
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

Eilif Som
m

er Ø
yre

Electrom
agnetic Scattering Calculations for Arbitrarily Shaped Closed Surfaces using the M

ethod of M
om

ents

Eilif Sommer Øyre

Electromagnetic Scattering
Calculations for Arbitrarily
Shaped Closed Surfaces using the
Method of Moments

Master’s thesis in Applied Physics and Mathematics
Supervisor: Ingve Simonsen

March 2021

M
as

te
r’s

 th
es

is

Eilif Sommer Øyre

Electromagnetic Scattering
Calculations for Arbitrarily
Shaped Closed Surfaces using the
Method of Moments

Master’s thesis in Applied Physics and Mathematics
Supervisor: Ingve Simonsen
March 2021

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Physics

Norwegian University of Science and Technology

TFY4900 Physics, Master Thesis

Electromagnetic Scattering
Calculations for Arbitrarily

Shaped Closed Surfaces using the
Method of Moments

Author:
Eilif Sommer Øyre

Supervisor:
Ingve Simonsen (NTNU)

Faculty of Natural Sciences
Department of Physics

NTNU
07.03.21

Preface

This thesis completes a five year Master’s Degree Programme in Applied Physics
and Mathematics at the Norwegian University of Science and Technology. It was
conducted at the Department of Physics from September 2020 to March 2021.

I would like to express my gratitude to my supervisor Professor Ingve Simonsen,
and thank him for his excellent support and guidance. I truly appreciate the learning
opportunity provided by him.

i

Abstract

The Maxwell equations of electromagnetic theory are numerically solved for the two
region scattering problem using a surface integral formulation (SIE) and the method
of moments (MoM). The RWG basis function is applied to approximate the equiva-
lent currents of the SIEs, and Galerkin’s method is used for the weighted residuals.
The electric and magnetic field integral equations are combined using the PMCHW-
formulation and the resulting matrix equation is solved by LU-decomposition. The
numerical methods were implemented using modular programming with an object-
oriented approach in modern Fortran, and the numerical framework responsible for
representing the discretised surface was designed to be general and versatile, so as
to be applicable to scattering surfaces of arbitrary shapes and refractive index, and
scattering problems using alternative basis functions and methodology.

The implementation was tested with scattering from a homogeneous sphere and
the results were compared to the ones Mie theory. The results from the numerical
simulation showed expected interference patterns and symmetric properties, but
failed to consistently conserve energy and satisfyingly match the Mie solution. This
was due to issues in the implementation believed to be minor, but not found because
of time constraints. However, scattering from a single and multiple nonspherical
objects was simulated, and the implementation proved successful in reproducing
local surface plasmon resonance effects for a gold dipole at the incident resonance
wavelength λ = 662 nm. Moreover, a face-by-face approach in evaluating the surface
integrals was implemented, significantly increasing the memory usage, but reducing
the computing time by a factor of 20, compared to a basis-by-basis approach.

ii

Sammendrag

I denne oppgaven løses Maxwells likninger numerisk for det elektromagnetiske spred-
ningsproblemet i to regioner ved bruk av overflateintegrallikninger og momentmeto-
den. For å kunne diskretisere de ekvivalente strømmene i overflateintegralliknin-
gene, blir RWG basisfunksjoner brukt sammen med Galerkins metode for de vek-
tede restene. Ved hjelp av PMCHW-formuleringen kombineres den elektriske og
magnetiske integrallikningen, og den resulterende matriselikningen blir løst ved LU-
dekomponering. Den numeriske implementasjonen ble utført i moderne Fortran
ved bruk av moduler og objekt-orientert programmering. For å kunne bruke im-
plementasjonen til å simulere spredning på en vilkårlig overflate, ble koden som
lagrer diskretiseringen av overflaten laget generell og allsidig. På denne måten, vil
koden også kunne brukes til å simulere spredning ved bruk av andre metoder og
basisfunksjoner.

Den numeriske implementasjonen ble testet ut på spredning av en homogen
kule og resultatene ble sammenlignet med de fra Mie teorien. Resultatene viste
interferensmønster og symmetriske egenskaper som samsvarte med det vi forven-
tet, men energien i systemet var ikke bevart for flere av eksemplene, og resultatene
var ikke tilfredstillende lik de fra Mie teorien. Vi tror dette er grunnet mindre feil
i implementasjonen som ikke ble funnet som følge av begrenset tid. Likevel, ble
spredningsimuleringer ble utført på ikkesfæriske overflater, og for en innkommende
elektromagnetisk bølge med bølgelengde på 662 nm, lykkes implementasjonen med
å reprodusere lokalisert overflateplasmonresonans for en dipolantenne av gull. I til-
legg ble en flate-for-flate tilnærming for evaluering av overflateintegralene prøvd ut.
Den viste seg å bruke betydelig mer minne, med reduserte beregningstiden med en
faktor på 20, sammenlignet med en basis-for-basis tilnærming.

iii

Contents

Preface i

Abstract ii

Sammendrag iii

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 3

2 Theory and Method 4
2.1 The Two Region Scattering Problem 5

2.1.1 Green’s function . 7
2.1.2 The Surface Integral Equations 9

2.2 Method of Moments . 10
2.2.1 Finite Element Analysis . 10
2.2.2 Integral Formulation . 11
2.2.3 Rao-Wilton-Glisson Basis functions 12

2.3 Triangulation . 13
2.3.1 Topological Properties of a Triangulated Surface 14

2.4 Gaussian Quadrature . 15
2.4.1 Gauss-Legendre Quadrature Formula 16
2.4.2 Gaussian Quadrature Formulas for Triangles 16
2.4.3 Lebedev Quadrature . 18

2.5 Mie Theory . 18
2.6 MoM on the Two Region Scattering Problem 19

2.6.1 Expanding EFIE and MFIE in terms of RWG basis functions . 19
2.6.2 Combining EFIE and MFIE 22
2.6.3 Singularity extraction of the Green’s function 23
2.6.4 Field Distribution . 30
2.6.5 Line integral over a triangle 31
2.6.6 Reducing the Amount of Integral Evaluations 31

iv

CONTENTS Section 0.0

3 Numerical Implementation 38
3.1 Simulation Design . 38

3.1.1 Discretisation . 40
3.1.2 Modules . 40

3.2 Testing . 56
3.2.1 Module Testing . 56
3.2.2 Validating Simulation Results 60

3.3 Building the Simulation Program . 63

4 Results and Discussion 67
4.1 The Sphere . 67
4.2 Nonspherical shapes . 76

4.2.1 Performance comparison off FBF and BBB approach 77

5 Conclusion and Outlook 82

Appendices 89

A Expansion of K(i)
mn 89

B Module Interfaces 93
B.1 mesh_mod . 93
B.2 RWG_basis_mod . 96
B.3 PMCHW_RWG_mod . 98
B.4 io_mod . 101

C Gmsh2 format and Makefiles 106
C.1 A Gmsh2 ASCII file . 106
C.2 Makefiles . 106

C.2.1 Top directory Makefile . 106
C.2.2 Makefile in the src directory 107
C.2.3 make.inc . 109

v

List of Figures

2.1 Illustration of the two region scattering problem. Region 1 and 2 are
denoted as V1 and V2, respectively. n̂1 and n̂2 are normal vectors
pointing out of the surfaces bounding the regions. J and M are
equivalent surface currents. Figure inspired by [1]. 6

2.2 Sketch of an arbitrary nth RWG basis. The two adjacent triangles T+
n

and T−n , having areas A+
n and A−n , share an edge of length Ln. The

vectors p±n are the positions of the free vertices of T±n with respect
to the origin O, while r′ is a source point in T+

n with respect to the
same origin. 13

2.3 A arbitrary triangulation of a structured grid (left). An arbitrary
triangulation of an unstructured grid (right). 14

2.4 A conformal triangulation (left), and a non-conformal triangulation
(right). Circular points represents vertices, and line segments repre-
sents triangle edges. 14

2.5 A triangulated surface having a single handle and a single aperture. . 15
2.6 A triangle whose surface is split into three elements of area A1, A2,

and A3. The borders of the elements are defined by the Cartesian
coordinates of the point on the triangle, and by the location of its
three vertices, as illustrated. 17

2.7 The triangle T in the local coordinate system (u, v, w). The edges
∂(i)T of T have lengths length li, and m̂i are their corresponding
outer unit normals. The vector ρ is the projection of the observation
point r onto the uv-plane. 26

3.1 A module diagram illustrating the dependencies between the modules
used in the simulation program. Each box is a module and an arrow
represents an dependence, where the arrowhead points towards the
dependee. A dashed arrow represents inheritance of derived types. . . 41

vi

LIST OF FIGURES Section 0.0

3.2 A face of order 3 with edges of order 1. The numbers represents
index identifiers of the entities. A number surrounded by a circle
represents the index of a face, an underlined number the index of an
edge, and a normal number the index of a vertex. The orientations
of the edges are indicated by the arrowheads. The orientation of the
face is indicated by the curled arrow in the centre of the face. The
resulting direction of the face’s normal vector is obtained by using
the right hand rule on the face orientation. 44

