 (2.9)

for the coefficients bi. Equating these two expressions and solving for ai gives

yi − aixi = yi+1 − aixi+1

ai(xi+1 − xi) = yi+1 − yi

ai =
yi+1 − yi
xi+1 − xi

. (2.10)

Inserting Eq. (2.8) and Eq. (2.10) into Eq. (2.6) gives the general expression

Si(x) = yi +
yi+1 − yi
xi+1 − xi

(x− xi), xi ≤ x ≤ xi+1

for the line segments that make up the linear spline. Note that if one uses Eq. (2.9) instead of
Eq. (2.8) the general expression will look slightly different, but the resulting line will be identical
since the two expressions for bi must be equivalent.

1There are several different definitions of the order of an interpolation scheme. For example, Press et al. [38]
define it as the number of points used minus one. In this work, the definition by C. de Boor [37] given in the text
will be used.
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Figure 2.3: A linear spline S(x) and its first derivative S′(x).

As an example of linear interpolation, consider figure 2.3. The top panel shows seven points that
have been interpolated using linear spline interpolation. One can easily see that each pair of points
is connected by a straight line.

Linear spline interpolation is simple and can successfully interpolate an arbitrary set of n data
points. However, as is clear from figure 2.3, linear splines lack smoothness, so the derivative is not
continuous. The bottom panel in figure 2.3 shows the derivative of the interpolated solution in the
top panel. It is immediately clear that the derivative is not continuous, and that the discontinuities
are at the same values of x as the data points. The reason why this happens is because when x
crosses a knot ki, the spline S(x) equals a different polynomial Si(x). That is, if for example
k1 ≤ x ≤ k2 then S(x) = S1(x), but when k2 ≤ x ≤ k3 then S(x) = S2(x), which is generally a
different polynomial. As a result, the first derivative S′(x) of the spline will be discontinuous at
the knots, and for linear splines ki = xi, so the derivatives are discontinuous at the data points.

2.2.2 Quadratic Splines

Increasing the order of interpolation by one, to quadratic spline interpolation, one would expect
that the first derivative is continuous but the second is not. Figure 2.4 shows the same data points
as in figure 2.3 interpolated using a quadratic spline. From the top the panels in the figure show
the spline S(x) itself, its first derivative S′(x), and its second derivative S′′(x). It is clear that the
first derivative is continuous but the second is not, just as expected.

The thing to note about the second derivative S′′(x) in figure 2.4 is that while it is discontinuous,
the discontinuities are not at the same places as they were for the first derivative of the linear spline
in figure 2.3. Instead, the second derivative is discontinuous at the midpoint between two data
points. The explanation behind this lies in the construction of quadratic splines. Quadratic splines
S(x) are piecewise quadratic functions. That is, they consist of several quadratic polynomials on
the general form

Si(x) = aix
2 + bix+ ci, on [ki, ki+1], (2.11)

where again kj are the knots of S(x). Recall that for linear splines the knots are at the same
positions as the data points, but the same is not true for quadratic splines. Rather, it has been
found that when creating quadratic splines it can be better to choose the midpoints between the
data points as knots. That is, ki = (xi + xi+1)/2. For this study it suffices to just know that
the knots are at the midpoints for quadratic interpolation, but the interested reader can refer to
chapter VI in [37] for more information on this choice.
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Figure 2.4: A quadratic spline S(x) and its first two derivatives.

With these values for the knots ki, S(x) consists of n quadratic polynomials Si(x) on the form of
Eq. (2.11). These polynomials must satisfy

Si(xi) = yi, i = 1, ..., n

Si(ki) = vi, i = 1, ..., n

and
Si(ki+1) = vi+1, i = 1, ..., n

where v1 and vn+1 are free and vj , j = 2, ..., n, must be chosen so that

Si(ki+1) = Si+1(ki+1), i = 1, ..., n− 1

and
S′i(ki+1) = S′i+1(ki+1). i = 1, ..., n− 1

These conditions ensure that the resulting spline S(x) is continuous and has a continuous first
order derivative. The second derivative S(x) will be discontinuous at the knots ki, which we recall
are chosen as the midpoints between the data points for quadratic splines.

2.2.3 Cubic Splines

Since linear splines connect the data points using straight lines (or degree 1 polynomials), and
quadratic splines connect them using quadratic (degree 2) polynomials, it is easy to guess that cubic
splines use cubic polynomials, or polynomials of degree 3, to connect the data points. Generally,
considering a set of n data points (x1, y1), ..., (xn, yn), a cubic spline interpolating these points is
a set of n− 1 cubic polynomials on the form

Si(x) = aix
3 + bix

2 + cix+ di, on [ki, ki+1] (2.12)

Just like for linear splines, the ki are here the same as the data points xi. The 4n− 4 coefficients
are determined from the conditions that the spline itself must be continuous, and so must the first
and second order derivatives.

16



The requirement that the spline itself must be continuous once again leads to the 2n− 2 equations

Si(xi) = yi, i = 1, ..., n− 1

and

Si(xi+1) = yi+1, i = 1, ..., n− 1.

Furthermore, the requirement that the slope of two adjacent splines must be the same gives the
n− 2 equations

S′i(xi+1) = S′i+1(xi+1), i = 1, ..., n− 2.

These equations ensure that the first derivative of the spline is continuous. Finally, cubic splines
must have continuous second derivatives, a condition that yields the n− 2 equations

S′′i (xi+1) = Si+1(xi+1), i = 1, ..., n− 2.

These 4n− 6 equations ensure that cubic splines are continuous and smooth, have continuous and
smooth first order derivatives, and continuous second order derivatives. However, since there are a
total of 4n−4 unknowns in the polynomials given by Eq. (2.12), the system is still underdetermined
and has infinitely many solutions. The remaining equations are introduced as what is known as
endpoint conditions, and there are several options. The most common choice of endpoint conditions
for cubic splines is to require that the spline S(x) has an inflection point, i.e. a point at which
the curvature changes sign, at each end of the interval [x1, xn], giving what is called a natural
spline. To read more about the other options for endpoint conditions for cubic splines, see e.g. [27]
(pp. 173–176).

Mathematically, the natural spline condition can be expressed by the two equations

S′′1 (x1) = 0

and

S′′n−1(xn) = 0.

With these additional two equations we now have 4n − 4 equations in 4n − 4 unknowns and can
thus find the cubic spline that interpolates the n given data points. It is worth noting that cubic
splines are particularly practical, since the resulting set of equations is tridiagonal [38] and can be
solved efficiently with for example LU decomposition (see [38] pp. 42–43).

Figure 2.5 shows the same data points as in figure 2.3 interpolated using cubic spline interpolation,
as well as the first three derivatives. It is clear that the spline S(x) is both continuous and
smooth. From figure 2.5 it is also clear that the first and second order derivatives are continuous,
as expected. The third derivative, however, is not continuous. Just like for linear splines, the
discontinuities are at the same x-positions as the given data points, and that is because the knots
ki once again coincide with the data points xi.
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Figure 2.5: A cubic spline S(x) and its first three derivatives.

2.2.4 Quintic Splines

Order 6 spline interpolation is called quintic spline interpolation. The description of quintic splines
follows the same pattern as for the lower-order splines, so to avoid too much repetition only a brief
description will be provided here.

Quintic splines use 5th-degree polynomials to interpolate the data points. That is, the quintic
spline S(x) that interpolates n data points (xi, yi) consists of n− 1 polynomials on the form

Si(x) = aix
5 + bix

4 + cix
3 + dix

2 + eix+ fi, on [ki, ki+1] (2.13)

where ki = xi here as well. The coefficients are determined by setting up a system of equations in
a similar manner as above. The requirements for a quintic spline is that the derivatives up to and
including order 4 are continuous, which leads to the 6n− 10 equations

Si(xi) = yi, i = 1, ..., n− 1

Si(xi+1) = yi+1, i = 1, ..., n− 1

S′i(xi+1) = S′i+1(xi+1), i = 1, ..., n− 2

S′′i (xi+1) = S′′i+1(xi+1), i = 1, ..., n− 2

S′′′i (xi+1) = S′′′i+1(xi+1), i = 1, ..., n− 2

S
(4)
i (xi+1), = S

(4)
i+1(xi+1). i = 1, ..., n− 2

Together with four endpoint conditions one can use the continuity conditions to determine the
coefficients in Eq. (2.13) that make S(x) interpolate the given data points.
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2.3 The Relationship Between Integration and Interpola-
tion Order

Hairer et al. [22] present the following theorem (Theorem 3.1 p. 157 in [22]):

Theorem 1. If the Runge-Kutta method in Eq. (2.3) is of order p and if all partial derivatives
of f(x, t) up to order p exist (and are continuous), then the local error of Eq. (2.3) admits the
rigorous bound

||x(t0 + h)− x1|| ≤ hp+1

(
1

(p+ 1)!
max
τ∈[0,1]

||x(p+1)(t0 + τh)||+ 1

p!

s∑
i=1

|bi| max
τ∈[0,1]

||k(p)i (τh)||

)

and hence also

||x(t0 + h)− x1|| ≤ Chp+1. (2.14)

Theorem 1 states that if all partial derivatives of the right-hand side f in Eq. (2.1) exist up to
and including order p, then the local error given by Eq. (2.4) of a Runge-Kutta method of order p
is bounded by Chp+1 for some constant C. Consider as an example RK4 combined with quintic
spline interpolation. RK4 is a 4th-order Runge-Kutta method, and quintic splines are order 6 and
have four continuous derivatives. This means that the requirements in Theorem 1 are fulfilled,
and it holds that when the velocity field is interpolated using quintic spline interpolation, the local
error in a single step of size h taken with RK4 is bounded by Ch5, for some constant C. Using
cubic spline interpolation instead, f(x, t) only has two continuous derivatives, and the same upper
bound for the local error cannot be guaranteed. In fact, this upper bound for the local error only
holds for spline interpolation of order 6 (like quintic) or higher.

