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Abstrakt (Norsk)

Del I av masteroppgaven introduserer de grunnleggende konseptene i kvante-
mekanikk gjennom tetthetsoperatoren, slik at statistikken til en ideell gass av
kvantepartikler i kapittel 1 kan bli utledet basert p̊a prinsippet om maksimal
entropi. Matematikken som s̊a følger dersom interaksjoner mellom kvantepar-
tiklene blir betraktet tvinger frem realiseringen av Matsubara metoden i kapit-
tel 2, der tid blir behandlet som en imaginær variabel og beregningene av fy-
siske observabler benytter seg av Matsubara Green funksjoner. I kapittel 3 blir
likevektsensemblet deretter utsatt for en ytre perturbasjon, og observablene til
det perturberte ensemblet beregnet i kuboformalismen fra lineær responsteori.
Den resulterende kuboformelen for konduktivitet er uttrykt ved hjelp av Mat-
subara strømtetthetsautokorrelasjonsfunksjonen, hvis beregning krever et kjent
uttrykk for hamiltonmatrisen til likevektsensemblet.

Del II utleder modellen for tettbundede elektroner i kapittel 4 for å eksempli-
fisere beregningen av en hamiltonmatrise og de medfølgende energib̊andene for
ulike krystalliske materialer, der det todimensjonale materialet grafén er særlig
betraktet. Den effektive hamiltonmatrisen til grafén inntar samme form som
den relativistiske Weyl hamiltonianen, og er knyttet til topologiske egenskaper
ved hilbertrommet av blochfunksjoner i kapittel 3, der berryologiske størrelser
for et generelt kvantesystem med to energiniv̊aer er beregnet. I kapittel 4 er
s̊a hamiltonmatrisene til Weyl og Dirac halvmetaller introdusert som lineæris-
eringer omkring degenererte punkter i energib̊andstrukturer med henholdsvis
to og fire energib̊and, hvilket resulterer i tredimensjonale generaliseringer av
hamiltonmatrisen til grafén.

Til slutt, i Del III av masteroppgaven er kuboformalismen brukt til å beregne
konduktivitetstensoren for en generell energib̊andstruktur med to energib̊and i
kapittel 7, og for en generell Kramers degenerert energib̊andstruktur med fire
energib̊and i kapittel 8. De resulterende formlene for konduktivitet benyttes
henholdsvis til å beregne analytiske uttrykk for konduktivitetstensoren til en
Rashba ferromagnet og til det antiferromagnetiske Dirac halvmetallet CuMnAs
antatt lav uorden i krystallstrukturen ved det absolutte nullpunkt. Det en-
delige uttrykket for konduktivitetstensoren til den ortorombiske fasen til CuM-
nAs forutser en anormal Hall effekt som til forskjell fra tidligere betraktede
topologiske materialer ikke kan knyttes til en endelig Berry kurvatur, men som
heller oppst̊ar som følge av geometriske egenskaper ved anisotropien til ma-
terialets fermioverflate. Den symmetriske Hall effekten antas å være m̊albar
gjennom magneto-optiske effekter i regimet til lineær responsteori, der pertur-
basjonen fra det ytre elektriske feltet ikke er sterk nok til å bryte symmetrien
som beskytter de firfoldig degenererte diracpunktene. Denne symmetriske Hall
effekten antas å være observerbar gjennom ulike magneto-optiske effekter, der
ytterligere utforskning kreves.
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Abstract

In Part I, a fundamental understanding of quantum mechanics is introduced in
terms of the density operator, and the statistics of an ideal quantum gas derived
based on the maximum entropy principle in chapter 1. Introducing interactions
between the particles the demanding mathematics provokes the realization of the
Matsubara method of chapter 2, where time is treated as an imaginary variable
and the calculations of observables are framed in terms of Matsubara Green
functions. Finally, in chapter 3 the equilibrium ensemble is introduced to an
external perturbation, and the observables of the perturbed ensemble calculated
in the Kubo formalism of linear response theory. The resulting Kubo formula for
conductivity is framed in terms of the Matsubara current density autocorrelation
function, whose calculation involves knowledge of the Hamiltonian kernel of the
equilibrium ensemble.

In Part II, the tightbinding model is derived in chapter 4 to exemplify a
calculation and analyzation of the Hamiltonian kernel and corresponding en-
ergy band structures of different crystalline materials, with the two dimensional
material graphene as the prime example. The effective Hamiltonian kernel of
graphene locally take shape of the relativistic Weyl Hamiltonian, and is con-
nected to topological properties of the Hilbert space of Bloch functions derived
in chapter 3, in which the berryological quantities of a general two-level quan-
tum system are calculated. In chapter 4, the Hamiltonian kernels of Weyl and
Dirac semimetals are introduced as linearizations around degenerate points in
the energy band structures comprising two and four bands respectively, resulting
in three dimensional generalized versions of the Hamiltonian kernel of graphene.

Finally, in Part III the Kubo formalism is used to calculate the conductivity
tensor for a general two-band system in chapter 7 and for a general Kramers
degenerate four-band system in chapter 8. The resulting conductivity formulae
are then used respectively to rederive the conductivty tensor of a Rashba ferro-
magnet, and to predict the conductivity tensor of the antiferromagnetic Dirac
semimetal CuMnAs assuming low disorder in the zero temperature limit. The
resulting analytical expression of the conductivity tensor of the orthorhombic
phase of CuMnAs predicts an anomalous Hall effect which unlike previously
investigated topological materials cannot be attributed to the Berry curvature
of the system, which is zero due to the imposed Kramers degeneracy, but in-
stead originates in the anisotropy of the Fermi surface. The emergence of a Hall
effect is assumed to be detectable through magneto-optical effects under the
confinement of linear response theory, where the perturbation of the imposed
electric current is assumed weak enough to not break the symmetry protection
of the fourfold degenerate Dirac points. The symmetric anomalous Hall effect is
assumed to be detectable through various magneto-optical effects, where more
research is needed.
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Introduction

In recent years there have been several theoretical discoveries and experimental
verifications of novel states of solid matter involving physical phases protected
by topology rather than symmetry. Of particular interest are the topological
semimetals, for which band crossings in the energy band structure are pro-
tected by topological invariants of the continuously connected Hilbert spaces of
Bloch state vectors. The number of classes of topological semimetals has re-
cently been expanded to include various types of band crossings [1, 2] protected
by different topology and symmetry constraints. The simplest of the topolog-
ical semimetals are the Dirac and Weyl semimetals, which contain low-energy
excitations described by the same mathematical principles as theoretical Weyl
and Dirac fermions of relativistic quantum theory [3, 4]. Due to the particular
energy band structure of topological semimetals, these materials display exotic
electronic properties not found in other solid state systems [5, 6].

The main mathematical tool for theoretically investigating the electrical
transport properties in solid state systems is a calculation of the conductivity
tensor [7, 8], for which many optical properties can be probed experimentally [9,
10]. Continuing on the recent progress in the field of topological semimetals, the
main objective of the master thesis is to calculate the conductivity tensor for an
effective model for a general Dirac semimetal. The resulting conductivity for-
mulae will then be used to predict the conductivity tensor of the orthorhombic
phase of the antiferromagnetic Dirac semimetal CuMnAs [11].

In order to solidify the theoretical background of the conductivity calcula-
tions, the thesis takes the form of a literature study split into three main parts
further divided into chapters. The first part considers the fields of quantum
statistics and linear response theory from which the Kubo formula for conduc-
tivity arises, while the second part investigates energy band structures under
the tightbinding approach and the theory of berryological quantities from which
the emergence of topological semimetals is explained. The two parts are inde-
pendent and internally comprehensive, with common themes among chapters
presented in the appendices. The culmination of these investigations is the par-
ticular calculations of conductivity formulae for topological materials, presented
in the third and final part of the thesis. It should be noted that many of the
themes involved are included to obtain a more complete picture of the physical
theories, and will not necessarily contribute directly to the final calculations.

Finally, the finalized master thesis would not have been possible without the
continued support and comments from my amiable supervisor, Alireza Qaiumzadeh.
I am grateful for our weekly conversations throughout the past year, and I will
greatly miss our partnership.
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Chapter 1

Introduction to Quantum
Statistical Mechanics

The intention of the following introductory chapter to the first part of the thesis
is to establish the nomenclature and envisage the fundamentals of the quantum
theory of statistical mechanics. Besides introducing a basic understanding of
quantum mechanics in terms of Hilbert spaces and the density operator, a main
objective is to derive the statistics of the principal statistical ensembles in a
quantum mechanical setting based on the principle of maximum entropy.

Of particular importance is also the introduction of the Fock space and the
accompanying creation and annihilation operators, used in order to establish
the statistics of the grand canonical ensemble. The following introduction of
the thermal average is imperative for the Matsubara method of chapter 2 and
the Kubo formalism of chapter 3. The creation and annihilation operators also
provides the second quantization of quantum mechanical operators, which allows
for the definition of Green functions in chapter 2 and used for the derivation of
the tightbinding Hamiltonian in chapter 4 of Part II.

Accompanying the chapter is appendix A, in which important results from
standard quantum mechanics such as the Schrödinger equation is derived. Fur-
thermore, the fundamentals of quantum mechanics lays the rigorous foundation
of the position representation, discussed in appendix B, from which the Bloch
theorem is inferred. The chapter is inspired by the lecture notes from Linder
[12] and Andersen [13], and the Feynman Lectures on Physics [14].
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1.1 Hilbert Spaces of Quantum States

In order derive the statistical properties of quantum systems, the basic mathe-
matical concepts surrounding quantum states should be introduced. The main
results of the section is the introduction of creation and annihilation operators
of the Fock space and the representation of operators in second quantization.

1.1.1 Quantum States and the Ensemble Average

In quantum mechanics, the state of a system is described by a state vector |ψ〉
being an element of a complete inner product space H known as a Hilbert space.
Consider then any bounded linear map φ : H → C from the Hilbert space H
to the field of complex numbers. The space of all such maps, or functionals,
is known as the dual space of the Hilbert space H. By Riesz representation
theorem [15], the Hilbert space and its dual are isometrically anti-isomorphic,
in that each functional φ of dual space corresponds to an inner product with the
dual vector 〈φ| by acting on state vectors as φ : |ψ〉 → 〈φ|ψ〉. For convenience,
the dual vector 〈ψ| corresponding to the state vector |ψ〉 is chosen such that
their inner product is normalized to unity, that is 〈ψ|ψ〉 = 1.

Let |i〉 be an orthonormal complete basis set of states spanning the entire
Hilbert space H, such that any general quantum state described by |ψ〉 can
be written as a series expansion |ψ〉 =

∑
i ci |i〉. Using the orthonormality of

the basis states 〈i|j〉 = δij , the expansion coefficients are readily expressed as
ci = 〈i|ψ〉, and so |ψ〉 =

∑
i |i〉 〈i|ψ〉. In consequence, any orthonormal complete

set of states must satisfy the completeness relation∑
i

|i〉 〈i| = Î . (1.1)

Using the completeness relation, the dual state vector can likewise be expressed
〈ψ| =

∑
i 〈ψ|i〉 〈i|, and so by the anti-linearity of the Hilbert space inner product,

its expansion coefficients are given by 〈ψ|i〉 = c∗i . From the definition of the dual

vector, this restricts the expansion coefficients to satisfy
∑
i |ci|

2
= 1.

In this framework, physically measurable observables O correspond to hermi-
tian operators Ô on the Hilbert space H. Consider then the eigenvalue equation
of such an operator, written Ô |n〉 = On |n〉 with On being the eigenvalue cor-
responding to the eigenstate |n〉. The eigenvalues correspond to all possible
numerical values upon measuring the observable O. If for the state |ψ〉 the ob-
servable is measured to O = On, the state vector |ψ〉 is said to collapse to the
eigenstate |n〉; a measurement on the state |ψ〉 alters the state, retaining only
the eigenstate corresponding to the single eigenvalue measured.

Because the operator Ô is hermitian with the adjoint operator (C4) satisfying
Ô† = Ô, the eigenstates can be chosen mutually orthogonal spanning the entire
Hilbert space H. In consequence the eigenstates of hermitian operators satisfy
the completeness relation (1.1), such that any inner product

3



〈Ô〉ψ = 〈ψ| Ô |ψ〉 =
∑
n

|〈n|ψ〉|2On, (1.2)

where the final equality comes from the orthogonality of the eigenstates |n〉.
According to the Born rule, the absolute square of the expansion coefficients
|〈n|ψ〉|2 gives the probability of measuring the eigenvalue On in the state |n〉.
The expression 〈Ô〉ψ is then physically interpreted as the average value of the

observable O corresponding to the operator Ô in the state |ψ〉.
Notice from its expression (1.2) that finding the average value of an observ-

able requires a multiple of measurements. However, because a single measure-
ment will collapse the state vector, it is not possible to measure the average value
of an observable through measuring a single system. Experimentally, measuring
the average value of an observable thus relies on the ability to prepare a multi-
ple of systems in the same state |ψ〉. Theoretically, such a multitude of systems
described by the same quantum state |ψ〉 is known as a quantum ensemble. As
such, the state vector |ψ〉 really represents an entire ensemble of systems, with
each member of the ensemble being described by the same state. The average
is therefore known as the ensemble average of the observable in question.

1.1.2 Product States and the Fock Space

Until now, it has been assumed that the quantum states under consideration
are elements from the same Hilbert space H. Consider instead several Hilbert
spaces Hi, with corresponding single-states denoted by |ψi〉. In order to describe
quantum systems of several parts the notion of a product space is introduced,
being a tensor product between Hilbert spaces on the form H1⊗H2⊗· · ·⊗HN . A
state vector from the product space will then be a linear combination of product
states, which takes the general form |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψN 〉 ≡ |ψ1ψ2 · · ·ψN 〉.

In particular, if all the single-states |ψi〉 are elements of the same Hilbert

space H, the product space is denoted by HN ≡
⊗N

i=1 H. The states com-
prising the product state are then indistinguishable, in the sense that they are
all governed by the same observables. The square of any product state must
then be invariant under an interchange of two state vectors, and performing the
interchange twice should bring back the original product state. These criteria
are satisfied by symmetrized and antisymmetrized product states,

|ψN} =
1√
N !

∑
p

ζP |ψp1ψp2 · · ·ψpN 〉 ≡ |ψ1ψ2 · · ·ψN} (1.3)

being elements of the symmetrized and antisymmetrized product spaces HN
ζ re-

spectively, both being subspaces of the full product space, with the sign factor
ζ = ±1 corresponding to symmetrization and antisymmetrization. In the ex-
pression, the label p runs through all permutations of N objects and the factor
ζP corresponds to the parity of the number of interchanges in the permutation.

The sign factor ζ depends on the nature of the original single-state vectors
|ψi〉. For ζ = ±1, the single-states comprising the product state are said to be

4



bosonic and fermionic, respectively. For the fermionic case ζ = −1 in particular,
the antisymmetrized state (1.3) leaves zero if two of the single-states |ψi〉 are
equal, as each term of the sum then will be added to its negative counterpart.
This characteristic of fermionic states is known as the Pauli principle.

Let the set |α〉 be a complete orthonormal set of single-state vectors spanning
the original Hilbert space H, with W being the dimensionality of the space. An
orthonormal basis of the product space HN

ζ can then be introduced as

|{nα}〉 = |n1 · · ·nα · · ·nW 〉 =
|{1} · · · {α} · · · {W}}√

n1! · · ·nW !
(1.4)

where the occupation numbers nα denotes the number of times the state |α〉 is
represented in the product state |{nα}〉. From their construction the occupation
numbers satisfies the constraint

∑
α nα = N , where N is referred to as the total

occupation number of the states. For bosons, the occupation numbers can take
on any non-negative integer value up to N , whereas for fermions the only allowed
values are nα = 0 and nα = 1 being a consequence of the Pauli principle.

The symmetrized or antisymmetrized Hilbert product spaces HN
ζ are thus

characterized by the total occupation number N , giving the number of single-
states comprising each product state, and the sign factor ζ = ±1, determining
the bosonic or fermionic nature of the single-states. Introduce then the sym-
metrized or antisymmetrized Fock spaces, in which the quantum states can take
on any total occupation number. In terms of the symmetrized or antisym-
metrized Hilbert spaces HN

ζ , the Fock space is defined as the direct sum

Fζ(H) =

∞⊕
N=0

HN
ζ . (1.5)

Here, the Hilbert space for N = 0 corresponds to the complex numbers spanned
by the single vacuum state |0〉. The state vectors of Fock space are then given
by |ψ〉 =

⊕∞
N=0 cN |ψN}, where cN are complex expansion coefficients.

The Fock space Fζ(H) makes it possible to coherently define operators acting
between product spaces of different total occupation number N . In particular,
the creation and annihilation operators b̂†α and b̂α corresponding to the single-
state |α〉 act on the occupation number states (1.4) as

b̂†α |n1 · · ·nα · · ·nW 〉 = ζ
∑
δ<α nδ

√
nα + 1 |n1 · · · (nα + 1) · · ·nW 〉

b̂α |n1 · · ·nα · · ·nW 〉 = ζ
∑
δ<α nδ

√
nα |n1 · · · (nα − 1) · · ·nW 〉

(1.6)

where the annihilation operator satisfies b̂α |0〉 = 0. The prefactor ζ
∑
δ<α nδ is

known as the Jordan-Wigner string. In the bosonic case the Jordan-Wigner
string is unity and does not depend on the ordering of the occupation numbers.
In the fermionic case however, the Jordan-Wigner string will depend on the
predetermined ordering of the occupation numbers; if there is an odd number of
occupied fermionic states before the state α, an additional negative sign appears.
Recall also that in the fermionic case the occupation numbers can only be zero
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or unity. Therefore, if nα = 1 in the fermionic case, acting on the state with
the creation operator b̂†α will leave zero.

The combined action of several creation and annihilation operators (1.6)
can be simplified using commutation and anticommutation relations. Using
the definition of the occupation number basis states (1.4), the creation and
annihilation operators satisfies the three relations

[b̂α, b̂
†
β ]ζ ≡ b̂αb̂†β − ζb̂

†
β b̂α = δαβ

[b̂α, b̂β ]ζ = [b̂†α, b̂
†
β ]ζ = 0

(1.7)

Here, the notation [·, ·]ζ represents the commutator for ζ = 1 and the anticom-
mutator for ζ = −1. The bosonic or fermionic nature of a system can thus
be modelled by enforcing commutation relations for the bosonic operators or
anticommutation relations for the fermionic operators describing the system.

Introduce then the occupation number operators n̂α = b̂†αb̂α. By the defi-
nition of the creation and annihilation operators (1.6), the occupation number
operators acts on the occupation number states (1.4) as

n̂α |n1 · · ·nα · · ·nW 〉 = nα |n1 · · ·nα · · ·nW 〉 . (1.8)

The occupation number states are thus eigenstates to the occupation number
operators n̂α, with the occupation numbers nα being the corresponding eigen-
values. Defining the number operator N̂ =

⊕W
α=1 n̂α, the total occupation

number of a product state can then be revealed by the eigenvalue equation
N̂ |[nα]〉 = N |[nα]〉, with the total occupation number defined by N =

∑
α nα.

1.1.3 Second Quantization

Let ô be any operator acting on the Hilbert space H, and let the operator ôi act
on a general product state of HN as ôi |ψ1 · · ·ψN 〉 = |ψ1〉⊗· · ·⊗ô |ψi〉⊗· · ·⊗|ψN 〉.
A corresponding operator Ô acting on the symmetrized or antisymmetrized basis
states (1.4) can then be defined by Ô =

⊕N
i=1 ôi. Such an operator is known as

a single-state operator, acting on the single-states of the system separately.
In particular, if the operator is on the form ô = |α〉 〈β|, the corresponding

single-state operator acting on Fock space becomes Ô = b̂†αb̂β . Using the com-
pleteness relation (1.1) of the orthonormal set |α〉, any operator on the Hilbert
space H can in general be written as ô =

∑
αβ oαβ |α〉 〈β|, where the matrix

elements oαβ = 〈α| ô |β〉. In consequence, any single-state operator Ô acting on
Fock space corresponding to the operator ô can in general be written

Ô =
∑
αβ

oαβ b̂
†
αb̂β (1.9)

This is the second quantized form of the single-state operator Ô. In particular, if
the states |α〉 are taken to be the eigenstates of the operator ô, then oαβ = oαδαβ ,
and the sum reduces to a single sum over the single-states |α〉.
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1.2 Mixed Quantum States

The main purpose of this section is to introduce the concepts of mixed quantum
states, which enables incorporation of classical uncertainty in quantum systems.
Together with the concept of the Fock space of section 1.1, the resulting den-
sity operator formalism forms the basis of quantum statistical mechanics. In
particular, the introduction of the Von Neumann entropy allows for a quan-
tum mechanical calculation of the density operators of the principal ensembles
known from classical statistical mechanics, being the theme of section 1.3.

1.2.1 Pure State Projection Operators

Quantum states fully described by state vectors |ψ〉 are known as pure states.
According to the Born rule, measurements on such quantum systems are inher-
ently probabilistic, as the state vector can only provide the probability that a
specific measurement will occur. In consequence, even though the state vector
describes all knowable properties of a system, measurements on the system are
not fully deterministic. This property is known as quantum uncertainty.

The quantum system described by the state vector |ψ〉 may instead be de-
scribed by the corresponding projection operator, defined by P̂ψ ≡ |ψ〉 〈ψ| and

acting on state vectors |φ〉 as P̂ψ |φ〉 = 〈ψ|φ〉 |ψ〉; the projection operator P̂ψ
projects out the component of |φ〉 parallel to the state |ψ〉. In consequence the
projection operator is idempotent, with P̂ 2

ψ = P̂ψ, from which it follows that
its only eigenvalues are zero and unity. The zero eigenvalue corresponds to any
state vector orthogonal to |ψ〉, whereas unity corresponds to the vector |ψ〉 itself.

Consider then a finite dimensional Hilbert space and introduce the trace over
an operator with respect to some complete basis set |i〉, given by

Tr{Ô} =
∑
i

〈i| Ô |i〉 . (1.10)

The trace is evidently a linear operation, and using the completeness relation
(1.1) its value is independent on the basis used. Choosing the operator eigen-
states as the basis set, the trace over a hermitian operator will be the sum of its
eigenvalues. Furthermore, inserting the completeness relation twice, the trace
also inherits the cyclic property Tr{ABC} = Tr{CAB} = Tr{BCA}.

Reverting to the expression for the average (1.2) of the observable O, the
probability of measuring the eigenvalue On can be expressed in terms of the
projection operator as |〈n|ψ〉|2 = 〈n| P̂ψ |n〉. In consequence, the trace of the

projection operator is unity, Tr P̂ψ = 1, reflecting that the trace of an operator
equals the sum of its eigenvalues. With this, ensemble averages can be expressed

〈Ô〉ψ = Tr{|ψ〉 〈ψ| Ô} = Tr{P̂ψÔ}. (1.11)

Because only the expectation value is physically observable, any property of the
quantum state described by the state vector |ψ〉 can then equally be written in
terms of the corresponding projection operator P̂ψ.
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1.2.2 The Density Operator

In reality, the state vector describing a quantum system may not be fully known,
due to a classical lack of knowledge of the system. Systems involving both clas-
sical and quantum uncertainty can be described by a classical statistical distri-
bution over quantum state vectors, where a statistical weight wp is associated
with the system being in the pure state described by |ψp〉. The total system is
then said to be in a mixed quantum state. Using the ensemble average of pure
quantum states (1.11), averages in mixed quantum states can be expressed

〈Ô〉 =
∑
p

wp 〈ψp| Ô |ψp〉 =
∑
p

wp Tr
{
|ψp〉 〈ψp| Ô

}
≡ Tr{ρ̂Ô}, (1.12)

where the linearity of the trace was used. The expression defines the density
operator, being the weighted sum of the pure state projection operators:

ρ̂ =
∑
p

wp |ψp〉 〈ψp| . (1.13)

Effectively, the density operator takes over the role as a projection operator for
mixed quantum states; any property of a mixed quantum state is described by
the corresponding density operator. From the unit trace of projection operators,

Tr{ρ̂} =
∑
p

wp = 1, (1.14)

where the mixing weights are all positive and sum to unity by their definition.
The pure states |ψp〉 comprising the density operator (1.13) are in general

not orthogonal. Due to the hermiticity of the projection operators however, the
density operator is itself hermitian, meaning its eigenvectors can be chosen to
comprise a complete orthonormal set. Denoting the eigenvalue equation of the
density operator by ρ̂ |ρn〉 = ρn |ρn〉, the density operator can thus be written
on a form known as its eigenvalue decomposition

ρ̂ =

W∑
n=1

|ρn〉 ρn 〈ρn| . (1.15)

The number W is the number of eigenstates of the density operator, and equals
the dimensionality of the Hilbert space spanned by the original pure states |ψp〉
of the definition of the density operator (1.13). Notice that W does not in
general correspond to the number of original pure states |ψp〉.

Recall that projection operators are idempotent, in that the square of the
operator equals the operator itself. For the square of the density operator how-
ever, by using the eigenvalue decomposition (1.15) and recalling the orthonormal
eigenstates, the trace over the square of the density operator

Tr
{
ρ̂2
}

=
W∑
n=1

ρ2
n ≤

( W∑
n=1

ρn

)2

= Tr{ρ̂}2. (1.16)
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Due to the unit trace of the density operator (1.14), then Tr
{
ρ̂2
}
≤ 1. Equality

occurs if all the eigenvalues are zero except one. Hence, if the trace of the square
of the density operator is unity, the eigenvalue decomposition consists of only
one term, and the state described is a pure state with the density operator being
the corresponding projection operator. The square of the density operator thus
separates mathematically whether the state described is a pure or a mixed state.

In order to calculate traces in practice, the density operator is expanded in
a complete basis |i〉, giving the density matrix elements ρij = 〈i| ρ̂ |j〉. Likewise,

the operator Ô has the corresponding matrix elements Oij = 〈i| Ô |j〉. Using
the completeness relation (1.1), the ensemble average (1.12) is then written

〈Ô〉 =
∑
i

∑
j

ρijOji = tr{ρO},

Hence, ensemble averages can be calculated as the trace of the product between
the density and operator matrices, independent on their representation.

Assume now the operator Ô commutes with the density operator ρ̂. The
eigenfunctions of the density operator |ρn〉 can then be chosen to be simultane-
ous eigenfunctions with the operator Ô, satisfying Ô |ρn〉 = On |ρn〉. Choosing
then these states as the basis states for the operator and density matrices, then
Onm = Onδnm and ρnm = ρnδnm, and the ensemble average becomes

〈Ô〉 = Tr{ρO} =
∑
n

ρnOn (1.17)

In this case then, the eigenvalues ρn of the density matrix corresponds to the
probability of measuring the eigenvalue O = On of the operator Ô.

Even if the statistical weights wp of the density operator are fixed in time,
the corresponding pure quantum states |ψp〉 will in general be time dependent.
In appendix A, it is found that the time evolution of pure states is governed by
the Schrödinger equation (A2), with the generator of time translations being the
Hamiltonian operator Ĥ. By performing the time derivation of its definition,
the time evolution of the density operator (1.13) then becomes governed by the
Von Neumann equation, being the density operator equation of state given by

∂ρ̂

∂t
= − i

~
[Ĥ, ρ̂]. (1.18)

This is the quantum analogue to the Liouville equation from classical statistical
mechanics. The Von Neumann equation describes the time evolution of mixed
quantum states, being the mixed state equivalent to the Schrödinger equation.
In the Heisenberg picture, the corresponding density operator ρ̂H is by the
Heisenberg equation of motion (A7) then seen to be time independent. This
effect originates in the time independence of the pure quantum states in the
Heisenberg picture, which by definition translates to the density operator (1.13).

9



1.2.3 Variability and Von Neumann Entropy

From the eigenvalue decomposition of the density operator (1.15), it is possible
to derive an unambiguous measure of the mixedness of a mixed state, describing
how distant the mixed state is to being a pure state. In the following, the
mixedness will be characterized by the variability of the set of eigenvalues ρn of
the density operator, viewing these as describing a statistical distribution of the
density operator eigenstates. For a general distribution, the variability quantifies
the degree of diversity among the distributed elements. The derivation of the
measure of variability, and indeed the following connection between variability
and entropy, is inspired by Carcassi, Aidala and Barbour [16].

If the eigenvalues of the density operator are more similar, and hence further
from unity, the diversity of the mixed state will increase. The variability should
be maximum if all the eigenvalues are equal, describing a uniform distribution
over the eigenstates. In that case, the density operator is said to describe
a completely mixed state. Denoting by S[ρ̂] the variability of the eigenstate
distribution of a general density operator, and by S[W ] the variability of a
uniform distribution of W eigenstates, the variability should satisfy:

A Continuity : The variability of the mixed state S = S[ρ̂] should depend only
on the eigenvalues ρn, and the dependence is continuous; an infinitesimal
change in the eigenvalues leads to an infinitesimal change in the variability.

B Monotonicity for uniform distributions: For a fixed dimensionality W of the
eigenspace, the variability S[ρ̂] of the mixed state is maximal if the distri-
bution of the eigenstates is uniform with equal eigenvalues ρn = 1/W . The
variability of completely mixed states S[W ] should be monotonically increas-
ing with the number of eigenvalues W .

C Linearity under subset merging : If a subset of the eigenstates are merged
to a single pure state, the total variability of the set should decrease with
the variability of the subset weighted by the summed subset eigenvalues. In
this context, merging a subset signifies comparing the system with a similar
system where the subset is exchanged for a single state.

These three properties uniquely characterises the measure of variability S[ρ̂].
Consider a completely mixed state whose eigenspace has dimensionality W ,

and merge a subset of W1 eigenstates. According to properties B and C, the
variability will decrease by S[W1] ·W1/W . Hence, dividing all eigenstates into
W2 = W/W1 subsets of equal cardinality W1, the variability will decrease by
S[W1]. The resulting variability will then be S[W2], as each subset has merged
into a single eigenstate with eigenvalue 1/W2. This leaves the constraint

S[W ] = S[W1] + S[W2] for W = W1W2,

giving the general expression S[W ] = k lnW . Here, due to the monotonicity of
the variability as proposed by property B, the constant k must be positive. The
constant thus changes the base of the logarithm, and can be arbitrarily chosen.

10



To arrive at an expression of the variability of an arbitrary distribution,
consider again a uniform distribution S[W ] and distribute the equiprobal eigen-
states into a number of subsets, with subset n containing Wn states. Merging
each subset, the eigenvalue of each resulting eigenstate becomes ρn = Wn/W ,
and the variability decreases by a value S[Wn] ·Wn/W . Inserting the formula
S[W ] = k lnW , the variability of the resulting mixed state

S[ρ̂] = k lnW −
∑
n

Wn

W
k lnWn = k

∑
n

Wn

W
ln

(
W

Wn

)
,

where it was used that the sum
∑
nWn = W . Notice here that the eigenvalues

ρn = Wn/W are rational. However, this argument can be made for arbitrary
numbers W and Wn, and because the variability is assumed continuous due to
property A, the expression is extrapolated to all real numbers.

Hence, the only measure of the variability of mixed states which is continu-
ous, monotonic and linear under subset merging is the Shannon entropy [16]

S[ρ̂] = −k
W∑
n=1

ρn ln ρn. (1.19)

For a pure state there is only one eigenvalue of the density operator equal to
unity, leaving a Shannon entropy of zero. If more eigenstates are included, the
unit is distributed across more eigenvalues, and the Shannon entropy increases.
In this way, the Shannon entropy gives a measure of the mixedness of a state.

The Shannon Entropy is known from information theory, where it serves
as a measure of the average level of information obtained when measuring an
outcome of a distribution. In that case, the constant k is chosen such that the
logarithm becomes log2, suitable when information content is given in bits.

The form of the expression for Shannon entropy (1.19) is equivalent to the
Gibbs entropy of classical statistical mechanics, where the constant k = kB is
the Boltzmann constant, giving the entropy the dimensions of energy per tem-
perature. Notice also that inserting ρn = 1/W for a completely mixed state,
the expression S[W ] = kB lnW is regained. This is the Boltzmann entropy
of classical statistical mechanics, where W is interpreted as the number of mi-
crostates corresponding to a given macrostate. As such, the Boltzmann entropy
is a measure of the variability of microstates within a given macrostate.

Both the Shannon entropy and the Gibbs entropy are classical expressions,
describing phenomena regarding classical statistical distributions. A mixed
quantum state however also incorporates quantum uncertainty. The quantum
nature is made explicit by writing the expression for Shannon entropy (1.19) as

S[ρ̂] = −kB Tr{ρ̂ ln ρ̂}. (1.20)

This measure is known as the Von Neumann entropy of the mixed quantum
state, being the quantum ensemble average of the operator ln ρ̂. The trace
can be calculated as the sum over the eigenvalues of the operator ρ̂ ln ρ̂, which
become ρn ln ρn, giving back the original expression for Shannon entropy (1.19).
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1.3 Statistics of the Principal Ensembles

A mixed quantum state is said to be in equilibrium if its density operator (1.13) is
time independent. From the Von Neumann equation (1.18) the density operator
then commutes with the Hamiltonian, satisfying [ρ̂, Ĥ] = 0. In general, density
operators for systems in equilibrium thus acquires a dependence ρ̂ = ρ̂(Ĥ).

Because the density operator and the system Hamiltonian commutes, the
eigenstates of the density operator |ρn〉 can for a system in equilibrium be chosen
so as to satisfy the eigenvalue equation of the Hamiltonian, defined through the
relations Ĥ |ρn〉 = En |ρn〉 and ρ̂ |ρn〉 = ρn |ρn〉. The eigenvalue decomposition
of the density operator (1.15) with diagonal density matrix elements ρnm =
ρnδnm then defines the energy representation of the density operator. Notice
that the eigenspace dimensionality W of the density operator now corresponds
also to the number of energy eigenvalues En, including degeneracies.

According to the principle of maximum entropy a mixed state will in equi-
librium, if left unmeasured, gain a statistical distribution such that the Von
Neumann entropy (1.20) is maximized. The exact form of the diagonal matrix
elements ρn will otherwise depend on the characteristics of the ensemble under
consideration. In the following of this section, the shape of the density operator
ρ̂ is derived for the three principal statistical ensembles known from thermody-
namics: the microcanonical, the canonical and the grand canonical ensembles.
For simplicity, the Von Neumann entropy will be considered dimensionless.

1.3.1 The Microcanonical and Canonical Ensembles

A microcanonical ensemble is a fully isolated ensemble, in that it cannot inter-
act with its surroundings. Hence, the total energy of the ensemble is restricted
to take only one eigenvalue of the Hamiltonian operator, denoted by E. Notice
however that this eigenvalue can be multiply degenerate, and the dimensional-
ity W of the eigenspace now corresponds to the energy degeneracy. The only
constraint on the density matrix in this case is the condition of unit trace (1.14).
By the principle of maximum entropy, the density matrix for the microcanonical
ensemble will then be the matrix maximizing the Von Neumann entropy (1.20)
under the condition of unit trace (1.14). From section 1.2, it is already known
that the entropy then becomes maximized by a uniform distribution.

However, the density matrix can also be derived from the Von Neumann
entropy itself, using Lagrange multipliers. In order to find an expression for the
density matrix in this case, introduce the Lagrange functional

L[ρ, α] = −
∑
n

ρn ln ρn − α(
∑
n

ρn − 1),

where α is a Lagrange multiplier. The density matrix of the microcanonical
ensemble will correspond to an extremal point of this Lagrangian functional.
Derivation with respect to the diagonal element ρm gives ln ρm = −1− α, such
that the diagonal elements take the form ρn = e−(1+α), independent on the
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index n. The condition of unit trace (1.14) now gives e−(1+α)W = 1, leaving the
diagonal matrix elements of the density operator in the microcanonical ensemble

ρn =
1

W
. (1.21)

As foretold, a mixed state of the microcanonical ensemble is a uniform distribu-
tion over the W degenerate eigenfunctions of the Hamiltonian. In general, the
energy E and its degeneracy W will depend on the system and its Hamiltonian.
The density operator of the microcanonical ensemble thus becomes

ρ̂mic =
1

W

W∑
n=1

|ρn〉 〈ρn| =
1

W
ÎW , (1.22)

where ÎW is the identity operator on the eigenspace of the density operator, fol-
lowing from the completeness relation (1.1) of the eigenstates. Thus in general,
the density operator of a completely mixed state takes the shape of an identity
operator, weighted by the inverse of the dimensionality of its eigenspace.

Reinserting the matrix elements into the Von Neumann entropy (1.20) again
gives the celebrated formula for the Boltzmann entropy

S = lnW (1.23)

If the energy characterizing the ensemble is non-degenerate, the dimensionality
of the eigenspace is W = 1 and the density matrix describes a pure state. In
that case, the Von Neumann entropy of the system is zero.

Assume now the system is able to exchange energy with its surroundings,
but is otherwise isolated. The ensembles of such systems are known as canonical
ensembles. In this case, the system can take on any energy eigenvalue of the
Hamiltonian operator. Measuring the energy of members of the ensemble will
then yield some energy eigenvalue En, and the average energy of the ensemble
is calculated as the ensemble average over the Hamiltonian, denoted 〈Ĥ〉 ≡ U .

The density matrix is then found by extremizing the Von Neumann entropy
(1.20) under the condition of unit trace (1.14) and satisfying Tr{ρ̂Ĥ} = U . The
corresponding Lagrangian functional then takes the form

L[ρ, α, β] = −
∑
n

ρn ln ρn − α(
∑
n

ρn − 1)− β(
∑
n

ρnEn − U)

where α and β are Lagrange multipliers. Derivation with respect to ρm now
leaves the equation ln ρm = −βEm − α − 1. Combined with the condition of
unit trace (1.14), the factor ZC ≡ e−(α+1) takes the form

ZC =
∑
n

e−βEn = Tr
{
e−βĤ

}
(1.24)

This is known as the partition function of the canonical ensemble. Written in
terms of the canonical partition function, the eigenstates of the density operator
becomes distributed according to the Maxwell-Boltzmann distribution
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ρn =
1

ZC
e−βEn

Recalling that En are the eigenvalues of the Hamiltonian Ĥ, the density operator
for the canonical ensemble is rewritten on the basis independent form

ρ̂C =
1

ZC
e−βĤ (1.25)

By arguments from statistical thermodynamics, the Lagrange multiplier β can
be related to the temperature T of the ensemble as β = 1/kBT , where kB again
is the Boltzmann constant, converting between temperature and energy.

The density operator of the canonical ensemble (1.25) can then be reinserted
into the expression for Von Neumann entropy (1.20) to give the relation

S[ρ̂C ] = β Tr{ρ̂CĤ}+ Tr{ρ̂C lnZC} = βU − βF, (1.26)

where the free energy is defined F = − lnZC/β. Hence, the internal energy of
the system can be expressed U = F + TS, as known from thermodynamics.

1.3.2 The Grand Canonical Ensemble

The statistics of the grand canonical ensemble are derived explicitly in Fock
space (1.5), as described by section 1.1. Let now the orthonormal set |α〉 span-

ning the Hilbert space H be the eigenstates of a Hamiltonian operator ĥ with
corresponding eigenvalues εα. For simplicity, consider a system whose Hamilto-
nian Ĥ acting on Fock space is a single-state operator (1.9),

Ĥ =
∑
α

εαn̂α (1.27)

The Hamiltonian then commutes with the number operator N̂ , with the occu-
pation number states (1.4) also being eigenfunctions of the Hamiltonian, with
eigenvalues given by the sum

∑
α nαεα ≡ E{nα}. Thus, the eigenvalues of the

Hamiltonian Ĥ are the summed single-state energies of the eigenstate |{nα}〉.
The density operator ρ̂ of the grand canonical ensemble then commutes both
with the Hamiltonian Ĥ and the number operator N̂ , such that the occupation
number states also satisfies the eigenvalue equation ρ̂ |{nα}〉 = ρ{nα} |{nα}〉.

Systems of the grand canonical ensemble will then have an average energy
U , and an average total occupation number 〈N〉. The density operator is again
found by extremizing the Von Neumann entropy (1.20) under the condition of
unit trace (1.14), average energy Tr{ρ̂Ĥ} = 〈E〉 and average total occupation
number Tr{ρ̂N̂} = 〈N〉. The corresponding Lagrangian functional then becomes

L[ρ, α, β, γ] =−
∑
{nα}

ρ{nα} ln ρ{nα} − α(
∑
{nα}

ρ{nα} − 1)

− β(
∑
{nα}

ρ{nα}E{nα} − 〈E〉)− γ(
∑
{nα}

ρ{nα}N − 〈N〉)
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where α, β and γ are Lagrange multipliers. The extremum of the functional is
found for ln ρ{nα} = −α−1−βE{nα}−γN . Denoting Z ≡ e−(1+α), and recasting
the multiplier γ ≡ βµ corresponding to the average number of particles, the
condition of unit trace (1.14) then gives the grand canonical partition function

Z =
∑
{nα}

e−β(E{nα}−µN) = Tr
{
e−β(Ĥ−µN̂)

}
. (1.28)

Here, the sum is over all configurations of occupation numbers nα, for all total
occupation numbers N given by

∑
α nα = N . From statistical thermodynamics,

the Lagrange multiplier µ is interpreted as a chemical potential of the grand
canonical ensemble, whereas β again is interpreted as an inverse temperature.
In terms of the grand canonical partition function (1.28), the matrix elements

ρ{nα} =
1

Z
e−β(E{nα}−µN) =

1

Z
e−β

∑
α nα(εα−µ),

leaving the basis independent density operator of the grand canonical ensemble

ρ̂ =
1

Z
e−β(Ĥ−µN̂). (1.29)

Recall here that the Hamiltonian (1.27) and the number operator commutes.
For the grand canonical partition function (1.28), it is advantageous to split

the original sum over occupation number configurations nα into a sum over
the total occupation number N and a sum over configurations satisfying the
condition

∑
α nα = N . Introducing the fugacity of the grand canonical ensemble

z = eβµ, the grand canonical partition function can then be expressed

Z =

∞∑
N=0

∑
|N |

zNe−βE{nα} =

∞∑
N=0

zNZN , (1.30)

where the notation |N | signifies all configurations {nα} with the same total
occupation number N . The partition funciton ZN corresponds to a canonical
ensemble (1.24) described by the Hamiltonian Ĥ whose states reside in the
symmetrized or antisymmetrized product space HN

ζ , and can be expressed

ZN = Tr{e−βĤ} =
∑
|N |

e−β
∑
α nαεα , (1.31)

where the energy eigenvalues E{nα} =
∑
α nαεα has been inserted.

Using the latter expression for the grand canonical partition function (1.30),
the grand canonical ensemble average of an observable Ô can be written

〈Ô〉 =
1

Z
Tr
{
Ôe−β(Ĥ−µN̂)

}
=

∑∞
N=0 z

NZN 〈Ô〉N∑∞
N=0 z

NZN
. (1.32)

For the canonical and grand canonical ensembles, the ensemble average is known
as the thermal average of the operator. Here, the canonical thermal average
corresponding to the canonical partition function ZN is denoted by 〈Ô〉N .
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1.4 Ideal Quantum Gases

A quantum gas is a system of indistinguishable bosonic or fermionic quantum
particles. For quantum gases in the grand canonical approach, the states |α〉 of
the previous section corresponds to single-particle fermionic or bosonic energy
eigenstates, the occupation numbers nα denotes how many particles occupy each
single-particle state, and the total occupation number N gives the total number
of particles in the system. In general however, the particles will interact among
each other, adding other contributions to the Hamiltonian Ĥ than the sum of
single-particle terms (1.27). Due to these interaction terms, the Hamiltonian
describing a quantum gas will not in general commute with the number operator
N̂ . In this section however, it will be assumed that the particles constitute a
non-interacting ideal quantum gas, such that the system is readily described by
the derived grand canonical density operator (1.29). The theory of interacting
quantum gases will be partially covered in chapter 2.

Reverting to its derived expression, the grand canonical partition function
(1.30) for an ideal quantum gas can be rewritten on the form

Z =

∞∑
N=0

∑
|N |

W∏
α=1

(
ze−βεα

)nα
=

W∏
α=1

∑
nα

(
ze−βεα

)nα
.

Here, the double sum has been combined to independent sums over all possible
values of the occupation numbers nα. Recall then that in the bosonic case, the
occupation numbers can take on any non-negative integer, whereas for fermions
the occupation numbers can only be zero or unity. The fermionic sum is then
trivial, leaving (1 + ze−βεα) for each α in the product. For bosons, the sum
takes the form of a geometrical series. Hence, using the sign factor ζ = ±1 for
distinguishing the fermionic and bosonic grand canonical partition functions,

Zζ =

W∏
α=1

[
1− ζze−βεα

]−ζ
. (1.33)

This is simply a reformulation of the general expression for the grand canonical
partition function (1.28) for non-interacting systems.

From the original expression of the partition function (1.28), the thermal
average of the occupation number nα can be calculated as

nζ(εα) ≡ 〈nα〉 = − ∂ lnZζ
∂(βεα)

=
1

eβ(εα−µ) − ζ
, (1.34)

where the derivative is readily calculated for the grand partition function of
an ideal quantum gas (1.33). This expression gives the mean of the statistical
distribution over occupation numbers for ideal quantum gases. The bosonic
case ζ = 1 gives the Bose-Einstein distribution, and the fermionic case ζ = −1
gives the Fermi-Dirac distribution. Notice the temperature dependence of this
expression through the Lagrange multiplier β = 1/kBT ; at temperature T , the
average number of particles with the single-particle energy εα is given by nζ(εα).
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Chapter 2

Green Functions of the
Matsubara Method

Chapter 1 derived the statistics of ideal quantum gases in the grand canonical
approach. In reality, each quantum particle of the ensemble will in general
exert a mutually interactive force on the other particles, and the ideally non-
interacting ensemble cannot reproduce the experimental results of many physical
systems. Often however, the interactive part of the Hamiltonian describing the
system will be dominated by the single-particle terms from the non-interactive
case, and the calculation of the physical properties of the ensemble can be
approximated using perturbation theory.

For interactive systems the computation of the thermal averages of observ-
ables becomes more involved, because the eigenstates and the corresponding
eigenvalues of the interactive Hamiltonian in general are unknown. The compu-
tational difficulty is somewhat mitigated by introducing Green functions, with
quantum states and operators represented in the Heisenberg picture. In this
regard, the Matsubara method of treating time as an imaginary variable turns
out mathematically convenient for the computation of Green functions at finite
temperatures. Therefore, the chapter starts out introducing dynamical quantum
pictures in imaginary time, before treating the quantum statistics of interactive
ensembles. The corresponding real time dynamical pictures are introduced in
appendix A, on which the first section of the current chapter is dependent. The
chapter is based on the book by Mahan [8].

Green functions is an integral part of solid state physics, and a majority
of formulae for physical properties can be reduced to the calculation of Green
functions based on perturbation theory. A particular example is the calculation
of optical conductivity, which is the objective of chapter 3.
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2.1 The Matsubara Method

In appendix A, the time evolution of quantum mechanical states is modelled in
different dynamical quantum pictures. The formalism introduced the evolution
operator of quantum states (A4), taking the form of a unitary exponential opera-
tor with the exponent being imaginary and dependent on time t. Furthermore,
in the calculation of thermal averages of chapter 1, the canonical (1.25) and
grand canonical (1.29) density operators take the form of exponential operators
with a real exponent dependent on the statistical parameter β.

To mathematically mitigate the inconvenience of having separately real and
imaginary exponents, there are two conceivable formalisms: the statistical pa-
rameter β = 1/kBT can be considered an imaginary time, or the exponent it/~
can be considered a real temperature. The latter formalism is known as the
Matsubara method, where time t is considered an imaginary quantity, and time
evolution is modelled using the then real time variable τ = it.

The Matsubara method is mostly used for systems described by time inde-
pendent Hamiltonians Ĥ. In terms of the real time variable τ , the time evolution
operator of the Schrödinger picture (A4) then takes on the form

Û(τ, τ ′) = e−Ĥ(τ−τ ′)/~. (2.1)

Introducing imaginary time thus makes the time evolution operator non-unitary.
Introduce then the imaginary time Heisenberg picture, in which operators

are connected to time-independent operators of the Schrödinger picture through

Ô(τ) = eĤτ/~Ôe−Ĥτ/~ Ô†(τ) = eĤτ/~Ô†e−Ĥτ/~, (2.2)

analogous to operators in the real time Heisenberg picture (A6). In the imag-
inary time Heisenberg picture however, because the evolution operator (2.1) is
non-unitary, the adjoint operator [Ô(τ)]† 6= Ô†(τ). Thus, the two operators
Ô(τ) and Ô†(τ) are not adjoint operators and need separate definitions.

In the following only systems at equilibrium will be considered, leaving all
observables with no explicit time dependence; whether operators are given in the
Schrödinger or imaginary time Heisenberg pictures is asserted by the time argu-
ment τ . Taking the derivative of the definition of the imaginary time Heisenberg
operators (2.2), the imaginary time Heisenberg equation thus becomes

dÔ(τ)

dτ
=

1

~
[Ĥ, Ô(τ)], (2.3)

being analogous to the real time Heisenberg equation (A7).
Likewise for a system whose Hamiltonian takes the form Ĥ = Ĥ0 + V̂ ,

introduce the imaginary time Dirac picture, analogous to the real time Dirac
picture described in appendix A. Operators in the imaginary time Dirac picture
are denoted ÔI(τ), where the subscript I separates between the imaginary time
Dirac and Heisenberg pictures. As for the definition of operators in the real time
Dirac picture (A8), operators of the imaginary time Dirac picture are connected
to their imaginary time Heisenberg and Schrödinger equivalents as
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ÔI(τ) = Û−1
I (τ, 0)Ô(τ)ÛI(τ, 0) = eτĤ0/~Ôe−τĤ0/~, (2.4)

where the modified imaginary time evolution operator, analogous to its real time
Dirac picture counterpart (A16), can be written as the Dyson series

ÛI(τ, τ
′) = eĤ0τ/~e−Ĥ(τ−τ ′)/~e−Ĥ0τ

′/~ = T̂{e− 1
~
´ τ
τ′ dσV̂I(σ)}. (2.5)

Here, the imaginary time ordering operator T̂ arranges imaginary time valued
operators according to descending imaginary time arguments, being defined
analogous to the real time ordering operator (A15).

Reconsider a canonical or grand canonical ensemble governed by the Hamil-
tonian Ĥ, as described in section 1.4, and notice that setting τ = ~β and τ ′ = 0
in the expression for the imaginary time evolution operator (2.1) leaves

ρ̂ ≡ Û(~β, 0) = e−βĤ . (2.6)

This is nothing but the unnormalized density operator of the canonical en-
semble (1.25), demonstrating the mathematical convenience of modelling time
as an imaginary variable. In terms of the unnormalized density operator, the
canonical partition function (1.28) is defined Z = Tr{ρ̂}. Alternately, by implic-
itly exchanging the Hamiltonian Ĥ by Ĥ−µN̂ where N̂ is the total occupation
number operator, while also redefining the trace to additionally run over all con-
figurations of occupation numbers, the density operator ρ̂ and its corresponding
partition function Z describes the statistics of a grand canonical ensemble.

In the derivation of the statistics of ideal quantum gases (1.33), the quantum
particles of the ensemble were assumed non-interactive, described by a Hamil-
tonian of only single-particle terms (1.9). In order to incorporate interactions
between the particles comprising the ensemble, introduce the interaction term V̂
to the unperturbed single-particle Hamiltonian, now denoted Ĥ0. The statistics
of the non-interactive ensemble described by Ĥ0 are then fully known, whereas
the statistics of the interactive ensemble described by the total Hamiltonian
Ĥ = Ĥ0 + V̂ can be calculated using perturbation theory.

In equilibrium, the interaction term and hence the total Hamiltonian of the
ensemble Ĥ = Ĥ0 + V̂ will be time independent. Due to the shape of the Hamil-
tonian, calculations are conveniently performed in the imaginary time Dirac
picture. In terms of the modified imaginary time evolution operator (2.5), the
unnormalized density operator (2.6) of the interacting system can be expressed

ρ̂I ≡ ÛI(~β, 0) = eβĤ0e−βĤ = T̂{e− 1
~
´ ~β
0

dσV̂I(σ)}.

Reverting to the Schrödinger picture, the unnormalized density operator of the
interactive grand canonical ensemble is then readily given by

ρ̂ = e−βĤ = e−βĤ0T̂{e− 1
~
´ ~β
0

dσV̂I(σ)}. (2.7)

Denoting the average over the non-interactive ensemble by 〈Ô〉0 = Tr{ρ̂0Ô}/Z0,
where the unnormalized non-interactive density operator and partition function
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are denoted by ρ̂0 = e−βĤ0 and Z0 = Tr{ρ̂0} respectively, the corresponding
interactive grand canonical partition function can be expressed as the average

Z = Tr{ρ̂} = Z0

〈
T̂{e− 1

~
´ ~β
0

dσV̂I(σ)}
〉

0
. (2.8)

Hence, the calculation of the partition function for the interactive system has
been reduced to the calculation of a thermal average over the corresponding
non-interactive system, where the statistics of the ensemble are known.