3.3 Pseudo code of the algorithm the a program uses to simulate the two
region scattering problem. The top three lines describes the derived
types that are used directly by the program, and which module the
type is defined within. 53

3.4 A regular tetrahedron with edge lengths of 2
√

2. The face areas are
2
√

3 with the resulting surface area of 8
√

3. Its volume equals 8/3. . . 57
3.5 A triangulated cube with sides equal to unity. The face areas equals

0.5, the surface area 6, and the volume 1. 58
3.6 The triangulated cube in Fig. 3.5 with one of the faces removed,

resulting in an open surface with one aperture and three boundary
edges. 58

3.7 Scattering by an arbitrary particle. The incident wave is propagation
in the positive ẑ-direction, and the scattering plane is defined by r̂
and ẑ. 62

3.8 Directory tree/structure assumed by the recursive Makefile setup used
in the project. The dot at the top represents the top directory. Bold
font indicates directories and normal font indicates normal files. The
lines and indentations illustrates the hierarchy of the files and direc-
tories. 64

3.9 Directory tree/structure after building the modules and testing ex-
ecutables. The dot at the top represents the top directory. Bold
font indicates directories, italic font indicates executables, and nor-
mal font indicates normal files. The lines and indentations illustrates
the hierarchy of the files and directories. 66

4.1 The the electric field intensity |E|2 in the yz-plane from scattering by
a sphere with n = 4. The incident wave is x-polarised, has intensity
|Einc|2 = 1 and wavelength λ. The radius of the sphere is λ/2, and
the DOF of the MoM is 10110. 68

4.2 The the electric field intensity |E|2 in the xy-plane from scattering by
a sphere with n = 4. The incident wave is x-polarised, has intensity
|Einc|2 = 1 and wavelength λ. The radius of the sphere is λ/2, and
the DOF of the MoM is 10110. 69

4.3 The bistatic scattering cross section of the sphere in Fig. 4.1. The
BSCS across the symmetry planes are also plotted, along with the
root mean square error (RMSE) between them. 70

vii

LIST OF FIGURES Section 0.0

4.4 The ratio between incoming Pin and outgoing Pout average energy per
unit time for scattering by a sphere of refractive index n = 4 and
varying scaling parameter ka. 71

4.5 A polar plot of the bistatic scattering cross section of a sphere with
refractive index n = 4. Results from both numerical simulation and
the Mie solution. 72

4.6 The BSCS of a sphere for a few different scaling parameters ka and
permitivities εr. The upper half of the polar plots constitutes BSCS
in a plane perpendicular to the polarisation and propagation of the
incident wave, while the lower half constitutes BSCS in the plane of
incidence. 73

4.7 Integrated error (see Eq. (4.1)) of the numerical simulation compared
to the Mie solution. 74

4.8 Left: The electric field intensity resulting from scattering by a non-
absorbing rectangular prism. Right: The electric field intensity re-
sulting from scattering by an absorbing rectangular prism. Incident
is directed along the positive z-axis and its intensity is |Einc|2 = 1. . . 76

4.9 Mesh of rectangular prism generated by Gmsh [2]. DOF = 5796. . . . 77
4.10 Mesh of dipole antenna generated by Gmsh [2]. There are 1527 DOF

per prism. 78
4.11 A gold dipole antenna showing LSPR. The incident resonance wave-

length is λ = 662 nm. The figure is a reproduction of Fig. 6 in [1]. . . 78
4.12 Computing time of the FBF and BBB approach as a function of DOF. 79
4.13 Peak memory use of the FBF and BBB approach as a function of DOF. 80

viii

List of Tables

3.1 The names, type and dimension of the attributes of the derived type
mesh_mod_type, which is the main type of the module mesh_mod.
All attributes are rank 1 arrays, most of them are scalars or vectors
dimension 1 (identified by (1)), and some of them have a dynamically
allocatable dimension (identified by the colon, :). 43

3.2 The names and encapsulation of selected member procedures of the
derived type mesh_mod_type, the main type of the module mesh_mod. 46

3.3 The names, types and dimensions of the attributes of the derived type
RWG_basis_mod_type, the main type of the module RWG_basis_mod.
Dynamically allocatable dimensions are signified by the colon, :. . . . 47

3.4 The names and encapsulation of all member procedures of RWG_-
basis_mod_type, the main type of the module RWG_basis_mod. Their
implementations are printed in Appendix B.2. 48

3.5 The names, types and dimensions of the attributes of the derived type
PMCHW_RWG_mod_type, the main type of the module PMCHW_RWG_mod.
Dynamically allocatable dimensions are signified by the colon, :. . . . 50

3.6 The names and encapsulation of all member procedures of RWG_-
basis_mod_type, the main type of the module RWG_basis_mod. Their
implementations are printed in Appendix B.2. 51

3.7 The names and encapsulation of all procedures defined in io_mod.
Their interface of the module and the routine open_read_gmsh2 are
printed in Appendix B.4. 53

3.8 The constants defined as parameters in constants_mod. All numbers
have a _wp post fix to set their precision equal to the working precision
wp imported for working_precision_mod. 55

ix

Chapter 1

Introduction

1.1 Motivation
Scattering and absorption of electromagnetic (EM) waves by small particles are
responsible for many interesting phenomena. The multicoloured, curved rainbow
occurs when EM waves at several hundred manometers in wavelength (light) meets
much larger rain droplets, having a diameter of micrometers or millimetres. The
rainbow may be explained by geometrical optics, using laws of refraction, reflection
and dispersion. Scattering and absorption of light by particles much smaller than
the wavelength, about size of gas molecules, is responsible for the contrast of the
red sunset against the blue sky. This type of scattering is often called Rayleigh
scattering [3], and concludes that the intensity of scattered EM waves is proportional
to the incident wavelength to the power of four. The incandescent, auroral opal, on
the other hand, is explained by the diffraction of light by glass spheres about the
same size as the wavelength of the incident light.

Aside from eye-pleasing effects, there is the localised Surface plasmon resonance
(LSPR), which is a phenomena caused by the scattering and absorption by metal
particles smaller than the wavelength of the incident EM wave [4]. The incident wave
interacts with the electrons causing plasmon oscillations inside the particle, which
in the spacing between particles may have a resonance frequency allowing several
orders of magnification of the scattered field. The resonance frequency depends on
the shape and permitivity of the scattering particles, as well as their relative position.
Particles of gold and silver have resonance frequency in the visible part of the light
spectrum. As an example, Kern and Martin [1] found the resonance wavelength of
a gold dipole antenna to be 662 nm. LSPR has many useful applications, such as
surface-enhanced Raman spectroscopy, and biosensing using nanoparticles [5, 6].

Naturally, because of the advantages of numerical simulations in the radio- and
telecommunication industry, numerical methods for accurate simulation of EM scat-
tering have been greatly research for decades. Simulation of EM scattering is es-
sentially the quest of solving the Maxwell equations. Analytical solutions to the
Maxwell equations exists for ideal cases, such as the Mie theory [7, 8], which de-
scribes the EM scattering of an incident wave by a homogeneous sphere of arbitrary

1

CHAPTER 1. INTRODUCTION Section 1.1

radius and refractive index. However, there are no analytical solutions for the scat-
tering by more complex geometries, not to mention multiple particles. As a result,
numerical solutions of Maxwell’s equations are necessary to simulate and predict
phenomena such as LSPR. Fortunately, Maxwell’s equations are linear, so that their
solutions follow the superposition principle, i.e. the sum of any solution is also a
solution. This way, following Fourier analysis, it is sufficient to solve Maxwell’s
equations for an incident plane wave, as any incoming wave may be represented by
a sum of plane waves.

Popular numerical methods for solving Maxwell’s equations include finite dif-
ference time-domain (FDTD) schemes and the finite element method (FEM). Both
methods solves the equations on differential form, thus requiring a discretisation of
the whole solution domain, and well defined boundary conditions. Unlike FDTD,
FEM is not limited by the need of structured grids, and may be used on unstructured
grids consisting of sets of various 2D or 3D elements, such as triangles, tetrahedrons
or quadrilaterals. This makes FEM able to deal with highly complex geometries, as
well as easily adjust local resolution by constructing finer grids in part of the region
of interest. On the other hand, FEM is not as easily applicable to the time domain,
and will in general have a higher computational cost [9].

In contrast to FDTD and FEM, the method of moments (MoM), or the bound-
ary element method (BEM), uses an integral formulation of Maxwell’s equations.
Once the boundary conditions of the problem are fitted into the integral equation, it
may be used to find the solution of the corresponding differential equations directly
at any desired point in the solution domain, thus requiring discretisation of only
the scatterer. Furthermore, using a surface integral formulation (SIE) instead of a
volume integral formulation (VIE) or the discrete-dipole approximation (DDA) [10],
reduces the discretisation to only the scattering surface, resulting in a significantly
lower amount of discretisation points for a large system, compared to FDTD and
FEM. On the other hand, the matrix equation emerging by applying MoM is dense,
in contrast to the sparse matrix resulting from FDTD and FEM. In this way, al-
though having fewer discretisation points, the MoM may consume considerably more
memory.

