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Abstract

In this thesis the reflectance of 2D randomly rough surfaces illuminated by dif-
fuse light, along with the scattering and polametric properties of Gaussian-cosine
correlated surfaces, is studied through results obtained from rigorous numerical sim-
ulations. The simulations were based on a non-perturbational direct solution of the
two-dimensional reduced Rayleigh equation for reflection.

The reflectivity and reflectance for both the directional and diffuse illumina-
tion of Gaussian correlated glass surfaces is presented and compared to previously
obtained results for 1D surfaces. The reflectance for s-polarized, p-polarized and un-
polarized diffuse illumination is found to either increase or decrease, depending on
the nature of the surface roughness. Several differences are found in the behavior of
the reflectance between 1D and 2D surfaces, depending on the characteristic length
of the irregularities, when the roughness is systematically increased.

The full angular distribution of the mean differential reflection coefficient and
the Mueller matrix for light scattering from both isotropic and anisotropic Gaussian-
cosine correlated silver surfaces is presented and discussed in detail. These quantities
describe the scattering and polarizing behavior of the randomly rough surfaces. The
results are contrasted with the same quantities obtained for Gaussian correlated
surfaces, which represent the classically studied example of a rough surface. It is
observed that the Gaussian-cosine correlated surfaces have interesting scattering
properties, such as an enhancement of p-polarized scattered light, a near specular
suppression and a high reflectance. Some of the properties are shown to depend
strongly on the characteristic size of the irregularities and the presence of surface
plasmon polaritons. These findings could be of interest in various industries, such
as the solar cell industry, where these properties are sought after.
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1 Introduction

The light scattering properties of surfaces acting as interfaces between two media with
different refractive indices, are frequently introduced through studying the Fresnel equa-
tions. These equations assume that the incident light can be described by plane-waves
coming in from a single direction, and that the surface is perfectly flat. However, in na-
ture these assumptions are not always valid. All surfaces display roughness at some length
scale, and light interacting with surfaces is often coming from multiple sources and di-
rections. Often these two assumptions yield good approximations, nonetheless, for very
rough surfaces and strongly diffuse light they do not. Therefore, it is important that we
have a good understanding of the interactions between diffuse light and the rough surfaces
which surround our world.

It should be noted that what constitutes a rough or smooth surface is not strictly
defined, since it is relative to the length scale it is observed at. Therefore, roughness is
not an intrinsic property of a surface, it is instead characterized by the wavelength of the
light interacting with it. If the rough features of a surface are on a scale much smaller
than the wavelength of the incident light, then the surface can be considered smooth or
approximately flat. If the roughness is on a scale much larger than the wavelength then the
surface could still be considered smooth locally on the scale of the wavelength. However,
if the characteristic roughness is on the same scale as the wavelength, the surface is
considered to be rough. When the surface is smooth with respect to the wavelength of the
incident light, the light is scattered coherently in the specular direction, i.e., mirror-like
reflection. When the degree of surface roughness is increased, then a progressively larger
fraction of the light will scatter into different non-specular directions. This scattering, is
called diffuse scattering or incoherent scattering. When the surface is strongly rough then
the coherent component can even be negligible compared to the incoherent one. Since the
coherent component of the scattered light is trivially understood, it is the incoherent one
which has gained the most attention in modern scientific literature [2][3][4][5].

Since roughness is predominantly the result of a random process, it is difficult to
approach the problem in a analytical manner. Therefore, many researchers have turned
to numerical tools and methods to study the light scattering properties of randomly
rough surfaces. In this work two dimensional simulations based on solving the reduced
Rayleigh equation (RRE) numerically were used to calculate the angular distribution of
the scattered electric field. The numerical implementation of this approach is the same as
the one presented in Ref. [6]. Various quantities of interest can be obtained from results,
such as the mean differential reflection coefficient, the Mueller matrix, the reflectivity and
the reflectance of the surface. The aim of this work is to study two special cases of light
scattering from randomly rough surfaces.

In most research on this topic, the surface is illuminated by directional light. However,
there are many cases where the light incident on a surface is diffuse, i.e., it comes from
many directions with different phases. This problem has only been addressed for one
dimensional surfaces [7], where several interesting trends manifest when the irregularities
of the surface are systematically increased. The authors of Ref. [7] expect the 1D results
to hold in the 2D case as well. Furthermore, they emphasize the importance of performing
the calculations for two-dimensional surfaces, since such surfaces are more abundant in
nature; in addition, there are many practical situations where the reflectance of a diffusely
illuminated two-dimensional surface is of interest. In this work numerical results of the
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reflectance for 2D surfaces illuminated by diffuse light will be presented, discussed and
contrasted with what was found in the 1D case.

Randomly rough surfaces can be characterized by an auto-correlation function, which
describes the degree of correlation between two points on the surface. Most rough sur-
faces profiles studied in literature are described by a Gaussian correlation function, since
they are easier to perform calculations with and real surfaces have been experimentally
shown to posses similar correlation. In this work the light scattering properties of surfaces
characterized by a Gaussian-cosine correlation function [8], will be studied and compared
to results for Gaussian-correlated surfaces. This correlation function is expected to yield
interesting scattering results, since it is negative in certain intervals, i.e., points on the
surface can be anti-correlated. In addition, certain polished optical surfaces have been
shown to posses correlation which to some degree can be described by a Gaussian-cosine
function [9].

The results shown in this work are relevant for various fields of science and engineering.
The reflectance of diffusely illuminated rough surfaces is of interest in the paint and
coating industry, where the reflectance is often calculated without taking the surface
texture into account and has to be correcter later [10]. Another example is in medical
imaging, where diffuse light reflected by tissue is incident onto a rough skin interface. The
rapid developments in nano-technology over the past few decades has made it possible
to design surfaces with a certain roughness in mind, for specific application where it is
desired to take advantage of the light scattering properties. Designed rough surfaces have
been studied in the solar cell industry, where it has been shown several times that a rough
interfaces can increase the efficiency in thin photo voltaic cells [11]. In order to optimize
these surfaces for potential applications, it is important to have a good fundamental
understanding of how light interacts with them.

The next section, Sec. 2, introduces the theoretical framework required to describe
the scattering of electromagnetic waves from randomly rough surfaces. This includes a
statistical description of randomly rough surfaces, the origin of the reduced Rayleigh
equation for reflection and the quantities one can obtain by solving it. In the following
section, Sec. 3, the numerical approach to solving the RRE is explained along with the
methods used to obtain quantifies of interest from the resulting reflection amplitudes.
Then, the results are discussed and presented in Sec. 4. First, the results for Gaussian-
correlated surfaces are presented; followed by, isotropic and anisotropic Gaussian-cosine
correlated surfaces.
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2 Theory

In this section the theoretical framework needed for evaluating scattering of electromag-
netic waves, i.e. light, from randomly rough surfaces is introduced, along with the quan-
tities we wish to study in this work.

First, we introduce the plane wave solution to Maxwell’s equation. Then, the geometry
of the physical system we consider is established, followed by the statistical description of
a randomly rough surface. Next, the electric field in the vicinity of the surface is presented,
along with the Rayleigh hypothesis and the boundary conditions the field has to satisfy
when assuming the hypothesis is correct. Following, the reduced Rayleigh equation is
introduced along with the mean differential reflection coefficient and the Mueller matrix
elements. Afterwards, the expressions for the reflectivity and reflectance, for both incident
plane waves and diffuse illumination are given. Finally, the conservation of the incident
energy in the scattering process is discussed.

2.1 Electromagnetic waves

The Maxwell’s equations have wave solutions and such solutions are thus called electro-
magnetic waves [12]. In a non-magnetic (µ = 1), source free (J = 0, ρ = 0), homogeneous,
isotropic and dispersive medium the wave equation can be obtained in the following way.
First, we take the curl of Faraday’s law and substitute the curl of the magnetic field with
Ampère’s law, resulting in

∇×∇×E(x, t) = −µ0
∂2D(x, t)

∂t2
, (1)

where µ0 is the vacuum permeability. We assume that wave solutions for the field have a
harmonic time dependence of exp(−iωt) with the angular frequency ω = 2πc/λ, where
λ is the corresponding wavelength in vacuum and c is the speed of light in vacuum. By
taking the Fourier transform with respect to time on both sides and using the constitutive
relation D(x|ω) = ε0ε(ω)E(x|ω), we obtain

∇×∇×E(x|ω) = µ0ε0ω
2ε(ω)E(x|ω), (2)

where ε(ω) is the dielectric function of the medium the wave is propagating through and
ε0 is the vacuum permittivity. Applying the vector identity ∇×∇×E = ∇(∇ ·E)−∇2E
and Gauss’s law ∇ ·D = ε0ε(ω)∇ ·E = 0, results in the Helmholtz wave equation for the
electric field [13, p. 296]: [

∇2 + ε(ω)
ω2

c2

]
E(x|ω) = 0, (3)

where c = 1/
√
µ0ε0 was used. The Helmholtz equation has the following plane wave

solution
E(x|ω) = E0 exp(ik · x), (4)

if and only if the dispersion relation given by

|k|2 = ε(ω)
(ω
c

)2
, (5)

and k ·E0 = 0 is satisfied. Here the vector k = kk̂ is the wave vector, k̂ is the direction of
propagation for the plane wave of the electric field. From here onwards, a caret ”ˆ” above
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a vector denotes that it is a unit vector. Both the amplitude and direction of the field is
described by the vector E0. The polarization of the electromagnetic wave is defined as
the direction of the field. The full time dependent field is then given by

E(x, t) = E(x|ω) exp(−iωt). (6)

When considering electromagnetic waves scattering from a surface, located in e.g. the
x1x2-plane, it is convenient to separate wave vectors into two components, one parallel
(k‖) and one perpendicular (k⊥) to the surface. The wave vector can then be written as

k = k‖ + k⊥. (7)

With Eqs. (5) and (7) we can express the perpendicular component as a function of the
parallel component, i.e.

k⊥ = ±αi(k‖|ω)x̂3, (8)

where

αi(k‖|ω) =

√
εi(ω)

(ω
c

)2
− k2‖, i = 1, 2 . (9)

Here i denoted the medium in which the wave is traveling, which is either above (i = 1)
or below (i = 2) the surface. We can now rewrite the wave vector as

k = k‖ ± αi(k‖|ω)x̂3, (10)

where + and − signify if the wave is propagating in the positive or negative x̂3 direction,
respectively. Note that as long as αi(k‖|ω) given by Eq. (9) is real and k · E0 = 0, the
dispersion relation (5) is satisfied and Eq. (4) describes a propagating plane wave. On
the other hand, if αi(k‖|ω) becomes purely imaginary, then Eq. (4) will be exponentially
decaying in the x3 direction and describing an evanescent wave [14, pp. 419–420].

2.2 Electromagnetic surface waves

Another solution of the wave equation for the electric field are so-called surface plasmon
polaritons (SPPs). Shortly described, SPPs are electromagnetic wave modes confined to a
surface separating a dielectric medium from a metal. SPPs can be excited by light incident
onto such a surface, for futher details see [3, pp. 18–20]. The dispersion relation of SPPs
reads [3, p. 19]

kspp(ω) = |kspp(ω)| =

√
ε1(ω)ε2(ω)

ε1(ω) + ε2(ω)

ω

c
, (11)

where kspp(ω) is the length of the parallel wave vector component of a SPP modes, ε1(ω)
and ε2(ω) are the dielectric functions of the media the light is incident from and onto,
respectively. The excitation of surface plasmon polarities requires ε1(ω) and ε2(ω) to have
opposite signs so that kspp >

√
ε1ω/c.

SPPs play an important role in the scattering of electromagnetic waves from randomly
rough surfaces; for weakly rough surfaces their excitation is the reason behind various
multiple scattering phenomena.
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2.3 Scattering geometry

The scattering geometry we consider in this work is presented in Fig. 1, where two wave
vectors k, q are showing the direction of light incident on and scattered by a randomly
rough surface.

The randomly rough surface is described by a surface profile function x3 = ζ(x‖),
which is a single-valued function of x‖ = (x1, x2, 0), that acts as the interface between two
different media. We assume that the media in the two regions x3 > ζ(x‖) and x3 < ζ(x‖)
are non-magnetic dielectrics or metals described by their individual dielectric functions
ε1(ω) and ε2(ω), respectively.

The wave vector of the plane wave of light incident on the surface from the region
x3 > ζ(x‖) is denoted by k. The component of k parallel to the x1x2-plane is defined by

k‖ =
√
ε1
ω

c
sin θ0 (cosφ0, sinφ0, 0) , (12)

where (θ0, φ0) are the polar and azimuthal angles of incidence, respectively. The plane
spanned by k‖ and x̂3 is called the plane of incidence, if the electric field is parallel to
this plane the light is said to be p-polarized, conversely, if the field is perpendicular to the
plane of incidence the light is s-polarized.

The wave vectors for the scattered light are denoted by q, their lateral components
are given by

q‖ =
√
ε1
ω

c
sin θs (cosφs, sinφs, 0) , (13)

where (θs, φs) are polar and azimuthal angles of scattering, respectively. Note that this
relation is only correct for propagating scattered waves, i.e. |q‖| <

√
ε1ω/c. The positive

directions for the angles of incidence and scattering are defined according to the convention
given in Fig 1.

2.4 Statistical properties of randomly rough surfaces

We assume that the surface profile function ζ(x‖) constitutes a stationary, zero-mean,
Gaussian random process. The choice of Gaussian height statistics is quite convenient, as
moments up to any order can be related to the first two moments [15]. In addition, real
surfaces are often found to posses Gaussian statistics [16, 17]. The process x3 = ζ(x‖) is
then completely characterized by

〈ζ(x‖)〉 = 0

〈ζ(x‖)ζ(x′‖)〉 = δ2W (x‖ − x′‖),
(14)

where δ = 〈ζ2(x‖)〉1/2 is the root-mean-square (RMS) height of the surface and W (x‖ −
x′‖) is the height auto-correlation function of the surface. The correlation function is

normalized such that W (0) = 1 and it can be shown that −1 ≤ W (x‖) ≤ 1. In the case of
perfect correlation W (x‖) = 1, oppositely W (x‖) = −1 describes perfect anti-correlation.
Here the angle brackets denote the spatial average over a large region. We will assume
that the surface is ergodic [18]. Under this assumption, the spatial average is equal to the
average over an ensemble of surface realizations. From here onwards the angle brackets
denote an ensemble average, unless stated otherwise.
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Figure 1: A drawing showing the scattering geometry considered in this work, along with
the coordinate system used; the angles of incidence (θ0, φ0) and scattering (θs, φs); the
incident and scattered wave vector k and q; with their in-plane components k‖ and q‖,
respectively.
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According to the Wiener-Khinchin theorem [15], the power spectrum of the surface is
given by the Fourier transform of the auto-correlation function, i.e.

g(k‖) =

∫
d2x‖W (x‖) exp

[
−ik‖ · x‖

]
. (15)

The power spectrum is a more useful quantity to use in calculations than the correlation
function, since calculations involving the randomly rough surfaces are easier to perform in
the Fourier domain. In this work we will be dealing with two forms of the power spectrum,
the Gaussian and Gaussian-cosine power spectrum. The two-dimensional Gaussian power
spectrum, which is often considered in literature, reads

g(k‖) = πa1a2 exp

(
−a

2
1k

2
1 + a22k

2
2

4

)
, (16)

where a1 and a2 are the transverse correlation lengths in the x1 and x2 direction, respec-
tively. The corresponding correlation function is given by

W (x‖) = exp

(
−x

2
1

a21
− x22
a22

)
. (17)

In the isotropic case a1 = a2 = a. The isotropic two-dimensional Gaussian-cosine auto-
correlation is defined as [8]

W (
∣∣x‖∣∣) = exp

(
−
x2‖
a2

)
cos
(x‖
b

)
, (18)

where b is a positive parameter of dimension length. In the anisotropic case, we choose
to define it as

W (x‖) = exp

(
−x

2
1

a21
− x22
a22

)
cos
(x‖
b

)
. (19)

The two-dimensional Fourier transforms of Eqs. (18) and (19) are not known analytically,
and must therefore be evaluated numerically in order to obtain the power spectra.

2.5 Scattering theory

We consider an incident electromagnetic plane wave propagating towards the surface
through the upper medium, with the electric field described by

Einc(x|ω) = E0(k‖) exp
(
ik‖ · x‖ − iα1(k‖|ω)x3

)
, (20)

where the amplitude E0(k‖) is given by

E0(k‖) = − c√
ε1(ω)ω

[
k̂‖α1(k‖|ω) + x̂3k‖

]
E0p +

(
x̂3 × k̂‖

)
E0s. (21)

Here E0p and E0s denote the magnitude of the p-polarized and s-polarized components of
the incoming electric field. If the field is entirely p-polarized then E0s = 0 and vice versa.

A harmonic time dependence of exp[−iωt] has been assumed for all field expressions
from here onward, but has not been indicated explicitly since future calculations are time

19



independent. It can easily be confirmed by the reader that the field (20) multiplied by
exp[−iωt] satisfies the wave equation (3).

The asymptotic, far-field behavior of the field scattered by the randomly rough surface
can be expressed as the integral over all possible scattering wave vectors q‖ of upwards
propagating plane waves weighted by the scattered field amplitude A(q‖),

Esca(x|ω) =

∫
d2q‖

(2π)2
A(q‖) exp

(
iq‖ · x‖ + iα1(q‖|ω)x3

)
. (22)

The scattered field amplitude is given by

A(q‖) =
c√

ε1(ω)ω

[
q̂‖α1(q‖|ω)− x̂3q‖

]
Ap(q‖) +

(
x̂3 × q̂‖

)
As(q‖). (23)

Similarly to the incident field the scattered field is described by its p-polarized and s-
polarized components Ap(q‖) and As(q‖), respectively.