Furthermore, if the local error scales as O(hp+1) then the global error will scale as O(hp) [22,
39]. Considering the combination of quintic splines and RK4 again this means that since the local
error is bounded by Ch5, the global error scales with h4. This means that RK4 can be expected
to be 4th-order accurate when used with a velocity field that is interpolated using quintic spline
interpolation. With lower order spline interpolation the same bound for the local error does not
hold, meaning that one cannot trust that RK4 will actually be 4th-order accurate, in spite of its
name.

The consequence of Theorem 1 in practical applications with velocity fields given as discrete data
points is that a pth-order integration method might not actually be pth-order accurate if one does
not choose an appropriate interpolation scheme. It is therefore of great importance to be aware
of this connection between the number of continuous derivatives and the local error bound in
Eq. (2.14), and hence the effect the choice of interpolation scheme can have on both accuracy and
computational effort.

As stated in chapter 1, Hairer et al. [22] discuss discontinuities in the right hand side f of an
ODE, and suggest three strategies for dealing with them. The third strategy is to stop and restart
integration at the discontinuities, as was illustrated in figure 1.2 in chapter 1. For convenience, the
same illustration is provided in figure 2.6 in this section. The result of this forced stopping is that
the velocity field f becomes continuous within each step, even though it is not continuous over the
whole trajectory.

Consider figure 2.6. As is indicated in the figure, f = f1(x, t) for x ≤ x∗, and f = f2(x, t) for
x ≥ x∗. If one assumes that f is interpolated using cubic spline interpolation, then f1 and f2
are both cubic polynomials, and their derivatives coincide at x = x∗ up until order 2. However,
f ′′′1 (x∗, t) 6= f ′′′2 (x∗, t), and as a result, f has a discontinuity at x = x∗ in its 3rd-order derivative.
For a 4th-order Runge-Kutta method like RK4 the requirements of Theorem 1 are thus not fulfilled,
and the bound in Eq. (2.14) cannot in general be expected to hold. However, since f1 and f2 are
polynomials they are both infinitely differentiable and steps that are computed using only f1 or f2
satisfy the requirements of Theorem 1 and should have a local error bounded by Eq. (2.14). That is,
for each step from xn to xn+1 where both xn,xn+1 ≤ x∗, all the coefficients ki (see Eq. (2.3)) used
to take the step are computed using f = f1, meaning that f is effectively continuous throughout
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Figure 2.6: Illustration of an integrated trajectory where integration is stopped and restarted at
the discontinuity at x∗ in the velocity field f(x, t). The dots represent steps taken by the solver,
and the dashed line indicates the position x∗. This is the same illustration as in figure 1.2, included
again for the convenience of the reader.

the step. The same is also true if both xn, xn+1 ≥ x∗ because then all the ki are computed using
f = f2. Hence, steps taken entirely on one side of x∗ have errors bounded by Eq. (2.14).

The problem with the discontinuous derivatives occurs only when xn < x∗ < xn+1 or
xn > x∗ > xn+1, because then some ki might be computed using f1 and others using f2.
As a result, f does not fulfil the requirements for continuous derivatives, and the local error of the
step is not bounded by Eq. (2.14). The effect of stopping and restarting integration at the discon-
tinuities should now be more clear. If the nth step of the integration is from xn to xn+1, where
xn < xn+1 = x∗ then f = f1 throughout the step, and hence the local error will be bounded by
Eq. (2.14). For the next step, x∗ = xn+1 < xn+1 and f = f2 throughout the step. In other words,
when stopping and restarting integration at the discontinuity in the field, both the step before the
discontinuity and the step after satisfy the requirements for the error bound in Eq. (2.14).

The effect on the local error of the step when it stops at the discontinuity instead of stepping over
it is what motivates the construction of the special-purpose integration methods in this study. The
idea is that by forcing the integration to stop and restart at the discontinuities in the interpolated
velocity field, one can obtain pth-order accuracy with a spline interpolation scheme of lower order
than the required p+ 2. Specifically, if the special-purpose methods work as intended, one should
for example be able to obtain 4th-order accuracy for RK4 even with spline interpolation schemes
of lower order than quintic.
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Chapter 3

Methodology

As mentioned in chapter 1, the main goal of this study is to create special-purpose methods for
numerical integration that stop and restart integration at the discontinuities in an interpolated
velocity field. However, the event location procedure used in the special-purpose solvers can also
be used for other applications, like for example creating Poincaré maps, so the process will first be
described in general terms in section 3.1. Then section 3.2 will explain how the special-purpose
integrators use the event location procedure to stop and restart integration at discontinuities in
the interpolated velocity field. Two special-purpose methods are constructed, one based on the
4th-order Runge-Kutta method (RK4) and one based on the order 5(4) Dormand-Prince pair
(DOPRI5), both introduced in section 2.1 in the previous chapter.

The accuracy and performance of the methods will be compared by using them on an interpolated
version of the double gyre vector field, which will be introduced in section 4.2.1. The double gyre
field has no analytical solution, so the errors of the methods will have to be estimated by purely
numerical means. Section 3.3 will explain how this is done.

3.1 Dense Output and Event Location

This section will present the event location procedure for a general event. In the case of an
interpolated velocity field, the event will be a discontinuity in the field, while for Poincaré maps
the event will be intersection with the defined Poincaré section.

To explain the general methodology, consider as an example the function x(t) = (x(t), y(t), z(t)),
which is a solution to the ODE

dx

dt
= f(x, t). (3.1)

When solving Eq. (3.1) numerically we get an approximation to x(t) given by a set of discrete
points {xi}ki=0 = {x0,x1,x2, ...,xn−1,xn,xn+1, ...,xk} after k steps with k corresponding finite
step sizes hi, which may or may not be identical, depending on the method. Assume that we
know that the exact solution x(t) at some point crosses the plane (or point etc., depending on
the dimensions of the problem) at z = z∗, and the goal is to find out exactly when this happens.
Since it is not known in advance when this so-called event occurs, chances are that the exact
solution x∗ = (x∗, y∗, z∗) will not be in the set {xi}. Rather, it is likely that a situation like the
one illustrated in figure 3.1 will occur, where zn < z∗ < zn+1, for some subsequent numerically
computed points xn = (xn, yn, zn) and xn+1 = (xn+1, yn+1, zn+1).

Defining t∗ as the t such that z(t∗) = z∗ it can now be inferred that t∗ ∈ (tn, tn+1). However, in
many cases, including the ones considered in this study, a more precise solution is required. To
obtain a more precise result one would need to also compute a solution between the points xn
and xn+1. One way of doing that is to decrease the step size h and solve Eq. (3.1) in the interval
[xn,xn+1], using the same numerical solver. However, when the number of output points becomes
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Figure 3.1: Illustration of an event occurring at the plane at z = z∗ between two points
xn = (xn, yn, zn) and xn+1 = (xn+1, yn+1, zn+1) in the numerical approximation.

large, the classical Runge-Kutta methods introduced in section 2.1.1 become inefficient [22]. This
motivated the construction of an alternative approach [40] that is now often referred to as dense
output formulae or continuous extensions.

3.1.1 Dense Output

Dense output formulae are Runge-Kutta methods which provide continuous approximations to
the solution between two numerically computed results x0 and x1, allowing interpolation to an
arbitrary time t∗ ∈ [t0, t1]. The idea is to create a polynomial that interpolates the points x0
and x1 and approximates the solution throughout the step [41]. Creating the approximating
polynomial requires at most only a few additional function evaluations [42], and after creation it
can be evaluated as many times as necessary without being computationally expensive [41]. This
makes dense output formulas a much more efficient choice than integrating with a smaller step
size.

Introducing a variable θ = (t − t0)/(t1 − t0) so that θ ∈ [0, 1], the polynomial approximating the
solution between x0 and x1 is given by a formula on the form

u(θ) = x0 + h

s∗∑
i=1

bi(θ)ki, (3.2)

where ki are the ki from Eq. (2.3) and bi(θ) are polynomials to be determined, such that

u(θ)− x(t0 + θh) = O(hp
∗+1),

where x(t0 + h) is the exact solution x(t) evaluated at time t = t0 + h, s∗ is the number of stages
of the dense output approximation, and p∗ is the order of the dense output method.

The dense output solution for the 4th-order Runge-Kutta method in table 2.2 has order p∗ = 3,
and s∗ = 4 stages, and its polynomials bi(θ) in Eq. (3.2) are [22]

b1(θ) = θ − 3θ2

2
+

2θ3

3
,

b2(θ) = b3(θ) = θ2 − 2θ3

3
,

b4(θ) = −θ
2

2
+

2θ3

3
.

(3.3)
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For the order 5(4) Dormand-Prince pair (DOPRI5), the polynomials bi(θ) in Eq. (3.2) are [22]

b1(θ) =θ2(3− 2θ) · b̃1
+ θ(θ − 1)2 − θ2(θ − 1)2 · 5 · (2558722523− 31403016θ)/11282082432,

b2(θ) =0,

b3(θ) =θ2(3− 2θ) · b̃3 + θ2(θ − 1)2 · 100 · (882725551− 15701508θ)/32700410799,

b4(θ) =θ2(3− 2θ) · b̃4 − θ2(θ − 1)2 · 25 · (443332067− 31403016θ)/1880347072,

b5(θ) =θ2(3− 2θ) + θ2(θ − 1)2 · 32805 · (23143187− 3489224θ)/1999316789632,

b6(θ) =θ2(3− 2θ) · b̃6 − θ2(θ − 1)2 · 55 · (29972135− 7076736θ)/822651844,

b7(θ) =θ2(θ − 1) + θ2(θ − 1)2 · 10 · (7414447− 829305θ)/29380423.

(3.4)

The coefficients b̃i on the right hand side of Eq. (3.4) are the 5th-order coeffiecients bi in table 2.3.