Consider then a time ordered product of operators T̂{Ô1(τ1) · · · Ôn(τn)},
where the operators are evaluated in the imaginary time Heisenberg picture
(2.2). Assuming the Hamiltonian describing the time evolution of the operators
is on the form Ĥ = Ĥ0 + V̂ , the thermal average over the time ordered product
can be calculated using the density operator (2.7) as

〈
T̂{Ô1(τ1) · · · Ôn(τn)}

〉
=

Tr
{
e−βĤ0T̂{e− 1

~
´ ~β
0

dσV̂I(σ)Ô1(τ1) · · · Ôn(τn)}
}

Tr
{
e−βĤ0T̂{e− 1

~
´ ~β
0

dσV̂I(σ)}
} .

However, due to the form of the Hamiltonian, it would be beneficial to express
the operators in the imaginary time Dirac picture where the time evolution of
the operators ÔiI(τ) is governed by the Hamiltonian Ĥ0 whose properties are
known. Using the connection between imaginary time Heisenberg and Dirac
operators (2.4) in reverse, the operators Ô(τ) = Û−1

I (τ, 0)ÔI(τ)ÛI(τ, 0) where

ÛI(τ, τ
′) is the imaginary time modified evolution operator (2.5). The thermal

average over the time ordered product of operators in the Heisenberg picture
can be written in terms of the corresponding operators in the Dirac picture, as

〈
T̂{Ô1(τ1) · · · Ôn(τn)}

〉
=

〈
T̂{e− 1

~
´ ~β
0

dσV̂I(σ)Ô1I(τ1) · · · ÔnI(τn)}
〉

0〈
T̂e−

1
~
´ ~β
0

dσV̂I(σ)
〉

0

, (2.9)

where all the evolution operators cancel under the time ordering due to their
group properties. In this way, the thermal average over an interacting ensemble
of a time ordered product of operators whose time evolution is non-trivial has
been reduced to the calculation of a thermal average over the corresponding
non-interactive ensemble where the time evolution of the operators is known.
Expanding the exponential operators, the resulting averages can be arranged in
Feynman diagrams, and calculated diagrammatically. The expression found is
the basis of perturbation theory in many-body physics.

In the final calculations of the thesis the interactions between the quantum
particles will be assumed negligible, such that the Hamiltonian operator as-
sumes the form of a single-particle operator (1.9). Here and in the following,
the discussions on the internal interactions of a system is included for com-
pleteness, and the theory surrounding Feynman diagrams will for brevity not
be considered.
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2.2 Introduction to Matsubara Green Functions

Through the process of second quantization (1.9), any quantum operator can be

written as a product between creation and annihilation operators b̂†α and b̂α. In
particular, for the Matsubara method the creation and annihilation operators
b̂†α(τ) and b̂α(τ) are considered in the imaginary time Heisenberg picture (2.2),
motivating the definition of the 2n-point Matsubara Green function

G(n)({τiαi;σiβi}) =
(−1)n

~n
〈
T̂{b̂α1

(τ1) · · · b̂αn(τn)b̂†β1
(σ1) · · · b̂†βn(σn)}

〉
(2.10)

where T̂ is the imaginary time ordering operator (A15). In general, the average
is taken with respect to the specific quantum ensemble at hand. The Matsub-
ara method is however convenient mostly for systems at nonzero temperatures
described by the density operator of the ensemble (2.6). Here, the indices βi
must not be confused with the statistical parameter β = 1/kBT .

The purpose of the section at hand is to give a brief introduction to the
general properties of the Matsubara Green functions (2.10) using the density
operator (2.6) corresponding to a general Hamiltonian operator Ĥ. At the end
of the section the Matsubara Green functions are connected to their real time
counterparts through analytical continuation. For simplicity, all properties are
derived and written in terms of the two-point Matsubara Green function.

2.2.1 The Equation of Motion for Green Functions

Many of the general properties of the Matsubara Green functions (2.10) are most
readily derived and exemplified using the two-point Matsubara Green function,
being the lowest order Matsubara Green function written on the form

Gαβ(τ − σ) ≡ G(1)(τ, α;σ, β) = −1

~
〈
T̂{b̂α(τ)b̂†β(σ)}

〉
= −1

~
Θ(τ − σ)

〈
b̂α(τ)b̂†β(σ)

〉
− ζ 1

~
Θ(σ − τ)

〈
b̂†β(σ)b̂α(τ)

〉
,

(2.11)

where Θ(t) is the Heaviside function originating from time ordering and ζ = ±1
corresponds to fermionic and bosonic operators, respectively. The ensemble is
assumed at equilibrium, such that the Hamiltonian Ĥ becomes time indepen-
dent. The two-point Matsubara Green function is then dependent only on time
differences, as shown by the argument (τ − σ). Because the Green function is
homogeneous in time, it is customary to set the second time argument σ = 0,
leaving the Green function denoted Gαβ(τ) ≡ −

〈
T̂{b̂α(τ)b̂†β(0)}

〉
/~.

Consider the derivative of the two-point Green function (2.11), taken with
respect to the parameter τ . Because the system is considered at equilibrium,
the density operator is time independent and the derivative can be moved inside
the average. From its definition, the derivative of the time ordered product
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∂

∂τ
T̂{b̂α(τ)b̂†β(0)} = −δ(τ)

[
b̂α(τ)b̂†β(0)− ζb̂†β(0)b̂α(τ)

]
−Θ(τ)

∂b̂α(τ)

∂τ
b̂†β(0)− ζΘ(−τ)b̂†β(0)

∂b̂α(τ)

∂τ
.

The delta-function originates in the discontinuity present at τ = 0 due to time
ordering. Its presence enforces the real time parameter to take the value τ = 0
in the first term, which leaves the commutator or anticommutator of the cre-
ation and annihilation operators (1.7). Using also the imaginary time Heisen-

berg equation (2.3) for the annihilation operator b̂α(τ) in the second term, the
equation of motion for the two-point Matsubara Green function becomes

~
∂

∂τ
Gαβ(τ) = −δ(τ)δαβ −

1

~
〈
T̂{[Ĥ, b̂α(τ)]b̂†β(0)}

〉
. (2.12)

The appearance of the delta-function in the derivative leads to a discontinuity
of the function at τ = 0. From the derivation of the equation of motion the
discontinuity is caused by the commutation or anticommutation relation of the
creation and annihilation operators, and will hence be present in general.

2.2.2 Periodicity and Matsubara Frequencies

Due to the discontinuity as portrayed by the equation of motion (2.12), the
two-point Matsubara Green function (2.11) is ill defined at the origin. The
discontinuity is expressed clearly by writing the function as

Gαβ(τ) =

{
−
〈
b̂α(τ)b̂†β(0)

〉
/~ if τ > 0

−ζ
〈
b̂†β(0)b̂α(τ)

〉
/~ if τ < 0

, (2.13)

where the Heaviside functions of the original expression has been inserted.
Consider the two-point Matsubara Green function (2.13) for the time interval

−~β < τ < 0, being given by Gαβ(τ) = −ζ〈b̂†β(0)b̂α(τ)〉/~. Here, the average is
taken using the unnormalized density operator (2.6). Inserting the imaginary
time Heisenberg representation of the operators (2.2), the trace

Tr{ρ̂b̂†β(0)b̂α(τ)} = Tr{e−βĤ b̂†βe
Ĥτ/~b̂αe

−Ĥτ/~} = Tr{eĤτ/~b̂αe−Ĥτ/~e−βĤ b̂†β}

= Tr{e−βĤeĤ(τ+~β)/~b̂αe
−Ĥ(τ+~β)/~b̂†β} = Tr{ρ̂b̂α(τ + ~β)b̂†β(0)},

where the cyclic property of the trace was used. Notice here that the time
argument τ + ~β > 0. Thus, the two-point Matsubara Green function satisfies

Gαβ(τ + ~β) = ζGαβ(τ) (2.14)

for −~β < τ < 0, effectively giving a connection between the two parts of the
two-point Matsubara Green function at each side of the discontinuity.
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Recalling the statistical sign ζ = ±1, the relation (2.14) between the two
parts of the two-point Matsubara Green function (2.13) means the bosonic and
the fermionic versions of the function is periodic and antiperiodic with the sta-
tistical parameter ~β, respectively. This suggests that the discontinuity at the
origin is transferred periodically with ~β; indeed, the argument leading to the
periodic relation can readily be made for the time interval τ ∈ (~β, 2~β) as well.

Furthermore, because ζ2 = 1, the two-point Matsubara Green function can
be continued periodically as Gαβ(τ + 2n~β) = Gαβ(τ), for any integer n. Due
to this periodicity, the Green function can be decomposed into a Fouriér series

Gαβ(τ) =
1

β

∞∑
n=−∞

G̃αβ(n)e−
inπ
~β τ .

In order for the Fouriér transform to be well defined the time argument is here
conventionally restricted to the interval τ ∈ (−~β, ~β), on which the two-point
Matsubara Green function Gαβ(τ) is completely defined. The Fouriér coefficients

G̃αβ(n) can then be calculated as the integral

G̃αβ(n) =
1

2

(
1 + ζeinπ

) ˆ ~β

0

dτGαβ(τ)e
inπ
~β τ .

Here, the integration over the interval τ ∈ (−~β, 0) has been converted to run
over τ ∈ (0, ~β) using the periodic relation (2.14) of the function Gαβ(τ).

Due to the prefactor before the integral, the two-point Matsubara Green
function Fouriér coefficients G̃αβ(n) vanishes whenever the integer n is even for
ζ = −1 and odd for ζ = 1, motivating the definition of the Matsubara frequencies

Bosonic : ωn =
2nπ

~β
Fermionic : νn =

(2n+ 1)π

~β
. (2.15)

In the following, a general Matsubara frequency will be denoted by µn, being
either fermionic or bosonic depending on the Matsubara Green function at hand.
Notice that the Matsubara frequencies µn can be both positive and negative,
with n being any integer. The bosonic Matsubara frequencies also include zero,
while all fermionic Matsubara frequencies are nonzero.

In terms of the Matsubara frequencies (2.15), the Fouriér transform of the
Matsubara Green functions and its inverse can be written on the form

Gαβ(τ) =
1

~β
∑
µn

G̃αβ(iµn)e−iµnτ G̃αβ(iµn) =

ˆ ~β

0

dτGαβ(τ)eiµnτ . (2.16)

Here, when the temperature approaches zero with β → ∞, the spacing be-
tween the discrete Matsubara frequencies (2.15) goes to zero and the sum over
Matsubara frequencies turns into an integration over the frequency domain.
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2.2.3 The Spectral Weight and Analytical Continuation

In viewing the Matsubara method of introducing imaginary time as a mathemat-
ical tool for simplifying calculations at nonzero temperatures, a scheme should
be devised for translating the two-level Matsubara Green function (2.11) to a
real time equivalent. In this regard, introduce the real time two-point retarded
and advanced Green functions, respectively defined by

Gr,aαβ(t, s) = ∓ i
~

Θ
(
±(t− s)

)〈
[b̂α(t), b̂†β(s)]ζ

〉
≡ ∓iΘ

(
±(t− s)

)
Cαβ(t, s), (2.17)

where the upper and lower signs corresponds to the retarded and advanced
Green functions Grαβ(t) and Gaαβ(t), respectively. Due to the Heaviside func-
tions, the retarded and advanced Green functions are zero for t > s and t < s
respectively, reflecting their naming. The expression also defines the spectral
weight Cαβ(t, s) ≡

〈
b̂α(t)b̂†β(s) − ζb̂†β(s)b̂α(t)

〉
/~, averaging over the commuta-

tor or anticommutator with ζ = ±1 being the statistical sign. The operators
b̂†α(t) and b̂α(t) are evaluated in the real time Heisenberg picture (A6).

Analogous to the Matsubara Green functions, for systems in equilibrium the
Green functions becomes homogeneous in time, with Gr,aαβ(t, s) = Gr,aαβ(t − s).
Due to the homogeneous time argument, it is convenient to introduce Fouriér
transforms for the advanced and retarded two-point Green functions, given by

G̃r,aαβ(ω) =

ˆ ∞
−∞

dt Gr,aαβ(t)eiωt Gr,aαβ(t) =

ˆ ∞
−∞

dω

2π
G̃r,aαβ(ω)e−iωt, (2.18)

Inserting the expressions for the Green functions (2.17), the Fouriér transforms
satisfies G̃rαβ(ω) = (G̃aαβ(ω))∗. Thus, a computation of the retarded Green

function G̃rαβ(ω) will automatically yield the advanced Green function G̃aαβ(ω).
Seeing that the retarded and advanced Green functions (2.17) consist of

a product of functions, their Fouriér transforms (2.18) can be calculated as
a convolution on the frequency domain between the Fouriér transforms Θ̃(ω)
and C̃αβ(ω). However, the Fouriér transform of the Heaviside function is not
well defined: direct calculation leaves an oscillating term at the upper or lower
infinite limit, respectively. The inconvenience can be mitigated by extending the
frequency to the complex plane and adding a complex part ±iη with η > 0. The
limit at infinity will then leave zero, and the Fouriér integral readily becomes

∓
ˆ ∞
−∞

dt ei(ω±iη)tiΘ(±t) = −i
ˆ ±∞

0

dt ei(ω±iη)t =
1

ω ± iη
The explicit expression for the convolution over the real frequency axis then
gives a complex valued function, defining the spectral representation

G̃αβ(z) =

ˆ ∞
−∞

dω1

2π

C̃αβ(ω1)

z − ω1
(2.19)
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with the retarded and advanced Green functions given by the limits

G̃r,aαβ(ω) = lim
η→0

G̃αβ(ω ± iη) (2.20)

From the expression for the convolution (2.19), the Fouriér transform of the
retarded Green function is seen to be analytic in the upper half of the complex
plane with poles infinitesimally below the real axis. For times t < 0, the inverse
Fouriér transform (2.18) can then be calculated as a contour integral around the
upper half of the complex plane, leaving zero due to the analyticity, effectively
giving rise to the Heaviside function of the original definition (2.17).

Extending both the time t and the parameter of the Matsubara method
τ to the complex plane, the complex time parameters become related by the
relations Re t = Im τ and Im t = −Re τ . Reconsider then the Fouriér coefficients
G̃αβ(iµn) of the two-point Matsubara Green function (2.16) and assume the
Matsubara frequency (2.15) is positive, denoted µn > 0. In that case, due to
the exponential in the Fouriér transform, the value of the integrand approaches
zero as the imaginary part Im τ = Re t approaches infinity. Hence, the integral

G̃αβ(iµn) =

ˆ ~β

0

dτGαβ(τ)eiµnτ = −1

~

ˆ ~β

0

dτ
〈
b̂α(τ)b̂†β(0)

〉
eiµnτ

=− i

~

ˆ ∞
0

dt
〈
b̂α(t)b̂†β(0)

〉
eiµn(it) +

i

~

ˆ ∞
0

dt
〈
b̂α(t− i~β)b̂†β(0)

〉
eiµn(it+~β)

In the last integral, the exponential factor ei~βµn = ζ. Furthermore, using the
cyclic property of the trace, the final average can readily be verified to equal〈
b̂†β(0)b̂α(t)

〉
. Inserting these results, the integral is seen to equal

ˆ ~β

0

〈
b̂α(τ)b̂†β(0)

〉
eiµnτ = i

ˆ ∞
−∞

dt
〈
[b̂α(t), b̂†β(0)]ζ

〉
Θ(t)ei(iµn)t

where also a Heaviside function was inserted to obtain the negative infinity limit.
Hence, the two-point Matsubara Green function allows a spectral representation

G̃αβ(iµn) =

ˆ ∞
−∞

dω1

2π

C̃αβ(ω1)

iµn − ω1
= G̃αβ(iµn). (2.21)

The derivation relies on a positive Matsubara frequency µn > 0, such that iµn
lies in the upper half of the complex plane.

Recalling that the retarded Green function (2.17) is analytical in this re-
gion, it is possible to connect the retarded Green function with the two-point
Matsubara Green function through the analytical continuation

G̃rαβ(ω) = lim
iµn→ω+iη

G̃αβ(iµn). (2.22)

Hence, the retarded Green function can be calculated as an analytical contin-
uation of the Matsubara Green function. Likewise, for µn < 0 the analytical
continuation iµn → ω − iη yields the advanced Green function.
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2.3 Non-Interactive Matsubara Green Functions

In the grand canonical approach to ideal quantum gases of section 1.3, a gas
of mutually non-interacting quantum particles was described by a Hamiltonian
ĥ whose eigenstates were assumed to be known with corresponding eigenvalues
denoted by εα. Letting then the states |α〉 denote the eigenstates of the Hamil-
tonian, the matrix elements takes the form Hαβ = εαδαβ . For simplicity, the
energy contribution from the chemical potential µ can also be inserted as part
of the Hamiltonian, and the non-interactive ensemble becomes described by

Ĥ0 =
∑
α

(εα − µ)b̂†αb̂α ≡
∑
α

ξαn̂α, (2.23)

where the matrix element ξα ≡ εα − µ. The operator n̂α = b̂†αb̂α is a number
operator counting the number of particles occupying the single-particle eigen-
state |α〉. The operator N̂ =

∑
α n̂α counts the total number of particles of

the ensemble, with the chemical potential µ fixing the average number of parti-
cles at equilibrium. In this notation, the unnormalized grand canonical density

operator (2.6) can be written on the form ρ̂0 = e−βĤ0 .
In the following, the Matsubara Green functions (2.10) are calculated for the

non-interactive Hamiltonian (2.23) in particular, and then for single-particle
Hamiltonians (2.40) in general. The two cases are separated by marking the
different non-interactive quantities or averages with a zero label, as for Ĥ0.

2.3.1 Wick Decomposition

From the shape of the non-interactive Hamiltonian (2.23), the general commu-
tation or anticommutation relations of the creation and annihilation operators
(1.7) gives directly the commutators with the Hamiltonian as

Ĥ0b̂
†
α = ξαb̂

†
α + b̂†αĤ0 Ĥ0b̂α = −ξαb̂α + b̂αĤ0. (2.24)

Inserted into the operator definition of the imaginary time Heisenberg picture
(2.2), these commutation relations in turn gives the direct time dependence

b̂†α(τ) = eξατ/~b̂†α b̂α(τ) = e−ξατ/~b̂α. (2.25)

Notice that the time evolution is identical for fermionic and bosonic operators,
which is a consequence of the single-particle form of the Hamiltonian (2.23).

For the non-interactive system, averages are calculated using the density op-
erator ρ̂0. The commutation relations between the non-interactive Hamiltonian
and the creation and annihilation operators (2.24) then gives the relations

b̂†αρ̂0 = eβξα ρ̂0b̂
†
α b̂αρ̂0 = e−βξα ρ̂0b̂α (2.26)

Denote by operators b̂αi either a creation operator b̂†α or an annihilation operator

b̂α and by si a sign factor where si = +1 corresponds to b̂αi being a creation
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operator and si = −1 corresponds to b̂αi being an annihilation operator. The

relation found can then be written as b̂αi ρ̂0 = esiβξαi ρ̂0b̂αi .

Consider a product of two such operators, written b̂α1
b̂α2

. Inserting the
commutator for bosonic and anticommutator for fermionic operators, the trace

Tr{ρ̂0b̂α1 b̂α2} = [b̂α1 , b̂α2 ]ζ Tr{ρ̂0}+ ζes1βξα1 Tr{ρ̂0b̂α1 b̂α2}.

To obtain the final term, the cyclic property of the trace together with the rela-
tion with the density operator (2.26) was used. Furthermore, the commutation
relations of the creation and annihilation operators (1.7) gives that the com-
mutator or anticommutator is proportional to the unit operator, and so can be
written symbolically outside of the trace. Rearranging the terms, and dividing
by the trace over the density operator, the equation is rewritten as

〈
b̂α1 b̂α2

〉
0

=
[b̂α1

, b̂α2
]ζ

1− ζes1βξα1

=
[b̂α2

, b̂α1
]ζ

es1βξα1 − ζ
(2.27)

where the last equality is found by multiplying in the factor −ζ. From the
commutation relations of the creation and annihilation operators (1.7), the only

unique non-zero average is found by choosing b̂α1 = b̂†α and b̂α2 = b̂β , leaving〈
b̂†αb̂β

〉
0

=
δαβ

eβξα − ζ
= nζ(ξα)δαβ (2.28)

The distribution function nζ(ξα) gives the Bose-Einstein distribution for ζ = 1
and the Fermi-Dirac distribution for ζ = −1, corresponding to bosonic and
fermionic statistics respectively. The result is equivalent to the calculation of
section 1.4, where the distribution function (1.34) was found as a derivative of
the grand canonical partition function of the ideal quantum gas.

Consider then a string of operators on the general form b̂α1
· · · b̂αm . Com-

muting or anticommuting the first operator b̂α1
with the second operator b̂α2

here leaves a string of the remaining operators with the commutator and a
string of all operators but where the operators b̂α1 and b̂α2 are interchanged. In

this second string, the operator b̂α1
can similarly be commuted with the third

operator b̂α3
, and continuing the process finally leaves the equality

b̂α1 · · · b̂αm = [b̂α1 , b̂α2 ]b̂α3 b̂α4 · · · b̂αm + ζ[b̂α1 , b̂α3 ]b̂α2 b̂α4 · · · b̂αm + · · ·

+ ζm−2[b̂α1 , b̂αm ]b̂α2 · · · b̂α(m−1)
+ ζm−1b̂α2 · · · b̂αm b̂α1

Recall that the commutators are proportional to the unit operator, and so can be
placed outside of the string of operators. Multiply now by the density operator
ρ̂0 and take the trace on both sides of the equality. Using the cyclic property of
the trace and the relation with the density operator (2.26), the original string
of operators is recovered. Rearranging terms, the equality is rewritten as
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Tr{ρ̂0b̂α1 · · · b̂αm} =
[b̂α1

, b̂α2
]ζ

1− ζm−1es1βξα
Tr{ρ̂0b̂α3 b̂α4 · · · b̂αm}

+ ζ
[b̂α1

, b̂α3
]ζ

1− ζm−1es1βξα
Tr{ρ̂0b̂α2

b̂α4
· · · b̂αm}+ · · ·

+ ζm−2 [b̂α1
, b̂αm ]ζ

1− ζm−1es1βξα
Tr{ρ̂0b̂α2

b̂α3
· · · b̂α(m−1)

}

Dividing here by the trace over the density operator gives the non-interactive
thermal averages over the strings of operators, and the equality is rewritten

〈
b̂α1
· · · b̂αm

〉
0

=

m∑
i=2

ζi−2[b̂α1 , b̂αi ]ζ
1− ζm−1es1βξα

〈
b̂α2
· · · b̂α(i−1)

b̂α(i+1)
· · · b̂αm

〉
0

(2.29)

Notice that the factor ζi−2 gives the parity of the number of anticommutations
in the fermionic case where ζ = −1, while being unity in the bosonic case.

The obtained formula (2.29) can be reiterated for all strings of operators in
the sum. If m is an odd number the average over a single creation or annihilation
operator will then remain for each term. Due to the relation with the density
operator (2.26), using the cyclic property of the trace, the thermal averages

Tr{ρ̂0b̂
†
α} = Tr{ρ̂0b̂α} = 0. (2.30)

In consequence, the thermal average over a string of operators (2.29) is nonzero
only if the number of operators is an even number. For m = 2n, the prefactor
to each trace on the right hand side equals the average over the two operators
within the commutator (2.28). Reiteration of the formula then leaves〈

b̂α1 · · · b̂α2n

〉
0

=
∑
p

ζP
〈
b̂αp1 b̂αp2

〉
0
· · ·
〈
b̂αp2n−1

b̂αp2n
〉

0
. (2.31)

Here the label p runs over all permutations of the operators, with ζP being the
parity of the permutation in the fermionic case and unity in the bosonic case.
The resulting calculation procedure is known as Wick decomposition, and holds
whenever the Hamiltonian takes the form of a single-particle operator (2.40).

Recall then the formula for the thermal average over the string of two op-
erators (2.27), which can be nonzero only for the product of one creation and
one annihilation operator. If then the numbers of creation and annihilation
operators in the string b̂α1

· · · b̂α2n
are different, all terms in the sum of permu-

tations constituting their average (2.31) will then contain at least one average
over two operators which leaves zero. Hence, only strings of an equal number n
of creation and annihilation operators can leave a nonzero average.

Reconsider the definition of the 2n-point Matsubara Green functions (2.10).
Due to the explicit time dependence of the creation and annihilation operators
in the non-interactive case (2.25), the calculation of the thermal average over the
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time-ordered product (A15) reduces to calculating the average over all permu-
tations of products between the creation and annihilation operators. Because
time ordering is a linear operation for operator strings of equal length, the Wick
decomposition (2.31) then transfers to the Matsubara Green functions, leaving

G0(n)({τiαi;σiβi}) =
(−1)n

~n
〈
T̂{b̂α1

(τ1) · · · b̂αn(τn)b̂†β1
(σ1) · · · b̂†βn(σn)}

〉
0

=
∑
p

ζPG0
αp1βp2

(τp1 , σp2) · · · G0
αp2n−1

βp2n
(τp2n−1 , σp2n)

(2.32)

Thus, the 2n-point Matsubara Green functions corresponding to the Hamilto-
nian of the non-interactive ensemble (2.23) can be calculated as the sum over
all possible permutations of two-point Matsubara Green functions (2.11). This
property, which originates in the Wick decomposition of a string of creation and
annihilation operators, serves as the underlying motivation for the exact shape
of the written definition of the 2n-point Matsubara Green functions. In conclu-
sion, for non-interactive systems it is sufficient to calculate only the two-point
Green function, from which all other Green functions follows.

2.3.2 The Non-Interactive Two-Point Green Function

Recall the equation of motion for the two-point Matsubara Green function
(2.12). Inserting the commutation relation with the non-interacting Hamil-

tonian (2.24) the product T̂{[Ĥ0, b̂α(τ)]b̂†β(0)} = ξαT̂{b̂α(τ)b̂†β(0)}, leaving(
− ~

∂

∂τ
− ξα

)
Gαβ(τ) = δ(τ)δαβ . (2.33)

Hence, the two-point Matsubara Green function Gαβ(τ) is the solution to an in-
homogeneous differential equation, where the right hand side of the equation is
proportional to the delta function δ(τ). In mathematical literature, the derived
equation of motion is the original definition for Green functions. In this way,
the two-point Green functions (2.11) corresponding to the single-particle Hamil-
tonian (2.40) are Green functions with respect to the mathematical definition
as well as the definition from quantum many-body theory (2.10).

Due to the direct time dependence (2.25) of the creation and annihilation
operators in the non-interactive ensemble, an expression for the two-point Mat-
subara Green function (2.11) can be calculated directly from its definition. With
the Heaviside function satisfying Θ(−τ) = 1−Θ(τ), and using the resulting com-
mutation relation between the creation and annihilation operators (1.7), then

G0
αβ(τ) = −1

~
〈
T̂{b̂α(τ)b̂†β(0)}

〉
0

= −e−ξατ/~
[
Θ(τ)δαβ + ζ

〈
b̂†β b̂α

〉
0

]
.

The expression found is readily confirmed to be the solution to the equation of
motion (2.33). The remaining average (2.28) is zero unless α = β for which the
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occupation number distribution function 〈b̂†αb̂α〉0 = nζ(ξα) denotes the Bose-
Einstein distribution for ζ = 1 and the Fermi-Dirac distribution for ζ = −1.
The two-point Matsubara Green function in the non-interactive case is thus
readily decomposed as Gαβ(τ) ≡ δαβGα(τ), defining the Matsubara propagator

G0
α(τ) = −e−ξατ/~

[
Θ(τ) + ζnζ(ξα)

]
, (2.34)

The Matsubara propagator describes the propagation of a single particle through
the non-interactive ensemble, created by the operator b̂†α and annihilated by the

operator b̂α at the later time τ . Notice the anticipated discontinuity (2.13) at
τ = 0, effectuated by the Heaviside function Θ(τ).

The Matsubara propagator (2.34) allows for a direct calculation of the cor-
responding Fouriér coefficients (2.16), which becomes

G̃0
α(iµn) =

1

iµn~− ξα
, (2.35)

giving the Matsubara propagator in the frequency domain where µn is either
a bosonic or a fermionic Matsubara frequency (2.15). The result can also be
found directly by taking the Fouriér transform of the equation of motion (2.33).

2.3.3 Matsubara Frequency Summation Rules

From the Fouriér transform (2.16) of the two-point Matsubara Green function
Gαβ(τ), general Matsubara frequency summation rules can be devised. In par-

ticular, due to the discontinuity at τ = 0, the summation of G̃αβ(iµn) over all
Matsubara frequencies µn is divergent. The sum can be regularized by taking
the limit τ = ±η, where η > 0 is an infinitesimal. From the expression of
the two-point Matsubara Green function (2.13), the sum is seen to converge to
different values depending on the sign of the infinitesimal. Conventionally the
negative sign is chosen, giving the regularized sum

1

β

∑
µn

G̃αβ(iµn) = −ζ
〈
b̂†β b̂α

〉
. (2.36)

If instead the positive sign is chosen, the result of the summation likewise be-
comes 〈b̂αb̂†β〉; the two regularizations differ by δαβ , and hence give the same
result only for α 6= β. The summation rule holds in general, and will explicitly
depend on the density operator and in turn the Hamiltonian of the system.

In particular, consider the general summation rule (2.36) for the non-interactive
case. From the expression of the Matsubara propagator of the frequency domain
(2.35), the general summation rule translates to the formula

1

β

∑
iµn

1

i~µn − ξα
= −ζnζ(ξα). (2.37)

In consequence, the Matsubara frequencies (2.15) constitute the complex poles
of the occupation number distribution function (1.34). Again it should be noted
that the summation rule holds only under the chosen regularization scheme.
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From the obtained summation rule (2.37), other summation rules readily
follow. Consider in particular the partial fraction decomposition

1

(i~µn − ξα)(i~µn − ξβ)
=

1

ξα − ξβ

( 1

i~µn − ξα
− 1

i~µn − ξβ

)
.

Summing over the Matsubara frequencies here gives the summation rule

1

β

∑
µn

1

(i~µn − ξα)(i~µn − ξβ)
= −ζ nζ(ξα)− nζ(ξβ)

ξα − ξβ
, (2.38)

where sum converges independent on the regularization scheme used; using the
other regularization scheme for the original summation rule (2.37) the same
result is obtained. Inserting the limit ξβ → ξα then gives the relation

1

β

∑
µn

1

(i~µn − ξα)2
= −ζ ∂nζ(ξα)

∂ξα
= βnζ(ξα)

[
η + nζ(ξα)

]
. (2.39)

where the derivative of the distribution function follows from its definition
(1.34). Other frequency summation rules can likewise be calculated for the
particular choice of regularization. For non-interactive systems, the Matsubara
frequency summation rules are often used in calculations of observable averages,
which regularly can be written in terms of Green functions.

2.4 The Matrix of Matsubara Green Functions

In the previous subsection, an explicit expression was calculated for the two-
point Matsubara Green function (2.11) using the Hamiltonian of a non-interactive
ensemble (2.23). In this case, the resulting functions (2.34) were seen to be di-
agonal, satisfying G0

αβ(τ) = δαβG0
α(τ). The result is due to the diagonal form of

the Hamiltonian, which also dictates the dependence of the Fouriér coefficients
(2.35) on the single-particle energy eigenvalue ξα.

Consider instead a general quantum ensemble of non-interacting particles,
where the Hamiltonian operator independent on the chosen basis can be ex-
pressed in second quantized form as a single-particle operator (1.9), written

Ĥ =
∑
αβ

Hαβ b̂†αb̂β . (2.40)

Here, the creation and annihilation operators b̂†α and b̂α create and annihilate
a particle in the single-particle state |α〉, respectively. The matrix elements are

given by Hαβ = 〈α| ĥ |β〉, where ĥ denotes the Hamiltonian operator describing
the dynamics of a single particle of the ensemble. In general, the eigenstates of
the Hamiltonian ĥ and the corresponding eigenvalues may not be known.

Recall then the equation of motion (2.12) for the two-point Matsubara Green
function. Using the commutation or anticommutation relations of the creation
and annihilation operators (1.7), the commutator is readily calculated
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[Ĥ, b̂α] = −
∑
γ

Hαγ b̂γ (2.41)

Because the Hamiltonian operator commutes with itself, the commutation rela-
tion is transferred to the imaginary time Heisenberg operator b̂α(τ). In conse-
quence, using the linearity of the thermal average, the time ordered product〈

T̂{[Ĥ, b̂α(τ)]b̂†β(0)}
〉

= −
∑
γ

Hαγ
〈
T̂b̂γ(τ)b̂†β(0)

〉
.

In consequence, the equation of motion for the two-point Matsubara Green
function for a general single-particle Hamiltonian operator (2.40) becomes

~
∂

∂τ
Gαβ(τ) = −δ(τ)δαβ −

∑
γ

HαγGγβ(τ). (2.42)

Hence, the non-diagonal form of the Hamiltonian results in a set of coupled
differential equations for the two-point Matsubara Green functions.

For systems where the Hamiltonian ĥ has a finite number W of energy eigen-
values, the matrix elements Hαβ make up the Hamiltonian matrix H, being a
square matrix of size (W × W ). Introduce then the matrix of Green func-
tions G(τ) whose matrix elements are the two-point Matsubara Green functions
Gαβ(τ). With this notation, the equations of motion for the two-point Matsub-
ara Green functions (2.42) can be written in the form of the matrix equation(

− ~
∂

∂τ
−H

)
G(τ) = δ(τ)I. (2.43)

where now I denotes the (W ×W ) unit matrix. If here the Hamiltonian matrix
is diagonal, the equation of motion for the Green matrix (2.43) decouple into W
independent equations, and the equation of motion for the two-point Matsubara
Green functions in the non-interactive case (2.33) is retrieved. Thus, the Green
functions corresponding to the non-interactive Hamiltonian (2.23) and the more
general single-particle Hamiltonian (2.40) are related by the unitary transform
that diagonalizes the Hamiltonian matrix H. As a consequence of this, the Wick
decomposition scheme for the non-interactive Matsubara Green functions (2.31)
holds in general for systems governed by any single-particle Hamiltonian.

By the direct use of the Fouriér transform (2.16), the differential equation of
motion (2.43) for the matrix of Green functions can be translated to an algebraic
equation in the frequency domain, written as the matrix equation(

i~µn −H
)
G̃(iµn) = I. (2.44)

Hence, the matrix of Green functions of the frequency domain G̃(iµn) can be
calculated as the inverse of the matrix (i~µn −H), allowing for a simple calcu-
lation of the two-point Matsubara Green functions (2.11) for systems described
by a Hamiltonian matrix of finite dimensionality.
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Chapter 3

Conductivity Formulas in
the Kubo Formalism

The statistics of non-interactive ensembles was derived in chapter 1, and then
expanded upon by adding interactions in chapter 2. In this final chapter of
Part I, an additional external perturbation is imposed on the ensemble and the
following response of the system derived. For a diminutive perturbation the
response can be calculated using linear response theory, for which the quantum
mechanical framework is known as the Kubo formalism. The main result of the
chapter is the derivation of a Kubo formula for the conductivity of a material.

The conductivity of a material is quantified by the conductivity tensor, whose
elements describe the current response in one direction from the externally ap-
plied current in another direction. The conductivity tensor is the main observ-
able for describing electronic transport properties, and can be experimentally
probed to investigate the electronic or magnetic structure of different materials.

In order to properly define the current response in a semiclassical setting,
the chapter initiates with a description of the quantum mechanical current den-
sity operator. The matrix elements of the current density operator are then
calculated for systems with both continuous and discrete translation invariance,
following from the discussion in appendix B on the Bloch theorem.

The Kubo formulae are derived in accordance with the original derivation by
Kubo [17], accompanied by the textbook by Mahan [8] and the classical article
by Rammer and Smith [7].
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3.1 Quantum Mechanical Current Density

The following section introduces the concept of current density in a quantum
mechanical framework, and calculates the matrix elements of the current den-
sity operator for a general crystalline system, investigated in appendix B. The
section is highly dependent on the theory surrounding Blochs theorem (B16)
and on the second quantization scheme (1.9) considered in chapter 1.

3.1.1 Current Density Operators

Classically, the electric current density jι(r, t) of a single particle ι with charge
Q is related to its velocity vector through jι(r, t) = Qvιδ(rι−r), where rι is the
position vector and vι the velocity vector of the particle. Quantum mechanically,
the position vector rι is exchanged for the position vector operator denoted by
r̂ι and considered in the Heisenberg picture (A6). From the Heisenberg equation
of motion (A7), as the position operator carries no explicit time dependence by
definition, the velocity operator is introduced as

v̂ι =
1

i~
[
r̂ι, ĥ

]
. (3.1)

where ĥ is the Hamiltonian operator describing the single particle. Notice then
that the current density is a product of two functions. In order to obtain
hermiticity, its quantum analogue is defined as a symmetrization of the corre-
sponding quantized operators, which can be written as the anticommutator

̂ι(r) =
1

2

(
Qv̂ιδ(r̂ι − r) +Qδ(r̂ι − r)v̂ι

)
=
Q

2
{v̂ι, δ(r̂ι − r)} (3.2)

Here, r is an ordinary position vector while r̂ι is the position operator of the
particle and must not be confused with an ordinary unit vector. It is then viable
to also define the spatial Fouriér transform of the current density operator

̂ι(q) =

ˆ
d3r ̂(r)e−iq·r =

Q

2
{v̂ι, e−iq·r̂ι} (3.3)

where the final expression is written in terms of an exponential operator. In
particular, for the uniform limit q = 0 the Fouriér transform of the current
density operator becomes directly given by the velocity operator as ̂ = Qv̂.

The total current density J(r, t) of the system is the accumulation of all in-
dividual single-particle current densities (3.2), with the corresponding operator

Ĵ(r) =
∑
ι

̂ι(r), (3.4)

where the symbol ι is the particle index. Alternately, through the second quanti-
zation scheme (1.9), the total current density operator can be written in terms of
the creation and annihilation operators (1.6) of the particles, expanded in terms
of the matrix elements of the single-particle current density operator (3.2).
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Consider in particular a system which is continuously translation invariant,
such that the Hamiltonian operator ĥ(p̂) can be written in terms of the momen-
tum operator p̂ introduced in appendix B. In this case, the eigenstates of the
Hamiltonian operator will coincide with the eigenstates |p〉 of the momentum

operator (B6), with the energy eigenvalue equation given by ĥ(p̂) |p〉 = εp |p〉.
Furthermore, using the canonical commutation relation (B4) between the posi-
tion and momentum operators, the velocity operator (3.1) corresponding to the

Hamiltonian operator ĥ(p̂) is readily expressed on the form

v̂ =
1

i~
[
r̂, ĥ(p̂)

]
= ∇p̂ĥ(p̂), (3.5)

where the particle index has been neglected for convenience of notation. Hence,
the matrix elements of the velocity operator in the momentum representation

〈p1| v̂ |p2〉 = δ(p2 − p1)∇p2
εp2

. (3.6)

Likewise, using the completeness relation of the position operator eigenbasis
(B1) and the explicit form of the wavefunction (B6) corresponding to the mo-
mentum eigenstate |p〉, the matrix elements of the exponential operator

〈p1| e−iq·r̂ |p2〉 =

ˆ
ddr

(2π~)d
e−ip1·r/~e−iq·reip2·r/~ = δ(p2 − p1 − ~q) (3.7)

In conclusion, the matrix elements of the Fouriér transformed current density
operator (3.3) in the momentum representation can be calculated

〈p1| ̂(q) |p2〉 =
Q

2

ˆ
ddp3

[
〈p1| v̂ |p3〉〈p3| e−iq·r̂ |p2〉+ 〈p1| e−iq·r̂ |p3〉〈p3| v̂ |p2〉

]
=
Q

2

ˆ
ddp3

[
∇p3

εp3
δ(p3−p1)δ(p2−p3−~q) + δ(p3−p1−~q)∇p2

εp2
δ(p2−p3)

]
.

Using the delta functions from the velocity operator matrix elements (3.6) to
perform the integral, the momentum representation matrix elements of the cur-
rent density operator (3.2) corresponding to a Hamiltonian operator ĥ(p̂) of a
system invariant continuously on spatial translation becomes

〈p1| ̂(q) |p2〉 =
Q

2

[
∇pεp

∣∣∣
p=p1

+∇pεp
∣∣∣
p=p1+~q

]
δ(p2 − p1 − ~q) (3.8)

In the uniform limit where q = 0, the momentum eigenstates (B6) are thus also
eigenstates of the current density operator, with ̂ |p〉 = Qv̂ |p〉 = Q∇pεp |p〉.

For free non-relativistic particles in particular, the Hamiltonian operator
takes the known form ĥ(p̂) = p̂2/2m with the corresponding energy eigenvalues
εp = p2/2m. The velocity operator (3.5) then takes the intuitive form v̂ = p̂/m,
similar to the basic definition of momentum in classical physics.
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3.1.2 Current Density in the Bloch Basis

In general, the Hamiltonian operator ĥ describing the dynamics of a single par-
ticle will not only be dependent on the momentum operator p̂, but also contain
other dependencies from external influences. Consider then a Hamiltonian op-
erator dependent on both the momentum and the position operators, denoted
ĥ(r̂, p̂). Because the position operator commutes with itself, the velocity opera-

tor (3.1) will then take the same form (3.5) as for a Hamiltonian ĥ(p̂) invariant

under continuous spatial translation. However, because the Hamiltonian ĥ(p̂, r̂)
does not commute with the momentum operator, the eigenstates of the mo-
mentum operator will no longer be simultaneous eigenstates of the Hamiltonian
operator. The matrix elements of the current density operator (3.8) should then
be expanded in the Hamiltonian eigenbasis, and not the momentum eigenbasis.

Consider in particular a general crystalline system as described in appendix
B, where the Hamiltonian operator ĥ(r̂, p̂) describes a single electron residing in
a lattice periodic potential. The matrix elements of the current density operator
(3.2) is then readily calculated in the Bloch basis, where the basis elements |ψk〉
are the Bloch eigenstates of the Hamiltonian (B14) corresponding to the real
space wavefunctions ψk(r) = 〈r|ψk〉 satisfying the Bloch theorem (B16); here,
the energy band index is suppressed for ease of notation. The reciprocal vector
k of the Brillouin zone is the crystal momentum of the particular electronic
state, originating in the discrete translation invariance of the system.

Assuming the Bloch functions |ψk〉 are properly orthogonalized (B21) over
the crystal lattice, then using the second lattice orthogonality relation (B13),
the matrix elements of the exponential operator are readily calculated

〈ψk1
| e−ir̂·q |ψk2

〉 =

ˆ
ddrψ∗k1

(r)ψk2
(r)e−ir·q = δ(k2 − k1 − q). (3.9)

In a similar manner, the matrix elements of the velocity operator (3.1) become
diagonal, satisfying 〈ψk1

| v̂ |ψk2
〉 = 〈ψk2

| v̂ |ψk2
〉 δ(k2−k1). In order to calculate

the remaining diagonal elements, recall that the Bloch states |ψk〉 are related
to lattice periodic states |uk〉 through the transform |ψk〉 = eik·r̂ |uk〉, where
the exponential operator is a map between their respective Hilbert spaces for a
particular value of k. Then, denoting by ĥ(k) = eik·r̂ĥe−ik·r̂ the Hamiltonian
operator for the lattice periodic states, the matrix element

〈ψk| [r̂, ĥ] |ψk〉 = 〈uk| [r̂, ĥ(k)] |uk〉 = 〈uk| i∇kĥ(k) |uk〉 .
The final matrix element can be calculated by a derivation of the eigenvalue
equation ĥ(k) |uk〉 = εk |uk〉 followed by left multiplication with 〈uk|, leaving

〈ψk1
| v̂ |ψk2

〉 =
1

~
∇k2

εk2
δ(k2 − k1). (3.10)

Recall here that εk is also the eigenvalue corresponding to the Bloch state |ψk〉.
The quantity ∇kεk/~ = 〈ψk| v̂ |ψk〉 is physically interpreted as the effective
velocity of the single-particle electron state described by the Bloch state |ψk〉.
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The Bloch functions |ψk〉 constitute a complete orthonormal set over the
Brillouin zone, and so obey a continuous completeness relation (1.1) with respect
to the crystal momentum k. The Bloch basis matrix elements of the Fouriér
transform of the current density operator (3.3) can then calculated from the
elements of the exponential operator (3.9) and the velocity operator (3.10) as

〈ψk1
| ̂(q) |ψk2

〉 = − e

2~

[
∇kεk

∣∣
k=k1

+∇kεk
∣∣
k=k1+q

]
δ(k2 − k1 − q) (3.11)

analogous to the momentum representation (3.8) withQ = −e being the electron
charge. The visual similarity between the matrix elements originates in the
assumed translation invariance. For the crystal Hamiltonian (B14) however the
translation invariance is discrete, and the crystal momentum ~k is only defined
within the Brillouin zone of the reciprocal crystal lattice.

In conclusion, for an ensemble of non-interacting electrons residing in a crys-
tal lattice, the second quantization (1.9) of the spatial Fouriér transform of the
total current density operator (3.4) is written in the Bloch basis as

Ĵ(q) = −
∑
k

e

2~

[
∇k1

εk1

∣∣∣
k1=k

+∇k1
εk1

∣∣∣
k1=k+q

]
ĉ†kĉk+q ≡

∑
k

J (k, q)ĉ†kĉk+q (3.12)

where the sum is written implicitly over the reciprocal vectors k of the Brillouin
zone. The operators ĉ†k and ĉk are the creation and annihilation operators
(1.6) of an electron occupying the Bloch state |ψk〉. The resulting expression
also introduces the quantities J (k, q), being the matrix elements of the current
density operator (3.11) disregarding the delta function.

Recall from appendix A that the Bloch functions besides the crystal momen-
tum k are labelled by a discrete band index n. Consider then a finite number of
energy bands, and let the Bloch eigenstates |ψnk〉 be written as linear combina-
tions of another complete and orthonormalized set of Bloch states |χkα〉, where
α denotes some finite set of discrete quantum numbers such as the electron spin.
The calculation of the matrix elements (3.12) can then be performed with re-
spect to the basis |χkα〉. These states are however not the Bloch eigenstates of

the single-particle Hamiltonian ĥ, and the energy eigenvalues εk are exchanged
for the Hamiltonian matrix elements Hαβ(k) = 〈χkα| ĥ |χkβ〉. Expressed in the
basis |χkα〉, the total current density operator then becomes

Ĵ(q) =
∑
kαβ

J αβ(k, q)ĉ†kαĉ(k+q)β (3.13)

where now ĉ†kα and ĉkα are the creation and annihilation operators (1.6) of the
state |χkα〉, and the elements of the current density matrices are defined

J αβ(k, q) = − e

2~

[
∇k1Hαβ(k1)

∣∣
k1=k

+∇k1Hαβ(k1)
∣∣
k1=k+q

]
. (3.14)

If the current density is uniform in space with q = 0, the current density matrices
can be written in terms of the Hamiltonian matrix as J (k) = −e∇kH(k)/~.
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3.1.3 Current Density from Electromagnetic Coupling

Due to the electric charge Q = −e, electrons couple to the electromagnetic
field, as explained relativistically in subappendix D.4. Consider in particular
the Coulomb gauge, where the electric field is connected to the electromagnetic
vector potential A(r, t) through the relation E(r, t) = −∂tA(r, t). From the
minimal coupling principle (D19), the coupling between the electron and the
electromagnetic field is classically effectuated by the exchange p → p + eA,
where p denotes the kinetic momentum of the electron. In a semiclassical ap-
proach, the momentum corresponds to the momentum operator p̂ while the
electromagnetic vector potential A(r̂, t) can be considered a semiclassical field.

Consider then the single-electron crystal Hamiltonian (B14), hereby denoted

ĥ(p̂) disregarding the electromagnetic influence, which couples to the electro-
magnetic field in the Coulomb gauge through the factor p̂2/2m as

ĥ
(
p̂+ eA(r̂, t)

)
= ĥ(p̂) +

e

2m

(
p̂A(r̂, t) +A(r̂, t)p̂

)
+

e2

2m
A2(r̂, t) (3.15)

Here, the latter quadratic factor represents the energy content of the electro-
magnetic field itself, whereas the central terms describe the coupling between
the electrons and the electromagnetic field for the specific system. The Hamilto-
nian operator ĥ

(
p̂+ eA(r̂, t)

)
describing the electromagnetic coupling can then

be inserted into the expression for the velocity operator (3.1), which gives

v̂ =
1

i~
[r̂, ĥ(p̂)] +

e

m
A(r̂, t) ≡ v̂P + v̂D (3.16)

where the canonical commutation relation (B4) was used. Hence, under the
influence of a perturbing electromagnetic field the velocity operator gains a
diamagnetic term v̂D, in addition to the paramagnetic term v̂P = p̂/m equal to
the velocity operator (3.1) without the coupling. These terms in turn correspond
to a paramagnetic and a diamagnetic part of the current density operator (3.2),
which after reinstating the particle index ι can be written

̂ι(r) = − e

2m
{p̂ι, δ(r̂ι − r)} − e2

2m
A(r̂ι, t)δ(r̂ι − r) ≡ ̂P (r) + ̂D(r) (3.17)

where it was used that the vector potential A(r̂ι, t) commutes with the position
operator r̂ι. Hence, the application of an electromagnetic field may drive an
electric current with the corresponding diamagnetic current density ̂D(r).

The semiclassical electromagnetic vector potential can be written

A(r̂ι, t) =

ˆ
ddrA(r, t)δ(r̂ι − r).

From the expression of the Hamiltonian under the minimal coupling principle
(3.15) and the corresponding current density operator (3.17), the Hamiltonian

can then be written on the form ĥ
(
p̂ι + eA(r̂ι, t)

)
= ĥ(p̂ι) + V̂ι(t), with
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V̂ι(t) = −
ˆ

ddr ̂ι(r) ·A(r, t). (3.18)

Here, the electromagnetic vector potential A(r, t) is considered a classical field.
Consider then an entire ensemble of electrons residing in a crystal lattice, de-

scribed by the total Hamiltonian Ĥ at equilibrium. Assuming the electrons are
non-interacting, the Hamiltonian takes the form of a sum over single-electron
terms ĥι, where each term takes the form of the single-electron crystal Hamil-
tonian (B14). An external electromagnetic field will then couple independently
to each of the individual electrons through the derived single-electron poten-
tial term (3.18). The total perturbation term V̂(t) originating in the minimal
coupling principle for the entire non-interacting ensemble thus becomes

V̂(t) =
∑
ι

V̂ι(t) = −
ˆ

ddrĴ(r) ·A(r, t). (3.19)

where Ĵ(r) is the total current density operator (3.12), being a sum over single-
electron current densities (3.2). It should here be noted that both the single-
particle and total current density operators implicitly carries a time argument
t, which has been neglected in the discussion for ease of notation. The time
dependence originates both from the Heisenberg representation (A6) of the op-
erators, as well as a possible explicit time dependence from the electromagnetic
vector potential for the diamagnetic term.

Finally, it should be emphasized that the minimal coupling principle for
the semiclassical theory states that the electromagnetic vector potential A(r̂, t)
couples to the momentum operator p̂ of the electron, and not the momentum
operator eigenvalues p. However, for the case where the Hamiltonian operator
is dependent solely on the momentum operator, there is a direct correspondence
between the dependence of the Hamiltonian operator ĥ on the momentum op-
erator p̂, and the dependence of the corresponding energy eigenvalues εp on
the momentum eigenvalue p. In this case, the paramagnetic and diamagnetic
terms of the current density operator (3.17) can be deduced from the explicit
momentum dependence of the energy eigenvalues εp.

For a crystalline system however, the continuous translation invariance is
reduced to a discrete translation invariance, and the energy bands εk become
continuously dependent on the crystal momentum k instead of the kinetic mo-
mentum p. The underlying crystal potential here modulates the electronic wave-
function, and the direct correspondence of momentum dependence between the
Hamiltonian operator ĥ and its energy eigenvalues εk is no longer guaranteed. In
general however, the electrons can be assumed described by the single-electron
crystal Hamiltonian (B14), where the dependence on the momentum operator
lies entirely within the non-relativistic kinetic term p̂2/2m. In conclusion, the
form of the energy bands εk for a crystalline system will not reveal the form of
the current density operator (3.2), but it can be assumed to contain a param-
agnetic and a diamagnetic term (3.17) corresponding to a square dependence of
the Hamiltonian operator on the momentum operator.
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3.2 The Kubo Formula for Conductivity

The current section introduces the concept of conductivity, which quantifies the
ability of a material to lead an electric current. The section initializes with the
computation of observables for perturbed ensembles in linear response theory,
which is specialized to yield a Kubo formula for the conductivity tensor. A main
result of the section is the introduction of the current density autocorrelation
function, which can be calculated using the Matsubara method of chapter 2.