We will assume that there is a linear relationship between the incident and scattered
field amplitudes given by,

Aα
(
q‖
)

=
∑
β=p,s

Rαβ

(
q‖ | k‖

)
E0β

(
k‖
)
, (24)

where the subscript α = p, s denotes the polarization. Here Rαβ(q‖ | k‖) are unknown
reflection amplitudes that we wish to determine, they describe how incident β-polarized
light of lateral wave vector k‖ is scattered by the rough surface into α-polarized light of
lateral wave vector q‖. Scattered light with the same polarization as the incident light
is said to be co-polarized, while light which is polarized oppositely with respect to the
incident light is said to be cross-polarized. Note that the integral in the expression for the
scattered field (22) is over the whole spectrum of q‖, which includes contributions from
both propagating and evanescent modes.

The total electromagnetic field above the maximum height of the surface x3 > max ζ(x‖)
can then be expressed as the sum of the incident field and the scattered field,

E+(x|ω) = Einc(x|ω) +Esca(x|ω). (25)

Similarly the asymptotic, far-field behavior of the transmitted field in the second region
x3 < min ζ(x‖) can be written as

E−(x|ω) =

∫
d2p‖

(2π)2
B(p‖) exp

(
ip‖ · x‖ − iα2(p‖|ω)x3

)
. (26)

Here p‖ is the lateral component of the wave vector of a transmitted plane wave and the
field amplitude is given by

B(p‖) = − c√
ε2(ω)ω

[
p̂‖α2(p‖|ω) + x̂3p‖

]
Bp(q‖) +

(
x̂3 × p̂‖

)
Bs(q‖). (27)

The p- and s-polarized components of the transmitted electric field have the following
linear relation with the incident field (α = p, s)

Bα
(
q‖
)

=
∑
β=p,s

Tαβ
(
p‖ | k‖

)
E0β

(
k‖
)
, (28)

20



where Tαβ(p‖ | k‖) are unknown transmission amplitudes analogous to the reflection
amplitudes in (24), describing how β-polarized incident light with wave vector k is trans-
mitted into α-polarized light of wave vector p. Again, the integration is taken over the
whole spectrum.

For a complete description of the fields, the time dependence can be reintroduced by
multiplying (25) and (26) with exp[−iωt].

2.6 The Rayleigh hypothesis

Equations (25) and (26) describe the electric field above the maximum height and below
the minimum height of the surface, respectively. In order to determine the reflection and
transmission amplitudes, one has to account for the boundary conditions for the field at
x3 = ζ(x‖). The form of the field in the surface region min ζ(x‖) < ζ(x‖) < max ζ(x‖) is
however not known as the above mentioned forms are generally not valid in this region,
since downwards propagating scattered waves and upwards propagating transmitted waves
are not accounted for.

If the surface is not too rough and the local slopes are sufficiently small, the unac-
counted for modes should then have a less significant contribution to the scattering pro-
cess. The asymptotic expansions of the field above and below the surface region should
then serve as a good approximation for the field in the surface region. Under this assump-
tion the boundary conditions for the field at the interface ζ(x‖) can be solved exactly.
This assumption is known as the Rayleigh Hypothesis [19] and was first postulated by
Lord Rayleigh when he was studying scattering of acoustic waves from sinusoidal surfaces
at the end of the 19th century [20].

It is however difficult to quantify the limit of roughness where the approximation is
no longer valid. For a one-dimensional sinusoidal surface x3 = ζ0 sin(Λx1), the hypothesis
is formally valid when ζ0Λ < 0.448 [21]. For randomly rough surfaces there is no known
formal criterion of validity, however, there seems to be a consensus in the literature for
the following criterion [22]

δ

a
� 1, (29)

where a and δ is the correlation length and rms-height of the random surface, respectively.

2.7 Boundary conditions

Assuming the Rayleigh hypothesis is valid, the total field in the region min ζ(x‖) <
ζ(x‖) < max ζ(x‖) can be expressed by the asymptotic forms of the field above and below
the surface, given by equations (25) and (26). These equations are then required to satisfy
the usual boundary conditions for the transition of the field across the interface between
the two dielectric media [13, p. 304].

The boundary conditions needed to be satisfied at x3 = ζ(x‖), consist of the continu-
ity of the normal component of the magnetic flux density and electric displacement, in
addition to the continuity of the tangential components of the electric and magnetic field.
Assuming non magnetic media (µ = 1) above and below the interface, no surface current
and no surface charge, the boundary conditions expressed with the electric field E and
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the magnetic field H , read

n̂ ·
[
H−(x|ω)−H+(x|ω)

]
x3=ζ(x‖)

= 0, (30a)

n̂ ·
[
ε2E

−(x|ω)− ε1E+(x|ω)
]
x3=ζ(x‖)

= 0, (30b)

n̂×
[
E−(x|ω)−E+(x|ω)

]
x3=ζ(x‖)

= 0, (30c)

n̂×
[
H−(x|ω)−H+(x|ω)

]
x3=ζ(x‖)

= 0. (30d)

The magnetic fields below and above the surface are given by

H−(x|ω) =
1

µ0ω

∫
d2p‖

(2π)2
[
p‖ − α2(p‖|ω)x̂3

]
×B(p‖)

× exp
(
ip‖ · x‖ − iα2(p‖|ω)x3

)
(31)

and

H+(x|ω) =
1

µ0ω

[ [
k‖ − α1(k‖|ω)x̂3

]
×Einc(x|ω)

+

∫
d2q‖

(2π)2
[
q‖ + α1(q‖|ω)x̂3

]
×A(q‖) exp

(
iq‖ · x‖ + iα1(q‖|ω)x3

) ]
,

(32)

respectively. Here n̂ ≡ n̂(x‖) is a unit vector normal to the surface profile at every point
x‖, directed from medium 2 to 1, given by

n̂(x‖) =
−∂ζ(x‖)

∂x1
x̂1 −

∂ζ(x‖)

∂x2
x̂2 + x̂3√(

∂ζ(x‖)

∂x1

)2
+
(
∂ζ(x‖)

∂x2

)2
+ 1

. (33)

2.8 The reduced Rayleigh equation

The reflection amplitudes Rαβ are obtained by solving the reduced Rayleigh equation
(RRE) for reflection, the derivation of this equation is shortly described below. By using
the Rayleigh hypothesis and applying the boundary conditions (30) for the field above
(25) and below (26), one generates a set of inhomogeneous integral equations called the
Rayleigh equations. These equations couple the unknown reflection and transmission am-
plitudes to each other, they are the starting point for deriving the reduced Rayleigh
equation for both reflection and transmission.

The goal is to uncouple these equations in order to obtain an equation involving only
the reflection amplitudes Rαβ. This is accomplished by using the extinction theorem [23]
to eliminate the field below the interface in the Rayleigh equations, resulting in an integral
equation containing only the reflection amplitudes. Similarly one can derive the RRE for
transmission, where one eliminates the scattered field instead. The derivation of the RRE
for a single rough interface was shown by Brown in 1984 [24]; where the details of the
derivation are presented.

The resulting RRE for reflection, for a randomly rough, penetrable two-dimensional
surface, reads ∫

d2q‖

(2π)2
M+(p‖|q‖)R(q‖|k‖) = −M−(p‖|k‖), (34)
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where the reflection amplitudes are the elements of the 2× 2 matrix given by

R(q‖|k‖) =

(
Rpp(q‖|k‖) Rps(q‖|k‖)
Rsp(q‖|k‖) Rss(q‖|k‖)

)
, (35)

and

M±(p‖|q‖) =
I
(
α2

(
p‖
)
∓ α1

(
q‖
)
|p‖ − q‖

)
α2

(
p‖
)
∓ α1

(
q‖
)

×
(
p‖q‖ ± α2(p‖|ω)p̂‖ · q̂‖α1(q‖|ω) −ω

c
α2(p‖|ω)[p̂‖ × q̂‖]3

±ω
c
α1(q‖|ω)[p̂‖ × q̂‖]3 ω2

c2
p̂‖ · q̂‖

)
, (36)

with

I(γ | Q‖) =

∫
d2x‖ exp

[
−iγζ

(
x‖
)]

exp(−iQ‖ · x‖). (37)

The integral in Eq. (34) is taken over the whole spectrum of lateral wave vectors q‖ and
the integral in Eq. (37) is taken over the whole x1x2-plane.

The RRE is the starting point for many perturbation theories, however, non-perturbative
results can be obtained by solving it directly using numerical techniques.

2.9 The mean differential reflection coefficient

The reflection amplitudes Rαβ can now be determined by solving the RRE for reflection
(34), which allows us to fully specify the field above the surface. The ultimate objective
is to be able to compare the results with experiments, however, the reflection amplitudes
are not directly measurable in experiments.

A more convenient quantity that is accessible in experiments and fully specifies the
scattering, is the mean differential reflection coefficient (MDRC). The MDRC is defined
as the fraction of the incident power scattered by the surface into the solid angle dΩs

about the scattering angles (θs, φs), averaged over an ensemble of surface realizations. For
an incident plane wave the MDRC is given by [5]〈

∂Rαβ

∂Ωs

〉
=
ε1
S

ω2

4π2c2
cos2 θs
cos θ0

〈∣∣Rαβ

(
q‖ | k‖

)∣∣2〉 , (38)

where S = L2 and L is the length and width of the quadratic surface realizations we
average over.

If the reflection amplitude Rαβ(q‖ | k‖) is expressed as the sum of the mean and the
fluctuation from its mean

Rαβ

(
q‖ | k‖

)
=
〈
Rαβ

(
q‖ | k‖

)〉
+
[
Rαβ

(
q‖ | k‖

)
−
〈
Rαβ

(
q‖ | k‖

)〉]
, (39)

then the MDRC can be separated into the contribution from the coherent (specular) and
the incoherent (diffuse) component of the scattered light, i.e.〈

∂Rαβ

∂Ωs

〉
=

〈
∂Rαβ

∂Ωs

〉
coh

+

〈
∂Rαβ

∂Ωs

〉
incoh

, (40)

where 〈
∂Rαβ

∂Ωs

〉
coh

=
ε1
S

ω2

4π2c2
cos2 θs
cos θ0

∣∣〈Rαβ

(
q‖ | k‖

)〉∣∣2 (41)
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and 〈
∂Rαβ

∂Ωs

〉
incoh

=
ε1
S

ω2

4π2c2
cos2 θs
cos θ0

×
[〈∣∣Rαβ

(
q‖ | k‖

)∣∣2〉− ∣∣〈Rαβ

(
q‖ | k‖

)〉∣∣2] . (42)

Similarly the transmitted field can can be specified by the experimentally measurable
mean differential transmission coefficient (MDTC), which can be obtained in a analogous
way to the MDRC, see [25] for details.

Both coherent (specular) and incoherent (diffuse) scattering processes will occur when
studying scattering from rough surfaces. For surfaces with roughness parameters which
satisfy the validity criterion for the Rayleigh hypothesis (29), the coherent part which
consists of the majority of specular scattering will dominate. With this in mind it is often
found useful to separate these components when studying the MDRC, even though such
separation is not possible to perform experimentally.

2.10 The Mueller matrix elements

Another measurable quantity that is of interest is the Mueller matrix of the randomly
rough surface. The Mueller matrix contains a complete description of the polarization
response of the rough surface, including co- and cross-polarization for any polarization
state of the incident light. The polarization of the incident light can be described by the
Stokes vector defined by [26]

S =


I
Q
U
V

 =


|Ep|2 + |Es|2

|Ep|2 − |Es|2
2Re(EpE

∗
s )

2Im(EpE
∗
s )

 . (43)

Here and in the rest of this work ”∗” denotes the complex conjugate. The elements of
the Stokes vector are called the Stokes parameters. The first parameter I describes the
intensity of the incoming light, the second Q describes the degree of vertical (p) and
horizontal (s) polarization, U describes the degree of 45◦ and −45◦ polarization, while V
describes the degree of left and right circular polarization. For example, if the Stokes vector
is normalized with respect to the intensity, purely horizontally or vertically polarized
light gives Q = 1 or Q = −1, respectively. Likewise, the same is true for other types of
polarizations. Multiplying a Stokes vector of the incident light with the Mueller Matrix of
the surface for a scattering direction described by q‖, results in a Stokes vector describing
the polarization of the light scattered in that direction.

The reflection amplitudes that appear in in Eq. (24) are central for determining the
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16 elements of the 4× 4 Mueller matrix. The elements are given by [27]

M11 = C(|Rpp|2 + |Rsp|2 + |Rps|2 + |Rss|2),
M12 = C(|Rpp|2 + |Rsp|2 − |Rps|2 − |Rss|2),
M13 = C(RppR

∗
ps +RspR

∗
ss +RpsR

∗
pp +RssR

∗
sp),

M14 = iC(RppR
∗
ps +RspR

∗
ss −RpsR

∗
pp −RssR

∗
sp),

M21 = C(|Rpp|2 − |Rsp|2 + |Rps|2 − |Rss|2),
M22 = C(|Rpp|2 − |Rsp|2 − |Rps|2 + |Rss|2),
M23 = C(RppR

∗
ps −RspR

∗
ss +RpsR

∗
pp −RssR

∗
sp),

M24 = iC(RppR
∗
ps −RspR

∗
ss −RpsR

∗
pp +RssR

∗
sp),

M31 = C(RppR
∗
sp +RspR

∗
pp +RpsR

∗
ss +RssR

∗
ps),

M32 = C(RppR
∗
sp +RspR

∗
pp −RpsR

∗
ss −RssR

∗
ps),

M33 = C(RppR
∗
ss +RspR

∗
ps +RpsR

∗
sp +RssR

∗
pp),

M34 = iC(RppR
∗
ss +RspR

∗
ps −RpsR

∗
sp −RssR

∗
pp),

M41 = −iC(RppR
∗
sp −RspR

∗
pp +RpsR

∗
ss −RssR

∗
ps),

M42 = −iC(RppR
∗
sp −RspR

∗
pp −RpsR

∗
ss +RssR

∗
ps),

M43 = −iC(RppR
∗
ss −RspR

∗
ps +RpsR

∗
sp −RssR

∗
pp),

M44 = C(RppR
∗
ss −RspR

∗
ps −RpsR

∗
sp +RssR

∗
pp),

(44)

where

C =
ε1
2S

( ω

2πc

)2 cos2 θs
cos θ0

. (45)

It is often useful when studying the Mueller matrix to normalize the elements of the
Mueller matrix Mij with respect to its first element M11, i.e.

mij =
Mij

M11

, (46)

since the first element only contains information about the intensity distribution of the
scattered field.

Because we are dealing with randomly rough surfaces, we are interested in the Mueller
matrix averaged over an ensemble of surface realizations 〈M〉. By repeating the same
steps as we did for the MDRC [see Eq. (39) and (40)], we can separate the 〈RαβR

∗
αβ〉 into

a coherent (specular) and an incoherent (diffuse) component

〈RαβR
∗
δγ〉 = 〈Rαβ〉〈R∗δγ〉+ (〈RαβR

∗
δγ〉 − 〈Rαβ〉〈R∗δγ〉)

= 〈RαβR
∗
δγ〉coh + 〈RαβR

∗
δγ〉incoh.

(47)

Applying this to the expressions in Eq. (44) allows us to decompose the Mueller matrix
into a coherent and an incoherent component 〈M〉coh and 〈M〉incoh.

2.11 The reflectivity for a plane wave source

The reflectivity is a measure of the fraction of power flux incident on a surface that is
reflected coherently (specularly) by it. The reflectivity for incident β-polarized light is
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defined by

Rβ(θ0) =
∑
α=p,s

∫
dΩs

〈
∂Rαβ(q‖|k‖)

∂Ωs

〉
coh

=
∑
α=p,s

∫ π/2

0

dθs sin θs

∫ π

−π
dφs

〈
∂Rαβ(q‖|k‖)

∂Ωs

〉
coh

.

(48)

In order to obtain the reflectivity of a two-dimensional randomly rough surface we need
to begin with the following result,

〈Rαβ(q‖|k‖)〉 = (2π)2δ(q‖ − k‖)δαβRα(k‖), (49)

where the Kronecker delta ensures the conservation of angular momentum and the delta
function arises from the stationarity of the surface. We assume the roughness to be
isotropic, which is why the function Rα(k‖) only depends on the magnitude of the incident
lateral wave vector k‖ and not on its direction. Using Eq. (49) along with the relation
(2π)2δ(0) = S, we can get an expression for the function Rα(k‖) by setting q‖ = k‖,
resulting in

Rα(k‖) =
1

S
〈Rαβ(k‖|k‖)〉. (50)

Applying Eq. (49) to Eq. (41) yields the following expression for the coherent component
of the MDRC〈

∂Rαβ(q‖|k‖)
∂Ωs

〉
coh

= ε1

(ω
c

)2 cos2 θs
cos θ0

∣∣Rα(k‖)
∣∣2 δ(q‖ − k‖)δαβ, (51)

where we have used

[(2π)2δ(q‖ − k‖)δαβ]2 = (2π)4δ(0)δ(q‖ − k‖)δ2αβ
= (2π)2Sδ(q‖ − k‖)δαβ.

(52)

With the identities

δ(q‖ − k‖) =
1

k‖
δ(q‖ − k‖)δ(φs − φ0), (53)

q‖ =
√
ε1
ω

c
sin θs (54)

and

k‖ =
√
ε1
ω

c
sin θ0, (55)

we can rewrite Eq. (51) in the following manner〈
∂Rββ(q‖|k‖)

∂Ωs

〉
coh

=
√
ε1
ω

c

cos2 θs
cos θ0

∣∣Rβ(k‖)
∣∣2 δ(sin θs − sin θ0)δ(φs − φ0)

k‖

=
cos2 θs
cos2 θ0

∣∣Rβ(k‖)
∣∣2 δ(θs − θ0)δ(φs − φ0)

sin θ0

=
∣∣Rβ(k‖)

∣∣2 δ(θs − θ0)δ(φs − φ0)

sin θ0
.

(56)
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Inserting this result into Eq. (48), followed by a summation over the outgoing polarization
states α and integration over dΩs, one arrives at the following expression for the reflectivity
when the incident light is β-polarized

Rβ(θ0) =
∑
α=p,s

∫
dΩs

〈
∂Rαβ(q‖|k‖)

∂Ωs

〉
coh

=

∫ π
2

0

dθs sin θs

∫ π

−π
dφs

〈
∂Rββ(q‖|k‖)

∂Ωs

〉
coh

=
∣∣Rβ(k‖)

∣∣2 . (57)

If the light is unpolarized, the reflectivity is given by the sum over the reflectivity of both
linear polarization states divided by two, i.e.