As a check of the dense output solutions we verify that the resulting polynomial u(θ) for DOPRI5
satisfies

u(0) = x0, (3.5a)

u(1) = x1, (3.5b)

u′(0) = hf(x0, t0), (3.5c)

u′(1) = hf(x1, t0 + h). (3.5d)

By evaluating Eq. (3.4) at θ = 0 we can easily see that all coefficients bi(0) = 0. Inserting this in
Eq. (3.2) gives

u(0) = x0 + h

7∑
i=1

bi(0)ki = x0 + h

7∑
i=1

0 · ki = x0,

i.e. Eq. (3.5a), as expected. Evaluating Eq. (3.4) at θ = 1 we find b2(θ = 1) = b7(θ = 1) = 0 and
for the remaining bi(θ) (i.e. for i = 1, 3, 4, 5, 6) we find bi(θ = 1) = b̃i. Comparing this result with
table 2.3 we see that bi(θ = 1) = b̃i for all i = 1, ..., 7, which means that

u(1) = y0 + h

7∑
i=1

bi(1)ki = y0 +

7∑
i=1

b̃iki = y1,

where we recall that b̃i are the 5th-order coefficients for DOPRI5. The last equality comes from the
general definition in Eq. (2.3) of Runge-Kutta methods. We see that Eq. (3.5b) is also satisfied.

To verify Eq. (3.5c) and Eq. (3.5d) we must first find the derivative u′(θ). Differentiating Eq. (3.2)
with respect to θ we find that

u′(θ) = h

7∑
i=1

b′i(θ)ki (3.6)

for the DOPRI5 method. By applying the chain rule we find the derivative of b1(θ),

b′1(θ) = 2θ(3− 2θ)− 2θ2 + (θ − 1)2 + 2θ(θ − 1)

+
(
2θ(θ − 1)2 + 2θ2(θ − 1)

)
· 5 · 2558722523− 31403016θ

11282082432

+ θ2(θ − 1)2 · 5 · 31403016

11282082432
.

Evaluating b′1(θ) at θ = 0 and 1 we find

b′1(0) = 1 and b′1(1) = 0. (3.7)
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Similarly, we find

b′2(0) = 0 and b′2(1) = 0

b′3(0) = 0 and b′3(1) = 0

b′4(0) = 0 and b′4(1) = 0

b′5(0) = 0 and b′5(1) = 0

b′6(0) = 0 and b′6(1) = 0

b′7(0) = 0 and b′7(1) = 1

(3.8)

for the remaining coefficients b2(θ), ..., b7(θ). Evaluating the derivative in Eq. (3.6) at θ = 0 and
θ = 1 by inserting the coefficients in Eq. (3.7) and Eq. (3.8) we find

u′(0) = h

7∑
i=1

bi(0)ki = hk1 = hf(x0, t0),

and

u′(1) = h

7∑
i=1

bi(1)ki = hk7 = hf(x1, t0 + h),

where the final equality in both these equations comes from the definition in Eq. (2.3) and the
coefficients in table 2.3. Hence Eqs. (3.5) are all satisfied and we have verified that the coefficients in
Eq. (3.4) constitute a dense output solution for the DOPRI5 method. The coefficients in Eq. (3.3)
for RK4 can be verified in a similar manner.

3.1.2 Event Location

If we know that the trajectory crosses the event z = z∗ somewhere between zn and zn+1, and we
have the dense output solution u(θ) between zn and zn+1, we can use an iterative root-finding
method to find (an approximation to) the time t∗ that solves the equation z(t∗) = z∗. The
procedure for finding t∗ is described by Hairer et al. [22] (pp. 195–196) and it starts by defining a
function

g(t) = z(t)− z∗, (3.9)

such that g(t∗) = 0. In figure 3.1 an interval [zn, zn+1] that contains z∗ has already been located,
but if this interval is unknown one can simply compute the numerical approximation gk = zk − z∗
until the zn and zn+1 that result in a sign change (sgn(gn) 6= sgn(gn+1)) are found. Once the
interval is known, z(t) in Eq. (3.9) can be replaced by the dense output approximation u(θ)
between zn and zn+1 (Eq. (3.2)) and an iterative root-finding method can be used to find the root
θ∗ = (t∗ − tn)/(tn+1 − tn) of the resulting equation. How θ∗ is used will be described in the next
section.

Common choices for root-finding methods are the bisection method and Newton’s method, both
of which are assumed known to the reader, but they are also described in Appendix A. Since the
bisection method converges regardless of the choice of initial interval1 that is the method of choice
in this study.

3.2 Integration and Special-Purpose Methods

When computing trajectories from interpolated velocity fields, the events in question are the dis-
continuities of the field. With a 2D field that is given by exact values on grid points and an
interpolated solution elsewhere, the discontinuities will be at the knots of the interpolated field.
In the case that the knots coincide with the given data points, the discontinuities will be at the
boundaries of the grid cells. This is the case for linear, cubic, and quintic spline interpolation. That

1As long as there is only one root in the interval, but in the cases considered here we can safely assume that that
condition holds.
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is, the events in this case are cell boundary crossings. We recall from section 2.2.2 that the knots
are at the midpoints between data points for quadratic spline interpolation, and that as a result
the discontinuities in the second order derivative are also at these midpoints. If the interpolation
scheme is quadratic spline interpolation the lines the methods interpret as cell boundaries are then
shifted accordingly.

Special-purpose variants of both RK4 and DOPRI5 are constructed that use the procedure de-
scribed in the previous section to detect boundary crossings and find the exact time t∗ at which
the boundary was crossed. Once t∗ is determined the step size can be adjusted to make the step
stop at the boundary instead of stepping over it. This section will explain the selection of step
size in general, and in the case that a special-purpose method detects that a cell border has been
crossed.

3.2.1 RK4: Fixed Time Step

The regular RK4 method operates with a fixed step size h. In other words,

tn = tn−1 + hn ≡ t0 + nh, n = 1, 2, ..., N,

where tN is the value of t for which the integration is terminated. Note that for the final step,
hN = min(h, tN − tN−1) in order to ensure that the integration is stopped exactly at the desired
end time tN , even if h does not divide tN evenly.

The special-purpose RK4 method that is constructed in this work also keeps a fixed step size h for
most of the computations. However, if the integrator detects that a border is crossed between time
tn−1 and time tn, the θ∗ giving the exact time of crossing t∗, where tn−1 < t∗ < tn, is found using
the event location procedure described in the previous section. The time step hn is then adjusted
to a new step hadj given by

hadj = θ∗hn =

(
t∗ − tn−1
tn − tn−1

)
hn

= t∗ − tn−1,

where the last equality comes from the relation hn = tn − tn−1. With this adjusted step size the
new time tn will be

tn = tn−1 + hadj = tn−1 + (t∗ − tn−1) = t∗.

In other words, the time step is adjusted so that instead of stepping across the cell border, integra-
tion will stop and restart exactly at the boundary. This stopping and restarting ensures that there
are no discontinuities within any step of the integration, and the interpolated field will appear
continuous to the solver. Based on the theory in section 2.3 this should in turn affect the accuracy
of the result.

It should be noted that the event location procedure requires some extra computational work.
Every call to the bisection method involves the same number of function evaluations as one step
with the solver (4 for RK4), and after the time of intersection t∗ has been found, a new step is
taken with the adjusted step size. If a situation like the one illustrated in figure 3.2 occurs, where
the trajectory has crossed two cell boundaries, one at x = x∗ and one at y = y∗, in one step, the
time of intersection is computed in both directions. That is, both θ∗x and θ∗y is found, and then
θ∗ = min(θ∗x, θ

∗
y). Such a situation thus involves not one but two calls to the bisection method.

For RK4 this means that computational cost of the stopping and restarting at the cell boundary
thus equals two or three additional steps for each boundary crossing.

Note also that this procedure does not guarantee that the adjusted step lands exactly at the cell
boundary. The dense output formula given by Eq. (3.2) is an interpolated solution, so there is
likely to be some small but finite error in the computation of t∗. It might therefore happen that the
adjusted step is a little too short, so that the boundary is crossed again in the following step, thus
leading to a new call to the bisection method and hence more computational work. It could also
be too long, so that it steps over the boundary and does thus not achieve the expected reduction
in local error (see section 2.3).
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Figure 3.2: Illustration of an integrated trajectory crossing one discontinuity at y = y∗ and one
discontinuity at x = x∗ in one single step.

3.2.2 DOPRI5: Variable Time Step

Both the regular and the special-purpose DOPRI5 method use the procedure for step size selection
that was described in section 2.1.3. However, after a step of size h has been taken, the special-
purpose method will first detect whether or not a cell border has been crossed. If no boundary
has been crossed it will continue with the step size control procedure in section 2.1.3 to determine
if the step is accepted or rejected, just like the regular DOPRI5 method. If, however, it finds that
a border has been crossed between time tn and time tn+1, the event location procedure described
in section 3.1 will be applied. The adjusted time step is found in the same manner as described in
section 3.2.1 and will once again be

hadj = t∗ − tn,

where t∗ is still the time at which the cell border is crossed. The adjusted time step hadj will
then be fed to the step size control procedure. If the step is accepted the position is updated, and
hnew is set to the original step size h for the next step. This will prevent the solver from taking
unnecessarily many small steps right after a border has been crossed.

For both variants the final step hN will also be adjusted to make the integration terminate exactly
at a predefined tN , as described above. Note also that it was decided to not implement FSAL. The
reason for this choice was no other than that it simplifies implementation and makes it possible to
use the same function signature for both RK4 and DOPRI5.

Just as for RK4, theory claims that stopping and restarting exactly at the discontinuities will
reduce the global error of the method if the integrator assumes higher order continuous derivatives
than is actually the case with the given interpolation scheme. This was explained in section 2.3.

Furthermore, since the step of size hadj should not step over a discontinuity it is likely to have a
smaller local error than the original step which stepped over the discontinuity. The adjusted step
should therefore stand a greater chance of being accepted by the step size control algorithm, which
was described in section 2.1.3. Less rejected steps means less wasted computational work, and the
hope for the special-purpose method is that the amount of computational work saved on fewer
rejected steps will outweigh the added computational work associated with detecting the borders.

The same notes about additional computational work that were presented for RK4 above are
also valid for the special-purpose DOPRI5 method. That is, each call to the bisection method is
equivalent in terms of the number of function evaluations to one additional step, and if a border is
crossed in both directions during one step, like in figure 3.2, both intersection times are computed.
In addition, there is always a chance that the adjusted step might be rejected, particularly if the
error in t∗ makes the adjusted step stop a little bit after the boundary. If that is the case, the
whole procedure will start over. The consequence of an adjusted time step being rejected is thus
greater in terms of computational work than if a non-adjusted step is rejected.
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3.2.3 Algorithm

In short, the algorithm of the special-purpose methods can be described by the following flowchart:

Take step
from tn

to tn+1 =
tn + hn

Start

Is step
accep-
ted?