In addition, the MoM has the additional challenges of singular integrals, which
need to be carefully treated in order to avoid numerically inaccurate results. The
singularities arises from the combination of using Green’s function in deriving the
integral formulations and the use of Galerkin’s method for the testing integrals in
order to discretise them. The SIE consists of the electric field integral equation
(EFIE) and the magnetic field integral equation (MFIE). The EFIE has weakly sin-
gular integrands because of an 1/R dependency, where R, the source-to-observation
distance, may be close to or equal to zero. The MFIE has integrands proportional
to 1/R3, often called hyper singular integrands. Numerical evaluations of surface
integrals over these singularities will of course be undefined if R = 0 , and if R is
close to zero, values may be too large to be accurately represented by the computer
(especially the hyper singularity).

Be that as it may, a triangular patch approach in approximating a scattering
surface is extremely versatile, being able to accurately represent complex topologies

2

CHAPTER 1. INTRODUCTION Section 1.2

and higher order curvature [11]. Moreover, efficient and accurate techniques for
handling the singular integrals exists, such as singularity subtraction [12–14], singu-
larity cancellation [15–17], Duffy’s transformation [18], semi-analytic schemes [19],
and even fully numerical methods [20].

Thus, when using triangular basis functions to discretise the SIE, such as the
Rao-Wilton-Glisson (RWG) basis [11,21], and an appropriate singularity treatment,
MoM with SIE become very suitable and efficient to simulate EM scattering by
arbitrary surfaces, and in particular when investigating near-field effects such as
LSPR. In contrast, the DDA is limited by having to evaluate the field distribution
at least one dipole separation away from the boundary.

1.2 Objective
The goal of this thesis is to implement an efficient and versatile numerical framework
for simulating EM scattering from one or multiple surfaces with arbitrary shape and
refraction index, by using the MoM with an SIE formulation of Maxwell’s equations.
The framework, created by modular programming in Fortran with an object-oriented
approach, should be extendable with any suitable basis function, test function and
combined field formulation. However, in this thesis we have the objective of dis-
cretising the SIE using Galerkin’s method and the RWG basis functions, as well
as combining the EFIE and MFIE with the PMCHW-formulation [22]. The sin-
gularities of the Green’s functions are subtracted and evaluated analytically using
the formulas presented in Ref. [14], while the non singular terms are numerically
integrated using Gaussian quadrature formulas.

The numerical framework should include a representation of the surface mesh
in an suitable data structure, such that commonly required mesh properties and
calculations are easily accessible and computationally efficient. Additionally, the
framework should support the import of externally generated meshes, and be easily
extendable to various file formats.

An additional goal is to implement an overall computational efficient solution,
and investigate opportunities to reduce the amount of integral evaluations to a
minimum.

3

Chapter 2

Theory and Method

Evaluating the two region electromagnetic scattering problem in light of Maxwell’s
equations presents us with a set of partial differential equations (PDEs). As dis-
cussed in the previous chapter, the goal of this project is to implement a simulation
program to numerically solve these PDEs using the method of moments (MoM).
Therefore, the following chapter starts by introducing the scattering problem and
deriving these PDEs, which are then reformulated into the electric field integral
equation (EFIE), and the magnetic field integral equation (MFIE), with the help of
Green’s function. The integral formulation of the PDEs is required for the MoM to
be applied, which is introduced next, in section 2.2. The MoM expands the inte-
gral equations in a series of basis functions, mapped over a discretised surface. In
this project, we will be using the Rao-Wilton-Glisson (RWG) basis functions (intro-
duced in section 2.2.3), which consists of triangular elements. It is therefore natural
to briefly present some theory on differential geometry, in particular triangulation.
The application of MoM together with Galerkin’s method of weighted residuals,
results in a matrix equation whose matrix elements are double integrals over the
chosen basis functions. Thus, a suitable numerical integration method is introduced
(Gaussian quadrature) in Section 2.4.

The value of comparing the results of the numerical simulation using MoM with
the results of an analytical solution can not be underestimated. Therefore, we
give a brief presentation on the Mie theory, an analytic solution to the two region
electromagnetic scattering problem (i.e. an analytic solution to the aforementioned
PDEs) for a spherical and homogeneous scatterer of arbitrary radius and refraction
index.

Finally, in Section 2.6, the MoM and Gaussian quadrature are put into action.
They are applied directly to the EFIE and MFIE, and the resulting matrix equa-
tions are combined. Then, the numerical difficulty of integrating over the Green’s
function’s singularities are discussed and treated, before looking into a simple way
of reducing the computational cost of evaluating the numerous double integrals ap-
pearing in the matrix equations.

4

CHAPTER 2. THEORY AND METHOD Section 2.1

2.1 The Two Region Scattering Problem
The three independent equations of Maxwell’s theory of electromagnetism in differ-
ential form reads [23]

∇× E = −∂B
∂t

(Faraday’s law), (2.1)

∇×H = j + ∂D
∂t

(Maxwell-Ampere law), (2.2)

∇ · j = j− ∂ρ

∂t
(Continuity equation), (2.3)

where E is the electric field, B is the magnetic flux density, H is the magnetic field,
D is the electric flux density, j is the electric current density, and ρ is the electric
charge density. In a medium with zero polarisation and magnetisation, an isotropic
medium, the flux densities are

D = εE, (2.4)

B = µH, (2.5)

where ε and µ are the permitivity and permeability of the medium, respectively.
Assuming the fields are time-harmonic, i.e. having form U = U0 exp {−iωt} where
ω is the angular frequency of the wave, and the medium is isotropic, Eqs. (2.1) and
(2.2) may be rewritten as

∇× E = iωB, (2.6)

∇×B = µj− iµεωE. (2.7)

Taking the curl of Eqs. (2.6) and (2.7) yields the PDEs

∇×∇× E− k2E = iµωj, (2.8)

∇×∇×H− k2H = ∇× j, (2.9)

where k = ω
√
εµ is the wavenumber of the electromagnetic wave. These differential

equations are often described as the inhomogeneous vector wave equations [23].
Consider the two region problem illustrated in Fig. 2.1. Region 1, having symbol

V1, is bounded from inside by region 2, having symbol V2 and creating the surface
S, and bounded from outside by the surface Sinf. The incident electric Einc

1 (r)
and magnetic fields Hinc

1 (r) are generated by the electric current density j(r) in V1.
Region 2 is assumed to be non-emitting, i.e. Einc

2 (r) = 0. The regions have different
permitivity and permeability, and thus also wavenumber, εi, µi, and ki = ω

√
εiµi,

respectively. As follows, the electric and magnetic field, Ei(r) and Hi(r), must
satisfy Eqs. (2.8) and (2.9) in both regions i, in addition to the boundary conditions

5

CHAPTER 2. THEORY AND METHOD Section 2.1

V1

V2 n1 n2

^
^

Sinf

S

n1
^

J

M

Figure 2.1: Illustration of the two region scattering problem. Region 1 and 2 are
denoted as V1 and V2, respectively. n̂1 and n̂2 are normal vectors pointing out of
the surfaces bounding the regions. J and M are equivalent surface currents. Figure
inspired by [1].

enforced on the surface S, which tells us that the field components tangential to the
surface should be continuous

n̂i(r)× [E1(r)− E2(r)] = 0, (2.10a)

n̂i(r)× [H1(r)−H2(r)] = 0, for r ∈ S, (2.10b)

as long as S is not a perfect conductor. If region 2 was a perfect conductor,
Eq. (2.10b) would not equal zero, but equal to a term involving the surface cur-
rent on S [24]. The vectors n̂1 and n̂2 are the unit normal vectors to the surface S,
pointing out from region 1 and 2, respectively.

The two-region electromagnetic scattering problem boils down to solving the set
of PDEs

∇×∇× E1 − k2
1E1 = iµ1ωj, for r ∈ V1 (2.11a)

∇×∇× E2 − k2
2E2 = iµ2ωj, for r ∈ V2 (2.11b)

∇×∇×H1 − k2
1H1 = ∇× j, for r ∈ V1 (2.11c)

∇×∇×H2 − k2
2H2 = ∇× j, for r ∈ V2, (2.11d)

satisfying the conditions (2.10). The Method of Moments (MoM) (discussed in
Section 2.2), uses the surface integral formulation of Eq. (2.11) on the boundary S
to numerically solve the PDEs. Thus, in Section 2.1.2, we give a short presentation

6

CHAPTER 2. THEORY AND METHOD Section 2.1

of the surface integral formulation of Eq. (2.11), which is derived by the use of a
dyadic Green’s function.