R(θ0) =
1

2

∑
β=p,s

Rβ(θ0) =
1

2

[∣∣Rp(k‖)
∣∣2 +

∣∣Rs(k‖)
∣∣2] (58)

2.12 The reflectance for a plane wave source

In contrast with the reflectivity, the reflectance is a measure of the fraction of power
flux incident on a surface which is reflected both coherently (specularly) and incoherently
(diffusely) by the surface. Note that if the surface is planar, the reflectivity and reflectance
are equal, since the light is only reflected coherently. The reflectance of β-polarized light
is defined as

Rβ(θ0) =
∑
α=p,s

Rαβ(θ0), (59)

where

Rαβ(θ0) =

∫
dΩs

〈
∂Rαβ(q‖|k‖)

∂Ωs

〉
. (60)

If the incident plane wave is unpolarized, then the average over both linear polarization
states needs to be taken in order to obtain the reflectance. The reflectance of unpolarized
directional illumination is then given by

R(θ0) =
1

2

∑
β=p,s

∑
α=p,s

∫
dΩs

〈
∂Rαβ(q‖|k‖)

∂Ωs

〉
. (61)

Taking into account that the coherent contribution to the reflectance of β-polarized light
is the reflectivity, one can write

Rβ(θ0) = Rβ(θ0) +
∑
α=p,s

Rαβ(θ0)incoh, (62)

where

Rαβ(θ0)incoh =

∫
dΩs

〈
∂Rαβ(q‖|k‖)

∂Ωs

〉
incoh

. (63)

The reflectance of unpolarized light then reads

R(θ0) =
1

2

∑
β=p,s

Rβ(θ0) = R(θ0) +
∑
β=p,s

∑
α=p,s

Rαβ(θ0)incoh. (64)

The transmittance can trivially be obtained by the relation

T (θ0) = 1−R(θ0). (65)
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2.13 The reflectivity and reflectance for a diffuse source

If the randomly rough surface is illuminated by a incoherent (diffuse) source and not a
coherent plane wave, the expressions for the reflectivty and reflectance in the two previous
subsections are no longer valid. We assume that the incident light can then be described
by a superposition of plane waves coming in from multiple directions with a random phase
(incoherent superposition), i.e.

E(x | ω) =

∫
k‖<
√
ε1
ω
c

d2k‖E0

(
k‖
)

exp
[
ik‖ · x‖ − iα1

(
k‖ | ω

)
x3
]

(66)

Here E0

(
k‖
)

is a random, complex amplitude function for a plane wave incident from the
direction [k‖−iα1(k‖ | ω)x̂3] onto the surface. The amplitude function E0

(
k‖
)

constitutes
an uncorrelated, complex stochastic process defined by the following properties〈

E0

(
k‖
)〉

= 0, (67a)〈
E0

(
k‖
)
E∗0
(
k′‖
)〉

=
∣∣E0

(
k‖
)∣∣2 δ (k‖ − k′‖) , (67b)〈

E0

(
k‖
)
E0

(
k′‖
)〉

= 0. (67c)

Note that Eqs. (67) are not satisfied for a purely real or imaginary stochastic process.
The intensity of each beam given by k‖ is proportional to

I ∝
〈∣∣E0

(
k‖
)∣∣2〉 . (68)

Diffuse illumination involves illumination from multiple angles of incidence, and in the
limit of Lambertian illumination from all possible angles of incidence, with equal ampli-
tude and probability. The amount of irradiance that the surface receives from each angle
of incidence θ0 can then be specified by an angular distribution `(θ0), with the following
property ∫

dΩ0`(θ0) = 1. (69)

The reflectance for illumination from a diffuse source is then given by the integral of
the reflectance from plane wave illumination, weighted by `(θ0), taken over all angles of
incidence, resulting in

R =

∫
dΩ0`(θ0)

∑
β=p,s

∑
α=p,s

∫
dΩs

〈
∂Rαβ

∂Ωs

〉
=

∫
dΩ0`(θ0)R(θ0).

(70)

For β-polarized incident light the reflectance from diffuse illumination reads

Rβ =

∫
dΩ0`(θ0)Rβ(θ0). (71)

The reflectance of diffusely illuminated surfaces is sometimes referred to as the diffuse-
diffuse reflectance and will occasionally be referred as such throughout this work. Note

28



that the transmittance T for diffuse illumination, can also be obtained from the diffuse-
diffuse reflectance with the familiar relation T = 1 − R. In the case of Lambertian
illumination [14, pp. 11–12], `(θ0) is given by

`(θ0) =
cos(θ0)

π
. (72)

The reflectivity will then by definition be given by integrating the coherent component of
the MDRC and taking the sum over the polarizations in the following way

R =

∫
dΩ0`(θ0)

∑
β=p,s

∑
α=p,s

∫
dΩs

〈
∂Rαβ

∂Ωs

〉
coh

=

∫
dΩ0`(θ0)R(θ0).

(73)

For β-polarized incident light the reflectivity from diffuse illumination is given by

Rβ =

∫
dΩ0`(θ0)Rβ(θ0). (74)

2.14 Conservation of energy

If we assume the two media to be non-absorbing (Im[εi(ω)] = 0) for i = 1, 2), then
the sum of the transmitted and scattered power should equal the incident power. The
fraction of the incident power of a β−polarized beam which is reflected and transmitted
into α−polarized light is defined by

U scαβ =

∫
dΩs

〈
∂Rαβ

∂Ωs

〉
(75)

and

U trαβ =

∫
dΩt

〈
∂Tαβ
∂Ωt

〉
, (76)

respectively, where 〈∂Tαβ/∂Ωt〉 is the MDTC and dΩt is a solid angle about which light
transmitted at the angles (θt, φt) passes through.

The sum over all outgoing polarizations states, should then equal unity since there is
no loss of energy

U =
∑
α=p,s

U scαβ + U trαβ = 1. (77)

For absorbing media (Im[εi(ω)] 6= 0 for i = 1, 2) Eq. (77) can be modified by adding an
absorption term to the left side, however this term is difficult to calculate and will not be
considered in this work.

These equations are frequently used as a starting point for confirming the accuracy
of numerical simulations, and it is a very useful test for verifying if the criterion for the
Rayleigh hypothesis (29) is satisfied.
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3 Method

In this section the various computational methods required for calculating the quantities
presented in the theory section are presented and described.

First, the use of dimensionless variables is explained along with the process of gen-
erating randomly rough surfaces. Then, the numerical methods used to solve the RRE
for reflection are presented. Next, the calculation of the MDRC and Mueller matrix is
described. Following, the technique used for determining the reflectivity and reflectance
for both plane-wave and diffuse illumination is detailed. Finally, a test for assessing the
quality of the simulations, using the law of energy conservation is presented.

3.1 Dimensionless variables

To reduce potential loss of numerical precision when performing operations on numbers of
varying orders of magnitude, all variables are made dimensionless. The dispersion relation
in vacuum reads

k = ω/c = 2π/λ (78)

By dividing all wave vectors by ω/c, and multiplying all lengths by ω/c, they are made
dimensionless. All wave vectors are now measured in units ω/c, and all lengths are now
effectively measured in units of λ/2π.

3.2 Generation of randomly rough surfaces

Each realization of a randomly rough surface was generated using a Fourier filtering
method. The method consists of generating a set of uncorrelated Gaussian distributed
random numbers on a grid, with a zero mean and a standard deviation of unity. The grid
of random numbers is then Fourier transformed using a fast Fourier transform (FFT)
algorithm and filtered by the square root of the power spectrum

√
g(k‖). The filtered

numbers are then scaled with the desired RMS height δ and inverse Fourier transformed;
this results in correlated surfaces with the desired properties sampled on a grid. For further
details about this method the reader is directed to Ref. [28].

This method requires that the analytical form of the power spectrum is known. How-
ever, in some cases the analytical Fourier transform of a correlation function is not know;
for example, the Gaussian-cosine correlation function given by Eq. (18). To overcome this
limitation in such cases, the power spectrum used in the Fourier filtering method was
instead numerically generated by a complex FFT of the correlation function.

3.3 Discretization of the surfaces

The surfaces used in the scattering calculations were spatially limited and discretized.
Each surface realization is spatially truncated to a finite quadratic area of L×L, where L
is the length of the surface along the each axis and L� λ. The randomly rough surfaces
were generated using the Fourier filtering method and sampled on a grid of Nx × Nx

points. The sampling intervals for this surface are then given by

∆x =
L

Nx

, (79)
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where Nx is the number of discretization points along one of the lateral axes xi, i = 1, 2.
The position of each point on the x‖ grid is then given by

x‖i,j =

(
−L

2
+ (i− 1/2)∆x,−L

2
+ (j − 1/2)∆x, 0

)
, (80)

where i, j = 1, 2, . . . , Nx. Note that this discretization scheme does not resolve the origin
(xi = 0, i = 1, 2) or the edges of the surface (xi = ±L/2, i = 1, 2).

3.4 Solving the reduced Rayleigh equation numerically

The RRE for scattering is solved by first truncating and discretizing the integral equation,
this results in a matrix equation, where the scattering amplitudes are the elements of the
unknown the equation is solved for. The equation can then be solved for the scattering
amplitudes using a linear system solving scheme of choice. The details are presented below.

3.4.1 Discretization of the reduced Rayleigh equation integral

The initial step is to convert the integral in the RRE (34) into a sum over discretely
sampled values. Note that the integral in the RRE is taken over the whole spectrum of
scattering wave vectors q‖. Since it is not possible to calculate a numerical integral over an
infinite spectrum, unless it converges, it is assumed that the contribution to the scattering
process decreases as q‖ → ∞. Under this assumption, a truncation of the integration to
a finite interval should serve as a good approximation. The integration is then limited to
the quadratic domain Q×Q, where Q is the length of the domain along each component
of the lateral wave vector.

The lateral scattering wave vector q‖ is then discretized on a quadratic grid of Nq×Nq

points, with the separation distance ∆q between each point in the q̂1 and q̂2 directions.
The length can then be expressed as Q = ∆q(Nq − 1). The position of each point on the
q‖ grid is then given by

q‖i,j =

(
−Q

2
+ i∆q,−Q

2
+ j∆q, 0

)
, (81)

where i, j = 0, 1, 2, . . . , Nq − 1.
The integral in the RRE can now be converted into a sum over i and j by using a

two-dimensional standard midpoint quadrature scheme, resulting in(
∆q

2π

)2 ∑
∣∣∣q‖ij

∣∣∣≤Q/2
M+(p‖|q‖ij)R(q‖ij |k‖) = M−(p‖|k‖), (82)

where M+(p‖|q‖ij) and M−(p‖|k‖) were defined by Eq. (36) and the four components
of R(q‖ij |k‖) are the unknowns that the equation is later solved for. The contribution
to the sum from the corners of the quadratic domain is assumed to be insignificant;
to further reduce computational costs, the integral is therefore limited to the circular
domain q‖ ≤ Q/2. The number of values q‖i,j in the circular area of integration can then

be approximated to π(Nq/2)2, the exact number depends on the choice of Nq and Q.
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3.4.2 Evaluating the I(γ|Q‖)ntegrals

Before solving the discretized RRE equation for scattering, the I(γ|Q‖) integrals which
appear in Eq. (36) and are defined in Eq. (37), have to be evaluated. Here Q‖ = p‖ − q‖
or Q‖ = p‖−k‖, for γ = α1(p‖)±α2(q‖) or γ = α1(p‖)±α2(k‖), respectively. It should be
noted that these integrals are Fourier transforms of the functions exp(−iγζ(x‖)). Solving
these integrals numerically by either direct integration or using various FFT techniques
is however very time consuming, since they have to be calculated for all possible values
of the γ arguments.

An often used, more computationally efficient method [29, 30, 6], consists of Taylor
expanding the exponential function exp(−iγζ(x‖)) and evaluating the resulting Fourier
transforms of each power of the surface profile function ζ(x‖). The Taylor expansion gives

I(γ|Q‖) =

∫
d2x‖

(
∞∑
n=0

(−iγζn(x‖))
n

n!

)
exp(−iQ‖ · x‖). (83)

We can rewrite the equation above in the following way

I(γ|Q‖) =
∞∑
n=0

(−iγ)n

n!
ζ̂(n)(Q‖), (84)

where ζ̂(n)(Q‖) denotes the Fourier transform of ζn(x‖), as expressed below

ζ̂(n)(Q‖) =

∫
d2x‖ζ

n(x‖) exp(−iQ‖ · x‖). (85)

If
∣∣γζ(x‖)

∣∣ � 1, the Taylor expansion will converge sufficiently fast for a truncation of
the sum in (84), at a finite value N , to serve as a reasonable approximation. Note that
the oscillatory nature of the Taylor expansion can make it numerically unstable when∣∣γζ(x‖)

∣∣ is large; this places additional constraints on the RMS height of the surface
profile function, which are more restrictive than the ones given by the Rayleigh criterion
(29). The advantage of this method is that the Fourier transforms ζ̂(n)(q‖) only have to
be calculated once for each exponent of power n = 0, 1, . . . , N , since they are independent
of the values of γ. Therefore, it is not necessary to recalculate the Fourier transforms for
each value of γ, which reduces the computation time of the I(γ|Q‖) integrals considerably.

Note that this method requires that all values of p‖ − q‖ and p‖ − k‖ lie on the same
grid as the grid of wave vectors Q‖ resolved by the Fourier transforms in Eq. (85). To
ensure this, we choose to resolve both p‖, k‖ and consequently Q‖ on the same grid as
the one we used for q‖. However, this means that we can only calculate the reflection
amplitudes for incident wave vectors k‖m,n which lie on the grid q‖i,j . If we desire some
specific angles of incidence (θ0, φ0), we have to adjust Nq and Q such that k‖ lies on the
sampling grid.

3.4.3 Determining the sampling parameters

The Fourier transforms given by Eq. (85) can then be evaluated numerically with a FFT,
using the surface realizations discretized on the grid given by Eq. (80). From Eqs. (85)
and (82) it follows that we require the two wave number components of Q‖ to lie within
the range [−Q,Q] to evaluate all the I(γ|Q‖) integrals. The highest possible wave number
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we can resolve with the FFT is given by the Nyquist frequency π/∆x [31, pp. 500-501],
the wave number limits Q must then satisfy the following inequality

π

∆x

≥ Q = ∆q(Nq − 1). (86)

From the theory of discrete Fourier transforms, it is know that the discretization intervals
in real and wave number space are related by [31, pp. 501-504]

∆q =
2π

L
=

2π

Nx∆x

. (87)

Applying this to the inequality in Eq. (86), we get the following relation for the number
of discretization points along each axis in the x‖i,j and q‖i,j grids

Nx ≥ 2(Nq − 1). (88)

When p‖ and q‖ are discretized on the same grid, the number of possible values p‖ − q‖
is 2Nq − 1, where the number of possible values for each lateral wave vector is Nq. To
ensure that enough points are resolved by the FFT, we choose a Nq such that 2Nq − 1
is equal to the number of elements along each axis of the x‖ grid we calculate the FFT
over. Note that the FFT always resolves the zero frequency, and the Fourier transform of
a real function is symmetric around the zero frequency under complex conjugation. The
number of elements which are possible to resolve with the FFT will then always be odd.
The number of discretization points along each axis of the q‖i,j grid is then given by

Nq =

⌊
Nx + 2

2

⌋
. (89)

Here bxc denotes the floor function of x, which rounds x to the largest integer less than
or equal to x. This means Q is effectively set to the highest wave number resolvable by
the FFT, i.e

Q = ∆q

⌊
Nx

2

⌋
. (90)

3.4.4 Solving the linear RRE system

Discretizing p‖ and k‖ on the same grid as q‖, results in (82) forming a closed set of linear
equations. The resulting matrix equation is given by(

∆q

2π

)2 ∑
∣∣∣q‖ij

∣∣∣≤Q/2
M+(p‖kl |q‖ij)R(q‖ij |k‖mn) = M−(p‖kl |k‖mn). (91)

According to Eq. (24) we only need two components of R(q‖|k‖) to fully determine the
scattered field for a given polarization. Therefore we only need to solve for Rpβ and Rsβ if
the incident light is β-polarized, which makes the total number of unknown elements twice
the number of values of q‖i,j . Note that only the right hand side of the matrix equation
is dependent on k‖ and the polarization, while the left hand side is the same for both
polarizations and all incident angles.
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The linear system of equations can then be solved using a linear system solving scheme
of choice. In this work the systems was solved using a LU decomposition scheme, which
consists of writing the system matrix (A) as the product of a lower triangular matrix (L)
with a upper triangular matrix (U), i.e.

Ax = (LU)x = b, (92)

where A is a square system matrix and x is the unknown we need to solve for. The system
is then solved by first solving

Ly = b (93)

for y, and next solving the system

Ux = y (94)

for x. The two equations above are solved by using the iterative processes called forward
and back substitution. There are several variations of this method, which often includes
an additional permutation matrix P , for further details the reader is directed to Ref. [32].

The most time consuming part of solving the RRE is to calculate the system matrix
and performing the LU decomposition. Calculating the right hand side, along with the
forward and back substitution requires considerably less time. Since only the right hand
side is dependent on the incident wave vector k‖, it is possible to perform the forward and
back substitution for multiple polar angles of incidence θ0 resolved on the grid of lateral
wave vectors, for relatively little additional computational cost.

3.5 Calculation of the MDRC and the Mueller matrix elements

Solving the RRE numerically yields the four scattering amplitudes Rαβ(k‖, q‖) for incident
α-polarized light with lateral wave vector k‖, scattered by the surface into β-polarized
light with lateral wave vector q‖. The resulting amplitudes are discretized on the grid
given by (81) and limited to the circular domain of propagating modes (Imα(q‖) = 0)
with radius

√
ε1ω/c. Numerically the amplitudes are given by matrices of size N × N ,

where N is the number of points along one axis such that |qi| ≤
√
ε1ω/c, i = 1, 2. Note

that since the amplitudes are defined on a circular domain and discretized on a square
grid, the points outside the circle do not contribute and are therefore set to zero.

