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Abstract

In topological materials, such as topological insulator heterostructures, the response of an ex-
ternally applied electromagnetic field or some form of magnetization is manifested by the ap-
pearance of a Chern-Simons term. By coupling a Chern-Simons gauge field to the particles of
a system, we can achieve interesting physical phenomena with possible desirable technological
applications. Motivated by this, we consider a system of a superconductor proximate to a topo-
logical insulator and a layer of ferromagnetically aligned magnetic impurities. We anticipate
that the effective field theory of this system contains a coupling between a Chern-Simons gauge
field and the superconducting Cooper pairs, which in the language of quantum field theory are
described by a complex scalar field. This theory would be comparable with the topological
Abelian Higgs model, which in a recent study has shown to experience different forms of critical
behavior depending on the magnitude of the Chern-Simons coefficient. Furthermore, we will
also consider the interactions between the magnetic impurities and the surface fermions, which
in turn will lead to additional magnetic interaction terms in the effective field theory, enabling
us to compare this system with similar superconducting- and ferromagnetic heterostructures.

The effective topological field theory of the heterostructure is derived by integrating out the
fermionic degrees of freedom in the partition function to second order in coupling constants
and in the long wavelength limit. The resulting field theory contains the desired Chern-Simons
term which couples to the complex scalar field of the superconductor. Additionally, the electric
potential of the gauge field acquires a thermally induced mass, which leads to different kinds
of effective potentials and screening effects. Furthermore, due to the presence of the magnetic
impurities, we also get a Dzyaloshinskii-Moriya term, in addition to several magnetoelectric
couplings. The magnitude of the corresponding Chern-Simons coefficient of the topological
Abelian Higgs model is bounded from above such that it cannot be tuned between the critical
regions of this model. Furthermore, we show that the Dzyaloshinskii-Moriya coefficient can
alter the magnetic ordering of the system and thereby possibly tune between different kinds of
superconducting- and ferromagnetic phases.
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Sammendrag

I topologiske materialer, slik som topologisk isolator heterostrukturer, er responsen av et p̊aført
elektromagnetisk felt eller magnetisering manifestert ved et s̊akalt Chern-Simons ledd. Ved å
koble et slikt Chern-Simons felt til andre partikler kan systemet fremvise interessante fysiske
fenomener med mulige teknologiske anvendelser. Med dette som motivasjon ser vi p̊a et system
best̊aende av en superleder i nærheten av en topologisk isolator med et lag med ferromagnetiske
urenheter imellom dem. Vi forventer at den effektive feltteorien til dette systemet innehar et
Chern-Simons felt som er koblet til Cooper-parene i superlederen, som er beskrevet av et kom-
plekst skalarfelt. En slik teori vil være sammenliknbar med den topologiske Abelske Higgs mod-
ellen, som i en tidligere studie har vist seg å kunne fremvise ulike former for kritiske fenomener
avhengig av størrelsen p̊a koeffisienten foran Chern-Simons leddet. I tillegg til dette tar vi ogs̊a
hensyn til vekselvirkningene mellom de magnetiske urenhetene og fermionene p̊a den topologiske
isolatoren. Slike ledd vil kunne lede til magnetiske vekselvirkninger som gjør det mulig for oss å
sammenlikne dette systemet med liknende superledende- og ferromagnetiske heterostrukturer.

Den effektive topologiske feltteorien til denne heterostrukturen er utledet ved å integrere
ut alle fermionske frihetsgrader i partisjonsfunksjonen til annen order in koblingskonstanter. I
tillegg ser vi kun p̊a langbølgefysikken til disse feltene. Den resulterende feltteorien inneholder
det ønskede Chern-Simons leddet, som kobler til det komplekse skalarfeltet til superlederen.
I tillegg s̊a genereres det en termisk masse til det elektriske potensiale som resulterer i ulike
former for effektivt potensiale mellom ladninger og skjermingseffekter. Grunnet vekselvirkningen
med de magnetiske urenhetene f̊ar vi et s̊akalt Dzyaloshinskii-Moriya ledd, i tillegg til flere
magneto-elektriske vekselvirkninger. Størrelsen p̊a den effektive Chern-Simons koeffisienten i
den topologiske Abelske Higgs modellen er øvrig begrenset, slik at systemet ikke kan justeres
mellom de ulike kritiske fasene til denne modellen. Videre s̊a vises det at Dzyaloshinskii-Moriya
koeffisienten kan p̊avirke den magnetiske ordningen til systemet og p̊a den m̊aten muligens
justere mellom ulike superledende- og ferromagnetiske faser.
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Chapter 1
Introduction

“Topology! The stratosphere of human
thought! In the twenty-fourth century it
might possibly be of use to someone.”

Aleksandr Solzhenitsyn, 1968

1.1 Motivation and background

Over the past decades, the mathematical study of topology has shown to be of great importance
in condensed matter physics. Topology is the study of properties of geometrical objects and
other mathematical spaces that are preserved under continuous transformations. In topologi-
cal quantum matter theory, such properties are used to characterize different phases of matter
and physical phenomena according to the topology of some geometry associated with a sys-
tem. These phases are often manifested by emergent quantum states that are stable due to the
non-trivial topology of the material in question. One of the most prominent examples of such
systems is topological insulators. These are materials that are insulating in the bulk but host
topologically- and symmetry-protected gapless states on the boundary of the system. The low
energy description of these surface states has linear dispersion, meaning that these excitations
are effective massless Dirac fermions [1]. The topological nature and the relativistic dispersion
of these states make them interesting candidates for coupled condensed matter systems that
could have possible technological applications.

By combining topological insulators with other quantum systems, we can generate new and
interesting phenomena due to the interplay between the constituent systems. One way of achiev-
ing this is to place the materials physically on top of each other. The resulting system belongs to
a class of systems commonly known as heterostructures. In the case of topological insulators, the
relevant physics takes place on the interface formed by the different layers of the heterostructure
where there are proximity-induced interactions between the surface fermions and the particles
of the other materials.

In our study, we use a quantum field theoretical approach where we express the partition
function of our heterostructure as a path integral in terms of quantum fields. To study the
effects of the surface fermions, we integrate out the contributions from the corresponding Dirac
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Structure of the thesis

fields to chosen order in perturbation theory. What we are left with is an effective field theory
of the remaining systems on the boundary towards the topological insulator. Furthermore, by
breaking time-reversal symmetry, we can introduce a gap in the spectrum of the surface states
which corresponds to a mass term of these Dirac fields [1]. This in turn leads to the appearance
of a so-called Chern-Simons coupling. This term gives rise to many interesting phenomena de-
pending on the origin of the time-reversal symmetry breaking and what kind of fields it couples
to. If this term contains a gauge field that is coupled to some form of matter fields, the resulting
theory is an example of a topological field theory that supports several topologically protected
physical properties [2].

In a recent study by F. Nogueira, J. van den Brink, and A. Sudbø they investigate the phase
transitions and critical behavior of the topological Abelian Higgs model in 2 + 1 spacetime di-
mensions. This theory contains a Chern-Simons gauge field coupled to a complex scalar field,
which is essentially the field theory of a topological superconductor. They found that the phases
of this model, its universality classes, and the type of critical behavior this model exhibits are
highly dependent on the magnitude of the Chern-Simons coefficient [3]. This raises the ques-
tion of whether it is possible to construct a quantum system from microscopic principles that
supports these findings. Motivated by this, we want to investigate if it is possible to derive
an effective field theory comparable with the topological Abelian Higgs model by considering
a three-dimensional topological insulator proximate to a superconductor. The resulting Chern-
Simons coupling would be a function of material parameters that in principle could be varied
accordingly and possibly tune the effective theory between the different critical regions discussed
in [3].

The time-reversal symmetry that protects the surface states of the topological insulator can
be broken in several ways, for instance by coupling the fermions to some form of magnetic
perturbation [1]. By adding a layer of ferromagnetically aligned magnetic impurities between
the superconductor and the topological insulator, the fermions become massive if there is a
magnetic ordering perpendicular to the boundary of this interface. Furthermore, if the spins of
the magnetic impurities are fluctuating, we get additional spin-exchange interactions between
the fermions and the quantum spins of the magnetic impurities. Motivated by this, we will also
include these types of interactions in our study. The resulting effective field theory in terms
of the superconductor, gauge field, and magnetic impurities allows for comparison with other
ferromagnetic heterostructures, such as the ferromagnetic topological insulator heterostructures
of [4], [5], and the superconductor proximate to a ferromagnetic material in [6].

1.2 Structure of the thesis

The content of this study is divided into four main parts. In chapters 2 to 5, we give a compre-
hensive graduate-level introduction and derive the models used in the main part of the thesis.
In chapters 6 and 7, we present the results of this study including the most relevant calculations,
followed by a discussion of the resulting physical models and some of their properties in chapter
8. Detailed calculations and relevant proofs can be found in the appendices.

In chapter 2, we start by giving a short introduction to the functional integral formalism
of quantum condensed matter systems, which is the mathematical framework of this study.
In chapter 3, we present some preliminary topology before discussing some central non-trivial
topological effects in condensed matter theory and their realizations as topological field theo-

2
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ries. In chapter 4, we derive the Heisenberg model from first principles in a general many-body
theory followed by a derivation of its path integral description in addition to some relevant spin-
interaction terms. In chapter 5, we end the theory section with a discussion on superconductivity
in addition to a derivation of the Ginzburg-Landau theory of conventional superconductors and
a discussion on the Higgs-Anderson mechanism.

In chapter 6, we derive the effective field theory of a superconductor proximity-coupled to
a topological insulator by integrating out the fermionic degrees of freedom. In chapter 7, we
consider the additional couplings due to the presence of a layer of ferromagnetically aligned
magnetic impurities in the superconductor topological insulator heterostructure. In chapter 8,
we present the resulting effective Lagrangian field theories before discussing some central aspects
of these models.

1.3 Notations and conventions

Choice of units and physics notation

In this study, every quantity is expressed in natural units unless explicitly stated otherwise

~ = kB = c = 1. (1.1)

Hamiltonians and Lagrangian as denoted by uppercase letters H and L. Hamiltonian- and
Lagrangian densities are denoted by calligraphic letters. In d dimensions, these can be expressed
as follows

H =

∫
ddrH L =

∫
ddrL. (1.2)

These functionals are expressed in terms of either canonical operators or quantum fields. In
either case, if H is bilinear, we define the following notation

H = ψ†λhψλ′ , (1.3)

where ψ and ψ† are fields or operators in terms of quantum numbers λ and λ′. Furthermore,
in the first- and second quantization approach, we will denote Hamiltonians using a hat-notation
(Ĥ, etc.), to emphasize that they are operators and to distinguish them from corresponding
Hamiltonians in the functional integral formalism.

Matrix- and vector notation

The Pauli matrices in their standard representation take the form [7]

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(1.4)

Besides these, vectors and matrices will not be denoted by any particular form of notation.
The mathematical structure of the variables should be clear from the context. However, if the

3
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structure of the variable becomes too intricate or could cause confusion, we will sometimes use
the bar notation to indicate spatial vectors, e.g.,

S̄ = Si = (S1, S2, . . .), (1.5)

where i iterates over spatial dimensions and Si can by any type of variable, typically an
operator or a matrix. In the following, we will be using tr [· · · ] for matrix trace and Tr [· · · ] for
quantum trace, i.e., the combination of the sum over quantum numbers and matrix trace. We
will also be using the following equivalence relation

A =
∧
B ⇐⇒ tr [A] = tr [B] , (1.6)

involving matrix trace exclusively.

Spacetime conventions

In Minkowski space, we will always use the following metric convention

ηµν = ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 = diag(1,−1,−1,−1). (1.7)

In both Euclidean and Minkowski spacetime, we will use Latin indices for spatial components
and Greek indices for spacetime components, where the zeroth component is the temporal- or
time component respectively, i.e.,

Aµ = (A0, Ai). (1.8)

Contravariant vectors are defined as follows

Aµ = ηµνAν . (1.9)

In Euclidean spacetime, the covariant and contravariant vectors coincide, Aµ = Aµ. However,
we will keep using upper- and lower indices in inner-products for notational consistency.
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Chapter 2
Quantum field theory approach to condensed
matter systems

The functional integral formalism of quantum many-body physics is a mathematical framework
where quantum many-body states are expressed using quantum fields rather than the canoni-
cal operators of the second quantization formalism. This formulation of quantum many-body
physics expresses physical observables as a type of functional called path integrals, which we can
treat systematically using different approximation schemes. In this chapter, we will first discuss
this formalism for a general many-body system containing both fermionic- and bosonic excita-
tions in addition to deriving the path integral description of the time-evolution operator and
the partition function. Then we will discuss approximation schemes in the functional integral
formalism, in particular the Hubbard-Stratonovich decoupling procedure.

2.1 Functional integral formalism of quantum many-body physics

2.1.1 Quantum fields of many-body states

Let {aλ, a†λ} and {cλ′ , c†λ′} be the bosonic- and fermionic creation- and annihilation operators
of some Fock space F with quantum numbers {λ} and {λ′}. Assume that the fermionic and
bosonic sectors of the Fock space separate, i.e., we can express any many-body state as |φ〉⊗|ψ〉,
where |φ〉 and |ψ〉 are purely bosonic- and fermionic many-body states, respectively. We define
the coherent states as the eigenvectors of the annihilation operators

aλ |φ〉 ⊗ |ψ〉 = φλ |φ〉 ⊗ |ψ〉 (2.1)

cλ′ |φ〉 ⊗ |ψ〉 = ψλ′ |φ〉 ⊗ |ψ〉 , (2.2)

where {φλ, ψλ′} are corresponding coherent states eigenvalues. These expressions define a

bijective mapping between canonical operators {aλ, a†λ} and {cλ′ , c†λ′} in the second quantized

formalism onto the quantum fields {φλ, φ†λ} and {ψλ′ , ψ†λ′} in the functional integral formalism.
This gives us a way of computing quantum observables using quantum fields instead of operators.
Since the eigenvalues of the coherent states must respect the commutational relations of their
respective canonical operators, the bosonic eigenvalues {φλ} are complex scalar fields, whereas
the fermionic eigenvalues {ψλ′} are Grassmannian fields. The latter means that the fermionic
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Functional integral formalism of quantum many-body physics

fields map into the Grassmann algebra of anti-commuting numbers [8]. It can be shown that
the coherent states can be represented as [7]

|φ〉 = e
∑
λ φλa

†
λ |0〉 (2.3)

|ψ〉 = e
∑
λ ψλ′c

†
λ′ |0〉 (2.4)

which in turn implies that the overlap of two coherent states can be written as

〈
φ
∣∣φ′〉 = e−

∑
λ,λ′ φ

∗
λφλ′ (2.5)〈

ψ
∣∣ψ′〉 = e−

∑
λ,λ′ ψ

∗
λψλ′ . (2.6)

Following the steps of [7], we can use the above result to derive the following resolutions of
identity and trace relations1

∫ ∏
λ

dφ∗λdφλ
2πi

e−
∑
λ φ
∗
λφλ |φ〉 〈φ| = 1 (2.7)

Tr [A] =

∫ ∏
λ

dφ∗λdφλ
2πi

e−
∑
λ φ
∗
λφλ 〈φ|A |φ〉 (2.8)∫ ∏

λ′

dψ†λ′dψλ′e
−
∑
λ′ ψ

†
λ′ψλ′ |ψ〉 〈ψ| = 1 (2.9)

Tr [A] =

∫ ∏
λ′

dψ†λ′dψλ′e
−
∑
λ′ ψ

†
λ′ψλ′ 〈−ψ|A |ψ〉 , (2.10)

where the minus sign in 〈−ψ| comes from a permutation of the fermionic fields. Note that
taking the adjoint of a complex field corresponds to complex conjugation, φ∗ = φ†, whereas the
adjoint of a Grassmann number cannot be similarly represented by another Grassmann number.

2.1.2 Path integrals and the partition function in the functional integral for-
malism

In our study, we are mainly interested in quantum observables related to the time-evolution
operator and the partition function of a quantum many-body system. In particular, we are
interested in deriving a quantum field theory description of the partition function using the
coherent states defined in the previous section. The time-evolution operator in second quantized
formalism takes the form

U = 〈ζ(tf )| eiĤ(tf−ti) |ζ(ti)〉 (2.11)

where |ζ(t)〉 is the many-body state at time t and Ĥ = Ĥ(aλ, a
†
λ, cλ′ , c

†
λ′) is time-independent.

Following the standard derivation of the path-integral, using the completeness relations of
eq. (2.7) and eq. (2.9), we get the time-evolution operator expressed as a path integral in the
functional integral formalism [7]

1This trace is the trace in Fock-space, ignoring any possible matrix structure of A.
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U =

∫ φ(tf )

φ(ti)

∫ ψ(tf )

ψ(ti)
DψDψ†DφDφ∗eiS(φ,ψ,φ∗,ψ†) (2.12)

S(φ, ψ, φ∗, ψ†) =
∑
λ,λ′

∫ tf

ti

dt

(
iφλ(t)

∂φ∗λ(t)

∂t
+ iψλ′(t)

∂ψ†λ′(t)

∂t
−H(φ∗λ, φλ, ψ

†
λ′ , ψλ′)

)
, (2.13)

where the field integrals are over all paths connecting the fields at ti and tf . The Hamilto-

nian density H(φ∗λ, φλ, ψ
†
λ, ψλ) is the second quantized Hamiltonian density where the canonical

operators have been replaced by the corresponding coherent state eigenvalues, (aλ, a
†
λ, cλ′ , c

†
λ′) 7→

(φλ, φ
∗
λ, ψλ′ , ψ

†
λ′). The partition function can be written in the following basis-independent way

Z = Tr
[
e−βH

]
, (2.14)

where Tr is a combination of the sum over quantum numbers and matrix trace

Tr [· · · ] =
∑
λ,λ′

tr [· · · ] , (2.15)

where the sum over quantum numbers can be both discrete and continuous. Using the
coherent states as our basis, we can use the trace relations of eq. (2.8) and eq. (2.10) to express
the partition function as follows

Z =

∫ ∏
λ,λ′

dψ†λ′dψλ′
dφ∗λdφλ

2πi
e−
∑
λ′ ψ

†
λ′ψλ′ e−

∑
λ φ
∗
λφλ 〈−ψ| ⊗ 〈φ| e−βH |φ〉 ⊗ |ψ〉 . (2.16)

Writing β =
∫ β

0 dτ , we immediately see that this expression is a Wick rotated time-evolution
operator where time t has been replaced by imaginary time τ = it. We can therefore use
eq. (2.12) directly to write the partition function as the following field theory

Z =

∫
φ(0)=φ(β)

∫
ψ(0)=−ψ(β)

DψDψ†DφDφ∗eS(φ,ψ,φ∗,ψ†) (2.17)

S = −
∑
λ,λ′

∫ β

0
dτ

(
φλ(τ)

∂φ∗λ(τ)

∂τ
+ ψλ′(τ)

∂ψ†λ′(τ)

∂τ
+H(φ∗λ, φλ, ψ

†
λ′ , ψλ′)

)
, (2.18)

where the field integrals are over all closed paths with periodic and anti-periodic boundary
conditions for the bosonic and fermionic fields, respectively [7]. In the following, these conditions
will not be stated explicitly for notational purposes.

2.2 Hubbard–Stratonovich decoupling and bosonization

Usually, the partition function field theory of eq. (2.17) cannot be solved exactly, particularly in
the case of interacting fermions and bosons. In these situations, we need suitable approximation
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schemes to properly take into account the effects of the interaction terms. If the coupling
is sufficiently strong, we will use a technique known as a Hubbard-Stratonovich decoupling,
where one introduces a new free parameter into the theory to decouple complicated interaction
terms. In this study, will formulate this procedure using real- and complex scalar fields as our
parameters. However, most of the analysis of this section also applies in a more general situation.
Assume a partition function in terms of the following action

S = S0 + SI (2.19)

where S0 describes a solvable non-interacting theory and SI is the action of some non-bilinear
interaction term, which makes the partition function unsolvable. In the case where SI is small
compared to S0, we can treat eq. (2.19) perturbatively [8]. However, in the cases where SI
is large enough to cause quantitative changes compared to the free theory of S0 (e.g., phase
transitions [7], [9]), perturbation theory breaks down. In these cases, we can introduce auxiliary
bosonic fields into the theory by using one of the following identities 2 [7]

eJiAijJ
∗
j =

∫
DϕDϕ∗e−ϕ

∗
iA
−1

ijϕj+Jiϕ
∗
i+J∗j ϕj (2.20)

eJiAijJj =

∫
Dϕe−ϕiA

−1
ijϕj+Jiϕi (2.21)

for each quantum number of S3. The sources Ji and J∗i are chosen appropriately depending
on the structure of the interaction term. The former identity applies if SI is in terms of complex
scalar fields, whereas the latter applies if the fields are real-valued. In the functional integral
formalism, we can write down the following general expression for an interacting fermionic theory

Z =

∫
Dψ†DψeS , (2.22)

where S contains an interaction term which makes the theory unsolvable. By inserting
eq. (2.20) into eq. (2.22), we get the following theory

Z =

∫
DψDψ†DϕDϕ∗eSeff . (2.23)

where Seff is an effective action consisting of the non-interacting terms of S0 and the action
associated with the following Lagrangian

L = −ϕ∗A−1ϕ+ Jϕ∗ + J∗ϕ, (2.24)

where J = J(ψ,ψ†) and J∗ = J∗(ψ,ψ†) are functions in terms of the fermionic fields. Thus,
we see that the interacting theory of eq. (2.22) has been transformed into a more comprehensible
fermionic theory coupled to some auxiliary background field ϕ.

2These identities are equations modulo a constant energy contribution which factorizes out of the partition
function in the end.

3Notice that the resulting bosonic field integral contains the inverse of the original coupling constants Aij .
Thus, the problem is mapped from a strong- to a weak coupling regime.
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ψ†

ψ

ψ†

ψ

ψ†

ψ

ψ†

ψ

ϕ

Figure 2.1: A Feynman diagram illustrating a typical Hubbard-Stratonovich decoupling proce-
dure of a four-field vertex.

Most often the resulting theory of eq. (2.23) becomes bilinear in fermionic fields after the
decoupling procedure. In these cases, the fermions can be eliminated from the problem by
integrating them out of the partition function, leaving us with a theory solely in terms of the
bosons ϕ. This effective bosonic action can be treated perturbatively, insensitive to the possibly
singular perturbations of eq. (2.22). This procedure is an example of a bosonization [7].

9



Chapter 3
Topology and condensed matter physics

Over the last century, modern topics in mathematical sciences have proven to be of vital impor-
tance in most areas of theoretical physics. A prominent example of such a relationship is the
characterization of physical structures and quantities using the language of abstract algebra. If
a physical system is unaltered by a symmetry transformation, then the associated symmetry
group is an intrinsic property of that system. In recent decades, the study of topology has also
shown to be of great use in many areas of physics. As oppose to symmetry groups of a sys-
tem, which describes what stays the same under symmetry transformations, the topology of a
physical system concerns what stays the same when you continuously transform the geometries
associated with that system. This in turn makes it possible to detect intrinsic properties of
systems with possible physical consequences that would otherwise be insensitive to other math-
ematical characterizations. In this chapter, we will start by reviewing some preliminary results
and concepts in topology. Then we will derive some basic results in topological condensed mat-
ter physics followed by a comprehensive discussion on the relevant topological systems used in
this thesis.

3.1 What is topology?

Topology is the part of mathematics concerned with the study of properties of shapes, geome-
tries, and other spaces that are preserved under continuous transformations, i.e., deformations,
twisting, stretching, etc. In topology, two spaces are considered equivalent if one can be con-
tinuously transformed into the other. These continuous1 mappings are called homeomorphism,
analogously to the corresponding structure-preserving maps of abstract algebra, which are called
isomorphisms. If there exist a homeomorphism between two (topological) spaces, then we say
that they are homeomorphic. If two spaces are homeomorphic, then that means they share
some characteristic properties that are unaltered or preserved by the homeomorphism. These
properties are called topological invariants. These invariants can be very simple properties, e.g.,
the dimension of the spaces or the number of boundary points, etc., but they can also be more
intricate, like e.g., homology- and homotopy groups2, which are topologically invariant groups
associated with these spaces. Such elaborate structures are studied in a sub-genre of topology

1The term “continuous” depends on the defined topology of the space in question, but we will only be using
it whenever the standard topology of Euclidean spaces is applied, i.e., continuous in the usual δ − ε sense.

2These groups do in fact also describe the simple kinds of topological invariants, but their applicability is far
more general.
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known as algebraic topology [10].

In some cases, it is also interesting to study the properties of spaces that are preserved under
smooth transformations3. The spaces that possess these properties are known as manifolds.
Roughly speaking, a manifold is a topological space where each subset looks and behaves like
regular Euclidean space if the subspace is small enough. Similarly, we have that two manifolds
are considered equivalent if there exists a smooth homeomorphism - a diffeomorphism - between
the two spaces. Topological invariants that are preserved under diffeomorphisms are of particular
interest in physics since most topological spaces associated with physical systems are manifolds
[11].

3.2 Topological concepts in condensed matter physics

There are many concepts in physics that are labeled as “topological” even though the meaning of
the term can be quite different. Sometimes topology is used as a way of distinguishing between
different phases of matter where the Landau-paradigm of phase transitions4 cannot be applied
properly. In these cases, it is the low-energy effective field theory of the system which hosts
the relevant topological invariants. These kinds of invariants will be discussed briefly at the
end of this chapter. Other times, the term refers to the topology of the system itself, where
the non-trivial topology is associated with the formation of so-called topological defects, e.g.,
domain walls. However, in most of the systems we will be working with, the term usually refers
to the topology of an intrinsic geometrical structure of the system, which is the case in quantum
Hall systems, topological insulators, and many other condensed matter systems [9], [12].

3.3 Topological insulators

Topological insulators are systems that are insulating in the bulk but host symmetry-protected
gapless states on the boundary5. These boundary states are protected by the non-trivial topology
of the bulk of the system, and they materialize due to a discontinuous change of this invariant
on the interface between a trivial and a non-trivial material. In this section, we will first derive
the necessary results needed to describe the topology of these systems. Then we discuss some
systems experiencing these topological effects before deriving the Hamiltonian and corresponding
quantum field theory of the surface states of a three-dimensional topological insulator.

3.3.1 The Berry phase

The Berry phase of a quantum state is one of the simplest topological invariants in all theoretical
physics. The idea is that by adiabatically6 transporting a quantum state in closed loops in some
parameter space, the final state acquires a non-zero gauge-invariant phase due to the topology
associated with the geometry of this space. Usually, the parameters are time-varying electric-
or magnetic fields. However, the result is more general than that, as we will see later [4],

3i.e., mappings where the n-th derivative is continuous for every natural number n.
4This way of distinguishing between different phases of matter uses symmetry, which is insensitive to the

topology of the system.
5There are other systems which has similar surface states which are not topological insulators, e.g., quantum

Hall systems.
6In quantum physics, adiabatic means that the time-evolution of a system is slow compared to the relevant

energy gaps.
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[12]. Assume that you have a Hamiltonian Ĥ which depends on a parameter vector space
V spanned by a set of vectors {pi}. Furthermore, assume that these parameters are time-
dependent, pi = pi(t). At time t = 0, we assume that we have a prepared initial eigenstate |Ψ〉,
which is the nth eigenvector in the set of instantaneous eigenvectors {|n(t)〉} for t = 0. This set
of eigenvectors satisfy

Ĥ(t) |n(t)〉 = En(t) |n(t)〉 (3.1)

for all t and eigenstates n 7. Assume that we vary these parameters {pi} adiabatically,
meaning that if we start out in the nth eigenstate at t = 0, we will remain in this eigenstate
at t = T according to eq. (3.1). This will form a path C in V . The time-evolution of the state
|Ψ(t)〉 is given by the Schrödinger equation [12], [13]

i~∂t |Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 (3.2)

with the following solution

|Ψ(t)〉 = eiθ(t) |Ψ(0)〉 (3.3)

θ(t) = γ(t)− 1

~

∫ t

0
En(t′)dt′, (3.4)

where we have defined

γ(t) = i

∫ t

0
dt′
〈
n(t′)

∣∣ ∂t′ ∣∣n(t′)
〉
. (3.5)

If pi(0) = pi(T ) for all i for some T , then γ(T ) is the Berry phase of this quantum state. It
can also be written in the following way [12]

γ(T ) ≡ γ = i

∮
C

dp 〈n(p)|∇p |n(p)〉 , (3.6)

where p ∈ V and C is a closed loop in V . Written in this form, we see that we can define the
Berry connection

A(p) = −i 〈n(p)|∇p |n(p)〉 (3.7)

and correspondingly the Berry curvature

Fij(p) = ∂iAj(p)− ∂jAi(p) =
∂Ai(p)

∂pi
− ∂Aj(p)

∂pj
. (3.8)

7We write Ĥ(t) = Ĥ(V (t)) etc. for notational purposes. The only time-dependence of the problem is via the
parameter space V .
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Using the generalized stokes theorem, we can write eq. (3.6) as follows 8

γ = −
∫
S
Fijdpi ∧ dpj , (3.9)

where ∂S = C. Assuming that the Hamiltonian commutes with the parameters of V , the
Hamiltonian is invariant under multiplication with an overall phase factor |n(p)〉 7→ eiφ(p) |n(p)〉.
This is a gauge freedom of the system and the Berry connection in eq. (3.7) acts as a U(1) gauge
field of this symmetry. Consequently, we see that eq. (3.9) is independent of the phase of |Ψ〉,
as all physical quantities should be [4], [12].

The topological origin of the Berry phase relies on the mathematical framework of fiber
bundles9. In this context, the fiber bundle is made up of the base space V and the gauge freedom
described by the group U(1) at each point p ∈ V . The non-zero value of the Berry phase is a
direct consequence of the fact that a topologically invariant group, called the Holonomy group,
is non-trivial [10].