2.1.1 Green’s function
Consider the differential equation

L[f] = s. (2.12)

Assume L is a linear differential operator, s is a source distribution, and the solution
f is a field. The Green’s function is defined such that it satisfies

LG(r, r′) = δ3(r− r′), (2.13)

where L acts on the observation point r, and δ3(r − r′) is the three dimensional
Dirac delta distribution. Consider the integral

L
∫
G(r, r′)s(r′)dV ′. (2.14)

Since L is a linear operator on r it may be moved inside the integral and acted on
G(r, r′), allowing integration over the Dirac delta distribution∫

LG(r, r′)s(r′)dV ′ =
∫
δ3(r− r′)s(r′)dV ′ = s(r). (2.15)

Hence, the solution of (2.12) is given on integral form in terms of its Green’s function
as

f(r) =
∫
G(r, r′)s(r′)dV ′. (2.16)

Essentially, the Green’s function represents the contribution from the source point
r′, to the field observed at point r.

The free-space Green’s function

Let the linear differential operator take the form L = ∇2 + k2, where k is the
wavenumber, and let f be a scalar field and s be a constant source term, such that
Eq. (2.12) becomes

∇2f + k2f = g. (2.17)
This is the inhomogeneous scalar Helmholtz equation or inhomogeneous scalar wave
equation [9,23]. The Green’s function related to the integral equation (2.16) for the
Helmholtz equation is called the free-space Green’s function

G(r, r′) = eikR

4πR, (2.18)

where
R = |r− r′|. (2.19)

7

CHAPTER 2. THEORY AND METHOD Section 2.1

The free-space dyadic Green’s function

A dyadic function is formed by two vector functions, i.e. it is a rank 2 tensor. In
itself, a dyad has no physical interpretation, but the result of acting it upon another
vector function may be meaningful.

Consider the differential equations (2.8) and (2.9), which both are on the form of
Eq. (2.12). Consider next a infinitesimal source current pointed in the x̂-direction

j(r) = 1
iµω

δ3(r− r′)x̂. (2.20)

Let G(x)(r, r′) be the free-space vector Green’s function for a field contribution at r
by a source current pointed in the x̂-direction at r′. The function G(x)(r, r′) should
then satisfy

∇×∇×G(x)(r, r′)− k2G(x)(r, r′) = δ3(r− r′)x̂, (2.21)
in addition to the Sommerfield radiation condition at R →∞, i.e. that the energy
is only radiating outward from the source. In the same way, we may introduce
Green’s functions for infinitesimal source currents pointed in the ŷ- and ẑ-direction,
G(y)(r, r′) and G(z)(r, r′), respectively. Next, we define the dyadic function G(r, r′)
to consist of the three vector functions

G(r, r′) = G(x)(r, r′)x̂ + G(y)(r, r′)ŷ + G(z)(r, r′)ẑ, (2.22)

such that it will satisfy

∇×∇×G(r, r′)− k2G(r, r′) = 1δ3(r− r′), (2.23)

where the dyad
1 = x̂x̂ + ŷŷ + ẑẑ (2.24)

is called the idem factor. Using vector identity (11) on the back cover of [24], we
may rewrite Eq. (2.23) as

∇
[
∇ ·G(r, r′)

]
−∇2G(r, r′)− k2G(r, r′) = 1δ3(r− r′). (2.25)

Taking the divergence of Eq. (2.23) yields

∇ ·
(
∇×∇×G(r, r′)

)
−∇ ·

[
k2G(r, r′)

]
= ∇ ·

[
1δ3(r− r′)

]
(2.26)

∇ ·G(r, r′) = − 1
k2∇ ·

[
1δ3(r− r′)

]
(2.27)

∇ ·G(r, r′) = − 1
k2∇

[
δ3(r− r′)

]
, (2.28)

where in Eq. (2.27) we have used that the divergence of the curl is zero, and in
Eq. (2.28) we have used the following property of the idem factor [23]

∇ · (1ψ) = ∇ψ. (2.29)

8

CHAPTER 2. THEORY AND METHOD Section 2.1

By inserting Eq. (2.28) in Eq. (2.25) we get

∇2G(r, r′) + k2G(r, r′) = −
(

1 + ∇∇
k2

)
δ3(r− r′). (2.30)

Letting G(r, r′) have the form

G(r, r′) =
(

1 + ∇∇
k2

)
ψ(r, r′), (2.31)

then ψ(r, r′) should satisfy

∇2ψ(r, r′) + k2ψ(r, r′) = −δ3(r− r′), (2.32)

which we recognise as the form of Eq. (2.17) with solution G(r, r′) (2.18). Thus, the
free-space dyadic Green’s function is

G(r, r′) =
(

1 + ∇∇
k2

)
G(r, r′). (2.33)

2.1.2 The Surface Integral Equations
This section presents a summary of the derivation of the surface integral equation
for the electrical and magnetic field for the two region scattering problem. See [1]
for a full, formal derivation.

The free-space dyadic Green’s function G(r, r′) (see Eq. (2.33)) satisfies Eq. (2.23)
and is therefore a suitable Green’s function for both regions i. Multiplying Eq. (2.11a)
or Eq. (2.11b) by G(r, r′) from the right hand side, Eq. (2.23) by Ei(r) from the left
hand side, and subtracting the resulting expressions, gives

∇×∇× Ei(r) ·Gi(r, r′)− Ei(r) · ∇ ×∇×Gi(r, r′)

= iµiωj(r) ·Gi(r, r′)− Ei(r)δ3(r− r′).
(2.34)

Here we have used properties of dyadic function to assert

Gi(r, r′) · Ei(r) = Ei(r) ·Gi(r, r′)T = Ei(r) ·Gi(r, r′), (2.35)

Ei(r) · 1 = Ei(r). (2.36)

Integrating Eq. (2.34) over Vi and using Gauss’ theorem yields surface integrals,
which, deduced from the radiation condition, is over the surface S (see equations
4-10 in [1]). Defining the equivalent surface current densities

J(r′) = n̂2 ×Hi(r′), (2.37)

M(r′) = −n̂2 × Ei(r′), (2.38)

9

CHAPTER 2. THEORY AND METHOD Section 2.2

and regarding the limit r → S, at which from the boundary conditions (2.10) we
know that the tangential components are continuous, we obtain[

ωµi
i

∫
S
dS ′Gi(r, r′) · J(r′)−

∫
S
dS ′[∇′Gi(r, r′)] ·M(r′)

]
tan

=
[Einc

1 (r)]tan , i = 1
0, i = 2,

(2.39)

where the subscript tan indicates the vector component tangential to the boundary
surface S. This surface integral equation is called the electric field integral equation
(EFIE). Similar treatment with Eqs. (2.11c) and (2.11d) leads to the magnetic field
integral equation(

ωεi
i

∫
S
dS ′Gi(r, r′) ·M(r′)−

∫
S
dS ′[∇′Gi(r, r′)] · J(r′)

)
tan

=
[Hinc

1 (r)]tan , i = 1
0, i = 2.

(2.40)

2.2 Method of Moments
As discussed in Chapter 1, both finite element method (FEM) and MoM are used
to numerically solve partial differential equations. FEM solves the equations on
differential form, while MoM solves them on integral form. Nevertheless, the recipe
for MoM follows somewhat that of FEM, which is presented first.

2.2.1 Finite Element Analysis
The differential equation to solve by FEM has the form of Eq. (2.12)

L[f] = s,

where L is a linear differential operator, f is the sought after solution function to
be found in the domain Ω, and s is a known function. The unknown function f is
approximated by expanding it in a series of basis functions f1, f2, . . . , fN

f ≈
N∑
n=1

αnfn, (2.41)

where αn are expansion coefficients, and N is the number of basis functions. For
our solution, we want the residual

r = L[f]− s (2.42)

as small as possible for an arbitrary position vector r′, and set the tested (or weighted)
residual equal to zero

〈wm, r〉 = 〈wn, L[f]〉 − 〈wn, s〉 = 0, (2.43)

10

CHAPTER 2. THEORY AND METHOD Section 2.2

where wm are called testing functions, and 〈wm, r〉 defines a suiting inner product.
By inserting the expansion (2.41) into Eq. (2.43), and since L is a linear operator
we get

N∑
n=1

αn 〈wm, L[fn]〉 = 〈wm, s〉 . (2.44)

This may be written on matrix form

Ax = b, (2.45)

where

Amn = 〈wm, L[fn]〉 (2.46)
xn = αn (2.47)
bm = 〈wm, n〉 , (2.48)

for m,n = 1, . . . , N . The solution to the differential equation (2.12) may then be
found by solving (2.45), and its accuracy depends on the choice of basis functions
fn and testing functions wm [25]. Choosing wm = fm is known as Galerkin’s method
[9, 25].