The MDRC including it’s coherent and incoherent component can be calculated di-
rectly using Eqs. (38), (41) and (42), repecively. Since the MDRC is a function of q‖,
which depends on θs, we need to express θs as a function of q‖. By using Eq. (54) we get

θs(q‖) = sin−1
(√

ε1
c

ω

∣∣q‖∣∣) , (95)

which is only valid in the circular region q‖ ≤
√
ε1ω/c, where q is a wave vector which

satisfies the dispersion relation (5) and describes propagating modes.

The Mueller matrix elements are directly obtained from Eq. (44) along with Eq. (95),
no additional numerical methods are required. The coherent and incoherent components
are obtained by using Eq. (47). The normalized matrix elements are given by Eq. (46),
since each Mueller matrix element is numerically given by a N ×N matrix, the normal-
ization requires element-wise matrix division.
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3.6 Numerical calculation of the reflectivity and reflectance

After solving the RRE for the scattering amplitudes and calculating the MDRC, the
reflectivity and reflectance of the randomly rough surface for both plane-wave and diffuse
illumination can be obtained in the following way.

3.6.1 Plane-wave illumination

The reflectivity of a randomly rough surface illuminated by plane-waves is given by (57)
and (58) for polarized and unpolarized incident light, respectively. The reflectivity is
acquired by calculating the squared norms of the scattering amplitudes for q‖ = k‖, no
further numerical techniques are required.

The reflectance of the surface for plane-wave illumination is given by Eqs. (59) and
(64) for polarized and unpolarized incident light, respectively. As shown in Sec. 2.12 the
reflectance can be separated into the sum of the reflectivity and the incoherent component
of the reflectance. Since the reflectivity is easily determined from the scattering ampli-
tudes, we only need to determine the incoherent contribution to the reflectivity given
by

Rβ(θ0)incoh =
∑
α=p,s

Rαβ(θ0)incoh, (96)

where

Rαβ(θ0)incoh =

∫
dΩs

〈
∂Rαβ(q‖|k‖)

∂Ωs

〉
incoh

. (97)

Here the integration is over all possible scattering angles (θs, φs), and has to be evaluated
numerically. Since the MDRC is a numerical function of q‖ we need to convert the integral
over dΩs into an integral over dq‖. First, we write out the integral above using the
identity for a solid angle element in three dimensions dΩs = sin θs dθs dφs, this gives us

Rαβ(θ0)incoh =

∫ π
2

0

dθs sin θs

∫ π
2

−π
2

dφs

〈
∂Rαβ(q‖|k‖)

∂Ωs

〉
incoh

. (98)

By applying the relation dθs = d(sin θs)/ cos θs, we get

=

∫ 1

0

d(sin θs) sin θs

∫ π
2

−π
2

dφs
1

cos θs

〈
∂Rαβ(q‖|k‖)

∂Ωs

〉
incoh

. (99)

Next, we use that q‖ =
√
ε1(ω/c) sin θs ,

=

∫ √ε1 ωc
0

d
(√

ε1
ω

c
sin θs

)√
ε1
ω

c
sin θs

∫ π
2

−π
2

dφs
c2

ε1ω2 cos θs

〈
∂Rαβ(q‖|k‖)

∂Ωs

〉
incoh

=

∫ ω
c

0

dq‖q‖

∫ π
2

−π
2

dφs
c2

ε1ω2 cos θs

〈
∂Rαβ(q‖|k‖)

∂Ωs

〉
incoh

. (100)

Finally, we can simplify the integral with the relation dq‖ = q‖ dq‖ dφs, resulting in

Rβ(θ0)incoh =
∑
α=p,s

∫
dq‖

c2

ω2 cos θs

〈
∂Rαβ(q‖|k‖)

∂Ωs

〉
incoh

. (101)
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Since the lateral scattering wave vector depends on the polar scattering angle, we need
to express cos θs as a function of q‖, when integrating over q‖. The reflectance can then
be obtained by using a numerical integration scheme on Eq. (101), i.e.

Rβ(θ0)incoh =
∑
α=p,s

∑
i,j

wi,j
c2

ω2 cos θs(q‖i,j)

〈
∂Rαβ(q‖i,j |k‖m,n)

∂Ωs

〉
incoh

, (102)

where wi,j are weights given by a quadrature scheme of choice and θs(q‖) is given by (95).
For the best precision an integration scheme for a circular disk domain is recommended.

To further improve the accuracy of the numerical integration, we can increase the
resolution by adding more points along the edge of the circular integration domain. Since
the edge of the domain contains only the contribution from grazing angles, the added
points can be set to zero. This results in a set of unevenly distributed points, which can
then be interpolated with an interpolation scheme to create a function of the integrand.
The function can then be integrated at a higher precision than what was achievable before.

3.6.2 Diffuse illumination

The reflectivity and reflectance of a randomly rough surface illuminated by a diffuse light
source is given by Eqs. (73) and (70), respectively. Both calculations require the reflectiv-
ity and reflectance for plane-wave illumination to be known for all polar incident angles
resolvable on the grid q‖i,j , in the circular domain q‖ ≤

√
ε1ω/c. The two resulting func-

tions of θ0 then have to be multiplied by the weight function `(θ0) and integrated over θ0,
resulting in the reflectivity and reflectance of the randomly rough surface illuminated by
a diffuse source. In this work we will only consider diffuse illumination from a Lambertian
source, with the weight function `(θ0) given by (72). The integrals can then be evaluated
with a standard quadrature scheme.

For the integration to yield precise enough results, it is important to have enough
resolvable polar angles. The number of angles can be increased by adjusting the side
lengths of the system L along with the number of discretization points Nq. By only
increasing Nq the resolution of the grid q‖i,j increases, however, the length of the grid Q
increases linearly with Nq which results in fewer points inside the region q‖ ≤

√
ε1ω/c and

in turn fewer angles can be resolved. In addition, increasing the number of points raises
the computational cost dramatically. The highest resolvable wave-number Q is inversely
proportional with the length of the system L, therefore one has to increase the system size
along with the number of grid points to attain more resolvable incident angles. The system
size and number of discretization points have to be balanced with the limitations of the
computational infrastructure used, the details of the values and systems used to attain
the results in this work will be presented in the results and discussion section Sec. 4. Since
increasing Nq raises the computational demand, a lower resolution can be used together
with an interpolation scheme instead, using the fact that the reflectance and reflectivity
should tend to unity for grazing angles.

3.7 The energy conservation test

A simple test frequently used to measure the quality of electromagnetic wave scattering
simulations [2, 4, 22], is to confirm if the incident power is conserved by the scattering
process. This method can be used to verify the validity of the Rayleigh hypothesis, for the
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roughness parameters of the surface one wishes to study. Ultimately, this test is used for
controlling that the results are not incorrect by considering the conservation of energy.

Through the interaction with the surface the incident power will be split into a scat-
tered, transmitted and absorbed part. Since the absorbed part is hard to calculate, ab-
sorbing materials were not considered when the surface parameters used in this work were
tested.

The method consists of calculating the fraction of incident power which is reflected
and transmitted, the sum of these two parts should then equal unity. If the substrate
used in this test is metallic (Re ε2 < 0), all of the incident light is reflected and only the
reflected part needs to be considered.

Using Eqs. (75) and (76), we can calculate the fraction of the incident power flux
of β−polarized light scattered by and transmitted through the surface into α-polarized
light, respectively. Note that this requires the calculation of the MDTC in addition to
the MDRC, which can be time-consuming to acquire. When testing the surface roughness
parameters, it is therefore more efficient to set the substrate to be a non-absorbing metal
and only calculate the reflected fraction of the power flux, since all of the incident light
should be reflected. Taking the sum of the power fractions for all polarizations should
then result in unity, due to the conservation of the incident energy, i.e. Eq. (77).

Because of loss of significance in such numerical calculations, small deviation from
unity should be expected. It should be emphasized that the conservation of the incident
power flux is a necessary condition, however, it does not automatically guarantee that the
simulations are correct when it is satisfied.

The energy conservation and the quality of the simulations for the roughness param-
eters used in this work, will be discussed in Sec. 4.
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4 Results and Discussion

Following the approach outlined in the method section, simulations solving the reduced
Rayleigh equation for reflection were performed for various systems consisting of two
media separated by a two-dimensional randomly rough interface. The simulations were
conducted on high performance computing (HPC) clusters using parallel processing. The
results obtained from the computer simulations are presented and discussed in this section.

The quantities obtained from the simulation results, which will be discussed here, are
the mean differential reflection coefficient, the Mueller matrix, and the reflectivity and
reflectance of randomly rough surfaces. The results are presented in three subsections,
one for each auto-correlation function studied in this work.

First, results for Gaussian-correlated (16) surfaces are presented and discussed. The
surfaces separate vacuum in the upper region, from glass or silver in the lower region. The
scattering of electromagnetic waves from randomly rough surfaces has for the past decades
mainly been studied using Gaussian-correlated surfaces; they are therefore considered to
represent the classical example of a randomly rough surface. Here, the MDRC and Mueller
matrix will serve as a reference for comparison and contrasting with other surfaces studied
in this work. The main result of this section is the numerically obtained reflectivity and
reflectance of diffusely illuminated two dimensional randomly rough surfaces, which are
presented here for the first time. The reflectance and reflectivity are only studied for
Gaussian surfaces, since the computational demand was quite high. Moreover, only glass
surfaces are studied, as the goal is to compare the results to the ones which were obtained
in 2016 by González-Alcalde et al. for one-dimensional Gaussian-correlated glass surfaces
[7].

Secondly, the full angular distribution of the MDRC and Mueller matrix of Gaussian-
cosine correlated surfaces is presented and discussed in detail. Simulations were performed
for two systems with different correlation lengths a and RMS heights δ. Both systems
were characterized by the isotropic Gaussian-cosine correlation function (18), and consist
of vacuum in the upper region and silver in the lower region. Here the MDRC and Mueller
matrix will be studied and compared to the results for Gaussian-correlated surfaces.

Thirdly, to study how anisotropy in the Gaussian-cosine correlation function (19)
affects the scattering, simulations were performed for two vacuum-silver interfaces with
the correlation length doubled in the x2-direction. To highlight the differences that arise
due to anisotropy, the MDRC of the anisotropic Gaussian-cosine surfaces is compared
to the results for the isotropic ones. Only the MDRC is shown and discussed for these
surfaces due to time constraints.

The incident light is described by its wavelength λ, which was set to the operating
wavelength of a He-Ne laser λ = 0.6328 µm in all the simulations. The direction of the inci-
dent light is given by the polar and azimuthal angles of incidence , θ0 and φ0, respectively.
To reduce the noise and statistical fluctuations, a large number of surface realizations was
used to obtain the average reflection amplitudes of the surfaces. The integrals I(γ|Q‖)
required only 18 terms in the Taylor expansions to be sufficiently convergent for all sim-
ulations. The numerical parameters and the quality of the simulations will be presented
along with the results.
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4.1 Gaussian-correlated surfaces

Numerical simulations were performed for a Gaussian-correlated glass surface, with a high
number of resolvable angles on the grid of lateral wave vectors. The high resolution of
angles allowed the reflectivity and reflectance for diffuse illumination to be obtained with
a high precision. The number of resolvable angles was halved for the Gaussian-correlated
silver surface and later simulations to reduce the computational demand and run time.

The surface realizations were generated using the Fourier filtering method outlined in
Sec. 3.2, with the Gaussian power spectrum given by Eq. (16). A square segment of a
numerical realization of the Gaussian-correlated surface can be seen in Fig. 2.

Figure 2: Square segment of a numerically generated realization of the surface profile
function ζ(x‖), characterized by an isotropic Gaussian power spectrum (16). The surface
has a correlation length of a = λ/4 and RMS height of δ = λ/20, where λ is the wavelength
of the light incident on the surface.

The correlation lengths of the glass surface were a1 = a2 = a = 0.25λ and the RMS
height was δ = 0.05λ. The surface in Fig. 2 is characterized by the same parameters. The
surface realizations were limited to a quadratic area of L×L with L = 50λ, and discretized
onto a grid of Nx×Nx points with Nx = 561. This implies 281 points resolved along each
axis of the q‖i,j grid, and the integral in Eq. (91) to have a cutoff at ±Q/2 = ±2.8ω/c.
The number of polar angles resolved with these parameters was Nθ = 51.
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The surface acts as an interfaces between vacuum in the upper region (ambient),
where the light is incident from, and glass in the lower region (substrate). The dielectric
constant of vacuum is given by ε1 = 1. Assuming a refraction index of n = 1.5 for the glass
substrate at the wavelength λ = 632.8 nm, the dielectric constant used for the substrate
was ε2(ω) = 2.25. The simulation results were averaged over an ensemble of Ns = 5586
surface realizations. The quality of the simulations was evaluated for these parameters
with the energy conservation test presented in the Sec. 3.7. Using Eq. (77), it was found
for this system that |U − 1| ≤ 2.3 × 10−7, i.e., the criterion for energy conservation is
satisfied within 2.3× 10−5%.

The Gaussian-correlated silver surface was characterized by the correlation length
a = λ/4 and RMS height δ = λ/40. The dielectric function of silver at the wavelength λ =
632.8 nm, is given by ε2(ω) = −16.0+i1.088 [33]. The length of the surface realizations was
L = 25λ and the number of discretization points was Nx = 321. The energy conservation
test was performed with non-absorbing silver (ε2(ω) = −16.0), the criterion was found
to be satisfied within 0.2%. The results were averaged over an ensemble of 5021 surface
realizations.

4.1.1 The mean differential reflection coefficient

Using the reflection amplitudes obtained from the simulations, the MDRC was calculated
for light scattered incoherently (diffusely) by the Gaussian-correlated glass and silver sur-
faces using Eq. (42). Results are shown below for both normal and non-normal incidence.

Since the surfaces used in these simulations have an isotropic auto-correlation function,
the following results should be identical for all azimuthal angles of incidence φ0, except
for an angular rotation of the distributions by the same angle. It should be noted that
the plane of incidence was defined in the simulations as the plane spanned by x̂3 and
φ̂0 = − sin(φ0)q̂1 + cos(φ0)q̂2, which is well-defined, even for the normal-polar angle of
incidence. The plane of incidence for the results presented here is, therefore, the x1x3-
plane.

Figs. 3 and 4 show the in-plane scattering (φs = 0◦) MDRC as a function of the
polar angle of scattering θs, for the vacuum-glass and vacuum-silver systems, respectively.
The angles of incidence were: (θ0, φ0) = (0.0◦, 0.0◦) in Figs. 3(a) and 4(a); (θ0, φ0) =
(34.05◦, 0.0◦) in Figs. 3(b) and 4(b). Here and in the rest of the work the notation β → α
denotes incident β polarized light scattered into α-polarized light. When β = α (s → s
and p→ p) the scattered light is co-polarized, oppositely, when β 6= α (s→ p and p→ s)
the scattered light is cross-polarized.

From the vacuum-glass results presented in Fig. 3 it is clearly seen that the in-plane
scattering is dominated by co-polarized scattering, while cross-polarized scattering hardly
contributes. It is worth noting that in-plane cross-polarized scattering has no contribution
from single-scattering and is therefore a pure multiple-scattering effect, the same holds for
out-of-plane (φs = 90◦) co-polarized scattering. For weakly to moderately rough surfaces,
such as the ones presented in this work, multiple-scattering is mainly caused by the
excitation of surface plasmon polaritons (SPPs), which generally require a metal substrate
(see Sec. 2.2). Therefore, it is not surprising that the in-plane contribution from cross-
polarized light is not present for a vacuum-glass interface at this degree of roughness.
For the vacuum-silver surface, shown in Fig. 4, SPPs can be excited and the multiple-
scattering contribution is therefore present as expected.
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(a) θ0 = 0.0◦ (b) θ0 = 34.05◦

Figure 3: The incoherent component of the MDRC (42) for in-plane scattering from a
randomly rough surface separating vacuum and glass as a function of the scattering angle
θs. The wavelength of the incident light (in vacuum) was λ = 632.8 nm and the polar
angle of incidence was in panel (a) θ0 = 0.0◦; in panel (b) θ0 = 34.05◦. The refractive
index of glass at this wavelength is assumed to be n = 1.5, which corresponds to a
dielectric function of ε2(ω) = 2.25. The surface realizations were limited to the area
50λ × 50λ and discretized on grids of 561 × 561 points. The surface realizations were
characterized by a Gaussian power spectrum with correlation length a = λ/4 and an
RMS height of δ = λ/20. The MDRC was averaged over an ensemble of Ns = 5586
surface realizations. Here α → β denotes β-polarized incident light scattered into α-
polarized light. The vertical dashed lines denote the angle of specular and retro-specular
direction of scattering, ±θ0, respectively.

The MDRC for normal incidence, seen in Fig. 3(a) for glass and Fig. 4(a) for silver,
are near evenly distributed around θs = 0.0◦. For the polar angle of incidence θ0 = 34.05◦,
seen in Fig. 3(b) for glass and Fig. 4(b) for silver, we can see that the the p→ p scattered
light is more concentrated in the backscattering direction θs < 0◦, while the opposite is
true for s → s scattering. This is a trend which continues and intensifies for increasing
polar angles of incidence θ0. In addition, it is observed for glass that s-polarized incident
light is scattered more by the surface. Conversely, for the silver surface, p→ p scattering
contributes more than s → s; this is suspected to be caused by interactions with SPPs.
For flat surfaces s-polarized incident light cannot excite SPPs [3, pp. 18–20]; for rough
surfaces this is possible, which the s → p presence in the in-plane scattering indicates.
However, the coupling to SPP modes is much stronger for p-polarized light, which might
result in an additional contribution to p-polarized scattered light.

