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Abstract

The purpose of this thesis is to calculate the relativistic correction to the gravitational
waves produced by compact binaries in the inspiral phase. The correction is up to the next
to leading order, the so-called first post-Newtonian order (1PN), which are correctional
terms proportional to (v/c)2 compared to leading order, Newtonian, terms.

These corrections are well known in the literature, even going beyond the first order
corrections, so why is it computed again here? In later years, an alternative approach for
computing these terms using effective field theory has emerged. This thesis investigates
this approach by replicating it, and attempts to make this approach more accessible to
those not familiar with effective field theories.

It has been claimed that this approach greatly simplifies the complicated calculations of
gravitational waveforms, and even provides the required intuition for ‘physical understand-
ing’. By this master student that was found not to be entirely correct. The calculations
were made easier for those with a rich background in quantum field theory, but for those
who are not well acquainted with quantum field theory this was not the case.

It was, however, found to be a worthwhile method as a means for deepening one’s
understanding of gravity, and might provide a shorter route for some alternative theories
of gravity to testable predictions.
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Sammendrag

Hensikten med denne oppgaven er å beregne den relativistiske korreksjonen til gravitasjons-
bølger som er produsert av kompakte binærsystemer i spiral-fall fasen. Korreksjonene er
av den såkalte første post-Newtonske orden (1PN), som er korreksjonstermer proporsjonal
med (v/c)2 sammenlignet med ledende, Newtonske, termerene.

Disse korreksjonene er velkjente i litteraturen, og går til og med utover korreksjonene av
første orden, så hvorfor blir de beregnet igjen her? I nyere tid har en alternativ tilnærming
for å beregne disse størrelsene ved hjelp av effektiv feltteori dukket opp. Denne oppgaven
undersøker tilnærmingen ved å reprodusere dem, og prøver å gjøre metoden mer tilgjengelig
for de som ikke er kjent med effektive feltteorier.

Det har blitt hevdet at beregningen av gravitasjonsbølgeformer kan gjøres mye enklere
ved å bruke denne tilnærmingen, og til og med gir den nødvendige intuisjonen for ‘fysisk
forståelse’. Ifølge denne masterstudenten er ikke dette helt riktig. Beregningene ble gjort
enklere for de med en spesialisert bakgrunn i kvantefeltteori, og for de som er mindre kjent
med kvantefeltteori var dette ikke tilfelle.

Det ble imidlertid funnet å være en verdifull metode som et middel for å utdype for-
ståelsen av tyngdekraften, og kan gi en kortere rute for noen alternative teorier for grav-
itasjon til testbare forutsigelser.

ii
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Einstein’s field equations The equations of motion resulting from the Einstein-Hilbert
action which dictates the dynamics of space-time. Coupled to a matter source it reads
Rµν − 1
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Tµν . viii, 2, 3, 15, 20

Einstein-Hilbert action Einstein-Hilbert action is the action which when extremized
generates the Einstein’s field equations, i.e. the action which governs general relativity
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16πG

∫
R
√
−g d4x. viii, 16, 20, 35, 37, 38

field theorist Physicists using fields on a static background space-time to model physical
effects like forces and particles. In this thesis especially those who use fields to model
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GW150914 The gravitational wave event which occurred 14/09/2015. The first GW event
by LIGO [1]. 1, 12

quasi-stable circular orbit Approximating the inspiral as circular orbits with gradually
falling radii. The change in radius is negligible unless viewed over several periods. 8,
13, 64, 67

relativist Physicists using a geometrical interpretation of gravity, following in the foot-
steps of Einstein. 3, 4, 6, 15, 26, 67, 68

Schwarzschild radius The Schwarzschild radius RS is the radius associated with the
event horizon of a non-rotating, static black hole. RS = 2GM

c2
. 36

two body problem Name of the physics problem of describing how a system consisting
of two bodies (usually taken to be point particles) evolve in time, given they only
interact with each other. For r−1 potentials the two body problem generally has the
solution of conic sections [2]. 1, 74, 75
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Chapter 1

Introduction

1.1 Binary inspirals and gravitational waves

One the 14th of September 2015 the world was shocked, ever so slightly. So slightly in fact
that the only reason we know about it is thanks to the effort of the Laser Interferometer
Gravitational-Wave Observatory (LIGO), who measured this faint strain in their detectors.
After careful testing and retesting, LIGO published their results on the 11th of February
2016 [1]. They concluded that the event, called GW150914, was a gravitational wave (GW)
produced by the merger of two black holes, and was the first directly detected gravitational
wave event in human history.

With the announcement of the historic detection of GW150914 came promises of a new
era of astronomy, now equipped with a brand new type of data to constrain astronomical
theories. Popular science lectures and books were given and written, and at the height of
this hype I started my bachelor’s degree in physics. Fascinated by these mysterious waves I
wanted to learn more about them, and when the time came to pick a topic for my master’s
thesis I requested to work on gravitational waves.

My supervisor and I decided to work on relativistic corrections to the binary inspiral,
using field theoretical methods. To date, all confirmed GW events are thought to be pro-
duced by compact binaries. A compact object is a black hole (BH) or neutron star (NS),
and a compact binary is a system consisting of two compact objects. When compact ob-
jects revolve around each other they produce so called gravitational waves which dissipate
orbital energy from the system. As a result the compact objects fall toward each other,
and in the end collide and merge together.

The problem with compact binaries is that they are too heavy and fall too close to
each other to be adequately described by Newtons law of gravity. Although the two body
problem has a general solution in Newtonian mechanics, there is no known equivalent
solution for the two body problem in general relativity, only the one body problem. To
combat this issue, researchers have followed one of two approaches.1

1Or tried to find the actual, analytical, solution.

1
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Inspiral Merger Ringdown

Figure 1.1: The evolution of compact binaries in three phases.

1. Solve the full, non-linear, Einstein’s field equations numerically for the binary system
in question.

2. Use an approximate, analytical, solution and perturbatively expand it to account for
relativistic corrections.

This thesis will focus on analytical approximations. With numerical simulations one obtains
a picture of the dynamics at an arguably very high accuracy, but due to the complexity of
Einstein’s field equations this is computationally costly, i.e. takes a lot of time and com-
puting power. Furthermore, analytical expressions provide information about important
quantities and intuition about the most important physical effects at play, that one simply
does not gain from computer simulations.

In order to expand an analytical solution relativistically one first needs an approximate
solution to expand. For this it is useful to divide the evolution of the compact binary into
three phases, see Figure 1.1. The first phase is called the inspiral phase. Here the compact
objects orbit each other at a distance, gradually falling closer together due to the emission
of gravitational waves. Once the bodies are so close that a collision is imminent (typically
when they ‘touch’ or form a common event horizon) the system becomes highly non-linear,
and enters the so-called merger phase. After the two objects have merged into one, the
system enters the ringdown phase, in which the system can be described as a one body
problem, but with remnant asymmetries from the merger. Typically, the merged object’s
asymmetries oscillate around the Kerr solution and gradually dampen down, hence the
name ringdown.

This is a useful division of the binary evolution as the different phases lend themselves
to different approximations. The first phase, the inspiral, can be approximated as Kep-
lerian orbits since the leading order term in the equations of motion is the Newtonian law
of gravitation. The last phase can be approximated as a Schwarzschild or Kerr solution
with perturbations. The merger phase is sandwiched between these two widely different
approximations and is dominated by non-linear effects. Thus the merger phase has no good
analytical approximation and must be simulated numerically.

In this thesis I will work with the analytical approximation of the inspiral phase.
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1.2 Structure of this thesis

As we will see in Chapter 3 the frequency of the gravitational waves produced by compact
binaries are directly dependent on the frequency at which the source oscillates. Therefore,
the waveform of GWs measured here on Earth provides information about the dynamics of
the binary which produced it, and can be compared with the predicted dynamics according
to general relativity. This is why GW observation is a precise tool for constraining theories
of gravity.

To motivate these computations, Chapter 2 starts off by computing the waveform, us-
ing results from following chapters. Then in Chapter 3 an alternative path to gravity is
presented, that of a gauge field theory on a static space-time background. It is demon-
strated to recover the main results of standard linearized gravity, which is the Einstein’s
field equations expanded to linear order in metric perturbations over flat space-time. In
Chapter 4 and 5 the main results needed to compute the waveform in Chapter 2 are de-
rived, using the effective field theory (EFT) based on the material presented in Chapter 3.
Then the thesis ends with Chapter 6, which is concluding remarks on the effective field
theory approach to gravitational waves.

This is a form of top down approach, starting with the final result (the waveform)
and working back to the fundamental assumptions behind it. This structure has been
chosen because of the large amount of laboursome calculations leading to the gravitational
waveform, and it will hopefully provide the overview needed to understand the motivation
for each calculation as it appears.

1.3 Why effective field theory?

In 2006, Goldberger and Rothstein [3] wrote a paper showing how the gravitational waveform
could systematically be calculated to any post-Newtonian (PN) order using EFT formal-
ism. Post-Newtonian expansion is ordering results like energy, the equation of motion,
radiated energy flux, velocity, etc. as the Newtonian result plus relativistic corrections,
usually expanded in factors of v/c.

E.g.

E = ENewt

[
1 +

∞∑
i=2

Ei

(v
c

)i]
. (1.1)

Here ENewt · Ei
(
v
c

)i would be the i
2PN term of the energy. This scaling as half the v/c

power is chosen to represent the PN order such that the leading order correction is 1PN.
In this thesis, working with fields on a non-dynamic, flat, space-time will be referred

to as field theory, or the approach of field theorists, like Goldberger. This is supposed
to be contrary to traditional geometrical theories of gravity, in the spirit of Einstein,
which will be referred to as the approach of relativists. By any normal definition however,
general relativity and its interpretation by relativists, is a field theory. But they work
with dynamical space-times, making it conceptually and mathematically quite differently
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formulated. Therefore, these constructed labels of field theorists and relativists will be
employed in this thesis to emphasize the difference in approach.

Formulating the computations in the language of field theorists, Goldberger and Roth-
stein unlocked all tools, tricks, and language usually reserved for quantum field theory
(QFT). Since then, this approach has been argued by field theorists to be easier and faster
than the traditional relativist approach. One of these field theorists, R. Porto, has even
claimed [4]

“[...] that adopting an EFT framework, when possible, greatly simplifies the computa-
tions and provides the required intuition for ‘physical understanding’.”

My supervisor, a self-proclaimed relativist, got curious, and wondered just how easy
the effective field theory approach would make the computation. Therefore, he asked me
if I would try to go through these computations, to test if they made the computation
manageable even for master’s students. My comments on Porto’s claim are given in the
discussion of Chapter 6.

With verifying or refuting Porto’s claim as the ultimate goal of this thesis, it is mostly
written as a relativist’s guide to a field theorists’ approach to gravitational waves. It should
also be useful for those with a field theoretical background who wish to understand how
Feynman diagrams can be used in classical gravity, and gravitational wave physics.

1.4 Notation

This thesis uses the mostly positive flat space-time metric

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 Flat metric

Four-vectors are written with Greek letter indices, and spatial vectors with Latin letter
indices. The Einstein summation convention applies.

xµ =
(
x0 , x

)
= (ct , x) Four-vector

∂µ =
∂

∂xµ
=

(
1

c
∂t , ∇

)
Four-gradienet

d4x = dx0 d3x = cdt d3x Integration volume of space-time

Notably, the action is defined as

S =

∫
dt L =

∫
d4x

c
L,

with L and L being the Lagrangian, and Lagrangian density, respectively.
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These tensor index notations are also used.

T[µν] ≡
1

2!

(
Tµν − Tνµ

)
= Aµν Antisymmetrizing operation

T{µν} ≡
1

2!

(
Tµν + Tνµ

)
= Sµν Symmetrizing operation

T = T α
α = ηαβT

αβ Trace of tensor

Tµν,α = ∂αTµν Partial derivative

T α
µν,α = ∂α∂

αTµν = Tµν d’Alembertian operator

T̄µν =
1

2

(
Tµν + Tνµ − T σσ ηµν

)
Bar operator

Colons will also appear in indices, but these have no mathematical meaning. Colons are
simply used to separate pairs of indices that have distinct roles. E.g. could Tµνxλ ≡ Sµν:λ.

Lastly, the Fourier transform, and inverse Fourier transform are defined by2

F (x) =

∫
d4k

(2π)4
F̃ (k)eikσx

σ
,

F̃ (k) =

∫
d4xF (x)e−ikσx

σ
.

2Note that for most of this thesis, the tilde over the Fourier transformed function will be dropped, as
the argument (x or k) gives away whether it is a real-space or Fourier-space function.



Chapter 2

The gravitational waveform

In this chapter the gravitational waveform will be computed, both in the time domain
(2.19) and in the frequency domain (2.26).

The computation follows standard methods, like presented in Arun et al. [5].

2.1 Setting up the equation for the gravitational waveform

2.1.1 What is a waveform?

As inferred by the name, gravitational waves are waves, which is to say they are solutions
of the wave equation.(

− ∂2

∂(ct)2
+∇2

)
hµν = ∂α∂

αhµν ≡ hµν = 0. (2.1)

Here the d’Alembert operator, also called the d’Alembertian, has been defined, which is
the operator of the wave equation.

A simple solution to equation (2.1) is hµν = εµνe
−ikσxσ , with kµkµ = −k20 + k2 = 0,

and where εµν is some xµ-independent tensor structure. The exponential is a plane wave
solution, according to Euler’s formula (C.1).

Gravitational waves are rank two tensors, which means they have two indices and
therefore 4 × 4 = 16 components. It is also symmetric in these two indices: hµν = hνµ,
which means that only 10 of these components are independent. The reason gravitational
waves are rank two tensors follows in the relativists’ approach because hµν is a perturbation
of the metric gµν = ηµν +hµν , where ηµν is the flat space-time metric. In the field theorists’
approach it is because gravity is the effect of a massless spin two field. εµν is the polarization
tensor of GWs, and since it is a massless field it only has two independent polarizations.
Gravitational waves are transverse, and thus εijk

j = 0, i.e. the amplitude direction given
by the polarization is orthogonal to the direction of propagation k.

To solve the wave equation, the wave four-vector had to be null-like. This implies further
that the wave itself must travel at the speed of light, v = ∂ω

∂|k| = ∂ck0
∂|k| = c. This is also a

consequence of hµν being a massless field.

6
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Because of the linearity of the wave operator, any sum of such exponential (or trigo-
nometric) terms will also be a solution of the wave equation. The most general solution is
thus, a sum over all null-like wave-vectors kµ, and an expression which also leaves hµν as
a real function.1

hµν(xα) =

∫
d3k

(2π)3 · 2ωk

{
aµν(k)e−ikσx

σ
+ a†µν(k)eikσx

σ
}
. (2.2)

The expression above being real follows from the observation h†µν(xα) = hµν(xα), which
can only hold for real numbers. Here ωk = |k| = k0, which is to make the wave null-like,
also known as ‘on shell’. For a derivation of this solution, see Appendix A.

The coefficients aµν(k) are used to select particular solutions based on some initial
condition, and are left to be determined.

The frequency of the wave turns out to be integer multiples of the frequency at which
the source binary orbits, which will be demonstrated in Chapter 5. Thus, it can be approx-
imated as

hij(t) ' εij
∞∑
n=1

an(t) cos(nΦ(t)), (2.3)

where Φ(t) is the phase of the source binary. The waveform describes what kind of wave it
is. an(t) can be found, but the most important factor for detection of gravitational waves
is contained in Φ(t). The reason for this is that gravitational wave detectors receives faint
signals with amplitudes close to the amplitude of noise. However, the frequency of GWs is
different from the major noise factors, and can thus be extracted using Fourier analysis.
Therefore, in the rest of this chapter, and much of the literature, the word waveform will
be used interchangeably about the phase, as it encodes information about the frequency
spectrum.

The orbital energy for circular, Newtonian motion is related to the frequency as E =
−1

2µv
2 = −1

2µ(GMω)2/3, using v = ωr and Kepler’s third law,

ω2 =
GM

r3
, (2.4)

to eliminate r in favour of ω.2

The approximation of circular motion here might seem over idealized, but it turns out
that the effect of gravitational wave emission on elliptical orbits is to circularize them.By
the time the binary’s frequency enters the detector range, near the time of coalescence, the
orbits have become very circular, making circular orbits a sensible approximation.

Noting that the energy was easier to handle with v rather than ω, as it has integer
powers instead of fractional powers, one may use v = (GMω)1/3 as a proxy variable for
the frequency. Note that as a Newtonian approximation this variable coincides with the

1The exponential function with an imaginary argument is a great shorthand for trigonometric functions,
but all observables must in the end be real valued.

2How v, ω, and r are related follows from the EoM, which are presented in their 1PN form in (4.57)-
(4.59).
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relative velocity parameter, but this is no longer the case after relativistic corrections are
accounted for.

Then the phase of the orbit can be expressed as

dΦ

dt
= ω =

v3

GM
⇒ dΦ =

v3

GM
dt . (2.5)

Sadly v = v(t), which at this point is still an unknown function of time. However it is
known that v must evolve with time according to how the orbital energy evolves with
time.

2.1.2 Time evolution of orbital energy

The differential equation governing the dynamics of the orbital phase is

− dE

dt
= F , (2.6)

with E the energy associated with conserved orbital motion, and F the total energy flux
out of the system by means of GWs. This is nothing but energy conservation for a gravit-
ationally bound system.3

Both E and F can be analytically expanded in a relativistic parameter, like (v/c). This
requires a separation in scale, where on the short timescale the motion is conservative and
has energy E, while on the long timescale the system loses energy to gravitational radiation
at a rate F , leading to an inspiral. This requires the inspiral to happen slowly compared to
the orbital motion, so that at any one moment the motion can still adequately be described
by Newtonian motion. Thus, it only works for relatively small values of F , such that the
objects do not fall down too rapidly.4

Luckily, to leading order the flux term is suppressed by a factor of c−5 compared to
the leading order term of the energy. Thus, the approximation of so called quasi-stable
circular orbits and post-Newtonian formalism holds surprisingly well, even when compared
to numerical simulations of the full Einstein equations (see Borhanian et al. [8]).

As will be demonstrated in Chapter 4 and 5, the orbital energy (4.63) and energy flux
(5.36) can be expanded in terms of (v/c) as

3It is not obvious that energy should be conserved however. In full GR there is no trivial argument
why there should be a conserved energy quantity [6], but in the post-Newtonian expansion the dynamics
are expanded around the Newtonian problem, in which energy is conserved. Thus it it can be taken to be
an artifact of the Newtonian background of which the solution is expanded in. Note however that energy
conservation is not controversy free [7].

4Later in this chapter it will be shown that the requirement of slow infall can be fufilled by having
ω̇/ω2 � 1 (see equation (2.21)), which is equivalent to having the orbital velocity ωr much greater than
infall velocity ṙ.
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E = ENewtv
2

{
1 +

∞∑
i=2

Ei

(v
c

)i}

= −µ
2
v2
{

1 +

(
−3

4
− 1

12
η

)
v2

c2
+O

(
v3

c3

)}
,

(2.7)

F = FNewtv
10

{
1 +

∞∑
i=2

Fi

(v
c

)i}

=
32

5

η2

Gc5
v10
{

1 +

(
−1247

336
− 35

12
η

)
v2

c2
+O

(
v3

c3

)}
.

(2.8)

Since v is just a proxy for the frequency the expression (2.7)-(2.8) would be different
expressed in terms of the actual centre-of-mass frame relative velocity.

Here µ is the reduced mass and η is the symmetric mass ratio, see Appendix B (and
specifically equation (B.5)) for their definition and the motivation for introducing such
mass terms.

Up to (v/c)2 order corrections define the first post-Newtonian order, or 1PN for short,
and is the leading order correction. This has started the convention of calling terms ∼
(v/c)2i for iPN order corrections, e.g. the leading order, Newtonian, term is 0PN order.
This has a somewhat awkward effect, since not all terms are even powers of v/c, already
the next order correction is ∼ (v/c)3, and is thus of 1.5PN order. Higher order terms of
both the energy and flux, and the final result of this chapter: The waveform, can be found
in papers like Arun et al. [5].

Using equation (2.6) the time evolution dt can be expressed in terms of v as

dt = − 1

F
dE = − 1

F
dE

dv
dv . (2.9)

Substituting (2.9) for dt in (2.5) results in the final expression for which the waveform can
be derived (using (2.7)-(2.8))

dΦ = − v3

GM

1

F
dE

dv
dv . (2.10)

Solving (2.9) will provide v as a function of time. We proceed however by computing
Φ as a function of v directly rather than of time, as ultimately to be compared with
experiments it is the waveform in the frequency domain (which will be called Ψ) which is
needed. As already mentioned, this is because the signal is filtered in the frequency domain,
and therefore the highest resolution is in the frequency spectrum.