3.3.2 The Chern number

Now we move on to the special case where the parameter space V in the last section is a closed
surface. In this case, the path C divides V into two distinct surfaces S1 and S2. Therefore, it
does not matter which surface we use in eq. (3.9) to compute the Berry phase, at least up to an
integer multiple of 2π. We can therefore write it as follows

−γ =

∫
S1

Fijdpi ∧ dpj = 2πC −
∫
S2

Fijdpi ∧ dpj (3.10)

where there is a sign change in the last expression since C changes orientation in S2 relative
to S1. Consequently, we get that the surface integral over the total parameter space V = S1∪S2

is an integer multiple of 2π

C =
1

2π

∫
V
Fijdpi ∧ dpj ∈ Z. (3.11)

This is the Chern number of the parameter space V , or more precisely, the first Chern class of
the manifold V [1], [4]. Its topological origin is related to the same mathematical constructions
as the topological origin of the Berry phase. Nonetheless, the fact that it is an integer makes
its robustness a bit more intuitive - one cannot transform an integer into another integer in a
continuous fashion. These types of topological invariants are often referred to as topological
indices in physics literature.

8This is a way of writing a generalized surface integral in higher dimensions. In three dimensions, the integral
is just a regular surface integral over the curl of the field.

9The precise definition of a fiber bundle is quite cumbersome and irrelevant for this discussion. Superficially
speaking, a fiber bundle is a topological space formed by attaching a topological space, e.g., a vector space, a
group, or a discrete set, onto each point of the base space, which is also a topological space.
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3.3.3 Topological band theory

The study of electronic band structures makes it possible to describe the electronic properties
of different solid-state quantum systems. These bands are the possible energy levels for which
the electrons can reside. By ordering these bands according to their energies, we can define the
conduction band as the lowest unfilled energy band and the valence band as the highest filled
energy band. If the Fermi level lies in between these two bands (i.e., no level crossing), then the
system is in an insulating or semiconducting phase, depending on the size of the energy gap.
In these cases, it will require a quantum of energy to excite a state into the conduction band.
However, if the Fermi level crosses the valence band, any finite amount of energy can excite a
state and the system is in a metallic phase [1], [14].

Assume a lattice system with discrete translational invariance. Under these circumstances,
the system can be divided into unit cells with m internal degrees of freedom, which usually
equals the number of distinguishable lattice atoms. The solutions to the Schröedingers equation
of this system are of the form

|Ψ(r)〉 = eik·r |un(k)〉 (3.12)

Ĥ(k) |un(k)〉 = En(k) |un(k)〉 (3.13)

where Ĥ(k) is known as the Bloch Hamiltonian, |un(k)〉 is the nth Bloch eigenstate and En(k)
is its corresponding energy-band. The Bloch Hamiltonian is m dimensional, meaning that there
are m eigenfunctions describing the Bloch Hilbert Space [14]. In the following, we will only
consider insulating planar systems, i.e., two-dimensional lattices with no level crossing between
their corresponding energy bands. Furthermore, we will use periodic boundary conditions,
meaning that the Brillouin zone is a Torus, k ∈ T2. By identifying T2 as the parameter space V
of the previous section, we can define the Berry connection and -curvature using eq. (3.7) and
eq. (3.8)

An = −i 〈un(k)|∇k |un(k)〉 (3.14)

Fn =∇k ×An, (3.15)

where ∇k = (∂kx , ∂ky). Since the Torus T2 is a closed surface, we can define the Chern
number cn for each band Ek(k). Assuming that the bands i = 1, ..., n are filled, we define the
total Chern number of this Bloch system as follows

C =
1

2π

n∑
i=1

cn (3.16)

cn =

∫
T2

d2kFn, (3.17)

This topological index is invariant independent of the configuration of the bands as long
as the gap between the valence- and the conduction band is present. This gives us a mathe-
matically precise way of defining topological equivalence classes of systems described by Bloch
Hamiltonians. Two insulating systems with translational invariance are topologically equivalent
if their total Chern number is the same, i.e. if we can continuously deform the energy levels

14



Topological insulators

of the two systems into one another. For regular insulating systems, this index is zero. These
systems constitute the topologically trivial systems. Topological insulators, on the other hand,
belong to the equivalence class of non-trivial systems [1], [12].

3.3.4 The quantum Hall effect

Historically, the first non-trivial topological effect was the integer quantum Hall effect. Although
many different systems are experiencing this phenomenon, we will derive it using a planar system
in a perpendicular magnetic field. The first quantized Hamiltonian density of a free electron gas
confined to a two-dimensional lattice in a magnetic field can be written as follows

Ĥ =
1

2m

(
−i∇− qĀ

)2
. (3.18)

By choosing the Landau gauge, Ā = (−By, 0, 0), we get the following expression

Ĥ = − 1

2m
∇2 +

ieB

m
y∂x +

e2B2

2m
y2. (3.19)

This Hamiltonian commutes with translation in the x- and z-direction, meaning that its
eigenstates are of the form

ψ(r) = eikxx+ikzzϕ(y). (3.20)

Inserting this ansatz into eq. (3.19), we get the following equation for ϕ(y)

− 1

2m
∂2
yϕ+

(
k2
x

2m
− eBkx

m
y +

e2B2

2m
y2

)
ϕ+

k2
z

2m
ϕ = Eϕ. (3.21)

Completing the square on the left-hand side, we get

− 1

2m
∂2
yϕ+

1

2
mω2

c (y − y0)2ϕ+
k2
z

2m
ϕ = Eϕ, (3.22)

where ωc = eB
m is the cyclotron frequency. The above expression is the equation of a harmonic

oscillator with eigenvalues of the form

En(k) = En = ~ωc(n+
1

2
). (3.23)

These energy levels are called Landau levels. They are the energies associated with the
orbital motion of the electrons due to the magnetic field. Moreover, by applying an electric
field to the system, these cyclotron orbits start to drift along the edges of the system, causing a
discrete Hall current of the form

σxy =
e2

h
N, (3.24)
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where N is the number of filled Landau levels [13]. By defining a re-scaled unit cell where
the flux is zero (mod 2π), we can restore translational symmetry of the electron gas as if there
were no magnetic field present [1]. In this sense, the above system is topologically equivalent
to a Bloch system according to the classification scheme discussed in the previous sections.
Consequently, we can define the total Chern number C of the filled Landau levels if the Fermi
energy does not coincide with the valence band. A detailed analysis shows that this index is in
fact the integer N , c.f. [12]. Consequently, the quantum Hall effect is a topological effect.

3.3.5 Bulk-boundary correspondence

Assume that you have two topologically distinct systems on top of each other, e.g., two systems
with different Chern-number, that share the same symmetries. The bulk-boundary correspon-
dence tells us that the difference between right- and left moving chiral states on this boundary,
NR and NL, is related to the topological indices of the bulks of the materials via the following
relation10

NR −NL = ∆n, (3.25)

where ∆n is the difference in topological indices. The proof of this relation is tedious and
beyond the scope of this introduction. However, it can be explained by the following heuristic
argument. In order to change the topological index at the interface, the Hamiltonian describing
the non-trivial state must be transformed into a topologically trivial Hamiltonian. The only way
this can be achieved is by closing the gap between the valence band and the Fermi level, otherwise
the transformation would be continuous, and the Hamiltonian would still be in the same non-
trivial equivalence class. This band will therefore host gapless states near this intersection with
the Fermi level, which are the desired chiral boundary modes. More generally, the valence band
must cross the Fermi level an odd number of times, where the orientation of the intersection
corresponds to left- (NL) and right (NR) moving boundary modes [1], [4].

3.3.6 The quantum spin Hall effect and Z2 invariants

The main difference between integer quantum Hall systems and two-dimensional topological in-
sulators is the fact that quantum Hall systems break time-reversal symmetry, whereas the gapless
edge states of two-dimensional topological insulators are time-reversal symmetry-protected. As
a first step towards the latter case, we introduce the Haldane model. This model exhibits the
quantum Hall effect without any net flux through the lattice, as opposed to our previous case.
Haldane’s model is based on electrons moving on a two-dimensional honeycomb lattice placed
in a periodic magnetic field. The periodicity of this field ensures that translational symmetry
is preserved, implying that we can classify the energy bands of the Haldane model according
to our topological classification scheme. We will first derive the integer quantum Hall effect of
this model. Then we will show that by introducing a spin-orbit coupling to the problem, the
resulting model will exhibit this effect even in the absence of any magnetic fields. In the second
quantization approach, the Haldane can be written as

Ĥ = t1
∑
〈i,j〉

c†icj + t2
∑
〈〈i,j〉〉

e−ivijφc†icj +M
∑
i

εic
†
ici, (3.26)

10In this context, chiral means that they propagate in one direction only.
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where t1 and t2 are hopping amplitudes, M is a constant energy term and φ is a phase
associated with the periodic field. We have also defined the following quantities

vij = sign(d1× d2)z (3.27)

εi =

{
1 i ∈ A
−1 i ∈ B

(3.28)

δ1

δ2

δ3

+

−

+

−
+

−

a2

a1

Figure 3.1: The different lattice vectors and signs associated with vij of the honeycomb lattice.

where d1 and d2 denote the first and second lattice vectors along the lattice towards one
of the next-nearest neighbors and A and B refer to the two sub-lattices of the honeycomb
lattice, see fig. 3.1 [12]. Here we see that the dynamical phases due to the magnetic field is only
present in the next-nearest term, which preserves lattice translational symmetry. After Fourier
transforming, following the steps of [12], we can express the Haldane model as the following
Hamiltonian density

ĥ(k) = ε(k) + d(k) · σ̄, (3.29)

where we have defined

ε(k) = 2t2 (cosφ cos k · a1 + cos k · a1 + cos k · (a1 − a2)) (3.30)

d1(k) = cos k · a1 + cos k · a2 + 1 (3.31)

d2(k) = sin k · a1 + sin k · a2 (3.32)

d3(k) = M + 2t2 sinφ (sin k · a1 − sin k · a2 − sin k · (a1 − a2)) , (3.33)

where ai are the next-nearest neighbor lattice vectors. The Hamiltonian of eq. (3.29) de-
scribes a two-band Bloch system. At two points in the Brillouin zone, K and K ′, the gap closes
and the dispersion around these points is approximately linear
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ĥ(K + q) = −3t2 cosφ+
3

2
t1(qyσ

x − qxσy) +
(
M − 3

√
3t2 sinφ

)
σz +O

(
q2
)

(3.34)

ĥ(K ′ + q) = −3t2 cosφ− 3

2
t1(qyσ

x + qxσ
y) +

(
M + 3

√
3t2 sinφ

)
σz +O

(
q2
)
, (3.35)

where we have set |ai| equal to unity. It can be shown that around these points, the Haldane
model can experience three different phases depending on the values of M and φ: two Hall
conducting phases with opposite orientation and one trivial phase. The former requires that M
and φ take on values away from the time-reversal symmetric points M = 0 and φ = 0, π11 [12].
Thus, to obtain a quantum Hall current without breaking time-reversal symmetry, we need to
introduce new couplings in eq. (3.29).

In the following calculations, we will only be considering the time-reversal invariant case
where the Haldane phase vanishes, i.e., φ = 0 and M = 0. Furthermore, we will rotate the
honeycomb lattice by π

2 , qx → qy and qy → −qx, to be consistent with the literature. After this
rotation, we can combine eq. (3.34) and eq. (3.35) into the following low-energy Hamiltonian
density in the functional integral formalism

H0(q) = vFΨ† (σx ⊗ τ zqx + σy ⊗ 1qy) Ψ, (3.36)

= vFΨ†
(
qxσ

x + qyσ
y 0

0 −qxσx + qyσ
y

)
Ψ, (3.37)

where τ z acts in K, K ′ space, σi acts in A, B sub-lattice space, and vF = −3t1
2 . Here we

have defined the four-component Dirac-spinors

Ψ =
(
ψA(K) ψB(K) ψA(K ′) ψB(K ′)

)T
, (3.38)

where ψA(k) and ψB(k) are quantum fields corresponding to the canonical operators associ-
ated with sub-lattice A and B respectively. In this notation, the only available mass terms are
mσz ⊗ 1 and mσz ⊗ τ z. Both of these terms break time-reversal symmetry. However, by taking
into account the spin of the fermions, we can transform eq. (3.37) into the following Hamiltonian
density

H(q) =
(

Ψ†↑ Ψ†↓

)(H↑(q) 0
0 H↓(q)

)(
Ψ↑
Ψ↓

)
, (3.39)

where H↑(q) and H↓(q) are two copies of eq. (3.37), one for each spin. In this notation, we
can add a spin-orbit coupling term of the form

HSO = λSO

(
Ψ†↑ Ψ†↓

)
σz ⊗ τ z ⊗ sz

(
Ψ↑
Ψ↓

)
(3.40)

= λSO

(
Ψ†↑ Ψ†↓

)(σz ⊗ τ z 0
0 −σz ⊗ τ z

)(
Ψ↑
Ψ↓

)
(3.41)

11In this case, time-reversal symmetry requires that d3(k) is zero
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Topological insulators

where sz acts in spin-space. This term is both time-reversal invariant and it also induces
a gap in the spectrum of eq. (3.39). The latter is most visible by comparing H0(q) + HSO
with eq. (3.34) and eq. (3.34). For the up-spins, we can include the spin-orbit coupling in the
following way

h(K + q) = −3

2
t1 (qxσ

x + qyσ
y) + λSOσ

z (3.42)

h(K ′ + q) = −3

2
t1 (−qxσx + qyσ

y)− λSOσz (3.43)

and correspondingly for the down-spins

h(K + q) = −3

2
t1 (qxσ

x + qyσ
y)− λSOσz (3.44)

h(K ′ + q) = −3

2
t1 (−qxσx + qyσ

y) + λSOσ
z. (3.45)

These equations correspond to the Haldane model in the absence of a periodic magnetic field
with opposite mass terms for up- and down-spins. The spin-orbit coupling behaves as an effective
magnetic field coupled to the fermions which cancel when you combine the two systems, making
the system overall time-reversal invariant. In real space, these expressions can be rewritten as
follows

Ĥ = t1
∑
〈i,j〉

c†i,σcj,σ + iλSO
∑
〈〈i,j〉〉

vijc
†
i,σs

z
σ,σ′cj,σ′ , (3.46)

which is a simplified version of the Kane-Mele model [12]. Due to the relative sign-change of
the spin-orbit coupling term, they experience quantum Hall currents with opposite orientation.
Thus, our spin-orbit coupled time-reversal symmetric Hamiltonian of eq. (3.39) induces a net
flow of spin on the boundary. This effect is known as the quantum spin Hall effect, which is the
defining feature of two-dimensional topological insulators [1], [12].

This derivation of the quantum spin Hall effect suggests that the robustness of these helical
spin states is somehow related to the Chern numbers of the underlying Haldane models. However,
this is not the case in either this model or any other topological insulator. It turns out that
any pair of boundary states can collapse by an arbitrary weak disorder of the system due to
backscattering. A single helical state, however, will persist. This even/odd classification suggests
another type of topological index ν ∈ Z2 independent of the Chern-number classification scheme
[4], [12].

3.3.7 Three-dimensional topological insulators and the quantum field theory
of the boundary states

One way of constructing three-dimensional topological insulators is by combining two-dimensional
quantum spin Hall systems on top of each other. The resulting three-dimensional system will
host topologically induced gapless states on a two-dimensional interface [1]. An effective theory
due to Bernevig, Hughes, and Zhang (BHZ) gives a valid description of these insulators. The
BHZ-model can be written as the following Hamiltonian density
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ĥ3D(k) = (C +D1k
2
z +D2) +


M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz
A2k+ 0 −A1kz −M(k)

 , (3.47)

where k± = kx± iky and M(k) = M −B1k
2
z −B2(k2

x + k2
y). The parameters M,Ai, Bi, C,Di

are phenomenological constants that depend on specific material properties. These operators
act on four-component canonical operators in terms of spin and chirality. It can be shown that
by projecting this Hamiltonian onto the surface states, we get the following Hamiltonian [4]

ĥsurf
3D (k) = C +A2 (σxky − σykx) (3.48)

In this reduced form, we can deduce that the constant C corresponds to the chemical potential
of the system and A2 corresponds to the velocity of the surface fermions vF [4]. By rotating the
lattice by π

2 and Fourier transforming into real space, we can write it as follows

ĥsurf
3D = ivF σ̄ ·∇+ µ, (3.49)

where σ̄ = (σx, σy) and∇ = (∂x, ∂y). We can convert this Hamiltonian into its corresponding
Lagrangian field theory by mapping the canonical operators of eq. (3.49) into coherent states
and substitute it into the Lagrangian density of eq. (2.13)

L = Ψ†∂tΨ−Ψ†hsurf
3D Ψ (3.50)

= Ψ† (i∂t − ivF σ̄ ·∇− µ) Ψ, (3.51)

where we have introduced the two-component spinor Ψ =
(
ψ↑ ψ↓

)T
. In two dimensions,

we can gap the spectrum of the surface states by introducing the following term

L = Ψ† (i∂t − ivF σ̄ ·∇− µ+mσz) Ψ, (3.52)

This term corresponds to a mass term of the fermions which breaks time-reversal symmetry
[1]. Furthermore, we can also couple the fermions to an electromagnetic field by gauging the
theory as follows

LTI = Ψ†
(
i∂t − eφ+ vF

(
−i∇− eĀ

)
· σ̄ − µ+mσz

)
Ψ. (3.53)

This expression is the quantum field theory of the surface states which we will employ later
in this study.

3.4 Topological field theory and Chern-Simons theory

Spacetime is mathematically speaking a specific type of manifold known as a Riemannian man-
ifold. By introducing a special kind of quantum field theory on these spaces, the resulting
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theory might host non-trivial invariants that are characteristic to the spacetime manifold and
field theory in question. These topological invariants are gauge-invariant vacuum expectation
values of observables, 〈O〉, computed using eq. (2.14). Quantum field theories that produce such
invariants are known as topological field theories. Furthermore, if these topological field theories
appear in a physical context, then the associated invariants might have physical consequences
[15]. In this section, we will discuss some basic results and terminology from topological field
theory with an emphasis on Chern-Simons theories.

3.4.1 Schwarz–type TQFT’s and the Chern-Simons action

Topological quantum field theories (TQFT) fall into two classes. These are Witten-type TQFT
and Schwarz–type TQFT, where the latter is the only class that will be of interest in this study.
In curved spacetime, the Minkowski tensor ηµν is promoted to the more general metric tensor
gµν . This tensor defines the local structure of the spacetime manifold [8]. A quantum observable
is considered topological if the following is true

δ 〈O〉
δgµν

= 0, (3.54)

i.e., the vacuum expectation value of the observable is independent of the metric. This can
be achieved by requiring that both O and the action S are independent of the metric tensor,

δO
δgµν

= 0
δS

δgµν
= 0, (3.55)

which is the case in Schwarz–type TQFT’s. In 2 + 1-dimensional spacetime, one of the
simplest actions that fulfill the latter requirement is the following action

SCS =

∫
M

Tr (A ∧ dA) . (3.56)

In flat spacetime, i.e. Euclidean- or Minkowski space, with gauge group U(1) we can write
this trace as follows

SCS =

∫
M

d2+1xεµνλAµ∂νAλ, (3.57)

where εµνλ is the Levi-Civita tensor12. This is the Chern-Simons action in terms of the gauge
field Aµ. By performing a gauge transformation of eq. (3.57) we are left with the following surface
term

∫
M

d2+1xεµνλAµ∂νAλ →
∫
M

d2+1xεµνλ(Aµ − ∂µΛ)∂ν(Aλ − ∂λΛ)

= SCS −
∫
M

d2+1xεµνλ∂µΛ∂νAλ

= SCS −
∫
M

d2+1xεµνλ∂µ (Λ∂νAλ) , (3.58)

12Notice that this is the only anti-symmetric combination of gauge fields and derivatives available in 2 + 1-
dimensions [8].
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where all symmetric tensors are put to zero due to the contraction with the anti-symmetric
Levi-Civita tensor. Hence this action is only gauge-invariant using a particular choice of bound-
ary conditions where this term vanishes [7]. An important class of topological observables in
Chern-Simons theories is the Wilson loops Wγ , which in the case of eq. (3.57) can be expressed
as

Wγ = exp

{
i

∮
γ
Aµdxµ

}
, (3.59)

where γ is some closed loop in M . The topological invariants associated with these loops are
mathematically intricate, but we can immediately compare them to the topology of Berry-phases
discussed in previous sections [15].

3.4.2 Maxwell-Chern-Simons theory and coupling to matter fields

The Maxwell-Chern-Simons Lagrangian can be written as

LMCS = LM + LCS

= −1

4
FµνF

µν +
κ

2
εµνλAµ∂νAλ −AµJµ, (3.60)

where the first term is the regular Maxwell Lagrangian, the second term is a Chern-Simons
Lagrangian and the last term is a coupling to a source term Jµ = (ρ, J̄). The Euler-Lagrange
equations of this theory are as follows

∂µF
µν +

κ

2
ενµλFµλ = Jν . (3.61)

The first part of this expression, ∂µF
µν = Jν , reproduces the familiar Maxwell’s equations,

whereas the middle term is an additional constraint due to the Chern-Simons Lagrangian. By
using the pseudovector dual field F̃ ν = 1

2ε
νµλFµλ, this equation reduces to the Proca equation

[8] 13

(∂µ∂
µ +m2

CS)F̃ ν = 0, (3.62)

where mCM =
√
κ is the topological mass of the dual field. Ignoring the Maxwell Lagrangian

in eq. (3.61) and writing it out in terms of electric- and magnetic fields, we get the following
equations

ρ = κB (3.63)

Ji = κεijEj . (3.64)

The first equation implies that the charge density is locally proportional to the magnetic
flux, whereas the second equation ensures that this constraint is preserved under time evolution.
Together these constraints imply that the Chern-Simons action attaches magnetic field lines to
the charged constituents of the system. In the case of point particles, these magnetic field lines
become quantized in units of B = e

κ [2].

13A pseudovector field is a vector field which is odd under parity transformations. Notice that this field is gauge
invariant.
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3.4.3 Aharonov-Bohm interaction and anyons

As a result of this charge-flux coupling, the particles experience an effective interaction due to
the Aharonov-Bohm effect. This effect arises if a wave function is adiabatically transported
along a path C enclosing a magnetic field without being physically subjected to it anywhere
along its trajectory. In a region where B = 0, the gauge vector potential can be written as

Ā =∇λ =⇒ λ(r) =

∫ rf

ri

Ā · dr. (3.65)

If the path C is closed, we can use Stokes’ theorem to rewrite this expression as follows

λ(r) =

∮
C
Ā · dr =

∫
S
B · dS. (3.66)

This gauge-invariant quantity, which we will refer to as the Aharonov-Bohm phase, is finite
for a non-zero magnetic field even though the wave function and the path C are completely
isolated from the magnetic field [13].

Assume a system of two identical charged particles living in two dimensions minimally cou-
pled to a gauge sector with a Chern-Simons action. By transporting one of the particles around
the other in a closed loop, we get an Aharonov-Bohm phase since the particles carry a quantized
magnetic flux

λ(r) =

∮
C
Ā · dr =

∫
S
B · dS =

e

κ
, (3.67)

where ∂S = C. This contribution can be removed from the minimal coupling to the matter
fields by performing a gauge transformation, Ā→ Ā−∇λ(r). However, as a consequence of this
gauge transformation, the wave function of the transported particle acquires a non-zero phase

ψ → ψ exp

{
−ie

∮
Ā · dr

}
= ψ exp

{
−ie

2

κ

}
. (3.68)

In the corresponding two-body system, this factor becomes the relative phase shift due to
a double interchange of two identical particles. Since the Aharonov-Bohm phase in this setting
only depends on the number of enclosed particles, we can without loss of generality assume that
C is a circular path symmetrically placed around the other particle. Thus, the relative phase
shift due to a single interchange between two particles equals half the total Aharonov-Bohm
phase, i.e.

ψ → ψ′ = ψ exp

{
−i e

2

2κ

}
. (3.69)

Since κ can be any real number, this phase shift need not be an integer multiple of π, meaning
that ψ′ 6= ±ψ after the permutation. Away from these values of κ, the charged particles in this
Chern-Simons gauge theory are neither fermions nor bosons - they are anyons. This simple
single-particle analysis can also be generalized to interacting quantum systems, resulting in
similar anyonic excitations and vortex solutions in terms of the interacting particles and exotic
topological quantum effects such as the fractional quantum Hall effect [2], [16].
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3.4.4 Chern-Simons actions of topological insulators

In section 3.3.6 we briefly stated the physical reasoning behind the ν ∈ Z2 invariant of topological
insulators. A more detailed analysis using topological band theory can be applied to prove
the topological origin of this index. However, this analysis is restricted to the non-interacting
case [12]. It turns out that a three-dimensional topological insulator can be described using a
descendent of the following topological field theory

STI =
C2

24π2

∫
M

d4+1xεµνρστAµ∂νAρ∂σAτ , (3.70)

which is the 4+1-dimensional analog of eq. (3.57) and C2 ∈ Z [4]. This is the first spacetime
dimension in which the Chern-Simons action respects time-reversal symmetry, which is to be
required14. The manifold M is a form of flat spacetime where the x4 coordinate is compactified
(“rolled up” to a circle). Thus, we can integrate out the fourth component of the gauge field
A4, resulting in the following theory

Sθ =
α

32π2

∫
M ′

d3+1xθ(x)εµνρσFµνF
ρσ (3.71)

where Fµν = ∂µAν − ∂νAµ is the Maxwell field strength tensor, α is the fine structure
constant and θ(x) = C2φ, where φ is the magnetic flux associated with the field A4 and the
closed integral over x4

15. For eq. (3.71) to maintain time-reversal symmetry, we must impose
certain constraints on the field θ(x). Under time-reversal symmetry, the fourth component of
the gauge transforms as A4 → −A4, and hence φ and therefore θ(x) must be odd. Furthermore,
physics must be unaltered after adding 2π to the flux φ. Consequently, we get that θ(x) can take
on two values, one of them being θ(x) = 0. In this case, the action Sθ vanishes, and the system
is trivial, corresponding to ν = 0. However, if θ is finite, the action in eq. (3.71) produces gapless
edge states on the boundary of M ′, which corresponds to the topologically non-trivial case of
ν = 1 [4], [17]. By repeating this procedure, we arrive at the Chern-Simons action in eq. (3.57),
which supports the edge states discussed in section 3.3.6 [16], and finally the one-dimensional
case. The latter is always topologically trivial and hence there are no topological insulators in
one dimension [4]16.

14A0 transforms evenly and Ai transforms odd under time-reversal symmetry.
15This is in fact the action of a axion field, which is a hypothetical particle postulated in high-energy physics.

In this context, the topological aspect of this field is associated with a non-trivial winding number of instantons
in non-abelian Yang-Mills theories, in particular QCD [8].

16However, there are one-dimensional systems with topologically protected edge states, but they are not de-
scribed by this topological classification scheme.
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Chapter 4
Quantum magnetism and magnetic
impurities

Magnetic phases of matter are associated with the ordering of magnetic moments or spins in a
solid-state system. Although some magnetic effects can be derived from classical principles, a
proper description of magnetism is purely quantum mechanical. Interactions between spins arise
in the strong coupling regime of fermionic systems due to a combination of repulsive interactions
between the fermions and local quantum effects due to the Pauli exclusion principle and quantum
fluctuations. In this chapter, we will show that these interactions lead to the Heisenberg model,
followed by a derivation of its spin path integral description. Then we will add a Dzyaloshinskii-
Moriya interaction to our model and discuss some of its physical consequences.

4.1 The Heisenberg model

In the strong coupling regime, fermions can be described by the following generalized tight-
binding model

Ĥ = −
∑
i,j,σ

tijc
†
i,σcj,σ +

∑
i,j,k,l,σ,σ′

Vijklc
†
i,σc
†
j,σ′ck,σ′cl,σ, (4.1)

where Vijkl is a spin-independent coupling between fermions on sites i, j, k, and l with spins σ
and σ′1. In the context of magnetism, we are mainly interested in local interactions that involve
the spin of the fermions. We will therefore only consider nearest-neighbor hopping. Furthermore,
we will only consider the terms where i = j = k = l and i = k and j = l. The former has
a spin structure because of the Pauli exclusion principle, whereas the latter is non-diagonal in
spin-space. Under these restrictions, eq. (4.1) can be written as

Ĥ = −
∑
〈i,j〉

∑
σ

tijc
†
i,σcj,σ + U

∑
i

ni,↑ni,↓ +
∑
〈i,j〉

∑
σ,σ′

Vijc
†
i,σci,σ′c

†
j,σ′cj,σ, (4.2)

where we have defined U = 2Viiii and Vij = −Vijij . The second term of eq. (4.2), which
is known as the Hubbard term, is an on-site energy associated with an atomic orbital accom-

1There is only two spin degrees of freedom due to conservation of spin.
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modating two fermions with opposite spins. The last term is a Coulomb interaction between
neighboring lattice sites that involves a spin-flip. By adapting the following notation

|↑〉 =

(
1
0

)
|↓〉 =

(
0
1

)
(4.3)

we immediately get that the spin-flip operators have the following actions in spin-space

c†i,↑ci,↑

(
1
0

)
=

(
1
0

)
c†i,↑ci,↑

(
0
1

)
=

(
0
0

)
(4.4)

c†i,↓ci,↓

(
1
0

)
=

(
0
0

)
c†i,↓ci,↓

(
0
1

)
=

(
0
1

)
(4.5)

c†i,↓ci,↑

(
1
0

)
=

(
0
1

)
c†i,↓ci,↑

(
0
1

)
=

(
0
0

)
(4.6)

c†i,↑ci,↓

(
1
0

)
=

(
0
0

)
c†i,↑ci,↓

(
0
1

)
=

(
1
0

)
. (4.7)

These relations imply that we can represent the spin-space part of these operators in the
following way

c†i,↑ci,↑ =

(
1 0
0 0

)
=

1

2
(1 + σz) (4.8)

c†i,↓ci,↓ =

(
1 0
0 0

)
=

1

2
(1− σz) (4.9)

c†i,↓ci,↑ =

(
0 0
1 0

)
=

1

2
σ− (4.10)

c†i,↑ci,↓ =

(
0 1
0 0

)
=

1

2
σ+, (4.11)

where σ± = σx ± iσy. Inserting these expressions into eq. (4.2), we get

∑
σ,σ′

c†i,σci,σ′c
†
j,σ′cj,σ =

1

2
(1 + σz)i

1

2
(1 + σz)j +

1

2
(1− σz)i

1

2
(1− σz)j (4.12)

+
1

2
σ−i

1

2
σ+
j +

1

2
σ+
i

1

2
σ−j (4.13)

=
1

2

(
σxi σ

x
j + σyi σ

y
j + σzi σ

z
j

)
, (4.14)

where the indices emphasizes that the operators are acting on their respective lattice sites.
Using that the spin operators of spin-1

2 fermions can be written as S̄ = 1
2 σ̄, we get the following

expression

∑
〈i,j〉

∑
σ,σ′

Vijc
†
i,σci,σ′c

†
j,σ′cj,σ = −

∑
〈i,j〉

JijS̄i · S̄j (4.15)

Jij = −2Vij = 2Vijij > 0, (4.16)
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where we have absorbed a constant energy term into the zero-point energy. Thus, we see
that the last term of eq. (4.2) reduces to a spin-spin interaction that favors parallel alignment,
i.e., ferromagnetism. The right-hand side of the above equation is known as the ferromagnetic
quantum Heisenberg model.