For some angles of incidence, small pronounced peaks are observed in the retro-specular
direction (θs = −θ0) in the MDRC of vacuum-silver interface. These peaks are called
enhanced backscattering peaks and they are the result of a multi scattering phenomenon
which for weakly rough surfaces involves the excitation of SPP’s [3, pp. 50–57]. Shortly
summarized, it is a coherent effect where light scattered twice by the surface, interferes
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(a) θ0 = 0.0◦ (b) θ0 = 34.05◦

Figure 4: The incoherent component of the MDRC (42) for in-plane scattering from a
randomly rough surface separating vacuum and silver as a function of the scattering angle
θs. The wavelength of the incident light (in vacuum) was λ = 632.8 nm and the polar angle
of incidence was in panel (a) θ0 = 0.0◦; in panel (b) θ0 = 34.05◦. The dielectric function of
silver at this wavelength is given by ε2(ω) = −16.0 + i1.088. The surface realizations were
limited to the area 25λ × 25λ and discretized on grids of 321 × 321 points. The surface
realizations were characterized by a Gaussian power spectrum with correlation length
a = λ/4 and an RMS height of δ = λ/40. The MDRC was averaged over an ensemble of
Ns = 5021 surface realizations. Here α → β denotes β-polarized incident light scattered
into α-polarized light. The vertical dashed lines denote the angle of specular and retro-
specular direction of scattering, ±θ0, respectively.

constructively in the anti-specular direction with light scattered by a reciprocal process.
This phenomenon was first predicted in 1985 by a theoretical perturbation study [34],
and was shortly after confirmed experimentally in 1987 [35]. These peaks can be clearly
discerned in Figs. 4(a) and 4(b) for p → p scattering, where the coupling to SPPs is
stronger.

The full angular distribution of the incoherent component of the MDRC for the
vacuum-glass interfaces as a function of q‖, is presented as color contour plots for the
polar angle of incidence θ0 = 0.0◦ in Fig. 5; θ0 = 34.05◦ in Fig. 6 (φ0 = 0.0◦ for both
cases). Here and in the following contour plots, the origin corresponds to the polar angle
of scattering θs = 0.0◦ and the edge, where q‖ = ω/c, to θs = 90.0◦. The direction of
specular reflection is shown as a white spot in the plots. For a visual geometrical reference
of the directions and scattering angles q‖ corresponds to, the reader is directed to Fig. 1.

The figures contain 9 sub-figures labeled (a)–(i) which depict the MDRC for various
polarizations of incident and scattered light. The first and second column from the left
(Figs. 5(a),(d),(g) and 5(b),(e),(h), respectively), the incident light is p- and s-polarized,
respectively. In the third column (Figs. 5(c),(f),(i)) the incident light is unpolarized, which
is denoted by ” ◦ ”. In the first row from the top (Figs. 5(a)–(c)) the polarization of the
scattered light is not recorded, which is indicated by ” ? ”. In the second and third row
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Figure 5: The full angular distribution of the incoherent component of the MDRC (42),
for light scattered by a rough interface separating vacuum from glass, as functions of the
lateral wave vector q‖. The angles of incidence are (θ0, φ0) = (0.0◦, 0.0◦). The parameters
are the same as for Fig. 3. In panels (c),(f) and (i) the ”◦” denotes that the incident light is
unpolarized, while ”?” in panels (a)–(c) denotes that the polarization of the scattered light
was not recorded. The white spot indicates the position of specular reflection (q‖ = k‖).

from the top (Figs. 5(d)–(f) and 5(g)–(i), respectively), the light scattered into p and
s-polarized light is shown, respectively.

The ◦ → α subplots were obtained by taking the sum of the co- and cross-polarized
MDRC’s for α polarized scattered light divided by 2. Similarly, the β → ? subplots were
obtained by taking the sum of the co- and cross-polarized MDRC’s for β polarized incident
light. By combining the two methods described above, the ◦ → ? subplots were obtained
by summing the four MDRC’s for α, β = p, s and dividing by 2. Simply put, the third
column from the left is the sum of the two first columns divided by two, and the first row
from the top is the sum of the second and third row.

A strong angular dependence is observed for both polar angles of incidence. All of the
plots show that the light scattered incoherently is distributed symmetrically along the
plane of incidence. For normal incidence, shown in Fig. 5, we observe that on average the
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Figure 6: The same as in Fig. 9, except that θ0 = 34.05◦.

co-polarized light (Figs. 5(d),(h)) is scattered in the plane of incidence, while the cross-
polarized light (Figs. 5(e),(g)) is scattered predominantly perpendicular to the plane of
incidence. Both the co- and cross-polarization distributions show a dipole-like pattern in
the angular distribution. For co-polarization the dipole-like angular dependence is ori-
ented along the q1q3-plane, while for cross-polarization it is oriented along the q2q3-plane.
The angular distributions show mirror symmetries about the q1q3- and q2q3-plane for all
polarization’s of scattered and incident light. In Figs. 5(a)–(c), where the polarization of
the scattered light is not recorded, it can be seen that the angle-dependent scattering is
for the most part isotropic, except for a minor anisotropy along the q2 and q1 direction
for p− and s−polarized incident light, respectively. This anisotropy is a result of the
intensity distribution being wider in the direction perpendicular to the direction of the
incident electric field, in comparison to the distribution in the direction along it. When
the incident light is unpolarized (Figs. 5(c),(f),(i)) the distributions are isotropic. It is
observed that s-polarized scattered light is distributed over a wider range of scattering
angles than the p-polarized light.

The patterns observed for normal incidence continue for higher angles of incidence,
which is depicted in Fig. 6 for θ0 = 34.05◦. Many of the symmetries observed in the
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Figure 7: The full angular distribution of the incoherent component of the MDRC (42)
for light scattering from a rough interface between vacuum and silver as a function of the
lateral wave vector q‖. The angles of incidence are (θ0, φ0) = (0.0◦, 0.0◦). The parameters
are the same as for Fig. 4. In panels (c),(f) and (i) the ”◦” denotes that the incident light is
unpolarized, while ”?” in panels (a)–(c) denotes that the polarization of the scattered light
was not recorded. The white spot indicates the position of specular reflection (q‖ = k‖).

distributions for normal incident light, no longer hold for non-normal incidence. Here, the
only remaining symmetry is the mirror symmetry about the plane of incidence. The dipole
pattern is still present, however, it is stronger in some directions and weaker in others.
For instance, the co-polarized distribution for p-polarized incident light is more intense in
the backwards scattering direction (q1 < 0) and weaker in the opposite direction (q1 > 0).
The opposite behavior is observed for s → s polarization. For cross-polarization the
distributions are stronger in the forwards scattering direction for both s- and p-polarized
incident light; this trend escalates for even higher polar angles of incidence. The slight
anisotropy observed for unrecorded polarization of scattered light is still present.

The full angular distribution of the MDRC for vacuum-silver interfaces is presented in
Figs. 7 and 8 for normal and non-normal incidence, respectively. Most of the observations
made for the vacuum-glass surface hold here as well and will therefore not be repeated.
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Figure 8: The same as in Fig. 11, except that θ0 = 34.05◦.

The main difference between the distributions of the glass and silver surfaces, is that the
anisotropy observed in the β → ? distributions is reversed for the silver surface. Here
the intensity distributions are wider along the direction of the incident electric field, in
comparison to the distribution in the direction perpendicular to it. It is also observed
that the intensity is higher for p-polarized incident light than s-polarized incident light
for non-normal incidence. Consequently, the distributions for unpolarized incident light,
when the polarization of the scattered light is recorded (◦ → α), are different. The areas
which had little to no contribution in the MDRC of the glass surface, have a noticeable
contribution here from multiple-scattering. The enhanced backscattering peak can be
discerned in Fig.8(h), where it has not been obscured by the background scattering.

4.1.2 The Mueller matrix

The Mueller matrix, for the light scattered incoherently by the vacuum-glass and vacuum-
silver systems, was calculated from Eqs. (44) and (47) on the basis of the reflection
amplitudes obtained from the simulations. The full angular distribution of the Mueller
matrix for the glass surface can be seen as a function of q‖ in Figs. 9 and 10 for the angles
of incidence (θ0, φ0) = (0.0◦, 0.0◦) and (θ0, φ0) = (34.05◦, 0.0◦), respectively.
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To emphasize the polarization effects of the surface, the Mueller matrices have been
normalized with respect to the first element M11, using Eq. (46). Since M11 only contains
the intensity distribution of the scattered light, which is available and has already been
studied through the MDRC of the surface, no essential information has been lost. Conse-
quently, the first element equals unity in all directions under this formalism. The elements
are organized in the matrix format, where the first element m11 is located in the upper
left corner (Fig. 9(a)), m12 is located in the first row and second column (Fig. 9(b)), etc.

For the glass surface under normal incidence, seen in Fig. 9, a strong angular depen-
dence can be seen in some of the elements. It is observed that the elementsm31,m41,m42,m43,m14,m24

and m34 are effectively zero. The contribution from m21,m12,m13 is weak, yet discernible.
The elements in the first and last column are circularly symmetric, while the second and
third column are symmetric under under 90◦ rotation and change of sign. The elements
in the third column are identical to the ones on the same row in the second column when
rotated by 45◦. The symmetry relations observed above obey the ones predicted by Bruce
[26], to be present in the Mueller matrix for light normally incident onto an isotropic
rough surface. Additionally, it is observed that the first and last element m11 and m44,
respectively, appear to be equal under a change of sign.

The elements can be interpreted by studying Eqs. (44). For example, the m12 element,
measures the difference between the intensity distributions of the scattered light when the
incident light is either p- or s-polarized. By looking at the MDRC we can see that the
β → ? distributions are quite similar for both polarizations, see Figs. 5(a) and 5(b). Con-
sequently, this is why the contribution to this matrix element is so small, the contribution
comes only from the anisotropies observed earlier between the two MDRC distribution
for p- and s-polarized incident light. Conversely, the m21 element gives the difference be-
tween the intensities of unpolarized light scattered into either p or s polarized light, i.e the
difference between Figs. 5(f) and 5(i). The m22 element, measures the difference between
co- and cross-polarized light. When m22 > 0 most of the light is co-polarized, and vice
versa. This is in perfect agreement with what was observed for the MDRC, the in-plane
scattering consists mainly of co-polarization, while the out-of-plane scattering is mainly
cross-polarized.

By comparing the Mueller matrix of the glass surface in certain direction to the matri-
ces of known optical devices, we can get more insight into the polarimetric behavior of the
surface. For normal incidence it is seen that the matrix has approximately the following
form in the q1q3-plane:

MR =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , (103)

which is the Mueller matrix of an ideal half-wave retarder [36, p. 161] (and an ideal mirror).
From looking at the effect this has on the Stokes vector (43), we can interpret the effect
it has on the polarization. For linearly polarized light, the quarter-wave plate conserves
the polarization and gives the electric field a phase shift of ∆φ = π. It is observed that
this matrix results in a 90◦ rotation of the polarization of the light scattered in-plane
when the incident light is ±45◦ polarized, or a change of handedness if the incident light
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Figure 9: The full angular distribution of the 16 elements of the Mueller matrix (44) from
light scattered incoherently by a randomly rough glass surface as a functions of q1 and
q2. The angles of incidence are (θ0, φ0) = (0.0◦, 0.0◦). The parameters are the same as for
Fig. 5. The elements 〈mi,j〉 (i,j = 1,2,3,4) are organized as a matrix, where i and j denote
the row numbered from the top and the column numbered from the left, respectively.
The elements are normalized with respect to the first element 〈M1,1〉 (a). The white spots
indicate the specular direction of reflection.

is circularly polarized. In the q2q3-plane the matrix reads approximately

M ′
R =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , (104)

which is the product between an optical rotation Mueller matrix and a half-wave plate
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[36, pp. 164–165], i.e.

MRMrot(θ) =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




1 0 0 0
0 cos(2θ) sin(2θ) 0
0 − sin(2θ) cos(2θ) 0
0 0 0 1



=


1 0 0 0
0 cos(2θ) − sin(2θ) 0
0 − sin(2) − cos(2θ) 0
0 0 0 −1

 ,
(105)

for θ = 90◦, i.e. the polarization is rotated 90◦ and the scattered electric field obtains a
phase shift of π. The matrix describes that β-polarized incident light scattered out-of-
plane will be cross-polarized, and that circular polarized light scattered out-of-plane will
change handedness. It is observed that the Mueller matrix in Fig. 9 behaves very similarly
to the matrix Eq. (105) for all θ = φs. To test this observation, Eq. (105) was calculated
as a function of φs(q1, q2) = arctan2(y, x), which can be seen in Appendix A, along with
the definition of the arctan2(y, x) function. There it can be seen that the plot of Eq. (105)
is almost identical to Fig. 9.

In the Mueller matrix of the glass surface for non-normal incidence, which can be seen
in Fig. 10 for the polar angle of incidence θ0 = 34.05◦, most of the symmetries disappear.
The elements m23 and m32 appear to still be identical, while m22 and m33 no longer appear
to be equal under a change of sign. The m13 and m31 elements are no longer zero, and in
fact they are almost identical, both show significant contributions in different directions.

The contribution from the m21 and m12 elements is stronger than what was observed
for normal incidence, they also appear to be near identical. The contribution is located
mainly in the forward scattering direction and is negative. This is because the intensity
of s → ? and ◦ → s scattering dominates the forward scattering in the MDRC for non-
normal incidence. The opposite is true for p-polarization, which is why we see a positive
contribution in the backwards scattering direction.

The transpose of the first row is observed to be near identical to the first column,
which was not the case for normal incidence. Additionally, it is observed that m44 no
longer equals −m11 in the forward scattering direction. All the elements except m44 in
the last column and last row are still zero. Overall, the polarimetric behavior is observed
to be more complex than the one described by Eq.(105), making the matrix much harder
to decompose into simpler optical operations as was done for normal incidence.

The Mueller matrices of the vacuum-silver surface can be seen in Figs. 11 and 12 for
normal and non-normal incidence, respectively. For normal incidence the same symmetry
relations are observed , except that m44 6= −m11. The diagonal elements and the central
block elements of the matrix are very similar to the ones for the glass surface. However,
many of the elements which were zero for the glass surface have a noticeable contribution
for the silver surface. In particular, the m21 element has a very strong contribution for
very high polar scattering angles. Since this contribution is positive it means that there is
a higher presence of p-polarized scattered light for large polar scattering angles according
to Eq. (44).

The central 2×2 block of the Mueller matrix, which is related to rotations [36, pp. 165–
166], is almost identical to what was observed in the Mueller matrix for the Gaussian-
correlated glass surface. Additionally, the last row and column, shows visible contributions
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Figure 10: The same as in Fig.9, except that θ0 = 34.05◦.

in some of the elements which was not present in the vacuum-glass case. This is espe-
cially visible in m34 and m43 in the lower right block of the matrix, which are related to
retardation [36, pp. 165–166].

For non-normal incidence seen in Fig. 12, the symmetries disappear again. The central
block and diagonal is still very similar to what was observed for glass. The other elements
are still very different compared to the glass case. The transpose of the first row does not
resemble the first column, as it did for the Gaussian-correlated glass surface. The contrast
between normal and non-normal incidence is not as strong for the silver surface as it was
for the glass surface. The distributions are very similar to the ones for normal incidence
except for some distortions. However, noticeable contributions can be seen in the m31 and
m24 elements which were not present under normal incidence.

By performing various decomposition’s of the Mueller matrices it is possible to obtain
a more phenomenological description of the scattering systems. Several effects can then
be quantified such as the diattenuation, retardance and depolarization [36, pp. 178–192].
However, due to time constraints, a more detailed study of the Mueller matrices will not
be included in this work.
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Figure 11: The full angular distribution of the 16 elements of the Mueller matrix (44)
from light scattered incoherently by a randomly rough silver surface as a functions of q‖.
The angles of incidence are (θ0, φ0) = (0.0◦, 0.0◦). The parameters are the same as for
Fig. 7. The elements 〈mi,j〉 (i,j = 1,2,3,4) are organized as a matrix, where i and j denote
the row numbered from the top and the column numbered from the left, respectively. The
elements are normalized with respect to the first element 〈M1,1〉. The white spots indicate
the specular direction of reflection.

4.1.3 The reflectivity and reflectance for directional illumination

The reflectivity of the Gaussian-correlated glass surface was calculated as a function of
the incident angle θ0 and is presented in Fig. 13. Here we can see the reflectivity of both
unpolarized and linearly polarized incident light, which were obtained from Eqs. (58) and
(57), respectively. Note that the resolution becomes weaker with increasing angles, and
that the reflectivity for θ0 = 90◦ is not resolved. This is because q‖, which is evenly
discretized along each axis, is proportional to sin θs. As expected the reflectivity for p-
polarized incident light is zero at the Brewster angle θ0 ≈ 56◦, since only light scattered
coherently contributes to the reflectivity.

The reflectance under directional plane wave illumination was obtained using Eq. (102)
and can be seen as a function of the incident angle θ0 in Fig. 14. Here the values for the
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Figure 12: The same as in Fig.11, except that θ0 = 34.05◦.

reflectance can be seen for each angle resolved on the q‖i,j grid, along with an interpolation
which was calculated with the natural assumption that Rβ(90◦) = 1. The weights wi,j
in the discretized integral were obtained from a quadrature scheme for integration over a
circular disk domain; for details see Ref. [37].

Here we see that the zero at the Brewster angle for p-polarization has been lifted
and that there is a small contribution to the reflectance. This effect is purely caused by
light scattered incoherently. Otherwise, the reflectance is almost identical to the reflectiv-
ity, which shows that the scattering is still dominated by specular (coherent) scattering;
this is expected for weakly rough surfaces such as the one considered here. For a more
rough surface, there would be a more prominent difference between the reflectivity and
reflectance; to show this the reflectivity and reflectance of a moderately rough surface is
displayed in Appendix B, where it can be seen that the differences are more pronounced.

To display the diffuse contribution to the reflectance, the incoherent component of the
reflectance for directional illumination is shown in Fig. 15, for both p, s and unpolarized
incident light. Here it is observed that the contribution from light scattered incoherently
decreases when the angle of incidence θ0 approaches 90◦. The contribution is very weak
for directional illumination.
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Figure 13: The reflectivity of a randomly rough glass surface as a function of the incident
angle θ0, under directional illumination. The surface is characterized by a Gaussian power
spectrum (16) with a = λ/4 and have a RMS height of δ = λ/20. The surface and
numerical parameters used were the same as for Fig. 22.