3.2.1 Linear Response Theory

Recall the statistics of the principal ensembles derived in section 1.2 under the
condition of equilibrium, for which the density operator (1.13) describing the
ensemble carries no time dependence. From the Von Neumann equation (1.18),
the density operator ρ̂ then gains a dependence ρ̂ = ρ̂(Ĥ), where Ĥ is the
Hamiltonian operator of the system, possibly including internal interactions.

Let then an external, time-dependent perturbation couple to an observable
D of the system, removing the ensemble from equilibrium. Assuming the pertur-
bation can be modelled by a classical field strength F (t), the total Hamiltonian
of the perturbed system in general takes the form Ĥ(t) = Ĥ− D̂F (t), where the
negative sign is introduced for later convenience. The density operator describ-
ing the perturbed ensemble will then also gain a time dependence governed by
the Von Neumann equation (1.18), hereby denoted %̂(t).

Due to the form of the perturbed Hamiltonian Ĥ(t), it is pertinent to consider
the time evolution of the system in the Dirac picture as described in appendix A,
letting the time evolution of operators be governed by the unperturbed Hamil-
tonian Ĥ. Denoting by V̂I(t) = −D̂I(t)F (t) the perturbation and by %̂I(t)
the perturbed density operator in the Dirac picture (A8), the Von Neumann
equation describing the time evolution of the density operator becomes

d%̂I
dt

=
i

~

[
Ĥ, %̂I

]
+

(
∂%̂

∂t

)
I

= − i
~

[
V̂I(t), %̂I

]
. (3.20)

Here, the partial derivative in the middle expression is given by the Von Neu-
mann equation in the Schrödinger picture (1.18) with the total Hamiltonian
Ĥ(t) = Ĥ + V̂(t), thus leaving only the commutator with V̂I(t). The solution
to this equation depends on the boundary conditions of the perturbation.

Assume the ensemble is initially isolated and perturb the system adiabat-
ically from t → −∞, giving the boundary condition F (t → −∞) = 0 for the
coupling field. The ensemble is then initially described by the unperturbed
density matrix ρ̂ satisfying [Ĥ, ρ̂] = 0, corresponding to the unperturbed equi-
librium. Integrating the Von Neumann equation for the density operator (3.20)
with the boundary condition, the system equation of state then becomes

%̂I(t) = ρ̂− i

~

ˆ t

−∞
ds
[
V̂I(s), %̂I(s)

]
. (3.21)
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This gives an integral equation for the density operator ρ̂I(t), which can be
iterated to achieve an arbitrarily high degree of accuracy. The perturbed density
operator can thus be expressed %̂(t) = ρ̂ + δ%̂(t), where δ%̂(t) is a response
term describing the reaction of the unperturbed system described by ρ̂ to the
external perturbation V̂(t). Notice that the unperturbed density operator ρ̂ is
the same in both the Dirac and Schrödinger pictures (A8), as it commutes with
the unperturbed Hamiltonian Ĥ due to the condition of equilibrium.

In linear response theory, the integral equation (3.21) for %̂(t) is only iter-
ated to linear order by exchanging %̂(t) for the time independent initial density
operator ρ̂ in the integral. Hence, in linear response theory the response term

δ%̂I(t) =
i

~

ˆ t

−∞
ds
[
D̂I(s), ρ̂

]
F (s) (3.22)

in the Dirac picture, where the particular perturbation V̂I(t) = −D̂I(t)F (t)
has been reinserted. The expression is only dependent on the time independent
unperturbed Hamiltonian Ĥ of the ensemble at equilibrium, which appears both
in the expression of the equilibrium density operator ρ̂ = ρ̂(Ĥ) and in the time
evolution of the operators in the Dirac picture (A8).

The response of the ensemble to the perturbation is observed through the
change δO of a physical observable O, whose ensemble average under the per-
turbation is time dependent and can be calculated 〈Ô〉t = Tr{Ô%̂(t)}. From
the expression of the perturbed density operator (3.21), this expectation value
can be written 〈Ô〉t = 〈Ô〉 + 〈δÔ〉t, where now 〈Ô〉 denotes the ensemble av-
erage with respect to the unperturbed ensemble; the ensemble average in the
perturbed and unperturbed ensembles are separated using the subscript t. Re-
calling that ensemble averages are independent on the dynamical picture used,
the response of the observable O can be calculated

〈δÔ〉t = Tr{ÔI(t)δ%̂I(t)} =
i

~

ˆ t

−∞
dsTr

{
ρ̂
[
ÔI(t), D̂I(s)

]}
F (s),

where the cyclic property of the trace has been used to move the equilibrium
density operator ρ̂ outside of the commutator. Notice here that the calculation
of the average only involves the unperturbed Hamiltonian Ĥ of the ensemble at
equilibrium; Dirac operators of the perturbed ensemble are identical to Heisen-
berg operators of the unperturbed ensemble. Hence, the calculation of the
response of physical observables in the perturbed ensemble has been reduced to
the calculation of an average of the corresponding ensemble in equilibrium, as

〈Ô〉t = 〈Ô〉+
i

~

ˆ t

−∞
ds
〈[
Ô(t), D̂(s)

]〉
F (s). (3.23)

The resulting formula is known as a Kubo formula, where the operators are con-
sidered in the Heisenberg picture (A6) of the ensemble at equilibrium described
by the density operator ρ̂ and unperturbed Hamiltonian Ĥ.
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3.2.2 Calculation of Conductivity in the Kubo Formalism

The electrical conductivity of a material describe the ability of the material to
conduct an electrical current upon the application of an electric fieldE(r, t). For
a wide class of materials the measured current response J(r, t) to the electric
perturbation is associated to the applied electric field through the conductivity
tensor, defined by the linear spacetime response relation

Ji(r, t) =
∑
l

ˆ
ddx

ˆ
ds σil(r, t;x, s)El(x, s). (3.24)

The conductivity tensor element σil here describes the coupling of the current
response component Ji to the electric field component El. The relation between
the applied electric field and the current response is known as Ohms law.

Consider the stationary case, where the flow of current is at equilibrium and
constant in time. The conductivity tensor (3.24) then becomes homogeneous in
time, dependent only on time differences as σil(r, t;x, s) = σil(r,x, t − s), for
which the temporal Fouriér transform is introduced

σil(r,x, ω) =

ˆ
dt eiωtσil(r,x, t) σil(r,x, t) =

ˆ
dω

2π
e−iωtσil(r,x, ω). (3.25)

Inserting the Fouriér transformed quantities into the defining relation of the
conductivity tensor (3.24), the relation is written in the frequency domain as

Ji(r, ω) =
∑
l

ˆ
ddx σil(r,x, ω)El(x, ω), (3.26)

where ω is interpreted as the frequency of the imposed electric field E(r, t).
For a general system the obtained conductivity tensor σil(r,x, ω) is not ho-

mogeneous in space due to the microscopic details of the system. However,
for crystalline systems in particular, the macroscopic conductivity can be re-
garded an average of the microscopic conductivity over several unit cells. In
performing such a microscopic spatial average, the system effectively becomes
translationally invariant in space, and the conductivity tensor takes on the spa-
tial dependence σil(r,x, ω) = σil(r − x, ω). Similarly to the temporal Fouriér
transforms (3.27), it is then viable to introduce the spatial Fouriér transforms

σil(q, ω) =

ˆ
ddr e−iq·rσil(r, ω) σil(r, ω) =

ˆ
ddq

(2π)3
eiq·rσil(q, ω), (3.27)

where the momentum q is interpreted as the wavevector of the electric field E.
Defining the spatial Fouriér transform of the current response and the electric
field in a similar manner, the current response (3.26) can be expressed

Ji(q, ω) =
∑
l

σil(q, ω)El(q, ω). (3.28)
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Hence, in the frequency domain Ohms law takes the form of a matrix equation.
Consider again the Coulomb gauge, where the electric field is related to the

electromagnetic vector potential as E(r, t) = −∂tA(r, t). The Fouriér transfor-
mations of the electric field and the electromagnetic vector potential are then
related by E(q, ω) = iωA(q, ω). Hence, the current response (3.28) can also be
expressed in terms of the electromagnetic vector potential as

Ji(q, ω) = −
∑
l

Kil(q, ω)Al(q, ω) (3.29)

where the electromagnetic response function is defined Kil(q, ω) = −iωσil(q, ω).
It should here be noted that the electromagnetic response function is defined in
the Coulomb gauge. For an arbitrary gauge, both the electromagnetic response
function and the electromagnetic vector potential will be gauge dependent in
such a way that the observable conductivity tensor is gauge independent.

Quantum mechanically, the current response J(r, t) can be calculated as
the ensemble average over the total current density operator Ĵ(r, t), which in
the stationary case carries no explicit time dependence. Thus, the total current
density (3.12) is analogous to the observable O in the general Kubo formula
(3.23). From the coupling to the electromagnetic field (3.19) which serves as
the external perturbation, the current density is also analogous to the observable
D of the formula, whereas the electromagnetic vector potential A(r, t) serves as
the external field F (t). The Kubo formula for current response thus becomes

Ji(r, t) = 〈Ĵi(r, t)〉+
i

~

ˆ t

−∞
ds

ˆ
ddx

∑
l

〈[
Ĵi(r, t), Ĵl(x, s)

]〉
Al(x, t), (3.30)

where the spatial integration from the perturbation term (3.19) has been moved
outside of the commutator. The time dependence of the current density opera-
tors in the commutator is due to their Heisenberg representation (A6).

Recall that the single-particle current density operator (3.17) can be decom-
posed as ̂(r) = ̂P (r) + ̂D(r), where the paramagnetic and diamagnetic parts
̂P (r) and ̂D(r) are independent of and proportional to the electromagnetic
vector potential A(r, t), respectively. Consider then the two terms of the Kubo
formula for current response (3.30). In the first term, the average 〈JP (r)〉 is
zero, as there is no current in the equilibrium ensemble without the application
of an electric field. The average 〈JD(r)〉 however may take on a finite value,
being the average over the current density induced by the electric field but aver-
aged over the equilibrium ensemble. In the second term all terms proportional to
JD(r) can be neglected, seeing that the Kubo formalism is considered to linear
order in the field. Introduce then the current density autocorrelation function,
hereby referred to simply as the autocorrelation function, given by

Πil(r, t;x, s) = − i
~

Θ(t− s)
〈

[ĴPi (r, t), ĴPl (x, s)]
〉
. (3.31)

Like the conductivity tensor, the autocorrelation function is in the stationary
case homogeneous in time due to the time independence of the Hamiltonian of
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the equilibrium ensemble, and it is homogeneous in space due to the spatial
averaging, thus satisfying Πil(r, t;x, s) = Πil(r−x, t− s). Taking the temporal
(3.25) and spatial (3.27) Fouriér transforms, the current response (3.30) becomes

Ji(q, ω) = 〈JDi (q, ω)〉 −
∑
l

Πil(q, ω)Al(q, ω), (3.32)

Notice here that the diamagnetic term (3.17) is dependent on the frequency ω
only through its proportionality with the perturbing field A(q, ω).

Comparing the result to the definition of the electromagnetic response func-
tion (3.29), the Kubo formula for current response (3.32) implies the function
can be split into a diamagnetic part KD

il (q) independent on the frequency ω and
a paramagnetic part KP

il (q, ω) equal to the current density autocorrelation func-
tion Πil(q, ω). Recalling that the conductivity tensor (3.28) can be expressed
in terms of the electromagnetic response function as σil(q, ω) = iKil(q, ω)/ω,
the diamagnetic term of the conductivity is seen to be divergent in the limit
ω → 0. The divergence of the diamagnetic term is the main reason for an infi-
nite conductivity in superconductive materials. Excepting the superconductive
case however, the divergence is amended for through an equal but negative sign
from the current density autocorrelation function; that is, disregarding super-
conductivity the diamagnetic term KD

il (q) = −KP
il (q, 0) = −Πil(q, 0). From

this reasoning, the Kubo formula for conductivity can be expressed

σil(q, ω) =
i

ω

[
Πil(q, ω)−Πil(q, 0)

]
(3.33)

Hence, the calculation of the conductivity tensor has been reduced to calculating
the current density autocorrelation function (3.31). In particular, for q = 0 the
direct current conductivity σil can be calculated in the ω → 0 as the derivative

σil ≡ lim
ω→0

σil(ω) = lim
ω→0

Πil(ω)−Πil(0)

iω
= i

∂Πil

∂ω

∣∣∣∣
ω=0

, (3.34)

where the uniform conductivity tensor is defined σil(ω) ≡ σil(0, ω).

3.2.3 The Matsubara Autocorrelation Function

The current density autocorrelation function (3.31) is an example of a retarded
response function, being analogous to the retarded Green function (2.17), and
can readily be calculated in the framework of the Matsubara method of chapter
2. Performing the spatial Fouriér transform (3.27), introducing imaginary time
and denoting the real time argument τ = it, the Matsubara autocorrelation
function

πil(q, iωm) = −1

~

ˆ ~β

0

dτeiωmτ
〈

T̂ĴPi (q, τ)ĴPl (−q, 0)
〉
. (3.35)

Here, the current operators are related to fermionic states, and so are anti-
periodic (2.14) with a time translation by ~β. Because the Matsubara au-
tocorrelation function is made up of the product of two such operators, it is
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thus periodic with ~β. The frequency ωm appearing in the expression for the
Matsubara autocorrelation function is therefore a bosonic Matsubara frequency
(2.15). The current density autocorrelation function (3.31) is then retrieved by
the analytical continuation scheme

Πil(q, ω) = lim
iωm→ω+iη

πil(q, iωm), (3.36)

which follows from the analysis and derivations of section 2.2.
Inserting the total current density operators (3.13), the Matsubara auto-

correlation function (3.35) will involve the average over four fermionic creation
and annihilation operators, given by 〈T̂ĉ†α(τ)ĉβ(τ)ĉ†γ(0)ĉδ(0)〉. Assuming the
Hamiltonian operator is a single-particle operator, a general average over four
operators can be calculated using Wick decomposition (2.31) and written in
terms of two-point Matsubara Green functions (2.11), which gives

1

~2

〈
T̂{ĉ†α(σ1)ĉβ(τ1)ĉ†γ(σ2)ĉδ(τ2)}

〉
= Gβα(τ1, σ1)Gδγ(τ2, σ2)− Gδα(τ2, σ1)Gβγ(τ1, σ2)

(3.37)

Inserting here τ1 = σ1 = τ and τ2 = σ2 = 0, the first term is seen to involve the
average 〈JPl (−q)〉, which is zero; there is no current in the equilibrium ensemble.

Consider then in particular a crystalline system where the Bloch states are
labelled by the crystal momentum k in addition to a set of discrete quantum
numbers α. Because the Hamiltonian matrix by its definition is diagonalized
with respect to the crystal momentum, the average over the two operators

−1

~
〈
T̂{ĉk1α(τ)ĉ†k2β

(σ)}
〉

= Gαβ(k2, τ, σ)δ(k2 − k1) (3.38)

where the Matsubara Green function satisfies Gαβ(k; τ, σ) = Gαβ(k; τ − σ) in
the stationary case. Inserting then the total current density operator (3.13) into
the definition of the Matsubara autocorrelation function (3.35) then leaves

πil(q, τ) = −1

~

〈
T̂ĴPi (q, τ)ĴPl (−q, 0)

〉
= −1

~
∑
αβγδ
k1k2

Ji,αβ(k1, q)Jl,γδ(k2,−q)
〈

T̂ĉ†k1,α
(τ)ĉk1+q,β(τ)ĉ†k2,γ

(0)ĉk2−q,δ(0)
〉
.

Using here the Wick decomposition (3.37) followed by the insertion of the av-
erage over two operators (3.38), the Matsubara autocorrelation function for a
system with discrete translation invariance can thus be written

πil(q, τ) = ~
∑

αβγδ,k

Ji,αβ(k, q)Jl,γδ(k+q,−q)Gβγ(k+q, τ)Gδα(k,−τ)

= ~
ˆ

ddk

(2π)d
Tr{Ji(k, q)G(k+q, τ)Jl(k+q,−q)G(k,−τ)}.

(3.39)
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Here, G(k, τ) is the matrix of two-point Matsubara Green functions (2.44) and
Ji(k, q) the components of the current density matrices (3.14) in the Bloch basis.
Notice that the sum over the discrete quantum numbers has been restated as a
trace, and the remaining integral is implicitly written over the Brillouin zone.

The Matsubara autocorrelation function (3.35) can now be brought to the
frequency domain through a discrete Fouriér transform (2.16), which leaves a
discrete convolution between the two Matsubara Green functions. Hence, the
Matsubara autocorrelation function can be calculated

πil(q, iωm)=
1

β

ˆ
ddk

(2π)d

∑
νn

Tr{Ji(k, q)G(k+q, iνn+iωm)Jl(k+q,−q)G(k, iνn)}

(3.40)

Recall that the frequency iωm is a bosonic Matsubara frequency originating in
the definition of the autocorrelation function, whereas the summation frequency
iνn is a fermionic Matsubara frequency (2.15) corresponding to the fermionic
nature of the matrix of two-point Matsubara Green functions G(k, iνn).

For many applications the spatial dependence of the imposed electric field
can be neglected. In particular, whenever the modulations of the electric field
extends over several atomic distances of the underlying crystal structure, the
conductivity is reasonably approximated by the uniform conductivity tensor
σil(ω) ≡ σil(0, ω), calculated from the corresponding autocorrelation function

πil(iωm) =
1

β

ˆ
ddk

(2π)d

∑
νn

Tr{Ji(k)G(k, iνn + iωm)Jl(k)G(k, iνn)}. (3.41)

where the current density matrices (3.14) can be calculated Ji(k) = −e∂iH(k).
In conclusion, the current density autocorrelation function (3.31) can be cal-

culated as an analytical continuation of the Matsubara autocorrelation function
πil(iωm), which from its expression (3.35) is dependent on the current density
matrices (3.13) and the Matsubara Green matrices (2.44), both of which are
dependent only on the Hamiltonian kernel H(k) of the unperturbed system. A
conventional path for providing the Hamiltonian kernel of periodic crystalline
materials is given by the tightbinding model, which is derived in chapter 4.

The derived Matsubara autocorrelation function (3.41) has been derived
for the current density operator matrix elements (3.14) evaluated in the Bloch
basis. Hence, the integral over the crystal momentum k is implicitly written
over the Brillouin zone of the reciprocal crystal lattice. For many effective
models however, only a specific part of the Brillouin zone close to the Fermi
surface is considered. The calculation then usually considers the continuum
limit, where the interatomic distances within the lattice are considered small
enough that the Brillouin zone effectively extends to infinity. The continuum
limit is a viable simplification with respect to the microscopic averaging over
the unit cells, which removes the microscopic details of the crystal lattice.
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3.3 The Conductivity for a Single Energy Band

In order to exemplify a calculation using the Kubo formula for conductivity
(3.33), the formula is used to derive the Drude conductivity formula for a sin-
gle energy band. The considered approximations and resulting conductivity
formulae are used in the final calculations of the thesis in Part III.

3.3.1 The Single Band Conductivity Formula

Consider a system whose energy spectrum consists of a single energy band
denoted εk. In that case, the current density elements can be calculated as
Ji(k) = −e∂iεk/~, where the notation ∂i ≡ ∂/∂ki is adopted. Inserting this
into the formula for the Matsubara autocorrelation function (3.41) then gives

πil(iωm) =
e2

β

ˆ
ddk

(2π)d
∂iεk
~

∂lεk
~
∑
νn

G(k, iνn + iωm)G(k, iνn), (3.42)

Here, the Matsubara Green functions are non-interactive (2.35), such that the
sum over Matsubara frequencies can be performed directly using the second
Matsubara frequency summation rule (2.38), which gives

1

β

∑
νn

1

(i~νn − ξ)(i~νn + i~ωm − ξ)
=
nF (ε− i~ωm)− nF (ε)

i~ωm
. (3.43)

where nF (ε) is the Fermi-Dirac distribution function (1.34). Performing then
the analytical continuation iωm → ω + iη where η is an infinitesimal yields the
current density autocorrelation function (3.31)

Πil(ω) =
e2

~
1

ω + iη

ˆ
ddk

(2π)d
∂iεk
~

∂lεk
~
[
nF (εk − ~ω)− nF (εk)

]
(3.44)

where the infinitesimal η has been neglected for the second distribution function.
The formula for the single band current density autocorrelation function

(3.44) can be simplified further by considering the limit µ � ~ω. In that case,
the difference of the Fermi-Dirac distributions can be approximated by

1

~ω
[
nF (ε− ~ω)− nF (ε)

]
≈ −∂nF (ε)

∂ε
=
∂nF (ε)

∂µ
(3.45)

which leaves the expression for the single band autocorrelation function

Πil(ω) =
e2ω

ω + iη

ˆ
ddk

(2π)d
∂iεk
~

∂lεk
~

∂nF (εk)

∂µ
(3.46)

Notice here that the entire dependence on the frequency ω lies outside the in-
tegral over momentum. In consequence, the zero frequency limit can be taken,
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which by virtue of the infinitesimal gives Πil(0) = 0. In conclusion, the corre-
sponding conductivity tensor (3.33) can be expressed σil(ω) = iΠil(ω)/ω, giving

σil(ω) =
e2

η − iω

ˆ
ddk

(2π)d
∂iεk
~

∂lεk
~

∂nF (εk)

∂µ
. (3.47)

Here, the parameter η can be phenomenologically interpreted as a scattering
rate, physically originating in impurities in the crystal structure which are ab-
sent in the ideally periodic lattice considered. In a more rigorous calculation,
the microscopic spatial average considered in the derivation of the contuctivity
tensor (3.33) constitute an impurity average, and the Matsubara Green func-
tions employed should be exchanged for their impurity averaged counterparts,
which in the weak scattering limit would leave a similar result. For the impurity
averaged Matsubara Green functions however, the Matsubara frequency sum-
mation rules (2.37) cannot be applied directly, and the calculations will involve
an analytical continuation into the complex frequency plane. Here and in the
following however, the investigations will mostly involve non-zero frequencies ω,
for which the impurity scattering is of less importance.

Seeing that the remaining integral over momentum (3.47) serves only as a
parameter dependent constant of the particular system, the conductivity can
under the current assumptions in general be expressed

σil(ω) =
σ0
il

1− iω/η
(3.48)

where σ0
il ≡ σil(0) is the direct current conductivity (3.34), whose expression

thus depends on the exact form of the integral over momentum.

3.3.2 Kubo Conductivity for Isotropic Energy Bands

In the particular case that the energy is independent on the direction of the
crystal momentum, with εk = ε(k), the formula for the conductivity tensor
(3.47) can be further simplified. Introducing spherical coordinates such that
the differential ddk = kd−1dkdΩ with Ω being the solid angle element, then

∂ε(k)

∂ki
=
ki
k

∂ε(k)

∂k
= (k̂)i

∂ε(k)

∂k
,

where the expression ki/k = (k̂)i is independent on the magnitude of the crys-
tal momentum. Furthermore, in the zero temperature limit the Fermi-Dirac
distribution (1.34) becomes a Heaviside step function, with the derivative

∂nF (ε)

∂µ
=

∂

∂µ
Θ(µ− ε(k)) = δ(µ− ε(k)) =

∑
a

δ(k − ka0)∣∣ ∂ε
∂k (ka0)

∣∣ (3.49)

where ka0 denote the solutions of the equation ε(ka0) − µ = 0. Inserting these
results into the single band Kubo conductivity formula (3.47) thus gives
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σil(ω) =
e2

~2

1

η − iω

ˆ
dk kd−1

∑
a

[
∂ε

∂k

]2
δ(k − ka0)∣∣ ∂ε
∂k (ka0)

∣∣
ˆ

dΩ

(2π)d
(k̂)i(k̂)l.

Here, the integrals over the magnitude and over the solid angle element has been
separated, seeing that the factors ki/k are the only parts of the integrand being
dependent and only dependent on the direction k̂ of the crystal momentum.
Using hyperspherical coordinates in d dimensions, the solid angle integral is
readily seen to be finite only for i = l, for which the integral becomes the
volume of the unit sphere in d-dimensions, and can be expressed

ˆ
dΩ(k̂)i(k̂)l =

πd/2

Γ(d2 + 1)
δil (3.50)

where Γ(z) is the gamma function. Performing then the integration over k using
the delta functions, the formula finally becomes

σil(ω) =
δil

2dπd/2Γ(d2 + 1)

e2

~2

1

η − iω
∑
a

(ka0)d−1

∣∣∣∣ ∂ε∂k (ka0 )

∣∣∣∣. (3.51)

Hence, if the energy function is independent on the direction of the crystal
momentum k, the transverse components of the conductivity are zero.

Consider in particular the free electron case, whose isotropic energy function

εk =
~2k2

2m
. (3.52)

In this case, the equation ε(k)−µ = 0 has only a single solution, conventionally
denoted ka0 ≡ kF =

√
2mµ/~ being the momentum of the electrons residing at

the now spherical Fermi surface in momentum space. Inserting these consider-
ations into the obtained conductivity formula for isotropic bands (3.51),

σil(ω) =
δil

η − iω
e2

m

1

(2π)d
πd/2kdF

Γ(d2 + 1)
.

Here, the latter factor is the volume of the Fermi sphere of occupied states in d
dimensions. Combined with the factor 1/(2π)d, this gives the electron density n
of the crystalline system. In conclusion, the conductivity tensor for free electrons

σil(ω) =
δil

η − iω
e2n

m
. (3.53)

The derived expression is the celebrated Drude formula for conductivity, which
originally was derived describing electrons classically using Newtonian physics.
The expression holds for certain well behaved crystalline systems in the low-
energy limit, as will be derived in chapter 4.
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Part II

Topological Band Theory
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Chapter 4

The Tightbinding Model

Appendix B introduced the quantum mechanical states describing a solitary
electron residing in a periodic lattice potential. For this ideal situation, the
electronic wavefunction will be a Bloch function, taking the form of a plane
wave modulated by a function periodic with the crystal lattice. In real materials
there is instead a myriad of electrons residing on the crystal structure, ideally
leaving the system charge neutral. The electrons of the crystalline system will
in general mutually interact through the Coulomb interaction, affecting the
electronic wavefunctions and the energy band structure of the crystalline system
compared to the overtly theoretical single-electron case.

For isolated atoms the electrons arrange in orbitals at different energy levels
residing at different proximity to the atomic nucleus. When atoms combine to
form crystals, different electrons may likewise be more or less affixed to their
nuclei. For many materials the electrons are highly localized around the atomic
nuclei of the crystal, such that their mutual interactions can be neglected com-
pared to the interactions with the underlying crystal lattice. This assumption
underpins the tightbinding model, which is the theme of the current chapter.

The tightbinding model allows for a calculation of the Hamiltonian kernel
for crystalline systems, revealing the energy band structure of the electrons.
In particular, under the assumptions of a single valence orbital and nearest
neighbour interactions the Hamiltonian becomes solely dependent on the crystal
structure. From the derivation of a general tightbinding Hamiltonian, the model
is exemplified by calculating the energy band structure for a square lattice and
for the two dimensional carbon-based material graphene.

For graphene, the low-energy effective Hamiltonian takes on the same shape
as the Weyl Hamiltonian describing relativistic fermions of quantum field theory.
This makes graphene an example of a two dimensional Weyl semimetal, a class
of materials whose emergence and description are investigated in chapter 6.
The derived graphene Hamiltonian will also be used to exemplify calculations
of berryological quantities in chapter 5.
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4.1 The Tightbinding Approximation

Consider a large collection of electrons residing in a crystal lattice (B8), with the
single-electron Hamiltonian (B14) of appendix B giving the energy contribution
for each individual electron and describing the interaction with the underlying
crystal lattice. In general, the interactions between the different electrons must
additionally be taken into account, modelled by the Coulomb interaction V (r).
The Hamiltonian describing the crystalline system then becomes

Ĥ =
∑
ι

[ p̂2
ι

2m
+ Û(r̂ι)

]
+
∑
ι,κ

V̂ (r̂ι − r̂κ), (4.1)

where r̂ι and p̂ι are the position and momentum operators of electron ι, and the
sums are over all the electrons of the system. The potential from the underlying
crystal structure is periodic with the crystal lattice, satisfying U(r+Ri) = U(r),
with Ri being a lattice vector (B8) as explained in appendix B.

In the following, the tightbinding Hamiltonian is derived from the basic
Hamiltonian (4.1) above using the second quantization scheme (1.9) with single-
electron states based on the discussions of appendix B. The resulting tightbind-
ing model is then exemplified in sections 4.2 and 4.3 by calculating the energy
bands of a square lattice and of graphene, respectively.

4.1.1 Tightbinding Hamiltonian in the Wannier Basis

In the tightbinding model the electrons are assumed tightly bound to the indi-
vidual atoms, interacting only weakly with the surrounding atoms and electrons
through quantum tunnelling between different primitive unit cells. In this case
the electron-electron interactions can be neglected, such that the remaining
Hamiltonian (4.1) consists only of a sum of single-electron terms ĥι. In the
second quantization scheme, the Hamiltonian (4.1) describing the electron en-
semble thus becomes a single-particle operator (1.9), with expansion coefficients
given by the matrix elements of the single-electron Hamiltonian (B14) denoted

ĥ.
The eigenfunctions of the single-electron Hamiltonian ĥ are the Bloch states

(B18) denoted by |ψnk〉, with n denoting the band index and k being the crystal
momentum. Consider then the crystal lattice being a Bravais lattice, with only
a single atom in each unit cell. In that case, the electronic orbitals at at the
atomic nucleus located at Ri will then be the Wannier states (B23) denoted by
|wni〉, related to the Bloch states through the lattice Fouriér transforms

|ψnk〉 =
∑
i

eik·Ri |wni〉 |wni〉 = VC

ˆ
BZ

ddk e−ik·Ri |ψnk〉 . (4.2)

Here, VC denotes the volume of the primitive unit cell of the crystal lattice and
the crystal momentum is integrated over the first Brillouin zone. For the Wan-
nier states, the quantum number n is interpreted as an orbital index, labelling
the different types of electronic orbitals found at each individual lattice site.
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The Wannier states (4.2) can be orthonormalized (B25) and comprise a com-
plete set of basis states. The matrix elements of the single-electron Hamiltonian
(B14) can thus be expanded in the Wannier basis as

−tnmij ≡ 〈wni| ĥ |wmj〉 =

ˆ
d3r w∗ni(r)

[
− ~2

2m
∇2 + U(r)

]
wmj(r). (4.3)

Here, the crystal is assumed to be magnetically trivial such that any interaction
between the spins of the electrons and the atomic nuclei can be neglected. The
incorporation of discrete quantum numbers is investigated in the following.

Introducing then the creation and annihilation operators (1.6) for the Wan-

nier state |wni〉 denoted by ĉ†ni and ĉni respectively, the second quantized form of
the Hamiltonian (4.1) describing the non-interactive electron ensemble becomes

Ĥ = −
∑

i,j,n,m

tnmij ĉ†niĉmj (4.4)

The expression gives a natural physical interpretation of the matrix element, in
the following referred to as the tunnelling rate: the tunneling rate tnmij is the
amplitude corresponding to an electron quantum tunnelling from an orbital of
type m at lattice site Rj to an orbital of type n at lattice site Ri.

Consider in particular the lattice elements on the form tnnii ≡ µni. The

corresponding operator ĉ†niĉni is a number operator, counting the number of
electrons in the single-electron state |wni〉 to either 0 or 1. As such, µni can
be interpreted as the on-site energy for an electron in orbital n at lattice site i,
which acts as a chemical potential. Separating these terms from the sum (4.4)
leaves the final form of the Hamiltonian for Bravais lattices

Ĥ = −
∑
ni,mj

tnmij ĉ†niĉmj −
∑
n,i

µniĉ
†
niĉni. (4.5)

The former sum runs implicitly over terms with n 6= m and i 6= j simultane-
ously. Other than neglecting the mutual interactions between the electrons of
the crystal, the derived Hamiltonian describes the crystalline system exactly.

For many crystalline systems, the single outermost electron orbital n = o
will be the main contributor to interactions. Such a single-orbital approximation
is incorporated into the tunnelling rate by letting tnmij ≡ tijδnoδmo. The sum
over orbital indices in the Hamiltonian (4.5) thus leaves only the creation and

annihilation operators for this single orbital, rewritten ĉ†oi ≡ ĉ
†
i and ĉoi ≡ ĉi.

Furthermore, from the expression of the Wannier wavefunctions (B23) by
virtue of the Bloch theorem (B16), the electronic Wannier orbitals wni(r) are
seen to decay away from their lattice site Ri. In the tightbinding approximation,
the decay is assumed fast enough such that the electrons can be considered
localized around the individual atomic nuclei, leaving the Wannier functions
centered at different lattice sitesRi andRj with negligible overlaps. Seeing that
the single-band tunnelling rate (4.3) is dependent only on the distance between
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the lattice sites tij ≡ t(Ri −Rj), a suitable approximation is to consider only
tunnelling between nearest neighbouring lattice sites, denoted 〈i, j〉.

Within the single-band and tightbinding approximations, the derived Hamil-
tonian (4.5) takes the form of the tightbinding Hamiltonian

Ĥ = −
∑
〈i,j〉

tij ĉ
†
i ĉj −

∑
i

µiĉ
†
i ĉi, (4.6)

where the on-site energy tii ≡ µi. Due to the non-diagonal matrix elements
tij the tightbinding Hamiltonian (4.6) is not diagonalized. Recall then that the
Bloch states are defined as the eigenstates of the single-electron Hamiltonian
(B14). Hence, with a Bravais crystal lattice the tightbinding Hamiltonian will
be diagonalized through a change from the Wannier to the Bloch basis. This
is performed by introducing the Bloch creation and annihilation operators ĉ†nk
and ĉnk respectively, related to the Wannier creation and annihilation operators
from the relation between the Bloch and Wannier states (4.2) as

ĉ†nk =
∑
i

eik·Ri ĉ†ni ĉnk =
∑
i

e−ik·Ri ĉni

ĉ†ni = VC

ˆ
BZ

ddk

(2π)d
e−ik·Ri ĉ†nk ĉni = VC

ˆ
BZ

ddk

(2π)d
eik·Ri ĉnk

. (4.7)

This change of basis will reveal the electronic band structure of the system,
from which many of the physical properties of the crystal can be calculated.
The exact band structure will however depend on the structure of the lattice,
exemplified by the tightbinding calculations of the square lattice in section 4.2.

4.1.2 Tightbinding with a Polyatomic Primitive Unit Cell

Consider then instead a non-Bravais crystal lattice where each primitive unit cell
comprise a number of W atomic nuclei, located at the relative positions rα. For
a Bravais lattice, where each primitive unit cell consists of only a single atomic
nucleus, each electron can be described by a Wannier state (4.2) corresponding
to a highly localized electronic orbital at a specific lattice point. For a poly-
atomic unit cell, it can similarly be postulated that each electron will reside in
highly localized orbitals around a specific atomic nucleus α of the primitive unit
cell. In general, there will be a number of possible electronic orbitals at each of
the atomic nuclei within each primitive unit cell. For simplicity however, adopt
the single-orbital approximation and consider only a single electronic orbital at
each of the atomic nuclei within each primitive unit cell.

Denote by |φiα〉 the quantum state corresponding to the single electronic
orbital at the atomic nucleus labelled α residing in the primitive unit cell located
atRi. These states are then analogous to the Wannier states of a Bravais crystal
lattice. Introduce also the Bloch sums, given by the transformations
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|χkα〉 =
∑
i

eik·(Ri+rα) |φiα〉 |φiα〉 = VC

ˆ
BZ

ddk e−ik·(Ri+rα) |χkα〉 (4.8)

analogous to the transformations between the Bloch and Wannier bases (4.2).
In the position representation, the Bloch sums χkα(r) = 〈r|χkα〉 are readily
seen to satisfy the Bloch theorem (B16) with χkα(r −Ri) = eik·Riχkα(r), and
are thus eigenfunctions of the discrete translation operator. In fact, seeing that
the reciprocal lattice of the crystal lattice is dependent only on the underlying
Bravais lattice and not on the arrangement of the atomic nuclei within the
primitive unit cell, the crystal momentum k originates by the exact same discrete
translation invariance as for the Bloch states |ψnk〉. Even so, the Bloch sums
may not be eigenfunctions of the single-electron Hamiltonian (B14).

By the analysis of Lödwin [18], the Bloch eigenfunctions of the single-electron
Hamiltonian are postulated to be expressed in terms of Bloch sums (4.8) as

|ψk〉 =

W∑
α=1

ψα(k) |χkα〉 , (4.9)

where the sum is over the different atomic nuclei α of the primitive unit cell.
Consider then the eigenvalue equation of the single-electron Hamiltonian (B14),

written ĥ |ψk〉 = εk |ψk〉. Assuming the Bloch sums are normalized to unity
but not necessarily orthogonal, inserting the postulated Bloch function and left
multiplying by the state 〈χkβ | then leaves the eigenvalue equation∑

α

Hβα(k)ψα(k) = εk
∑
α

Sβα(k)ψα(k). (4.10)

The equation introduces the matrix elements of the Hamiltonian kernel H and
the overlap matrix S, respectively defined by Hβα(k) = 〈χβk| ĥ |χkα〉 and
Sβα(k) = 〈χkβ |χkα〉. Denoting also by ψ(k) the vector whose elements are

the expansion coefficients ψα(k), the eigenvalue equation for the Hamiltonian ĥ
has been rewritten to the matrix equation H(k)ψ(k) = εkS(k)ψ(k).

In general, the electronic orbitals situated at different atomic nuclei will
not be orthogonal, with nearby orbitals having some spatial overlap. In the
tightbinding approximation however, the orbitals are assumed highly local-
ized around each respective atomic nucleus, and the overlaps can be consid-
ered negligible. In that case, the different Bloch sums |χkα〉 can be approx-
imated as orthogonal for different α, and the expansion coefficients of the
Bloch function (4.9) can be expressed ψα(k) = 〈χkα|ψk〉. The overlap ma-
trix Sβα(k) = 〈χkβ |χkα〉 is thus approximated diagonal, and the eigenvalue
equation for the single-electron Hamiltonian (B14) can be expressed

H(k)ψ(k) = εkψ(k). (4.11)

Hence, under the tightbinding approximation the energy band spectrum εk will
be given by the eigenvalues of the Hamiltonian kernel H(k), with the corre-
sponding Bloch states being expanded in Bloch sums (4.8) with the expansion
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coefficients given by the eigenvectors of the Hamiltonian kernel ψ(k). Both
the eigenvalues and eigenfunctions can thus be labelled by the index α as εkα
and ψα(k) respectively, which serves as a band index even under the single-
orbital approximation. Hence, the introduction of localized orbitals at each of
the atomic nuclei in the primitive unit cell thus corresponds to the introduction
of a discrete degree of freedom, termed the orbital degree of freedom.

For non-Bravais lattices, a tightbinding Hamiltonian analogous to the tight-
binding Hamiltonian for Bravais lattices (4.6) can be devised by expanding the
single-electron Hamiltonian (B14) in the orbital basis spanned by the states

|φiα〉. The resulting matrix elements −tαβij ≡ 〈φiα| ĥ |φjβ〉 are again interpreted
as tunnelling rates (4.3), here describing the quantum tunnelling of an electron
from the atomic nucleus localized at Rj + rβ to the atomic nucleus located
at Ri + rα. Recall here that the discussion at hand is within the single-orbital
approximation; if several types of atomic orbitals are considered for each atomic
nucleus, two more indices will be added to the tunnelling rate.

Introducing then the creation and annihilation operators ĉ†iα and ĉiα corre-
sponding to the quantum states |φiα〉, the tightbinding Hamiltonian for non-
Bravais lattices within the single-orbital approximation thus takes the form

Ĥ = −
∑
iα,jβ

tαβij ĉ
†
iαĉjβ −

∑
iα

µiαĉ
†
iαĉiα, (4.12)

where as before the chemical potentials µiα ≡ tααii have been extracted. The
derived form of the Hamiltonian is identical to the general Hamiltonian (4.5)
for a Bravais lattice. Here however, the index α refers to the different atomic
nuclei of the primitive unit cell, and not to the different orbitals on a single
atomic nucleus. Furthermore, the Hamiltonian is here expanded in the orbital
basis |φiα〉, and not the Wannier basis |wni〉 as in the Bravais case.

From appendix B, the reciprocal lattice of a crystal lattice is dependent
only on the underlying real space Bravais lattice, and not on the arrangement
of atomic nuclei within the primitive unit cell. In consequence, the creation
and annihilation operators ĉ†iα and ĉiα can be written in terms of creation and

annihilation operators of the Bloch sums (4.8) denoted ĉ†kα and ĉkα, as

ĉ†iα = VC

ˆ
BZ

ddk

(2π)d
e−ik·(Ri+rα)ĉ†kα ĉiα = VC

ˆ
BZ

ddk

(2π)d
eik·(Ri+rα)ĉkα (4.13)

In this case however, a change of basis from the orbital basis |φiα〉 to the Bloch
sum basis |χiα〉 will not diagonalize the Hamiltonian, but instead reveal the
Hamiltonian kernel (4.11) of the system. For W atomic nuclei in the primitive
unit cell, a diagonalization corresponding to a change to the proper Bloch basis
|ψkα〉 will then reveal W energy bands of the energy band spectrum.

Finally, it should be noted that the set of indices α may incorporate other
quantum numbers than the specific atomic nucleus within the primitive unit
cell. In chapter 6, the electron spin is taken into account, which doubles the
dimensionality of the Hamiltonian kernel (4.11) compared to the spinless case.
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4.2 Tightbinding Model for a Square Lattice

In the following, a general expression for the energy band structure of Bravais
crystal lattices is derived, as a continuation on the calculation of the Bravais
tightbinding model (4.6) in section 4.1. From this, the energy band structure
of a square lattice is calculated and then expanded in the low-energy regime.

4.2.1 Tightbinding Calculation for a Bravais Lattice

For Bravais crystal lattices, the crystalline system is homogeneous at the level
of atomic nuclei. Then, all lattice sites are equivalent excepting a translation,
leaving the tightbinding parameters tij ≡ tj and µi ≡ µ equal for all lattice
sites. Introduce also the vector δj running through all nearest neighbours. Two
neighbouring lattice vectors can then be related by Rj = Ri + δj , and the
nearest-neighbour sum of the tightbinding Hamiltonian (4.6) is split into a sum
over all lattice sites Ri and a sum over the nearest neighbour vectors δj .

The Hamiltonian (4.6) is rewritten in the Bloch basis by inserting the Bloch
transforms of the creation and annihilation operators (4.7). Using the lattice
orthogonality relations (B13), the nearest-neighbour sum can then be expressed

∑
i

∑
j

tjVC

ˆ
BZ

ddk1

(2π)d
ĉ†k1

e−ik1·RiVC

ˆ
BZ

ddk2

(2π)d
ĉk2e

ik2·(Ri+δj)

= V 2
C

ˆ
BZ

ddk1

(2π)d
ddk2

(2π)d
ĉ†k1

ĉk2

∑
i

ei(k2−k1)·Ri
∑
j

tje
ik2·δj ≡

∑
k

φ(k)ĉ†kĉk.

Here, the last sum is conventionally written over reciprocal vectors k within the
Brillouin zone. The expression introduces the structure factor of the lattice,

φ(k) =
∑
j

tje
ik·δj , (4.14)

which under the current approximations is the only part of the tightbinding
Hamiltonian dependent on the spatial structure of the crystalline system. Notice
here that the structure factor will be a real quantity, as both δj and −δj will
be nearest-neighbour vectors for any Bravais lattice.

Seeing that the chemical potential term (4.6) is diagonalized by default, the
tightbinding Hamiltonian of a general Bravais lattice can be expressed

H = −
∑
k

φ(k)ĉ†kĉk − µ
∑
k

ĉ†kĉk ≡
∑
k

ε(k)ĉ†kĉk. (4.15)

As foretold, expressing the Hamiltonian in the Bloch basis leaves it diagonal,
and reveals the energy band structure of the electrons in a Bravais crystal lattice

ε(k) = −φ(k)− µ. (4.16)

The chemical potential µ acts as a constant shift in energy, and serves the same
physical role as the chemical potential of the Fermi-Dirac distribution (1.34).
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4.2.2 Square Lattice Energy Band Structure

Consider a d-dimensional regular square lattice with lattice spacing a, shown in
figure 4.1 together with its reciprocal lattice for d = 2. There are 2d nearest
neighbours to each lattice point with nearest neighbour vectors δj ∈ {±ax̂l}dl=1.
Due to the isotropy of the lattice, the tunnelling rate is equal for all sites: tj ≡ t.

2

1

2

1

Figure 4.1: Square Bravais lattice in two dimensions. The left figure shows the real space
square lattice with lattice constant a, primitive lattice vectors a1 and a2, and all nearest
neighbour vectors. The right figure shows the reciprocal lattice, with primitive lattice vectors
b1 and b2 of length 2π/a. The shaded gray areas shows the real Wigner-Seitz cell and
reciprocal Brillouin zone, respectively, the latter of which has a critical point at its center Γ.

The square lattice is a Bravais lattice with a single atomic nucleus in each
primitive unit cell, as seen in the Wigner-Seitz cell of figure 4.1. Inserting the
nearest neighbour vectors, the corresponding structure factor (4.14) becomes

φ(k) =

d∑
l=1

[
teiakl + te−iakl

]
= 2t

d∑
l=1

cos(akl).

Inserting this structure factor into the energy band for Bravais lattices (4.16)
gives the expression for the single electronic energy band

ε(k) = −2t

d∑
l=1

cos(akl)− µ. (4.17)

Notice that this function is invariant under the point symmetries of the square
lattice, and under translations by the reciprocal lattice vectors bm = 2π

a k̂m.
The energy band for the square lattice is shown in figure 4.2 for d = 2. The
geometrical shape is typical for that of a conduction band, the lowest vacant
energy band at zero temperature. If more single-electron orbitals had been
taken into account in the tightbinding model, both vacant and occupied energy
bands above and below the conduction band would emerge in the calculations.
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2

1

Conduction Band
of the Square Lattice

Electron Energy

Figure 4.2: The electron energy band structure for the square Bravais lattice in two dimensions
in the single-band approximation of the tightbinding model. The energy band is calculated
for crystal momenta k inside the Brillouin zone, given on the upper left, and is periodic with
the reciprocal lattice vectors b1 and b2. An intersection of the band at ky = 0 displays the
cosine form of the band on the lower left, giving rise to an effective mass.

At the ground state of the system the conduction band will be vacant. For
low but non-zero temperatures however, some electrons will have the energy to
occupy electronic states in the vicinity of the conduction band minimum. The
minimum of the conduction band (4.17) is at the center Γ of the Brillouin zone,
at the energy ε0 ≡ ε(k = 0) = −2td− µ. Expanding the cosine-functions about
this minimum leaves cos(akl) ≈ 1− a2k2

l /2, such that for low energies

ε(k) ≈ −2t

d∑
l=1

(1− 1

2
a2k2

l )− µ = ε0 + ta2k2 ≡ ε0 +
~2k2

2m∗
. (4.18)

Here, m∗ ≡ ~2/2ta2 is the effective mass of the electrons near the energy min-
imum; comparing the expansion above (4.18) to the free electron dispersion
relation (3.52), then near the conduction band minimum the electrons behave
as if they were free electrons but with a renormalized mass m∗.

The expansion condition ka� 1 translates to the wavelength of the electron
being much longer than the interatomic distance. The apparent free electron
behaviour at low temperatures thus allows for a simple physical interpretation:
if the wavelength of the electron is much larger than the modulations of the
underlying periodic crystal potential, the electrons are effectively unaffected
by the crystal potential and hence can be mathematically described as free
electrons, but with a renormalized mass. Notice that this effective mass m∗ is
inversely proportional to t; if the tunnelling rate is large, meaning tunnelling
between atoms is more recurrent, the effective mass is smaller. It is also smaller
for a longer lattice spacing a, being the distance the electron is transported for
each tunnelling event between neighbouring atoms.
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4.3 Tightbinding Model for Graphene

Carbon is the sixth element of the periodic table, with four electrons residing
in the two lowest s-orbitals denoted 1s and 2s, and two electrons distributed
among the three 2p-orbitals. When atoms of carbon are forced to bond in a two
dimensional plane, the 2s-orbital and two of the 2p-orbitals hybridize to form
three sp2-orbitals, forming a two-dimensional hexagonal crystal structure known
as graphene. Pure graphene has been known theoretically for many decades,
but was not experimentally isolated until 2004 by Novoselov and Geim [19].
The electrons residing in the remaining 2p-orbitals of the atoms interact with
eachother to form π-bonds, which in combination with the hexagonal crystal
structure gives graphene many exotic electronic properties.

This subsection derives a tightbinding model for diatomic primitive unit cells
in general, and then applies this model to the π-bonds of graphene; the electrons
of the sp2-orbitals are too tightly bound to contribute to the conductive prop-
erties of the material. The crystal lattice in question then refers to the spatial
configuration of these single 2p-orbitals of the carbon atoms in the graphene
sheet, as these electrons are the ones responsible for the electronic properties.
Hereafter, there will be no further reference to the origins of the atomic orbitals.

4.3.1 Tightbinding with a Diatomic Primitive Unit Cell

Consider now a crystal with a diatomic primitive unit cell, where the two atoms
are separated by some distance a. The lattice will then be a bipartite lattice,
meaning the lattice can be separated into two sublattices A and B such that all
nearest neighbours of sublattice A lies in sublattice B and vice versa. Denote
by ĉ†ia and ĉia the creation and annihilation operators of electrons in sublattice

A, and by ĉ†ib and ĉib the creation and annihilation operators of electrons in
sublattice B, as introduced in section 4.1. The two labels a and b here constitute
the orbital degree of freedom for the diatomic primitive unit cell.

Let then the denotation 〈a, b〉 signify two nearest-neighbouring atomic nuclei
of the diatomic bipartite lattice, whether part of the same or different primitive
unit cells. By separating the sum over the entire lattice into two sublattice
sums, the non-Bravais tightbinding Hamiltonian (4.12) can then be written

Ĥ = −
∑

i,j,〈a,b〉

tabj ĉ
†
iaĉjb −

∑
i,j,〈a,b〉

tbaj ĉ
†
ibĉja −

∑
i

µiaĉ
†
iaĉia −

∑
i

µibĉ
†
ibĉib, (4.19)

where again the system is isotropic at the level of primitive unit cells, such that
the tunnelling rates tabij = tabj and chemical potentials µia = µa for each of the
two sublattices. Notice that for this Hamiltonian to be hermitian, satisfying
Ĥ† = Ĥ, the tunnelling rates tabj must be equal to the complex conjugate of

the tunnelling rate tbaj , denoted tabj = (tbaj )∗ ≡ tj . If this had not been the
case, there would be a higher rate of electrons tunnelling to lattice sites in one
of the sublattices, and the crystal would not be stable. This is also clear from
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the definition of the tunnelling rate (4.3), which in addition shows that the
tunnelling rate tj is a real parameter for the model at hand.

Introduce then the nearest-neighbouring vectors δaj and δbj running through
nearest-neighbouring atomic nuclei for lattice points in the sublattices A and B
respectively. The vector δaj are then defined by Rj + rb = Ri + ra + δaj , with
rα being the relative positions of the atomic nuclei within the primitive unit
cell. Inserting the operators of the Bloch sum basis (4.13) and using the lattice
orthogonality relations (B13), the relative coordinates ra cancels out, and the
bipartite lattice tightbinding Hamiltonian (4.19) takes the form

Ĥ = −
∑
k

[
φa(k)ĉ†kaĉkb + φb(k)ĉ†kbĉka + µaĉ

†
kaĉka + µbĉ

†
kab̂k

]
, (4.20)

where the structure factors (4.14) denoted by φa(k) and φb(k) runs over the
nearest-neighbour vectors of their corresponding sublattices. Hermiticity of the
Hamiltonian then translates to φa(k) = φ∗b(k) ≡ φ(k). By the construction of
the bipartite lattice, this condition is a reflection of the fact that the nearest-
neighbour vectors are arranged in pairs δaj = −δbj ≡ δj .

Hence, the change to the Bloch sum basis (4.13) does not diagonalize the
Hamiltonian (4.20). Introduce then the operator doublet Ψ̂k = (ĉka, ĉkb), such
that the Hamiltonian assumes the quadratic form

Ĥ = −
∑
k

Ψ̂†k

[
µa φ(k)

φ∗(k) µb

]
Ψ̂k ≡

∑
k

Ψ̂†kH(k)Ψ̂k, (4.21)

where the matrix H(k) is the Hamiltonian kernel of the system. The introduc-
tion of the Hamiltonian kernel allows for a two-level description of the system.
Two-level systems in general are investigated further as a part of chapter 5.

