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A B S T R A C T

This thesis will investigate the supercurrent across a Josephson junction com-
prised of two conventional s-wave superconductors separated by a heavy metal
with Rashba spin-orbit coupling. The results demonstrate that the supercur-
rent responds to both the strength and orientation of the spin-orbit coupling.
Furthermore, the behavior of the current magnitude is understood through an
interplay between the scattering- and spin-orbit potential.

A scattering potential will provide a Fermi vector mismatch at the interface be-
tween a superconductor and a heavy metal. However, it is possible to make
the effective barrier disappear by using spin-orbit coupling. The spin-orbit cou-
pling will couple the spin of the electron to its momentum. Therefore, the energy
bands will undergo a momentum-dependent Zeeman-splitting, and the Fermi
surface of the heavy metal will displace into two co-centered surfaces. By tuning
the magnitude of the spin-orbit, we can make the Fermi surface of the supercon-
ductor coincide with one of those to the heavy metal. When they are coincided,
it will remove any Fermi vector mismatch which acts as an effective barrier.
With this underlying physics, we predict that the supercurrent can be made
larger in magnitude in the presence of spin-orbit coupling compared to its crit-
ical value without spin-orbit coupling. These observations are in stark contrast
to a magnetic Josephson junction where the magnetization always suppresses
the supercurrent compared to the case without magnetization.

In addition, a current flowing along a given direction is determined primarily
by the electrons with momentum in the same direction. Consequently, the su-
percurrent will increase when these electrons experience an absent barrier at
the interface between the superconductor and the heavy metal. Thus, when the
spin-orbit coupling is oriented parallel to the interface compared to a perpen-
dicular orientation, the spin-orbit coupling provides a larger supercurrent. This
behavior differs from a magnetic Josephson junction where the supercurrent is
invariant to changes in the magnetization direction.
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S A M M E N D R A G

Denne masteravhandlingen vil undersøke superstrømmen gjennom en Josephson-
kontakt bestående av to konvensjonelle superledere adskilt av et tungmetall
med Rashba spinn-bane kobling. Vi demonstrerer hvordan superstrømmen gjen-
nom en slik kontakt er følsom for både retningen og styrken til spinn-bane kob-
lingen i tungmetallet. Den fysiske oppførselen til superstrømmen er forklart ved
et samspill mellom spredningspotensialet og spinn-bane koblingen ved grense-
sjiktet mellom materialene.

Dersom det er et spredningspotensial ved grensesjiktet mellom en superleder
og et tungmetall, vil dette potensialet føre til en uoverensstemmelse av Fermi-
vektorene mellom de to materialene. Vi har vist hvordan det er mulig å gjen-
opprette symmetrien mellom Fermi-vektorene ved å introdusere en spinn-bane
kobling. Spinn-bane koblingen vil kombinere elektronenes spinn og impuls, slik
at energibåndene gjennomgår en impulsavhenging Zeeman-splitting. Følgelig
vil Fermi overflaten til tungmetallet dele seg i to overflater med invertert spinn-
symmetri. Styrken til spinn-bane koblingen vil avgjøre i hvor stor grad denne
Zeeman-splittingen finner sted, og åpner dermed muligheten for å justere en av
de nye Fermi-overflatene til å sammenfalle med superlederens Fermi-flate. Ved
å oprette symmetri mellom materialenes Fermi-overflater vil uoverensstemmel-
sene av Fermi-vektorene, som effektivt fungerer som en barriere for partikler
som vil transmittere over grensesjiktet, ikke lenger finne sted. Med utgangpunkt
i denne fysikken kan man predikere en superstrøm som er sterkere i denne kon-
takten sammenlignet med en kontakt uten spinn-bane kobling. Disse observa-
sjonene er i sterk kontrast til lignende forsking på ferromagnetiske Josephson-
kontakter hvor superstrømmen alltid svekkes av det magnetiske feltet.

Videre har vi gjort rede for hvilken retning av spinn-bane koblingen som påvir-
ker superstrømmen mest. Med et oppsett som undersøker superstrøm i en gitt
retning, vil superstrømmen naturlig avhenge sterkt av partikler med impuls i
samme retning. Det er derfor essensielt at disse elektronene ikke opplever en
barriere ved grensesjiktet for å transmittere lettere over kontakten. Dermed vil
en spinn-bane kobling orientert parallelt med grensesjiktet gi mulighet for ster-
kere superstrøm sammenlignet med en vinkelrett orientering. En slik oppførsel
er ulik en ferromagnetisk Josephson-kontakter hvor superstrømmen er uavhen-
gig av mangetfeltets retning.
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2 . . . . . . . . . 102

8.4 Interpretation of altered Josephson effect for n̂ = x̂ . . . . . . . . . . 103

9 summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.1 Deriving the numerical sub-matrices Hamiltonian . . . . . . . . . . 109

A.1.1 The hopping t term . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.1.2 The Hubbard U term . . . . . . . . . . . . . . . . . . . . . . . . 112

A.1.3 The chemical potential µ term . . . . . . . . . . . . . . . . . . . 114

A.1.4 The ferromagnetic h term . . . . . . . . . . . . . . . . . . . . . 115

A.1.5 The Rashba λ term . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2 Correlation functions of spin-triplet symmetry . . . . . . . . . . . . . 125

A.2.1 Numerical expression of correlation functions of any spin
orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



A B B R E V I AT I O N S

ABS Andreev bound state

BCS Bardeen-Cooper-Schrieffer

BdG Bogoliubov-de Gennes

BTK Blonder-Tinkham-Klapwijk

F ferromagnet

HM heavy normal-metal with Rashba spin-orbit coupling

NC normal-metal (without spin-orbit coupling)

SC superconductor

ix





1
I N T R O D U C T I O N

Spintronics, or spin electronics, is a field of research that is quickly growing. The
research topic studies the manipulation and active control of the spin degrees of
freedom in solid-state systems [1]. Rather than dealing with their charge, spin-
tronics deals with the spin properties of electrons. Spintronics has the potential
to substitute the classical charge-based computer processor device resulting in
greater energy efficiency and more time-efficient performance [1][2]. The ap-
plication of spintronics in technology has already started. For instance, there
are some hard drive heads that are based on the giant magnetoresistance effect
[3][4][5]. However, two main challenges regarding the further development of
spintronics devices are manifested [6]. First, the Joule heating leads to high en-
ergy loss and, in the most extreme cases, it can melt the sample. Second, there
is a short decay length of the spin currents due to spin-flip scattering. One can
solve these two problems by placing the material with a spin effect next to a
superconductor. A proximity effect will then occur [7][8][9][10][11][12], where
some of the Cooper pairs in the superconductor will leak into the normal state
material. As a result, the proximity material gets superconducting properties
[13][14][15]. The corresponding supercurrent will experience zero resistance,
which will decrease the Joule heating problem significantly.

Combining spintronics with superconductors provides several interesting re-
search questions. For example, how can the superconducting properties enhance
the effect of the spintronics? A key topic in this research is how conventional
Cooper pairs with singlet symmetry are converted to triplets. In a simplified pic-
ture, the new Cooper pairs can be treated as spinful bosons with spin S = 1. Pre-
vious experiments have shown that one can produce Cooper pairs with triplet
symmetry by introducing a nonhomogeneous magnetic exchange field. It can
be achieved by using either one ferromagnet with a spatial varying exchange
field, or utilize two or more ferromagnetic elements with noncollinear exchange
fields [13][16][17]. Additionally, it can be produced equal projection Cooper
pairs through a time-varying exchange field [18]. Furthermore, in recent years it
has been proposed that an intrinsic spin-orbit coupling can generate these equal
spin-projection states [19].

Moreover, these equal spin-projection triplets can align themselves with the ex-
change field of a ferromagnet and receive a much longer decay length than
for states with zero-projection [14][20]. From this, the Josephson junction with
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2 introduction

two superconductors incorporating a series of ferromagnets can carry supercur-
rents over a much longer distance compared to a homogeneous ferromagnet.
As mentioned, it has been proposed that spin-orbit coupling can generate spin-
triplet states [19][21][22][23], which can be found, for instance, in heavy metals
[24][25][26]. An interesting question is, what occurs if we replace the nonho-
mogeneous ferromagnet with a heavy metal with spin-orbit coupling? Will it
then be possible to achieve a similar effect of a long-range supercurrent without
any magnetic fields? If so, this could have markedly important implications for
further spintronics applications. These questions provide the primary motiva-
tion for this thesis: To what extent can we control the supercurrent using the
magnitude and direction of the spin-orbit coupling?

1.1 historical background

Already at the beginning of the 19th century, Oersted, Ampére, and Faraday
did a pioneering work in order to understand magnetism [27]. Oersted started
in 1820 to demonstrate how electric current induces magnetic fields. Not far
behind, Ampére calculated the mathematical expression for the magnetic force
due to two electrical current elements. Faraday discovered a more complete
connection between magnetism and electric current as he showed how a vary-
ing magnetic field gives rise to an induced electric field. About 100 years later
(1964), the phenomenon was explained classically by Maxwell in his equations
which related the magnetic fields to electric currents [28]. However, the emer-
gence of quantum mechanics in the 1920s found that a complete description
of magnetism could not be sufficient covered by a classical formalism. The de-
tection of an intrinsic angular momentum carried by electrons was indicated
through the famous Stern-Gerlach experiment in 1925 [29]. Today, this is com-
monly known as the spin of the electron. About the same time, the Pauli exclu-
sion principle (1925) was formulated [30]. A few years later (1928), Heisenberg
combined the Pauli exclusions principle with the electron-electron Coulomb re-
pulsion. He then realized that the phenomenon of spin is responsible for the
high-temperature magnetic order in some materials [31]. As a result, a quan-
tum mechanical formulation is required to provide a complete description of
magnetism.

Superconductivity is a field within solid state physics that has attracted much
interest over the past decades. In modern condensed matter physics, this is
considered one of the largest research topics. Additionally, the presence of fun-
damental physics and its value in technological applications in the fields of
medicine, space technology, and ultra-sensitive sensors make superconductivity
a highly valuable research topic.
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More than 100 years ago, the Dutch physicist Kamerlinght Onnes observed how
the electrical resistance of cryogenic mercury vanished for a DC current at 4.2K
[32]. For the next 22 years, one thought that the characteristics of superconduc-
tivity only depended on temperature. The two physicists, Meissner and Ochsen-
feld, proved this wrong in 1933when they demonstrated how the superconduct-
ing state was characterized by, in addition to temperature, the phenomenon of
diamagnetism [33]. In other words, superconductors expel magnetism perfectly
from their bulk regardless of how the state was reached [34]. In 1950, Ginzburg
and Landau formulated a macroscopic theory of superconductivity, which to-
day is known as the Ginzburg-Landau theory [35]. Seven years later, in 1957,
Bardeen, Cooper, and Schrieffer published a microscopic quantum mechanical
model of superconductivity [36]. This microscopic model is today known as the
BCS theory and applies to conventional superconductors at a temperature suffi-
ciently close to 0K [37]. In the following years, Bogoliubov (1958) and de Gennes
(1964) formulated the BCS framework, today know as the BdG equations [38][8].
The BdG formalism is a matrix formulation equivalent to the BCS Hamiltonian.
An advantage of this formulation is that it enables problem-solving numerically
on a computer by diagonalizing the involved matrices. A numerical solution is
helpful since the broken translational symmetry of hybrid systems makes an
analytical solution challenging.

Previous research has also detected high-temperature superconductivity. For in-
stance, Bednorz and Müller (1986) observed the superconductivity of perovskite-
type copper oxide at 35K [39][40]. This discovery was the beginning of a new
era of superconductivity research. No more than a year later, yet another ma-
terial with high-temperature superconductivity was detected at 93K [41]. Since
then, even more materials that are high-temperature superconductors have been
explored. Still, the ambition of room-temperature superconductivity is not yet
achieved [42]. Even though it is more than 50 years since the BCS theory de-
scribing conventional superconductors was published, there exists no widely
accepted theory for unconventional high-temperature superconductors [43].

1.2 scope of the thesis

The main objective of this academic year was to establish the theoretical frame-
work which enabled us to, analytically and numerically, investigate a modified
Josephson junction by incorporating a heavy metal with Rashba spin-orbit cou-
pling. In particular, we have explored the supported supercurrent across the
modified junction from the developed framework and explained how the spin-
orbit coupling affects the supercurrent.
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The academic year was divided into two parts: A specialization project study-
ing the fundamental physics of superconductors, ferromagnets, and spin-orbit
coupled materials, followed by a research project ending in this thesis. The first
project provided familiarity with the technical framework for describing such
structures. More concrete, we used second quantization applied on lattice mod-
els and the Bogolioubov-de Gennes method. In addition, a numerical program
capable of reproducing results from previous research was developed. This the-
sis is based on this numerical framework. Therefore, chapter 5, as well as ap-
pendix A.1 and A.2, were mostly produced during the first project [44]. Addi-
tionally, chapter 1 is a modified version of the same chapter from the project.
The remaining chapters have been created as part of this thesis.

The structure of this thesis is as follows: We start by presenting the fundamental
physics behind superconductors, which is the main focus of chapter 2. Chapter
3 describes the concepts of ferromagnetism and spin-orbit coupling. These two
properties incorporated in a Josephson junction will affect the flow of charges
across the junction. Thus, chapter 4 is used to discuss the spin-dependent su-
percurrent in the presence of ferromagnetism or spin-orbit coupling.

We have investigated a Josephson junction incorporating a heavy metal with
Rashba spin-orbit coupling through two different frameworks. First, the numer-
ical framework is developed in chapter 5, which describes a tight-binding lattice
following the BdG formalism. This chapter shows how the Hamiltonian gives
the eigenvectors along with the energies of the system. It also covers numerical
aspects which has to be considered while obtaining a self-consistent solution.
Chapter 6 describes the analytical framework where we investigate a super-
conductor/superconductor Josephson junction with Rashba spin-orbit coupling
imposed to the boundary. The main focus of this chapter is the development
of this BTK-like model. The supercurrent, calculated from the numerical and
analytical models, are presented in chapter 7. An interpretation providing the
physical understanding is made in chapter 8. Finally, we end this thesis by a
summary and outlook in chapter 9.
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1.3 units and useful identities

For brevity of notation, the following have been used:

v̂ Unit vectors and operators are written with a hat
v Vectors are written in a bold font
δi,j The Kronecker-delta function
δ(x) The Dirac-delta function
〈i, j〉 Used in sums to denote that i and j only runs over nearest neighbours∑
k Equivalent to

∑
k∈1BZ where 1BZ stands for 1st Brillouin zone

[Â, B̂] Commutator of two operators Â and B̂, [Â, B̂] = ÂB̂− B̂Â

{Â, B̂} Anticommutator of two opertators Â and B̂, {Â, B̂} = ÂB̂+ B̂Â

∂n The partial derivative, ∂n ≡ ∂/∂n

To avoid confusion with subscripts, we drop "," (comma) after equations.

Pauli matrices spanning spin space are defined as

σx ≡

(
0 1

1 0

)
, σy ≡

(
0 −i

i 0

)
, σz ≡

(
1 0

0 −1

)
, (1)

where the vector of the Pauli matrices is defined as σ ≡ σxx̂+ σyŷ+ σzẑ, and
{x̂, ŷ, ẑ} are the Cartesian unit vector.

Pauli matrices spanning Nambu (particle-hole) space are defined as

τ1 ≡

(
0 1

1 0

)
, τ2 ≡

(
0 −i

i 0

)
, τ3 ≡

(
1 0

0 −1

)
. (2)

The identity matrices for spin- and Nambu space are respectively

σ0 ≡

(
1 0

0 1

)
, τ0 ≡

(
1 0

0 1

)
. (3)

In the text, we use the Pauli matrices in both spin- and Nambu space to construct
4× 4 matrices. This is done by the Kronecker product denoted as τi⊗ σj ≡ τ̂iσ̂j
where i = {0, 1, 2, 3} and j = {x,y, z}. Note the Kronecker product notation by
the use of hat-symbol τ̂iσ̂j to not be confused with the matrix multiplications
τiσj which gives a 2× 2 matrix.
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E.g.

τ̂1σ̂0 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 and τ1σ0 =

(
0 1

1 0

)
. (4)

In the numerical framework, we will use a lattice model with periodic structure
as illustrated in two dimensions in Figure 1a.

A lattice spacing a = 1 between nearest neighbours is used. We will consider
three-dimensional cubic lattices of size Nx ×Ny ×Nz and a one-dimensional
lattice of size Nx. The symbol N refers to the size of the lattice, i.e. the number
of atoms in the specified direction, as shown in Figure 1b. In this thesis, we will
only model layers with interface normal along the x-direction.





































a

Unit Cell

(a) (b)

Figure 1: Illustration of the lattice model. In the left panel, we can observe how the
lattice is periodic with a lattice spacing a, and the unit cell marked by the
red lines. The right panel illustrates an example of a system build up by two
materials, e.g. M1 next to M2 in the x-direction.
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1.3.1 The second quantization formalism

In this thesis, we will use the so-called second quantization formalism to uti-
lize the Hamiltonian suitable for the numerical framework [45] [46]. In the first
quantization formalism, one uses wave functions to describe the respective sys-
tem. This formalism utilizes probability functions to localize the particles in
space and time. Thus, there is one wave function for each particle. For a many-
particle state, it is more convenient to define the system given the number of
particles in each single-particle state. This is the basis of the second quantiza-
tion formalism. We express it by ket-vectors of the occupation number, i.e.

|n1,n2,n3, . . .〉 (5)

where ni(i = 1, 2, 3, . . . ) is the occupation of the single particle state i. It is then
natural to introduce the creation and annihilation operators to create or an-
nihilate particles. Fermions have anti-symmetric many-particle states, which is
reflected in the anti-commutation relation of fermionic creation and annihilation
operators,

{ĉ†µ, ĉν} = δµ,ν (6)

for fermions in state µ and ν. For bosons, we get the following commutator due
to the symmetric exchange of single-particle coordinates,

[b̂†µ, b̂ν] = δµ,ν (7)

for bosons in state µ and ν. According to the Pauli exclusion principle, the
eigenvalues of the fermonic number operator n̂µ = ĉ†µĉµ have only two possible
values, {0, 1}. On the other hand, bosons do not have any restriction on the
maximal occupation number and n̂µ = b̂†µb̂µ can take all non-negative integers.

Let us take a look at the second quantization analogy to the single- and two-
particle operator, which in first quantization formalism depends on the coordi-
nates of the particles. For a single-particle operator Ĉ we obtain a transform as

∑
i

Ĉ(xi)→
∑
µν

〈µ| Ĉ |ν〉 ĉ†µĉν

where 〈µ| Ĉ |ν〉 =
∫
φ∗µ(x)Ĉ(x)φν(x)dx.

(8)

Here, φµ is the wave function in first quantization formalism. We can interpret
the part of creation and annihilation operators ĉ†µĉν as an attempt to transfer a
fermion from state ν to state µ, and the bra-ket 〈µ| Ĉ |ν〉 as the probability for
this transition to take place.
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For a two-particle operator B̂, the transform is∑
i,j 6=i

B̂(xi, xj)→
∑
µν,γ,λ

〈µ,ν| B̂ |γ, λ〉 ĉ†µĉ†νĉλĉγ

where 〈µ,ν| B̂ |γ, λ〉 =
∫∫
φ∗µ(x)φ

∗
ν(x
′)B̂(x, x ′)φγ(x)φλ(x ′)dxdx ′.

(9)

Equivalent to the single-particle case, one can interpret the creation and anni-
hilation operators ĉ†µĉ

†
νĉλĉγ as the part which attempts to transfer two fermions

from state γ and λ to state µ and ν, and the bra-ket 〈µ,ν| B̂ |γ, λ〉 as the proba-
bility for this transition to occur.



2
S U P E R C O N D U C T I V I T Y

Superconductors are materials that exhibit zero electrical resistance below a crit-
ical temperature [47][48][32]. When cooled below a critical temperature, the su-
perconductor will expel the magnetic flux from an external magnetic field out
of its body [33][49]. This phenomenon is called the Meissner effect, and the su-
perconductor exhibits perfect diamagnetism. However, in the presence of a large
magnetic field, the superconductivity will be destroyed, and the superconductor
goes into a normal state [36][50][51].

2.1 bcs theory

A microscopic interpretation of a superconductor was invented by J. Bardeen, L.
N. Cooper, and R. Schrieffer (BCS), known today as BCS theory [36][52][53]. The
key ingredient in BCS theory is an attractive electron-electron interaction that
gives rise to a so-called Cooper pair. A Cooper pair is a bound state consisting
of two electrons with opposite spin and momentum. To form such a Cooper
pair we require a well-defined Fermi surface.

2.1.1 The creation of one Cooper pair

Before we investigate the creation of Cooper pairs in a many-body system, let
us begin by understanding the creation of one Cooper pair. Therefore, study
a simple quantum mechanics problem of two electrons interacting through an
attractive potential V(r1 − r2). Describe the problem with a relative position
displacement r = r1 − r2 and introduce the center-of-mass position R = 1

2(r1 +

r2). The Schrödinger equation is then given by,[
−

 h2∇2R
2m∗

−
 h2∇2r
2µ

+ V(r)

]
Ψ(r,R) = EΨ(r,R) (10)

where m∗ = 2m is the total mass, µ = m/2 is the reduced mass, E is the energy
and Ψ(r,R) represent the wave-function of the system. Notice how the attractive
potential V(r) is independent of the center-of-mass coordinate R. We can there-
fore seek a solution of the form Ψ(r,R) = ψ(r)eiK·R where K is the momentum

9
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vector of the center-of-mass position R. The eigenvalue problem in Eq. (10) will
then reduce to[

−
 h2∇2r
2µ

+ V(r)

]
ψ(r) = Ẽψ(r) (11)

where we have defined Ẽ = E −
 h2k2

2m∗ . In order to minimize the energy E for
a given eigenvalue Ẽ, we require K → 0, i.e. for the momentum of the center-
of-mass to vanish and the energy reduces as E = Ẽ. In this minimized energy
case, the two involved electrons have opposite momentum. Taking a closer look
at the resulting wave function, we can observe the spatial part to decide the
symmetry of the electrons’ spins in order to fulfill the anti-symmetric property
of the total wave function. An even wave-function where ψ(r) = ψ(−r) will
force the spins to form a singlet state, while an odd symmetry of the wave
functions, ψ(r) = −ψ(−r), will create a triplet state. We discuss the singlet and
triplet state in more detail in Appendix A.2.

At this point, we have minimized the energy by choosing K = 0, which gives
Ẽ = E. Now, perform a Fourier transform on Eq. (10) given as

ψ(r) =

∫
d3rψ(r)e−ik·r. (12)

The result yields,

 h2k2

2µ
ψ(r) +

∫
d3rV(r)ψ(r)e−ik·r = Eψ(r)∫

d3q

(2π)3
V(q)

∫
d3rψ(r)e−i(k−q)·r =

(
E−

 h2k2

m

)
ψ(r)∫

d3k ′

(2π)3
V(k− k ′)ψ(k ′) =

(
E− 2εk

)
ψ(k)

(13)

where we have substituted q = k− k ′ and introduced the free electron energy
εk =

 h2k2

2m . In a bound state, the two involved electrons have a total energy
smaller than for two independent electrons, i.e. E < 2εk. We therefore introduce
a new wave-function

∆(k) =
(
E− 2εk

)
ψ(k) (14)

which gives the Schrödinger equation the new form

∆(k) = −

∫
d3k ′

(2π)3
V(k− k ′)

2εk′ − E
∆(k ′). (15)

To continue this exercise, we will need to use a finding we will derive in the
many-body system investigated in the next section. In particular, only electrons
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near the Fermi surface will be affected by the attractive electron-electron interac-
tion. To resemble such behavior, we will set the attractive potential V(k− k ′) =
−V0 for the unoccupied states above Fermi energy εF. That is for εk′ − εF <  hωD
and εk − εF <  hωD, and zero otherwise. We will later show that the property
∆(k) is independent of k, seeking a solution with constant ∆(k) = ∆. Note how
this solution will provides an even spatial wave-function, ψ(r) = ψ(−r). Thus,
the two involved electrons have to create a singlet state with anti-parallel spin
symmetry.

Since we are studying a system of two electrons, the density of states per spin
is

ρ(ε) =
m3/2

√
2 h3π2

√
ε (16)

and we obtain

∆ = V0∆

ε+ωD∫
ε

ρ(ε)

2ε− E
dε . (17)

The property ωD represents the Debye frequency where  hωD � εF. Therefore,
approximate the density of states within the region εF < ε < εF +ωD to equal
the density of states at Fermi level where ε = εF. The previous equation then
reduces to

2

V0ρ(εF)
= ln

(2εF − E+ 2ωD
2εF − E

)
. (18)

Consider the limit of V0ρ(εF)� 1, and observe how this limit requires 2εF−E�
1. Thus, the approximation 2εF − E + 2ωD ' 2ωD is reasonable. The binding
energy between the two bound electrons are defined by the energy difference
from a free energy state,

Eb ≡ 2εF − E

= 2ωDe
− 2
V0ρ(εF) .

(19)

The resulting expression for the binding energy shows that a bound state is
established regardless of the magnitude of the attractive potential V0. In other
words, the bound state is formed as long as the attractive potential is present.
We call this bound state a Cooper pair and is fundamentally different from a
free electron case where the attractive potential has a lower threshold to create a
bound state. A fundamental property of the unique behavior of a Cooper pair to
be established is the existence of a well-defined Fermi surface, which separates
the occupied and unoccupied states.

We can calculate the threshold in a free electron case by starting out from Eq.
(15), and consider an attractive potential V(k−k ′) = −V0 for all electronic states
where εk <  hωD and εk′ <  hωD, and zero otherwise.
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2.1.2 BSC state - creating Cooper pairs in a many-body system

This section will consider the BCS state with a mean-field theory applied on a
many-body system. To investigate the origin of superconductivity, we will start
from the effective Hamiltonian given as

H =
∑
k,σ

ξkĉ
†
kσĉkσ +

1

N

∑
kk′

Vkk′ ĉ
†
k↑ĉ
†
−k↓ĉ−k′↓ĉk′↑ (20)

where the creation operator ĉ†kσ creates an electron with spin σ and momentum
k, and ξk = εk − µ defines the energy relative to the chemical potential. Note
how the second term describes the destruction of a pair of electrons with op-
posite spin and momentum, and the subsequent creation of another two paired
electrons. From the definition, these paired electrons, with opposite spin and
momentum, are Cooper pairs because they interact with an attractive force of
magnitude Vkk′ .

The sum runs over all k values in the bound energy band. With extremely many
ways of choosing the N/2 states of pair occupancy, it will be hopeless to deter-
mine all the terms in the sum. BCS theory argued that a mean-field approxima-
tion would be a good approach with many particles involved. We will therefore
perform a mean-field approximation to the quadratic term of the Hamiltonian
in Eq. (20),

〈ĉ†k↑ĉ
†
−k↓ĉ−k′↓ĉk′↑〉 ' 〈ĉ

†
k↑ĉ
†
−k↓〉ĉ−k′↓ĉk′↑ + ĉ

†
k↑ĉ
†
−k↓〈ĉ−k′↓ĉk′↑〉− 〈ĉ

†
k↑ĉ
†
−k↓〉〈ĉ−k′↓ĉk′↑〉.

(21)

The mean value 〈ĉ†k↑ĉ
†
−k↓〉 corresponds to the creation of one Cooper pair in the

superconducting state. Let us use this term to introduce a quantity called the
gap function given as

∆k = −
1

N

∑
k′

Vkk′〈ĉ†k↑ĉ
†
−k↓〉. (22)

We will later comment on why we call this quantity a gap. After substituting
this new quantity into the Hamiltonian, we obtain

H =
∑
k,σ

ξkĉ
†
kσĉkσ−

1

N

∑
k

(
∆kĉ

†
k↑ĉ
†
−k↓ +∆

∗
kĉ−k↓ĉk↑

)
+
∑
k

∆k〈ĉ†k↑ĉ
†
−k↓〉. (23)

In order to solve the modified Hamiltonian, we introduce a set of new fermonic
operators γkσ and coefficients uk, vkσ through a so-called Bogoliubov transfor-
mation defined as [38]

ck↑ = u
∗
kγk↑ + vkγ

†
−k↓

c
†
−k↓ = ukγ

†
−k↓ + v

∗
kγk↑.

(24)
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Requiring the fermionic commutation relations to be fulfilled, the normalization
condition yields |uk|

2 + |vk|
2 = 1. The different terms of the effective Hamilto-

nian will then transform as∑
k,σ

ξkĉ
†
kσĉkσ =

∑
k

ξk

[
ĉ
†
k↑ĉk↑ + ĉ

†
k↓ĉk↓

]
=
∑
k

ξk

[(
|uk|

2 − |vk|
2
)(
γ
†
k↑γk↑ − γ

†
−k↓γ−k↓

)
+ 2|vk|

2 + 2ukvkγ
†
k↑γ
†
−k↓ + 2u

∗
kv
∗
kγ−k↓γk↑

]
−
∑
k

(
∆kĉ

†
k↑ĉ
†
−k↓ +∆

∗
kĉ−k↓ĉk↑

)
=
∑
k

[(
∆kukv

∗
k +∆

∗
ku
∗
kvk

)(
γ
†
k↑γk↑ − γ

†
−k↓γ−k↓

)
−
(
∆kukv

∗
k +∆

∗
ku
∗
kvk

)]
−
∑
k

[(
∆ku

2
k −∆

∗
kv
2
k

)
γ
†
k↑γ
†
−k↓ +

(
∆∗k(u

∗
k)
2 −∆k(v

∗
k)
2
)
γ−k↓γk↑

]
(25)

such that the total effective Hamiltonian reads

H =
∑
k

[
2ξk2|vk|

2 −∆kukv
∗
k −∆

∗
ku
∗
kvk +∆k〈ĉ

†
k↑ĉ
†
−k↓〉

]

+
∑
k

[
ξk

(
|uk|

2 − |vk|
2
)
+∆kukv

∗
k +∆

∗
ku
∗
kvk

](
γ
†
k↑γk↑ − γ

†
−k↓γ−k↓

)
+
∑
k

[
2ξkukvk −∆ku

2
k +∆

∗
kv
2
k

](
γ
†
k↑γ
†
−k↓
)
+ h.c.

(26)

Here, h.c. denotes the hermitian conjugate. We wish to diagonalize the Hamil-
tonian. To do so, we need to find the coefficients uk, vk that make the last sum
disappear. The choice is determined by setting the last sum to zero. The follow-
ing quadratic equation must then be fulfilled:

2ξkukvk −∆ku
2
k +∆

∗
kv
2
k = 0. (27)

Solving the previous equation for the ratio vk/uk gives

uk
vk

=

√
ξ2k + |∆k|

2 − ξk

∆∗k
(28)

where we chose the positive root to ensure that the energy of the BCS state is
a minimum and not a maximum. Notice that the numerator is real, stating that
the phase of the gap function ∆k is equal to the relative phase of vk and uk.
For further calculations, we can choose the phase of uk to zero. As a result, the
phase of ∆k and vk are being equal.