Next, we include the effects of the hopping term of eq. (4.2). We do this by considering the
limit t� U at half-filling 2 and treat the first term of eq. (4.2) as a perturbation. A ground of
the Hubbard Hamiltonian,

Ĥ0 = U
∑
i

ni,↑ni,↓ +
∑
〈i,j〉

∑
σ,σ′

Vijc
†
i,σci,σ′c

†
j,σ′cj,σ, (4.17)

is a state |Ψ0〉 where there is one fermion per lattice site. Consequently, the first-order
contribution vanishes [13],

∆E(1) = −
∑
〈i,j〉

∑
σ

tij 〈Ψ0| c†i,σcj,σ |Ψ0〉 = 0, (4.18)

since the state |Ψ〉 = c†i,σcj,σ |Ψ0〉 is doubly occupied at lattice site i, making it orthogonal
to |Ψ0〉. In the second-order contribution, i.e.,

∆E(2) =
∑
n

∑
〈i,j〉

∑
〈k,l〉

∑
σ,σ′

tijtkl
〈Ψ0| c†i,σcj,σ |n〉 〈n| c

†
k,σ′cl,σ′ |Ψ0〉

E0 − En
, (4.19)

the only non-zero contributions are the once where 〈Ψ0| c†i,σcj,σ |n〉 are non-zero, meaning
that |n〉 is a state where sites j is doubly occupied and i is unoccupied. This implies that

En = U + E0 (4.20)

which means that we can write this contribution as

∆E(2) = − 1

U

∑
n

∑
〈i,j〉

∑
〈k,l〉

∑
σ,σ′

tijtkl 〈Ψ0| c†i,σcj,σ |n〉 〈n| c
†
k,σ′cl,σ′ |Ψ0〉 (4.21)

= − 1

U

∑
〈i,j〉

∑
〈k,l〉

∑
σ,σ′

tijtkl 〈Ψ0| c†i,σcj,σc
†
k,σ′cl,σ′ |Ψ0〉 . (4.22)

which is non-zero if and only if the state c†i,σcj,σc
†
k,σ′cl,σ′ |Ψ0〉 is proportional to |Ψ0〉. This

is possible if the canonical operators c†i,σcj,σc
†
k,σ′cl,σ′ acts as an exchange of fermions between

two neighboring lattice sites, i.e. if i = k and j = l. In this case, eq. (4.22) is equivalent to a
first-order contribution of the following effective Hamiltonian

2i.e. the number of fermions equals the number of lattice sites.
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Schwinger boson representation

Ĥeff = −|tij |
2

U

∑
〈i,j〉

∑
〈k,l〉

c†i,σcj,σc
†
i,σ′cj,σ′

=
|tij |2

U

∑
〈i,j〉

∑
〈k,l〉

c†i,σci,σ′c
†
j,σ′cj,σ, (4.23)

where we have anti-commuted the operators and once again absorbed a constant energy
contribution into the zero-point energy. Comparing this expression with our analysis of the
third term in eq. (4.2), we immediately see that we can write eq. (4.23) as follows

Ĥeff = −
∑
〈i,j〉

JijS̄i · S̄j (4.24)

Jij = −2|tij |2

U
< 0. (4.25)

Thus, we see that the hopping term of eq. (4.2) to second order can be written as a
spin-exchange interaction with opposite sign compared to eq. (4.15). Eq. (4.24) is the anti-
ferromagnetic quantum Heisenberg model. Combining eq. (4.15) and eq. (4.24), we get the
following expression for eq. (4.2) at half-filling

Ĥ = −
∑
〈i,j〉

JijS̄i · S̄j , (4.26)

where Jij = 2Vijij − 2|tij |
U , which means that is a matter of detail whether eq. (4.2) supports

ferromagnetism or anti-ferromagnetism. The absence of a hopping term means that eq. (4.26)
describes processes with no net transport of charge. Systems described by the Heisenberg model
are therefore often referred to as magnetic insulators [18].

4.2 Schwinger boson representation

The spin-operators in the quantum Heisenberg model obey the following commutational relation

[
Si, Sj

]
= iεijkSk, (4.27)

where i, j, and k run over spatial indices {x, y, z}3. Introducing the canonical operators a
and b, it can be shown that a set of spin operators {Sx, Sy, Sz} can be represented as

Sx + iSy = a†b (4.28)

Sx − iSy = b†a (4.29)

Sz =
1

2

(
a†a− b†b

)
(4.30)

3Not to be confused with lattice quantum numbers.
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if a and b obey the usual bosonic commutational relations [18]. However, the Fock space
generated by these operators is over-complete, in the sense that it accommodates more states
than the corresponding spin operators. Thus, in order for a and b to be a proper representation
of spin-operators, we need the additional constraint

a†a+ b†b = 2S. (4.31)

In this representation, we can write the spin-eigenstates as

|S,m〉 =

(
a†
)S+m√

(S +m)!

(
b†
)S−m√

(S −m)!
|0〉 , (4.32)

where S and m are the eigenvalues of S̄2 and Sz respectively [18].

4.3 Coherent states of spin operators

Similar to fermionic- and bosonic path integrals, we need a suitable basis in order to derive a
spin path integral. The set of spin coherent states {|Ω〉} is defined by the following relations

|Ω〉 = g |S, S〉 (4.33)

g = e−iφS
z
e−iθS

y
e−iχS

z
, (4.34)

i.e. the set of spin states that can be achieved by acting on the maximally polarized spin state
|S, S〉 with the operator g. These operators are members of SU(2) since the spin operators of
eq. (4.27) are generators of the corresponding Lie algebra. In fact, the set {g} is a representation
of SU(2) known as the Euler angle representation [7]. Furthermore, since |S, S〉 is an eigenstate
of Sz, the angle χ becomes a free parameter and the coherent states are uniquely defined by the
spherical angles θ ∈ [0, π] and φ ∈ [0, 2π)4. Using eq. (4.27) and the definition above, we can
define the following

Ω = 〈Ω| S̄ |Ω〉 = S (cosφ sin θ, sinφ sin θ, cos θ) . (4.35)

In order to derive the overlap of two arbitrary spin coherent states, we need to express the
spin state |S, S〉 in the Schwinger boson representation and use the fact that the Schwinger
bosons transform as vectors in SU(2), i.e.

(
a†

b†

)′
= g

(
a†

b†

)
= e−iφ

σz

2 e−iθ
σy

2 e−iχ
σz

2

(
a†

b†

)
=

(
ue

iχ
2 ve

iχ
2

−v∗e−
iχ
2 u∗e

−iχ
2

)(
a†

b†

)
(4.36)

4This is related to the fact that SU(2) is isomorphic to S2 × U(1).
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where we have used the Pauli matrices as a representation of the spin algebra and defined

u = cos θ2e
iφ
2 and u = sin θ

2e−
iφ
2 . Consequently, the coherent states can be represented as

|Ω〉 = g |S, S〉 = eiSχ

(
a†
′
)2S

√
(2S)!

|0〉 = eiSχ
(
ua† + vb†

)2S√
(2S)!

|0〉

= eiSχ
√

(2S)!
∑
m

uS+mvS−m√
(S +m)!

√
(S −m)!

|S,m〉 , (4.37)

where we have used the binomial expansion in the last line. Following the steps of [18], we
can use the above relations to derive the following

〈
Ω
∣∣Ω′〉 =

(
1 + Ω · Ω′

2

)S
e−iSψ (4.38)

ψ = 2 arctan

[
tan

(
φ− φ′

2

)
cos 1

2(θ + θ′)

cos 1
2(θ − θ′)

]
+ χ− χ′, (4.39)

where χ− χ′ can be chosen to be zero. Furthermore, using the Haar integral measure

dΩ = dθ sin θdφ (4.40)

we can use eq. (4.39) to derive the following resolution of identity

2S + 1

4π

∫
dΩ |Ω〉 〈Ω| = 1 (4.41)

For multiple spins, we define the following coherent many-body state

|Ω〉 =
∏
i

|Ωi〉 , (4.42)

where i is a lattice index. The resolution of identity in this basis follows directly

∫ ∏
i

(
2S + 1

4π
dΩi

)
|Ωi〉 〈Ωi| . (4.43)

The trace of any operator can also be computed using eq. (4.43)

Tr(A) =

∫ ∏
i

(
2S + 1

4π
dΩi

)
〈Ωi|A |Ωi〉 . (4.44)
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4.4 The path integral of a spin partition function

Using the results of the previous section, we can derive the partition function field theory of any
spin systems given by a second quantized Hamiltonian Ĥ in terms of spin operators S̄i. Following
a standard derivation of the path integral and using the completeness- and trace relations of
eq. (4.43) and eq. (4.44), we get the following expression

Z =

∫
Ω(0)=Ω(τ)

DΩeS (4.45)

S = i
∑
i

ω(Ω)−
∫ β

0
dτH(ω), (4.46)

where H(Ω) = 〈Ω| Ĥ |Ω〉. Compared to our previous case of eq. (2.17), the spin coherent
state overlap of eq. (4.39) introduces a new time-derivative term which can be written as follows

ω(Ω) = −
∫ β

0
dτ∂τφ cos θ

= −
∫ φ0

φ0

dφ cos θ(φ). (4.47)

By the last equality, we see that this term is geometrical in the sense that it depends on the
path taken by Ω = Ω(τ). Furthermore, it can also be shown that ω(Ω) equals the area enclosed
by this path. With this in mind, we can introduce a gauge field b via

iω(Ω) = −
∫ β

0
dτb · ∂τΩ (4.48)

= −
∮
C

dΩ · b(Ω) (4.49)

= −
∫
S
εijk

∂bk(Ω)

∂Ωj
ΩidS (4.50)

where i, j, and k are spatial indices. Thus, for eq. (4.48) to be true, we must have that
eq. (4.50) equals S, which implies that

εijk
∂bk(Ω)

∂Ωj
=

Ωi

Ω2
. (4.51)

Due to the geometrical nature of this term, b is often referred to as the Berry phase of the
spin path integral [18].

4.5 Quantum field theory of the ferromagnetic Heisenberg model

Using the ferromagnetic quantum Heisenberg model as our spin Hamiltonian,

Ĥ = −
∑
〈i,j〉

JijS̄i · S̄j , (4.52)
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our spin path integral takes the form

Z =

∫
DΩeS (4.53)

S = −
∫ β

0
dτ

∑
i

b · ∂τΩi −
∑
〈i,j〉

JijΩi · Ωj

 , (4.54)

where we have used that 〈Ω| S̄i · S̄j |Ω〉 = Ωi ·Ωj , which follows directly using eq. (4.35). By
performing a discrete Fourier transform of the Ωi fields in lattice space, i.e.

Ωi =
∑
q

Ωqe
−iq·ri (4.55)

where ri is the position of lattice index i, we can write the second term of eq. (4.54) as follows

∑
〈i,j〉

JijΩi · Ωj =
∑
q

J̃(q)ΩqΩ−q (4.56)

J̃(q) =
∑
{δ}

J(δ)eiq·δ (4.57)

where δ = ri − rj are the nearest-neighbor lattice vectors. Assuming that the spin-spin
coupling is symmetric, i.e., Jij = Jji, we get that J̃(q) = J̃(−q). In the long-wavelength limit,
we can therefore approximate this coupling as follows

J̃(q) = c1 + c2q
2 +O

(
q3
)
, (4.58)

where c1 > 0 since the Heisenberg model in eq. (4.52) favors ferromagnetic ordering. Inserting
this expression into eq. (4.54), we get the following action

S = −
∫ β

0
dτ
∑
q

(
b · ∂τΩq − c1ΩqΩ−q − q2c2ΩqΩ−q

)
(4.59)

We can take the continuum limit of this model by treating q as a continuous variable. By
doing this, we are transforming the discrete spin many-body states Ωq into a continuous spin
field n(q). In this limit, our action becomes

S = −
∫ β

0
dτ

∫
d3q

(2π)3
b · ∂τn(q)− κ

2
(iq)(−iq)n(q)n(−q)− m2

2
n(q)n(−q) (4.60)

where we have re-scaled the fields and defined the exchange coupling constants m and κ.
Fourier transforming back into real space and performing a Wick rotation in eq. (4.54), we arrive
at the following Lagrangian

LFI = b · ∂tn−
κ

2
(∇n)2 − m2

2
n2. (4.61)

This is the quantum field theory of the ferromagnetic Heisenberg model of eq. (4.15) [18].
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4.6 Dzyaloshinskii-Moriya interactions

In certain magnetic systems, a lack of inversion symmetry allows for asymmetrical spin-exchange
interactions between the spins of a magnetic insulator. In 1958, Igor Dzyaloshinskii proposed a
general term for these types of interactions of the form

ĤDM =
∑
i,j

Dij · S̄i× S̄j (4.62)

for spins at lattice sites i and j. There are many mechanisms responsible for these inter-
actions. However, they are mostly due to spin-orbit coupling between the lattice atoms and
the underlying fermions. In the spin coherent states basis of eq. (4.33), we can write the above
Hamiltonian as

〈Ω| ĤDM |Ω〉 =
∑
i,j

Dij · Ωi× Ωj , (4.63)

where we have used eq. (4.35). Restricting to nearest-neighbor interactions and performing
a discrete Fourier transform using eq. (4.55), we can write this term as

∑
〈i,j〉

Dij · Ωi× Ωj =
∑
q

D(q)Ωq · Ω−q (4.64)

D(q) =
∑
{δ}

D(δ)eiq·δ. (4.65)

In the following, we will assume that Dij is anti-symmetric in lattice indices, which is the
case of spin-orbit induced Dzyaloshinskii-Moriya interactions. This implies that D(q) is anti-
symmetric. In the long-wavelength limit, we can therefore rewrite eq. (4.65) as

〈Ω| ĤDM |Ω〉 = λDM
∑
q

q · Ωq × Ω−q

= λDM
∑
q

qiεijk(Ωq)j(Ω−q)k

= iλDM
∑
q

(Ωq)jεjki(Ω−q)k(−iqi)

= −iλDM
∑
q

(−iq)× Ω−q · Ωq. (4.66)

Taking the continuum limit and Fourier transforming back into real space, we arrive at the
following term

LDM = −iλDM (∇× n) · n, (4.67)

which is the field theory version of eq. (4.62) [19]. The spin-exchange coupling of eq. (4.62)
energetically favors perpendicular spin alignment, in contrast to regular ferromagnetic and anti-
ferromagnetic systems. This in turn makes it possible to achieve new kinds of spin configurations
and magnetic phases compared to regular magnetic ordering and (anti-) ferromagnetism of
systems described by the Heisenberg model [19], [20].
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Chapter 5
Superconductivity

Superconductivity is a low-temperature phase of matter in which a system experiences zero
electrical resistance and perfect diamagnetism. At low enough temperatures, the electrons
near the Fermi surface become unstable and start to group into so-called Cooper-pairs. These
pairs are composite fermionic condensates that form due to induced attractions between the
fermions in the superconductor. The microscopic theory describing this mechanism is the
Bardeen–Cooper–Schrieffer (BCS) theory1, which is the topic in the first sections of this chapter.
Then we will derive the Ginzburg-Landau theory of conventional superconductors followed by a
discussion of the Higgs-Anderson mechanism.

5.1 The BCS Hamiltonian

A general fermionic many-body Hamiltonian in momentum space takes the form2

Ĥ =
∑
σ,k

(εk − µ) c†σ,kcσ,k +
∑

σ,σ′,k,k′,q

V σ,σ′

k,k′,qc
†
σ,k+qc

†
σ′,k′−qcσ,kcσ′,k′ , (5.1)

where εk is the single-particle energy, Vk,k′,q is a two-body interaction coupling and µ is the
chemical potential. In the case of BCS superconductivity, we can use the following coupling

Vk,k′,q =
e2

4πε0

1

q2
+
∣∣g2
q

∣∣ 2ωq
ω2 − ω2

q

, (5.2)

where the first term is the Coulomb interaction in momentum space and the last term is an
effective boson-mediated interaction to second order in gq, which is the coupling between the
fermions and the bosons of the problem3. The frequencies ω and ωq are the energy transfer
ω = εk+q − εk between the fermions and the energy dispersion of the intermediate bosons, re-
spectively.

1Superconductors described by BCS theory are called conventional superconductors. Unconventional super-
conductivity will not be addressed in this introduction.

2Assuming that three-body interactions etc. are irrelevant or negligible.
3Although BCS theory is usually derived using an electron-phonon interaction, the intermediate boson can in

principle be any kind of boson, e.g., magnons.
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k + q, σ

k, σ

k′ − q, σ′

k′, σ′

V σ,σ′

k,k′,q

k + q, σ

k, σ

k′ − q, σ′

k′, σ′

Vk,k′,q

Figure 5.1: Feynman diagrams of two-body interactions with the generalized coupling (left) and
boson-mediated effective coupling (right).

In most cases eq. (5.2) is positive, and the corresponding two-body interaction is repulsive.
These processes are irrelevant in the context of Cooper-pair formation and can be treated sep-
arately using perturbation theory. However, when the energy transfer ω is smaller than but
sufficiently close to the boson dispersion energy ωq, the interaction term changes sign and be-
comes attractive. It is these interactions that participate in BCS-superconductivity.

k

k′

−k

−k′

∼ εF

Figure 5.2: A typical scattering process close to the Fermi surface εF where two diametral
fermions (k,−k) are scattered into (k′,−k′)

In order to arrive at the BCS Hamiltonian, we need to make a series of assumptions and
simplifications to the generalized model of eq. (5.1). First of all, we assume that the intermediate
bosons interact with a characteristic frequency ω0

4, which is typically small compared to the
Fermi level εF . This means that attraction between fermions will mainly take place in a small
region of width ∼ 2ω0 around the Fermi surface, i.e.

|εk+q − εk| < ω0 (k ↔ k′, q → −q). (5.3)

The vectors k that fulfills these relations form a subspace Ω of the Brillouin zone. Fur-
thermore, we will only retain the terms where k′ = −k. This choice maximizes the scattering
phase space of attractive interactions, as illustrated in fig. 5.2. Lastly, the spatial extent of these

4In the phonon case, this corresponds to some typical lattice vibration frequency, whereas in the magnon case
it corresponds to some typical spin-precession frequency.
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interactions are usually quite small, meaning that we can set σ′ = −σ. Thus, we are left with
the following Hamiltonian

Ĥ =
∑
σ,k

εkc
†
σ,kcσ,k +

∑
σ,k,q

Vk,k′,qc
†
σ,k+qc

†
−σ,−k−qc−σ,−kcσ,k, (5.4)

where we have absorbed the chemical potential into the single-particle energy for notational
purposes. By redefining variables k → k′, k + q → k and 2Vk,k′,q → Vk,k′ , we arrive at

ĤBCS =
∑
σ,k

εkc
†
σ,kcσ,k +

∑
k,k′∈Ω

Vk,k′c
†
↑kc
†
↓−kc↓−k′c↑k′ , (5.5)

which is the BCS Hamiltonian of superconductivity [21].

5.2 Second quantization approach to superconductivity

The Hamiltonian in eq. (5.5) cannot be treated exactly and hence we need to employ a suitable
approximation scheme. Since the formation of Cooper-pairs is associated with the superconduct-
ing phase transition, we anticipate that the interaction term cannot be treated perturbatively
[7], [9]. We will therefore approximate the problem in a non-perturbative manner by trans-
forming the problem into a self-consistent one-particle problem using the following mean-field
expressions 5

c↓−kc↑k = 〈c↓−kc↑k〉+ c↓−kc↑k − 〈c↓−kc↑k〉
= bk + δbk (5.6)

c†↑kc
†
↓−k =

〈
c†↑kc

†
↓−k

〉
+ c†↑kc

†
↓−k −

〈
c†↑kc

†
↓−k

〉
= b†k + δb†k (5.7)

bk = 〈c↓,−kc↑,k〉 b†k =
〈
c†↑kc

†
↓−k

〉
, (5.8)

where δbk and δb†k are deviations from the mean-field values bk and b†k. Inserting these
expressions into eq. (5.5), we arrive at

Ĥ =
∑
σ,k

εkc
†
σ,kcσ,k −

∑
k

∆kc
†
↑kc
†
↓−k + ∆†kc↓,−kc↑,k +

∑
k

∆kb
†
k +O

(
δb2k, δb

†
k

2
)
, (5.9)

where we have defined

∆k = −
∑
k′

Vk,k′bk ∆†k = −
∑
k′

Vk,k′b
†
k′ . (5.10)

This Hamiltonian describes a non-interacting fermion gas coupled to some background mean-
field particle reservoir which can create and annihilate pairs of electrons. To diagonalize eq. (5.9),
we need to perform a fermionic Bogoliubov transformation using the following operators

5A one-particle Hamiltonian is a Hamiltonian without any interaction terms.
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ηk = ukc↑k + vkc
†
↓−k (5.11)

γk = ukc
†
↓−k − vkc

†
↑k. (5.12)

These are fermionic operators if we impose the following commutational relations

{
η†k, ηk′

}
= δk,k′ {ηk, ηk′} =

{
η†k, η

†
k′

}
= 0 (γk ↔ ηk) (5.13)

{ηk, γk′} =
{
η†k, γk′

}
=
{
ηk, γ

†
k′

}
= 0. (5.14)

which are satisfied if u2
k + v2

k = 1. Following the lines of [22], we can use eq. (5.11) and
eq. (5.12) to rewrite eq. (5.9) in terms of ηk and γk and corresponding adjoint operators. The
resulting Hamiltonian becomes diagonal if the parameters uk and vk satisfies

u2
k + v2

k = 1 (5.15)

−4εkukvk = (u2
k − v2

k)(∆
†
k + ∆k). (5.16)

With these constraints, eq. (5.9) becomes

Ĥ =
∑
k

Ekη
†
kηk − Ekγ

†
kγk +

∑
k

2εk + ∆kb
†
k

=
∑
k

Ek

(
η†kηk − γ

†
kγk

)
+ E0 (5.17)

Ek = εk(u
2
k − v2

k)− ukvk(∆
†
k + ∆k). (5.18)

According to eq. (5.15), we can use the following parametrization

uk = cos θk vk = sin θk (5.19)

so that eq. (5.16) can be written as

tan 2θk = −∆̃k

εk
. (5.20)

where ∆̃k = Re(∆k). By choosing ∆̃k > 0, we have that

cos 2θk =


1√

1+

(
∆̃k
εk

)2
εk > 0

− 1√
1+

(
∆̃k
εk

)2
εk < 0

(5.21)

Hence, we get the following
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Ek = εk(u
2
k − v2

k)− ukvk(∆
†
k + ∆k)

= εk cos 2θk − ∆̃k sin 2θk

=

√
ε2
k + ∆̃2

k. (5.22)

Consequently, we see that the onset of Cooper-pair condensation creates a gap in the spec-
trum of the quasiparticles. These neutral, spin-1

2 fermions are known as Bogoliubov quasipar-
ticles or Bogoliubons. They are the low-energy, long-lived single-particle excitations above the
ground state of the BCS Hamiltonian, energetically close to the Cooper-pairs.

kF
k

|εk|

0
kF

k

+Ek

−Ek
±εk

Figure 5.3: Energy spectrum of the fermions of the BCS Hamiltonian with (right) and without
(left) finite energy gap ∆̃k.

The fact that the Bogoliubons are neutral particles is an important indication that electro-
magnetism in superconductors is radically different from that of regular conducting materials.
In metals and semiconductors, charge is carried by renormalized quasiparticles that are quali-
tatively similar to free electrons. In superconductors, however, charge transport is a collective
phenomenon. [22], [23].

5.3 The BCS gap-equation and critical temperature

In this mean-field treatment, the value of bk (or equivalently ∆k) must be self-consistently
determined by minimizing the free energy of the system. The grand canonical ensemble of
eq. (5.17) can be written as [22]

Zg = e−βE0
∏
k

(
1 + e−βEk

)(
1 + eβEk

)
= e−βF , (5.23)

which gives us the following expression for the Helmholtz free energy

F = E0 −
1

β

∑
k

[
ln
(

1 + e−βEk
)

+ ln
(

1 + eβEk
)]
. (5.24)

We choose to minimize this energy with respect to ∆k. Following the lines of [22], we get
the following equation for bk
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∂F

∂∆̃k

= 0

=⇒ bk =
∆̃k√
ε2
k + ∆̃2

k

tanh
βEk

2
. (5.25)

Inserting this expression into eq. (5.10), we get the following equation for ∆k

∆k = −
∑
k′

Vk,k′∆k′
1√

ε2
k′ + ∆2

k′

tanh
βEk′

2
, (5.26)

where we have written ∆̃k = ∆k for notational purposes. This is the BCS-gap equation. We
can solve it in the region constrained by eq. (5.3) by assuming that the two-body interaction is
independent of k, i.e., Vk,k′ ≈ −V . Consequently, we get the following simplified expression

∆k = V
∑
k′

∆k′
1√

ε2
k′ + ∆2

k′

tanh
βEk′

2
(5.27)

1 = V
∑
k′

1√
ε2
k′ + ∆2

tanh
βEk′

2
(5.28)

= V

∫ ω0

−ω0

dε
N(ε)√
ε2 + ∆2

tanh
β
√
ε2 + ∆2

2
, (5.29)

where we have converted the k′-sum into an energy integral by introducing the density of
states

N(ε) =
∑
k′

δ (ε− εk′) . (5.30)

In this region, we can assume that N(ε) is a slowly-varying function of ε, meaning that we
can write N(ε) ≈ N(εF ). Thus, we get

1 = V

∫ ω0

−ω0

dε
N(ε)√
ε2 + ∆2

tanh
β
√
ε2 + ∆2

2

≈ V N(εF )

∫ ω0

−ω0

dε
1√

ε2 + ∆2
tanh

β
√
ε2 + ∆2

2

≡ λ
∫ ω0

−ω0

dε
1√

ε2 + ∆2
tanh

β
√
ε2 + ∆2

2
(5.31)

At T = 0, we get the following equation for ∆(T = 0) ≡ ∆0

1 = λ

∫ ω0

0
dε

1√
ε2 + ∆2

0

(5.32)

=⇒ ∆0 ≈
λ�1

2ω0e−
1
λ . (5.33)
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Ginzburg-Landau field theory of conventional superconductors

This equation features an essential singularity as a function of λ ∼ V . This implies that
this result could not have been obtained to any finite order in perturbation theory. Note also
that a non-zero density of states is required to have finite λ, meaning that superconductivity
can only occur if there is a Fermi-surface involved. According to eq. (5.31), ∆ decreases as
temperature increases. Consequently, assuming that ∆(T ) is a continuous function, we must
have that ∆ → 0+ for some critical temperature T → Tc. We obtain this temperature by
considering the limit

1 = λ

∫ ω0

0
dε

1

ε
tanh

βcε

2
. (5.34)

which has the following solution in the limit λ� 1

kBTc =
2

π
eγω0e−

1
λ =

eγ

π
∆0. (5.35)

where γ is the Euler-Mascheroni constant.