Notice that the derived Hamiltonian kernel (4.21) satisfies H† = H, thus
inheriting the hermiticity of the total Hamiltonian Ĥ. The Hamiltonian kernel
of the diatomic primitive unit cell can thus be written in terms of the complete
set of hermitian (2×2) matrices conventionally denoted (τ0, τ ) = (τ0, τx, τy, τz),
where τ0 is the identity matrix and τ are the Pauli matrices (C8), as

H(k) = −µa + µb
2

τ0 − Re{φ(k)}τx + Im{φ(k)}τy −
µa − µb

2
τz. (4.22)

Because the Pauli matrices are also used to describe the spin degree of freedom
σ for electrons as explained in appendix C, the orbital degree of freedom for the
diatomic primitive unit cell is said to be a type of pseudospin degree of freedom,
denoted τ = ±1. In general, the appearance of a pseudospin degree of freedom
can be attributed to any discrete quantum number taking on two values.

The two energy bands corresponding to the two atomic nuclei in the primitive
unit cell are then calculated as the eigenvalues of the Hamiltonian kernel

ετ (k) = −µa + µb
2

+ τ

√
|φ(k)|2 +

(µa − µb
2

)2

.
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The first term of the band energies is the arithmetic average of the on-site
energies of the two sublattices, and can be considered a reference energy. The
reference energy is subsumed into the energy function ετ (k) without changing
the eigenstates of the Hamiltonian. The second part is dependent on the on-site
energy difference between the sublattices ∆ ≡ µa − µb and the absolute value
of the structure factor (4.14). The energy bands are then recast into the form

ετ (k) = τεk = τ

√
|φ(k)|2 +

∆2

4
. (4.23)

Hence, with a diatomic primitive unit cell the range of electronic energies is
split into two bands. These are the valence band ε−(k) and the conduction
band ε+(k). The valence band constitute the highest range of occupied electron
energies, and the conduction band the lowest range of vacant electron energies
at absolute zero temperature when the crystalline system is in its ground state.

From the energy function (4.23), the maximum of the valence band and the
minimum of the conduction band are given by points k = K in reciprocal space
for which the structure factor φ(K) = 0. In consequence, if the difference be-
tween the on-site energies of the two sublattices ∆ is unequal to zero, a bandgap
between the valence band and conduction band emerges with no available elec-
tronic states. The width of this bandgap is given by ε+(K) − ε−(K) = ∆.
Hence, from now on the parameter ∆ will simply be referred to as the bandgap.

Because the Hamiltonian kernel (4.22) is hermitian, its eigenvectors ψ±k cor-
responding to the eigenvalues ε±(k) will be orthogonal by default. These eigen-
vectors represent two-component Bloch states, and can be chosen

ψ+
k (r) =

1

D(k)

[
∆
2 − ε(k)
φ∗(k)

]
eik·r ψ−k (r) =

1

D(k)

[
φ(k)

−∆
2 + ε(k)

]
eik·r. (4.24)

These eigenvectors are then orthonormal, with the normalization constant given
by D2(k) = 2ε(k)(ε(k)−∆/2). The corresponding combined eigenvector matrix
M = [ ψ+

k ψ−k ] is both unitary and hermitian, satisfying M−1 = M† = M.
Introduce then new creation and annihilation operators through[

ĉk+

ĉk−

]
=MΨ̂k = ψ+

k ĉka + ψ−k ĉkb. (4.25)

Using the unitary transform M, the Hamiltonian (4.21) is readily diagonalized

Ĥ =
∑
k

(
ε+(k)ĉ†k+ĉk+ + ε−(k)ĉ†k−ĉk−

)
(4.26)

The operators ĉk+ and ĉk− are here interpreted as the annihilation operators
of the single-electron Bloch states with energy ε±(k), respectively.
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4.3.2 The Energy Band Structure of Graphene

In the two-dimensional crystal graphene, the carbon atoms are arranged in a
hexagonal lattice with two atoms in each unit cell separated by the distance a.
The primitive lattice vectors of the underlying triangular Bravais lattice are

a1 =

√
3a

2
x̂+

3a

2
ŷ, a2 =

√
3a

2
x̂− 3a

2
ŷ.

From their defining relation (B11), the reciprocal lattice vectors can be chosen

b1 =
2π√
3a
k̂x +

2π

3a
k̂y, b2 = − 2π√

3a
k̂x +

2π

3a
k̂y,

spanning a triangular reciprocal lattice rotated with respect to the real space
lattice. The graphene lattice with its diatomic Wigner-Seitz cell is shown in
figure 4.3, along with the corresponding reciprocal lattice and Brillouin zone.

Sublattices

1

2

3

3

2

1

1

2

12Basis

Figure 4.3: The two-dimensional hexagonal crystal lattice and the corresponding reciprocal
lattice. The underlying triangular Bravais lattice is spanned by the primitive lattice vectors
al, with two atomic nuclei in each unit cell separated by the distance a. The crystal lattice
is bipartite, separated into two triangular sublattices denoted by A and B. There are three
nearest-neighbour vectors of the same length for each atomic nucleus, denoted by δj for
sublattice A. The reciprocal lattice spanned by the reciprocal vectors bm is triangular, rotated
with respect to the real space Bravais lattice. The Wigner-Seitz cell and the Brillouin Zone
are shaded in gray, and the Brillouin zone center is denoted Γ. Due to the periodicity of the
Brillouin zone there are only two distinct Brillouin zone corner points, denoted K and K′.

The hexagonal lattice is bipartite with the nearest neighbour vectors δ1, δ2

and δ3 as shown in figure 4.3. In coordinate form, these are given by

δ1 = aŷ, δ2 = −a
2
ŷ +

√
3a

2
x̂, δ3 = −a

2
ŷ −
√

3a

2
x̂. (4.27)

Because each sublattice is isotropic in the directions of the vectors δj , the tun-
nelling rate is independent on the nearest-neighbour index, denoted by tj ≡ t.
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Inserting the nearest neighbour vectors into the definition of the structure factor
(4.14), the structure factor of the hexagonal lattice is readily expressed

φ(k) = teiaky + 2te−
ia
2 ky cos

(√3a

2
kx

)
. (4.28)

The energy band structure of graphene is then calculated by inserting the struc-
ture factor into the energy band formula for diatomic bipartite lattices (4.23)

ε±(k) = ±

√[
3+2 cos

(√
3akx

)
+4 cos

(√3

2
akx

)
cos
(3

2
aky

)]
t2 +

∆2

4
. (4.29)

For pure suspended single-layered graphene, the bandgap ∆ = 0 and the graphene
lattice becomes invariant under space inversion. If however the graphene sheet
is deposited on some other material, the space inversion symmetry of the lat-
tice can be broken due to interactions with the substrate, inducing a bandgap
∆ 6= 0. The energy bands are drawn for both of these cases in figure 4.4.

Conduction Band

The Energy Bands
of Graphene

Valence Band

Weyl Point

12

Figure 4.4: The conduction and valence bands of graphene, with a bandgap ∆ 6= 0 and ∆ = 0,
respectively. The framed central figure shows a section of the reciprocal lattice of graphene,
the shaded hexagon being the Brillouin zone and the parallelogram being subtended by the
primitive reciprocal lattice vectors b1 and b2. The energy bands are drawn for crystal momenta
k within the parallelogram unit cell, and is periodic with the reciprocal lattice. For the case
∆ = 0 the two bands meet at the Brillouin zone corners K and K′, forming Weyl points.

Because of the diatomic primitive unit cell of graphene, the electrons of the
system will at zero temperature occupy all the available states in the valence
band, whereas the conduction band is completely vacant. For energies minutely
higher than this crystalline ground state, the electrons will then begin occupying
states near the minima of the conduction band. It is due to these conduction
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band electrons that graphene obtains its exotic conduction properties. In order
to investigate the behaviour of these electrons, let the conduction band be ex-
panded about its minima, located at reciprocal vectors k = K for which the
structure factor (4.28) vanishes. The condition φ(K) = 0 here translates to

1 + 2e
−3ai

2 Ky cos

(√
3a

2
Kx

)
= 0,

from which the reciprocal vectors K can be found. Separating this into a real
and an imaginary part gives two equations for the two variables Kx and Ky,cos

(
3a
2 Ky

)
cos
(√

3a
2 Kx

)
= − 1

2

sin
(

3a
2 Ky

)
cos
(√

3a
2 Kx

)
= 0

The simplest solutions to these equations are found for Ky = 0, giving

K =
( 4π

3
√

3a
, 0
)
, K ′ =

(
− 4π

3
√

3a
, 0
)
. (4.30)

These points correspond to two of the corner points of the Brillouin zone in
reciprocal space. Choosing instead Kx = ±2π/3a would give the coordinates of
the other four corner points. However, due to the periodicity of the Brillouin
zone, the points K and K ′ are the only two distinct solutions; in figure 4.3,
it is seen that either solution is separated from two other corner points of the
Brillouin zone by reciprocal lattice vectors. That K lies at the Brillouin zone
corner points follows directly from the symmetries of the graphene lattice [20].

The low-energy behaviour of the conduction electrons can now be found by
expanding the structure factor around the Brillouin zone corner points, defining

φK(q) ≡ φ(K + q) ≈ qx
∂

∂qx
φ(K + q)

∣∣∣
q=0

+ qy
∂

∂qy
φ(K + q)

∣∣∣
q=0

.

Here the reciprocal vector q = (qx, qy) has its origin in the Brillouin zone corner
point K, whereas the usual reciprocal vector k has its origin in the Brillouin
zone center Γ, seen in figure 4.3. The notation of q is introduced to differ
between these origins. Inserting the found Brillouin zone corner points (4.30),
then near the minima of the conduction band the structure factor behaves as

φK(q) =
3at

2
(−qx + iqy) φK′(q) =

3at

2
(qx + iqy). (4.31)

Here, the prefactor 3at/2 ≡ vF can be interpreted as the Fermi-velocity of the
electrons. The corresponding behaviour of the Hamiltonian kernel (4.22) near
the conduction band minima is then found by inserting these effective structure
factors, and can be written in terms of the pseudospin Pauli matrices (C8) as
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H(q) =

[
−∆/2 vF (±qx − iqy)

vF (±qx + iqy) ∆/2

]
= ±vF qxτx + vF qyτy −

∆

2
τz. (4.32)

Here, the upper sign refers to the corner point K and the lower to K ′, and must
not be confused with the signs distinguishing the energy bands (4.23), which
are seen to be equivalent for the Brillouin zone corner points and equal to

ε±(q) = ±
√

9a2t2

4
q2 +

∆2

4
≡ ±

√
v2
Fq

2 +
∆2

4
. (4.33)

The positive sign here describes the low-energy behaviour of electrons occupying
states in the conduction band, and the negative sign the effective behaviour of
the vacant electron states in the valence band which acts as positively charged
quasiparticles known as electron holes.

The resulting low-energy band structure (4.33) is on the same form as the
energy-momentum relation from special relativity, with the Fermi velocity vF
serving as an effective speed of light and the bandgap ∆ as an effective rest
mass energy. In particular, for pure isolated graphene the on-site energies for
the two atoms in the primitive unit cell are equal, leading to a vanishing bandgap
or effective rest mass energy ∆ = 0. In this case the valence and conduction
energy bands meet at a doubly degenerate Weyl point at the Brillouin zone
corner points, around which the energy band structure is locally given by

ε±(q) = ±vF |q|. (4.34)

In consequence, for pure graphene the energy band structure for conduction
electrons is linear in momentum, as if the electrons were ultra-relativistic. The
non-relativistic conduction electrons of graphene are therefore describable by
the same mathematics as relativistic fermions in quantum field theory, making
graphene an example of a two-dimensional Weyl semimetal.

In consequence, due to the lattice symmetries of graphene the effective
Schrödinger equation for non-relativistic crystalline electrons has been recast
into the same shape as the two-dimensional Weyl equation for relativistic fermions.
In general for crystalline systems however, the mathematical description is not
restricted to obey the symmetries of spacetime. In chapter 6, other systems of
solid state physics with linear dispersion relations are investigated, while the
mathematical formalisms of relativistic theory of fermions and the resulting
Dirac and Weyl equations are presented in appendix D.

The reader should be aware that graphene originally was categorized as a
Dirac semimetal [2], because the two Hamiltonian kernels (4.32) describing the
system near the two Brillouin zone corner points can be combined to form a
(4 × 4) Hamiltonian kernel analogous to the Dirac Hamiltonian (D8) of rela-
tivistic quantum theory. This categorization has since been abandoned after
the discovery and taxonomy of Dirac and Weyl semimetals in three dimensional
systems, being the main topics of investigation of chapter 6.
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Chapter 5

The Berry Phase and
Berryological Quantities

Under the early development of the theory of quantum mechanics the prevail-
ing notion was that the phase of a quantum state is arbitrary and inherently
unphysical. In 1984 however, M. V. Berry [21] argued that quantum states
may attain a geometrical phase observable through interference upon a cyclic
evolution with respect to a set of system parameters. The geometrical phase,
named the Berry phase after its discoverer, is analogous to the anholonomy
angle appearing upon a cyclic parallel transport on curved topological surfaces.

The original derivation of the Berry phase is based on the adiabatic theorem
and cyclic evolution in time. The same year of the discovery, B. Simon [22]
interpreted the Berry phase as the holonomy in a hermitian line bundle. This
allowed for the possibility of defining a berryology for the Brillouin zone, and
served as the theoretical foundation for a class of solid state systems known as
topological materials; of particular interest are topological semimetals, investi-
gated in chapter 6. In general, it is not necessary to consider time evolution
in order to coherently define berryological quantities, and the following section
introduces the theory of berryological quantities based on the evolution of a
general parameter set. On this basis, the current chapter investigates the back-
ground and derives the expressions for the Berry phase, the Berry connection
and the Berry curvature for different systems. The theory presented is indebted
to the introductory textbooks by Bernevig [23] and Vanderbilt [24].

Furthermore, the chapter introduces the general description of a quantum
two-level system, for which the berryological quantities are calculated in order to
exemplify the theory. Finally, the berryological quantities of the Brillouin zone
and of two-level systems are combined in order to calculate the berryological
quantities of graphene, whose Hamiltonian is derived in chapter 4.
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5.1 Introduction to Berryology

Consider a quantum mechanical system for which the Hamiltonian operator is
dependent on a set of parameters R = (Rµ), spanning a parameter space. Then,

each point in parameter space gives rise to a Hamiltonian Ĥ = Ĥ(R) with a
set of eigenstates {|nR〉} defined through the eigenvalue equation

Ĥ(R) |nR〉 = En(R) |nR〉 . (5.1)

For simplicity the eigenvalue spectrum En(R) is assumed non-degenerate, and
the Hamiltonian, its eigenvalues and corresponding eigenstates are assumed to
vary continuously with the parameter set. Furthermore, only the phases of the
eigenstates are of interest, and the eigenstates are assumed normalized to unity.

For each realization of the parameter set R, the eigenstates {|nR〉} spans a
complete Hilbert space. Hence, through the eigenvalue equation (5.1), the pa-
rameter space corresponds to a continuous set of related Hilbert spaces, mathe-
matically analogous to the set of tangent spaces on a topological manifold. This
analogy will in the following be referred to as the Hilbert space manifold.

5.1.1 Definition of the Berry Phase

Denote by C a curve in parameter space, choose two points R1 and R2 along
this curve and consider a single eigenstate |nR〉 evaluated at these two points.
In general, the inner products of different Hilbert spaces are not compatible.
However, it is possible to define a common inner product for the combined
Hilbert space corresponding to the two realizations of the parameter set. In this
setting, the phase difference ∆γ between the two states can be calculated by

e−i∆γ =
〈nR1

|nR2
〉

|〈nR1 |nR2〉|
,

which upon taking the logarithm gives an expression for the phase difference

∆γ = − Im{ln 〈nR1
|nR2

〉}
This phase difference is entirely arbitrary with the choice of phases for the two
states, and may also differ with the definition of the combined inner product.

Assume then the eigenstate is differentiable along the parameter space curve
C, and let the two points along the curve be separated by an infinitesimal pa-
rameter space distance dR. Then, in the continuous limit the logarithm

ln 〈nR|nR+dR〉 = ln 〈nR|
(
|nR〉+ dR · ∇R |nR〉+O(dR2)

)
= ln

(
1 + dR · 〈nR| ∇R |nR〉+O(dR2)

)
= dR 〈nR| ∇R |nR〉+O(dR2).

By derivation of the normalization condition 〈nR|nR〉 = 1, the remaining term
here is completely imaginary. Hence, in the continuous limit the infinitesimal
phase change along the curve C can be given by the linear differential form
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dγn = 〈nR| i∇R |nR〉 · dR ≡ A(n)(R) · dR (5.2)

where A(n)(R) is the Berry connection for the eigenstate |nR〉 in particular.

The Berry connection A(n)(R) continuously connects the Hilbert spaces, or
rather the relation between the inner products of the Hilbert spaces along the
Hilbert space manifold. From its definition, it will naturally depend on both
the chosen state |nR〉 and on the parameter space curve C.

Introduction of the Berry connection allows for integration of the phase
difference along the curve. Letting R0 and RT be the initial and final parameter
sets along the parameter space curve, the total phase difference along the curve

∆γn =

ˆ RT

R0

〈nR| i∇R |nR〉 · dR. (5.3)

Again, this phase difference is completely arbitrary with the choice of phases.
Let then the parameter space curve C form a closed contour in parameter

space, such that the curve begins and ends at the same parameter space point.
The phase difference along the contour is then given by the Berry phase

γn =

˛
C
A(n)(R) · dR =

˛
C
〈nR| i∇R |nR〉 · dR. (5.4)

Clearly, if the Berry connection A(n)(R) is a single valued function, the Berry
phase γn will be zero. However, if the topology of the Hilbert space manifold is
non-trivial, the Berry phase can take on a non-zero value.

5.1.2 Gauge Freedom and Parallel Transport

For any single quantum mechanical state the phase of the state is of no physical
importance, and so the physical observables for any realization of the parameter
set R are unaffected by a gauge transform of the eigenstates, given by

|ñR〉 = e−iθn(R) |nR〉 , (5.5)

where θn(R) is the chosen phase change for the state |nR〉. The gauge transform
is said to be local in parameter space if the phase changes θn are dependent and
global if they are independent on the parameter set R.

Reconsider then the curve C in parameter space. A gauge transform (5.5)
individually changes the basis states {|nR〉} of each Hilbert space along this
line by a phase. In consequence, the connection between these spaces must also
change. Inserting the gauge transformed states into the definition of the Berry
connection (5.2), the gauge transformed Berry connection becomes

Ã
(n)

(R) = A(n)(R) +∇Rθn(R); (5.6)

for local gauge transforms the Berry connection is not gauge invariant.
The gauge variance of the Berry connection will naturally transfer to the

Berry phase (5.4). Consider the total change of the phase shift θn(R) upon
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moving around the parameter space contour. Because the state at the beginning
of the contour must be retrieved, the total change of the phase shift going around
the contour once must be ∆θn = 2πc, where c is some integer. Inserting the
gauge transformed Berry connection (5.6) into the definition of the Berry phase,
the Berry phase will under a local gauge transform change by ∆θn, such that

γ̃n = γn + 2πc. (5.7)

The Berry phase is therefore said to be gauge invariant modulo 2π. Thus, the
Berry phase factor eiγn is a gauge invariant quantity, and cannot be made to
vanish using a gauge transform. Although not sufficient, gauge invariance is a
necessary condition for a quantity to represent a physical observable.

A particular choice for a gauge transform is one in which the linear differen-
tial form (5.2) is zero; dγn = 0. In that case the Berry connection A(n) = 0, and
the inner product 〈nR|nR+dR〉 = 1, retaining the normalization to linear order
in dR along the curve C. This is equivalent to the notion of parallel transport on
curved manifolds, in that the inner product 〈nR|ψ〉 between any general state
vector |ψ〉 and the eigenstate |nR〉 is constant along the curve in this gauge.

Let again the curve C be a contour, and consider the definition of the Berry
phase (5.4) in the parallel transport gauge A(n) = 0. Clearly, if the Berry phase
is non-zero such a gauge cannot be applied along the entire contour; at some
point, the Berry connection must obtain a singularity, corresponding to a phase
shift equal to the Berry phase. In this way, the Berry phase is analogous to an
anholonomy angle which appears when parallel transporting vectors on curved
manifolds. This also means the Berry phase is a result of the topology of the
manifold of Hilbert spaces: if the topology is non-trivial, the Berry phase may
attain a non-zero value dependent on the parameter space curve.

5.1.3 Berry Curvature and Chern Numbers

Until this point, the Berry connection has been defined only along a curve
in parameter space. Consider instead a surface S in parameter space whose
boundary is the parameter space contour C = ∂S. Assume then there exists
a gauge for the Berry connection (5.6) which makes it smooth and continuous

on the entire surface, such that the connection components A(n)
µ (R) becomes

differentiable with respect to the parameters Rµ for every point R on S. It
is then possible to define everywhere on this surface the components of a real,

antisymmetric rank-2 tensor Ω
(n)
µν (R) known as the Berry curvature, written

Ω(n)
µν = ∂µA(n)

ν − ∂νA(n)
µ = −2 Im 〈∂µnR|∂νnR〉 (5.8)

where the shorthand notation ∂µ |u〉 ≡ |∂µu〉 is used and the partial derivative
∂µ ≡ ∂/∂Rµ. In viewing the Berry connection as analogous to an affine con-
nection on the Hilbert space manifold, the Berry curvature is mathematically
interpreted as the corresponding analogous curvature tensor.

In calculations, it is often preferable to rewrite the expression for the Berry
curvature (5.8) in terms of the Hamiltonian of the system. By derivating the
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eigenvalue equation for the Hamiltonian (5.1) with respect to the parameter Rµ,
left multiplying with some state vector 〈mR| 6= 〈nR| and using the orthogonality
condition 〈mR|nR〉 = 0, it is readily shown that

〈mR|∂µnR〉 =
〈mR| [∂µĤ] |nR〉

En − Em
Inserting the completeness relation (1.1) of the eigenstates |mR〉 in between the
inner product of the original expression for the Berry curvature (5.8) then gives

Ω(n)
µν = −2 Im

∑
m 6=n

〈nR| [∂µĤ] |mR〉 〈mR| [∂νĤ] |nR〉
(En − Em)2

(5.9)

The term for |mR〉 = |nR〉 is left out of the sum, as 〈nR|∂µnR〉 is completely
imaginary and hence when multiplied by a similar term vanishes when taking
the imaginary part. Recall also the assumption of non-degenerate eigenvalues.

By inserting the gauge transform of the Berry connection (5.6) into the
definition of the Berry curvature (5.8), it is clear that the Berry curvature is
inherently gauge invariant. Notice however that the choice of gauge now is
restricted to a gauge for which the Berry connection is differentiable in the
regions where the Berry curvature is defined. This gauge will also fix the value
of the Berry phase (5.4), which by the generalized Stokes theorem now can be
calculated as a surface integral in parameter space as

γn =

˛
C
A(n)(R) · dR =

ˆ
S

Ω(n)
µν dsµ ∧ dsν . (5.10)

Here, the expression dsµ∧dsν is an infinitesimal area element on the surface S,
and the Einstein summation convention applies.

Let then the surface S be a closed smooth manifold in parameter space,
and choose a closed contour C on this manifold, separating it into two regions.
For either region, choose gauges such that the Berry connection is differentiable
inside both regions separately. Integrating the Berry connection along these
regions will then leave γn and−γn+2πcn respectively, where the integer multiple
of 2π arises due to the possibly different gauges. Combining the two integrals
will then give the total integral of the Berry curvature over the manifold as

˛
S

Ω(n)
µν dsµ ∧ dsν = 2πcn. (5.11)

This is a version of the Chern theorem, stating that the integral of the Berry
curvature over any closed manifold is an integer multiple of 2π. The integer
cn is known as the Chern number, and will in general depend on the manifold
chosen. If the Chern number is non-zero, it is not possible to choose a gauge
which is differentiable on the entire enclosed surface; at some located points or
regions on the surface, the Berry connection will be singular. The proof is easily
generalized to piecewise smooth manifolds by choosing several closed contours
along the boundaries of the differentiable regions.
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By derivating the orthonormality condition 〈mR|nR〉 = δmn and using the
completeness relation (1.1) of the eigenstates, it can be shown that the sum∑

n

〈∂µnR|∂νnR〉 =
∑
n

〈∂µnR|∂νnR〉∗ .

This sum over all eigenstates hence leaves no imaginary part. From the original
definition of the Berry curvature (5.8), it is then clear that∑

n

Ω(n)
µν = 0. (5.12)

In consequence, within the gauge permitting a definition of the Berry curvature,
the sum over all Berry phases (5.10) corresponding to the different eigenstates
must be zero for any curve in parameter space:

∑
n γn = 0. Likewise, from its

definition (5.11), the sum over all Chern numbers corresponding to the different
eigenstates must also be zero:

∑
n cn = 0.

5.2 The Berryology of the Brillouin Zone

In solid state physics, the Hamiltonian ĥ for crystalline systems (B14) is invari-
ant under discrete translations by lattice vectors (B8), as described in appendix
B. The eigenstates of the Hamiltonian can then be chosen as Bloch states (B18)
for each energy band n, denoted |ψnk〉. Besides being energy eigenstates, these
Bloch functions are eigenfunctions of the discrete translation operator, and are
labelled by the crystal momentum k corresponding to their translation operator
eigenvalues. For each energy band n of the crystalline system, the state vector
|ψnk〉 is continuously dependent on the components of the crystal momentum
k of reciprocal space, which hence may serve as the parameter space R.

According to Blochs theorem (B16), for a d-dimensional reciprocal space the
Brillouin zone has the topological shape of a d-torus, on which parameter space
contours and surfaces are well defined. Hence, it is possible to devise a berry-
ology of the Brillouin zone of systems in solid state physics. The berryological
consideration of the Brillouin zone is the basis for defining topological materials,
such as the Weyl semimetals investigated in chapter 6.

5.2.1 Berryological Quantities of the Brillouin Zone

Recall from appendix B that the crystal momentum k is solely a consequence
of translation invariance, and hence does not appear as a parameter in the
eigenvalue equation for the crystal Hamiltonian (B14). In consequence, all Bloch
states |ψnk〉 reside in the same Hilbert space, being the eigenspace of the crystal

Hamiltonian ĥ. Therefore, the mathematical framework surrounding the Berry
phase cannot be applied directly to the Bloch states themselves.

The berryology of the Brillouin zone is instead framed with respect to the
lattice periodic states |unk〉 whose Hamiltonian (B19), connected to the single-

electron Hamiltonian as ĥ(k) = eik·r̂ĥe−ik·r̂, indeed treats the crystal momen-
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tum as a parameter. For each point k in the Brillouin zone, the set of eigen-
states |unk〉 corresponding to the different energy bands n spans an independent
Hilbert space, as for the generic states |nR〉 presented in section 5.1. The in-
ner products (B20) of these Hilbert spaces are defined separately for each point
k of the Brillouin zone, and can be mathematically connected by the Berry
connection (5.2) of the Brillouin zone, which consequently is defined

A(n)(k) = i 〈unk| ∇k |unk〉 = i

ˆ
VC

ddr u∗nk(r)∇kunk(r). (5.13)

From Blochs theorem and the periodic properties of the lattice periodic functions
unk(r) in reciprocal space (B17), the Berry connection of the Brillouin zone

satisfies A(n)(k−Gj) = A(n)(k). Hence, the Berry connection is periodic with
the Brillouin zone, consistent with its interpretation as an affine connection.

The Berry connection of the Brillouin zone (5.13) is associated with a specific
energy band n. Similarly, the Berry phase associated with band n is defined

γn =

˛
C
A(n)(k) · dk (5.14)

for some closed contour C in the Brillouin zone. Recall then that the Brillouin
zone has the topological shape of a d-torus, periodic in the directions given by
the reciprocal lattice vectors bm. It is then possible to construct closed contours
in the direction given by bm; the Brillouin zone is not simply connected.

For most materials the crystal lattice and hence the reciprocal space will be
three dimensional, with d = 3. In this case, the three independent components
of the antisymmetric Berry curvature (5.8) for band n can be written as a

pseudovector denoted by B(n), whose components are connected to the original

definition of the Berry curvature through B(n)
λ = 1

2ελµνΩ
(n)
µν , leaving

B(n)(k) ≡ ∇k ×A(n)(k) = − Im 〈∇kunk| × |∇kunk〉

= − Im
∑
m 6=n

〈unk| [∇kĥ(k)] |umk〉 × 〈umk| [∇kĥ(k)] |unk〉
[εn(k)− εm(k)]2

.
(5.15)

By virtue of the periodicity of the Berry connection of the Brillouin zone (5.2),
the corresponding Berry curvature is periodic with the Brillouin zone, satisfying
the condition B(n)(k −Gj) = B(n)(k).

The Chern number (5.11) of any closed two-dimensional manifold in the three
dimensional Brillouin zone is then readily defined using the Berry curvature
(5.15). Notice then that any plane at any fixed value of kz will constitute a
closed torus, due to the periodicity of the Brillouin zone. Assuming energy
band n is isolated, any property of the band will evolve smoothly with kz. In
consequence, because the Chern number of the closed torus is integer valued, it
must take the same value for any kz. The argument is identical also for planes in
the kx and ky directions. Thus, any fully isolated band n of a three dimensional
crystal can be characterized by a triplet of Chern numbers (cnx, cny, cnz).
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For two-dimensional crystals with a corresponding two-dimensional recipro-
cal space, the Berry curvature (5.8) of each energy band n has only one com-

ponent, conventionally written Ω
(n)
xy (k) = B(n)

z (k). In this case the Brillouin
zone has the topological shape of a regular torus, and hence constitutes a two-
dimensional closed manifold itself. In consequence, even though the parameter
space is two-dimensional, a Chern number (5.11) for two-dimensional crystalline
systems can be defined by integrating over the entire Brillouin zone as

cn =
1

2π

"
BZ

B(n)
z (k)dkxdky. (5.16)

If the Chern number is non-zero, the two-dimensional crystalline system is clas-
sified as a quantum anomalous Hall insulator, also known as a Chern insulator.
The Chern number will then be directly linked to the anomalous Hall conduc-
tivity of the material [24], briefly introduced in chapter 7.

5.2.2 Symmetry Restrictions on Berryological Quantities

For many crystalline systems the Hamiltonian is invariant under the operations
of time reversal T and space inversion P, both described in appendix B, which
in turn puts restrictions on the berryological quantities of the Brillouin zone.
Seeing that all derived quantities are dependent on the lattice periodic state
vector, the general behaviour of the berryological quantities under space inver-
sion and time reversal can be found by first investigating the corresponding
behaviour of the lattice periodic function unk(r) = 〈r|unk〉.

Under both space inversion and time reversal, the crystal momentum k is
inverted, whereas the position vector r is inverted only under space inversion.
Additionally, the time reversal operator T involves a complex conjugation, being
an antiunitary operator (C2). In conclusion, the lattice periodic function trans-
forms under these operations as Punk(r) = un−k(−r) and T unk(r) = u∗n−k(r).

A more rigorous derivation of the transformation properties can be found us-
ing the Bloch function, defined by ψnk(r) = eik·runk(r). Consider in particular
the space inverted function Pψnk(r), which transforms under a lattice trans-
lation as TRPψnk(r) = PT−Rψnk(r) = ei(−k)·(−R)Pψnk(r) by virtue of the
Bloch theorem (B16). Assuming the Bloch functions corresponding to different
bands can be made orthogonal (B21), the space inverted Bloch function thus
becomes Pψnk(r) = ψn−k(−r), which transfers directly to the lattice periodic
function unk(r). In conclusion, the transformation property holds as long as
the lattice periodic function is square integrable over the unit cell of the lattice.
This condition holds in general whenever the energy bands are isolated, which
is a prerequisite for defining the Berryological quantities of the Brillouin zone.

The transformation properties of the lattice periodic function under space
inversion and time reversal can be inserted into the definition of the Berry
connection (5.13), which in turn gives the transformation properties of the Berry
phase (5.14) and the Berry curvature (5.15), from which the behaviour of the
Chern number (5.11) follows directly. The results are summarized in table 5.1.
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Berryological Quantity Symbol P T Invariance under Operation O

Lattice Function unk(r) un−k(−r) u∗n−k(r) Ounk(r) = eiθn(k)unk(r)

Berry Connection A(n)(k) −A(n)(−k) A(n)(−k) OA(n)(k) = A(n)(k) +∇kθn(k)

Berry curvature B(n)(k) B(n)(−k) −B(n)(−k) OB(n)(k) = B(n)(k)

Berry Phase γn γn −γn Oγn = γn + 2πz

Chern Number cn cn −cn Ocn = cn

Table 5.1: The behaviour of berryological quantities under space inversion P and time reversal
T . The rightmost column gives the condition for invariance under a general operation O for
the respective quantities, dependent on their gauge variance. The Chern number cn refers to
either element of the Chern number triplet (cnx, cny , cnz).

The rightmost column of table (5.1) gives the condition for invariance of the
berryological quantities under any general operation. If then the k-dependent
Hamiltonian (B19) is invariant under a symmetry operation, this translates to
symmetry restrictions on the berryological quantities. From the table, it is then
seen that if a system is invariant under time reversal T , the Berry phase must
satisfy −γn = γn + 2πz, and so becomes γn = πz for some integer z. Thus,
because the Berry phase is gauge invariant modulo 2π, the only possible values
of the Berry phase for systems invariant under time reversal are γn = 0 and
γn = π. Under space inversion symmetry, no such constraint is present.

Consider then the behaviour of the Berry curvature Bn(k) under both space
inversion and time reversal, given in table 5.1. The Berry curvature must be
even for a crystalline system invariant under space inversion P, and odd for
a crystalline system invariant under time reversal T . If then the system is
invariant under the combined PT -symmetry, the Berry curvature must be zero
at all points where it is defined, as it then satisfies Bn(k) = −Bn(k) = 0.

If however the Berry phase for some contour in the Brillouin zone is non-
zero, it is not possible to define the Berry curvature over the entire Brillouin
zone; at some points, the Berry curvature will be singular. In particular, for a
two-dimensional system with both space inversion and time reversal symmetry,
as time reversal symmetry imposes γn = zπ, the Berry curvature under the
restriction of PT -symmetry need not be zero identically, but can take the form

B(n)
z (k) =

∑
a

zaπδ(k − ka), (5.17)

where δ(k) is the Dirac delta function. Here, the crystal momenta ka are points
in the Brillouin zone where the energy bands are degenerate, leading to the
singular behaviour of the Berry curvature. The integers za then correspond
to the Berry phase γn = caπ for any contour enclosing solely the momentum
ka. Because Berry phases are only defined modulo 2π, the singularities can be
categorized depending on zi is even or odd. In particular, if the number za is odd
and the energy band structure is linear near the degeneracy, the corresponding
crystal momentum ka is known as a Weyl point.
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5.3 The Berryology of Two-Level Systems

In general, a quantum two-level system is any system whose Hilbert space of
states is two-dimensional. Any state of the system can then be described as a
superposition of two orthonormal basis states, hereby denoted |0〉 and |1〉.

Only based on the assumption of a two-level system, it is possible to find a
general Hamiltonian of the system with a general set of parameters, and in turn
calculate the Berryological quantities involved. A particular case for a two-level
system is the tightbinding model for graphene, derived in section 4.3.

5.3.1 Description of a General Two-Level System

A general state of a two-level system is denoted |ψ〉 = c0 |0〉+ c1 |1〉. Left multi-
plying by 〈i| and using the orthonormality of the basis states, these coefficients
can be expressed ci = 〈i|ψ〉. Introduce then the matrix representation of quan-
tum mechanics, in which the state of the system is represented by the column
vector denoted ψ = (c0, c1) = (〈0|ψ〉 , 〈1|ψ〉). The two basis states are then
represented by ψ0 = (1, 0) and ψ1 = (0, 1) respectively, giving ψ = c0ψ0 + c1ψ1.

Consider then the Hamiltonian Ĥ of the system, whose eigenvalue equation
is given by Ĥ |ψ〉 = E |ψ〉. Left multiplying by either basis state 〈i| and using
their completeness relation (1.1), the eigenvalue equation takes the form of a
matrix equation Hψ = Eψ, where the Hamiltonian matrix is given by

H =

[
〈0| Ĥ |0〉 〈0| Ĥ |1〉
〈1| Ĥ |0〉 〈1| Ĥ |1〉

]
≡
[
H00 H01

H10 H11

]
Notice here that H10 = H∗01, making the Hamiltonian matrix a hermitian ma-
trix. The energies E can be calculated as the eigenvalues of this matrix.

In consequence, any two-level system can be described in the matrix for-
mulation of quantum mechanics by the Hamiltonian matrix. Then because the
two-dimensional identity matrix and the three Pauli matrices (C8) respectively
denoted by σ0 ≡ I2 and σ = (σx, σy, σz) span the space of complex (2 × 2)
hermitian matrices, a general two-level Hamiltonian matrix can be expressed

H = h0σ0 + h · σ =

[
h0 + hz hx − ihy
hx + ihy h0 − hz

]
. (5.18)

The vector h = (hx, hy, hz) will in the following be referred to as the Bloch
vector of the two-level system, with the three components and the scalar h0 all
being real. With the decomposition of the Hamiltonian matrix in terms of the
Pauli matrices, the corresponding energy eigenvalues are readily calculated as

E± = h0 ± |h|. (5.19)

Whenever the quantity h0 is constant, it can be physically interpreted as the
zero-point energy of the system, and can be subsumed into the energy eigen-
values without physical consequences. The eigenfunctions corresponding to the
two energies are in general independent on the quantity h0, and can be chosen
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ψ+ =
1

D(h)

[
hz + |h|
hx + ihy

]
ψ− =

1

D(h)

[
−hx + ihy
hz + |h|

]
(5.20)

where the normalization constant is given by D2(h) = 2|h|[hz + |h|]. Notice
now that the energy eigenvalues (5.19) of the two-level system are degenerate
whenever the Bloch vector h = 0, where both energy eigenvalues take on the
value E± = h0. Inserting h = 0, it is seen that the degeneracy corresponds to
a singular behaviour of the eigenfunctions (5.20) of the Hamiltonian matrix.

0

1

Figure 5.1: The Bloch sphere, visu-
alizing the mapping between the unit
sphere spanned by the Bloch unit vec-
tor ĥ and the two-dimensional Hilbert
space of a two-level system. The ba-
sis states of the Hilbert space are de-
noted |0〉 and |1〉, and are mapped
onto the two poles of the sphere. The
eigenstates of the Hamiltonian of the
two-level system are denoted |ψ±〉,
mapped onto two antipodal points.

Introducing spherical coordinates, letting
h = |h|(sin η cos ξ, sin η sin ξ, cos η) where the
polar angle η ∈ [0, π) and the angle azimuth
ξ ∈ [0, 2π), the two eigenstates take the form

ψ+ =

[
cos
(
η
2

)
eiξ sin

(
η
2

)] ψ− =

[
ei(π−ξ) sin

(
η
2

)
cos
(
η
2

) ]
For the particular Bloch vector h = (0, 0, hz),
the eigenvectors of the Hamiltonian (5.20) co-
incide with the originally defined basis vec-
tors, denoted ψ+ = (1, 0) and ψ− = (0, 1).

By argument from the spherical represen-
tation, there exists a bijective map between
the Hilbert space of the two-level system and
the unit sphere in three dimensions. This unit
sphere is known as the Bloch sphere, which
is traced out by the normalized Bloch vector
ĥ = h/|h|, and gives a geometrical visual-
ization of the two-level system Hilbert space.
The Bloch sphere is shown in figure 5.1, with
the two basis states at the poles. The two
eigenvectors of the Hamiltonian then map onto two diametrically opposite points
on the sphere, with ψ+ and ψ− conventionally chosen at the positive and neg-
ative hz-hemisphere, respectively.

5.3.2 Berryological Quantitites for Two-Level Systems

In general, the parameter h0 and Bloch vector h are dependent on a set of
parameters R. This dependence can be assumed continuous, and translates
to the Hamiltonian matrix (5.18) and its corresponding eigenvectors (5.20),
allowing for a definition of berryological quantities for the two-level system.

Consider the Berry curvature (5.9) of the two-level system, whose sum now
consists of only one term. Using the completeness relation (1.1) of the basis
states of the two-level system, the Berry curvature is rewritten in terms of the
general Hamiltonian matrix (5.18) as a product of two quadratic forms
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Ω±µν = −2 Im
(ψ†±[∂µH]ψ∓)(ψ†∓[∂νH]ψ±)

[E± − E∓]2
. (5.21)

Notice here that (ψ†∓[∂µH]ψ±) = (ψ†±[∂µH]ψ∓)∗, and so Ω−µν = −Ω+
µν . This is

a manifestation of the previously derived result that the total Berry curvature
summed over all band indices should be zero (5.12).

In the expression (5.21), the derivative of the Hamiltonian matrix (5.18)
becomes ∂µH = ∂µh0σ0 + ∂µh · σ, and the denominator E± − E∓ = ±2|h|.
Inserting also the eigenvectors (5.20), the components of the Berry curvature
for a general two-level system described by the Bloch vector ĥ can be calculated

Ω±µν = ∓ 1

2|h|3
h · [∂µh× ∂νh] = ∓1

2
ĥ · [∂µĥ× ∂νĥ] (5.22)

independent on the parameter h0, where the second equality follows from writing
out the derivatives. From this expression, the Berry curvature is singular at any
point R = R0 in parameter space leaving h(R0) = 0, corresponding to the
previously mentioned degeneracy of the energy eigenvalues (5.19) with E± = h0.

The found expression for the Berry curvature of a general two-level system
(5.22) yields a particular interpretation of the Chern number (5.11). Recalling
the assumption that h(R) varies continuously with the parameter set R, any
enclosed surface S in the parameter space R will correspond to a closed two-
dimensional manifold h(S) drawn by the Bloch vector h. Consider then the
projection ĥ(S) of the initial closed manifold h(S) onto the Bloch sphere of
figure 5.1. Upon this projection, the manifold ĥ(S) will cover the entire Bloch
sphere only if the initial surface h(S) encloses the origin h = 0. More precisely,
if the initial manifold wraps around the origin B times, the Bloch sphere will
correspondingly be covered B times. Thus in general, the closed manifold ĥ(S)
will subtend a solid angle from the origin given by 4πB. The integer B is known
as the Brouwer degree of the map ĥ(R), thus giving how many times the Bloch
sphere is covered by the map. Notice that the Brouwer degree B is a positive
or a negative integer whenever the normal vector of the manifold h(S) points
away from or towards the origin of the Bloch sphere h = 0, respectively.

In viewing the normalized Bloch vector ĥ(R) as a map from parameter space
to the surface of the Bloch sphere, the expression for the general two-level Berry
curvature (5.22) is nothing but half the Jacobian determinant corresponding to
the map ĥ(R). The Chern number (5.11) is thus readily expressed

c± = ∓ 1

4π

˛
S
ĥ · [∂µĥ× ∂νĥ]dsµ ∧ dsν = ∓B. (5.23)

Here, the center integral is evaluated as the integral of the map ĥ(S) over the
Bloch sphere. In consequence, the Chern number corresponding to some surface
S in parameter space gives the Brouwer degree B of the map S 7→ ĥ(S), which
equals the number of times the surface ĥ(S) covers the Bloch sphere. Hence,
the Chern number is zero unless the surface S encloses some point of degeneracy
R0 in parameter space for which h(R0) = 0.
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As a result of this interpretation, all surfaces with the same topology en-
closing a degeneracy point R0 in parameter space will give the same Chern
number. It is then meaningful to speak of the Chern number as a topological
invariant of the degeneracy point itself. Analogous to a magnetic monopole, the
degeneracy point R0 acts as a source or a sink of Berry curvature in parameter
space, corresponding to a positive or negative Chern number respectively.

Viewing the Bloch vector ĥ(R) as a map from parameter space to the surface
of the Bloch sphere and the Berry curvature (5.22) as the Jacobian determinant
of this map also leaves a simple interpretation of the Berry phase (5.10). Choos-
ing any closed contour C in parameter space, corresponding to a closed contour
ĥ(C) on the surface of the Bloch sphere, the Berry phase readily becomes

γ± = ∓1

2

ˆ
S
ĥ · [∂µĥ× ∂νĥ]dsµ ∧ dsν = ∓1

2
ΩC

where ΩC is the area on the Bloch sphere enclosed by the contour ĥ(C).
Another expression for the Berry phase can also be calculated explicitly in

terms of the Berry connection (5.2), which for the two-level system also can
be rewritten with respect to the eigenvectors of the Hamiltonian matrix (5.20).
The components of the Berry connection then becomes

A±µ = iψ†±∂µψ± = ±hy∂µhx − hx∂µhy
2|h|(|h|+ hz)

= ∓ (h× ∂µh)z
2|h|(|h|+ hz)

. (5.24)

Hence, the Berry connection becomes proportional to the hz-component of the
cross product between the Bloch vector and its derivative. Alternately, in terms
of the spherical coordinates of the Bloch sphere, the Berry connection becomes

A±(η, ξ) = ∓ sin2
(η

2

)
∇Rξ (5.25)

Notice here that both angles are in general dependent on the parameter set R.
Choose then in particular a closed contour C in parameter space correspond-

ing to a contour on the Bloch sphere ĥ(C) at a constant polar angle η. For such
contours, by inserting the expression for the Berry connection (5.25), the Berry
phase (5.4) can readily be expressed

γ± = ∓ sin2
(η

2

)˛
C
∇Rξ(R) · dR = ∓2πΓ sin2

(η
2

)
= ∓πΓ

(
1− hz
|h|

)
(5.26)

Here, ∆ξ = 2πΓ is the change in the angle azimuth ξ on the Bloch sphere upon
moving around the contour in parameter space once, where Γ is the winding
number of the contour with respect to the hz-axis of the Bloch sphere. In
consequence, the Berry phase (5.4) for a fixed polar angle η becomes dependent
only on the winding number of the contour. In particular, at the Bloch sphere
equator with η = π/2, the Berry phase γ± = ∓πΓ. Notice that this expression
for the Berry phase (5.26) is in agreement with the Berry phase corresponding
to half the enclosed area on the Bloch sphere, which for a contour at a constant
latitude η is given by the formula ΩC = 4π sin2(η/2).

79



5.3.3 The Berryology of Graphene

A particular example for two-levels systems is that of crystals with diatomic
primitive unit cells in general, and that of graphene in particular, both of which
is investigated in section 4.3. In neglecting the Coulomb interaction between
electrons, the Hamiltonian of these systems is written as a sum of single-electron
terms, each of which takes the second quantized form Ψ†kH(k)Ψk with H being
the Hamiltonian kernel (4.11). The two rows of the Hamiltonian kernel then
corresponds to an electron located at either of the two sublattices of the diatomic
lattice structure, thus enabling a two-level description.

As can be seen from the expression of the Hamiltonian kernel (4.22), recalling
thatH = h0σ0+h·σ for a general two-level system (5.18), the Bloch vector for a
general diatomic crystal take the form h(k) = (−Reφ(k), Imφ(k),−∆/2). Here
the structure factor φ(k) depends only on the crystal momentum k, whereas
the bandgap ∆ is a constant of the crystalline system. The parameter space is
given by the Brillouin zone of the crystal, denoted R = k.

Let the Brillouin zone be two dimensional, leaving only one component of
the Berry curvature (5.8). Inserting the vector h = (−Reφ(k), Imφ(k),−∆/2)
into the general expression for the Berry curvature of two-level systems (5.22),
the Berry curvature for a two-dimensional diatomic crystal becomes

B±z = Ω±xy = ∓∆

4

[
Re{∂xφ} Im{∂yφ} − Im{∂xφ}Re{∂yφ}

(t2|φ|2 + ∆2

4 )
3
2

]
(5.27)

where the partial derivatives ∂µ ≡ ∂/∂kµ are with respect to the components
of the crystal momentum. Notice here that even though the structure factor is
not periodic with the Brillouin zone, but changes by a phase upon a reciprocal
lattice translation, the Berry curvature does satisfy B±z (k −Gj) = B±z (k).

Inserting the structure factor for graphene (4.28) into the expression for the
Berry curvature (5.27) above leaves the Berry curvature for gapped graphene

B±z =∓
√

3a2t2∆

16

[
4 sin

(√
3a
2 ky

)
cos
(

3
2akx

)
− 2 sin

(√
3aky

)
(t2[3+2 cos

(√
3aky

)
+4 cos

(√
3

2 aky

)
cos
(
3
2akx

)
]+ ∆2

4 )
3
2

]
(5.28)

Notice here that the Berry curvature is an odd function of the reciprocal vector
k, as B±z (−k) = −B±z (k), which is a consequence of the time reversal symmetry
of the system as noted by the symmetry restrictions of table 5.1.

The Berry curvature of the conduction band B+
z is plotted for different

bandgaps in figure 5.2. Comparing the curvature to the energy bands in figure
4.4, it is seen that the Berry curvature is mostly negligible, except near the
Brillouin zone corner points K and K ′ at which the energy bands are at their
closest. In particular, with a zero bandgap ∆ = 0, the system becomes invariant
under space inversion and the Berry curvature vanishes everywhere except at
the Brillouin zone corners where it diverges, being ill defined at the degeneracy.
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Consider then the Hamiltonian kernel expanded about the Brillouin zone cor-
ners at low energies (4.32), giving the Bloch vector h = (±vfqx, vfqy,−∆/2),
where the signs corresponds to the corner points K and K ′, respectively. In-
serting this into the formula for Berry curvature (5.22) of the conduction band

B+
z (q) = ∓

v2
f∆

4
(
v2
fq

2 +
(

∆
2

)2) 3
2

(5.29)

Here, the upper sign corresponds to the corner point K and the lower to K ′.
In the limit ∆ = 0, the Berry curvature is again seen to approach identically
zero except at the corner points where q = 0 and the Berry curvature diverges.

12

The Berry Curvature
of Graphene

Figure 5.2: The Berry curvature B+z (k) of
graphene for different values of the ratio
α ≡ ∆/t, where ∆ is the bandgap and
t the tunnelling rate. The height of the
peaks located at the Brillouin zone corners
K and K′ is given by 9/2α2. The three
upper graphs are drawn using the same
scale, whereas the peak for α = 0.1 is 25
times higher than for α = 0.5.

In particular, for a constant energy
contour in the Brillouin zone surround-
ing either of the corner points K and K ′.
Using the Bloch vector of graphene near
the corner points, the Berry phase (5.26)
of this contour is readily given by [25]

γ+ = −π
(

1− ∆

2
√
v2
fq

2 + (∆
2 )2

)
(5.30)

where now |q| 6= 0 is fixed for the par-
ticular contour. For pure graphene with
∆ = 0, the Berry phase thus attains the
non-trivial value γ+ = −π for any con-
tour surrounding either of the Brillouin
zone corner points. Notice also that for
∆ 6= 0, the magnitude of the Berry phase
decreases with increasing bandgap ∆.

For ∆ = 0 the space inversion sym-
metry of graphene is restored, and the
energy band structure obtains two Weyl
points of opposite sign located at the
Brillouin zone corner points K and K ′.
These Weyl points are topologically pro-
tected by the space inversion and time re-
versal symmetries of the crystalline sys-
tem, and so graphene can be categorized
as a symmetry-protected Weyl semimetal.
The topological properties of graphene
are precursors to defining the Dirac and
Weyl semimetals in three dimensions, be-
ing the main topic of chapter 6.
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Chapter 6

Dirac and Weyl Semimetals

In section 4.3, the tightbinding model revealed that the point symmetries of
the two-dimensional crystal lattice of pure graphene made the non-relativistic
Schrödinger Hamiltonian (4.21) effectively take on the same form as the rela-
tivistic Weyl Hamiltonian at low energies. Graphene is a part of a larger class of
materials known as topological semimetals, in which features of the energy band
structure are protected by topology rather than or in combination with symme-
try. The following chapter describes the emergence of two particular types of
topological semimetals, known as Dirac and Weyl semimetals.

Common to both Weyl and Dirac semimetals, the energy band structure
is completely gapped at the Fermi level, except for at a single point in the
Brillouin zone where the energy band structure is twofold and fourfold degen-
erate respectively, around which the dispersion relation is locally linear. Unlike
Weyl semimetals the energy band structure of Dirac semimetals are Kramers
degenerate, usually attributed to the crystalline structure being invariant under
the PT -symmetry, elaborated on in appendix C. A Weyl semimetal can then
be produced from a Dirac semimetal by breaking the PT -symmetry, which lifts
the Kramers degeneracy of the band structure and splits the fourfold degenerate
Dirac point into two doubly degenerate Weyl nodes.