By inserting the normalization condition |uk|
2 + |vk|

2 = 1 to the previous equa-
tion, we can solve for the coefficients uk, vk which is found to be

|uk|
2 =

1

2

(
1+

ξk√
ξ2k + |∆k|

2

)

|vk|
2 =

1

2

(
1−

ξk√
ξ2k + |∆k|

2

)
.

(29)
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Substituting the relations of vk, uk into the effective Hamiltonian, we get

H =
∑
kσ

Ekγ
†
kσγkσ +

∑
k

(
ξk − Ek +∆k〈c†k↑c

†
−k↓〉

)
. (30)

Notice that the last sum is a constant. Hence, it determines the BCS ground
state. The first term determines the increased energy of the fermions above the
ground state. This term is denoted in terms of the number operator γ†kσγkσ, thus
the operator γkσ represent the elementary quasi-particle excitation of the system
with the excitation energy Ek. It is now clear why we call the quantity ∆k the gap
function. From the previous equation, we can observe that the superconductor
has a gap in the energy spectrum at Fermi level (ξk = 0) of size |∆k|.

The operators γkσ are usually called Bogoliubons and is a mixture of electrons
and holes. We can determine their relations by rewrite Eq. (24) as

γk↑ = ukck↑ − vkc
†
−k↓

γ
†
−k↓ = u

∗
kc
†
−k↓0v

∗
kck↑.

(31)

The behavior of uk and vk are determined by Eq. (29). For ∆k → 0, we have
for energies above Fermi level (ξk > 0), uk → 1 and vk → 0, while for energies
below Fermi level (ξk < 0), uk → 0 and vk → 1. Consequently, in the normal
state where ∆k → 0, a Bogoliubon excitation corresponds to creating an electron
above Fermi level and simultaneous destroying an electron (creating a hole)
below Fermi level with opposite spin and momentum. On the other hand, in the
superconducting state, ∆k 6= 0, a Bogoliubon excitation becomes a superposition
of both a hole and an electron state.

From this exploration, we can write the BCS ground state wave-function in
terms of the vacuum of Bogoliubons,

γkσ |ΨBCS〉 = 0. (32)

Substitute the electron operator, to write this wave-function in terms of the vac-
uum of electrons, |0〉, we get

ukck↑ |ΨBCS〉 = vkc†−k↓ |ΨBCS〉 . (33)

Replace the BCS wave-function with an arbitrary combination of Cooper pairs,

|ΨBCS〉 = A
∏
q
e
αqc

†
q↑c
†
−q↓ |0〉, where A is a normalization constant and the func-

tion αq is to be determinant. Pay attention to how the operator ck↑ commutes
with all terms inside the product except the one where q = k. To evaluate this
operation, use the commutation relation of [A,BC] = {A,B}C−B{A,C} and find
that [

ck↑,αkc
†
k↑c
†
−k↓

]
= αk

{
ck↑, c

†
k↑

}
c
†
−k↓ = αkc

†
−k↓. (34)
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Consequently,

ck↑αkc
†
k↑c
†
−k↓ |0〉 = αkc

†
−k↓ |0〉

ck↑

(
αkc

†
k↑c
†
−k↓

)2
|0〉 = 2

(
αkc

†
k↑c
†
−k↓

)
αkc

†
−k↓ |0〉

...

ck↑

(
αkc

†
k↑c
†
−k↓

)n
|0〉 = n

(
αkc

†
k↑c
†
−k↓

)n−1
αkc

†
−k↓ |0〉

(35)

thereby

ck↑e
αkc
†
k↑c
†
−k↓ |0〉 =

∞∑
n=1

ck↑αkc
†
k↑c
†
−k↓

n!
|0〉

= αk

∞∑
n=1

(
αkc

†
k↑c
†
−k↓

)n−1(
n− 1

)
!

c
†
−k↓ |0〉

= αkc
†
−k↓

∞∑
n=0

(
αkc

†
k↑c
†
−k↓

)n(
n
)
!

|0〉

= αkc
†
−k↓e

αkc
†
k↑c
†
−k↓ |0〉

(36)

where we have used
[
c
†
µ, c†ν

]
= 0. Inserting the result into Eq. (33) gives

ukαkc
†
−k↓ |ΨBCS〉 = vkc†−k↓ |ΨBCS〉 . (37)

The previous equation implies that αk = vk/uk. Taking advantage of the Pauli

exclusion principle giving
(
c
†
k↑c
†
−k↓

)n
= 0 for n > 0, the expression for the BCS

wave-function is reduced to

|ΨBCS〉 = A
∏
k

e
αkc
†
k↑c
†
−k↓ |0〉 = A

∏
k

(
1+

vk
uk
c
†
k↑c
†
−k↓

)
|0〉 . (38)

To evaluate the normalization constant A, notice that

〈0|
(
u∗k + v

∗
kck↑c−k↓

)(
uk + vkc

†
k↑c
†
−k↓

)
|0〉 = 〈0|

(
|uk|

2 + |vk|
2ck↑c

†
k↑c−k↓c

†
−k↓

)
|0〉

= 〈0|
(
|uk|

2 + |vk|
2
(
1− c†k↑ck↑

)(
1− c†−k↓c−k↓

))
|0〉

= 〈0|
(
|uk|

2 + |vk|
2
)
|0〉 .

(39)

Finally, the normalized result for the BCS wave-function given as

|ΨBCS〉 =
∏
k

(
uk + vkc

†
k↑c
†
−k↓

)
|0〉 (40)
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which implies that the identity |vk|
2 gives the probability of a pair state of elec-

trons with opposite spin and momentum being occupied. Recall from Eq. (29)
that

|vk|
2 =

1

2

(
1−

ξk√
ξ2k + |∆k|

2

)
. (41)

Hence, the value of |vk|
2 is greatest when ξk is small. Since ξk ≡ εk − µ, a small

value of ξk implies an energy close to Fermi surface. Consequently, a Cooper
pair is most likely to exist for electrons with |k| = kF.

By introducing the Bogoliubov transformation, we can determine the gap func-
tion ∆k in Eq. (22). The Bogoliubons are all independent of each other and
follows the Fermi-Dirac distribution with an energy dispersion of Ek given as

〈γ†k↑γk↑〉 = 〈γ
†
−k↓γ−k↓〉 =

1

eβEk + 1
. (42)

Thus, the gap equation yields

∆k = −
1

N

∑
k′

Vkk′∆k′

2Ek′
tanh

( Ek′

2kBT

)
. (43)

Furthermore, let us investigate for which attractive potential, Vkk′ , we obtain a
non-zero gap. Assume a constant attractive potential Vkk′ = −V0 for electrons
around the Fermi energy, |ξk|, |ξ′1| <  hωD. It corresponds to a shell of thickness
 hωD around the Fermi energy. With a potential independent of the momenta of
the involved particles, we look for a gap function which is also independent of
the momenta, ∆k = ∆. An isotopic gap like this one is called an s-wave gap, and
the gap equation reduces to

1 =
V0
N

∑
k<kD

1

2Ek
tanh

( Ek
2kBT

)
. (44)

Similar to the exercises with only two electrons, we introduce the density of
states per spin, ρ(ε), and get

1 = V0

 hωD∫
− hωD

ρ(ε)

2
√
ε2 +∆2

tanh
(√ε2 +∆2

2kBT

)
dε . (45)

To approximate the density of states to its value at the Fermi level, we use the
fact that  hωD � µ and get

1 = V0ρF

 hωD∫
0

1

2
√
ε2 +∆2

tanh
(√ε2 +∆2

2kBT

)
dε . (46)
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This equation evaluates the gap function at a given temperature. The maximal
value is obtained when T = 0, since tanh(x→∞) → 1. This temperature pro-
vides

1 = V0ρF

 hωD∫
0

1√
ε2 +∆20

dε

1

V0ρF
= arcsinh

(  hωD
∆0

) (47)

where we have defined the gap at zero temperature as ∆0 ≡ ∆(T = 0). Experi-
mentally, the gap ∆0 is usually of the order a few meV for conventional super-
conductors, whereas  hωD is of an order hundred times greater. As a result, we
can approximate the arcsin(x) for large arguments,

1

V0ρF
= ln

(2 hωD
∆0

)
∆0 = 2 hωDe

− 1
V0ρF .

(48)

At this point, we can conclude with the same conclusion as for the two electrons-
exercise: A gap in the energy spectrum occurs as long as the attractive electron-
electron interaction is non-zero, regardless of its strength. This shows that the
Fermi liquid state is unstable towards the creation of the BCS superconducting
state.
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2.2 the bogoliubov-de gennes equations

The Bogoliubov-de Gennes (BdG) equations are a generalization of the BCS
formalism that facilitate the treat of non-uniform superconductors.

We can derive the BdG equations by writing the real-space Hamiltonian in terms
of field operators [51]. The definition of field operators are [45]

ψ̂↑(r) =
∑
n

[
un,↑(r)γn − v

∗
n,↑(r)γ

†
n

]
ψ̂↓(r) =

∑
n

[
un,↓(r)γn + v

∗
n,↓(r)γ

†
n

] (49)

where the coefficients un,σ(r) and vn,σ(r) are to be considered as the real space
functions of electrons and holes in the state (n,σ), respectively. The BCS Hamil-
tonian in terms of field operators reads

Ĥ =
∑
σ

∫
d3rψ̂†σ(r)Htψ̂σ(r)+

∫
d3r
{
∆∗(r)ψ̂↓(r)ψ̂↑(r)+∆(r)ψ̂

†
↑(r)ψ̂

†
↓(r)
}

(50)

where the superconducting gap is given by

∆(r) = U〈ψ̂↑(r)ψ̂↓(r)〉. (51)

We will now derive an equivalent expression for the Hamiltonian defined in Eq.
(50). In order to do so, consider the commutator[

H, ψ̂σ(r)
]
. (52)

The key is to evaluate this commutator in two separate ways, equating the two
results and obtaining the BdG equations. It is a set of matrix equations equiv-
alent to the Schrödinger equations, which makes them suited for finding the
energy eigenvalues and eigenstates of a system.

To evaluate the commutator in Eq.(52), use the anticommutation relations of
fermonic field operators, {ψ̂α, ψ̂†β} = δα,β, to achieve the relations[ ∫

d3r ′ψ̂†σ ′(r
′)ψ̂σ ′(r

′), ψ̂†σ(r)

]
= ψ̂†σ ′(r)δσ ′,σ[ ∫

d3r ′ψ̂†σ ′(r
′)ψ̂σ ′(r

′), ψ̂σ(r)

]
= −ψ̂σ ′(r)δσ ′,σ[ ∫

d3r ′ψ̂σ ′(r
′)ψ̂σ ′′(r

′), ψ̂†σ(r)

]
= ψ̂σ ′(r)δσ ′′,σ − ψ̂σ ′′(r)δσ ′,σ[ ∫

d3r ′ψ̂†σ ′(r
′)ψ̂†σ ′′(r

′), ψ̂σ(r)

]
= ψ̂†σ ′(r)δσ ′′,σ − ψ̂

†
σ ′′(r)δσ ′,σ.

(53)
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By inserting Eq.(53) into Eq.(52) we get[
H, ψ̂↑(r)

]
= −Htψ̂↑(r) −∆(r)ψ̂

†
↓(r)[

H, ψ̂↓(r)
]
= −Htψ̂↓(r) +∆(r)ψ̂

†
↑(r).

(54)

Finally, perform the Bogoliubov transformation of the field operators[
H, ψ̂↑(r)

]
=
∑
n

[(
−Htun,↑(r) −∆n(r)vn,↓(r)

)
γn −

(
−Htv

∗
n,↑(r) +∆n(r)u

∗
n,↓(r)

)
γ†n

]
[
H, ψ̂↓(r)

]
=
∑
n

[(
−Htun,↓(r) −∆n(r)vn,↑(r)

)
γn +

(
−Htv

∗
n,↓(r) +∆n(r)u

∗
n,↑(r)

)
γ†n

]
.

(55)

This is the first step in order to obtain the BdG equations.

Let us now evaluate the commutator in Eq. (52) in a different manner. We know
that the field operators diagonalize the Hamiltonian by definition. Thus, we can
insert the Bogoliubov transformations of the operators directly into the Hamil-
tonian before we compute the commutator. Use the anticommutation relations
of the γn,σ-operators and get[

H,γn,σ

]
= −En,σγn,σ[

H,γ†n,σ

]
= En,σγ

†
n,σ.

(56)

Now, if we calculate the commutator in Eq.(52) we obtain[
H, ψ̂↑(r)

]
=
∑
n

[
− un,↑(r)Enγn − v

∗
n,↑(r)Enγ

†
n

]
[
H, ψ̂↓(r)

]
=
∑
n

[
− un,↓(r)Enγn + v

∗
n,↓(r)Enγ

†
n

]
.

(57)

Combining the result of the commutator in Eq. (55) and (57), we receive a set
of equations. These equations are commonly known as the BdG equations and
reads

Htun,↑(r) +∆n(r)vn,↓(r) = Enun,↑(r)

Htun,↓(r) +∆n(r)vn,↑(r) = Enun,↓(r)

−H∗tvn,↑(r) +∆
∗
n(r)un,↓(r) = Envn,↑(r)

−H∗tvn,↓(r) +∆
∗
n(r)un,↑(r) = Envn,↓(r)

(58)

which in matrix form yields
Ht 0 0 ∆

0 Ht −∆ 0

0 −∆∗ −H∗t 0

∆∗ 0 0 −H∗t



un,↑(r)

un,↓(r)

vn,↑(r)

vn,↓(r)

 = En


un,↑(r)

un,↓(r)

vn,↑(r)

vn,↓(r)

 . (59)
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2.3 andreev reflections

An Andreev reflection is a quantum mechanical phenomenon that may occur
at the interface of a superconductor (SC) and a normal state metal (NC) [54].
The reflection is the fundamental process behind the proximity effect, and all
phenomena related to it [12][55][56]. To obtain electron-electron interactions in
the normal region, which is necessary to create superconducting correlations,
we need the correlations to leak from the superconductor into the normal metal
[7][8][9][10][11][12]. It is Andreev reflections that produce this leakage, where
Cooper pairs in the superconductor, with close proximity, diffuses into the nor-
mal metal. As a result, the normal metal will then obtain superconducting prop-
erties [13][14][15]. The length of this superconducting region, inside the normal
metal, exceeds the superconducting coherence length. It depends on various
properties like temperature and the presence of impurities, tunnel barriers, or
boundaries.

Since an Andreev reflection gives a normal metal superconducting properties,
the reflection depends on the order parameter of the superconducting material
by nature. Recall the derivation of the Cooper pairs and the superconducting
gap in section 2.1, showing that electrons around the Fermi level might interact
and cause a gap in the energy spectrum surrounding E = 0. This gap makes it
impossible for an electron to find an available state if its energy is less than the
gap, E < ∆. Nevertheless, the electron can interact with another electron and
create a Cooper pair, which can penetrate the superconductor and give rise to a
supercurrent.

Look at an NC/SC bilayer. For an incoming electron towards the interface on the
NC side, there are four possible processes. This is illustrated in Fig. 2. Notice
how these four processes change the parallel (v‖) and the perpendicular (v⊥)
part of the group velocity relative to the interface. The four processes are:

• specular reflection : v‖ → v‖, v⊥ → −v⊥

• Andreev reflection : v‖ → −v‖, v⊥ → −v⊥

• transmission as an electron : v‖ → v‖, v⊥ → v⊥

• transmission as a hole : v‖ → −v‖, v⊥ → v⊥

Suppose the energy of the incoming electron is greater than the superconducting
gap, E > ∆. In that case, the electron can either reflect as an electron (specular
reflection) or transfer into the superconductor as a quasiparticle. On the other
hand, if the energy of the incoming electron is less than the gap, E < ∆, there
are no available states in the superconductor that the electron can inhabit. There
are only existing Cooper below the energy gap. As a result, the electron can-
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Figure 2: Scheme of the scattering processes that takes place at the interface of an
NC/SC bilayer. An incoming electron inside the normal region can Andreev
reflect as a hole, normal reflect as an electron, transmit as an electron-like
quasiparticle, or transmit as an hole-like quasiparticle.

not penetrate the superconductor alone. In 1964, the Russian physicist Andreev
demonstrated how an electron with E < ∆ can reflect as a hole [54]. In detail,
the incoming electron may interact with an electron close to the interface and
penetrate the superconducting gap as a Cooper pair [57]. The interaction will
leave a quasiparticle hole in the normal metal. This sequence is what we call an
Andreev reflection and is illustrated in Figure 3. Since there are no free electrons
in the superconductor at E < ∆, the incoming electron with momentum k has
to form a Cooper pair with an electron on the normal side of the interface. The
process conserves charge, momentum, energy, and spin. Thus, the reflected hole
has momentum k, since a Cooper pair is created by two electrons with opposite
momenta. Consequently, the reflected hole will travel away from the interface.
Conservation of energy gives that the incoming electron with energy E, rela-
tive to the chemical potential of the superconductor, will interact with another
electron with energy −E, such that the generated hole has energy E [57].

An incoming hole can also Andreev reflect. In that event, it reflects into an elec-
tron. The Andreev reflection will then split a Cooper pair in the superconductor
and transfer both electrons across the interface. Finally, one of the electrons will
cancel the hole while the other starts traveling away from the interface.

It is important to note that an Andreev reflection gives rise to a phase coherence
between the hole and the electron. For an incoming electron with energy equal
to the Fermi energy, E = 0, the reflected hole must mirror the energy E = 0. The
resulting correlation will have a center-of-mass momentum equal to zero. Thus,
in theory, the superconducting correlation can be carried infinitely far into the
normal metal. However, in the presence of e.g. magnetic impurities, these will
ruin the superconducting correlations in the normal metal after they reach the
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Figure 3: Illustration of Andreev reflection. An incoming spin-up electron (dark blue)
with energy EF + E, where E < ∆, can interact with an electron with spin-
down at energy EF − E. Together, they can penetrate the superconductor and
create a Cooper pair. The spin-down electron leaves a spin-down hole (white)
with energy EF − E. By conservation of momentum, the hole will travel away
from the interface. In the figure, the axes of the electron energy Ee and the
hole energy Eh are oppositely directed.

spin-flip relaxation length [58]. In the opposite case, when the incoming electron
has energy that differs from the Fermi energy, the reflected hole will have a
mismatch in the momentum [59]. As a consequence, the correlation between the
electron and the hole will eventually be lost.
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2.4 josephson effect

The previous section demonstrated how electrons could Andreev reflect into
holes at the interface of a superconductor/normal-metal (SC/NC) bilayer. This
section outlines how this phenomenon affects the current across a supercondu-
ctor/normal-metal/superconductor (SC/NC/SC) trilayer. As shown in section
2.1, the superconducting gap is determined by the absolute value of ∆. However,
∆ is a complex parameter that can fluctuate within the complex plane without
changing the physical energy gap, i.e. ∆ = |∆|e−iφ. Recall that the gap is pro-
duced by the creation of Cooper pairs consisting of electrons around the Fermi
level. Moreover, the phase of the superconducting gap is produced by the phase
of the Cooper pairs. In the ground state, the superconductor wants to minimize
its energy. Consequently, the ground state is obtained when all Cooper pairs in
the bulk superconductor have equal phases. We will refer to this phase of the
Cooper pairs, in the bulk ground state superconductor, as the superconducting
phase.

The superconducting ground state can be interrupted by forcing the supercon-
ductor to interact with other materials. In a system with two superconductors
next to each other (SC/SC), the superconductors could have an equal energy
gap of |∆|. However, it does not imply that their phase will coincide. A sys-
tem with two or more superconductors coupled with a weak link is called a
Josephson junction [50]. A Josephson junction is simply a series connection of
a superconductor, a non-superconducting material, and a superconductor. By
sending a current through the junction, the phase of the two sandwiched su-
perconductors will adapt to the applied current. Consequently, it can appear a
dissipationless current which is what we call a supercurrent.

The zero-voltage supercurrent was first predicted by Josephson in 1962 [60]. He
calculated the flow of charges between two superconductors separated by a thin
barrier to be

Is = Ic sin(∆φ). (60)

Here, ∆φ is the phase difference between the two superconducting electrodes,
and the critical current Ic is the maximal supercurrent supported by the junction.
The tunneling effect for an electron to move through a barrier, even if its kinetic
energy is lower than the barrier potential, was already confirmed experimentally
the year after [61]. Josephson also suggested how a phase difference would
evolve over time if a voltage difference, V , was maintained across the junction,

d(∆φ)
dt

=
2eV
 h

. (61)

Such a phase-voltage relation will provide an alternating current with frequency
ν = 2eV  h and amplitude Ic. These two predictions are today known as DC
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and AC Josephson effect and have been fully confirmed by a huge amount of
experiments [50]. In this thesis, only the DC Josephson effect will be studied as
a consequence of an applied current.

We can reproduce Josephson’s results by considering an SC/SC junction. For
this, we utilize a treatment invented by Feynman [62]. Assume that the two
superconducting states can be described by a single wave function due to a
collective state of the bosonic Cooper pairs. The wave functions of the two su-
perconductors are coupled as

i h
dψL
dt

= eVaψL +KψR, i h
dψR
dt

= −eVaψR +KψL (62)

where K describes the barrier potential that separates the two superconductors,
and Va is the applied current across the junction. An applied voltage of Va
will increase the energy to a pair of electrons (of charge 2e) by 2Va in the left
superconductor relative to a pair in the right one. Assume the wave functions
to be given as ψL(R) =

√
ρL(R)e

iφL(R) where ρ and φ are the density of Cooper
pairs and the superconducting phase, respectively. By considering the real and
imaginary part of Eq. (62), we end up with a set of four equations. Considering
the imaginary part, we get

dρL
dt

= −
dρR
dt

=
2K
 h

√
ρLρR sin(φL −φR) = I1 sin∆φ (63)

where we have defined ∆φ = φL − φR. The previous equation determine the
current across the junction without any voltage applied. This is the DC Joseph-
son effect. Be aware that the expression explicit states that we require a phase
difference to achieve zero-voltage current.

The AC voltage is derived by looking at the real part of Eq. (62) which gives

d∆φ
dt

=
dφL
dt

−
dφR
dt

=
2eVa

 h
∆φ = ∆φ0 +ωJt

(64)

where ∆φ0 is a constant term andωJ = 2eVa
 h is the Josephson frequency. This AC

Josephson effect is rising from an applied voltage which causes a phase differ-
ence that increases at a linear rate with time. The result is sinusoidal oscillations
in the supercurrent.

The zero-voltage supercurrent is driven by the transport of electrons between
the two superconductors. Unlike a normal electric current, the transferred elec-
trons are Cooper pairs instead of free electrons. The exchange of Cooper pairs
is possible through the Andreev reflections of electrons and holes. In relation to
this, we will provide a short explanation of the transport of Cooper pairs: An
incoming electron, inside the normal conductor and towards the right super-
conductor, can interact with another electron and penetrate the superconductor
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as a Cooper pair. Effectively, the process creates a Cooper pair in the right su-
perconductor. The reflected hole will propagate away from the superconductor
inside the normal metal. It may reflect in a similar manner when it reaches the
left superconductor. Effectively the hole has destroyed a Cooper pair in the left
superconductor. A procedure like this can continue back and forth between the
two superconductors and effectively transport Cooper pairs. This process will
happen in both directions, and depending on the phase difference, there might
be a net current [60][61][63]. The Josephson effect is illustrated in Figure 4.

Figure 4: Illustration of the Josephson effect, where a Cooper pair is effectively trans-
ferred from the left superconductor to the right superconductor. The process
is driven by electrons and holes that are Andreev reflected back and forth in
the normal conductor.

In general, any arbitrary current-phase relation can be developed as a Fourier
series of sines and cosines since the phases are periodic. We can therefore as-
sume all current-phase relations to follow

I(∆φ) =

∞∑
n=1

(
An sin(n∆φ) +Bn cos(n∆φ)

)
. (65)

Many junctions have a symmetrical geometry that demands the current to be
reversed when the superconducting phase is inverted. For these types of junc-
tions, as every junction investigated in this thesis, we have

I(∆φ) = −I(−∆φ). (66)

It follows that ∆φ = 0 must provide zero current. Thus, Bn = 0 for all n to make
the cosines disappear. The resulting current is then a series of sines, where we
can recognize a general expression including higher-order terms given as

I(∆φ) = I1 sin(∆φ) + I2 sin(2∆φ) + I3 sin(3∆φ) + · · ·+ In sin(n∆φ). (67)

The higher-order terms connect to electrons and holes which bounce back and
forth repeatedly, so-called higher harmonics.

Later in this thesis, we will show that the supercurrent depends on various pa-
rameters, and not only the superconducting phase. Among others, the thickness
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of the normal metal is of great importance due to the superconducting decay
length. The Cooper pairs, that leak from the superconductor into the normal
metal, have a coherent phase relation. In other words, the Andreev reflected
electrons, which travel through the normal conductor, would carry informa-
tion about the superconducting phase. An ideal theoretical situation provides
the phase information to be carried infinitely far into the normal region within
the zero-temperature limit. However, at finite temperature, the phase informa-
tion will eventually be lost within the phase-relaxation length due to scattering
[8][64][65][66], or by spin-flip relaxation in the presence of magnetic impurities
[58].
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2.5 blonder tinkham and klapwijk (btk) formalism

In 1982, Blonder, Tinkham and Klapwijk (BTK) used the BdG-equations to study
the nature of supercurrent arising in a normal-metal/superconductor (NC/SC)
bilayer [57]. At this point in time, the idea of Andreev reflection was already
suggested, but BTK introduced a new formalism which today is the most used
and cited one. The trio investigated an NC/SC interface with a flat surface. The
superconducting side was characterized by the mass mSC, the Fermi energy
EF,SC measured from the bottom of the conduction band, and the order param-
eter ∆, which was assumed to be constant inside the superconductor. The NC
side was characterized by the mass mNC and the Fermi energy EF,NC measured
from the bottom of the conduction band. The model assumed perfect quadratic
dispersion relations in both layers and no band effects beyond the effective mass.
The transport through the interface was affected by a scattering potential mod-
eled by a delta-function barrier potential H. The formalism considered particles
moving perpendicular to the interface, chosen to be along the x-axis.

The scattering theory of the transport across the interface was developed by in-
vestigating an incoming electron particle on the NC side. It was then possible to
calculate the transmissions and reflections probability amplitudes for the ener-
getically allowed processes. BTK constructed the wave function on each side of
the interface by combining the incoming electron state and the possible reflected
states in the normal metal, and the possible transmitted states in the supercon-
ductor. Finally, to fulfill continuity, BTK demanded some boundary conditions:
(i) a continuous wave function and (ii) a discontinuity in the derivative of the
spatial wave function determined by the strength of the barrier potential.

Before we adapt the BTK formalism to our system in chapter 6, a description
of the BTK formalism is needed. Consider a particle traveling on the normal
side of an NC/SC bilayer. Recall the four different processes that may occur
when the electron reaches the interface: the electron can undergo a reflection
(as an electron or a hole) or a transmission (as an electron-like or a hole-like
quasiparticle). This is illustrated by BTK in an energy scheme shown in Fig. 5.
If the incoming electron has an energy below the gap, it cannot transfer into the
superconductor alone. For the electron to drain off into the superconductor, the
electron has to coherent reflect into a hole and transfer a charge of −2e across
the interface, namely through an Andreev reflection. Such a process cannot be
calculated through a lower order description by the tunneling Hamiltonian to
an NC/SC bilayer, making the BTK formalism very useful.

While studying Andreev reflections through the BTK formalism, we can inter-
pret the transport of −2e across the interface as the transport of a Cooper pair
into the superconductor’s ground state. The opposite reflection, where a hole
reflects into an electron, can be described equally by removing one Cooper pair
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Figure 5: Diagram of energy vs. momentum at NC/SC interface. Black circles denote
electrons, and white circles indicate holes, and the arrows point in the direc-
tion of the group velocity. The figure illustrated the four different outcomes
of an incident electron. It can reflect as a hole (A), reflect as an electron (B),
transmit as an electron-like quasiparticle (C) and transmit as a hole-like quasi-
particle (D). Reproduced from ref. [57]

out of the superconducting ground state. As illustrated earlier, when electrons
and holes are Andreev reflected back and forth in a Josephson junction, it can
promote a transport of charges across the junction. The transport can take place
even though the particles’ energy is too low to be transmitted into the super-
conductors as quasiparticles. We refer to these bound states that transfer Cooper
pairs as Andreev bound states (ABS), which can be calculated with the BTK for-
malism.

Furthermore, utilize the BTK formalism to calculate the Andreev reflection. Let
us do so on a NC/SC bilayer. Starting from the conventional version of the
BdG-equations as in Ref. [67] we arrive at

i h
∂f

∂t
= −

[  h2∇2
2m

+ µ
]
f(x, t) −∆(x)g(x, t)

i h
∂g

∂t
=
[  h2∇2
2m

+ µ
]
g(x, t) −∆(x)f(x, t).

(68)

The steady state solution of these two equations takes the form [67],

f(x, t) = ueik
±xe−Et/

 h

g(x, t) = veik
±xe−Et/

 h

where  hk± =
√
2m
(
µ±

√
E2 −∆s

)12 .

(69)
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Function f is identified as the electron wave and g is the hole wave function. We
can obtain this identification of f and g by generalizing to a normal state, i.e.
∆(x) = 0 [67]. Moreover, from BCS theory [36], we have that E, u, and v are

E2 =
(  h2k2

2m
− µ
)2

+∆2

u2 =
1

2

[
1±
√
E2 −∆2

E

]
v2 =

1

2

[
1∓
√
E2 −∆2

E

]
with ± sign correlated with  hk± =

√
2m
(
µ±

√
E2 −∆s

)12 .

(70)

We want to look at the behavior of a normal electron as it hits the NC/SC bound-
ary. Combining Eq. (69) and Eq. (70), we observe that the incoming electron has
the wave function given by

ψinc =

[
1

0

]
eiq

+x,

where  hq+ =
√
2m
√
µ+ E.

(71)

We find the reflected hole wave function as

ψref = a

[
0

1

]
eiq

−x,

where  hq− =
√
2m
√
µ− E.

(72)

and the transmitted wave is

ψtran = b

[
u

v

]
eik

+x, (73)

where k+ is defined as in Eq. (69). By requiring a matching amplitude at the
boundary, we find that the reflection coefficient, A(E) = aa∗ is

A(E) =

1 |E| < ∆,
u2

v2
=

|E|−
√
E2−∆2

|E|−
√
E2+∆2

|E| > ∆.
(74)

The transmission coefficient is then T(E) = bb∗ = 1−A(E).

We can interpret from Eq. (74) that if the energy of the incoming electron is
less than the gap, the electron will be reflected completely as a hole through an
Andreev reflection [54][67]. In other words, the flow of current is carried exclu-
sively by Andreev reflections. For energies greater than the gap, there are partial
Andreev reflections. However, note how this calculation is done by assuming no
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barrier at the interface. Junctions with a non-zero barrier effect at the interface
will be investigated later in this thesis.

In chapter 6, we will utilize the BTK formalism to calculate the ABS across our
system. Therefore, let us do a short description of the procedure. Start by con-
structing the wave function of the system of interest. For instance, a supercon-
ductor/ normal-metal/superconductor trilayer where the wave functions inside
the normal metal describe electrons and holes propagating in both directions,
while the wave functions inside the superconductor describe quasiparticles. To-
gether with the boundary conditions, all these wave functions create a system
with unknown coefficients. The coefficients represent the weight of the various
eigenstates. At this point, we do not solve for the coefficients. Instead, require
the system to be solvable, and achieve an equation for the allowed energies of
the system; the ABS.