2.2.2 Integral Formulation
The source distribution s(r′) may be expanded in N basis functions sn(r′)

s(r′) =
N∑
n=1

αnsn(r′), (2.49)

where αn are expansion coefficients. Using the Green’s function, linear differential
equation (2.12) may be written as a integral equation on the form of Eq. 2.16. Using
Eq. (2.49) in addition yields the approximated solution

f̄(r) =
N∑
n=1

αnfn(r), (2.50)

where
fn(r) =

∫
G(r, r′)sn(r′)dS ′. (2.51)

The goal is to minimise the weighted residual
〈
wm, [f(r)− f̄(r)]

〉
on the boundary

C, where f(r) is known. Setting the residual equal to zero and inserting Eq. (2.50)
leads to the equation

∫
wmf(r)dS =

∫
wmf̄(r)dS =

N∑
n=1

αn

∫
dSwm

∫
dS ′G(r, r′)sn(r′), (2.52)

11

CHAPTER 2. THEORY AND METHOD Section 2.2

which on matrix form (2.45) has the elements

Amn =
∫

dSwm
∫

dS ′G(r, r′)sn(r′) (2.53)

xn = αn (2.54)

bm =
∫

dSwmf(r), (2.55)

where m and n takes on the values 1 = 1, 2, . . . , N . The field f(r) may then be
found at any desired observation point r using the solutions αn

f(r) ≈ f̄(r)
N∑
n=1

αn

∫
dS ′G(r, r′)sn(r′). (2.56)

Choosing weighting functions equal to the basis functions is, as mentioned above,
called Galerkin’s method, while taking the weighting functions equal to Dirac delta
functions wm(r) = δ(r− rm) is known as point matching [9].

2.2.3 Rao-Wilton-Glisson Basis functions
The RWG basis, introduced by Glisson [21] and named after Rao, Wilton and Glisson
[11, 26], is a commonly used basis function for solving electromagnetic scattering
problems with the MoM. In particular, it is used to expand surface current densities
by a linear combination of basis functions. This surface patch approach assumes a
triangulated surface S where each basis function is associated with an interior edge,
that is, an edge that is not a boundary edge (see Section 2.3 on triangulation). An
RWG basis Sn comprises the two adjacent triangles (faces) T±n that share the basis
edge (see Fig. 2.2), and vanishes elsewhere on the surface. The basis function is
defined by

fn(r′) =


±Ln
2A±n

(r′ − p±n), r′ ∈ T±n
0, otherwise,

(2.57)

where Ln is the length of the associated edge, A±n is the area of the pair of faces
T±n , and p±n are the free vertices of these faces, i.e. the vertices not in common with
the basis edge. Following this definition, the surface current on a basis is flowing
from the positive face towards the negative. The normal component of the current
vanishes on all edges of the faces except on the shared basis edge, where the normal
component is constant and normalised to unity such that its value is continuous
across the two adjacent faces. In this way, having continuous normal components
of the current, the basis function assures that no line charges reside on any edges
of T±n . Each face has current flowing normal to all three of its edges from three
different bases, unless of course, any of its edges are boundary edges.

Finally, the current J on the triangulated surface S may be approximated as

J(r′) =
N∑
n=1

αnfn(r′), (2.58)

12

CHAPTER 2. THEORY AND METHOD Section 2.3

Figure 2.2: Sketch of an arbitrary nth RWG basis. The two adjacent triangles T+
n

and T−n , having areas A+
n and A−n , share an edge of length Ln. The vectors p±n are

the positions of the free vertices of T±n with respect to the origin O, while r′ is a
source point in T+

n with respect to the same origin.

where N is the number of interior edges on S, and αn are expansion coefficients.
Another commonly used basis function, called rooftop [13], uses rectangular el-

ements instead of triangles. The elements share an edge, similarly to the RWG
basis functions, hence the name rooftop. However, rectangular elements may only
model curvature of one dimension, and planar triangular element models are thus
particularly suited for approximating arbitrary shaped surfaces.

2.3 Triangulation
A triangulated surface is a discretised surface whose points are joined together by line
segments in such a way that the surface is completely covered in triangular elements.
This way, the points and line segments are the vertices and edges of the triangles,
respectively. In other words, the convex hull of the set of points that represent
the discretised surface is covered with 2-simplices. In general, a triangulation may
also be a covering-up by other orders of simplices, e.g. a discretised volume may be
represented by 3-simplices (tetrahedrons). If the line segments of a triangulation are
linear, then every point represents the vertex of one or more triangles. Furthermore,
a triangulation may be structured or unstructured, referring to the distribution of
the points (see Fig. 2.3), and it may be composed of conformal or non-conformal
triangles, referring to whether edges may intersect outside discretisation points (see
Fig. 2.4). Delaunay triangulation [27] is a common method for triangulating
unstructured surfaces. Its criterion states that the open discs that circumscribes
any of its triangular elements should not contain any other vertex. Following this
criterion there exists a unique triangulation for each set of points [27], assuming the
points are in general position. A Delaunay triangulation may be constructed from
a Voronoï-diagram [27], by joining the vertices belonging to adjacent cells.

13

CHAPTER 2. THEORY AND METHOD Section 2.3

Figure 2.3: A arbitrary triangulation of a structured grid (left). An arbitrary trian-
gulation of an unstructured grid (right).

Figure 2.4: A conformal triangulation (left), and a non-conformal triangulation
(right). Circular points represents vertices, and line segments represents triangle
edges.

2.3.1 Topological Properties of a Triangulated Surface
Let Nv, Ne, and Nf be the number of vertices, edges and triangle elements (faces)
on a triangulated surface, respectively. Then the number

X = Nv −Ne +Nf (2.59)

is called the Euler-Poincaré characteristic [28]. For a tetrahedron, with 4 vertices, 6
edges, and 4 faces, this number equals 2. In fact, the Euler-Poincaré characteristic
equals 2 for all triangulated surfaces that have the same topology as the tetrahedron.
That is, all triangulated surfaces that are closed (they lack boundary edges and
apertures) and have no handles, or holes (see Fig. 2.5). The triangulated surface of
a torus on the other hand, has a single handle, and its Euler-Poincaré characteristic
equals 0. For a double torus, it is -2. Hence, we may conclude the following equation
for triangulations of closed surfaces, or polyhedrons [26]

2(1−Nh) = Nv −Ne +Nf , (2.60)

where Nh is the number of handles.
We may also develop an Euler-Poincaré characteristic for open surfaces. Consider

the triangulated surface in Fig. 2.5. It has a single aperture, and a set of boundary
edges conforming it. Drawing an auxiliary vertex, suspended above the aperture,
and auxiliary edges, joining the auxiliary vertex from the vertices on the boundary,

14

CHAPTER 2. THEORY AND METHOD Section 2.4

Auxiliary vertex

Auxiliary edge

Aperture

Boundary edge

Face

Edge

Vertex

Handle

Figure 2.5: A triangulated surface having a single handle and a single aperture.

we may easily conclude the following relations

Nv = N ′v +N ′a (2.61)
Ne = N ′e +N ′b (2.62)
Nf = N ′f +N ′b, (2.63)

where the prime marks an open triangulated surface. Furthermore, N ′a and N ′b are
the numbers of apertures and boundary edges on the surface, respectively. Substi-
tuting the equations above into Eq. (2.60) yields the Euler-Poincaré characteristic
for an open surface

2(1−Nh)−N ′a = N ′v −N ′e +N ′f . (2.64)
Now, for a triangulation on a closed surface, each triangle has three edges, and

each edge is shared by two triangles, giving Ne = 3Nf/2. This may be used to
eliminate N ′f in Eq. (2.64), giving

N ′e = 3N ′v + 3N ′a − 6(1−Nh)−N ′b, (2.65)

which is a useful expression as the number of unknowns in a finite element analysis
may equal the number of edges. When using the MoM with RWG basis functions
(see section 2.2) each edge, except boundary edges, constitute a basis. Thus the
number of unknowns is N ′e − N ′b. Eq. (2.65) is valid for closed surfaces by setting
N ′a = N ′b = 0, giving Ne unknowns when using RWG basis functions and MoM.

2.4 Gaussian Quadrature
Gaussian quadrature is a numerical integration technique that approximates an in-
tegral of a weighted function, W (x)f(x), by a linear combination of function evalu-

15

CHAPTER 2. THEORY AND METHOD Section 2.4

ations, f(xj), at non-uniformly spaced abscissa locations [29],
∫ b

a
W (x)f(x)dx ≈

N∑
j=1

wjf(xj). (2.66)

Let pN(x) be part of the set of orthogonal polynomials {p0, . . . , pN}. The abscissas xj
of the Gaussian quadrature above are equal to the roots of the orthogonal polynomial
pN(x) with the same weighting function W (x) on the same interval. Here pN has
N distinct roots, which is used together with W (x), the interval [a, b], and the rest
of the set of polynomials to find the weights wj. This arrangement gives Gaussian
quadrature formulas a degree of precision 2N − 1 (proof is given in [30]), which
means they integrate polynomials of degree up to 2N − 1 exactly (if we can neglect
round-off errors).