2.2 Computing the waveform

2.2.1 Computing the waveform as a function of time

In order to compute Φ(t) it is convenient to first compute Φ(v) (equation (2.14)), then v(t)
(equation (2.17)), and lastly Φ(t) = Φ(v(t)) (equation (2.19)).
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Computing the waveform as a function of frequency

Combining (2.10) with (2.7)-(2.8) yield up to 1PN

dΦ = − v3

GM
F−1Newtv

−10
[
1 +

(
−1247

336
− 35

12
η

)
v2

c2

]−1
d

dv

[
ENewtv

2

(
1 +

(
−3

4
− 1

12
η

)
v2

c2

)]
dv

=
−2

GM

ENewt

FNewt

1

v6
1 +

(
−3

2 −
1
6η
)
v2/c2

1 +
(
−1247

336 −
35
12η
)
v2/c2

dv ≡ −2

GM

ENewt

FNewt

1

v6
1 + αv2/c2

1 + βv2/c2
dv . (2.11)

To evaluate this integral it would be advantageous to write the last fraction in an easier
form. Utilising that v/c is small the last fraction can be Taylor expanded around v/c = 0
up to 1PN.

Preforming the Taylor expansion results in

1 + αx

1 + βx

for x∼0' 1 + (α− β)x+ β(β − α)x2 + . . .

This result inserted in (2.11) yields the easily integratable 1PN expression

dΦ = − 2

GM

ENewt

FNewt

1

v6

{
1 +

(
743

336
+

11

4
η

)
v2

c2

}
dv . (2.12)

Integrating to obtain Φ(t) = Φ(v(t)) one must choose a reference point in time, usually
referred to as t0. For binary inspirals this reference point is canonically chosen to be the
moment of coalescence tc (see Maggiore [9] chapter 4), which for the duration of the inspiral
is in the future. Therefore, the integration variables should go from v(t) to vc = v(tc), but
a multiplication of −1 to both sides can flip this order. Performing the integral finally
provides Φ(v)

Φ(v) = Φc −
2ENewt

GMFNewt

∫ v

vc

v′
−6
{

1 +

(
743

336
+

11

4
η

)
v′2

c2

}
dv′

= Φc +
2ENewt

GMFNewt

[
1

5
v′
−5
{

1 +
5

3

(
743

336
+

11

4
η

)
v′2

c2

}]v′=v
v′=vc

(2.13)

Collecting all constant terms into one phase constant Φ0, writing out ENewt and FNewt
from (2.7) and (2.8) respectively, results in the final result for the waveform as a function
of v

Φ(v) = Φ0 −
1

25η

c5

v5

{
1 +

(
3715

1008
+

55

12
η

)
v2

c2
+O

(
v3

c3

)}
. (2.14)

The phase is dimensionless, as one should expect.5 To obtain the waveform as a direct
function of time the frequency parameter v must be given as a function of time.

5By definition the frequency measure v = (GMω)1/3 has dimension of velocity, in accordance with the
symbol used.
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Computing the frequency as a function of time

The frequency parameter v as a function of time can be obtained from the differential
equation (2.9), in an equivalent fashion to how (2.14) was derived.

dt = − 1

F
dE

dv
dv =

GM

v3
dΦ

(2.12)
= −2ENewt

FNewt
v−9

{
1 +

(
743

336
+

11

4
η

)
v2

c2

}
dv , (2.15)

⇒ tc − t =
5

28
GMc5

η
v−8

{
1 +

8

6

(
743

336
+

11

4
η

)
v2

c2

}
. (2.16)

Notice that tc − t was chosen for the left hand side (LHS) such that the expression
on the right hand side (RHS) becomes strictly positive. This is desired because both sides
must be raised to the negative one 4th power, in order to produce a quadratic equation of
v2. Taking the square root of the resulting solution for v2, and Taylor expanding it to the
1PN order yields the expression for v(t).

Following the aforementioned procedure, and using τ = tc − t, the frequency can be
determined to be

v(τ) =
c

2

(
5GM

c3η

)1/8

τ−1/8

{
1 +

(
743

8064
+

11

96
η

)(
5GM

c3η

)1/4

τ−1/4

}
. (2.17)

By the definition of v, the actual frequency ω(τ) = v3/GM can be computed as well,
for completeness.

ω(τ) =
5

8

(
5GM
c3

)−5/8
τ−3/8

{
1 +

8

5

(
3715

8064
+

55

96
η

)
3

8

(
5GM

c3η

)1/4

τ−1/4

}
. (2.18)

This result can be compared with e.g., Maggiore [9] (equation (5.258) on p. 295). Note
that he, and most of the rest of the literature, use dimensionless variables6, but the 1PN
part of the expression is equivalent to (2.17) and (2.18).

Computing the waveform as a function of time

Substituting (2.17) for v in (2.14) yields

Φ(τ) = Φ0 −
(

5GM
c3

)−5/8
τ5/8

{
1 +

(
3715

8064
+

55

96
η

)(
5GM

c3η

)1/4

τ−1/4

}
. (2.19)

All that remains now to obtain the waveform is to find the amplitude of the different
harmonics, and multiply them by cos(nΦ(τ)). The result can be seen in Figure 2.1a.

In Figure 2.1a it is clear that 1PN corrections does not affect the amplitude much
directly, but it has significant effect on the time evolution of the phase, and hence the
frequency spectrum. It is however noticeable that the phase of Figure 2.1a does not match
up with Figure 2.1b. Either higher order corrections are required, or the model breaks
down for such low values of τ .

6These are commonly denoted x = v2/c2 = (GMω/c3)2/3, γ = GM/rc2, and Θ = (5GM/ηc3)−1(tc−t).
Preforming the substitutions for (2.17) should be straightforward.
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Waveform approx. for GW150914

h0PN

h1PN

(a) Waveform including (red) and excluding (blue)
first order corrections. The waveform was plotted for
values matching those of Table 1 of Abbott et al. [1].
The plot depicts the waveform as seen in the detector
frame, i.e. cosmologically redshifted. (b) Data and model by LIGO for GW150914,

published in Abbott et al. [1].

Figure 2.1: Waveform based on computations of this thesis (a) and LIGO’s data and
model (b) for comparison. The plots share a similar structure, but it is clear by figure
(b) that the signal-to-noise ratio is small, and much of the early-time structure is ‘washed
out’ by noise. That is to say, both the signal and the model in (b) has been filtered by
frequency, making the plots somewhat jagged. Plot (a) has not been filtered. In figure (a)
the amplitude diverges at t = 0.425s, while in the in (b) it does not. This is because the
inspiral model breaks down here, and the merger phase takes over.

2.2.2 Computing the Fourier transform of the waveform

To obtain the high sensitivities in GW detections the signal is Fourier transformed, in order
to show which frequencies dominate the signal. This frequency spectrum can be compared
to theoretical predictions to determine factors like the total mass at 0PN, symmetric mass
ratio at 1PN, and more parameters at higher orders, e.g. spin at 1.5PN [5] and finite size
effects like tidal deformation at 5PN [10].

In order to compare data with theoretical predictions these predictions must also be
expressed in the frequency domain. Therefore, the desired waveform is Ψ(f), which is the
phase of the Fourier transformed waveform.

The Fourier transform and stationary phase approximation

To compute the Fourier transformed B̃(f) of some function B(t) the stationary phase
approximation (SPA) can be used, and it is commonly utilized to compute the Fourier
transform of (2.3). Standardized in GW physics by Cutler and Flanagan [11] it approxim-
ates
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for B(t) = A(t) cos(Φ(t)),

⇒ B̃(f) ≈ 1

2
A(t)

(
df

dt

)−1/2
exp{i (2πft− Φ(f)− π/4)}

≡ 1

2
A(t)

(
df

dt

)−1/2
exp{iΨ(f)},

(2.20)

provided
dln(A(t))

dt
� dΦ

dt
and

d2Φ

dt2
�
(

dΦ

dt

)2

.

This is exactly the type of expression which describes GWs (2.3), and the conditions
do indeed apply to the inspiral phase.

The leading order amplitude scales as v2 ∼ τ−1/4 (2.17) (also, see equation (3.67) in
the next chapter for why the amplitude scales as v2), while dΦ/dt = ω(τ) ∼ τ−3/8 (see
(2.18)). Thus, for large τ , which is the time remaining till coalescence, dln(an(t)) /dt ∼
1
4τ
−1 � ω(τ) ∼ τ−3/8.
As for the last prerequisite it can be shown to hold for quasi-stable circular orbits.

Taking the time derivative of Kepler’s third law (2.4) results in

2ωω̇ = −3ṙ
GM

r4
= −3

ṙ

r
ω2,

⇒ −ṙ
ωr

=
2

3

ω̇

ω2
� 1. (2.21)

For quasi-stable circular orbits the inspiral must be slow compared to the orbital motion,
and thus the radial velocity (ṙ) must be small compared to the tangential velocity (ωr),
since for perfectly circular motion their fraction is identically zero. From Kepler’s law this
implies also that ω̇/ω2 � 1→ Φ̈� Φ̇2, which is exactly the condition required to use the
SPA.

This in hand also provides an estimate for the validity of this approximation, as ω is a
known function of time (2.18)

2

3

ω̇

ω2

(2.18)
' 2

5

(
5GM
c3

)5/8

τ−5/8 � 1. (2.22)

This expression is indeed small for most values of t < tc.
Since the most important part of the waveform for comparisons to experimental data

is the frequency spectrum, the last computation of this chapter will be of the Fourier
transformed phase Ψ(f).

Computing the SPA waveform

From equation (2.20) the phase of the Fourier transformed waveform can be approximated
as

ΨSPA = 2πft(f)− Φ(f) = ωt(ω)− Φ(ω) =
v3

GM
t(v)− Φ(v). (2.23)
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Φ(v) being given by equation (2.14), and t(v) by (2.16), Ψ(v) can easily be computed.

v3

GM
t(v) =

v3

GM
tc −

5

28
1

η

c5

v5

{
1 +

8

6

(
743

336
+

11

4
η

)
v2

c2
+ . . .

}
, (2.24)

ΨSPA(v) =
v3

GM
tc − Φ0 +

3

256

1

η

c5

v5

{
1 +

(
3715

756
+

55

9
η

)
v2

c2
+ . . .

}
. (2.25)

Lastly the phase can be expressed in terms of the physical frequency by using v =
(GMω)1/3 = (2πGMf)1/3.

ΨSPA(f) = 2πftc − Φ0 +
3

256

(
2πGMf

c3

)− 5
3

·

{
1 +

(
3715

756
+

55

9
η

)(
2πGMf

c3

) 2
3

}
.

(2.26)

This is indeed equivalent to the expression found by Arun et al. [5] (equation (6.22),
page 21) up to 1PN, with some difference in notation.

In order to compute this waveform all that is needed is the PN expansion of the orbital
energy, and the GW energy flux, both associated with stable, energy conservative, motion.
In [5] these were provided with references to other papers.

In a sense, (2.26) is the final result of this thesis, computation wise, but it now remains
to justify the expressions used for the post-Newtonian expansion of the orbital energy (2.7),
and energy flux expansion (2.8), which will be derived in Chapter 4 and 5 respectively.



Chapter 3

Gravity as a gauge theory

In this chapter the fundamental theory by which the orbital energy and energy flux will
be calculated is derived. How can Einstein’s general relativity be described as a classical
field theory, and then recast into the language of EFT.

The derivations presented in this chapter largely follows those presented in Feynman
[12], with supplements from Maggiore [9] and Porto [4].

3.1 Background

The modern theory of gravity is partially split between two traditions. On the one hand
there is the geometrical tradition following Einstein’s approach by interpreting gravity as
the effect of a curved space-time, which is curved according to the Einstein’s field equations.
The followers of this tradition may be called relativists. On the other hand there is the
tradition of using the formalism of Lorentz invariant fields on a static, Minkowskian, space-
time, inspired by its monumental success for electrodynamics and quantum theory. The
followers of this tradition may be called field theorists.

Though these traditions are not entirely separated, the two different interpretations
lend themselves to different natural extensions of general relativity. Thus the two traditions
tend to separate relativists and field theorists by which theories they work on.

In this thesis the 1PN phase of GW produced by compact binaries are computed
using the formalism of field theory. Familiarity with basic quantum field theory (QFT)
is expected, but the derivations are otherwise supposed to be elementary.

Feynman and gravity

One of the more famous field theorists, R. P. Feynman had a “gravity phase” from 1954 to
the late 1960s (Di Mauro et al. [13]). After having worked on the foundations of quantum
electrodynamics, Feynman sought to uncover the quantum nature of gravity pursuing a
similar method. He reckoned that gravity could, similarly to electromagnetism, be perturb-
atively expanded with respect to its coupling constant, and then quantized by quantizing
the frequencies.

15
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Quantizing gravity turns out to be a little more complicated than that, but Feynman’s
approach to classical gravity as a massless, spin 2, gauge field has made a lasting impression
on gravity physics, especially in the context of GWs. This approach can be studied in the
lecture notes from his lecture series of the 60’s [12].

3.2 Fierz-Pauli Lagrangian

To linearized order, the Einstein-Hilbert action of general relativity is equivalent to the
massless Fierz-Pauli action from field theory [14].

3.2.1 Deriving the graviton Lagrangian

When Feynman set out to study gravity, he took the mindset of a field theorist who until
recently was unaware of gravitation, and just now have been presented with data suggesting
that all masses attract other masses according to an inverse square law, proportional to
the product of their masses,

F ∼ −m1m2r

r3
.

Feynman envisioned this as the mindset of aliens on Venus who had just now acquired
the technology to pierce through the atmosphere and measure the movement of the planets,
but were still our equals in particle physics.

Their first impulse would probably be to guess that this is an unknown effect of some
known field. After finding no field that could replicate the solar system observation, their
next guess would be that there exists a new kind of field which mediates this mysterious
force. Calling this hypothetical field the graviton field, and its associated quantum particle
the graviton, the Venusians would next try to uncover its structure.

To construct the Lagrangian for this new force of nature they would determine that it
has to be of even spin, and thus an even tensor rank, for the resulting static force to be
attractive for equal charges, where the charge for the graviton field would be mass. For the
force to go as an inverse square the field must also be massless.

Lastly, it must couple to all matter equally, but it must do so in a relativistic way.
The natural suggestion is to somehow couple the field with the four-velocity of the source,
like how the electric charge which the electric field couples to is promoted to the charge
density four current jµ = γ−1ρuµ, and couples to the vector potential Aµ = (φ/c , Ai ).
See Gourgoulhon [15] or other textbooks on relativistic field theory.

However, to let the graviton field couple to all fields a natural candidate is the energy-
momentum tensor Tµν , induced by field invariance under space-time translations. Incid-
entally, for a point particle it is constructed by the four-velocity of the source: Tµν =
γ−1pµuν = γ−1ρuµuν . Now for a scalar field it can be contracted to form a scalar, the
trace, which is proportional to the mass density. Alternatively, a field of higher tensor rank
can couple to the indices, also coupling the field to the mass density in the static frame
Tµν = T 00δµ0δν0.

The spin zero / scalar field is a candidate for the graviton, but fails to couple to
the electromagnetic energy-momentum tensor, as the electromagnetic energy-momentum
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tensor is traceless. It also fails to predict the perihelion procession of Mercury correctly
[15].

Thus, the Venusians would probably try a massless spin 2 field next. Since massless
fields only have one (spin s = 0) or two degrees of freedom (helicity = ±s) the symmetric
spin two field should be easiest to work with, as it will have 10− 2 = 8 redundant degrees
of freedom. The antisymmetric field by comparison only have 6− 2 = 4 redundant degrees
of freedom.

Thus demanding the Lagrangian to be composed of a massless, symmetric, rank two
tensor field there are only four unique terms, containing only second / two derivatives,
after considering partial integrations:

Two where the index of the tensor and the index of the derivative differ.
1. hµν,ρhµν,ρ

2. hµν,ρhµρ,ν

And three where two of the indices contract for the individual hµν .
3. h ,ν

µν hµρ,ρ
4. h ,ν

µν h,µ with h ≡ h σ
σ

5. h,µh,µ

Note specifically that term 2. and 3. are the same after two successive partial integrations
hµν,ρh

µρ,ν = −hµνh
µρ,ν

ρ = h ,ν
µν hµρ,ρ. Some texts use term 2. (like Maggiore [9]), but here

term 3. will be employed (like in Feynman [12]). Thus, the free part of the Lagrangian1

must be of the form

L = a1hµν,ρh
µν,ρ + a2h

,ν
µν hµρ,ρ + a3h

,ν
µν h,µ + a4h,µh

,µ. (3.1)

It is possible to determine all the coefficients a1−4 by imposing gauge invariance on the
equation of motion (EoM). The EoM for fields is determined by the Euler-Lagrange equa-
tion (3.2a) (see e.g. Goldstein et al. [2], or Kachelrieß [17]), and for (3.1) the equation of
motion becomes (3.2c).

∂ρ
∂L

∂hµν,ρ
− ∂L
∂hµν

= 0 (3.2a)

= ∂ρ

(
2a1h

µν,ρ + a2η
νρhµσ,σ + a2η

µρhνσ,σ + a3η
νρh,µ + a3η

µνhρσ,σ + 2a4η
µνh,ρ

)
(3.2b)

= 2a1h
µν,ρ

ρ + a2h
µρ,ν

ρ + a2h
νρ,µ

ρ + a3h
,µν+a3η

µνhρσ,ρσ + 2a4η
µνh,ρρ ≡ Ξµν . (3.2c)

From the action of L+ Lint = L+ λ
2hµνT

µν the inferred EoM should be

Ξµν = −1

2
λTµν , (3.3a)

Tµν,ν = 0 ⇒ Ξµν,ν = 0. (3.3b)

1Terms ∼ h1 and h0 only contribute constants to the equation of motion, and can thus be removed by
field shifts. Terms proportional to h2, but with no derivatives, determine the mass of the field ∼ m2hh, and
must therefore be zero for massless fields. Lastly, the Lagrangian must be a scalar in order to be Lorentz
invariant. There are no contractions of only 1 derivative and two h’s that can produce a scalar. Therefore,
to leading order in hn, the Lagrangian must consist of terms proportional to h2 with two derivatives. See
e.g. Schwichtenberg [16], page 573-575, for a more detailed discussion.
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Equation (3.3b) can be used to fix the coefficients of equation (3.2c), and thus also the
Lagrangian.

Ξµν,ν = hµν,ν(2a1 + a2) + h,µ(a3 + 2a4) + hρσ,µρσ(a2 + a3) = 0,

⇒ a1 = −1

2
a2 =

1

2
a3 = −a4. (3.4)

Thus a Lagrangian of a symmetric, massless, rank 2 tensor field which couples to
a divergenceless rank 2 tensor field (e.g. Lint = −λ

2hµνT
µν), consisting of only second

derivatives, in a flat space-time, must to second power of h take the form of the massless
Fierz-Pauli Lagrangian [14]

LFP = −1

2
hµν,ρh

µν,ρ + h ,ν
µν hµρ,ρ − h ,ν

µν h,µ +
1

2
h,µh

,µ. (3.5)

Here the overall factor has been set to a1 = −1/2.

3.2.2 The equation of motion and gauge condition

The EoM for LFP + 1
2λhµνT

µν follows directly from the Euler-Lagrange equation (3.2a) as

− hµν + 2hα{µ,ν}α − h,µν − ηµν
(
h ,ρσ
ρσ − h

)
=
λ

2
Tµν . (3.6)

This is equivalent with the equation of motion found in the linear approximation of
general relativity, for an appropriate choice of λ (see e.g. equation (1.17) of Maggiore [9],
or equation (9.16) of Grøn and Hervik [18])

Varying the Fierz-Pauli action directly should also provide the equations of motion

δLFP =
δLFP
δhµν,ρ

δhµν,ρ +
δLFP
δhµν

δhµν =
δLFP
δhµν,ρ

∂ρ δhµν +
δLFP
δhµν

δhµν

=

[
δLFP
δhµν

− ∂ρ
δLFP
δhµν,ρ

]
δhµν = −Ξµν δhµν = 0. (3.7)

This automatically holds because of (3.2c) (Ξµν = 0). But (3.7) can also be solved using
the condition (3.3b), Ξµν,ν = 0. Letting δhµν = −ξµ,ν − ξν,µ it is easy to show that the
action stays invariant under this type of transformation, using partial integration.

δLFP = Ξµν
(
ξµ,ν + ξν,µ

)
= −Ξµν,νξµ − Ξµν,µξν = −2Ξµν,νξµ

(3.3b)
= 0. (3.8)

Thus the following transformation of the field leaves both the EoM and the gauge condition
invariant.

hµν(x)→ hµν(x) + δhµν(x) = hµν(x)− ξµ,ν (x)− ξν,µ(x). (3.9)

Again, this is equivalent to the gauge condition found in linear theory when linearizing
metric invariance under change of coordinates (see equation (9.9) of Grøn and Hervik [18]).
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Also introducing the commonly used bar operator, which symmetrize tensors and changes
the sign of their trace,

S̄µν ≡
1

2

(
Sµν + Sνµ − Sσσηµν

)
, (3.10)

the gauge condition for the barred h-field is obtained by transforming (3.9) as (3.10),
resulting with

h̄µν(x)→ h̄µν(x)− ξµ,ν (x)− ξν,µ(x) + ηµνξ
,σ

σ (x) ≡ h̄µν(x)− ξµν (x). (3.11)

Thus the divergence of this barred field transforms as

h̄ ,ν
µν → h̄ ,ν

µν − ξµ . (3.12)

As ξµ can be any vector without changing the EoM, it can be chosen such that ξµ = h̄ ,ν
µν ,

shifting the field such that h̄′ ,ν
µν = 0, which is to impose the Lorenz gauge2.