Weyl semimetals were predicted theoretically in 2011 by Burkov, Hook and
Balents [4] and experimentally verified first for the material tantalum arsenide
(TaAs) in 2015 by Xu et al. [26]. Also in 2015, Soluyanov et al. [27] ex-
tended the classification of Weyl semimetals to include two types: in addition
to breaking the PT -symmetry, Weyl Type-II materials also violate the effective
Lorentz invariance preserved more or less stringently in Weyl Type-I semimetals.
The first verified Weyl Type-II semimetal was lanthanum aluminum germanide
(LaAlGe), found experimentally by Xu et al. [28] in 2017.

The following chapter presents the theory of Dirac and Weyl semimetals
as given through the several seminal papers on the subjects from recent years.
The mathematical concepts behind the classification and symmetry arguments
of Weyl semimetals however originates in fermionic quantum field theory, elab-
orated upon in appendix D, along which the chapter runs parallel.
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6.1 Weyl Semimetals

The following section investigates the emergence of Weyl nodes as points of
degeneracy for a general energy band structure comprising two energy bands.
The section relies heavily on chapter 5 on two-level systems and berryological
quantities, from which the topological protection of Weyl nodes originates, and
runs parallel to the relativistic derivation of Weyl fermions in appendix D.

6.1.1 The Hamiltonian Kernel of Weyl Semimetals

In order to investigate the properties of Weyl semimetals, introduce similarly to
the Hamiltonian matrix of two-level systems (5.18) the two-band kernel

H(k) = h0(k)τ0 + τ · h(k) (6.1)

where (τ0, τx, τy, τz) is a complete set of Pauli matrices (C8) corresponding to
some pseudospin degree of freedom, with h0(k) and h(k) = (hx(k), hy(k), hz(k))
being four real parameters of the crystalline system. The two-band kernel is a
generalization of the graphene Hamiltonian kernel (4.22), which was derived
based on the tightbinding approximation. Here however, no assumptions are
made on the origin of the pseudospin degree of freedom.

Denoting by τ = ±1 the pseudospin index, the two energy eigenvalues cor-
responding to the two-band kernel (6.1) can be written on the form

ετ (k) = h0(k) + τ
√
h2
x(k) + h2

y(k) + h2
z(k), (6.2)

which describe two energy bands of the crystalline system. The energy spectrum
is entirely gapped, except for momenta k0 where hx(k0) = hy(k0) = hz(k0) = 0.
This condition gives three equations for the momentum k0, which without any
additional tuning in general requires three independent variables in order to
have a solution. Hence, such points of double degeneracy can be expected to
exist for the spatial dimension d = 3. In this case, as the two-band kernel (6.1)
exhausts the basis for two-dimensional hermitian matrices, the degeneracy will
in general be stable to small perturbations to the system parameters [5].

Consider then the expansion of the two-band kernel (6.1) to linear order
about the degeneracy at k0, with the momentum q ≡ k− k0 being denoted by

H(q) = (ε0 + ~v0 · q)τ0 + (~vx · q)τx + (~vy · q)τy + (~vz · q)τz. (6.3)

Here the parameter ε0 = h0(k0), while the effective velocities vµ = (vµx, vµy, vµz)
are defined as the gradients ~vµ = ∇khµ(k)

∣∣
k=k0

; recall here the matrix ele-

ments of the velocity operator (3.10) in the Bloch basis. Unless the effective
velocities vi for i ∈ {x, y, z} are linearly dependent due to additional symme-
tries, the degeneracy point located at q = 0 is a Weyl node, with

ετ (q) = ε0 + ~v0 · q + τ
√

(~vx · q)2 + (~vy · q)2 + (~vz · q)2 (6.4)
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being locally linear around the point of degeneracy. The shape of the energy
dispersion around the Weyl node is known as a Weyl cone, depicted in figure
6.1. The effect of the effective velocities v0 and vi is to tilt the Weyl cone or
alter its shape respectively without changing its location in the energy band
spectrum, and the former vector is known as the tilting vector. If the energy
at the Weyl node ε0 lies near or at the Fermi level µ of the fermionic system,
the material is said to be a Weyl semimetal. For simplicity, assume both the
reference energy ε0 = 0 and the tilting vector v0 = 0; a non-zero tilting of the
Weyl cone is investigated in the subsequent subsection.

If the Fermi-level µ lies near the Weyl node, the Fermi surface defined by
the equation ετ (k)− µ = 0 takes the shape of an ellipsoid in momentum space.
Consider then a linear transformation of the crystal momentum, given by

vi · q = vixqx + viyqy + vizqz = vFκi, (6.5)

for each of the three effective velocities vi. Here, the introduced parameter vF is
an isotropic effective velocity. Denoting by V the matrix with elements vij , the
transformation can be written on the form Vq = vFκ, where the transformed
crystal momentum is denoted by κ = (κ1, κ2, κ3). Because the transforma-
tion is linear, the corresponding Jacobian matrix is independent on the crystal
momentum and given by V/vF , with the Jacobian determinant detV/v3

F where

detV = vx · (vy × vz) (6.6)

The transformation of the crystal momentum renders the Fermi surface spheri-
cal, with the transformed energy bands εs(κ) = svF |κ| being dependent only on
the magnitude of the transformed momentum |κ| ≡ κ. The condition that the
three effective velocities vi are linearly independent here corresponds to a non-
zero determinant detV 6= 0, such that the inverse transformation q = vV−1κ
is well defined. For detV = 0, the Fermi surface becomes unbounded in some
direction, leaving the transformation ill defined.

In particular, for the isotropic case vij = δijvF , the defined transformation
of the crystal momentum (6.5) is the identity transform, with κ = q. In this
case, the Hamiltonian kernel (6.3) becomes a three dimensional analogue to the
effective Hamiltonian kernel of graphene (4.32), and the parameter vF can be
interpreted as the effective velocity of the electrons at the Fermi level. The
Hamiltonian kernel is then mathematically identical to the Weyl Hamiltonian
(D17) of relativistic fermionic quantum theory, as derived from the condition of
Lorentz invariance in appendix D, and can be written on the form

H(κ) = ~vF (κ · τ ). (6.7)

The Fermi velocity vF here acts as an effective speed of light. The equivalence
with the Weyl Hamiltonian is the reason for the nomenclature surrounding the
class of materials known as Weyl semimetals. The electrons described by the
Weyl Hamiltonian kernel (6.3) thus effectively behave as if they were ultrarela-
tivistic, but with a different value for the speed of light in different directions.
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6.1.2 The Tilting Vector and Weyl Type II Semimetals

In appendix D, the Weyl Hamiltonian (D17) describing massless Weyl fermions
was derived on the basis of Lorentz invariance. For systems in solid state physics
however, the Lorentz invariance exhibited by the systems investigated is merely
an effective Lorentz invariance due to the symmetries of the systems, and is not
a constraint from an underlying principle of the physical theory. This allows
for a nonzero tilting vector v0 in the Weyl Hamiltonian kernel (6.3), and the
corresponding energy bands can be expressed on the form

ετ (q) = v0 · q + τ

√∑
i

(~vi · q)2 ≡ T (q) + τU(q) (6.8)

The tilting term clearly breaks the effective Lorentz invariance, being propor-
tional to the momentum itself. Considering in particular isotropic effective ve-
locities vij = δijvF and a tilting vector v0 = (vt, 0, 0), the corresponding Weyl
cones are portrayed in figure 6.1 for different values of the tilting parameter vt.

Weyl Type-I

Fermi Level

Weyl Type-II
Isotropic Anisotropic

Weyl Point

Figure 6.1: The distinction between Weyl nodes of Type-I and Type-II, with the Fermi level
displayed as a translucent plane. In the leftmost figure an isotropic Weyl cone with an effective
Fermi velocity vF is shown. The effective Lorentz invariance is then increasingly broken by a
tilting parameter vt. At the critical point vt = vF , the Weyl cone tilts partially through the
Fermi level, and the node transitions from a Weyl Type-I node to a Weyl Type-II node.

Due to the tilting vector vt, Weyl semimetals can be categorized into two
types [27]. For Weyl Type-I semimetals, the Fermi level crosses the Weyl cone
only at the Weyl node, as shown in figure 6.1. If however there exists a direction
q̂ for which the tilting vector dominates, meaning |T (q̂)| > |U(q̂)| for the energy
band structure (6.8), the Weyl cone tilts through the Fermi level and the Weyl
node is rendered a contact point between electron and hole pockets in the energy
band structure. If such a direction exists, the Weyl node is of Type-II.

The tilting of the Weyl cone is analogous to the tilt of the light cone in general
relativity near massive objects. Consequently, materials comprising both Weyl
Type-I and Weyl Type-II materials have been proposed as solid state systems
able to simulate analogues of black hole horizons, Hawking radiation and other
astronomical phenomena known from general relativity [29].
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6.1.3 Topological Analysis of Weyl Semimetals

Consider the isotropic Weyl Hamiltonian kernel (6.7), for which the Bloch vector
becomes h(κ) = ~vFκ. Inserting this into the formula for the Berry curvature
of a two-level system (5.21), which is related to the Berry curvature vector of
the Brillouin zone (5.15) through Bλ = 1

2ελµνΩµν , the Berry curvature for the
isotropic Weyl semimetal can be caltulated

Bτ (κ) = −τ sgn[vF ]
κ

2|κ|3
(6.9)

where sgn[vF ] denotes the sign of the Fermi velocity vF . Hence, in the isotropic
case the Weyl node located at κ = 0 acts as a Berry curvature monopole in
momentum space. The divergence of the Berry curvature readily becomes

∇κ ·Bτ (κ) = −2πτ sgn[vF ]δ(κ), (6.10)

where δ(κ) is the Dirac delta function. In consequence, the Chern number (5.11)
of any enclosed surface S in momentum space will be zero unless the surface
encloses the Weyl node, for which the divergence theorem gives

cτ (vF ) =
1

2π

‹
S
Bτ (κ) · dS =

1

2π

˚
Z
∇κ ·Bτ (κ)dZ = −τ sgn[vF ] (6.11)

where Z is the momentum space volume enclosed by the surface S.
From the expression of the Berry curvature (6.9), the Chern number (6.11)

can be interpreted as the topological charge of the Weyl node, which acts either
as a sink or a source of Berry curvature depending on the sign of the Chern
number. Furthermore, the Chern number is decided by the sign of the effective
velocity vF , which also gives the sign in front of the isotropic Weyl Hamiltonian
kernel (6.7). Compared to the Weyl Hamiltonian (D17), the Chern number is
then also analogous to the chirality of the Weyl fermions of relativistic fermionic
theory. Thus, the electronic states near the Weyl node in the positive energy
band τ = +1 are effectively described as Weyl fermions with chirality −sgn[vF ].

Reconsider the linear transformation of the crystal momentum (6.5), which
transforms the non-isotropic Weyl Hamiltonian kernel (6.7) to the isotropic Weyl
Hamiltonian kernel (6.3). From this transformation, it is readily shown that the
Chern number for the non-isotropic case can be expressed [5]

cτ = −τ sgn[v1 · (v2 × v3)] (6.12)

Hence, the Chern number corresponding to any Weyl node will take on either
of the values cτ = ±1 for both isotropic and the non-isotropic Weyl semimetals.

Recall that the Brillouin zone takes the topological shape of a 3-torus, mean-
ing the Brillouin zone boundary becomes a single point. Hence, an integration
over the entire boundary and thus the net Chern number (6.11) of the Brillouin
zone will leave zero. Weyl nodes must therefore come in pairs of opposite Chern
number, and can only be eliminated through pairwise annihilation with Weyl
nodes of opposite chirality. Weyl nodes are therefore said to be topologically
protected, leaving stable band degeneracies even in the absence of symmetry.
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6.2 Dirac Semimetals

As stated in the chapter introduction, a Dirac semimetal is a material for which
the energy bands are doubly degenerate and fully gapped, except at a single
point of the Brillouin zone known as a Dirac point where a fourfold degeneracy
persists. The section at hand introduces the conventions needed for mathemati-
cally describing Dirac semimetals. The Kramers degeneracy of the energy band
structure is usually attributed to an imposed PT -symmetry of the system, as
described in appendix (C), from which a general form of the Hamiltonian kernel
for Dirac semimetals can be derived.

6.2.1 Conditions for the Dirac Hamiltonian Kernel

In order to describe a fourfold degeneracy in the energy band spectrum, the
Hamiltonian kernel H(k) of the given crystalline system must be at least of size
(4×4), corresponding to a set of discrete quantum numbers with a total of four
components. For many electronic systems, two of the components are related
to the electron spin, manifested by the set of Pauli matrices (C8) denoted by
σ = (σx, σy, σz) and σ0, with the fourth Pauli matrix being the unit matrix
conventionally added to complete the basis of (2× 2) hermitian matrices.

The remaining two components comprise a pseudospin degree of freedom,
denoted by τ as for the Weyl Hamiltonian kernel (6.3). Alike the spin compo-
nents, the pseudospin components can be represented by a set of Pauli matrices
and the unit matrix, conventionally denoted by τ = (τx, τy, τz) and τ0 in order
to separate the spin and pseudospin degrees of freedom.

The set of matrices (σ0,σ) and (τ0, τ ) can be combined using the Kronecker
product to obtain a basis for the set of hermitian (4 × 4) matrices, with basis
elements on the form τµ⊗σν ≡ τµσν ; the notational differentiation between the
two sets of Pauli matrices renders the explicit Kronecker product redundant.
The resulting sixteen matrices can be arranged as a Clifford algebra (D13),
with four of the matrices serving as the Dirac matrices (D3) of appendix D,
depending on the chosen representation. The arrangement corresponding to the
Weyl representation of the Dirac matrices is given in table D.1.

In conclusion, a general Hamiltonian kernel (4.11) describing four energy
bands, here by named the four-band kernel, can be expressed on the form

H(k) =
∑
µ,ν

hµν(k)τµσν , (6.13)

where hµν(k) are real parameters dependent only on the crystal momentum
k with indices µ, ν ∈ {0, x, y, z}. Further constraints can then be put on the
particular parameters using the symmetries of the system at hand.

Assume in particular the pseudospin degree of freedom is spatial in nature,
as is the case for the tightbinding model of chapter 4. As elaborated upon in
appendix C, the operation of time reversal does not affect the spatial and by
assumption the pseudospin degree of freedom, while the spin is reversed. In
the conventional representation (C10), the time reversal operator acting on the
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spin and pseudospin bases becomes given by T = τ0 ⊗ (iσy)K ≡ iσyK, with
K being complex conjugation; the matrix τ0 acting on the pseudospin basis is
written implicitly, being the unit matrix. Notice that the time reversal operator
incidentally takes on the same form as in relativistic fermionic theory (D23).

Likewise, the operation of space inversion (C12) affects only the pseudospin
degree of freedom while preserving the spin, and so the part of the parity opera-
tor P acting on the spin basis is simply the unit matrix σ0. In which way spatial
inversion acts on the pseudospin basis will depend on the physical interpretation
of the pseudospin degree of freedom. In order to exemplify a representation for
the parity operator, consider a crystalline system within the tightbinding ap-
proximation of chapter 4, where the pseudospin degree of freedom is an orbital
degree of freedom. In general, there are only two ways in which the primi-
tive unit cell harbours the possibility of being invariant under spatial inversion:
the electron orbitals must either transform into themselves or into each other.
Furthermore, the spatial shape of the electron orbitals must also be invariant
under space inversion, with either even or odd intrinsic parities. If the orbitals
transforms into themselves, the parity operator acting on the pseudospin basis
can take on the forms P = ±τ0 and P = ±τz if the orbitals have the same and
opposite parities respectively. If instead the orbitals transform into each other,
the parity operator can likewise take the forms P = ±τx, again depending on
the intrinsic parities of the orbitals; this is the case of graphene, which can
be ascertained from the hexagonal lattice portrayed in figure 4.3. It should be
noted that the particular representation however does not necessarily render the
Hamiltonian invariant under the parity operator; for graphene, the symmetry
is broken whenever the two lattice sites inhibits different on-site energies.

Under the combined PT -symmetry the crystal momentum is invariant, and
so the corresponding invariance of the Hamiltonian kernel (6.13) does not restrict
the form of the coefficients hµν(k). However, the particular representation of
the PT -operator will discard some of the terms due to its action on the spin
and pseudospin spaces. With T = iσyK, then for the different representations
of the parity operator, the Hamiltonian takes on the forms

P = ±τz : H(k) = h00+ τx(σ · hx) + hy0τy + hz0τz

P = ±τ0 : H(k) = h00+ τy(σ · hy) + hz0τz + hx0τx

P = ±τx : H(k) = h00+ τz(σ · hz) + hx0τx + hy0τy

(6.14)

where the vectors hi = (hix, hiy, hiz) and the momentum independence is writ-
ten implicitly. Notice that all terms are diagonalized with respect to the spin
degree of freedom, except the terms pertaining to σx and σy. These two terms
model spin inversion processes, often generated through spin-orbit coupling [11].

Notice that the three different representations of the four-band kernel (6.14)
are related by unitary rotation in pseudospin space. Furthermore, the represen-
tation corresponding to P = ±τx is equivalent to the Weyl representation of the
Dirac matrices, investigated in appendix D. In order to simplify the analysis,
consider therefore the Hamiltonian kernel corresponding to P = ±τx, rewritten
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H(k) = h0I4+ τz ⊗ (σ · h) + τx ⊗ (h4σ0) + τy ⊗ (h5σ0)

=

[
h0 + σ · h h4 − ih5

h4 + ih5 h0 − σ · h

]
(6.15)

where the vector h = (h1, h2, h3) and all coefficients are dependent on the crystal
momentum; hj = hj(k). In the following, it is convenient to introduce the five
dimensional parameter vector H = (h1, h2, h3, h4, h5), in terms of which the
energy eigenvalues of the Hamiltonian kernel are readily expressed

ετσ(k) = h0 + τ
√
h2

1 + h2
2 + h2

3 + h2
4 + h2

5 = h0 + τ |H|. (6.16)

Here, τ = ±1 is the pseudospin index. The energy band structure is independent
on the spin index σ = ±1 and hence doubly degenerate over the entire Brillouin
zone, being an effect of the imposed PT -symmetry. The degeneracy becomes
four-fold at any region of the Brillouin zone where crystal momenta k0 renders
the parameter vector H(k0) = 0. For a three-dimensional crystal, such a four-
fold degeneracy will in general not be guaranteed unless two of the parameter
vector elements of H = (h1, h2, h3, h4, h5) are identically zero.

The PT -invariant four-band kernel (6.15) can similarly to the Weyl Hamil-
tonian kernel (6.3) be expanded around the fourfold degenerate point k0 of the
Brillouin zone with q ≡ k − k0 to give the Dirac Hamiltonian kernel

H(k) = ε0 + ~v0 · q+ τzσx(∆1 · q) + τzσy(∆2 · q)

+τx(~v1 · q) + τy(~v2 · q) + τzσz(~v3 · q)
(6.17)

where the vectors vi are analogous to the effective velocities of the Weyl Hamil-
tonian kernel (6.3), while the parameters ∆m ≡ ∇khm(k)

∣∣
k=k0

for m ∈ {1, 2}
are parameter vectors ∆m = (∆m1,∆m2,∆m3) modelling spin-orbit coupling.

In particular, when the spin reversal parameters ∆1 = ∆2 = 0, the Dirac
Hamiltonian kernel (6.17) decouples into two Weyl Hamiltonian kernels (6.1)
with Bloch vectors given by g±(q) = ~(v1 ·q,v2 ·q,±v3 ·q). From the expression
of the Chern number for Weyl semimetals (6.12), these two Weyl Hamiltonians
are seen to describe Weyl fermions of opposite chirality. Furthermore, if instead
the effective velocities v1 = v2 = 0, the Dirac Hamiltonian kernel will similarly
decouple into two Weyl Hamiltonian kernels on the form

H±W (q) = ±
[
σx(∆1q) + σy(∆2q) + σz(~v1q)

]
(6.18)

where the two degrees of freedom are related to the spin basis σ rather than the
pseudospin basis τ . In both cases the fourfold degenerate Dirac point is seen to
be created from two superposed Weyl nodes of opposite chirality. Hence, the
total Chern number (5.11) corresponding to a Dirac point is zero.

In fact, seeing that the Dirac Hamiltonian kernel (D8) is invariant under
the combined PT -symmetry, the Berry curvature (5.15) of Dirac semimetals is
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identically zero. Dirac points are therefore unlike Weyl nodes not topologically
protected, and may split into two separated Weyl nodes upon small perturba-
tions. In conclusion, Dirac semimetals are dependent on rigid symmetries in
order to be stable other than the imposed PT -symmetry. The different physi-
cal phenomena responsible for producing Dirac points in real systems allows for
a categorization of Dirac semimetals [3]. An example of symmetry protected
Dirac points is found in the antiferromagnetic Dirac semimetal CuMnAs [11],
for which the emergence of Dirac points is investigated in chapter 8.

6.2.2 The Isotropic Dirac Hamiltonian Kernel

Until this point, the four-band Hamiltonian kernels (6.14) have been assumed
invariant only under the combined PT -symmetry. Consider then a four-band
system invariant under both time reversal T and space inversion P separately.
In this case, the different parameters hµν(k) will be either even or odd under
inversion of the direction of the crystal momentum k. As an example, consider
the four-band Hamiltonian kernel (6.15) with the representation of the parity
operator being P = ±τx. From application of the parity operator, it is seen
that the different parameters must satisfy hj(−k) = hj(k) for j ∈ {0, 4} and
hj(−k) = −hj(k) for j ∈ {1, 2, 3, 5}. Seeing that the combined PT -operator by
assumption leaves the Hamiltonian kernel invariant, a similar application of the
time reversal operator T = iσyK leaves the same conditions on the parameters as
the parity operator. Hence, if the system is invariant under space inversion and
time reversal separately, both the even parameter h4(k) and the linear tilting
term of the parameter h0(k) will be left out of the linearized Dirac Hamiltonian
kernel (6.17), while the remaining parameters still may leave a locally linear
dispersion around a point of fourfold degeneracy.

Finally, the reason for the name of Dirac point is due to the similarity be-
tween the Dirac Hamiltonian kernel (6.17) and the Dirac Hamiltonian (D8) of
relativistic quantum theory. In particular, with the parameters h0 = h5 = 0
and h4 = m, and assuming an isotropic linearization hi(q) = −~vF qi for the
remaining parameters, the four-band kernel (6.15) linearized around the Dirac
point q becomes equivalent to the relativistic Dirac Hamiltonian, written

HD(q) = −τz(~vFσ · q) +mτx =

[
−~vFσ · q m

m ~vFσ · q

]
. (6.19)

Similarly to the isotropic Weyl Hamiltonian kernel (6.7), the effective velocity
vF here takes on the role of an effective speed of light. From the preceding
discussion, this Hamiltonian kernel is invariant under both time reversal T and
space inversion P separately, as derived also in appendix D on the basis of
Lorentz invariance. Due to the rest mass term m however, not to be confused
with the electron mass, the energy band structure will be completely gapped in
the entire Brillouin zone. Only for m = 0 will the Hamiltonian kernel decou-
ple into two Weyl Hamiltonian kernels (6.18), and the energy band structure
becomes locally linear around the emerging fourfold degenerate Dirac point.
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6.3 Weyl Nodes from Symmetry Breaking

Recall that the Dirac Hamiltonian kernel (6.17) under the correct assumptions
decouples into two Weyl Hamiltonian kernels (6.3), meaning the fourfold degen-
erate Dirac point can be interpreted as two superposed Weyl nodes. Because the
Weyl nodes are topologically protected, these cannot be removed from the en-
ergy band structure for small perturbations. Hence, under certain perturbations
the Dirac point may split into two Weyl nodes, corresponding to a transition of
a topological semimetal from the Dirac to the Weyl type.

In the following, the isotropic Dirac Hamiltonian kernel (6.19) will serve as a
basis for investigating the emergence of Weyl nodes from Dirac points under time
reversal and space inversion symmetry breaking perturbations. The resulting
energy band structures are the same as derived by Burkow, Hook and Balents
[4], with figures inspired by Armitage, Mele and Vishwanath [5].

The section ends with a discussion of magnetic order in a crystalline system
with a diatomic primitive unit cell, in order to exemplify the origin of the
different types of perturbations. Magnetic order also allows for a classification
of ferromagnetic and antiferromagnetic topological semimetals, one of which is
the material CuMnAs investigated in chapter 8.

6.3.1 The Breaking of Time Reversal Symmetry

Consider first breaking the time reversal symmetry of the Dirac Hamiltonian
kernel (6.19) while preserving the space inversion symmetry. From the trans-
formation properties of the Clifford algebra in table D.1, the matrices satisfying
these conditions are the relativistic spin matrix Σ = τ0σ and γ5γ = −τxσ. The
time reversal symmetry of the Dirac Hamiltonian kernel is thus broken with

H(q) = HD(q) + τ0(σ · b) + τx(σ · z) =

[
σ · (b− q) m+ σ · z
m+ σ · z σ · (b+ q)

]
(6.20)

where the parameter vectors b and z physically can be interpreted as Zeeman
fields, whose components can be taken as internal or external variables.

The energy eigenvalues of the current Hamiltonian kernel (6.20) does not in
general attain an easily analyzable form. However, analytical expressions for
the energy can be found for specific choices for the mass m and the Zeeman
fields b and z. Consider first the case z = 0, for which the energy eigenvalues

ετσ(q,m; b) = τ

√
q2 +m2 + b2 + 2σ

√
(b · q)2 + b2m2 (6.21)

where again σ = ±1 and τ = ±1 are the spin and pseudospin indices. Here, the
introduction of the Zeeman field b lifts the Kramers degeneracy of the original
Dirac Hamiltonian kernelHD(q), giving four energy bands in total. For |b| > m,

the four bands touch pairwise in two Weyl nodes located at q = ±b̂
√
b2 −m2 in

the direction of the Zeeman field b̂ = b/|b|, respectively. The energy spectrum
is fully gapped whenever |b| < m, where the mass dominates the Zeeman term.
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Consider next the case b = 0. The energy bands are likewise calculated

ετσ(q,m; z) = τ

√
q2 +m2 + z2 + 2σ

√
|z × q|2 + z2m2 (6.22)

The analytical expression for the energy bands are almost identical to the pre-
vious case, but with the scalar product exchanged for the vector product. In
this case, when |z| > m two of the bands touch along a circle with radius
q2 = z2 −m2 known as a nodal loop, lying in the plane defined by z · q = 0.

Letting for simplicity m = 0, the energy bands for the two cases b = 0 and
z = 0 are shown in figure 6.2, displaying the Weyl nodes and the nodal loop
respectively, together with the fourfold degenerate Dirac point for z = b = 0. If
the Fermi level of the material lies near a Weyl node or a nodal loop, the material
is categorized as a Weyl semimetal or a line nodal semimetal, respectively [4].

Nodal LoopWeyl Nodes Dirac Point

Figure 6.2: The central figure displays a Kramers degenerate Dirac cone. Introducing the
Zeeman field b breaking time reversal symmetry, the Kramers degeneracy is lifted and the
Dirac point is split horizontally into two Weyl nodes in the left figure. Alternately, introducing
the field z, the Dirac cone is split vertically and the energy bands meet at a nodal loop.

Consider then both of the Zeeman fields b and z to be nonzero, while as-
suming a mass m = 0. The four energy bands are then readily calculated

ετσ(q; b, z) = τ

√
q2 + b2 + z2 + 2σ

√
(b · q)2 + |z × q|2 + (b · z)2. (6.23)

For simplicity, consider in particular the case z × b = 0, such that the fields
become parallel with (b · z)2 = b2z2. The band structure may then exhibit
either two Weyl nodes or a nodal loop depending on the relative magnitude
of the two fields. If the field b dominates, with |b| > |z|, there are two Weyl

nodes located at q = ±b̂
√
b2 − z2. If the other field dominates however, with

|b| < |z|, there will instead be a nodal loop with radius q2 = z2 − b2 lying in
the plane defined by z · q = 0.

Finally, assume both Zeeman fields b and z and the mass m are all nonzero.
In that case an analytical expression for the energy bands can be found as long
as the Zeeman fields are perpendicular, satisfying b · z = 0, for which
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ετσ(q,m; b, z) = τ

√
q2 +m2 + b2 + z2 + 2σ

√
(b · q)2 + |z × q|2 + (b2 + z2)m2

(6.24)
If the mass term dominates over the fields, with b2 + z2 < m2, the energy
spectrum will be fully gapped. For b2 + z2 > m2 however, the energy bands

touch at two Weyl nodes located at q = ±b̂
√
b2 + z2 −m2.

6.3.2 The Breaking of Space Inversion Symmetry

In order to break the space inversion symmetry of the Dirac Hamiltonian (D8)
while preserving the time reversal symmetry, the only suitable hermitian matri-
ces of table D.1 are γ5 = −τz ⊗ σ0 and iγµ = −τy ⊗σ. Adding these symmetry
breaking terms to the Dirac Hamiltonian kernel HD(q), the total Hamiltonian

H(q) = HD(q) + τy(σ ·w) + λτz =

[
−σ · q + λ m− iσ ·w
m+ iσ ·w σ · q − λ

]
(6.25)

where now the scalar λ and the vector w are introduced as parameters of the
system. The energy band spectrum of the system can then be calculated to be

ετσ(q,m;w, λ) = τ

√
q2 +m2 +w2 + λ2 + 2σ

√
λ2q2 + |w × q|2 (6.26)

Here, the energy spectrum is fully gapped whenever m 6= 0. For m = 0 however,
two of the bands touch at a nodal loop defined by q2 = w2 + λ2 and q ·w = 0.

Under the current analysis there are then no Weyl nodes appearing if only
the space inversion symmetry is broken. From topological arguments, Weyl
nodes must be generated in pairs of different Chern number, with each Weyl
node pair representing a source and a sink of Berry curvature. Recall then the
transformation properties of the Berry curvature, given in table 5.1. If space
inversion symmetry is broken whereas time reversal symmetry is preserved, the
Berry curvature must be an even function of the crystal momentum k. In that
case, two Weyl nodes located at the momenta k0 and −k0 must have the same
Chern number. Thus in general, if only the space inversion symmetry is broken
there must be a minimum of four Weyl nodes in the system in order to have
a net Chern number of zero. The Hamiltonian under consideration however is
dependent linearly on its parameters and only describe four degrees of freedom,
and so cannot produce four points at which the energy bands are degenerate.

Finally, it should be noted that all introduced parameters in the preced-
ing calculations are assumed independent on the crystal momentum. Hence,
it should be clear that the discussion on the generation of Weyl nodes from
Dirac points is not exhaustive, and holds only when the dependence on crystal
momentum lies entirely within the Dirac Hamiltonian kernel (6.19).
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6.3.3 Classifications of Magnetic Order

From relativistic quantum theory, the spin of electrons in the classical limit gen-
erate a magnetic moment which couple to the spin of other particles. For crys-
talline systems in particular, the spins of itinerant electrons may couple to the
magnetic moment generated by the localized spins of electrons in lower energy
orbitals of the underlying lattice. In most materials however the spin structure
of the underlying crystal lattice is disordered both spatially and temporally, and
the effect of the coupling between the spins levels out at the macroscopic scale.

If the system is magnetically ordered, the material can be classified according
to the symmetries of the spin structure. For ferromagnetic materials, the spins
tend to align in the same direction throughout the material, giving rise to a
net uniform magnetization per spin m which serves as an order parameter for
the system. If instead neighbouring spins tend to align in opposite directions,
the material is said to be antiferromagnetic. In the antiferromagnetic case,
the material is magnetically ordered but without a net magnetization, and the
order parameter is instead given by the staggered magnetization, conventionally
termed the Néel vector and denoted by n.

In the following, a diatomic crystalline system is considered where the local-
ized spins of the two atomic nuclei of the unit cell are denoted by SA and SB ,
as shown in figure 6.3. Assuming the representation of the parity operator is
given by P = ±τx, the itinerant electrons of the system will then couple to the
localized spins through the exchange interaction [30]

HJ =
J

2

[(
τ0+ τz

)
⊗
(
σ · SA

)
+
(
τ0 − τz

)
⊗
(
σ · SB

)]
= J

[
τ0 ⊗ σ ·m+ τz ⊗ σ · n

] (6.27)

where τ and σ are sets of Pauli matrices (C8) corresponding to the orbital and
spin degrees of freedom respectively, and J is an assumed isotropic coupling
strength. The uniform and staggered magnetizations are here related to the
two spins through m = (SA + SB)/2 and n = (SA − SB)/2 respectively. The
following classification scheme for magnetic order is illustrated in figure 6.3.

Collinear Magnetic Ordering

Ferromagnetic Ordering Antiferromagnetic Ordering

Non-Collinear Magnetic Ordering

Sublattices

Magnetization

A

B

Staggered

Uniform

Figure 6.3: The different classifications of magnetic order, shown for a diatomic square crystal
lattice where the spin related to the atomic orbitals provide the two sublattices.
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If the spins are aligned with SA = SB = m and n = 0 the system is fully
ferromagnetic. Similarly, if instead the spins are anti-aligned with m = 0 and
SA = −SB = n the system is fully antiferromagnetic. In both cases, all spins
are arranged in the same direction, and the spin structure is said to be collinear.
In the non-collinear case, both the uniform and the staggered magnetizations
are non-zero. Notice that for a general polyatomic primitive unit cell, the net
magnetization m can be zero even in the non-collinear case [31].

From appendix C the quantum spin is inverted under the time reversal sym-
metry T , while being unaffected by the space inversion symmetry P. Consid-
ering then the different spin structures of figure 6.3, ferromagnetic ordering is
seen to break the time reversal symmetry which would otherwise be present
in the absence of spin. The ferromagnetic ordering does however not affect
the space inversion symmetry, seeing that the spins are equivalent on all lat-
tice sites; a system invariant under space inversion without magnetic ordering
will also be invariant under space inversion with ferromagnetic ordering. For
the antiferromagnetic ordering, both the time reversal symmetry and the space
inversion symmetry are broken due to the magnetic ordering. If however the
crystal lattice is invariant under space inversion without the magnetic ordering,
the system will be invariant under the combined PT -symmetry.

Consider then adding the exchange coupling (6.27) to the general PT -
invariant four-band kernel (6.15), which then takes the form

H(k) = h0(k)I4 + τzσ · (h(k) + Jn) + h4(k)τx + h5(k)τy + Jσ ·m. (6.28)

The uniform magnetization m is here seen to be equivalent to the Zeeman field
b introduced in order to break the time reversal symmetry (6.20) of the Dirac
Hamiltonian kernel (6.19). Hence, the uniform magnetization lifts the Kramers
degeneracy of the energy band structure, and so Dirac semimetals excludes ferro-
magnetic order; the energy band structure of a ferromagnetic crystalline system
cannot harbour Dirac points. Weyl semimetals however can be ferromagnetic,
and in general also antiferromagnetic as long as the PT -symmetry is broken.

In order to investigate the effect of the Néel vector n on the four-band
system, consider an antiferromagnetic system with m = 0, for which the energy
bands can be calculated from the Hamiltonian kernel (6.28) to be

ετσ(k;n) = h0(k) + τ

√(
h(k) + Jn

)2
+ h2

4(k) + h2
5(k) (6.29)

As foretold by the PT -invariance of the antiferromagnetic coupling term, the
energy band structure remains Kramers degenerate under the perturbation. As-
sume then that the two parameters h4 = h5 = 0 identically, and that the energy
band structure harbours a Dirac point as explained in section 6.2. In this case,
the effect of the Néel vector is solely to move the location of the Dirac point in
the Brillouin zone. If instead the spin reversal parameters h1 = h2 = 0 identi-
cally, the Néel vector will in general open a gap in the energy band spectrum,
removing the assumed Dirac point. Thus, the effect of the antiferromagnetic
exchange coupling will depend on the physical origin of the Dirac point.
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Part III

Optical Conductivity of
Novel Quantum Materials
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Chapter 7

Conductivity Calculations
for Two-Band Systems

In this chapter, the theoretical machinery regarding the calculation of conduc-
tivity derived in Part I of the thesis is used to derive a conductivity tensor for
a general energy band structure comprising two bands. A calculation using the
resulting formula is then exemplified through the conductivity calculation of a
Rashba ferromagnet, as previously performed by Qaiumzadeh and Titov [32].

The chapter can be regarded a prelude to the calculations of chapter 8, where
a conductivity formula is derived for a general Kramers degenerate four-band
system. The resulting expressions for the conductivity tensors in the two cases
will be directly analogous, and a purpose of the current chapter is to introduce
the nomenclature and methodology used in the final calculations of the thesis,
in a setting where the conductivity tensor is known.

A main demonstration of the calculations is the direct dependence of the
conductivity tensor on the Berry curvature tensor, defined and derived for a
general two-level system in chapter 5. For topologically non-trivial systems with
a finite Berry curvature, the topology of the Hilbert spaces of Bloch functions
thus result in the emergence of the anomalous Hall conductivity, where the
transverse components of the conductivity tensor are nonzero.
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7.1 The Two-Band Conductivity Formula

Consider a crystalline system in the tightbinding approximation, where the mu-
tual Coulomb interactions between the electrons in the system are neglected such
that the Hamiltonian takes the form of a single-particle operator. In particular,
consider two energy bands of the system, assumed related to some pseudospin
degree of freedom denoted by τ . The system then allows for a two-level de-
scription, whose general characteristics were investigated in section 5.3, with
the two-band Hamiltonian kernel written

H(k) = h0(k)τ0 + h(k) · τ (7.1)

where τ0 is the (2×2) identity matrix and τ denote the Pauli matrices (C8). The
vector h(k) = (hx(k), hy(k), hz(k)) is the Bloch vector, which together with the
zero-point energy h0(k) constitute four real parameters of the system. The two
k-dependent eigenvalues of the Hamiltonian kernel constitute two energy bands,
written in terms of the four real parameters h0(k) and h(k) as

ε±(k) = h0(k)± |h(k)|, (7.2)

assumed to vary differentiably with respect to the d components of k. From
the two-band Hamiltonian kernel (7.1) a specific Kubo formula for conductivity
(3.33) for two-band systems can be derived.

7.1.1 The Two-Band Matsubara Autocorrelation Function

The two-point Matsubara Green functions of the two-band system can be cal-
culated from the equation of motion for the matrix of Green functions (2.44)

G(k, iνn) =
[
i~νn − (H(k)− µ)

]−1
=

[i~νn − (h0(k)− µ)] + h · τ
[i~νn − ξ+(k)][i~νn − ξ−(k)]

.

Here, the denominator is the determinant of the matrix i~νnI2 − (H(k) − µ)
written as the product of its two eigenvalues, where ξs = εs − µ with µ being
the chemical potential. Through a partial fraction decomposition the matrix of
Green functions is readily expressed as a sum over band indices s as

G(k, iνn) =
1

2

∑
s=±

(
1 + s

τ · h(k)

|h(k)|

)
1

i~νn − ξs(k)
(7.3)

where the unit Bloch vector in the following is denoted by ĥ = h/|h|.
Considering the uniform case, where the modulations of the applied electric

field are much larger than the interatomic distances within the crystal, the
current density matrices (3.14) can be calculated as the derivative

Ji(k) = − e
~
∂H(k)

∂ki
= − e

~
∂ih0(k)I2 −

e

~
∂ih(k) · τ (7.4)
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where e is the charge of the electron and the notation ∂i ≡ ∂/∂ki is adopted.
Inserting the two-band matrix of Green functions (7.3) and the current den-

sity matrices (7.4) into the Matsubara autocorrelation function (3.41) gives

πil(iωm) =
1

β

ˆ
ddk

(2π)d

∑
νn

Tr{Ji(k)G(k, iνn + i~ωm)Jl(k)G(k, iνn)}

=
e2

2~2β

ˆ
ddk

(2π)d

∑
νn

∑
s1=±

∑
s2=±

·

· 1

2
Tr

{
[∂ih0I2 + ∂ih · τ ][I2 + s1ĥ · τ ][∂lh0I2 + ∂lh · τ ][I2 + s2ĥ · τ ]

[i~νn − ξs1 ][i~νn + i~ωm − ξs2 ]

}

Here, the calculation involves a trace over multiple products of identity and
Pauli matrices (C8). Using the relation for the product of Pauli matrices (C9),
all the Pauli matrix products reduce to sums over identity and Pauli matrices.
Then, as the trace over Pauli matrices Tr{τ} = 0, only the coefficients of the
identity matrix remains. The trace can then readily be expressed

1

2
Tr
{

[∂ih0I2 + ∂ih · τ ][I2 + s1ĥ · τ ][∂lh0I2 + ∂lh · τ ][I2 + s2ĥ · τ ]
}

= (1 + s1s2)∂ih0∂lh0 + (s1 + s2)[∂ih0(ĥ · ∂lh) + (ĥ · ∂ih)∂lh0]

+ 2s1s2(ĥ · ∂ih)(ĥ · ∂lh) + (1− s1s2)∂ih∂lh+ i(s2 − s1)ĥ(∂ih× ∂lh).

Performing the sums over band indices s1 and s2, and noticing that the deriva-
tive ∂i|h| = ĥ · ∂ih, the Matsubara autocorrelation function can be expressed

πil(iωm) ≡ πintra
il (iωm) + πinter

il (iωm) =
e2

~2β

ˆ
ddk

(2π)d

∑
νn

∑
s[

(∂iεs)(∂lεs)

(i~νn − ξs)(i~νn+i~ωm − ξs)
+

(ĥ×∂ih)·(ĥ×∂lh)− isĥ·(∂ih×∂lh)

(i~νn − ξs)(i~νn+i~ωm − ξ−s)

] (7.5)

The autocorrelation function is here split into an intraband and an interband
contribution, describing the transport properties of electrons within and between
the two energy bands, respectively. Notice in particular that the form of the
intraband terms are identical to the autocorrelation function for a single band
(3.42). By the analysis of section 3.3, the intraband autocorrelation function

Πintra
il (ω) =

e2ω

ω + iη

ˆ
ddk

(2π)d

∑
s

∂iεs(k)

~
∂lεs(k)

~
[
nF (εs − ~ω)− nF (εs)

]
. (7.6)

where nF (ε) is the Fermi-Dirac distribution (1.34).
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7.1.2 The Two-Band Interband Autocorrelation Function

Consider the interband term of the two-band Matsubara autocorrelation func-
tion (7.5) describing the excitation of electrons between the two energy bands,

πinter
il (iωm) =

e2

~2β

ˆ
ddk

(2π)d

∑
νn

∑
s

(ĥ×∂ih)·(ĥ×∂lh)− isĥ·(∂ih×∂lh)

(i~νn − ξs)(i~νn+i~ωm − ξ−s)
. (7.7)

In order to simplify notation under calculations, introduce here the tensors

Ξil(k) ≡ (ĥ×∂ih)·(ĥ×∂lh) = ∂ih · ∂lh− ∂i|h|∂l|h|

Ωil(k) ≡ 1

2|h|3
h · (∂ih×∂lh).

(7.8)

In the following, the first tensor Ξil(k) will be referred to as the interband tensor,
while the second tensor is related to the Berry curvature tensor (5.21) of band

s through Ω
(s)
il (k) ≡ −sΩil(k). Furthermore, the second Matsubara frequency

summation rule (2.38) can be applied directly to give the expression

1

β

∑
νn

1

(i~νn − ξs)(i~νn + i~ωm − ξ−s)
=
nF (εs)− nF (ε−s − i~ωm)

εs − ε−s + i~ωm
,

where the Fermi-Dirac distribution satisfies nF (ε − i~ωm) = nF (ε). Inserting
also the exact form of the energy functions (7.2) then leaves

πinter
il (iωm) =

e2

~2

ˆ
ddk

(2π)d
·
∑
s

[
nF (εs)− nF (ε−s)

]Ξ(k)− is|h|2Ωil(k)

2s|h|+ i~ωm

Performing the analytical continuation of the interband Matsubara autocorrela-
tion function then gives the interband current density autocorrelation function

Πinter
il (ω) =

e2

~2

ˆ
ddk

(2π)d
[
nF (ε+)−nF (ε−)

]∑
s

sΞ(k)− i|h|2Ωil(k)

2s|h|+ ~ω + iη
(7.9)

where the sum over bands has been moved past the Fermi-Dirac distributions.
The interband current density autocorrelation function (7.9) can thus be

split into two parts, denoted by the two tensors

ΠΞ
il(ω) =

e2

~2

ˆ
ddk

(2π)d
[
nF (ε+)− nF (ε−)

]∑
s

sΞil(k)

2s|h|+ ~ω + iη

ΠΩ
il(ω) =

e2

i~2

ˆ
ddk

(2π)d
[
nF (ε+)− nF (ε−)

]∑
s

2|h|2Ωil(k)

2s|h|+ ~ω + iη
,

(7.10)
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By definition the diagonal terms of the Berry curvature (5.8) are zero, and so the
term ΠΩ

il(ω) only contributes to the transverse conductivity. Furthermore, seeing
that the interband and Berry curvature tensors (7.8) are symmetric and anti-
symmetric respectively, the corresponding conductivity tensors (3.33) will also
be symmetric and antisymmetric, with σΞ

il(ω) = σΞ
li(ω) and σΩ

il (ω) = −σΩ
li(ω).

In calculations of the interband autocorrelation function (7.9), the Sokhotski-
Plemelj theorem [33] states that when residing within an integral, the factor

1

2s|h|+ ~ω + iη
= −iπδ(2s|h|+ ~ω) + P

1

2s|h|+ ~ω
(7.11)

where P signifies the action of taking the principal value of the surrounding
integral. Here, seeing that the frequency ω > 0, the delta function will only leave
a contribution for s = −1. Furthermore, because the vector |h| is in general
dependent on both the magnitude and the direction of the crystal momentum
k, the delta function will leave an integration over the surface in the Brillouin
zone for which the equation ~ω − 2|h(k)| = 0 holds.

Finally, in the zero temperature limit the Fermi-Dirac distribution nF (ε)
approaches the Heaviside function Θ(µ− ε), for which the difference

lim
T→0

[
nF (ε+)− nF (ε−)

]
= Θ(µ− ε+)−Θ(µ− ε−). (7.12)

Hence, in the zero temperature limit, seeing that ε+ > ε− for any value of k,
the Fermi-Dirac distributions in the interband autocorrelation function (7.9)
enforces the constraint ε−(k) < µ < ε+(k). The constraint allows for a natural
physical interpretation: the direct optical transition of an electron from the
valence band ε−(k) to the conduction band ε+(k) requires the former to be
filled and the latter to be empty at the specific momentum k, which at zero
temperature is the case only if the Fermi-level µ lies in between the two bands.

7.1.3 The Anomalous Hall Conductivity

The direct current interband conductivity tensor (3.34) can then be calculated

σinter
il (ω) = i

∂Πinter
il

∂ω

∣∣∣∣
ω=0

=
e2

~

ˆ
ddk

(2π)d
[
nF (ε−)− nF (ε+)

]h·(∂ih×∂lh)

2|h|3
.

where the sum over s cancels the part ΠΞ
il(k) and leavs a factor of two for ΠΩ

il(ω).

Recalling that the Berry curvature (5.21) is defined Ω
(s)
il (k) ≡ −sΩil(k) for band

s, the two-band direct current interband conductivity becomes

σinter
il =

e2

~

ˆ
ddk

(2π)d

∑
s

nF (εs) Ω
(s)
il (7.13)

This is the expression for the anomalous Hall conductivity [34], which is a conse-
quence of the topology of the Brillouin zone. The anomalous Hall conductivity
is a contribution to the transverse conductivity, as the diagonal terms of the
Berry curvature (5.8) are zero from their definition.
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7.2 Conductivity of a Rashba Ferromagnet

The present section rederives the conductivity tensor for a Rashba ferromagnet,
as performed in the article by Qaiumzadeh and Titov [32]. The section initiates
with a description of the Rashba system, whose effective Hamiltonian operator is
invariant under continuous translation invariance. The calculations are therefore
performed in the momentum representation (B6), and not in the Bloch basis
(B18) as for systems where the translation invariance is discrete.

7.2.1 System Description of the Rashba Ferromagnet

Consider a two dimensional ferromagnet with Rashba spin-orbit coupling, whose
Hamiltonian operator disregarding disorder effects takes the form [32]

ĥ(p̂) =
p̂2

2m
σ0 + αR(p̂× σ)z +Mσz, (7.14)

where p̂ = (p̂x, p̂y) denotes the two dimensional momentum operator and m is
the electron mass. The parameter αR here describes the strength of the Rashba
spin-orbit coupling, and M gives the ferromagnetic exchange energy for the
magnetization perpendicular to the material plane. The set of Pauli matrices
(σ0,σ) represents the electron spin degree of freedom.

For the case at hand, the Hamiltonian operator ĥ(p̂) describing a single
electron is only dependent on the momentum operator p̂ of the electron. The
Hamiltonian kernel H(p) can then readily be calculated as the matrix elements
of the Hamiltonian operator with respect to the eigenstates |p〉 of the momentum
operator (B6), with the corresponding momentum eigenvalue denoted by p.
Thus, the Hamiltonian kernel for the Rashba ferromagnet becomes

H(p) = 〈p| ĥ(p̂) |p〉 =
p2

2m
σ0 + αR(p× σ)z +Mσz. (7.15)

Compared with the general two-band Hamiltonian kernel (7.1), the Bloch vec-
tor for the Rashba ferromagnet becomes h(p) = (−αRpy, αRpx,M) and the
parameter h0(p) = p2/2m, with the corresponding energies (7.2)

εs(p) =
p2

2m
+ s
√
α2
Rp

2 +M2 (7.16)

Notice here that the energy spectrum is dependent only on the magnitude of
the momentum |p| = p. The energy bands are plotted in figure 7.1.

From the analysis of section 3.1, the momentum representation of the cur-
rent density matrices (3.8) can then be calculated from the Hamiltonian kernel
(7.15) as J (p) = −e∇pH(p) = − epm σ0− eαR(ẑ×σ), where ẑ is the unit vector
in the z-direction and e is the unit charge. The derivation of the conductivity
formulae for a general two-band Hamiltonian kernel in section 7.1 can then sim-
ilarly be performed for the Rashba Hamiltonian kernel (7.15), with the crystal
momentum exchanged for the fully conserved linear momentum p.
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Energy Bands of a
Rashba Ferromagnet

Figure 7.1: The two energy bands of a Rashba ferromagnet with spin-orbit coupling as a func-
tion of the magnitude of the momentum p, with a Fermi level µ larger than the ferromagnetic
exchange energy M . The frequency ω corresponds to a direct optical transition from ε−(p) to
ε+(p) under the condition ε−(p) < µ < ε+(p). The coupling strength of the Rashba spin-orbit

coupling is denoted by ∆, and the parameter ~ω0 =
√

∆2 + 2∆µ+M2. Notice that with zero
spin-orbit coupling ∆ = 0, the optical frequency ~ω = 2M , equal to the resulting constant gap
between the energy bands. The energy bands are plotted for the parameter values µ = 3.3 eV,
M = 0.4 eV and ∆ = 0.1 eV, as given by Qaiumzadeh and Titov [32].

Let then the conduction band ε+(p) be vacant while an electron occupies a
state in the valence band with energy ε−(p) for a specific momentum p, imposing
the condition ε−(p) < µ < ε+(p) on the Fermi level µ. From the expression of
the energy bands (7.16), this condition is satisfied for any momentum with a
magnitude satisfying p− < p < p+, where the bounds are defined through

p2
± = 2m(∆ + µ± ~ω0) (7.17)

Here, the introduced parameters ∆ = mα2
R and ω2

0 = (∆2 +2µ∆+M2)/~2. The
notation is related to the interaction between an imposed photon and an electron
occupying the state with the energy ε−(p). For a direct optical transition from
the lower to the upper energy band to occur at the specific momentum p, the
frequency of the photon must satisfy ~ω = ε+(p)−ε−(p), which in combination
with the condition on the Fermi level can be written

~ω0 −∆ <
~ω
2
< ~ω0 + ∆. (7.18)

Ascertaining that the mass m and the Fermi level µ both are positive quantities,
the introduced parameters here satisfies ~ω0 > ∆ by definition. Notice also
that with no Rashba spin-orbit interaction αR = 0, the condition means any
optical transitions between the bands must occur at the frequency ~ω = 2M
corresponding to the then constant separation between the two bands. In this
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way, the spin-orbit interaction allows for a wider interval of frequencies for which
an optical transition between the two bands can occur.

The following calculations of the conductivity tensor for the two dimensional
Rashba ferromagnet will involve the introduced parameters ∆ and ω0. Further-
more, the calculations assumes the optical transitions occurs at the upper part
of the energy spectrum, where both energy bands satisfies εs(p) > M . This im-
poses the additional restriction µ > M , which translates to ∆+µ > ~ω0. These
restrictions on the parameters are rendered implicit in the following calculations.