Check
if cell

bound-
ary
was

crossed

Find time
t∗ of (first)
boundary
crossing

Adjust step
size hn →

hadj = t∗−tn

Take new
step from tn
to tn+1 =

tn+hadj = t∗

Reduce
step size
according

to step size
control

algorithm

tn = t0

Yes

No

Yes

hn = hnew
tn = tn+1

No

hn = hnew

For the special-purpose RK4 method hnew is the same as the selected fixed step size h, regardless
of whether the length of the previous step was adjusted or not. Note also that for a fixed-step
solver every step is accepted. For the special-purpose DOPRI5 method on the other hand, every
step must be controlled. If a boundary was crossed in the previous step then hnew for the special-
purpose DOPRI5 method is set to the length hn of the original step, otherwise hnew keeps the
value assigned to it by the step size control algorithm.

3.3 Error Estimates

To investigate whether stopping and restarting integration at cell boundaries affects the accuracy of
the numerically computed result, one can compare the global error. We wish to compute the global
error for the different solutions, and compare to see which combination of numerical integration
method and interpolation scheme gives the most accurate result. However, we recall that in order
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to compute the global error we need to know the exact solution, and in most situations where
numerical integration is used, the exact solution is unknown.

The error must therefore be estimated purely by numerical means. This is done by computing a
reference solution xref, where here x = (x, y) ∈ R2, with a small step size h0, and comparing the
other numerical approximations to this reference solution. The error in the reference solution is
given by

Eref = xN (h0)− x(tN ), (3.10)

where x(tN ) is the true but unknown solution and xN (h0) is the numerically computed result at
tN with h = h0. Using the reference solution instead of the true solution, the estimate for the
global error of calculations with a longer time step h is given by

Eest(h) = xN (h)− xN (h0)

= xN (h)− (Eref + x(tN ))

= Etrue − Eref,

(3.11)

where Etrue = xN (h)− x(tN ) is the error relative to the true solution and Eref is the error in the
reference solution, given by Eq. (3.10). Thus, the approximation Eest(h) is a good estimate of the
true global error Etrue if Eref � Etrue. The idea is that the smaller the step size h of a numerical
integration method is, the more accurate the approximated solution is, and as h→ 0 the numerical
result converges to the exact result. That is,

lim
h0→0

Eref = 0. (3.12)

However, computers have limited precision when storing numbers, and this also affects the precision
of arithmetic with floating-point numbers. A double precision floating-point number can be stored
with approximately 16 significant digits, and every arithmetic operation can be thought of as
introducing an error in the least significant digit. This error is called the roundoff error [38] and
accumulates with each operation. Reducing the step size h of an integrator will increase the number
of steps which in turn increases the total number of arithmetic operations. As a result, a decrease
in h leads to an increase in the net contribution of this roundoff error, and eventually when h
becomes small enough this contribution will dominate the global error. Reducing the time step
further beyond this point will make the error increase rather than decrease, since the roundoff
error will just keep accumulating. Equation (3.12) is thus not entirely true, and the time step h0
of the reference solution must therefore be chosen with caution.

The best way to select an appropriate value for h0 is to analyse the convergence of a selected
numerical integrator for small h. Plotting the global error as a function of h for small h one should
be able to identify the critical value hc, after which roundoff errors start to dominate. The value
hc would be a good choice for h0. The results of such an analysis are presented in section 4.2.2 in
chapter 4.
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Chapter 4

Numerical Results and Discussion

In this chapter, the results of numerical computations using the event location procedure explained
in section 3.1 will be presented.

To test whether the event location procedure works, it was used in an attempt to show the fractal
properties of the Lorenz attractor in a Poincaré map. Results from this test are presented in
section 4.1. The next section, 4.2, investigates some of the properties of a vector field called the
double gyre field, which will be used as the velocity field when the performance of the different
integration methods are compared in the final section of this chapter. The double gyre vector
field has no analytical solution, so section 4.2.2 will explain how the reference solutions needed for
the error estimates introduced in section 3.3 are computed. Finally, section 4.3 will present the
assessment of the performance of the special-purpose integrators described in section 3.2 compared
to their regular counterparts, when combined with different orders of spline interpolation.

4.1 Poincaré Map of the Lorenz Attractor

As a test of the event location procedure a Poincaré map of the Lorenz attractor is computed. The
Lorenz attractor was discovered by E. Lorenz [43] when he studied a simplified model of convection
rolls in the atmosphere, given by the three equations

ẋ = σ(y − x)

ẏ = rx− y − xz
ż = xy − bz,

(4.1)

now known as the Lorenz equations. For certain values of the parameters σ, r, and b, the Lorenz
system settles into a structure now known as a strange attractor. The Lorenz attractor appears
when the parameters of the Lorenz equations in Eq. (4.1) are set to σ = 10, b = 8

3 , and r = 28,
and a trajectory is created starting from the initial position (x0, y0, z0) = (0, 1, 0). If the trajectory
is visualized in the (x, z) phase space the phase portrait takes a butterfly-like shape. This phase
portrait is perhaps the most well-known phase portrait in the field of chaos theory, and it is shown
in figure 4.1.

In figure 4.1 it appears as if the trajectory crosses itself repeatedly, but this is impossible (see
e.g. [20] p. 150), and when studying the trajectory in all three dimensions one can see that no such
self-intersections occur. The 3D structure looks like a pair of surfaces that appear to merge into
one. Again, this is impossible, and upon closer inspection Lorenz [43] found that the surfaces do
remain distinct surfaces. He also discovered that instead of two surfaces, the structure consisted
of an infinite complex of surfaces, where each surface is extremely close to one of the two surfaces
that appear to merge. In other words, the Lorenz attractor is a so-called fractal.

A fractal is a geometric structure that has certain properties, including self-similarity, non-integer
dimension, and structure even at arbitrarily small scales. For more details on fractals and these
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Figure 4.1: Phase potrtrait in the (x, z) phase space of the Lorenz attractor.

properties, see e.g. [20] pp. 405–423. The non-integer fractal dimension of the Lorenz attractor has
been numerically computed to be about 2.05 [44]. Not many plots have been made that actually
show these last two fractal properties of the Lorenz system, but Viswanath [45, 46] and Viswanath
and Şahutoğlu [47] are among those who have done it.

As a test of the event location procedure an attempt has been made to reproduce the plots in figures
4 and 5 in [45], which show the fractal properties of the Lorenz attractor in a Poincaré map. Recall
that a Poincaré map is a mapping of the intersections between the trajectory x = (x, y, z) and
a plane S called a Poincaré section. Figure 4.2 shows the Poincaré map of the Lorenz system at
the Poincaré section given by the plane located at z = 27, computed using RK4 with timestep
h = 0.0005 and the event location procedure described in section 3.1.

At first glance the structure in figure 4.2 does not look like a fractal. However, inspired by
Viswanath, only the points in a small interval centered around the position
(−13.76431891885149,−19.57849004063768), denoted (xc, yc), are plotted, and the result is shown
in figure 4.3a. The dashed lines in figure 4.2 and figure 4.3 cross at the point (xc, yc). It turns
out that what initially looks like just one line is actually two lines. In [45] Viswanath zooms in
again and finds that each of these two lines is also actually two lines. This self-similarity should in
theory go on forever, and is one of the fractal properties of the Lorenz attractor. Zooming in on
one of the lines in figure 4.3a gives the result in figure 4.3b. When zooming in this far, the results
are not as clear as they are in [45], since there are relatively few points in the frame. However, the
points that are there do show a clear tendency to fall along two separate lines.

Although there are not enough points in the Poincaré map in figure 4.2 to completely recreate both
plots in figure 5 in [45], one can see that the lines are in the same place and with the same distance
between them as they are in figure 5 in [45]. The fact that the results produced here correspond so
well with the results from [45] at such small margins is a good indication that the event location
procedure works.
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Figure 4.2: Poincaré section at z = 27 of the Lorenz attractor.

(a) A section of 4.2 enlarged. (b) A section of 4.3a enlarged.

Figure 4.3: A section of figure 4.2 enlarged in an attempt to show the fractal properties of the
Lorenz attractor.

4.2 The Interpolated Velocity Field

4.2.1 The Double Gyre Field

The vector field that is used in the remaining part of this study is a 2D field called the double gyre
field, which is given by

vx = −πA sin (πg(x, t)) cos (πy)

vy = πA cos (πg(x, t)) sin (πy)
∂g(x, t)

∂x
,

(4.2)

where

g(x, t) = a(t)x2 + b(t)x,

a(t) = ε sin (ωt),

b(t) = 1− 2ε sin (ωt).

The velocity field f(x, y, t) = [vx(x, y, t), vy(x, y, t)] is defined in the region 0 ≤ x ≤ 2, 0 ≤ y ≤ 1
in the xy-plane. The equations for the field are taken from Nordam et al. [48]. The double gyre
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field consists of two vortices rotating in opposite directions. For nonzero values of the parameters
ε and ω, the line separating the vortices will oscillate left and right along the x-axis as time passes.

Figure 4.4: The double gyre vector field.

For the computations in this study the parameters are chosen to be A = 0.1 and ω = 0 (ε arbitrary
since ω = 0). Setting ω = 0 makes the double gyre field time independent, i.e. f(x, t) = f(x).
Figure 4.4 shows what the field looks like with these parameters, and figure 4.5 shows what some
trajectories x look like in the (x, y) phase space for several randomly generated initial positions
x0 = (x0, y0).

Figure 4.5: Double gyre trajectories under the constraint ω = 0.