Lorenz gauge condition :

h̄ ,ν
µν = 0. (3.13)

The exact expression for ξµ can be obtained by method of Green’s functions, but this is
unnecessary to compute. Simply keeping in mind that h̄′ ,ν

µν = 0 shall suffice to simplify
the Lagrangian (3.5). Notice that the following terms must be zero, using again (3.10), but
in reverse.

h̄ ,ν
µν = 0 = h ,ν

µν −
1

2
ηµνh

,ν , (3.14a)

h̄ ,ν
µν h̄µρ,ρ = 02 = h ,ν

µν hµρ,ρ − h ,ν
µν h,µ +

1

4
h,µh

,µ. (3.14b)

Adding and subtracting 0 from the Lagrangian should change nothing, and thus the fol-
lowing expression can be used as a gauge fixing term (gf)

Lgf = −h̄ ,ν
µν h̄µρ,ρ =

[
−h ,ν

µν hµρ,ρ + h ,ν
µν h,µ − 1

4
h,µh

,µ

]
,

⇒ L(2)+Lint ≡ LFP + Lgf + Lint = −1

2
hµν,ρh

µν,ρ +
1

4
h,µh

,µ +
λ

2
hµνT

µν .

(3.15)

(3.16)

with the subscript (2) to signify that this is the action to quadratic order in h.
The EoM of L(2) + Lint is the familiar(

hµν −
1

2
ηµνh

)
= h̄µν = −λ

2
Tµν , (3.17)

2The divergenceless gauge can be refered to by many names, but the most common is to use the same
name as in electro dynamics: Lorenz. Other names include Hilbert, De Donder and Harmonic gauge, though
the latter two are more assosciated with curved backgrounds.
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from linearized theory (see equation (1.24) of Maggiore [9] or equation (9.22) of Grøn and
Hervik [18]).

Comparing with the EoM of linearized GR it is tempting to conclude that λ ≡ 4κ =
32πG/c4, but then it is also common to make the Einstein-Hilbert action dimensionless by
scaling it with a factor of (16πG/c4)−1. Comparing (3.16) with the Einstein-Hilbert action
expanded to second order3 the Lagrangian (3.16) carries an additional factor of 2, and is
dimensionful. Field theorists usually fix the dimensionality of the action by rescaling their
fields to become dimensionful. Doing this

hdim.ful
µν =

(
32πG

c4

)−1/2
hdim.less
µν , (3.18)

h adsorbs the dimensionful prefactor. To compare (3.17) with the linearized Einstein’s field
equations, it must first be rescaled back to a dimensionless field according to (3.18), and
then the coupling constant is revealed to be

λ ≡
(

32πG

c4

)1/2

=
√

4κ, (3.19)

where κ = 8πG
c4

is the constant which appears in Einstein’s field equations.
Some call this coupling constant M−1Pl rather than λ ([4], [3], [19]). However it does

not have dimesion of mass, nor is the Planck constant anywhere in the expression, so
why do they do this? These articles use natural units ~ = c = 1, and M−1Pl =

√
G/~c =

λ ·
√
~c3/32π, which is just a numerical factor off from λ (in natural units).

Furthermore, in natural units, legths (L) are dimesionally equal to inverse mass (M)−1

(using [x] as dimesion of x: L = [x] = [ct] = 1 · T , and E = [~ω] = 1 · T−1 also
= [mc2] =

M · 12, ⇒ M = T−1 = L−1 = E), and thus the action has dimension of [S] =
[
∫

d4xL] = L4[L] = M−4[L] = 1. The action must be dimesionless in QFT, since in the
path integral approach it is exponated. Every field Lagrangian has a kinetic term ∼ ∂φ∂φ,
which scale as [L] = M4 = [∂φ]2 = L−2[φ]2 = M2[φ]2 ⇒ [φ] = M . Thus for couplings
Lint ∼ λh(∂h)2 to have the same dimension as the kinetic term; [λ] = M−1.

Calling the coupling constantM−1Pl might have the unfortunate consequense of making it
look like a quantum theory, but make no mistake, this is all classical field theory. Therefore,
it is simply labelled λ in this thesis.

3Which is the necessary order needed to derive the linearized Einstein’s field equations.
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3.3 Solutions of the graviton field

3.3.1 Gravitational waves in vacuum, and their polarization

According to the equation of motion (3.17) the field will in a vacuum (Tµν = 0) behave as
a relativistic wave

h̄µν = 0, (3.20)

which admits solutions of the form (2.2). See Appendix A for a derivation of this solution.
Up until now the gauge has only been used to make sure the entire EoM (3.17) remains

divergence free, just like the source term T ,ν
µν = 0. In doing so it was determined that the

field might only be shifted according to (3.9). Furthermore, the divergence of the barred
h-field could be eliminated only imposing further that ξµ = 0.

Keeping ξµ = 0 still leaves

ξµν (x) ≡ ξµ,ν (x) + ξν,µ(x)− ηµνξ ,σ
σ (x) (3.21)

with four degrees of freedom, as it is a function of the four independent parameters ξµ,
which satisfy ξµ = 0. To make the graviton field divergence free imposes four additional
conditions on hµν , by the four equations h ,σ

µσ = 0. This leaves hµν with 10−4 = 6 degrees
of freedom. Subtracting further the four gauge freedoms reduces hµν to only two effective
degrees of freedom, as any massless spin two field should have. These four gauge freedoms
ξµ can be used to impose four additional conditions on h̄µν . ξ0 can be used to set the trace
h̄ = 0, and since h̄µν is just hµν with the reversed sign trace, in this gauge hµν = h̄µν .

The three remaining freedoms, ξi, can be used to set h0i = 0 as well. Since h ,ν
µν = 0

this implies h ,ν
0ν = ∂0h00 + ∂ih0i = 0 = ∂0h00, making h00 a constant of time. A constant

contribution to a GW are uninteresting and for all intents and purposes it can be considered
to be zero, making all h0µ = 0.

This specific gauge is referred to as the transverse-traceless (TT) gauge, and is defined
by

TT gauge condition:

h0µ = h i
i = h ,j

ij = 0. (3.22)

Note that this gauge can only be imposed in a vacuum, since the vacuum condition h̄µν =
0 ⇒ ξµν = 0 was used.

Assuming hµν(xα) = εµνh(xα) with h(xα) as the scalar solution to the wave equation

h(xα) =

∫
d3k

(2π)3 · 2ωk

{
a(k)e−ikσx

σ
+ a†(k)eikσx

σ
}
, (3.23)

which is (A.6) from Appendix A. The TT gauge condition then implies

h ,n
mn (xα)

(3.22)
= 0 = εmn∂

nh(xα)

=

∫
d3k

(2π)3 · 2ωk
εmnik

n
{
−a(k)e−ikσx

σ
+ a†(k)eikσx

σ
}
,
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hence

kjεij = 0. (3.24)

For a wave travelling in the z-direction kµ =
(
k, 0, 0, k

)
, making εµ3 = 0. With (3.22)

this is enough to determine the polarization down to the two essential degrees of freedom

εµν =


0 0 0 0
0 ε+ ε× 0
0 ε× −ε+ 0
0 0 0 0

 =

(
ε+ ε×
ε× −ε+

)
in plane ⊥ to k

. (3.25)

3.3.2 Source of gravitational waves

The general solution of the equation of motion (3.17) with sources can be obtained by
method of Green’s functions.

Green’s functions in general

The Green’s function of a linear differential operator LOx is defined as the function that
satisfies

LOx∆(x, x′) = δn
(
x− x′

)
, (3.26)

where LOx only acts on x.
The differential equation in question

LOxψ(x) = f(x)

admits solutions of the form

ψ(x) =

∫
dnx′∆(x, x′)f(x′).

This solution can easily be demonstrated to recover the original differential equation
by using the definition of the Green’s function,

LOxψ(x) = LOx
∫

dnx′∆(x, x′)f(x′) =

∫
dnx′ f(x′)LOx∆(x, x′)

(3.26)
=

∫
dnx′ f(x′)δn

(
x− x′

)
= f(x),

which was the original differential equation.
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Green’s function of the d’Alembert operator

In our case LOx = x, which is invariant under translation. Thus ∆(x, x′) = ∆(x−x′). In
order to find the corresponding Green’s function ∆(x−x′) the easiest way is to go through
Fourier space.

x
∆(x− x′) =

x

∫
d4k

(2π)4
∆̃(k)eikσ(x

σ−x′σ) =

∫
d4k

(2π)4
∆̃(k)

(
i2kµk

µ
)
eikσ(x

σ−x′σ)

= δ4
(
x− x′

)
=

∫
d4k

(2π)4
eikσ(x

σ−x′σ).

Matching the last equality of both lines indicates that the Fourier transform of ∆(x− x′)
must be4

∆(k) =
−1

kµk
µ
. (3.27)

Obtaining the Green’s function in real space is now just a matter of transforming (3.27).
One last remark about Green’s functions is in the context of four dimensional space-time

the solution in terms of Green’s functions can be understood as counting up contributions
from source terms, all over space, and across all time

h(xα) =

∫
d4x′∆(xα − x′α)T (x′

α
) =

∫ ∞
−∞

dct′
∫

d3x′∆(xα − x′α)T (x′
α
).

Thus ∆(x− x′) weighs the importance of source contributions at different points in space
and time. For physical solutions only contributions of source configurations from the past
contribute to h(t). This is imposed by demanding t ≥ t′.

Back to deriving the real space Green’s function. Performing the transform, and defining
rα = xα − x′α

∆(rα) =

∫
d4k

(2π)4
−1

kµk
µ
eikσr

σ
=

∫
dk0
2π

e−ik0r
0

∫
d3k

(2π)3
1

k20 − k2 e
ik·r

=

∫
dk0
2π

e−ik0r
0

∫ ∞
0

∫ 1

−1

∫ 2π

0

|k|2 d|k| d cos θ dφ

(2π)3
1

k20 − k2 e
i|k||r| cos θ

=

∫
dk0
2π

e−ik0r
0

∫ ∞
0

d|k|
(2π)2

|k|2

i|k||r|
ei|k||r| − e−i|k||r|

k20 − k2 ,

where the spatial integral was preformed in spherical coordinates. Relabelling |k| = k and
|r| = r, the expression can be worked further

∆(rα) =

∫
dk0
2π

e−ik0r
0

∫ ∞
−∞

dk
k

i(2π)2r

eikr

k20 − k2
.

4From here on out the tilde over ∆̃(k) will be dropped, and whether it is the Green’s function in real
or Fourier space will be expected to be understood by its argument.
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Extending to the complex plane, this integral can be evaluated using Cauchy’s residue
theorem, from complex analysis. Shifting k0 → k0 + iε is equivalent to imposing the re-
tardation condition: t ≥ t′ ⇔ r0 ≥ 0. Why this is the case should become apparent soon.
According to the residue theorem∮

dz f(z) = i2π
∑
k

Res(f, ak),

where ak is a pole of f(z) enclosed by the integral, and
Res(f, ak) = lim

z→ak
(z − ak) · f(z).

(3.28)

Utilizing this theorem and integrating over the upper complex plane, the Green’s func-
tion becomes

∆(rα) = lim
ε→0

∫
dk0
2π

e−ik0r
0 −1

i(2π)2r

∮
dk k

eikr

(k − k0 − iε)(k + k0 + iε)

= lim
ε→0

∫
dk0
2π

e−ik0r
0 −1

i(2π)2r

i2π

2
eir(k0+iε)

=
−1

4πr

∫
dk0
2π

e−ik0(r
0−r) =

−δ(ct− r)
4πr

It is now apparent that this is the retarded solution. Had k0 rather been shifted by
−iε, the Dirac delta function would have been δ(ct+ r). The delta function picks out
contributions on the light cone of xα, the retarded Green’s function picks out on the past
light cone, while the advanced Green’s function picks out on the future light cone.

∆ret(r
α) =

−δ(ct− |r|)
4π|r|

.

∆adv(rα) =
−δ(ct+ |r|)

4π|r|
.

(3.29a)

(3.29b)

Beyond singling out contributions from the light cone, it is apparent that the import-
ance of each contribution to the field is weighted by how far away it is from the point in
question, according to the inverse power of the spatial distance.

Solving the inhomogeneous equation of motion

Back to the EoM (3.17), using the retarded Green’s functions it admits solution of the
form

h̄µν(x) = −λ
2
Tµν (x)

⇒ h̄µν(x) = −λ
2

∫
d4x′∆ret(x− x′)Tµν (x′)

=
λ

8π

∫
d3x′

Tµν (tret,x
′)

|x− x′|
, where tret ≡ t−

|x− x′|
c

. (3.30)
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Assuming the GW is measured far away from the source compared to the size of the
source system, then the approximation |x− x′| ≈ |x| ≡ R holds. This simplifies the
integral in equation (3.30) to only be dependent on the energy distribution of the source,
and not where it is measured.

Furthermore, waves measured in vacuum can be set into the TT gauge, which implies
that all physical information of the source can be captured by its spatial indices h̄ij .

h̄ij(t, r) =
λ

8πR

∫
V
Tij (tret,x

′) d3x′ . (3.31)

To simplify the expression of equation (3.31) further it is useful to note some properties
of the energy-momentum tensor.

First: it is divergenceless.

Tµν,ν = Tµ0,0 + Tµi,i = 0. (3.32)

Second: use of the following integral will be made.∫
V

(
T ikxj

)
,k

d3x =

∫
V
T ik,k x

j d3x+

∫
V
T ij d3x =

∮
∂V
T ikxj dAk . (3.33)

In the last line the divergence theorem has been used.
If the integration boundary is taken to encapsulate the entire source, T ik

∣∣
∂V

= 0,
equation (3.33) becomes equal to 0. It then follows∫

V
T ij d3x = −

∫
V
T
k{i
,k x

j} d3x =

∫
V
T
0{i
,0 x

j} d3x =
d

dct

∫
V
T 0{ixj} d3x

=
1

2

d

dct

∫
V

(
T i0xj + T j0xi

)
d3x .

(3.34)

In the last line the symmetry T {ij} = 1
2(T ij + T ji) was written out explicitly.

So far not much has been accomplished, but notice how this procedure can be repeated
to eliminate all dependence of the spatial components of Tµν .∫

V

(
T k0xixj

)
,k

d3x =

∫
V
T k0,k x

ixj d3x+

∫
V

(
T i0xj + T j0xi

)
d3x

=

∮
∂V
T k0xixj dAk = 0

(3.35)

⇒
∫
V

(
T i0xj + T j0xi

)
d3x = −

∫
V
T 0k

,k x
ixj d3x =

∫
V
T 00

,0 x
ixj d3x (3.36)

Using that T 00 = ρc2 is the mass-energy density, the integral in equation (3.31) takes
a simple form of the second time derivative of the so-called quadrupole moment

Qij(t) ≡
∫
V
ρ(t,x)xixj d3x ,

Q̈ij(t) = 2

∫
V
Tij (t,x) d3x .

(3.37a)

(3.37b)
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Finally, the source of linearized GWs is provided as

h̄ij(t,R) =
λ

16πR
Q̈ij(tret). (3.38)

Utilizing this result the GWs generated from any source, with a non-vanishing energy-
momentum tensor, can be calculated at distances sufficiently far away from the source.

3.4 Gravity from gravitons

Equipped with a field Lagrangian it is now desirable to check that it in fact reproduces
the Newtonian law of universal gravity for non-relativistic sources.

In special relativity the action of point particles are the geodesics5 of Minkowski space-
time. The geodesic of some non-trivial space-time, with metric gµν = ηµν + λhµν is

Spp = −mc
∫

ds = −mc
∫ √

−gµν dxµ dxν (3.39a)

= −mc
∫ √

−(ηµν + λhµν) dxµ dxν (3.39b)

= −mc
∫ √

−dτ2 (ηµν + λhµν)ẋµẋν (3.39c)

= −mc
∫

dτ
√
c2 − λhµν ẋµẋν (3.39d)

= −mc2
∫

dτ

√
1− λhµν

ẋµ

c

ẋν

c
(3.39e)

≈ −mc2
∫

dt γ−1 +
λ

2

∫
dt hµνmγ

−1ẋµẋν + . . . (3.39f)

≈
∫ [(

−mc2 +
1

2
mv2 + . . .

)
+
λ

2
hµνT

µν
pp

]
dt . (3.39g)

Why compute the geodesic for a perturbed Minkowski space? In the relativists’ ap-
proach GWs is such a perturbation of the metric (at least for vacuum solutions), thus
this is the action of point particles to linearized order in hµν , according to relativists. It
is included here to motivate the interaction term Lint = λ

2hµνT
µν , with the point particle

energy momentum-tensor6

Tµνpp (x) =
∑
a

γ−1a maẋ
µẋνδ3(x− xa(t)) , (3.40a)

with ẋµa = γa (c , v ) =

(
1− |v|

2

c2

)− 1
2

(c , v ) . (3.40b)

5Extrema, e.g. shortest, path between two points in space-time. In Euclidian space it is the straigh line
connecting the two points.

6The factor of γ−1
a is a result of rewriting the proper time integral into a generic time integral dt

dτa
= γa,

common for all particles. Writing out the four-velocities should result in an overall factor of γ1
a. For more

info on the pp energy-momentum tensor see e.g. Gourgoulhon [15].
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Otherwise, it just shows that the free point particle Lagrangian (the kinetic part) is just
Lfree pp ' 1

2mav
2
a =

∫
1
2maẋ

2δ3(x− xa) d3x. The constant term −mc2 does not contribute
to the EoM, and can therefore be neglected.

Thus, the total Lagrangian of two point particles interacting only via the graviton field,
up to the 0PN order, is

Lpp =
2∑

a=1

[
1

2
maẋ

2δ3(x− xa) +
λ

2
hµνmaẋ

µẋνδ3(x− xa)

]
+ LFP + Lgf (3.41)

The EoM for the h field is known from (3.17). Since the bar operator is its own inverse
operator when used on symmetric tensors, ¯̄Sµν = Sµν , equation (3.17) may also be written
as

h = −λ
2
T̄µν , (3.42a)

⇒ hµν(x) = −λ
2

∫
d4y∆ret(x− y)T̄µν (y)

= −λ
2

∫
d4y∆ret(x− y)Pµν:αβ T

αβ(y),

(3.42b)

with Pµν:αβ =
1

2

(
ηµαηνβ + ηµβηνα − ηµνηαβ

)
. (3.42c)

Substituting (3.42b) for hµν in the interaction term results in the following action for
the point particles.

Spp =
2∑

a=1

∫
d4x

c

{
1

2
maẋ

2δ3(x− xa)

− λ

2

[∫
d4y

λ

2
∆ret(x− y)Pµν:αβ Tαβ (y)

]
maẋ

µẋνδ3(x− xa)

}

=

2∑
a=1

∫
1

2
maẋ

2δ3(x− xa)
d4x

c
+
∑
b>a

λ2

4

x [
maẋ

µẋνδ3(x− xa)
]

·
{
Pµν:αβ

δ3(xρ − yρ)
4π|x− y|

}[
mbẏ

αẏβδ3(y − xb)
] d4x

c
d4y

(3.43)

The next trick is to first approximate the space-time distance to mostly be in time, for slow
moving, not too far separated point particles. Then the middle Dirac delta is approximately
δ
(
x0 − y0

)
. After using that approximation to eliminate the y0 integral, the spatial integrals

are next, which due to the remaining Dirac deltas just makes all x → xa(t), y → xb(t),
and r = |x1 − x2|. Lastly, to leading order in powers of c the only contributing factor of
ẋµ is the time component ẋ0a = γac

2 ≈ c2. The result is

SNewt pp =

∫ (
1

2

(
m1v

2
1 +m2v

2
2

)
+
λ2

8

m1m2c
4

4πr

)
dt

=

∫ (
1

2

(
m1v

2
1 +m2v

2
2

)
+
Gm1m2

r

)
dt , (3.44)
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which is exactly the action of Newtonian theory for two point particles with mass.
Notice in equation (3.43), the potential can be understood as the energy-momentum

tensor Tµνa (x) connected to the energy momentum tensor Tαβb (y) by some sort of propag-
ator, defined by the contents of the curly brackets. This can be expressed graphically, as
in Figure 4.1, and will be further developed in Chapter 4.

Once the action is known, the energy can simply be derived by finding the corresponding
Hamiltonian

H ≡
∑
i

q̇i
∂L

∂q̇i
− L = q̇ipi − L, (3.45)

where pi is the canonical momentum, and qi are generalized coordinates. This is nothing
but a Legendre transformation of the Lagrangian for q̇i → pi.

Unsurprisingly, for the Newtonian action it reads

HNewt =

2∑
i=1

vi ·mivi − LNewt =
1

2
m1v

2
1 +

1

2
m2v

2
2 −

Gm1m2

r
= ENewt. (3.46)

In relative coordinates it reads (see Appendix B for derivations and tricks)

ENewt =
1

2
µv2 − GMµ

r

(2.4)
=

1

2
µv2 − r2ω2µ = −1

2
µv2, (3.47)

which is exactly the first order term of the energy expansion (2.7).