4.1.4 The reflectivity and reflectance for diffuse illumination

To obtain the diffuse-diffuse reflectivity, the reflectivity for directional illumination was
multiplied by a weight function `(θ0) and integrated over all angles of incidence θ0. The
weight function considered in this work was the Lambertian weight function for ideal dif-
fuse hemispherical illumination given by Eq. (72). More realistic weight functions would be
easy to incorporate numerically, however, the focus of this work will be on the Lambertian
limit as it was considered to be the most useful reference.

Despite that `(θ0) tends to zero for increasingly higher angles of incidence, the reflec-
tivity for these angles is relatively high. The polar angular region 60−90◦ has a significant
contribution to the integration, therefore, a low resolution in this region is problematic.
To mitigate the loss of resolution for the higher angles, the reflectivity had to be estimated
for more angles of incidence near 90◦. Using the fact that the reflectivity should be unity
for θ0 = 90◦, the reflectivity was interpolated using a 5th order spline interpolation from
normal to 90◦ incidence. To ensure that the interpolation was well behaved a simple test
was conducted; the Fresnel reflectance equations [14, pp. 411–412], were sampled at the
same angles as the simulation results and interpolated; then the interpolation was com-
pared to the analytical Fresnel reflectance as a function of θ0, for both p- and s-polarized
incident light. The resulting interpolations were found to be indistinguishable from the
Fresnel functions. The interpolated reflectance of the rough surface is shown as a dotted
line in Fig.14, where it can be seen that the interpolation is in good agreement with the
data points.

The diffuse-diffuse reflectance (reflectivity) of a flat surface under hemispherical Lam-
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Figure 14: The reflectance of a randomly rough glass surface as a function of the incident
angle θ0, under directional illumination. The surface and numerical parameters used in
the simulations are the same as for Fig. 13. The dotted line shows a 5th order spline
interpolation of the reflectance results.

bertian illumination can be seen in Tab. 1. The values for s- and p-polarized incident light

Rs Rp R

0.146667 0.036889 0.091778

Table 1: The diffuse-diffuse reflectance (reflectivity) of a flat glass surface, under hemi-
spherical Lambertian illumination.

were obtained by numerically integrating the Fresnel equations [14, pp. 411–412], using
`(θ0) as a weighting factor, over all polar angles of incidence. For unpolarized incident
light, the diffuse-diffuse reflectance was obtained from an analytical evaluation of the in-
tegral in Eq.(70) carried out by Walsh [38]; the resulting equation from this evaluation
can be seen in Ref. [39]. Since the reflectivity and reflectance are the same for flat sur-
faces, the results for a flat surface will be used as a reference for comparison with both
the reflectance and reflectivity of rough surfaces.

The interpolated reflectivity of the rough surface was integrated with a 95th degree
augmented Gaussian quadrature scheme, for more details see Ref. [40]. The precision of
the integration was tested by integrating the Fresnel reflectance, which was sampled at
the same angles as the results and then interpolated. The numerical values obtained for
Rs and Rp were then used to calculate the reflectance for unpolarized incident light using
R = (Rs + Rp)/2, which was compared to the analytically obtained value presented in
Tab. 1. The resulting reflectance was found to deviate from the analytically obtained value
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Figure 15: The incoherent component of the reflectance as a function of the incident angle
(62) for a randomly rough glass surface, under directional plane wave illumination. The
parameters are the same as for Fig. 14.

by only 0.001%.
The reflectivity for a randomly rough glass surface illuminated by hemispherical Lam-

bertian illumination can be seen for s-, p- and unpolarized light in Tab. 2.

Rs Rp R

0.124295 0.032497 0.078396

Table 2: The diffuse-diffuse reflectivity of a rough 2D glass surface, under diffuse Lamber-
tian illumination (73). The characterization of the surface and the numerical parameters
are the same as in Fig. 3(a).

By performing the same steps as for the reflectivity, the reflectance of a diffusely
illuminated Gaussian-correlated glass surface was calculated, and is shown in Tab. 3 for
p, s and unpolarized incident light.

Rs Rp R

0.128928 0.036749 0.082839

Table 3: The diffuse-diffuse reflectance of a randomly rough 2D glass surface, under hemi-
spherical Lambertian illumination (70). The characterization of the surface and the nu-
merical parameters are the same as in Fig. 3(a).

Compared with the results for a flat surface, we can see a significant decrease in both
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the reflectivity and reflectance. In the study for one-dimensional randomly rough surfaces
[7], it was found that the reflectance can increase for rough glass surfaces with correlation
lengths shorter than the wavelength of the incident light. However, here it is observed that
the reflectance has decreased for the correlation length a = λ/4. The results presented
here are more similar to the 1D results with a ≥ λ, rather than a < λ. Why this is the
case is currently not fully understood.

It was also shown for 1D surfaces [7], that the decrease in reflectance can be enhanced
when the roughness is increased. To study how an increase in surface roughness affects the
diffuse-diffuse reflectance of 2D surfaces, several simulations were performed using various
roughness parameters. In Fig. 16 the reflectance of Gaussian-correlated glass surfaces can
be seen as a function of the RMS-slope, δs, for different correlation lengths, a. For surfaces
with isotropic Gaussian power spectra, the RMS-slope along each axis is given by [3, p. 8]

δs =
√

2
δ

a
, (106)

where δ is the RMS-height of the surface. The RMS-slope will be used here as a measure
of the degree of roughness. In Fig. 16 the correlation lengths were held constant while δ
was increased.

The simulations presented here were all performed at a lower resolution to reduce
the computational cost. The number of discretization points along each axis was Nx =
321 and the surface lengths were set to L = 25λ. The number of polar angles resolved
with these parameters was Nθ = 26; with these parameters the angles resolved were
also resolved by the high resolution simulations. Each simulation was averaged over an
ensemble of Ns = 500 surface realizations. The quality of the interpolation when using a
low angular resolution was assessed in the following way; the high resolution reflectance
results, see Fig. 14, were sampled at the same angles as the low resolution results; then the
sampled reflectance was interpolated and used to obtain the diffuse-diffuse reflectance with
Eqs. (70) and (102); the calculated reflectance was then compared to the results obtained
with high resolution presented in Tab. 3. Performing the interpolation with fewer angles
resulted in the final integration to be accurate to the third decimal point with respect
to the high resolution results, which was deemed acceptable. The interpolated directional
reflectance of one of the low resolution simulations can be seen in Fig. 38 in Appendix B,
where it is shown that the interpolation is well behaved.

Correlation lengths larger than 2λ were not achievable, since they require very large
surfaces with respect to the wavelength; this would require a considerable amount of
discretization points and be too computationally demanding to simulate using the 2D
Rayleigh method. Additionally, producing plots for higher correlation lengths would re-
quire surfaces with an RMS height above the limit for which the software can produce
reliable results. The region of validity of the Rayleigh method for 2D randomly rough sur-
faces has been mapped for several values of a and δ in [22], which served as a useful guide
for determining the right simulation parameters. The limit can be directly observed for
several correlation lengths in Fig. 16, where the plots were truncated because the energy
conservation criterion was not satisfied for higher values of δs. To achieve results for longer
correlation lengths more research needs to be conducted using different approaches, for
example ones based on the Kirchhoff approximation [41], which are valid when a� λ.

In Fig. 16, several trends are found to be opposite of what was observed for 1D
randomly rough surfaces by González-Alcalde et al. [7]. It is observed that for a > λ that
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Figure 16: The reflectance of diffusely illuminated rough glass surfaces as a function of the
RMS slope for different correlation lengths a. The surfaces were characterized by Gaussian
correlation functions (16). The results for s-, p- and unpolarized incident light are shown
in order from the top. The results for flat surfaces are denoted by the black triangles and
dashed lines. The results were averaged over ensembles of Ns = 500 surface realizations.

the diffuse-diffuse reflectance for both s and p-polarized incident light increases along
with the roughness, whereas for 1D surfaces it was found to steadily decrease for both
polarizations. The exception to this trend is the small decrease at first in Rs for a =
3λ/2 , which then reverses for higher δs. For a = 2λ the increase is extreme for p-
polarized incident light at the highest achievable RMS slopes. At these points the energy
conservation criterion is satisfied within 1%. This small deviation from unity is expected to
have an insignificant effect on the directional reflectance; however, the total contribution
from integrating over all polar angles of incidence can be high enough to affect the results
for the diffuse-diffuse reflectance. Therefore, the diffuse-diffuse reflectance should not be
treated as exact for the highest achievable RMS slopes and one should keep in mind that
there is a margin of uncertainty. Nonetheless, these results are still considered to be good
indications of the expected trends.

57



For correlation lengths a ≤ λ, the results for Rs decrease when the roughness is
progressively increased. When the incident light is p-polarized, the correlation lengths
λ ≥ a ≥ λ/2 yield an increase in the reflectance which was not observed for 1D surfaces; for
a = λ/4 there is a negligible decrease when δs is increased. The diffuse-diffuse reflectance
of 1D surfaces was found to have a tendency to increase for a < λ and decrease for a ≥ λ,
for all polarizations; while for 2D surfaces the trends are observed to depends strongly on
the polarization of the incident light when a ≤ λ. The dependence of the diffuse-diffuse
reflectance on δs is observed to be weaker for shorter correlation lengths, which was also
observed for 1D surfaces.

To explain these differences observed between 1D and 2D scattering systems will
require further research. Due to time constraints, it was unfortunately not possible to
address this research within this M.Sc. thesis.

Thus, when the RMS-slope of two dimensional randomly rough glass surfaces is sys-
tematically increased, the diffuse-diffuse reflectance is expected to increase for all polariza-
tions of the incident light, when the correlation length is greater than 3λ/2; moreover, the
trend is expected to reverse for s-polarized incident light for shorter correlation lengths.
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4.2 Isotropic Gaussian-cosine correlated surfaces

In this work we consider two systems with randomly rough surfaces characterized by
the Gaussian-cosine auto-correlation function (18). Both systems are isotropic, meaning
a1 = a2 = a, and have a vacuum ambient and a silver substrate. The surface in the first
system, denoted by 1, has a correlation length a = 0.25λ and RMS height of δ = 0.025λ;
which is the same as the Gaussian-correlated silver surface presented earlier in Sec. 4.1.
The surface in the second system, denoted by 2, has a = λ and δ = 0.05λ. Both systems
have b = a/2. In Sec. 4.3 the MDRC for anisotropic Gaussian-cosine correlated surfaces
is presented, for the same two systems presented here, except that the correlation lengths
in the x2 direction are doubled, i.e. a2 = 2a1.

Simulations solving the RRE for reflection were performed for both systems using
the same numerical parameters as the Gaussian-correlated silver surface in presented
earlier in Sec. 4.1; to remind the reader, the parameters will be repeated again here. The
surface realizations were limited to square areas of 25λ× 25λ and discretized on grids of
321×321 points. The number of discretization points along q1 and q2 was then consequently
Nq = 161 and the upper cutoff in the numerical RRE integral was ±Q/2 = ±3.2ω/c. The
number of polar angles resolved by these parameters was Nθ = 26. The wavelength of the
incident light was again chosen to be λ = 632.8 nm, the dielectric function of silver at this
wavelength is given by ε2(ω) = −16.0 + i1.088 [33].

Demonstrations of the surface profile functions for all of the Gaussian-cosine correlated
surfaces considered in this work, both isotropic and anisotropic, can be seen in Fig. 17.
Here Figs. 17(a) and 17(b) are realizations of the surfaces used for System 1 and 2,
respectively. To be able to compare directly, the anisotropic versions of System 1 and 2
with a1 = a and a2 = 2a are shown in Figs. 17(c) and 17(d), respectively.

As there is no known analytical form of the two-dimensional Gaussian-cosine power
spectrum , the one used in the Fourier filtering method (see Sec. 3.2) was obtained by a
2D FFT of the auto-correlation function (18). To asses the quality of the Fourier filter-
ing method when using a numerical power spectrum, the auto-correlation function was
calculated with the definition given by Eq. (14), where the average was taken over an
ensemble of Ns = 10, 000 surface realizations, and then compared to the analytical form.
The calculated correlation function was found to be near identical to the analytical one.

The quality of the simulations was tested for the two systems with the energy con-
servation test presented in the method section. For the first system it was found that
|U − 1| ≤ 0.004, i.e., the energy is conserved to within 0.4%. For the second system it was
found that |U − 1| ≤ 0.015. The RRE was solved for Ns = 5000 surface realizations of the
Gaussian-cosine correlated surfaces, for both systems; the resulting reflection amplitudes
were averaged over this ensemble.
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(a) (b)

(c) (d)

Figure 17: Square segments of numerically generated realizations of the surface pro-
file functions ζ(x‖) for four different surfaces. All four surfaces are characterized by a
Gaussian-cosine correlation function (19), and have the following surface parameters: (a)
a1 = a2 = λ/4, b = a/2, δ = λ/40; (b) a1 = a2 = λ, b = a/2, δ = λ/20; (c) a1 = λ/4,
a2 = λ/2, b = a/2, δ = λ/40; (d) a1 = λ, a2 = 2λ, b = a/2, δ = λ/20; where a1 and
a2 are the correlation lengths in the x1 and x2 directions, respectively. Furthermore, the
root mean square height of the surfaces is denoted by δ and λ is the wavelength of the
light incident on the surfaces. The surface realizations were generated with the same un-
correlated random numbers to highlight the differences between isotropic and anisotropic
correlation.
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4.2.1 The mean differential reflection coefficient

The incoherent component of the MDRC was calculated for both Gaussian-cosine corre-
lated systems using the same methods as before. To be able to compare these results with
the ones obtained for the Gaussian-correlated surfaces, the results are presented for the
same angles of incidence as used in Sec.4.1.

The in-plane cuts (φs = φ0) of the MDRC for System 1 are shown in Fig. 18 for normal
incidence (θ0, φ0) = (0.0◦, 0.0◦), and in Fig. 19 for (θ0, φ0) = (34.05◦, 0.0◦).

Figure 18: The incoherent component of the MDRC (Eq. (42)) for in-plane scattering from
a randomly rough interface between vacuum and silver as a function of the scattering
angle θs. The wavelength of the incident light (in vacuum) was λ = 632.8 nm and the
polar angle of incidence was θs = 0.0◦, the dielectric function of silver at this wavelength
is ε2(ω) = −16.0 + i1.088. The surface realizations were limited to the area L × L,
with L = 25λ and discretized on a grid of 321 × 321 points. Each surface realization
was characterized by the Gaussian-cosine correlation function (18) with the correlation
lengths a = λ/4 and b = a/2, the RMS height was δ = λ/40. The MDRC was averaged
over an ensemble of Ns = 5000 surface realizations. Here α → β denotes β-polarized
incident light scattered into α-polarized light. The vertical dashed lines denote the angle
of specular and retro-specular direction of scattering, ±θ0, respectively.

The in-plane cuts show a strong presence of cross polarized scattering, which was much
weaker in the MDRC for the Gaussian-correlated silver surface presented in Sec. 4.1.1.
As mentioned when discussing the MDRC of Gaussian-correlated surfaces, the presence
of cross-polarized in-plane scattering is caused by multiple-scattering; the same is true for
out-of-plane (φs = φ0 + 90◦) co-polarized scattering. For the weakly rough metal surfaces
discussed in this work, multiple-scattering is dominated by surface plasmon polaritons
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(SPPs) excited by the incident light. For p-polarized incident light we can see that the
scattering is suppressed in the vicinity of the normal angle of scattering θs = 0.0◦, for
both co- and cross-polarization. Furthermore, the suppressed area is flanked by two peaks
of higher intensity, forming a valley shape. The β → p scattering is observed to be much
stronger than β → s, which was also true to a lesser extent for the Gaussian-correlated
silver surface.

For increasingly higher polar angles of incidence, the incoherent scattering for p-
polarized incident light, is progressively more co-polarized. In addition, it is observed
that the peak located in the forward scattering direction decreases, while the peak in
the backward scattering direction increases. The intensity is greatly enhanced for p → p
polarization, while the other scattering contributions remain almost unchanged. For s-
polarized incident light, the distributions are closer in resemblance to the Gaussian co-
polarized cases in Sec. 4.1.1. For larger polar angles of incidence the s→ s distribution is
slightly more enhanced in the backwards scattering direction (q1 < 0).

The valley structure along with the strong presence of multiple-scattering, was not
present in the MDRC for the Gaussian-correlated silver surface presented in Fig. 4, which
had the same correlation length and RMS-height as the surface of System 1. Furthermore,
for non-normal incidence the p → p scattering is observed to dominate over the other
in-plane scattering distributions to a much greater extent than what was seen for the
Gaussian-correlated silver surface. Therefore, it can be concluded that these effects are
purely caused by the Gaussian-cosine correlation function of the surface; this will be
discussed further in the end of this section where the shape of the Gaussian-cosine power
spectrum is discussed.

Figure 19: The same as in Fig. 18, except for the polar angle of incidence being θ0 = 34.05◦

In Figs. 18 and 19, enhanced backscattering peaks can be seen in the retro-reflection
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direction (θs = −θ0) for the co-polarized scattered light, for all angles of incidence. Small
peaks are also observed for the cross-polarized light for normal incidence, however, they
are not visible for other polar angles of incidence. The enhanced backscattering peak
was also present in the scattering for the Gaussian-correlated silver surface; therefore, it
was expected to be present for Gaussian-cosine correlated silver surfaces as well. The phe-
nomenon was not observed in the MDRC of the vacuum-glass system studied in Sec. 4.1.1,
since SPPs require a dielectric-metal interface to be exited. In Fig. 40 the in-plane MDRC
of a Gaussian-cosine correlated glass surface is shown; the enhanced backscattering peak
is not present there either. The difference in intensity between s→ s and p→ s is not as
vast as observed for System 1, which along with the weak enhanced backscattering peak
suggest that the coupling to SPPs is weak for this surface.

Figure 20: The same as in Fig. 18, except for the correlation length and RMS height being
a = λ and δ = λ/20, respectively.

