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Abstract

Following the discovery of multiband superconductivity in the class of materials knows as iron pnictides,
a series of theoretical and experimental studies have been published. Motivated by these discoveries and
seeking to expand the theoretical understanding of the iron pnictides, we investigate a superconductor
with three bands crossing the Fermi surface using mean-field theory. In this thesis, special emphasis is
placed on understanding the microscopic origins of phase frustration arising with competing Josephson
couplings internal to the superconductor because phase-frustrated superconductors can in some cases
enter quantum states which break time-reversal symmetry and have spontaneous local magnetism. By
deriving the generalized gap equations and free energy, we find that it is crucial to have three or more
bands and that certain conditions must be met by the Josephson couplings and intraband potentials for
there to be phase frustration. Some general combinations of microscopic parameters are shown to be
able to lead to time-reversal symmetry breaking, and an analytical expression explaining some previous
phenomenologically derived results is derived before performing numerical calculations. We find some
numerical results regarding the onset of time-reversal symmetry breaking which are similar to previous
studies, now through varying microscopic parameters and solving the gap equations directly. Finally,
we model tuning the chemical potential, making the superconductor go from two to three bands and a
time-reversal symmetry breaking state, thus giving a demonstration of how the densities of states at the
Fermi surface and having three or more bands are key to the novel superconducting states in the iron
pnictides.
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Sammendrag

En rekke teoretiske og eksperimentelle studier har blitt publisert som følge av oppdagelsen av superled-
ning i materialene ved navn jernpniktider. Med disse oppdagelsene som motivasjon og et mål om å utvide
den teoretiske forståelsen av jernpniktidene undersøker vi en superleder med tre energibånd som krysser
Fermiflaten på middelfeltnivå. På grunn av muligheten for kvantetilstander som bryter tidsinversjonssym-
metri og for spontant genererte lokale magnetfelt legger vi i denne oppgaven spesiell vekt på å forstå det
mikroskopiske opphavet til fasefrustrasjon forårsaket av konkurrerende interne Josephsonkoblinger i su-
perledere. Ved å utlede generaliserte gapligninger og fri energi demonstrerer vi at tre eller flere energibånd
i tillegg til visse vilkår for Josephsonkoblingskonstantene og intrabåndpotensialene er nødvendige for å få
fasefrustrasjon. Vi viser så at enkelte generelle kombinasjoner av de mikroskopiske teoriparametrene kan
føre til tidsinversjonssymmetribrudd og et analytisk uttrykk som forklarer et tidligere fenomenologisk
utledet resultat vises før vi går videre til numeriske beregninger. Vi presenterer noen resultater rundt når
en får tidsinversjonssymmetribrudd. Disse ligner andre studiers resultater, men denne gangen finnes de
ved å variere mikroskopiske parametre og gjennom å løse gapligningene direkte. Til slutt modellerer vi
hvordan en ved å øke det kjemiske potensialet kan få en superleder til å gå fra to bånd uten fasefrustrasjon
til tre bånd og en tidsinversjonssymmetrybrytende tilstand og viser derved hvordan tilstandstettheten ved
Fermiflaten og det å ha mer enn to bånd spiller nøkkelroller i de nye superledende tilstandene observert
i jernpniktider.
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Chapter 1

Introduction

1.1 Background and motivation
Due to its current and future enticing technological applications and richness in new physics to explore,
superconductivity attracts wide interest from scientists and laypeople alike. The research field has roots
going all the way back to the beginning of the last century, essentially to Onnes et al.’s 1911 discovery that
mercury exhibited a precipitous drop in DC resistance when cooled down to below the critical temperature
of Tc ≈ 4K [1]. It would later become clear that in addition to becoming a perfect conductor, there was
another characteristic behavior of superconductors: the expulsion of magnetic field lines from all of the
superconductor except for a thin outer layer. This phenomenon, which only occurs for magnetic field
strengths below a certain threshold, has been named the Meissner effect and was discovered by Meissner
and Ochsenfeld in 1933 [2].

On the theory side of things, the community soon began the search for physical explanations of how
superconductivity comes about, but it would still take another few decades of research for a first-principles
explanation of the origins of superconductivity to emerge. As an example of one of the theoretical develop-
ments made before the much-celebrated microscopic theory of Bardeen, Cooper, and Schrieffer, we men-
tion Ginzburg-Landau theory (GL theory). Published in 1950, the theory took a semi-phenomenological
approach to the description of electromagnetic properties of superconductors near Tc and remains to
this day a useful tool for such descriptions, sometimes by means of minor modifications of the original
theory [3]. The authors took inspiration from Landau theory where there is some ordering present below
a certain critical temperature and postulated an expression for the free energy density of a superconduc-
tor [4]. The energy involves the superconducting wavefunction ψ – which in modern language has the
property that |ψ|2 is the density of Cooper pairs – as well as the magnetic flux density B = ∇×A, the
magnetic vector potential A, and the coupling between these quantities. By minimizing this energy, one
can derive the first and second Ginzburg-Landau equation, the latter of which predicts the existence of
a supercurrent, a frictionless flow of electrons coming from the spatial gradient of ψ’s complex phase and
A. Additionally, GL theory predicts the existence of the Meissner effect [5].

Although GL theory is useful and captures some of the properties of superconductors, it does not
capture all of them, nor does it attempt to explain superconductivity microscopically. For example,
one property left unexplained in 1950s was the isotope effect which is the fact that increasing the mass
M of the specific isotope comprising the atomic lattice decreases the critical temperature [6, 7]. These
experiments suggested that interactions with the lattice were of importance in the mechanism behind
superconductivity, and in 1957, the famous BCS theory was finally published [8]. The authors had
envisaged pairs of electrons called Cooper pairs attracting each other via quantized lattice vibrations,
or phonons, and found that their theory could describe many of the main features of superconductivity
known at the time, including the isotope effect.

BCS remained a successful microscopic theory of superconductivity for a long time, even though a
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CHAPTER 1. INTRODUCTION

slight modification of it appeared in 1959 when Suhl, Matthias, and Walker considered scattering of pairs
of electrons between different energy bands crossing the Fermi surface [9]. Within each energy band,
though, electrons could still attract each other pairwise like in the original BCS theory. This multiband
theory remained a theoretical prediction until two-band [10, 11] superconductivity [12] was detected in
MgB2 with Tc ≈ 39K two decades ago. At this point, the theory’s predictions of a common Tc for the
two gaps when interband scattering was present and the gaps’ temperature dependence were compared
to experiment, and these turned out to be in reasonable agreement. However, one detail not explicitly
treated in the theory is the fact that in some cases, there can be a phase difference of π between the two
gaps, i.e. one gap can have a negative sign [13–15].

This line of thought was pursued further, and researchers began investigating a Josephson junction
consisting of a two-band superconductor and a single-band superconductor at the theoretical level [13, 14].
It quickly became clear that the phase difference could be subject to phase fluctuations [16, 17] or simply
be different from π and 0 to minimize the energy of the 2 + 1-band superconductor, implying that the
gaps were complex numbers which could not be taken to be signed real numbers. This brings us closer to
the main motivation of this thesis, as superconductors with three complex order parameters with phase
differences not equal to π or 0 are predicted to display time-reversal symmetry breaking (TRSB) and
local spontaneous magnetic fields [18, 19]. If found, such materials would therefore exhibit qualitatively
new superconducting behavior. As we will see, this is indeed the case.

About a decade ago, the discovery of superconductivity at high Tc in iron pnictide materials sparked
renewed excitement for the field of multiband superconductivity [20, 21]. This first discovery was in
LaO1−xFxFeAs with Tc ≈ 26K at optimal doping x ≈ 0.11. Another iron pnictide superconductor is the
substance Ba1−xKxFe2As2 which has at least four superconducting gaps and Tc = 38K at doping level
x ≈ 0.4 [22, 23]. In a 2020 article, spontaneous magnetic fields and a TRSB state in this compound were
reported for doping levels 0.7 . x . 0.85 when T . 10K using the muon spin relaxation technique and
data from the literature [24]. There is therefore already ample evidence that iron pnictide compounds in
which more than two bands cross the Fermi surface display novel superconducting states [21–24].

Let us now look at some of theoretical developments that took place after the 2008 discoveries, many of
which were at a semi-phenomenological level or . One early development was the work of Ng and Nagaosa
[25]. They studied a two-band superconductor in a Josephson junction with a one-band superconductor
using GL theory and found a TRSB state with a phase difference which was not a multiple of π. They
also noted that this lead to a Josephson current circulating in momentum space.

Later, Stanev and Tešanović followed Ng and Nagaosa’s suggestion of studying a three-band super-
conductor where the Josephson couplings are all between bands internal to the same superconductor
[26]. The authors used a three-band version of the generalized BCS Hamiltonian suggested in [9] in the
mean-field approximation. They sought to understand the model by considering three equal bands and
only allowing interband couplings, two of which were equal. By linearizing the BCS-like gap equations
near Tc, Stanev and Tešanović found three sets of solutions, two of which they linearly combined with
complex coefficients to create a solution with two non-real superconducting gaps and one real. The two
remaining solutions were one with only two gaps and one with three real gaps. After having identified
different possible structures of the gaps, parametrizations of these were put into the gap equations, this
time expanded to second order in the gap magnitudes. The results were that the complex, TRSB solution
had the lowest free energy in GL theory – and was therefore the state the system would choose – in a
small range of interband couplings near the point where they were equal. The existence of a TRSB
solution with no intraband couplings for interband couplings of the same magnitude but various sign
combinations was also reported by Tanaka and Yanagisawa, this time obtained directly from BCS-like
gap equations with explicitly complex gaps [27].

Maiti and Chubukov performed an analysis similar to the ones above, but with a focus on modeling
hole doping in Ba1−xKxFe2As2 by varying interband couplings [28]. A similar phase diagram was found,
but they noted that the disappearance of the third gap was a peculiarity of the minimal model they
studied.

After these (mostly) mean-field calculations, some numerical calculations and Monte Carlo simula-
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1.1. BACKGROUND AND MOTIVATION

tions have also been performed to investigate the effects of different types of fluctuations [29–32]. In
2013, for example, Bojesen, Babaev, and Sudbø investigated, at a phenomenological level, a three-band
superconductor using short time critical dynamics, finding in some cases different temperature onsets of
superconductivity and TRSB [31]. These calculations, however, did not attempt to capture microscopic
details and took the interband Josephson coupling strengths multiplied by the gap amplitudes |ψ| in the
GL theory as fundamental. In one calculation, two of these couplings were held constant while the third
was increased gradually, which revealed that TRSB did not occur until the third coupling was at least
half as large as the others. For some values of the phenomenological interband couplings and tempera-
tures, the TRSB state was metallic, i.e. not superconducting. In 2015, again using Monte Carlo methods,
Bojesen and Sudbø showed that going beyond mean-field theory and including gauge field fluctuations
was necessary to produce a TRSB metallic state [32].