3.5 The energy-momentum tensor of gravitational waves

Equipped with the Lagrangian for linearized theory (3.16) it is straight forward to utilize
Noether’s theorem to obtain the energy-momentum tensor of the graviton field.

For coordinate transformations xν → xν + εaAνa(x) (3.48a)
And field transformations φi(x)→ φi(x) + εaFi,a(φ, ∂φ) (3.48b)

⇒ ∂νj
ν
a = 0, where

jνa =

[
∂L
∂φi,ν

φi,ρ − δνρL
]
Aρa(x)− ∂L

∂φi,ν
Fi,a(φ, ∂φ).

(3.48c)

Noether’s theorem is a central result of modern physics, and for a detailed derivation
consult any field theory book, e.g. Kachelrieß [17], Maggiore [9] or Goldstein et al. [2].

For pure translations Aβα = δβα, Fi,α = 0, and thus

j β
α ≡ −t β

α = L(2)δ β
α −

∂L(2)
∂hµν,β

hµν,α. (3.49)

The terms in this equation is known, the first from (3.2b),7 and the second from (3.16).

tµν = h ,µ
σρ hσρ,ν − 1

2
h,µh,ν + L(2)ηµν . (3.50)

7To match this expression to (3.16) set a1 = −2a4 = −1/2 and a2 = a3 = 0, which is to impose the
Lorenz gauge. This gauge can only be imposed after evaluating the ∂L

/
∂hµν,β term.
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For a wave-packet centred around a reduced wavelength λ ≡ λ/2π, the total 4-momentum
flux is obtained by integrating over a volume V ∼ L3 where L � λ, such that tµν is zero
on the boundary ∂V. Then the effective energy-momentum tensor is8

tµν =
〈
L(2)

〉
ηµν −

〈
∂L(2)
∂hσρ,ν

hσρ,µ

〉
=
〈
h ,µ
σρ hσρ,ν

〉
− 1

2
〈h,µh,ν〉 (3.51)

Here the 〈x〉 is to be understood as spatial averaging. Also, for radiation detectable far
away from the source the EoM can be considered to be for a vacuum, and thus h̄µν = 0.
Setting the vacuum as the zero solution of the h-field the Lagrangian averages to zero〈
L(2)

〉
= 0, and is thus dropped from (3.51).

Additionally, in vacuum the Lorenz gauge can be promoted to the TT gauge, further
imposing that h = h0µ = h ,j

ij = 0 (3.22), results in the final expression for the energy-
momentum (pseudo-)9 tensor

tµν =
〈
∂µhTTij ∂

νhijTT

〉
,

Pµ =
1

c

∫
V

d3x tµ0 =
1

c

∫
V

d3x
〈
∂µhTTij ∂

0hijTT

〉
.

(3.52a)

(3.52b)

3.5.1 Total radiated energy flux

The total radiated energy flux F can be obtained from P 0 = E/c and the divergencelessness
of the energy-momentum tensor, which follows from Noether’s theorem

tµ0,µ = 0,

⇒ ∂P 0

∂ct
= −P i,i = −1

c

∫
V

d3x ∂it
i0 = −1

c

∫
∂V
tr0 dA , (3.53)

where the last equality used the divergence theorem, expressed in spherical coordinates.
For the next step notice that tr0 =

〈
∂rhTTmn∂

0hmnTT
〉
, and recall that h’s sufficiently far from

the source can be written as hTTmn = 1
rfmn (tret) with tret = t− r/c and fmn some function.

Then observe that ∂
∂rfmn (tret) = − ∂

∂ctfmn (tret), which makes

∂

∂r
hTTmn(t, r) = −∂0hTTmn +O

(
r−2
)

= ∂0hTTmn +O
(
r−2
)
. (3.54)

8The Noehter current need not be physical in itself, it is the volume integral of jνa , where jνa goes
sufficently fast to zero on the boundary, which is conserved, and thus physical. In field theory one defines
the effective energy-momentum tensor, which is the average value over the volum integral, i.e. the spa-
tial average, as the physical energy-momentum tensor. All terms lost under spatial averaging would not
contribute to physical effects anyway. This is why (3.51) is averaged over space.
An interesting lesson here is that the energy of GWs can not be isolated to one space-time point, which

can be understood by them being non-localisable.
9Note that this is the energy-momentum tensor in the TT gauge, which is to say it is gauge dependent!

This might sound strange, but as Maggiore [9] points out this is also the case for electromagnetism.
In the geometric approach the gauge dependence of tµν is a coordinate dependence, since the gauge

transformation is a coordinate transform in the geometrical picture. Thus tµν is not a real tensor, but
rather a pseudotensor. Also in the geometrical picture, tµν is averaged over several wavelengths to extract
the GW contribution to the background metric, making it equivalent to the energy-momentum tensor
obtained by field theorists.
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Thus in the TT gauge, and sufficiently far from the source, tr0 = t00 +O
(
r−3
)
, and

−F =
dE

dt
= c2

∂P 0

∂ct
= −c

∫ (
t00 +O

(
r−3
))
r2 dΩ =

−r2

c

∫ 〈
ḣTTij ḣ

ij
TT

〉
dΩ ,

F =
r2

c2

∫ 〈
ḣTTij ḣ

ij
TT

〉
dΩ

(3.38)
=

λ2

28π2c

∫
Λij,kl(n)

〈...
Qij

...
Qkl

〉
dΩ . (3.55)

Note that ḣ = dh
dt does not include any additional factors of c. It is apparent that GWs

carry energy out of a volume, hence the negative sign convention for F . The term of order
r−3 can be neglected for large values of r, while in the remaining term the r dependence
cancels, making it non-vanishing.

The Lambda tensor

Before computing the angular integral it is important to note that the radiation is not
isotropic, but rather a function of direction n. Following the outline of Maggiore [9] this
can be accounted for by introducing the so-called Lambda tensor

Λij:kl(n) = δikδjl −
1

2
δijδkl − njnlδik − ninkδjl

+
1

2
nknlδij +

1

2
ninjδkl +

1

2
ninjnknl.

(3.56)

The Lambda tensor is a projection operator which is defined in such a way that it
projects a wave already in the Lorenz gauge (3.13) into the TT gauge (3.22).

hTTij (n) = Λ kl
ij (n)hkl, (3.57)

which makes sure the wave is transverse with respect to the direction of propagation n.
The Lambda tensor has the property

Λ kl
ij Λ mn

kl = Λ mn
ij , (3.58)

making it a projection operator. Thus, the contraction of two waves in the TT gauge
becomes

hTTij h
ij
TT = Λ kl

ij hklΛ
ij
mnh

mn = Λ ij
mn Λ kl

ij hmnhkl = Λ kl
mn hmnhkl, (3.59)

i.e. the Lambda tensors can be used to contract tensors not in the TT to get the contraction
of the TT gauged tensors, which is exactly what is needed for equation (3.55). The last
equality utilized the property Λij:kl = Λkl:ij of the Lambda tensor.

When integrating over the Lambda tensor the following integral appears∫
dΩ

4π
ni1ni2 · · ·ni2`−1

ni2` =
1

(2`+ 1)!!

(
δi1i2 · · · δi2`−1i2` + . . .

)
. (3.60)

Here n is taken to be a unit vector |n| = 1. To illustrate the solution take ` = 1 →∫
dΩ /(4π)ninj = Sij . The trace of S i

i = 1, because nin
i = |n| = 1, reducing the integral to
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the scalar integral
∫

dΩ = 4π. The tensor structure of Sij should be that of the Kronecker
delta, as it should be symmetric in its indices, and have a non-vanishing trace. Thus,
Sij = δij/3.

Generalizing this argument it follows that the integral (3.60) should be the sum of all
possible Kronecker delta combinations, to maintain index symmetry. This is indicated by
the dots on the RHS of (3.60). The symbol !! is here meant to imply the product of every
second number: (2`+ 1)!! = 1 · 3 · · · (2`− 1) · (2`+ 1), and 2`!! = 2 · 4 · · · (2`− 2) · 2`. This
fixes the correct trace value, just like the factor of 1/3 for the ` = 1 case. Note that all
integrals over an odd number of unit vector components are 0 because the integral is also
odd then.

Thus, the integral of the Lambda tensor becomes∫
dΩ

4π
Λij:kl = δikδjl −

1

2
δijδkl − δik

∫
dΩ

4π
njnl − δjl

∫
dΩ

4π
nink

+
1

2
δij

∫
dΩ

4π
nknl +

1

2
δkl

∫
dΩ

4π
ninj +

1

2

∫
dΩ

4π
ninjnknl

= δikδjl −
1

2
δijδkl − δik

1

3
δjl − δjl

1

3
δik +

1

2
δij

1

3
δkl +

1

2
δkl

1

3
δij

+
1

2

1

3 · 5
(
δikδjl + δijδkl + δilδkj

)
=

11

30
δikδjl −

2

15
δijδkl +

1

30
δilδkj . (3.61)

Utilizing this result for (3.55), and the fact that Qij = Qji, yields the flux in terms of
the mass quadrupole

F =
λ2

25 · 5πc

〈...
Qij

...
Q
ij − 1

3

...
Q

2
〉

=
G

5c5

〈...
Qij

...
Q
ij − 1

3

...
Q

2
〉
, (3.62)

with Q ≡ Q i
i .

This is an important dynamical property of GWs, that they can carry energy, mo-
mentum, and angular momentum out of a system. For a compact binary this influences
the orbital energy, extracting energy from it over time, make them spiral in towards each
other. The fact that there is no analytical exact solution to the relativistic binary problem
is often attributed to this effect. The orbit is affected by GW radiation, which is determined
by the orbit, making the problem complicated.

3.6 Illustrative example: Binary system with circular orbits

As an illustrative example this section will calculate the exact form of GW produced by
binary systems in circular orbits, according to linearized theory (3.16).

Those already familiar with GWs may skip this section, as this system will be covered
in greater detail in the following chapters, and is here mearly used as an example to better
illustrate the result (3.38) and (3.62).
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Figure 3.1: Diagram of a binary system.

Taking the centre of mass as the origin, the positions of the stars are

r1 =
(
r1 cos(ωt), r1 sin(ωt), 0

)
, (3.63a)

r2 = −
(
r2 cos(ωt), r2 sin(ωt), 0

)
. (3.63b)

This determines the mass density as

ρ(t, r) =
∑
a

maδ
3(r − ra(t)) (3.64)

The quadrupole moment of the binary system is thus

Qij(t) =

∫
ρxixj d3x =

∑
a

ma(xa)i(xa)j

= (m1r
2
1 +m2r

2
2)

 cos2(ωt) cos(ωt) sin(ωt) 0
cos(ωt) sin(ωt) sin2(ωt) 0

0 0 0


=
µr2

2

cos(2ωt) sin(2ωt) 0
sin(2ωt) − cos(2ωt) 0

0 0 0


(3.65)

⇒ Q̈ij(t) = 2µ(ωr)2

− cos(2ωt) − sin(2ωt) 0
− sin(2ωt) cos(2ωt) 0

0 0 0

 . (3.66)

Details of mass and trigonometric term manipulations can be found in Appendix B and C
respectively.
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Thus, the GWs produced by a circular binary system is determined by (3.38) and (3.66)
to be

hij(t,R) = − λ

8π

µv2

R

cos(2ωtret) sin(2ωtret) 0
sin(2ωtret) − cos(2ωtret) 0

0 0 0

 (3.67)

For convenience rω = (r1 + r2)ω has been replaced by v, which is the sum of the velocities
of the stars. This is equivalent to the frequency parameter v3 = GMω introduced in
Chapter 2.

It should be noted that the wave frequency ωGW = 2ω = 2ωs, with ωs as the source
frequency, is the dominant frequency for circular orbits, and that the amplitude is pro-
portional to the frequency v2 = (GMω)2/3. This makes the GW highly dependent on the
frequency of the source binary, both for the amplitude, and frequency spectrum.

The energy flux produced by such a system is now easily computable by using equation
(3.62) together with (3.66).

F =
λ2

25 · 5πc

〈...
Qij

...
Q
ij − 1

3

...
Q

2
〉

=
λ2

25 · 5πc
24µ2v4ω2

〈
2 sin2(2ωtret) + 2 cos2(2ωtret)− 0

〉
=

λ2µ2v10

5πG2M2c
=

32

5

η2

G

v10

c5
. (3.68)

This is exactly the first order term of the flux expansion (2.8).
Furthermore, circular orbits is a solution of the Newtonian, point particle, action (3.44).

If the source interact with the graviton field, and only the graviton field, this implies that
the orbital energy of the system is ENewt = −1

2µv
2 (3.47).

With (3.68) and (3.47), the Newtonian order (0PN) version of the phase (2.26) can be
derived, assuming compact binaries can effectively be treated as point masses.

The flux is obviously not zero, which means that energy is dissipated out of the system.
However, according to the Lagrangian (3.16) the energy of the source Tµν is conserved.
Therefore, this energy radiation is an inconsistency of the theory.

This hits deeply into the problem of gravity. As a field theory it couples to energy,
while as a field it itself stores energy, and should therefore couple to itself. Amending this
feature is the topic of the next section.

3.7 Graviton action beyond quadratic order

In Section 3.5 it was found that gravitons / GWs can carry energy, and can even be given an
effective energy-momentum (pseudo-)tensor of its own. But since the graviton field couples
to energy-momentum tensors, should it not couple to itself?

In Section 3.6 it was even found that a binary system of point particles radiated energy
in the form of GWs, but where does this energy come from? One natural assumption
would be that the energy is extracted from the orbital energy associated with the system,
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leading to an inspiral. But this would mean that the energy-momentum tensor of the
binary T ,ν

µν 6= 0, as it changes over time. Furthermore, Tµν,ν = 0 was used to determine
the graviton action in the first place, making the conservation of energy of the source, and
the energy carrying capability of the graviton field a theoretical inconsistency!

The solution is to change the energy conservation criteria (3.3b) to

(Tµν + tµν),ν = 0, (3.69)

which is to make the energy of the source plus the energy stored in gravitons (i.e. in GWs)
conserved, together.

To implement this in a new and improved Lagrangian for the graviton field the first
naive idea would be to couple the graviton directly to the graviton energy-momentum
tensor Lint → λ

2hµν (Tµν + tµν). This will however lead to problems for the EoM, as

δ

δhµν

λ

2
hµνt

µν =
λ

2
tµν +

λ

2
hρσ

δ

δhµν
tρσ 6= λ

2
tµν

since tµν
(3.50)

= h ,µ
στ hστ,ν − 1

2
h,µh,ν + L(2)ηµν .

(3.70)

Since it is the EoM which dictates the physics of any given action, one would rather
demand that

δ

δhµν
L∗int =

λ

2
(Tµν + tµν) . (3.71)

This requires the addition of a more general cubic term to the Lagrangian λ
2L(3) such

that

δ

δhµν

λ

2
L(3) =

λ

2
tµν . (3.72)

Writing out all possible terms cubic in h, containing only two derivatives (necessary
to obtain tµν), which also produces tµν when varied (3.72), together with new energy
conservation condition (3.69) fixes the 18 coefficients uniquely (up to the same overall
factor of L(2)). This is obviously a lot of work, but the result can be quoted from Feynman
[12] (equation (6.1.13)).10

λ

2
L(3) =

λ

2

[
hαβhγδhαβ,γδ −

1

2
hhαβh,αβ −

1

2
hhαβ hαβ −

3

8
h2 h

+ h β
γ hγα hαβ −

3

4
hαβh

αβ h− 2hαβhβδh
,γδ

αγ + hαβhβδh
δ

,α

+ 2hαβh
σα
,σh

τα
,τ − 2hαβh

σα
,σh

,β +
1

2
hαβh

,αh,β − hhσα,σhτα,τ

+ hhσα,σh,α −
1

4
hh,αh

,α +
1

2
hαβh

αβhστ,στ +
1

4
h2hστ,στ

]
.

(3.73)

10Note that Feynman uses a different overall scaling factor for his graviton action (a1 = 1, rather than
a1 = −1/2). In (3.73) all barred factors of h have been written out, also in contrast to (6.1.13) of [12].
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Using again Noether’s theorem on this new Lagrangian L(2) + L(3), the new effective
energy-momentum tensor picks up a term cubic in h:

tµν = tµν(2) +
λ

2
tµν(3). (3.74)

Again it can be argued that the cubic term here is not conserved, and the process of
this section can be started all over again. In fact, it turns out that

Lgrav = Lint + L(2) +
λ

2
L(3) +

λ2

22
L(4) + . . . , (3.75)

with the EoM

h̄µν = −λ
2

(
Tµν + t(2)µν +

λ

2
t(3)µν + . . .

)
. (3.76)

This makes the equation of motion nonlinear, and in general both the action and the
EoM contain infinitely high powers of h.

By now the Venusians would probably be disappointed, but for terrestrial physicists
this should be expected, as GR is also a nonlinear theory. When expanded in powers of
metric perturbations, also the Einstein-Hilbert action contain infinitely high powers of h,
which coincide with the action found thus far in this thesis.11

An important observation is that all these corrections scale with increasing powers of
λ, which is small. Thereby the more powers of h it contains, the less it contributes to the
final result. Thus, the theory can be perturbatively expanded in powers of λ.

11There are many who argue that the procedure outlined here can be carried out ad infinitum, and then
reproduces the Einstein-Hilbert action, but this is disputed. The Einstein-Hilbert action can definitely be
expanded in this manner, but it is disputed wether or not the field theorists’ method produces uniquely
the Einstein-Hilbert action. [20]



Chapter 4

Calculating the orbital energy

In this chapter the 1PN energy of compact binaries in circular motion is computed.
The derivation follows closely those presented in Porto [4], and Goldberger [19], [3].

4.1 Effective field theory

In the last chapter examples focused on point particles. Compact objects like BHs and NSs
are however not point particles. But for sufficiently far separated binaries, the separation
distance r will be much greater than the ‘size’ of the compact object, which can be ap-
proximated as the Schwarzschild radius ∼ RS � r. Then the system can be described by
an effective action, treating the compact object as a point mass at the scale ∼ r.

On the other end of the scale the system is producing GWs, carrying energy out of
the system. But when calculating the energy flux in Section 3.5, the source was assumed
to effectively be a point endowed with quadrupole structure (which will be expanded to a
general multipole structure in Chapter 5), since the GW was measured far away. That is,
the flux is measured at a scale L � λ � r.1 Thus, in this chapter the effective action at
the scale r, with RS � r � L, will be derived, which approximates the immediate2 orbital
dynamics.

To compute the 1PN orbital energy the procedure of Section 3.4 will be expanded. In
Section 3.4 it was found that the graviton potential could be expressed graphically like
Figure 4.1. In Figure 4.1 the two sources are depicted as solid lines, like in a space-time
diagram, while the Green’s function is depicted as a squiggly line, connecting the two point
particles. Graphical representations of this kind are called Feynman diagrams, as they were
introduced by Feynman [21] to illustrate expansion terms of QED. Note that the Green’s
function has been given the subscript ‘inst’, to remind that the Newtonian action was
recovered by approximating δ4(xµ − yµ) ≈ δ(t− t′), making the interaction instantaneous.

1The wavelength can be shown to be greater than the size of the binary by noticing two things. First:
ωGW ∼ 2ωs, as approximated in (3.67). The reduced wavelength λ = λ/2π is related to the angular
frequency as λ = c/ω. Second: Kepler’s third law (2.4) relate ω and r: λGW = c

2
√
GM

r3/2 =
√

r
2RS

r � r.
2Immediate because over time the energy loss through GW emssion can not be ignored. However over

short periodes of time, the orbital energy can be approximated to be conserved.

36
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λ
2

∫
T µν (x) d4x λ

2

∫
T αβ(y) d4y

−∆inst(x − y)P
µν:αβ

Figure 4.1: Newtonian Feynman diagram / ‘H-diagram’.

For those familiar with Feynman diagrams, note that the solid lines are not propagating,
even though they are depicted the same way as propagating fermions in QFT. This can be
confusing, but it is the convention introduced by Goldberger and Rothstein [3], and has
by now become the standard.

4.1.1 Expand the action in powers of h

Based on the findings of Section 3.7, the Einstein-Hilbert action SEH can be used to find
the expression of the propagator for the hµν field, by solving equation (3.76). Expanding
the Einstein-Hilbert action in powers of h yields the contribution for the different levels of
self interaction, which all scale with additional powers of the coupling constant λ.

SEH ∼
1

2

∫
d4x

[
(∂h)2 + λh(∂h)2 + λ2h2(∂h)2 + . . .

]
(4.1)

∼ + + + · · ·

Note that the terms in (4.1) are symbolic representations for the powers of hµν , and that
all terms contain only two derivatives.

Why does the first order correction lead to a three graviton vertex? Looking at the
leading order correction in the EoM (3.76)

hµν = −λ
2
Pµν:αβ

(
tαβ(2)

)
∼ λ

2
Pµν:αβ (∂h∂h) ,

⇒ hµν(x) ∼ −
∫

d4y1 d4y2 ∂T
αβ(y1)∂T

αβ(y2)∆inst(x− y1)∆inst(x− y2),
(4.2)
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where again ∼ implies symbolic relation of powers of hµν , rather than the exact relation.
The leading order term of this three-point propagator will be derived in Section 4.2.7.