5.4 Ginzburg-Landau field theory of conventional superconduc-
tors

The BCS Hamiltonian of eq. (5.5) can be modified into the following real-space continuum model
[7]

Ĥ =

∫
ddr

(
c†σ(r)

(
1

2m
(−i∇)2 − µ

)
cσ(r)− gc†↑(r)c

†
↓(r)c↓(r)c↑(r)

)
, (5.36)

where a sum over repeated indices is assumed. By mapping this Hamiltonian into its cor-
responding quantum field theory using eq. (2.18), we get the following action and partition
function in imaginary time formalism

S = −
∫ β

0
dτ

∫
ddr

(
ψ†σ∂τψσ + ψ†σ

(
1

2m
(−i∇)2 − µ

)
ψσ − gψ†↑ψ

†
↓ψ↓ψ↑

)
= −

∫ β

0
dτ

∫
ddr

(
ψ†σG−1

0 ψσ + gψ†↑ψ
†
↓ψ↓ψ↑

)
(5.37)

Z =

∫
Dψ†DψeS (5.38)

where we have defined the following inverse fermionic Greens functions

G−1
0 = (∂τ +

1

2m
(−i∇)2 − µ) (5.39)

Similarly to the case of eq. (5.5), the two-body interaction term in eq. (5.37) makes it impos-
sible to solve this model exactly. However, we can solve it approximately and non-perturbatively
in the vicinity of a superconducting phase transition by introducing the auxiliary complex scalar
field ϕ using the following Hubbard-Stratonovich decoupling
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e
∫ β
0 dτ

∫
ddrgψ†↑ψ

†
↓ψ↓ψ↑ =

∫
DϕDϕ∗eSϕ (5.40)

Sϕ = −
∫

dτ

∫
ddr

(
1

g
ϕ2 − (ϕ∗ψ↓ψ↑ + ϕψ†↑ψ

†
↓)

)
, (5.41)

where ϕ2 = |ϕ|2. Comparing this action with the mean-field Hamiltonian of eq. (5.9), we
immediately see that the bosonic field ϕ replaces the role of ∆k in this field-theoretical treatment.
Thus, ϕ is an effective bosonic field describing the Cooper-pairs, which we will refer to as the
Cooper boson 6. Inserting this expression into our partition function in eq. (5.38), we get

Z =

∫
DϕDϕ∗DΨ†DΨeS (5.42)

S = −
∫ β

0
dτ

∫
ddr

(
1

g
ϕ2 + Ψ†G−1Ψ

)
(5.43)

G−1 =

(
Gp
−1

0 ϕ

ϕ∗ Gh−1

0

)
= G−1

0 + ϕ̄ (5.44)

ϕ̄ =

(
0 ϕ
ϕ∗ 0

)
, (5.45)

where we have changed to a two-component Nambu spinor basis Ψ =
(
ψ↑ ψ↓

)T
in the

fermionic sector and defined the following inverse particle- and hole propagators

Gp
−1

0 = ∂τ +
1

2m
(−i∇)2 − µ (5.46)

Gh−1

0 = ∂τ −
1

2m
(−i∇)2 + µ. (5.47)

The fermionic sector of eq. (5.42) is bilinear and hence solvable. After integrating out the
fermions, we are left with the following bosonic partition function and corresponding action

ZB =

∫
DϕDϕ∗eSB (5.48)

SB = −
∫ β

0

∫
ddr

(
1

g
ϕ2

)
+ Tr

[
ln
(
G−1

)]
. (5.49)

Near a superconducting phase transition, the magnitude of ϕ is very small. Hence, we can
treat ϕ̄ in eq. (5.49) as a perturbation. By writing the Greens function as

G−1 = G−1
0 + ϕ̄ = G−1

0 (1 + G0ϕ̄) (5.50)

we see that the last factor becomes dimensionless. Consequently, we can perform a saddle-
point approximation by expanding the last factor to fourth order in bosonic fields

6More precisely, ϕ is the conjugate bosonic field to the Cooper-pairs described by the operators b†k, which are
neither bosonic- nor fermionic operators [22]
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Zeff =

∫
DϕDϕ∗eSeff (5.51)

Seff = −
∫

dτ

∫
ddr

(
1

g
ϕ2

)
− 1

2
Tr
[
(G0ϕ̄)2

]
− 1

4
Tr
[
(G0ϕ̄)4

]
+ Tr

[
ln
(
G−1

0

)]
, (5.52)

where odd powers of ϕ̄ vanish since ϕ̄ is off-diagonal. The last term in eq. (5.52) is the
solution to an uncoupled fermionic sector, which factorizes out of the partition function. In order
to solve the traces, we will use ν = (ωn, k) as our internal fermionic quantum numbers, where

k is the momentum and ωn = (2n+1)π
β are fermionic Matsubara frequencies. These frequencies

automatically satisfy the anti-periodic boundary condition of eq. (2.17). Assuming that the
order parameter is spacetime dependent, i.e., ϕ = ϕ(τ, r), we can Fourier transform it in the
following way

ϕ(τ, r) =
1

β

∑
n

∫
ddq

(2π)d
ϕ(νl, q)e

iqr+iνlτ . (5.53)

Using as a complete basis the fermionic Matsubara wave functions [7],

ψnk(τ, r) =
1√
β

eikr+iωnτ , (5.54)

and inserting the Fourier transformed expression of eq. (5.53) into eq. (5.52), we get the
following second-order contribution

−1

2
Tr
[
(G0ϕ̄)2

]
= −1

2

∫
ddq

(2π)d

∫
ddk

(2π)d
1

β2

∑
n,l

(
Gp0(iωn, k)Gh0 (iωn − iνl, k − q)

+ Gh0 (iωn, k)Gp0(iωn − iνl, k − q)
)
ϕ(νl, q)

2 (5.55)

= −
∫

ddq

(2π)d

∫
ddk

(2π)d
1

β2

∑
n,l

(
Gp0(iωn, k)Gh0 (iωn − iνl, k − q)

)
ϕ(νl, q)

2

= −
∫

ddq

(2π)d
1

β

∑
l

χ(2)(iνl, q)ϕ(νl, q)
2, (5.56)

where we have rotated all variables k → −k etc. in the second term. The Fourier transformed
Greens functions reads

Gp0(iωn, k) =
1

iωn + εk
(5.57)

Gh0 (iωn, k) =
1

iωn − εk
. (5.58)

where εk = k2

2m − µ. Summing over fermionic Matsubara frequencies, we get [7]

1

β

∑
n

1

iωn + εk

1

iωn − iνl − εk−q
= −

f(−εk) + f(εk−q)

iνl + εk + εk−q
(5.59)
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where f is the Fermi-Dirac distribution. In the vicinity of a superconducting phase transi-
tion, the magnitude of the field ϕ is approximately constant. We therefore set νl → 0 and work
to second order in spatial momenta q.

Using that f(εk−q) ≈ f(εk − k·q
m ) ≈ f(εk) + (k·q)2

2m2
∂2f(εk)
∂2εk

, we see that

χ(2)(iνl, q) ∼ c1 − q2c2 (5.60)

where c1 < 0 and c2 > 0 are constants. Fourier transforming back into real space, the
second-order contribution becomes

−1

2
Tr
[
(G0ϕ̄)2

]
= −

∫
ddq

(2π)d
1

β

∑
l

χ(2)(iνl, q)ϕ(q)2 (5.61)

= −
∫ β

0
dτ

∫
ddr

(
c2|−i∇ϕ|2 + c1|ϕ|2

)
(5.62)

In the fourth-order contribution, we further simplify our calculations by assuming that the
field ϕ is constant. Thus, we get [7]

−1

4
Tr
[
(G0ϕ̄)4

]
≈ −|ϕ|

4

4

∑
l

∫ ωD

−ωD

dξ

ω2
l + ξ2

= −|ϕ|
4

2

∑
l

∫ ωD

0

dξ

ω2
l + ξ2

= −c3|ϕ|4 (5.63)

where c3 > 0 is a positive constant. Hence the fourth-order contribution can be written as

−1

4
Tr
[
(G0ϕ̄)4

]
= −

∫ β

0
dτ

∫
ddrc3|ϕ|4 (5.64)

In total, we get the following action after re-scaling the fields

Seff = −
∫ β

0
dτ

∫
ddr

(
1

2
|−i∇ϕ|2 + α|ϕ|2 + β|ϕ|4

)
, (5.65)

where α and β > 0 are constants and

α ∼ c1 +
1

g
∼ T − Tc. (5.66)

This is the time-independent Ginzburg-Landau theory of a conventional superconductor with
fluctuations. This theory is invariant under global U(1)-transformations, i.e.,

ϕ→ eiθϕ (5.67)

ϕ∗ → e−iθϕ∗. (5.68)

We can promote this global symmetry into a local U(1) gauge symmetry by minimally
coupling the Cooper bosons to a gauge field Ā. This gives us the following action
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Seff = −
∫ β

0
dτ

∫
ddr

(
1

2

∣∣(−i∇− e∗Ā)ϕ
∣∣2 + α|ϕ|2 + β|ϕ|4 +

1

2
λFµνFµν

)
, (5.69)

where e∗ is the charge of the Cooper bosons, 1
2λF

µνFµν = λ
(
(∇φ)2 + (∇× Ā)2

)
is the

Maxwell Lagrangian in Euclidean space and λ is a phenomenological constant. Note that have
included the temporal component of the gauge field A0 = φ in the Maxwell sector even though it
does not couple to the Cooper bosons. This is because the gauge field fluctuates independently
of the superconductor.

5.5 The Higgs-Anderson mechanism

At sufficiently low temperatures the Cooper bosons of eq. (5.69) acquires a finite expectation
value. The resulting ground state does not share the same symmetries as its corresponding
action7, a phenomenon known as spontaneous symmetry breaking. In order to investigate this
effect in the context of superconductivity, we will expand eq. (5.69) to low order in phase-, gauge
and amplitude fluctuations above this ground state.

Below a certain critical temperature Tc, the mass-term α changes sign and becomes negative.
This means that the Cooper boson potential

V (ϕ) = α|ϕ|2 + β|ϕ|4 (5.70)

is minimized by a finite value expectation value of the Cooper boson, |ϕ0| =
√
−α
β , as shown

in fig. 5.4. In the low-energy limit below the critical temperature, we can therefore write ϕ as
follows

ϕ = |ϕ|eiθ = |ϕ0 + ψ|eiθ, (5.71)

where θ and ψ are phase- and amplitude fluctuations above the ground state ϕ0, respectively.
Inserting this expression into eq. (5.69) and ignoring higher-order terms in θ, ψ, and Ā, we get
the following Lagrangian

L =
1

2
|ϕ0|2

∣∣∇θ − e∗Ā∣∣2 +
1

2
|∇ψ|2 + 2|α||ψ|2 +

1

2
λFµνFµν , (5.72)

where we have discarded a constant energy term. This theory describes a massless Goldstone
boson θ coupled to a gauge field together with a massive neutral scalar field ψ8. We also have
the following gauge-symmetry

A→ A+∇φ (5.73)

θ → θ + e∗φ. (5.74)

7Generally speaking, the ground state is symmetric under a subgroup of the original symmetry. In this case
the subgroup is trivial, but the ground state manifold is also invariant under U(1) transformations. This should
not be confused with the original symmetry.

8Goldstone’s theorem states that field theories with a continuous symmetry which is not shared by the ground
state of the system must host a massless scalar boson, which is called the Goldstone boson.
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Re(ϕ)
Im(ϕ)

V (ϕ)

Figure 5.4: Qualitative illustration of the Mexican hat potential for a complex scalar field ϕ.

The physical significance of the Goldstone bosons can be accounted for by integrating them
out of the theory, which results in an effective action in terms of the gauge field Ā and the scalar
field ψ [7]. Alternatively, we can define the gauge-invariant combination

Ā→ Ā′ = Ā+
1

e∗
∇θ ≡ Ā, (5.75)

which leaves the Maxwell sector unaltered, i.e., Fµν(Ā) = Fµν(Ā′) [8]. Hence, after substi-
tuting eq. (5.75) into eq. (5.72), we get the following Lagrangian

L =
1

2
|∇ψ|2 + 2|α||ψ|2 +

1

2
m2
AĀ

2 +
1

2
λFµνFµν . (5.76)

where mA = e∗φ0 is the mass of the gauge field. The Goldstone mode has been eliminated
from the theory and as a consequence the gauge field has acquired a mass. The massless degree
of freedom of the Goldstone boson has been transformed into a massive longitudinal degree of
freedom of the gauge field sector. More intuitively, we say that the gauge boson has “absorbed”
or “eaten” the Goldstone boson. This phenomenon is known as the Higgs-mechanism9. In the
case of superconductivity, or more precisely in the case of abelian gauge theories, it is also known
as the Higgs-Anderson mechanism [22].

The theory in eq. (5.69) is mathematically equivalent to the Higgs sector of the standard
model of particle physics where ϕ corresponds to the Higgs-field and ψ corresponds to the field
describing the Higgs boson10. The superconducting phase transition is therefore mathemati-
cally similar to the spontaneous symmetry breaking of the electroweak theory11, which is the
mechanism behind the massive gauge bosons and fermions of the standard model [8].

9The fact that there are no Goldstone bosons in gauge theories is a generic feature of general Yang-Mills
theories [8].

10In this sense, the Bogoliubons we found using the second quantized approach are fermionic counterparts of
the Higgs boson.

11The Glashow-Salam–Weinberg theory of electroweak unification describes the spontaneous symmetry breaking
of a SU(2) × U(1)Y symmetric Lagrangian into a U(1)em symmetric Lagrangian[8].
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5.6 Electromagnetism in superconductors

In order to derive the electromagnetic properties of superconductors, we need a constitutive
relation for the current density j̄. We can obtain this by deriving the linear response of the
system described by eq. (5.76) by performing a functional derivative of the corresponding action
without the Maxwell term with respect to the gauge field [7], i.e.

j̄ = − δS
δĀ

= mAĀ. (5.77)

This is the (second) London equation. From this expression, we can derive the following two
relations describing the systems repose to external magnetic- and electric fields12 [7]

∇× B̄ =∇× (∇× Ā) = mAĀ (5.78)

∂tj̄ = mAĒ. (5.79)

Equation (5.78) has no static solutions, meaning that the superconductor cannot accommo-
date a constant magnetic field. More precisely, assuming an infinite interface, we obtain the
following solution for the magnetic field

B̄ = B̄0e−
x
λ , (5.80)

where λ =
√

1
mA

is the London penetration length and x is the direction perpendicular to

the interface of the superconductor. Consequently, magnetic fields are exponentially suppressed
in the superconductor. This is known as the Meissner effect. The unbound linear increase of the
current in eq. (5.79) is clearly an unphysical solution. However, this relation tells us is that the
response of an electric field cannot be a corresponding increase of the current13. This in turn
implies the dissipationless flow of charge and therefore complete loss of resistivity [7].

12This set of equations was obtained using a specific gauge and assuming that there are no constant terms in
the vector potential. The time derivative was derived by performing a Wick rotation into real time [7].

13Which is the case is Ohmic materials, where j̄ = σĒ [7]
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Chapter 6
Quantum field theory of a superconductor
coupled to a topological insulator

In this chapter, we derive an effective field theory of a superconductor topological insulator
heterostructure in an electromagnetic field where we allow for proximity-induced interactions
between the surface states of the topological insulator and the Cooper bosons of the supercon-
ductor.

6.1 Lagrangians and proximity couplings

The superconductor and the gauge field can be described using the Ginzburg-Landau theory of
eq. (5.69)

LSC =
1

2
|(−i∇− e∗Ā)ϕ|2 + α|ϕ|2 + β|ϕ|4 + λ

(
(∇φ)2 + (∇× Ā)2

)
, (6.1)

where LM = λ
(
(∇ϕ)2 + (∇×A)2

)
is the Maxwell sector with a phenomenological field-

strength parameter λ and e∗ = 2e is the charge of the Cooper bosons. We can write the former
contribution as

LM =
1

2
λFµνFµν , (6.2)

where Fµν = ∂µAν − ∂µAν is the Maxwell field strength tensor in Euclidean space. In our
effective surface theory, the motion of the relevant Cooper bosons is restricted to the plane,
meaning that ∇ = (∂x, ∂y, 0). We also assume that the magnetic field is perpendicular to this
surface, and consequently Ā = (Ax, Ay, 0). The surface states of the topological insulator can
be described using the Lagrangian of eq. (3.53)

LTI = Ψ†
(
i∂t − eφ+ vF (−i∇− eĀ) · σ̄ − µ+mσz

)
Ψ (6.3)

where Ψ =
(
ψ↑ ψ↓

)T
are fermionic fields written in two-component Nambu-formalism. The

third term of this Lagrangian is a topological term ensuring spin-momentum locking of the
surface states. The fourth term is a regular chemical potential term. The last term is a mass
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term of the fermions, which we assume is due to some form of magnetization perpendicular to the
interface of the heterostructure. Due to the spatial proximity between the topological insulator
and the superconductor, we assume that the Cooper bosons interact with the topological surface
fermions in the following way

LSC−TI = gϕψ†↑ψ
†
↓ + g∗ϕ∗ψ↓ψ↑, (6.4)

where g is a dimensionless coupling constant. These two terms describe the decay and the
condensation of a Cooper boson on the superconductor, respectively. Combining eq. (6.3) and
eq. (6.4), we get the following fermionic Lagrangian

LF = LTI + LSC−TI
= Ψ†

(
i∂t − eφ+ vF (−i∇− eĀ) · σ̄ − µ+mσz

)
Ψ + gϕψ†↑ψ

†
↓ + g∗ϕ∗ψ↓ψ↑. (6.5)

ϕ

ψ†↑

ψ†↓

g

Figure 6.1: Feynman diagram illustrating the decay of a Cooper boson into two topological
surface fermions.

6.2 Dirac Lagrangian of the topological fermions

The Lagrangian describing the topological surface states can be rewritten as a Dirac Lagrangian
which closely resembles the field theory of (2+1)-dimensional quantum electrodynamics. Using
the commutational relations of the Pauli matrices in eq. (A.2) and eq. (A.3), we can rewrite
eq. (6.3) as follows

LTI = Ψ†
(
i∂t − eφ+ vF (−i∇− eĀ) · σ̄ − µ+mσz

)
Ψ

= Ψ̄
(
i∂tσ

z − eφσz + vF (−i∂i − eAi)σzσi − µσz +m
)

Ψ

= Ψ̄
(
i∂tσ

z − eφσz + iεzijvF (−i∂i − eAi)σj − µσz +m
)

Ψ

= Ψ̄ (i∂tσ
z − eφσz + vF (∂x − ieAx)σy − vF (∂y − ieAy)σx − µσz +m) Ψ

= Ψ̄ (i(∂t + ieφ+ iµ)σz − ivF (∂x − ieAx)(iσy)− ivF (∂y − ieAy)(−iσx) +m) Ψ. (6.6)

By combining the chemical potential and the time-derivative, we can define the following
derivative operator

∂µ = (∂t − µ, vF∇),
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Substituting this expression into the above Lagrangian, we can write eq. (6.6) in the following
compact form

LTI = Ψ̄(i /D +m)Ψ, (6.7)

where we have adapted the following notation

/D = γµDµ = ηµνγνDµ (6.8)

γν = (γ0, γ1, γ2) = (σz, iσy,−iσx) (6.9)

Dµ = ∂µ + ieAµ (6.10)

Aµ = (φ,−vF Ā) (6.11)

ηµν = ηµν = diag(1,−1,−1). (6.12)

The γ-matrices of eq. (6.9) form a representation of the (2+1)-dimensional Clifford algebra
and consequently eq. (6.7) is Lorenz invariant. Furthermore, due to the covariant derivative of
eq. (6.10), the Lagrangian in eq. (6.7) is locally U(1) gauge invariant in terms of the gauge field
Aµ. Consequently, the Lagrangian of the topological insulator is mathematically equivalent to
the Lagrangian of quantum electrodynamics in (2+1)-dimensions [8].

6.3 Integrating out the fermions

By integrating out the fermionic fields, we are left with an effective partition function in terms
of the Cooper bosons and the gauge field. We will do this to second order in coupling constants
and in the low wavelength limit, which in our case means that we will be working to second
order in spatial momentum and first order in temporal momentum. Combining eq. (6.7) with
eq. (6.4), the action of the fermionic fields can be written as follows

SF = i

∫
dt

∫
d2rLF (6.13)

LF = Ψ̄(i /D +m)Ψ + ∆ψ†↑ψ
†
↓ + ∆∗ψ↓ψ↑

= Ψ̄(i(∂t + iµ+ ieφ)γ0 − iDiγ
i +m)Ψ + ∆ψ†↑ψ

†
↓ + ∆∗ψ↓ψ↑,

where we have defined the re-scaled Cooper bosons ∆ = gϕ. Performing a Wick-rotation of
eq. (6.13) using eq. (2.13) and eq. (2.18), we get the following imaginary time action

SF =

∫ β

0
dτ

∫
d2rLF (6.14)

LF = Ψ̄(i(i∂τ + iµ+ ieφ)γ0 − iDiγ
i +m)Ψ + ∆ψ†↑ψ

†
↓ + ∆∗ψ↓ψ↑

= Ψ̄(i(∂τ + µ+ eφ)(iγ0) + iDi(−γi) +m)Ψ + ∆ψ†↑ψ
†
↓ + ∆∗ψ↓ψ↑

= Ψ̄(i(∂τ + µ+ ieφ)(iγ0) + iDi(−γi) +m)Ψ + ∆ψ†↑ψ
†
↓ + ∆∗ψ↓ψ↑

= Ψ̄(i /D +m)Ψ + ∆ψ†↑ψ
†
↓ + ∆∗ψ↓ψ↑, (6.15)

where we have re-scaled the scalar potential −iφ→ φ in order to preserve gauge invariance,
changed to Euclidean metric ηµν = δµν and defined the Euclidean γ-matrices γµ = (iγ0,−γi) =
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(iσz,−iσy, iσx). This matrix-algebra has the following (anti-) commutational relations (see
section A.1 for details)

[γµ, γν ] = −2εµνλγ
λ {γµ, γν} = −2δµν . (6.16)

The Lagrangian in eq. (6.15) cannot be expressed entirely in terms of two-component Nambu
spinors due to the structure of the coupling terms. In order to write this expression on matrix
form, we need to define the following four-component spinors

Φ =
(
ψ↑ ψ↓ ψ†↑ −ψ†↓

)T
(6.17)

Φ̄ =
(
ψ†↑ −ψ†↓ ψ↑ ψ↓

)
. (6.18)

Using this basis, we can rewrite the action in eq. (6.14) as [7]

SF =
1

2

∫ β

0
dτ

∫
d2rΦ̄G−1Φ, (6.19)

where we have defined the following 4x4-matrices

G−1 = G−1
0 + ∆ + a = G−1

0 (1 + G0(∆ + a)) (6.20)

∆ =

(
0 ∆(−iσy)

∆∗(−iσy) 0

)
=

(
0 ∆γ1

∆∗γ1 0

)
(6.21)

a =

(
−e /A 0

0 e /A
T

)
(6.22)

G−1
0 =

(
i/∂ +m+ iµγ0 0

0 i/∂
T −m− iµγ0

)
=

(
Gp
−1

0 0

0 Gh−1

0

)
. (6.23)

Notice that the chemical potential and the mass term changes sign in Gh0
−1

compared to

Gp0
−1

due to a partial integration. In the following, we will absorb the chemical potential into
the temporal parts of the above propagators, bearing in mind this relative sign change. It will
be made explicit whenever a calculation involving it appears. The partition function of this
theory can be expressed as

Z =

∫
DϕDϕ∗DAµDΦ̄DΦeS

=

∫
DϕDϕ∗DAµeSSC

∫
DΦ̄DΦeSF (6.24)

with the following actions

SSC = −
∫ β

0
dτ

∫
d2rLSC (6.25)

SF =
1

2

∫ β

0
dτ

∫
d2rΦ̄G−1Φ = −1

2

∫ β

0
dτ

∫
d2rΦ̄(−G−1)Φ (6.26)
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where we have separated the bosonic- and fermionic degrees of freedom. Integrating out the
four-component Nambu fields, we get a purely bosonic partition function of the form

ZB =

∫
DϕDϕ∗DAµeSB (6.27)

SB = SSC +
1

2
Tr
[
ln
(
−G−1

)]
= −

∫ β

0
dτ

∫
d2r

(
LSC −

1

2

∑
ν

〈ν| tr
[
ln
(
−G−1

)]
|ν〉

)
. (6.28)

By separating the terms in G−1 according to eq. (6.20), we can perform a series expansion
of the leftmost factor

tr ln
(
−G−1

)
= tr ln

(
−G−1

0 (1 + G0(∆ + a))
)

= tr
[
ln
(
−G−1

0

)]
+ tr [ln(1 + G0(∆ + a))]

= tr
[
ln
(
−G−1

0

)]
+ tr

[
G0(∆ + a)− 1

2
(G0(∆ + a))2

]
, (6.29)

where we have truncated the expansion to second order in coupling constants. The linear
contribution can be simplified as follows

G0(∆ + a) = G0∆ + G0a =
∧ G0a, (6.30)

where we have used the equivalence relation defined in eq. (1.6). The matrix G0∆ is off-
diagonal and hence it becomes zero after taking the trace. G0a also falls out of the partition
function in the end, since it’s linear in fields [7]. The second-order terms are

(G0(∆ + a))2 = G0∆G0∆ + G0∆G0a+ G0aG0∆ + G0aG0a =
∧ G0∆G0∆ + G0aG0a, . (6.31)

where we have used that G0∆G0a and G0aG0∆ are off-diagonal. Hence the effective bosonic
action in eq. (6.28) to second order in coupling constants can be written as

Seff = SSC + δSA + δS∆ + S0 (6.32)

S0 =
1

2

∫ β

0
dτ

∫
d2r

∑
ν

〈ν| tr
[
ln
(
−G−1

0

)]
|ν〉 =

1

2
Tr
[
ln
(
−G−1

0

)]
(6.33)

δSA = −1

4

∫ β

0
dτ

∫
d2r

∑
ν

〈ν| tr [G0aG0a] |ν〉 (6.34)

δS∆ = −1

4

∫ β

0
dτ

∫
d2r

∑
ν

〈ν| tr [G0∆G0∆] |ν〉 (6.35)

The action in eq. (6.33) corresponds to an uncoupled fermionic sector which factorizes from
the rest of the partition function in eq. (6.27). We will therefore neglect this contribution.
Computing the matrix products in eq. (6.34) and eq. (6.35), we get the following linear terms
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G0a =

(
Gp0 0
0 Gh0

)(
−e /A 0

0 e /A
T

)
=

(
−eGp0 /A 0

0 eGh0 /A
T

)
(6.36)

G0∆ =

(
Gp0 0
0 Gh0

)(
0 ∆γ1

∆∗γ1 0

)
=

(
0 Gp0∆γ1

Gh0 ∆∗γ1 0

)
(6.37)

and consequently, we get the following quadratic terms

G0aG0a =

(
−eGp0 /A 0

0 eGh0 /A
T

)2

=

(
e2Gp0 /AG

p
0
/A 0

0 e2Gh0 /A
TGh0 /A

T

)
=
∧
e2Gp0 /AG

p
0
/A+ e2Gh0 /A

TGh0 /A
T

(6.38)

G0∆G0∆ =

(
0 Gp0∆γ1

Gh0 ∆∗γ1 0

)2

=

(
Gp0∆γ1Gh0 ∆∗γ1 0

0 Gh0 ∆∗γ1Gp0∆γ1

)
=
∧

(
Gp0∆γ1Gh0 γ1∆∗ 0

0 γ1Gh0 γ1∆∗Gp0∆

)
=
∧ Gp0∆γ1Gh0 γ1∆∗ + γ1Gh0 γ1∆∗Gp0∆ (6.39)

where we have performed a cyclic permutation of the γ1 matrices in eq. (6.39). The propa-
gators can be expressed as

Gp0 = (i/∂ +m)−1

(i/∂ +m) · Gp0 = 1

(−∂2 +m2)Gp0 = (−i/∂ +m)

Gp0 =
i/∂ −m
∂2 −m2

Gh0 = (i/∂
T −m)−1

(i/∂
T −m) · Gh0 = 1

(−∂2 +m2)Gh0 = (−i/∂T −m)

Gh0 =
i/∂
T

+m

∂2 −m2

where we have used that

i/∂(−i/∂) = ∂µ∂νγ
µγν = −∂µ∂µ(γµ)2 = −∂2 (6.40)

i/∂
T

(−i/∂T ) = ∂µ∂ν(γµ)T (γν)T = −∂µ∂νδµν = −∂2, (6.41)

which can be readily verified using eq. (A.4). We evaluate the traces over quantum numbers
ν in eq. (6.34) and eq. (6.35) using the following fermionic Matsubara wave functions

ψnk(τ, x) =
1√
β

eikx+iωnτ =
1√
β

eiκ·r (6.42)

κ = (ωn, k) ωn =
(2n+ 1)π

β
r = (τ, x) (6.43)

where ωn are fermionic Matsubara frequencies and ν = (n, k). These wave functions au-
tomatically satisfy the fermionic boundary conditions of eq. (2.17). Since we are in Euclidean
space, we will perform the Fourier transform of the bosonic fields using the following convention

52



Integrating out the fermions

A(x) =
1

β

∑
l

∫
d2q

(2π)2
A(νl, q)e

iqr+iνlτ =
1

β

∑
l

∫
d2q

(2π)2
A(ξ)eiξ·x (6.44)

∆(x) =
1

β

∑
l

∫
d2q

(2π)2
∆(q)eiqr+iνlτ =

1

β

∑
l

∫
d2q

(2π)2
∆(ξ)eiξ·x (6.45)

ξ = (νl, q) x = (τ, r) (6.46)

where vl = 2lπ
β are bosonic Matsubara frequencies. Inserting the Matsubara wave functions

of eq. (6.42) into eq. (6.34), we get the following

δSA = −1

4

∫ β

0
dτ

∫
d2r

∑
ν

〈ν| tr [G0aG0a] |ν〉

= −e
2

4

∫ β

0
dτ

∫
d2r

1

β

∑
n

∫
d2k

(2π)2
e−iκ·x tr

[
Gp0 /AG

p
0
/A+ Gh0 /A

TGh0 /A
T
]

eiκ·x

= −e
2

4

∫
d2q

(2π)2

1

β2

∑
n,l

∫
d2k

(2π)2
tr
[
Gp0(κ− iµ) /A(ξ)Gp0(κ− ξ − iµ) /A(−ξ)

+ Gh0 (κ+ iµ) /A
T

(ξ)Gh0 (κ− ξ + iµ) /A
T

(−ξ)
]

(6.47)

where we have introduced the notation κ± iµ = (ωn ± iµ, k) and defined the Fourier trans-
formed Green’s functions

Gp0(κ) =
/κ+m

κ2 +m2
Gh0 (κ) =

/κT −m
κ2 +m2

. (6.48)

We can simplify this expression by noting that

Gh0 (κ+ iµ) /A
T

(ξ)Gh0 (κ− ξ + iµ) /A
T

(−ξ)

=
(/κ+ iµ)T −m
(κ+ iµ)2 +m2

/A
T

(ξ)
(/κ− /ξ + iµ)T −m
(κ− ξ + iµ)2 +m2

/A
T

(−ξ)

=

(
/A(−ξ) (/κ− /ξ + iµ)−m

(κ− ξ + iµ)2 +m2
/A(ξ)

(/κ+ iµ)−m
(κ+ iµ)2 +m2

)T
=
∧ /A(−ξ) (/κ− /ξ + iµ)−m

(κ− ξ + iµ)2 +m2
/A(ξ)

(/κ+ iµ)−m
(κ+ iµ)2 +m2

=
∧ (/κ+ iµ)−m

(κ+ iµ)2 +m2
/A(−ξ) (/κ− /ξ + iµ)−m

(κ− ξ + iµ)2 +m2
/A(ξ)

=
(/κ− iµ) +m

(κ− iµ)2 +m2
/A(ξ)

(/κ− /ξ − iµ) +m

(κ− ξ − iµ)2 +m2
/A(−ξ)

= Gp0(κ− iµ) /A(ξ)Gp0(κ− ξ − iµ) /A(−ξ), (6.49)

where we have rotated the momentum variables according to κ→ −κ and ξ → −ξ and used
that the trace is invariant under transposing and cyclic permutations. Thus, we end up with
the following simplified expression for eq. (6.47)
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δSA = −e
2

2

∫
d2q

(2π)2

1

β2

∑
n,l

∫
d2k

(2π)2
tr
[
Gp0(κ− iµ) /A(ξ)Gp0(κ− ξ − iµ) /A

]
= −e

2

2

∫
d2q

(2π)2

∫
d2k

(2π)2

1

β2

∑
n,l

tr

[
/κ+m

κ2 +m2
/A(ξ)

(/κ− /ξ) +m

(κ− ξ)2 +m2
/A(−ξ)

]
. (6.50)

Next, we simplify the traces in eq. (6.35)