2.4.1 Gauss-Legendre Quadrature Formula
The Gauss-Legendre quadrature formula has weight function W (x) = 1 on the
interval [−1, 1]. The set of orthogonal polynomials is the Legendre polynomials,

pj(x) = 1
2jj!

dj

dx [(x2 − 1)j]. (2.67)

Thus, the integral of the function f(x) on the interval [−1, 1] can be approximated
by ∫ 1

−1
f(x)dx ≈

N∑
j=1

wjf(xj), (2.68)

where xj are the roots of the Legendre polynomials (2.67), and wj are the corre-
sponding weights. Both roots and weights for Gauss-Legendre Quadrature formulas
are well tabulated (e.g. pg. 276 in [30]).

2.4.2 Gaussian Quadrature Formulas for Triangles
Numerical integration becomes significantly more challenging as the number of vari-
ables increases. Both because the number of evaluation points necessary to achieve
decent accuracy increases enormously, and because multidimensional boundaries are
much more complicated than the one-dimensional limits. In this project however,
there is the need of evaluating integrals over 2-simplices, i.e. triangles, located in
three-dimensional space.

Fortunately, highly efficient and numerically accurate Gaussian quadrature for-
mulas for triangles exists [31,32]. These formulas are of the form

∫
T
fdS ≈ A

N∑
j=1

wjf(ξj, ηj, ζj), (2.69)

where the surface integral of the function f(r), evaluated over the triangle T with
area A, is approximated by a sum of N weighted function evaluations at quadrature

16

CHAPTER 2. THEORY AND METHOD Section 2.4

Figure 2.6: A triangle whose surface is split into three elements of area A1, A2, and
A3. The borders of the elements are defined by the Cartesian coordinates of the
point on the triangle, and by the location of its three vertices, as illustrated.

points given by barycentric coordinates (ξ, η, ζ). The weights wj are all proportional
to the triangle area, and in the above expression the area is factored out of the sum.
The sampling points (ξj, ηj, ζj) are arranged symmetrically within the triangle, and
their values and corresponding weights are tabulated for degree of precision up to 7
(13 point formula) in [32].

Barycentric Coordinates

Let the Cartesian point (x, y, z) be on a triangle of area A. Split the surface into
three elements with areas A1, A2, and A3, as shown in Fig. 2.6. The barycentric
coordinates are defined as the following ratios

ξ = A1

A
, η = A2

A
, ζ = A3

A
. (2.70)

As A1 + A2 + A3 = A, barycentric coordinates have the following constraints

1 = ξ + η + ζ, 0 < ξ < 1, 0 < η < 1, 0 < ζ < 1. (2.71)

Thus, there are two independent coordinates, and it can be shown that a surface
integral over a triangle may be transformed into a double integral of the form [11]∫

T
fdS = 2A

∫ 1

0

∫ 1−η

0
f(ξ, η)dξdη, (2.72)

where ζ has been eliminated by the use of the constraint

ζ = 1− ξ − η. (2.73)

A point r in Cartesian coordinates on the face of a triangle is related to barycen-
tric coordinates of the triangle as

r = ξr1 + ηr2 + ζr3, (2.74)

where ri is the position of the ith vertex of the triangle, oriented as shown in Fig. 2.6.

17

CHAPTER 2. THEORY AND METHOD Section 2.5

2.4.3 Lebedev Quadrature
Lebedev quadrature is a numerical integration method for approximating integrals
over a unit sphere. Let A a unit sphere centred in origo, and let f(r) be a function
that varies on it. The surface integral of f(r) over A is then

∫
A
fdS ≈ 4π

N∑
j=1

wjf(θj, φj), (2.75)

where wj is the jth weight of N , and θ and φ are the azimuthal and polar angles,
respectively, of the quadrature points. The approximation easily scales to spheres
of arbitrary radius, R, such that, in Cartesian coordinates, Eq. (2.75) becomes

4πR2
N∑
j=1

wjf(xj, yj, zj), (2.76)

where

xj = R sin(θj) cos(φj)

yj = R sin(θj) sin(φj)

zj = R cos(θj).

Fortran routines for computing the quadrature angles (θj, φj) and their corre-
sponding weight wj up to an order of 5870 is given by Burkardt [33].

2.5 Mie Theory
The Mie Theory is the common term used for the exact solution to the problem
of scattering and absorption of electromagnetic waves by a homogeneous sphere of
arbitrary radius and refractive index. It was developed by Gustav Mie in 1908 [7],
but was also investigated by Peter Debye at the same time, and Lorentz is believed
to be the actual first discoverer [8].

The theory uses separation of variables to separate the solution of the homoge-
neous scalar wave equation

∇2ψ + k2ψ = 0, (2.77)
in spherical coordinates, into a radial and angular parts, ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ).
The vector function

M = ∇× (rψ), (2.78)
where r is the radius vector, is then found to satisfy the homogeneous vector wave
equation in spherical coordinates by taking the double curl and subtracting the term
k2M from both sides

∇×∇×M− k2M = ∇×
[
∇×∇× (rψ)− k2rψ

]
= −∇2M− k2M = ∇×

[
−r(∇2ψ + k2ψ)

]
= 0.

(2.79)

18

CHAPTER 2. THEORY AND METHOD Section 2.6

Here, we have used vector identity (11) on the back cover of Griffiths [24], and the
fact that the divergences ∇·M = ∇·ψ = 0. Introducing the second vector function

N = ∇×M
k

, (2.80)

which also satisfies the homogeneous vector wave equation

∇2N + k2N = 0, (2.81)

we see that M and N have the same properties as the electromagnetic field satisfying
the homogeneous version of the differential equations (2.8) and (2.9)

∇2E + k2E = 0, (2.82)

∇2H + k2H = 0. (2.83)

Using the solution of ψ, E and H may be expanded in an infinite series of the
resulting vector spherical harmonics M and N. The expansion for an incident plane
wave is derived by Bohren and Huffman [8] along with the scattered electric and
magnetic field, both inside and outside the sphere.

In addition to the extensive uses of the Mie theory when studying scattering from
spherical or nearly spherical homogeneous particles, it is very convenient to use as
reference for testing numerical programs whose purpose is to simulate scattering
and absorption from particles of non-spherical geometries. A scattering simulation
using MoM or finite element method should yield approximately the same result
for a spherical and homogeneous scatterer as an implementation of the analytical
solution of the Mie theory.

2.6 MoM on the Two Region Scattering Problem
In this section, the numerical methods discussed in the previous sections are ap-
plied to the two region electromagnetic scattering problem. We start by applying
the MoM with RWG basis functions to the EFIE and MFIE. Then, we look at a
formulation combining both fields into a single matrix equation. Next, a method
for treating the singularities occurring in the Green’s function is applied. Then, we
present the direct formula for evaluating the resulting electric and magnetic field dis-
tribution using the solution of the matrix equation. Following this, we demonstrate
a useful parameterisation of line integrals over triangle edges, and finally, advanta-
geous for computational efficiency, we derive expressions for evaluating single and
double integral over RWG bases using a face-by-face approach.

2.6.1 Expanding EFIE and MFIE in terms of RWG basis
functions

Having approximated the scattering surface between region 1 and 2 (see Fig. 2.1) by
an appropriate closed surface triangulation S, one may proceed by approximating

19

CHAPTER 2. THEORY AND METHOD Section 2.6

the surface current densities on S. The EFIE (Eq. (2.37)) and M(r′) (Eq. (2.38))
both depend on the equivalent electric and the equivalent magnetic surface current
densities, J(r′) (2.37) and M(r′) (2.38) respectively, Both currents may be expanded
as a linear combination of the RWG basis function (2.57)

J(r′) ≈
N∑
n=1

αnfn(r′), (2.84)

M(r′) ≈
N∑
n=1

βnfn(r′). (2.85)

This leads to two sets of expansion coefficients αn and βn, resulting in 2N unknowns,
where N is the number of RWG basis functions on S. Inserting these expansions
into the EFIE (2.39) yields[

N∑
n=1

(
αn
ωµi
i

∫
Sn

dS ′Gi(r, r′) · fn(r′)− βn
∫
Sn

dS ′[∇′ ×Gi(r, r′)] · fn(r′)
)]

tan

=
[Einc

1 (r)]tan , i = 1
0, i = 2.