It can however be seen from this simple relation, where the h’s of the RHS was substi-
tuted for the linear order solution, that at this order h is produced by two sources, which
in principle can be at different space-time points. Therefore, an interaction hµνTµν(x) in
the action will to next order connect three energy-momentum tensors, using two Green’s
functions. This can neatly be visualized by a three graviton vertex.

In Section 3.4 the action of point particles (3.39) was found to also be expandable in
powers of h, similarly to the Einstein-Hilbert action.

Spp =−mc2
∫

dτ

√
1− λhµν

ẋµ

c

ẋν

c
(4.3a)

=−mc2
∫
γ−1 dt+

λ

2

∫
dt hµνγ

−1mẋµẋν +
mλ2

8c2

∫
dt γ−1

(
hµν ẋ

µẋν
)2

+ . . . (4.3b)

∼ + + + · · ·

Here again the choice of having two gravitons coupling to the world line for the
∼
(
hµν ẋ

µẋν
)2 term is natural as the integral can be split in two integrals multiplied

together
∼
∫

d3x
(
hµν(t,x)ẋµẋν

)
δ3(x− xa(t))

∫
dy
(
hµν(t,y)ẏµẏνδ3(y − xa(t))

)
, which couples this

source effectively to two different gravitons.
In Section 3.4 this was argued to be a natural choice for the point particle action, as it

is the expansion of the action of GR. It is also a natural choice for a classical field theory
with a coupling to a symmetric rank 2 tensor field, and is equivalent to equation (11.40)
of Gourgoulhon [15].

4.1.2 Separation of scale

Because of the separation of scale, ∼ r � RS and ∼ L � r, it will be useful to split the
graviton field into a short-range, potential field (Hµν ) and a long range, radiation field
(Hµν)

hµν = Hµν +Hµν . (4.4)

From here on out the potential field will be drawn using dashed lines, while the radiation
field will continue to be drawn using squiggly lines.

The frequency of GWs are proportional to the frequency of the source binary ωGW '
2ω = 2ωs, and the relative velocity of a binary in circular motion is v = ωr. Using the
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relation between null wave frequency and wavelength ω = c|k| = cλ−1 the wavelength of
GWs scale as

λGW '
c

2ω
=
rc

2v
� r, (4.5)

for binaries moving at non-relativistic speeds.
Because H is null-like, it follows that kσkσ = 0, and

∂αHµν = kαHµν ∼ λ−1GWHµν '
v

r
Hµν , (4.6)

i.e. H must be on shell.
H on the other hand is a potential field, and can not be on shell, since it shall re-

produce the gravitational potential in the static limit. In Section 3.4 this was achieved by
approximating δ4(x− y) ≈ δ(t− t′). This ‘instantaneous’ propagator is not the Green’s
function of the d’Alembertian operator

∆inst(x− y) =
−δ(t− t′)
4π|x− y|

=

∫
d4k

(2π)4
eikσ(x

σ−yσ)

−k2 , (4.7)

but it is the Green’s function of the Laplace operator ∇2 ≡ ∂i∂
i. This integral scales

proportional to |k| ∫
d3k

1

k2 ∼
|k|3

k2 ∼ ki ∼
1

|x− y|
. (4.8)

Assuming k0 is small compared to ki, the instantaneous propagator may be obtained
as a leading order term of an expansion in k0/|k|

∆inst(k) ≡ 1

−kµkµ
=

1

k20 − k2 =
1

−k2

1

1− k20/k
2

=
1

−k2

(
1 +

(
k0
k

)2

+

(
k0
k

)4

+ . . .

)
.

(4.9)

∼ + × + × × + · · ·

Not only is this a highly constructed expansion to obtain a desired leading order term,
it will be demonstrated that this expansion actually scales as an expansion in (v/c)2, and
will be drawn graphically by ⊗ on the propagator to show which order in the (k0/|k|)2
expansion it represents. This also implies that k0/ki ∼ v ⇒ k0 ∼ vki ∼ v/r, and in
conclusion

∂0Hµν = k0Hµν ∼
v

r
Hµν , ∂iHµν = kiHµν ∼

1

r
Hµν . (4.10)

Now Feynman diagrams may be constructed by putting together terms as presented in
(4.1), (4.3), and (4.9), but the following three rules must be upheld to make sense as an
expansion term in the point particle action.
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1. Diagrams must remain connected if the particle lines are stripped off.
2. Diagrams may only contain internal Hµν lines.
3. Diagrams may only contain external Hµν lines.

Rule 2-3 follow by definition of Hµν and Hµν . Rule 1 however seems more mysterious,
but it is a consequence of the solid lines not propagating, and thus is just a requirement that
the Feynman diagram is connected, as all Feynman diagrams must. Unconnected diagrams
are simply separate diagrams, and represents multiple terms in the expansion at once.

= 2×

Figure 4.2: ‘Ladder’ Feynman diagram. With non-propagating sources, unconnected grav-
iton lines simply represent different diagrams.

4.2 The 1PN Lagrangian

In order to acquire relativistic, post-Newtonian, corrections to the Newtonian Lagrangian
(3.44) it is a straightforward matter to just add additional terms of the form found in
expansion (4.1), (4.3), and (4.9) to the action. But (4.1) and (4.3) are expansions in λ and
H rather than in (v/c)2, so how can it be determined which Feynman diagrams contribute
at which PN order?

4.2.1 Assigning PN order to Feynman diagrams

Using the scaling of kµ for the potential field (4.10) and Kepler’s law (2.4), it turns out
that it is possible to assign a power of v, r and m to each Feynman diagram, and thus
select the appropriate diagrams and terms relevant to each PN order, all without doing
the full calculation! This is why the diagrams are introduced in the first place, as they are
tools to make it easier to order expansion terms.
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The scaling of coordinate (integration variables) follows from the relations of kµ.

∫
dx0

∫
dk0
2π

eik0x
0

=

∫
dx0 δ(x0) = 1 ∼ 1,

∼ x0 · k0 ∼ x0 ·
v

r

(4.11a)

∫
d3x

∫
d3k

(2π)3
eik·x =

∫
d3x δ3(x) = 1 ∼ 1

∼
(
xiki

)3 ∼ (xi · 1

r

)3 (4.11b)

⇒ x0 ∼ r

v
, xi ∼ r. (4.11c)

Notice that Dirac delta functions carries inverse dimension and scaling of its argument
(and the exponential function is of course dimensionless)3.

For each graviton Hµν in a diagram, it scales as

〈
THµν (x)Hαβ (y)

〉
= ∆inst(x− y)Pµν:αβ =

−δ(t− t′)
4πr

Pµν:αβ ∼
v

r
· 1

r
∼ v

r2
, (4.12a)

⇒ Hµν (x) ∼
√
v

r
. (4.12b)

Note that to leading order in interaction terms Hµν couples only to temporal components
µ = ν = 0, since ẋ0 = γc ∼ c, and ẋi = γvi ∼ v, relegating spatial indices to higher PN
orders compared to the temporal ones.

Since (4.1) and (4.3) expands in powers of λ, it would be useful to associate a scaling
with the coupling constant. This can be achieved using Kepler’s third law (2.4), and v = ωr.

v2 = ω2r2 =
GM

r3
r2 =

GM

r
=

(λ2c4/32π)M

r
, (4.13a)

λ2 ∼ v2r

m
∼ (rmv) · v

m2
(4.13b)

⇒ λ ∼
√
Lv

m
. (4.13c)

The orbital angular momentum scale L ∼ rmv has been introduced as a convenient
scaling, as will be demonstrated shortly.

It is now a straightforward exercise to assign PN orders to different diagrams:

3Since ex = 1 + x+ x2

2!
+ . . . , and all the terms in a sum must have the same dimesion.
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∼ mλ

2

∫
dx0H00 ẋ

0
aẋ

0
a ∼

m
√
Lv

m
· r
v
·
√
v

r
∼
√
L. (4.14)

Thus the Newtonian diagram, Figure 4.1, scales as (4.14) squared, making L the scaling
of the 0PN order. This is why introducing L = rmv as a scaling is convenient, as it easily
makes the leading order scaling apparent. Now, all 1PN diagrams should scale as Lv2

The next interaction graph is similarly found to scale

∼ mλ2

8

∫
dx0

(
H00 (x)ẋ0aẋ

0
a

)2 ∼ (rmv)v

m
· r
v
· v
r2
∼ v2. (4.15)

And so it goes on...

∼ mλ3

16

∫
dx0

(
H00 (x)ẋ0aẋ

0
a

)3 ∼ m(rmv2)
3
2

m3
· r
v
· v

3
2

r3

∼ v4/
√
L.

(4.16)

The last type of diagram that needs to be assigned a scaling is the multi graviton
vertex propagators. Note the inclusion of a three-dimensional Dirac delta, to make sure
momentum (ki for graviton i) is conserved. This is because the gravitons only transfers
momentum from one source to another (Newton’s third law), and therefore the sum of
momentum in and out of this vertex should be zero. Otherwise, the graviton field would
spontaneously generate momentum and energy. The two spatial derivatives comes from
the definition of tµν(2), which consist of two derivatives ∂j ∼ x−1j ∼ kj , and two factors of
H, which is the reason the propagator exists in the first place. Notice that ∂j ∼ r−1, while
∂0 ∼ v

r , relegating temporal derivatives to higher PN orders.
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∼ λ
∫

dx0 δ3

(
3∑
i=1

ki

)
∂2j (H00 )3

∼
√
Lv

m
· r
v
· r3 · r−2 ·

(√
v

r

)3

= v2/
√
L

(4.17)

At the next order, the only change is an additional factor of λ, and H. This follows
from the expansion of the graviton energy-momentum tensor (3.76).

∼ λ2
∫

dx0 δ3

(
3∑
i=1

ki

)
∂2j (H00 )4

∼ (rmv)v

m2
· r
v
· r3 · r−2 · v

2

r4
= v4/L

(4.18)

As already mentioned, spatial indices in the interaction term between the source and
graviton leads to additional powers of velocity (H0i ẋ

0ẋi = H0iγcγv
i), and thus belong to

higher PN orders. These will graphically be represented by a vn next to the interaction
vertex, with n describing the power of v correction the diagram represents.

All thinkable diagrams belonging to the 1PN correction scale as Lv2, and are depicted
in Figure 4.3. Summing them all up will result with the 1PN Lagrangian (4.48).

v1 v1

(a)

v0 v2

(b)

×

(c)

(d) (e)

Figure 4.3: The Feynman diagrams contributing to 1PN order orbital energy. The three
first diagrams (a)-(c) are Newtonian, ‘H’-type, diagrams with relativistic corrections to the
interaction terms and propagator. Diagram (d) and (e) represent new types of diagrams,
and are of the ‘V’-type, and ‘Y’-type respectively.
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4.2.2 Computing Feynman diagram (a)

In this first diagram nothing has changed from the Newtonian diagram (see Figure 4.1),
except a coupling between the velocity of the two sources4

v1 v1
cSeff

(a) =
m1λ

2

∫
d4x ẋi1ẋ

0
1δ

3
(
x− x1(x0)

)
· m2λ

2

∫
d4y

δ
(
x0 − y0

)
P0i:0j

4π|x− y|
ẋj2ẋ

0
2δ

3
(
y − x2(y0)

) (4.19)

Integrals over Dirac deltas should be straightforward, leaving xi1P0i:0j x
j
2 as the only new

and interesting part. Note that Pµν:αβ is symmetric in µ↔ ν, α↔ β, and µν ↔ αβ, and
therefore all permutations of the indices belong to this same diagram. The last symmetry,
µν ↔ αβ, is just a relabelling of m1m2 ↔ m2m1, and is superfluous. The other symmetries
also result in the same potential, but should be summed over, producing a factor of 2·2 = 4.

Recalling the definition of the projector Pµν:αβ , (3.42c)
5, this is

vi1P0i:0j v
j
2 = vi1

(
1

2
· (−1) · ηij

)
vj2 =

−1

2
v1·v2 (4.20)

Thus the potential of diagram 4.3a is

V(a) =
m1m2λ

2

4

(
1

4πr
· 4cv1 · cv2

2

)
=
m1m2c

2λ2

32πr
(4v1·v2)

= 4
Gm1m2

r

v1·v2

c2
= −4VNewt

v1·v2

c2
.

(4.21)

According to the sign, this is seemingly a repulsive force, but it is dependent on the
dot product of the two velocity vectors, which for any Keplerian orbit will be negative
(see Figure 3.1). Of course, it also scales by an additional factor of v2/c2 compared to the
Newtonian term, as a 1PN term should.

But for particles moving in the same direction it is a repulsive force, making it com-
parable to a magnetic type force. For oppositely charged particles, which should attract in
the static approximation, will also repel each other magnetically when moving in the same
direction, quite analogously. The analogy goes even further, as magnetic forces can also be
interpreted as relativistic corrections to the electric force [22].

4.2.3 Computing Feynman diagram (b)

This diagram mostly follows suit of Section 4.2.2, but with a few additional details. These
are

• The relativistic expansion of the free point particle kinetic energy is added here, as
it also scales ∼ v2

a compared to 0PN.
4The additional factor of c with the effective action is to allow S =

∫
Ld3xdt → cS =

∫
L d4x.

5For the readers convinience: Pµν:αβ = 1
2

(
ηµαηνβ + ηµβηνα − ηµνηαβ

)
.



Chapter 4: Calculating the orbital energy 45

• The relativistic expansion of the Lorentz factor of the energy-momentum tensor is
expanded, as it also scales ∼ v2

a compared to 0PN.
• And of course, the P00:ij and Pij:00 couplings belong to this diagram.

The first term is just the velocity expansion of the free point particle action

−mac
2

∫
dτa = −mac

2

∫
dx0 γ−1a = −mac

2

∫
dx0

(
1− 1

2

v2
a

c2
− 1

8

v4
a

c4
+ . . .

)
, (4.22)

which for the 1PN expansion is 1
8ma

v4
a
c2
, as it has an extra factor of v2

a
c2

compared to the
0PN kinetic term 1

2mav
2
a.

Next notice that there is also a Lorentz factor in the energy-momentum tensor, that
until now has been approximated to 1.

maλ

2c

∫
d4x γ−1a H00 ẋ

0
aẋ

0
aδ

3(x− xa(t)) =
maλ

2c

∫
d4x γaH00c

2δ3(x− xa(t))

=
maλ

2c

∫
d4x

(
1 +

1

2

v2
a

c2
+

3

8

v4
a

c4
+ . . .

)
H00c

2δ3(x− xa(t)) .

(4.23)

Other than the factor of 1
2
v2
a
c2

this is exactly the same as the 0PN potential.
Lastly, the velocity dependent coupling. Using again (3.42c)

Pij:00 ẋ
i
aẋ

j
a =

1

2
va·va =

1

2
v2
a. (4.24)

To the first PN order, only one particle at the time may be expanded this way, therefore
the v0-v2 vertices in the diagram. But really both the v0-v2 diagram and the v2-v0 diagram
belong to the 1PN potential, therefore these will both be summed up here, under the same
diagram.

Summing up all these contributions to the 4.3b diagram yields

v0 v2

cSeff
(b) =

∑
a

[∫
dx0

1

8
ma

v4
a

c2
(4.25a)

+
maλ

2

∫
dx0

{
Hij (xa)ẋ

i
aẋ

j
a (4.25b)

+
1

2

v2
a

c2
H00 (xa)ẋ

0
aẋ

0
a

}]
. (4.25c)

Here (4.25a)6 is the result of (4.22), (4.25c) of (4.23), and (4.25b) of (4.24).
6It could be argued that this contributon of the action should be an expansion of the free particle

diagram (with no propagators), but for streamlining it is included here.
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Substituting H00 (x0,xa) for the usual term (3.42b) yields the potential

V(b) =− m1m2λ
2

2 · 2 · 4πr
∑
a

1

2

[
c2 · v2

a +
1

2
c4 · v

2
a

c2

]
=− m1m2λ

2c2

32π

3

2

(
v2
1 + v2

2

)
=− Gm1m2

r

3

2

v2
1 + v2

2

c2
= VNewt

3

2

v2
1 + v2

2

c2
. (4.26)

This potential is attractive, and proportional to the Newtonian kinetic energy. Thus,
this diagram can be thought of as the gravitational attraction from the kinetic energy of
one of the particles on the other, showing that in GR gravity is an attraction of energies,
and not just masses. Using Einstein’s mass-energy equivalence, the ‘Newtonian kinetic
mass’ is E = 1

2mv
2 = mkinc

2, and inserted into Newton’s law of gravity produces V(b)/3.
This analogy can not explain the missing factor of 3, because the analogy only account for
the (4.23) part of the potential.

Notice that terms of the type (4.23) can in principle be expanded to infinite orders,
thus there is no reason to stop expanding vertices past the v2 order.

4.2.4 But wait, what about 0.5PN diagrams?

After having computed diagram a and b, a natural idea of a v0-v1 coupling emerges as a
0.5PN contribution.

v0 v1
cSeff

0.5PN =
∑
a6=b

maλ

2

∫
d4x ẋ0aẋ

0
aδ

3
(
x− xa(x0)

)
· mbλ

2

∫
d4y

δ
(
x0 − y0

)
P00:0i

4π|x− y|
ẋibẋ

0
bδ

3
(
y − xb(y0)

) (4.27)

The situation is analogous to Section 4.2.2, only here the connection is not symmetric.
Thus, the potential is also here the Newtonian potential multiplied by some velocity factor.

V0.5PN =
m1m2λ

2

16πr

∑
a6=b

[
ẋ0aẋ

0
a (P00:i0 + P00:0i ) ẋ

i
bẋ

0
b

]
= 0, (4.28)

which follows from P00:i0 = 1
2 (2η00η0i − η00ηi0) = P00:0i = 0.

A lesson to be taken from this is that Pµν:αβ only couples sources which both have an
even or both an odd number of temporal indices. E.g. 00:00, 00:ij, and 0i:0j. Terms like
0i:00, or 0i:ij will turn out to be zero. Therefore, this kind of interaction expansion can
only produce even powers of v/c.

4.2.5 Computing Feynman diagram (c)

The last ‘H’-shaped diagram is not expanded in its vortexes, but rather the propagator of
H is expanded to second order in v, according to expansion (4.9). In that expansion, the
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propagator was only expanded in Fourier space, so it remains to determine the value of
the first order correction of the propagator in real space.

∆
(2)
inst(x− x

′) ≡
∫

d4k

(2π)4
−k20
k4 e

ikν(xν−x′ν). (4.29)

From the gradient relations (4.10) it is evident that (k0/|k|)2 ∼
(
v
r/

1
r

)2
= v2 and thus

belong to the 1PN correction, but the scaling of k0 ∼ v
r was not truly argued for. So

this section will demonstrate this scaling by computing the propagator in real space.

×
cSeff

(c) =
m1m2λ

2c4

8

∫
d4x d4y

{
δ3(x− x1(t))

· δ3
(
y − x2(t

′)
)

∆
(2)
inst(x− y)

} (4.30a)

=
m1m2λ

2c4

8

∫
dctdct′∆

(2)
inst
(
t− t′,x1(t)− x2(t

′)
)

(4.30b)

To evaluate the integral in (4.29) some tricks are in order. Writing out the exponent
as eikµ(xµ−x′µ) = e−ik0(ct−ct

′)eik·(x−y), a useful way to proceed is to rewrite the integral as
k20e
−ik0(ct−ct′) = − ∂2

∂ct∂ct′ e
−ik0(ct−ct′). In the following note that the time derivative is only

operating on the k0 integral.∫
d4k

(2π)4
(k0)

2

k4 eikµ(x
µ−x′µ) = − ∂2

∂ct∂ct′

[∫
dk0
2π

e−ik0(ct−ct
′)

] ∫
d3k

(2π)3
1

k4 e
ik·(x−x′) (4.31a)

= − ∂2

∂ct∂ct′
[
δ
(
ct− ct′

)] ∫ d3k

(2π)3
1

k4 e
ik·(x−x′) (4.31b)

To proceed the derivative of Dirac’s delta function must be determined. To that end,
partial integration is the key.∫ ∞
−∞

f(x)
dδ(x− x0)

dx
dx =

∫ ∞
−∞

d

dx
[f(x)δ(x− x0)] dx−

∫ ∞
−∞

δ(x− x0)
df(x)

dx
dx (4.32a)

= f(x)δ(x− x0)
∣∣∣∣∞
−∞
−
∫
δ(x− x0)f ′(x) dx = −

∫
δ(x− x0)f ′(x) dx , (4.32b)

the last equality only holding for x0 /∈ ±∞. The result generalizes for any number of
derivatives as ∫ ∞

−∞
f(x)

dnδ(x− x0)
dxn

dx =

∫ ∞
−∞

(−1)nδ(x− x0)
dn

dxn
f(x) dx . (4.33)

Back to equation (4.31b), the situation is analogous, thus partial integrations can also
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be utilized here to rewrite the derivative of the Dirac delta function in the same manner.

cSeff
(c) = −m1m2λ

2c4

8

∫
dctdct′ δ

(
ct− ct′

) ∂2

∂ct∂ct′

∫
d3k

(2π)3
1

k4 e
ik·(x1(t)−x2(t′)) (4.34a)

= 4πGm1m2

∫
dctdct′ δ

(
ct− ct′

) vi1
c

vj2
c

∫
d3k

(2π)3
kikj

k4 eik·(x1(t)−x2(t′)) (4.34b)

= 4πGm1m2

∫
dct

vi1
c

vj2
c

∫
d3k

(2π)3
kikj

k4 eik·r(t) (4.34c)

= −4πGm1m2

∫
dct

vi1
c

vj2
c

∂2

∂ri∂rj

∫
d3k

(2π)3
1

k4 e
ik·r(t). (4.34d)

This final integral might not look like that much of an improvement, but these are the
kinds of integrals often encountered in QFT, and there exists a known solution [4].∫

ddk

(2π)d
1

k2α e
ik·r =

1

(4π)d/2
Γ
(
d
2 − α

)
Γ(α)

(
r2

4

)α−d/2
. (4.35)

Here Γ(z) is the gamma-function, and d is the spatial dimension. In the integral of
equation (4.34d), d = 3 and α = 2. Recalling that Γ(1) = 1, Γ

(
1
2

)
=
√
π, and zΓ(z) =

Γ(z + 1), it follows that Γ(2) = 1 · Γ(1) = 1 = Γ(α). In the same fashion −1
2Γ
(
−1

2

)
=

Γ
(
1
2

)
=
√
π → Γ

(
d
2 − α

)
= Γ

(
−1

2

)
= −2

√
π.