To study the effect of the special-purpose numerical integration methods versus the regular numer-
ical integration methods, an interpolated version of the double gyre field is defined. The domain
[0, 2]× [0, 1] is divided into a 0.1× 0.1 grid, where the field value f(xi, yi) at the grid cell corners
(xi, yi) are given by the double gyre field defined in Eq. (4.2). For arbitrary points (x, y) within the
grid cells the field is interpolated using RectBivariateSpline from the scipy.interpolate lib-
rary for Python, which is a method for spline interpolation in two dimensions that allows the user
to specify the degree of the spline. For further information on RectBivariateSpline, including
documentation and source code, see [49].
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Partial Derivatives

To support the discussion in section 4.3 later in this chapter, it is helpful to first have a look at
the derivatives of the double gyre field, which is given by Eq. (4.2) and visualised in figure 4.4,
when it is interpolated with splines of different order n. In order to do that, a short trajectory
starting from x0 = (x0, y0) = (0.1, 0.2) was simulated from time t0 = 0 to time t = 5, using RK4
with a fixed time step h = 0.005. Then the velocity field was evaluated and differentiated at every
position (x, y) in the trajectory. For each interpolation scheme the partial derivatives ∂mvx/∂x

m

and ∂mvy/∂y
m of the interpolated field were computed, where m ≤ n− 2.

RectBivariateSpline, which was used to interpolate Eq. (4.2), has an associated method call .
The call method has the option to evaluate the interpolated field itself as well as its derivatives
up to and including order n−2, where n is the order of the field. Recall that for a spline interpolation
scheme of order n, derivatives up to and including order n−2 are continuous. The call method
was therefore used to evaluate the field and compute its continuous derivatives. The derivative
of order n − 1 was then computed from the derivative of order n − 2 (or the field itself for linear
splines) using forward finite differences.

Figure 4.6 shows the components vx and vy of the double gyre field, as well as the first order partial
derivatives ∂vx/∂x and ∂vy/∂y, when the field is interpolated with linear spline interpolation. The
dashed lines indicate the positions of cell borders. We recall that linear interpolation has a discon-
tinuous first order derivative, and that since the knots are at the data points the discontinuities
can be expected to be at the grid cell boundaries. The bottom panels of figure 4.6 confirms this.

Figure 4.6: The components vx and vy of the double gyre field given by Eq. (4.2) and their partial
derivatives, when interpolated using linear spline interpolation.

Using quadratic spline interpolation, we expect from the theory in section 2.2.2 that the first order
derivative is continuous, but the second order derivative is not. Figure 4.7 shows the components
vx and vy of the velocity field (top row) as well as the partial derivatives ∂vx/∂x, ∂vy/∂y (middle
row), and ∂2vx/∂x

2, ∂2vy/∂y
2 (bottom row). As expected, the first order partial derivatives are

continuous and the second order partial derivatives are discontinuous. Notice that the discontinu-
ities are at the midpoint between the cell boundaries, just like they are at the midpoint between
data points in the bottom panel of figure 2.4 in section 2.2.2.

Using cubic spline interpolation we expect from the general theory in section 2.2.3 that the first
order derivative is smooth and continuous, and that the second order derivative is continuous, but
not smooth. Furthermore, we expect that the third order derivative is discontinuous at the cell
borders. Figure 4.8 shows the components vx and vy of the field (top panel), as well as the partial
derivatives up to order 3. As expected, the third order partial derivatives ∂3vx/∂x

3 and ∂3vy/∂y
3
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are discontinuous at the cell boundaries.

Figure 4.7: The components vx and vy of the double gyre field given by Eq. (4.2) and their partial
derivatives, when interpolated using quadratic spline interpolation.

Figure 4.8: The components vx and vy of the double gyre field given by Eq. (4.2) and their partial
derivatives, when interpolated using cubic spline interpolation.

Quintic spline interpolation is of order 6, and should therefore have 4 continuous derivatives. Like
for the other interpolation schemes of even order the discontinuities in the first discontinuous
derivative should be at the cell boundaries. Figure 4.9 shows the components of the velocity field
and it’s derivatives. Again, results correspond well with theory.

One thing to note about the discontinuous derivatives in figures 4.6, 4.7, 4.8, and 4.9 is that they
are not piecewise constant, as one might expect from section 2.2 and the plots of the derivatives
therein. The reason for this is that when moving along the trajectory the position changes in both
the x- and the y-direction at the same time. If instead one had kept e.g. y constant and moved
only in the x-direction, then the (n− 1)th derivative of vx would be piecewise constant.
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Figure 4.9: The components vx and vy of the double gyre field given by Eq. (4.2) and their partial
derivatives, when interpolated using quintic spline interpolation.
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4.2.2 Reference Solutions

The ODE

dx

dt
= f(x, t),

where f is the double gyre field given by Eq. (4.2), has no known analytical solution. In order to
estimate the errors of the numerical solutions in the next section one must therefore approximate
the exact solution, x(t), by a numerically computed reference solution, xref, as was explained in
section 3.3. The error estimate Eest given by Eq. (3.11) is only a good approximation to the true
error Etrue = xN − x(tN ), where xN is the numerically computed result after N steps, and x(tN )
is the exact solution at t = tN , if the error of the reference solution xref, given by Eq. (3.10), is very
small. That is, in order to obtain an acceptable estimate Eest of the global error of a numerically
computed solution xN one must compute a reference solution xref with a global error Eref that is
as small as possible.

The reference solutions in this section are computed using RK4 with a small time step h0. Recall
from section 3.3 that when the step size h is small enough the global error is dominated by the
roundoff error, so one must be cautious when selecting h0 for the reference solution. In order to
find an appropriate choice for h0 the global error of RK4 is plotted as a function of step size h in
figure 4.10, for a function with a known analytical solution.

Figure 4.10: Global error as a function of time step h for RK4.

The dashed line in figure 4.10 indicates a slope proportional to h4, and it is clear that the error
scales with h4 as expected until h ≈ 0.0004. Beyond this point the roundoff error starts to dominate
and reducing the step size further makes the error increase rather than decrease. Based on this
result, the step size h0 for the reference solution xref was chosen to be h0 = 0.0004 in order to get
a reference solution that is as accurate as possible. With this h0 the global error of the reference
solution, given by Eq. (3.10), should be small enough to make the global error estimate given by
Eq. (3.11) a good approximation to the true global error of the numerically computed solution.
Note that since different orders of interpolation result in different solutions between the given data
points, the same reference solution cannot be used in all cases. Therefore, a new reference solution
was computed for each order of interpolation and for every new initial position, in each case using
RK4 with a fixed step size h0 = 0.0004.
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4.3 Accuracy and Performance

In this section the results comparing the accuracy and performance of the special-purpose integ-
rators to their regular counterparts are presented. Section 4.3.1 will present and discuss the results
for the two RK4 methods, section 4.3.2 will present and discuss the results for the two DOPRI5
methods, and section 4.3.3 will discuss how all four methods compare to each other.

4.3.1 RK4

Figure 4.11 illustrates how the regular RK4 method (labelled RK4 (r) in the figures in this section)
crosses cell boundaries compared with how the special-purpose RK4 method (labelled RK4 (s-p)
in the figures) crosses cell boundaries. The horizontal and vertical lines in the plots indicate where
the borders are, and the crosses (RK4 (r)) and dots (RK4 (s-p)) mark the position of each step.
As expected, the special-purpose RK4 method ensures that integration is stopped and restarted
exactly at cell boundaries, while the regular RK4 method simply steps across them.

Figure 4.11: Example of cell border crossing in a trajectory computed using the regular RK4
method (left) and the same cell borders crossed in a trajectory using the special-purpose RK4
method (right). The horizontal and vertical lines indicate cell borders. In both cases the field was
interpolated using linear spline interpolation.

To compare the accuracy of the two methods, the global error is plotted as a function of time
step h for each method and each interpolation scheme. As described in section 3.3, the global
error is approximated by Eq. (3.11), i.e. by comparing the numerical result to a reference solution
obtained by solving Eq. (4.2) using RK4 with the small time step h0 = 0.0004 found in section
4.2.2. Figure 4.12 shows the result when the field is interpolated using linear (fig. 4.12a), quadratic
(fig. 4.12b), cubic (fig. 4.12c), and quintic (fig. 4.12d) spline interpolation. The dashed lines are
included to indicate slope.

In the case of linear spline interpolation it is clear that the regular RK4 method performs worse
than the special-purpose RK4 method in terms of global error at the end of computations. The
global error of the regular RK4 method scales with h2, meaning that combined with linear spline
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(a) Linear (b) Quadratic

(c) Cubic (d) Quintic

Figure 4.12: Global error versus time step h for regular and special-purpose RK4 combined with
different orders of spline interpolation.
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interpolation, this method is effectively 2nd-order accurate. The special-purpose method, on the
other hand, scales with h3, meaning that it is effectively 3rd-order accurate when combined with
linear spline interpolation. This makes sense, because by stopping and restarting at the cell
boundaries each step is computed without stepping over any discontinuities, as was explained in
section 2.3. Recall from figure 4.6 that the first order derivatives are discontinuous at the cell
boundaries. The derivative then becomes effectively continuous within each step, and as a result
we can expect accuracy of higher order compared to the regular method that is stepping over the
discontinuities.

Increasing the degree of interpolation by one, to quadratic interpolation, it is reasonable to expect
that the order of accuracy of the regular RK4 method also increases. In this case the interpolated
field has first-order derivatives that are continuous at cell borders. Second-order derivatives exist,
but they are not continuous. Figure 4.12b shows the plot of global error versus time step h when
the field is interpolated using quadratic spline interpolation. The blue dashed line is proportional
to h3. One can see that the regular RK4 method now scales with h3.

Recall from figure 4.7 that the discontinuities in the derivatives of the velocity field are shifted
to the midpoints between cell boundaries when the field is interpolated using quadratic spline
interpolation. Therefore, the lines that the special-purpose method interpret as cell boundaries are
shifted by 1/2 grid spacing when quadratic spline interpolation is used, so that integration will still
be stopped and restarted at the discontinuity. Figure 4.13 shows the same part of the trajectory as
figure 4.11, with the only difference being that in figure 4.13 the velocity field is interpolated using
quadratic spline interpolation and in figure 4.11 it is interpolated using linear spline interpolation.
The vertical dashed line in figure 4.13 indicates the shifted position of the cell boundary.