(2.86)

Applying Galerkin’s method of weighted residuals, i.e. setting the weighted residual
to zero using the basis function fm(r) as testing function gives

∫
Sm

dSfm(r) ·
N∑
n=1

(
αn
ωµi
i

∫
Sn

dS ′Gi(r, r′) · fn(r′)

−βn
∫
Sn

dS ′[∇′ ×Gi(r, r′)] · fn(r′)
)

=


∫
Sm

dSfm(r) · Einc
1 (r)dS, i = 1

0, i = 2,

(2.87)

where Sm and fm(r) are the basis and basis function associated with the observation
point r. The subscript indicating the tangential component have been omitted since
the basis functions are always tangential to the boundary surface S. Next, assuming
that both regions of the scattering problem are homogeneous, we may express the
dyadic Green’s function Gi(r, r′) in terms of the scalar Green’s function Gi(r, r′) as
in Eq. (2.33). The double integral present in the first term on the left hand side of

20

CHAPTER 2. THEORY AND METHOD Section 2.6

Eq. (2.87) becomes∫
Sm

dSfm(r) ·
∫
Sn

dS ′G(r, r′) · fn(r′)

=
∫
Sm

dSfm(r) ·
∫
Sn

dS ′
(
∇∇
k2
i

+ 1̄
)
Gi(r, r′) · fn(r′)

= 1
k2
i

∫
Sm

dSfm(r) · ∇∇ ·
∫
Sn

dS ′Gi(r, r′)fn(r′)

+
∫
Sm

dSfm(r) ·
∫
Sn

dS ′Gi(r, r′)fn(r′).

(2.88)

The first term on the right hand side of this equation may be transformed to [1,12,13]

1
k2
i

∫
Sm

dSfm(r) · ∇∇ ·
∫
Sn

dS ′Gi(r, r′)fn(r′)

= − 1
k2
i

∫
Sm

dS[∇ · fm(r)]
∫
Sn

dS ′Gi(r, r′)∇′ · fn(r′).
(2.89)

Following Ref. [23] we have that

∇′ ×Gi(r, r′) = [∇′Gi(r, r′)]× 1 (2.90)

and since 1 · fn(r′) = fn(r′), the double integral in Eq. (2.87) involving the curl of
the dyadic Green’s function may be transformed as∫

Sm

dSfm(r) ·
∫
Sn

dS ′[∇′ ×Gi(r, r′)] · fn(r′)

=
∫
Sm

dSfm(r) ·
∫
Sn

dS ′[∇′Gi(r, r′)]× fn(r′).
(2.91)

In this way, Eq. (2.87) may be rewritten in the matrix form[
D(1) K(1)

D(2) K(2)

]
ψ = qE, (2.92)

where ψ is the set of unknown expansion coefficients

ψ = [α1, α2, . . . , αN−1, αN , β1, β2, . . . , βN−1, βN]T , (2.93)

the mth element (qEm) of the right hand side vector qEm is given by

qEm =


∫
Sm

dSfm(r) · Einc
1 (r), m = 1, 2, . . . , N

0, m = N + 1, N + 2, . . . , 2N,
(2.94)

21

CHAPTER 2. THEORY AND METHOD Section 2.6

and finally the matrix elements are given by

D(i)
mn =

∫
Sm

dSfm(r) ·
∫
Sn

dS ′Gi(r, r′)fn(r′)

− 1
k2
i

∫
Sm

dS[∇ · fm(r)]
∫
Sn

dS ′Gi(r, r′)∇′ · fn(r′),
(2.95a)

K(i)
mn =

∫
Sm

dSfm(r) ·
∫
Sn

dS ′[∇′Gi(r, r′)]× fn(r′), (2.95b)

for m,n = 1, 2, . . . , N .
Similarly, starting from the MFIE (Eq. (2.40)) we get the matrix equation

K(1) 1
Z2

1
D(1)

K(2) 1
Z2

2
D(2)

ψ = qH , (2.96)

with
Zi =

√
µi
εi
, (2.97)

and

qHm =


∫
Sm

dSfm(r) ·Hinc
1 (r), m = 1, 2, . . . , N

0, m = N + 1, N + 2, . . . , 2N.
(2.98)

2.6.2 Combining EFIE and MFIE
When the surfaces Sm and Sn in Eq. (2.95) fully overlap, i.e. when m = n, the basis
functions fm(r) and fn(r′) are parallel and the cross product in Eq. (2.95b) is parallel
to fm(r), giving K(i)

mn = 0 at any value of the gradient of the Green’s function. The
inner integrals are then poorly tested.

Combining the MFIE and EFIE will improve the accuracy of the results. An
approach is the PMCHW-formulation [22]

Hψ = q, (2.99)

where

H =


D(1) + D(2) −K(1) −K(2)

K(1) + K(2) 1
Z2

1
D(1) + 1

Z2
2

D(2)

 , (2.100)

and

qm =



∫
Sm

dSfm(r) · Einc
1 (r)dS, m = 1, 2, . . . , N

∫
Sm−N

fm−N(r) ·Hinc
1 (r)dS, m = N + 1, N + 2, . . . , 2N.

(2.101)

22

CHAPTER 2. THEORY AND METHOD Section 2.6

The coefficients ψ may be found by solving the matrix equation (2.99) with
a dense solver, such as the direct method of LU-decomposition [30], or an suitable
iterative method. The matrix elements (2.95) may be calculated with an appropriate
numerical method, such as Gaussian quadrature for triangles (see Section 2.4.2),
which is demonstrated in Section 2.6.6. However, the Green’s functions are singular
at r = r′, which needs to be dealt with for the Gaussian quadrature formulas to give
accurate results.

2.6.3 Singularity extraction of the Green’s function
The scalar Green’s function Gi(r, r′) and its gradient ∇′Gi(r, r′) are both singular at
r = r′. In particular, when using the MoM, singularity occurs if the basis function of
the testing integral overlaps with the basis function associated with the source point.
Numerical methods to solve this singularity problem exists, such as Duffy’s trans-
formation [18]. Duffy’s transformation however, applies to 1/R singularities, and is
only accurate for sufficiently regular triangles [12]. The gradient of the Green’s func-
tion do in fact introduce a 1/R3 singularity. Another approach, based on singularity
subtraction, is regarded as the most successful approach [12,13]. In this section, we
will show that subtracting terms from the Green’s function will leave a smoothed,
regularised part, which may be integrated numerically, and a singular part, the sub-
tracted terms, that may be evaluated analytically on closed-form. This method will
also improve the accuracy of integral evaluations Eq. (2.95) in the nearly singular
case, when Sn is close to Sm [1, 12].

Subtracting terms from the Green’s function

The scalar Green’s function for homogeneous media may be expanded using the
Taylor series of the exponential function [34]

ex =
∞∑
n=0

xn

n! = 1 + x+ x2

2! + x3

3! + . . . (2.102)

to become

Gi(r, r′) = eikiR

4πR = 1
4π

(
1
R

+ iki −
k2
iR

2 − ik3
iR

2

6 + . . .

)
. (2.103)

Subtracting only the singular term (the first term of the right hand side) is not
sufficient to yield a smooth function, because the derivative of the Green’s function
is still discontinuous at R = 0 (a consequence of R being an absolute value). Thus,
to achieve an accurate evaluation of the integrals numerically, all odd terms must
be subtracted. With a small kiR however, the higher powers of kiR are negligible,
and it is sufficient to subtract only the first and third term, leaving the terms:

Gi(r, r′) =
[
Gi(r, r′)−

1
4π

(
1
R
− k2

iR

2

)]
+ 1

4π

(
1
R
− k2

iR

2

)

= Gs
i (r, r′) + 1

4π

(
1
R
− k2

iR

2

)
,

(2.104)

23

CHAPTER 2. THEORY AND METHOD Section 2.6

where the smoothed scalar Green’s function is

Gs
i (r, r′) = eikiR − 1

4πR + k2
iR

8π . (2.105)

This regularised function is nonsingular everywhere and have a well-defined deriva-
tive. Its limit as R approaches zero is found by l’Hôpital’s rule

lim
R→0

Gs
i (r, r′) = iki

4π . (2.106)

Before looking the gradient of the smoothed Green’s function, we evaluate the gra-
dient of R:

∇′R = −∇R = ∇′
√

(x− x′)2 + (y − y′)2 + (z − z′)2 = − 1
R

(r− r′) = −R̂, (2.107)

where we have used the following definitions

R = r− r′, (2.108)

R̂ = R
R
. (2.109)

The gradient of the original Green’s function is then

∇′Gi(r, r′) = eikiR

4πR

(
iki −

1
R

)
∇′R

= Gi(r, r′)
(1
R
− iki

)
R̂,

(2.110)

such that the gradient of the smoothed Green’s function becomes

∇′Gs
i (r, r′) = ∇′Gi(r, r′)−

1
4π

(
1
R3 + k2

i

8πR

)
(r− r′) ,

= 1
4π

[
eikiR

R

(1
R
− iki

)
− 1
R2 −

k2
i

2

]
R̂.

(2.111)

Finally, by creating a common denominator and using l’Hôpital’s rule, the limit of
∇′Gs

i (r, r′) as R approaches zero is

lim
R→0
∇′Gs

i (r, r′) = ik3
i

12π . (2.112)

Integrals over the regularised functionsGs
i (r, r′) and∇′Gs

i (r, r′) may be evaluated
using a numerical method such as Gaussian Quadrature, while integrals over the
subtracted terms may be evaluated analytically on closed-forms.