δS∆ = −1

4

∫ β

0
dτ

∫
d2r

∑
ν

〈ν| tr [G0∆G0∆] |ν〉

= −1

4

∫ β

0
dτ

∫
d2r

1

β

∑
n

∫
d2k

(2π)2
e−iκ·x tr

[
Gp0∆γ1Gh0 γ1∆∗ + γ1Gh0 γ1∆∗Gp0∆

]
eiκ·x

= −1

4

∫
d2q

(2π)2

1

β2

∑
n,l

∫
d2k

(2π)2
tr
[
Gp0(κ− iµ)∆γ1Gh0 (κ− ξ + iµ)γ1∆∗

+ γ1Gh0 (κ+ iµ)γ1∆∗Gp0(κ− ξ − iµ)∆
]
. (6.51)

Using the following γ-matrix relation

γ1γ̄
Tγ1 = γ̄, (6.52)

which can be readily verified using eq. (A.4), we can simplify the last term in eq. (6.51)
accordingly

γ1Gh0 (κ+ iµ)γ1 = γ1

κµγTµ + iµγ0 −m
(κ+ iµ)2 +m2

γ1

=
κµγµ + iµγ0 +m

(κ+ iµ)2 +m2

= Gp0(κ+ iµ). (6.53)

where we have used that γT0 = γ0 and that γ2
1 = −1. Consequently, we get the following

Gp0(κ− iµ)∆γ1Gh0 (κ− ξ + iµ)γ1∆∗ + γ1Gh0 (κ+ iµ)γ1∆∗Gp0(κ− ξ − iµ)∆

= Gp0(κ− iµ)∆Gp0(κ− ξ + iµ)∆∗ + Gp0(κ+ iµ)∆∗Gp0(κ− ξ − iµ)∆

= Gp0(κ− iµ)∆Gp0(κ− ξ + iµ)∆∗ + Gp0(κ+ iµ)∆Gp0(κ− ξ − iµ)∆∗ (6.54)

Thus, we can write the Cooper boson contribution as

δS∆ = −1

4

∫
d2q

(2π)2

1

β2

∑
n,l

∫
d2k

(2π)2
tr
[
Gp0(κ− iµ)∆Gp0(κ− ξ + iµ)∆∗ + (µ↔ −µ)

]
= −1

4

∫
d2q

(2π)2

1

β2

∑
n,l

∫
d2k

(2π)2
tr
[ (/κ− iµ) +m

(κ− iµ)2 +m2
∆(ξ)

(/κ− /ξ + iµ) +m

(κ− ξ + iµ)2 +m2
∆∗

+ (µ↔ −µ)
]

(6.55)
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In order to calculate the matrix traces in eq. (6.50) and eq. (6.55), we use the trace relations
derived in section A.2, i.e.,

tr(γµγν) = −2δµν (6.56)

tr(γµγνγλ) = −2εµνλ (6.57)

tr(γµγνγλγρ) = 2δµνδλρ − 2δµλδνρ + 2δµρδνλ. (6.58)

Thus, the trace in the gauge field contribution in eq. (6.50) evaluates to

tr
[
(κµγµ +m)Aν(ξ)γν((κ− ξ)λγλ +m)Aρ(−ξ)γρ

]
= κµAν(κ− ξ)λAρ tr [γµγνγλγρ] +mκµAνAρ tr [γµγνγρ] +mAν(κ− ξ)λAρ tr [γνγλγρ]

+m2AνAρ tr [γνγρ]

= κµAν(κ− ξ)λAρ(2δµνδλρ − 2δµλδνρ + 2δµρδνλ)− 2mκµAνAρεµνρ − 2mAν(κ− ξ)λAρενλρ
− 2m2AνAρδνρ

= Aµ(ξ)
[
2κµ(κ− ξ)ν + 2κν(κ− ξ)µ + 2imεµλν(−iξλ)− 2δµν(m2 + κλ(κ− ξ)λ)

]
Aν(−ξ),

(6.59)

where we have omitted the chemical potential terms and denominators for notational con-
venience. In the last line, we permuted the indices in the leftmost Levi-Civita tensor, resulting
in the following anti-symmetric contribution

−2mκµAνAρεµνρ − 2mAν(κ− ξ)λAρενλρ = −2mAνκµAρενµρ − 2mAν(κ− ξ)λAρενλρ
= 2mAνξλAρενλρ

= 2imAµ(−iξ)λAνεµλν . (6.60)

Similarly, the trace in the Cooper boson contribution in eq. (6.55) evaluates to

tr
[
((κ± iµ)µγµ +m)∆(ξ)((κ− ξ ∓ iµ)λγλ +m)∆∗(ξ)

]
= 2(κ± iµ)µ(κ− ξ ∓ iµ)λ tr [γµγλ] ∆2(ξ) + 2m2 tr[1]∆2(ξ)

= −2((κ± iµ)µ(κ− ξ ∓ iµ)µ −m2)∆2(ξ), (6.61)

where we have once again omitted the denominators for notational purposes. Inserting
eq. (6.59) and eq. (6.61) into eq. (6.50) and eq. (6.55) respectively, we get the following simplified
expressions for the gauge field sector
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δSA = −
∫

d2q

(2π)2

1

β

∑
l

Aµ(ξ)Πµν(ξ)Aν(−ξ) (6.62)

Πµν(ξ) =

∫
d2k

(2π)2

1

β

∑
n

ime2εµλν(−iξλ)− e2Σµν

((κ− iµ)2 +m2)((κ− ξ − iµ)2 +m2)

=

∫
d2k

(2π)2

1

β

∑
n

ime2εµλν(−iξλ)− e2Σµν

(κ2 +m2)((κ− ξ)2 +m2)
(6.63)

Σµν(ξ) = δµν(m2 + (κ− iµ)λ(κ− ξ − iµ)λ)− 2(κ− iµ)µ(κ− iµ)ν

+ (κ− iµ)µξν + (κ− iµ)νξµ

= δµν(m2 + κλ(κ− ξ)λ)− 2κµκν + κµξν + κνξµ (6.64)

where we have absorbed the chemical potential term into κ. Similarly, we get the following
simplified expression for the Cooper boson sector

δS∆ = −
∫

d2q

(2π)2

1

β

∑
l

∆(ξ)Γ(ξ)∆∗(ξ) (6.65)

Γ(ξ) = −
∫

d2k

(2π)2

1

β

∑
n

1

2

(κ− iµ)µ(κ− ξ + iµ)µ −m2

((κ− iµ)2 +m2)((κ− ξ + iµ)2 +m2)
+ (µ↔ −µ). (6.66)

The physical processes described by eqs. (6.62) to (6.66) can be pictorially represented by
the Feynman diagrams in fig. 6.2. To second order in coupling constants, the effect of the
topological surface states reduces to a pair of one-loop renormalizations of the bosonic fields Aµ
and ∆.

Aµ Aν ∆ ∆Πµν Γ

Figure 6.2: One-loop renormalization of the gauge field and scalar Cooper pairs.

6.4 Gauge field sector

6.4.1 Chern-Simons term

We start by calculating the contribution from the first term in eq. (6.63)

SCS = −
∫

d2q

(2π)2

1

β

∑
l

iλCSε
µλνAµ(ξ)(−iξλ)Aν(−ξ) (6.67)

λCS =

∫
d2k

(2π)2

1

β

∑
n

me2

(κ2 +m2)((κ− ξ)2 +m2)
. (6.68)
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To second order in momenta, we can drop the ξ dependence of the denominator, since the
numerator of eq. (6.67) is linear in ξ. Hence, we are left with

λCS =

∫
d2k

(2π)2

1

β

∑
n

me2

(κ2 +m2)2

=

∫
d2k

(2π)2

1

β

∑
n

me2

(v2
Fk

2 + (ωn − iµ)2 +m2)2

=
me2

v2
F

∫
d2k

(2π)2

1

β

∑
n

1

(k2 + (ωn − iµ)2 +m2)2
. (6.69)

where we have reinstated the chemical potential and extracted the vF factors by performing
a linear change of variable. Using eq. (C.2), we can perform the k-integration directly

λCS =
me2

4πv2
F

1

β

∑
n

1

(ωn − iµ)2 +m2

=
me2

4πv2
F

1

β

∑
n

1

−(iωn + µ)2 +m2
. (6.70)

Using eq. (B.13), the sum over Matsubara frequencies evaluates to

λCS =
me2

4πv2
F

1

2|m|
sinhβ|m|

coshβ|m|+ coshβµ

=
e2sgn(m)

8πv2
F

sinhβ|m|
coshβ|m|+ coshβµ

. (6.71)

Inserting eq. (6.71) into eq. (6.67) and performing an inverse Fourier transform, we get the
following contribution

SCS = −
∫ β

0
dτ

∫
d2riλCSε

µνλAµ∂νAλ. (6.72)

6.4.2 Deriving the tensor structure of Πµν(ξ)

The vacuum polarization amplitude of eq. (6.63) fulfills the Ward identity [24], i.e.,

ξµΠµν(ξ) = 0. (6.73)

This implies that the remaining contributions from eq. (6.63) can be expressed in terms of
the following tensors [5], [24]

Πµν(ξ) = FPLµν +GP Tµν (6.74)

P Tij =

(
δij −

qiqj
q2

)
(6.75)

P T0ν = P Tµ0 = P T00 = 0 (6.76)

PLµν =

(
δµν −

ξµξν
ξ2

)
− P Tµν , (6.77)
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where F and G are constants of proportionality. In (2 + 1)-dimensions, we have that

trP Tµν = tr

(
δij −

qiqj
q2

)
= 1 (6.78)

trPLµν = tr

(
δµν −

ξµξν
ξ2

)
− trP Tµν = 1 (6.79)

where we have used the following relations

tr(ξµξν) = ξ2 (6.80)

tr(qiqj) = q2, (6.81)

which can be readily verified. Combining the above results, we get the following equations
for F and G

Πµµ(ξ) = F +G (6.82)

Π00(ξ) =

(
1−

ν2
l

ξ2

)
F =

q2

ξ2
F, (6.83)

which in turn implies that

F =
ξ2

q2
Π00(ξ) (6.84)

G = Πµµ(ξ)− ξ2

q2
Π00(ξ). (6.85)

Thus, in order to calculate the contributions from the remaining terms in eq. (6.63), we only
need to consider Πµµ(ξ) and Π00(ξ).

6.4.3 Evaluation of Πµµ(ξ) and Π00(ξ)

The trace of the vacuum polarization tensor in eq. (6.63) can be written as

Πµµ(ξ) = −e2 1

β

∑
n

∫
d2k

(2π)2

tr
[
δµν(m2 + κ · (κ− ξ))− 2κµκν + κνξµ + κµξν

]
(κ2 +m2)((κ− ξ)2 +m2)

= −e2 1

β

∑
n

∫
d2k

(2π)2

3m2 + κ2 − κξ
(κ2 +m2)((κ− ξ)2 +m2)

, (6.86)

where we have once again used eq. (6.80). By using the following relation

κ2 − κξ =
1

2
[(κ2 +m2) + (κ− ξ)2 +m2]−m2 − 1

2
ξ2 (6.87)

and performing a linear change of variables1, we can write eq. (6.86) as follows

1A linear change of variables in terms of Matsubara frequencies is a non-trivial procedure which is discussed
in section B.2

58



Gauge field sector

Πµµ(ξ) = −e2
(

2m2 − ξ2

2

) 1

β

∑
n

∫
d2k

(2π)2

1

(κ2 +m2)((κ− ξ)2 +m2)

− e2 1

β

∑
n

∫
d2k

(2π)2

1

κ2 +m2
. (6.88)

These integrals are treated in detail in section E.1. In the long wavelength limit, they
evaluate to

1

β

∑
n

∫
d2k

(2π)2

1

(κ2 +m2)((κ− ξ)2 +m2)
= c1 + q2c2 +O

(
q3
)

(6.89)

1

β

∑
n

∫
d2k

(2π)2

1

κ2 +m2
= c3 (6.90)

where c1, c2, and c3 are defined in eq. (E.10), eq. (E.11), and eq. (E.19), respectively.
Inserting eq. (6.89) and eq. (6.90) into eq. (6.88), we get

Πµµ(ξ) = −e2

(
2m2 − q2

2

)
(c1 + q2c2)− e2c3 = (−2m2e2c1 − e2c3)

+ q2

(
−2m2e2c2 +

e2c1

2

)
+O

(
q3, ν2

l

)
, (6.91)

The temporal component of eq. (6.63) can be written as

Π00(ξ) = −e2 1

β

∑
n

∫
d2k

(2π)2

(
m2 + κ2 − 2(ωn − iµ)2 + 2(ωn − iµ)vl

)
(κ2 +m2)((κ− ξ)2 +m2)

= −e2 1

β

∑
n

∫
d2k

(2π)2

1

κ2 +m2
+ 2e2 1

β

∑
n

∫
d2k

(2π)2

(ωn − iµ)2

(κ2 +m2)((κ− ξ)2 +m2)

− 2e2 1

β

∑
n

∫
d2k

(2π)2

(ωn − iµ)vl
(κ2 +m2)2

, (6.92)

where we have performed a linear change of variables in the first term and set ξ → 0 in the
denominator of the last term since the numerator is linear in νl. Here we immediately see that
the first term corresponds to eq. (6.90). The last two integrals are treated in detail in section E.1
and evaluate to

2e2 1

β

∑
n

∫
d2k

(2π)2

(ωn − iµ)2

(κ2 +m2)((κ− ξ)2 +m2)
= −2m2e2(c1 + c2q

2) + 2e2c4q
2 (6.93)

−2e2 1

β

∑
n

∫
d2k

(2π)2

(ωn − iµ)νl
(κ2 +m2)2

= −λτ,φiνl, (6.94)

where the constants c1, c2, and c4 are defined in eq. (E.10), eq. (E.11) and eq. (E.26)
respectively. The temporal correction coefficient of eq. (6.94) evaluates to
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λτ,φ =
e2

4πv2
F

sinhβµ

coshβµ+ coshβ|m|
. (6.95)

Hence, we get the following

Π00(ξ) = −e2c3 − 2e2m2(c1 + c2q
2) + 2e2c4q

2 − λτ,φiνl
=
(
−e2c3 − 2m2e2c1

)
+ q2

(
2e2c4 − 2m2e2c2

)
− λτ,φiνl +O

(
q3, ν2

l

)
(6.96)

6.4.4 Maxwell sector renormalization

Inserting eq. (6.96) and eq. (6.91) into eq. (6.84) and eq. (6.85), we get the following expressions
for F and G

F =
ξ2

q2
Π00 =

ξ2

q2

((
−e2c3 − 2m2e2c1

)
+ q2

(
2e2c4 − 2m2e2c2

)
− λτ,φiνl

)
=
(
−e2c3 − 2m2e2c1

)
+ q2

(
2e2c4 − 2m2e2c2

)
(6.97)

G = Πµµ − F = (−2m2e2c1 − e2c3) + q2

(
−2m2e2c2 +

e2c1

2

)
−
(
−e2c3 − 2m2e2c1

)
− q2

(
2e2c4 − 2m2e2c2

)
= q2

(
e2c1

2
− 2e2c4

)
. (6.98)

Hence the longitudinal part of eq. (6.74) in the long wavelength becomes

FPLµν = (
(
−e2c3 − 2m2e2c1

)
+ q2

(
2e2c4 − 2m2e2c2

)
)PLµν

=
((
−e2c3 − 2m2e2c1

)
+ q2

(
2e2c4 − 2m2e2c2

))
δ00 (6.99)

and similarly for the transversal part

GP Tµν = q2

(
e2c1

2
− 2e2c4

)(
δij −

qiqj
q2

)
=

(
e2c1

2
− 2e2c4

)(
q2δij − qiqj

)
. (6.100)

Inserting these expressions into eq. (6.74) we get the following contribution from eq. (6.63)

SM = −
∫ β

0
dτ

∫
d2r

(
m2

elφ
2 + λ∇,el(∇φ)2 + λ∇,m(∇× Ā)2

z

)
(6.101)

where we have used the following vector identity

(iq)(−iq)(Ā(q) · Ā(−q))− (iq · Ā(q))(−iq · Ā(−q)) = (iq× Ā(q))(−iq× Ā(−q)), (6.102)
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performed an inverse Fourier transform and defined the following coupling constants

m2
el =

(
−e2c3 − 2m2e2c1

)
=

e2

4πβv2
F

ln(coshβ|m|+ coshβµ)

− e2|m|
4πv2

F

sinhβ|m|
coshβµ+ coshβ|m|

(6.103)

λ∇,el =
(
2e2c4 − 2m2e2c2

)
=
−e2

48π|m|
sinhβ|m|

coshβ|m|+ coshβµ

− βe2

192

(
1

cosh2 β(|m|−µ)
2

+
1

cosh2 β(|m|+µ)
2

)
(6.104)

λ∇,m =

(
e2c1

2
− 2e2c4

)
=

5e2

48π|m|
sinhβ|m|

coshβ|m|+ coshβµ
, (6.105)

where we have reinstated a factor vF for each gradient.

6.4.5 Full theory of the gauge field sector

Combing eq. (6.72) and eq. (6.101) we can write the full gauge field contribution of eq. (6.62)
as follows

δSA = SCS + SM

= −
∫ β

0
dτ

∫
d2r
(
iλCSε

µνλAµ∂νAλ +m2
elφ

2 + λel(∇φ)2 + λm(∇× Ā)2
z

)
, (6.106)

where λCS is a Chern-Simons coefficient, λel = λ + λ∇,el and λm = λ + λ∇,m are the
renormalized Maxwell sector coefficients and m2

el is a mass term of the electric potential φ.

6.5 Cooper boson sector

We start with Γ(ξ) written in the following way

Γ(ξ) = −
∫

d2k

(2π)2

1

β

∑
n

1

2

(κ− iµ)µ(κ− ξ + iµ)µ −m2

((κ− iµ)2 +m2)((κ− ξ − iµ)2 +m2)
+ (µ↔ −µ) (6.107)

= −
∫

d2k

(2π)2

1

β

∑
n

(κ− iµ)µ(κ− ξ + iµ)µ −m2

((κ− iµ)2 +m2)((κ− ξ − iµ)2 +m2)
, (6.108)

where we have combined the two contributions by rotating the variables according to κ→ −κ
and ξ → −ξ in the second term. This in turn changes the sign of the momentum dependence of
∆(ξ) in eq. (6.66). However, the result is the same after performing the inverse Fourier transform.
Since we are working to linear order in temporal momentum, cross terms between spatial- and
temporal momentum components are always negligible. Hence, we can divide eq. (6.108) into
the following contributions

61
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Γ(0, q) = −
∫

d2k

(2π)2

1

β

∑
n

ω2
n + vFk(vFk − q)− (m2 − µ2)

(ω2
n + v2

Fk
2 − 2iµωn +m2 − µ2)(ω2

n + (vFk − q)2 + 2iµωn +m2 − µ2)

(6.109)

Γ(νl, 0) = −
∫

d2k

(2π)2

1

β

∑
n

−(iωn + µ)(iωn − iνl − µ) + ε2k − 2m2

(iωn + µ)2 + ε2k)((iωn − iνl − µ)2 + ε2k)

= −
∫

d2k

(2π)2

1

β

∑
n

−(iωn + µ)(iωn − iνl − µ) + ε2k − 2m2

(iωn + µ+ εk)(iωn + µ− εk)((iωn − iνl − µ+ εk)(iωn − iνl − µ− εk)
,

(6.110)

where we have defined εk =
√
v2
Fk

2 +m2. The former expression corresponds to a renormal-

ization of the gradient- and mass term of the Cooper boson sector, whereas the latter induces a
time-dependent term in eq. (6.1).

6.5.1 Gradient- and mass-renormalization terms

Using the results derived in section E.2, we get the following contribution to the Cooper boson
sector from eq. (6.109)

−
∫

d2q

(2π)2

1

β

∑
l

(Θm − q2Θ∇)∆∗(ξ)∆(ξ) (6.111)

= −
∫

d2q

(2π)2

1

β

∑
l

(Θm + (iq)2Θ∇)∆∗(ξ)∆(ξ), (6.112)

where the coupling constants Θm and Θ∇ are defined in eq. (E.41) and eq. (E.42), respec-
tively. By performing an inverse Fourier transform, we can combine these contributions into the
following action

Sq = −
∫ β

0
dτ

∫
d2r

(
η∇|∇ϕ|2 + ηm|ϕ|2

)
(6.113)

η∇ = v2
F |g|

2Θ∇(κ) (6.114)

ηm = |g|2Θm(κ), (6.115)

where we have reinstated the coupling constant g and a factor vF for each gradient.

6.5.2 Time-dependent terms

Because of the periodicity of the Fermi-Dirac distribution in terms of bosonic Matsubara fre-
quencies, f(iωn + ivl) = f(iωn), it is important to perform the fermionic Matsubara sum and
do an analytic continuation into real-time before performing any series expansion in terms of
temporal momentum. Eq. (6.110) is evaluated in detail in section E.2 and we end up with the
following first-order correction
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−
∫

d2q

(2π)2

∫
dω

2π
η̃t∆

∗ω∆ = −
∫

d2q

(2π)2

∫
dω

2π
(−iη̃t)∆∗iω∆ (6.116)

η̃t =
1

4πv2
F

(
P

∫ ∞
|m|

dε

ε

[(ε2 −m2

4ε2+
+
m2

4µ2

)
tanh

βε+
2

+ (ε+ ↔ ε−)
]

+ iπβ [Θ(µ− |m|)−Θ(−µ− |m|)] µ
2 −m2

8µ

)
(6.117)

where ε± = ±ε − µ. This integral is superficially convergent and solvable under certain
assumptions on µ. Fourier transforming back into real space, we get the following contribution
to the action

Sν = i

∫
dt

∫
d2rηtϕ

∗∂tϕ (6.118)

ηt = −i|g|2η̃t (6.119)

where we have reinstated the coupling constant g from the Cooper field ∆. Using eq. (2.13),
we can Wick rotate this expression into imaginary time formalism as follows

Sν = −
∫ β

0
dτ

∫
d2rητϕ

∗∂τϕ (6.120)

ητ = |g|2η̃t. (6.121)

6.5.3 Full theory of the Cooper boson sector

Combining eq. (6.113) and eq. (6.120), we get the following expression for the Cooper boson
contributions

δS∆ = Sq + Sν

= −
∫ β

0
dτ

∫
d2r

(
ητϕ

∗∂τϕ+ η∇|∇ϕ|2 + ηm|ϕ|2
)
, (6.122)

The first term is a dynamical term induced by the fermions. The second- and third term
renormalize the gradient term and α-coefficient in eq. (6.1), respectively.
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Chapter 7
Ferromagnetic impurities and their coupling
to the fermionic sector

Thus far we have only considered the effects of magnetic perturbations in the form of a mass
term due to some form of coupling between the fermions and a perpendicular magnetization. By
adding a layer of ferromagnetically aligned magnetic impurities to the heterostructure, we get
the desired fermionic mass term, in addition to several other exchange couplings between the
fermions and the magnetic impurities. The magnetic impurities are described by the Lagrangian
in eq. (4.61)

LFI = b · ∂tn−
κ

2
(∇n)2 − m2

2
n2 (7.1)

where n = (nx, ny, nz) = (n̄, nz) are vector fields, κ and m are exchange coupling constants,
and b̄ is a Berry phase with the defining property

εijk
∂bk
∂nj

=
ni
n2

(7.2)

7.1 Fermionic Lagrangian with spin-spin exchange couplings

The magnetic impurities interact with the surface fermions in eq. (6.3) via a spin-spin exchange
interaction term, which in our notation takes the form

LTI−FM = Ψ† [J n̄ · σ̄ + J⊥nzσ
z] Ψ, (7.3)

where σ̄ = (σx, σy) and J and J⊥ are coupling constants. If the spins of the magnetic
impurities acquire a finite expectation value of the form n0 = (0, 0, 〈nz〉), eq. (7.3) reduces to

LTI−FM = Ψ† [J⊥ 〈nz〉σz] Ψ

≡ Ψ†mσzΨ. (7.4)
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which corresponds to the mass term in eq. (6.3). In the following, we will assume that the
spins of the magnetic impurities are aligned such that the mean-field contribution from the
spin-spin exchange coupling is equal to eq. (7.4) and that the field n corresponds to fluctuations
above this ground state. Furthermore, we will absorb the coupling constants of eq. (7.3) into
the fields for notational purposes. Substituting eq. (7.3) into the fermionic sector of eq. (6.5),
we get the following fermionic Lagrangian

LF = Ψ†
(
i∂t − eφ+ (−ivF∇− evF Ā+ n̄) · σ̄ − µ+ (m+ nz)σ

z
)

Ψ

+ gϕψ†↑ψ
†
↓ + g∗ϕ∗ψ↓ψ↑. (7.5)

Here we see that the in-plane fluctuations n̄ can be absorbed into the gauge field Aµ, leaving
us with the effective gauge field aµ defined as follows

a0 = φ ā = vF Ā−
n̄

e
(7.6)

aµ = (a0,−ā). (7.7)

nz

Ψ̄

Ψ

aµ

Ψ̄

Ψ

Figure 7.1: Feynman diagrams illustrating the effective interactions due to the spin-spin ex-
change term in eq. (7.3)

However, the perpendicular fluctuations nz has to be treated as a separate scalar field.
Substituting m → m + nz and Aµ → aµ into eq. (6.15), we immediately get the following
Lagrangian in imaginary time formalism

LF = Ψ̄(i /D +m+ nz)Ψ + ∆ψ†↑ψ
†
↓ + ∆∗ψ↓ψ↑. (7.8)

where the covariant derivative is in terms of the effective gauge field aµ instead of the pure
gauge field Aµ.

7.2 Including the ferromagnetic impurities in the effective par-
tition function

By including the magnetic sector in eq. (7.1) and the spin-spin exchange couplings in eq. (7.3)
into our system, we get the following partition function

Z =

∫
DϕDϕ∗DAµDnDΦ̄DΦeS

=

∫
DϕDϕ∗DAµDneSSC+SFI

∫
DΦ̄DΦeSF (7.9)
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with the following actions

SSC = −
∫ β

0
dτ

∫
d2rLSC (7.10)

SFI = −
∫ β

0
dτ

∫
d2rLFI (7.11)

SF =
1

2

∫ β

0
dτ

∫
d2rΦ̄G−1Φ = −1

2

∫ β

0
dτ

∫
d2rΦ̄(−G−1)Φ. (7.12)

In this case, the inverse Greens function G−1 is defined as follows

G−1 = G−1
0 + ∆ + a+ nz = G−1

0 (1 + G0(∆ + a+ nz)) , (7.13)

where the matrix a contains aµ instead of Aµ compared to eq. (6.20). In terms of the
four-component spinor basis defined in eq. (6.17) and eq. (6.18), the matrix nz takes the form

nz =

(
nz 0
0 −nTz

)
=

(
nz 0
0 −nz

)
. (7.14)

After integrating out the fermions, we arrive at the following bosonic partition function

ZB =

∫
DϕDϕ∗DAµDneSB (7.15)

SB = SSC + SFI +
1

2
Tr ln

[
−G−1

]
= −

∫ β

0
dτ

∫
d2r

(
LSC + LFI −

1

2

∑
ν

〈ν| tr
[
ln
(
−G−1

)]
|ν〉

)
. (7.16)

By performing a series expansion of the last term in eq. (7.16) to second order in coupling
constants, we get the following

tr ln
(
−G−1

)
= tr

[
ln
(
−G−1

0

)]
+ tr

[
−1

2
(G0(∆ + a+ nz)

2)

]
, (7.17)

where we have once again discarded the linear contributions. Multiplying out the terms, we
end up with

−1

2
(G0(∆ + a+ nz))

2 =
∧ −1

2
(G0∆G0∆ + G0aG0a+ G0nzG0a+ G0aG0nz + G0nzG0nz) , (7.18)

where we have used that odd powers of G0∆ are off-diagonal matrices. Hence, we see that we
get three new contributions to the effective action compared to eq. (6.32) due to the proximity-
induced spin-spin exchange couplings. Inserting eq. (7.18) into eq. (7.16), we can write these as
follows
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δSa = −1

4

∫ β

0

∫
d2r tr [G0aG0a] (7.19)

δSnz ,a = −1

4

∫ β

0

∫
d2r tr [G0nzG0a] (7.20)

δSa,nz = −1

4

∫ β

0

∫
d2r tr [G0aG0nz] (7.21)

δSnz = −1

4

∫ β

0

∫
d2r tr [G0nzG0nz] (7.22)

The matrix product in eq. (7.19) can be treated completely analogous to eq. (6.34) and thus
we can write it as follows

G0aG0a =
∧
e2Gp0/aG

p
0/a+ e2Gh0 /aTGh0 /aT . (7.23)

Similarly, for the remaining three contributions, we get

G0aG0nz =

(
−eGp0/a 0

0 eGh0 /a
T

)(
Gp0nz 0

0 −Gh0nTz

)
=

(
−eGp0/aG

p
0nz 0

0 −eGh0 /a
TGh0nTz

)
=
∧ −eGp0/aG

p
0nz − eG

h
0 /a

TGh0nTz (7.24)

G0nzG0a =

(
Gp0nz 0

0 −Gh0nTz

)(
−eGp0/a 0

0 eGh0 /a
T

)
=
∧ −eGp0nzG

p
0/a− eG

h
0n

T
z Gh0 /aT (7.25)

G0nzG0nz =

(
Gp0nz 0

0 −Gh0nTz

)2

=
∧ Gp0nzG

p
0nz + Gh0nTz Gh0nTz . (7.26)

Comparing eq.’s (7.23) to (7.26) with eq. (6.47), we see that they all have the same structure
as the gauge field contribution from section 6.3. The only difference is that the field nz does not
carry a γ-matrix. By following the steps from eq. (6.47), we can immediately make the following
simplifications
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δSa = −e
2

2

∫
d2q

(2π)2

∫
d2k

(2π)2

1

β2

∑
n,l

tr

[
/κ+m

κ2 +m2 /a(ξ)
(/κ− /ξ) +m

(κ− ξ)2 +m2 /a(−ξ)
]

(7.27)

δSnz ,a =
e

4

∫
d2q

(2π)2

∫
d2k

(2π)2

1

β2

∑
n,l

tr
[ /κ+m

κ2 +m2
nz(ξ)

(/κ− /ξ) +m

(κ− ξ)2 +m2 /a(−ξ)