3
S P I N - D E P E N D E N T I N T E R A C T I O N S

3.1 spin-orbit coupling

Spin-orbit coupling is, as the name indicates, a coupling between the particle’s
spin and momentum. The phenomenon manifests itself in lifting the degeneracy
of the energy levels of one electron [68]. In other words, an electron moving in
an external electric field feels an effective magnetic field without the need for an
applied one. The coupling has the following understanding: An electron with
momentum p will experience a Lorentz force perpendicular to its motion

F = −ep×B/m (75)

while moving across a magnetic field B. The electron will then possess a Zee-
man energy of µBσ ·B where σ is the vector of Pauli matrices, µB is the Bohr
magnetron, and e and m are, respectively, the charge and mass of the electron.
This force is analogous to when an electron moves across an electric field which
causes an effective magnetic field in its rest-frame as

Beff ∼ E×
p

mc2
(76)

where c is the speed of light. A field like the one described previously will
produce a momentum dependent Zeeman energy of

HSO ∼ µB

(
E×p

)
·σ/mc2 (77)

known as the spin-orbit coupling.

We can derive the existence of the coupling in a similar fashion as done in Ref.
[69]. Look at an electron orbiting around in a crystal of nucleons. The electron’s
rest frame will observe the nucleons circulating around itself with velocity v. As
a result, the electron will feel an effective magnetic field given by

B =
v

c
× E (78)

where E is the electric field of the nucleons, and c is the speed of light. The
magnetic momentum of the electron µ is related to its spin angular momentum
S as

µ =
eg

2mc
S (79)

31
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where the g-factor is taken to be g = 2. We can now write the equation of motion
for the spin angular momentum in the electron’s rest frame like(

dS
dt

)
restframe

= µ×B ′ (80)

where we have defined B ′ = γ
(
B− v

c × E
)

as the magnetic field in the electron’s
rest frame. Keep in mind that B and E are the magnetic and electric field of the
nucleons, respectively. Assuming v� c such that we can neglect terms of order
v2

c2
, Eq. (80) reads(

dS
dt

)
restframe

= µ×
(
B−

v

c
× E

)
. (81)

This equation of motion for the spin angular momentum is equivalent to an
energy provided by an coupling with the spin of the electron given by

U ′ = −µ×
(
B−

v

c
× E

)
. (82)

For a radial symmetric electric field, as the one originating from a nucleon, the
electric field E is

E = −
1

e

r

r

dV(r)
dr

. (83)

Insert the previous expression for the electric field into Eq. (82), the energy
provided by the interaction with the spin of the electron yields

U ′ = −
eg

2mc
S ·B+

g

2m2c2
S · L

(
1

r

dV(r
dr

)
(84)

where L = r×mv denotes the orbital angular momentum of the electron. The
spin-orbit coupling term is a factor of 2 off. The expression will nevertheless
give the Zeeman effect correctly. The explanation of this factor of 2 was pointed
out by Thomas [70]. The coordinate system is rotating, such that the equation of
motion in Eq. (82) reads(

dS
dt

)
nonrot

=

(
dS
dt

)
restframe

+ωT ×S = S×

(
egB ′

2mc
−ωT

)
. (85)

It then follows that the interaction energy is given by

U = U ′ +S ·ωT (86)

where the angular velocity ωT = − 1
2m2c2

L
(
r
r

dV(r
dr

)
is known as the Thomas

angular velocity. The resulting coupling energy is then reduced by a factor of



3.1 spin-orbit coupling 33

1/2, known as the Thomas factor, which is necessary to obtain the correct result.
Finally, the spin-orbit coupling is then given by

HSO =
1

2m2c2
S · L

(
1

r

dV(r
dr

)
. (87)

Pay attention to the form of the spin-orbit Hamiltonian which provides a shift
in the energy of the electron.

A time-reversal invariant system requires that the energy of an electron obeys
the relation E(k, ↑) = E(−k, ↓) since k → −k and σ → −σ upon time reversal,
according to Kramer’s theorem [71]. Therefore, a state corresponding to spin-
up and wave vector k degenerates with a spin-down state of wave vector −k.
Spin-orbit coupling preserves the time-reversal symmetry. As a result, if there
is an inversion symmetry of the system, Kramer’s theorem gives a degeneracy
spin state for any wave vector k as E(k, ↑) = E(k, ↓). In a crystal with inversion
asymmetry, the spin-splitting is determined by Rashba spin-orbit coupling.

3.1.1 Rashba spin-orbit coupling

In this thesis, we will only consider a spin-orbit coupling of type Rashba, intro-
duced by Bychov and Rashba in 1984 [72][73]. This type of spin-orbit coupling
is caused by a broken inversion symmetry of the crystal, i.e. the crystal looks
different in the two directions ±r. Such a broken inversion symmetry can give
a potential difference along with the respective directions of V(r) 6= V(r+∆r).
The asymmetric potential provides a non-zero gradient, hence an electric field
is given by the gradient of the crystal potential E = −∇V . This result enables
the Rashba spin-orbit coupling to be controlled by an external electric field [74].
The Rashba spin-orbit Hamiltonian is given by

HSO = λ
(
σ×p

)
· n̂ (88)

where λ is a parameter describing the strength of the spin-orbit coupling, σ is
the vector of Pauli matrices, p is the canonical momentum vector of the electron,
and n̂ is a unit vector along the axis with inversion symmetry breaking.

It is then clear that a Rashba spin-orbit coupling has both a strength and ori-
entation. For simplicity, we will introduce a terminology that will appear in the
following chapters. Firstly, we will refer to the spin-orbit coupling strength (λ) as
spin-orbit magnitude. Secondly, the parameter determining the direction of the
vector characterization to the spin-orbit coupling (n̂) will be stated as spin-orbit
orientation.

The electric field is related to the Hamiltonian as E = |E|n̂, such that B ∝ k× n̂
where B is the magnetic field in the rest-frame of the electron. We can therefore
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see that the Rashba spin-orbit coupling provides a Zeeman energy term HR ∝
σ ·B. Note that the displaced energy will be proportional to the component of
k perpendicular to the direction of broken symmetry.

The magnitude of the Rashba spin-orbit coupling varies in a range of several
orders of magnitude for different materials. For instance, a two-dimensional
electron gas at a hybrid-interface is found to have λ ' 0.05eVÅ [75], while
heavy metals may provide much higher values like λ ' 0.3eVÅ and λ ' 0.6eVÅ
for, respectively, surface states of Au(111) and Bi(111) [24][25]. An investigation
of a surface alloy of Bi/Au showed Rashba spin-orbit magnitudes even stronger
with λ ' 3eVÅ [26].
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3.2 ferromagnetism

In the introduction of this thesis, we discussed that a magnetic Josephson junc-
tion (SC/F/SC) could create Cooper pairs with triplet symmetry. Moreover,
we have pointed out how a spin-orbit coupling is analogous to an effective
momentum-dependent magnetic field. Such a momentum-dependent magnetic
field is not to be confused with the homogeneous magnetic field provided by a
ferromagnet. However, a ferromagnet will provide a spin-dependent current.
Therefore, let us make a brief summary of the behavior of a ferromagnetic
SC/F/SC Josephson junction.

Ferromagnetism is characterized by the ability of the substance to exhibit a
spontaneous magnetization [76]. Materials with ferromagnetic properties are
strongly influenced by external magnetic fields, e.g. nickel and iron. The ferro-
magnetic property of a material is usually determined by a relative permeability
much greater than one. Previous experiments show that the ferromagnetic char-
acter vanishes under heating, and the material receives paramagnetic properties
[76].

Figure 6: The current behavior of a ferromagnetic SC/F/SC Josephson junction. The left
panel shows the current for varying orientation of the magnetic field and an
increasing magnitude. The right panel shows the current as a function of the
thickness of the ferromagnetic layer.

A mean-field approximation of the ferromagnetic order can be described as

Hh = −h ·σ (89)

where h is the magnetic field, and σ is the vector of Pauli matrices. The inter-
action between the spin and the magnetic field gives rise to a Zeeman energy
shift for particles with spin aligned parallel and anti-parallel to the magnetic
field h. As a result, the displaced energy bands for spin-up and spin-down par-
ticles will influence the Fermi surface of the ferromagnet. The importance of the
displacement will be discussed further in chapter 4. For now, keep in mind that
a displacement of the energy bands will provide Cooper pairs with a non-zero
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center-of-mass momentum. Consequently, a singlet Cooper pair will acquire a
momentum-dependent phase. This phase will give rise to a process called spin
mixing [77], where the singlet pair oscillate into a spin-0 triplet pair. Thus, the
current across an SC/F/SC junction will oscillate as a function of, among oth-
ers, the length of the ferromagnetic material and the magnetic field strength
[78][79][14]. Furthermore, since the magnetic field only couples to the particles
spin, the current is invariant with respect to the orientation of the magnetic field
[79]. The behavior is shown in Fig. 6.



4
D I S P L A C E D E N E R G Y B A N D S

When an Andreev reflection takes place, the generated Cooper pair is estab-
lished around the superconductor’s Fermi level. As a result, the size and shape
of the Fermi surface to the material in proximity is urgent to avoid Fermi vector
mismatch and scattering effects at the interface. This chapter will account for
the phenomena that provide displaced energy bands and hereby unequal Fermi
surfaces across the interface. In addition, this chapter will pay attention to the
resulting Cooper pairs and their symmetry regarding different spin-dependent
interactions.

The derivation of Cooper pairs through BCS theory presented in section 2.1,
we have described how the probability amplitude of creating a Cooper pair
depends on the spin, energy, and momentum of the two electrons involved.
For Cooper pairs to be transferred back and forth inside a Josephson junction,
we lean on Andreev reflections to occur. When an incoming electron travels
inside the normal metal, it can interact with another electron close to the inter-
face. It can then enter the superconductor’s condensate as a Cooper pair. For
this phenomenon to appear in a conventional superconductor, the two involved
electrons need to have opposite spin (singlet symmetry), energy below the su-
perconducting gap ∆, and opposite momentum.

Figure 7: Fermi surface of a superconductor. The red line indicates the sphere of the
Fermi surface, while the grey area includes a small displacement to kF, which
still provides a large probability amplitude of Cooper pairs.

37
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Based on the existing theory, one could naively state that opposite momentum
is sufficient to create a Cooper pair with singlet symmetry. However, the proba-
bility amplitudes of the creations of Cooper pairs depend on the absolute value
of the momentum. In section 2.1, we derived that the probability amplitude of
a Cooper pair to exist is determined by |vk|

2 which is greatest when |k| = kF.
Thus, electrons living on the sphere shell of radius kF, which defines the Fermi
surface of a normal-state superconductor, have the highest probability of creat-
ing Cooper pairs. The surface is illustrated as a three-dimensional sphere shell
with radius kF in Fig. 7.

This thesis will only investigate systems that are invariant in y- and z-direction.
Consequently, the momentum of the particles that travel across the interface
between the normal metal and the superconductor are not able to change in
the respective directions. However, since we have broken the translational sym-
metry in x-direction, the belonging kx-modes are not conserved. Therefore, all
incoming electrons can find an available state at the Fermi surface regardless of
the value of kx. Keep in mind that a Fermi vector mismatch in y- and z-direction
do not make it impossible to create a Cooper pair, but the probability amplitude
for such formation to take place is greatest at the Fermi surface.

4.1 spin-dependent fermi surface due to spin-orbit coupling

This section will consider the Fermi surface of a heavy metal with Rashba spin-
orbit coupling (HM) and the consequent effects in proximity with a supercon-
ductor (SC). Andreev reflections of electrons (holes) into holes (electrons) have
to obey the inequality of the Fermi surfaces at the interface of an HM/SC bi-
layer. Therefore, the prevalence of the Fermi vector mismatch is essential to
understand as we later will investigate an SC/HM/SC Josephson junction.

The Rashba spin-orbit coupling will favor a spin orientation relative to the mo-
mentum of the electrons. The spin degeneracy can be determined by the def-
inition of the Hamiltonian in Eq. (88). A displacement in the energy bands is
expected since the Hamiltonian of the Rashba spin-orbit coupling is equivalent
to a momentum-dependent Zeeman-field, shown in section 3.1. In the follow-
ing, we will study a spin-orbit coupling oriented parallel to the interface, n̂ = ẑ.
This orientation will displace the Fermi surface in xy-plane illustrated in Fig
8. Notice how the orientation of the particles’ spin is rotating at the Fermi sur-
face. Moreover, the displacement of the energy bands depends on the spin-orbit
orientation n̂. Hence, it is possible to create both circular and elliptical Fermi
surfaces in k-space.

Let us investigate the reflection and transmission across the interface of an
HM/SC bilayer. The reflection of an incoming electron is illustrated in Fig. 9a.
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Figure 8: Illustration of the displaced energy band (left panel) and Fermi surface (right
panel) in a heavy metal with Rashba spin-orbit orientation of n̂ = ẑ. Notice
how the spin couples with the momentum, such that the Fermi surface creates
a circle of rotating spin orientations.

The Andreev reflection will occur qualitatively as within an NC/SC bilayer. An
incoming electron with energy just above Fermi level can find another electron
just below Fermi level, and together enter the superconductor as a Cooper pair.
Thus, the incoming electron will reflect as a hole generated by the electron below
the Fermi level. However, the spin-orbit coupling can displace the Fermi surface
and, consequently, the available states. Due to invariance in y- and z-direction,
we require ky and kz to be conserved. The symmetry breaking along the x-
direction allows for kx to change when an electron travels through the interface.
This is the key to understand the importance of the displaced energy bands
and Fermi surface: spin-orbit coupling can provoke Fermi vector mismatch and
displace the Fermi surface to perfectly coincide.

Furthermore, consider the formation of Andreev bound states in an SC/HM/SC
Josephson junction due to the displaced energy band for spin-up and spin-
down particles. First, recall how an Andreev bound state is established in an
SC/NC/SC Josephson junction: An incoming electron, inside the normal metal,
can Andreev reflected into a hole at the interface to the first superconductor. The
reflected hole will then propagate away from the first superconductor. When the
hole reaches the second superconductor, it can reflect into an electron through
an Andreev reflection. Hence, electrons and holes can bounce back and forth
between the sandwiched superconductors. If the reflected electron accumulates
a phase by 2π after one round trip, we have the formation of an Andreev bound
state. The process was discussed more thoroughly in section 2.4. Now, replace
the normal conductor with a heavy metal with Rashba spin-orbit coupling. We
have already explored that the spin degeneracy supports Andreev reflection
of electron-hole conversation with singlet symmetry. As a result, the Andreev
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(a) Electron-hole conversion at the interface between a heavy metal with Rashba spin-orbit cou-
pling and a superconductor. The incoming spin-up electron (blue circle) inside the heavy metal
can reflect as a hole with spin down (red circle). The missing charge of 2e enters the super-
conductor as a Cooper pair in the ground state. The illustration also includes the event for the
incoming electron to reflect as an electron.

(b) Illustration of an Andreev reflection considered from the Fermi surface. The incoming electron
has to conserve momenta in y-and z-direction. However, the momentum in the x-direction is
not conserved due to broken symmetry. Hence, the incoming electron in the heavy metal can
create a Cooper pair at the Fermi surface of the superconductor. The incident electron Andreev
reflects like a hole, and the conserved charge of 2e enters the superconductor.

Figure 9: Andreev reflection at the interface of a HM/SC bi-layer

bound states will also support singlet symmetry. An illustration of the Andreev
bound stated in an SC/HM/SC junction is described in Fig. 10.
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Figure 10: Illustration of the creation of Andreev bound states in a Josephson junction
with a weak link of Rashba spin-orbit coupling. Electrons (black circles) and
holes (white circles) can Andreev reflect back and forth between the two
superconductors and establish Andreev bound states. The superconductor is
characterized by a phase and a gap in the density of states. Rashba spin-orbit
coupling lifts a spin degeneracy. However, it does not lift the degeneracy
of the Andreev bound states since electrons with spin up and spin down
have an equal velocity at Fermi surface and hence same effective length.
Reproduced from Ref. [80]

4.2 adjusted fermi surface due to chemical potential

We have now pointed out how spin-orbit coupling reshapes the Fermi surface
of a heavy metal. Further, one could question if any other SC/HM/SC junc-
tion properties can deform the Fermi surface. Recall that the Fermi surface of
a superconductor arises around the normal state Fermi surface. A property of
the material which affects the normal state Fermi level is the chemical potential.
Unlike the spin-orbit coupling, the chemical potential is momentum- and spin
invariant. Therefore, the chemical potential will only affect the radius of the cir-
cular surface. The barrier which occurs from a different chemical potential in
a HM/SC bilayer is understood by studying their normal state Fermi surface.
That is analogous to an NC/NC system. In the normal state, without spin-orbit
coupling, the energy bands take a parabola shape, E ∝ k2. The cut of the highest
occupied energy state is defined from the chemical potential µ. Thus, the greater
value of µ, a bigger circle will occur in the momentum space to include all oc-
cupied states for E = µ. The different shapes of the energy bands is illustrated
in Figure 11. As we require energy conservation, we know that an electron on
the left has to find an available state on the right to tunnel across the interface
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(a) Energy vs. momentum for the two nor-
mal conductors side by side. The green
area is the occupied states. Note that the
Fermi level will be equal when we have
an equilibrium situation, but the associ-
ated Fermi wave vector, k, is different.

(b) The momentum plane at Fermi energy,
E = EF. We demonstrate how an elec-
tron that tries to tunnel across the inter-
face experience a forbidden momentum
barrier. The grey area represents the
Fermi vector mismatch due to the con-
servation of energy and momentum.

Figure 11: Energy and momentum for a hybridstructure of a normal conductor(NC) to
a normal conductor(NC). The left panel shows the energy as a function of
the momentum wave vector k. We have indicated the Fermi level for the two
states as the dashed, horizontal line.

or vice versa. Additionally, we require the momentum to be conserved along
the y- and z-direction. As observed in Figure 11, there are less available states,
which conserve momentum and energy, when the shape of the Fermi surface is
unequal due to different chemical potential.

The conservation of energy will force the electrons inside the normal metal,
which interact with the left superconductor, to reflect into holes around the
superconductor’s chemical potential. At the same time, the reflected hole has
to conserve momentum in the y- and the z- direction due to symmetry, which
provides a Fermi vector mismatch. As a result, a Fermi vector mismatch is inter-
preted as an effective momentum barrier. We will therefore include the barrier as
a scattering potential in our analytical model in chapter 6. Consequently, absent
barrier effects are expected in the event of a matching chemical potential across
an SC/NC/SC junction. The resulting supercurrent is thus predicted to increase
compared to a finite-barrier junction. Furusaki confirmed the tendency when he
calculated the corresponding current to such a non-zero barrier junction [81].

4.3 spin-dependent fermi surface due to magnetic field

A ferromagnet will displace the Fermi surface for spin-up and spin-down par-
ticles due to the coupling of spins parallel and anti-parallel to the magnetic
field.The separation of energy bands is displayed in Fig. 12.
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Figure 12: Displaced energy band (left panel) and Fermi surface (right panel) in a fer-
romagnet with h = z. The energy favor spin-up, such that the Fermi surface
displaces the shape for spin-up particles versus spin-down particles. This is
unequal to the displaced Fermi surface rising from spin-orbit coupling where
the spin orientation rotates.

The spin degeneracy will produce a Fermi surface of different sizes for spin-up
and spin-down particles. Pay attention to the displaced Fermi surface which is
different compared to the displaced Fermi surface due to spin-orbit coupling. In
a ferromagnet, each surface has equal spin orientation, while spin-orbit coupling
generates rotation spin orientations (Fig. 8).

The orientation of the spin plays an important role when studying Andreev re-
flections. If an incoming spin-up electron inside the ferromagnet wants to pen-
etrate the superconductor, it must create a Cooper pair with a spin-down elec-
tron. As a result, an Andreev reflection involves both the spin-up and spin-down
band of electrons. Therefore, a fully spin-polarized ferromagnetic SC/F/SC
Josephson junction will suppress Andreev reflection due to the spin-dependent
Fermi surface [14][82].

The spin-dependent Fermi surface will produce Cooper pairs with spin-triplet
symmetry through a spin mixing process [77]. We can understand this trans-
formation by following the treatment in Ref. [83]. Let the incoming spin-up
electron inside the ferromagnet have a Fermi wave number kF in the absence of
magnetism. Accordingly, a finite magnetic field will lift the spin degeneracy, and
the two interacting electrons of opposite spins have the Fermi wave numbers of
kF+Q/2 and kF−Q/2, respectively. The resulting Cooper pair will then acquire
a finite center-of-mass momentum Q. Thereupon, the momentum-dependent
phase term will make a singlet Cooper pair which enters the ferromagnet to
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oscillate between a singlet state
(
↑↓ − ↓↑

)
and a spin-0 triplet state

(
↑↓ + ↓↑

)
.

We can observe the oscillations as(
↑↓ − ↓↑

)
→
(
↑↓ eiQ− ↓↑ e−iQ

)
=
(
↑↓ − ↓↑

)
cos(Q) + i

(
↑↓ + ↓↑

)
sin(Q).

(90)

We have discussed the Cooper pairs with triplet symmetry further in Appendix
A.2.

Keep in mind that Rashba spin-orbit coupling does not provide spin-singlet
Cooper pairs that acquire center-of-mass momentum. The interaction couples
the spin of the particle to its momentum, such that the spin orientations rotate
around the Fermi surface. The spin-up and spin-down band for electrons under
spin-orbit coupling will therefore have opposite momentum. Hence, the oscilla-
tions which follow from a non-zero center-of-mass momentum are expected to
be absent.



5
N U M E R I C A L F R A M E W O R K

I this chapter, we will derive the numerical framework used to investigate the su-
percurrent across a superconductor/heavy-metal/superconductor (SC/HM/SC)
Josephson junction. We will consider a tight-binding approximation which treats
the electrons to be tightly bound to the nucleons of the atoms in a tight-binding
lattice following the Bogoliubov-de Gennes framework [8][38] [84][85] . In this
theory, we neglect the potential from the neighboring nucleons and the overlap
of the orbitals of two neighboring atoms. Hence, we can express the eigenfunc-
tions of the crystal electron system as a linear combination of atomic orbitals
[85][86] .

We will find it helpful to rewrite the Hamiltonian from a first quantization
formalism into second quantization. Therefore, let us define the basis of the
second quantization space as

|i〉 = φ(r−Ri)
|j〉 = φ(r−Rj)
|k〉 = φ(r−Rk)
|l〉 = φ(r−Rl)

(91)

where r is the position of the electron and Rm is the position of the atom at lat-
ticem. To solve the system in a self-consistent manner, we want the Hamiltonian
of the system to be diagonalized. By adding different layers in the x-direction,
we obtain a lattice where we can assume periodic boundary conditions along
the y- and z-direction, i.e. translation invariance in the respective directions. This
symmetry makes it possible to reduce the size of the problem by performing a
Fourier transform. In order to achieve a diagonalized Hamiltonian, we define
the following Fourier transform for the creation and annihilation operators [87]

ĉ
†
i,σ =

1√
NyNz

∑
ky,kz

ĉ
†
ix,ky,kz,σe

−i(kyiy+kziz)

ĉi,σ =
1√
NyNz

∑
ky,kz

ĉix,ky,kz,σe
i(kyiy+kziz)

(92)

where the sum over ky and kz are inside the first Brillouin zone, that is ky,kz ∈
〈−π,π]. Subscript i represent the lattice site, and since we are studying a 3-
dimensional lattice we have i = {ix, iy, iz}. Subscript σ represents the spin for

45
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the respective fermion, i.e. σ is either spin-up or spin-down represented by the
notation ↑ and ↓, respectively. Later in this thesis, some terms are considering
two fermionic creation and annihilation operators with individual spins, and
we will utilize the subscripts α and β.

5.1 diagonalization of the bdg equations

In order to calculate the supercurrent, as well as other physical quantities, it will
be helpful to diagonalize the Hamiltonian into a form including purely inde-
pendent fermionic operators exclusively. We could then utilize the Fermi-Dirac
distribution. E.g. when evaluating the combined quantum-mechanical expecta-
tion values and thermal averages of quasiparticle operators. This section will
therefore provide the diagonalization of the BdG equations.

Starting from a general case with the three-dimensional Hamiltonian on the
form

Ĥ = Ĥ0 +
1

2

∑
ky,kz

W
†
ky,kzĤky,kzWky,kz , (93)

with

Wky,kz =


B1,ky,kz

B2,ky,kz

. . .

B3,ky,kz

 , Bix,ky,kz =


ĉix,ky,kz,↑

ĉix,ky,kz,↓

ĉ
†
ix,−ky,−kz,↑

ĉ
†
ix,−ky,−kz,↓

 , Ĥky,kz =


Ĥ1,1,ky,kz . . . Ĥ1,Nx,ky,kz

... . . . ...
ĤNx,1,ky,kz . . . ĤNx,Nx,ky,kz


(94)

as in Ref. [87]. However, the diagonalization procedure of the Hamiltonian-
operator presented in the respective reference is not providing independent op-
erators. In particular, it does not take into account the degeneracy when T 6= 0,
such that the number of degrees of freedom is not preserved. Therefore, we
will now derive the correct diagonalization of the Hamiltonian-operator in the
following, which will not overcount the number of independent operators.

Will will later show that the matrix Ĥky,kz in the previous equation has the
dimension 4Nx× 4Nx. Let us continue with an ansatz for an eigenvalue with
belonging eigenvector to exist, which we can be written as

Nx∑
jx=1

Ĥix,jx,ky,kz


ujx,n,ky,kz,↑

ujx,n,ky,kz,↓

vjx,n,ky,kz,↑

vjx,n,ky,kz,↓

 = Eix,n,ky,kz


uix,n,ky,kz,↑

uix,n,ky,kz,↑

vix,n,ky,kz,↓

vix,n,ky,kz,↓

 . (95)
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Take Eq. (95), complex conjugate and let ky,kz → −ky,−kz. We can then observe
how the eigenvalue problem fulfill the two relations

Ĥky,kz


uky,kz,n,↑

uky,kz,n,↓

vky,kz,n,↑

vky,kz,n,↓

 = Eky,kz


uky,kz,n,↑

uky,kz,n,↓

vky,kz,n,↑

vky,kz,n,↓

 , Ĥ−ky,−kz


v∗ky,kz,n,↑

v∗ky,kz,n,↓

u∗ky,kz,n,↑

u∗ky,kz,n,↓

 = −Eky,kz


v∗ky,kz,n,↑

v∗ky,kz,n,↓

u∗ky,kz,n,↑

u∗ky,kz,n,↓

 .

(96)

Utilize these symmetrical relations to diagonalize the Hamiltonian. First, define
a new basis,

Γky,kz =


γ̂ky,kz,1

γ̂ky,kz,2

. . .

γ̂ky,kz,4Nx

 (97)

with the belonging diagonalization matrix containing the eigenvectors of Hky,kz
as column vectors as

Pky,kz =


u1,1,ky,kz,↑ u1,2,ky,kz,↑ . . . u1,Nx,ky,kz,↑

u2,1,ky,kz,↓
. . . . . . ...

... . . . . . . ...
vNx,1,ky,kz,↓ . . . . . . vNx,Nx,ky,kz,↓

 . (98)

The relation of this new basis to the old one is originating from the Bogoliubov
transformation given as [88]

ĉix,ky,kz,↑ =
∑
n

uix,n,ky,kz,↑γ̂n,ky,kz

ĉix,ky,kz,↓ =
∑
n

uix,n,ky,kz,↓γ̂n,ky,kz

ĉ
†
ix,−ky,−kz,↑ =

∑
n

vix,n,ky,kz,↑γ̂n,ky,kz

ĉ
†
ix,−ky,−kz,↓ =

∑
n

vix,n,ky,kz,↓γ̂n,ky,kz

(99)

or in matrix form given as

Γ
†
ky,kz =W

†
ky,kzPky,kz ⇔ W−ky,−kz = P−ky,−kzΓ−ky,−kz . (100)

This new basis makes it possible to rewrite the Hamiltonian as

Ĥ = Ĥ0 +
1

2

∑
ky,kz,n

Eky,kz,nγ̂
†
ky,kz,nγ̂ky,kz,n. (101)
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Now, if we write out Eq. (100), the two expressions for γ̂ky,kz is given by

γ̂
†
ky,kz,n =

∑
ix

(
ĉ
†
ix,ky,kz,↑uix,ky,kz,↑ + ĉ

†
ix,ky,kz,↓uix,ky,kz,↓

+ ĉix,−ky,−kz,↑vix,ky,kz,↑ + ĉix,−ky,−kz,↓vix,ky,kz,↓

)
γ̂
†
−ky,−kz,n =

∑
ix

(
ĉ
†
ix,−ky,−kz,↑v

∗
ix,ky,kz,↑ + ĉ

†
ix,−ky,−kz,↓v

∗
ix,ky,kz,↓

+ ĉix,ky,kz,↑u
∗
ix,ky,kz,↑ + ĉix,ky,kz,↓u

∗
ix,ky,kz,↓

)
.

(102)

Comparing the two expressions in Eq. (102), it follows that

γ̂
†
−ky,−kz,n = γ̂ky,kz,n. (103)

This previous equation shows that the spectra of γky,kz,n operators are indeed
dependent on each other for all k-values. Furthermore, we can easily take care
of the consequences by exploiting the symmetry of γky,kz,n with respect to k.

For concreteness, start from the Hamiltonian in Eq. (101) and split the sum into
positive and negative k-values, exclusive k = 0 which we have to take care of
separately. The Hamiltonian reads

Ĥ = Ĥ0 +
1

2

∑
k>0,n

Ek,nγ̂
†
k,nγ̂k,n

1

2

∑
k<0,n

Ek,nγ̂
†
k,nγ̂k,n

1

2

∑
k=0,n

Ek,nγ̂
†
k,nγ̂k,n (104)

where we have used the short-hand notation k for ky,kz. Before we continue
with the evaluation, take a closer look at the Hamiltonian expression in the
previous equation. We have divided the degenerated energy for positive and
negative k-values, but the k = 0 mode is still degenerated. As mentioned earlier,
we wish to obtain an expression where all operators are independent.