With these theoretical results in mind, we can now articulate the motivation behind this thesis. Many
previous studies either phenomenologically or using restrictive assumptions have investigated three-band
superconductors at different levels of detail. We wish to study a three-band superconductor with internal
Josephson couplings as a simplified example of the iron pnictides, seeking to understand microscopically
and by directly using the BCS-like multi-gap equations, with fewer assumptions than previous studies,
how the fascinating superconducting states which break time-reversal symmetry come about.

Some of the interest in these materials is rooted in the aforementioned fact that time-reversal symmetry
breaking states can have intrinsic magnetism [19, 18] which we in principle could turn on and off by moving
the Fermi surface up or down in energy so as to change the number of bands crossing it. This tuning of µ
can be done by e.g. doping [24] or more directly by applying an electric field to deform the Fermi surface
[33]. There may therefore even be possible technological applications of these novel compounds in the
future. Applications may of course also come as a second-order effect from increased understanding of
high-Tc mechanisms in superconductors, which is another possibility seeing as some iron pnictides display
rather high critical temperatures.

3



Chapter 2

Preliminaries

2.1 Conventions
We will use natural units, ~ = 1 = kB and make no special symbolical distinction between operators and
numbers.

2.2 Bardeen–Cooper–Schrieffer theory of superconductivity
The microscopic theory of superconductivity proposed by BCS is formulated as a Hamiltonian

H = Hkin +Hint, (2.1)

a function of operators, particle excitation energies, and particle interactions from which one can calculate
thermodynamic properties of interest [34]. We will in this subsection construct the BCS Hamiltonian
step by step, starting with the kinetic term Hkin which, on its own, describes free electrons which are
essentially only constrained by the Pauli principle.

Using the language of second quantization [35], then, we can model a gas of such non-interacting
electrons using only the Hamiltonian Hkin which will consist of creation and destruction operators c†kσ, ckσ
that either create or destroy a state of one electron with spin σ and linear momentum k. The operator c†kσ,
which is known as the adjoint or Hermitian conjugate of ckσ, creates the plane wave state (k, σ) whereas
ckσ destroys it. The electron this state represents has an excitation energy εkσ which we later in the thesis
will assume to have a simple spin-independent and parabolic form, but for now we leave it unspecified.
Electrons are fermions, so they obey the Pauli principle, meaning at most one electron can occupy any
single-particle quantum state (k, σ). This fact is encapsulated by the fermionic anticommutation relations{

c†kσ, ck′σ′

}
≡ c†kσck′σ′ + ck′σ′c†kσ = δkk′δσσ′ , (2.2)

which we will assume hold for our creation and destruction operators. In this equation, the symbols on
the right-hand side are Kronecker deltas which have the property that δµν = 1 if µ = ν and are zero
otherwise. Furthermore, we have that the anticommutators

{ckσ, ck′σ′} =
{
c†kσ, c

†
k′σ′

}
= 0. (2.3)

The final ingredient necessary to specify the free electron Hamiltonian Hkin is the number operator
nkσ = c†kσckσ, an operator which counts how many electrons are in the state (k, σ). Now, the Hamiltonian
is simply the sum of the excitation energies of all the electrons in the system:

Hkin =
∑
k,σ

εkσc
†
kσckσ. (2.4)

4



2.3. GENERALIZED BCS THEORY OF SUPERCONDUCTIVITY

Here, the number operator multiplying each excitation energy in the sum over all the possible single-
particle states (k, σ) makes sure only the energies of states that are occupied are counted.

So far, we are only considering electrons floating around in a vacuum without being affected by each
other. In real-world materials, and certainly in iron pnictides and metals that can become superconduct-
ing, there are also positively charged atomic nuclei which comprise a lattice in addition to the electrons in
the materials’ atoms. We will need to include these facts in the interaction Hamiltonian, Hint, in order to
have at least a reasonable description of the materials in line with experimental evidence. The electrons
moving around on the lattice are close enough that their interactions with each other cannot simply be
ignored out of hand, and furthermore, because of the hint from the isotope effect, one should include
interactions Ve−−ph between electrons and phonons, i.e. include interactions where electrons scatter off
the lattice nuclei and cause them to vibrate ”quantum mechanically”. The Hamiltonian of such a system
would be

H = Hkin +
∑

k,k′,q,σ,σ′

1

4πε0

2πe2

q2
c†k+q,σc

†
k′−q,σ′ckσck′σ′ + Ve−−ph, (2.5)

but for our purposes it suffices to combine two such electron-phonon interactions into an effective inter-
action Veff(k,k

′,q), essentially hiding some of the details of the phonons and just keeping the fact that
there is another way for electrons to interact besides via photons [5]. We can therefore write

H = Hkin +
∑

k,k′,q,σ,σ′

Ṽeff(q, ω)c
†
k+q,σc

†
k′−q,σ′ckσck′σ′ (2.6)

where the energy transfer is
ω = εk+q − εk, (2.7)

and the effective interaction including both photon- and phonon-mediated electron-electron interactions
has the form

Ṽeff(q, ω) = 2|Mq|2
ωq

ω2 − ω2
q

+
1

4πε0

2πe2

q2
. (2.8)

Here, Mq is the matrix element for the electron-phonon coupling. It contains the atomic mass and could
be used to calculate the isotope effect. We will, however, not keep such details moving forward as we
would like to end up with a theory that does not specifically require phonons to mediate the interactions.
In fact, the only detail we will keep is that there is some attraction between electrons.

Where would such an attraction come from? The effective interaction, Ṽeff(q, ω), has two small
intervals along the ω axis where it it is negative, i.e. attractive. It can even take on arbitrarily large
negative values as ω approaches ωq from below, meaning it can overcome the static repulsion term as
long as ω gets close enough to ωq.

2.3 Generalized BCS theory of superconductivity
In this section, we will simplify the Hamiltonian under consideration, keeping only the essential ingredient
necessary for there to be superconductivity, namely a sufficiently strong attraction between electrons with
certain momenta. We will also extend the model to N bands crossing the Fermi surface in the spirit of
[9] before applying a mean-field approximation analogously to what is normally done in BCS theory.

The effective potential Ṽeff(q, ω) is in reality only attractive for specific ω2 near ω2
q as noted, but it

turns out that to get both quantitatively and qualitatively correct predictions from the model, it suffices
to retain only one feature of Ṽeff(q, ω), namely that it is attractive for certain ω [5]. We will therefore
extend the set of ω’s for which Ṽeff(q, ω) is attractive from the two sets of ω where ω2 is near but slightly
smaller than ωq to the entire interval [−ωq, ωq]. Moreover, we remove any other ω-dependence by setting
the potential to be constantly zero for ω2 > ω2

q, leaving us with a simple square well of width 2ωq centered
at ω = 0. It is with this final, dramatic simplification that we say we only keep the fact that there is an
attraction between electrons; almost all details of phonons and photons are hidden. We now follow BCS

5



CHAPTER 2. PRELIMINARIES

q, Ṽeff(q, ω)

k+ q, σ

k, σ

k′ − q, σ′

k′, σ′

Figure 2.1: Momentum-space Feynman diagram of an envisaged effective two-particle interaction that
can be attractive for certain momenta and energy transfers. With time increasing upwards, this diagram
represents a pair of electrons (k, σ), (k′, σ′) interacting via an effective potential Veff(k,k′,q) which
represents, in a simplified way, the screened Coulomb repulsion and the exchange of another boson (e.g.
a phonon), with total momentum transfer q and energy transfer ω.

[8] and assume that the energy range 2ωq is exceedingly small compared to the Fermi energy. This implies
that we have scattering between slightly different energy states, which, due to the Pauli principle, will
have to take place near the Fermi surface which is the only place in momentum space that has occupied
and unoccupied single-particle states in close vicinity when we are close to the ground state. To further
simplify and consider only the most pairing-friendly pairs of electrons, we consider spin-singlet pairing,
i.e. σ = −σ′. The geometry of this problem now dictates that for most q, the easiest way to have both
k+ q and k′ − q in the thin area around the Fermi surface is to have k′ = −k. Thus,

H = Hkin +
∑
k,q,σ

Ṽeff(q, ω)c
†
k+q,σc

†
−k−q,−σck,σc−k,−σ (2.9)

If we let k → k− q and q → q+ k, we can relabel q and finally write

H =
∑
k,σ

εkσc
†
kσckσ +

∑
k,k′

Ṽeff(k,k
′, ω)c†k↑c

†
−k↓c−k′↓ck′↑ (2.10)

having absorbed a factor two from the spin summation into the new effective potential Ṽeff(k,k′, ω).
We will now simplify some of the notation and change sign convention for the interaction potentials.

First, when restricting ourselves to electrons near the Fermi surface εF = µ, we must ensure that the
initial and final states differ in energy by no more than some cut-off energy ωc, which can be done by
considering only initial and final momenta

k,k′ ∈ F ≡ {k′′ | |εk′′ − µ| ≤ ωc} . (2.11)

In the rest of the thesis, we will choose the other sign convention for the two-particle terms and use the
potential

V (k,k′) =

{
−Ṽeff(k,k′, ω) if bothk,k′ ∈ F

0 otherwise
, (2.12)

where a positive value means it is attractive and a negative one means it is repulsive. To arrive at
the celebrated BCS gap equation, one would here apply a mean-field approximation and diagonalize the
Hamiltonian. We will instead extend the theory to N energy bands crossing the Fermi surface and pair
tunneling between bands before studying the Hamiltonian in the mean-field approximation.