7.2.2 The Rashba Ferromagnet Intraband Conductivity

Consider the intraband term of the Matsubara autocorrelation function (7.5)
for a general two-band system. By the analysis provided in section 3.3, in the
limit µ� ω the corresponding intraband conductivity tensor can be calculated

σintra
il (ω) =

e2

η − iω

ˆ
ddp

(2π)d

∑
s

∂εs
∂pi

∂εs
∂pl

∂nF (εs)

∂µ
. (7.19)

For the case at hand, the energy band spectrum εs(p) = εs(p) is independent
on the direction of the momentum. Using the derived conductivity formula for
single isotropic energy bands (3.51) then gives the expression

σintra
il (ω) =

δil
4π

e2

η − iω
∑
s

∑
a

psa0

∣∣∣∣∂εs∂p (psa0 )

∣∣∣∣. (7.20)

where the current dimension d = 2 has been inserted. Here, the momenta psa0 are
the solutions to the equations εs(p

sa
0 )− µ = 0 for s = ±1. These equations are

solved for the momentum bounds previously defined (7.17), with p± being the
solution for band s = ∓ respectively, confirmed visually by figure 7.1. Inserting
the derivative of the energy bands (7.16), the conductivity readily becomes

σintra
il (ω) =

δil
π

e2

η − iω

[
∆ + µ− M2∆

M2 + 2µ∆

]
=
δil
π

µe2

η − iω
~2ω2

0 + ∆2

~2ω2
0 −∆2

. (7.21)

In the last expression, it is seen that the conductivity increases with an in-
creasing Rashba spin-orbit coupling parameter ∆, which alters the slope of the
energy bands near the Fermi level. Furthermore, it should here be noted that
the expression is derived for a Fermi level µ > M , where both of the energy
bands cross the Fermi level and hence contributes to the intraband conductiv-
ity. Inserting then first M = 0 followed by µ = 0, the intraband conductivity
is still seen to be finite and proportional to the Rashba coupling strength ∆.
Furthermore, for ∆ = 0, the intraband conductivity becomes proportional to
the Fermi level µ, independent on the ferromagnetic exchange energy M .
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7.2.3 The Rashba Ferromagnet Interband Conductivity

The interband contribution to the conductivity tensor (7.9) is expressed in terms
of the interband and Berry curvature tensors (7.8), which for the Bloch vector
h(p) = (−αRpy, αRpx,M) of the Rashba ferromagnet can be expressed

Ξil(p) = α2
Rδil −

α4
Rpipl

α2
Rp

2 +M2
= Ξli(p)

Ωxy(p) =
Mα2

R

2(α2
Rp

2 +M2)3/2
= −Ωyx(p).

(7.22)

Furthermore, at zero temperature the Fermi-Dirac distributions take the form
of Heaviside functions enforcing the constraint ε− < µ < ε+. In terms of the
previously defined momentum bounds (7.17), the difference

Θ(µ− ε+(p))−Θ(µ− ε−(p)) = −Θ([p2
+ − p2][p2 − p2

−]), (7.23)

enforcing the constraint p− < p < p+ as seen in figure 7.1; the momenta in the
final Heaviside function are squared for easier calculations in the following.

Consider first the interband contribution corresponding to the tensor Ξil(p).
Using the Sokhotski-Plemelj theorem (7.11), the autocorrelation function (7.10)

ΠΞ
il(ω) = − e2

ˆ
d2p

(2π)2
Θ([p2

+ − p2][p2 − p2
−])

(
α2
Rδil −

α4
Rpipl

α2
Rp

2 +M2

)
∑
s

[
− iπsδ(~ω + 2s|h|) +

s

2s|h|+ ~ω

]
Notice here that the only dependence on the direction of p lies in the second
factor. Converting to spherical coordinates and performing the integral over the
solid angle (3.50), the resulting integral can be expressed

ΠΞ
il(ω) =− δil

α2
Re

2

4π

ˆ
dp pΘ([p2

+ − p2][p2 − p2
−])

(
2− α2

Rp
2

α2
Rp

2 +M2

)
∑
s

[
− iπsδ(~ω + 2s|h(p)|) +

1

2|h(p)|+ s~ω

] (7.24)

Hence, the autocorrelation function ΠΞ
il(ω) contributes only to the diagonal el-

ements of the interband conductivity tensor. Recalling then that the other
contribution ΠΩ

il(ω) only contributes to the transverse elements of the conduc-
tivity tensor, the transverse components satisfies Πinter

ii (ω) = ΠΞ
ii(ω). Notice

also that the delta function only gives a contribution for s = −1.
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In consequence, the real and imaginary parts of the transverse elements of
the interband autocorrelation function can be expressed

Im Πinter
ii (ω) = − α2

Re
2

4

ˆ
dp p Θ([p2

+ − p2][p2 − p2
−])

α2
Rp

2 + 2M2

α2
Rp

2 +M2
δ(ω − 2|h(p)|)

Re Πinter
ii (ω) = − α2

Re
2

4π

ˆ p+

p−

dp p
α2
Rp

2 + 2M2

α2
Rp

2 +M2

[
1

2|h(p)|+ ~ω
+

1

2|h(p)| − ~ω

]
Here, the Heaviside function was used to change the bounds of the integral of
the real part. For the imaginary part, the remaining delta function

δ(~ω − 2|h(p)|) =
δ(p− p0)∣∣∣2∂|h(p)|
∂p (p0)

∣∣∣ p0 =
1

αR

√
~2ω2

4
−M2 (7.25)

where p0 is the solution to the equation ~ω − 2|h(p)| = 0. Introducing also the
substitution u = |h(p)| =

√
α2
Rp

2 +M2, the real and imaginary parts becomes

Im Πinter
ii (ω) = − α2

Re
2

4
p0Θ([p2

+ − p2
0][p2

0 − p2
−])

α2
Rp

2
0 + 2M2

α2
Rp

2
0 +M2

· ~ω
4α2

Rp0

Re Πinter
ii (ω) = − α2

Re
2

4π

ˆ u+

u−

du u

(
1 +

M2

u2

)[
1

2u+ ω
+

1

2u− ω

]
where the bounds u± = ~ω0 ± ∆. Inserting the expressions for p0 and p± in
the imaginary part, performing the remaining integral for the real part, and
introducing the parameter

λ =
1

~ω∆

(
~2ω2

4
− ~2ω2

0 + ∆2

)
(7.26)

the interband autocorrelation function (7.9) can thus be written on the form

Im Πinter
ii (ω) =− ~ωe2

16

(
1 +

4M2

~2ω2

)
Θ(1− λ2)

Re Πinter
ii (ω) =− ~ωe2

2π

[
1

8

(
1 +

4M2

~2ω2

)
ln

∣∣∣∣1 + λ

1− λ

∣∣∣∣+
∆

~ω

] (7.27)

Notice here that the imaginary part is finite only for |λ| < 1, which can be
rewritten to the frequency condition (7.18) derived previously.

From the expression of the Rashba ferromagnet interband autocorrelation
function (7.27), the real and imaginary parts of the corresponding conductiv-
ity tensor (3.33) are readily calculated. Noticing here that Im Πinter

ii (0) = 0 by
virtue of the Heaviside function, and calculating Re Πinter

ii (0) = 2µ∆2/(~2ω2
0 −

∆2) in the zero frequency limit, the diagonal elements of the interband conduc-
tivity tensor for the Rashba ferromagnet (7.14) can be expressed
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Reσinter
ii (ω) =

~e2

16

(
1 +

4M2

~2ω2

)
Θ(1− λ2)

Imσinter
ii (ω) =

~e2

2π

[
1

8

(
1 +

4M2

~2ω2

)
ln

∣∣∣∣1− λ1 + λ

∣∣∣∣− ∆

~ω

(
1− 2∆µ

~2ω2
0 −∆2

)] (7.28)

Inserting the zero magnetization limit M = 0, the expressions for the conduc-
tivity are seen to reduce to the results found by Magarill et al. [35].

Consider then the part of the interband autocorrelation function (7.9) cor-
responding to the Berry curvature tensor Ωil(p). From the previous discussion,
the transverse elements of the interband autocorrelation function

Πinter
xy (ω) = ΠΩ

xy(ω) = ie2

ˆ
d2p

(2π)2
Θ([p2

+ − p2][p2 − p2
−])

Mα2
R√

α2
Rp

2 +M2∑
s

[
− iπδ(~ω + 2s|h(p)|) +

1

2s|h(p)|+ ~ω

]
Here, the other transverse component is given by Πinter

yx (ω) = −Πinter
xy (ω).

As in the derivation of the diagonal elements (7.27), the delta function only
gives a contribution (7.25) for s = −1. Performing also the integral directly for
the second part, the transverse interband autocorrelation function becomes

Πinter
xy (ω) =

e2M

4
Θ(1− λ2) + i

e2M

4π
ln

∣∣∣∣1 + λ

1− λ

∣∣∣∣, (7.29)

where all frequency dependence lies within the parameter λ, introduced previ-
ously (7.26). In this case, both the real and imaginary parts leave Πinter

xy (0) = 0,
and so the transverse interband conductivity for the Rashba ferromagnet

σinter
xy (ω) = σinter

xy (ω) =
e2M

4πω
ln

∣∣∣∣1− λ1 + λ

∣∣∣∣+ i
e2M

4ω
Θ(1− λ2) (7.30)

Seeing that the intraband term (7.21) is diagonal, the resulting expression gives
the entire contribution to the transverse conductivity of the Rashba ferromag-
net, being the alternate current anomalous Hall conductivity of the Rashba
ferromagnet [32]. Inserting the direct current limit ω = 0, the direct current
anomalous Hall conductivity (7.13) becomes

σxy =
~e2

2π

M∆

M2 + 2µ∆
(7.31)

Hence, in the zero magnetization limit M = 0, there is no transverse conduc-
tivity in either the direct current or the alternate current cases. In this limit,
the Hamiltonian kernel (7.15) is rendered invariant under time reversal, and the
Berry curvature tensor of the system (7.22) becomes zero. In conclusion, for the
Rashba ferromagnet, a nonzero transverse conductivity is reliant on the Berry
curvature being nonzero, both in the alternate and direct current cases.
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Chapter 8

Conductivity Calculations
for Dirac Semimetals

In the final chapter of main contents of the thesis, the cumulation of all previous
chapters, a formula for the conductivity tensor for a general Kramers degener-
ate four-band system is calculated and then specialized to the case of a Dirac
semimetal as introduced in chapter 6. The calculations are first performed for
two superposed Weyl nodes where spin-orbit coupling is neglected, where an
analytical expression is achievable in the zero temperature limit. Then, the
spin-orbit coupling is treated as a perturbative interaction between the super-
posed Weyl nodes, and the conductivity tensor calculated to second order in the
emerging spin reversal parameters.

Finally, the formulae are used to predict features of the conductivity tensor
of the orthorhombic phase of the antiferromagnetic Dirac semimetal CuMnAs,
whose energy band structure has been analyzed by Tang et al. [11]. In this
regard, the symmetry protection of the Dirac points for the particular material
is investigated in order to exemplify the symmetry protection of Dirac nodes,
and in particular to discuss the effect of reorientation of the magnetic moments
in the antiferromagnetically ordered crystal structure.

The calculations suggests the orthorhombic phase of CuMnAs will inhibit
a Hall conductivity, which unlike the anomalous Hall conductivity introduced
in chapter 7 is symmetric in the conductivity tensor indices. The emergence of
the symmetric Hall conductivity is dependent on a non-zero optical frequency,
and cannot be attributed to the Berry curvature which is identically zero due
to the imposed Kramers degeneracy. Instead, the symmetric Hall effect appears
to originate in particular features of the anisotropy of the Fermi surface related
to the directions of the effective velocities nearby the Dirac point.
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8.1 Conductivity Neglecting Spin-Orbit Coupling

The following section derives conductivity formulae from the general Dirac
Hamiltonian kernel (6.17) investigated in chapter 6. In particular, the sec-
tion initiates with the calculation of a general current density autocorrelation
function for a Kramers degenerate four-band system, and then specializes to a
conductivity calculation for two superposed Weyl nodes.

8.1.1 Kramers Degenerate Four-Band Conductivity

Recall the Kramers degenerate Hamiltonian four-band kernels (6.14) devised in
chapter 6, and consider in particular the representation

H(k) = h0(k) + τyσ · h(k) + τzh4(k) + τxh5(k) (8.1)

where the vector h(k) = (h1(k), h2(k), h3(k)) is analogous to a Bloch vector
(5.18), and τ and σ denote a pseudospin and a spin related degree of freedom
respectively. The Hamiltonian kernel is exhaustive for all Kramers degenerate
four-band system; all PT -invariant perturbations can for any four-band system
be incorporated in the parameters hj(k). The Hamiltonian kernel corresponds
to the representation of the parity operator P = ±τ0, and are related to the
other derived representations of chapter 6 through a rotation in pseudospin
space. Hence, the calculations performed in the following for the particular
representation will apply for any Kramers degenerate four-band system with a
spin related and a spatial pseudospin degree of freedom.

Due to the imposed PT -invariance the four energy bands are pairwise Kramers
degenerate, and can be labelled by a band index s = ±1. Defining the five di-
mensional parameter vector H(k) = (h1(k), h2(k), h3(k), h4(k), h5(k)), the two
pairs of Kramers degenerate energy bands can be expressed on the form

εs(k) = h0(k) + s|H(k)|. (8.2)

Notice here the similarity with the non-degenerate two-band system (6.1) inves-
tigated in chapter 7, the analogy of which will be apparent in the following.

Recall the expression for the Matsubara autocorrelation function (3.41) for
a spatially uniform imposed electric field, rewritten here for convenience as

πil(iωm) =
1

~β

ˆ
ddk

(2π)d

∑
νn

Tr{Ji(k)G(k, iνn + iωm)Jl(k)G(k, iνn)}.

The matrix of Matsubara Green functions (2.44) is calculated as the inverse ma-
trix G(k) = [i~νn− (H(k)−µ)]−1, where νn is a fermionic Matsubara frequency
(2.15) and µ is the Fermi-level of the system. Inserting the Hamiltonian kernel
(8.1) under consideration, the Green matrices can readily be expressed

G(k, iνn) =
1

2

∑
s=±

(
I +

τyσ · h+ τzh4 + τxh5

s|H|

)
1

i~νn − ξs
(8.3)
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with ξs(k) = εs(k) − µ, the result being analogous to the matrix of Green
functions of a general two-band system (7.3). Furthermore, the current density
matrices (3.14) are defined as derivatives with respect to the crystal momen-
tum Ji(k) = −e∂iH(k)/~, where the notation ∂i = ∂/∂ki is adopted. The
calculation of the Matsubara autocorrelation function thus involves the trace

1

4
Tr

{
[∂iH]

[
I +

τyσ · h+ τzh4 + τxh5

s1|H|

]
[∂lH]

[
I +

τyσ · h+ τzh4 + τxh5

s2|H|

]}
= (1 + s1s2)∂ih0∂lh0 + (s1 + s2)[∂ih0(Ĥ · ∂lH) + (Ĥ · ∂iH)∂lh0]

+ 2s1s2(Ĥ · ∂iH)(Ĥ · ∂lH) + (1− s1s2)∂iH · ∂lH.

where the band indices s1 and s2 originates from the expression for the Green
matrix (8.3). Performing the sums over the band indices, the Matsubara auto-
correlation function for the Kramers degenerate four-band kernel (8.1) becomes

πil(iωm) = πintra
il (iωm) + πinter

il (iωm) =
2

~3β

ˆ
ddk

(2π)d

∑
νn

∑
s

·

[
(∂iεs)(∂lεs)

(i~νn−ξs)(i~νn−i~ωm−ξs)
+

(∂iH)·(∂lH)−(Ĥ ·∂iH)(Ĥ ·∂lH)

(i~νn−ξs)(i~νn + i~ωm−ξ−s)

]
.

(8.4)

The expression is analogous to the two-level autocorrelation function (7.5), with
the two-level Bloch vector exchanged for the five dimensional parameter vector
H(k). Here however, there is no term involving the Berry curvature (5.15), as
the Berry curvature of the energy band structure is identically zero due to the
imposed PT -symmetry. Notice also how the extra factor of two compared to
the two-band case reflects the double degeneracy of the energy band structure.

Hence, the Matsubara autocorrelation function (8.4) for the Kramers de-
generate four-band system is split into an intraband term πintra

il (iωm) and an
interband term πinter

il (iωm), describing the electronic transport properties within
and between the pair of doubly degenerate energy bands respectively. Notice
that the calculated intraband term (8.4) is simply the sum of two terms being
equivalent to the Matsubara autocorrelation function for a single energy band
(3.42). Performing the analytical continuation iωm → ω+ iη and summing over
the Matsubara frequencies using the second Matsubara frequency summation
rule (2.38), the intraband current density autocorrelation function becomes

Πintra
il (ω) =

2e2

~
1

ω + iη

ˆ
ddk

(2π)d

∑
s

∂iεs(k)

~
∂lεs(k)

~
[
nF (εs−~ω)−nF (εs)

]
(8.5)

analogous to the current density autocorrelation function for a single energy
band (3.44) of section 3.3. Here, the infinitesimal η is interpreted as a phe-
nomenological scattering rate, without which the interband conductivity is di-
vergent in the direct current limit. Hence, the intraband conductivity is de-
pendent on impurities in the crystal lattice in order to be finite, and is as
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such not intrinsic to the ideal crystalline system. The function nF (ε) is the
Fermi-Dirac distribution (1.34). In particular, for the zero temperature limit
the Fermi-Dirac distribution approaches a Heaviside function, and the differ-
ence Θ(µ−ε)−Θ(µ−ε+~ω) enforces the integrals to attain boundaries defined
through µ < εs(k) < µ+~ω. For values of energies outside of these boundaries,
the electron will optically transition to a bandgap or to another band. Such
a transition is either forbidden or incorporated by the interband part of the
autocorrelation function.

In order to simplify notation for the interband term of the derived Matsubara
autocorrelation function (8.4), introduce the interband tensor

Ξil(k) = ∂iH · ∂lH − ∂i|H|∂l|H|, (8.6)

which is analogous to the interband tensor of the two-level system (7.8) but with
the three-dimensional Bloch vector exchanged for the five-dimensional param-
eter vector H. In terms of the interband tensor the interband autocorrelation
function can after using the second Matsubara frequency summation rule (2.38)
and performing the analytical continuation iωm → ω + iη be expressed

Πinter
il (ω) =

2e2

~2

ˆ
ddk

(2π)d
[
nF (ε+)− nF (ε−)

]∑
s

sΞil(k)

2s|H|+ ~ω + iη
, (8.7)

again analogous to the two-band result (7.9). From the expression of the in-
terband tensor the interband conductivity tensor will be symmetric, satisfying
σinter
il (ω) = σinter

li (ω). However, an exact formula for the interband conductivity
(3.33) will depend on the direct current limit of the interband autocorrelation
function, which is dependent on the exact form of the remaining integral.

8.1.2 Conductivity of Two Superposed Weyl Nodes

Recall the Dirac semimetals investigated in section 6.2, and consider the general
Dirac semimetal Hamiltonian kernel (6.17) linearized around the Dirac point,
which upon neglecting the tilting term corresponding to h0(k) and the spin-orbit
coupling terms can be expressed in the current representation (8.1) as

H0(k) = τyσz(~v2 · k) + τz(~v3 · k) + τx(~v1 · k). (8.8)

Here, the three vectors vi = (vi1, vi2, vi3) are interpreted as effective velocities,
giving the gradient of the different terms of the Hamiltonian kernel (8.1) near
the Dirac point. The zero label is introduced in order to differentiate between
the cases with and without spin-orbit coupling, the former of which will be
investigated in the next subsection. From the analysis of chapter 6, the effective
Hamiltonian kernel here describes two superposed Weyl nodes (6.3) of opposite
chirality, with the corresponding Kramers degenerate energy band structure

ε0
s(k) = s

√
(~v2 · k)2 + (~v3 · k)2 + (~v1 · k)2 (8.9)
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near the Dirac point where again the band index s = ±1. Notice that the lin-
earization presumes the effective velocities vi are linearly independent. Under
the assumption of a positive Fermi level µ > 0, the Fermi surface defined by
ε0

+(k) = µ then takes the shape of an ellipsoid in momentum space. If in partic-
ular the parameters satisfies vij = vF δij , the energy bands becomes isotropic,
taking the form ε0

s(k) = s~vF |k| corresponding to a spherical Fermi surface.
Recall the crystal momentum transformation (6.5) relating the isotropic and

non-isotropic Weyl semimetals. For simplicity, the isotropic Fermi velocity vF
can without loss of generality be subsumed into the transformed momentum
elements κi, leaving the transformation rewritten on the form

vi · k = vi1kx + vi2ky + vi3kz = κi, (8.10)

with i ∈ {1, 2, 3}. The transform can be written on matrix form as Vk = κ,
where V is the matrix with elements vij and the transformed crystal momen-
tum is denoted by κ = (κ1, κ2, κ3). The corresponding Jacobian matrix of
the transformation is independent on the crystal momentum and given by
detV = v1 · (v2 × v3). The inverse transformation and its geometric inter-
pretation is considered in the following subsection.

The momentum transform allows for a calculation of the conductivity tensor
(3.33) of two superposed Weyl nodes, hereby denoted σ0;il(ω) when spin-orbit
coupling is neglected. Reconsider then the intraband autocorrelation function
(8.5) for a general Kramers degenerate four-band system, which after inserting
the dimensionality d = 3 in the zero temperature limit can be expressed

Πintra
0;il (ω) =

2e2

~
1

ω + iη

ˆ
d3k

(2π)3

∑
s

∂iε
0
s(k)

~
∂lε

0
s(k)

~
[
Θ(µ−εs+~ω)−Θ(µ−εs)

]
The intraband autocorrelation function can here be calculated exactly using the
momentum transform (8.10), in terms of which the derivatives of the energy

∂iε
0
s(k) =

∑
j

∂κj
∂ki

∂ε0
s

∂κj
= s~

∑
j

vji
κj
κ

(8.11)

where vji = ∂κj/∂ki from the definition of the transformation and the isotropic
energy bands are given by ε0

s(κ) = s~κ. Inserting also the determinant of the
transform detV−1 = 1/detV, the intraband autocorrelation function becomes

Πintra
0;il (ω) =

2e2

ω + iη

ˆ
d3κ

(2π)3

∑
s

Θ(µ−s~κ+~ω)−Θ(µ−s~κ)

detV
∑
j,m

vjivml
κj
κ

κm
κ
.

Here under the assumptions µ > 0 and ω > 0, the integral only gains a con-
tribution for s = +1 due to the Heaviside functions; for the unconsidered case
µ < −ω the integral likewise gains a contribution only for s = −1, while both
terms give a contribution for −ω < µ < 0. Introducing here spherical coordi-
nates for the transformed crystal momentum κ = κ(sin θ cosφ, sin θ sinφ, cos θ),
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and noticing that κj/κ ≡ (κ̂)j is dependent only on the direction of the trans-
formed momentum, the integral can be split into two parts as

Πintra
0;il (ω) =

2e2

ω + iη

1

~detV

ˆ µ/~+ω

µ/~

dκ

(2π)3
κ2
∑
j,m

vjivml

ˆ
dΩ (κ̂)j(κ̂)m.

The integral over the solid angle (3.50) is calculated in section 3.3 and given by

ˆ
dΩ (κ̂)j(κ̂)m =

4π

3
δjm, (8.12)

proportional to the Kronecker delta δjm. Integrating also over the magnitude
of the transformed momentum using the delta function finally leaves

Πintra
0;il (ω) =

e2

ω + iη

(~ω)3 + 3(~ω)2µ+ 3~ωµ2

9π2~3

∑
j

vjivjl
~v1 · (v2 × v3)

(8.13)

where the determinant detV = v1 ·(v2×v3) has been inserted. Hence, the direct
current limit of the intraband autocorrelation function leaves Πintra

0;il (0) = 0, and

so the intraband conductivity tensor becomes σintra
0;il (ω) = iΠintra

0;il (ω)/ω, giving

σintra
0;il (ω) =

e2

η − iω
~2ω2 + 3~ωµ+ 3µ2

9π2~2

∑
j

vjivjl
~v1 · (v2 × v3)

(8.14)

Here, for a zero phenomenological scattering rate the last term gives rise to
a singularity in the conductivity tensor in the direct current limit. For the
two other terms however, the zero scattering limit can be taken without any
singularities appearing, giving rise to terms constant and linear with respect to
the optical frequency ω. For a Fermi level µ = 0 when only the zero dimensional
Dirac point at the boundary of the two Kramers degenerate bands lies at the
Fermi level, only the former linear term independent on the Fermi level remains.

Consider next the interband current-density autocorrelation function (8.7),
which in the zero temperature limit in d = 3 dimensions can be expressed

Πinter
0;il (ω) =

2e2

~2

ˆ
d3k

(2π)3

[
Θ(µ−ε0

+)−Θ(µ−ε0
−)
]∑

s

sΞ0
il(k)

2s|H0|+~ω+iη
(8.15)

For the Dirac Hamiltonian kernel (8.8) neglecting spin-orbit coupling, the five-
dimensional parameter vector can after the momentum transform (8.10) be writ-
ten in terms of the transformed momentum as H0(κ) = (0, 0, ~κ2, ~κ3, ~κ1).
The corresponding interband tensor (8.6) can thus be calculated

Ξ0
il(κ) = ~2

(
∂iκ·∂lκ− ∂i|κ|∂l|κ|

)
= ~2

(∑
j

vjivjl −
∑
j,m

vji
κj
κ
vml

κm
κ

)
. (8.16)
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Hence, the interband tensor becomes dependent only on the direction of the
transformed momentum, as Ξ0

il(κ) = Ξ0
il(κ̂). Performing then the momentum

transform (8.10) with the Jacobian determinant 1/ detV and inserting spherical
coordinates, the interband autocorrelation function (8.15) then becomes

Πinter
0;il (ω) = −2e2

~2

ˆ
dκ

(2π)3

κ2

detV
∑
s

sΘ(~κ− µ)

2s~κ+ ~ω + iη

ˆ
dΩ Ξ0

il(κ̂),

where the two Heaviside functions have been combined to a single function as
Θ(µ−~κ)−Θ(µ+~κ) = −Θ(~κ−µ), which holds in general for κ > 0. Using here
the derived solid angle integral (8.12) over two components of the unit vector,
the solid angle integral over the interband tensor (8.16) readily becomes

ˆ
dΩ Ξ0

il(κ̂) =
8π

3
~2
∑
j

vjivjl. (8.17)

Furthermore, in the limit of zero scattering where the phenomenological scat-
tering rate η → 0, the Sokhotski-Plemelj theorem (7.11) states that the factor

lim
η→0

1

2s~κ+ ~ω + iη
= −iπδ(2s~κ+ ~ω) + P

1

2s~κ+ ~ω
(8.18)

where P signifies the action of taking the Cauchy principal value of the sur-
rounding integral. For µ > 0 the emerging dirac delta functions only give a
contribution for s = −1 , leaving the interband autocorrelation function

Πinter
0;il (ω) = − 2e2

3π2

∑
j

vjivjl
detV

ˆ
dκκ2Θ(~κ− µ)

·
(
iπδ(2~κ− ~ω) +

1

2~κ+ ~ω
+

1

2~κ− ~ω

)
.

The integrand can thus be split into a real and an imaginary part. Inserting the
determinant detV = v1 · (v2 × v3) and integrating over the delta function, the
imaginary part of the interband autocorrelation function becomes

Im Πinter
0;il (ω) = −e

2ω2

12π

∑
j

vjivjl
~v1 · (v2 × v3)

Θ
(~ω

2
− µ

)
. (8.19)

For the real part, notice that the remaining integral diverges. This divergence
is an artefact of the linearization of the Hamiltonian kernel (8.8) around the
Dirac point, and can in the effective model be amended by imposing an upper
cutoff κc ≡ ~2ω2

c/4 on the integration. Performing the integration then leaves

Re Πinter
0;il (ω) =

e2

12π2~3

∑
j

vjivjl
detV

[
4µ2 − ~2ω2

c − ~2ω2 ln

∣∣∣∣~2(ω2
c − ω2)

4µ2 − ~2ω2

∣∣∣∣] (8.20)

Notice that only the logarithmic term is dependent on the optical frequency ω.
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From the imaginary (8.19) and the real (8.20) parts of the interband current
density autocorrelation function, the interband conductivity tensor (3.33) is
readily calculated as σinter

0;il (ω) = i[Πinter
0;il (ω)−Πinter

0;il (0)]/ω, giving

Reσinter
0;il (ω) =

e2ω

12π

[∑
j

vjivjl
~v1 · (v2 × v3)

]
Θ
(~ω

2
− µ

)
Imσinter

0;il (ω) =
e2ω

12π2

[∑
j

vjivjl
~v1 · (v2 × v3)

]
ln

∣∣∣∣ ~2ω2 − 4µ2

~2ω2 − ~2ω2
c

∣∣∣∣ (8.21)

Notice here that the imaginary part of the interband conductivity tensor is
dependent on the introduced cutoff frequency ωc. The cutoff frequency can
usually be found in terms of other system parameters through calculating the
conductivity when considering the particular crystal lattice structure, using a
full tightbinding model corresponding to the linearized Hamiltonian kernel (8.8).

From the calculated expressions, the contributions to the conductivity from
both the intraband (8.14) and the interband (8.21) conductivity tensors become
proportional to a tensor of sums dependent only on the elements of the effective
velocity vectors vi. In the following, these effective velocity sums will be denoted

Vil =
∑
j

vjivjl
~v1 · (v2 × v3)

(8.22)

In particular, for the isotropic case vij = vF δij the sums can be evaluated

Isotropic : Vil =
∑
j

vjivjl
~v1 · (v2 × v3)

=
δil
~vF

(8.23)

Thus for the isotropic case, the transverse terms of the conductivity tensor are
zero. The longitudinal terms of the interband conductivity (8.21) here match
the results of Kargarian et al. [9], which calculated the Kubo conductivity for an
isotropic Weyl semimetal with broken time reversal symmetry (6.20). In their
paper, it was also found that the introduced cutoff frequency ωc was effectively
proportional to ~vF /a, where a is the interatomic distance within the crystal
lattice. For the Weyl semimetal however, the broken time reversal symmetry
leads to a nonzero Berry curvature, leading to an anomalous Hall contribution
to the transverse components of the conductivity tensor.

For the anisotropic Dirac semimetal however, the transverse components of
the conductivity can be nonzero even if the Berry curvature is zero identically.
For this Kramers degenerate system however, the anomalous Hall conductiv-
ity is symmetric with respect to its indices and disappears at zero optical fre-
quency, unlike the direct current anomalous Hall conductivity (7.13) related to
the Berry curvature devised in chapter 7. Hence, for Dirac semimetals in gen-
eral, an anomalous Hall conductivity can for finite frequencies be generated if
the effective velocities pertaining to the Dirac point are anisotropic.
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8.1.3 Geometric Considerations of the Fermi Surface

Recall the momentum transformation (8.10) relating the isotropic to the non-
isotropic Dirac semimetals, which can be written on the matrix form Vk = κ
where the transformation matrix is given by the effective velocities vi as

V =

v1

v2

v3

 =

v11 v12 v13

v21 v22 v23

v31 v32 v33

 . (8.24)

In order for the inverse transform to be well defined the determinant must satisfy
detV 6= 0, corresponding to the three effective velocity vectors vi being linearly
independent. The inverse transformation matrix is then readily expressed

V−1 =
1

v1 · (v2 × v3)

[
(v2 × v3) (v3 × v1) (v1 × v2)

]
(8.25)

where the determinant detV = v1 · (v2 × v3) = v3 · (v1 × v2) = v2 · (v3 × v1).
From the expressions of the energy bands (8.9), the Fermi-surface is defined

through ε+(k) = µ under the assumption of a positive Fermi level µ > 0. As-
suming the effective velocities vi are linearly independent, the Fermi surface for
two superposed Weyl nodes thus takes the shape of an ellipsoid in momentum
space. The transformation (8.24) is then geometrically interpreted as the affine
transformation between the spherical and ellipsoid Fermi surfaces. The inverse
transformation (8.25) reshapes the Fermi surface from spherical to the specific
non-isotropic ellipsoid shape corresponding to the particular effective velocities
vi. Hence, the ellipsoidal Fermi surface can be parametrized in spherical coor-
dinates by kF (θ, φ) = u1 sin(θ) cos(φ) + u2 sin(θ) sin(φ) + u3 cos(θ), where the
vectors uλ are the column vectors of the inverse transformation V−1, written

uλ =
∑
µν

εµνλ
2v1 · (v2 × v3)

(vµ × vν) (8.26)

It should be noted that the parametrization of the Fermi surface is unique
only if the inverse V−1 is symmetric and positive definite. The Fermi surface
with its parametrization vectors is visualized in figure 8.1, where the effect of
anisotropy on the Fermi surface is exemplified. If the effective velocities are
linearly dependent, the determinant of the transformation becomes zero. In
this case the Fermi surface will be unbounded, leaving both the momentum
transformation and the linearization of the Hamiltonian kernel (8.8) ill defined.

In terms of the parametrization vectors (8.26) of the Fermi surface, the
inverse momentum transform k = V−1κ is readily expressed

kj =
∑
λ

uλjκλ =
∑
µνλ

εµνλ
2v1 · (v2 × v3)

(vµ × vν)jκλ. (8.27)

Furthermore, by definition of the momentum transform (8.24) and its inverse
(8.25), the effective velocities vi and the parametrization vectors uλ satisfies
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∑
λ

vλiuλp =
∑
µνλ

εµνλ
2v1 · (v2 × v3)

(vµ × vν)pvλi = δip. (8.28)

If the effective velocity vectors vi are mutually orthogonal, the parametriza-
tion vectors uλ will also be mutually orthogonal and define the vertices of the
ellipsoidal Fermi surface, as exemplified by figure 8.1.

Isotropic Fermi Surface

Figure 8.1: An exemplification of the effect of the nondiagonal elements of the effective velocity
vectors vi. In the central figure the spherical Fermi surface of a Dirac semimetal with an
isotropic energy dispersion around the Dirac point is portrayed, with vij = vF δij . The
parametrization vectors of the Fermi surface uλ are coloured in blue. On the left and right
respectively the corresponding Fermi surfaces with v13 6= 0 and v23 6= 0 are shown, being the
parameters of the third column of the transformation matrix comprised of the elements vij .
Notice that the anisotropy only affects the third parametrization vector u3.

Reconsider then the introduced effective velocity sums (8.22). In relation to
the matrix of effective velocity elements (8.24), the effective velocity sums are
seen to be given by the inner products of the columns vi = (v1i, v2i, v3i) as

Vil =
∑
j

vjivjl
detV

=
vi · vl

v1 · (v2 × v3)
. (8.29)

where the determinant has been written in terms of the columns rather than
the rows of V. Hence, if the columns of the momentum transformation matrix
V are mutually orthogonal, the effective velocity sums are zero. In this case, the
inverse transformation matrix (8.25) is composed of an orthogonal matrix fol-
lowed by a diagonal matrix. The inverse transformation then rotates or mirrors
the spherical Fermi surface about the origin, followed by a compression along
the axes. It is then possible to find another set of parametrization vectors of
the ellipsoid Fermi surface which are orthogonal. Although not complete, the
geometrical analysis gives an inkling towards the relation between the effective
velocity sums and the anisotropy of the Fermi surface.

In conclusion, the transverse components of the conductivity tensor of the
two superposed Weyl nodes will be nonzero only if the ellipsoidal Fermi surface
cannot be parametrized by an orthogonal set of parametrization vectors. Hence,
the appearance of the symmetric anomalous Hall conductivity is tightly related
to the geometrical shape, and in particular the anisotropy, of the Fermi surface.
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8.2 Spin-Orbit Coupling Corrections

The rather simplistic calculation of the conductivity for two superposed Weyl
nodes of the previous subsection is solely based on the momentum transforma-
tion (8.10) relating the non-isotropic to the isotropic Weyl semimetals. Such
a transformation is possible seeing that there are three effective velocities and
three dimensions of reciprocal space. Consider instead the Dirac Hamiltonian
kernel (6.17) including spin-orbit coupling, given by

H(k) = τyσz(~v2·k)+τz(~v3·k)+τx(~v1·k)+τyσx(∆1·k)+τyσy(∆2·k). (8.30)

Here, the two parameter vectors ∆m = (∆m1,∆m2,∆m3) relate to spin reversal
processes, and can be interpreted to originate as an interaction between the two
superposed Weyl nodes. The corresponding energy bands are given by

εs(k) = s
√

(~v1 · k)2 + (~v2 · k)2 + (~v3 · k)2 + (∆1 · k)2 + (∆2 · k)2 (8.31)

Due to the spin reversal parameter vectors ∆m = (∆m1,∆m2,∆m3), there is in
three dimensional space no longer a well defined transformation analogous to
the used momentum transform (8.10) relating the energy band structure to a
corresponding isotropic energy band structure.

Instead, the calculations can be simplified by assuming the spin-orbit cou-
pling interaction is weak, and the conductivity tensor calculated using per-
turbation theory. The conductivity tensor can then be written on the form
σil(ω) = σ0;il(ω) + δσil(ω), where σ0;il(ω) is the conductivity disregarding the
spin-orbit coupling, calculated in the previous subsection. In order to simplify
notation, reconsider the current density autocorrelation function (8.4), which is
proportional to some integral on the form

Πil(ω) ∝
ˆ

d3k

(2π)3

∑
s

Iil;s(∆) (8.32)

where the integrand Iil;s is dependent on the spin reversal parameters ∆mp and
implicitly on the crystal momentum k and the optical frequency ω. Recall here
that the current density autocorrelation function (8.4) is even with respect to
its indices, satisfying Πil(ω) = Πli(ω). In consequence, expanding the integrand
of the autocorrelation function (8.32) in orders of the spin reversal parameters
∆mp, the first order term will leave zero. This can also be confirmed by noticing
that the energy band structure (8.31) is dependent only on squares of the spin
reversal parameters. Expanding the integrand to second order with respect to
the spin reversal parameters, the correction term compared to the case without
spin-orbit coupling (8.8) can be written on the form

δΠil(ω) ∝
ˆ

d3k

(2π)3

∑
s

(∑
p,q

∑
m,n

∂2Iil;s
∂∆mp∂∆nq

∣∣∣
∆=0

∆mp∆nq

)
, (8.33)

where the case with zero spin-orbit coupling is symbolically written as ∆ = 0.
Notice here that the indices m,n ∈ {1, 2}, whereas p, q ∈ {1, 2, 3}.
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8.2.1 The Intraband Spin-Orbit Coupling Correction

Consider then the general intraband autocorrelation function (8.5) for a Kramers
degenerate four-band system. From the previous discussion, the second order
spin-orbit coupling correction to the intraband term can be expressed

δΠintra
il (ω) =

2e2

ω + iη

1

~3

ˆ
d3k

(2π)3

∑
s

(∑
p,q

∑
m,n

∂2Iintra
il;s

∂∆mp∂∆nq

∣∣∣
∆=0

∆mp∆nq

)
.

(8.34)
Here, the intraband integrand can be written in terms of the energy functions
εs(k) of the system with spin-orbit interactions (8.31) as

Iintra
il;s (∆) = ∂iεs∂lεs

[
Θ(µ− εs + ~ω)−Θ(µ− εs)

]
(8.35)

in the zero temperature limit. With the derivative of a Heaviside function being
a corresponding delta function, the derivative of the intraband integrand with
respect to the spin reversal parameters is readily calculated

∂2Iintra
il;s

∂∆mp∂∆nq

∣∣∣∣∣
∆=0

= −∂iε0
s∂lε

0
s

∂2εs
∂∆mp∂∆nq

∣∣∣
∆=0

[
δ(µ− ε0

s + ~ω)− δ(µ− ε0
s)
]

+

(
∂2∂iεs

∂∆mp∂∆nq

∣∣∣
∆=0

∂lε
0
s − ∂iε0

s

∂2∂lεs
∂∆mp∂∆nq

∣∣∣
∆=0

)[
Θ(µ−ε0

s+~ω)−Θ(µ−ε0
s)
]

where the energies neglecting spin-orbit coupling (8.9) are denoted by ε0
s(k).

The derivatives of the energies (8.31) including spin-orbit coupling becomes

∂2εs
∂∆mp∂∆nq

∣∣∣
∆=0

=
δmn
ε0
s

kpkq

∂2∂iεs
∂∆mp∂∆nq

∣∣∣
∆=0

= δmn

(
δip

kq
ε0
s

+
kp
ε0
s

δiq −
kp
ε0
s

kq
ε0
s

∂iε
0
s

) (8.36)

The second order spin-orbit coupling correction to the integrand of the intraband
autocorrelation function can readily be expressed

∂2Iintra
il;s

∂∆mp∂∆nq

∣∣∣∣∣
∆=0

= −δnm∂iε0
s∂lε

0
s

kpkq
ε0
s

[
δ(µ− ε0

s + ~ω)− δ(µ− ε0
s)
]

+ δnm

[(
δip

kq
ε0
s

+
kp
ε0
s

δiq

)
∂lε

0
s + ∂iε

0
s

(kq
ε0
s

δlp +
kp
ε0
s

δlq

)
− 2∂iε

0
s∂lε

0
s

kp
ε0
s

kq
ε0
s

][
Θ(µ−ε0

s+~ω)−Θ(µ−ε0
s)
]
.

(8.37)

The resulting expression is written only in terms of components of the crys-
tal momentum kp and the energy functions ε0

s(k) in the absence of spin-orbit
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coupling (8.9), making it viable to use the inverse momentum transform (8.27)
which leaves the isotropic energy bands ε0

s(κ) = s~κ. Notice that under the
assumption µ > 0, only the positive energy band s = +1 will give a contri-
bution due to the delta and Heaviside functions. Performing the momentum
transformation in the expression for the second order spin-orbit correction to
the intraband autocorrelation function (8.34) then leaves

δΠintra
il (ω) =

2e2

ω + iη

∑
p,q,m

∆mp∆mq

~3 detV

ˆ
dκ

(2π)3
κ2

([
Θ(µ−~κ+~ω)−Θ(µ−~κ)

]
[∑
λj

[(
δipuλq + uλpδiq

)
~vjl + ~vji

(
δlpuλq + uλpδlq

)]κλ
~κ

κj
κ

− 2
(
~2
∑
j,k

vjivkl
κj
κ

κk
κ

)∑
λρ

uλpuρq
κλ
~κ

κρ
~κ

]

− ~κ
[
δ(µ−~κ+~ω)− δ(µ−~κ)

](
~2
∑
jk

vjivkl
κj
κ

κk
κ

)∑
λρ

uλpuρq
κλ
~κ

κρ
~κ

)

where uλ are the parametrization vectors (8.26) of the ellipsoidal Fermi surface.
Notice here that the integrand is dependent on the transformed momentum
mostly through terms on the form κj/κ = (κ̂)j , which are only dependent on
the direction of the momentum and not its magnitude. Converting to spherical
coordinates, the integral over the solid angle can be calculated separately. In
particular, the integration over four components of the unit vector becomes

ˆ
dΩ (κ̂)j(κ̂)k(κ̂)λ(κ̂)δ =

4π

15
(δjkδλδ + δjλδkδ + δjδδkλ) (8.38)

while the solid angle integral over two components (8.12) has been expressed
previously. Inserting the resulting Kronecker deltas leaves two types of contrac-
tions (8.28) between the effective velocities vj and the parametrization vectors
uλ. Using also the Heaviside and delta functions to calculate the integral over
the magnitude of the transformed crystal momentum, the second order spin-
orbit coupling correction to the intraband autocorrelation function becomes

δΠintra
il (ω) =

2e2

ω + iη

∑
mpq

∆mp∆mq

(2π)3~3 detV
~3ω3 + 3~2ω2µ+ ~ωµ2

~3(
8π

45

[
4(δipδlq + δiqδpl)−

(∑
j

vjivjl

)(∑
λ

uλpuλq

)]

+
4π

15

[
δipδlq + δiqδpl +

(∑
j

vjivjl

)(∑
λ

uλpuλq

)])
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Fusing the spin reversal parameters with the various terms using the sums over
momentum indices, the second order spin-orbit coupling correction to the intra-
band autocorrelation function can finally be written on the form

δΠintra
il (ω) =

e2

ω + iη

1

9π2~3

[
~3ω3 + 3~2ω2µ+ 3~ωµ2

]
[

2
∑
m

∆mi∆ml

~3v1 ·(v2×v3)
−
(∑

j

vjivjl
~v1 ·(v2×v3)

)∑
mλ

(
∆m · uλ

~

)2
] (8.39)

Hence, in the direct current limit the correction to the intraband autocorrelation
function becomes δΠintra

il (0) = 0, and so the second order spin-orbit coupling
correction to the intraband conductivity (8.14) can be calculated

δσintra
il (ω) =

e2

η − iω
~2ω2 + 3~ωµ+ 3µ2

9π2~2[
2
∑
m

∆mi∆ml

~3v1 ·(v2×v3)
−
(∑

j

vjivjl
~v1 ·(v2×v3)

)∑
mλ

(
∆m · uλ

~

)2
] (8.40)

The spin-orbit coupling correction is thus seen to take a similar form as the
intraband conductivity tensor without spin-orbit coupling (8.14). Notice in
particular the dependence on the effective velocity sums (8.22).

8.2.2 The Interband Spin-Orbit Coupling Correction

Consider next the interband term (8.7), whose integrand can be written

Iinter
il;s (∆) =

[
nF (ε+)− nF (ε−)

] sΞil(k)

2εs + ~ω + iη
. (8.41)

The derivative with respect to the spin reversal parameters then becomes

∂2Iinter
il;s

∂∆mp∂∆nq

∣∣∣∣∣
∆=0

=

[
∂2ε+

∂∆mp∂∆nq

∂nF
∂ε+

− ∂2ε−
∂∆mp∂∆nq

∂nF
∂ε−

]∣∣∣∣
∆=0

sΞ0
il(k)

2ε0
s + ~ω + iη

+ s
∂2Ξil(k)

∂∆mp∂∆nq

∣∣∣∣
∆=0

nF (ε0
+)− nF (ε0

−)

2ε0
s + ~ω + iη

− ∂2εs
∂∆mp∂∆nq

∣∣∣∣
∆=0

2[nF (ε0
+)− nF (ε0

−)]sΞ0
il(k)

(2ε0
s + ~ω + iη)2

where again the energy functions εs(k) and ε0
s(k) denote the doubly degener-

ate energy bands with (8.31) and without (8.9) spin-orbit coupling. Inserting
the zero temperature limit, the Fermi-Dirac distribution approach a Heaviside
function nF (εs) = Θ(µ − εs). With the two energy bands ε± strictly positive
and strictly negative respectively, the difference of the Heaviside functions can
then be written Θ(µ−ε0

+)−Θ(µ−ε0
−) = −Θ(ε0

+−µ) for µ > 0. The derivatives
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then approach delta functions, which for µ > 0 only gives a contribution for
s = +1. Furthermore, the derivative of the interband tensor (8.6) becomes

∂2Ξil(k)

∂∆mp∂∆nq

∣∣∣∣
∆=0

= δmn(δipδlq + δiqδlp)

− ∂2∂i|H|
∂∆mp∂∆nq

∣∣∣∣
∆=0

∂l|H0| − ∂i|H0|
∂2∂l|H|

∂∆mp∂∆nq

∣∣∣∣
∆=0

(8.42)

Notice here that |H(k)| = ε+(k) for the case at hand. Inserting then the
derivatives of the energy functions (8.36), the second order spin-orbit correction
to the interband current density autocorrelation function becomes

δΠinter
il (ω) =

2e2
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ε0

+
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+

)]
Seeing that the expression is dependent only on the energy function and com-
ponents of the momentum, it is viable to perform the inverse momentum trans-
formation (8.27), which leaves the energy bands isotropic with εs(κ) = s~κ.
Inserting then the derivatives of the isotropic energy functions (8.11) and the
inverse momentum transformation (8.27), the second order spin-orbit correction
to the interband current density autocorrelation function is readily expressed

δΠinter
il (ω) = −2e2
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∑
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∆mp∆mq
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1

(2~κ− ~ω − iη)2

])
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κ
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∑
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κ
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where vj and uλ are the effective velocity vectors and the parametrization
vectors (8.26) of the ellipsoidal Fermi surface, respectively.

Recall that the isotropic interband tensor (8.16) is dependent only on the
magnitude of the transformed momentum, as Ξ0

il(κ) = Ξ0
il(κ̂), and notice that

all terms of the correction are dependent only on the magnitude κ or the direc-
tion κj/κ = (κ̂)i of the transformed crystal momentum. Hence, converting to
spherical coordinates the integrals can be split into integrals over the magnitude
and the direction of the transformed crystal momentum separately. In the zero
scattering limit, the Sokhotski-Plemelj-Fox theorem [33] then gives the factors

lim
η→0

ˆ
F (x)

(x− x0 ∓ iη)n+1
dx = P

ˆ
F (x)

(x− x0)n+1
dx± iπ

n!

dnF

dxn

∣∣∣∣
x=x0

(8.43)

where P represents the Cauchy principal value of the integral. The Sokhotski-
Plemelj-Fox theorem is a generalization of the Sokhotski-Plemelj theorem (7.11),
and reduces to the latter for n = 0, giving for the first and third terms

lim
η→0

1

2~κ+ s~ω + isη
= −isπδ(2κ+ s~ω) + P

1

2~κ+ s~ω
(8.44)

Likewise, for the second term the Sokhotski-Plemelj-Fox theorem gives

lim
η→0

1

(2~κ+ s~ω + isη)2
= P

1

(2~κ+ s~ω)2
+ isπδ′(2κ+ s~ω), (8.45)

where δ′(x) is the distributional derivative of the delta function. The expression
can also be derived by explicit differentiation of the Sokhotski-Plemelj theorem
(8.44). Thus, for the second term the magnitude integral

lim
η→0

ˆ
dκ

κ3Θ(~κ− µ)

(2~κ+ s~ω + isη)2
= P

ˆ
dκ

κ3Θ(~κ− µ)

(2~κ− s~ω)2

− isπ

4~4

(~ω
2

)3

δ
(
− s~ω

2
− µ

)
− 3isπ

4~4

(~ω
2

)2

Θ
(
− s~ω

2
− µ

)
In both cases, the action of taking the Cauchy principal value avoids the sin-
gularities present at ε0

s = ~ω/2 for the case s = −1. In the following, in order
to simplify notation the symbol P representing the Cauchy principal value is
rendered implicit. Notice also that the appearing delta and Heaviside functions
only gives a contribution for s = +1 under the assumption µ > 0.

Hence, after converting to spherical coordinates and using the Sokhotski-
Plemelj-Fox theorem (8.43), the second order spin-orbit coupling correction to
the interband autocorrelation function becomes

123



δΠinter
il (ω) = − 2e2
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Notice here that the two delta function divergences cancel exactly. For the third
integral, the solid angle integrals over two (8.12) and four (8.38) components of
the unit vector can be inserted directly. From the expression of the interband
tensor (8.16) with zero spin-orbit coupling, the remaining solid angle integral

ˆ
dΩ Ξ0

il(κ̂)
κλ
κ

κρ
κ

=
16π~2

15
δλρ
∑
j

vjivjl −
4π~2

15

(
vλivρl + vρivλl

)
. (8.46)

The three integrals over the magnitude κ however are divergent, being an arte-
fact of the linearization of the energy band structure around the Dirac point in
the continuum limit. Introducing then the momentum cutoff κc = ~ωc/2, all
integrals are readily calculated and the correction term expressed
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Inserting here the determinant detV = v1 · (v2 × v3), in order to compactify
the expressions it is viable to introduce the spin reversal parameter sums

Qil =
∑
m

∆mi∆ml

~3v1 · (v2 × v3)
(8.47)

analogous to the effective velocity sums (8.22) defined previously. Furthermore,
the expressions for the corrections are seen to be dependent on a sum indepen-
dent on the conductivity tensor indices, hereby named the warping sum

X =
∑
mλ

(
∆m · uλ

~

)2

=
1

2

∑
mµν

(
∆m · (vµ × vν)

~v1 · (v2 × v3)

)2

. (8.48)

where the latter equality can be derived from inserting the expression for the
parametrization vectors (8.26). Because the parametrization vectors uλ by as-
sumption span reciprocal space, the warping sum will be nonzero as long as any
of the spin reversal parameters ∆mp are nonzero.