In our numerical calculations, we have discretized the allowed k-values with a
periodic boundary condition as

k =
2πn

Na
(105)

where the modeled material have a length L = Na in a given direction with n ∈
Z. To guarantee that all k-values has a −k equivalent, we choose the number of
lattice pointsN to be odd. Otherwise, we would have to handle the degeneration
at the endpoint with the positive and negative k split. However, the k = 0 mode
will always occur and need special treatment. Recall the already established
relation by combining Eq. (93) and (101),∑

k

W
†
kĤkWk =

∑
k,n

Ek,nγ̂
†
k,nγ̂k,n. (106)
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Realize that since Hk = H−k for k = 0, both En,k=0 and −En,k=0 are eigenvalues
of Hk=0. If we now arrange the eigenvalues for the k = 0 mode such that the
first 2Nx are positive and the last 2Nx are negative, it follows that

γ
†
k=0,2Nx+n = γk=0,n. (107)

It is now possible to rewrite the k = 0 term to only contain a sum over indepen-
dent operators by dividing the sum into positive and negative n-values. With
this in mind, we can manipulate the Hamiltonian into independent operators
only,

Ĥ = Ĥ0 +
1

2

∑
k>0,n

Ek,nγ̂
†
k,nγ̂k,n +

1

2

∑
k<0,n

Ek,nγ̂
†
k,nγ̂k,n

+
1

2

∑
0,n<2Nx

E0,nγ̂
†
0,nγ̂0,n +

1

2

∑
0,n<2Nx

E0,2Nx+nγ̂
†
0,2Nx+nγ̂0,2Nx+n

= Ĥ0 +
1

2

∑
k>0,n

Ek,nγ̂
†
k,nγ̂k,n +

1

2

∑
k>0,n

E−k,nγ̂
†
−k,nγ̂−k,n

+
1

2

∑
0,n<2Nx

E0,nγ̂
†
0,nγ̂0,n −

1

2

∑
0,n<2Nx

E0,nγ̂0,nγ̂
†
0,n

= Ĥ0 +
1

2

∑
k>0,n

Ek,n
(
γ̂
†
k,nγ̂k,n − γ̂k,nγ̂

†
k,n

)
+
1

2

∑
0,n<2Nx

E0,n
(
γ̂
†
0,nγ̂0,n − γ̂0,nγ̂

†
0,n

)

(108)

where we have used the derived relation γ̂
†
−k,n = γ̂k,n and E−k,n = −Ek,n.

Since the creation- and annihilation operators anti-commute, we can demon-
strate through a Bogoliubov transformation that the new quasioperators also
anti-commute. The final Hamiltonian-operator is then

Ĥ = Ĥ0 −
1

2

∑
k>0,n

Ek,n +
1

2

∑
k>0,n

Ek,nγ̂
†
k,nγ̂k,n

−
1

2

∑
0,n<2Nx

E0,n +
1

2

∑
0,n<2Nx

E0,nγ̂
†
0,nγ̂0,n

(109)

where all operators are independent of each other.
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5.2 hamiltonian matrix

The Hamiltonian that describes an SC/HM/SC Josephson junction of s-wave
superconductors and heavy metal with Rashba spin-orbit coupling is, in the
first quantization formalism, given by

Ĥ =
∑
i

p̂i
2

2m
+
∑
i

u(ri) +
1

2

∑
i,j 6=i

v(ri − rj) + λ(x)
(
n̂×σ

)
· p̂− µN. (110)

Here, the two first terms denote, respectively, the kinetic energy and the poten-
tial of the electrons relative to the lattice atoms. p̂i is the canonical momentum
and ri is the position of electron i. The third term defines the electron-electron
interaction through a Coulomb potential, where ri, rj are the positions of elec-
trons i, j, respectively. This interaction is only present in the superconductors,
thus zero in the heavy metal. The fourth term considers the chemical potential µ,
where N is the total number of particles. The last term is the Rashba spin-orbit
coupling, where λ denotes the magnitude, σ is the vector of Pauli matrices,
and n̂ is a unit vector that aligns the electric field causing Rashba spin-orbit
coupling. Keep in mind that this last term is only non-zero in the heavy metal.

Rewrite the previous Hamiltonian into second quantization formalism using the
basis in Eq. (91). The result reads,

Ĥ = −t
∑
〈i,j〉,σ

ĉ
†
i,σĉj,σ +U

∑
i

ĉ
†
i,↑ĉ
†
i,↓ĉi,↓ĉi,↑ − µ

∑
i,σ

ĉ
†
i,σĉi,σ

−
i

2

∑
〈i,j〉,α,β

λĉ
†
i,αn̂ ·

[
σ× 1

2

(
di,j
)
⊥ +σ×

(
di,j
)
‖

]
ĉi,β

(111)

where t is the hopping integral, U is on-site electron-electron interaction which
produce superconductivity, and di,j is the vector from lattice site i to site j.

In section 5.1, we illustrated how to solve the system if we achieve a Hamiltonian
given by

Ĥ = H0 +
1

2

∑
ix,jx,ky,kz

B
†
ix,ky,kzĤix,jx,ky,kzBjx,ky,kz . (112)

Thus, Fourier transform Eq. (111) and rewrite the expression into a similar form
as Eq. (112). A complete calculation is provided in Appendix A.1. It contains a
careful computation of each term starting from the first quantization formalism.
The arriving Hamiltonian satisfying to the form in Eq. (112) is found by com-
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bining Eq. (A.1.13), Eq. (A.1.26), Eq. (A.1.31) and Eq. (A.1.68). The final result
yields

Hix,jx,ky,kz = εix,jx,ky,kz τ̂3σ̂0

+
[
∆∗ixiτ̂

−σ̂y −∆ixiτ̂
+σ̂y

]
δix,jx

− µτ̂3σ̂0δix,jx

−
[

sin(ky)Λxix τ̂0σ̂z

−
(

sin(ky)Λzix − sin(kz)Λ
y
ix

)
τ̂0σ̂x

− sin(kz)Λxix τ̂3σ̂y
]
δix,jx

+
i

4

[
Λ
y
ix
τ̂0σ̂z −Λ

z
ix
τ̂3σ̂y

](
1+ ξ

)
δix,jx+1

−
i

4

[
Λ
y
ix
τ̂0σ̂z −Λ

z
ix
τ̂3σ̂y

](
1+ ξ

)
δix,jx−1

(113)

where we have defined

εix,jx,ky,kz = −t
(
δix,jx+1 + δix,jx−1 + δix,jx2

[
cosky + coskz

])
∆ix = U〈ĉix,↑ĉix,↓〉
Λxix = λixnx = λix cos(φn) sin(θn)
Λ
y
ix

= λixny = λix sin(φn) sin(θn)

Λzix = λixnz = λix cos(θn)

ξ =

0 if i, j are on opposite side of the interface

1 if i, j are both in heavy metal

(114)

and the constant term reads

Ĥ0 = NyNz
∑
ix

|∆ix |
2

Uix
. (115)

The Hamiltonian is an 4x4 block matrix given as

Hix,jx,ky,kz =


εix,jx,ky,kz − µ 0 0 ∆ix

0 εix,jx,ky,kz − µ −∆ix 0

0 −∆∗ix −εix,jx,ky,kz + µ 0

∆∗ix 0 0 −εix,jx,ky,kz + µ


+ δix,jx

[
A2x2 02x2

02x2 A∗2x2

]
+ δix,jx±1(1+ ξ)

[
B2x2 02x2

02x2 −B∗2x2

]
(116)
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where we have defined

A2x2 =

[
−Λx sin(ky) Λz sin(ky) −

(
Λy + iΛx

)
sin(kz)

Λz sin(ky) −
(
Λy − iΛx

)
sin(kz) Λx sin(ky)

]

B2x2 =
1

4

[
±iΛy ∓Λz

±Λz ∓iΛy

] (117)

to simplify the expression. The second term of Eq. (111) gives rise to the super-
conducting gap at site i given by

∆i = U〈ĉi,↑ĉi,↓〉. (118)

Since this quantity depends on fermionic operators, we demand a self-consistent
solution.

5.2.1 Self-consistent solution of the superconducting gap ∆

The superconducting gap ∆ is proportional to the correlation function, also
called the pairing field, as

∆ix = U〈ĉix,↑ĉix,↓〉

= UF↑↓ix,ix .
(119)

The pairing field, in addition to its complex conjugate, is defined as

F
↑↓
ix,ix = 〈ĉi,↑ĉi,↓〉, F

↓↑∗
ix,ix = 〈ĉ

†
i,↑ĉ
†
i,↓〉. (120)

Note that the pairing field satisfy F↓↑ix,ix = −F↑↓ix,ix . We can interpret the fields
defined in Eq. (120) as the expectation value of a Cooper pairs to be created
or destroyed, respectively. For the pairing field to get a larger magnitude, there
opens up a gap in the continuous energy spectrum of electrons in the supercon-
ductor. It is convenient to calculate the paring field in reciprocal space due to
the invariance in y- and z-direction. Using the transform in Eq. (92) we get

F
↑↓
ix,ix = 〈ĉix,↑ĉix,↓〉

=
1

NyNz

∑
ky,kz

∑
k ′y,k ′z

〈ĉix,ky,kz,↑ĉix,k ′y,k ′z,↓〉ei(kyiy+kziz)ei(k
′
yiy+k

′
ziz). (121)
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Since our system is invariant in y- and z-direction, we can take the average in
the respective directions without changing the physics of the pairing field,

F
↑↓
ix,ix =

1

NyNz

∑
ky,kz

∑
k ′y,k ′z

〈ĉix,ky,kz,↑ĉix,k ′y,k ′z,↓〉ei(kyiy+kziz)ei(k
′
yiy+k

′
ziz)

=
1

NyNz

∑
iy,iz

1

NyNz

∑
ky,kz

∑
k ′y,k ′z

〈ĉix,ky,kz,↑ĉix,k ′y,k ′z,↓〉ei(ky+k
′
y)izei(kz+k

′
z)iz

=
1

NyNz

∑
ky,kz

〈ĉix,ky,kz,↑ĉix,−ky,−kz,↓〉.

(122)

From the second to the last line, we have simplified the expression by using the
identities

1

Ny

∑
iy

ei
(
ky+k

′
y

)
iy = δky,−k ′y

1

Nz

∑
iz

ei
(
kz+k

′
z

)
iz = δkz,−k ′z .

(123)

To calculate the expectation value of the pairing field, write out the creation and
annihilation operators according to Eq. (99)

F
↑↓
ix,ix =

1

NyNz

∑
ky,kz

∑
n,n ′

uix,ky,kz,n,↑v
∗
ix,ky,kz,n ′,↓〈γky,kz,nγ

†
ky,kz,n ′〉. (124)

At this point, we are still dealing with dependent quasioperators. Therefore,
let us manipulate the sum in a similar manner as done when we diagonalized
the BdG equations. As a result, we would achieve an expression consisting of
independent operators exclusively. Recall that the procedure demands to split
the sum into positive and negative k-values. However, special treatment of the
k = 0 mode obligates an additional separation of positive and negative eigen-
values. Pay attention to how the expectation value of the quasioperators is only
non-zero while treating equally n-modes. Thus, simplifying the sum over n,n ′

and the result yields

F
↑↓
ix,ix =

1

NyNz

∑
k>0,n

uix,k,n,↑v
∗
ix,k,n,↓〈γk,nγ

†
k,n〉

+
1

NyNz

∑
k<0,n

uix,k,n,↑v
∗
ix,k,n,↓〈γk,nγ

†
k,n〉

+
1

NyNz

∑
k=0,n

uix,k=0,n,↑v
∗
ix,k=0,n,↓〈γk=0,nγ

†
k=0,n〉

(125)

where we have used the short hand notation k→ ky,kz.
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Split the k = 0 term into positive and negative eigenvalues. Arrange the first
2Nx values to be positive, and the last 2Nx to be negative. This arrangement
implies that

uix,k=0,2Nx+n,↑ = v
∗
ix,k=0,n,↑

vix,k=0,2Nx+n,↓ = u
∗
ix,k=0,n,↓.

(126)

Inserting the previous relations into the correlation function in Eq. (125), to-
gether with the previous derived relations, γ̂†−k,n = γ̂k,n and E−k,n = −Ek,n, the
result reads

F
↑↓
ix,ix =

1

NyNz

∑
k>0,n

uix,k,n,↑v
∗
ix,k,n,↓〈γk,nγ

†
k,n〉

+
1

NyNz

∑
k>0,n

uix,−k,n,↑v
∗
ix,−k,n,↓〈γ−k,nγ

†
−k,n〉

+
1

NyNz

∑
k=0,n<2Nx

uix,0,n,↑v
∗
ix,0,n,↓〈γ0,nγ

†
0,n〉

+
1

NyNz

∑
k=0,n<2Nx

uix,0,2Nx+n,↑v
∗
ix,0,2Nx+n,↓〈γ0,2Nx+nγ

†
0,2Nx+n〉

=
1

NyNz

∑
k>0,n

uix,k,n,↑v
∗
ix,k,n,↓〈γk,nγ

†
k,n〉

+
1

NyNz

∑
k>0,n

v∗ix,k,n,↑uix,k,n,↓〈γ†k,nγk,n〉

+
1

NyNz

∑
k=0,n<2Nx

uix,0,n,↑v
∗
ix,0,n,↓〈γ0,nγ

†
0,n〉

+
1

NyNz

∑
0,n<2Nx

v∗ix,0,n,↑uix,0,n,↓〈γ†0,nγ0,n〉

=
1

NyNz

∑
k>0,n

(
uix,k,n,↑v

∗
ix,k,n,↓〈γk,nγ

†
k,n〉+ v

∗
ix,k,n,↑uix,k,n,↓〈γ†k,nγk,n〉

)
+

1

NyNz

∑
k=0,n<2Nx

(
uix,0,n,↑v

∗
ix,0,n,↓〈γ0,nγ

†
0,n〉+ v

∗
ix,0,n,↑uix,0,n,↓〈γ†0,nγ0,n〉

)
(127)

We have now derived an expression for the correlation function which only
considers independent operators. Consequently, we can calculate the thermal
average by the Fermi-Dirac distribution [87], i.e.

〈γ†k,nγk,n〉 = f
(
Ek,n

)
〈γk,nγ

†
k,n〉 = 1− f

(
Ek,n

) (128)
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where f
(
Ek,n

)
is the Fermi function. The arriving result for the superconducting

gap with singlet symmetry is

∆ix = UF
↑↓
ix,ix

=
U

NyNz

∑
k>0,n

(
uix,k,n,↑v

∗
ix,k,n,↓ +

[
v∗ix,k,n,↑uix,k,n,↓ − uix,k,n,↑v

∗
ix,k,n,↓

]
f
(
Ek,n

))
+

U

NyNz

∑
k=0,n<2Nx

(
uix,0,n,↑v

∗
ix,0,n,↓ +

[
v∗ix,0,n,↑uix,0,n,↓ − uix,0,n,↑v

∗
ix,0,n,↓

]
f
(
E0,n

))
(129)

where we recognize the Fermi function as

f
(
Ek,n

)
=

1

1+ eβE
=

1

1+
1+tanh(βE/2)
1−tanh(βE/2)

=
1

2

[
1− tanh

(
βE

2

)]
. (130)

5.3 derivation of the supported supercurrent

To find an expression for the net current across a Josephson junction, we will
use a procedure similar to the one in Ref. [83]. Begin the computation from the
continuity equation

∂tρi = −∇ · ji (131)

where ρi and ji are the charge density and current density at lattice site i, re-
spectively. To calculate the supercurrent, integrate over the three-dimensional
space. Starting with the left hand side of Eq. (131),∫

Ω
dr∂tρi = ∂tQi, (132)

where Ω is the integration volume and Qi is the total charge at lattice site i. For
the right-hand side, we can use Green’s theorem and get

−

∫
Ω

dr(∇ · ji) = −

∫
∂Ω

dS(ji ·n) = −
∑
n

ji,na =
∑
n

Ii,n (133)

where a is the side length of the unit cube and n is the normal boundary vector
pointing outwards. Index n runs over all the faces of the unit cube, providing
Ii,n to be the current out of each respective face. The result reads∑

n

Ii,n = −∂tQi. (134)

We can evaluate the right-hand side Eq. (134) using the Heisenberg equation of
motion,

∂tQi = i
[
H,Qi

]
. (135)
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Identify the charge at lattice site i as Qi =
∑
σ n̂i,σ =

∑
σ ĉ
†
i,σĉi,σ.

To continue, we have to evaluate the commutation relation of H and Qi. The
Hamiltonian H is a sum over several parts of the system, e.g. H = Ht +HU +

Hµ +Hλ +Hh. The different parts of the Hamiltonian are derived in Appendix
A.1. We will now evaluate the commutation of each part to Q separately.

5.3.1 The hopping t term

The hopping Hamiltonian in real-space is given in Eq. (A.1.5) as

Ĥt = −t
∑
〈i,j〉,σ

ĉ
†
i,σĉj,σ. (136)

The commutation relation of Ĥt and Qi is[
Ĥt,Qi ′

]
= −t

[∑
〈i,j〉,σ

ĉ
†
i,σĉj,σ,

∑
σ

n̂i ′,σ ′
]

= −t
∑
〈i,j〉,σ,σ ′

(
ĉ
†
i,σĉj,σn̂i ′,σ ′ − n̂i ′,σ ′ ĉ

†
i,σĉj,σ

)
.

(137)

Utilize the two commutation relations[
n̂µ, ĉ†ν

]
= δµ,νĉ

†
µ[

n̂µ, ĉν
]
= −δµ,νĉµ

(138)

and Eq. (137) reads[
Ĥt,Qi ′

]
= −t

∑
〈i,j〉,σ,σ ′

(
ĉ
†
i,σĉj,σn̂i ′,σ ′ − n̂i ′,σ ′ ĉ

†
i,σĉj,σ

)
= −t

∑
〈i,j〉,σ,σ ′

(
δj,i ′δσ,σ ′ ĉ

†
i,σĉi ′,σ ′ − δi,i ′δσ,σ ′ ĉ

†
i ′,σ ′ ĉj,σ

)
= t
∑
〈i,j〉,σ

(
δi,i ′ ĉ

†
i ′,σĉj,σ − δj,i ′ ĉ

†
i,σĉi ′,σ

)
= t
∑
i,δ,σ

(
δi,i ′ ĉ

†
i ′,σĉi+δ,σ − δi+δ,i ′ ĉ

†
i,σĉi ′,σ

)
= t
∑
δ,σ

(
ĉ
†
i ′,σĉi ′+δ,σ − ĉ

†
i ′−δ,σĉi ′,σ

)
(139)

where we have only considered nearest neighbors providing the substitution
j = i+ δ. Thus, the quantity δ is a vector from lattice site i to its nearest neighbor
lattice site.
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5.3.2 The Hubbard U term

The real-space Hamiltonian that represents the electron-electron interaction in-
side the superconductors is given in Eq. (A.1.21) as

ĤU =
∑
i

(
∆iĉ

†
i,↑ĉ
†
i,↓ +∆

∗
i ĉi,↓ĉi,↑

)
+
∑
i

|∆i|
2

Ui
. (140)

To calculate the commutator of ĤU and Qi, we identify the commutator to be
proportional to

[
ĤU,Qi ′

]
∝

[∑
i

(
∆iĉ

†
i,↑ĉ
†
i,↓ +∆

∗
i ĉi,↓ĉi,↑

)
,
∑
σ

n̂i ′,σ ′

]

=
∑
i,σ

(
∆iĉ

†
i,↑ĉ
†
i,↓ +∆

∗
i ĉi,↓ĉi,↑

)
n̂i ′,σ ′ − n̂i ′,σ ′

(
∆iĉ

†
i,↑ĉ
†
i,↓ +∆

∗
i ĉi,↓ĉi,↑

)

=
∑
i,σ

δi,i ′

(
∆iδi,i ′δ↓,σ ′ ĉ

†
i ′,↑ĉ

†
i,↓ +∆

∗
iδi,i ′δ↑,σ ′ ĉi,↓ĉi,↑

)

−

(
∆iδi,i ′δ↑,σ ′ ĉ

†
i,↑ĉ
†
i,↓ +∆

∗
iδi,i ′δ↓,σ ′ ĉi,↓ĉi,↑

)

=
∑
i,σ

δi,i ′

(
∆∗i
[
δ↓,σ ′ + δ↑,σ ′

]
ĉi,↓ĉi,↑ −∆i

[
δ↓,σ ′ + δ↑,σ ′

]
ĉ
†
i ′,↑ĉ

†
i,↓

)

= 2

(
∆∗i ′ ĉi ′,↓ĉi ′,↑ −∆i ′ ĉ

†
i ′,↑ĉ

†
i ′,↓

)
(141)

where we have used the commutator relations in Eq. (138). To find the contribu-
tion of this term to the total current, we attempt to calculate the rate of charge
generation from this commutator. That is the current from a flow of charges.
Therefore, calculate the combined quantum-mechanical expectation value addi-
tional to the thermal average. The result reads

2

(
∆∗i ′〈ĉi ′,↓ĉi ′,↑〉−∆i ′〈ĉ

†
i ′,↑ĉ

†
i ′,↓〉

)
=

2

Ui ′x

(
∆∗i ′x∆i ′x −∆i ′x∆

∗
i ′x

)
= 0 (142)

where we have used the definition of ∆ from Eq. (118). This result confirms
that the charged particle number has to be conserved, although the mean-field
Hubbard term does not conserve the quasiparticle number. In other words, the
Hubbard U Hamiltonian term will not contribute to the supercurrent.
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5.3.3 The chemical potential µ term

The Hamiltonian corresponding to the chemical potential is given in Eq. (A.1.28)
as

Ĥµ = −µ
∑
i,σ

ĉ
†
i,σĉi,σ. (143)

Since the commutator of two number operators commutes,
[
nµ,nν

]
= 0, the

chemical potential will not contribute to the flow of charges due to Eq. (135).

5.3.4 The ferromagnetic h term

The expression for Ĥh is found in Eq. (A.1.33) as

Ĥh =
∑
i,α,β

(
hi ·σ

)
α,βĉ

†
i,αĉi,β (144)

such that the commutator with Qi is[
Ĥh,Qi ′

]
=

[∑
i,α,β

(
hi ·σ

)
α,βĉ

†
i,αĉi,β,

∑
σ

n̂i,σ

]

=
∑
i,α,β

∑
σ

(
hi ·σ

)
α,βδi ′,i

(
δβ,σ − δα,σ

)
ĉ
†
i,αĉi,β

=
∑
γ,η

(
hi ·σ

)
γ,η

(
ĉ
†
i ′,γĉi ′,η − ĉ

†
i ′,γĉi ′,η

)
= 0.

(145)

after using the commutator relations in Eq. (138). This result shows that the
commutator of Q and the ferromagnetic term will vanish. Consequently, the
magnetic field inside a ferromagnet will not commit to any supercurrent.

5.3.5 The Rashba λ term

The second quantization expression for the Rashba spin-orbit Hamiltonian in
real-space is found by combining Eq. (A.1.64) and Eq. (A.1.58). The resulting
Hamiltonian reads

Ĥλ = −
i

4

∑
〈i,j〉,α,β

λĉ
†
i,αn̂ ·

[
(1+ ξ)σ×

(
di,j
)
⊥ + 2σ×

(
di,j
)
‖

]
ĉi,β (146)
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where ξ is defined in Eq. (114). Recall the definition of di,j as a vector from lattice
site i to j. We can thus introduce a new quantity δ = di,j, since we only consider
nearest neighbour interaction. The parameters n̂, σ and δ have components in
all directions in space, {x̂, ŷ, ẑ}. Let us define

(δ)⊥ = x̂
(
δi,j+x̂ − δi,j−x̂

)
= δx⊥x̂ ≡ δxx̂

(δ)‖ = ŷ
(
δi,j+ŷ − δi,j−ŷ

)
+ ẑ
(
δi,j+ẑ − δi,j−ẑ

)
= δy‖ ŷ+ δ

z
‖ẑ ≡ δ

yŷ+ δzẑ
(147)

and substitute the new quantities into the Hamiltonian in Eq. (146). The result
yields

Ĥλ = −
i

4

∑
i,δ,α,β

λn̂ ·
[
(1+ ξ)σ×

(
δ
)
⊥ + 2σ×

(
δ
)
‖

]
ĉ
†
i,αĉi+δ,β

= −
i

4
λ
∑
i,δ,α,β

{
(1+ ξ)

[
σzα,βδ

x − σyα,βδ
x
]

+ 2
[
σ
y
α,βδ

z − σzα,βδ
y − σxα,βδ

z + σxα,βδ
y
]}
ĉ
†
i,αĉi+δ,β

(148)

Before we insert the previous equation into the commutator in Eq. (135), recog-
nize that[

Ĥλ,Qi ′
]
∝
[ ∑
i,δ,α,β

ĉ
†
i,αĉi+δ,β,

∑
σ

n̂i ′,σ

]
=
∑

i,δ,α,β,σ

(
δi+δ,i ′δβ,σĉ

†
i,αĉi+δ,β − δi,i ′δα,σĉ

†
i,αĉi+δ,β

)
=
∑
δ,α,β

(
ĉ
†
i ′−δ,αĉi ′,β − ĉ

†
i ′,αĉi ′+δ,β

)
,

(149)

such that the complete commutator is

[
Ĥλ,Qi ′

]
= −

i

4

∑
δ,α,β

λn̂ ·
[
(1+ ξ)σ×

(
δ
)
⊥ + 2σ×

(
δ
)
‖

]
·
(
ĉ
†
i ′−δ,αĉi ′,β − ĉ

†
i ′,αĉi ′+δ,β

)

= −
i

4
λ
∑
δ,α,β

{
(1+ ξ)

[
σzα,βδ

x − σyα,βδ
x
]
+ 2
[
σ
y
α,βδ

z − σzα,βδ
y − σxα,βδ

z + σxα,βδ
y
]}

·
(
ĉ
†
i ′−δ,αĉi ′,β − ĉ

†
i ′,αĉi ′+δ,β

)
.

(150)
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5.3.6 Assemble the final current

Combining the results from Eq. (150) and Eq. (139) into Eq. (135), we get an
expression of the current through each of the faces of the unit cube. The result
reads∑

n

Ii,n = −i
[
Ĥt,Qi

]
− i
[
Ĥλ,Qi

]
= −it

∑
δ,σ

[
ĉ
†
i,σĉi+δ,σ − ĉ

†
i−δ,σĉi,σ

]
−
1

4
λ
∑
δ,α,β

{
(1+ ξ)

[
σzα,βδ

x − σyα,βδ
x
]

+ 2
[
σ
y
α,βδ

z − σzα,βδ
y − σxα,βδ

z + σxα,βδ
y
]}
·
(
ĉ
†
i−δ,αĉi,β − ĉ

†
i,αĉi+δ,β

)
.

(151)

For further calculations, we are only investigating the current that flows along
the x-direction. Thus, we will only consider terms that contains ĉ†i±δx,αĉi,β or

ĉ
†
i,αĉi±δx,β. Only including the previous terms, Eq. (151) reduces to∑

x

Ii,x = −it
∑
δx,σ

[
ĉ
†
i,σĉi+δx,σ − ĉ

†
i−δx,σĉi,σ

]
−
1

4
λ
∑
δx,α,β

(1+ ξ)
[
σzα,βδ

x − σyα,βδ
x
]
·
(
ĉ
†
i−δx,αĉi,β − ĉ

†
i,αĉi+δx,β

)
.

(152)

Identify the current in positive and negative x-direction as

Ix+i = −it
∑
σ

[
ĉ
†
i,σĉi+1,σ − ĉ

†
i+1,σĉi,σ

]
+
1

4
λ
∑
α,β

(1+ ξ)
[
σzα,β − σ

y
α,β

]
·
(
ĉ
†
i+1,αĉi,β + ĉ

†
i,αĉi+1,β

)
,

Ix−i = −it
∑
σ

[
ĉ
†
i,σĉi−1,σ − ĉ

†
i−1,σĉi,σ

]
−
1

4
λ
∑
i,α,β

(1+ ξ)
[
σzα,β − σ

y
α,β

]
·
(
ĉ
†
i−1,αĉi,β + ĉ

†
i,αĉi−1,β

)
.

(153)
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These two expressions determine the real space current. Perform a Fourier trans-
form of the two expressions using the transformation defined in Eq. (92). The
resulting current in reciprocal space is then

Ix+i = −
it

NyNz

∑
ky,kz,σ

{
ĉ
†
ix,ky,kz,σĉix+1,ky,kz,σ − ĉ

†
ix+1,ky,kz,σĉix,ky,kz,σ ′

}
+

1

NyNz

∑
ky,kz,α,β

{
Bα,β,ix,ix+1ĉ

†
ix,ky,kz,αĉix+1,ky,kz,β +Bα,β,ix+1,ix ĉ

†
ix+1,ky,kz,αĉix,ky,kz,β

}
,

Ix−i = −
it

NyNz

∑
ky,kz,σ

{
ĉ
†
ix,ky,kz,σĉix−1,ky,kz,σ − ĉ

†
ix−1,ky,kz,σĉix,ky,kz,σ ′

}
−

1

NyNz

∑
ky,kz,α,β

{
Bα,β,ix,ix−1ĉ

†
ix,ky,kz,αĉix−1,ky,kz,β +Bα,β,ix−1,ix ĉ

†
ix−1,ky,kz,αĉix,ky,kz,β

}
,

(154)

where we have introduced B as

Bα,β,ix,jx ≡
λix
4

[
sin(φ) sin(θ)(σ̂z)α,β − cos(θ)(σ̂y)α,β

]
(1+ ξ) (155)

with ξ = 1 if lattice site jx is inside the spin-orbit layer, and zero otherwise. We
can point out the total current along the x-direction at lattice site i, Ixi , to be

Ixi = I
x+
i − Ix−i . (156)

The physical current is recieved by taking the combined quantum-mechanical
expectation values and thermal averages of this operator

〈Ixi 〉 = 〈Ix+i 〉− 〈I
x−
i 〉. (157)

First, consider the positive x-direction and use that 〈ĉ†µĉν − h.c.〉 = 2i Im〈ĉ†µĉν〉,

〈Ix+i 〉 =
2t

NyNz

∑
ky,kz,σ

Im〈ĉ†ix,ky,kz,σĉix+1,ky,kz,σ〉

+
1

NyNz

∑
ky,kz,α,β

Re
{
Bα,β,ix,ix+1〈ĉ

†
ix,ky,kz,αĉix+1,ky,kz,β〉+Bα,β,ix+1,ix〈ĉ

†
ix+1,ky,kz,αĉix,ky,kz,β〉

}
.

(158)

Similar for the negative x-direction:

〈Ix−i 〉 =
2t

NyNz

∑
ky,kz,σ

Im〈ĉ†ix,ky,kz,σĉix−1,ky,kz,σ〉

−
1

NyNz

∑
ky,kz,α,β

Re
{
Bα,β,ix,ix−1〈ĉ

†
ix,ky,kz,αĉix−1,ky,kz,β〉+Bα,β,ix−1,ix〈ĉ

†
ix−1,ky,kz,αĉix,ky,kz,β〉

}
.

(159)
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Insert Eq. (158) and Eq. (159) into Eq. (157) and collect the physical current given
at lattice site i as

〈Ixi 〉 =
2t

NyNz

∑
ky,kz,σ

Im
[
〈ĉ†ix,ky,kz,σĉix+1,ky,kz,σ〉− 〈ĉ†ix,ky,kz,σĉix−1,ky,kz,σ〉

]
+

1

NyNz

∑
ky,kz,α,β

Re
{
Bα,β,ix,ix+1〈ĉ

†
ix,ky,kz,αĉix+1,ky,kz,β〉+Bα,β,ix+1,ix〈ĉ

†
ix+1,ky,kz,αĉix,ky,kz,β〉

}
+

1

NyNz

∑
ky,kz,α,β

Re
{
Bα,β,ix−1,ix〈ĉ

†
ix−1,ky,kz,αĉix,ky,kz,β〉+Bα,β,ix,ix−1〈ĉ

†
ix,ky,kz,αĉix−1,ky,kz,β〉

}
.