For some polar angles of incidence, small peaks are discernible in the specular direction
of the MDRC for p→ p-polarized light, which could be manifestations of another multiple-
scattering phenomenon, namely the enhanced forward scattering peak [3, pp. 61–67]. The
origin of enhanced forward scattering peak lies in quadruple scattering processes, and
require a power spectrum, g(

∣∣k‖∣∣), which supports counter-propagating SPPs. This is
only possible if the length of the SPP wave vector, kspp, and the power spectrum satisfies
g(2 |kspp|) 6= 0 at the frequency, ω, of the incident light [3, pp. 61–67]. For a vacuum-silver
interface, using Eq. (11) yields kspp ≈ (1.033+i0.002)ω/c at the wavelength λ = 632.8 nm;
this gives g(2 |kspp|) ≈ 1.316, which makes System 1 susceptible for this phenomenon. If
these peaks are indeed forward scattering peaks, then the contribution is weak enough to
be almost entirely masked by other scattering processes.

The in-plane cut of the MDRC for System 2 is shown in Figs. 20, 21 for the angles of
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Figure 21: The same as in Fig. 20, except for the polar angle of incidence being θ0 = 34.05◦.

incidence (θ0, φ0) = (0.0◦, 0.0◦) and (θ0, φ0) = (34.05◦, 0.0◦), respectively. Similar trends
are observed here as for System 1, such as a central area where the scattering is suppressed
and an enhanced backscattering peak. For System 1 the suppressed area was located
around the normal angle of scattering for all polar angles of incidence, while for System 2
the valley structure is much deeper relative to the surrounding peaks and it is observed
that the structure is centered around the specular direction of scattering. In contrast to
System 1, the cross-polarization contributes significantly less to the in-plane scattering in
the MDRC of System 2. For normal incidence the cross-polarized scattering is negligible,
while for non-normal incidence there are noticeable contributions located around the
specular direction. The enhanced backscattering peak is observed again, however, it is
much less pronounced here in comparison to the MDRC for System 1.

Just as for System 1, small peaks are visible in the specular direction for some angles of
incidence for co-polarized scattering in the MDRC of System 2. One of the aforementioned
peaks can be seen in Fig. 21, where the polar angle of incidence was 34.05◦. The observed
peak was first assumed to be an enhanced forward scattering peak, however, in this case
kspp yields g(2 |kspp|) ≈ 0. Therefore, it can be concluded that this peak is unlikely to
have originated from the enhanced forward scattering phenomenon. It is possible that
another multiple-scattering process could have caused these peaks; however, statistical
fluctuations and numerical artifacts are not ruled out either.

The full angular distributions of the incoherent component of the MDRC as a function
of the lateral wave vector q‖ can be seen in Figs. 22 and 23 for System 1. The Figures
and labels are organized in the same manner as described earlier in Sec.4.1.1 concerning
the MDRC of Gaussian-correlated surfaces.

The MDRC of System 1 under normal incidence, Fig. 22, has many of the patterns
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Figure 22: The full angular distribution of the incoherent component of the MDRC (42),
for light scattering from a rough interface between vacuum and silver, as a function of the
lateral wave vector q‖. The angles of incidence were (θ0, φ0) = (0.0◦, 0.0◦). The parameters
are the same as for Fig 18. In panels (c),(f) and (i) the ”◦” denotes that the incident light
is unpolarized, while ” ? ” in panels (a)–(c) denotes that the polarization of the scattered
light was not recorded.

which were observed in the angular distribution of the MDRC for the Gaussian-correlated
silver surface, see Fig. 7. The dipole-like structure can again be seen for the co- and cross-
polarized light (Figs. 22(d),(e),(g),(h)). However, the structures differ vastly between p-
and s-polarized scattered light. In the case of p-polarized scattered light, the light is
distributed over a much wider range of angles than β → s scattering and what was
previously observed with Gaussian correlation. It is again observed that the intensity is
strongest parallel and perpendicular to the plane of incidence for co- and cross-polarized
light, respectively. It is observed that the s-polarized scattered light is concentrated around
the origin; while p-polarized scattered light is stronger away from the origin, where the
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polar angles of scattering are higher. Comparing the second and third row from the top,
it is clearly seen that p-polarized incident light is scattered more by the surface than s-
polarized incident light. For the Gaussian-correlated surfaces the differences between the
polarizations of the scattered light in the angular distributions of the incoherent MDRC
were marginal, while for the Gaussian-cosine correlated surface of System 1 there is a
striking contrast.

Figure 23: The same as in Fig. 18, except for the polar angle of incidence being θ0 = 34.05◦.

The full angular distribution of the incoherent MDRC of System 1 can be seen in
Fig. 23 for (θ0, φ0) = (34.05◦, 0.0◦). Here it is readily seen that the co-polarized scattering
for p-polarized incident light dominates the scattering from the surface. The enhanced
backscattering peak is clearly distinguishable in the anti-specular direction. Furthermore,
the dip in intensity around the origin, which was observed in the in-plane cut for p-
polarized scattered light, is clearly seen in the second row from the top. The strong
presence of multiple-scattering, along with the prominent enhanced backscattering peak
and the bias towards p-polarized scattering, shows that the surface of System 1 has a
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strong ability to support the excitations of SPPs.
When the polar angle of incidence is increased from normal incidence, several trends are

observed. The contribution from s-polarized incident light diminishes, while it is enhanced
in the p-polarized case. The dipole pattern observed for normal incidence vanishes and is
only weakly noticeable in the s→ s and s→ p scattering. The p-polarized scattered light
concentrates in the backward scattering direction. Generally, the contrasts between what
was observed for the Gaussian-correlated surfaces and the results from System 1, broaden
for increasingly non-normal incidence.

Figure 24: The same as in Fig. 22, except for the correlation length and RMS height being
a = λ and δ = λ/20, respectively.

The full angular distribution of the incoherent component of the MDRC for System 2
as a function of q‖, can be seen in Figs. 24 and 25 for the spherical angles of incidence
(θ0, φ0) = (0.0, 0.0) and (θ0, φ0) = (34.05, 0.0), respectively. Here it is observed that the
distributions share many similarities with the results obtained for the Gaussian-correlated
surfaces, except for a strong suppression of scattering modes around the specular direction
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of reflection. This specular suppression effect was also present in results for Gaussian-
cosine correlated vacuum-glass interfaces in Ref. [8], where the scattering results were
obtained with a approach based on the Kirchhoff approximation [41].

The MDRC for normal incidence, shown in Fig. 24, is the most similar to the results
for the Gaussian-correlated case seen in Fig. 7. The symmetries and patterns are almost
identical, except for the reduced scattering near the specular direction. The dipole pattern
is observed for the co- and cross-polarized scattered light. However, because of the scat-
tering suppression around the origin, the two dipole branches are split in half. The two
halves lie symmetrically about the q1q3- and q2q3-plane for cross and co-polarized light,
respectively. The anisotropy in β → ? contour plots, is observed here as well. The lack of
contribution in the q1q3- and q2q3-plane for cross- and co-polarized light shows that there
is very little multiple-scattering present in System 2; this suggests that the coupling to
SPPs is relatively weak.

The MDRC for non-normal incidence, which can be seen in Fig. 25, shows trends
similar to the ones observed for normal incidence. The contour plots are similar to the
Gaussian-correlated case, except for a suppression of scattering encompassing the specular
direction. However, the dipole pattern in the p → p scattering is concentrated in the
forward scattering direction (q1 > 0), which is the opposite of what was observed for the
Gaussian-correlated silver surface. There, it was found that the p→ p scattered light was
concentrated in the backwards scattering direction, the same is observed for System 1 in
Fig. 23. Therefore, the cause of the effect observed here is assumed to partly lie in either
the correlation length or the RMS-height of the system.

The suppression effect observed for the Gaussian-cosine correlated surfaces, could be
of interest to the solar cell industry. Simplified, a photovoltaic (PV) cell consists of three
layers: the anti-reflection coating (ARC), which transmits the incident light into the cell;
a base, which absorbs the light and generates the current; and a back reflector, which
reflects any unabsorbed light back through the base. The efficiency of thin PV-cells can
be increased by introducing roughness to the interfaces between the layers [11].

A back reflector with a roughness designed to scatter the incident light above the
critical angle of the ARC-base interface, or the ambient-ARC interface, ensures total
internal reflection; this would effectively trap any unabsorbed light in the active region of
the cell. This is most often achieved by covering the back reflector with a periodic grid
of pyramid structures [42], which reflect the light at polar angles high enough to trap
the light. However, In ultra thin PV-cells these pyramid structures are more difficult to
incorporate, and a rough surface with similar reflective properties is more feasible.

For normal incidence, the in-plane cut of System 2 shown in Fig. 20 shows that the
incoherent scattering is strongly suppressed for polar angles in the range θs ≈ [−10◦, 10◦].
If the critical angle for the ARC-base interface of a PV-cell was θc = 10◦ or lower, then
System 2 would be a good candidate for a back reflector surface. However, for higher
critical angles the angular area of suppression needs to be enlarged; the radius would
have to correspond to the critical angle or above for light to be trapped in the PV-cell.
Short simulation tests have show that the radius can be controlled by adjusting the b
parameter in the Gaussian-cosine auto-correlation function, this is further supported by
the shape of the power spectrum when b is adjusted, which is discussed later in this
section.

For the surface to have a relevant impact on the performance of the PV-cell, it also
requires the percentage of the incident light reflected incoherently by the surface to be
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Figure 25: The same as in Fig. 20, except for the polar angle of incidence being θ0 = 34.05◦.

quite high. The incoherent reflectance of the Gaussian-cosine correlated surfaces for nor-
mal incidence were Rincoh(θ0) ≈ 0.029 and Rincoh(θ0) ≈ 0.341 for System 1 and System 2
respectively. This shows that the surface of System 2 is quite promising as a back reflector
in a PV-cell, as it reflects a high percentage of the light diffusely and suppresses near-
normal scattering. However, more numerical studies are required, using relevant materials
and wavelengths, to find the optimal surface parameters for solar cell applications. In
addition, the development of reliable methods for the manufacturing of Gaussian-cosine
correlated surfaces is required, followed by experimental verification of the numerically
observed properties.

To get a further understanding of the structures observed in the MDRC, e.g., the
near specular suppression in System 2, we will study the power spectra of all the systems
shown so far. In Fig. 26, the power spectra for both the isotropic Gaussian and Gaussian-
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cosine correlated surfaces are displayed as functions of q‖. The power spectra have been
normalized with respect to their maxima, which is denoted by G(q‖), to highlight the
differences in their shapes. To show what happens when the parameter b is slight adjusted,
a power spectrum with b = a/3 is displayed, with the same correlation length as System 2.

Figure 26: The power spectra of isotropic Gaussian, and Gaussian-cosine correlated sur-
faces, normalized with respect to their maxima, as functions of q‖. The dashed line denotes

the border between propagating modes (q‖ ≤
√
ε1(ω)ω/c and non-propagating (evanes-

cent) modes, the axis has been scaled down in this region to save space and highlight the
propagating region. The polar scattering angles corresponding to the propagating modes,
are shown on the top.

From small-amplitude perturbation theory (SAPT) it can be shown that the single-
scattering contribution to the incoherent MDRC is proportional to the power spectrum
[3, pp. 31–34], i.e., 〈

∂R
(1)
αβ(q‖|k‖)
∂Ωs

〉
∝ g(ksc), (107)

where ksc = q‖ − k‖ is the transfer wave vector of the single-scattering event. A know
consequence from Eq. (107) is that when g(ksc) = 0, single-scattering events from k‖ to
q‖ are forbidden.

The isotropic Gaussian-cosine power spectra shown in Fig. 26 are all zero in circular
regions centered around the origin, where the radii dependent on the correlation length
and the value of the b parameter. For scattering events ksc in these regions, the single-
scattering term in SAPT will be zero, which means that single-scattering events do not
contribute to the MDRC. Consequently, the scattering is suppressed where g(ksc) = 0
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and the contribution to the MDRC near ksc = 0 mainly comes from multiple-scattering
processes. This is why we observe the valley structures in the MDRC of Gaussian-cosine
correlated surfaces around the specular direction.

Since the surfaces in this section are only moderately rough, multiple-scattering is
dominated by interactions with SPPs. For a vacuum-silver interface, when λ = 0.6328 µm
the length of the SPP wavevector is |kspp| = 1.0326. For System 1, we see that in the
non-zero part of G(q‖) there is a maxima near kspp. Because multiple-scattering terms
in SAPT also depend on the magnitude of the power spectrum, the contribution from
multiple-scattering is affected by the magnitude of the power spectrum; this could partly
explain the large contribution from multiple-scattering observed in the MDRC of Sys-
tem 1. The power spectrum of System 2 is very weak in most of the evanescent region
relative to the propagating region, which suggest that there is little contribution from
multiple-scattering relative to single-scattering; this is especially seen in the lack of cross-
polarization in the in-plane scattering seen in Fig. 20. The Gaussian power spectrum has
a substantial contribution from the evanescent region. However, it is weaker relative to
the propagating region, which might be the reason why the contribution from multiple-
scattering is not as prominent for the Gaussian-correlated silver surface compared to
System 1. The observations made here indicate that the weak contribution from multiple-
scattering for System 2 and the Gaussian-correlated silver surface, does not necessarily
lie in a weak coupling to SPPs; to the contrary, it could just be that the single-scattering
contribution overshadows and masks the multiple-scattering contribution for these sur-
faces. Consequently, the single-scattering contribution in System 1 is only weak enough
to not mask the SPP mediated scattering contribution, which is not necessarily stronger
than for the other systems.

In Fig. 26 it is also displayed what happens when the parameter b is decreased; It is
observed that the radius of the region where the power spectrum is zero increases by a
substantial amount. For System 2 the radius of this region is the same as the radius of
the near specular suppression seen in the MDRC. The radius of System 2 corresponds to
the polar angle of scattering θs ≈ 8◦, by adjusting b to from a/2 to a/3 the radius has
been increased to θs ≈ 20◦.

To show that the multiple-scattering in weakly rough surfaces is predominantly caused
by the excitation of SPPs and is not an effect of the Gaussian-cosine power spectrum, the
in-plane cut of the incoherent component of the MDRC of a Gaussian-cosine correlated
glass surface is presented as a function of the polar angle of scattering in Fig. 27. Since
glass does not support the excitation of SPPs, the contribution from them is eliminated.

In Fig. 27 the roughness parameters were the same as for System 1, the polar angle
of incidence was θ0 = 0◦ in Fig. 40(a) and θ0 = 34.05◦ in Fig. 40(b). Comparing this
with the results for a silver surface, seen in Fig. 18, shows the strong effect the excitation
of SPPs can have on the scattering. As expected, there is almost no cross-polarization,
except for a negligible amount. The enhanced backscattering peak observed in the retro-
specular direction is no longer present. The valley is deeper and the suppressed region has
the same radius as the power spectrum. The shape of the MDRC resembles the one for
System 2 more than the MDRC of System 1; this is more clearly seen in the full angular
distribution shown in Appendix C.
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(a) θ0 = 0◦

(b) θ0 = 34.05◦

Figure 27: The in-plane cut of the incoherent component of the MDRC for a rough glass
surface as a function of the polar angle of incidence. The surface realizations had an RMS
height of δ = λ/40 and were characterized by the Gaussian-cosine correlation function
(18) with the correlation length a = λ/4 and b = a/2. The wavelength of the incident
light was λ = 0.6328 µm, and the refractive index of glass at this wavelength was assumed
to be n = 1.5. The surface realizations used in the simulations were spatially limited to
the quadratic area 25λ × 25λ, and discretized on a grid of 321 × 321 points. The results
were averaged over an ensemble of 7269 surface realization.
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4.2.2 The Mueller matrix

The incoherent elements of the Mueller matrix as functions of q‖, were calculated for
System 1 and System 2. The elements are normalized with respect to the first element,
to emphasize the polarization behavior of the Gaussian-cosine correlated surfaces.

Figure 28: The full angular distribution of the 16 elements of the Mueller matrix (44)
from light scattered incoherently by a randomly rough silver surface as a functions of q1
and q2. The angles of incidence were (θ0, φ0) = (0.0◦, 0.0◦). The parameters are the same
as for Fig. 18. The elements 〈mij〉 (i,j = 1,2,3,4) are organized as a matrix, where i and j
denote row numbered from the top and the column numbered from the left, respectively.
The elements are normalized with respect to the first element, i.e., 〈mij〉 = 〈Mij〉/〈M11〉.
The white spots indicate the specular direction of reflection.

The results for System 1 are presented for normal and non-normal incidence in Figs. 28
and 29, respectively. Both have a lot more noise compared to the results for the Gaussian-
correlated surfaces, however, some information is still present which shows trends similar
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to the Gaussian ones. The symmetries predicted for normal incidence are observed again.
The contribution from m21 is very similar to the one observed for Gaussian-correlated
silver surface. This element can be understood from observing the MDRC, since m21 is
proportional to the difference between ◦ → p and ◦ → s. Thus, m21 describes that the
light scattered from the surface of System 1 is increasingly dominated by p-polarized light
for higher angles of scattering.

Figure 29: The same as in Fig. 28, except that the polar angle of incidence is θ0 = 34.05◦.

For non-normal incidence, seen in Fig.29, the symmetries observed between the sec-
ond and third column are no longer present. The upper left block of the matrix, which
is related diattenuation [36, pp. 165–166], has a strong contribution compared to the rest
of the matrix. By studying the effect on the stokes vector, it can be seen that this block
affects vertically and horizontally polarized light. The strong contribution in this block is
not surprising as the incoherently scattered light was observed to be mainly p-polarized in
the MDRC of system 1. Here m2,3,m32 and m33 remain almost unchanged, while the m22

element has a quite distinct distribution compared to normal incidence. Negative values
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of m22 denote that the scattering is mostly cross-polarized, conversely, positive values in-
dicate that co-polarization dominates. We can see here that co-polarization dominates in
most direction, while cross-polarization contributes the most near the out-of-plane direc-
tion (q2q3-plane). In the m22 element of the Gaussian-correlated surfaces, the contribution
from cross- and co-polarization was separated into more distinct sections and the contrast
between the sections was more pronounced.