Then, the final expression of the potential follows as

V(c) = 4πGm1m2
vi1
c

vj2
c

∂2

∂ri∂rj

[
1

8π3/2
−2π1/2

1

|r|
2

]
(4.36a)

= −Gm1m2

2

vi1
c

vj2
c

1

r3
(
r2δij − rirj

)
(4.36b)

= −Gm1m2

2r

(
v1·v2

c2
− (v1·r) (v2·r)

c2r2

)
(4.36c)

= VNewt
1

2c2

(
v1 ·v2 −

(v1·r) (v2·r)

r2

)
. (4.36d)

Again, this is obviously of first post-Newtonian order, as it has an additional factor
of v2

c2
compared to the Newtonian potential. From the procedure it is hopefully clear how

additional powers of (k0/k)2 leads to additional time-derivatives, additional powers of c−2,
and additional powers of v2. Thereby the scaling k0 ∼ v

r should be justified.
Like diagram 4.3a, this potential is also dependent on v1·v2, but has the opposite sign.

Thus, it is attractive for particles moving in the same direction, and repulsive for particles
moving in opposite directions.

Some insight might be gained from the projector in line (4.36b)

Pij (n) ≡ δij − ninj , (4.37)
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where n = r/r. Contracting Pij (n) with a vector x has the effect of projecting x onto the
orthogonal plane of n

Pij (n)xj = xi − (n · x)ni,

⇒ niPij (n)xj = (n · x)− (n · x) = 0.

Ergo, Pij (n)xj is orthogonal to n.
With this in mind, the potential only couples velocities orthogonal to r, and is equi-

valent to

V(c) = VNewt
(r × v1) · (r × v2)

2r2c2
=

G

2r3c2
(r × p) · (r × p)

=
Gµ

rc2

(
1

2
µr2ω2

)
,

(4.38)

where vi was exchanged for v according to (B.4), and p ≡ µv. In the last line, ω =
r × v/r2 was used, and the term inside the parenthesis is the kinetic energy associated
with rotational motion of a particle with effective mass µ.

A last observation is that the Lambda tensor, introduced in Section 3.5 (3.56), can be
defined using this projection operator (Maggiore [9])

Λij:kl(n) ≡ Pik Pjl −
1

2
Pij Pkl . (4.39)

4.2.6 Computing Feynman diagram (d)

The last two diagrams have a higher order of H’s and are thus non-linear in λ. Therefore,
these diagrams should be proportional to G2. Diagram 4.3d represent a second order in H
coupling between the graviton field and the point particle, while the last diagram represents
the higher order propagator, where H couples with itself. It was argued in equation (4.15)
and (4.17) that these diagrams belong to the 1PN correction, but then only coupling to
the 00 component of Tµν . Thus, the same expansions preformed for diagram (a)-(c) will
need to be implemented to these non-linear diagrams, when computing higher order PN
corrections.

cSeff
(d) =

∑
a6=b

m2
aλ

2

4

mbλ
2

8

∫
dx0 dx̃0 dy0 c6P 2

00:00

·∆inst
(
xa(x

0)− xb(y
0)
)
·∆inst

(
xa(x̃

0)− xb(y
0)
) (4.40)

Notice that particle a interacts with the graviton field twice, and possibly at different
times, while particle b only interacts once, but to a higher order, thus connecting it to
the other particle through two graviton propagators, as depicted in the diagram. The sum
adds the mirrored diagram as well.
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There is nothing surprising in this diagram, and the integrals can be carried out without
any fuzz, eliminating two of the three time integrals, making both graviton exchanges
instantaneous, and simultaneous.

V(d) = −
∑
a6=b

m2
ambλ

4c6

4 · 8 · 4
1

4πr

1

4πr
= −

∑
a6=b

G2m2
amb

2r2c2
(4.41a)

= −G
2m1m2(m1 +m2)

2r2c2
= VNewt

GM

2rc2
(4.41b)

One way to interpret this result is as a gravitational coupling between the total mass
of the system, and half the Newtonian potential energy itself

V(d) = −GM(|VNewt|/2c2)
r

. (4.42)

This does not however make much sense as being separated the distance r, but it is an
interesting analogy.

4.2.7 Computing Feynman diagram (e)

Note that in this section spacial indices are suppressed, as subscripts are used to enumerate
vector variables.

The last diagram makes use of the three graviton propagator, and is the first one not
to use the linear propagator.

cS(e) =
m2

1m2λ
3

8

∫
d4x d4x̃ d4y

(
δ3(x− x1(t1)) + . . .

)
c6∫

〈T {H00(t1,k1)H00(t2,k2)H00(t3,k3)}〉
3∏
j=1

d3kj
(2π)3

+ the mirrored diagram.

(4.43)

Here the propagator in the second line needs a lot of work. It can be read off from Gold-
berger and Rothstein [3], equation (37)-(39). But it will also be derived in the following.

Much of the structure is already given in (4.2), which was found inserting leading order
results7 for h in the expanded EoM.

Hµν (y) = −λ
2
Pµν:αβ

∫
d4k1 d4k2 d4k3

(2π)12
−eik1y

k2
1

Pρσ:τδ k
α
1Hk2 σρk

β
3Hk1 τδ e

ik2xeik3x̃ (4.44)

To make sure momentum and energy is not spontaneously generated by the propagator,
one should demand the momentum vectors ki sum to zero. This is achieved by multiplying
the integral by (2π)4δ4(

∑
i ki).

7Leading order here referes to the PN expansion, not the λ expansion of the EoM (3.76).
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H00 (y) = −λ
4
P00:αβ

∫  3∏
j=1

d4kj
(2π)4

 −eik1y
k2
1

−eik2x

k2
2

−eik3x̃

k2
3

kα1 k
β
1 (2π)4δ4

(∑
i

ki

)

= −λ
4

∫  3∏
j=1

d4kj
(2π)4

 −eik1y
k2
1

−eik2x

k2
2

−eik3x̃

k2
3

(k01)2 + k2
1

2
(2π)4δ4

(∑
i

ki

)
.

(4.45)

The factor of (k01)2 + k2
1 = k2

1

(
1 + (k01)2/k2

1

)
, which was found to induce factors of v2

past leading order in Section 4.2.5. Therefore, this factor will be approximated as k2
1.

Furthermore, when one of the ki integrals are preformed; the Dirac delta function will
eliminate that vector by k1 + k2 + k3 = 0. For example preforming the k1 integral yields

H00 (y) =
λ

8

∫  3∏
j=2

d4kj
(2π)4

 e−i(k2+k3)y eik2x
k2
2

eik3x̃

k2
3

(4.46a)

=
λ

8

∫
dk02 dk03
(2π)2

e−ik
0
2(x

0−y0)e−ik
0
3(x̃

0−y0)
∫

d3k2
(2π)3

eik2·(x2−y)

k2
2

∫
d3k3
(2π)3

eik3·(x̃2−y)

k2
3

(4.46b)

=
λ

8

δ
(
x0 − y0

)
4π|x2 − y|

δ
(
x̃0 − y0

)
4π|x3 − y|

(4.46c)

=
λ

2
P00:00 ∆inst(x2 − y) · P00:00 ∆inst(x3 − y) (4.46d)

It is the product of two propagators, connecting two different points to the same third
point, just like in the diagram. This result could also have been argued to result from
Wick’s theorem, like Porto [4] does, but then it would be all pairwise combinations of
points, including ∆inst(x2 − x3). It was discarder here because the k1 propagator was
eliminated by the derivative, which again followed from k1 being the main transform, i.e.
the lone graviton going in the final interaction term of the action. In [4] this ‘missing’
contribution was handled using dimensional regularization, and turns out to be zero, as
demanded by our result.

The potential should now follow straightforwardly as

V(e) =
∑
a6=b

m2
ambλ

4c6

210π2r2

=
G2m1m2(m1 +m2)

r2c2
= −VNewt

GM

rc2

= −2V(d).

(4.47)

Surprisingly, this diagram has the same potential as diagram 4.3d, times negative 2.
Thus, the joined effect of these two last diagrams is a positive, and thus repulsive, potential
proportional to the total mass and the Newtonian potential.

It is surprising that the effect of non-linear terms is to weaken the static force, but this
is the case.
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4.2.8 The total 1PN Lagrangian

Summing up all the potentials V(a)-V(e) ((4.21), (4.26), (4.36d), (4.41), and (4.47)), and
remembering to add the kinetic energy expansion (4.25a), the final 1PN Lagrangian will
be the result

L1PN = LEIH =
1

8

∑
a

ma
v4a
c2

+
Gm1m2

2rc2

[
3(v2

1 + v2
2)− 7v1 ·v2 −

(v1·r)(v2·r)

r2c2

]
− G2m1m2(m1 +m2)

2r2c2
,

(4.48)

and with total effective action Seff =

∫
dt {L0PN + L1PN + . . . } (4.49)

This is the Einstein-Infeld-Hoffmann Lagrangian from 1938 [23], derived in an entirely
different manner, warranting some confidence in the result.

In order to determine the orbital energy of the binary system it is useful to reduce this
Lagrangian to its equivalent one body problem.

As it is already just spatially dependent on the relative displacement of the two bodies
r, the last thing needed is just to express their velocities by the relative velocity.

Using the centre of mass frame the position of each body can be expressed through the
relative displacement r as8

r = r1 − r2, r1 =
m2

M
r, r2 = −m1

M
r. (4.50)

The velocity of particle number i is defined as the time derivative of its position vi ≡ ṙi.
Defining the time derivative of the relative displacement as the relative velocity one finds

v ≡ ṙ, v1 =
m2

M
v, v2 = −m1

M
v. (4.51)

Substituting (4.51) into the 1PN (4.48), and the 0PN (3.44) Lagrangian, the equivalent,
total, one-body version is obtained

Leff =
1

2

(
m1

m2
2

M2
+m2

m2
1

M2

)
v2 +

Gm1m2

r
+

1

8c2

(
m1

m4
2

M4
+m2

m4
1

M4

)
v4

+
Gm1m2

2rc2

[
3

(
m2

2 +m2
1

M2

)
v2 + 7

m2m1

M2
v2 +

m2m1

M2
v2 (v̂ · r̂)2

]
− G2m1m2(m1 +m2)

2r2c2

(4.52a)

=
µ

2
v2 +

GMµ

r
+

µ

8c2
(1− 3η)v4

+
GMµ

2r

[
3 + η

(
1 + (v̂ · r̂)2

)] v2

c2
− G2M2µ

2r2c2
.

(4.52b)

8For details on how to derive these relations, and how to do the soon to come mass-term manipulation,
see Appendix B.
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4.3 Computing the 1PN equations of motion and energy

Equipped with the effective Lagrangian up to first post-Newtonian order (4.52b), all that
remains is to determine the equation of motion and associated energy.

4.3.1 Finding the associated equations of motion

The corresponding equation of motion can be obtained by finding the extremum of the
action. Using polar coordinates it is obvious that θ is a cyclic coordinate, as it does not
appear in the Lagrangian.

d

dt

∂L

∂ω
=
∂L

∂θ
= 0, (4.53a)

` ≡ ∂L

∂ω
= µr2ω +

µ

2c2
(1− 3η)(r4ω3 + ṙ2r2ω) +

GMµ

rc2
(3 + η)r2ω

= µr2ω

[
1 +

1

c2

{
1− 3η

2
(r2ω2 + ṙ2) +

GM

r
(3 + η)

}]
.

(4.53b)

d

dt

∂L

∂ω
= µ(r2ω̇ + 2rωṙ)

[
1 +

1

c2

{
1− 3η

2
(r2ω2 + ṙ2) +

GM

r
(3 + η)

}]
+

1

c2
µr2ω

[
(1− 3η)(rω2ṙ + r2ωω̇ + ṙr̈)− GM

r2
(3 + η)ṙ

]
.

(4.53c)

Approximating ` ≈ µr2ω +O
(

1
c2

)
it is clear that ` is the angular momentum of New-

tonian theory, with a 1PN correction.
The radial equation of motion is similarly obtained by

∂L

∂r
− d

dt

∂L

∂ṙ
= 0. (4.54a)

∂L

∂r
= µrω2 − GMµ

r2
+

µ

2c2
(1− 3η)(r3ω4 + rω2ṙ2)

+
GMµ

2c2

[
(3 + η)ω2 − (3 + 2η)

(
ṙ

r

)2

+
2GM

r3

]
,

(4.54b)

∂L

∂ṙ
= µṙ +

µ

2c2
(1− 3η)(ṙ3 + r2ω2ṙ) +

GMµ

c2
(3 + 2η)

ṙ

r

= µṙ

[
1 +

1

c2

{
1− 3η

2
(ṙ2 + r2ω2) +

GM

r
(3 + 2η)

}]
,

(4.54c)

d

dt

∂L

∂ṙ
= µr̈

[
1 +

1

c2

{
1− 3η

2
(ṙ2 + r2ω2) +

GM

r
(3 + 2η)

}]
+

1

c2
µṙ

[
(1− 3η)

(
ṙr̈ + rω2ṙ + r2ωω̇

)
− GM

r2
ṙ (3 + 2η)

]
.

(4.54d)

Imposing circular motion entails ṙ = r̈ = 0, thus the EoM simplifies to

0 =

{
G2M2

r3c2
− GM

r2

}
+

{
r +

GM(3 + η)

2c2

}
ω2 +

{
r3(1− 3η)

2c2

}
(ω2)2 (4.55)
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The solution to this equation follows as

ω2 =
GM

r3

{
1− (3− η)

GM

rc2
+O

(
1

c4

)}
, (4.56a)

⇒ v2 = r2ω2 =
GM

r

{
1− (3− η)

GM

rc2
+O

(
1

c4

)}
. (4.56b)

Notice that to the 0PN order equation (4.56a) reduces to Kepler’s third law for circular
orbits (2.4).

Using (4.56), r, ω, and v can be related with 1PN corrections. To compute the other
relations, organize the equation into a quadratic equation, and solve for the quadratic
parameter (e.g. solve for GM/r in (4.56b) to obtain GM/r as a function of v2).

The 1PN correct relations of ω, r, and v turns out to be

ω2 =
GM

r3

{
1− (3− η)

GM

rc2
+O

(
1

c4

)}
, (4.57a)

GMω = v3
{

1 + (3− η)
v2

c2
+O

(
1

c4

)}
. (4.57b)

GM

r
= (GMω)2/3

{
1 +

(
1− η

3

) (GMω)2/3

c2
+O

(
1

c4

)}
, (4.58a)

GM

r
= v2

{
1 + (3− η)

v2

c2
+O

(
1

c4

)}
. (4.58b)

v2 = (GMω)2/3

{
1−

(
2− 2

3
η

)
(GMω)2/3

c2
+O

(
1

c4

)}
, (4.59a)

v2 =
GM

r

{
1− (3− η)

GM

rc2
+O

(
1

c4

)}
. (4.59b)

To get the relations of other order of the LHS, is simply a matter of raising the equation
to the desired power, and then Taylor expanding away terms that are not of first post-
Newtonian order. But the relations as written here are those that usually come up, many
having already been used in this thesis at the 0PN approximation.

One illustrative example to get a sense of the scale of the 1PN correction is to use
(4.58a) to compute the correction of the lunar orbital distance. The Moon does not follow
a circular orbit, but rather has an eccentricity of 0.02 < e$ < 0.08, so it will not be an
exact approximation. It can however give an idea of the scale of the effect.

The Moon has a (sidereal) period of T$ = 27.32 days, and mass ofm$ = 1.23·10−2MC,
where the Earth mass is MC = 5.97 · 1024 kg [24].

r$ =
GM

(GMω$)2/3

{
1−

(
1− η

3

) (GMω$)2/3

c2

}
(4.60a)

' 3.85 · 108
{

1− 1.17 · 10−11
}
m

' 3.85 · 108 m − 4.47 · 10−3 m
(4.60b)
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Thus, even though the approximation is crude, this shows that the correction is in order
of millimetres for the Earth-Moon system. It is perhaps not surprising considering that
the Moon is not exactly moving at relativistic speeds.

However, due to reflective mirrors left by the Apollo missions, the Earth-Moon distance
is measured at a millimetre precision [25].

The best models for the Earth-Moon system operates at this precision, and thus needs
to account for 1PN corrections like this one [26].

4.3.2 Computing the Hamiltonian

To obtain the orbital energy it will suffice to derive the corresponding Hamiltonian of
the 1PN Lagrangian (4.52b) by Legendre transformation (3.45). Utilizing the results of
equations (4.53b) and (4.54c) the Hamiltonian is found to be

H(r, v) = ṙ
∂L

∂ṙ
+ ω

∂L

∂ω
− L (4.61a)

= µṙ2
[
1 +

1

c2

{
1− 3η

2
(ṙ2 + r2ω2) +

GM

r
(3 + 2η)

}]
+ µr2ω2

[
1 +

1

c2

{
1− 3η

2
(r2ω2 + ṙ2) +

GM

r
(3 + η)

}]
− L

(4.61b)

= µv2 +
4µ

8
(1− 3η)

v4

c2
+ 2

GM

2r

[
3 + η

(
1 +

ṙ2

v2

)]
v2

c2
− L (4.61c)

=
µ

2
v2 − GMµ

r
+

3µ

8
(1− 3η)

v4

c2

+
GMµ

2r

[
3 + η

(
1 +

ṙ2

v2

)]
v2

c2
+
G2M2µ

2r2c2
.

(4.61d)

The Hamiltonian is expressed in terms of the relative velocity v2 = ṙ2 + r2ω2 instead
of the canonical momentum because the end goal is simply to obtain the 1PN energy in
terms of the frequency. Note that this expression is valid for all type of motion, not just
circular.

Imposing circular motion again, the relations between v, r, ω from (4.57)-(4.59) may
be used to express the energy in terms of one of these variables. The most commonly
used variable is the frequency ω, as it is most directly related to the observable: the GW
frequency. However here the velocity will be used for more convenient calculations.

E =
µ

2
v2 −

(
v2 + (3− η)

v4

c2

)
µ+

3µ

8
(1− 3η)

v4

c2
+
µ

2

v4

c2
(3 + η) +

µ

2

v4

c2
(4.62a)

= − µ

2
v2 +

µ

2

[(
−6 +

3

4
+ 3 + 1

)
+

(
2− 9

4
+ 1

)
η

]
v4

c2
(4.62b)

= − µ

2
v2
[
1 +

{
5

4
− 3

4
η

}
v2

c2

]
. (4.62c)

This is not the energy expansion (2.7) presented in Chapter 2, so what is going on?
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Recalling that in Chapter 2 v∗ was only used as a proxy variable for the orbital fre-
quency, and was defined as v∗ ≡ (GMω)1/3. In the Newtonian theory v = v∗, but at 1PN
the relative velocity and orbital frequency are related according to (4.59a), hence v 6= v∗.
Therefore, (4.62c) is the orbital energy in terms of the actual relative velocity.

Using equation (4.59a) to transform v → ω the energy in terms of frequency is obtained
to be

E = −µ
2

(GMω)2/3

{
1 +

{
−3

4
− 1

12
η

}
(GMω)2/3

c2
+O

(
1

c3

)}
. (4.63)

This is the energy presented in (2.7), where (GMω)1/3 was named v, somewhat con-
fusingly from the point of view of this chapter.

Beware that in the literature, energy and flux can, and are, presented in terms of GMr ,
(GMω)1/3, or v. But they are all the frequency energy/flux, relabelled using the 0PN ap-
proximation of the relations (4.57) - (4.59). This is of course since they are ultimately used
to compute waveforms, which are computed from differential equations of the frequency.
And in the end, the frequency is the directly observable parameter.

To get a sense of the scale of this energy correction, lets use this on the Earth-Moon
system.

E$ ' −3.81 · 1028
(
1− 8.76 · 10−12

)
J

' −3.81 · 1028J + 3.34 · 1017 J.
(4.64)

Which is of course comparably tiny. Using the mass-energy equivalence, the correction
is comparable to ∼ 3kg, of an ∼ 4 · 108 metric tonnes 0PN energy.