6



2.3. GENERALIZED BCS THEORY OF SUPERCONDUCTIVITY

2.3.1 Extension to multiple bands crossing the Fermi surface
The reduced Hamiltonian in the previous section can be extended to include electrons pairing in multiple
bands by performing a summation over Hamiltonians Hα equivalent to the previous one,

Hα =
∑
k,σ

εkσαc
†
kσαckσα −

∑
k,k′

Vα,α(k,k
′)c†k↑αc

†
−k↓αc−k′↓αck′↑α, (2.13)

where α = 1, . . . , N is the band index. All the symbols in Eq. (2.13) have the same meaning as before,
only with the added meaning of referring to energy band α. For instance, c†kσα creates an electron in the
state (k, σ) in energy band α with excitation energy εkσα. The sum of these Hamiltonians would result
in N superconducting gaps, given that all intraband interactions

Vα,α(k,k
′) =

{
Vα,α if bothk,k′ ∈ Fα

0 otherwise
(2.14)

allow superconductivity. Also here, the constants Vα,α – which are positive when attractive – originate
with an effective potential −Ṽeff(k,k′, ω) associated with each band α, and Fα is, as in Eq. (2.11), the set
of all momenta k in a thin shell around the Fermi surface where |εkσα − µ| is no larger than the energy
cutoff ωα in band α. This summation over Hamiltonians, however, is just N decoupled superconductor
Hamiltonians, meaning each Hamiltonian can be treated independently. The physics of interest, such
as phase frustration and TRSB states, arises only when we consider, in addition to

∑
αHα, terms Hαβ

describing scattering of electron pairs from the energy band labeled β to band α. Such terms involve the
creation of two electrons in energy band α and their destruction in band β, and we simply denote the
matrix element for this scattering process

Vαβ(k,k
′) =

{
Vαβ if k ∈ Fα and k′ ∈ Fβ

0 otherwise
, (2.15)

such that
Hαβ = −

∑
k,k′

Vαβ(k,k
′)c†k↑αc

†
−k↓αc−k′↓βck′↑β . (2.16)

Adding all the Hα terms to the scattering terms Hαβ (including the reverse process, Hβα) and subtracting∑
kσα µnkσα from H to measure energies relative to the chemical potential µ, we arrive at the N -band

Hamiltonian which will be considered using a mean-field approximation in this thesis, namely

H =
∑
k,σ,α

ε̃kσαc
†
kσαckσα −

∑
k,k′,α,β

Vαβ(k,k
′)c†k↑αc

†
−k↓αc−k′↓βck′↑β , (2.17)

where the band indices α, β both take on the values 1, . . . , N and ε̃kσα = εkσα − µ. We will eventually
set N = 3 and Vαβ = Vβα in the Hamilonian so as to use the simplest possible model of e.g. the iron
pnictides while still retaining the physics of interest.

The effective interactions we consider can all be represented neatly in a momentum-space Feynman
diagram, as is done in Fig. 2.2. There, α = β represents two electrons moving in opposite directions near
the Fermi surface attracting each other through the effective intraband interaction Vα,α(k,k

′), whereas
α 6= β means the two electrons are scattered to a different energy band, again by an effective interaction,
Vαβ(k,k

′). We will later assume, for simplicity, parabolic and spin-independent dispersion relations with
different minimum energies for electrons in different bands, i.e.

εkα =
k2

2m
+ ε0,α, (2.18)

where ε0,α is the minimum energy of band α and m is the electron mass. We will also order the minima
ε0,1 < ε0,2 < ε0,3 and set N = 3. This band structure is illustrated in two different ways in Fig. 2.3
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Vαβ(k,k)

−k ↓ α

−k′ ↓ β

k ↑ α

k′ ↑ β

Figure 2.2: Momentum-space Feynman diagram of the various two-particle interactions considered in
this thesis. With time increasing upwards, this diagram represents a pair of electrons (k′, ↑), (−k′, ↓) in
orbital β interacting via some effective potential Vαβ(k,k′). In conventional BCS theory, the wavy line
representing the potential is a phonon propagator, but our model is agnostic to the underlying mechanism
by which the electrons interact. The interband processes where α 6= β leaves the two oppositely moving
electrons in another orbital, α, with new momenta k,−k which are still oppositely directed. The intraband
processes α = β are weak attractions, now leaving the pair in the same orbital after they interact. It was
only this latter type of process that was considered in the original BCS theory of superconductivity.

for equal ωα ≡ ω which are exaggerated in size for illustrative purposes. The excitation energies as a
function of kx at ky, kz = 0 are shown in Fig. 2.3a, including the thin energy shell of width 2ω around
the Fermi level within which electrons must be to be affected by the interactions Vαβ . The energy shell is
shown for two different values of µ as we will study the transition from µ = 0.6µmax to µmax numerically
in Chapter 4.3.2. The other figure, 2.3b, shows a slice through the energy shell [µmax − ω, µmax + ω] in
kx, ky-space at constant kz in addition to example initial (red) and final (black) states of scattering from
band 3 to 2.

2.3.2 Mean-field theory
The Hamiltonian in Eq. (2.17) cannot be exactly solved, but it can be simplified by using a mean-field
approximation where fluctuations of the Cooper pair operators c†k↑αc

†
−k↓α and c−k↓αck↑α are assumed to

be small. Thereafter, the Hamiltonian can be diagonalized using a Bogoliubov transformation, yielding
the energy spectrum of the long-lived quasiparticle excitations the Hamiltonian now describes [36].

The mean-field approximation we now employ is focused on the thermal averages,

bkα = 〈c−k↓αck↑α〉

b†kα =
〈
c†k↑αc

†
−k↓α

〉
,

(2.19)

of Cooper pair destruction and creation operators. In general, the thermal average of an operator R is

〈R〉 =
∑

i 〈ψi| e−βHR |ψi〉∑
i 〈ψi| e−βH |ψi〉

, (2.20)

where {|ψi〉}i forms an orthonormal basis of the many-particle Fock space of the system under consider-
ation and β = 1/T is the inverse temperature [34]. We will not utilize this definition explicitly, but later
we will make use of the denominator in Eq. (2.20) which is called the partition function Z of the system.
Returning to the averages bkα, b†kα in Eq. (2.19), we add and subtract these in all factors of

c−k↓αck↑α = bkα + c−k↓αck↑α − bkα ≡ bkα + δbkα,

c†k↑αc
†
−k↓α = b†kα + c†k↑αc

†
−k↓α − b†kα ≡ b†kα + δb†kα

(2.21)
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−kF,1 0 kF,1

kx

0

µmaxε k
α

2ω

α = 1

α = 2

α = 3

µmax

µ(t)

(a) An illustration of what the dispersion rela-
tions in our simplified three-band model look like
for ky, kz = 0. The gray shaded area around
the Fermi surface µ(t) represents the energy range
within which the electrons are affected by the ef-
fective interactions. Here we simplify the thickness
of the energy range to be the same value, 2ω, for
all the bands, and make ω quite large for illustra-
tive purposes. We will later see how tuning µ(t)
from 0.6µmax (bottom gray shaded area) to µmax

can turn on time-reversal symmetry breaking if the
interactions Vαβ allow it.

−kF,1 0 kF,1

kx

−kF,1

0

kF,1

k
y

(k, ↑)

(−k, ↓)

(k′, ↑)

(−k′, ↓)
F1

F2

F3

(b) An illustration of what the thin momentum
shells Fα in our simplified three-band model look
like in two out of three dimensions, given that the
dispersion relations are as in Fig. 2.3a. This is es-
sentially a slice through the uppermost gray shaded
energy shell in Fig. 2.3a rotated around the en-
ergy axis. The two red dots in the red shaded area
serve as an example of a possible initial state of an
electron pair in energy band 3 before interacting
through e.g. a phonon and ending up in the middle
energy band, α = 2. Such an end state may look
like the two black dots in the gray shaded area.

Figure 2.3: Illustrations of the electronic structure of the three-band model we study in this thesis using
mean-field theory.
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in the Hamiltonian defined in Eq. (2.17) and ignore terms of second order in the fluctuation terms
δbkα, δb

†
kα. Rearranging some of the sums, the Hamiltonian then reads

H ≈
∑
k,σ,α

ε̃kσαc
†
kσαckσα −

∑
k,k′,α,β

Vαβ(k,k
′)
(
b†kαc−k′↓βck′↑β + h.c.− b†kαbk′β

)
, (2.22)

which can be rewritten to contain the superconducting gap functions ∆α(k) which we are about to define.
We first label the sum over the last term in Eq. (2.22) Ẽ0 and move the momentum-dependence of

the potentials to the functions ηα(k) so as to have

Vαβ(k,k
′) = ηα(k)ηβ(k

′)Vαβ (2.23)

and
H = Hkin + Ẽ0 −

∑
k,k′,α,β

ηα(k)ηβ(k
′)Vαβ

(
b†kαc−k′↓βck′↑β + h.c.

)
. (2.24)

In our case, with momentum-dependent potentials as defined in Eq. (2.15),

ηα(k) =

{
1 if k ∈ Fα

0 otherwise
, (2.25)

but we could in principle have left ηα(k) unspecified for the moment and used Eq. (2.23) as a separability
ansatz for the potentials. The function multiplying the two annihilation operators in Eq. (2.24) for each
k′ and β is now ∑

k,α

Vαβηβ(k
′)ηα(k)b

†
kα = ηβ(k

′)(b†V)β (2.26)

where we have defined the row vector b† with components

b†α =
∑
k

ηα(k)b
†
kα =

∑
k∈Fα

b†kα (2.27)

and the matrix V with entries Vαβ . A similar sum of bkα for momenta near the Fermi surface defines the
column vector bα which is hidden in the h.c. term in the Hamiltonian. It is precisely the expression in
Eq. (2.26) that is what we will refer to as the superconducting gap function:

∆α(k) ≡ ηα(k)(Vb)α = ηα(k)
∑
β

Vαβbβ ,

∆†
α(k) ≡ ηα(k)(b

†V)α = ηα(k)
∑
β

Vαβb
†
β .

(2.28)

Here, we make two remarks before writing down the Hamiltonian using the gap function and its complex
conjugate ∆†

α(k). Firstly, due to the factor ηα(k), gap function α completely vanishes if energy band
εkα does not overlap with the Fermi surface µ for any k, i.e. if ε0,α > µ.1 Secondly, the N gap functions
each contain a term Vααbα ∝

∑
〈c−k↓αck↑α〉 from their own energy band, α, but also terms Vαβbβ ∝∑

〈c−k↓βck↑β〉, i.e. contributions from other energy bands given that Vαβ 6= 0. The latter terms are
a consequence of the fact that the Hamiltonian we started out with in Eq. (2.17) described N coupled
superconductors. Now, however, the coupling of the problem has been relegated to the definition of the
gaps because the Hamiltonian,

H = Hkin + Ẽ0 −
∑
k,α

(
∆†

α(k)c−k↓αck↑α +∆α(k)c
†
k↑αc

†
−k↓α

)
, (2.29)

1Strictly speaking, ∆α(k) vanishes if ε0,α > µ + ωα, but the assumption here is that ωα is negligible compared to µ.
Again, this situation is illustrated in Fig. 2.3a where the lower of the two gray areas only crosses two of the bands.
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is diagonal in the band indices. Here, we see that ∆α(k) acts like the strength of a source of Cooper pairs
of electrons with momentum ±k in band α, whereas ∆†

α(k) is the strength of a sink of such pairs. As a
final note, we observe that the Hamiltonian can be rewritten to

H = Hkin + Ẽ0 −
∑
α

∑
k∈Fα

(
∆†

αc−k↓αck↑α +∆αc
†
k↑αc

†
−k↓α

)
(2.30)

by defining momentum-independent gaps ∆α exactly like in Eq. (2.28) except without the factors ηα(k).
These are the gap functions we will refer to and calculate numerically, although sometimes it will be
convenient to reinstate the k-dependence of the gaps for certain calculations. Before showing the prop-
erly generalized Bogoliubov transformation that allows us to diagonalize the above Hamiltonian while
preserving the gaps’ complex phases, we need to introduce two key concepts.