Figure 30: The full angular distribution of the 16 elements of the Mueller matrix (44)
from light scattered incoherently by a randomly rough silver surface as a functions of q1
and q2. The angles of incidence were (θ0, φ0) = (0.0◦, 0.0◦). The parameters are the same
as for Fig. 20. The elements 〈mij〉 (i,j = 1,2,3,4) are organized as a matrix, where i and j
denote row numbered from the top and the column numbered from the left, respectively.
The elements are normalized with respect to the first element, i.e., 〈mij〉 = 〈Mij〉/〈M11〉.
The white spots indicate the specular direction of reflection.

The Mueller matrix elements for System 2 are presented for normal and non-normal
incidence in Figs. 30 and 31, respectively. Compared to System 1 there is much more
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Figure 31: The same as in Fig. 30, except that the polar angle of incidence is θ0 = 34.05◦.

structure and less noise in the angular distributions. For normal incidence the expected
symmetries are observed. The elements are almost identical to the ones for Gaussian-
correlated silver surface. The scattering suppression observed in the MDRC has a visible
effect in the origin of the m44 element.

For non-normal incidence the near specular intensity dip observed in the MDRC has
visible influence on more elements. In the m33 and m44 elements, where the contribution
is negative near the specular direction, the dip is replaced by a local maximum instead
of a minimum. The strong similarities with the Gaussian-correlated silver surface are still
present in most elements. It is again observed that the rotational symmetries in the second
and third column disappear, yet the equality under change of sign of the m22 and m33

elements remains, along with m23 ≈ m32.

The m12 and m13 elements have a weaker contribution located mostly in the forward
scattering direction, while for the Gaussian-correlated silver surface the contribution was
stronger and located in the backwards scattering direction. The central block elements
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appear to be warped towards the specular direction, which was also observed in the
Gaussian case. The last elementm44 has a noticeably weaker contribution in the backwards
scattering direction along with the area near the specular direction. Moreover, a much
stronger contribution is observed in the forward scattering direction of the m34 and m43

elements, which was only present in m43 in the Gaussian case.
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4.3 Anisotropic Gaussian-cosine correlated surfaces

Simulations were performed for two anisotropic Gaussian-cosine correlated surfaces (19),
where the correlation lengths were doubled along the q2-axis, i.e., a2 = 2a1 = 2a with
b = a/2. Otherwise, parameters were the same for the two anisotropic systems as System 1
and System 2 in Sec.4.2. Examples of the resulting generated surfaces for the anisotropic
counterparts of System 1 and 2 can be seen as color contour plots in Figs. 17(c) and 17(d),
respectively. The same uncorrelated random numbers were used for the isotropic case,
which can be seen in Figs. 17(a) and 17(b). By comparing the isotropic and anisotropic
cases, it is possible to discern some of the same patterns. It can be seen that some peaks
and low points in the isotropic surface have melded together or been stretched when the
surface is anisotropic.

Since the surfaces have different properties in different directions, two simulations were
performed for φ0 = 0.0◦ and φ0 = 90.0◦, for both anisotropic versions of System 1 and 2.
The same numerical parameters were used as for the isotropic results. In summary, the
length and the number of discretization points was L = 25λ and Nx = 321 along each
axis, respectively; the dielectric constant of silver at the wavelength λ = 632.8 nm was set
to ε2(ω) = −16.0 + i1.088.

For the purpose of testing the energy conservation of the scattering process, a test
simulation with fewer surface realizations was performed for each surface, where ”non-
absorbing” silver was used as a substrate instead, i.e. ε2(ω) = −16. Using Eq. (77) the
total energy was found to be from 1 − 4% higher than unity, depending on the surface
and the angles of incidence. It is not fully understood why the anisotropic simulations
were less stable than the isotropic ones. The cause of this deviation is suspected to lie
in the software implementation of the numerical power spectra, which might have caused
too steep surface slopes when anisotropic Gaussian-cosine correlation were used. Since
the results with absorbing silver appeared to be reasonable with respect to the isotropic
ones and |U − 1| < 0, the deviations from unity observed in the test were considered
acceptable.

4.3.1 Mean differential reflection coefficient

The incoherent mean differential reflection coefficient of the anisotropic Gaussian-cosine
correlated surfaces were calculated in the same manner as the isotropic ones. The results
for the anisotropic version of System 1 can be seen in Figs. 32 and 33 for θ0 = 0.0◦ and
θ0 = 34.05◦, respectively. The same can be seen for the anisotropic System 2 in Figs. 24
and 25. To display the directional differences in the scattering from these surfaces, the
results for φ0 = 0.0◦ and φ0 = 90.0◦ are shown side by side. The layout of the plots is the
same as before, except that the results for unpolarized incident light are not shown. To
highlight the differences between isotropic and anisotropic Gaussian-cosine surfaces, the
results obtained for System 1 and 2 in Sec. 4.2.1 will be used for comparison with the
anisotropic systems.

For the anisotropic System 1, when the light is incident in the q1q3-plane (φ0 = 0.0◦),
where the correlation length was unchanged, many of the trends observed for the isotropic
case are still present. For normal incidence seen in Fig. 32(a), the contour plots are similar
to the isotropic case when the incident light is p-polarized. When the incident light is s-
polarized the shape of the distribution is also similar the isotropic one, however, the
intensities are much stronger relative to the distributions with p-polarized incident light.
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(a) φ0 = 0◦ (b) φ0 = 90◦

Figure 32: The full angular distribution of the incoherent component of the MDRC
(Eq. (42)) for light scattering from a randomly rough interface separating vacuum and
silver as a function of the lateral wave vector q‖. The interface is characterized by an
anisotropic Gaussian-cosine auto-correlation function. The correlation lengths of the sur-
face are ax = λ/4 and ay = λ/2, with b = ax/λ; the RMS height is δ = λ/40. To highlight
the effect of the surface anisotropy, the MDRC is shown for light incident from two dif-
ferent azimuthal angles of incidence: φ0 = 0.0◦ in panel (a); φ0 = 90.0◦ in panel (b).
The polar angle of incidence is θ0 = 0.0◦ for both panel (a) and (b). The wavelength of
the incident light (in vacuum) was λ = 632.8 nm , the dielectric function of silver at this
wavelength is ε2(ω) = −16.0 + i1.088. The surface realizations were limited to an area of
25λ × 25λ and discretized on a grid of 321 × 321 points. The MDRC was averaged over
an ensemble of Ns = 5000 surface realizations. Here α → β denotes β-polarized incident
light scattered into α-polarized light, where ” ◦ ” indicates that the incident light was
unpolarized, and ” ? ” that the polarization of the scattered light was not recorded.

For non-normal incidence seen in Fig 33(b), the differences between the isotropic
and anisotropic surfaces seems substantial at first glance. However, by comparing the
amplitudes of the two cases, it is observed that the maximum amplitude is lower for
the anisotropic surface. Therefore, the lower intensities are enhanced here, resulting in
the distribution to appear to be quite different, when they are in reality very close in
resemblance. The enhanced backscattering peak is again observed, along with the intensity
dip in the around the origin for p → p polarized light. In addition, p → p polarized
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scattered light is again more concentrated in the backwards scattering direction, and
s-polarized incident light is observed to scatter more weakly relative to p-polarized light.

(a) φ0 = 0◦ (b) φ0 = 90◦

Figure 33: The same as in Fig. 32, except for θ0 = 34.05◦.

When the light is incident in the q2q3-plane (φ0 = 90.0◦), where the correlation length
was doubled, the similarities to the isotropic results are still present. For normal incidence
seen in Fig. 32(b), the distributions are very similar to the ones obtained for φ0 = 0◦,
except for that some of the distributions have more noise and the result for p and s-
polarized incident appear to be very similar to the ones for s and p-polarized incident
light when φ0 = 0◦, respectively. If the surface was isotropic the contour plots would be
identical, except for a 90◦ rotation of the plane of incidence. Therefore, this is considered
to be a direct effect of the anisotropy.

For non-normal incidence seen in 33(b), the results are very similar to the isotropic
case, except for the rotated plane of incidence. It is observed that the strongest contri-
bution to the scattering comes from co-polarized p→ p scattering, while all distributions
involving s-polarization contribute weakly in comparison. When φ0 = 0◦ the scattering
goes from being stronger for s-polarized incident light under normal incidence, to the scat-
tering dominating for p-polarized incident light under non-normal incidence. For φ0 = 90◦

this change is not observed and the angular distributions are the strongest for p-polarized
incident light for all polar angles of incidence.

The MDRC of the anisotropic counterpart to System 2, when the light is incident in
the q1q3-plane, is quite similar to the results for the isotropic surface. For normal incidence,
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which can be seen in Fig. 34(a), the distributions still have the angular suppression around
the specular direction of scattering. The distributions have a higher intensity for cross-
polarized scattered light, compared to the ones for the isotropic surface. Furthermore,
the distributions appear to be overall smaller in shape, and are wider in the q1 direction
relative to the q2 direction.

(a) φ0 = 0◦ (b) φ0 = 90◦

Figure 34: The same as in Fig. 32, except that the correlation lengths of the surface are
ax = λ and ay = 2λ, with b = ax/λ; the RMS height is δ = λ/20.

For non-normal incidence, displayed in Fig. 35(a), the shape of the distribution is
still similar to the isotropic case. The trends observed for normal incidence, such as the
near specular suppression and widening along the q1 axis, are still present, except for the
cross-polarized intensity enhancement. When the polarization is not recorded (β → ?),
the intensity is the highest above and below the specular direction, where for the isotropic
case it was located to the left.

When the light is incident in the q2q3-plane, see Fig. 34(b), the angular distribution of
the incoherent MDRC still has similarities with the isotropic case. For normal incidence the
contour plots are identical to the φ0 = 0◦ case, except that the co-polarized distributions
appear to have swapped places with the cross-polarized distributions, as observed for
anisotropic System 1 in Fig. 32. The surface displays a stronger ability to scatter light
along the q2 direction than the q1 direction, for both polarizations of the incident light.

For non-normal incidence, seen in Fig. 35(b), the distributions are localized in the
forward scattering direction around the specular direction, with the peak of intensity
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(a) φ0 = 0◦ (b) φ0 = 90◦

Figure 35: The same as in Fig. 34, except for θ0 = 34.05◦.

nearest to the origin. The behavior is very different compared to what was observed when
φ0 = 0◦, clearly displaying a change in scattering behavior when the light is incident onto
the surface from another azimuthal direction. The regions of the distribution which show
the highest intensity of scattered light, are most intense for p-polarized incident light,
while the opposite is observed for φ0 = 0◦. This is also observed for normal incidence.
There appears to be a slight bias in the scattering intensity towards incident light polarized
along the q2 direction.
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5 Summary & conclusion

In this work, the light scattering properties of two-dimensional randomly rough surfaces,
were studied through rigorous computer simulations. The approach is non-perturbative
and is based on numerically solving the reduced Rayleigh equation for reflection for a
given surface. The surfaces studied were characterized by various isotropic or anisotropic
power spectra g(q‖) and complex dielectric functions ε2(ω). The results display the differ-
ent effects surface roughness can give rise to in the scattering of electromagnetic waves.
These effects have been observed in both the intensity distribution and the polarimetric
properties of the light scattered from the surfaces.

Simulations were performed for 2D Gaussian-correlated surfaces separating vacuum
from glass, with the goal to calculate the reflectance for diffuse illumination. This was
achieved by first obtaining the reflectance for directional illumination, multiplying it with
a weight function for Lambertian illumination and integrating over all polar angles of
incidence. Numerical results for the reflectance of 2D rough glass surfaces under diffuse
illumination were presented here for the first time and compared to what has previously
been found for 1D surfaces [7]. It was found that depending on the polarization of the
incident light and the correlation length of the surfaces, the reflectance can decrease or
increase when the degree of surface roughness was systematically increased. In contrast
to what was observed for 1D surfaces, it was found that for 2D surfaces the reflectance
increased when the correlation lengths were greater than the wavelength of the incident
light. Additionally, the reflectance was observed to decrease for s-polarized incident light
and increase when the light was p-polarized for correlation lengths less than or equal to
the wavelength. Moreover, the dependence of the reflectance on the surface roughness
was found to increase with the correlation length, which was in agreement with what was
found for 1D surfaces.

The method used to obtain the scattering results was found to be limited in the
range of roughness’s the simulations could be performed for. Because of limitations in
computational resources, the surface lengths which were possible, only allowed for short
correlation lengths to be used in the analysis. The achievable degree of roughness, which
the method and software could produce reliable results for, was also restricted. Further
research is required, using other methods and approaches, to obtain the diffuse-diffuse
reflectance for surfaces defined by more extreme roughness parameters. Additionally, the
diffuse-diffuse reflectance should be investigated for more materials, relevant to specific
applications.

The mean differential reflection coefficient and the 16 elements of the Mueller matrix
were obtained for light incident from vacuum and scattered by silver surfaces characterized
by the Gaussian-cosine auto-correlation function. To emphasize the new scattering prop-
erties of these surfaces, the same quantities were presented for the Gaussian-correlated
glass and silver surfaces to serve as a reference. The scattering patterns were observed
to be quite different from the patterns obtained when light is scattered from a Gaussian-
correlated surface. The surfaces showed many interesting scattering properties, such as a
suppression in near specular scattering and enhancement of p-polarized scattered light.
These properties were found to depend strongly on the shape of the Gaussian-power spec-
trum, which was controlled by several surface parameters, and the presence of surface
plasmon polaritons. Simulations were performed for anisotropic Gaussian-cosine surfaces
as well, which as expected showed interesting scattering patterns and behaviors which
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depended strongly with the azimuthal angle of incidence. The enhanced backscattering
peak was observed to be either strongly or weakly present in the different Gaussian-cosine
surfaces.

The Gaussian-cosine surfaces which showed a circular suppression of the scattering
amplitude around the specular direction, were found to have a high reflectance. These two
properties, along with the possibility to adjust the radius of the suppression area, makes
Gaussian-cosine correlated surfaces a promising candidates as light trapping interfaces
in ultra thin photo voltaic cells. However, to be able to make any conclusive statements,
similar studies are required using relevant materials followed by experimental verification.
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[1] M. Själander, M. Jahre, G. Tufte, and N. Reissmann, EPIC: An energy-efficient,
high-performance GPGPU computing research infrastructure, 2019. arXiv: 1912.

05848 [cs.DC].

[2] I. Simonsen, A. Maradudin, and T. Leskova, “The scattering of electromagnetic
waves from two-dimensional randomly rough perfectly conducting surfaces: The full
angular intensity distribution,” Physical Review A, vol. 81, Oct. 2009.

[3] I. Simonsen, “Optics of surface disordered systems. a random walk through rough
surface scattering phenomena,” European Physical Journal Special Topics, vol. 181,
pp. 1–103, Jun. 2010.

[4] T. A. Leskova, P. A. Letnes, A. A. Maradudin, T. Nordam, and I. Simonsen, “The
scattering of light from two-dimensional randomly rough surfaces,” in Optical Com-
plex Systems: OCS11, G. Berginc, Ed., International Society for Optics and Pho-
tonics, vol. 8172, SPIE, 2011, pp. 63–82.

[5] A. R. Mcgurn and A. A. Maradudin, “Perturbation theory results for the diffuse
scattering of light from two-dimensional randomly rough metal surfaces,” Waves in
Random Media, vol. 6, no. 3, pp. 251–267, 1996.

[6] T. Nordam, P. Letnes, and I. Simonsen, “Numerical simulations of scattering of
light from two-dimensional surfaces using the reduced rayleigh equation,” Frontiers
in Physics, vol. 1, Apr. 2012.

[7] A. Gonzalez-Alcalde, E. Méndez, E. Terán, F. Cuppo, J. A. Olivares, and A. Garćıa-
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A The arctan2(y, x) function and the angular distri-

bution of the M ′(θ) matrix

The arctan 2(y, x) function is defined as

arctan2(y, x) =



arctan
(
y
x

)
if x > 0

arctan
(
y
x

)
+ π if x < 0 and y ≥ 0,

arctan
(
y
x

)
− π if x < 0 and y < 0,

+π
2

if x = 0 and y > 0,
−π

2
if x = 0 and y < 0,

undefined if x = 0 and y = 0.

(108)

Figure 36: A plot of the Mueller matrix given by Eq. (105) as a function of q1 and q2.
The calculation was performed by using θ = arctan2(q2, q1), where arctan2(y, x) is given
by Eq. (108).
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B The reflectance of a moderately rough surface

Figure 37: The reflectivity (62) for a randomly rough vacuum-glass interface under direc-
tional plane wave illumination as a function of the polar angle of incidence. The surface
was characterized by a Gaussian power spectrum with the correlation length a = 2λ, where
λ = 0.6328 µm is the wavelength of the incident light. The RMS height of the surface was
δ = λ/10. The refractive index of glass was assumed to be n = 1.5 for this wavelength.
The reflectance was calculated from simulation results averaged over an ensemble of 500
surface realizations. Each surface realizations was limited to an area of 25λ × 25λ and
discretized onto a grid of 321× 321 points. The energy was found to be conserved within
1%.
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Figure 38: The reflectance (62) for a randomly rough vacuum-glass interface under direc-
tional plane wave illumination as a function of the polar angle of incidence. The parameters
were the same as for Fig. 37.

Figure 39: The incoherent component of the reflectance (62) for a randomly rough vacuum-
glass interface under directional plane wave illumination as a function of the polar angle
of incidence. The parameters were the same as for Fig. 37.
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C The MDRC of a Gaussian-cosine correlated glass

surface

(a) θ0 = 0.0◦ (b) θ0 = 34.05◦

Figure 40: The full angular distribution of the incoherent component of the MDRC (42) for
light scattering from a randomly rough interface separating vacuum and glass as a function
of the lateral wave vector q‖. The polar angle of incidence was in panel (a) θ0 = 0.0◦;
in panel (b) θ0 = 34.05◦. The surface was characterized by an isotropic Gaussian-cosine
correlation function with the correlation length a = λ/4, with b = a/2; the RMS height
was δ = λ/40. The wavelength of the incident light was λ = 0.6328 µm, and the refractive
index of glass at this wavelength was assumed to be n = 1.5 at this wavelength. The
surfaces realizations used in the simulations were spatially limited to the quadratic area
25λ× 25λ, and discretized on a grid of 321× 321 points. The results were averaged over
an ensemble of 7269 surface realization.
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