(160)

To evaluate the expression, study the average over the creation and annihilation
operators. Insert the Bogoliubov transformation given in Eq. (99), and utilize
that the average of the quasiparticles is only non-zero for equal n-mode. The
expectation value is then given as∑

k,α,β

〈ĉ†ix,k,αĉjx,k,β〉 =
∑
k,n,α,β

u∗ix,n,ky,kz,αujx,n,ky,kz,β〈γ†n,ky,kzγn,ky,kz〉 (161)

where the operators are dependent on each other. To associate the expectation
value of the quasioperators with the Fermi-Dirac distribution, we have to sum
over independent quasioperators exclusively. Rewrite the previous expression to
include independent operators following a similar procedure as for the correla-
tions functions in section 5.2.1. For concreteness, separate the sum into positive
k, negative k, positive energies for the k = 0 mode, and negative energies for
the k = 0 mode,∑
k,α,β

〈ĉ†ix,k,αĉjx,k,β〉

=
∑

k>0,n,α,β

u∗ix,n,k,αujx,n,k,β〈γ†n,kγn,k〉+
∑

k<0,n,α,β

u∗ix,n,k,αujx,n,k,β〈γ†n,kγn,k〉

+
∑

k=0,n<2Nx,α,β

u∗ix,n,k=0,αujx,n,k=0,β〈γ†n,k=0γn,k=0〉

+
∑

k=0,n<2Nx,α,β

u∗ix,2Nx+n,k=0,αujx,2Nx+n,k=0,β〈γ†2Nx+n,k=0γ2Nx+n,k=0〉

=
∑

k>0,n,α,β

(
u∗ix,n,k,αujx,n,k,β〈γ†n,kγn,k〉+ u∗ix,n,−k,αujx,n,−k,β〈γ†n,−kγn,−k〉

)
+

∑
k=0,n<2Nx,α,β

(
u∗ix,n,0,αujx,n,0,β〈γ†n,0γn,0〉+ u∗ix,2Nx+n,0,αujx,2Nx+n,0,β〈γ†2Nx+n,0γ2Nx+n,0〉

)
=

∑
k>0,n,α,β

(
u∗ix,n,k,αujx,n,k,β〈γ†n,kγn,k〉+ vix,n,k,αv

∗
jx,n,k,β〈γn,kγ

†
n,k〉
)

+
∑

k=0,n<2Nx,α,β

(
u∗ix,n,0,αujx,n,0,β〈γ†n,0γn,0〉+ vix,n,0,αv

∗
jx,n,0,β〈γn,0γ

†
n,0〉
)

.

(162)
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We have now reduced the problem to only consist of independent operators,
such that we can evaluate the thermal average as in terms of the Fermi Dirac
distribution 〈γ†k,nγk,n〉 = f

(
Ek,n

)
, where f

(
Ek,n

)
is the Fermi function.

The arriving result for the supported supercurrent is

〈Ixi 〉 =
2t

NyNz

∑
k,σ

Im
[
〈ĉ†ix,k,σĉix+1,k,σ〉− 〈ĉ†ix,k,σĉix−1,k,σ〉

]
+

1

NyNz

∑
k,α,β

Re
{
Bα,β,ix,ix+1〈ĉ

†
ix,k,αĉix+1,k,β〉+Bα,β,ix+1,ix〈ĉ

†
ix+1,k,αĉix,k,β〉

}
+

1

NyNz

∑
k,α,β

Re
{
Bα,β,ix−1,ix〈ĉ

†
ix−1,k,αĉix,k,β〉+Bα,β,ix,ix−1〈ĉ

†
ix,k,αĉix−1,k,β〉

}
(163)

where∑
k,α,β

〈ĉ†ix,k,αĉjx,k,β〉 =
∑

k>0,n,α,β

(
u∗ix,n,k,αujx,n,k,βf

(
Ek,n

)
+ vix,n,k,αv

∗
jx,n,k,β(1− f

(
Ek,n

)
)
)

+
∑

k=0,n<2Nx,α,β

(
u∗ix,n,0,αujx,n,0,βf

(
E0,n

)
+ vix,n,0,αv

∗
jx,n,0,β(1− f

(
E0,n

)
)
)

.

(164)

Recall the Fermi function given in Eq. (130) as

f
(
Ek,n

)
=
1

2

[
1− tanh

(
βE

2

)]
. (165)





6
A N A LY T I C A L F R A M E W O R K

This chapter will use the BTK formalism to describe a superconductor/super-
conductor (SC/SC) Josephson junction, with Rashba spin-orbit coupling im-
posed to the boundary conditions. We will use this model to calculate the An-
dreev bound states and hereby the supported supercurrent which follows.

6.1 btk wave function

The solution of BdG-equations in Eq. (59) obeys the Schrödinger equation,Hψ =

εψ, with a wave function on the form

ψ(x) =
(
u↑,u↓, v↑, v↓

)
. (166)

Under the quasiclassical Andreev approximation, i.e. EF � ε, we may write the
wave function as

ψ(x) =



a
↑
e


u

0

0

v

 e
−ikxx + a↓e


0

u

−v

0

 e
−ikxx + b↑h


v

0

0

u

 e
ikxx + b↓h


0

−v

u

0

 e
ikxx x < 0

c
↑
e


ueiφ/2

0

0

ve−iφ/2

 e
ikxx + c↓e


0

ueiφ/2

−ve−iφ/2

0

 e
ikxx + d↑h


veiφ/2

0

0

ue−iφ/2

 e
−ikxx + d↓h


0

−veiφ/2

ue−iφ/2

0

 e
−ikxx x > 0

(167)

where u =

√
ε+
√
ε2−∆20
2ε , v =

√
ε−
√
ε2−∆20
2ε , and φ = φL − φR. Thus, φ denotes

the relative difference of the superconducting phase between the left and right
superconductor. The coefficients a↑,↓e ,b↑,↓h , c↑,↓e ,d↑,↓h corresponds to the probabil-
ity amplitude for, respectively, normal reflection as an electron-like quasipar-
ticle, Andreev reflection as a hole-like quasiparticle, transmission to the right
superconductor as an electron-like quasiparticle, and transmission to the right
superconductor as a hole-like quasiparticle. In addition, the wave vector of the
particles in the quasiclassical Andreev approximation is  hkF =

√
2mEF.

65
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If ψ = (u, v)T is an eigenvector of H, it follows that ψ = constant ∗ (u, v)T is an
eigenvector of H. Therefore, let ψ = (u, v)T ⇒ ψ = v ∗ (u/v, 1)T and redefine the
wave function by evaluating

u

v

∣∣∣∣
ε>∆0

=

√√√√√ε+
√
ε2 −∆20

ε−
√
ε2 −∆20

=

√
ε+
√
ε−∆0

√
ε+∆0

ε−
√
ε−∆0

√
ε+∆0

=

√√√√√ ε
∆0

+
√

ε
∆0

− 1
√

ε
∆0

+ 1

ε
∆0

−
√

ε
∆0

− 1
√

ε
∆0

+ 1

= earccosh(ε/∆0)

,

u

v

∣∣∣∣
ε<∆0

=

√√√√√ε+
√
−(∆20 − ε

2)

ε−
√
−(∆20 − ε

2)

=

√
ε+ i

√
(∆0 − ε)

√
ε+∆0

ε− i
√

(∆0 − ε)
√
ε+∆0

=

√√√√√ ε
∆0

+ i
√
1− ε

∆0

√
ε
∆0

+ 1

ε
∆0

− i
√
1− ε

∆0

√
ε
∆0

+ 1

= ei arccos(ε/∆0)

where we have used the identities

e± arccosh(A) = A±
√
A+ 1

√
A− 1, e±i arccos(A) = A± i

√
A+ 1

√
1−A.

Consequently, the explicit expression for u/v depends on whether we are inside
or outside of the superconducting gap. Since v is a constant, we can rewrite
the eigenvector in a simpler form given by ψ = (u/v, 1)T . The simplified wave
function reads

ψ(x) =



a
↑
e


eβ

0

0

1

 e
−ikxx + a↓e


0

eβ

−1

0

 e
−ikxx + b↑h


1

0

0

eβ

 e
ikxx + b↓h


0

−1

eβ

0

 e
ikxx x < 0

c
↑
e


eβeiφ/2

0

0

e−iφ/2

 e
ikxx + c↓e


0

eβeiφ/2

−e−iφ/2

0

 e
ikxx + d↑h


eiφ/2

0

0

eβe−iφ/2

 e
−ikxx + d↓h


0

−eiφ/2

eβe−iφ/2

0

 e
−ikxx x > 0

(168)

where we have defined

β =

cosh−1(ε/∆0) if ε > ∆0

i cos−1(ε/∆0) if ε < ∆0
. (169)
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6.2 hamiltonian matrix

The Hamiltonian of our system is, in terms of field operators, given as

Ĥ =
∑
α,β

∫
d3rψ̂†α(r)(H)αβψ̂β(r)

=
∑
α,β

∫
d3rψ̂†α(r)

[
−

 h2

2m
∇2
]
αβ

ψ̂β(r)

+

∫
d3r
{
∆∗(r)ψ̂↓(r)ψ̂↑(r) +∆(r)ψ̂

†
↑(r)ψ̂

†
↓(r)
}

+
∑
α,β

∫
d3rψ̂†α(r)(V0)αβψ̂β(r)

+
∑
α,β

∫
d3rψ̂†α(r)(Hλ)αβψ̂β(r).

(170)

Here, the different terms denote, respectively, the kinetic energy of the electrons,
the attractive electron-electron interaction that gives rise to superconductivity,
and a scattering- and a spin-orbit potential at the interface of the two supercon-
ducting elements. We want to express this Hamiltonian into a 4x4-matrix that
correlates spin-space to charge-space. To derive the desired matrix, we will use
the anti-commutation properties of the field operators to write out each term of
the previous equation.

6.2.1 The kinetic-energy term

Write out the kinetic energy term by utilizing the anti-commutator relation of
the fermionic field operators,

{
ψ̂α, ψ̂†β

}
= δα,β. The result reads

∑
α,β

∫
d3rψ̂†α(r)

[
−

 h2

2m
∇2
]
αβ

ψ̂β(r)

=
1

2

∑
α,β

∫
d3r

{
ψ̂†α(r)

[
−

 h2

2m
∇2
]
αβ

ψ̂β(r) − ψ̂β(r)

[
−

 h2

2m
∇2
]
βα

ψ̂†α(r)

}

=
1

2

∫
d3r

(
ψ̂
†
↑ ψ̂

†
↓ ψ̂↑ ψ̂↓

)

−

 h2

2m∇
2 0 0 0

0 −
 h2

2m∇
2 0 0

0 0
 h2

2m∇
2 0

0 0 0
 h2

2m∇
2



ψ̂↑

ψ̂↓

ψ̂
†
↑

ψ̂
†
↓


(171)

where we have exploited that ∇2 is diagonal in spin-space.
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6.2.2 The superconducting gap term

The superconducting gap is straightforward with the anti-commute relation{
ψ̂α, ψ̂β

}
= 0. By writing out the Hamiltonian for the electron-electron inter-

action, the result yields∫
d3r
{
∆∗(r)ψ̂↓(r)ψ̂↑(r) +∆(r)ψ̂

†
↑(r)ψ̂

†
↓(r)
}

=
1

2

∫
d3r
{
∆∗(r)ψ̂↓(r)ψ̂↑(r) −∆

∗(r)ψ̂↑(r)ψ̂↓(r) −∆(r)ψ̂
†
↓(r)ψ̂

†
↑(r) +∆(r)ψ̂

†
↑(r)ψ̂

†
↓(r)
}

=
1

2

∫
d3r

(
ψ̂
†
↑ ψ̂

†
↓ ψ̂↑ ψ̂↓

)

0 0 0 ∆

0 0 −∆ 0

0 −∆∗ 0 0

∆∗ 0 0 0



ψ̂↑

ψ̂↓

ψ̂
†
↑

ψ̂
†
↓


(172)

where the superconducting gap is ∆ = U〈ψ̂↑ψ̂↓〉.

6.2.3 The scattering potential term

The imposed scattering potential between the two superconducting elements is
denoted by the parameter V0. It follows that the scattering potential is diagonal
in spin-space. Consequently, we can rewrite the scattering potential into a matrix
form similar to the kinetic energy term,∑

α,β

∫
d3rψ̂†α(r)(V0)αβψ̂β(r)

=
1

2

∑
α,β

∫
d3r

{
ψ̂†α(r)(V0)αβψ̂β(r) − ψ̂β(r)(V0)βαψ̂

†
α(r)

}

=
1

2

∫
d3r

(
ψ̂
†
↑ ψ̂

†
↓ ψ̂↑ ψ̂↓

)

V0 0 0 0

0 V0 0 0

0 0 −V0 0

0 0 0 −V0



ψ̂↑

ψ̂↓

ψ̂
†
↑

ψ̂
†
↓

 .

(173)
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6.2.4 The spin-orbit coupling term

The Hermitian spin-orbit Hamiltonian is found in Appendix A.1 to fulfill the
relation

Hλ =
1

2
(n̂×σ) · {λ(x),p} (174)

where the spin-orbit coupling is a boundary potential λ(x) = λδ(x). In order to
generalize the spin-orbit Hamiltonian in charge space, express the Hamiltonian
in terms of field operators,

Ĥλ =
∑
α,β

∫
d3rψ̂†α(r)(Hλ)αβψ̂β(r)

=
∑
α,β

∫
d3rψ̂†α(r)

[
1

2
(n̂×σ) ·

{
λ(x),p

}]
αβ

ψ̂β(r)

=
∑
α,β

∫
d3rψ̂†α(r)

[
−i h

2
(n̂×σαβ)

]
· λ(x)∇

[
ψ̂β(r)

]
+
∑
α,β

∫
d3rψ̂†α(r)

[
−i h

2
(n̂×σαβ)

]
· ∇

[
λ(x)ψ̂β(r)

]
(175)

where we have used p = −i h∇. To diagonalize the previous equation, we want
to manipulate the expression and achieve a term where the partial derivative
acts on ψ†. Therefore, perform a partial integration

Ĥλ =
∑
α,β(((

((((
((((

(((
((((

(({
ψ̂†α(r)

[
−i h

2
(n̂×σαβ)

]
λ(x)ψ̂β(r)

}
boundary −

∑
α,β

∫
d3r∇

[
ψ̂†α(r)λ(x)

]
·

[
−i h

2
(n̂×σαβ)

]
ψ̂β(r)

+
∑
α,β(((

((((
(((

((((
(((

(((
{
ψ̂†α(r)

[
−i h

2
(n̂×σαβ)

]
λ(x)ψ̂β(r)

}
boundary −

∑
α,β

∫
d3r∇

[
ψ̂†α(r)

]
·

[
−i h

2
(n̂×σαβ)

]
λ(x)ψ̂β(r)

=
∑
α,β

∫
d3rψ̂β(r)

[
1

2
(n̂×σαβ)

]
·p
[
λ(x)ψ̂†α(r)

]
+
∑
α,β

∫
d3rψ̂β(r)

[
1

2
(n̂×σαβ)

]
· λ(x)p

[
ψ̂†α(r)

]

=
∑
α,β

∫
d3rψ̂β(r)

[
1

2
(n̂×σ∗βα) ·

{
λ(x),p

}]
ψ̂†α(r)

(176)

where we have substituted back p = −i h∇, and used that the field operators
anti-commute. The boundary terms vanish because the field operators go to
zero at infinity, ψ(r→∞) = 0.

Combining the results in Eq.(176) with the second line in Eq.(175), the result
reads

Ĥλ =
1

2

∑
α,β

∫
d3rψ̂†α(r)

[
1

2
(n̂×σαβ) ·

{
λ(x),p

}]
ψ̂β(r)

+
1

2

∑
α,β

∫
d3rψ̂β(r)

[
1

2
(n̂×σ∗βα) ·

{
λ(x),p

}]
ψ̂†α(r)

]
.

(177)
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Here, the first line corresponds to the electron-like particles, and the last line
considers hole-like particles.

6.3 boundary conditions

The Andreev bound states are constructed by combining the Hamiltonian and
the wave functions, along with a set of boundary conditions. We require the
wave function to be continuous everywhere. The equation to establish continu-
ity at the boundary between the two superconductors at x = 0 is straightforward
ψ(x = 0−) = ψ(x = 0+). This boundary condition will provide four indepen-
dent equations. However, we require a total of eight equations due to eight re-
flection/transmission coefficients. For that, utilize the conservation of energy to
receive a set of boundary conditions for the discontinuous derivative. Further-
more, we need to do this calculation twice, one for the electron-like particles
and another for the hole-like particles.

6.3.1 Electron-like part

Consider the Schrödinger equation for the electron-like particles,

−
 h2

2m
∇2ψ+∆ψ =

[
ε− V(x)

]
ψ (178)

where V(x) = Hδ(x) + 1
2(n̂× σ) · {λδ(x),p} is the boundary potential. Here, H

is the scattering strength. Integrate across the boundary, i.e. for x from −ε to ε,
and let ε→ 0. The integration gives

−
 h2

2m

ε∫
−ε

∇2ψdx−
 h2

2m
�
�
�
�
�ε∫

−ε

∆ψdx =

�
�
�
�
�ε∫

−ε

εdx−

ε∫
−ε

V(x)ψdx

ε∫
−ε

∂2ψ

∂x2
dx =

2m
 h2

ε∫
−ε

V(x)ψdx

ε∫
−ε

∂2ψ

∂x2
dx =

2m
 h2

ε∫
−ε

1

2
(n̂×σ) ·

{
λ(x), p̂

}
ψdx+

2m
 h2

ε∫
−ε

V0(x)ψdx .

(179)
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Write out the last line in the previous equation and get

ε∫
−ε

∂2ψ

∂x2
dx =

2m
 h2

ε∫
−ε

λ(x)(n̂×σ) ·
(
p̂y + p̂z

)
ψdx

+
m
 h2

ε∫
−ε

λ(x)(n̂×σ) · p̂xψdx

+
m
 h2

ε∫
−ε

(n̂×σ) · p̂x
[
λ(x)ψdx

]

+
2m
 h2

ε∫
−ε

V0(x)ψdx .

(180)

Insert for the two potentials, λ(x) = λδ(x), V0(x) = Hδ(x), and use that p =

−i h∇. Perform the integration and get

ε∫
−ε

∂2ψ

∂x2
dx = −

i2mλ
 h

(n̂×σ) ·
ε∫

−ε

δ(x)
(
∂yŷ+ ∂zẑ

)
ψdx

−
imλ
 h

(n̂×σ) ·
ε∫

−ε

δ(x)∂xψx̂dx

−
imλ
 h

(n̂×σ) ·
ε∫

−ε

∂xx̂
[
δ(x)ψ

]
dx

+
2mH
 h2

ε∫
−ε

δ(x)ψdx

dψ
dx

(0+) −
dψ
dx

(0−) = −
i2mλ

 h
(n̂×σ) ·

(
∂yŷ+ ∂zẑ

)
ψ(0)

−
imλ
 h

(n̂×σ) · ∂xψ(0)x̂

−
imλ
 h

(n̂×σ) ·
{
���

���
��[

δ(0+)ψ(0+)] −
���

���
��[

δ(0−)ψ(0−)]
}

+
2mH
 h2

ψ(0)

dψ
dx

(0+) −
dψ
dx

(0−) = −
i2mλ

 h
(n̂×σ) ·

(∂x
2
x̂+ ∂yŷ+ ∂zẑ

)
ψ(0)

+
2mH
 h2

ψ(0)

dψ
dx

(0+) −
dψ
dx

(0−) = T̂eψ(0)

(181)
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where we have defined the transmission matrix

T̂e = −iZsoc(n̂×σ) ·
(∂x
2
x̂+ ∂yŷ+ ∂zẑ

)
+ kFZ0 · σ0 (182)

and introduced the dimensionless parameters Zsoc = 2mλ
 h and Z0 = 2mH

 h2kF
. This

boundary condition holds for electron-like particles. The next step is to find the
associated transmission matrix, T̂h, for the hole-like particles.

6.3.2 Hole-like part

To find the transmission matrix for the hole-like particles, start with the Schrödinger
equation

 h2

2m
∇2ψ+∆∗ψ =

[
ε− V(x)

]
ψ (183)

where V(x) = −Hδ(x) + 1
2(n̂× σ

∗) · {λδ(x),p}. Follow the similar procedure as
we did for the electron-like particles and integrate across the boundary from −ε

to ε. Let ε→ 0, and get

 h2

2m

ε∫
−ε

∇2ψdx+

�
�
�
�
��ε∫

−ε

∆∗ψdx =

�
�
�
�
�ε∫

−ε

εdx−

ε∫
−ε

V(x)ψdx

ε∫
−ε

∂2ψ

∂x2
dx = −

2m
 h2

ε∫
−ε

V(x)ψdx

ε∫
−ε

∂2ψ

∂x2
dx = −

2m
 h2

ε∫
−ε

1

2
(n̂×σ∗) ·

{
λ(x), p̂

}
ψdx+

2m
 h2

ε∫
−ε

V0(x)ψdx

ε∫
−ε

∂2ψ

∂x2
dx = −

2m
 h2

ε∫
−ε

λ(x)(n̂×σ∗) ·
(
p̂y + p̂z

)
ψdx

−
m
 h2

ε∫
−ε

λ(x)(n̂×σ∗) · p̂xψdx

−
m
 h2

ε∫
−ε

(n̂×σ∗) · p̂x
[
λ(x)ψdx

]

+
2m
 h2

ε∫
−ε

V0(x)ψdx .

(184)
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Insert for the two potentials, λ(x) = λδ(x), V0(x) = Hδ(x), and use that p =

−i h∇. We will then obtain the transmission matrix for the hole-like particles by
performing the integration

ε∫
−ε

∂2ψ

∂x2
dx =

i2mλ
 h

(n̂×σ∗) ·
ε∫

−ε

δ(x)
(
∂yŷ+ ∂zẑ

)
ψdx

+
imλ
 h

(n̂×σ∗) ·
ε∫

−ε

δ(x)∂xψx̂dx

+
imλ
 h

(n̂×σ∗) ·
ε∫

−ε

∂xx̂
[
δ(x)ψ

]
dx

+
2mH
 h2

ε∫
−ε

δ(x)ψdx

dψ
dx

(0+) −
dψ
dx

(0−) =
i2mλ

 h
(n̂×σ∗) ·

(
∂yŷ+ ∂zẑ

)
ψ(0)

+
imλ
 h

(n̂×σ∗) · ∂xψ(0)x̂

+
imλ
 h

(n̂×σ∗) ·
{
���

���
��[

δ(0+)ψ(0+)] −
���

���
��[

δ(0−)ψ(0−)]
}

+
2mH
 h2

ψ(0)

dψ
dx

(0+) −
dψ
dx

(0−) =
i2mλ

 h
(n̂×σ∗) ·

(∂x
2
x̂+ ∂yŷ+ ∂zẑ

)
ψ(0)

+
2mH
 h2

ψ(0)

dψ
dx

(0+) −
dψ
dx

(0−) = T̂hψ(0)

(185)

where we have defined the transmission matrix for the hole-like particles

T̂h = iZsoc(n̂×σ∗) ·
(∂x
2
x̂+ ∂yŷ+ ∂zẑ

)
+ kFZ0 · σ0 (186)

in terms of the dimensionless parameters for the scattering potential (Z0 = 2mH
 h2kF

)

and spin-orbit potential (Zsoc =
2mλ

 h ).
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6.3.3 Assemble the effective barrier-matrix

The effective barrier matrix for the complete system is achieved by the trans-
mission matrix for the electron-like and hole-like particles given in Eq. (182)
and (186) as

T̂e = −iZsoc(n̂×σ) ·
(∂x
2
x̂+ ∂yŷ+ ∂zẑ

)
+ kFZ0 · σ0

= Zsoc

{
hxsocσx + h

y
socσy + h

z
socσz

}
+ kFZ0 · σ0

T̂h = iZsoc(n̂×σ∗) · (
∂x

2
x̂+ ∂yŷ+ ∂zẑ

)
+ kFZ0 · σ0

= Zsoc

{
− hxsocσx + h

y
socσy − h

z
socσz

}
+ kFZ0 · σ0

(187)

where we have defined

hxsoc = i(ny∂z −nz∂y), h
y
soc = i(nz

∂x

2
−nx∂z), hzsoc = i(nx∂y −ny

∂x

2
)

(188)

to simplify the expressions. The two transmission matrices, T̂e and T̂h, are 2x2-
matrices in spin-space. By combing them, we will receive a 4x4-transmission
matrix in charge-space

T̂4x4 =

(
T̂e 0

0 T̂h

)
. (189)

The resulting boundary conditions for an SC/SC Josephson junction with Rashba
spin-orbit coupling imposed to the boundary with an arbitrary direction of the
spin-orbit orientation, n̂, is

ψ(0+) −ψ(0−) = 0

dψ
dx

(0+) −
dψ
dx

(0−) = T̂4x4ψ(0)
(190)

where the transmission matrix is given by

T̂4x4 = Zsoc

[
hxsoc

(
σx 0

0 −σx

)
+ hysoc

(
σy 0

0 σy

)
+ hzsoc

(
σz 0

0 −σz

)]
+ kFZ0

[
12x2 0

0 12x2

]
.

(191)

6.4 derivation of andreev bound states and supercurrent

This section will calculate the Andreev bound states and the supercurrent. We
have found the wave functions and belonging boundary conditions in the two
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previous sections. Insert the wave function in Eq. (168) into the set of boundary
conditions in Eq. (190), and receive a system of eighth equations. The supercur-
rent is found by solving for quasiparticles inside the superconducting gap, i.e.
ε < ∆0. To make the calculation easier, rewrite the set of equations in a matrix
system of the form

Ax = b (192)

where A is an 8x8-matrix and x is a vector of the reflection/transmission co-
efficients. In search for the Andreev bound states across the junction, we do
not need to solve for the coefficients. Instead, we only require the system to be
solvable in order to find an equation for the allowed energies. The key is to ma-
nipulate the system of equations such that b = 0. From linear algebra, we know
that a nontrivial solution to Ax = 0 implies that

det(A) = 0. (193)

The determinant of A is given by

det(A) = a cosh(2β)2 + b cosh(2β) + c with β = −i cos−1(ε/∆0)

= 4a
( ε
∆0

)4
+ (2b− 4a)

( ε
∆0

)2
+ (a− b+ c)

(194)

where the coefficients a,b, c are functions of the superconducting phase φ, bar-
rier strength Z0, the spin-orbit magnitude Zsoc, the spin-orbit orientation n̂ and
the quasiparticle wave vector k. The explicit form yields,

c = B cos2(φ) +
(
A−B

)
cos(φ) +C

(
C+D

)
b = −

(
A+B

)
cos(φ) − 2C

(
C+D

)
−A+B

a = C
(
C+D

)
+A

(195)

where

A = 512k2x

[
Z2soc

(
k2y
(
n2x +n

2
z

)
− kyny

(
2kznz + IZ0kFnx

)
+ k2z

(
n2x +n

2
y

)
− IZ0kFkznxnz +

k2x
(
n2y +n

2
z

)
4

)
+Z20k

2
F + 2k

2
x

]

B = 256k4x

[
4+Z2soc

(
n2y +n

2
z)

]

C = 8Z2soc

[
k2y
(
n2x +n

2
z

)
− kyny

(
kxnx + 2kznz

)
+ k2z

(
n2x +n

2
y

)
− kxkznxnz +

k2x
(
n2y +n

2
z

)
4

]
− 8Z20k

2
F

D = 16Z2sockxnx

[
kyny + kznz

]
.

(196)
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Use Eq. (194) and solve det(A) = 0 with respect to ε. We can find the energy
modes given by εi(φ) = ±εσ(φ) with

εσ(φ) = cos

{
1

2
cos−1

(
−ρσb+

√
b2 − 4ac

2a

)
−

(
π

4
− ρσ

π

4

)}
∆

= cos

{
1

2
cos−1

(
ρσ

[(
A+B

)
cos(φ) + 2C

(
C+D

)
+A−B

]
+
√
A2 +B2 − 4C

(
C+D

)
− 2A

(
cos(φ) − 1

)
2C
(
C+D

)
+ 2A

)

−

(
π

4
− ρσ

π

4

)}
∆.

(197)

Here, σ is a spin index such that ρ↑(↓) = 1(−1) for spin-up (spin-down) particles,
and the ±-sign in front of εσ(φ) indicated degenerated energy into a positive
and negative mode. Thus, there are in total 4 possible energy modes for each
parametric choice of Z0,Zsoc,k and n̂.

This analytical BTK-like model is not capable of finding real energy modes for
all combinations of the parameters Z0, Zsoc, k, and n̂. We can make a physical
interpretation of this behavior; the analytical model cannot establish Andreev
bound states for all parametric choices. However, chapter 7 demonstrates how
the model nevertheless produces a similar current tendency as the numerical
model through an sum over all k-modes for a specific spin-orbit orientation and
barrier strength.

The Andreev bound energy states carry the supported supercurrent of the sys-
tem. We can view this more clearly by the expression for the analytical current
given by

I(φ) =
2e
 h

∑
i

f(εi)
dεi
dφ

(198)

where i represents the sum over all energy modes and f(ε) is the Fermi-Dirac
distribution for the fermions. Since each energy mode is degenerated, we can
rewrite the current into a sum over spin given by

I(φ) = −
2e
 h

∑
σ

tanh

(
βεσ

2

)
dεσ
dφ

(199)

where we have used the Fermi-Dirac function defined in Eq. (130), and β = 1
kBT

.
Finally, the critical current is defined as

Ic = max |I(φ)|. (200)
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In chapter 5 and 6, we performed an explicit calculation of an analytical and
a numerical model to describe an SC/HM/SC Josephson junction. We will use
this chapter to present the supported supercurrent across the junction using
these two independent models.

The analytical model considers an SC/SC junction with Rashba spin-orbit cou-
pling imposed to the boundary conditions. The framework is approximating
the heavy metal to be a thin film with a thickness of a few atomic distances, i.e.
∼ 1nm. In general, any material that separates the two superconductors will pro-
vide a spin-orbit coupling with orientation perpendicular to the interface, n̂ = x̂.
This is regardless of the lattice structure of the respective material because the
boundary layer between the material and the superconductors is independently
breaking inversion symmetry. In order to obtain spin-orbit coupling for n̂ 6= x̂,
the material must have a non-centrosymmetric lattice structure.

Furthermore, the analytical model will try to provide bound states for a given
k-mode. As discussed previously, it is not guaranteed that a bound state exists
for every k-mode. The current is therefore calculated from a sum of distinct
k-modes. In particular, for each k that corresponds to a real energy mode, the
current has been calculated. The total current is then a summation of all sub-
calculated current values for each real energy mode

I(φ) =

π/2∑
θk=0

2π∑
φk=0

I(φ,k) (201)

where

k = kF

[
cos(φk) sin(θk) sin(φk) sin(θk) cos(θk)

]
. (202)

We have computed the current with a finite increment of δφk, δθk = π
4 . All

plots, provided by the analytical model, are normalized with respect to a con-
stant normalization factor I0 = e∆/ h. In our analysis, the parameters ∆ = 3meV ,
EF = 5eV , and T = 3meV are fixed. The scattering potential is present through
the dimensionless parameter Z0. This parameter is introduced to simulate a
physical barrier, where Z0 = 0 corresponds to an absent barrier that fully sup-
ports particles to tunneling across the interface. In the opposite regime, values of
Z0 � 1 result in a vanishing tunneling amplitude, and all particles are scattered

77
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away at the interface. Hence, the parametric choices of Z0 ' 0→ 10 is reasonable
values for the scattering potential [57]. We are assuming that a similar dimen-
sion would be beneficial to the spin-orbit potential, such that Zsoc ' 1→ 10.