Chapter 5

Calculating the energy flux

In order to fully describe the 1PN dynamics of the compact binary the energy dissipation
by generated GWs need to be accounted for. In this section this total radiated power is to
be calculated.

Derivations presented here closely follows those presented in Maggiore [9], Porto [4],
and Ross [27].

5.1 The graviton field evaluated at large scales

5.1.1 Seperation of scales

In Section 4.1 it was argued that the binary system could be separated into three different
length scales ∼ L, ∼ r, and ∼ RS , related by L � r � RS . In Chapter 4 the ∼ RS
scale was ‘integrated out’, leaving BHs and NSs only with a point mass structure at the
scale of the orbit ∼ r. Similarly, in Section 3.5 the total energy flux of a system was found
evaluating the graviton field at a scale L� λGW, leaving the source effectively as a point
source, endowed with a quadrupole structure.

By the requirement of evaluating at a scale L� λ, it is also automatically realized to
be evaluated at a scale much larger than the binary system that created it, r � λ.1

5.1.2 Modifying the source of gravitational waves

In Section 3.5 the solution of the graviton field was found to be (3.30), which reads

H̄TT
ij (t,R) =

λ

8πR
Λ kl
ij

∫
V
Tkl (tret,x) d3x , where tret = t− |R− x|

c
. (5.1)

With V ∼ L3, such that Tij evaluated at ∂V is zero.
On the other hand, in the far region H = 0, which admits solution of the general

1To see why this relation holds for the inspiral, see footnote 1 from Chapter 4.
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form

H̄ij(t,R) =
Fkl(t−R/c)

R
− ∂i1

[
F i1
kl (t−R/c)

R

]
+

1

2
∂i1∂i2

[
F i1i2
kl (t−R/c)

R

]
+ . . .

≡
∞∑
`=0

(−1)`

`!
∂L

[
FLkl(t−R/c)

R

]
,

with

[
FLij (t−R/c)

R

]
= 0.

(5.2)

Here the multi index notation has been introduced, which is to say a capital letter index
L represent a number of ` indices.

By comparing these two expressions, which should be equivalent for R� r, FL can be
demonstrated to be [28]

FLij (tret) =

∫
d3xxLSTF

∞∑
p=0

(2`+ 1)!!

2pp!(2`+ 2p+ 1)!!

(
|x|
c

∂

∂t

)2p

Tij (tret,x). (5.3)

Here tret = t − R/c. The subscript STF stands for symmetric trace free. This is the
only part that is not eliminated by the Lambda tensor (3.56). Recall that in the flux, the
Lambda tensor eliminated the trace of the quadrupole moment.

As a remainder `!! = ` · (` − 2) · (` − 4) · · · 2 or 1, depending on whether ` is even or
odd respectively.

Before proceeding, it will be useful to investigate STF tensors.

5.1.3 STF tensor decomposition

The STF part of a tensor is the irreducible representation of the tensor under rotations.
Therefore, in GW physics it represents the physical degrees of freedom, where the other
terms can be gauged away.

As an example, a rank two tensor can be decomposed into three parts

Tij = T[ij] + T{ij} = A[ij] + S{ij} =
1

3
S k
k δij + εijkA

k +

(
S{ij} −

1

3
S k
k δij

)
. (5.4)

The first term in the last equality is the trace part, the second the anti-symmetric part,
and finally the third term is the STF part.

Now, noticing Λijklδ
kl = 0, and since the Lambda tensor is symmetric in k ↔ l

Λijklε
kl
m = 0. This is why only the STF part of FLij contribute to the final flux.

The STF part of a rank n tensor can be obtained by [29]

T i1···inSTF =

bn/2c∑
p=0

c(n)p δ{i1i2 · · · δi2p−1i2pT i2p+1···in}a1a1···apap ,

c(n)p ≡ (−1)p
n!(2n− 4p+ 1)!!

(n− 2p)!(2n− 2p+ 1)!!(2p)!!
.

(5.5)



Chapter 5: Calculating the energy flux 59

The construction of this expression is not self-evident, but calculating it for the quad-
rupole and octupole moments will be instructive. The operator bxc rounds x down to the
closest integer, and is called the floor function. E.g. b3/2c = 1.

First notice that the p = 0 term always correspond to the symmetric version of the
tensor in question

for p = 0:
n!(2n+ 1)!!

n!(2n+ 1)!!
T {i1···in} = T i1···insym . (5.6)

Not surprisingly, the terms of p > 0 in (5.5) is used to subtract all possible traces, thus
making the expression symmetric and trace free. E.g. the quadrupole moment becomes

QijSTF = Q{ij} − 2!(1)!!

0!(3)!!(2)!!
δijQaa = Qijsym −

1

3
δij tr(Q), (5.7)

which is equivalent to the expression used in the quadrupole radiation (3.62).
The octupole moment follows similarly as

OijkSTF = O{ijk} − 3!(3)!!

(1)!(5)!!(2)!!

1

3

(
δijOkaa + δikOjaa + δjkOiaa

)
= Oijksym −

1

5

(
δijOkaa + δikOjaa + δjkOiaa

)
.

(5.8)

The factor of 1/3 comes from the symmetrizing of δ{ijOk}aa = 1
3!

((
δij + δji

)
Okaa + . . .

)
=

1
3

(
δijOkaa + . . .

)
. Hopefully these examples provide some familiarity with formula (5.5).

5.1.4 The multipole structure of GWs

Working the expression further, following the somewhat complicated steps of Ross [27] the
result is

H̄TT
ij = − 4G

Rc2
Λij:k`−1k`

∞∑
`=2

1

`!

[
nL−2∂

`
0I

L−2
ij (tret)

− 2`

`+ 1
εab{k`−1

naL−2∂
`
0J

L−2
k`} (tret)

]
.

(5.9)

Here I is the mass multipole, while J is current multipole, defined as

IL(t) =

∞∑
p=0

(2`+ 1)!!

(2p)!!(2`+ 2p+ 1)!!

(
1 +

8p(`+ p+ 1)

(`+ 1)(`+ 2)

)[∫
d3x ∂2p0 T

00(t,x)r2pxL
]
STF

+
(2`+ 1)!!

(2p)!!(2`+ 2p+ 1)!!

(
1 +

4p

(`+ 1)(`+ 2)

)[∫
d3x ∂2p0 T

k
k (t,x)r2pxL

]
STF

− (2`+ 1)!!4

(2p)!!(2`+ 2p+ 1)!!(`+ 1)

(
1 +

2p

(`+ 2)

)[∫
d3x ∂2p+1

0 T 0
i (t,x)r2pxLxi

]
STF

+
(2`+ 1)!!

(2p)!!(2`+ 2p+ 1)!!

(
2

(`+ 1)(`+ 2)

)[∫
d3x ∂2p+2

0 Tij (t,x)r2pxLxixj
]
STF

.

(5.10)
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JL(t) =
∞∑
p=0

(2`+ 1)!!

(2p)!!(2`+ 2p+ 1)!!

(
1 +

2p

(`+ 2)

)[∫
d3x εk`mn∂

2p
0 T

0m(t,x)r2pxL−1xn
]
STF

− (2`+ 1)!!

(2p)!!(2`+ 2p+ 1)!!(`+ 2)

[∫
d3x εk`ms∂

2p+1
0 T mn(t,x)r2pxL−1xnx

s

]
STF

.

(5.11)

Here T µν is the energy-momentum tensor of the source.
Now, using (3.55) the total energy flux is determined as [29]

F =
R2

c2

∫ 〈
ḢTT
ij Ḣ

ij
TT

〉
dΩ (5.12a)

=
G

c3

∞∑
`=2

(`+ 1)(`+ 2)

`(`− 1)`!(2`+ 1)!!

〈(
d`+1IL(t)

d(ct)`+1

)2
〉

+
4`(`+ 2)

(`− 1)(`+ 1)!(2`+ 1)!!

〈(
d`+1JL(t)

d(ct)`+1

)2
〉 (5.12b)

5.2 The 1PN flux terms

To assign PN orders to the different terms, notice that every time derivative contributes
with a factor of c−1, ∂2p0 ∼ 1/c2p. Also since Tµν ∼ mẋµẋν , and ẋ0 ∼ c, we can expect
every spatial index of the energy-momentum tensor to contribute with a factor of c−1

compared to the 00 term. Utilizing these observations it should be clear at which PN order
the various terms of (5.10) and (5.11) enter.

5.2.1 Leading order term, the quadrupole moment

For the leading order term, only moments with the lowest power of (c−1)n can contribute.
From the general flux expression (5.12b) it is clear that every derivative of the multipole
moments contributes with additional factors of c−1, thus the leading order term must be of
only two indices, a quadrupole. Because the leading order term in the energy-momentum
tensor is the point particle contributions, and since the point particle energy-momentum
tensor is proportional to the tensor product of the particle’s four velocity (3.40) any spa-
tial index of T µν contributes with an additional factor of c−1. This excludes the current
multipole (5.11) entirely, and all but the first line of the mass multipole (5.10).

Since the ct derivatives contribute with superfluous factors of c−1, only the p = 0 term
of the first line of (5.10) for L = 2 contributes to the leading order energy flux.

Using this leading order term of (5.10) and (3.40) for the T 00 term the resulting leading
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order2 expression for the mass quadrupole moment is

Iij(0)(t) =
(5)!!

(5)!!

∫
d3x T 00(t,x)

[
xixj

]
STF

=

∫
d3x

∑
a

γamac
2δ(3)(x− xa(t))

[
xixj − 1

3
r2δij

]
= µc2r2

[
ninj − 1

3
δij
] (5.13)

In the last line the masses was rewritten to the reduced mass (see Appendix B for more
details).

To compute the resulting flux, equation (5.12b) requires the third time derivative of
this term. Applying circular motion implies nx = cos(ωt), ny = sin(ωt), and nz = 0. Thus,
after consulting (C.2) for how to rewrite squared trigonometric functions, the result is

d3Iij(0)

d(ct)3
=
µr2

2c

d3

dt3

1
3 + cos(2ωt) sin(2ωt) 0

sin(2ωt) 1
3 − cos(2ωt) 0

0 0 −2
3


=

22µr2ω3

c

 sin(2ωt) − cos(2ωt) 0
− cos(2ωt) − sin(2ωt) 0

0 0 0

 . (5.14)

Notice that Iij is indeed symmetric and trace free. To calculate the energy flux the
sum over squares of each component is needed.〈

d3Iij(0)

d(ct)3

d3I(0)ij
d(ct)3

〉
=

24µ2r4ω6

c2
(
2 sin2(2ωt) + 2 cos2(2ωt)

)
= 25µ2

v4ω2

c2
=

25η2

G2

v10

c2
. (5.15)

In the last line v = ωr was used, and finally Kepler’s third law (2.4) to exchange ω for v.
Then the leading order term of the energy flux is

FNewt =
G

c3
3 · 4

2 · 2! · (5)!!

〈...
I
ij ...
I ij

〉
=

25

5

η2

G

v10

c5
=

32

5

η2

G

v10

c5
≡ FNewtv10 (5.16)

which is the well established result (3.68). It is worth noting that [c5/G] does indeed have
the dimension of energy per time, as expected from the energy flux term.

For the next to leading order correction the octupole moment Iijk(t) and the current
quadrupole moment J ij(t) must be added, and also there are relativistic corrections to the
quadrupole formula used here for the 0PN flux term, like the other terms in (5.10) and
relativistic corrections to T µν .

2To leading order γa = 1. Recall that γa = (1− v2/c2)−1/2 ≈ 1 + 1
2
v2/c2 + 3

8
v4/c4 + . . . .
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5.2.2 Next to leading order term, the octupole moment

Using (5.10) and (3.40) the mass octupole moment reads

Iijk(2) (t) =
(7)!!

(7)!!
· (1) ·

∫
d3x T 00(t,x)

[
xixjxk

]
STF

=

∫
d3x

∑
a

γamac
2δ(3)(x− xa(t))

[
xixjxk − r2

5

(
δijxk + δikxj + δjkxi

)]
= µc2r3

√
1− 4η

[
ninjnk − 1

5

(
δijnk + δiknj + δjkni

)]
.

(5.17)

Inserting circular motion (nx = cos(ωt), ny = sin(ωt) and nz = 0) and then taking the
4th time derivative, as necessitated by equation (5.12b) produces

d4Ixxx(2)

d(ct)4
=
µr3

c2

√
1− 4η

[
(3ω)4

4
cos(3ωt) +

3ω4

20
cos(ωt)

]
, (5.18a)

d4Ixyy(2)

d(ct)4
=
µr3

c2

√
1− 4η

[
−(3ω)4

4
cos(3ωt) +

ω4

20
cos(ωt)

]
, (5.18b)

d4Ixzz(2)

d(ct)4
=
µr3

c2

√
1− 4η

[
−ω

4

5
cos(ωt)

]
. (5.18c)

d4Iyyy(2)

d(ct)4
=
µr3

c2

√
1− 4η

[
(3ω)4

4
sin(3ωt) +

3ω4

20
sin(ωt)

]
, (5.18d)

d4Iyxx(2)

d(ct)4
=
µr3

c2

√
1− 4η

[
−(3ω)4

4
sin(3ωt) +

ω4

20
sin(ωt)

]
, (5.18e)

d4Iyzz(2)

d(ct)4
=
µr3

c2

√
1− 4η

[
−ω

4

5
sin(ωt)

]
. (5.18f)

Because of the symmetric property of IL, terms like Ixyx are equivalent to Iyxx. Thus,
any term not appearing in equation (5.18) are either equivalent to one of the listed terms
by symmetry, or zero (like odd numbers of z-indices). Notice also that the sum of (5.18a)-
(5.18c) is zero. Similarly the sum of (5.18d)-(5.18f) is also zero, as they should be since IL

is trace free.

Note that for the square sum 〈cos(nωt) cos(mωt)〉 = δnm/2, thus all contributing

terms will be of the form sin2(nωt), and cos2(nωt). For example
(

d4Ixxx
(2)

d(ct)4

)2

= µ2r6ω8

c4
(1 −

4)
(
38

24
cos2(3ωt) + 32

24·52 cos2(ωt)
)
, i.e. cross terms can be dropped.
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d4Iijk(2)

d(ct)4

d4I(2)ijk
d(ct)4

=
µ2

c4
(1− 4η)r6ω8 (38 + 39) · 52 + (32 + 3) + 3 · 24

24 · 52

=
2 · 3 · 1367

5

η2(1− 4η)

G2

v12

c4
,

(5.19)

⇒ Foct.
(2) =

G

c3
1

33 · 7
2 · 3 · 1367

5

η2(1− 4η)

G2

v12

c4
=

2 · 1367

32 · 5 · 7
η2(1− 4η)

G

v12

c7

=FNewt
1367

24 · 32 · 7
(1− 4η)

v2

c2
. (5.20)

5.2.3 Next to leading order term, the current quadrupole moment

Using (5.11) and (3.40) the current quadrupole moment reads

J ij(2)(t) =
(5)!!

(5)!!

[∫
d3x εjmnT 0m(t,x)xixn

]
STF

=
∑
a

mac
[
xiaε

j
mnv

m
a x

n
a

]
STF

=
∑
a

mac
[
xiaε

j
mn

(
εmklω

kxla

)
xna

]
STF

=
∑
a

mac
[
xia

(
δnkδ

j
l − δnlδ

j
k

)
ωkxlax

n
a

]
STF

= −
∑
a

macr
2
aω

1

2

(
xiaδ

j
z + xjaδ

i
z

)
= −µcr

3ω

2

√
1− 4η

[
niδjz + njδiz

]
. (5.21)

Notice that circular motion is here already assumed as va = ω×xa is used to simplify
the expression of the first equality of the second line. Again, using nx = cos(ωt), ny =
sin(ωt), and nz = 0, and taking the third time derivative as instructed by formula (5.12b)
results in

d3J ij(2)(t)

d(ct)3
= −µr

3ω

2c2

√
1− 4η

d3

dt3

 0 0 cos(ωt)
0 0 sin(ωt)

cos(ωt) sin(ωt) 0


=
µr3ω4

2c2

√
1− 4η

 0 0 − sin(ωt)
0 0 cos(ωt)

− sin(ωt) cos(ωt) 0

 . (5.22)

Notice that J ij(2) is trace free and symmetric, as it should be. The flux is determined by
the sum of squares of all the tensor components, which is

d3J ij(2)(t)

d(ct)3

d3J(2)ij(t)

d(ct)3
=
µ2r6ω8

22c4
(1− 4η)

(
2 sin2(ωt) + 2 cos2(ωt)

)
=
µ2(1− 4η)

2c4
v6ω2 =

η2(1− 4η)

2G2

v12

c4
(5.23)

⇒ Fcurr.quad
(2) =

24G

32 · 5c3
η2(1− 4η)

2G2

v12

c4
=

8

45

η2(1− 4η)

G

v12

c7

= FNewt
1

22 · 32
(1− 4η)

v2

c2
. (5.24)
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5.2.4 Next to leading order term, the quadrupole moment corrections

Circling back to the mass quadrupole moment, all first order assumption that went into
5.2.1 must now be expanded to next to leading order. This primarily means 3 things:

1. Relativistic corrections to T µν , like kinetic energy, and gravitational energy.
2. Including other terms from (5.10), like p = 1, T 0i and T kk .
3. Relativistic corrections to the inserted motion of the source. For quasi-stable circular

orbits the motion does not change, but the relation between v, ω, and r pick up some
relativistic corrections (4.57)-(4.59).

Starting with the relativistic corrections to T 00, and T kk (it will be clear in a moment
why these are lumped together) recall that (3.40)

T 00
pp (t,x) =

∑
a

γamac
2δ(3)(x− xa(t))

=
∑
a

(
1 +

1

2

v2a
c2

+
3

8

v4a
c4

+ . . .

)
mac

2δ(3)(x− xa(t))

=
∑
a

(
mac

2 +
1

2
mav

2
a +

3

8
ma

v4a
c2

+ . . .

)
δ(3)(x− xa(t)),

(5.25)

simply Taylor expanding γa =
(
1− v2a/c2

)−1/2 around v/c = 0. The next to leading order
terms in T 00 is thus proportional to (c−1)0. From the Virial theorem, or equivalently from
(4.58b), the leading order (Newtonian) term of the gravitational potential scales also as v2,
and should therefore also be included. This concludes point 1., the relativistic correction
of T µν . Finally, to leading order T kk is the point particle tensor (3.40)

Tpp
k
k =

∑
a

γamav
k
avakδ

(3)(x− xa(t)) '
∑
a

mav
2
aδ

(3)(x− xa(t)), (5.26)

which is just twice the kinetic energy. Thus, the trace of T µµ part of the quadrupole reads

Tr. part of Iij(2) =

∫
d3x

(
T 00 + T kk

) [
xixj

]
STF

=
[
ninj

]
STF

∑
a

mac
2r2a

(
1 +

3

2

v2a
c2
−
∑
b>a

Gmb

c2|xa − xb|

)

= µc2r2
(

1 +
3

2
(1− 3η)

v2

c2
− (1− 2η)

GM

rc2

)[
ninj

]
STF

= µc2r2
(

1 +
1

2
(1− 5η)

v2

c2

)(
ninj − 1

3
δij
)
.

(5.27)

Since the time dependent part (ni) is equivalent to the first order term of the quadrupole
formula, the third derivative of the expression correct to first order in (v2/c2)1 can be
inferred directly from (5.14)

d3Iij(2)

d(ct)3
=

22µr2ω3

c

(
1 +

1− 5η

2

v2

c2

) sin(2ωt) − cos(2ωt) 0
− cos(2ωt) − sin(2ωt) 0

0 0 0

 . (5.28)
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For the p = 0 terms this only leaves the ∂0T 0k term in line three of (5.10). The last line
containing ∂20T ij will not contribute as it scales as (∂20T ij)/T 00 ∼ c−4. To leading order
also this energy-momentum tensor component is the free point particle tensor, and thus

0k-part of Iij(2)(t) = −4

3

∫
d3x ∂0

∑
a

macv
k
axkδ

(3)(x− xa(t))
[
xixj

]
STF . (5.29)

For circular motion va = ±ωra
(
− sin(ωt), cos(ωt), 0

)
, and is thus orthogonal to xa:

va · xa = 0. Therefore the leading order contribution of the T 0k-part of IL is 0.

To finish point 2. only accounting for the p = 1 term remains. This term follows as

p = 1 part of Iij(2) =
5!!

(2)!!(7)!!