2.4 Frustration and time-reversal symmetry breaking

S1

S2

θ1

θ2

θ3

S3

Figure 2.4: Illustration of
the ground states of two (top,
no frustration) versus three
(bottom, frustration on trian-
gular lattice) 2D Heisenberg
spins with antiferromagnetic
coupling.

As will be shown soon, N ≥ 3-band superconductors can experience
frustration effects that force them into novel types of ground states
not found in superconductors with one or two bands crossing the Fermi
surface. In other areas of research, these effects can be found in e.g. spin
systems where frustrated spins can give rise to highly degenerate ground
states and new symmetries. It will become clear that frustration forces
systems to make a ”choice” on how to configure themselves, and in the
context of superconductors, frustration arising because of the phases
of the complex order parameters – phase frustration – can lead to the
system choosing a configuration which breaks time-reversal symmetry.

2.4.1 Frustration
The term frustration will in this thesis be used in the sense that a
system is frustrated if individual parts of the system prefer to be in
different configurations which are incompatible in such a way that it is
impossible for all the parts to reach their individual preference [37]. A
frustrated system consists of parts with competing preferences, and it
has to choose a compromise to ”solve” the frustration. One could also
establish a local definition and say that an individual part of the system
is frustrated when it cannot satisfy all the preferences from interactions
with other parts.

As a simple example, we can consider two 2D spins S1,S2 with
|Si| = 1 interacting with strength J so that the Hamiltonian describing
the spins is

H = JS1 · S2 = J cos(θ12), (2.31)
where the difference between the angles θ1, θ2 the spins make with e.g. the x-axis is θ12 = θ1 − θ2. The
spins in a ground state position are illustrated at the top of Fig. 2.4. Depending on the sign of J , the
ground state will have either Si pointing in opposite directions or the same direction to minimize the
energy. In the former case, J > 0 and θ12 = π, we call the interaction antiferromagnetic, and in the
latter, θ12 = 0, J < 0-case, we call it ferromagnetic. Let us now assume that J > 0 and add another spin,
S3, which interacts with one of the other spins, say S2, with the same strength, J . The Hamiltonian now
has two terms, J cos(θ12) + J cos(θ23), but they can both be minimized at the same time, θ12 = θ23 = π,
leaving the total energy minimized in this case, too. Frustration does not come into play until we let the
third spin interact also with the first spin, again with strength J for simplicity. Now,

H = J(cos(θ12) + cos(θ23) + cos(θ13)), (2.32)

11
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and since θ13 = θ23 + θ12, the angle between S1 and S3 is forced to be 2π, i.e. 0, if the other spins
are to point in opposite directions. Consequently, the last term cannot be minimized while the other
two are at their minimum, so the system is frustrated. With the local definition, we could say each
interaction term is frustrated, or that we have three frustrated spins. Similarly, this system with three
interactions would be frustrated if two interactions were ferromagnetic and one were antiferromagnetic.
Then, the ferromagnetic interactions would prefer two of the angle differences to be 0, which would
make it impossible to have the third be π. The compromise in the first example, three antiferromagnetic
interactions, is to have all the angles between spins be 2π/3. This is illustrated in the bottom part of
Fig. 2.4 and can be seen by minimizing the two-variable function in Eq. (2.32) [37].

The frustration arising in the three-band systems studied in this thesis will be rather analogous to the
above three spins. The gaps |∆α| are analogous to the spins, and the differences in the complex phases
of the gaps play the role of the angle differences. A complication not present in the example spin ground
state energy is that the factors in front of the cosines will depend on several microscopic parameters of the
theory in addition to the gaps. In the example, the cosine prefactors are determined by the interaction
strength J and the spin magnitudes |Si|.

2.4.2 Time reversal
In Newtonian mechanics, one might contemplate ”running time backwards”, which can be thought of as
rewinding the video recording of an experiment, and checking whether the trajectories of particles and the
forces involved are still physically permissible. If they are, we say that the system respects time-reversal
symmetry. Similarly, if a physical law retains the same form under time reversal, we call it time-reversal
invariant. As is often the case, quantum mechanics complicates matters; in quantum mechanics, we
postulate certain behaviors for how the time-reversal operator T acts on many-particle states in Fock
space and its many-particle operators [38]. We will follow Sigrist and Ueda [18], who let T map the
superconducting gap function ∆(k) to its complex conjugate on the opposite side of momentum space,
∆†(−k). Extending this notion to N gaps and collecting the gaps in a vector ∆(k) with components
∆α(k), we have

T (∆(k)) = ∆∗(−k), (2.33)

i.e. each component is complex conjugated and evaluated at the opposite side of k-space. In this thesis,
however, the gap functions will be momentum independent, so time reversal will be equivalent to a Z2

transformation, i.e. a flipping of all gap phases θα 7→ −θα.
What we are interested in is the question of when our superconducting state can break time-reversal

symmetry. In quantum mechanics, this amounts to asking, ”when does T send ∆ to a physically distinct
state?”. As we will see when we derive the gap equations, the overall phase of the gaps does not matter, it
is the phase differences that matters, meaning we can rotate all the gaps by the same phase φ, ∆ 7→ ∆eiφ,
and still describe the same state. Hence, the state ∆ breaks time-reversal symmetry when there does not
exist a real number φ such that

T (∆) = ∆eiφ. (2.34)

When there is only one gap, ∆1 = |∆1|eiθ1 , time reversal does not map the system to a different state
since rotating the gap by the phase angle φ = 2θ1 sends T (∆1) back to ∆1. The gap will consequently
not break time-reversal symmetry in the one-band case. In the two-band case one might think that
TRSB can occur if the gaps form an angle not equal to 0 or π, but we will show in the next chapter that
the phase difference θ1 − θ2 must be a multiple of π in mean-field theory. This means that ∆1 and ∆2

point in the same or the opposite direction in the complex plane, such that complex conjugation merely
rotates both the gaps by the same angle, as can be seen from the illustration in the bottom part of Fig.
2.5. Again, a global phase rotation does not change the physics so the two-band superconductor will not
break time-reversal symmetry when mean-field theory applies.

For a three-band superconductor, however, complex conjugation does not necessarily rotate all the
gaps by the same angle. This can be seen in the illustration of the gaps in some typical TRSB state,
Fig. 2.5. To see it mathematically, let us take e.g. ∆1 = |∆1|, ∆2 = |∆2|eiθ2 , ∆3 = |∆3|eiθ3 , where we

12
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∆1

θ1
∆2

θ2

∆3

θ3

∆1

∆2

∆3

Figure 2.5: Illustrations of the complex superconducting gap functions. The arrow lengths indicate the
magnitudes of the gaps whereas the angles indicate the phases. Top: A typical TRSB state. Complex
conjugation of each gap makes it impossible to U(1) rotate back to the original configuration. Bottom: A
typical time-reversal symmetric state, the phase differences are 0 and π, so complex conjugation merely
rotates all the gaps by the same angle.

have chosen θ1 = 0 by performing a global phase rotation. If we wish to map T (∆2) back to ∆2, we
would need φ = 2θ2, but the same applies to T (∆3), now requiring φ = 2θ3. Lastly, to bring the real
number T (∆1) back to ∆1, we would need φ = 2nπ for some integer n. This forces θ2 and θ3 to be
integer multiples of π, such that a ∆ where any of the phase differences is different from 0 or π will break
time-reversal symmetry.
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Chapter 3

Gap equations and free energy

We have now seen how the phase differences of the complex gap functions play a crucial role in the
question of whether or not a superconductor breaks time-reversal symmetry. Turning our attention to
these phases, we now diagonalize the Hamiltonian in order to calculate the free energy of a three-band
superconductor and derive the gap equations. At the end of the chapter, we will make some remarks on
how one might get TRSB from the microscopic parameters of the theory.

3.1 Diagonalization of the Hamiltonian and its excitation spec-
trum

The Hamiltonian in Eq. (2.30) is not written in a form where we can read off the excitation spectrum of
the system due to the anomalous terms c−k↓αck↑α and c†k↑αc

†
−k↓α. We can, however remove these terms

by performing a rotation – a Bogoliubov transformation [36] – of the creation and destruction operators
so as to retain only terms which are in the form of a number operator. There are several ways to do this,
both in terms of how one constructs the new fermion operators and how many assumptions one makes
about the transformation coefficients. The choice made here is to introduce the operators

ζ†kα = v∗kαc−k↓α + u∗kαc
†
k↑α

γ†kα = ukαc−k↓α − vkαc
†
k↑α,

(3.1)

where ukα, vkα are complex numbers. One could have chosen four complex numbers, one for each operator
term in Eq. (3.1), but for the purposes of this thesis and the model studied here, it suffices to use ukα, vkα
in order to get complex gaps ∆α with nontrivial phases and phase differences. Had we chosen ukα, vkα
real, the phase differences would have been trivial and the physics of interest related to phase frustration
would not have emerged naturally from the microscopic Hamiltonian we are presently investigating at
the mean-field level. In other words, real ukα, vkα would force us to put in nontrivial phases of ∆α as a
solution by hand. This fact will be shown explicitly below.

We demand that the new operators be fermion operators, namely that{
ζ†kα, ζk′β

}
= δkk′δαβ (3.2){

η†kα, ηk′β

}
= δkk′δαβ (3.3)

and {ζkα, ζk′β} = 0 = {ηkα, ηk′β}. The consequence of both Eq. (3.2) and (3.3) is that the transformation
coefficients must obey

|ukα|2 + |vkα|2 = 1, (3.4)
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which later will allow us to use the parametrization

ukα = cos(Φkα)e
iϑkα

vkα = sin(Φkα)e
iϕkα ,

(3.5)

where the angle parameters Φkα, ϑkα, ϕkα ∈ R will be chosen in such a way that they leave H diagonal.
Inverting Eq. (3.1) by making use of Eq. (3.4), we obtain

ck↑α = u∗kαζkα − vkαγkα

c†−k↓α = v∗kαζkα + ukαγkα,
(3.6)

which can be inserted into the Hamiltonian (2.29), yielding

H = Ẽ0 +
∑
k,α

{
Ekα

[
γ†kαγkα − ζ†kαζkα

]
+ ε̃kα

+
[
−2ε̃kαukαvkα −∆α(k)u

2
kα +∆†

α(k)v
2
kα

]
ζ†kαγkα + h.c.