In the numerical model, the heavy metal has a finite length (thickness) of NHM.
The superconducting gap can be solved in a self-consistent manner, as described
in section 5.2.1. Even though the calculation itself is easy, it turns out that the
convergence process is time-consuming. A system with dimensions Nx = 55,
and Ny = Nz = 29 needs about 2× 103 iterations according to a convergence
requirement of tolerance = 10−4. In order to search across the superconducting
phase φ, to find the critical current for every parametric choice of λ and n̂,
the number of iterations desired to investigate the current behavior has to be
approximately ∼ 107. As a result of this, it would be a great advantage to avoid
a self-consistent solution.

Figure 13: The superconducting gap |∆| across the junction. We have illustrated a qual-
itative behavior of the self-consistent solution versus a non-consistent solu-
tion.

We tried solving the gap in a non-consistent manner, meaning we chose a con-
stant value for ∆ inside the superconductor and zero elsewhere. Such an ap-
proach will not provide the supercurrent an exact value, since the proximity
effect will decrease ∆ close to the interface. The different behaviors of |∆| are
illustrated in Fig. 13, which makes it clear that a non-consistent approach will
deviate from a self-consistent solution. However, we will only investigate the
supercurrent while adjusting properties of the weak link, e.g. spin-orbit magni-
tude λ, orientation n̂, chemical potential µHM, and thickness NHM. Thus, it is
chosen a fixed non-consistent solution of |∆| in all subsequent numerical results.
The approach is justified because a static non-consistent solution will provide
a stationary reference when studying the relative change in current magnitude.
An exploration of the current behavior demonstrated that the relative change in
the current magnitude is preserved through a non-consistent approach. The in-
spection was done for a spin-orbit orientation in the yz-plane, and the retained
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Figure 14: This is a qualitative comparison of the current behavior provided by a non-
consistent (left panel) and a self-consistent solution (right panel) of the gap
∆. Both curves are produced with a spin-orbit magnitude λ = 0.3t. We have
not included numbers representing the current magnitude on the y-axis, as
we were interested in comparing the current’s behavior while adjusting the
spin-orbit coupling. Nevertheless, we can conclude that solving the super-
conducting gap in a non-consistent manner will produce a similar qualitative
behavior as a self-consistent solution. We will elaborate further on the results
in section 7.2.

behavior between the self-consistent and non-consistent solution is illustrated
in Fig. 14. As a result, all numerical results in this thesis are solved in a non-
consistent manner with |∆| = 0.003t inside the superconductors and zero else-
where. The geometry of the system is NSCL = 25, NHM = 5, NSCR = 25, and
Ny = Nz = 29 unless otherwise indicated. Other properties are t = 1, T = 0.003,
and µSC = 0.0, meaning that ∆µ corresponds to an adjustment of the chemical
potential of the heavy metal of unit t.
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7.1 1d - sc/hm/sc josephson junction

In this section, we will consider a one-dimensional SC/HM/SC junction. The
limits of dimensions may arise in a Josephson junction nanowire. Consequently,
the Cooper pairs can only travel along with the momentum mode k = kFx̂, that
is along the x-direction. We are not making any restrictions for the possible n̂
orientations, meaning the spin-orbit coupling can be orientated in any spatial
directions.

Figure 15: Suggested experimental setup of a 1D SC/HM/SC nanowire.

7.1.1 Numerical approach

To simulate a one-dimensional nanowire, we say that it consists of only one
lattice point in y- and z-direction. We have implemented the restriction to the
numerical system by choosingNy = Nz = 1, implying k = kFx̂. The only valid k-
mode is therefore the one perpendicular to the interface. A demonstration of the
supported supercurrent as a function of spin-orbit orientation is shown in Fig.
16. As expected from the geometry of the junction, there are several symmetry
aspects in the current behavior.

First, the current is to be invariant for all n̂ ∈ yz-plane, i.e. the current is in-
dependent of the spin-orbit vector orientation as long as it is parallel to the
interface. Recall the definition of spin-orbit coupling as Ĥ ∝ k× n̂. From the
definition, this behavior is expected since a spin-orbit orientation parallel to the
interface (n̂ ⊥ x̂) will influence all x-travelling particles equally in the absence
of transverse propagating modes.

Second, when the spin-orbit vector is perpendicular to the interface, n̂ = x̂, the
spin-orbit coupling is not affecting the current. This is expected according to the
definition of the spin-orbit Hamiltonian, where we consider a cross-product of
the particles’ momentum and the spin-orbit vector characterization. Note that
this is only true for one dimension. The results can become more complicated
in the three dimensions where ky and kz can influence the supercurrent.
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Figure 16: The supported supercurrent through an SC/HM/SC junction for different
magnitude and vector orientation of the spin-orbit coupling imposed to the
heavy metal. The blue line is the supported supercurrent without any spin-
orbit coupling (λ = 0) and holds a current magnitude of 2.8% compared to
the solid red line for λ = 2. The plots are created with our numerical model
with a non-consistent solution of ∆ = 0.003t. Other parameters are t = 1,
∆µ = 1, T = 0.003, NSCL = 25, NHM = 5, NSCR = 25, and Ny = Nz = 1.

Let us now consider the current behavior while varying the spin-orbit magni-
tude, shown in Fig. 17. First, note that the current exhibits three distinct peaks,
before it stabilizes around a constant value. Second, a strong spin-orbit coupling
will provide a current which is larger in magnitude compared to an SC/NC/SC
junction with no spin-orbit coupling (λ = 0). This observation indicates that a
strong spin-orbit coupling will increase the current in one dimension. Keep in
mind that experimental values for spin-orbit magnitude are at maximum about
λmax ∼ 3eVÅ, which in our framework with lattice spacing a = 1 corresponds
to λmax ∼ 3t [26]. The very large λ values are calculated with the intention to
show a current tendency.

7.1.2 Analytical approach

We are now going to solve the one-dimensional system with our analytical BTK-
like model. By choosing a spin-orbit orientation perpendicular to the interface,
n̂ = x, the bound states are expected to be independent of the spin-orbit cou-
pling. The analytical energy support this by reducing to

ε = ± cos

{
1

2
cos−1

(
Z20 + 4 cos(φ)

Z20 + 4

)}
∆. (203)
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Figure 17: The supported supercurrent through an SC/HM/SC junction for different
magnitude and vector orientation of the spin-orbit coupling imposed to the
heavy metal. The blue line is the supported supercurrent without spin-orbit
coupling, λ = 0. The plots are created with our numerical model with a
non-consistent solution of ∆ = 0.003t. Other parameters are t = 1, ∆µ = 1,
T = 0.003, NSCL = 25, NHM = 5, NSCR = 25, and Ny = Nz = 1.

Consequently, a spin-orbit orientation of n̂ = x̂ is not affecting the supported
supercurrent across the junction. It is consistent with the numerical results and
the definition of the spin-orbit coupling Hamiltonian which couples the spin
and the momentum through a cross product.

We have now explored that an orthogonal spin-orbit orientation concerning the
interface will remove the spin-orbit dependency. For the following, study the
spin-orbit orientation, n̂, to be aligned parallel to the interface. That is nx =

0,ny 6= 0,nz 6= 0. The solutions of the respective bound states are then

εσ = ∆ cos

{
π

4

(
ρσ − 1

)

+
1

2
cos−1

(
ρσ16k

4
x

[
4Z20 + 3Z

2
soc + 16

]
cos(φ) + ρσk4x

[(
Z2soc − 4Z

2
0

)2
− 16

(
Z2soc − 4Z

2
0

)]
+ i8k4xZsoc

(
4Z20 −Z

2
soc
)(

cos(φ) − 1
)

k4x
[(
Z2soc − 4Z

2
0

)2
+ 32

(
Z2soc + 4Z

2
0 + 8

)]
)}

.

(204)

Discover that these spin-dependent energy modes are independent of ny and
nz. In other words, the energy modes are invariant for spin-orbit orientations
parallel to the interface. This is consistent with the numerical result with an
invariant current magnitude for n̂ ∈ yz-plane.

Furthermore, pay attention to the impact of the scattering potential Z0 and the
spin-orbit potential Zsoc. Observe how the choice of Zsoc = 2Z0 will reduce the
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expression of the energy modes into the well known SC/SC Josephson junction
without any barrier potential given by

ε = ± cos(φ/2)∆. (205)

The result tells us that it is possible to make the effective barrier disappear for
a specific relation of the scattering- and spin-orbit potential. This finding pro-
vides the effective barrier to be strongly related to the ratio of scattering- and
spin-orbit potential. We have already observed a similar effect in the numeri-
cal results (Fig. 17) where we could detect the supercurrent peaking to distinct
values of the spin-orbit magnitude. Unlike the analytical model, the numerical
model does not have any parameters corresponding to a scattering potential
(Z0). However, section 4.2 argued that a different chemical potential between
the superconductors and the heavy metal would contribute to a barrier. Con-
sequently, this result from one dimension, where the effective barrier vanishes
completely when the scattering- and spin-orbit potential takes a specific rela-
tionship, motivates an investigation of the supercurrent for different chemical
potential. We will inspect this connection further when we extend to three di-
mensions in the next section by varying the chemical potential difference.

As mentioned previously, the analytical model cannot find Andreev bound
states for all parametric choices. In this one-dimensional case where k = x̂,
the model does not provide real energy values when n̂ ∈ xy-plane. However,
the model can find real eigenvalues for the specific orientations of n̂ = x̂ and
n̂ ∈ yz-plane.

7.1.3 Summary remarks

Through both the analytical and the numerical model, we have demonstrated
how the supercurrent is invariant when the spin-orbit coupling is orientated
parallel to the interface. Furthermore, we have shown that the spin-orbit cou-
pling does not affect the current for an orientation perpendicular to the inter-
face. This is as expected according to a one-dimensional case where the particles
only propagate perpendicular to the interface. In addition, Rashba spin-orbit
coupling is a phenomenon that arises when particles travel across an electric
field, shown in the Hamiltonian in Eq. (112), making this outcome reasonable.

The numerical model has given us insight into the spin-orbit coupling’s ability
to increase the supercurrent compared to a junction without spin-orbit cou-
pling. The analytical model could not provide bound states for all spin-orbit
magnitudes. However, we did prove that within a specific scattering- and spin-
orbit potential relation, the analytical expression for the supported supercur-
rent reduces into an SC/SC junction with absent barrier effects. The discovery
insinuates that the supercurrent is strongly related to the ratio of the chemical
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potential and the spin-orbit coupling. We will continue the investigation in sec-
tion 7.2 for a three-dimensional junction, aiming to understand the behavior in
a physical manner.
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7.2 3d - sc/hm/sc josephson junction

After breaking down the problem in one dimension, as done in section 7.1, we
can now extend the system to three dimensions. In the previous section, we
confirmed that the kx-modes were influenced by the spin-orbit coupling within
the orientation n̂ ∈ yz-plane. This section will study the current where a three-
dimensional junction allows for the transverse k-modes to be valid.

7.2.1 Numerical approach

The geometry of the junction investigated by the numerical model is shown in
Fig. 18.

Figure 18: A numerical setup of a SC/HM/SC junction.

There are several interesting aspects to observe in order to keep track of all pa-
rameters that affect the supported supercurrent across an SC/HM/SC junction.
We have in this section investigated the current related to the length of the in-
corporated heavy metal with Rashba spin-orbit coupling (LHM), the spin-orbit
magnitude (λ), spin-orbit orientation (n̂), and the chemical potential difference
between the superconductor and the heavy metal (∆µ)

The calculated supercurrent across an SC/HM/SC junction as a function of
the thickness of the heavy metal is shown in Fig. 19. The various lines in the
respective figure represent different spin-orbit orientations indicated by color.
Notice how the supercurrent decreases as a function of thickness. The reducing
current magnitude is present without any superimposed oscillations, which we
would get in a magnetic SC/F/SC junction [14] as discussed in section 3.2.
Such oscillations are caused by a non-zero center-of-mass momentum which
creates Cooper pairs with triplet symmetry. The current influenced by spin-
orbit coupling acts in a similar manner as expected for a normal scattering
potential which would be present in an SC/NC/SC junction. Consequently, the
observation corroborates an understanding of spin-orbit coupling to provide
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Figure 19: Supported supercurrent through a S/HM/S junction with spin-orbit cou-
pling present in the heavy metal. The plot demonstrates the decreasing cur-
rent as a function of the grid length of the heavy metal. The calculations have
been done numerically with a non-consistent solution of ∆ = 0.003t. Each
line represents a different orientation of the spin-orbit vector characteriza-
tion. The spin-orbit magnitude is fixed to λ = 1t, and the chemical potential
difference is ∆µ = 0.7t. Other parameters are t = 1, T = 0.003, NSCL = 25,
NSCR = 25, and Ny = Nz = 29.

a supercurrent carried by normal Andreev reflection and Cooper pairs with
singlet symmetry.

Figure 20: Three-dimensional unit sphere in real space. Due to symmetry, it is sufficient
to only evaluate spin-orbit orientations on the red surface.
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Figure 21: The supported supercurrent through an SC/HM/SC junction for different
spin-orbit orientations. The blue lines in is the supported supercurrent in ab-
sence of spin-orbit coupling. The figure is created with our numerical model
with a non-consistent solution of ∆ = 0.003t. The chemical potential is fixed
at ∆µ = 0.7t. Other parameters are t = 1, T = 0.003, NSCL = 25, NHM = 5,
NSCR = 25, and Ny = Nz = 29.

Figure 22: The supported supercurrent through an SC/NC/SC junction. Such a junction
is similar to an SC/HM/SC junction with absent spin-orbit coupling (λ =

0t). The figure is created with our numerical model with a non-consistent
solution of ∆ = 0.003t. NNC = 5. Other parameters are t = 1, T = 0.003,
NSCL = 25, NSCR = 25, and Ny = Nz = 29.

For further investigations of the spin-orbit coupling and its relation to super-
current, utilize a fixed thickness of the heavy metal to NHM = 5. The following
will demonstrate the behavior of the current for different spin-orbit orientations
n̂. A geometrical symmetry of the junction makes it sufficient to only solve
the system for n̂ orientations on the red surface indicated in Fig. 20. We have
used a fixed chemical potential difference (∆µ = 0.7t) between the supercon-
ductors and the heavy metal. The supported supercurrent for the distinct n̂
orientations are shown in Fig. 21, where the various lines present different spin-
orbit magnitudes (λ). Notice that the current magnitude takes the lowest value
when the spin-orbit orientation is pointing perpendicular to the interface, i.e.
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Figure 23: The supported supercurrent through an SC/HM/SC junction for different
vector orientations of the spin-orbit coupling imposed to the heavy metal.
The various lines (solid-dashed-dotted) demonstrated the impact of different
chemical potential between the two superconductors and the heavy metal.
The upper panel utilizes a fixed spin-orbit coupling magnitude of λ = 1t. The
lower panel compares the current in the presence of a finite spin-orbit mag-
nitude and the case without. That is λ = 1t denoted by the red lines versus
λ = 0t denoted by the blue lines. The figure is created with our numerical
model with a non-consistent solution of ∆ = 0.003t. Other parameters are
t = 1, T = 0.003, NSCL = 25, NHM = 5, NSCR = 25, and Ny = Nz = 29.

n̂ = x̂, and increases as the orientation of the spin-orbit coupling reaches the yz-
plane. This tendency is according to the one-dimensional outcomes. However,
the current magnitude is not invariant for all spin-orbit orientations parallel to
the interface, i.e. n̂ ∈ yz-plane. The supercurrent is greatest for a orientation

n̂ =
√
1
2(0, 1, 1) = ŷ+ẑ

2 . This is inconsistent with the one-dimensional results,
thus the different behavior is explained by the contribution of particles with a
parallel wave vector component.
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Furthermore, we have calculated the supported supercurrent for different n̂ ori-
entations with a varying chemical potential difference (∆µ). The red lines in Fig.
23 indicates the current for different chemical potential with a fixed spin-orbit
magnitude (λ = 1.0t). The lower panel includes three blue lines included as a
state of reference with no spin-orbit coupling present, i.e. λ = 0. The current
magnitude is expected to decrease for large ∆µ. This is confirmed by Fig. 22

which shows the current for increasing chemical potential difference in the ab-
sence of spin-orbit coupling. Pay attention to Fig. 23 which provides the current
as a function of the spin-orbit orientation with a varying chemical potential dif-
ference. Keep in mind that an increasing chemical potential difference provides
a decreasing current magnitude. Consequently, the current with finite spin-orbit
coupling will also increase as ∆µ decreases. This is reasonable since ∆µ, alone,
is a potential barrier. Thus, a significant barrier makes it hard for particles to
propagate across the interface. Furthermore, observe how the red lines for finite
spin-orbit coupling (λ 6= 0) are related to the blue lines with absent spin-orbit
coupling (λ = 0). This relation is manifested in the lower panel: When ∆µ = 0.2t,
all spin-orbit orientation with λ = 1 will correspond to a larger current magni-
tude compared to λ = 0. On the other hand, when ∆µ = 1.1t, the spin-orbit
coupling will only provide a larger current magnitude when n̂ ∈ yz-plane. This
finding states that the ratio of the spin-orbit coupling magnitude and chemical
potential difference plays an important role. In addition, it is consistent with the
result from one dimension where we noted that the effective barrier vanishes
under a specific relation of the scattering- and spin-orbit coupling potential.

We will now investigate the current developed under an increasing spin-orbit
magnitude, provided in Fig. 24. The plot shows different orientations of n̂ indi-
cated by color. The blue line denotes a state of reference in the absence of spin-
orbit coupling. In general, regardless of the spin-orbit orientation, the current
magnitude will increase until a critical value before it decreases. Some orienta-
tions have several critical points. The respective spin-orbit magnitude, where the
critical point occurs, depends on the orientation of n̂. We can observe that the
greatest current magnitude corresponds to a orientation of n̂ = 1√

2
(0, 1, 1) = ŷ+ẑ

2 .
This is consistent with the previous result for current magnitude as a function of
spin-orbit orientation in Fig. 21. Again, keep in mind that experimental values
for spin-orbit magnitude are at maximum λmax ∼ 3eVÅ ∼ 3t [26], such that the
current for very large λ are calculated with the intention to show tendency.

7.2.2 Analytical approach

We will now provide the result from the analytical BTK-like model which in-
vestigates an SC/SC junction with scattering- and spin-orbit potential imposed
to the boundary. A geometrical illustration of the junction is present in Fig. 25.
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Figure 24: Supercurrent as a function of spin-orbit magnitude across an SC/HM/SC
junction calculated by the numerical model utilizing a non-consistent so-
lution of ∆ = 0.003t. The chemical potential difference is ∆µ = 1t. Other
parameters are t = 1, T = 0.003, NSCL = 25, NHM = 5, NSCR = 25, and
Ny = Nz = 29.

Keep in mind that the analytical model treats the heavy metal as a boundary
effect. Thus, the framework can not provide any relation to the thickness of
the heavy metal. If we would like to solve for a finite thickness, the framework
would need an extension requiring a set of wave functions inside the heavy
metal, along with additional boundary conditions to treat the SC/HM- and
HM/SC-interfaces.

Figure 25: Analytical setup of a SC/SC Josephson junction divided by a δ-barrier

Begin by exploring the current as a function of the spin-orbit orientation n̂,
given in Fig. 26. We have calculated the current magnitude for different spin-
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orbit potential (Zsoc) at a fixed scattering potential (Z0). Notice that the analytical

Figure 26: Critical current as function of spin-orbit coupling orientation parallel to the
interface, i.e. n̂ ∈ yz-plane. The plot is produced by the analytical model with
a static scattering- and spin-orbit potential Zsoc = Z0 = 2. Other parameters
are ∆ = 3meV and EF = 5eV . The normalization constant is I0 = e∆

 h .

model provides a similar current behavior as produced by the numerical model:
The current magnitude is most significant for a spin-orbit orientation n̂ = ŷ+ẑ

2

compared to n̂ = ŷ(ẑ).

Next, consider the current as a function of the effective barrier potential. The
result from one dimension in section 7.1 suggests that the current depends on
the relation between the scattering potential (Z0) and the spin-orbit potential
(Zsoc). In order to investigate this connection, the current has been calculated
as a function of spin-orbit magnitude in Fig. 27 and as a function of scattering
potential in Fig. 28.

The analytical model predicts a similar current trend as the numerical model.
The left panel of Figures 27a and 28a demonstrated the current for a spin-orbit
orientation n̂ = ŷ, where the current magnitude increases towards a critical
point before decreasing. Furthermore, given a non-zero scattering- and spin-
orbit potential, we can explore how the two potentials have an inverted impact
on the supported supercurrent. The right panel of Figures 27 and 28 shows the
current for a spin-orbit orientation n̂ ∈ {ŷ, ŷ+ẑ2 }. We have included this scope
of n̂-orientations based on the previous result for the current as a function of
n̂, where the calculation provided an asymmetric magnitude relation in the re-
spective n̂-region. Given these spin-orbit orientations, the current demonstrates
that the two potential barriers are opposed to each other. We can observe this



92 results

Figure 27: The two panels shows the supported supercurrent as a function of the spin-
orbit coupling magnitude Zsoc. The plot is made with the analytical model
with a static scattering potential of Z0 = 1. Other parameters are ∆ = 3meV

and EF = 5eV . The normalization constant is I0 = e∆
 h . The left panel shows

the current for n̂ = ẑ. The right panel shows the current for different orien-
tation of the spin-orbit coupling. The different lines represent an orientation
parallel to the interface. That is n̂ = (0, sin(θn), cos(θn)), where θn is indi-
cated in the figure legend. In particular, the purple one is n̂ = ẑ while the
green one is n̂ = ŷ+ẑ

2 .

by looking at the different lines representing various spin-orbit orientations of
n̂ ∈ {ŷ, ŷ+ẑ2 } which are crossing in an inverted order in Fig. 27b versus Fig. 28b.
Once more, this outcome strengthens the suspicion that the current magnitude
is strongly related to the ratio of scattering- and spin-orbit potential. This is anal-
ogous to the ratio between the chemical potential and the spin-orbit potential
regarding the numerical model.

7.2.3 Summary remarks

Before we discuss the underlying physics behind these results, let us briefly
summarize the main observations related to three dimension. First, we have ob-
served that the supercurrent depends on the spin-orbit orientation n̂, expected
since the interaction couples spin and momentum. This behavior is different
from the currents dependency on the magnetic field orientation in a ferromag-
netic Josephson junction. Second, we have demonstrated that a n̂ parallel to
the interface provides the most significant changes in the magnitude of the su-
percurrent compared to a junction without spin-orbit coupling. Moreover, this
observation was predicted according to the definition of spin-orbit coupling,
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Figure 28: The two panels shows the supported supercurrent as a function of the scatter-
ing potential Z0. The plot is made with the analytical model with a spin-orbit
magnitude of Zsoc = 1. Other parameters are ∆ = 3meV and EF = 5eV . The
normalization constant is I0 = e∆

 h . The left panel shows the current for n̂ = ẑ.
The right panel shows the current for different orientation of the spin-orbit
coupling. The different lines represent an orientation parallel to the interface.
That is n̂ = (0, sin(θn), cos(θn)), where θn is indicated in the figure legend.
In particular, the purple one is n̂ = ẑ while the green one is n̂ = ŷ+ẑ

2 .

which includes a cross-product between the particle’s momentum and spin-
orbit orientation.

We have previously argued that the system is invariant along the y- and z-
direction. Therefore, it is expected to obtain an equal magnitude of the super-
current for a spin-orbit orientation along those two axes. Both the numerical
and analytical models confirm this. However, if the two directions were purely
equal, we could suppose the current to be invariant for all spin-orbit orientations
with the basis n̂ = nyŷ+ nzẑ. An increased current magnitude for a spin-orbit
orientation in between those two axes, n̂ = ŷ+ẑ

2 , was therefore not expected at
first glance. Nevertheless, the symmetry between n̂ = ŷ and n̂ = ẑ only pro-
vides invariant physical observables, e.g. supercurrent. Two invariant states can
therefore deviate by a local phase. Recall that a spin-orbit interaction couples the
spin and the momentum of a particle. Hence, we believe the two spin-orbit ori-
entations of n̂ = ŷ and n̂ = ẑ to have an underlying inverted spin/momentum
symmetry which we will investigate further in the following chapter. Further-
more, to understand how the spin-orbit coupling influences the current, we can
use the barrier matrix to the analytical SC/SC junction. In the next chapter, we
will do this and also discuss how the change in the Fermi surface, induced by
the spin-orbit coupling, influences the supercurrent.
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D I S C U S S I O N O F R E S U LT S

The results’ after investigating the supercurrent with the numerical and analyti-
cal framework show three significant findings regarding the supercurrent across
an SC/HM/SC junction with spin-orbit coupling:

1. The length (thickness) of the incorporated material with spin-orbit cou-
pling is demonstrated to affect the supported supercurrent. Its influence
to the supercurrent is present in a similar manner as for a normal mate-
rial without spin-orbit coupling; as the length of the weak link gets longer,
the current decrease. This is expected from the superconducting proximity
and superconducting coherence length. In addition, the current magnitude
does not oscillate in our results in comparison to a magnetic SC/F/SC
junction.

2. The strength of the spin-orbit coupling influences the supercurrent. There
is a critical region for the spin-orbit magnitude where the supported su-
percurrent is increasing towards a critical point. As a result, we can predict
a greater current compared to a junction with normal metal without spin-
orbit coupling. The numerical calculations have demonstrated that the
supported supercurrent will decrease towards zero for sufficiently strong
interactions. This is consistent with an infinitely strong barrier.

3. The maximum magnitude of the supported supercurrent is determined,
not only by the magnitude of the spin-orbit coupling, but also by the di-
rection of the vector n̂ characterizing the inversion symmetry breaking. In-
terestingly, this is in stark contrast to magnetic SC/F/SC junctions, where
the supercurrent is independent of the direction of the spin-splitting field.
The spin-orbit orientation also affects which spin-orbit magnitude that re-
flects the maximal current value.

Symmetry provides the argument that the two directions ŷ and ẑ are invariant
and, consequently, follow the same physical interpretation. This is confirmed by
both the numerical and analytical results where n̂ = ŷ gives equal current mag-
nitude as for n̂ = ẑ. As a result, we can observe three distinguish orientations
of the spin-orbit orientation: n̂ =

{
x̂, ŷ(ẑ), ŷ+ẑ2

}
.
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8.1 spin-orbit orientation significance to displace fermi sur-
face

In chapter 4, we accounted for the Fermi surface of the superconductor and the
consequence related to the conservation of ky and kz. To understand how spin-
orbit coupling enhances Josephson effect, we begin by studying the prevalence
of the Fermi vector mismatch. For that sake, we will establish an overview of
the Fermi surfaces of the heavy metal for different spin-orbit orientations.

According to the spin-orbit coupling Hamiltonian defined in Eq. (88), the sign
is inverted by flipping the particle’s spin regarding a given k-mode and n̂ ori-
entation. Hence, the energy band will split for a given spin orientation and a
given k-mode.

Figure 29: Displaced energy bands (left panel) and Fermi surface (right panel) due to
Rashba spin-orbit coupling of orientation n̂ = ẑ. The spins of the particles
are aligned in the same spatial direction as denoted by the color. Thus, the
green arrow indicates that the spins are oriented along the z-direction, the
blue arrow indicates that the spins are oriented along the y-direction, while
the red arrow indicates that the spins are oriented along the x-direction.
The black arrow indicates a combination of all possible spin orientations,
meaning no band splitting due to spin-orbit coupling.

Fig. 29 illustrates an example of the displaced Fermi surface in three dimensions
according to a spin-orbit coupling along the z-axis. Symmetry will split the
energy bands similarly for x- and y-direction where spin alignment is favored,
respectively, along −ŷ and x̂. The spin-orbit coupling will not cause an energy
shift in the z-direction due to the cross-product in the definition.
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A question to arise is whether the elliptical shape of the Fermi Surface has a con-
sequence on the supercurrent. Recall that the Fermi surface of the normal-state
of a conventional superconductor (Fig. 7) is isotropic, and thus takes the shape
of a perfect circular sphere. Since the spin-orbit orientation of n̂ = ẑ displaces
the Fermi surface of the heavy metal away from a perfectly circular shape, we
can no longer achieve a situation where the Fermi vectors are symmetric in all
directions across the boundary simultaneously for λ 6= 0. However, symmetry
only requires conservation of momenta in y- and z-direction, and we will not
need to consider the Fermi vector mismatch for the kx-modes. As a consequence,
we will only investigate the Fermi surface in xy- and xz-plane, as illustrated in
Fig. 30b.

Section 4.1 demonstrated the importance of the shape of the Fermi surface with
respect to Andreev reflection. The consequences will be pointed out more thor-
oughly. But first, find the shape of the Fermi surfaces of all spin-orbit orienta-
tions. Due to symmetry, all possible configurations of the spin-orbit orientation
are covered on the red surface in Fig. 20. The corners of the red triangle-like sur-
face are located at n̂ = {x̂, ŷ, ẑ}. The displaced energy bands of the specific spin
orientations are shown in Figures 30a, 30c and 30e, while the corresponding
Fermi surfaces are illustrated in Figures 30b, 30d and 30f.

After having settled the shape of the Fermi surface for all the spin-orbit ori-
entations of interest, return to the spin-orbit orientation n̂ = ẑ. Compare the
Fermi surfaces established for n̂ = ŷ and n̂ = ẑ in Figures 30d and 30f. Notice
a symmetry where the surface is a perfect circle in one plane, while it takes an
elliptical form in the orthogonal one. Moreover, the various orientations of the
spins are indicated by color. The orientations of the spins with the displaced en-
ergy bands are different for ky/kz-mode for the two respective n-orientations.
An unequal spin-degeneracy is achieved due to the cross-product in the Hamil-
tonian definition. However, the impact of the Fermi surface on the supported
supercurrent is not dependent on whether the spin is aligned parallel to y- or z-
axis since the two directions are invariant. Hence, the illustrated Fermi surfaces
rising for n̂ = ŷ and n̂ = ẑ are equal in a physical manner. We can therefore
continue to consider n̂ = ŷ while keeping in mind that similar physics would
regard n̂ = ẑ.