+
/κ+m

κ2 +m2 /a(ξ)
(/κ− /ξ) +m

(κ− ξ)2 +m2
nz(−ξ)

]
(7.28)

δSa,nz =
e

4

∫
d2q

(2π)2

∫
d2k

(2π)2

1

β2

∑
n,l

tr
[ /κ+m

κ2 +m2 /a(ξ)
(/κ− /ξ) +m

(κ− ξ)2 +m2
nz(−ξ)

+
/κ+m

κ2 +m2
nz(ξ)

(/κ− /ξ) +m

(κ− ξ)2 +m2 /a(−ξ)
]

(7.29)

δSnz = −1

4

∫
d2q

(2π)2

∫
d2k

(2π)2

1

β2

∑
n,l

tr

[
/κ+m

κ2 +m2
nz(ξ)

(/κ− /ξ) +m

(κ− ξ)2 +m2
nz(−ξ),

]
(7.30)

where the fields in the second term in eq. (7.28) and eq. (7.29) are permuted due to the
cyclic permutation performed in eq. (6.49). Furthermore, we see that eq. (7.28) and eq. (7.29)
combine. We will denote the sum of these contributions as follows

δSa,nz ≡ δSa,nz + δSnz ,a

=
e

2

∫
d2q

(2π)2

∫
d2k

(2π)2

1

β2

∑
n,l

tr
[ /κ+m

κ2 +m2 /a(ξ)
(/κ− /ξ) +m

(κ− ξ)2 +m2
nz(−ξ)

+
/κ+m

κ2 +m2
nz(ξ)

(/κ− /ξ) +m

(κ− ξ)2 +m2 /a(−ξ)
]

(7.31)

By using the result obtained in eq. (6.62), we immediately get that the effective gauge field
contribution of eq. (7.27) can be written as follows

δSa = −
∫

d2q

(2π)2

1

β

∑
l

aµ(ξ)Πµν(ξ)aν(−ξ), (7.32)

where Πµν(ξ) is the same tensor as in eq. (6.63). The trace of the numerator of the first
term in eq. (7.31) evaluate to

tr
[
(κµγµ +m)aν(ξ)γν((κ− ξ)λγλ +m)nz(−ξ)

]
= κµa(ξ)ν(κ− ξ)λnz(−ξ) tr [γµγνγλ] +mκµa(ξ)νnz(−ξ) tr [γµγν ]

+m(κ− ξ)λa(ξ)νnz(−ξ) tr [γνγλ]

= −2κµa(ξ)ν(κ− ξ)λnz(−ξ)εµνλ − 2mκµa(ξ)νnz(−ξ)δµν − 2m(κ− ξ)λa(ξ)νnz(−ξ)δµλ
= 2κµa(ξ)νξλnz(−ξ)εµνλ − 2mκµa(ξ)µnz(−ξ)− 2m(κ− ξ)µa(ξ)µnz(−ξ). (7.33)

where we have contracted all symmetric tensors with the anti-symmetric Levi-Civita tensor
and put them to zero, i.e.,
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κµκνεµνλ = 0. (7.34)

We can rewrite the trace of the numerator in the second term as follows

tr
[
(κµγµ +m)nz(ξ)((κ− ξ)λγλ +m)aν(−ξ)γν

]
= tr

[
((κ− ξ)λγλ +m)aν(−ξ)γν(κµγµ +m)nz(ξ)

]
= tr

[
(κλγλ +m)aν(−ξ)γν((κ+ ξ)µγµ +m)nz(ξ)

]
= tr

[
(κλγλ +m)aν(ξ)γν((κ− ξ)µγµ +m)nz(−ξ)

]
, (7.35)

where we have performed a linear change of variables in the third line and rotated the variable
according to ξ → −ξ in the last line. Consequently, we see that the two terms in eq. (7.31) are
equal and we get the following contribution

δSa,nz = −
∫

d2q

(2π)2

∫
d2k

(2π)2

1

β2

∑
n,l

2emκν + 2em(κ− ξ)ν − 2eκµξλεµνλ
(κ2 +m2)((κ− ξ)2 +m2)

a(ξ)νnz(−ξ)

= −
∫

d2q

(2π)2

∫
d2k

(2π)2

1

β2

∑
n,l

2em(2κ− ξ)ν − 2eκµξλεµνλ
(κ2 +m2)((κ− ξ)2 +m2)

a(ξ)νnz(−ξ). (7.36)

The trace of the numerator in eq. (7.30) evaluates to

tr [(κµγµ +m)nz(ξ)((κ− ξ)νγν +m)nz(−ξ)]
= κµ(κ− ξ)ν tr [γµγν ] +m2 tr [1]nz(ξ)nz(−ξ)
= −2κµ(κ− ξ)µnz(ξ)nz(−ξ) + 2m2nz(ξ)nz(−ξ) (7.37)

Thus, the contributions in eq. (7.30) can be written as follows

δSnz =

∫
d2q

(2π)2

∫
d2k

(2π)2

1

β2

∑
n,l

1

2

(κµ(κ− ξ)µ −m2)nz(ξ)nz(−ξ)
(κ2 +m2)((κ− ξ)2 +m2)

. (7.38)

7.3 Effective gauge field sector and mixed terms

7.3.1 Effective gauge field sector with Chern-Simons coupling

The terms in eq. (7.32) can be divided into two contributions completely analogous to our
previous case in section 6.4. The first contribution is the Chern-Simons term, which in this case
takes the form

SCS = −
∫ β

0
dτ

∫
d2riλCSε

µνλaµ∂νaλ. (7.39)
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The second contribution from eq. (7.32) is the Σµν tensor of eq. (6.64) in terms of the
effective gauge field. Since the temporal component of the gauge field is unaffected by the
magnetic impurities, the renormalization in this case is identical to eq. (6.101). However, in
the spatial components, we get additional couplings in terms of the in-plane components of the
magnetic fluctuations. Following the analysis in section 6.4.2, we get the following contribution

SM = −
∫ β

0
dτ

∫
d2r

(
m2

elφ
2 + λ∇,el(∇φ)2 + λ∇,m(∇× ā)2

z

)
= −

∫ β

0
dτ

∫
d2r
(
m2

elφ
2 + λ∇,el(∇φ)2 + λ∇,m(∇× Ā)2

z

+ ζA,n(∇× Ā)z(∇× n̄)z + ζ∇,n̄(∇× n̄)2
z

)
. (7.40)

The magnetic coupling constants in the above equation are defined as

ζA,n =
−J λ∇,m

e
(7.41)

ζ∇,n̄ =
J2λ∇,m
e2

, (7.42)

where we have reinstated the appropriate spin-spin exchange coupling constants. If the
in-plane fluctuations are divergence-free, we can write eq. (7.40) as follows

SM = −
∫ β

0
dτ

∫
d2r
(
m2

elφ
2 + λ∇,el(∇φ)2 + λ∇,m(∇× Ā)2

z

+ ζA,n(∇× Ā)z(∇× n̄)z + ζ∇,n̄(∇n̄)2
)

(7.43)

Combining eq. (7.39) and eq. (7.43), we can write eq. (7.27) as follows

δSa = SCS + SM

= −
∫ β

0
dτ

∫
d2r
(
iλCSε

µνλaµ∂νaλ +m2
elφ

2 + λel(∇φ)2 + λm(∇× Ā)2
z

+ ζA,nBz(∇× n̄)z + ζ∇,n̄(∇n̄)2
)
, (7.44)

where we have used that (∇×Ā)z = Bz. This contribution to the action replaces eq. (6.106)
in the presence of magnetic impurities.

7.3.2 Mixing terms and the Dzyaloshinskii-Moriya coupling

We start by splitting eq. (7.36) into the following two terms

δSa,nz = −
∫

d2q

(2π)2

∫
d2k

(2π)2

1

β2

∑
n,l

2em(2κ− ξ)ν

(κ2 +m2)((κ− ξ)2 +m2)
a(ξ)νnz(−ξ)

−
∫

d2q

(2π)2

∫
d2k

(2π)2

1

β2

∑
n,l

−2eκµξλεµνλ
(κ2 +m2)2

a(ξ)νnz(−ξ) (7.45)
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where we have omitted the factors of ξ in the denominator of the last term since the numerator
is linear in ξ. Thus, we are left with the following two integrals

∫
d2k

(2π)2

1

β

∑
n

2em(2κ− ξ)ν

(κ2 +m2)((κ− ξ)2 +m2)
(7.46)∫

d2k

(2π)2

1

β

∑
n

−2eκµξλεµνλ
(κ2 +m2)2

. (7.47)

These integrals are analyzed in detail in section E.3. Using eq. (E.60), the lowest-order
contribution from eq. (7.46) equates to

− iem

2πv2
F

sinhβµ

coshβ|m|+ coshβµ
φ(ξ)nz(−ξ). (7.48)

And using eq. (E.63), we get the following second-order contribution in eq. (7.46)

− iem

6πv2
F

( β

16|m|

[ 1

cosh2 β(|m|+µ)
2

− 1

cosh2 β(|m|−µ)
2

]
− 1

4|m|2
sinhβ|m|

coshβµ+ coshβ|m|

)
(iq)2φnz(−ξ), (7.49)

Notice here that only the temporal part of the gauge field couples to the perpendicular
fluctuations nz since there is an odd factor of k in the numerator of eq. (7.46). Using eq. (E.65),
we can write eq. (7.47) as

e

4πv2
F

sinhβµ

coshβ|m|+ coshβµ
ε0λνiξ

λa(ξ)νnz(−ξ). (7.50)

Combining eq. (7.48), eq. (7.49) and eq. (7.50) and performing an inverse Fourier transform,
we can write eq. (7.31) as follows

δSa,nz = −
∫ β

0
dτ

∫
d2r

[
ζDM ((∇× n̄)z − vF eBz)nz + ζ∇,φ∇2φ · nz + ζφφ · nz

]
, (7.51)

where the coupling constants are defined as

ζDM = −J J⊥
4πvF

sinhβµ

coshβ|m|+ coshβµ
(7.52)

ζφ = − iemJ⊥
2πv2

F

sinhβµ

coshβ|m|+ coshβµ
(7.53)

ζ∇,φ = − iJ⊥eβsgn(m)

96π

[ 1

cosh2 β(|m|+µ)
2

− 1

cosh2 β(|m|−µ)
2

]
+

iJ⊥e

24π|m|
sgn(m) sinhβµ

coshβµ+ coshβ|m|
, (7.54)
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where we have reinstated a factor vF for each gradient and the appropriate spin-spin exchange
coupling constants. The first term of eq. (7.51) contains a Dzyaloshinskii-Moriya term in addition
to a coupling between the magnetic fluctuations and a magnetic field. The two rightmost terms
are magnetoelectric couplings1 between the perpendicular fluctuations and the electric potential.

7.4 Renormalization of the perpendicular magnetic sector

The contributions to the perpendicular magnetic fluctuations in eq. (7.38) takes the form

δSnz =

∫
d2q

(2π)2

∫
d2k

(2π)2

1

β2

∑
n,l

1

2

(κµ(κ− ξ)µ −m2)nz(ξ)nz(−ξ)
(κ2 +m2)((κ− ξ)2 +m2)

. (7.55)

By using the relation

κµ(κ− ξ)µ −m2 =
1

2

[
(κ2 +m2) + (κ− ξ)2 +m2

]
− 2m2 − 1

2
ξ2 (7.56)

we can rewrite the integrand of eq. (7.55) as follows

1

2
(−2m2 − 1

2
ξ2)

∫
d2k

(2π)2

1

β

∑
n

1

(κ2 +m2)((κ− ξ)2 +m2)
nz(ξ)nz(−ξ)

+
1

2

∫
d2k

(2π)2

1

β

∑
n

1

(κ2 +m2)
nz(ξ)nz(−ξ). (7.57)

These are the same integrals as in section 6.4 which we computed in section E.1. Hence, we
immediately get

1

β

∑
n

∫
d2k

(2π)2

1

(κ2 +m2)((κ− ξ)2 +m2)
= c1 + q2c2 (7.58)

1

2

∫
d2k

(2π)2

1

β

∑
n

1

(κ2 +m2)
=
c3

2
. (7.59)

Thus, we can write eq. (7.57) as follows

(−m2 − q2

4
)(c1 + q2c2)nz(ξ)nz(−ξ) +

c3

2
nz(ξ)nz(−ξ)

= (
c3

2
−m2c1)nz(ξ)nz(−ξ) + q2(−m2c2 −

c1

4
)nz(ξ)nz(−ξ)

= (
c3

2
−m2c1)nz(ξ)nz(−ξ) + (−m2c2 −

c1

4
)(iq)(−iq)nz(ξ)nz(−ξ) (7.60)

By performing an inverse Fourier transform, we arrive at

1The term “magnetoelectric” refers to couplings between electric and magnetic degrees of freedom in a system.
[4]
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δSnz = −
∫ β

0
dτ

∫
d2r

[
ζ∇,nz(∇nz)2 + ζm,nzn

2
z

]
(7.61)

with the following coupling constants

ζm,nz = m2c1 −
c3

2

=
J2
⊥|m|

8πv2
F

sinhβ|m|
coshβµ+ coshβ|m|

+
J2
⊥

8πβv2
F

ln(coshβ|m|+ coshβµ) (7.62)

ζ∇,nz = m2c2 +
c1

4

=
J2
⊥

48π|m|
sinhβ|m|

coshβ|m|+ coshβµ
+
J2
⊥β

384

[ 1

cosh2 β(|m|−µ)
2

+
1

cosh2 β(|m|+µ)
2

]
, (7.63)

where we have reinstated a factor vF for each gradient and the spin-spin exchange coupling
constants.

7.4.1 Full theory of the effective gauge field- and magnetic sector

By combining eq. (7.1), eq. (7.44), eq. (7.51) and eq. (7.61), we get the following effective action

Seff = δSa + δSa,nz + δSnz

= −
∫ β

0
dτ

∫
d2r (La + La,nz + Lnz + LFI) (7.64)

where we have defined the following Lagrangians

La = iλCSε
µνλaµ∂νaλ +m2

elφ
2 + λel(∇φ)2 + λm(∇× Ā)2

z

+ ζA,n(∇× Ā)z(∇× n̄)z + ζ∇,n̄(∇n̄)2 (7.65)

La,nz = ζ∇,φ∇2φ · nz + ζφφ · nz + ζDM [(∇× n̄)z − vF eBz]nz (7.66)

Lnz = ζ∇,nz(∇nz)2 + ζm,nzn
2
z (7.67)

LFI = b · ∂tn−
κ

2
(∇n)2 − m2

2
n2. (7.68)

To this order in perturbations, the Cooper bosons are unaffected by the magnetic impurities.
Thus, the contribution to the Cooper boson sector is identical to eq. (6.122).
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Chapter 8
Chern-Simons-Ginzburg-Landau theory of
the superconductor heterostructure

The effective bosonic field theory of our heterostructure after renormalization contains new terms
that are not present in any of the original field theories of eq. (6.1), eq. (6.3), and eq. (7.1).
Firstly, we will discuss the physical meaning and implications of these new coupling without
the effects of the magnetic impurities, in light of the results found in [3]. Then we will include
the magnetic terms, discuss some of their properties and elaborate on similar results found in
comparable ferromagnetic heterostructure systems.

8.1 Tuning of the effective coupling constants

In this section, we look at the tunability of a selected set of coupling constants that are relevant
in the discussions that follow. Each coupling is plotted as a function of normalized chemical
potential µ/|m| for selected values of normalized temperature β|m| = |m|/T .

8.1.1 Electric mass term

In fig. 8.1 we see a plot of the electric mass coefficient defined in eq. (6.103). At low temperatures,
the mass term is mostly present in the conduction phase of the surface fermions. However,
for sufficiently large temperatures, the mass term becomes independent of gap size. At zero
temperature, the mass becomes finite if the chemical potential is outside of the gap

lim
T→0

m2
el =

e2|µ|
4πv2

F

θ(|µ| − |m|). (8.1)

For temperatures above the Curie temperature, we get

m2
el|T�|m| =

e2

4πβv2
F

ln(coshβµ+ 1)

=
e2

4πβv2
F

ln

(
2 cosh2 βµ

2

)
. (8.2)
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Figure 8.1: The mass term coefficient m2
el in units of me2

4πv2
F

as a function of µ/|m|

8.1.2 Chern-Simons coupling

In fig. 8.2 we see a plot of the Chern-Simons coefficient defined in eq. (6.71). The magnitude of
the Chern-Simons coefficient increases rapidly as temperatures become small compared to the
energy scale |m| if the chemical potential lies in the energy gap. This means that this term is
most prominent in the insulating phase of the surface fermions. However, in order to maintain
superconductivity, the topological fermions in eq. (6.3) must have a Fermi surface. Thus, in
order for the Chern-Simons action of eq. (6.72) to have any effect on the Cooper bosons, we
must tune the magnitude of the chemical potential slightly larger than the gap |m|.

Figure 8.2: The Chern-Simons coefficient in units of e2

8πv2
F

as a function of µ/|m|.
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8.1.3 Dzyaloshinskii-Moriya coupling

In figure fig. 8.3 we see a plot of the Dzyaloshinskii-Moriya coupling defined in eq. (7.52). As
opposed to the Chern-Simons coupling in fig. 8.2, we see that this coefficient is most prominent
outside of the energy gap. However, both coefficients are finite at the special points |µ| ≈ |m|,
which means that we can combine the effects of the two terms and still maintain supercon-
ductivity. For large values of the normalized chemical potential, the coupling constant can be
approximated as

ζDM = −J⊥J
4πvF

sinhβµ

coshβ|m|+ coshβµ

≈ −J⊥J
4πvF

tanhβµ, (8.3)

which implies that ζDM ranges between ±J⊥J
4πvF

.

Figure 8.3: The Dzyaloshinskii-Moriya coefficient in units of J⊥J
4πvF

as a function of µ/|m|.

8.2 Lagrangian of effective bosonic theory

Combining eq. (6.1), eq. (6.106) and eq. (6.122), we can express the renormalized theory of the
gauge field and the Cooper bosons as the following effective Lagrangian

Leff = iλCSε
µνλAµ∂νAλ +m2

elφ
2 + λel(∇φ)2 + λm(∇× Ā)2

z

+ ητϕ
∗∂τϕ+

1

2

∣∣(−i∇− e∗Ā)ϕ)
∣∣2 + α̃|ϕ|2 + βϕ4 + η∇|−i∇ϕ|2, (8.4)

where we have absorbed the gradient normalization constant of eq. (6.114) into α. The
first term is a Chern-Simons term which couples to the Cooper bosons, making this theory an
effective topological field theory of the superconductor. This modification to the electromag-
netic sector is a general feature of topological materials [17], [25]. The resulting model is a
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Chern-Simons-Ginzburg-Landau (CSGL) theory in terms of the Cooper bosons which therefore
supports anyonic vortex solutions [2]. In the low energy regime, the Cooper boson sector re-
duces to eq. (5.72), which means that in this limit the Chern-Simons gauge field couples to the
phase fluctuations of the superconducting Cooper bosons, reminiscent of the (3+1)-dimensional
topological axionic field theory of [17].

The second term in eq. (8.4) is an electric mass of the electric potential φ. This term was also
found in a ferromagnetic topological insulator heterostructure with a similar coupling constant
in [5]. The derivation of this mass term also proves the absence of a corresponding magnetic
mass associated with the spatial components of the gauge field. This is a generalization of the
proof that the magnetic mass is zero in 2 + 1-dimensions for finite energy gap and chemical
potential, see e.g., [26]. The third and fourth term corresponds to the renormalized Maxwell
sector. The couplings are asymmetrical due to the splitting of the vacuum polarization tensor
in eq. (6.74).

The temporal- and spatial renormalizations of the Cooper bosons cannot be properly ab-
sorbed into the corresponding terms of the Cooper boson sector since these are not part of
the gauge symmetry to this order in perturbations. The temporal correction induces a time-
dependence in the Cooper boson sector, making the CSGL theory an intrinsic time-dependent
Ginzburg-Landau theory. The spatial renormalization shifts the temperature dependence of α
in eq. (5.65), which ultimately changes the critical temperature of the superconductor.

8.3 Including the effects of the magnetic impurities

In the presence of the magnetic impurities, the Lagrangian of eq. (8.4) is replaced by the following
effective field theory

Leff = iλCSε
µνλaµ∂νaλ +m2

elφ
2 + λel(∇φ)2 + λm(∇× Ā)2

z

+ ζDM ((∇× n̄)z − vF eBz)nz + ζ∇,φ∇2φ · nz + ζφφ · nz + ζA,nBz(∇× n̄)z

+ ζ∇,nz(∇nz)2 + ζ∇,n̄(∇n̄)2 + ζm,nzn
2
z + b · ∂tn−

κ

2

[
(∇n)2 + (∂zn)2

]
− m2

2
n2

+ ητϕ
∗∂τϕ+

1

2

∣∣(−i∇− e∗Ā)ϕ
∣∣2 + α̃|ϕ|2 + β|ϕ|4 + η∇|−i∇ϕ|2. (8.5)

In this case, the Chern-Simons coupling is in terms of the effective gauge field, which in
turn introduces new types of interactions between the gauge field and in-plane fluctuations. We
also get several magnetoelectric couplings between the electric potential, external magnetic field,
and the magnetic fluctuations, in addition to a Dzyaloshinskii-Moriya coupling. Furthermore,
we also get a renormalization of the magnetic sector of eq. (7.1). This renormalization induces
an anisotropy in the magnetic sector due to the asymmetry between the in-plane and perpen-
dicular couplings to the surface fermions.

Since this theory describes the interplay between superconductivity, gauge fields, and fer-
romagnetism, it allows for a comparison with the theory of a ferromagnetic superconductor
coupled to a gauge field in [6]. In this model, the renormalization of the magnetic sector is
isotropic, contrary to our results. Furthermore, this model contains neither a Chern-Simons
term, a Dzyaloshinskii-Moriya term nor any of the magnetoelectric couplings found in eq. (8.5).
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8.4 Thermal screening, renormalized Coulomb interaction, and
negative mass term

8.4.1 Effective potential for positive mass term

Due to the presence of an electric mass term, we get modifications to the Coulomb potential on
the interface of the heterostructure. In the long wavelength limit, the effective potential can be
written as follows

φeff(q) =
1

φ(q)−1 + 1
e2

Π00(0)
=

2πe2

ε(q + s)
, (8.6)

where ε is the permittivity, s =
2πm2

el
ε , and φ(q) = 2πe2

q is the Fourier transform of the

bare Coulomb potential φ(r) = e2

εr [5]. By performing an inverse Fourier transform, we get the
following effective potential in real space for s > 0

φeff(r) =
e2

εr

(
1 +

πsr

2
(Y0(sr)−H0(sr))

)
(8.7)

where H0(sr) is the zeroth Struve function and Y0(sr) is the zeroth Bessel function of second
kind [5], [27]. For r > 1

s , eq. (8.7) can be approximated by

φeff(r) ≈ e2

εr

(
1 +

πsr

2

(
−
(
sr
2

)−1

√
πΓ(1

2)

))
+O

((sr
2

)−3
)

= O
(

1

(sr)3

)
. (8.8)

Thus, we get screening of charges at large distances compared to the scale 1
s . In the opposite

limit, eq. (8.7) reduces to the bare Coulomb potential [27]. The mass term in eq. (8.1) corre-
sponds to a Thomas-Fermi screening of the system, whereas eq. (8.2) corresponds to a Debye
screening [5]. In the Thomas-Fermi case, we get the following screening length

rTF ≡
1

s
=

ε

2πmel|2T→0

=
4πε

e2

v2
F

2πµ
=

v2
F

2πα|m|
, (8.9)

where we have used that

µ = EF =
√
k2
F +m2 ≈ |m|. (8.10)

and that α = e2

4πε ≈
1

137 in our units. Using that vF = vF
c ≈ 0.02 and |m| ∼ J⊥ ≈ 10meV1,

we get the following numerical result

1Alternatively, one could insert the appropriate factors of ~ and c and use vF in SI-units instead, which yields
the same result.
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rTF =
v2
F

2πα|m|
=≈ 1.1 · 10−6m (8.11)

where we have used that 1eV
~c = 1eV ≈ 8.065 · 105m−1 in our units. In the Debye case, we

can use the following approximation for sufficiently high temperatures

m2
el|T�|m| =

e2

2πβv2
F

ln

(
2 cosh2 βµ

2

)
≈ e2µ

2πv2
F

(8.12)

and thus the Debye screening length is of the same order as the Thomas-Fermi screening
length.

8.4.2 Negative electric mass

In fig. 8.1 we see that in the insulating phase of the surface fermions the value of s can be
negative. According to fig. 8.4, the mass term reaches its minimum value for zero chemical
potential at T/|m| ≈ 0.25, which corresponds to

Tmax ≈
|m|
4kB

≈ 30K. (8.13)

As T/|m| approaches the value ≈ 0.5, the mass term eventually changes sign and becomes
positive. This happens at

T0 ≈
|m|
2kB

≈ 60K. (8.14)

There are reasons as to why this negative mass term might be unphysical. First of all, we
use dimensional regularization to evaluate the positive contributions to eq. (6.103) and thereby
avoiding possible contributions from UV cut-off regularized terms. Additionally, there might be
errors since we are computing the renormalization constants using a continuum limit of the sum
over quantum numbers k and q. However, the mass term vanishes inside the mass gap in the
Thomas-Fermi limit of eq. (8.1), which is to be expected.

8.4.3 Effective potential for negative mass term

Using eq. (8.6), we can write down the following expression for the effective potential for s < 0

φs<0
eff (r) =

2πe2

ε

∫
d2q

(2π)2

1

|q| − |s|
eiq·r

=
e2

ε

∫ ∞
0

dq
q

q − |s|
1

2π

∫ π

−π
dθeiqr cos θ

=
e2

ε

∫ ∞
0

dq
q

q − |s|
J0(qr)

=
e2

ε

∫ ∞
0

dq
q − |s|+ |s|
q − |s|

J0(qr)

=
e2

ε

∫ ∞
0

dqJ0(qr) +
e2|s|
ε

∫ ∞
0

dq
1

q − |s|
J0(qr) (8.15)
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Figure 8.4: The mass term coefficient m2
el in units of |m|e

2

4πv2
F

as a function of T/|m|

where J0(qr) is the zeroth-order Bessel function of first kind. The first term of eq. (8.15)
corresponds to the bare Coulomb potential without any mass terms. In order to evaluate the
second term, we will use the Cauchy principal value theorem

P

∫ ∞
0

dq
1

q − |s|
J0(qr) = P

∫ ∞
0

du

r

1
u
r − |s|

J0(u) = P

∫ ∞
0

du
1

u− r|s|
J0(u)

= lim
ε→0

[∫ r|s|−ε

0
du

J0(u)

u− r|s|
+

∫ ∞
r|s|+ε

du
J0(u)

u− r|s|

]
. (8.16)

For small values of r|s|, we can solve the integrals as follows

∫ r|s|−ε

0
du

J0(u)

u− r|s|
≈ J0(0)

∫ r|s|−ε

0
du

1

u− r|s|
= ln ε− ln r|s| (8.17)∫ ∞

r|s|+ε
du

J0(u)

u− r|s|
=

∫ ∞
ε

du
J0(u+ r|s|)

u

≈
∫ ∞
ε

du
J0(u)

u

= −Ji0(ε) (8.18)

where Ji0(ε) is the Bessel-integral function which evaluates to [28]

Ji0(ε) = γ + ln
ε

2
+
∞∑
s=1

(−1)s( ε2)2s

(s!)2(2s)

= γ + ln ε− ln 2 +O
(
ε2
)

(8.19)
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Figure 8.5: Effective potential φs<0
eff relative to the bare Coulomb potential φ(r).

where γ is the Euler-Mascheroni constant. Hence, we get the following

P

∫ ∞
0

dq
1

q − |s|
J0(qr) = lim

ε→0

[
ln ε− ln r|s| − γ + ln 2− ln ε+O

(
ε2
)]

= −γ + ln 2− ln r|s| (8.20)

Inserting this into eq. (8.15), we get the following effective potential

φs<0
eff (r) =

e2

εr
+
e2|s|
ε

(−γ + ln 2− ln r|s|)

= φ(r) (1 + r|s|(ln 2− γ − ln r|s|)) . (8.21)

In fig. 8.5, we see that that eq. (8.21) changes sign when

r|s| ≈ 1.9. (8.22)

For T ≈ Tmax the magnitude of s reaches its maximum value, which corresponds to the
following length scale

rs<0 ≡
1.9

s
=

1.9ε

2πm2
el

≈
19εv2

F

|m|e2
=

19

2

4πε

e2

v2
F

2π|m|
=

19

2
rTF (8.23)

where we have used that m2
el ≈ 0.2 in units of |m|e

2

4πv2
F

at Tmax in fig. 8.4. This implies that

the effective potential becomes attractive at length scales comparable to the Thomas-Fermi
screening for temperatures close to Tmax ≈ 30K if the chemical potential is approximately zero.
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8.4.4 Non-zero electric mass and Lorenz invariance

At T = 0, both the electric- and the magnetic mass are zero in 2 + 1- and 3 + 1-dimensional
spacetime for arbitrary values of the fermion mass [26] and chemical potential 2. Due to the
Ward identity and Lorenz invariance, these two masses must be equal. The appearance of a
mass term would therefore break gauge invariance 3 and consequently the electric mass must be
zero due to Lorenz invariance.

At finite temperature, we must take into account the heat bath of the system, which picks out
a specific rest frame. Thus, Lorenz invariance is broken at finite temperature and consequently,
the Ward identity imposes fewer restrictions on the tensor structure of the vacuum polarization.
The heat bath rest frame introduces a new tensor into the problem which is non-zero only in
the temporal component. This in turn causes an asymmetry between the spatial- and temporal
components in the tensor decomposition of eq. (6.63), which allows for a non-zero electric mass
even though the magnetic mass is zero and therefore without breaking gauge invariance.

According to eq. (8.1), the mass term is finite even in the limit T → 0 if the chemical
potential is outside of the mass gap. This contrasts with the results obtained in section D.2,
which implies that there is a singular behavior of the mass term in this limit due to the loss of
Lorenz invariance.