} (3.7)

by collecting terms and anticommuting the necessary pairs of operators. The excitation energy Ekα,
which appears with a negative sign for the first species of quasiparticles, ζ†kα and a positive sign for the
other, is

Ekα = ε̃kα cos(2Φkα) + Re
(
∆̃α(k)

)
sin(2Φkα), (3.8)

where we have defined the quantity

∆̃α(k) = ∆α(k)e
i(ϑkα−ϕkα). (3.9)

We now diagonalize H by demanding that the coefficients of the anomalous operator pairs in the second
line of Eq. (3.8) be zero. These demands are equivalent as the resulting equations are complex conjugates
of each other. They lead to the conclusion that the quantity defined above

∆̃α(k) ∈ R, (3.10)

in addition to the equation
∆̃α(k)

ε̃kα
= tan(2Φkα) (3.11)

when ∆α(k) 6= 0 and
sin(2Φkα) = 0 (3.12)

when ∆α(k) = 0. Here, a remark about Eq. (3.10) is in order. We see from Eq. (3.9) that if we had
chosen the Bogoliubov transformation coefficients to be real, ϑkα = nπ, ϕkα = mπ for integers n,m, then
∆α(k) would have been forced to to be real. With our choice, however, the complex phases of the gap
functions are preserved, and, as we will see, the phases of the transformation coefficients will essentially
disappear from the problem.

Let us use the diagonalization criterion, Eq. (3.11), to express the quasiparticle excitation energies in
terms of ε̃kα and |∆α(k)|. The right-hand side of Eq. (3.11) is π-periodic in 2Φkα, so a choice of 2Φkα-
interval must be made, and depending on the choice, the excitation energies will look slightly different.
For 2Φkα ∈ [−π/2, π/2), they will switch sign when ε̃kα does because in this case,

Ekα = sgn (ε̃kα)
(
ε̃2kα + |∆α(k)|2

)1/2
cos(2Φkα) = |ε̃kα|

(
ε̃2kα + |∆α(k)|2

)−1/2

.

(3.13)
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For 2Φkα ∈ [0, π), on the other hand,

Ekα = sgn
(
∆̃α(k)

)(
ε̃2kα + |∆α(k)|2

)1/2
cos(2Φkα) = sgn

(
∆̃α(k)

)
ε̃kα

(
ε̃2kα + |∆α(k)|2

)−1/2

.

(3.14)

In both cases, sin(2Φkα) = ∆̃α(k)/Ekα for the corresponding Ekα-expression and Ekα = ε̃kα when
k /∈ Fα. Additionally, we can now identify that the gap functions indeed represent a gap. The quasiparticle
energies have a gap, given by |∆α|, near the Fermi surface, meaning the system is protected from the
resistivity-causing scattering from energy states right below the Fermi surface to above it and that the
electrons can move frictionlessly [5]. In the rest of the thesis, we will use the first 2Φkα-interval and the
expression for the excitation energies given in Eq. (3.13) along with our now diagonalized Hamiltonian
in the form of a constant mean-field term E0 added to a gas of free fermions,

H = E0 +
∑
k,α

Ekα

(
γ†kαγkα − ζ†kαζkα

)
, (3.15)

E0 =
∑
k,α

ε̃kα +
∑

k,k′,α,β

Vαβ(k,k
′)b†kαbk′β (3.16)

with reference to Eq. (2.22) for the expression for Ẽ0. As a final note, we rewrite E0 to

E0 =
∑
k,α

ε̃kα +
∑
α,β

b†αVαβbβ (3.17)

=
∑
k,α

ε̃kα +
∑
α,β

∆†
αV

−1
αβ ∆β (3.18)

using the definitions (2.26) and (2.27), the fact that b = V−1∆, and the definition V −1
αβ = (V−1)αβ .

3.2 Free energy
The Helmholtz free energy F of our system can be calculated in the grand canonical ensemble since all
ensembles are equivalent in the thermodynamic limit of particle number N and system volume V going
to infinity while keeping N/V constant [34]. For a grand canonical ensemble at temperature T = 1/kBβ
with chemical potential µ̃, the free energy is

F = − 1

β
ln(ZG) +

µ̃

β

∂(lnZG)

∂µ̃
, (3.19)

where the the grand canonical partition function is

ZG = Tr
(
e−β(H−µ̃N)

)
, (3.20)

and we do not distinguish between operators and numbers. Here, H is the Hamiltonian operator of the
system and N is the number operator.

In the present case, the Hamiltonian is given in Eq. (3.15) and µ̃ = 0 for the quasiparticles. Let us
begin by labeling the fermion energy eigenstates |n1 . . . nN 〉 = |n1〉 ⊗ . . .⊗ |nN 〉 for notational simplicity.
The number operator is not necessary here since µ̃ = 0, so we use N as the number of possible states.
Therefore, if state number i corresponds to e.g. a ζ quasiparticle with momentum k being in orbital α,
then H |ni〉 = Eni |ni〉 = −Ekα |ni〉, where we have Eni = −Ekα from Eq. (3.15). Here, the number ni
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can only be 1 or 0 because the quasiparticles are fermions. Thus, the partition function is

ZG =
∑

n1,...,nN

〈n1 . . . nN | e−βH |n1, . . . , nN 〉

=
∑

n1...nN

〈n1 . . . nN | exp

[
−β

(
E0 +

∑
i

Enini

)]
|n1 . . . nN 〉

= e−βE0

1∑
n1=0

〈n1| e−βEn1
n1 |n1〉 . . .

1∑
nN=0

〈nN | e−βEnN
nN |nN 〉

= e−βE0

∏
k,α

(
1 + e−βEkα

) (
1 + eβEkα

)
,

(3.21)

from which we calculate the free energy

F = E0 −
1

β

∑
k,α

[
ln
(
1 + e−βEkα

)
+ ln

(
1 + eβEkα

)]
(3.22)

which has to be minimal at thermal equilibrium. In the case of an N -band superconductor, we therefore
get N equations ∂F/∂∆ν = 0 which we will now explore.

3.2.1 Gap equations guarantee an extremized free energy
There are multiple ways to arrive at the gap equations. One is to use the the definition (2.28) directly
and determine the gaps self-consistently by inserting the new quasiparticle operators into the thermal
averages bkα, b†kα. Perhaps more illuminatingly, one can set the differential of the free energy with respect
to some set of variational parameters of the theory to zero. To avoid confusion or errors, one should keep
F expressed in terms of only one set of parameters at the time. We will use the momentum-independent
gaps ∆α, but we could also have used the parameters bα which would have yielded the same result, except
with a little longer derivation. The N equations ∂F/∂∆ν = 0 applied to the free energy in Eq. (3.22) are

0 =
∂E0

∂∆ν
−
∑
k∈Fν

∂Ekν

∂∆ν
tanh

(
βEkν

2

)
, (3.23)

where the momentum sum is restricted to only contain terms in the momentum shell around Fermi surface
ν as Ekα is simply equal to ε̃kα elsewhere. Using Eq. (3.18) for E0 and (3.13) for the excitation energies,
we obtain

∆†
ν

∑
k∈Fν

1

2Ekν
tanh

(
βEkν

2

)
=
∑
β

V −1
νβ ∆†

β ≡ b†ν , (3.24)

with reference to the equation b = V−1∆. The complex conjugate of Eq. (3.24) can now be inserted
into the definition of the gaps, ∆ = Vb, from which we obtain

∆α =
∑
β

∆βVαβ
∑
k∈Fβ

1

2Ekβ
tanh

(
βEkβ

2

)
. (3.25)

The signs in the denominator and argument of the tanh function cancel, and because the momentum sum
runs over momenta in Fβ , all the k dependence is in the single-particle excitation energies ε̃kβ . Thus,
we can convert the sum to an energy integral, assume that the single-particle density of states Nβ(ε̃) can
be approximated to its value Nβ(0) at the Fermi surface, and finally arrive at the gap equations for our
N -band superconductor:

∆α =
∑
β

Vαβ∆βNβ(0)Sβ . (3.26)
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Here, the energy integral is

Sα =

∫ ωα

0

dε̃
(
ε̃2 + |∆α|2

)−1/2

tanh

[
β

2

(
ε̃2 + |∆α|2

)1/2]
, (3.27)

where the symbol β means inverse temperature only in the hyperbolic tangent function where it is divided
by two.

At this point, the claim about two-band superconductors made in section 2.4.2 can be substantiated.
If we first rewrite the gap equations

|∆α| =
∑
β

Vαβ |∆β |eiθβαNβ(0)Sβ , (3.28)

it becomes clear that only the phase differences, θαβ = θα − θβ , have any significance and that an overall
U(1) rotation of the gaps does not affect the physics. In the case of N = 2 bands, taking the imaginary
part of e.g. the first equation,

|∆1| = V11S1N1(0)|∆1|+ V12S2N2(0)|∆2|e−iθ12 , (3.29)

leads to
sin θ12 = 0, (3.30)

forcing the phase difference to be an integer multiple of π. In effect, one can then set ∆α ∈ R, as claimed;
the phases can be encapsulated in the sign of the gaps.

3.3 Frustration and TRSB in multiband superconductors
We will soon solve the gap equations numerically in search of TRSB, but let us first construct parts of a
road map to help navigate the vast parameter space of {Vαβ , ε̃kα, Nα(0), ωα}. The first step in doing this
is to look for some minimum requirements we can place on the microscopic parameters. After that, some
more general constraints are stated before we begin making simplifications allowing us to find specific
examples of combinations of parameters that break time-reversal symmetry.

3.3.1 Minimum requirements for TRSB
The statement made at the end of section 3.2.1 can be made in a different way by analyzing the gap
equations for N = 3. If the e.g. the third band is empty, N3(0) = 0,1 the imaginary part of the first gap
equation states that

V12N2(0)S2|∆2| sin(θ12) + V13N3(0)S3|∆3| sin(θ13) = 0, (3.31)

i.e. sin(θ12) = 0. This propagates to the third equation, whose imaginary part amounts to sin(θ13) = 0,
again showing that with only two energy bands, real-valued gap functions suffice.

A slightly more subtle point regarding the three-band case is that setting any single interband coupling
Vαβ = 0 for α 6= β will also lead to a stillborn attempt at finding TRSB.2 We can without loss of generality
take V23 = 0 to justify this claim. The imaginary parts of the second and third gap equation,

V12N1(0)S1|∆1| sin(θ12) + V23N3(0)S3|∆3| sin(θ12 − θ13) = 0,

V13N1(0)S1|∆1| sin(θ13)− V23N2(0)S2|∆2| sin(θ12 − θ13) = 0,
(3.32)

clearly force sin(θαβ) = 0 for all α 6= β. Accordingly, a prerequisite for TRSB is that the system can
have pair tunneling between all pairs of bands, not just that each band is coupled to another band.
Equivalently, if the momentum-space ”circuit” 1 ↔ 2 ↔ 3 ↔ 1 is not closed, there will be no TRSB.