8.2 interpretation of altered josephson effect for n̂ = ŷ(ẑ)

Consider a spin-orbit orientation parallel to the interface with n̂ = ŷ. Fig. 31

illustrates how the spin-orbit coupling gives rise to a Fermi vector mismatch at
the intersection of a heavy metal and a superconductor. This is due to conserva-
tion of ky and kz. Furthermore, a spin-orbit orientation of n̂ = ŷwill displace the
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(a) (b)

(c) (d)

(e)
(f)

Figure 30: Displaced energy bands and thereby Fermi surface rising from the spin-orbit
coupling. The left panel shows how the energies according to spin orienta-
tion will deviate from a normal state. The right panel illustrates the two-
dimensional Fermi surfaces for the concrete energy band split indicated to
the left. The spins of the particles are aligned in the same spatial direction
as denoted by the color. Thus, the green arrow indicates that the spins are
oriented along the z-direction, the blue arrow indicates that the spins are
oriented along the y-direction, while the red arrow indicates that the spins
are oriented along the x-direction. The black arrow indicates a combination
of all possible spin orientations, meaning no band splitting due to spin-orbit
coupling.

energy bands in the z-direction. Thus, by modifying the radius of the Fermi sur-
face, we can make the Fermi surface of the superconductor coincide with one of
the co-centered surfaces of the heavy metal in the xz-plane. We have previously
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Figure 31: Demonstration of Fermi vector mismatch between a heavy metal with Rashba
spin-orbit coupling of orientation n̂ = ŷ (left panel) and s-wave superconduc-
tor (right panel). The grey region of the Fermi surface to the heavy metal in-
dicated the scope of the Fermi vector mismatch in comparison with the Fermi
surface of the superconductor. This is due to the conservation of momentum
in ky and kz. The spins of the particles are aligned in the same spatial direc-
tion as denoted by the color. Thus, the green arrow indicates that the spins
are oriented along the z-direction, the blue arrow indicates that the spins are
oriented along the y-direction, while the red arrow indicates that the spins
are oriented along the x-direction.

accounted that we can adjust the Fermi surfaces’ radius by either changing the
chemical potential or the spin-orbit magnitude. As a result, we could suspect
that there would be a higher probability of Andreev reflections for particles
living on the surface. Keep in mind the established support for Cooper pairs
with singlet symmetry due to spin-orbit coupling (sec. 4.1). However, a Fermi
vector match is not enough for a Cooper pair to form. Additionally, we require
the incoming electron to observe a weak barrier at the interface to not increase
the scattering probability. In order to answer our suspicion, we will explore
the transmission probability of electrons across the interface by composing the
effective barrier matrix.
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The already derived boundary conditions to the analytical model provides the
effective barrier in Eq. (190) given by

T̂4x4 = Zsoc

hxsoc


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

+ hysoc


0 −i 0 0

i 0 0 0

0 0 0 −i

0 0 i 0

+ hzsoc


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1




+ kFZ0


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(206)

where we have defined the dimensionless parameters Z0 = 2mH
 h2kF

and Zsoc =
2mλ
 hkF

in addition to the coefficients

hxsoc = nzky −nykz, h
y
soc = nxkz −nz

kx

2
, hzsoc = ny

kx

2
−nxky (207)

for one specific particle momentum k =
[
kx,ky,kz

]
. To compute the matrix for a

spin-orbit orientation parallel to the interface between the two superconducting
elements, continue the calculation by choosing nx = 0. The effective barrier-
matrix reduces to

T̂4x4 = Zsoc


ny

kx
2 −(nykz −nzky) + inz

kx
2 0 0

−(nykz −nzky) − inz
kx
2 −ny

kx
2 0 0

0 0 −ny
kx
2 (nykz −nzky) + inz

kx
2

0 0 (nykz −nzky) + inz
kx
2 −ny

kx
2



+ kFZ0


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

(208)

The matrix T4x4 is interpreted as the transmission matrix for propagating parti-
cles. Thus, it is beneficial to consider a transmission matrix with only non-zero
elements on the diagonal. This specific kind of matrix provides an analogy to the
barrier effects for different spin-up and spin-down particles. Recognize that all
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off-diagonal elements are zero if k = kFx̂. Therefore, illustrate a one-dimensional
junction as in section 7.1, and the effective barrier reads

T̂4x4
∣∣∣
k=kFx̂

=
kF
2
Zsoc


ny inz 0 0

−inz −ny 0 0

0 0 −ny inz

0 0 −inz ny

+ kFZ0


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



=
kF
2


2Z0 +nyZsoc inzZsoc 0 0

−inzZsoc 2Z0 −nyZsoc 0 0

0 0 2Z0 −nyZsoc inzZsoc

0 0 −inzZsoc 2Z0 +nyZsoc

 .

(209)

Choose a spin-orbit orientation in y-direction, n̂ = ŷ, and the previous matrix
yields

T̂4x4

∣∣∣∣∣
k=kFx̂,n̂=ŷ

=
kF
2


2Z0 +Zsoc 0 0 0

0 2Z0 −Zsoc 0 0

0 0 2Z0 −Zsoc 0

0 0 0 2Z0 +Zsoc

 . (210)

This is the final effective barrier matrix for a one-dimensional junction with
spin-orbit orientation n̂ = ŷ. The barrier will appear differently for the three
cases of Zsoc � 2Z0, 2Zsoc = 2Z0 and Zsoc � 2Z0.

When Zsoc � 2Z0, the effective barrier is equal for all types of particles. More-
over, if we increase the spin-orbit magnitude to reach the particular case of
2Z0 = Zsoc, the effective barrier will disappear for spin-up electron reflected
into spin-down holes. However, this is only true for right traveling electrons. If
the electron were traveling towards the left, k̂ = −x̂, we would obtain the op-
posite barrier matrix where the barrier effect vanishes for a spin-down electron
reflected into a spin-up hole. We can point this more clearly by writing out the
two matrices

→ Zsoc = 2Z0

T̂4x4
∣∣∣
k=kFx̂,n̂=ŷ

= 2kFZ0


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 T̂4x4
∣∣∣
k=−kFx̂,n̂=ŷ

= 2kFZ0


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


(211)
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The cancellation of barrier effects for particles with a specific spin orientation
is consistent with the illustration of Fermi surfaces in Fig. 31: the Fermi surface
of the superconductor can only simultaneously coincide with one of the two
displaced spin-rotating Fermi surfaces of the heavy metal. Pay attention to Eq.
(210), and observe that the spin-orbit coupling magnitude and the scattering
potential are oppose to each other. This is consistent with the observation of the
current in section 7.2.2.

Modes with small transverse momentum (ky,kz) are the main carriers of current
along the x-direction. Even though the choice of momentum k = kxx̂ simulates
a one-dimensional junction, it will also be apparent for a three-dimensional
junction. Recall that y- and z-direction are invariant, meaning that similar spin
cancellation is present when the spin-orbit orientation is parallel to z-axis as
well.

8.3 interpretation of altered josephson effect for n̂ = ŷ+ẑ
2

In section 7.2, the current acquires its strongest magnitude for a spin-orbit ori-
entation parallel to the interface, more concrete in the middle of the y- and
z-axis. The Fermi surface for this orientation, n̂ = ŷ+ẑ

2 , is illustrated in Fig. 32.
The orientation is a superposition of the previously reviewed n̂ = ŷ and n̂ = ẑ.
However, the Fermi surface is no longer asymmetric. The spin-orbit orienta-
tion will displace the energy band in y- and z-direction, both bands regarding
spin aligned along x-axis. Pay attention to Fig. 32 and discover that that spin
orientation is inverted between the yx- and zx-plane. This effect is crucial for
the Fermi vector mismatch. We can now make the effective barrier for particles
with spin-up and spin-down to disappear simultaneously! Symmetrical aspects
can be used to understand the vanishing barrier. We have derived the transmis-
sion matrix for n̂ = ŷ. The matrix demonstrated how a spin-orbit orientation,
aligned along the y-axis, could make spin-down electrons transmit across the
interface with a given momentum because of an absent barrier. By symmetry, a
similar effect rise for spin-orbit coupling orientated along z-axis. Regarding an
electron with equal momentum, the spin will be inverted due to the coupling of
spin and momentum in HSO. Thus, a spin-orbit orientation where we combine
the outcome of y- and z-orientation provides a disappearing barrier for both
spin-up and spin-down particles. This superposition is mirrored in the Fermi
surfaces for the spin-orbit orientation n̂ = ŷ+ẑ

2 illustrated in Fig. 32. The red
arrows, which indicate a spin orientation along x-axis, are reversed for ky = kz.
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Figure 32: Illustration of the symmetric Fermi surfaces of a heavy metal with Rashba
spin-orbit coupling with orientation n̂ = ŷ+ẑ

2 . The spins of the particles are
aligned in the same spatial direction as denoted by the color. Thus, the green
arrow indicates that the spins are oriented along the z-direction, the blue
arrow indicates that the spins are oriented along the y-direction, while the
red arrow indicates that the spins are oriented along the x-direction.

8.4 interpretation of altered josephson effect for n̂ = x̂

Study a spin-orbit orientation perpendicular to the interface, n̂ = x̂. The en-
ergy bands will then be displaced in both y- and z-direction due to spin-orbit
coupling. We can explore the physics behind the current through a similar pro-
cedure as in the previous sections: matching Fermi surfaces and utilize the an-
alytical barrier matrix. First, recognize the Fermi vector mismatch illustrated
in Fig. 33. Notice that the displacement for ky and kz can be modified by the
spin-orbit magnitude, while kx is unaffected. Additionally, we only require a
conserved wave vector in the y- and z- direction. Based on the displacement of
the Fermi surface, we could presume for the Andreev reflections to increase dra-
matically when the radius of the Fermi surface of the superconductor coincides
with one of the co-centered elliptical Fermi surfaces of the heavy metal. Since
the spin-orbit coupling affects the two directions equally, a Fermi vector match
would occur at the same time. Nevertheless, chapter 7 showed the current to
being much weaker compared to parallel orientation of the spin-orbit coupling,
n̂ = ŷ. Therefore, we understand that the possibility of vanishing Fermi vector
mismatch is not sufficient to enhance the Josephson effect. The particles require
an absent barrier in the direction of propagation and a large transmission prob-
ability.
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Figure 33: Demonstration of Fermi vector mismatch between a heavy metal with Rashba
spin-orbit coupling with orientation n̂ = x̂ (left panel) and an s-wave su-
perconductor (right panel). The grey region on the left, indicating the Fermi
surface to the heavy metal, compared to the lack thereof on the right, demon-
strates the Fermi vector mismatch between the two materials. This is due to
the conservation of momentum in ky and kz The spins of the particles are
aligned in the same spatial direction as denoted by the color. Thus, the green
arrow indicates that the spins are oriented along the z-direction, the blue ar-
row indicates that the spins are oriented along the y-direction, while the red
arrow indicates that the spins are oriented along the x-direction.

Moreover, the effective barrier from the analytical framework can provide the
transmission probability as described previously. For n̂ = x̂, the effective barrier
reads

T̂4x4
∣∣∣
n̂=x̂

= Zsoc


−ky −ikz 0 0

ikz ky 0 0

0 0 ky −ikz

0 0 ikz −ky

+ kFZ0


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (212)

In order to rewrite the effective barrier matrix to include non-zero elements
along the diagonal exclusively, we have chosen k = kFŷ. The effective barrier
will, consequently, only disappear for particles moving parallel to the interface.
Unfortunately, this traveling mode does not support supercurrent, since the cur-
rent flows across the junction along the x-direction. This is the explanation for
the low current magnitude.



8.4 interpretation of altered josephson effect for n̂ = x̂ 105

Furthermore, the parallel wave-vector components of the propagating particles
can indeed experience a vanishing barrier. This effect explains the current plot
for n̂ = x̂ in section 7.2.1. The supported supercurrent increases when the paral-
lel component experiences a zero barrier effect. Simultaneously, the perpendic-
ular component will acquire an increased barrier due to greater effective poten-
tial. As a result, the removed barrier in y-and z-direction will contrast with the
increasing barrier in the x-direction. The calculated current substantiates the un-
derstanding that the increased barrier, for particles traveling in the x-direction,
defeats the removed barrier for transverse traveling particles. We can point out
the tendency in Figures 17 and 24 present with a small peak for low spin-orbit
magnitudes before the current reduces dramatically for large spin-orbit magni-
tudes.
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S U M M A RY A N D O U T L O O K

In this thesis, we have investigated the supercurrent across a Josephson junc-
tion comprised of two conventional s-wave superconductors (SC) separated by
a heavy metal with Rashba spin-orbit coupling (HM). The results show that the
supercurrent will respond to the strength of the spin-orbit coupling (λ) and ori-
entation (n̂). We have interpreted the underlying physics through a vanishing
barrier potential due to an interplay between the scattering- and spin-orbit po-
tential. The spin-orbit coupling gives rise to a momentum-dependent magnetic
field that will couple the spin of the particles to its momentum. Consequently,
a displacement of the energy bands and the Fermi surface of the heavy metal
will appear. The displaced energy bands will occur such that the electrons have
a rotating spin orientation along the two co-centered Fermi surfaces. A rotating
spin orientation supports normal Andreev reflection with zero center-of-mass
momentum. Thus, the generated Cooper pairs will have a singlet symmetry. We
have demonstrated this through a supercurrent without superimposed oscilla-
tions. It is neither current oscillations as a function of the spin-orbit coupling
strength nor as a function of the thickness to the heavy metal. This is in con-
trast to a ferromagnetic SC/F/SC junction where we can observe an oscillating
supercurrent magnitude. We have explained the differing behavior by the dis-
placed energy bands in the presence of a magnetic field compared to spin-orbit
coupling. The energy bands are displaced for spin-up and spin-down electrons
in a ferromagnetic material regardless of the electrons’ momentum. Therefore,
the generated Cooper pairs under a magnetic field will acquire center-of-mass
momentum and fluctuate between a singlet and triplet state.

Furthermore, the displaced Fermi surface in the presence of spin-orbit coupling
can remove the barrier effect between the superconductor and the heavy metal.
Consequently, the supercurrent can increase to a more significant value com-
pared to a case without spin-orbit coupling. The interplay between the normal
scattering and the spin-orbit scattering at the SC/HM interface is explained in
the following fashion: The scattering potential will make the normal-state Fermi
surfaces take different sizes across the SC/HM interface. However, the spin-orbit
coupling will displace the Fermi surface of the heavy metal into two co-centered
surfaces. Hence, the Fermi surface of the superconductor can coincide with one
of those of the heavy metal. The amount of coincidence depends on the relation
between the scattering potential and the spin-orbit potential. A perfect coinci-
dence will provide a vanishing barrier of the particles living on the surface. We
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have predicted how such a barrier cancellation can provide a supercurrent larger
than without spin-orbit coupling. This was done for different directions of n̂ in
combination with specific ratios of the scattering- and spin-orbit potential.

We have shown that all spin-orbit orientations can remove the barrier for parti-
cles with specific spin and momentum. However, we are investigating a super-
current that flows along the x-direction. Thus, the greatest impact of the super-
current will take place when the effective barrier vanishes for particles traveling
along the respective axis. The various spin-orbit orientations will therefore have
different effects on the supercurrent. In particular, an orientation parallel to the
interface will provide the most significant magnitude of the supercurrent, with
the largest enhancement when n̂ = ŷ+ẑ

2 . On the other hand, a spin-orbit ori-
entation perpendicular to the interface n̂ = x̂ will produce the smallest change
compared to an absent spin-orbit coupling. Additionally, we have demonstrated
that this cancellation effect will only be present within a specific scattering- and
spin-orbit potential ratio. As a result, a strong spin-orbit magnitude will even-
tually decrease the supercurrent due to a strong effective barrier potential.

The possibility to control the supercurrent by the spin-orbit orientation, in ad-
dition to the ability for the supercurrent to be made larger in the presence of
spin-orbit coupling, are in stark contrast with a ferromagnetic SC/F/SC junc-
tion. The supercurrent across an SC/F/SC junction is invariant of the magnetic
orientation, and the magnetization always suppresses the supercurrent com-
pared to the case without magnetization.

This research project was motivated by the possibility of controlling the super-
current without the need for an external magnetic field. We have confirmed the
action in a theoretical manner, using one spin-orbit layer incorporated between
two superconductors. We have mainly focused on exploring the theoretical pos-
sibility of controlling the supercurrent. An experimental investigation of the
spin-obit coupling enhancing Josephson effect would be attractive for further
applications. In addition, the interpretation of the underlying physics has, in
this thesis, focused on the spin-singlet Cooper pairs. Thus, there are yet to inves-
tigate whether the spin-triplet Cooper pairs arise in an SC/HM/SC Josephson
junction. In particular, an investigation of a Josephson junction where the two
superconducting elements are separated by two spin-orbit coupling materials
could be interesting.



A
A P P E N D I X

a.1 deriving the numerical sub-matrices hamiltonian

In section 5.1, we assumed an Hamiltonian given on a general from in Eq. (93).
We will now derive the complete expression necessary to describe an SC/H-
M/SC junction. The following will also consider the Hamiltonian of the mag-
netic field provided by a ferromagnet. This term is included to establish a nu-
merical framework where one could simulate a magnetic SC/F/SC junction for
comparison reasons.

a.1.1 The hopping t term

In the tight-binding model, we often start with a simple model consisting of
the electrons’ kinetic energy and potential relative to the lattice atoms. In first
quantization formalism, this has the following expression

Ĥt =
∑
i

p̂i
2

2m
+
∑
i

u(ri)

=
∑
i

[ p̂i2
2m

+ u(ri)
] (A.1.1)

where p̂i is the canonical momentum and ri is the position of electron i. Using
the basis in Eq. (91) we can rewrite Eq. (A.1.1) to the second quantization formal-
ism by recognize the two terms as single-particle operators [89]. The resulting
equation is

Ĥt =
∑
i,j,σ

〈i|
[ p̂i2
2m

+ u(ri)
]
|j〉 ĉ†i,σĉj,σ. (A.1.2)

Define the parameter

tij ≡
∫
φ∗(r−Ri)

[
−
∇2

2m
+ u(r)

]
φ(r−Rj)dr. (A.1.3)

Notice that this matrix element ti,j will appear in combination with a creation
operator, which creates an electron at lattice site i, and an annihilation operator
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that destroys an electron at lattice site j. Consequently, ti,j is called the hopping
amplitude and represents the probability of an electron to move from lattice site
j to lattice site i. The tight-binding approximation neglects the overlap of the
nucleons’ orbitals. However, there would still be a slight overlap of the orbitals
between the electrons and the neighboring atoms. As a result, it would be a
small probability of tunneling, or hopping, as we will refer to later. For sim-
plicity, we assume this hopping amplitude to be constant for all lattice sites, i.e.
ti,j = −t. Thus, Eq. (A.1.1) takes the form [90],

Ĥt =
∑
i,j,σ

ti,jĉ
†
i,σĉj,σ (A.1.4)

' −t
∑
〈i,j〉,σ

ĉ
†
i,σĉj,σ (A.1.5)

where we in the transition from Eq. (A.1.4) to Eq. (A.1.5) have introduced
∑
〈i,j〉

to indicate sum over nearest neighbours, i.e. only nonzero when i = j± 1 or
i = j, since we neglect hopping to next-nearest neighbours and further away. To
diagonalize the hopping term, we use the Fourier transform defined as Eq. (92)
such that Eq. (A.1.5) reads

Ĥt = −
t

NyNz

∑
σ

∑
〈ix,iy,iz,jx,jy,jz〉

∑
ky,kz

∑
k ′y,k ′z

[
ĉ
†
ix,ky,kz,σĉjx,k ′y,k ′z,σ

· e−i(kyŷ+kzẑ)·(ixx̂+iyŷ+izẑ)ei(k
′
yŷ+k

′
zẑ)·(jxx̂+jyŷ+jzẑ)

]
.

(A.1.6)

To simplify the previous equation, utilize that we are only considering nearest
neighbors. The summation is thus only nonzero when

jxx̂+ jyŷ+ jzẑ ∈
{
(ix ± δjx)x̂+ iyŷ+ izẑ,

ixx̂+ (iy ± δjy)ŷ+ izẑ,

ixx̂+ iyŷ+ (iz ± δjz)ẑ
} (A.1.7)

where δjmm̂ is a vector from the lattice site i to its nearest neighbour in m̂-
direction for m = {x,y, z}. Combining Eq. (A.1.7) and Eq. (A.1.6) gives

Ĥt = −
t

NyNz

∑
σ

∑
〈ix,iy,iz,jx,jy,jz〉

∑
ky,kz

∑
k ′y,k ′z

[
ĉ
†
ix,ky,kz,σĉix+δjx ,k ′y,k ′z,σ

· e−i
(
ky−k

′
y

)
iye−i

(
kz−k

′
z

)
izei(k

′
yŷ+k

′
zẑ)eδjx x̂+δjy ŷ+δjz ẑ

]
.

(A.1.8)

Take taking advantage of the identities [88]

1

Ny

∑
iy

e−i
(
ky−k

′
y

)
iy = δky,k ′y

1

Nz

∑
iyz

e−i
(
kz−k

′
z

)
iz = δkz,k ′z

(A.1.9)
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and write out Eq. (A.1.8) with respect to jx, jy and jz. The result yields

Ĥt = −t
∑

ix,ky,kz,σ

ĉ
†
ix,ky,kz,σĉix+δjx ,ky,kz,σe

i(kyŷ+kzẑ)eδjx x̂+δjy ŷ+δjz ẑ

= −t
∑

ix,ky,kz,σ

ĉ
†
ix,ky,kz,σĉix+1,ky,kz,σe

i(kyŷ+kzẑ)·(x̂) + ĉ†ix,ky,kz,σĉix−1,ky,kz,σe
i(kyŷ+kzẑ)·(−x̂)

+ ĉ†ix,ky,kz,σĉix,ky,kz,σe
i(kyŷ+kzẑ)·(ŷ) + ĉ†ix,ky,kz,σĉix,ky,kz,σe

i(kyŷ+kzẑ)·(−ŷ)

+ ĉ†ix,ky,kz,σĉix,ky,kz,σe
i(kyŷ+kzẑ)·(ẑ) + ĉ†ix,ky,kz,σĉix,ky,kz,σe

i(kyŷ+kzẑ)·(−ẑ)

= −t
∑

ix,ky,kz,σ

ĉ
†
ix,ky,kz,σĉix+1,ky,kz,σ + ĉ

†
ix,ky,kz,σĉix−1,ky,kz,σ

+ ĉ†ix,ky,kz,σĉix,ky,kz,σ

(
eiky + e−iky + eikz + e−ikz

)
= −t

∑
ix,jx,ky,kz,σ

ĉ
†
ix,ky,kz,σĉjx,ky,kz,σ

(
δix,jx+1 + δix,jx−1 + δix,jx

[
eiky + e−iky + eikz + e−ikz

])
= −t

∑
ix,jx,ky,kz,σ

ĉ
†
ix,ky,kz,σĉjx,ky,kz,σ

(
δix,jx+1 + δix,jx−1 + δix,jx2

[
cosky + coskz

])
=

∑
ix,jx,ky,kz

εix,jx,ky,kz,σĉ
†
ix,ky,kz,σĉjx,ky,kz,σ

(A.1.10)

where we in the last line introduced

εix,jx,ky,kz = −t
(
δix,jx+1 + δix,jx−1 + δix,jx2

[
cosky + coskz

])
. (A.1.11)

To diagonalize the Hamiltonian, we want to rewrite Eq. (A.1.10) into a form of

Ĥt =
1

2

∑
ix,jx,ky,kz

B
†
ix,ky,kzĤ

t
ix,jx,ky,kzBjx,ky,kz . (A.1.12)

The hopping Hamiltonian will thus provide the sub-matrix

Htix,jx,ky,kz = εix,jx,ky,kz τ̂3σ̂0. (A.1.13)

Expressing Eq. (A.1.13) in matrix notation reads

Htix,jx,ky,kz =


εix,jx,ky,kz 0 0 0

0 εix,jx,ky,kz 0 0

0 0 −εix,jx,ky,kz 0

0 0 0 −εix,jx,ky,kz

 .
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a.1.2 The Hubbard U term

To include the electron-electron interaction in a superconductor, we can do this
through the well-known Coulomb potential [91]. In first quantization formalism,
this is

ĤU =
1

2

∑
i,j 6=i

v(ri − rj) (A.1.14)

where ri, rj are the positions of electron i, j, respectively. Note how this is a two-
particle operator. In order to diagonalize the Hamiltonian, rewrite Eq. (A.1.14)
utilizing the basis defined in Eq. (91). We will then achieve a Hamiltonian within
the second quantization formalism given as

ĤU =
1

2

∑
i,j,k,l,σ,σ ′

〈i, j| v(r− r ′) |k, l〉 ĉ†i,σĉ
†
j,σĉl,σĉk,σ. (A.1.15)

To simplify the expression of ĤU, introduce

vi,j,k,l ≡
∫∫
φ∗(r−Ri)φ

∗(r−Rj)
[
v(r−Ri)

]
φ∗(r−Rk)φ

∗(r−Rl). (A.1.16)

By studying the on-site electron-electron interactions term, we observe that i =
j = k = l gives vi,j,k,l 6= 0, and vi,j,k,l = 0 otherwise [90]. Thus,

vi,i,i,i =

∫∫
φ∗(r−Ri)φ

∗(r−Ri)
[
v(r−Ri)

]
φ∗(r−Ri)φ

∗(r−Ri)

= 2U

(A.1.17)

where we have introduced the energy amount of U, representing Coulomb in-
teractions, for each pair of electrons occupying the same lattice site. This simpli-
fication results in

ĤU =
1

2

∑
i,j,k,l,α,β

vi,j,k,lĉ
†
i,αĉ
†
j,βĉl,βĉk,α

= U
∑
i

ĉ
†
i,↑ĉ
†
i,↓ĉi,↓ĉi,↑

(A.1.18)

The fermonic particle operator is defined as n̂i,σ = ĉ
†
i,σĉi,σ, and it follows that

Eq. (A.1.18) can be written as ĤU = U
∑
i n̂
†
i,↑n̂i,↓. We can now clearly point out

how this term respects the Pauli exclusion principle: the two on-site electrons
have to hold opposite spin. We can interpret this term as an energy cost, since
two electrons with opposite spins increases the energy of the system by U.

Notice that ĤU includes a quadratic dependence in the fermionic creation and
annihilation operators. Such a problem is challenging to solve, and does often
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fail in providing an exact solution. According to BCS-theory, a mean-field ap-
proximation is a good approach for a system with many particles involved [50].

Perform a mean-field approximation where

ĉi,↑ĉi,↓ = 〈ĉi,↑ĉi,↓〉+ δi
ĉ
†
i,↑ĉ
†
i,↓ = 〈ĉ

†
i,↑ĉ
†
i,↓〉− δ

†
i .

(A.1.19)

Assume δi and δ†i to be small, thus neglect terms of second-order and higher.
We will now introduce a new quantity defined as [87]

∆i = U〈ĉi,↑ĉi,↓〉. (A.1.20)

This property is the superconducting gap, also known as the ordering parame-
ter, for a conventional s-wave superconductor [50].

Combining Eq. (A.1.18), Eq. (A.1.19) and Eq. (A.1.20), we get a mean-field Hub-
bard Hamiltonian term given as

ĤU =
∑
i

[
∆iĉ

†
i,↑ĉ
†
i,↓ +∆

∗
i ĉi,↓ĉi,↑

]
+
∑
i

|∆i|
2

Ui
. (A.1.21)

Notice that the second term is the Hermitian conjugate of the first term.

Similar to the hopping term, perform the Fourier transform defined in Eq. (92).
Thus, the Hubbard Hamiltonian reads

ĤU =
1

NyNz

∑
ix,iy,iz,σ

∑
ky,kz

∑
k ′y,k ′z

[
∆ix ĉ

†
ix,ky,kz,σĉ

†
ix,k ′y,k ′z,σ

· e−i(kyiy+kziz)e−i(k
′
yiy+k

′
ziz) + h.c.

]
+NyNz

∑
ix

|∆ix |
2

Uix

=
1

NyNz

∑
ix,iy,iz,σ

∑
ky,kz

∑
k ′y,k ′z

[
∆ix ĉ

†
ix,ky,kz,σĉ

†
ix,k ′y,k ′z,σ

· e−i
(
ky+k

′
y

)
iye−i

(
kz+k

′
z

)
iz + h.c.

]
+NyNz

∑
ix

|∆ix |
2

Uix

(A.1.22)

where h.c is short for the Hermitian conjugate. Utilize the following identities
to simplify the previous expression,

1

Ny

∑
iy

e−i
(
ky+k

′
y

)
iy = δky,−k ′y

1

Nz

∑
iyz

e−i
(
kz+k

′
z

)
iz = δkz,−k ′z .

(A.1.23)
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Finally, the resulting expression for ĤU is

ĤU = Ĥ0 +
∑

ix,ky,kz

[
∆ix ĉ

†
ix,ky,kz,↑ĉ

†
ix,−ky,−kz,↓ +∆

∗
i ĉix,−ky,−kz,↓ĉix,ky,kz,↑

]
(A.1.24)

where we have defined the constant term Ĥ0 = NyNz
∑
ix

|∆ix |
2

Uix
. To rewrite Eq.

(A.1.24) on the form

ĤU = Ĥ0 +
1

2

∑
ix,jx,ky,kz

B
†
ix,ky,kzĤ

U
ix,jx,ky,kzBjx,ky,kz . (A.1.25)

we receive an expression of the sub-matrix as

ĤUix,jx,ky,kz = δix,jx

[
∆∗ixiτ̂

−σ̂y −∆ixiτ̂
+σ̂y

]
. (A.1.26)

Writing out the matrix notation gives

HUix,jx,ky,kz = δix,jx


0 0 0 ∆ix

0 0 −∆ix 0

0 −∆∗ix 0 0

∆∗ix 0 0 0


for ∆ix = U〈ĉi,↑ĉi,↓〉.

a.1.3 The chemical potential µ term

The chemical potential is, in thermodynamics, the energy which can be ab-
sorbed or released due to a change in the particle number. According to the
grand canonical ensemble, the equivalent Hamiltonian is [92]

Hµ = −µN (A.1.27)

where N is the total number of particles. Assume the chemical potential µ to be
constant for all lattice sites, and use that the particle number can be expressed in
terms of the fermionic creation and annihilation operators as n̂µ = ĉ

†
µĉµ. Thus,

the chemical potential in second quantization formalism is

Ĥµ = −µ
∑
i,σ

ĉ
†
i,σĉi,σ. (A.1.28)
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After a Fourier transform according to the definition in Eq. (92) we get

Ĥµ = −µ
∑

ix,iy,iz,σ

∑
ky,kz,k ′y,k ′z

ĉ
†
ix,ky,kz,σĉix,k ′y,k ′z,σe

−i(kyiy−k
′
yiy)e−i(kziz−k

′
ziz)

= −µ
∑

ix,ky,kz,σ

ĉ
†
ix,ky,kz,σĉix,ky,kz,σ

= −µ
∑

ix,ky,kz

[
ĉ
†
ix,ky,kz,↑ĉix,ky,kz,↑ + ĉ

†
ix,ky,kz,↓ĉix,ky,kz,↓

] (A.1.29)

where we have inserted the identities in Eq. (A.1.9). Next, rewrite Eq. (A.1.29)
into the form

Hµ =
1

2

∑
ix,jx,ky,kz

B
†
ix,ky,kzĤ

µ
ix,jx,ky,kzBjx,ky,kz (A.1.30)

and we get the sub-matrix

H
µ
ix,jx,ky,kz = −µδix,jx τ̂3σ̂0. (A.1.31)

In explicit matrix given in Eq. (A.1.31) is

H
µ
ix,jx,ky,kz = δix,jx


−µ 0 0 0

0 −µ 0 0

0 0 µ 0

0 0 0 µ

 .

a.1.4 The ferromagnetic h term

In a ferromagnet, the energetically favorable state is when the spins of the elec-
trons are oriented along the magnetic field. The local magnetic exchange field
will interact with the spins of the electrons and contribute to the Hamiltonian
as

Ĥh =
∑
i

hi ·Si. (A.1.32)

Here, hi is the local magnetic exchange field and Si is the spin operator at lattice
site i. Insert for the spin operator Si =

∑
α,β ĉ

†
i,ασα,βĉi,β where σα,β is the (α,β)

element of the vector of Pauli matrices σ, and the result yields

Ĥh =
∑
i

hi ·
∑
α,β

ĉ
†
i,ασα,βĉi,β

=
∑
i,α,β

(
hi ·σ

)
α,βĉ

†
i,αĉi,β.