8.5 Comparing the critical behavior of the topological Abelian
Higgs model with the CSGL theory

8.5.1 Conformality and quantum criticality of the topological Abelian Higgs
model

In [3] the phase transitions and critical behavior of the topological Abelian Higgs model, or
equivalently a topological superconductor, is studied using the renormalization group equations
(RGE) of the Higgs self-interaction to one-loop order. This model is given by the following
Lagrangian in real space

L =
κ

2
εµνλaµ∂νaλ + |(∂µ − iaµ)ϕ|2 −m2

0|ϕ|
2 − u0

2
|ϕ|4, (8.24)

where κ is the Chern-Simons coupling constant and m0 and u0 are bare coupling of the
Higgs sector, which is described by the complex scalar field ϕ. In the absence of a Chern-Simons
coupling, or for sufficiently large values of κ, the Higgs field decouples from the gauge field.
In this limit eq. (8.24) reduces to a regular complex scalar field theory with self-interactions,
which belongs to the regular SO(2) ∼= U(1) universality class of the Landau-Ginzburg-Wilson
paradigm of phase transitions [9]. However, for finite values of κ, the RGE takes on a different
form due to the one-loop contributions from the gauge field. This in turn enables the model to
experience more exotic critical behavior [3]. For a single massless Higgs field 4, the β-function
to one-loop order takes the form

2See section D.2 and section D.4 for details.
3As opposed to the mass term due to the Higgs-Anderson mechanism, which is gauge invariant (c.f. eq. (5.75)).
4Which corresponds to T → Tc in the case of superconductivity.
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β(g) =
g∗
2

[
κ2
c

κ2
− 1 +

(
g

g∗
− 1

)2
]

(8.25)

g(µ) =

[(
1 +

4

3π|κ|

)
u0

µ
− 5

8

u2
0

µ2
+

1

κ2

]
, (8.26)

where g∗ = 4
5 and κ2

c = 2
g∗

= 5
2 . This structure of the RGE is precisely of the form studied

in [29]. For values κ2 > κ2
c , eq. (8.25) has two non-trivial fixed points

g± = g∗

(
1±

√
1− κ2

c

κ2

)
. (8.27)

where g+ corresponds to the quantum critical point of the theory. At these values, eq. (8.24)
is scale-invariant (i.e., the system has a conformal symmetry). However, as κ → κc, the fixed
points of eq. (8.27) merge and become complex-valued as |κ| < κ2

c where conformality is lost.
For κ ∈ [−κc, κc] and g < g∗, it is shown in [3] that the energy scale and therefore also the
critical exponents become a function of κ. Furthermore, the system becomes critical as κ→ κc,
featuring a scaling much like the BKT transition where T is replaced by 1

κ . For g > g∗, the
system features an essential singularity in the energy scale as g → g∗. However, the energy scale
in this case does not depend on κ and therefore the system does not become critical as κ→ κc.

For κ2 > κ2
c the energy scale and critical exponents are also functions of κ. As κ → κc,

the scaling coincides with that of the g > g∗ case above. This implies that the critical point at
κ→ κc is associated with a conformal phase transition of the system [29].

8.5.2 Transforming a modified CSGL theory into the topological Abelian
Higgs model

The Cooper boson sectors in eq. (6.28) and eq. (7.16) to second order in coupling constants and
in the long wavelength limit results in a model which is not equivalent to the topological Abelian
Higgs model in eq. (8.24). However, by replacing the Ginzburg-Landau theory in eq. (6.1) with
the corresponding time-dependent Ginzburg-Landau theory in [30], we get a Cooper boson sector
which can be transformed into eq. (8.24)5. The resulting Lagrangian in real space takes the form

Lϕ = λCSv
2
F ε

µνλAµ∂νAλ + ν|(∂t − 2ieφ)ϕ|2 + γ
∣∣(∇− 2ieĀ)ϕ

∣∣2 − α|ϕ|2 − β|ϕ|2 (8.28)

where we have extracted a factor v2
F using Aµ = (φ,−vF Ā) and ∂µ = (∂t, vF∇) in the

Chern-Simons term and only included the terms in [30] that are directly comparable with the
terms in eq. (8.24). In 2 + 1-dimensions, the coupling constants ν and γ evaluates to

ν =
7D0ζ(3)

16π2T 2
c

(8.29)

γ =
v2
F,S

2
ν, (8.30)

5This does not affect any of the other results obtained in this study, in particular the Chern-Simons coupling.
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where D0 = me
π is the density of states of a two-dimensional electron gas, ζ(3) is the Riemann

zeta function evaluated at n = 3, vF,S is the Fermi velocity of the superconductor and Tc is the
critical temperature of the superconductor. In order to transform eq. (8.28) into the topological
Abelian Higgs model, we must re-scale the fields and derivatives such that the factors in front of
the second- and third term in eq. (8.28) becomes unity and the resulting Chern-Simons coefficient
becomes dimensionless. By defining

ϕ̃ =

√
γ

v
1/3
F,S

ϕ (8.31)

∇̃ = v
1/3
F,S∇ (8.32)

˜̄A = 2ev
1/3
F,SĀ (8.33)

∂̃t = v
1/3
F,S

√
ν

γ
∂t (8.34)

φ̃ = v
1/3
F,S

√
ν

γ
φ (8.35)

we get the following re-scaled Lagrangian

Lϕ =
λCSv

2
F

4e2vF,S

√
γ

ν
εµνλÃµ∂̃µÃλ +

∣∣∣(∂̃t − iφ̃)ϕ̃
∣∣∣2 +

∣∣∣(∇̃− i ˜̄A)ϕ̃
∣∣∣2 − αv

2/3
F,S

γ
|ϕ̃|2 −

βv
4/3
F,S

γ2
|ϕ̃|4

=
κ

2
εµνλÃµ∂̃µÃλ +

∣∣∣(∂̃µ − iÃµ)ϕ̃
∣∣∣2 −m0|ϕ̃|2 −

u0

2
|ϕ̃|4 (8.36)

which is equivalent to the topological Abelian Higgs model in eq. (8.24).

8.5.3 Effective Chern-Simons coupling of the topological Abelian Higgs model

The dimensionless Chern-Simons coupling of eq. (8.36) can be written as

κ =
λCSv

2
F

2e2vF,S

√
γ

ν

=
v2
F

2e2vF,S

√
v2
F,S

2 ν

ν

e2sgn(m)

8πv2
F

sinhβ|m|
coshβ|m|+ coshβµ

=
sgn(m)

16
√

2π

sinhβ|m|
coshβ|m|+ coshβµ

. (8.37)

In fig. 8.2, we see that the maximum value of λCS is e2

8πv2
F

and that it quickly drops to 0

outside of the gap, which implies that

κmax =
1

16
√

2π
≈ 0.0141 κmin = 0 (8.38)

Hence our effective Chern-Simons coupling of eq. (8.36) cannot be tuned above the critical
value derived given in [3], i.e.,
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Topological magnetoelectric effect

κc =

√
5

2
≈ 1.58, (8.39)

which means that it is not possible to tune our system between the two regimes associated
with κ2 > κ2

c and κ2 < κ2
c . Furthermore, since we are using a planar superconductor in eq. (8.36)

rather than a corresponding three-dimensional superconductor, we are likely to overestimate
the proximity effects of our heterostructure and therefore also the effect of the Chern-Simons
coupling to the superconductor. We have also excluded the Maxwell sector in eq. (8.36) since
this term is assumed sub-dominant at long wavelengths near the critical points [3].

8.6 Topological magnetoelectric effect

It is shown in [31] that the Chern-Simons term in eq. (8.5) results in a renormalization of the
in-plane components of the Berry phase and a so-called topological magnetoelectric coupling, in
addition to the Chern-Simons term in eq. (8.4). These results were obtained in a ferromagnetic
topological insulator heterostructure at zero temperature and chemical potential and hence our
results are a generalization of these findings. Furthermore, a comparable Chern-Simons coupling
at finite temperature in terms of a Coulomb potential and magnetic impurities was also found
in a similar system in [5]. In our notation, the topological magnetoelectric coupling takes the
form [31]

LTME =
2λCSvF

e

∫
dt

∫
d2r∇φ · n̄

= λTME

∫
dt

∫
d2rĒ · n̄ (8.40)

where we have performed a Wick-rotation into real-time. This magnetoelectric coupling
is topological in the sense that the Chern-Simons coupling is topologically protected, which
distinguishes it from the other magnetoelectric couplings of eq. (8.5). In [5] they solve the
Landau-Lifshitz equations for a spin-system containing this term, which results in a topologically
protected gap of the corresponding magnon spectrum for finite externally applied electric field.
Furthermore, in [31], it is shown that eq. (8.40) can result in a non-local coupling of the form

Lρ(r) =
1

2
ρ(r)

∫
d2r′

ρ(r′)

|r − r′|
, (8.41)

where ρ(r) = λTME∇ · n̄ are effective magnetic charges. However, these results require that
we take into account the Coulomb interactions between the surface fermions, which amounts to
adding the terms of eq. (12) in [31] into eq. (6.3).

8.7 Coexisting magnetism and superconductivity in the CSGL
model

8.7.1 Fulde-Ferrell-Larkin-Ovchinnikov superconductivity

Superconductivity and ferromagnetism are mutually exclusive phases of matter in the sense that
sufficiently strong magnetic ordering will polarize the spins of the fermions and thereby break the
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superconducting spin-singlet Cooper-pair condensates. In the case of uniform magnetization, a
system in a superconducting phase is followed by a first-order transition to a ferromagnetic phase
in which superconductivity vanishes. However, there are certain exceptions to this behavior in
the case of non-uniform magnetization, where there is a co-existing superconducting phase of
matter and magnetism in the case of e.g., oscillatory spiraling magnetic fields [6].

Superconductors under the influence of a constant uniform magnetization are predicted to
experience a type of superconductivity between the pure superconducting and ferromagnetic
phases [32], [33]. If the number of Cooper pairs broken by the magnetization is sufficiently
small, then the BCS energy gap given by eq. (5.26) is unaltered. The resulting state has a higher
energy than the BCS ground state. However, as the number of broken Cooper-pairs increases,
the size of the energy gap is reduced, allowing for a new ground state of the ferromagnetic
superconductor system known as the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase. In FFLO
type superconductivity, the magnetic fields alter the momentum of the up- and down-spins
which means that the Cooper-pairs obtain a non-zero center of mass momentum. This results
in a modulation of the order parameter of the superconductor and therefore also a modulation
between the superconducting state and the normal state. As a result, the electrodynamics of
the superconductor is modified, restricting the supercurrent to be parallel to the induced center
of mass momentum of the Cooper pairs [32], [34].

8.7.2 The possibility of an FFLO phase driven by the Dzyaloshinskii-Moriya
term

Since the Dzyaloshinskii-Moriya coupling in eq. (8.5) favors perpendicular alignment of spins, it
can alter the ferromagnetic ordering of the system, which in turn makes it easier for supercon-
ductivity and magnetism to coexist.

The presence of this term can induce so-called helimagnetism, which is a type of magnetic
ordering where spins align in spiral patterns [20]. This effect could lead to a modulation of the
ferromagnetic ordering of the system, which could support the coexistence of superconductivity
and magnetism. The latter requires that the London penetration length of the superconductor
and the spin-exchange couplings of the magnetic impurities take on specific values in accordance
with the modulation of the helical ordering [6].

This ability to alter the ferromagnetic ordering of the system implies that the Dzyaloshinskii-
Moriya term reduces the total magnetization of the system. This means that by changing the
magnitude of the Dzyaloshinskii-Moriya coefficient, we could change the overall magnetization
accordingly and thereby possibly change between ferromagnetism, superconductivity, and even
tune the system into FFLO type superconductivity.

In a study by J. Rowland and S. Banerjee and M. Randeria, they investigate the phases of a
magnetic Ginzburg Landau model [35]. This model contains a Dzyaloshinskii-Moriya coupling
with coupling constant D due to a Dresselhaus spin-orbit coupling, which is directly comparable
with the Dzyaloshinskii-Moriya term found in eq. (8.5). Furthermore, they assume a magnetic
anisotropy in the z-direction with phenomenological coupling constant A and an external mag-
netic field H which couples linearly to the magnetic fluctuations. For easy-plane anisotropy
(A > 0) in the absence of Rashba spin-orbit coupling, the magnetic system is dominated by a
vertical cone phase where the spins are precessing with a fixed angle θ0 relative to the z-axis.
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This angle depends on the magnitude of the Dzyaloshinskii-Moriya coefficient according to the
following equation

cos θ0 =
H

2A+
D2

J

=
H

2A
(

1 +
D2

AJ

) , (8.42)

Hence the ability to tune the ferromagnetic ordering of this system depends on the quantity

η =
D2

AJ , which in our notation can be written as

η =
ζ2
DM

κA
, (8.43)

where κ is the dynamical exchange coupling in eq. (7.1). Assuming that the ferromagnetic
ordering of the magnetic impurities is mostly driven by an external field, we can ignore the
mass term m2 of eq. (7.1). In this case, the anisotropy of the magnetic sector is dominated by

eq. (7.62), which corresponds to an easy-plane anisotropy of order
J2
⊥|m|

8πv2
F

. Hence, we get the

following

η =

(
J J⊥
4πvF

)2 8πv2
F

κJ2
⊥|m|

=
J2

2πκ|m|
. (8.44)

Thus, the tunability of the induced Dzyaloshinskii-Moriya coupling becomes considerable if
the magnitude of the spin-spin exchange couplings J become sizeable compared to the dynamical
exchange coupling κ and the magnetically induced Dirac mass.
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Chapter 9
Conclusion and outlook

In this thesis, we have derived and studied the effective topological field theory of the interface
between a superconductor proximate to a topological insulator coupled to a gauge field and
ferromagnetically aligned magnetic impurities. The effects of the boundary modes of the topo-
logical insulator have been integrated out of the partition function to second order in proximity
couplings to the respective materials. In addition to renormalizations of the bare couplings, the
surface states of the topological insulator also induce a thermal mass of the electric potential, a
Chern-Simons term, a Dzyaloshinskii-Moriya term in addition to several other magnetoelectric
couplings not present in any of the individual systems. Some of these couplings are also new
compared to similar systems and heterostructures.

The presence of a mass term in the effective field theory implies that the effective Coulomb
potential is screened accordingly. At low temperatures, the system experiences a Thomas-
Fermi type screening of the Coulomb repulsion, whereas at higher temperatures we get a Debye
screening. In the insulating phase of the surface fermions, the mass term becomes negative
in an intermediate temperature regime before the Debye screening is dominant. The effective
potential in this case changes sign at length scales comparable with the Thomas-Fermi screening
length, resulting in an attraction between charges. This analysis also proves the absence of a
corresponding screening of the magnetic field in the more general situation of massive fermions
at finite chemical potential. Furthermore, we have shown that the limit of zero temperature is
singular if the chemical potential is outside of the mass gap of the surface fermions, which is due
to a lack of Lorenz invariance.

Introducing a Chern-Simons term in the Ginzburg-Landau theory of the superconductor
means that the resulting field theory is a topological field theory. Due to the matter-field cou-
pling between the Cooper bosons and the Chern-Simons gauge field, the system can support
exotic vortex- and anyonic excitations in terms of these fields, unlike a regular conventional
superconductor. Furthermore, this coupling makes it possible to compare the resulting Chern-
Simons-Ginzburg-Landau theory with the critical behavior of the topological Abelian Higgs
model studied in [3]. Thus, our heterostructure system serves as a physical realization of this
model with a tunable Chern-Simons coupling. However, it turns out that our Chern-Simons
coupling can only be tuned below the critical value κc derived in [3], which implies that this
system cannot be used to tune between the different types of critical behavior of the topological
Abelian Higgs model. By including the effects of the magnetic impurities, the Chern-Simons
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coupling causes a modification to the Berry phase associated with the in-plane components of the
magnetic fluctuations in addition to a topological magnetoelectric coupling. The latter results
in e.g., a topologically protected gap in the magnon spectrum of the impurities and a non-local
interaction term between effective magnetic charges. These couplings have also been found in
comparable ferromagnetic topological insulator systems.

The anti-symmetric exchange interaction associated with the Dzyaloshinskii-Moriya term en-
ergetically favors perpendicular spin-alignments, which in turn can affect the magnetic ordering
of the heterostructure. For sufficiently larges magnitudes of the coupling constant, the resulting
system can experience e.g., helical magnetic ordering, which lowers the overall magnetization
of the impurities. Since the Dzyaloshinskii-Moriya coupling is also a function of material pa-
rameters, it is therefore possible that the system can be tuned between a superconducting and
a ferromagnetic phase, in particular the system might support tunable Fulde-Ferrell-Larkin-
Ovchinnikov type superconductivity. Furthermore, it is shown that a tunable ferromagnetic
ordering is possible if the spin-spin exchange couplings between the fermions and the magnetic
fluctuations are comparable with the size of the dynamical exchange coupling of the magnetic
impurities and the induced gap of the surface states.

To second order in coupling constants, this model features no direct couplings between the
Cooper bosons and the magnetic impurities. Such terms might contribute to the coexistence and
tunability of the superconducting and magnetic phases discussed in this thesis. Additionally,
since the Chern-Simons action is in terms of an effective gauge field containing magnetic spins,
we anticipate that these kinds of interactions might lead to interesting interplay between the
magnetic sector and the topological field theory of the superconductor. Hence a higher-order ex-
pansion might complement these results and lead to more interesting phenomena. Furthermore,
since some of the physical implications of this model have been discussed based on generalities,
a thorough study of the model is of considerable interest.
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Appendix A
Clifford Algebras and γ-matrix
representations

A.1 Proof of the commutational relations of the 2+1-dimensional
Euclidean γ-matrix algebra

In Euclidean space, the γ-matrices are

γ̄ = (γ0, γ1, γ2) = (iσz,−iσy, iσx), (A.1)

where (σx, σy, σz) are the Pauli matrices which obey the following commutational relations
[7]

[σµ, σν ] = 2iεµνλσλ (A.2)

{σµ, σν} = 2δµν , (A.3)

where Greek indices iterates over Euclidean space. By using eq. (A.3), we immediately get
the following

{γµ, γν} = −2δµν . (A.4)

Secondly, by using eq. (A.2), we get

γ0γ1 = (iσz)(−iσy) = σzσy = −σyσz = −iσx = −γ2

γ1γ2 = (−iσy)(iσx) = σyσx = −σxσy = −iσz = −γ0

γ2γ0 = (iσx)(iσz) = −σxσz = −iσy = −γ1.

which can be compactly written as follows

[γµ, γν ] = −2εµνλγλ. (A.5)
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A.2 Trace relations of the Euclidean 2+1-dimensional γ-matrices

Using eq. (A.4), eq. (A.5), and the fact that the Pauli-matrices are individually traceless, we
can derive the following trace relations for the γ-matrices in section A.1

tr(γµ) = 0 (A.6)

tr(γµγν) =
1

2
tr(γµγν + γµγν) =

1

2
tr(γµγν + (γνγµ − 2δµν)) = −2δµν (A.7)

tr
(
γµγνγλ

)
=

1

2
tr
(
γµγνγλ + (γνγµγλ − 2εµνλ(γλγ

λ))
)

= tr
(
γµγνγλ

)
=

1

2
tr
(
γµγνγλ + ((−γµγν − 2δµν)γλ − 2εµνλ)

)
= −2εµνλ (A.8)

tr
(
γµγνγλγρ

)
=

1

2
tr
(
γµγνγλγρ

)
+

1

2
tr
(
−γνγµγλγρ − 2δµνγλγρ

)
= 2δµνδλρ +

1

2
tr
(
γµγνγλγρ

)
+

1

2
tr
(
−γν(−γλγµ − 2δµλ)γρ

)
= 2δµνδλρ − 2δµλδνρ +

1

2
tr
(
γνγλ(−γργµ − 2δρµ)

)
= 2δµνδλρ − 2δµλδνρ + 2δµρδνλ. (A.9)

A.3 Proof of the commutational relations of the 3+1-dimensional
Euclidean γ-matrix algebra

In 3 + 1-dimensional Euclidean space, we have the following γ-matrices

γµ = (iγ0,−γi), (A.10)

where γ0 and γi refer to the time- and spatial components of the usual γ-matrices in
Minkowski space (c.f. [8]). Using this expression, we immediately get the following relations in
Euclidean space

{
iγ0, iγ0

}
= 2i2 = −2 (A.11){

iγ0,−γi
}

= −i
{
γ0, γi

}
= 0 (A.12){

−γi,−γj
}

=
{
γi, γj

}
= −2δij . (A.13)

This implies that in Euclidean space, we have the following commutational relations

{γµ, γν} = −2δµν (A.14)

A.4 Trace relations of the Euclidean 3+1-dimensional γ-matrices

Comparing eq. (A.14) with eq. (A.4), we see that the γ-matrices in this case have the same
anti-commutational relations as our previous Euclidean γ-matrices. Hence, the only adjustment
we need to do in order to obtain the trace relations of even products of the 3 + 1-dimensional
γ-matrices is to multiply by a factor 2 since these are 4x4 matrices. Thus, we obtain the following
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tr (γµγν) = −4δµν (A.15)

tr
(
γµγνγλγρ

)
= 4

(
δµνδλρ − δµλδνρ + δµρδνλ

)
(A.16)

By using e.g., the Weyl representation [8] where the γ-matrices are off-diagonal, we imme-
diately get that products containing an odd number of γ-matrices are off-diagonal, implying
that

tr
(
γµγνγλ

)
= 0, (A.17)

which holds independently of the chosen representation.

92



Appendix B
Fermionic Matsubara sums

B.1 Evaluating convergent sums over meromorphic functions

Let g(z) be a holomorphic complex valued function with isolated poles Σ = {z1, · · · zm} (i.e. a
meromorphic function). Let f(z) = 1

eβz+1
be the Fermi-Dirac distribution with poles Ω = {iωn},

i.e. the set of fermionic Matsubara frequencies. If Σ 6⊂ Ω and C is a contour enclosing all z ∈ Ω,
we have the following equality [7]

∮
C
g(z)f(z) = 2πi

∑
n

Resz→iωn g(z)f(z) = 2πi
∑
n

g(iωn) Resz→iωn f(z). (B.1)

where we have used the residue theorem. In this setting, the function f(z) is called a kernel
function. By rewriting the Fermi-Dirac distribution as follows

1

eβz + 1
=

1

eβ(z−iωn+iωn) + 1
=

1

1− eβ(z−iωn)

=
1

1− (1 + (z − iωn) + · · · )
=

1

−β(z − iωn)(1 + z−iωn
2 + · · · )

(B.2)

we immediately see that the Matsubara frequencies are simple poles and that

Resz→iωn f(z) =
−1

β
, (B.3)

which implies that

∑
n

g(iωn) =
−β
2πi

∮
C
g(z)f(z). (B.4)

The path C can be (diffeomorphically) deformed into closed loops around all z ∈ Σ plus
some contribution at arbitrary radius in the complex plane. If the function g(z)f(z) converges
sufficiently fast to 0 when z →∞, then this contribution goes to zero, and we end up with the
following relation [36] [7]
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Change of variables
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×
×
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×
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×

×

×

×

×

Figure B.1: Deformation of the path C. Note the opposite orientation around the poles of g(z).

∑
n

g(iωn) =
−β
2πi

∮
C
g(z)f(z) = β

∑
zi∈Σ

Resz→zi g(z)f(z). (B.5)

The relative minus sign is because that the path we end up with is clockwise (see fig. B.1).
This procedure works in the bosonic case as well, but then one must use the Bose-Einstein
distribution instead of the Fermi-Dirac distribution in the residue integral.

B.2 Change of variables

Assume that you have a linear change of variables of the form h(z) = z + iνl, where νl = 2πl
β is

a bosonic Matsubara frequency. Then, we get

∑
n

g(iωn) =
−β
2πi

∮
C
f(z)g(z)dz =

−β
2πi

∮
C′
f(h(z))g(h(z))h′(z)dz, (B.6)

where C′ is a contour around the set Ω′ = {iωn + iνl}. Since C is a path around Ω, we
immediately get that C′ = C, since Ω′ = {iωn + iνl} = {iωn+l} = Ω. We also have that
f(z+ iνl) = f(z) and that the change of variables has unit Jacobian, h′(z) = 1. Hence, we arrive
at

−β
2πi

∮
C′
f(z)g(h(z))dz =

−β
2πi

∮
C
f(z)g(h(z))dz =

∑
n

g(h(iωn)) =
∑
n

g(iωn + iνl). (B.7)

Thus, sums over fermionic Matsubara frequencies are invariant under linear change of vari-
ables in terms of bosonic Matsubara frequencies.

B.3 Divergent sums and choice of kernel function

For simple poles, the sum over Matsubara frequencies diverges logarithmically,

∑
n

1

iωn − ε
∼
∫

dω

ω − ε
∼ ln(ω − ε). (B.8)
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One-loop sums

In these and similar situations, the choice of kernel function is non-trivial. Assuming that
g(z) is still a meromorphic function of z, we can resolve this issue by using the following kernels
[7]

f(z) =
1

eβz + 1
(B.9)

if the pole resides in the rightmost half-plane, Re(z) > 0, or

f(z) =
−1

e−βz + 1
(B.10)

if the pole resides in the leftmost half-plane, Re(z) < 0.

B.4 One-loop sums

Assume that we have the following expression

1

β

∑
n

1

−(iωn + µ)2 +m2
. (B.11)

This convergent sum is over a meromorphic function g(z) = 1
−(z+µ)2+m2 and hence we can

use the techniques established in section B.1.

1

β

∑
n

1

−(iωn + µ)2 +m2
=
∑
zi∈Σ

Resz→zi
1

−(z + µ)2 +m2
f(z) (B.12)

where Σ = {−µ+ |m|,−µ− |m|}. These are simple poles and hence we get the following

∑
zi∈Σ

Resz→zi g(z)f(z) = lim
z→−µ+|m|

(z − (−µ+ |m|)) 1

(−z − µ− |m|)(−z − µ+ |m|)
f(z)

+ (−µ+ |m| ↔ −µ− |m|)

= − 1

2|m|
1

eβ(−µ+m) + 1
+

1

2|m|
1

eβ(−µ−|m|) + 1

=
1

2|m|
sinhβ|m|

coshβµ+ coshβ|m|
. (B.13)

Now, assume that we have the following expression

− 1

β

∑
n

1

(−(iωn + µ)2 +m2)2
(B.14)

This is also a convergent sum over a meromorphic function, but this time the singularities
are of second order. Thus, we need to evaluate the following

95



One-loop sums

∑
zi∈Σ

Resz→zi
1

((z + µ)2 +m2)2
f(z) = −

∑
z∈Σ

Resz→zi
1

(z − z+)2(z − z−)2
f(z) (B.15)

where Σ is the same as in the previous example and z± = −µ±|m|. Evaluating the residues,
we get

Resz→z±
f(z)

(z − z+)2(z − z−)2
= lim

z→z±

d

dz

f(z)

(z − z∓)2

= lim
z→z±

[ f ′(z)

(z − z∓)2
− 2f(z)

(z − z∓)3

]
=
f ′(z±)

4|m|2
∓ f(z±)

4|m|3
(B.16)

Consequently, we get that

− 1

β

∑
n

1

(−(iωn + µ)2 +m2)2
= −

[
f ′(z+)

4|m|2
− f(z+)

4|m|3
+ (− ↔ +)

]
=

β

16|m|2
[ 1

cosh2 β(|m|−µ)
2

+
1

cosh2 β(|m|+µ)
2

]
− 1

4|m|3
sinhβ|m|

coshβµ+ coshβ|m|
. (B.17)

Next, we evaluate the following sum

1

β

∑
n

iωn + µ

(iωn + µ)2 −m2
. (B.18)

By performing a partial fraction decomposition, we see that this sum is divergent, cf. sec-
tion B.3

iωn + µ

(iωn + µ)2 −m2
=

1

2

[ 1

iωn − ε+
+

1

iωn − ε−

]
, (B.19)

where ε± = −µ± |m|. Thus, we must use as kernels eq. (B.10) and eq. (B.9) for ε− and ε+
respectfully. Hence, we get the following

1

β

∑
n

iωn + µ

(iωn + µ)2 −m2
=

1

2

[ 1

eβε+ + 1
− 1

e−βε− + 1

]
=

1

2

sinhβµ

coshβµ+ coshβ|m|
(B.20)
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Appendix C
Dimensional regularization of Euclidean
momentum integrals

C.1 One-loop integrals

Using as a starting point the integral in the Feynman amplitude appendix in [8], we can transform
the integral ∫

d2ωκ

(2π)2ω

1

(κ2 −m2 + iε)α
= i

(−1)α

(4π)ω
Γ(α− ω)

Γ(α)

[
m2 − iε

]ω−α
(C.1)

into an integral over Euclidean space by performing a Wick rotation

∫
d2ωκ

(2π)2ω

1

(κ2 +m2)α
=

1

(4π)ω
Γ(α− ω)

Γ(α)

[
m2
]ω−α

. (C.2)

This integral is well defined as long as Γ(α − ω) is well defined and the denominator has a
non-zero imaginary part if it has a pole on the real axis (e.g. Matsubara frequency, convergence
factor, etc.). If the integral is divergent, we introduce dimensional regularization by performing
the integral in 2ω = d−2ε dimensions, where the integral is assumed to be convergent, and then
take the limit ε→ 0 using the series expansion

Γ(z) =
1

z
− γ +

1

2

(
γ2 +

π2

6

)
z +O

(
z2
)
, (C.3)

from which we can extract a finite answer.
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Appendix D
Euclidean vacuum polarization amplitude
and mass terms at zero temperature

D.1 Vacuum polarization amplitude in 2 + 1-dimensions

At zero temperature, the vacuum polarization tensor of eq. (6.63) can be written as follows

δSA = −
∫

d3ξ

(2π)3
Aµ(ξ)Πµν(ξ)Aν(−ξ) (D.1)

Πµν(ξ) =

∫
d3κ

(2π)3

ime2εµλν(−iξλ)− e2Σµν

(κ2 +m2)((κ− ξ)2 +m2)
, (D.2)

where Σµν is defined in eq. (6.64) and where we have used the following continuum limits

1

β

∑
n

g(ωn)→
∫

dω

2π
g(ω)

1

β

∑
l

g(νl)→
∫

dν

2π
g(ν), (D.3)

where ω and ν are continuous energy variables. The chemical potential has been removed
from the problem by performing a linear change of variables ω − iµ → ω. The Chern-Simons
contribution is treated in detail in [4] and we neglect it in this discussion for the sake of argument.
Hence, we are left with the following amplitude

Πµν(ξ) = −e2

∫
d3κ

(2π)3

δµν(m2 + κ(κ− ξ))− 2κµκν + κνξµ + ξµκν

(κ2 +m2)((κ− ξ)2 +m2)
. (D.4)

Using the Ward identity,

ξµΠµν = 0, (D.5)

we can write eq. (D.4) as

Πµν(ξ) = S(ξ)Pµν(ξ) (D.6)

Pµν = δµν −
ξµξν
ξ2

, (D.7)
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Vacuum polarization amplitude in 2 + 1-dimensions

where S(ξ) a scalar [4], [8]. By taking the trace of eq. (D.6), we get

tr Πµν = Πµµ = S(ξ) trPµν = 2S(ξ), (D.8)

where we have used that tr ξµξν = ξ2. Hence, we get the following expression for S(ξ)

S(ξ) =
1

2
Πµµ

= −e
2

2

∫
d3κ

(2π)3

3(m2 + κ(κ− ξ))− 2κ2 + 2κ · ξ
(κ2 +m2)((κ− ξ)2 +m2)

(D.9)

Using the following relation

κ2 − κξ =
1

2
[(κ2 +m2) + (κ− ξ)2 +m2]−m2 − 1

2
ξ2 (D.10)

and performing a linear change of variables, we can write S(ξ) as follows

S(ξ) = −e2
(
m2 − ξ2

4

)∫ d3κ

(2π)3

1

(κ2 +m2)((κ− ξ)2 +m2)

− e2

2

∫
d3κ

(2π)3

1

κ2 +m2
. (D.11)

Using a Feynman parametrization, we can rewrite the first integral in eq. (D.11) as follows

∫
d3κ

(2π)3

1

(κ2 +m2)((κ− ξ)2 +m2)
=

∫
d3κ

(2π)3

∫ 1

0
dz

1

(κ2 +m2)z + ((κ− ξ)2 +m2)(1− z))2

=

∫
d3κ

(2π)3

∫ 1

0
dz

1

(κ2 + 2κξ(z − 1) +m2 + ξ2(1− z))2

=

∫
d3κ

(2π)3

∫ 1

0
dz

1

(κ2 +m2 + ξ2z(1− z))2 , (D.12)

where we have performed a linear change of variables in the last line. Using eq. (C.2), the
κ-integral evaluates to

∫
d3κ

(2π)3

1

(κ2 +m2 + ξ2z(1− z))2 =
1

(4π)
3
2

Γ
(
2− 3

2

)
Γ(2)

(
m2 + ξ2z(1− z)

) 3
2
−2

=
1

8π

1

m
√

1 + ξ2z(1−z)
m2

=
1

8πm

(
1− ξ2z(1− z)

2m2

)
+O

(
ξ3
)
, (D.13)

where we have expanded to second order in momenta and used that Γ(1
2) =

√
π. After

performing the Feynman parameter integral, we are left with
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Possible mass terms in 2 + 1 dimensions

1

8πm
− ξ2

96πm3
. (D.14)

The second integral in eq. (D.11) evaluates to

∫
d3κ

(2π)3

1

κ2 +m2
=

1

(4π)
3
2

Γ
(
1− 3

2

)
Γ(1)

(
m2
) 3

2
−1

= −m
4π
, (D.15)

where we have used that Γ(−1
2) = −2

√
π. Combining eq. (D.14) and eq. (D.15), we arrive

at

S(ξ) = −e2
(
m2 − ξ2

4

)( 1

8πm
− ξ2

96πm3

)
− e2

2

(
−m

4π

)
=

e2ξ2

24πm
(D.16)

D.2 Possible mass terms in 2 + 1 dimensions

A non-zero mass term requires that the vacuum polarization amplitude persists in the limit
ξ → 0. Using the results of the previous section, in particular eq. (D.16), we get that

lim
ξ→0

Πµν(ξ) = lim
ξ→0

e2ξ2

24πm

(
δµν −

ξµξν
ξ2

)
= 0 (D.17)

and consequently, we get no mass term at T = 0 in 2 + 1 dimensions.