1This happens if µ(t) is below the bottom of band three in Fig. 2.3a.
2Using our assumption that Vαβ = Vβα.
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Some slightly less explicit requirements can also be gleaned from the free energy (3.22). Upon exam-
ination, one quickly realizes that it has only one phase-dependent term, to wit, Ẽ0 which was defined
after Eq. (2.22). As noted in Eq. (3.18), this ground state energy can be written in terms of the gaps.
The form

Ẽ0 =
∑
α

V −1
αα |∆α|2 + 2

∑
α>β

V −1
αβ |∆α∆β | cos(θαβ), (3.33)

with θαβ = θα − θβ , is particularly helpful. This is the analogy with the Heisenberg spins mentioned in
section 2.4.1 because when we consider the N = 3-band case,

Ẽ0 =

3∑
α=1

V −1
αα |∆α|2 + 2V −1

12 |∆1∆2| cos(θ12)

+ 2V −1
13 |∆1∆3| cos(θ13)

+ 2V −1
23 |∆2∆3| cos (θ13 − θ12)︸ ︷︷ ︸

θ23

,

(3.34)

whereas in the two-band case

Ẽ0 =

2∑
α=1

V −1
αα |∆α|2 + 2V −1

12 |∆1∆2| cos(θ12). (3.35)

Both of these equations illustrate the fact that the ground-state energy is Z2 symmetric in the phases or
phase differences; changing θαβ 7→ −θαβ yields the same energy, but possibly a physically distinct state
if the phases are nontrivial.

Returning to the point about the spin analogy, we see that in the two-band case, Ẽ0, and thus F , is
minimized with respect to the phase difference θ12 when it is 0 or π, depending on the sign of the inverse
interaction matrix element V −1

12 . No frustration or TRSB there, in other words. When we go to the
three-band case, however, there are, as pointed out in Ref. [29], two combinations of the signs of V −1

αβ

that make the ground state frustrated. One is if all are positive (all antiferromagnetic interactions in
the analogy), and the other is if two are negative and the other positive (one antiferromagnetic and two
ferromagnetic). The latter case can obviously be realized in multiple ways, but to keep things simple,
one can treat them as the same and relabel the energy bands at a later time. To connect the present
discussion to the notation used for the coefficients of the cosines in the GL free energies in previous
studies [29, 31], we define

gαβ = 2V −1
αβ |∆α||∆β |. (3.36)

Now, the other sign combinations for gαβ , − − − and − + +, cannot lead to TRSB. With the former
combination, all phase differences lock to θαβ = 0. In the latter, the two cosines with the plus signs get a
phase difference of π, meaning the third, which is a linear combination of the other differences, will get a
phase difference of 0 (mod 2π). No set of gaps yielding these sign combinations will be affected by time
reversal, as we have seen.

To make the connection between phase frustration and the microscopic theory parameters abundantly
clear, we reiterate the fact that phase frustration is controlled by the signs of gαβ for α 6= β. As a
consequence, phase frustration is determined entirely by 1) the determinant of V, printed here in the
three-band case for reference,

detV = V11V22V33 − V 2
12V33 − V 2

13V22 − V 2
23V11 + 2V12V13V23, (3.37)

and 2) linear combinations of squares of Vαβ since

V −1
αα =

1

detV
(VββVγγ − V 2

βγ),

V −1
αβ =

1

detV
(VαγVβγ − VαβVγγ),

(3.38)
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with all α, β, γ unequal. The constraints on the couplings come from

V −1
αα ≥ 0 (3.39)

and whichever sign combination one chooses for V −1
αβ , or equivalently, gαβ . Eq. (3.39) ensures that the

free energy cannot take on arbitrarily low negative values for large |∆α|. No other terms in Eq. (3.22)
scale as |∆α|2 for large |∆α|, so mean-field theory does not make sense for V −1

αα < 0.

3.3.2 g’s and some configurations which yield TRSB
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g23
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Minimum at (π, π)

Minimum at (0, 0)

Minimum at
(φ0, 2π − φ0),

φ0 = cos−1
(
−g
2g23

)

g = 2g23

g = −2g23

Figure 3.1: Illustration of where the
minimum (φ0, 2π−φ0) of the free energy’s
phase-difference dependent part is for dif-
ferent values of the numbers g and g23
which emerge from the microscopic theory.
The green region is where time-reversal
symmetry is broken.

This section is a slight expansion of Fig. 4 in [31]. Therein,
the authors studied two equal cosine prefactors, g12 = g13 ≡
g and one variable, g23. This problem can be treated analyt-
ically. The phase-dependent part of the ground-state energy
is

g (cos(θ12) + cos(θ13)) + g23 cos(θ13 − θ12). (3.40)

Setting the partial derivatives of the function in Eq. (3.40)
to zero and applying the second derivative test shows three
sets of possible minima. The first consists of the minimum
(θ12, θ13) = (π, π), the second of (0, 0) and the third is the
set of minima (φ0, 2π − φ0) where

φ0 = cos−1

(
−g
2g23

)
. (3.41)

Clearly, only the last set yields a TRSB state as long as
g 6= 0. The areas of (g, g23)-space where these minima are
indeed minima and not maxima or saddle points are shown
in Fig. 3.1. As the figure indicates, there are no overlaps
except where |g| = 2g23, which is uninteresting. We also
recognize the above statements about the signs of gαβ . Only
+ + + and + − − appear in the green region where TRSB
is present. Plotting φ0 as a function of g/g23 will in fact
yield the same graph as that shown in Fig. 4 in [31] and the
curve θ23 in Fig. 4.5 in this thesis. This chart can be used as a starting point for investigating TRSB
microscopically by finding parameters which make two gαβ ’s equal first and specializing to three unequal
gαβ ’s later.
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Chapter 4

Numerical results

In this chapter, we briefly explain how the numerical calculations were set up and performed before
moving on to the results. The equation solver is first tested for N = 2 bands and compared to the
seminal two-band paper of Suhl et al. [9], before moving on to demonstrations that the solver can obtain
seemingly different critical temperatures for the two gaps. The model’s limitations are also tested, as
gaps of the same order of magnitude as the energy cutoff ω are found for certain intraband potentials and
densities of states. Here one finds that the gaps do not go to zero near the predicted critical temperature
from Suhl et al.’s formula.

4.1 Numerical methods
If we introduce the dimensionless variables

∆′
α = ∆α/ωα,

V ′
αβ = Vαβ

√
Nα(0)Nβ(0),

N ′
αβ = Nα(0)/Nβ(0),

ωαβ = ωα/ωβ

(4.1)

the gap equations can be written in the dimensionless form

∆′
α =

∑
β

∆′
βV

′
αβN

′1/2
βα ω′

βαS
′
β , (4.2)

with
S′
α =

∫ 1

0

dx
(
x2 + |∆′

α|
2
)−1/2

tanh

[
βωα

2

(
x2 + |∆′

α|
2
)1/2]

, (4.3)

where one can rewrite βωα using a dimensionless inverse temperature β′ = βωαmax
for ωαmax

≥ ωα for
all α = 1, ..., N . To solve the equations for the gaps ∆′

α, then, one must specify the ratios N ′
αβ and ω′

αβ ,
the strength of the interactions compared to the densities of states V ′

αβ , and the temperature compared
to the largest energy shell width β′. To avoid repetition throughout the chapter, we note here that we
set ωα = ω, i.e. ωαβ = 1, in all the calculations below. This is no essential simplification, the solver can
accommodate different energy cutoffs.

Whenever T 6= 0, the numerical energy integrals, S′
α, were calculated with an absolute error tolerance

of 1.49 × 10−8, several orders of magnitude smaller than the integral. The Python numerical equation
solver scipy.optimize.fsolve was run with a relative error tolerance of 1.49012× 10−10. Differences of
that order of magnitude are insignificant for the results presented herein. As trial solutions for the equa-
tion solver, known analytical expressions for decoupled superconductors were used where possible. In the
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calculations where potentials, temperature, or densities of states were changed gradually, the numerical
solution from the last iteration was used as the trial solution, again using an analytical expression for the
gaps at no coupling and a guess for the phases as the trial solution for the first iteration.

It should be noted that care must be taken not to enter trial phase differences that lie too close to
maxima or saddle points of the free energy – the gap equations only find points of zero derivative in
the free energy. To avoid this problem, we performed a second derivative test after each iteration by
calculating gαβ from Eq. (3.36) and checking whether the point (θ12, θ13) corresponded to a minimum
of the phase-difference dependent part of F . If it did not, the iteration was run again with new phase
differences1 as trial solutions.

With the exception of the comparison values in Fig. 4.1a, all figures were produced by solving the
five N = 3-band gap equations. These are found by taking the real and imaginary part of the equation
for each gap α multiplied by exp(−iθα),

|∆′
α| =

∑
β

∣∣∆′
β

∣∣eiθβαV ′
αβN

′1/2
βα ω′

βαS
′
β , (4.4)

and discarding one of the imaginary-part equations as the right-hand side of Eq. (4.4) ends up only
depending on two phase differences. We chose to work with the differences θ12 and θ13, using the
expression θ23 = θ13 − θ12 where necessary.

4.2 Numerical checks - from two bands to three
An initial test of the equation solver was performed by setting the dimensionless potential V ′

12 = 1/3 and
the intraband potentials V ′

11 = V ′
22 = 0 just like Suhl et al. did in 1959 [9]. The results are shown in Fig.

4.1 for the same ratios N ′
21 used by Suhl. We used their zero-temperature data, shown as crosses in Fig.

4.1a, as the trial solution for each density of states ratio. The word ”implicit” in Fig. 4.1a refers to the
way in which the equations were solved. Implicit means that the full, complex three-band gap equations
were used with V13 = V23 = V33 = 0, whereas explicit means the real-valued N = 2-band equations were
used. The ”explicit” data is not shown, but it coincides with the data shown here within the numerical
accuracy of the solver.

The gaps in the left plot exhibit the same behavior as in the old Suhl article, except near T = 0, where
they in our case come out much flatter. They were all slightly lower than Suhl’s values, but the deviation
was always less than about 0.1kBTc. This example is rather artificial, as Fig. 4.1b shows, and only served
as a test of the equation solver. The figure shows the variation in the dimensionless free energy around
the solutions

∣∣∆G.E.
α

∣∣ of the gap equations, revealing that the energy could have been lowered by either
a larger or smaller gap; the gap equations found a local maximum.