(
1 +

8

3

)∫
d3x ∂20T 00(t,x)r2

[
xixj

]
STF

=
11

42

∑
a

mac
2r4a∂

2
0

[
ninj

]
STF

=
11

22 · 3 · 7
µ(1− 3η)r4

d2

dt2

1
3 + cos(2ωt) sin(2ωt) 0

sin(2ωt) 1
3 − cos(2ωt) 0

0 0 −2
3


= − 11

3 · 7
µ(1− 3η)r4ω2

cos(2ωt) sin(2ωt) 0
sin(2ωt) − cos(2ωt) 0

0 0 0

 , (5.30)

d3Iij(2)

d(ct)3
=

22µr2ω3

c

(
−2 · 11

3 · 7
(1− 3η)

v2

c2

) sin(2ωt) − cos(2ωt) 0
− cos(2ωt) − sin(2ωt) 0

0 0 0

 . (5.31)

This leaves the totally 1PN correct third derivative of the quadrupole moment

d3Iij(2)

d(ct)3
=

22µr2ω3

c

(
1− 23− 27η

42

v2

c2

) sin(2ωt) − cos(2ωt) 0
− cos(2ωt) − sin(2ωt) 0

0 0 0

 . (5.32)

Here the subtlety of point 3., corrections to the equations of motion, enters. At this
stage equations (4.57)-(4.59) must be used to convert between r, ω, and v. One might
expect at this point to use ωr = v and (4.59a) to convert the last factor of ω = v3/GM ,
but this is not the case. Recalling that v is just a proxy variable for the frequency, one
should expand the flux in terms of ω, and perhaps change ω to v = (GMω)2/3.

Doing that

22µr2ω3

c
=

22µ

c
ωv2 =

22µ

c
ω(GMω)2/3

{
1−

(
2− 2

3
η

)
(GMω)2/3

c2

}

=
4µ

GMc
v5
{

1−
(

2− 2

3
η

)
v2

c2

}
.
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Inserting this into (5.32), discarding terms O
(
v4

c4

)
, provides the final result

d3Iij(2)

d(ct)3
=

22η

G

v5

c

(
1− 107− 5 · 11η

2 · 3 · 7
v2

c2

) sin(2ωt) − cos(2ωt) 0
− cos(2ωt) − sin(2ωt) 0

0 0 0

 , (5.33)

⇒
d3Iij(2)

d(ct)3

d3I(2)ij
d(ct)3

=
25η2

G2

v10

c2

(
1− 107− 5 · 11η

3 · 7
v2

c2

)
. (5.34)

And thus the energy flux from the quadrupole at next to leading order is

Fquad
(2) =

25η2

5G

v10

c5

(
1− 107− 5 · 11η

3 · 7
v2

c2

)
= FNewt

(
1− 107− 5 · 11η

3 · 7
v2

c2

)
. (5.35)

5.2.5 The total 1PN energy flux

The total energy flux correct to 1PN is then the sum of (5.15), (5.20), (5.24), and (5.35),

F =
32

5

η2

G

v10

c5

{
1−

(
1247

336
+

35

12
η

)
v2

c2
+O

(
1

c3

)}
. (5.36)

Which is exactly the flux (2.8) presented in Chapter 2.
To get some perspective, lets consider the Earth-Moon system again. According to

(5.36), the energy flux due to GWs is

F$ = 6.03 · 10−4
(
1− 4.37 · 10−11

)
J/s (5.37)

Using equation (2.18) for the change in orbital frequency, and relation (4.58a) of r and
ω, the time evolution of the relative separation due to GW emission is found to be

r$(τ) =
GM

(GMω)2/3

{
1−

(
1− η

3

) (GMω)2/3

c2
+O

(
(GMω)3/2

)}
(5.38a)

≈ 4(GM)1/3

52/3

(
5GM
c3

) 5
12

τ1/4, (5.38b)

⇒ ṙ$(τ) ≈ −(GM)1/3

52/3

(
5GM
c3

) 5
12

τ−3/4 =
G3M3η

5c5
r−3 (5.38c)

≈ 1.14 · 10−27
m
s
≈ 3.60 · 10−17

mm
year

. (5.38d)

This is, not surprisingly, very slowly. At this rate, it would take ∼ 2.8 · 1016 years until the
effect would be in the range of millimetres.



Chapter 6

Discussion and conclusion

We have now seen how the 1PN gravitational waveform (2.19) can be obtained from the
1PN energy (4.63) and flux (5.36), assuming quasi-stable circular orbits and separation of
scales. We have also demonstrated how the 1PN energy can be determined using Feyn-
man diagrams (Chapter 4), and how the 1PN flux can be computed using multipoles
(Chapter 5), all based on an effective field theory of gravity as a gauge field (Chapter 3).

In his text [4], Porto claimed
“[...] that adopting an EFT framework, when possible, greatly simplifies the computa-

tions and provides the required intuition for ‘physical understanding’.”
In my own experience, the computations do not seem all that more simplified compared

to the more traditional geometrical approach (see Maggiore [9] for an outline, or Blanchet
[30] for more details). For someone without a deep background in EFT, like a master’s
student, any simplification of the calculation is outweighed by the work of familiarizing
oneself with standard results and conventions from QFT.

Of course, if one does have a deep familiarity with EFTs, the field theorist approach
presented in this thesis is a great way to transfer those skills to gravitational wave physics.
These are after all powerful tools for handling perturbative phenomena. The use of Feyn-
man diagrams makes the terms in the perturbation series more manageable, and can give
intuition for what kind of physical effects the different terms account for. In this sense, the
computations can be considered to have been ‘simplified’, and provided the intuition for
‘physical understanding’.

It is also possible that the field theorists’ approach becomes significantly simpler than
the relativists’ approach at higher PN orders. In order to verify this, I would need to
compute higher order corrections.

Even so, for relativists, some familiarity with the field theory way of thinking of gravit-
ational dynamics is helpful for deepening their understanding of gravity. As Feynman once
said at a Cornell lecture during his gravity phase:

“Every theoretical physicist who is any good knows six or seven different theoretical
representations for exactly the same physics. He knows that they are all equivalent, and
that nobody is ever going to be able to decide which one is right at that level, but he keeps
them in his head, hoping that they will give him different ideas for guessing.” - Feynman
[31]
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For such reasons, it is valuable to have alternative ways of thinking about gravity and
gravitational waves. Some extensions of, and alternative theories for, Einstein’s theory of
gravity might present themselves more naturally in the language of field theory, rather
than differential geometry. E.g. quantum ‘loop’ corrections of gravity [32]. With gravita-
tional wave data imposing some of the strongest constraints on gravity theories, having an
alternative route for translating theories of gravity to gravitational waveforms is a useful
tool.

In conclusion, this effective field theory approach to computing gravitational waveforms
will probably not replace the more traditional relativist approach as the standard or in-
troductory way of deriving these results any time soon. As a method it is however worth
developing, as it provides an alternative perspective on the physics of gravitational waves.
It might also provide a shorter path for some alternative theories of gravity to testable
predictions, and can be used by physicists with a heavier quantum field theory background
to simplify the computations of such theories.
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Appendix A

Solution of the wave equation

This derivation can be found in most textbooks on field theory, e.g. Kachelrieß [17], or
Schwichtenberg [16].

Indices will be ignored in this appendix, as the spatio-temporal dependence of the solu-
tion is assumed to be independent of indices. Thus, hµν(xα) = εµνh(xα) and hµν(xα) =
εµν h(xα).

Assuming the solution to be a superposition of plane waves e−ikσxσ , the most general
form the wave can take is

h(xα) =

∫
d4k

(2π)4

{
a(kµ)e−ikσx

σ
+ b(kµ)eikσx

σ
}
. (A.1)

For (A.1) to be a solution of the wave equation (3.20) the following must hold

h(xα) = 0 =

∫
d4k

(2π)4

{
a(kµ)e−ikσx

σ
+ b(kµ)eikσx

σ
}

=

∫
d4k

(2π)4
ηµν

∂

∂xµ
∂

∂xν

{
a(kµ)e−ikσx

σ
+ b(kµ)eikσx

σ
}

=

∫
d4k

(2π)4
ηµν

(
i2kµkν

){
a(kµ)e−ikσx

σ
+ b(kµ)eikσx

σ
}

=

∫
d4k

(2π)4

(
k20 − |k|

2
){

a(kµ)e−ikσx
σ

+ b(kσ)eikσx
σ
}
, (A.2)

which is a solution as long as k20 = |k|2. Since k0 is identified as the temporal frequency
it is required to be positive k0 = ω/c ≥ 0 in order to be physical. Both these conditions
can be imposed by δ

(
k20 − ω2

k

)
·Θ(k0), where δ(x) is the Dirac delta function, Θ(x) is the

Heaviside step function, and ωk is determined by the dispersion relation and is ωk = |k|
for massless fields.1

1Massive fields must satisfie the Klein–Gordon equation ( −m2)φ = 0. The solution is the same as
that of massless fields shown here, but with ω2

k = |k|2 +m2. That is why |k| is renamed ωk here, to make
the result more easily transferable.
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Implementing these restrictions (A.1) becomes

h(xα) =

∫
d4k

(2π)4
δ
(
k20 − ω2

k

)
Θ(k0)

{
a(kµ)e−ikσx

σ
+ b(kµ)eikσx

σ
}
. (A.3)

Preforming the k0 integral results with∫
dk0
2π

δ
(
k20 − ω2

k

)
Θ(k0) f(k0) (A.4a)

=

∫
dk0
2π

δ((k0 − ωk)(k0 + ωk)) Θ(k0) f(k0) (A.4b)

=

∫
dk0
2π

1

2k0
[δ(k0 − ωk) + δ(k0 + ωk)] Θ(k0) f(k0) (A.4c)

=
1

2ωk
f(ωk). (A.4d)

Step-by-step the above calculation first, (A.4a), collapse all dependence on k0 into a func-
tion f(k0), other than the Dirac delta function and Heaviside step function. In line (A.4b)
the argument of the Dirac delta was expanded, and in line (A.4c) the Dirac delta was itself
expanded according to the relation

δ(f(x)) =
∑
i

δ(x− ai)
df
dx

, ∀ai : f(ai) = 0. (A.5)

Lastly, in line (A.4d), the k0 ≥ 0 term was singled out by Θ(k0).
All the steps of (A.4) can be preformed for (A.3). Also requiring h(xα) to be a real

function can easily be done by demanding h†(xα) = h(xα), which is obtained most generally
by having b(kµ) = a†(kµ).

Thus, the most general solution of the wave equation for a real scalar field is

h(xα) = 0,

⇒ h(xα) =

∫
d3k

(2π)3 · 2ωk

{
a(k)e−ikσx

σ
+ a†(k)eikσx

σ
}
, (A.6)

with k0 = |k| = ωk. This is the solution presented in equation (2.2).
This is still a large class of solutions, but it is restricted to travel in the k-direction

through space, with a velocity of

vg =
∂ω

∂|k|
=
∂ck0
∂|k|

= c
∂|k|
∂|k|

= c. (A.7)

Notice that both the group velocity vg ≡ ∂ω
∂|k| and the phase velocity vp ≡ ω

|k| are both
equal to c.



Appendix B

Equivalent one body problem and
mass term manipulation

B.1 Rewriting to the equivalent one body problem

Figure B.1: Diagram of a binary system.

To solve the equation of motion of the two body problem it is useful to rewrite the
equations in terms of relative quantities, like the spatial separation r, and relative velocity
v ≡ ṙ. This will be done for the centre of mass frame in this appendix.

Letting ri, i ∈ {1, 2} be the position of object i relative the centre of mass, which is
placed in the origin, as in Figure B.1 the following identity holds

r ≡ r2 − r1, (B.1)

0 ≡ (m1 +m2)RCM = m1r1 +m2r2,

⇒ m1r1 = −m2r2 = −m2 (r + r1) .
(B.2)
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In the last line of (B.2) equation (B.1) was used to eliminate r2. Similarly r1 can be
eliminated in favour of r2. Thus ri can be expressed as

r1 = − m2

m1 +m2
r = −m2

M
r,

r2 =
m1

m1 +m2
r =

m1

M
r.

(B.3a)

(B.3b)

Here M is the total mass of the binary. Since the velocity of each object in the centre of
mass frame is vi = ṙi it directly follows

v1 =− m2

M
v,

v2 =
m1

M
v,

(B.4a)

(B.4b)

where again v = ṙ.
Substituting ri and vi for the expressions of equations (B.3)-(B.4) the Lagrangian, and

thus the EoM, becomes a function of just r and v. Thus the two body problem is reduced
to solving for just the relative motion of one object, an equivalent one body problem.

Explicitly the Newtonian Lagrangian becomes

LNewt =
1

2

(
m1v

2
1 +m2v

2
2

)
+
Gm1m2

|r2 − r1|
=

1

2

(
m1

m2
2

M2
+m2

m2
1

M2

)
v2 +

Gm1m2

r

=
1

2

m1m2

M

(
m2 +m1

M

)
v2 +

GM m1m2
M

r
=

1

2

m1m2

M
v2 +

GM m1m2
M

r

≡ 1

2
µv2 +

GMµ

r
.

Bottom line is that preforming the substitution to r and v reduces the problem to
describing the motion of one particle with an effective mass of µ = m1m2

M in a gravitational
potential produced by an effective mass of M = m1 + m2, which is static and located at
the position of the other particle.

B.2 Mass term manipulation

Following the previous section it is hopefully clear what motivates the introduction of the
total and reduced massM and µ. The name reduced mass follows from the observation that
in the extreme mass ratio, m1 � m2, M = m1 +m2 ' m1 and µ = m1m2

M ' m1m2
m1

= m2.
I.e. in the test mass regime M is the gravitational source and µ is the test mass exactly.
Of course M > µ in all cases, with the largest value of µmax = 1

4M when m1 = m2.
Moving beyond the Newtonian approximation there will appear other mass terms that

are common in the literature. These are listen for convenience in equation (B.5).
In this thesis there will appear terms of the form m1v

n+1
1 +m2v

n+1
2 and m1(−r1)n+1 +

m2r
n+1
2 . In this section there will be tips for strategies to convert these expressions into

(B.5) type mass terms. The result can be read of equations (B.6)-(B.7).
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M ≡ m1 +m2 Total mass

µ ≡ m1m2

m1 +m2
=
m1m2

M
Reduced mass

η ≡ m1m2

(m1 +m2)
2 =

µ

M
Symmetric mass ratio

M≡ (m1m2)
3/5

(m1 +m2)
1/5

=
(
µ3M2

)1/5
= Mη3/5 Chirp mass

(B.5a)

(B.5b)

(B.5c)

(B.5d)

Here is a stepwise approach to deal with m1v
n+1
1 +m2v

n+1
2 and m1(−r1)n+1 +m2r

n+1
2

type expressions.

1. The product m1m2 = Mµ. Identify and extract all common factors of µ from the
expression.

2. This will leave something like (mn
2 ±mn

1 ) /Mn.

a. If it is a sum, calculate Mn = mn
1 +mn

2 + . . . . Thus mn
2 +mn

1 = Mn− . . . Then
again look out for reduced masses and remember that µ/M = η.

b. If it is a difference this will usually imply that n is even. Let n = 2k and then
m2k

2 − m2k
1 = (mk

2 − mk
1)(mk

2 + mk
1). The (mk

2 + mk
1) term can be expanded

as in step a, and hopefully this will be enough. The difference can be further
expanded using mk

1 − mk
2 =

√
(mk

1 −mk
2)2 to get mixed terms which can be

factored as µ.

To get some concrete examples, lets consider (m1m
4
2 +m2m

4
1)/M

4.

m1m
4
2 +m2m

4
1

M4
=
m1m2

M

m3
2 +m3

1

M3
= µ

M3 − 3m1m2(m1 +m2)

M3

= µ (1− 3µ/M) = µ (1− 3η) .

m3
2 +m3

1 was rewritten using equation (B.6c).
Most of the expressions encountered at 1PN will follow the same approach as the

example above, with the exception of a term (m2m
3
1 − m1m

3
2)/M

3 which appear in the
octupole moment of the flux (see Chapter 5). It goes like this

m2m
3
1 −m1m

3
2

M3
= µ

m2
1 −m2

2

M2
= µ

(m1 −m2)(m1 +m2)

M2
= µ

m1 −m2

M

= µ

√
(m1 −m2)2

M2
= µ

√
m2

1 +m2
2 − 2m1m2

M2
= µ

√
M2 − 4Mµ

M2

= µ
√

1− 4η.

In equation (B.6) the different sum of powers are listed, and in (B.7) the mixed products
are listed. These expressions are useful for mass term manipulations like those that appear
in this thesis.
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m1 +m2 = M,

m2
1 +m2

2 = M2 − 2m1m2 = M2 − 2Mµ,

m3
1 +m3

2 = M3 − 3m2
1m2 − 3m1m

2
2 = M3 − 3M2µ,

m4
1 +m4

2 = M4 − 4m3
1m2 − 6m2

1m
2
2 − 4m1m

3
2

= M4 + 8Mµ2 − 4M2µ− 6M2µ2.

(B.6a)

(B.6b)

(B.6c)

(B.6d)

m1m2 = Mµ,

m1m
2
2 +m2

1m2 = M2µ,

m1m
3
2 −m3

1m2 = M3µ
√

1− 4η,

m1m
4
2 +m4

1m2 = M4µ (1− 3η) .

(B.7a)

(B.7b)

(B.7c)

(B.7d)

A handy trick is to combine equation (B.7a) with expressions from (B.6) to obtain (B.7)-
type expressions.



Appendix C

Trigonometric identities

The trigonometric identities that are used in this thesis can all be derived using Euler’s
formula

eiθ = cos(θ) + i sin(θ). (C.1)

For the squared trigonometric functions one only needs to square this formula(
eiθ
)2

= ei2θ = cos(2θ) + i sin(2θ)

= (cos(θ) + i sin(θ))2 = cos2(θ)− sin2(θ) + i2 sin(θ) cos(θ)

= 2 cos2(θ)− 1 + i2 sin(θ) cos(θ) = 1− 2 sin2(θ) + i2 sin(θ) cos(θ),

where in the last line the Pythagorean identity sin2(θ) + cos2(θ) = 1 was used to write the
expression only by second powers in cosine or sine respectively. Comparing the real parts
and imaginary parts of the first and third line produces the useful identities

cos2(θ) =
1

2
(1 + cos(2θ)) ,

sin2(θ) =
1

2
(1− cos(2θ)) ,

sin(θ) cos(θ) =
1

2
sin(2θ).

(C.2a)

(C.2b)

(C.2c)

Likewise the identities for the third power trigonometric functions can be obtained(
eiθ
)3

= ei3θ = cos(3θ) + i sin(3θ) = (cos(3θ) + i sin(3θ))3

= cos3(θ)− 3 cos(θ) sin2(θ) + i3 cos2(θ) sin(θ)− i sin3(θ)

=
[
4 cos3(θ)− 3 cos(θ)

]
+ i
[
3 sin(θ)− 4 sin3(θ)

]
,

and then once again comparing the imaginary part of the first and third line the following
identities are obtained.

cos3(θ) =
1

4
(3 cos(θ) + cos(3θ)) ,

sin3(θ) =
1

4
(3 sin(θ) + sin(3θ)) .

(C.3a)

(C.3b)

78



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

Vegard Undheim

First post-Newtonian correction to
gravitational waves produced by
compact binaries

How to compute relativistic corrections to
gravitational waves using Feynman diagrams

Master’s thesis in Physics
Supervisor: Alex Bentley Nielsen
Co-supervisor: Jens Oluf Andersen

June 2021

M
as

te
r’s

 th
es

is


	Abstract
	Sammendrag
	Acknowledgements
	Contents
	Figures
	Acronyms
	Glossary
	Introduction
	Binary inspirals and gravitational waves
	Structure of this thesis
	Why effective field theory?
	Notation

	The gravitational waveform
	Setting up the equation for the gravitational waveform
	What is a waveform?
	Time evolution of orbital energy

	Computing the waveform
	Computing the waveform as a function of time
	Computing the Fourier transform of the waveform


	Gravity as a gauge theory
	Background
	Fierz-Pauli Lagrangian
	Deriving the graviton Lagrangian
	The equation of motion and gauge condition

	Solutions of the graviton field
	Gravitational waves in vacuum, and their polarization
	Source of gravitational waves

	Gravity from gravitons
	The energy-momentum tensor of gravitational waves
	Total radiated energy flux

	Illustrative example: Binary system with circular orbits
	Graviton action beyond quadratic order

	Calculating the orbital energy
	Effective field theory
	Expand the action in powers of h
	Separation of scale

	The 1PN Lagrangian
	Assigning PN order to Feynman diagrams
	Computing Feynman diagram (fig:Feynman:H-diagram:v1v1)
	Computing Feynman diagram (fig:Feynman:H-diagram:v0v2)
	But wait, what about 0.5PN diagrams?
	Computing Feynman diagram (fig:Feynman:H-diagram:ox)
	Computing Feynman diagram (fig:Feynman:V-diagram)
	Computing Feynman diagram (fig:Feynman:Y-diagram)
	The total 1PN Lagrangian

	Computing the 1PN equations of motion and energy
	Finding the associated equations of motion
	Computing the Hamiltonian


	Calculating the energy flux
	The graviton field evaluated at large scales
	Seperation of scales
	Modifying the source of gravitational waves
	STF tensor decomposition
	The multipole structure of GWs

	The 1PN flux terms
	Leading order term, the quadrupole moment
	Next to leading order term, the octupole moment
	Next to leading order term, the current quadrupole moment
	Next to leading order term, the quadrupole moment corrections
	The total 1PN energy flux


	Discussion and conclusion
	Bibliography
	Solution of the wave equation
	Equivalent one body problem and mass term manipulation
	Rewriting to the equivalent one body problem
	Mass term manipulation

	Trigonometric identities