D.3 Πµν in general dimensions

In general d+ 1-dimensional spacetime at zero temperature, the Euclidean vacuum polarization
amplitude takes the form

Πµν ∼
∫

dd+1κ

(2π)d+1
tr

[
/κ−m
κ2 +m2

/A(ξ)
(/κ− /ξ)−m

(κ− ξ)2 +m2
/A(−ξ)

]
(D.18)

where we have used the continuum limits of eq. (D.3).

D.4 Possible mass terms in 3 + 1-dimensions

In order to investigate possible mass term generation in this case, we start by solving the trace
of eq. (D.18) using the relations derived in section A.4
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Possible mass terms in 3 + 1-dimensions

tr
[
(κµγµ −m)Aν(ξ)γν((κ− ξ)λγλ −m)Aρ(−ξ)γρ

]
= κµAν(κ− ξ)λAρ tr [γµγνγλγρ] +m2AνAρ tr [γνγρ]

= 4κµAν(κ− ξ)λAρ(δµνδλρ − δµλδνρ + δµρδνλ)− 4m2AνAρδνρ

= 4Aµ(ξ)
[
κµ(κ− ξ)ν + κν(κ− ξ)µ − δµν(m2 + κλ(κ− ξ)λ)

]
Aν(−ξ). (D.19)

And so, we get the following integrand up to a numerical constant

δµν(m2 + κ · (κ− ξ))− 2κµκν + κνξµ + κµξν
(κ2 +m2)((κ− ξ)2 +m2)

. (D.20)

Taking the limit ξ → 0, we get

δµν(m2 + κ2)− 2κµκν
(κ2 +m2)2

=
δµν(m2 + κ2)− 2

4δµνκ
2

(κ2 +m2)2

=
1

2

[ 1

κ2 +m2
+

m2

(κ2 +m2)2

]
δµν , (D.21)

where we have used that κµκν = 1
d+1δµνκ

2 for d+ 1-dimensional Euclidean space, which can
be readily verified by contracting both sides with the metric tensor. Using eq. (C.2) we can
evaluate the k-integrals using dimensional regularization

1

2

∫
d4κ

(2π)4

1

κ2 +m2
δµν +

m2

2

∫
d4κ

(2π)4

1

(κ2 +m2)2
δµν

=
1

2

1

(4π)2
Γ(1− (2− ε))

[
m2
]2−ε−1

+
m2

2

1

(4π)2
Γ(2− (2− ε))

[
m2
]2−ε−2

=

[
m2
]1−ε

32π2

[
Γ(−1 + ε) + Γ(ε)

]
(D.22)

By using the following identity

Γ(−1 + ε) = − Γ(ε)

1− ε
, (D.23)

we see that the two terms cancel in the limit ε → 0. Therefore, we can conclude that
Πµν(ξ) = 0 in the limit ξ → 0, and therefore we get no mass terms at zero temperature.
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Appendix E
Evaluation of loop integrals

E.1 Gauge field terms

E.1.1 Evaluation of Πµµ terms

In section 6.4.2, we need to evaluate the following integrals in Πµµ

1

β

∑
n

∫
d2k

(2π)2

1

(κ+m2)((κ− ξ)2 +m2)
(E.1)

1

β

∑
n

∫
d2k

(2π)2

1

κ2 +m2
(E.2)

to first and second order in temporal- and spatial momenta respectively.

Evaluation of eq. (E.1)

We start by solving eq. (E.1). Using a Feynman parametrization, we can write it as [8]

1

β

∑
n

∫
d2k

(2π)2

1

(κ+m2)((κ− ξ)2 +m2)
(E.3)

=
1

β

∑
n

∫ 1

0
dz

∫
d2k

(2π)2

1

(κ2 +m2 + ξ2z(1− z))2
, (E.4)

where we have performed a linear change of variables κ − zξ → κ. Equation (E.4) is even
in ξ and hence its series expansion is an even polynomial in ξ. Hence, since we are working to
first order in temporal momenta, we can set νl → 0 in the following. Reinstating the chemical
potential and substituting vF factors out of the integral, we get the following

1

β

∑
n

∫ 1

0
dz

∫
d2k

(2π)2

1

(κ2 +m2 + ξ2z(1− z))2

=
1

β

∑
n

∫ 1

0
dz

1

v2
F

∫
d2k

(2π)2

1

(k2 + (ωn − iµ)2 +m2 + q2z(1− z))2
. (E.5)
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Gauge field terms

Using eq. (C.2), the k-integral evaluates to

1

4πv2
F

1

β

∑
n

∫ 1

0
dz

1

−(iωn + µ)2 +m2 + q2z(1− z)
(E.6)

=
1

4πv2
F

1

β

∑
n

∫ 1

0
dz

1

−(iωn + µ)2 +m2

1

1 + q2z(1−z)
−(iωn+µ)2+m2

(E.7)

=
1

4πv2
F

1

β

∑
n

∫ 1

0
dz
[ 1

−(iωn + µ)2 +m2
− q2z(1− z)

(−(iωn + µ)2 +m2)2

]
+O

(
q3
)

(E.8)

=
1

4πv2
F

1

β

∑
n

[ 1

−(iωn + µ)2 +m2
− q2 1

6

1

(−(iωn + µ)2 +m2)2

]
+O

(
q3
)

(E.9)

The first term, which we label by c1, can be evaluated directly using eq. (B.11)

c1 =
1

4πv2
F

1

β

∑
n

1

−(iωn + µ)2 +m2

=
1

8πv2
F |m|

sinhβ|m|
coshβµ+ coshβ|m|

. (E.10)

The second term, which we label by c2q
2, can be evaluated using eq. (B.17)

c2 = − 1

24πv2
F

1

β

∑
n

1

(−(iωn + µ)2 +m2)2

= − 1

96πv2
F |m|

3

sinhβµ

coshβ|m|+ coshβµ
+

β

384v2
F |m|

2

[ 1

cosh2 β(|m|−µ)
2

+
1

cosh2 β(|m|+µ)
2

]
. (E.11)

Evaluation of eq. (E.2)

The second integral in eq. (6.86) is divergent. We will therefore regularize it using dimensional
regularization (see section C.1 for details). We start by expressing the integral as follows

1

β

∑
n

∫
d2k

(2π)2

1

κ2 +m2
=

1

β

∑
n

1

v2
F

∫
d2k

(2π)2

1

k2 + (ωn − iµ)2 +m2
(E.12)

where we have once again extracted the vF factors. Using eq. (C.2), the integral evaluates
to

c3 =
1

β

∑
n

1

(4π)ωv2
F

Γ(1− ω)

Γ(1)

[
(ωn − iµ)2 +m2

]ω−1

=
1

4πv2
F

1

β

∑
n

Γ(ε)
[
−(iωn + µ)2 +m2

]−ε
, (E.13)

where we have labeled the expression by c3. In the limit ε→ 0, we need to expand the two
rightmost factors of eq. (E.13) in a Laurent series. Using eq. (C.3), we get the following
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Gauge field terms

Γ(ε)
[
−(iωn + µ)2 +m2

]−ε
=

(
1

ε
− γ +

1

2

(
γ2 +

π2

6

)
ε

)(
1− ln

(
−(iω2

n + µ)2 +m2

Λ2

)
ε

)
=

(
1

ε
− γ − ln

(
−(iωn + µ)2 +m2

Λ2

))
+O(ε)

=

(
1

ε
− ln

(
−(iωn + µ)2 +m2

Λ2e−γ

))
+O(ε)

=

(
1

ε
− ln

(
−(iωn + µ)2 +m2

)
+ ln

(
‖Λ2e−γ‖

))
+O(ε) (E.14)

where γ is the Euler-Mascheroni constant, Λ is a renormalization parameter used to make the
rightmost factor dimensionless and ‖Λ2e−γ‖ is the magnitude of the re-scaled renormalization
parameter. In the limit ε→ 0, we are left with the following finite contribution

c3 = − 1

4πv2
F

1

β

∑
n

ln
(
−(iωn + µ)2 +m2

)
(E.15)

Taking a derivative with respect to m, we get 1

dc3

dm
= − 1

4πv2
F

1

β

∑
n

2m

−(iωn + µ)2 +m2

=
−m

2πv2
F

1

β

∑
n

1

−(iωn + µ)2 +m2
(E.16)

Using eq. (B.11), we immediately get that

dc3

dm
= −sgn(m)

4πv2
F

sinhβ|m|
coshβ|m|+ coshβµ

(E.17)

c3(m)− c3(ε) = −
∫ m

ε
dm

sgn(m)

4πv2
F

sinhβ|m|
coshβ|m|+ coshβµ

= − 1

4πv2
F

∫ m

ε
d|m| sinhβ|m|

coshβ|m|+ coshβµ

= − 1

4πβv2
F

[ln(coshβ|m|+ coshβµ)− ln(coshβε+ coshβµ)] , (E.18)

Consequently, we get that

c3 = − 1

4πβv2
F

ln(coshβ|m|+ coshβµ). (E.19)

1We do this trick since the complex-valued logarithm has branch cuts rather than isolated poles, which makes
it more cumbersome to work with. A more detailed analysis will give a similar result [7].
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E.1.2 Evaluation of Π00 terms

In section 6.4, we need to evaluate the following integrals in Π00

1

β

∑
n

∫
d2k

(2π)2

(ωn − iµ)2

(κ2 +m2)((κ− ξ)2 +m2)
(E.20)

1

β

∑
n

∫
d2k

(2π)2

(ωn − iµ)vl
(κ2 +m2)2

(E.21)

Evaluation of eq. (E.20)

To solve the first integral, we will follow the steps from eq. (E.1) and make the following sim-
plifications

1

β

∑
n

∫
d2k

(2π)2

(ωn − iµ)2

(κ2 +m2)((κ− ξ)2 +m2)

=
1

4πv2
F

1

β

∑
n

∫ 1

0
dz

−(iωn + µ)2

−(iωn + µ)2 +m2 + q2z(1− z)
(E.22)

where we have computed the k-integral using a Feynman parametrization. By defining the
effective mass m2

q = m2 + q2z(1− z), we can write eq. (E.22) as follows

1

4πv2
F

1

β

∑
n

∫ 1

0
dz

−(iωn + µ)2

−(iωn + µ)2 +m2
q

(E.23)

The poles of this numerator are zi = −µ ± |mq|, leaving us with a common factor of
−(±|mq|)2 = −m2

q for each residue. Thus, we can make the following simplifications

1

4πv2
F

1

β

∑
n

∫ 1

0
dz

−(iωn + µ)2

−(iωn + µ)2 +m2
q

=
−m2

q

4πv2
F

1

β

∑
n

∫ 1

0
dz

1

−(iωn + µ)2 +m2
q

=
−m2

4πv2
F

1

β

∑
n

∫ 1

0
dz

1

−(iωn + µ)2 +m2
q

+
q2

4πv2
F

1

β

∑
n

∫ 1

0
dz

z(z − 1)

−(iωn + µ)2 +m
, (E.24)

where we have set q → 0 in the denominator of the last term since the numerator is quadratic
in momenta. The first term is proportional to the contribution in eq. (E.6) and we can therefore
immediately write it as follows

−m2

4πv2
F

1

β

∑
n

∫ 1

0
dz

1

−(iωn + µ)2 +m2
q

= −m2(c1 + q2c2) (E.25)

where c1 and c2 are defined in eq. (E.10) and eq. (E.11) respectively. Using eq. (B.11) the
latter expression in eq. (E.24) evaluates to
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q2

4πv2
F

1

β

∑
n

∫ 1

0
dz

z(z − 1)

−(iωn + µ)2 +m
= − q2

48πv2
F |m|

sinhβ|m|
coshβ|m|+ coshβµ

= c4q
2 (E.26)

where we have defined the constant c4. Hence, we can write eq. (E.20) as follows

1

β

∑
n

∫
d2k

(2π)2

(ωn − iµ)2

(κ2 +m2)((κ− ξ)2 +m2)
= −m2(c1 + q2c2) + c4q

2. (E.27)

Evaluation of eq. (E.21)

The k-integral in eq. (E.21) can be evaluated by using eq. (C.2)

1

β

∑
n

∫
d2k

(2π)2

(ωn − iµ)vl
(κ2 +m2)2

=
1

v2
F

1

β

∑
n

∫
d2k

(2π)2

(ωn − iµ)vl
(k2 + (ωn − iµ)2 +m2)2

=
1

4πv2
F

1

β

∑
n

(ωn − iµ)νl
(ωn − iµ)2 +m2

=
1

4πv2
F

1

β

∑
n

−(iωn + µ)iνl
(iωn + µ)2 −m2

. (E.28)

The Matsubara sum in eq. (E.28) can be evaluated directly using eq. (B.20)

1

4πv2
F

1

β

∑
n

−(iωn + µ)iνl
(iωn + µ)2 −m2

=
1

8πv2
F

sinhβµ

coshβµ+ coshβ|m|
iνl (E.29)

E.2 Cooper boson terms

Evaluation of Γ(0, q)

In section 6.5, we defined the spatial contribution of eq. (6.66) in eq. (6.109). We simplify this
expression by introducing a Feynman-parameter so that we can write the denominator in Γ(0, q)
as

∫ 1

0
dz

1[
((vFk − q)2 +m2 − µ2 − 2iµωn)z + (ω2

n + v2
Fk

2 +m2 − µ2 + 2iµωn)(1− z)
]2

=
1

v2
F

∫ 1

0
dz

1

[k2 +M2 − 2kqz + q2z − 2iµωn(2z − 1)]2
, (E.30)

where we have performed a change of variables, removing a factor vF for each k and defined
M2 = ω2

n +m2 − µ2. By performing a series expansion, we get the following

1

v2
F

D(κ, q)

[k2 +M2]2
(E.31)
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where we have defined

D(κ, q) =

∫ 1

0
dz
[
1− 2

−2kqz + q2z − 2iµωn(2z − 1)

k2 +M2
+ 3

(−2kqz + q2z − 2iµωn(2z − 1))2

[k2 +M2]2

]
(E.32)

Computing the Feynman-parameter integrals, we see that odd powers of 2iµωn(2z − 1) falls
out of the equation. And so, we get

∫ 1

0
dz
[
−2kq + q2z − 2iµωn(2z − 1)

]
= −kq +

v2
F

2
(E.33)∫ 1

0
dz
[
−2kq + q2z − 2iµωn(2z − 1)

]2
=

4

3
(k2q2 − ω2

nµ
2) +O

(
q3
)

(E.34)

D(κ, q) = 1− 2
−kq + q2

2

1

k2 +M2
+ 3

4

3
(k2q2 − ω2

nµ
2)

1

[k2 +M2]2
(E.35)

1

v2
F

D(κ, q)

[k2 +M2]2
=

1

v2
F

1

[k2 +M2]2

[
1− 2

−kq + q2

2

1

k2 +M2

+ 3
4

3
(k2q2 − ω2

nµ
2)

1

[k2 +M2]2

]
(E.36)

=
1

v2
F

( 1

[k2 +M2]2
− 4ω2

nµ
2

[k2 +M2]4

)
+

q

v2
F

( k

[k2 +M2]3

)
+
q2

v2
F

( 4k2

[k2 +M2]4
− 1

[k2 +M2]3

)
(E.37)

(E.38)

Multiplying D(κ, q) with the numerator, we get

− (ω2
n + k2 − kq − (m2 − µ2))D(κ, q)

= −(ω2
n + k2 − (m2 − µ2))

( 1

v2
F [k2 +M2]2

− 4ω2
nµ

2

v2
F [k2 +M2]4

)
− q2

v2
F

(
(ω2
n + k2 − (m2 − µ2))

( 4k2

[k2 +M2]4
− 1

[k2 +M2]3

)
− k
( k

[k2 +M2]3

))
(E.39)

= Θm − q2Θ∇ (E.40)

where we have omitted odd terms in k. From this, we can define the following coupling
constants of eq. (6.109)

Θm = − 1

β

∑
n

∫
d2k

(2π)2
(ω2
n + k2 − (m2 − µ2))

( 1

v2
F [k2 +M2]2

− 4ω2
nµ

2

v2
F [k2 +M2]4

)
(E.41)

q2Θ∇ = − 1

β

∑
n

∫
d2k

(2π)2

(
(ω2
n + k2 − (m2 − µ2))

( 4k2

v2
F [k2 +M2]4

− 1

v2
F [k2 +M2]3

)
− k
( k

v2
F [k2 +M2]3

))
(E.42)
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Evaluation of Γ(ν, 0)

Using a partial fraction decomposition, we can rewrite eq. (6.110) as follows

∫
d2k

(2π)2

1

β

∑
n

−(iωn + µ)(iωn − iνl − µ) + ε2k − 2m2

(iωn + µ+ εk)(iωn + µ− εk)((iωn − iνl − µ+ εk)(iωn − iνl − µ− εk)
(E.43)

=

∫
d2k

(2π)2

1

β

∑
n

εk(iνl + 2µ)− 2m2

2(iνl + 2µ)(iνl + 2µ− 2εk)εk

[ 1

iωn + µ− εk
− 1

iωn − νl − µ+ εk

]
+

εk(iνl + 2µ) + 2m2

2(iνl + 2µ)(iνl + 2µ+ 2εk)εk

[ 1

iωn + µ+ εk
− 1

iωn − iνl − µ− εk

]
(E.44)

Performing the fermionic Matsubara summation, we get

∫
d2k

(2π)2

εk(iνl + 2µ)− 2m2

2(iνl + 2µ)(iνl + 2µ− 2εk)εk
tanh

β(εk − µ)

2

+
εk(iνl + 2µ) + 2m2

2(iνl + 2µ)(iνl + 2µ+ 2εk)εk
tanh

β(εk + µ)

2
, (E.45)

where we have used that f(iωn + ivl) = f(iωn). We can rewrite the integrand in this
expression as follows,

m2

2ε2k(iνl + 2µ)

[
tanh

β(εk − µ)

2
− tanh

β(εk + µ)

2

]
+

k2

2ε2k(iνl + 2µ− 2εk)
tanh

β(εk − µ)

2

− k2

2ε2k(iνl + 2µ+ 2εk)
tanh

β(εk + µ)

2
. (E.46)

Changing coordinates using dεk = dε = 1
εk
v2
Fkdk, we get

∫ ∞
|m|

dε

2πv2
F

( m2

2ε(iνl + 2µ)

[
tanh

β(ε− µ)

2
− tanh

β(ε+ µ)

2

]
+

k2

2ε(iνl + 2µ− 2ε)
tanh

β(ε− µ)

2
− k2

2ε(iνl + 2µ+ 2ε)
tanh

β(ε+ µ)

2
(E.47)

Next, we perform an analytic continuation where we replace iνl by iνl → ω + iη, where ω is
a continuous and real-valued frequency and η = 0+ is some convergence factor

∫ ∞
|m|

dε

4πv2
F

εΓν =

∫ ∞
|m|

dε

4πv2
F

( m2

ε(ω + iη + 2µ)

[
tanh

β(ε− µ)

2
− tanh

β(ε+ µ)

2

]
+

k2

ε(ω + iη + 2µ− 2ε)
tanh

β(ε− µ)

2
− k2

ε(ω + iη + 2µ+ 2ε)
tanh

β(ε+ µ)

2
(E.48)

In order to evaluate the ε-integral, we need to use the Dirac identity [7],

1

x± iη
= P

1

x
∓ iπδ(x) (E.49)
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where P denotes the Cauchy principal value. Thus, we can rewrite the above expression as
follows

∫ ∞
|m|

dε

4πv2
F ε

( m2

(ω + iη + 2µ)

[
tanh

β(ε− µ)

2
− tanh

β(ε+ µ)

2

]
+

k2

(ω + iη + 2µ− 2ε)
tanh

β(ε− µ)

2
− k2

(ω + iη + 2µ+ 2ε)
tanh

β(ε+ µ)

2
(E.50)

=
1

4πv2
F

(∫ ∞
|m|

dε

ε

{
P
[(ε2 −m2) tanh β(ε−µ)

2

ω + 2µ− 2ε
−

(ε2 −m2) tanh β(ε+µ)
2

ω + 2µ+ 2ε

+
m2

ω + 2µ

(
tanh

β(ε− µ)

2
− tanh

β(ε+ µ)

2

)]
− iπδ(ω + 2µ)m2

(
tanh

β(ε− µ)

2
− tanh

β(ε+ µ)

2

)
− iπδ(ω + 2µ− 2ε)(ε2 −m2) tanh

β(ε− µ)

2
+ iπδ(ω + 2µ+ 2ε)(ε2 −m2) tanh

β(ε+ µ)

2

}
(E.51)

Assuming that ω � |m|, µ, |m± µ|, we can perform a series expansion in µ to first order in
ω. Subtracting the zeroth-order term, we get

−
∫

d2q

(2π)2

∫
dω

2π
ηt∆

∗ω∆ = −
∫

d2q

(2π)2

∫
dω

2π
(−iηt)∆∗iω∆ (E.52)

η̃t =
1

4πv2
F

(
P

∫ ∞
|m|

dε

ε

[(ε2 −m2

4ε2+
+
m2

4µ2

)
tanh

βε+
2

+ (ε+ ↔ ε−)
]

+ iπβ [Θ(µ− |m|)−Θ(−µ− |m|)] µ
2 −m2

8µ

)
, (E.53)

where ε± = ±ε− µ.

E.3 Magnetic impurities and mixed terms

In section 7.3.2 we arrive at the integrals of eq. (7.46) and eq. (7.47).

Evaluation of eq. (7.46)

We start by solving eq. (7.46). Using a Feynman parametrization, we can rewrite it as

∫
d2k

(2π)2

1

β

∑
n

∫ 1

0
dz

2em(2(κν + (1− z)ξν)− ξν)

(κ2 +m2 + ξ2z(1− z))2
, (E.54)

where we have performed the linear change of variables κ′ = κ − (1 − z)ξ. We can divide
this integral into two parts

∫
d2k

(2π)2

1

β

∑
n

∫ 1

0
dz

4emκν

(κ2 +m2 + ξ2z(1− z))2
(E.55)∫

d2k

(2π)2

1

β

∑
n

∫ 1

0
dz

2em(1− 2z)ξν

(κ2 +m2)2
. (E.56)
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The first integral is odd in k and hence only the temporal parts survive after momentum
integration. In the second integral, the ξ dependence drops out of the denominator since the
numerator is linear in ξ. The resulting Feynman parameter integral is odd and hence this
contribution vanishes. Thus, we are left with

1

v2
F

∫
d2k

(2π)2

1

β

∑
n

∫ 1

0
dz

4em(ωn − iµ)

(k2 + (ωn − iµ)2 +m2 + q2z(1− z))2
(E.57)

(E.58)

where we have reinstated the factors vF and substituted them out of the integral. By
performing a series expansion, we get

1

v2
F

∫
d2k

(2π)2

1

β

∑
n

∫ 1

0
dz

4em(ωn − iµ)

(k2 + (ωn − iµ)2 +m2)2

(
1− 2

q2z(1− z)
(k2 + (ωn − iµ)2 +m2)

)
=

1

v2
F

∫
d2k

(2π)2

1

β

∑
n

4em(ωn − iµ)

(k2 + (ωn − iµ)2 +m2)2

(
1− 1

3

q2

(k2 + (ωn − iµ)2 +m2)

)
, (E.59)

where we have performed the Feynman-parameter integration. Using eq. (C.2), the lowest-
order contribution becomes

1

v2
F

∫
d2k

(2π)2

1

β

∑
n

4em(ωn − iµ)

(k2 + (ωn − iµ)2 +m2)2

=
−iem
πv2

F

1

β

∑
n

(iωn + µ)

((iωn + µ)2 −m2)

=
−iem
2πv2

F

sinhβµ

coshβµ+ coshβ|m|
, (E.60)

where we have used eq. (B.20) to evaluate the Matsubara sum. Using eq. (C.2), the second-
order contribution can be written as

4iem

3v2
F

∫
d2k

(2π)2

1

β

∑
n

iωn + µ

(k2 + (ωn − iµ)2 +m2)3
=

emi

6πv2
F

1

β

∑
n

(iωn + µ)q2

((ωn − iµ)2 +m2)2

=
iem

6πv2
F

1

β

∑
n

(iωn + µ)q2

(−(iωn + µ)2 +m2)2
. (E.61)

The poles of this Matsubara sum are z± = −µ ±m, which means that we get ±|m| in the
numerator for each type of pole. Thus, we can use eq. (B.17) as follows

1

β

∑
n

iωn + µ

(−(iωn + µ)2 +m2)2
=

[
|m|f ′(z+)

4|m|2
− |m|f(z+)

4|m|3
− |m|(+→ −)

]
= − β

16|m|

[ 1

cosh2 β(|m|+µ)
2

− 1

cosh2 β(|m|−µ)
2

]
+

1

4|m|2
sinhβµ

coshβµ+ coshβ|m|
(E.62)
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and hence, we get the following second-order contribution

iem

6πv2
F

q2

(
β

16|m|

[ 1

cosh2 β(|m|+µ)
2

− 1

cosh2 β(|m|−µ)
2

]
− 1

4|m|2
sinhβµ

coshβµ+ coshβ|m|

)
. (E.63)

Evaluation of eq. (7.47)

Eq. (7.47) is also odd in k and hence only the temporal part of κµ survive the integration. Thus,
we are left with

∫
d2k

(2π)2

1

β

∑
n

−2eκµξλεµνλ
(κ2 +m2)2

=

∫
d2k

(2π)2

1

β

∑
n

−2e(ωn − iµ)ξλε0νλ

(κ2 +m2)2

=

∫
d2k

(2π)2

1

β

∑
n

2e(ωn − iµ)ξλε0λν

(v2
Fk

2 + (ωn − iµ)2 +m2)2

=
1

v2
F

∫
d2k

(2π)2

1

β

∑
n

−2e(iωn + µ)iξλε0λν

(k2 + (ωn − iµ)2 +m2)2
,

(E.64)

where we have reinstated the factors vF in the k-terms and substituted them out of the
integral. Performing the k-integration using eq. (C.2), we get

− 1

v2
F

∫
d2k

(2π)2

1

β

∑
n

2e(iωn + µ)iξλε0λν

(k2 + (ωn − iµ)2 +m2)2
=

e

2πv2
F

1

β

∑
n

iωn + µ

(iωn + µ)2 −m2
(iξ)λε0λν

Thus, using eq. (B.20), we get the following expression

e

4πv2
F

sinhβµ

coshβ|m|+ coshβµ
ε0λνiξ

λ (E.65)
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