The next numerical check involved Suhl et al.’s qualitative diagram showing how the critical tempera-
tures of two decoupled superconductors merge when the coupling is turned on. This has been replicated
in Fig. 4.2 with a weakly attractive interband potential V ′

12 = 10−3 and for a few different intraband po-
tentials using N1(0) = N2(0) = const. The dots along the T -axis indicate where the critical temperature
of the smaller gap would be if the coupling had been turned off. For values of V ′

αα larger than about
0.75, the critical temperatures did not match the point where the gaps went to zero and ∆1 took on
values larger than ω, indicating that the model limit is somewhere between the shown intraband coupling
values and the 0.75 value. We will use slightly lower intraband potentials in the following to ensure small
enough gaps.

The next step is to turn on the third band and make sure the phase differences come out correctly. We
first use V ′

αα = 0.2 and interband interactions several orders of magnitude lower: V ′
αβ = ±10−5. For one

interband interaction, which is just a two-band superconductor and a third decoupled superconductor,
the phase difference between the coupled ones becomes 0 and π in the correct manner as the sign of the

1These new phase differences can be obtained from an analytical expression or e.g. a global optimization algorithm such
as scipy.optimize.dual_annealing.
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(a) Gap amplitudes obtained by using Suhl et al.’s
data as trial solutions in the equation solver and set-
ting the phase difference to 0. Like Suhl et al., we used
V ′
12 = V12

√
N1(0)N2(0) = 1/3 and Vαα = 0. The tem-

perature merely approached Suhl et al.’s predicted Tc,
so the amplitudes do not reach 0.
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tions for the lines N2/N1 = 4.5 from the left figure. The
free energy is maximized as a function of the gap am-
plitudes, serving as an example that the gap equations
extremize the free energy.

Figure 4.1: Solutions of the two-band gap equations for various temperatures and ratios N2/N1 between
the densities of states at the Fermi surfaces. As in Suhl et al.’s old theory, the phase difference between
the bands is 0 here, and the gap equations have lead us to a maximum in the free energy.
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Figure 4.2: Reproduction of Suhl’s qualitative diagram showing how the smaller gap does not go to
zero at the lower critical temperature (dots) when V12 6= 0. The inset shows the critical T -behavior of the
second largest gap. Differently colored lines have different intraband potentials, but the dimensionless
interband potential V ′

12 = 10−3 and N1 = N2 for all lines. The calculated phase difference was θ12 = 0.
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(a) The three calculated gap amplitudes, all overlap-
ping. The two interacting gaps are slightly higher than
gap 3, but it is not visible in the figure. Analytical so-
lutions at zero temperature and no coupling are shown
as a cross.
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Figure 4.3: A first calculation using N = 3 bands. All ωα = ω, Nα = const and a repulsive interband
interaction V ′

12 = −10−5 between band 1 and two, much weaker than the intraband interactions, V ′
αα =

0.2. This is at a minimum of the free energy with respect to gap amplitudes and phase differences.

interaction is switched. An example of this is shown in Fig. 4.3 for V12 = −10−5, which makes g12 > 0.
Making V12 attractive makes θ12 = 0 because g12 < 0 in that case. Similar tests show that, in isolation,
the other phase differences respond correctly to the sign of their corresponding interband potential.

We now turn on frustration in the problem. To get TRSB, we must turn on all the interband
potentials, as explained in section 3.3.1. Using Eq. (3.38), we see that one way to have the signs of
gαβ be positive is to have all the interband potentials weakly repulsive, as Stanev and Tešanović did
[26]. We begin with all V ′

αα = 0.2 and all V ′
αβ = −10−5 with the same densities of states at the Fermi

surface for all the bands. As anticipated in [25], the 120◦ three-armed star emerges, again in analogy
with the three antiferromagnetically coupled Heisenberg spins in section 2.4.1 since all gaps and bands
are identical in terms of the microscopic parameters. The system nonetheless chooses to spread the gaps
out in the complex plane with different phases, but again, with equal phase differences up to a sign.
Including a separate figure for the temperature dependence in this case is not necessary because the gaps
are essentially the same as in Fig. 4.3, except that θ12 = 4π/3, θ13 = 2π/3 for all T , breaking time-reversal
symmetry until the gaps disappear at Tc. We use the word ”essentially” because the gap amplitudes are
shifted slightly upwards, but by an amount smaller than the symbol sizes in Fig. 4.4.

Stanev and Tešanović report that TRSB is turned off at a temperature TZ2
< Tc when V23 6= V12 = V13.

Comparison becomes difficult at this point as we find TZ2
≈ Tc for values of V23 near V12. The reason for

this discrepancy may be that we have not put Vαα = 0 like they did, so the gap amplitudes are mostly
dominated by the intraband couplings and are not as sensitive to changes in the interband couplings. To
illustrate that Vαα dominate as well as how we can get TZ2

much lower than Tc, we can set V ′
11 = 0.2,

V ′
22 = 0.19, and V ′

33 = 0.18 while keeping V ′
αβ = −10−5. This configuration of intraband potentials makes

|∆3| become minuscule compared to the other gaps at a temperature far below Tc as is shown in Fig. 4.4.
As |∆3| does this, we see in Fig. 4.4a that TRSB is turned off at about 0.5Tc, demonstrating how we can
lower TZ2 by changing Vαα. Now, we must emphasize that the only results expected to be exact for this
3D system are the T = 0 ones. For higher temperatures, especially those where one gap has begun its
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Figure 4.4: N = 3 bands where all ωα = ω, Nα = const. and with repulsive interband interactions
V ′
αβ = −10−5 between all bands, much weaker than the intraband interactions which were set to V ′

11 = 0.2,
V ′
22 = 0.19, and V ′

33 = 0.18. The third gap decreases to a value close to zero after 0.5Tc due to its weak
intraband interaction, which makes the TRSB disappear since the best way to solve the frustration is to
let θ12 = θ13 = π when the last gap has almost disappeared.

descent towards zero, effects not present in mean-field theory likely become important [39, 40, 29, 32].
Once again, the gaps do not go all the way to zero near where they would have if they had not been
coupled. Instead, they exhibit the same critical behavior near Tc as in the inset in Fig. 4.2. When
the third gap is nearly gone (for T > 0.5Tc), the system solves the frustration in a non-time-reversal
symmetry breaking way, allowing the two cosine factors g12, g13 > g23 to ”win”.

4.3 TRSB and tuning of the chemical potential
We have now tested the equation solver against various known cases as well as some new ones, and we
have seen some limitations in the model for too large intraband potentials. In this section, we replicate
one old result yielding TRSB – now varying a microscopic parameter – and show how TRSB can be
turned on and off by changing the chemical potential in such a way that it does or does not cross the
highest energy band. First, we will vary interband potentials, essentially keeping all the energy bands
(2.18) at the same height ε0,α = 0. Afterwards, we will place them at different heights and increase the
chemical potential while keeping the other potentials fixed until time-reversal symmetry is broken.

4.3.1 TRSB controlled by interactions
We begin by turning our attention to the phenomenological results from [31] where TRSB was turned
on by increasing g23 to values beyond 7.5 while keeping g12 = g13 = 15. How can we obtain similar
results by varying the microscopic parameters? Let us set all Nα equal and V ′

inter ≡ V ′
12 = V ′

13 = −10−5

repulsive while we vary V ′
23, or equivalently, V23. Then the gaps ∆2 and ∆3 should be equal in magnitude

as the microscopic parameters are all symmetric upon interchange 2 ↔ 3 of band indices. With this, we
can expect g12 = g13 since also V −1

12 = V −1
13 , as can be confirmed by consulting Eq. (3.38). To make the

system frustrated and thus have a chance at finding TRSB, we now choose V23 < 0, making all gαβ > 0.
The results at T = 0 are shown in Fig. 4.5 where V23 is decreased from Vinter/10 to about 2.5Vinter. The
phase difference θ23 in Fig. 4.5a shows the same non-analytic behavior as in [31] when going from being
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(a) Phase differences and the cosine prefactors gαβ

which are the numbers determining the phase differ-
ences. The system transitions from time-reversal sym-
metric to time-reversal symmetry breaking when θ23
non-analytically becomes nonzero after V23/Vinter = 0.5.
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(b) The gap magnitudes over the same potential inter-
val as in the left figure. The variations are small com-
pared to the gap magnitudes themselves, in line with the
fact that |V23| � Vαα. Also here there is non-analytic
behavior at the point V23/Vinter = 0.5.

Figure 4.5: Zero-temperature demonstration of how TRSB can be controlled by varying one of the
interband potentials of a three-band superconductor. All energy cutoffs ωα = ω, densities of states
Nα = N , and the remaining dimensionless interband potentials were kept at V ′

12 = V ′
13 = −10−5 ≡ V ′

inter.
The intraband potentials were identical, V ′

αα = 0.2.

constantly 0 to having a kink at the upper threshold of V23/Vinter and increasing smoothly towards π
after the transition. The onset of TRSB is at the same threshold as that of g23/g illustrated in Fig. 3.1
and in [31], that is, when V23/Vinter = 0.5. We see why this is: in the entire range of repulsive potentials
V23, the cosine prefactor g23 is directly proportional to V23/Vinter while the other two remain constant.
Therefore, this figure is indeed essentially the same as the one in [32] because V23/Vinter = g23/g. We
also remark that Fig. 4.5b shows the gap magnitudes varying slightly when the coupling is changed, with
non-analytic behavior at the same transition point as the phases. They are once again dominated by the
intraband potentials. It is interesting to note that before the onset of TRSB, |∆1| is unaffected by the
change of V23, but after the onset when the phases are constrained to change to minimize the free energy,
so is |∆1|. The onset of TRSB forces all the gaps and phases to change even though the one parameter
being changed, V23, involves only band 2 and 3.

These results show that, at least for weakly repulsive interband interactions, engineering the cosine
prefactors gαβ in the free energy to create TRSB is not very difficult at T = 0. They depend linearly on
the interband potentials in this regime. We also ran zero-temperature calculations decreasing V ′

12 = V ′
13

from −10−6 to about −2 × 10−5 while keeping V ′
23 = −10−5 and all other theory parameters constant.

Here, g12 = g13 were proportional to the ratio Vinter/V23, again allowing easy control of the gαβ ’s. We
now turn to a slightly more realistic model, serving as a demonstration of how one in principle can go
from two bands crossing the Fermi surface in e.g. an iron pnictide compound to three bands and TRSB.