Gathering similar terms, the spin-orbit coupling correction to the interband
autocorrelation function is written in terms of the warping sum X, the effective
velocity sums Vil and the spin reversal parameter sums Qil as
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8
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)[
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]
The second order spin-orbit correction to the interband conductivity tensor can
then be calculated as δσinter

il (ω) = (δΠinter
il (ω)− δΠinter

il (0))/iω, which gives

Re δσinter
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e2ω

12π
Θ
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2
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]
+
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c
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(8.49)

Compared to the interband conductivity tensor (8.21) in the absence of spin-
orbit coupling, the second order spin-orbit coupling correction is seen to renor-
malize the effective velocity sums (8.22). Furthermore, the imaginary part of
the correction introduces a new dependency of the conductivity tensor on the
optical frequency ω, dependent on the cutoff frequency ωc.
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8.2.3 The Total Conductivity Tensor

Combining the intraband conductivity tensor σintra
0;il (ω) neglecting spin-orbit cou-

pling (8.14) with the corresponding spin-orbit coupling correction (8.34), the
intraband conductivity tensor to second order in spin-orbit coupling becomes

σintra
il (ω) =

e2

η − iω
~2ω2 + 3~ωµ+ 3µ2

9π2~2

[(
1− X

)
Vil + 2Qil

]
(8.50)

Likewise, the real and imaginary parts of the interband conductivity tensor
neglecting spin-orbit coupling (8.21) can be combined with the corresponding
correction (8.49) to give the interband conductivity tensor to second order

Re σinter
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e2ω

12π
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2
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)[(
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)
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]
Im σinter
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+
2

5

~2ω2
c

~2ω2 − ~2ω2
c
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]]
(8.51)

Hence, to second order in the spin reversal parameters both the interband and
intraband conductivity tensors become dependent on the effective velocity sums
(8.22), the warping sum (8.48) and the spin reversal parameter sums (8.47)
through a term (1 − X)Vil + 2Qil. The warping sum X is interpreted as an
effect of the change in shape of the Fermi surface due to the spin-orbit coupling
interaction compared to the case with zero spin-orbit coupling. The spin reversal
parameter sums however does not allow for a simple geometrical interpretation,
but are seen to give rise to transverse components of the conductivity tensor as
long as the components ∆mi and ∆ml are nonzero for some indices m and i 6= l.

The calculation for the conductivity tensor corresponding to the Dirac Hamil-
tonian kernel has thus been reduced to calculating the effective velocity sums
(8.22), the spin-orbit coupling sums (8.47) and the warping sum (8.48), deter-
mined by the effective velocities vi and the spin reversal parameters ∆m. In
particular, the ellipsoidal Fermi surface does not allow for a parametrization
where the parametrization vectors are orthogonal, or several components of the
spin reversal parameters are nonzero simultaneously, the conductivity tensor
will contain finite nondiagonal elements corresponding to a symmetric anoma-
lous Hall conductivity. However, all the intrinsic terms which are not dependent
on a nonzero scattering are dependent on a nonzero optical frequency ω to be
finite. Hence, a Dirac semimetal will in general inhibit a symmetric anomalous
Hall effect for nonzero optical frequencies, even if the Berry curvature of the
material is zero due to the imposed PT -symmetry of the system.
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8.3 Dirac Fermions in an Antiferromagnetic Semimetal

An important example of a recently investigated Dirac semimetal is the ma-
terial CuMnAs, formed by various atomic compositions of copper, manganese
and arsenic in different crystal structures dependent on the stochiometry of
the composition. Below the Néel temperature of the specific structure [36] the
manganese atoms of the primitive unit cell are antiferromagnetically ordered,
making CuMnAs an example of an antiferromagnetic Dirac semimetal. The fol-
lowing section displays the crystal structure of CuMnAs, and briefly recites the
construction of an effective four-band model based on symmetry arguments as
performed by Tang et al. [11]. The resulting effective Dirac Hamiltonian kernel
is then combined with the general conductivity formulae for a Dirac semimetal
derived in the previous section in order to exemplify the results and predict the
electronic transport properties of an experimentally realizable material.

8.3.1 Symmetry Considerations of CuMnAs

The crystal structure of the compound CuMnAs is sensitive to the exact relative
composition of the copper, manganese and arsenic atoms, with three different
structural phases reported [36]. Stochiometric CuMnAs crystallizes in an or-
thorhombic structure with four formula units in the primitive unit cell. If in-
stead the compound is manganese deficient compared to the stochiometric case
the crystal lattice arranges in a tetragonal structure with two formula units
in the unit cell. For both structures the manganese atoms are antiferromag-
netically ordered and the crystal lattice invariant under the PT -symmetry, as
shown in figure 8.2. The energy band structures of both the tetragonal and the
orthorhombic phases of CuMnAs are able to harbour Dirac points close to the
Fermi level, and are hence classified as antiferromagnetic Dirac semimetals [37].
In the following, the analysis will only consider the stochiometric orthorhombic
phase, as studied by Tang et al. [11]. An analysis of the tetragonal phase is
investigated by Šmejkal et al. [38] and briefly recited in the next subsection.

As portrayed by figure 8.2 the orthorhombic CuMnAs crystal structure con-
tains four manganese atoms labelled Mn1 to Mn4. In the ground state of the
crystalline system, the localized magnetic moments of the manganese atoms
point in the positive z-direction for Mn1 and Mn2, and in the negative z-
direction for Mn3 and Mn4. Counting the spin degree of freedom, the tight-
binding approach represented in chapter 4 will correspond to the construction of
eight Bloch sums (4.8) denoted by |χας(k)〉, where k is the crystal momentum,
α the site index of the manganese atoms and ς the physical spin index of the
electron; the symbol σ attains another meaning in the following.

From the analysis performed by Tang et al. [11], the orthorhombic CuMnAs
crystal lattice is invariant under the screw-axis symmetry S2z, being a rotation
of π radians about the z-axis followed by a translation Tρ with the translation
vector ρ = ( 1

2 , 0,
1
2 ) given in lattice units. Hence, performing the operation twice

leaves S2
2z = −Tẑ, where ẑ = (0, 0, 1) is the lattice unit vector in the z-direction

and the negative sign originates in the full rotation of the localized magnetic
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moments. Furthermore, from its definition in real space the S2z symmetry acts
on the crystal momentum of reciprocal space as S2z : k→ (−kx,−ky, kz).

Figure 8.2: The primitive unit cells of tetragonal and orthorhombic CuMnAs, with lattice
parameters given by a = b = 0.3800 nm and c = 0.6318 nm for the tetragonal and a =
0.6586 nm, b = 0.3867 nm and c = 0.7320 nm for the orthorhombic phase, with the two
phases having two and four structural formulae per unit cell respectively. The manganese
nuclei are antiferromagnetically ordered, with spin directions given by the arrows. The figure
also displays the PT -symmetry of the two crystal structures, and the S2z-symmetry for the
orthorhombic phase. The figures are based on the lattice parameters provided by Mündelein
and Schuster [39], and inspired by Uhĺı̌rová et al. [36] and Šmejkal et al. [38].

The Bloch eigenstates of the Hamiltonian operator of orthorhombic CuMnAs
can thus be chosen as simultaneous eigenstates with S2z, which can also be
constructed from the Bloch sums |χας(k)〉. Consider then the action of the S2z

symmetry on the Bloch sums. Seeing that the Bloch sums satisfies the Bloch
theorem (B16) and noticing from figure 8.2 that the manganese atoms are moved
to different unit cells under the screw-axis symmetry S2z, then

S2z |χ1ς(k)〉 = ςie−ikx |χ2ς(−kx,−ky, kz)〉
S2z |χ2ς(k)〉 = ςie−ikxe−ikz |χ1ς(−kx,−ky, kz)〉
S2z |χ3ς(k)〉 = ςie−ikz |χ4ς(−kx,−ky, kz)〉
S2z |χ4ς(k)〉 = ςi |χ3ς(−kx,−ky, kz)〉

(8.52)

where the sign ς = ±1 again originates in the rotation of the spin degree of
freedom. In consequence, eigenstates of the S2z operator can be constructed as

|Φ+(k)〉 = a+

[
|χ1+(k)〉+ e−ikxeikz/2 |χ2+(−kx,−ky, kz)〉

]
+ b+

[
eikz/2 |χ3+(k)〉+ |χ4+(−kx,−ky, kz)〉

]
|Φ−(k)〉 = a−

[
|χ1+(k)〉 − e−ikxeikz/2 |χ2+(−kx,−ky, kz)〉

]
+ b−

[
− eikz/2 |χ3+(k)〉+ |χ4+(−kx,−ky, kz)〉

] (8.53)

satisfying the eigenvalue equations S2z |Φ±(k)〉 = ±ie−ikz/2 |Φ±(k)〉. Notice
that these are then eigenstates of S2

2z = −Tẑ satisfying the eigenvalue equation
S2

2z |Φ±(k)〉 = −eikz |Φ±(k)〉, being a consequence of the Bloch theorem (B16).
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Furthermore, the crystal lattice is invariant under the PT -symmetry, mak-
ing all energy bands Kramers degenerate. From figure 8.2, the manganese atoms
Mn1 and Mn3 are seen to be partners under space inversion, and so their cor-
responding Bloch sums satisfies P |χ1ς(k)〉 = |χ3ς(−k)〉. Likewise, the Bloch
sums of the lattice sites Mn2 and Mn4 are related by P |χ2ς(k)〉 = |χ4ς(−k)〉.
In conclusion, with the time reversal operator T reversing the direction of the
spin, the PT -operator acts on the eigenstates (8.53) of the S2z operator as

PT |Φ+(k)〉 = a∗+e
−ikz/2

[
eikz/2 |χ3−(k)〉+ eikx |χ4−(−kx,−ky, kz)〉

]
+ b∗+e

−ikz/2
[
|χ1−(k)〉+ eikz/2 |χ2−(−kx,−ky, kz)〉

]
PT |Φ−(k)〉 = a∗−e

−ikz/2
[
eikz/2 |χ3−(k)〉 − eikx |χ4−(−kx,−ky, kz)〉

]
+ b∗−e

−ikz/2
[
|χ1−(k)〉 − eikz/2 |χ2−(−kx,−ky, kz)〉

] (8.54)

From Kramers theorem, demonstrated in appendix C, the states PT |Φ±〉 are
distinct from the eigenstates |Φ±〉 of the S2z operator. Furthermore, from the
definition of the S2z screw-axis symmetry, the PT and S2z operators do not
commute but satisfies the relation S2z(PT ) = T2ρ(PT )S2z. Using then the
eigenvalue equation S2z |Φ±(k)〉 = ±ie−ikz/2 |Φ±(k)〉, the states PT |Φ±(k)〉
are also eigenstates of the operator S2z, satisfying the eigenvalue equation

S2z(PT |Φ±〉) = ∓ie−ikxe−ikz/2PT |Φ±〉 (8.55)

which is readily confirmed by directly applying the S2z operator.
Recall then that the screw-axis symmetry acts on the crystal momentum

as S2z : k → (−kx,−ky, kz). Hence, there are four high symmetry lines in
the Brillouin zone invariant under the operation S2z, given in lattice units by
kx, ky ∈ {0, π}. Notice then that in the planes defined by kx = 0 and kx = π,
the PT -partners of the eigenstates (8.53) of the S2z operator satisfies

S2z(PT |Φ±(0, ky, kz)〉 = ∓ie−ikz/2PT |Φ±(0, ky, kz)〉
S2z(PT |Φ±(π, ky, kz)〉 = ±ie−ikz/2PT |Φ±(π, ky, kz)〉 ,

(8.56)

and are thus eigenstates of the S2z operator with eigenvalues opposite of and
equal to |Φ±(k)〉, respectively. As argued by Tang et al. [11], the assignment
of equal eigenvalues to PT -partners will in general lead any band crossing to
be stable. Hence, for orthorhombic CuMnAs any band crossing in the plane
kx = 0 will be unstable, while band crossings in the plane kx = π will be stable
to perturbations. These band crossings are furthermore expected to take place
along the high symmetry lines where also ky = 0 or ky = π, being the regions
of the Brillouin zone invariant under the S2z symmetry.

Finally, notice that the four states |Φ±(k)〉 and PT |Φ±(k)〉 are Bloch states,
being linear combinations of Bloch sums (4.8). The eigenstates of the Hamilto-
nian operator can then be written as linear combinations of these four states.
The S2z symmetry thus groups the original eight Bloch sums χας(k) into pairs,
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effectively reducing the dimensionality of the Hamiltonian kernel to (4 × 4).
The states |Φ+〉 and |Φ−〉 are here interpreted as orbital states corresponding
to a pseudospin basis denoted τ , while the PT -partners |Φ+〉 and PT |Φ+〉
correspond to a spin-related antiferromagnetic basis denoted by σ.

In particular, in the plane kx = π the S2z symmetry can be represented by
S2z = ie−ikz/2τz, with its eigenvalues along the diagonal. Furthermore, seeing
that (PT )2 = −1 from the antiunitarity of the time reversal operator, the
PT symmetry can likewise be represented by PT = iσyK. The representation
of the PT operator here mathematically corresponds to the representation of
the parity operator P = ±τ0 investigated in chapter 4. Here however, the
P and T operators does not have a definite representation in the orbital and
antiferromagnetic bases, in that the basis states |Φ±〉 and PT |Φ±(k)〉 unlike the
original Bloch sums χας(k) are not related by the P or T operations separately.

Hence, along the high symmetry line of the Brillouin zone defined by kx = π
and ky = 0, the Hamiltonian kernel of CuMnAs takes the same form as the
general Hamiltonian kernel (6.13) investigated in section 8.1, where the PT -
symmetry has been enforced. Imposing the S2z symmetry then leaves

S2zH(k)S−1
2z =h0(−kx,−ky, kz)− τyσ · h(−kx,−ky, kz)

+ τzh4(−kx,−ky, kz)− τxh5(−kx,−ky, kz) = H(k),

Hence, invariance under S2z imposes the condition hj(k) = hj(−kx,−ky, kz)
for j ∈ {0, 4} and hj(k) = −hj(−kx,−ky, kz) for j ∈ {1, 2, 3, 5}. Thus, at the
line itself where kx = π and ky = 0, the only remaining terms are h0(π, 0, kz)
and h4(π, 0, kz). Hence, with only the parameter h4(π, 0, kz) remaining with
kz arbitrary, there will in general be some point where the energy bands (8.31)
touch at a fourfold degenerate point. Shifting the origin to and expanding the
parameters linearly around this point then leaves the Hamiltonian kernel

Ho(k) = (~v11kx + ~v12ky)τx + ~v33kzτz + (~v21kx + ~v22ky)τyσz

+(∆11kx + ∆12ky)τyσx + (∆21kx + ∆22ky)τyσy,
(8.57)

being on the same form as the general Dirac Hamiltonian kernel (8.8) with the
effective velocities v1 = (v11, v12, 0), v2 = (v21, v22, 0) and v3 = (0, 0, v33), and
the spin reversal parameters ∆1 = (∆11,∆12, 0) and ∆2 = (∆21,∆22, 0). In
conclusion, the S2z symmetry allows for the presence of Dirac points in the
energy band structure of orthorhombic CuMnAs.

Along the other high symmetry lines where the Dirac points are not protected
by the S2z symmetry, the Dirac points will vanish upon the introduction of spin-
orbit coupling [11], rendering the derived Hamiltonian kernel (8.57) invalid. In
general, a more rigorous and careful investigation of the crystal symmetries is
needed in order to confirm the emergence of Dirac points when more than three
terms of the Dirac Hamiltonian kernel (8.30) are nonzero.
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8.3.2 Discussion on Reorientation of Magnetic Moments

Consider the tetragonal phase of CuMnAs as portrayed in figure 8.2 and an-
alyzed by Šmejkal et al. [38]. Unlike the orthorhombic phase, the tetragonal
crystal lattice contains only two manganese atoms in the unit cell, and so an
effective four-band model can in the tightbinding approach be derived directly
from the Bloch sums (4.8) corresponding to the manganese atoms. In this case,
the pseudospin degree of freedom τ corresponds directly to the states |χa+〉 and
|χb+〉 of the two sublattices, while the spin related degree of freedom σ is exactly
the physical spin degree of freedom, corresponding to |χa+〉 and |χa−〉. The full
tightbinding Hamiltonian kernel of tetragonal CuMnAs is given by [38]

Ht(k) = −t2(cos kx cos ky)− 2t1 cos
kx
2

cos
ky
2

+ ∆τz(σy sin kx − σx sin ky) + τzJnσ · n.
(8.58)

where t1 and t2 describe intersublattice and intrasublattice tunnelling rates
and ∆ denotes the strength of the intrasublattice spin-orbit coupling strength
respectively, and the final term gives explicitly the antiferromagnetic exchange
coupling (6.27) with a coupling strength Jn in terms of the Néel vector n. The
representation of the Hamiltonian kernel corresponds to the parity operator
P = τx, seeing from figure 8.2 that space inversion exchanges the two sublattices.

In the analysis performed by Šmejkal et al. [38], and similar to the discussion
of section 6.3, the tetragonal phase of CuMnAs (8.58) harbours two Dirac points
along the edge of the Brillouin zone when the Néel vector lies either in the x or in
the y directions. Hence, the existence of Dirac points at different regions of the
Brillouin zone can be controlled through a reorientation of the Néel vector. Such
a reorientation can be performed by applying a current through the material,
effectuated by the appearance of a spin-orbit torque. The change in the direction
of the magnetic moments on the two sublattices is perpendicular to the direction
of the applied current and the direction of the magnetic moments themselves.

For the orthorhombic phase of CuMnAs however, the primitive unit cell
contains four localized magnetic moments, and so a single Néel vector is not in
general defined. Recall then the eigenstates 8.53 of the S2z operator, where the
manganese atoms with the same direction of the localized magnetic moments
are paired by the S2z symmetry. Due to this pairing, a Néel vector for the
orthorhombic phase of CuMnAs can be defined similarly to the tetragonal phase,
as the difference between the magnetic moments of the two pairs. Here however,
the exchange coupling (6.27) does not allow for a simple representation as for
the Hamiltonian kernel of tetragonal CuMnAs (8.58), due to the particular
construction of the τ and σ bases. Instead, the volatility of the Dirac points from
the reorientation of the Néel vector can be discussed from symmetry arguments.

In the analysis performed by Tang et al. [11] on which the derivation of
the orthorhombic CuMnAs Hamiltonian kernel (8.57) is based, the entire space
group of orthorhombic CuMnAs is considered, which besides the space inversion
symmetry P and the screw-axis rotation symmetry S2z is generated also by the
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unconsidered gliding mirror reflection Ry, composed of a reflection in the y-plane
followed by a translation of half a lattice unit in the y-direction; the invariance
under Ry can be verified visually by figure 8.2. With zero spin-orbit coupling,
both of the symmetries are preserved. In this case, the analysis [11] reveals a
fourfold degenerate Dirac nodal line on the high symmetry plane defined by
ky = 0, which is invariant under the gliding mirror reflection Ry.

When Ry is broken and only the S2z symmetry is preserved, the Dirac nodal
line becomes gapped except at four fourfold degenerate zero dimensional points.
Two of these points lie on the high symmetry line defined by kx = π and ky = 0,
and are from the preceding discussion protected by the S2z symmetry. The other
pair lies within the bulk of the Brillouin zone and are not symmetry protected
from perturbations. If the S2z and Ry symmetries are simultaneously broken,
the energy spectrum becomes fully gapped near the Fermi surface, and the
material transitions to a semiconducting phase [37].

For the case with spin-orbit coupling, the localized magnetic moments on
the manganese atoms enters into the Hamiltonian of the system. Seeing that
the point group symmetries affect the magnetic moments s through rotation
and reflection as S2z : s → (−sx,−sy, sz) and Ry : s → (−sx, sy,−sz) respec-
tively, the preservation of the symmetries will depend on the orientation of the
magnetic moments. In particular, for the ground state of orthorhombic CuM-
nAs where the spins are aligned in the z-direction, the Ry symmetry is broken
while the S2z symmetry is still preserved. In this case, the pair of Dirac points
lying at the high symmetry line will be preserved, while the pair lying within
the bulk of the Brillouin zone will obtain a gap [37]. If the spins are aligned
along any other axis however the S2z symmetry will be broken, and the entire
energy band spectrum will be gapped near the Fermi surface.

In conclusion, the derived Hamiltonian kernel for orthorhombic CuMnAs
(8.57) is only valid when the localized magnetic moments and hence the Néel
vector are aligned in the z-direction. In this case, the effect of the exchange
coupling (6.27) is simply to move the location of the Dirac point along the
z-axis on the high symmetry line of S2z without affecting the shape of the
Hamiltonian kernel itself. If the localized magnetic moments are aligned in any
other direction, the effective Hamiltonian kernel will no longer be valid.

8.3.3 Orthorhombic CuMnAs Conductivity Predictions

Reconsider the derivations of section 8.1, where the intraband (8.14) and inter-
band (8.21) conductivity tensors was calculated for a general Dirac semimetal
neglecting spin-orbit coupling, followed by second order intraband (8.34) and
interband (8.49) spin-orbit coupling corrections. The conductivity formulae are
all dependent on a sum over the components of the effective velocities (8.22).
For the effective Hamiltonian kernel (8.57) of orthorhombic CuMnAs nearby the
Dirac point, the determinant of the momentum transform (8.10) takes the form

detV = v3 · (v1 × v2) = v33(v11v22 − v12v21). (8.59)
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Hence, the condition detV 6= 0 here translates to v11v22 6= v12v21 and v33 6= 0.
The corresponding effective velocity sums (8.22) can be calculated

V11 =
v2

11 + v2
21

~v33(v11v22 − v12v21)
V12 =

v11v12 + v21v22

~v33(v11v22 − v12v21)

V22 =
v2

12 + v2
22

~v33(v11v22 − v12v21)
V33 =

v33

~(v11v22 − v12v21)

V13 = V23 = 0

(8.60)

Likewise, with ∆1 = (∆11,∆12, 0) and ∆2 = (∆21,∆22, 0) the corresponding
spin-orbit coupling sums (8.47) and the warping sum (8.48) readily becomes

Q11 =
∆2

11 + ∆2
21

~3v33(v11v22 − v12v21)
Q12 =

∆11∆12 + ∆21∆22

~3v33(v11v22 − v12v21)

Q22 =
∆2

12 + ∆2
22

~3v33(v11v22 − v12v21)
Q13 = Q23 = Q33 = 0

X =
(∆1 × v1)2 + (∆1 × v2)2 + (∆2 × v1)2 + (∆2 × v2)2

~2(v11v22 − v12v21)2

(8.61)

where the cross products ∆m × vj = (0, 0,∆m1vj2 −∆m2vj1) for j,m ∈ {1, 2}.
Hence, from the expressions of the effective velocity sums (8.60) and the spin-

orbit coupling sums (8.61), the conductivity tensor of orthorhombic CuMnAs
should satisfy σxz(ω) = σyz(ω) = 0, while all other components gain nonzero
contributions. Thus, the material should in general feature a finite symmetric
Hall conductivity σxy(ω) = σyx(ω) for nonzero optical frequencies ω.

The conductivity predictions are dependent on the preservation of the S2z

symmetry of the orthorhombic CuMnAs lattice, the condition for which the
Hamiltonian kernel (8.57) is valid. When a current is passed through the mate-
rial, the localized magnetic moments on the manganese atoms may reorient in
a different direction due to spin-orbit coupling. Hence, if a current is applied
in the x or y-directions, the following reorientation of the localized magnetic
moments breaks the S2z symmetry, and the Dirac point is removed from the
energy band spectrum. In conclusion, the supposed Hall effect in the xy-plane
will only be valid if the current is weak enough to not reorient the localized
magnetic moments of the manganese atoms. However, such a reorientation is
dependent on the presence of a spin-orbit torque, and would be outside the
regime of the linear Kubo formalism, on which the calculations are based.
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Chapter 9

Outlook

This final chapter briefly introduces the prospects of the future research fol-
lowing the results of the thesis. In particular, the chapter recites particular
derived formulae which allows for numerical calculations of the conductivity
tensor, and presents formulae which quantifies the optical phenomena related
to the conductivity of a material.

From knowledge of the conductivity of a material, it is possible to infer
optical effects caused by the interactions between electromagnetic waves and
matter. In particular, the change in polarization angle and ellipticity of a beam
of light being transmitted through or reflected off a material surface can be
predicted based directly on the conductivity formula, constituting the Faraday
and Kerr magneto-optical effects. Apart from being a useful method for probing
the electronic properties of matter, the Faraday effect is important historically
in being the first experimental verification of the connection between light and
electromagnetism, as observed by Michael Faraday in 1845.
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9.1 Numerical Conductivity Calculations

The main goal of the thesis has been to calculate and interpret analytical formu-
lae for the conductivity tensor of different crystalline systems. In this pursuit,
it is necessary to introduce specific assumptions and simplifications for the cal-
culations to be fruitful. In particular, the conductivity tensors obtained have all
been evaluated in the zero temperature limit, and in the limit of zero scattering.

In realistic materials as compared to the ideal crystal structures consid-
ered, scattering of electrons originate in impurities of the crystal lattice, being
irregularities in the otherwise regular lattice structure in the form of extrane-
ous elements or locally broken symmetries. A general approach to incorporate
scattering in solid state calculations is to exchange the non-interactive ideal
Matsubara Green functions G(iνn) with impurity averaged Green functions [8],
which to lowest order corresponds to exchanging the phenomenological scatter-
ing rate η with a corresponding parameter dependent on the sign of the Matsub-
ara frequency as ηn = η sgn(νn). In this case however, the derived Matsubara
frequency summation rules (2.37) cannot be applied directly, and the calcula-
tion will usually proceed using an analytical continuation in complex frequency
space in order to calculate frequency summations. Hence, the calculation of
the Matsubara autocorrelation function (3.41) with a finite scattering is a much
more subtle task than the corresponding calculation in the zero scattering limit.

However, as demonstrated, parts of the conductivity tensor may originate in
other physical processes than scattering, and are hence important to the intrin-
sic physics of the particular crystalline system under investigation. Considering
the zero scattering limit, an important result of the thesis is to obtain gen-
eral conductivity formulae for two-band systems in chapter 7 and PT -invariant
four-band systems in chapter 8, being dependent only on the Hamiltonian kernel
(4.11) of the system. Importantly, the derivation of the formulae involves per-
forming the Matsubara frequency summation of the Matsubara autocorrelation
function (3.41), leaving only an integral over the crystal momentum k.

Of particular importance are the conductivity calculations for a general PT -
invariant four-band system, whose Hamiltonian kernel can be represented by

H(k) = h0(k) + τyσ · h(k) + τzh4(k) + τxh5(k), (9.1)

where h = (h1, h2, h3). It should here be noted that the particular representa-
tion and interpretation of the τ and σ bases is nonessential; the importance lies
within the imposed PT -symmetry, which leaves six terms in the Hamiltonian
kernel. The five latter terms are here combined to form the five dimensional
parameter vector H(k) = (h1(k), h2(k), h3(k), h4(k), h5(k)), in terms of which
the Kramers degenerate energy bands of the system can be written

εs(k) = h0 + s
√
h2

1 + h2
2 + h2

3 + h2
4 + h2

5 = h0 + |H|. (9.2)

Here, s = ±1 is a band index labelling each Kramers degenerate pair of energy
bands. The current density autocorrelation function (3.31) then split into one
term originating in transport within each Kramers degenerate pair of energy
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bands, and one term describing optical transitions between the pairs. For the
interband autocorrelation function, a novel quantity aptly named the interband
tensor was introduced, given by

Ξil(k) = ∂iH · ∂lH − ∂i|H|∂l|H|, (9.3)

In terms of the five dimensional parameter vector H, the energy bands εs and
the interband tensor Ξil, the intraband (8.5) and interband (7.9) current density
autocorrelation functions was found to be given by the integrals

Πintra
il (ω) =

2e2

~
1

ω + iη

ˆ
ddk

(2π)d

∑
s

∂iεs(k)

~
∂lεs(k)

~
[
nF (εs)−nF (εs−~ω)

]
Πinter
il (ω) =

2e2

~2

ˆ
ddk

(2π)d
[
nF (ε+)− nF (ε−)

]∑
s

sΞil(k)

2s|H|+ ~ω + iη
.

(9.4)

Under the assumptions of linear response theory as discussed in section 3.2, in
the zero scattering limit and neglecting the influence of other bands present
in the energy band spectrum, these formulae describe the electric transport
properties of an ensemble of non-interactive electrons exactly. For effective
models the integrals are most readily calculated in the continuum limit, where
the Brillouin zone for simplicity is extended to infinity. The corresponding
conductivity tensor is then given by the formula

σil(ω) =
Πil(ω)−Πil(0)

iω
. (9.5)

The second term here originates in a diamagnetic contribution to the current
density operator (3.17), which in general cancels the possible divergencies of the
current density autocorrelation function.

The derived formulae for the current density autocorrelation function (9.4)
are temperature dependent through the Fermi-Dirac distributions nF (ε). For
nonzero temperatures, the formulae can be calculated numerically to find the
temperature dependence of the conductivity tensor in the zero scattering limit.

Finally, the reader should be aware that in some literature the diamagnetic
contribution is excluded for a linear dispersion [9], in the belief that the electro-
magnetic vector potential couple to the crystal momentum k. In the semiclassi-
cal Kubo formalism of chapter 3 however, the minimal coupling principle affects
only the momentum operator p̂, and the appearance of a diamagnetic term can-
not be read from the Hamiltonian kernel (4.11) itself. On physical grounds, if
the electromagnetic vector potential does not vary in time, the electric field is
zero and no current is induced. This effect is accounted for by subtracting the
zero frequency component of the current density autocorrelation function [40].
It can also be argued that a diamagnetic term must exist in order to cancel the
gradient part of the conductivity tensor in the zero frequency limit, which is
necessary for the conductivity to be a gauge invariant quantity [41].
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9.2 Experimental Predictions of the Formulae

From the calculated conductivity tensor, it is possible to predict optical effects
exhibited by the interaction between the particular material and the electro-
magnetic field. In general, the interaction between electromagnetic waves and
matter is highly dependent on the electronic structure of the matter, thus mak-
ing it viable to probe the electronic properties of a material through studying
the interaction with light. The Faraday and Kerr effects in particular are ex-
amples of magneto-optical effects, in which the electromagnetic interaction is
especially affected by the magnetic state of the material. The setup for mea-
suring the Faraday and Kerr effects are shown in figure 9.1, where a linearly
polarized beam of light with initial frequency ω is incident on some material.

Faraday Effect

Kerr Effect

- Polarization
- Ellipticity

Figure 9.1: Diagrammatic representation of the
Faraday and Kerr effects. A perpendicularly
incident beam of linearly polarized light with
polarization angle θ = 0 is partially reflected
from and transmitted through some material
of thickness d. The electronic and magnetic
properties of the material affects the ellipticity
ε and the polarization angle of the reflected and
transmitted beams, comprising the Kerr and
Faraday effects, respectively. The figure also
shows the polarization ellipse traced out by the
oscillating electric field component E.

For linearly polarized light the
projection of the electric field along
the axis of propagation oscillates in
a straight line. In general however
the electric field component will over
time trace out an ellipse, known as
the polarization ellipse. The polar-
ization angle θ gives the orientation
of the ellipse, whereas the ellipticity
ε gives the ratio between the major
and minor axes of the ellipse. If the
ellipticity is unity, the beam of light
is said to be circularly polarized.

When light is transmitted through
the bulk or reflected from the surface
of a material, both the polarization
angle and the ellipticity of the beam
may be affected by the material. If
the optical response is linear, meaning
the reflected and transmitted beams
oscillate at the same frequency ω as
the initial beam, the change in the
polarization angle and ellipticity is
known as the Faraday effect for the
transmitted beam and the Kerr effect
for the reflected beam. The experi-
mental setup for measuring both ef-
fects is depicted in figure 9.1, which also portrays the polarization ellipse.

The change in the polarization angle comprising the Faraday effect is a result
of the material having different indices of refraction for right- and left-circularly
polarized light, denoted n±. Assuming the beam of light is incident perpendic-
ularly on the material surface along the z-axis, these indices of refraction can
be calculated from the components of the conductivity tensor as [10]
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n2
± = ε± = 1 +

4πi

ω
σ± (9.6)

where the optical conductivity for left and right circularly polarized light

σ± =
1

2

[
σxx + σyy ± i

(
σyx − σxy

)]
(9.7)

Whenever n+ 6= n−, the right- and left-circularly polarized components of the
beam of light will move at different speeds, hence changing the ellipticity of the
beam cyclically with the transmission length through the material. This effect
is known as circular dichroism, and can be quantified by the parameter

Dc =
Reσ+ − Reσ−
Reσ+ + Reσ−

(9.8)

Consider then a material with thickness d, corresponding to the transmission
length through the material. Assuming the material comprise a thin film, the
Faraday angle corresponding to the change in the polarization angle upon trans-
mission through the material is then given by [10]

θF + iεF =
ωd

2c
(n+ − n−) (9.9)

where c is the speed of light in a vacuum. The formula also gives the Faraday
ellipticity εF , which is connected to the absorption of light upon transmission.

The magneto-optical Kerr effect likewise observes the change in the polar-
ization angle if an incident linearly polarized beam of light. Unlike the Faraday
effect however, the Kerr effect can be measured for different geometries, de-
pendent on the direction of the magnetization of the material with respect on
the incident angle of the light beam. In particular, for the polar Kerr effect
the magnetization and the incident beam of light are both oriented normal to
the interface. For a magnetic bulk material, the polar Kerr rotation angle is
connected to the components of the conductivity tensor as [42]

θK + iεK =
−σxy

σo
√

1 + i(4π/ω)σo
. (9.10)

Here, the conductivity σo depends on the symmetries of the crystal lattice [42].
For an orthorhombic system in particular, then σo = (σxx + σxy)/2.
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Summary and Conclusion

The first part of the thesis investigated the quantum physical theories underpin-
ning the calculation of optical conductivity in the Kubo formalism, considering
perturbations to a crystalline system with low degree of disorder at equilib-
rium in the regime of linear response theory. Of particular importance was the
introduction of the Matsubara autocorrelation function, from which the conduc-
tivity tensor was obtained through an analytical continuation in the complex
frequency plane. The mathematical machinery devised was then used to derive
particular conductivity formulae for topological semimetals, whose emergence
and topological analysis was investigated in the second part of the thesis.

In particular, in the third part of the thesis a conductivity formula for a
Kramers degenerate four-band system was calculated in the low disorder regime.
From the obtained formula, an analytical expression for the conductivity tensor
of two superposed Weyl nodes was calculated in the zero temperature limit. The
resulting conductivity tensor witnessed the emergence of a symmetric Hall effect,
presumably caused by geometrical features of the anisotropy of the Fermi surface
nearby the Dirac point. Adding spin-orbit coupling as a perturbative interaction
to second order between the Weyl nodes manifested in a set of spin reversal
parameters, the conductivity tensor gained a renormalization term originating
in the warping of the Fermi surface due to the spin-orbit coupling, and another
source for a symmetric Hall conductivity dependent directly on the spin reversal
parameters. Furthermore, the intrinsic symmetric Hall effect discovered is only
apparent for a nonzero optical frequency of the applied electric field.

Applied to the antiferromagnetic semimetal CuMnAs, the calculated con-
ductivity tensor predicts a symmetric Hall effect in the plane perpendicular to
the localized magnetic moments in the ground state of the orthorhombic phase
of the material. The results are assumed to hold under the confinement of lin-
ear response theory, where the applied electric current is weak enough to not
break the symmetry protection of the Dirac points. The symmetric Hall effect
is assumed experimentally detectable through different magneto-optical effects
such as circular dichroism, on which further research must be conducted.
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Appendix A

Dynamical Pictures in
Quantum Mechanics

The theoretical framework of quantum mechanics allows for the mathematical
computation of physical observables O by assigning to each observable the cor-
responding operator Ô. If a system is described by the quantum state |ψ〉, the
expectation value of the physical observable O in that state can then be ex-
pressed as an inner product on the form 〈Ô〉 = 〈ψ| Ô |ψ〉. It is only expectation
values on this form that can be measured experimentally. For the expectation
value to be a real quantity, the operators of observables are then constrained to
be self-adjoint, or hermitian operators, satisfying Ô† = Ô.

Many physical systems are dynamical systems, in that the physical observ-
ables 〈Ô〉 = 〈ψ| Ô |ψ〉 are time dependent. For dynamical systems, this depen-
dence on time translates to the states |ψ〉 and the operators Ô describing the
system. However, because only the expectation values themselves are observ-
able, there is no univocal way of distributing the time dependence between the
states and the operators; any apportions of time dependence leading to the same
expectation values are physically equivalent. Even so, some prescriptions turn
out to be more advantageous than others, depending on the system at hand.
This is the mathematical origin of dynamical pictures in quantum mechanics.

In this appendix, the most common dynamical pictures are presented, namely
the Schrödinger picture, the Heisenberg picture and the Dirac picture, the lat-
ter also known as the interaction picture. The formalism of this appendix is
adamant to the definitions of Green functions in chapter 2 and to linear response
theory in chapter 3. The investigation of these dynamical pictures additionally
derives fundamental results from the theory of quantum physics, and also in-
troduces the concept of time ordering which is used in the Matsubara method
of chapter 2.
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A.1 The Schrödinger and Heisenberg Pictures

From the epigraph of this appendix, there are in particular two dynamical pic-
tures which naturally follows. In the Schrödinger picture, all time dependence
is allotted the quantum state |ψS〉 = |ψS(t)〉, whereas operators ÔS carries
no implicit time dependence. On the contrary, in the Heisenberg picture the
time dependence of the system is fully encoded in the operators ÔH = ÔH(t),
whereas the states |ψH〉 themselves are time independent. The Schrödinger and
Heisenberg pictures are the main dynamical pictures of quantum mechanics
from which all other pictures will be intermediate.

A.1.1 Time Evolution and the Schrödinger Equation

Consider a quantum mechanical system initially prepared in the state |ψS(0)〉
at a time t = 0. In the Schrödinger picture, evolution of the system from the
initial state to a state |ψS(t)〉 at a time t > 0 is then modelled using the evolution
operator Û(t, t′), time translating the state as |ψS(t)〉 = Û(t, 0) |ψS(0)〉. The
evolution of the system between any two times t and t′ is readily given

|ψS(t)〉 = Û(t, t′) |ψS(t′)〉 , (A1)

where Û(t, t′) ≡ Û(t, 0)Û(0, t′) defines the group property of the evolution
operator. From this definition, the evolution operator satisfies Û(t, t) = Î.
Furthermore, for the state vector normalization 〈ψS(t)|ψS(t)〉 = 1 to be pre-
served for all times t, the evolution operator must be unitary, and hence satisfy
Û†(t, t′) = Û−1(t, t′) = Û(t′, t), the last equality following by definition.

By the assumption of physical continuity, the state |ψS(t)〉 is restricted to
be differentiable with respect to time. This restriction is transferred to the
evolution operator (A1), guaranteeing the existence of the limit

lim
t′→t

Û(t, t′)− I
t′ − t

= û(t) ≡ 1

i~
Ĥ(t)

By the property Û†(t, t′) = Û(t′, t), this limit is an anti-hermitian operator,
satisfying û†(t) = −û(t). Thus, from its definition, the operator Ĥ(t) is likewise
a hermitian operator. Then by differentiation, the equation governing the time
evolution of quantum states (A1) is recast into the Schrödinger equation

i~
d |ψS〉

dt
= Ĥ |ψS〉 . (A2)

The hermitian operator Ĥ is identified as the Hamiltonian operator of the sys-
tem, being the quantum mechanical analogue of the classical Hamiltonian func-
tion. In the following of this subappendix, it will be assumed that the Hamilto-
nian operator is independent on time, such that the evolution operator becomes
homogeneous in time, satisfying Û(t, t′) = Û(t−t′). Systems with a time depen-
dent Hamiltonian will be treated in the next subappendix on the Dirac picture,
where a time dependent perturbation is added to the system.
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Using the Schrödinger equation (A2), it is now viable to calculate an ex-
plicit form of the evolution operator in terms of the Hamiltonian operator Ĥ.
By inserting the expression for the time evolution of the state (A1) into the
Schrödinger equation, the equation of state for the evolution operator becomes

i~
dÛ(t, t′)

dt
= ĤÛ(t, t′). (A3)

Because the Hamiltonian is assumed to carry no explicit time dependence, the
equation of state for the evolution operator gives directly

Û(t, t′) = Û(t− t′) = e−iĤ(t−t′)/~. (A4)

The Hamiltonian operator is thus seen to be the generator of time translations.

A.1.2 The Heisenberg Equation

Recall that the average of any observable 〈Ô〉 must be independent on the
dynamical picture, thus giving 〈ψS(t)| ÔS |ψS(t)〉 = 〈ψH | ÔH(t) |ψH〉. From the
definition of the evolution operator (A1), the time independent states of the
Heisenberg picture are related to the states in the Schrödinger picture as

|ψH〉 = Û†(t, 0) |ψS(t)〉 = |ψS(0)〉 , (A5)

whereas operators in the Heisenberg picture are related to the corresponding
time independent operators in the Schrödinger picture through

ÔH(t) = Û†(t, 0)ÔSÛ(t, 0) = eiĤt/~ÔSe
−iĤt/~, (A6)

where the evolution operator is given in the Schrödinger picture (A16).
Recall now that operators in the Schrödinger picture does not carry any

implicit time dependence. By taking the derivative of the general Heisenberg
operator (A6), and using the expression for the general evolution operator of the
Schrödinger picture (A4), the time evolution of Heisenberg operators becomes
governed by the Heisenberg equation of motion

dÔH
dt

= Û†(t, 0)

(
i

~

[
Ĥ, ÔS

]
+
∂ÔS
∂t

)
Û(t, 0) =

i

~

[
Ĥ, ÔH

]
+

(
∂ÔS
∂t

)
H

. (A7)

Notice then that when the Hamiltonian Ĥ is independent on time, it commutes
with the evolution operator (A4), and hence leaves both the Hamiltonian and
the evolution operator independent on the dynamical picture used.

Finally, it should be noted that the unitary transformation between the
Schrödinger and Heisenberg pictures besides preserving observable averages,
also preserves eigenvalues; if λ is an eigenvalue of ÔS with eigenstate |ψS(t)〉,
it is also an eigenvalue of ÔH(t) with eigenstate |ψH〉. This is evident from the
relation between the states (A5) and the operators (A6).
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A.2 The Dirac Picture

Consider now a system in which the Hamiltonian can be separated into a time
independent unperturbed part Ĥ0, and a time dependent perturbation V̂S(t),
giving the Schrödinger picture Hamiltonian ĤS = Ĥ0 + V̂S(t). Due to the time
dependent perturbation the full Hamiltonian will not be independent on the
dynamical picture used, elucidated by the subscript.

For such systems, it turns out advantageous to distribute time dependence
between both operators ÔI = ÔI(t) and states |ψI〉 = |ψI(t)〉. Specifically, the
evolution of the operators is governed by the unperturbed Hamiltonian, whereas
the rest of the time dependence is allotted the states. This particular distribu-
tion of time dependence characterises the Dirac picture, otherwise known as the
interaction picture whenever the perturbation V̂S model interactions between
different parts of the system not included in the unperturbed Hamiltonian Ĥ0.

A.2.1 Modified Schrödinger and Heisenberg Equations

Operators in the Dirac picture are connected to the time independent operators
in the Schrödinger picture through the unperturbed part of the Hamiltonian,

ÔI(t) = eiĤ0t/~ÔSe
−iĤ0t/~ (A8)

whereas the quantum states evolves by a modified evolution operator

|ψI(t)〉 = ÛI(t, t
′) |ψI(t′)〉 . (A9)

The modified evolution operator ÛI(t, t
′) is connected to the evolution operator

of the Schrödinger picture defined through the equation of state (A3) as

ÛI(t, t
′) = eiĤ0t/~Û(t, t′)e−iĤ0t

′/~. (A10)

Due to the explicit time dependence of the Hamiltonian operator Ĥ, the evolu-
tion operator Û(t, t′) is no longer given by the homogeneous evolution operator
(A4). Notice also that the second exponential here is unity for ÛI(t, 0).

Repurposing the derivation of the Schrödinger equation (A2), the time evo-
lution of states in the Dirac picture can through differentiation of its definition
(A9) be recast into a modified Schrödinger equation

i~
d |ψI〉

dt
= V̂I(t) |ψI〉 , (A11)

where the evolution operator equation of state (A3) was used. Notice that the
operator V̂I(t) appearing here is the perturbation term V̂S(t) in the Dirac picture
(A8). Likewise, the Heisenberg equation (A7) has the modified analogue

dÔI
dt

=
i

~

[
Ĥ0, ÔI

]
+

(
∂ÔS
∂t

)
I

. (A12)

Recall here that the unperturbed part of the Hamiltonian Ĥ0 is independent on
the dynamical picture seeing that it commutes with itself.
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A.2.2 Dyson Series and the Time Ordering Operator

Inserting the modified evolution operator (A9) into the modified Schrödinger
equation (A11) gives the modified equation of state of the Dirac picture

i~
dÛI(t, t

′)

dt
= V̂I(t)ÛI(t, t

′). (A13)

Integrating the equation (A3) from t′ to t, the equation of state for the modified
evolution operator is recast into an integral equation on the form

ÛI(t, t
′) = Î − i

~

ˆ t

t′
dt1V̂I(t1)ÛI(t1, t

′). (A14)

This integral equation can be iterated up to any order in the perturbation VI(t)
to give an arbitrarily accurate expression for ÛI(t, t

′). At iteration n, inserting
Û(tn, t

′) = Î, the integral equation (A14) gives the approximated operator

ÛI(t, t
′) = Î +

n∑
k=1

(
− i

~

)k ˆ t

t′
dt1V̂I(t1)

ˆ t1

t0

dt2V̂I(t2) · · ·
ˆ tk−1

t0

dtkV̂I(tk)

It must here be noted that the perturbation term in general does not commute
with itself evaluated at different times; [V̂I(tk), V̂I(tl)] 6= 0. This leaves the
integration over the operators non-trivial.

Introduce then the time ordering operator T̂, which arranges operators ac-
cording to descending time arguments. In particular, for n time dependent
operators Ôi(t), their time ordered product is defined

T̂{Ô1(t1) · · · Ôn(tn)} =
∑
p

θ(tp1 ≤ · · · ≤ tpn)ζP Ôp1(tp1) · · · Ôpn(tpn) (A15)

The sign factor ζP = (±1)P , where P is the number of permutations needed to
achieve the specific ordering from the original expression; the upper and lower
signs corresponds to bosonic and fermionic operators, respectively.

Using the time ordering operator (A15), the iterated integral

ˆ t

t0

dt1V̂I(t1) · · ·
ˆ tk−1

t0

dtkV̂I(tk) =
1

k!

ˆ t

t0

dt1 · · ·
ˆ t

t0

dtkT̂{V̂I(t1) · · · V̂I(tk)}.

The equality is made tenable by considering the boundaries of the integrals: on
the left, the integration domain is over a single of the k! congruent simplexes of
the k-dimensional hypercube, whereas the right expression integrates over the
entire hypercube itself, with all upper limits being t.

In this last expression, the time ordering operator can be put outside of the
integrals, leaving a product of k integrals on the same form. By letting n→∞
the evolution operator is readily expressed as the exponential operator
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ÛI(t, t
′) = T̂

∞∑
k=0

1

k!

(
− i

~

ˆ t

t′
dτ V̂I(τ)

)k
= T̂ exp

(
− i
~

ˆ t

t′
dτ V̂I(τ)

)
(A16)

This expansion is known as the Dyson series for the evolution operator. Intro-

ducing also the anti-time-ordering operator T̂, arranging operators according
to ascending time arguments, the adjoint of the evolution operator (A16) is
likewise expressed as the anti-time-ordered exponential operator

Û†I (t, t′) = ÛI(t
′, t) = T̂ exp

(
i

~

ˆ t

t′
dτ V̂I(τ)

)
(A17)

This derivation holds for any time dependent Hamiltonian. Hence, the Dyson
series (A16) can be viewed as a generalization of the evolution operator for a
time independent Hamiltonian (A4).

Comparing the modified Schrödinger (A11) and Heisenberg (A12) equations
to their original counterparts, a natural transition from the Dirac picture to
the Schrödinger and Heisenberg pictures follows. Recall that the Hamiltonian
of interest when applying the Dirac picture is comprised of a free Hamiltonian
and a perturbation term, denoted ĤI = Ĥ0 + V̂I . In order to obtain the original
Schrödinger equation (A2) and time independent operators, let Ĥ0 = 0. The
remaining operator V̂I = Ĥ then serves as the Hamiltonian for the Schrödinger
picture. Likewise for the Heisenberg picture, let V̂I = 0. The states then become
time independent, while the time evolution of operators becomes governed by
the Hamiltonian operator Ĥ = Ĥ0 through the Heisenberg equation (A7).
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Appendix B

Crystal Structures and
Bloch Wavefunctions

In a vacuum, electrons are quantum mechanically described by plane waves
extended over the entirety of space. For an aggregate of matter however, being
a collection of neutrally charged atoms, the underlying atomic nuclei generate
a positive potential field effectively modulating the plane wave behaviour of the
electron. The form of the underlying potential is determined by the arrangement
of the positively charged atomic nuclei inside the material, and so electronic
properties of a material thus become highly dependent on atomic structure.

For many materials the atomic structure can be approximated by a perfectly
periodic lattice, and the crystalline system becomes translationally invariant for
a set of discrete translations. Considering then a single electron residing on the
underlying crystal lattice, it is possible on the assumption of discrete translation
invariance to gain insight into the general shape of the wavefunction of the
electron and the properties of the corresponding energy eigenvalue equation.

The purpose of this appendix is to introduce the mathematical description
of lattices and translations, and to use these mathematical tools for extracting
information about the single-electron states in periodic crystalline structures.
The appendix initiates with the description of the position representation of
quantum mechanics, which connects the following material to the discussion on
Hilbert spaces and quantum states of chapter 1. The chapter then introduces
the Bloch functions of the Brillouin zone resulting from discrete translation
invariance, giving the foundation for defining the berryological quantities of
crystalline systems in chapter 5. Eventually, it will be shown that individual
electrons residing on a crystal structure can be described by a linear combination
of atomic orbitals, being the theoretical basis for the tightbinding model of
chapter 4. The appendix at hand thus derives many important results from
solid state physics, providing the main background for several chapters.

The derivations, relations and nomenclature of the appendix is inspired by
the introductory book by Vanderbilt [24].
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B.1 The Position and Momentum Operators

In chapter 1, the mathematical formalism underpinning quantum mechanics
was investigated, with general quantum states being described by Hilbert space
vectors |ψ〉. These vectors can be expanded in any complete basis of the cor-
responding Hilbert space. In particular, for particles moving in configuration
space dependent on the spatial coordinate r, the Hilbert subspace corresponding
to the spatial degrees of freedom is spanned by the position states |r〉. These
vectors comprise an uncountably infinite and continuous basis set, orthonormal-
ized to satisfy 〈r1|r2〉 = δ(r1 − r2) and satisfying the completeness relation

ˆ
ddr |r〉 〈r| = Î , (B1)

analogous to the discrete completeness relation (1.1) derived in section 1.1. The
position basis states |r〉 are the eigenstates of the position operator vector r̂,
defined through the eigenvalue equation r̂ |r〉 = r |r〉.

The continuously related components of the state |ψ〉 expanded in the po-
sition basis are collectively known as the wavefunction corresponding to |ψ〉,
denoted by ψ(r) ≡ 〈r|ψ〉. For systems where the only degrees of freedom are
spatial in nature, the wavefunction incorporates the same complete information
as the state vector. Describing quantum systems in terms of the wavefunc-
tion ψ(r) rather than the state vector |ψ〉 defines the position representation
of quantum mechanics, which is particularly convenient for describing spatial
distributions and symmetries in regards to particular quantum states.

From the Born rule, the state vector |ψ〉 should be normalized to unity. Using
the completeness relation of the position basis (B1), this condition translates to

〈ψ|ψ〉 =

ˆ
ddr|ψ(r)|2 = 1. (B2)

Hence, wavefunctions are in general square integrable, and thus an element of
the Lebesgue space of square integrable functions, being the only Hilbert space
among the Lebesgue spaces [15]. Using again the completeness relation, this
allows for the definition of the inner product between wavefunctions, defined by

〈ψ1|ψ2〉 =

ˆ
ddr ψ∗1(r)ψ2(r), (B3)

where the asterisk denotes complex conjugation. This property of the space of
wavefunctions is inherited from the original Hilbert space of quantum states.

Introduce the translation operator T̂x acting on space by translating each
vector r by x, corresponding to a shift in the origin. Application of the transla-
tion operator on an element of the position basis gives T̂x |r〉 = |r + x〉. From
this definition, translation operators evidently satisfies T̂x1

T̂x2
= T̂x1+x2

, and
so all translation operators commute; the group of all translation operators is
an abelian group. With x = 0 corresponding to the unity operator, the inverse
of translation operators is then naturally given by T̂−1

x = T̂-x. Furthermore,
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from the definition of the adjoint operator (C4) and seeing that the inner prod-
uct 〈r1|r2 + x〉 = 〈r1 − x|r2〉, the adjoint of the translation operator satisfies
T̂ †x = T̂-x = T̂−1

x . In consequence, translation operators are unitary operators
and can be written on the form T̂x = e−ix·p̂/~ where ~ is Plancks constant and
−ip̂/~ is the generator of translations with p̂ being hermitian by construction.