Figure 4.13: Example of cell border crossing in a trajectory computed using the regular RK4
method (left), and the same cell borders crossed in a trajectory computed using the special-
purpose RK4 method (right). In both cases the field was interpolated using quadratic spline
interpolation. The horizontal and vertical solid lines indicate the actual cell boundaries, and the
dashed line indicates the position that the solver interprets as a cell boundary when quadratic
spline interpolation is used.

One can see in figure 4.13 that the special-purpose method now stops at the shifted boundary
instead of the actual boundary, while the regular method steps over both. As a result one would
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expect the special-purpose method to be more accurate, and looking back at figure 4.12b again,
one can see that this is true. With quadratic spline interpolation, the global error of the special-
purpose RK4 method scales with h4, making it effectively 4th-order accurate, which is the highest
order one can expect for RK4.

With cubic spline interpolation figure 4.8 showed that partial derivatives of the interpolated double
gyre field are continuous up to, but not including, order three. The third-order partial derivatives
are discontinuous at the cell borders, just as predicted from the theory in section 2.2.3, and the
special-purpose solver will again stop and restart integration at the cell boundaries. As figure 4.12c
shows, the increased order of interpolation once again leads to an increase in order of accuracy for
the regular RK4 method. For the special-purpose method the order remains the same, meaning
that the global error of both methods now scales as h4. Comparing with the results for linear and
quadratic spline interpolation these results are not surprising, but recalling the theory in section 2.3
one might find them to be a little unexpected.

The substance of section 2.3 was that one cannot expect order p accuracy of a numerical integration
method unless the derivatives of the right hand side f of the ODE exist and are continuous up
to and including order p. Looking back at the results so far in this section it is clear that none
of them actually comply with this. Specifically, theory would suggest that one should not expect
higher order of accuracy than 2 with cubic splines, since f then only has continuous derivatives
up to and including order 2. Still, the results presented here show that 4th-order accuracy is
achieved with cubic interpolation. This indicates that order p accuracy is only guaranteed with
p continuous derivatives, but it can be achieved even with discontinuities. Results from similar
computations in [24] and [48] have followed the same pattern as here, although they provide no
theoretical explanation for why. For future research on the topic it would be very interesting to
try to find the reason.

The aforementioned theory predicts that quintic spline interpolation is the first order of spline
interpolation that has enough continuous derivatives to guarantee 4th-order accuracy. Since 4th-
order accuracy is achieved already at two orders lower, it could be interesting to see if the two
interpolation schemes give any difference at all in accuracy with RK4. Figure 4.12d shows how the
global error scales with time step h when using quintic spline interpolation. Comparing figures 4.12c
and 4.12d one can see that there is hardly any difference between the two. The order is the same,
and the numerical value of the accuracy is about the same too.

Finally, it is interesting to have a look at the computational costs of the two methods. In this study
the number of calls to the function f on the right hand side of the ODE is chosen as a measure of
work, rather than the run time of the simulation. The reason for this choice is that the number
of function evaluations is a more objective measure. The run time would depend on the machine
used to run the simulations, and is more susceptible to variations. Furthermore, run time is in
practice proportional to the number of function calls (see [24]).

To investigate the computational costs of the methods, a general analysis of numerical error versus
the number of function calls is performed using a Monte Carlo approach. For each combination
of integration method and interpolation scheme an ensemble of 25 simulations is run, where each
simulation has a random initial position x0 and a random simulation time from t0 = 0 to tN , where
tN ∈ [1, 250]. Figure 4.14 shows the global error plotted versus the number of function calls for
the different interpolation schemes. Every dot/cross in the figure marks the global error and the
number of function evaluations for one ensemble member. The time step is kept fixed at h = 0.01
for all simulations.

With a regular fixed-step Runge-Kutta integrator the number of steps is given by N = (tN − t0)/h,
and the number of function calls is given by sN , where s is the number of stages. This means that
the number of function calls only depends on the duration of the simulation, and the interpolation
scheme should not matter. With the special-purpose fixed-step solver constructed here, the number
of function calls also depends on how many cell boundaries are crossed, which in turn depends
on the initial position in addition to the duration of the simulation. Again, interpolation scheme
should not matter. The result in figure 4.14 confirm this - the interpolation scheme does not seem
affect the average number of function evaluations for either of the two methods.

40



(a) Linear (b) Quadratic

(c) Cubic (d) Quintic

Figure 4.14: Global error versus number of function evaluations for regular and special-purpose
RK4 combined with different orders of spline interpolation.
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Furthermore, one can see that the results in figure 4.14 seem to agree well with the results in
figure 4.12. Figure 4.14a shows that with linear spline interpolation the average global error is
lower for the special-purpose RK4 method than for the regular RK4 method, which is as expected
from figure 4.12a. The same goes for quadratic spline interpolation (fig. 4.14b), for which we also
expect from figure 4.12b that the special-purpose method has a higher accuracy. The results for
cubic and quintic splines in figures 4.14c and 4.14d show that the average global error is about the
same for the two methods, which is as expected from the plots in figure 4.12c and figure 4.12d.

To summarise this section one can say that for the lower-order interpolation schemes the special-
purpose RK4 methods do increase the order of accuracy. This improvement does come at the
cost of a few more function evaluations, but the difference is so small it is virtually negligible.
When the velocity field is interpolated using linear or quadratic spline interpolation one can thus
conclude from these results that the special-purpose RK4 method is a better choice than its reg-
ular counterpart. For cubic and quintic spline interpolation, on the other hand, results show no
difference in the accuracy of the two methods. In fact, it was found that 4th-order accuracy of the
regular RK4 method was obtained for order 4 (cubic) spline interpolation, which is contrary to
what theory predicts. 4th-order accuracy was also obtained for the special-purpose method with
order 3 (quadratic) spline interpolation. Since the special-purpose method adjusts its steps so that
the velocity field is effectively continuous within each step it makes sense that 4th-order accuracy
is obtained at a lower order interpolation scheme than for the regular method.

4.3.2 DOPRI5

The variable step Dormand-Prince 5(4) (DOPRI5) method (and other similar methods) has an
error-estimation routine implemented in the step size selection algorithm (see section 2.1.3). When
a variable step method crosses a cell border it will find that the error estimate is much larger due
to the discontinuity. As a result, it will reduce the step size and keep reducing it until the step is
small enough to yield an acceptable error estimate.

Many rejected steps means many extra function calls and hence much wasted computational work.
As mentioned in section 3.2.2, the hope for the special purpose variant is that the computational
work saved by increasing the probability that steps close to cell borders will be accepted, will be
enough to make up for the extra computational work associated with the event location procedure.

To begin this section it is once again natural to investigate whether the special-purpose method
actually does what it is supposed to do. Figure 4.15 shows an example of how the two methods
handle the same border crossings as in figure 4.11, when the velocity field is interpolated using
linear spline interpolation. The left plot shows the trajectory computed with the regular DOPRI5
method (labelled DOPRI5 (r) in the figures in this section) and the right plot shows the trajectory
computed with the special-purpose method (labelled DOPRI5 (s-p) in the figures). Once again
the lines in each plot indicate the cell borders, and the crosses (DOPRI5 (r)) and dots (DOPRI5
(s-p)) mark the position of each (accepted) step. All the results for the DOPRI5 methods in this
chapter are created with tolerances Atol = Rtol = 1 · 10−10 in the step size control procedure.

Looking at figure 4.15 it is immediately clear that at least in this exact region of the trajectory,
the regular DOPRI5 method takes more steps than the special purpose DOPRI5 method before
the cell boundaries. A possible (and probable) explanation why the regular method takes more
steps before the boundary is that it requires more tries to find an accepted step that crosses the
border. If the first attempted step is rejected, the next attempt will be a shorter step. If this is
rejected too, the next attempt will be an even shorter step. It might eventually happen that an
attempted step is short enough to not cross the border, in which case it is likely to be accepted
since it is presumably quite short. Once that happens, the next step will be a little longer, and
if it is long enough to cross the border, the whole process will start over again. This pattern will
continue until one step is eventually short enough to be accepted even though it steps over the
discontinuity at the cell border. In contrast, for the special-purpose method, if a step is found to
cross a cell boundary it will be adjusted so that it stops at the boundary, making it more probable
that it will be accepted.
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Figure 4.15: Comparison of trajectory computed with regular DOPRI5 method (left) and the
special-purpose DOPRI5 method (right), when the velocity field has been interpolated using linear
spline interpolation. The horizontal and vertical line represent grid boundaries.

The bottom plot of figure 4.16 supports the suggested explanation above. The plot compares the
number of rejected steps as a function of simulation time t for the regular and the special-purpose
DOPRI5 method, when using linear spline interpolation. It is clear that the regular DOPRI5
method rejects far more steps than the special-purpose method. The difference is of about one
order of magnitude. These two results (the plot of accepted steps in figure 4.15 and the number
of rejected steps in figure 4.16) indicate that the special-purpose method does what it is supposed
to do.

Figures 4.17, 4.18, and 4.19 show the same as figure 4.16, only for quadratic, cubic, and quintic
spline interpolation, respectively. One can see that the total number of rejected steps generally
decreases as the interpolation order increases, and that for both cubic and quintic spline interpola-
tion there is hardly any difference between the two methods. In light of the results and discussion
in section 4.3.1 this makes sense. If the order of accuracy increases with increasing order of inter-
polation, one would expect the number of rejected steps to go down, which is exactly what one
finds in these results.

Furthermore, by comparing figures 4.16, 4.17, 4.18, and 4.19 one also notices that the gap between
the number of rejected steps between the two methods becomes smaller as the interpolation order
increases, and that for cubic and quintic spline interpolation there is essentially no difference
between the two methods. This indicates that there is no difference in the order of accuracy
of DOPRI5 between cubic and quintic spline interpolation. Based on the results in the previous
section one might have expected there to be a difference, but according to theory 5th-order accuracy
can only be guaranteed with a 7th-order spline interpolation scheme, and we recall that quintic
spline interpolation has order 6. Hence, there is no guarantee that there will be a difference in the
results obtained with cubic and quintic spline interpolation.