4.3.2 TRSB controlled by tuning µ

In this section, we increase the chemical potential µ from a value below the third band’s minimum, ε0,3,
until it eventually crosses all three of our parabolic bands from Fig. 2.3a, increasing the density of states
N3 from 0 to a finite value. We will do this with fixed potentials Vαα, Vαβ and the same values for ε0,α
as in Fig. 2.3a.
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To fix the potentials, we will indicate what the dimensionless potentials must equal to when we reach
µmax. We first parametrize µ(t) = tµmax with 0.6 ≤ t ≤ 1, just like in Fig. 2.3a. Since we are studying
three-dimensional materials, we assume densities of states of the form

Nα(ε; t, tα) = A
√

|ε− ε0,α|Θ(ε− ε0,α) = A
√

|ε− tαµmax|Θ(ε− tαµmax) (4.5)

at energy ε and that the bottom of band α is at energy ε0,α = tαµmax. The density of states at the Fermi
surface is now

Nα(t, tα) = A
√
µmax

√
|t− tα|Θ(t− tα), (4.6)

where Θ(x) is the Heaviside step function. This makes it possible to determine the ratios Nαβ(t, tα, tβ)
which have to be fed to the equation solver. Whenever either tα or tβ is larger than t, we set the ratio
to zero to avoid dividing by zero. With the naive definition of the density of states ratios, zero division
would only have appeared in the gap equations for ∆3, which must be zero since the momentum shell
around the Fermi surface is empty: F3 = ∅.

We can now fix the potentials Vαα = fααV11 for all α and Vαβ = fαβV12 for β 6= α to find the
parametrization for V ′

αβ(t). Obviously f11, f12 = 1, but the other dimensionless factors fαβ can be chosen
at will to adjust the magnitudes of the potentials relative to the two references V11 and V12. Inserting
this parametrization into the definition of the dimensionless potentials V ′

αβ = Vαβ
√
NαNβ yields

V ′
αβ(t) =

fααV
′
11(t = 1)

(
|t−tα|
1−t1

)1/2
Θ(t− tα) if α = β

fαβV
′
12(t = 1)

(
|t−tα||t−tβ |
(1−t1)(1−t2)

)1/4
Θ(t− tα)Θ(t− tβ) if α 6= β

. (4.7)

Choosing t1 = 0, t2 = 0.4, t3 = 0.8, the same values as in Fig. 2.3a, we are now ready to gradually
increase t from 0.6, i.e. µ(t) < ε0,3, to 1, at which point µ(t) = µmax > ε0,3. In Fig. 4.6 we plot the phase
differences and gap magnitudes at T = 0 for such a calculation with f22 = 1.25, f33 = 1.75, and f13 = 6,
f23 = 10, using V ′

11(t = 1) = 0.2 and V ′
12(t = 1) = −10−5. The latter two definitions also implicitly fix

µmax. The left figure shows that before the Fermi surface crosses the third band, the system chooses the
usual θ12 = π one has for N = 2 and a weakly repulsive interband coupling. When the system becomes a
three-band system at µ(t) = t3µmax = ε0,3, there is almost no frustration, as both g13, g23 are negligible
due to |∆3|’s almost being zero, so the phases take on the same values as in the almost analogous case
of Fig. 4.4b after |∆3| has almost disappeared. At a certain point just before µ(t) = 0.9µmax, the third
and smallest gap reaches a threshold value which, coupled with its large potentials, makes it preferable
to solve the now present frustration in a way that breaks time-reversal symmetry. After the threshold
is reached, θ23 increases rapidly from 0 in the usual order parameter-like manner from before. We note
that in contrast to the previous calculations, |∆3| does not display a kink or non-analytic behavior at
the threshold value. Due to the large potentials related to gap 2 and 3, the cosine prefactors g13, g23
increase quite rapidly compared to the gaps, which is reflected in the phase differences: both θ13 and θ23
start approaching their target, π whereas θ12 is pushed away. The choice of large potentials was of course
intentional and done to compensate for the following fact. For all intra- and interband potentials equal,
respectively, but otherwise using the same parameters as above, there was no TRSB because the third
gap came out several orders of magnitude smaller than gap 1.

The choice of dispersion relations above is likely rather artificial, but the goal was to demonstrate that
TRSB could be controlled by changing the densities of states at the Fermi surface through tuning of the
chemical potential. This seems firmly established now, having shown the above numerical calculations
and the remarks in section 3.3.1. The calculations made here could for instance be extended to model a
certain region of the momentum-space with multiple bands crossing it, such as near the Γ point in Figure
5 in [21]. A first step would be to make the bands more closely spaced, perhaps with different curvatures
or allowing holes, but we leave this for future considerations.
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(a) Phase differences obtained from the µ tuning calcu-
lation. The same non-analytical behavior of the phase
differences when transitioning to a TRSB state near
µ(t) = 0.9µmax is present, like in Fig. 4.5a.
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(b) Gap amplitudes obtained from the µ tuning calcu-
lation. Unlike Fig. 4.5b, the amplitudes do not have a
kink at the threshold µ-value where TRSB is turned on.

Figure 4.6: Result of modeling the tuning of the Fermi surface µ at T = 0 to make the superconductor
go from N = 2 bands to three bands and eventually three bands with TRSB when the phase difference
θ23 suddenly becomes nonzero. The dispersion relations in Fig. 2.3a were used, and the potentials
V33 = 1.75V11, V23 = 10V12 and V22 = 1.25V11, V13 = 6V12 to compensate for the fact that |∆3| is
rather small. The reference potentials V11, V12 were fixed by setting their dimensionless equivalents to be
V ′
11 = 0.2, V ′

12 = −10−5 when µ reached µmax.
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Chapter 5

Summary and outlook

In this thesis, we have investigated three-band superconductors at the mean-field level, motivated by the
discovery [20, 22] of the class of superconducting materials known as iron pnictides which can exhibit novel
superconducting states [24]. The aim of the thesis was to make explicit the microscopic theory behind
phase frustration and time-reversal symmetry breaking in these materials and to demonstrate that the
multiband character of the iron pnictides is an essential property in producing these qualitatively new
effects.

To that end, the thesis began Chapter 2 by extending Bardeen, Cooper, and Schrieffer’s microscopic
theory of superconductivity [8] to N energy bands crossing the Fermi surface and participating in super-
conductivity, as suggested by Suhl et al. over 60 years ago [9]. A proper generalization of Bogoliubov’s
method for diagonalizing the mean-field Hamiltonian without forcing the gap functions to have trivial
phases was then applied in Chapter 3, showing how, near the Fermi surface, the quasiparticle excitation
spectrum had N gaps given by the modulus of each superconducting gap function.

At this stage, it was possible to identify the origin of the vital phenomenological coefficients gαβ
used elsewhere in Ginzburg-Landau free energy expansions [31, 29, 30] by calculating the free energy
based on the diagonalized Hamiltonian. Here, it became clear that whether or not the ground state of
the superconductor is phase frustrated is completely determined by the intra- and interband couplings
Vαβ because they decide the sign of the matrix inverse V −1

αβ which is multiplied by the positive numbers
|∆α|, |∆β | to form gαβ . As is explained in the thesis, one cannot obtain time-reversal symmetry breaking
from the superconducting gaps without the ground state being phase frustrated. Accordingly, some
minimal requirements can be placed on the microscopic parameters Vαβ , but this fact is more of a useful
tool to check a given set of couplings than it is a recipe for finding couplings conducive to TRSB.

Having established the signs of gαβ and recognized that they need to be + + + or + − −, we then
concerned ourselves with the other crucial component deciding whether the three-band superconductor
chooses a TRSB state or not: how is the frustration solved? If two |gαβ | are too large, they dominate over
the last one and lock their corresponding phase differences to the trivial values of 0 or π (see Fig. 3.1).
In the intermediate space where the coefficients are comparable or only one is larger than the others, the
frustration can be solved in a manner that breaks time-reversal symmetry.

In the numerical section, Chapter 4, we took on the task of finding microscopic parameter values that
would give gαβ conducive to TRSB at T = 0. Starting with the known case of equal energy bands with
equal intraband couplings and equal and weakly repulsive (to get phase frustration) interband couplings
[26–28], we applied the well-known trick of changing only one variable while keeping the others constant
and seeing what happened. At this starting point, all gαβ were expectedly equal and positive, which forced
TRSB upon the system. When changing only one of the interband couplings, the corresponding cosine
coefficient responded linearly, meaning it could be changed in a controlled manner to tune the system
in and out of the TRSB state. In the future, other orders of magnitude for the interband couplings
should be explored. Perhaps the same linear response is not found at all scales. We also mention that
the + − − combination of signs for gαβ can be studied in our model. With such a sign combination,
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Ref. [26] reported that the phase differences would be between −π/2 and π/2, i.e. the gaps would be
less spread out in terms of angles in the complex plane. Now, changing the microscopic interactions in
an iron pnictide sample on demand is likely a difficult enterprise, but these results can at least serve as
an example of how the scales of the interband couplings affect whether or not one gets TRSB.

Finally, the slightly more realistic model of three energy bands with different heights was studied.
This could serve as a crude approximation of some of the calculated energy bands near the Fermi surface
depicted in Figure 5 in [21]. Slight shifts of the Fermi surface there would make fewer bands cross it.
We modeled the Fermi surface rising from a low energy below the third band to capture the fact that
there was no TRSB until it had reached a certain threshold level rather far above the bottom of the third
band. The intra- and interband interactions involving the third band, and to a certain extent the second
band, had to be turned up considerably to compensate for the fact that the density of states and hence
the gap amplitude in the third band were quite low. In summary, changing the density of states at the
Fermi surface of band 3 from 0 to the threshold value yielded a TRSB state at a fixed configuration of
couplings, demonstrating how deforming by e.g. an applied voltage or moving the Fermi surface can, in
principle, turn TRSB on and off. In more sophisticated calculations with more a more realistic model
one could go on to calculate magnetic fields induced by circulating Josephson currents.

The iron pnictides are usually described as having more than three bands [23, 21], so an obvious
extension of this work would be to look at the case of N = 4 bands or at more realistic dispersion
relations. For the latter suggestion, a first step could be to look at more closely spaced energy bands.
This would make the densities of states more similar, meaning one could avoid having to boost the
potentials in the upper band. Alternatively, bands such as those of Fig. 1 in [24] could be used.

Our zero-temperature mean-field theory results can be expected to be correct due to the Ising-like Z2

symmetry θα → −θα of the free energy, F [39, 40]. In principle, fluctuations of various kinds may however
become important for finite temperatures, especially near Tc. Phase [29] or gauge [32] fluctuations could
for instance affect the temperature at which TRSB is turned off in Fig. 4.5a. We therefore suspect
that there lies much work ahead to understand the phase diagram and possible applications of the iron
pnictides.
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