Consider the application of the translation operator and the position opera-
tor on an element of the position eigenbasis, which satisfies T̂xr̂ |r〉 = r |r + x〉
and r̂T̂x |r〉 = (r+x) |r + x〉. Subtracting these two relations, the commutation
relation between the position and translation operators becomes [r̂, T̂x] = x. In
particular, assume x is an infinitesimal distance, such that the translation op-
erator can be written in terms of the generator p̂ as T̂x = 1− ix · p̂/~+O(x2).
The commutation relation between the elements r̂i of the position operator and
p̂j of the generator of translations thus becomes

[r̂i, p̂j ] = i~δij . (B4)

This is the canonical commutation relation of elementary quantum mechan-
ics. The quantum mechanical commutator corresponds to the classical Poisson
bracket of the observables represented by the quantum operators, from which
the generator of translations p̂ can be interpreted as the momentum operator.

Similarly to the eigenstates of the position operator, the continuously con-
nected eigenstates of the momentum operator can be defined through the eigen-
value equation p̂ |p〉 = p |p〉, orthonormalized with 〈p1|p2〉 = δ(p2 − p1). The
inner product between any two quantum states can then be expanded

〈ψ1|ψ2〉 =

ˆ
ddp ψ∗1(p)ψ2(p) (B5)

where ψ(p) = 〈p|ψ〉 is the momentum wavefunction. Using the momentum
wavefunction ψ(p) to describe the quantum state |ψ〉 constitute the momentum
representation of quantum mechanics, analogous to the position representation.

In the position representation, the translation operator acts on wavefunc-
tions as T̂xψ(r) = 〈r| T̂x |ψ〉 = ψ(r − x). Hence, expanding the wavefunction
and momentum operators to linear order in the displacement x, the momentum
operator takes the form p̂ = −i~∇ in the position representation of quantum
mechanics. The position representation wavefunction corresponding to the mo-
mentum operator eigenstate |p〉 can thus be chosen

χp(r) = 〈r|p〉 =
1

(2π~)d/2
eir·p/~. (B6)

Hence, using the continuous completeness relation (B1) of the momentum eigen-
states |p〉, any wavefunction can be expressed on the form

ψ(r) =

ˆ
ddp

(2π~)d/2
ψ(p)eir·p/~. (B7)

The position and momentum representations of quantum mechanics are thus
mathematically related by a symmetric Fouriér transform.
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B.2 The Bloch Theorem and Energy Bands

In this section, the Bloch theorem is derived on the basis of discrete translation
invariance, being one of the main results of solid state physics. The Bloch
theorem puts restrictions on the possible quantum wavefunctions describing
particles in a periodic spatial potential, from which the section initiates.

B.2.1 Real and Reciprocal Lattice Structures

In solid state physics, a crystal is a structure of atoms in space built up in a
periodic lattice, hereafter termed the crystal lattice. The crystal lattice can be
separated into equal unit cells, the smallest of which are primitive unit cells
spanned by primitive lattice vectors al. The crystal lattice is then spanned
by translating the primitive unit cell throughout a Bravais lattice, which for a
d-dimensional crystal is mathematically described by a set of lattice vectors

Ri = R{zl} =

d∑
l=1

zlal, zl ∈ Z, (B8)

where i = {zl} is the unique set of integer weights for each lattice vector. Finite
lattices are then described by limiting the range of the weights zl. For simplicity,
it is in the following assumed that the crystal lattice is of infinite extent.

1

2

Figure B.1: Construction of the
Wigner-Seitz cell of a Bravais lattice
with primitive lattice vectors a1 and
a2. The red lines connecting lattice
points are bisected, and the enclosed
grey area constitute the cell.

The primitive unit cell may contain one
or more lattice points, and its total volume is
denoted by VC . Apart from the volume and
number of lattice points, the choice of a prim-
itive unit cell is otherwise arbitrary. However,
there is only one choice that retains all sym-
metries of the entire lattice: the Wigner-Seitz
cell. The Wigner-Seitz cell is defined as the lo-
cus of points in space closer to a lattice point
than to all neighbouring lattice points. Its
construction is explained by figure B.1.

Denote by r the position vector in d-
dimensional space. Seeing that the crystal
structure is infinite in extent and periodic, the
lattice is homogeneous at the level of primi-
tive unit cells. In consequence, any local prop-
erty of the crystal described by a field f(r)
should be invariant under the symmetries of the crystal lattice. In particular,
any physically observable field defined on the lattice should be invariant under
discrete lattice translations, and so must satisfy f(r −Ri) = f(r).

The Fouriér transform of such a field, chosen asymmetric, can be written

f̃(k) =

ˆ
ddrf(r)e−ik·r =

∑
i

eik·Ri
ˆ
VC

ddrf(r)e−ik·r (B9)

150



where k is a reciprocal vector in Fouriér space, usually named reciprocal space.
Here, the sum over lattice vectors Ri is known as the lattice sum, and the final
integral is over the primitive unit cell within the volume VC . Being a sum of
terms distributed along the complex unit circle, the lattice sum and hence the
Fouriér coefficient f̃(k) is zero except for reciprocal vectors k ≡ Gj satisfying

eiGj ·Ri = 1 or Gj ·Ri = 2πz, z ∈ Z. (B10)

This condition on the reciprocal vectors defines the reciprocal lattice of the
crystal, spanned by the reciprocal lattice vectors Gj defined similarly to the
real space lattice vectors (B8). The reciprocal lattice is therefore itself a Bravais
lattice, whose primitive reciprocal lattice vectors bm can be defined through

al · bm = 2πδlm (B11)

in order to satisfy their defining condition (B10). Notice that the reciprocal
lattice is defined with respect to the underlying Bravais lattice of the crystal
lattice, and so will only have one reciprocal lattice point per unit cell.

The Wigner-Seitz cell of the reciprocal lattice is known as the First Brillouin
Zone, and has a volume given by (2π)d/VC . Just as fields over real space r are
completely determined by their properties in the Wigner-Seitz cell, fields over
reciprocal space k are determined by their properties in the Brillouin zone. As
such, most properties of crystals need only be considered in the Wigner-Seitz
cell or the Brillouin zone in order to be determined completely.

All reciprocal vectors k are connected to a reciprocal vector k′ in the Bril-
louin zone through some reciprocal lattice vector Gj through k = k′ +Gj . In
consequence, the inverse Fouriér transform of a reciprocal field g̃(k) periodic
over the reciprocal lattice can be expressed in terms of a reciprocal lattice sum,

g(r) =

ˆ
ddk

(2π)d
g̃(k)eik·r =

∑
j

eiGj ·r
ˆ

BZ

ddk

(2π)d
g̃(k)eik·r. (B12)

This is nonzero only for r = Ri, analogous to the Fouriér transform itself (B9).
From the Fouriér transform (B9) and its inverse (B12), mathematical re-

lations between the real and reciprocal lattices can be derived. In particular,
considering the inverse Fouriér transform of g̃(k) = e−ik·Rj and the Fouriér
transform of f(r) = eik

′·r gives the two important orthogonality relations

VC

ˆ
BZ

ddk

(2π)d
eik·(Ri−Rj) = δij

∑
i

ei(k−k
′)·Ri =

(2π)d

VC
δ(k − k′). (B13)

Here, δij is the Kronecker delta and δ(k) the Dirac delta function.
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B.2.2 Bloch Functions and the Bloch Theorem

The atoms comprising the crystal lattice are composed of atomic nuclei and their
surrounding electrons. Because the electron mass m is very light compared to
the mass of the nuclei, the crystal lattice can be considered fixed with respect
to the electrons of the material. In consequence, most dynamical properties of
aggregates of matter are determined by their electronic structure.

Consider then a single electron moving in a potential U(r) generated by
the underlying atomic nuclei of the aggregate. Assuming the atomic nuclei are
arranged in a crystal lattice, the potential becomes lattice periodic, satisfying
U(r−Ri) = U(r). Assuming the electron carries a non-relativistic momentum
p, the Hamiltonian operator describing the single electron can be written in
terms of the position operator r̂ and the momentum operator p̂ as

ĥ =
p̂2

2m
+ Û(r̂), (B14)

Here, the former term represents the kinetic energy of the electron, while the
latter describes the interaction between the electron and the crystal lattice.
In particular, in the position representation (B1) the matrix elements of the
Hamiltonian becomes diagonal and takes the form

h = 〈r| ĥ |r〉 = − ~2

2m
∇2 + U(r), (B15)

with the momentum operator being represented by p̂ = −i~∇. The eigenfunc-
tions ψ(r) of the Hamiltonian in the position representation are the wavefunc-
tions corresponding to the eigenstates |ψ〉 of the Hamiltonian operator (B14),
and satisfies the eigenvalue equation hψ(r) = εψ(r) where ε is the energy of the
electronic state described by the quantum state |ψ〉.

Because of the potential term, the single-electron Hamiltonian (B14) does
not commute with the momentum operator p̂, and so electronic states with a de-
fined momentum cannot be constructed. However, due to the crystal structure
the Hamiltonian is invariant under discrete lattice translations, and hence satis-
fies the commutation [h, TRi ] = 0. Simultaneous eigenfunctions between the dis-
crete translation and Hamiltonian operators can then be constructed. Because
translation operators are unitary, their eigenvalues lie along the complex unit
circle. Hence, the eigenfunctions of the Hamiltonian operator can be chosen to
satisfy the discrete translation operator eigenvalue equation TRiψ(r) = eiκψ(r).
The eigenvalue parameter κ must respect the abelian group structure of the
translation operators. Denoting by κl the parameter corresponding to transla-
tion by the primitive lattice vector al, then for any lattice vector (B8),

TRiψ(r) = ei
∑
l zlκlψ(r) = eik·Riψ(r).

Here, k is a linear combination of the primitive reciprocal lattice vectors (B11)
bm with weights κm/2π, and is as such a vector residing in reciprocal space.

The eigenfunctions of the single-electron Hamiltonian operator (B14) can
thus be labelled by their eigenvalues from the lattice translation operator given
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implicitly through the reciprocal vectors k. This labelling is however not unique:
any two vectors connected by a reciprocal lattice vector as k′ = k + Gj will
give the same eigenvalue, evident from the defining relation of the reciprocal
lattice (B10). In conclusion, all distinct eigenfunctions of the single-electron
Hamiltonian (B14) can be labelled by reciprocal vectors k lying in the Brillouin
zone of the reciprocal lattice of the crystal structure, and will satisfy

ψk(r −Ri) = eik·Riψk(r) ψk−Gj (r) = ψk(r). (B16)

Define then the lattice periodic function uk(r) = e−ik·rψk(r), which from the
derived relations will be periodic with the underlying crystal lattice and satisfy

uk(r −Ri) = uk(r) uk−Gj (r) = eiGj ·ruk(r). (B17)

The eigenfunctions of the Hamiltonian thus takes the form of Bloch functions,

ψk(r) = eik·ruk(r). (B18)

This is the Bloch theorem: In a periodic crystal structure, the electronic wave
function will be a plane wave modulated by a lattice periodic function. Here,
the vector k is not equivalent to the momentum of the electrons, but gives
rise to the crystal momentum ~k. Unlike the physical momentum, the crystal
momentum is only conserved up to a reciprocal lattice vector Gj , which is an
effect of the discrete translation symmetry of the lattice.

Recall that the Bloch function (B18) are eigenfunctions of the single-electron
Hamiltonian (B15), now satisfying hψk = εkψk. Upon inserting the Bloch func-
tion (B18) into this eigenvalue equation, it is seen that the lattice periodic func-
tion uk(r) are eigenfunctions of the crystal momentum dependent Hamiltonian
h(k) ≡ eik·rhe−ik·r with the same energy eigenvalue εk, satisfying

h(k)unk(r) =
[ ~2

2m

(
− i∇+ k

)2
+ U(r)

]
unk(r) = εnkunk(r). (B19)

For a particular value of k there is a countably infinite family of solutions unk(r)
to this equation, each with a different eigenvalue εnk. This is the mathematical
origin of energy bands, with each solution in the family being labelled by the
discrete band index n. Each energy band εnk is continuous with respect to
the reciprocal vector k, and as the Bloch functions (B18) are periodic with the
reciprocal lattice the bands must be bounded both from above and from below.

From here on, the Bloch states (B18) are thus labelled by the band index
n and the crystal momentum k, as ψnk(r). These are the quantum numbers
labelling the possible wavefunctions of a single electron residing in a crystal lat-
tice, corresponding to the eigenvalues of the single-electron Hamiltonian (B14)
and the discrete translation operator respectively. Additionally, if the crystal
lattice has a spin structure, the electronic spin will be added as a third quan-
tum number describing the possible states. The quantum spin is investigated in
appendix C, along with the prospect of Kramers degeneracy for energy bands.
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B.2.3 Bloch Function Inner Products

The Bloch wavefunctions are the position representation of the abstract Bloch
state vectors |ψnk〉, related by the projection ψnk(r) = 〈r|ψnk〉. Likewise, the
lattice periodic function unk(r) correspond to state vectors |unk〉. Notice then
that the Bloch functions ψnk(r) and the lattice periodic functions unk(r) are
the eigenfunctions of different Hamiltonians h and h(k), and hence the state
vectors |ψnk〉 and |unk〉 are elements of different Hilbert spaces. Furthermore,
because the Hamiltonian of the lattice periodic functions h(k) is dependent on
the crystal momentum k, the state vectors |unk〉 are unlike Bloch state vectors
elements of different Hilbert spaces for each value of k. For a particular value
of k, the Hilbert spaces of Bloch and lattice periodic functions are related by
the exponential transform |ψnk〉 = eik·r̂ |unk〉, where r̂ is the position operator.

Due to the lattice periodic function unk(r), the Bloch functions (B18) evi-
dently describe electronic states extended over the entire crystal structure. In
consequence, the inner product between Bloch functions must be defined as an
integral over the entire lattice (B3). The lattice periodic functions however need
only to be described in a single primitive unit cell, with the inner product of
the Hilbert space corresponding to the crystal momentum k being defined by

〈unk|umk〉 =
1

VC

ˆ
VC

ddr u∗nk(r)umk(r). (B20)

Here, the subscript VC signifies integration over the primitive unit cell. Using
the second orthogonality relation of the crystal lattice (B13), the inner product
between Bloch states of different crystal momenta k and q, which unlike the lat-
tice periodic functions are part of the same Hilbert space, can then be expressed
in terms of an integral over their corresponding lattice periodic functions as

〈ψnk|ψmq〉 =

ˆ
ddr ψ∗nk(r)ψmq(r) = (2π)dδ(k − q) 〈unk|umk〉 . (B21)

where the subscripts k and q are set equal by virtue of the delta function.
Unlike the full Bloch functions, the lattice periodic functions need only be square
integrable over the primitive unit cell, and so can be made to comprise an
orthonormal set satisfying 〈unk|umk〉 = δnm for every choice of the crystal
momentum k. Hence, the Bloch functions of different quantum numbers n and
k can be chosen to be orthogonal over the entire crystal lattice.

Seeing that the Bloch functions (B18) and the lattice periodic functions are
related by a phase factor, a normalization condition is naturally defined

ˆ
VC

ddr|ψnk(r)|2 =

ˆ
VC

ddr|unk(r)|2 = 1. (B22)

Hence, the normalization condition of the Bloch functions is independent on
the definition of their inner product (B21). The normalization condition also
gives a physical explanation of the absolute square of the Bloch functions as
the electron density over the crystal lattice, which is lattice periodic and indeed
extends over all of space for an electron described by a single Bloch function.
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B.3 Localized Wannier Orbitals

Instead of describing the electrons as Bloch states extended over the entire
crystal structure, it is often more convenient to describe the electrons as bound
in localized molecular orbitals corresponding to individual primitive unit cells in
the crystal lattice. These electronic states are known as Wannier orbitals, and
can be mathematically described using the Bloch functions derived from the
discrete translation invariance of the lattice. The Wannier orbitals are more or
less localized around each unit cell, and constitute the theoretical background
for a rigorous derivation of the tightbinding model in chapter 4.

Upon imposing the normalization condition (B22) on the Bloch functions
ψnk(r), the Wannier function of band n and lattice site Ri is defined as an
integral over the Brillouin zone given by

wni(r) = VC

ˆ
BZ

ddk

(2π)d
e−ik·Riψnk(r). (B23)

The Wannier wavefunction denoted wni(r) describes a Wannier orbital localized
around lattice site Ri. For Wannier states the quantum number n thus takes
on the role of labelling different electronic orbitals, as opposed to its role for
Bloch functions (B18) where n denotes the energy band index.

Using here the defining property of the Bloch functions (B16), it is clear
that the Wannier functions satisfies wni(r −Rj) = wn,i+j(r). In consequence,
it suffices to define only one Wannier function wn0 ≡ wn for each orbital type n.
The Wannier function at lattice site i is then a translated version of this orbital

wni(r) = wn(r −Ri). (B24)

This description is possible because the lattice vectors Ri are spanning a ho-
mogeneous Bravais lattice, meaning the surrounding lattice is identical at every
lattice site, leading to identical but translated electronic orbitals.

From the definition of the Wannier functions (B23) and the orthonormality
of the Bloch functions (B21), the Wannier functions are square integrable and
constitute an orthonormal set over the entire crystal lattice, satisfying

ˆ
ddr wni(r)wmj(r) = δnmδij , (B25)

where the first orthogonality relation of the crystal lattice (B13) was used.
From the second orthogonality relation, the Bloch functions (B18) can then
be retrieved from the Wannier functions (B23) through the inverse transform

ψnk(r) =
∑
i

eik·Riwni(r) (B26)

Hence, the Bloch function of band index n can be interpreted as the collective
wavefunction of the Wannier functions of orbital index n translated to every
primitive unit cell of the crystal lattice. Notice that the sum is over the entire
lattice and satisfies the defining relation of the Bloch functions (B16).
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In this formulation of the Wannier orbitals it is assumed that the Bloch
functions are smooth and periodic over the entire Brillouin zone. This is however
only viable for isolated, non-degenerate energy bands that are separated from
all other energy bands. A degeneracy in the energy band structure will usually
translate to a singularity in the Bloch functions at the degeneracy point, which in
turn results in delocalization of the corresponding single-band Wannier function.
However, it is possible to construct multiband Wannier functions by a linear,
unitary combination of the Bloch functions from degenerate bands [24], thus
avoiding the inconvenience. This topic will not be covered further in the thesis.
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Appendix C

Time Reversal Symmetry

In theoretical physics, time reversal of a system is the operation of reversing
the direction of time, denoted by the operator

T : t 7−→ −t. (C1)

Classically, variables are either invariant or negated under the act of reversing
the direction of time: the position of a particle r is invariant upon time reversal,
whereas the linear momentum p is negated due to the reversal of velocity.

Many physical laws are invariant under time reversal, meaning the formulae
governing the dynamics of physical systems remain valid upon reversing the
direction of time. This property of physical laws is known as time reversal
symmetry, being the symmetry behind the conservation of energy. Arguments
based on time reversal symmetry are important to the description of many
physical systems, and is used in chapters 5 and 6 as a tool for discovering the
properties of topological materials.

In the following appendix, the consequences of time reversal symmetry is
investigated for quantum mechanical systems. Of special importance is the
proof of Kramers degeneracy, which states that fermionic systems invariant
under time reversal will be doubly degenerate. The appendix also introduces
the Pauli matrices, which appear in the two-level Hamiltonian matrix of chapter
5, the orbital basis of chapter 4 and in the Weyl representation of the Dirac
matrices in appendix D.

The appendix on time reversal symmetry is based on the textbook by Bernevig
[23] and the article on hidden antiunitary symmetry by Hou and Chen [43].
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C.1 Properties of Antiunitary Operators

Let a quantum mechanical system be described by the state vector |ψ〉, whose
time reversed analogue is described by the reversed state vector T |ψ〉 ≡ |T ψ〉. If
the system is invariant under time reversal, the amplitude square should be con-
served, meaning |〈T ψ|T ψ〉| = |〈ψ|ψ〉|. According to the Wigner theorem, time
reversal T will then correspond to either a unitary or an antiunitary operator.

Consider then some physical process in which an initial state |ψ〉 turns into
a final state |φ〉, where the amplitude of the process is calculated as the inner
product 〈φ|ψ〉. When the arrow of time is reversed, the final and initial states
will interchange, such that |T ψ〉 becomes the final state and vice versa. In
consequence, the time reversal operator will satisfy

〈T φ|T ψ〉 = 〈ψ|φ〉 = 〈φ|ψ〉∗ . (C2)

The time reversal operator is therefore an antiunitary operator.
Being an antiunitary operator, the time reversal operator can always be

expressed T = UK, where K is the operator for complex conjugation. In this
way, the time reversal operator will be an antilinear operator, satisfying

T (a |ψ〉+ b |φ〉) = a∗ |T ψ〉+ b∗ |T φ〉 . (C3)

Due to the complex conjugation, the definitions of the adjoint operators U† and
T † are different for unitary and antiunitary operators, given respectively by

〈Uφ|ψ〉 =
〈
φ
∣∣U†ψ〉 〈T φ|ψ〉 =

〈
φ
∣∣T †ψ〉∗ (C4)

From the antiunitarity constraint of the time reversal operator (C2), the inverse
T −1 = T †, with the proper definition of the adjoint for antiunitary operators.

Consider then the square of the time reversal operator, which by its antiu-
nitarity (C2) satisfies

〈
T 2φ

∣∣T 2ψ
〉

= 〈φ|ψ〉. For this to hold for any two state
vectors, the square of the time reversal operator must satisfy T 2 = ±1.

C.2 Time Reversal in Spinful Systems

The components of the quantum mechanical spin-operator S = (Sx, Sy, Sz) of
a general spinful system are generated by the commutation relation

[Si, Sj ] = iεijkSk (C5)

For the dynamics of spinful systems to be invariant under time reversal, the
time reversed spin-operator T ST † must also satisfy the commutation relation.
Due to the antilinearity (C3) of the time reversal operator however, using also
that T T † = I, applying the time reversal operator on the commutation rela-
tion above yields [T SiT †, T SjT †] = −iεijkT SkT †. The original commutation
relation is regained if the spin operator is negated under time reversal, satisfying

T ST † = −S. (C6)
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As such, the direction of the spin is flipped under time reversal, consistent with
the spin being regarded as analogous to angular momentum. This can be taken
as a conventional constraint on the time reversal operator.

It is customary to choose the eigenstates of the Sz operator as the basis state
vectors of the Hilbert space of spin states. In that case, the spin flip under time
reversal can be implemented by a rotation of π radians around an arbitrary axis
perpendicular to the z-axis. The prevalent convention is to choose a rotation
around the y-axis, fixing the time reversal operator for spinful systems as

T = eiπSy/~K (C7)

where Sy being the y-component of the spin is the generator of rotations around
the y-axis. For a standard spin representation, the Sy component is purely
imaginary, such that the square T 2 = e2πiSy/~. In consequence, the time reversal
parity T 2 = 1 corresponds to particles of integer spin, or bosons, while T 2 = −1
corresponds to particles of half-integer spin, or fermions.

For a spin- 1
2 system in particular, the Hilbert space of quantum states is

two dimensional. In the matrix representation of quantum mechanics, the spin
operator can be represented using the Pauli matrices as S = ~σ/2, with

σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
(C8)

The Pauli matrices are all unitary and hermitian, satisfying σ−1 = σ† = σ. In
addition to obeying the spin commutation relation (C5), the Pauli matrices also
satisfies a Clifford algebra in the form of an anticommutation relation:

[σi, σj ] = iεijkσk {σi, σj} = 2δij

σiσj = δij + iεijkσk.
(C9)

In the lower equation, the two relations have been added to form a general
expression for the product of any two Pauli matrices.

Inserting the matrix σy/2 into the general formula for the time reversal
operator of spinful systems (C7), the time reversal operator for spin- 1

2 systems

T = iσyK. (C10)

This expression explicitly confirms the general form T = UK of an antiunitary
operator, where now U = iσy is a unitary and anti-hermitian operator, readily
satisfying U−1 = U† = −U from the unitarity and hermiticity of σy.

Finally, it should be noted that the spin component Sy in the general expres-
sion for the time reversal operator (C7) denotes the y-component of the total
spin in the system. Hence, for a system of several fermions, the spin component
Sy =

∑
i Siy, being the sum of the y-component of all individual fermions in the

system. Thus, squaring the time reversal operator will leave T 2 = 1 if there is
an even and T 2 = −1 if there is an odd number of fermions in the system. For
bosonic systems however, the total spin will always be of integer value, and so
the property T 2 = 1 holds independent on the number of bosonic particles.
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C.3 Kramers Degeneracy

Consider a system of half integer spin, such that the time reversal operator
satisfies T 2 = −1, and denote by |ψ〉 an eigenstate of the Hamiltonian Ĥ of
the system with a corresponding eigenvalue E. Assume then the system is
invariant under time reversal, such that the Hamiltonian commutes with the
time reversal operator: [Ĥ, T ] = 0. In that case, the time reversed state vector
satisfies Ĥ(T |ψ〉) = T Ĥ |ψ〉 = ET |ψ〉, and so T |ψ〉 is also an eigenstate with
the same eigenvalue E as the eigenstate |ψ〉.

Assume then the spectrum of the Hamiltonian Ĥ is non-degenerate. In that
case, the state vector T |ψ〉 must be equal to |ψ〉 up to a phase. In consequence,
the state |ψ〉 will also be an eigenstate of T , satisfying the eigenvalue equation
T |ψ〉 = eiθ |ψ〉. Consider then the state given by |φ〉 = eiθ/2 |ψ〉. Using the
antilinearity (C3) of the time reversal operator, the state satisfies T |φ〉 = |φ〉.
Applying the time reversal operator twice thus leaves T 2 |φ〉 = |φ〉, in contra-
diction with the assumption that T 2 = −1. Alternately, using directly the
assumption T 2 = −1 with the antiunitarity (C2) of the time reversal opera-
tor, then 〈ψ|T ψ〉 =

〈
T ψ
∣∣T 2ψ

〉∗
= −〈T ψ|ψ〉∗ = −〈ψ|T ψ〉, and so 〈ψ|T ψ〉 = 0.

Thus, the original and time reversed state vectors are orthogonal, and so cannot
be linearly dependent. This however holds only if T 2 = −1.

In consequence, for systems which are invariant under time reversal where
the time reversal operator satisfies T 2 = −1, each eigenvalue E of the Hamilto-
nian operator Ĥ will be doubly degenerate, with |ψ〉 and T |ψ〉 being orthogonal
eigenstates of the same eigenvalue. This statement is known as Kramers theo-
rem, and the degeneracy exhibited is known as Kramers degeneracy.

The reverse theorem is also true [43]: any two-fold degeneracy of a quantum
system must be protected by a symmetry corresponding to an antiunitary oper-
ator Υ with its square being Υ2 = −1. In order to prove the theorem, consider a
Hamiltonian with two distinct eigenstates |ψ〉 and |φ〉 with the same eigenvalue
E, such that the system exhibits a two-fold degeneracy. Define the operator

Υ =
(
|φ〉 〈Kψ| − |ψ〉 〈Kφ|

)
K, (C11)

where the operator K corresponds to complex conjugation. Under the prevailing
assumptions, the two states have been shown to be orthogonal, and assuming
the states are normed to unity the condition Υ2 = −1 is readily verified using
the completeness relation (1.1) of the two states. Likewise, the operator satisfies
Υ†Υ = I, and so is an antiunitary operator due to the complex conjugation.

Finally, from its definition the operator directly satisfies Υ |ψ〉 = |φ〉 and
Υ |φ〉 = − |ψ〉. Recalling that both states corresponds to the same eigen-
value of the Hamiltonian, the operator then satisfies the commutation relation
[Υ, H] = 0. In consequence, if a quantum system exhibits a two-fold degener-
acy, there exists an antiunitary operator with its square being Υ2 = −1 under
which the system is invariant. As such, any two-fold degeneracy is protected
by a symmetry corresponding to an antiunitary operator, of which the Kramers
degeneracy protected by time reversal symmetry is one example.
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C.4 The Combined PT -Symmetry

An important symmetry in most branches of physics is the space inversion
symmetry, with the corresponding parity operator defined through

P : r 7−→ −r, (C12)

where r is the position vector in any number of dimensions. Any quantity
transforming as the position vector will be odd under the parity transform.

In quantum mechanics in particular, the parity operator is unitary and acts
on quantum states ψ(r) of the position representation. Because applying the op-
erator twice leaves the spatial degrees of freedom invariant, the parity operator
must satisfy P2ψ(r) = eiθψ(r), where θ is an undetectable phase corresponding
to the state ψ(r). Usually the phase can in general be chosen θ = 0, such that
the parity operator acts on quantum states as Pψ(r) = ±ψ(−r). Here, the two
signs corresponds to the intrinsic parity of the particular state.

In solid state physics, the energy band structure of crystalline systems may
be dependent on the electron spin degree of freedom σ, with individual energy
bands labelled as εσ(k) with k being the crystal momentum. From the previous
sections both the electron momentum k and spin σ will change direction under
time reversal T , whereas space inversion P reverses only the momentum. Hence,
the energy bands are affected by the two operations as T εσ(k) = ε−σ(−k) and
Pεσ(k) = εσ(−k) respectively, which applied in succession leaves

PT εσ(k) = ε−σ(k). (C13)

The latter expression gives the transformation of the energy bands under the
combined time reversal and space inversion symmetry, conventionally termed
the PT -symmetry. If the system is invariant under the PT -symmetry, the
energy bands thus satisfy Eσ(k) = E−σ(k); the energy bands of crystalline sys-
tems invariant under the combined space inversion and time reversal symmetry
are independent on the spin index, and hence doubly degenerate over the entire
Brillouin zone. The double degeneracy is a continuous Kramers degeneracy, as
derived for general antiunitary operators in the previous subappendix.

It should be noted that the Kramers degeneracy induced by the PT -symmetry
will also hold for systems where both the space inversion symmetry P and the
time reversal symmetry T are broken individually, as long as their combined
symmetry is preserved. Even more generally, for crystalline systems with en-
ergy bands labelled as Eσ(k), the Kramers degeneracy of energy bands will be
present for any system invariant under any antiunitary operation which reverses
the spin while preserving the crystal momentum.
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Appendix D

Fermions in Relativistic
Quantum Theory

In chapter 6, a class of crystalline solid state systems known as topological
semimetals are investigated, where the electronic dispersion relation is linear
around particular points of the Brillouin zone. The resulting effective low-energy
description of the electrons is analogous to the Einstein energy-momentum re-
lation for massless fermions in high energy physics known as Weyl fermions.

In quantum field theory, spin- 1
2 fermions are described by the relativistic

Dirac equation and can be classified as either Dirac, Majorana or Weyl fermions.
Disregarding neutrinos being of Majorana type, all elementary fermions of the
standard model of particle physics have been found to be Dirac fermions. The
following appendix investigates the mathematical description of relativistic spin-
1
2 particles from the perspective of relativistic quantum mechanics, where the
description of the behaviour of quantum states are constrained to preserve the
underlying symmetries of spacetime as described by the theory of relativity. The
resulting quantum theory of Dirac, Weyl and Majorana fermions follows mainly
the derivation of Kachelrieß [44]. Conventional to quantum field theory, natural
units will be used with a Planck constant and speed of light ~ = c = 1.

In order to properly classify Majorana, Dirac and Weyl fermions, the rela-
tivistic theory of the coupling between the fermionic and the electromagnetic
fields must also be introduced. The coupling constant being the electromagnetic
charge then makes it viable to define the operation of charge conjugation, which
in turn will be highly connected to the time reversal symmetry. The related
minimal coupling principle is furthermore used to derived the electric current
density in chapter 3. The final sections on charge conjugation, time reversal
and space inversion is based on the arguments from Lahiri and Pall [45].
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D.1 Lorentz Invariance and the Dirac Equation

In the special theory of relativity, the dimensions of space and time combines
to form the four-dimensional Minkowski space, describing the geometrical prop-
erties of flat spacetime. A symmetry of Minkowski space is defined as any
operation under which the speed of light remains invariant. Disregarding trans-
lational invariance in both space and time, the remaining point symmetries
constitute the Lorentz group, whose elements are known as Lorentz transforms.
In general, Lorentz transforms may involve time reversal or space inversion.

Any proper Lorentz transform can be subdivided into a circular rotation
of space and a hyperbolic rotation incorporating time, the latter known as a
Lorentz boost. The Lie algebra of the proper Lorentz group contains three
generators for rotations J and three generators for Lorentz boosts K, satisfying

[Ji, Jj ] = iεijkJk, [Ji,Kj ] = iεijkKk, [Ki,Kj ] = −iεijkJk.

This allows for a decomposition of the proper Lorentz group into two separate
groups with mutually commuting generators defined J± = (J ± iK)/2. These
representations of the Lorentz group are labelled by a pair of labels (j−, j+),
with the dimensionality of the representation being (2j− + 1)(2j+ + 1).

The two smallest non-trivial representations are (1/2, 0) and (0, 1/2), where
the generators can be given by the Pauli matrices (C8) as J = −iK ≡ σ/2 and
J = iK ≡ σ/2 respectively, both being two-dimensional. The states transform-
ing under these two representations are the left- and right chiral Weyl spinors,
which transform under a general Lorentz transformation Λ as

(1/2, 0) : φL → SL(Λ)φL = e−
1
2 iσ·α−

1
2σ·ηφL

(0, 1/2) : φR → SR(Λ)φR = e−
1
2 iσ·α+ 1

2σ·ηφR
(D1)

Here α are the circular rotation angles, while η = ηn̂ are the components of the
rapidity of the Lorentz boost being connected to the energy E and rest mass m
of the particle through tanh η = E/m. Considering only a Lorentz boost, which
is a shift from the rest frame of the particle to a frame where the particle has a
four-momentum p, the Lorentz transformations can then be written as

φL(p) =
E +m− σ · p√

2m(E +m)
φL(0) φR(p) =

E +m+ σ · p√
2m(E +m)

φR(0).

The Weyl spinors thus transform similarly under a Lorentz boost, but for a sign
which disappears in the rest frame, where p = 0. Set therefore φL(0) = φR(0).
The two spinors are then connected through the relation

(E ∓ σ · p)φR/L(p) = mφL/R(p). (D2)

Hence, for a rest mass m 6= 0 the equation for the Weyl spinors are coupled.
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Defining σµ = (1,σ) and σµ = (1,−σ), where the index runs over the four
spacetime coordinates, the (4× 4) gamma matrices in the Weyl representation

γµ =

[
0 σµ

σµ 0

]
. (D3)

Defining also the Dirac spinor ψ = (φL, φR), the relation connecting the Weyl
spinors (D2) can then be written more compactly as the Dirac equation

(γµpµ −m)ψ(p) = 0 or (iγµ∂µ −m)ψ(x) = 0 (D4)

The latter expression gives the Dirac equation in coordinate space, by letting
the canonical four-momentum pµ = (E, px, py, pz)→ i∂µ = i(∂t, ∂x, ∂y, ∂z).

The Dirac equation (D4) is the equation of state for relativistic fermions
with rest mass m, where the Dirac spinor is a four-component spinor. No-
tice that even though Dirac spinors have four components, Dirac spinors are
not four-vectors; Dirac spinors are defined through their unique transformation
properties under Lorentz transforms.

By the definition in terms of Weyl spinors, Dirac spinors transform under
the representation (1/2, 0)⊕ (0, 1/2) of the proper Lorentz group as

S(Λ)ψ = SL(Λ)⊕ SR(Λ)ψ = e−
1
4 iωµνσ

µν

ψ, (D5)

where the elements ωµν parameterizes the transform, and the six generators
of the proper Lorentz transform are given by the independent elements of the
antisymmetric tensor σµν/2, written in terms of the gamma matrices (D3) as

σµν ≡ i

2
[γµ, γν ]. (D6)

The parameters are related to the circular rotation angles and the rapidity
components as αk = εkijωij and ηk = ωk0. Notice that the scalar ψ†ψ will not be
Lorentz invariant, as Lorentz boosts are not unitary transformations. Conserved
quantities are instead often expressed in terms of the Dirac adjoint ψ = ψ†γ0,
for which the corresponding scalar ψψ indeed becomes Lorentz invariant.

Upon a Lorentz transform (D5), the derivative ∂µ → Λµ
ν∂ν . For the Dirac

equation (D4) to be Lorentz invariant, the gamma matrices must then satisfy

S−1(Λ)γµΛµ
νS(Λ) = γν . (D7)

It should be noted that the gamma matrices (D3) contrary to their spacetime
index does not comprise a four-vector, while the contraction between the gamma
matrices and a four-vector is Lorentz invariant when combined with a spinor.

The physical interpretation of the four components of the Dirac spinor ψ(p)
will depend on the representation of the gamma matrices (D3). In general
however, the four components corresponds to four degrees of freedom describing
a fermion and its corresponding anti-fermion, both with two spin degrees of
freedom. In the following, the Weyl representation for the gamma matrices will
be used, being the favourable representation for investigating chirality.
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D.2 Dirac Hamiltonian and Clifford Algebra

From the Dirac equation of motion (D4), a Hamiltonian matrix can be inferred
from comparison with the Schrödinger equation (A2) from quantum theory.
Expanding the contraction iγµ∂µ = iγ0∂t − iγk∂k, left multiplying by γ0 and
isolating the time component of the derivative, the Dirac Hamniltonian

i∂tψ = (iγ0γk∂k + γ0m)ψ ≡ HDψ.

In particular, recalling the original introduction of the gamma matrices (D3),
the Weyl representation of the Dirac Hamiltonian becomes

HD = γ0γkpk + γ0m =

[
−σ · p mI2
mI2 σ · p

]
, (D8)

The energy eigenvalues of this Hamiltonian are given by E2 = p2 + m2, which
is the Einstein energy-momentum relation of special relativity.

The derivation of the Dirac equation (D4) and the Dirac Hamiltonian (D8)
considers in particular the Weyl representation of the gamma matrices (D3).
However, any unitary transformation of the gamma matrices will provide an
equal physical description, and so the Weyl representation is not unique to
the physics described. From the constraints enforced by the transformation
properties under Lorentz transforms, it is yet possible to find general properties
of the gamma matrices independent on the representation.

In particular, the gamma matrices are constrained such that the Dirac
Hamiltonian (D8) will reproduce the momentum-relation pµpµ = E2−p2 = m2.
Squaring the Dirac Hamiltonian, the gamma matrices must readily satisfy

{γµ, γν} = 2ηµνI4, (D9)

being their general defining relation. Due to the appearance of the Minkowski
metric ηµν , the spacetime index of the gamma matrices can be raised or lowered
as for four-vectors. From this it follows that the gamma matrices must satisfy
(γ0)2 = I4 and (γk)2 = −I4. Furthermore, the Dirac Hamiltonian (D8) must be
hermitian, meaning the zeroth gamma matrix is hermitian satisfying (γ0)† = γ0

whereas the remaining three must satisfy (γk)† = γ0γkγ0, or combined

(γµ)† = γ0γµγ0. (D10)

Hence, by the anticommutation relation (D9), the space component gamma
matrices are anti-hermitian, satisfying (γk)† = −γk.

The anticommutation relation of the gamma matrices (D9) defines a Clifford
algebra, with a basis generated by the gamma matrices constructed by consid-
ering all possible products of gamma matrices. Because the gamma matrices
satisfies (γ0)2 = I4 and (γk)2 = −I4, the only product of four gamma matrices
to consider can be defined as a fifth gamma matrix, in the Weyl representation

γ5 ≡ iγ0γ1γ2γ3 =

[
−I2 0

0 I2

]
, (D11)
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where the imaginary unit makes it hermitian. From the anticommutation rela-
tion of gamma matrices (D9), the fifth gamma matrix has the properties

(γ5)2 = I4 {γµ, γ5} = 0. (D12)

Having introduced the fifth gamma matrix γ5, all products of three gamma
matrices can be expressed in terms of the four matrices γµγ5. Finally, any
product of two gamma matrices can be written in terms of the antisymmetric
tensor σµν as defined (D6). Combining all elements, the sixteen basis elements
of the matrix representation of the Clifford algebra thus becomes

Γ = {I4, γ5, γµ, γµγ5, σµν}. (D13)

These sixteen matrices are linearly independent, and so span the set of all
complex (4× 4) matrices, to which the Clifford algebra is isomorphic.

D.3 Helicity and Chirality

Recall that the Pauli matrices (C8) are proportional to the matrix representation
of the components of the non-relativistic spin operator, given by S = σ/2. In
terms of elements of the Clifford algebra (D13), the components of the relativistic
quantum mechanical spin operator can similarly be defined

Σk ≡ 1

2
iεkijσ

ij = γ5γ0γk =

[
σk 0
0 σk

]
. (D14)

The Dirac Hamiltonian does not in general commute with the components of
the spin operator (D14); the spin is only conserved in the rest frame of the
particle, where p = 0. Define then the helicity operator, given by

Σp =
Σ · p
|p|

. (D15)

The helicity operator measures the projection of the spin onto the axis along the
direction of momentum p. From the expression of the Dirac Hamiltonian (D8),
it is readily confirmed that the matrices commute, reflecting that there is no
angular momentum along the axis of motion. The simultaneous eigenfunctions
of the Dirac Hamiltonian and helicity operator are termed helicity eigenstates.
For massive particles helicity is however a frame dependent quantity, as the sign
of the momentum p may invert when applying a Lorentz boost.

The fifth gamma matrix (D11) is an involutory matrix, satisfying (γ5)2 = I4,
making it viable to define projection operators PL and PR onto its eigenspace.
For any Dirac spinor ψ, eigenspinors of γ5 can be constructed as

ψL ≡ PLψ =
1

2
(1− γ5)ψ ψR ≡ PRψ =

1

2
(1 + γ5)ψ. (D16)

If ψ is a solution to the Dirac equation (D4), the projected states ψL and ψR are
known as left- and right-chiral states, being eigenspinors of γ5 with eigenvalues
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∓1, respectively. In the Weyl representation in particular, the Dirac spinor
was given in terms of the Weyl spinors as ψ = (φL, φR). From the Weyl
representation of the fifth gamma matrix (D11), it is then seen that the left
and right chiral states (D16) in the Weyl representation can be identified with
the Weyl spinors as ψL = (φL, 0) and ψR = (0, φR). In consequence, the chiral
fields follow the same transformation rules under Lorentz transforms (D1) as
Weyl spinors, and hence transform separately under a Lorentz boost. Thus,
chirality is a Lorentz invariant property independent on the representation of
the gamma matrices. However, the matrix γ5 does not commute with the Dirac
Hamiltonian (D8), and so chirality is not in general a conserved quantity; the
mass term couple the time evolution of left- and right-chiral fields, meaning the
chirality of a state will in general vary over time.

Helicity and chirality can in a sense be seen as complementary quantum
numbers, with the former being conserved and frame-dependent whereas the
latter is unconserved and Lorentz invariant. For fermions with a zero rest mass
m = 0 however, helicity is also Lorentz invariant, and from the Weyl represen-
tation of the Dirac Hamiltonian (D8) and the fifth gamma matrix (D11), it is
readily seen that chirality becomes a conserved quantity.

Reconsider then the Dirac Hamiltonian (D8) in the Weyl representation,
which for a vanishing rest mass m = 0 decouples into two Weyl Hamiltonians

H∓W = ∓σ · p (D17)

These Hamiltonians correspond to the left- and right-chiral Weyl spinors φR
and φL, and hence describe relativistic massless Weyl fermions with chirality
∓1 respectively. Reconsider then the Dirac equation (D4), which for massless
fermions with energy E = |p| can be written on the form γkpkψ = γ0|p|ψ.
Multiplying this equation with the matrix γ5γ0, and recalling the definition
of the helicity operator (D15) and relativistic spin matrix (D14), the Dirac
equation for massless fermions can be written Σpψ = γ5ψ. In consequence, for
massless Weyl fermions the helicity and chirality quantum numbers coincide.

D.4 Charge Conjugation and Majorana Fermions

The electromagnetic field is a massless spin-1 field described by the electromag-
netic four-potential Aµ. The observable electric and magnetic fields are governed
by the Maxwell equation ∂µF

µν = jν , where the electromagnetic currents are
denoted jν and the electromagnetic field-strength tensor is defined

Fµν = ∂µAν − ∂νAµ (D18)

The four-potential and field-strength are thus seen to be analogous to the Berry
connection (5.2) and the Berry curvature (5.8), discussed in chapter 5. Similar
to these berryological quantities, the electromagnetic field-strength tensor is
invariant under a gauge transform of the four-potential Aµ → Aµ + ∂µΛ.
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The Dirac spinors couple to the electromagnetic field through the minimal
coupling prescription. The coupling modifies the Dirac equation (D4) as

[iγµ(∂µ + iqAµ)−m]ψ = 0. (D19)

Here, q is the electromagnetic charge or coupling strength of the fermion. For
a Dirac fermion both the charge q and rest mass m are nonzero.

Define then the charge conjugated spinor ψc = Cψ, being a solution to the
Dirac equation with the electromagnetic coupling (D19), but with a negated
charge qc = −q compared to the spinor ψ. Charge conjugating the spinor twice
should bring back the original spinor, and so C2 = I. The operator C is therefore
known as the charge conjugation involution, as the inverse operator C−1 = C.

For the coupled Dirac equation (D19) to be invariant under a gauge trans-
formation of the four-potential, the spinor and its charge conjugation must
transform as ψ → eiqΛψ and ψc → e−iqΛψc, respectively. The change in the
sign of the exponent can be assumed a consequence of a complex conjugation.
However, the complex conjugated spinor ψ∗ does not satisfy the same Lorentz
transformation properties as the spinor ψ, as complex conjugating the Lorentz
transformation of Dirac spinors (D5) leaves in the exponent i(σµν)∗ 6= −iσµν .

Conjecture therefore the charge conjugated spinor ψc = C(γ0)Tψ∗ = Cψ
T

,
where the charge conjugation matrix C is a unitary matrix changing the repre-
sentation of the gamma matrices. For the charge conjugated Dirac spinor ψc to
inherit the Lorentz transformation properties of the spinor ψ, the matrix C is
constrained to satisfy C(γ0)T (σµν)∗ = −σµνC(γ0)T , or C−1σµνC = −(σµν)T .
This property will be guaranteed if the charge conjugation matrix satisfies

C−1γµC = −(γµ)T . (D20)

By transposing the anticommutation relation (D9) of the gamma matrices, the
matrices −(γµ)T also satisfies the Clifford algebra. Thus, for any representation
of the gamma matrices the charge conjugation matrix C will be well defined.

Charge conjugation thus affects Dirac spinors as ψc = Cψ = C(γ0)Tψ∗.
Using then that C2 = I, it is readily shown that the charge conjugation matrix
satisfies C−1 = (γ0)TC∗γ0. The charge conjugation matrix is also unitary with
C† = C−1, and by definition (D20) will satisfy C−1γ0C = −(γ0)T . Combining
these formulae, the charge conjugation matrix will be antisymmetric in any
representation of the gamma matrices, satisfying CT = −C.

Because the operator C satisfies C2 = I, its eigenvalues are ±1. In particular,
the eigenspinors corresponding to unity will be Majorana spinors, being their
own charge conjugates. Spinors satisfying the Majorana condition ψc = ψ
describe Majorana fermions, having a nonzero rest mass m but a zero charge
q = 0. In that case, fermions and antifermions cannot be distinguished, and
half of the degrees of freedom compared to the charged Dirac field disappears.

In particular, the Weyl representation (D3) of the charge conjugation matrix
conventionally takes the form C = iγ2γ0, such that charge conjugated spinors
ψc = iγ2ψ∗. Recalling that ψ = (φL, φR) in the Weyl representation, the Weyl
spinors will transform under charge conjugation as
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φcL = iσ2φ∗R φcR = −iσ2φ∗L, (D21)

where σ2 is the second Pauli matrix. Majorana spinors ψM can then in the
Weyl representation be expressed using the Weyl spinors as

ψM =

[
φL

−iσ2φ∗L

]
or ψM =

[
iσ2φ∗R
φR

]
(D22)

where the two degrees of freedom can be placed in either of the Weyl spinors
φL or φR. On this form, it is readily confirmed that ψcM = iγ2ψ∗M = ψM .

D.5 Transformation Rules of the Clifford Basis

The derivation of the the Dirac equation (D4) and the Dirac Hamiltonian (D8)
is based on the transformation properties of the spinors under proper Lorentz
transforms. However, the equations governing the behaviour of fermions should
also be invariant both under space inversion and time reversal, being symmetries
of the underlying Minkowski space. Space inversion and time reversal are both
Lorentz transformations, and so will linearly interchange the components of the
Dirac spinor according to the Lorentz transformation property of spinors (D5).
The general properties of time reversal is investigated in appendix C.

Space inversion corresponds to a Lorentz transformation with Λ0
0 = 1 and

Λk
k = −1, acting on Dirac spinors as P : ψ(x) → Pψ(t,−x). According to

the transformation property of the gamma matrices (D7), the space inversion
matrix P must commute with γ0 and anticommute with γk. In consequence,
the space inversion matrix can be chosen P = ηP γ

0, where ηP is termed the
intrinsic parity of the fermion described by ψ. Then, as applying space inversion
twice must bring back the original spinor, the intrinsic parity ηP = ±1; it can
be shown that the positive sign corresponds to fermions and the negative sign
to antifermions [45]. In consequence, the space inversion matrix P = ±γ0.

Time reversal corresponds to a Lorentz transformation with Λ0
0 = −1 and

Λk
k = 1. However, time reversal is also an antiunitary transformation (C2),

and so will act on Dirac spinors as T : ψ(x) → Tψ∗(−t,x). From the Lorentz
transformation property of the gamma matrices (D7), the time reversal matrix
T must then satisfy γν = −T−1(γµ)∗Λµ

νT , where the negative sign comes from
the imaginary unit in the Dirac equation (D4). Recalling that γ0 is hermitian
while γk are antihermitian (D10), this relation can be written

T−1(γµ)TT = −(CT )−1γµCT = γµ,

where the definition of the charge conjugation matrix (D20) was used. In
consequence, the matrix CT anticommutes with all the gamma matrices γµ,
and so must be a multiple of γ5, being the only element of the Clifford al-
gebra (D13) having this property. The time reversal matrix thus takes the
form T = ηTC

−1γ5, whose exact form will depend on the representation of the
gamma matrices due to the charge conjugation matrix C. Hence, time reversal
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acts on spinors as T ψ(x) = ηTC
−1γ5ψ∗(−t,x). Applying the transform twice

gives T 2ψ = −ψ being a general property of fermions, with |ηT | = 1.
In particular, in the Weyl representation where the charge conjugation ma-

trix takes the form C = iγ2γ0 with an inverse C−1 = −C∗ = −C, the time
reversal matrix can be expressed T = −ηTCγ5. Choosing the phase ηT = 1, the
time reversal operator of the Weyl representation takes on the particular form

T = γ1γ3K = iΣ2K. (D23)

With this convention, the Weyl spinors transform under the rule for fermions
(C10) devised in appendix C; in the Weyl representation of the gamma matrices
(D3), the time reversal operator acts on Weyl spinors as T φL/R = iσ2φ∗L/R.

From the general transformation properties of the gamma matrices under
charge conjugation, space inversion and time reversal, the corresponding trans-
formation properties of all the elements of the Clifford algebra (D13) are readily
derived. Notice that even though the transformation properties under the time
reversal matrix T are dependent on the representation of the gamma matrices,
combining the matrix with the complex conjugation operator K to give the full
operator T will render representation independent transformation properties
of all the Clifford basis elements. The transformation properties under charge
conjugation, space inversion and time reversal are summarized in table D.1.

Clifford Basis Elements Weyl Representation P = γ0 T = γ1γ3K PT = iγ2γ5K

γ0 = τx ⊗ σ0 +1 +1 +1

iγ = (iγ1, iγ2, iγ3) = −τy ⊗ σ −1 +1 −1

γ5 = iγ0γ1γ2γ3 = −τz ⊗ σ0 −1 +1 −1

iγ0γ5 = −γ1γ2γ3 = −τy ⊗ σ0 −1 −1 +1

γγ5 = (γ1γ5, γ2γ5, γ3γ5) = τx ⊗ σ +1 −1 −1

γ0γ = (γ0γ1, γ0γ2, γ0γ3) = −τz ⊗ σ −1 −1 +1

Σ = (iγ2γ3, iγ3γ1, iγ1γ2) = τ0 ⊗ σ +1 −1 −1

Table D.1: Transformation properties of all products of gamma matrices charge conjugation
C, space inversion P, time reversal T and their combined PT -symmetry. The exact form of
the transformation operators are given in the Weyl representation, whereas the transformation
properties of all elements are representation independent. The second column gives the Weyl
representation of the matrices in terms of two sets of Pauli matrices σ and τ as introduced
in chapter 6, where σ0 and τ0 are the two-dimensional unit matrix. Imaginary units have
been added where needed in order to make all matrices hermitian. Notice that the charge
conjugation and time reversal operations are antiunitary.
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