From the discussion so far in this section one may thus conclude that steps taken with the special-
purpose DOPRI5 method do have a higher probability of being accepted around grid cell bound-
aries, as predicted in section 3.2.2, but only for the two lower-order interpolation schemes. For
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cubic and quintic spline interpolation, there seems to be no difference between the two methods.
What remains at this point is to find out if the reduction in the number of rejected steps is enough
to reduce the overall computational cost.

We recall from section 3.2.2 that the event location procedure requires a little more computational
work in terms of function evaluations. With the special-purpose DOPRI5 method the field f is
evaluated 7 times more each time the bisection method is called, followed by an additional 7 times
to compute a new step with the adjusted time step hadj. Recall also that there still is a small chance
that even the adjusted step can be rejected in the step size selection routine. In comparison, each
rejected step only means 7 additional function evaluations. To investigate if the reduced number
of rejected steps is enough to make the computations more computationally efficient, consider the
top panels in figures 4.16, 4.17,4.18, and 4.19.

The top panels in figures 4.16, 4.17, 4.18, and 4.19 show the number of function evaluations as a
function of the simulation time t = tN . The results show that the special-purpose DOPRI5 method
generally evaluates the function f more often than the regular DOPRI5 method does, except for
when linear spline interpolation is used. However, in each case the difference is of less than one
order of magnitude. Since the difference is so small one could thus argue that the extra work is in
most cases worth it if it involves an increase in accuracy.

Figure 4.16: Number of function calls (top) and number of rejected steps (bottom) as a function of
simulation time t for the regular and the special purpose Dormand-Prince 5(4) method combined
with linear spline interpolation.
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Figure 4.17: Number of function calls (top) and number of rejected steps (bottom) as a function of
simulation time t for the regular and the special-purpose DOPRI5 method combined with quadratic
spline interpolation.

Figure 4.18: Number of function calls (top) and number of rejected steps (bottom) as a function
of simulation time t for the regular and the special-purpose DOPRI5 method combined with cubic
spline interpolation.
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Figure 4.19: Number of function calls (top) and number of rejected steps (bottom) as a function of
simulation time t for the regular and the special-purpose DOPRI5 method combined with quintic
spline interpolation.
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(a) Linear (b) Quadratic

(c) Cubic (d) Quintic

Figure 4.20: Global error versus number of function evaluations for regular and special-purpose
DOPRI5 combined with different orders of spline interpolation.

Figure 4.20 shows plots of the global error versus the number of function evaluations for all the
different interpolation schemes. These plots are created with the same Monte Carlo approach as
in figure 4.14. That is, for each combination of integration method and interpolation scheme an
ensemble of 25 simulations is run, where each simulation has a random initial position x0 and a
random simulation time from t0 = 0 to tN , where tN ∈ [1, 250]. Every dot/cross marks the global
error and the number of function evaluations for one ensemble member.

With linear spline interpolation (fig. 4.20a) it is clear that the special-purpose DOPRI5 method
generally produces more accurate results, and even does so at a lower computational cost. With
quadratic spline interpolation it is clear that the computational cost of the special-purpose method
is a little higher than that of the regular method, but again the difference in the number of
function evaluations is of less than one order of magnitude. In comparison, the difference in global
error is of about two orders of magnitude, and in this area it is the special-purpose method that
emerges victoriously. Moving on to cubic and quintic spline interpolation (fig. 4.20c and fig. 4.20d,
respectively) one can see that the average error of the two methods is approximately the same in
both cases. For both interpolation schemes it is also clear that the special-purpose method is a
little more computationally costly. Given the previous results in this section and in section 4.3.1
this is not surprising. In in total we find that in light of the results in figure 4.12 and section 4.3.1
in general, all the results in figure 4.20 make sense.

To summarise this section one one could say that once again the special-purpose method performs
slightly worse in terms of computational effort than its regular counterpart, with linear spline
interpolation being the only exception. In terms of accuracy, on the other hand, the special-
purpose method performs better than its regular counterpart when combined with both linear and
quadratic spline interpolation. With cubic and quintic spline interpolation, both variants provide
the same accuracy, and one would be better off choosing the regular DOPRI5 method as this is
the least computationally expensive even if it is by just a small amount.
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As a final comment on this section, recall that DOPRI5 was not implemented with FSAL in this
work, so the total number of function evaluations could have been somewhat lower than it is in
the results presented here. However, this choice does not affect the accuracy of either variant, and
neither does it affect the relative difference in computational work between the two variants.

4.3.3 RK4 vs. DOPRI5

This section will discuss which method is the best for each interpolation scheme, and also which
combination of method and interpolation scheme seems to be the best overall. For discussions
on why the individual methods perform as they do in each case please refer to section 4.3.1 and
section 4.3.2 as this will not be discussed here. Note also that the comparisons in this section will
be based only on RK4 with step size h = 0.01, since that was the value of h that was used to
create the plots in figure 4.14 in section 4.3.1, and tolerances Atol = Rtol = 1 · 10−10 for DOPRI5.
Other values of h will yield different numerical values for the global errors, as figure 4.12 shows.
A smaller h will also mean more steps and hence more function evaluations. Other tolerances for
DOPRI5 will also affect the results.

Consider linear spline interpolation first. Figure 4.21 shows plots of global error versus number of
function evaluations for all four methods combined with linear spline interpolation. The data in
these plots are the same as in 4.14a and figure 4.20a in the two preceding sections, but here they
are plotted with the same axes for easier comparison. Furthermore, the numerical values for the
average global error and number of function calls in each case is provided in table 4.1.

Figure 4.21: Global error versus number of function evaluations for regular and special-purpose
methods combined with linear spline interpolation. Left: RK4. Right: DOPRI5.

Table 4.1: Linear spline interpolation: Average values for the global errors and number of function
evaluations in figure 4.21.

RK4 (r) RK4 (s-p) DOPRI5 (r) DOPRI5 (s-p)
Function evaluations 53 926.72 49 011.68 36 810.24 20 434.16

Global error 6.0205 · 10−7 1.6024 · 10−9 3.0814 · 10−6 1.7281 · 10−7

It is clear from figure 4.21 and table 4.1 that the method that on average gives the best accuracy
is the special-purpose RK4 method, with an average accuracy approximately equal to 10−9. With
these parameters the RK4 methods are generally more computationally costly than the DOPRI5
methods, but on the other hand they are also more accurate. Looking at the numerical values in
table 4.1 one can see that the special-purpose RK4 method requires approximately 2.5 times more
function evaluations than the special-purpose DOPRI5 method, which is the most computation-
ally efficient method under the conditions used here. However, the error for the special-purpose
DOPRI5 method is approximately 100 times bigger than for the special-purpose RK4 method, and
one can conclude that the increase in computational cost is worth it when the error should be as
small as possible. The regular methods are both less accurate than their special-purpose counter-
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parts, and overall, with these parameters the regular DOPRI5 method is the one that performs
the worst when combined with linear spline interpolation.

Figure 4.22: Global error versus number of function evaluations for regular and special-purpose
methods combined with quadratic spline interpolation. Left: RK4. Right: DOPRI5.

Table 4.2: Quadratic spline interpolation: Average values for the global errors and number of
function evaluations in figure 4.22.

RK4 (r) RK4 (s-p) DOPRI5 (r) DOPRI5 (s-p)
Function evaluations 41 260.80 67 696.32 14 268.00 20 973.16

Global error 7.5164 · 10−9 9.1737 · 10−10 3.2543 · 10−5 1.4520 · 10−7

For quadratic spline interpolation, results are presented in figure 4.22 and table 4.2. From fig-
ure 4.22 it is immediately clear that the RK4 methods are more accurate than their DOPRI5
counterparts. They are however also the most computationally expensive. With these paramet-
ers the special-purpose DOPRI5 obtains approximately the same accuracy as the regular RK4
method, but it requires less than half the number of function evaluations to get there. The regular
DOPRI5 performs the worst overall in this simulation ensemble, with an average global error that
is 5 orders of magnitude larger than the average global error of the overall best method, which is
the special-purpose RK4 method.

Results for cubic spline interpolation are presented in figure 4.23 and table 4.3. Once again, it
seems that with these parameters both RK4 methods are superior to the DOPRI5 methods in
terms of accuracy, with an average global error that is smaller by several orders of magnitude.
From figure 4.23 it is not as easy to say which RK4 method is the better choice, but looking
at the numerical values in table 4.3 one can see that the regular method requires slightly fewer
function evaluations to obtain approximately the same accuracy. To get the most accurate result,
the regular RK4 method would thus be the best choice. However, even from figure 4.23 one can
tell that under the conditions applied here the regular DOPRI5 method is noticeably better than
all the other methods in terms of the number of function evaluations. If the accuracy provided by
this method is sufficient it is then easy to argue that it is the optimal choice.

Table 4.3: Cubic spline interpolation: Average values for the global errors and number of function
evaluations in figure 4.23.

RK4 (r) RK4 (s-p) DOPRI5 (r) DOPRI5 (s-p)
Function evaluations 50 090.40 56 146.24 10 780.32 17 169.36

Global error 7.6412 · 10−10 8.7483 · 10−10 1.1350 · 10−7 1.2164 · 10−7

Figure 4.24 and table 4.4 present the results for quintic spline interpolation. Just like in section 4.3.1
and section 4.3.2 the results are very similar to those for cubic spline interpolation. The conclusion
for quintic spline interpolation will thus be the same as for cubic spline interpolation, namely that
the regular DOPRI5 method is a good choice if one wishes to minimise the computational cost,
but that with these parameters both RK4 methods provide a more accurate result. Out of the
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Figure 4.23: Global error versus number of function evaluations for regular and special-purpose
methods combined with cubic spline interpolation. Left: RK4. Right: DOPRI5.

two RK4 methods one could argue that the regular method is the better choice, since it requires
slightly fewer function evaluations, even though the difference is so small it is practically negligible.

Figure 4.24: Global error versus number of function evaluations for regular and special-purpose
methods combined with quintic spline interpolation. Left: RK4. Right: DOPRI5.

Table 4.4: Quintic spline intepolation: Average values for the global errors and number of function
evaluations in figure 4.24.