(A.1.33)
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Fourier transform the previous expression for Ĥh according to the definition in
Eq. (92), and use the identities defined in Eq. (A.1.9). The Hamiltonian will then
reduces to

Ĥh =
∑

ix,ky,kz,α,β

(
hix ·σ

)
α,βĉ

†
ix,ky,kz,αĉix,ky,kz,β

=
∑

ix,ky,kz

[(
hix ·σ

)
↑,↑ĉ
†
ix,ky,kz,↑ĉix,ky,kz,↑

+
(
hix ·σ

)
↑,↓ĉ
†
ix,ky,kz,↑ĉix,ky,kz,↓

+
(
hix ·σ

)
↓,↑ĉ
†
ix,ky,kz,↓ĉix,ky,kz,↑

+
(
hix ·σ

)
↓,↓ĉ
†
ix,ky,kz,↓ĉix,ky,kz,↓

]
.

(A.1.34)

To diagonalize the Hamiltonian, make the expression satisfy

Hh =
1

2

∑
ix,jx,ky,kz

B
†
ix,ky,kzĤ

h
ix,jx,ky,kzBjx,ky,kz (A.1.35)

such that we get the sub-matrix

Hhix,jx,ky,kz = δix,jx

[
hxix τ̂3σ̂x + h

y
ix
τ̂0σ̂y + h

z
ix
τ̂3σ̂z

]
(A.1.36)

In matrix form this reads

Hhix,jx,ky,kz = δix,jx


hzix hxix − ih

y
ix

0 0

hxix + ih
y
ix

−hzix 0 0

0 0 −hzix −hxix − ih
y
ix

0 0 −hxix + ih
y
ix

hzix

 .

a.1.5 The Rashba λ term

By introducing a heavy metal to our junction, we give rise to the existence of
spin-orbit coupling. Since we assume a tight-binding model, the spin-orbit cou-
pling is of a type called Rashba discovered by Rashba and Sheka in 1959 [93]
[73].

The spin-orbit coupling is a relativistic effect that appears in the Dirac equation
by expanding and include terms up to the order of 1/c2 [94]. The field is due to
the relative motion of particles with a spin that travels across an electric field.
The particle will then feel an effective magnetic field that couples the particles’
spin to their momentum. As a result, the spin can align itself in a favorable
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direction to minimize energy. The name spin-orbit coupling is connected to the
ability to couple the electron’s spin to its orbital motion.

As discussed in section 3.1, an electron moving under an external electric field
E, has a relativistic spin-orbit coupling given, in first quantization formalism, as

Ĥ = −
e h

(2mc)2
σ · (E(r)×p). (A.1.37)

We can recognize the effective magnetic field by rewriting

e h

2mc
σ · (E(r)×p) = e h

4mc
σ ·B0. (A.1.38)

which has a similar form as the Zeeman energy.

We can derive the diagonal Hamiltonian in a similar fashion as done in Ref. [95].
Start by using that E = En̂ and collect all constant pre-factors into the parameter
λ. The spin-orbit field has both a magnitude and orientation, which we will treat
as uniform in the heavy metal. The Rashba spin-orbit coupling Hamiltonian in
first quantization formalism for a single band model is then given by [72]

Ĥλ =
(
n̂×σ

)
· λ(x)p̂ (A.1.39)

where n̂ =
[
cos(φn) sin(θn), sin(φn) sin(θn), cos(θn)

]
is the unit vector along the

spin-orbit field orientation which can be orientated in any direction in space,
λ is the Rashba spin-orbit coupling magnitude, p̂ =

(
p̂x, p̂y, p̂z

)
= −i h∇ is the

momentum operator, and σ is the vector of Pauli matrices. The magnitude of the
electric field is included in the spin-orbit magnitude λ ∝ |E|, and the orientation
is parallel to the unit vector n̂ [94].

We will only consider heavy metals where the spin-orbit coupling magnitude
is uniform. Furthermore, since the system is translation invariant in y- or z-
direction, λ will not depend on the respective directions. For x-direction, the
situation is not that simple. Since we want to add different materials in the
x-direction, we break down the translational invariance. The variance will be
significant at the intersection of the heavy metal and the superconductor. In
particular, when we are coupling two electrons appearing on different sides
of the HM/SC interface. Thus, let the magnitude quantity have x-dependence,
hence λ = λ(x).

To transform the first quantization expression to second quantization formalism,
we have to evaluate

Ĥλ =
∑
〈i,j〉,α,β

ĉ
†
i,α 〈i|

[(
n̂×σ

)
· λ(x)p̂

]
|j〉 ĉi,β ≡

∑
〈i,j〉,α,β

ĉ
†
i,α 〈i| ĥ |j〉 ĉi,β (A.1.40)
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where we have defined ĥ ≡
(
n̂×σ

)
· λ(x)p̂ as the first quantization formalism

in Eq. (A.1.39).

In order to solve the Hamiltonian in a self-consistent manner, we need the spin-
orbit coupling operator to be Hermitian. This is not the case since ĥ 6= ĥ†. We
can observe this explicitly by

ĥ† =
[(
n̂×σ

)
· λ(x)p̂

]†
= p̂†λ(x)† ·

(
n̂×σ

)†
=
(
n̂×σ

)
· p̂λ(x)

6=
(
n̂×σ

)
· λ(x)p̂ = ĥ

(A.1.41)

since p̂ and λ(x) do not commute. Note that this non-Hermitian operator is
nor symmetric. In order to make ĥ Hermitian and symmetric, we can use the
anti-commutator,

ĥ =
1

2

(
n̂×σ

)
·
{
λ(x), p̂

}
. (A.1.42)

This operator is Hermitian proven by

ĥ† =
[1
2

(
n̂×σ

)
·
{
λ(x), p̂

}]†
=
1

2

(
n̂×σ

)
·
{
p̂, λ(x)

}
=
1

2

(
n̂×σ

)
·
{
λ(x), p̂

}
= ĥ.

(A.1.43)

When evaluating the previous Hamiltonian, the anti-commutator is straight-
forward regarding y-, z-direction since λ(x) commutes with the respective mo-
mentum operators, i.e. {λ(x), p̂y} = 2λ(x)p̂y and {λ(x), p̂z} = 2λ(x)p̂z. The anti-
commutator of λ and p̂x has to be calculated more carefully,[

λ(x)p̂x + p̂xλ(x)
]
f(x) = λ(x)p̂xf(x) +

[
p̂xλ(x)

]
f(x) + λ(x)

[
p̂xf(x)

]
=
[
2λ(x)p̂x + p̂xλ(x)

]
f(x)

(A.1.44)

where we have used the chain rule since p̂x is a derivative operator with respect
to x. Using the anti-commutator relation in Eq. (A.1.44), we can write out the
operator in Eq. (A.1.42) as

ĥ =
1

2

(
n̂×σ

)
·
{
λ(x), p̂

}
=
(
n̂×σ

)
·
{
λ(x)p̂x +

1

2

[
p̂xλ(x)

]}
+ λ(x)

(
n̂×σ

)
· p̂y + λ(x)

(
n̂×σ

)
· p̂z.

(A.1.45)

Next, we need to evaluate the overlap integral from Eq. (A.1.40) which, after
making the operator Hermitian, is

〈i| ĥ |j〉 = 〈i|
(
n̂×σ

)
·
{
λ(x)p̂x +

1

2

[
p̂xλ(x)

]}
|j〉

+ 〈i| λ(x)
(
n̂×σ

)
· p̂y |j〉

+ 〈i| λ(x)
(
n̂×σ

)
· p̂z |j〉

(A.1.46)
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Start with the first term in Eq. (A.1.46),

〈i|
(
n̂×σ

)
·
{
λ(x)p̂x +

1

2

[
p̂xλ(x)

]}
|j〉

=
(
n̂×σ

)
· x̂
∫

drφ∗i (r)
{
λ(x)px +

1

2

[
pxλ(x)

]}
φj(r).

(A.1.47)

By partially integrating half of the first term, the second term cancels and we
recieve

〈i|
(
n̂×σ

)
·
{
λ(x)p̂x +

1
2

[
p̂xλ(x)

]}
|j〉 = 1

2

(
n̂×σ

)
· x̂
[
〈i| λ(x)px |j〉+ 〈j| λ(x)px |i〉∗

]
.

(A.1.48)

Insert Eq. (A.1.48) into Eq. (A.1.46) and calculate the overlap integral given as

〈i| ĥ |j〉 = 1

2

(
n̂×σ

)
· x̂
[
〈i| λ(x)px |j〉+ 〈j| λ(x)px |i〉∗

]
+
(
n̂×σ

)
· ŷ 〈i| λ(x)py |j〉

+
(
n̂×σ

)
· ẑ 〈i| λ(x)pz |j〉 .

(A.1.49)

Realize how all terms in the overlap integral have been reduced to depend on
integrals like∫

drφ∗i (r)λ(x)p̂mφj = −i

∫
drφ∗i (r)λ(x)∂mφj (A.1.50)

wherem = {x,y, z}. By writing out the derivative in discretize terms as ∂mφj(r) =
1
2

[
φj−m̂(r) −φj+m̂(r)

]
where φj±m̂(r) = φ(r−Rj ± m̂) and Rj is a vector to the

position of lattice site j, Eq. (A.1.50) takes the form∫
drφ∗i (r)λ(x)p̂mφj = −

i

2

∫
drφ∗i (r)λ(x)

[
φj−m̂(r) −φj+m̂(r)

]
. (A.1.51)

If we assume each φi to be highly localized, meaning the probability distribu-
tions to atoms at lattice site i has small overlap to the neighbouring atoms, we
can evaluate the integrals

∫
drφ∗i (r)φj(r) = δi,j.

The spin-orbit magnitude λ(x) is constant when both electrons are inside the
heavy metal. At the intersection, λ(x) will act like a step-function, meaning
λ(x) = 0 when both electrons are in another material. First, consider the case
of both electrons inside the heavy metal, i.e. both j+ m̂, j− m̂ and i inside the
heavy metal. For this specific case, we can use λ(x) = λ, i.e. constant in all
directions. Applying the discussed requirements to Eq. (A.1.51), we get∫

drφ∗i (r)λ(x)p̂mφj =
i

2
λ
(
δi,j+m̂ − δi,j−m̂

)
. (A.1.52)
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Use this result, and note that the last term in Eq. (A.1.48) gives[∫
drφ∗i (r)λ(x)p̂xφj

]∗
= i

∫
dr
[ ∂
∂x
φi(r)

]∗
λ(x)φj

= i

∫
dr
[
φ∗j−x̂(r) −φ

∗
j+x̂(r)

]∗
λ(x)φj

λ(x)=λ
=

i

2
λ
(
δi,j+x̂ − δi,j−x̂

)
.

(A.1.53)

Combining the result from Eq. (A.1.53) and Eq. (A.1.52) we arrive at

1

2

(
n̂×σ

)
· x̂
[
〈i| λ(x)px |j〉+ 〈j| λ(x)px |i〉∗

]
= 〈i| λ(x)p̂x |j〉 . (A.1.54)

Eq. (A.1.49) will thus equal

〈i| ĥ |j〉 = 1

2

(
n̂×σ

)
·
[
x̂
(
δi,j+x̂ − δi,j−x̂

)
+ ŷ
(
δi,j+ŷ − δi,j−ŷ

)
+ ẑ
(
δi,j+ẑ − δi,j−ẑ

)]
.

(A.1.55)

To the substitution

di,j = x̂
(
δi,j+x̂ − δi,j−x̂

)
+ ŷ
(
δi,j+ŷ − δi,j−ŷ

)
+ ẑ
(
δi,j+ẑ − δi,j−ẑ

)
(A.1.56)

which represent the vector from lattice site i to site j. Through a circular shift(
n̂×σ

)
·di,j = n̂ ·

(
σ×di,j

)
, we can simplify the overlap integral in Eq. (A.1.55)

as

〈i| ĥ |j〉 = −
i

2
λn̂ ·

(
σ×di,j

)
. (A.1.57)

In short, if both lattice site i and j are inside the heavy metal, and neither is the
lattice site closest to the interface, the Hamiltonian for the respective system is

Ĥλ = −
i

2

∑
〈i,j〉,α,β

λĉ
†
i,αn̂ ·

(
σ×di,j

)
α,βĉi,β. (A.1.58)

Preform the Fourier transform defined in Eq. (92) due to translation invariance
in y- and z-direction. By utilizing the identities provided in Eq. (A.1.9) the result
is

Ĥλ =
∑

ix,jx,ky,kx,α,β

λn̂·
[ i
2
(σzŷ− σyẑ)α,β(δix,jx+1 − δix,jx−1)

+ (σxẑ− σzx̂)α,β(sin(ky)δix,jx)

+ (σyx̂− σxŷ)α,β sin(kz)δix,jx)
]
ĉ
†
ix,ky,kz,αĉjx,ky,kz,β.

(A.1.59)
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Rewrite Eq. (A.1.59) as

Ĥλ =
1

2

∑
ix,jx,ky,kz

B
†
ix,ky,kzH

λ
ix,jx,ky,kzBjx,ky,kz (A.1.60)

which gives the sub-matrix

Ĥλix,jx,ky,kz =−
[

sin(ky) cos(φ) sin(θ)τ̂0σ̂z

− (sin(ky) cos(θ) − sin(kz) sin(φ) sin(θ))τ̂0σ̂x

− sin(kz) cos(φ) sin(θ)τ̂3σ̂y
]
λixδix,jx

+
[ i
2

sin(φ) sin(θ)τ̂0σ̂z −
i

2
cos(θ)τ̂3σ̂y

]
λixδix,jx+1

−
[ i
2

sin(φ) sin(θ)τ̂0σ̂z −
i

2
cos(θ)τ̂3σ̂y

]
λixδix,jx−1.

(A.1.61)

This is the sub-matrix for coupling between two particles inside the heavy metal,
where neither site i or j is the lattice site closest to the HM/SC interface.

Second, derive the corresponding sub-matrix assuming lattice sites j and i are
on opposite sides of the interface, i.e. one inside the heavy metal and the other
one in another material. For this situation, first term in Eq. (A.1.49) cannot be
evaluated as we did in Eq. (A.1.53). Therefore, calculate the overlap integral in a
different manner. Begin by using discretize terms according to Eq. (A.1.51), and
obtain

1

2

[
〈i| λ(x)px |j〉+ 〈j| λ(x)px |i〉∗

]
= −

i

4

[ ∫
drφ∗i (r)λ(x)φj+x̂(r)

−

∫
drφ∗i (r)λ(x)φj−x̂(r)

−

(∫
drφ∗j (r)λ(x)φi+x̂(r)

)∗

+

(∫
drφ∗j (r)λ(x)φi−x̂(r)

)∗]
(A.1.62)

Notice how the two first terms in Eq. (A.1.62) represent the overlap at lattice site
i, and similar the two last terms are considering the overlap at lattice site j.

There are two different scenarios. Firstly, when j is inside the heavy metal, and
site i is not. For this situation, the overlap at site i gives λ(x) = 0, and the two
first terms vanish. On the other hand, the overlap at lattice site j, which is inside
the heavy metal, provides λ(x) = λ. For the opposite scenario, when lattice
site i is inside the heavy metal and site j is in another material, the two first
terms of Eq. (A.1.62) will contribute with λ(x) = λ, and the two last terms will
vanish as λ(x) = 0. Therefore, the two first terms are equal to the two last terms
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comparing the two scenarios. If lattice site i or j is inside the heavy metal, which
we showed in Eq. (A.1.53) and Eq. (A.1.52), we get exactly half contribution for
the intersection case. The overlap integral is then

〈i| ĥ |j〉 = i

2
λ
(
n̂×σ

)
·
[1
2
x̂
[(
δi,j+x̂ − δi,j−x̂

)
+ ŷ
(
δi,j+ŷ − δi,j−ŷ

)
+ ẑ
(
δi,j+ẑ − δi,j−ẑ

)]
= −

i

2
λ
(
n̂×σ

)
·
[1
2

(
di,j
)
⊥ +

(
di,j
)
‖

]
= −

i

2
λn̂ ·

[
σ× 1

2

(
di,j
)
⊥ +σ×

(
di,j
)
‖

]
(A.1.63)

where we have used the identity defined in Eq. (A.1.56) to simplify the expres-
sion, and decomposed di,j into a part perpendicular to the interface ((di,j)⊥),
and one parallel ((di,j)‖). Inserting the overlap integral from Eq. (A.1.63) into
Eq. (A.1.40) we get

Ĥλ = −
i

2

∑
〈i,j〉,α,β

λĉ
†
i,αn̂ ·

[
σ× 1

2

(
di,j
)
⊥ +σ×

(
di,j
)
‖

]
ĉi,β. (A.1.64)

If we compare the expression for Ĥλ when lattice sites i and j are inside the
heavy metal and the situation when they are on opposite side of the interface,
i.e. Eq. (A.1.58) and Eq. (A.1.64), we realize that the only difference is a factor
1
2 in front of (di,j)x. Therefore, generalize the expression in Eq. (A.1.61) and the
final result for the sub-matrix Hamiltonian yields

Hλix,jx,ky,kz =−
[

sin(ky) cos(φ) sin(θ)τ̂0σ̂z

− (sin(ky) cos(θ) − sin(kz) sin(φ) sin(θ))τ̂0σ̂x

− sin(kz) cos(φ) sin(θ)τ̂3σ̂y
]
λixδix,jx

+
[ i
4

sin(φ) sin(θ)τ̂0σ̂z −
i

4
cos(θ)τ̂3σ̂y

]
λix
(
1+ ξ

)
δix,jx+1

−
[ i
4

sin(φ) sin(θ)τ̂0σ̂z −
i

4
cos(θ)τ̂3σ̂y

]
λix
(
1+ ξ

)
δix,jx−1

(A.1.65)

where

ξ =

0 if i, j are on opposite side of the interface

1 if i, j are both in heavy metal
(A.1.66)

We would obtain the same result through an alternative procedure by Fourier
transforming Eq. (A.1.64) and combining it with Eq. (A.1.61).

Define the vector

Λix =
[
λix cos(φ) sin(θ) λix sin(φ) sin(θ) λix cos(θ)

]
= Λxix x̂+Λ

y
ix
ŷ+Λzix ẑ

(A.1.67)
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just to simplify the expression. Finally, the arriving Hamiltonian is given as

Hλix,jx,ky,kz =−
[

sin(ky)Λxix τ̂0σ̂z − (sin(ky)Λzix − sin(kz)Λ
y
ix
)τ̂0σ̂x − sin(kz)Λxix τ̂3σ̂y

]
δix,jx

+
[ i
4
Λ
y
ix
τ̂0σ̂z −

i

4
Λzix τ̂3σ̂y

](
1+ ξ

)
δix,jx+1

−
[ i
4
Λ
y
ix
τ̂0σ̂z −

i

4
Λzix τ̂3σ̂y

](
1+ ξ

)
δix,jx−1.

(A.1.68)

Written in matrix form, Eq. (A.1.68) reads

Hλix,jx,ky,kz = δix,jx

[
A2x2 02x2

02x2 A∗2x2

]
+ δix,jx±1(1+ ξ)

[
B2x2 02x2

02x2 −B∗2x2

]

where we have introduced the 2x2-matrices A2x2 and Bm2x2 to simply shorten the
equation,

A2x2 =

[
−Λx sin(ky) Λz sin(ky) −

(
Λy + iΛx

)
sin(kz)

Λz sin(ky) −
(
Λy − iΛx

)
sin(kz) Λx sin(ky)

]
, B2x2 =

1

4

[
±iΛy ∓Λz

±Λz ∓iΛy

]
.

(A.1.69)
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a.2 correlation functions of spin-triplet symmetry

The condensate of conventional s-wave superconductors consists of bound elec-
tron pairs with opposite spin and momentum. These states are called Cooper
pairs and have singlet symmetry. In section 2.1, we demonstrated that the bound
states are formed regardless of the strength of the interaction as long as it is at-
tractive[53]. However, the Pauli exclusion principle permits other types of pair-
ing as well. These types of pairing could be beneficial to produce under mag-
netic fields; since fermions tend to align their spin along an external magnetic
field. As a result, the field is detrimental to the existence of spin-singlet Cooper
pairs.

We can indeed observe an anti-symmetric property of the superconducting gap
∆i = UF

↑↓
ii . The pairing function corresponding to an exchange of the spins,

F
↑↓
ii = 〈ĉi,↑ĉi,↓〉 = −〈ĉi,↓ĉi,↑〉 = −F↓↑ii . (A.2.1)

This correlation of two electrons is a spin-singlet state. This symmetry is es-
tablished because it creates a favorable energetic state of the two interacting
electrons with opposite spin and momentum. An experimental observation at
the beginning of 1970 investigated the phases of the superfluid 3He at very low
temperatures. The result opened up the idea for the order parameter, ∆, to de-
pend on the momentum [88]. To describe a momentum-dependent bound state,
we have to allow for pairing between fermions with equal spin, in addition to
a pairing of fermions with opposite spin. Consequently, there can exist Cooper
pairs with both singlet- and triplet symmetry.

Furthermore, we can interpret the enabling of Cooper pairs of triplet symmetry
by studying the crystal symmetry. Begin with the spin-singlet states. By assum-
ing an isotropic system, it follows that ∆ is independent of the wave number
k due to the spherical symmetry inside the crystal. The corresponding corre-
lation as an s-wave pairing [50], and has spin-singlet symmetry. In addition,
the spin-state is anti-symmetric under spin exchanges. The conventional BCS-
theory is based on materials of this s-wave type. A question that arises is if it
exists other forms of pairing, hereby the spin-triplet symmetry. Conventional
superconductor has an order parameter that is independent of the momentum,
i.e. ∆ky,kz = ∆. However, if we happen to have anisotropic materials, we would
expect an associated anisotropic order parameter ∆ky,kz 6= ∆ since it depends
on the wave number k, which reflects the underlying symmetry of the crystal.
An example of such system is a tetragonal crystal where the length of the three
primitive lattice vector is nonequal, i.e. |a| = |b| 6= |c|. Consequently, we expect
the gap related to the momentum along c to be different than for the gap related
to the momentum along a and b. Although the conventional s-wave pairing is
the basis for superconductivity, it is important to note how BCS-theory only
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requires an attractive interaction. Therefore, there might be different paring in-
teractions responsible for the superconductivity in some superconductors.

With this in mind, correlation functions can have both spin-singlet symmetry(S)
and spin-triplet symmetry(T). The four different pairing functions is defined as

Singlet state:
{
F
↑↓(S)
ii =

F
↑↓
ii −F

↓↑
ii

2 =
〈ĉi,↑ĉi,↓〉−〈ĉi,↓ĉi,↑〉

2

Triplet state:


F
↑↑(T)
ij = 〈ĉi,↑ĉj,↑〉

F
↓↓(T)
ij = 〈ĉi,↓ĉj,↓〉

F
↑↓(T)
ij =

F
↑↓
ij +F

↓↑
ij

2 =
〈ĉi,↑ĉj,↓〉+〈ĉi,↓ĉj,↑〉

2 .

(A.2.2)

The spin-singlet symmetry is symmetric under coordinate exchange, while spin-
triplet symmetry is anti-symmetric. The singlet state is trivial under the respec-
tive exchange since the definition in Eq. (A.2.2) considers equal lattice point for
the two fermionic operators. On the other hand, the spin-triplet states have an
unequal index of the lattice sites. This is due to the commutation relation of
the fermionic operator, which forces the spin-triplet pairing of two electrons at
equal lattice site to vanish. We can demonstrate this anti-symmetric symmetry
of the spin-triplet states with respect to a coordinate exchange as

F
↑↑(T)
ij = 〈ĉi,↑ĉj,↑〉 = −〈ĉj,↑ĉi,↑〉 = −F

↑↑(T)
ji

F
↓↓(T)
ij = 〈ĉi,↓ĉj,↓〉 = −〈ĉj,↓ĉi,↓〉 = −F

↓↓(T)
ji

F
↑↓(T)
ij =

F
↑↓
ij + F

↓↑
ij

2
=
〈ĉi,↑ĉj,↓〉+ 〈ĉi,↓ĉj,↑〉

2
= −
〈ĉj,↓ĉi,↑〉+ 〈ĉj,↑ĉi,↓〉

2
= −F

↑↓(T)
ji .

(A.2.3)

Regarding the spin-exchange, the spin-singlet state is anti-symmetric, while the
spin-triplet is symmetry. We can demonstrate this symmetries as

F
↑↓(S)
ii =

F
↑↓
ii − F

↓↑
ii

2
=
〈ĉi,↑ĉi,↓〉− 〈ĉi,↓ĉi,↑〉

2
= −
〈ĉi,↓ĉi,↑〉− 〈ĉi,↑ĉi,↓〉

2
= −F

↓↑(S)
ii

F
↑↓(T)
ij =

F
↑↓
ij + F

↓↑
ij

2
=
〈ĉi,↑ĉj,↓〉+ 〈ĉi,↓ĉj,↑〉

2
=
〈ĉi,↓ĉi,↑〉+ 〈ĉi,↑ĉi,↓〉

2
= F

↓↑(T)
ij .

(A.2.4)

We have now pointed out the symmetries of the singlet- and triplet states. Next
is to investigate whether our system allows for the different pairing to arise.
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Taking a closer look at the Hamiltonian of our system, notice how Ĥλ and ĤF
enable for correlation functions with spin-triplet symmetry.

Begin with a brief exploration of spin-triplets states due to ferromagnetism. As
discussed in section 4.3, the energy bands in a ferromagnetic material will dis-
place themselves according to spin-up and spin-down particles. The established
Cooper pairs will therefore acquire a finite momentum. As a consequence,
the correlation function will oscillate in space. Thus, the conventional singlets
(|↑↓〉− |↓↑〉) will generate spin-0 triplets (|↑↓〉+ |↓↑〉) through a spin-mixing pro-
cess [77]. However, the spin of the electrons tends to align themselves with the
direction of an external magnetic field. In other words, a magnetic field has a
pair-breaking effect on the alternating spin states. The correlation function will
therefore decay rapidly into the magnet, even more rapidly than in a disordered
SC/NC bilayer [14]. The generated spin-0 triplet states are thus referred to as
short-ranged triplet states.

Suppose the spins were aligned parallel to the exchange field (|↑↑〉, |↓↓〉), the
Cooper pairs would then not scattered off due to the magnetic interaction.
Hence, the equal-projected spin states are called long-ranged triplets and would
be valuable to transfer superconducting correlations over a larger distance. How-
ever, we can convince ourselves that the alternating spin-projection of the spin-0
triplet state (|↑↓〉− |↓↑〉) can be rewritten into equal spin-projection (|↑↑〉+ |↓↓〉)
by rotating the frame. We can show this conceptually. First, assume the spin-0
triplet state to be quantized along the z-axis. Now, perform a quantum mechan-
ical rotation to quantize the spin along the y-axis.

R(z→ y)1R(z→ y)2

(
|↑1↓2〉+ |↓1↑2〉

)
z

=
1√
2

(
1 i

i 1

)
1

1√
2

(
1 i

i 1

)
2

([
1

0

]
1

[
0

1

]
2

+

[
0

1

]
1

[
1

0

]
2

)

= i

(
1√
2

[
1

i

]
1

1√
2

[
i

1

]
2

+
1√
2

[
i

1

]
1

1√
2

[
1

i

]
2

)
= i
(
|↑1↑2〉+ |↓1↓2〉

)
y
.

(A.2.5)

As a result fo this, we can obtain the equal-spin triplets from a homogeneous
magnetic field where the magnetization field goes from y → z at the SC/F
interface [13][16][17].

If we replace the ferromagnet with a spin-orbit material, previous research are
suggesting for spin-triplet states to nevertheless occur [19]. This is due to the
spin-orbit interaction to couple the spin of the electron to its momentum. More-
over, Rashba spin-orbit coupling can be the source of Cooper pairs with spin-
triplet symmetry because it provides a spin-dependent potential[19][21][22][23].
By considering the spin-orbit Hamiltonian, Ĥλ, we can point out this singlet to
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triplet pairing by combining Eq. (A.1.64) and Eq. (A.1.58). We will then achieve
a spin-orbit Hamiltonian term as

Ĥλ = −
i

4

∑
〈i,j〉,α,β

λĉ
†
i,αn̂ ·

[
(1+ ξ)σ×

(
di,j
)
⊥ + 2σ×

(
di,j
)
‖

]
ĉi,β (A.2.6)

where ξ are defined in Eq. (A.1.66), and n̂, σ and δ have components in all the
direction in space, {x̂, ŷ, ẑ}. The quantity di,j is a vector from lattice site i to site
j which ensures nearest neighbour interaction, as defined in Eq. (A.1.56).

Since the sum runs over α and β, which represent the spin orientation, there are
four different combinations of creation-annihilation rising,

Ĥλ ∝ {ĉ
†
↑ĉ↓, ĉ

†
↓ĉ↑, ĉ

†
↑ĉ↑, ĉ

†
↓ĉ↓}. (A.2.7)

The two last terms are just the number operator, ĉ†σĉσ = n̂σ. The two first terms
have another interpretation. Note how the spin of the creation and annihilation
operator is opposite. As a result, the two terms attempt to flip the spin. In
other words, the spin-orbit term attempt effectively to flip the spin of one of the
electrons in a Cooper pair. These new Cooper pairs with equal spin orientation
have triplet symmetry. We can thus obtain spin-triplet correlation due to spin-
orbit coupling.

a.2.1 Numerical expression of correlation functions of any spin orientation

We can calculate the correlation function related to Cooper pairs of spin-triplet
symmetry. Therefore, define correlations functions with all combinations of spin
directions, Fαβix,jx where {α,β} can take all spin combinations of {↑, ↓}. Following

the same procedure as done for F↑↓ix,ix the final expression yields

F
αβ
i,j =

1

LyLz

∑
k>0,n

(
v∗ix,k,n,αujx,k,n,βf

(
E0,n

)
eikδ + uix,k,n,αv

∗
jx,k,n,β(1− f

(
Ek,n

)
)e−ikδ

)
+

1

LyLz

∑
0,n<2Nx

(
v∗ix,0,n,αujx,0,n,βf

(
E0,n

)
+ uix,0,n,αv

∗
jx,0,n,β(1− f

(
E0,n

)
)
)

.

(A.2.8)



B I B L I O G R A P H Y
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