RK4 (r) RK4 (s-p) DOPRI5 (r) DOPRI5 (s-p)
Function evaluations 51 548.64 52 535.04 11 091.68 22 278.52

Global error 7.0798 · 10−10 7.0950 · 10−10 1.8831 · 10−7 1.2341 · 10−7

In total, the best accuracy with the parameters used here is obtained with the two RK4 methods
in combination with either cubic or quintic spline interpolation. With these interpolation schemes
the error is of the same order of magnitude for both of these methods, so one may argue that
the regular RK4 method is the better choice since it requires fewer function evaluations than the
special-purpose RK4 method. In terms of computational cost the results presented here indicate
that DOPRI5 is usually the best choice. The regular DOPRI5 method is the least computationally
costly option when combined with quadratic, cubic, and quintic spline interpolation, and the
special-purpose DOPRI5 method is the least costly when combined with linear spline interpolation.
Hence, if a somewhat lower accuracy can be accepted then the regular DOPRI5 method could be
a good option. Note however that the relative decrease in computational effort is much smaller
than the relative decrease in accuracy, meaning that the overall best choice would still be RK4
combined with cubic or quintic spline interpolation.
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Chapter 5

Conclusion

The aim of this study has been to construct special-purpose methods for numerical integration to
solve of ODEs on the form

dx

dt
= f(x, t), x(t0) = x0.

The solution x(t) of the ODE is a trajectory, and the special-purpose methods make use of an
event location procedure to find the exact time at which a specified event occurs on this trajectory.
The main idea was to apply the methods to ODEs in which the rate of change f is given by an
interpolated velocity field. When the field is interpolated from a set of given data points using nth-
order spline interpolation, its (n− 1)th derivative will be discontinuous. Theory states that these
discontinuities could affect the order of accuracy of a numerical integration method if its order,
p, is higher than n − 2, where n is still the order of the spline interpolation scheme. With spline
interpolation the positions of the discontinuities are known, and the special-purpose methods are
constructed to stop and restart integration at these positions. This stopping and restarting makes
the interpolated field continuous within each step, and as a result the order of accuracy can be
expected to be higher than if the discontinuities are stepped over.

This study was based on the work of Nordam and Duran presented in [24]. Their study was
about discontinuities in interpolated velocity fields, but they only considered discontinuities in the
temporal dimension, since they are easier to deal with. This work, on the other hand, handles
discontinuities only in the spatial dimensions, and can thus be regarded as a supplement to their
article.

The special-purpose methods were constructed with two Runge-Kutta methods as a starting point.
One is the most common 4th-order method, referred to here as RK4, and the other is the embed-
ded Dormand-Prince pair of order 5(4), referred to here as DOPRI5. RK4 and its special-purpose
variant were implemented with a fixed time step h, while DOPRI5 and its special-purpose variant
were implemented with a variable time step. The performance of the four methods was compared
by applying them to an interpolated form of the two-dimensional double gyre vector field. The field
was interpolated using linear spline interpolation, quadratic spline interpolation, cubic spline in-
terpolation, and quintic spline interpolation, which have orders 2, 3, 4, and 6, respectively. Results
of the comparison of the performance of the methods were presented in chapter 4. Performance
was assessed by examining the accuracy of the final result, measured by global error, and the
computational cost, measured by the number of calls to the function f describing the right-hand
side of the ODE.

For linear spline interpolation it was found that both special-purpose methods improved accuracy
by several orders of magnitude compared to each of their regular counterparts. Figure 4.12a also
shows that the special-purpose RK4 method obtained 3rd-order accuracy when combined with
linear spline interpolation, while the regular RK4 method only obtained 2nd-order accuracy. The
increase in accuracy did come with a small increase in the number of function evaluations for the
special-purpose RK4 method, however, the gain in accuracy was big enough in comparison with
the increase in computational effort that one can argue that it is worth it. For DOPRI5 with
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tolerance Atol = Rtol = 10−10, the special-purpose method was found to be less costly than its
regular counterpart, and in fact it was also the least costly overall when compared to the RK4
methods with fixed h = 0.01. Still, the gain in computational efficiency was not enough to make
up for the loss in accuracy, so it was concluded that the special-purpose RK4 method would be
the best option, at least with the parameters used to create those results.

For quadratic spline interpolation, results found that the special-purpose RK4 method increased
the order of accuracy as compared to its regular counterpart. Specifically, the special-purpose RK4
solver was found to be 4th-order accurate when combined with quadratic spline interpolation, while
the regular RK4 method was only 3rd-order accurate. For DOPRI5 the special-purpose variant also
improved accuracy by two orders of magnitude, and would be the best option of the two variants
in spite of a small increase in the computational cost. When comparing DOPRI5 with tolerance
Atol = Rtol = 10−10 to RK4 with fixed h = 0.01 it was concluded that the best option was the
special-purpose RK4 method, as it was the most accurate by several orders of magnitude. Again,
the special-purpose RK4 method was somewhat more expensive in terms of function evaluations,
but not enough to outweigh the gain in accuracy.

Results were found to be almost indistinguishable for cubic and quintic spline interpolation. For
RK4 both variants turned out to be 4th-order accurate when combined with both cubic and quintic
spline interpolation, but the special-purpose method was again found to be a little more expensive
in terms of function evaluations. The difference was however so small that it is practically negligible.
For DOPRI5 too the results from both methods were of approximately the same accuracy, but the
special-purpose method required a noticeably larger number of function evaluations in both cases.
With a fixed step size h = 0.01 the RK4 solvers, and in particular the regular variant, were overall
found to be the better choice when compared to the variable-step DOPRI5 methods with tolerance
Atol = Rtol = 10−10, since they were more accurate by several orders of magnitude, and only
slightly more computationally costly.

From the results in chapter 4 one may thus conclude that compared to their regular counterparts
the special-purpose methods improve performance as defined here when combined with linear or
quadratic spline interpolation. With both these interpolation schemes the solver that gave the
best performance overall was the special-purpose RK4 method, at least for h = 0.01. Quadratic
spline interpolation is not commonly used in practice, but the combination of RK4 and linear
interpolation is quite common [50, 51, 52]. Hence, these results are potentially quite valuable in
transport problems in the ocean or the atmosphere, and in other applications where trajectories
are computed from a discrete velocity field.

For cubic and quintic spline interpolation the unaltered methods provided the same accuracy
as their corresponding special-purpose variants at a lower computational cost. Again, the RK4
methods with h = 0.01 were found to be superior in terms of accuracy, and it was concluded
that the best option was the regular RK4 method for both cubic and quintic spline interpolation
with the parameters used in these computations. RK4 with cubic/quintic spline interpolation also
gave the overall best result, with the lowest global error, although the same global error was also
obtained using the special-purpose RK4 method and quadratic spline interpolation.

5.1 Future Work

This study found that using fixed-step RK4 instead of variable-step DOPRI5 is usually a good
choice, provided that one chooses the right step size h for RK4. However, since the study only
compared the two methods for one step size h and one value for the tolerances in DOPRI5, there is
not enough data to draw a general conclusion. For a future study on this topic it would therefore
be interesting to investigate this further, and perhaps try to find the ranges in h and Atol and
Rtol for which the results will be the same as here, and the ranges for which perhaps DOPRI5
might be a better choice. Such a study should also implement FSAL in DOPRI5. It could also be
interesting to include other solvers of different orders in a future study.

Furthermore, it would be interesting to see if it is possible to achieve 4th-order accuracy of RK4
using linear spline interpolation and a special-purpose variant like the one constructed here. In
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theory, this should be possible if one can manage perfectly to avoid stepping over discontinuities.

Finally, it would also be very interesting to try to implement the event location procedure used
here in the Fortran code that was created and used by Nordam and Duran in [24]. This code can be
found at [53]. With the event location procedure successfully implemented one could then use the
new special-purpose solvers to conduct a follow-up study similar to the work presented here and
in [24]. The results of such a study could lead to increased accuracy and/or reduced computational
costs, and would therefore be of some interest to practitioners in applied oceanography.
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Appendix

A Root-Finding Methods

An iterative root-finding method in computational mathematics is used to find the value x∗ = r
that makes f(r) = 0 for some function f(x). This appendix will present two such methods, where
the first one is the one used in this work.

The Bisection Method

The idea of the bisection method is to bracket the root r of the function f(x) by enclosing it in an
interval [a, b] where the length |b− a| of the interval goes to zero.

With a and b being the endpoints of an interval containing the root, the algorithm for the bisection
method for some function f(x) can be written as

while (b−a )/2 > t o l :
c = ( a+b)/2
i f f ( c ) = = 0 :

r = c
i f f ( a )∗ f ( c ) < 0 :

b = c
else :

a = c
r = c

where then r is the approximation to the root r to within a given tolerance tol.

The challenge with the bisection method is that if there is more than one root in the initial interval,
it might fail. If there is only one root it will always converge, as opposed to Newton’s method.
In the cases considered here there is only one root x∗ between the points xn and xn+1 and the
bisection method works just fine.

Newton’s method

The principle of Newton’s method is illustrated in figure A.1. Starting with a first guess x0 for the
root r, we find the tangent line at the function evaluated at x0, follow it until it intersects with
the x-axis, and use the value of x at the intersection as the next approximation x1. The equation
for the tangent line at a point x0 is given by

y(x) = f(x0) + f ′(x0)(x− x0).

The intersection with the x-axis happens at y = 0, so letting y(x1) = 0 and solving for x1 we find
the expression

x1 = x0 −
f(x0)

f ′(x0)
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for the next approximation x1. The procedure is then repeated until convergence is reached. For
n+ 1 steps the procedure can be written as follows.

x0 = initial guess

x1 = x0 −
f(x0)

f ′(x0)

...

xn+1 = xn −
f(xn)

f ′(xn)

Convergence can be defined as when the difference between to subsequent approximations yi,yi+1

is smaller than some set tolerance tol, or, mathematically, |yi+1 − yi| ≤ tol.

Figure A.1: Graphical illustration of Newton’s method

The challenge with Newton’s method is that it does not converge for all initial guesses x0, but as
long as x0 is close enough to the root it will usually converge.
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