24

CHAPTER 2. THEORY AND METHOD Section 2.6

Inner integral over the subtracted terms

Above we suggested the following replacements in Eq. (2.95) when Gi(r, r′) and
∇′Gi(r, r′) become singular or nearly singular

Gi(r, r′) −→Gs
i (r, r′) + 1

4π

(
1
R
− k2

iR

2

)
, (2.113a)

∇′Gi(r, r′) −→∇′Gs
i (r, r′) + 1

4π

(
∇′ 1
R
− k2

i

2 ∇
′R

)
. (2.113b)

The resulting double integrals over the smoothed Green’s function and its continuous
gradient may, as mentioned above, be numerically calculated using double Gaussian
quadrature. The inner integrals of the subtracted terms however, which have the
form

Xq
1(T±n) :=

∫
T±

n

RqdS ′, (2.114)

Xq
2(T±n) :=

∫
T±

n

Rq(r′ − p±n)dS ′, (2.115)

Xq
4(T±n) :=

∫
T±

n

[∇′Rq]× (r′ − p±n)dS ′ (2.116)

are still singular for q = −1. Here the vector (r′ − p±n) originates from the RWG
basis function fn(r′) (2.57). Fortunately, using iterative methods, these integrals
may be solved exactly [12–14].

The analytical solution uses coordinates in a local, orthogonal coordinate system
(u, v, w) (See Fig. 2.7). Here ∂(i)T , i = 1, 2, 3, are the edges of the triangular element
T , such that the ith edge is opposite vertex i. The triangle vertices in Cartesian
coordinates, r′i, have the transformed coordinates,

r′1 = (0, 0, 0), (2.117)

r′2 = (l3, 0, 0), (2.118)

r′3 = (u3, v3, 0), (2.119)

where li is the length of edge ∂(i)T . The formulas for u3 and v3 in terms of the
triangle vertices in the Cartesian coordinate system are given below, where A is the
area of T ,

u3 = (r′3 − r′1) · (r′2 − r′1)
l3

, (2.120)

v3 = 2A
l3
. (2.121)

The observation and source point have the transformed coordinates

r = (u0, v0, w0) (2.122)

r′ = (u′, v′, 0), (2.123)

25

CHAPTER 2. THEORY AND METHOD Section 2.6

T

v

u

(0, 0, 0)

(l3, 0, 0)

(u3, v3, 0)

w

m3

m1
m2

∂(3)T

∂(1)T

∂(2)T

= (u0, v0, 0)ρ
+s1

t3

t1

t2

+s2

+s3

_
s3

s2

_

s1

_

^

^
^

Figure 2.7: The triangle T in the local coordinate system (u, v, w). The edges ∂(i)T
of T have lengths length li, and m̂i are their corresponding outer unit normals. The
vector ρ is the projection of the observation point r onto the uv-plane.

where

u0 = u · (r− r′1), (2.124)

v0 = v · (r− r′1), (2.125)

w0 = n̂ · (r− r′1), (2.126)

u = r′2 − r′1
l3

, (2.127)

v = n̂× u, (2.128)

and n̂ is the unit normal vector of T . Furthermore, u′ and v′ are arbitrary points in
T . The projection of r onto the transformed triangle is defined by w0

ρ = r− w0n̂. (2.129)

The coordinates s±i and ti are given in Eq. (2.135).
In the transformed coordinate system, the line and surface integrals

I lq(∂(i)T) =
∫
∂(i)T

Rqdl′, (2.130)

ISq (T) =
∫
T
RqdS ′, (2.131)

26

CHAPTER 2. THEORY AND METHOD Section 2.6

have the following solutions [13,14]

I l−1(∂(i)T) = ln
(
R+
i + s+

i

R−i + s−i

)
, (2.132)

IS−3(T) =
0, if w0 = 0

1
|h|
∑3
i=1 βi, otherwise

(2.133)

with

βi = arctan
(

tis
+
i

(R0
i)2 + |w0|R+

i

)
− arctan

(
tis
−
i

(R0
i)2 + |w0|R−i

)
, if w0 6= 0, (2.134)

and the quantities

R+
1 = R−2 = |r− r′3|

R+
2 = R−3 = |r− r′1|

R+
3 = R−1 = |r− r′2|

R0
i =

√
t2i + h2

s+
1 = s−1 + l1

s+
2 = s−2 + l2

s+
3 = s−3 + l3

s−1 = −(l3 − u0)(l3 − u3) + v0v3

l1

s−2 = −u3(u3 − u0) + v3(v3 − v0)
l2

s−3 = −u0

t1 = v0(u3 − l3) + v3(l3 − u0)
l1

t2 = u0v3 − v0u3

l2
t3 = v0.

(2.135)

Recursive rules for higher powers of Eqs. (2.130) and (2.131) are derived in
Ref. [13] and Ref. [12] with the result

I lq(∂(i)T) = 1
q + 1

[
q(R0

i)2I lq−2(∂(i)T) + s+
i (R+

i)q − s−i (R−i)q
]
, (2.136)

ISq (T) = 1
q + 2

(
qw2

0I
S
q−2(T)−

m∑
i=1

tiI
l
q(∂(i)T)

)
. (2.137)

Since the cross product

(r− r′)× (r′ − p±n) = −(r− p±n)× (r− r′) (2.138)

and since the gradient
∇′Rq = −q(r− r′)Rq−1, (2.139)

we may rewrite Eq. (2.116) as

Xq
4(T±n) = −(r− p±n)×Xq

3(T±n), (2.140)

27

CHAPTER 2. THEORY AND METHOD Section 2.6

where
Xq

3(T±n) :=
∫
T±

n

∇′RqdS ′. (2.141)

In the end, by reducing Eqs. (2.114), (2.115), and (2.141) to a series of closed-
form integrals of the forms of Eqs. (2.130) and (2.131), we get the iterative formulas

Xq
1(T±n) = ISq (T±n) (2.142)

Xq
2(T±n) = 1

q + 2

3∑
i=1

m̂iI
l
q+2(∂(i)T±n) + (ρ− p±n)ISq (T±n) (2.143)

Xq
3(T±n) =

3∑
i=1

m̂iI
l
q(∂(i)T±n)− w0qn̂ISq−2(T±n), (2.144)

where m̂i is the outer unit normal of the triangle edge ∂(i)T±n .

Outer integrals of the subtracted terms

Consider the double integrals over the subtracted terms:∫
Tm

dS(r− pm) ·
∫
Tn

dS ′
(

1
R
− k2

i

2 R
)

(r′ − pn), (2.145)

∫
Tm

dS(r− pm) ·
∫
Tn

dS ′
(
∇′ 1
R
− k2

i

2 ∇
′R

)
× (r′ − pn). (2.146)

As discussed in Section 2.6.3, the inner integrals over Tn of both terms in both
equations may be exactly evaluated using the iterative formulas (2.143) and (2.140)
with q = −1 and q = 1. The outer integral of both terms in Eq. (2.145), and
the second term in Eq. (2.146), are regular and may be evaluated using Gaussian
quadratures. However, ∇′R−1 is a 1/R3 singularity, which makes the outer integral
of the first term in Eq. (2.146) singular if Tm and Tn have a common point. We
will now present the method used in Ref. [12] to modify this outer integral with a
singular integrand, to an outer integral of a regular function.

Observing that

(r′ − pn) = (pm − pn) + (r′ − r) + (r− pm), (2.147)

and that (for integer q)
∇′Rq × (r′ − r) = 0, (2.148)

we may write the first term of Eq. (2.146) as∫
Tm

dS(r− pm) ·
∫
Tn

dS ′∇′ 1
R
× [(r− pn) + (pm − pn)] . (2.149)

Both (r− pn) and (pm − pn) are independent of r′ and may be moved outside the
inner integral, and since

(r− pm) ·
[
(r− pm)×

∫
Tn

dS ′∇′Rq
]

= 0, (2.150)

28

CHAPTER 2. THEORY AND METHOD Section 2.6

we get
−
∫
Tm

dS(r− pm) ·
[
(pm − pn)×

∫
Tn

dS ′∇′ 1
R

]
. (2.151)

Next, by splitting the gradient ∇′ into surface and normal components, ∇′ = ∇′s +
∇′n, Eq. (2.151) becomes

−
∫
Tm

dS(r− pm) ·
[
(pm − pn)×

∫
Tn

dS ′
(
∇′n

1
R

+∇′s
1
R

)]
. (2.152)

Consider first the normal gradient

∇′n
1
R

= n̂
(

n̂ · ∇′ 1
R

)
= n̂

[
n̂ · 1

R3 (r− r′)
]
. (2.153)

Noting that in the transformed coordinate system (u, v, w), n̂ = (0, 0, 1), we insert
Eqs. (2.122) and (2.123) giving

∇′n
1
R

= n̂
w0

R3 . (2.154)

Thus, the first term in Eq. (2.152) becomes

−
∫
Tm

dS(r− pm) ·
(

(pm − pn)×
∫
Tn

dS ′n̂w0

R3

)

= −
∫
Tm

dS(r− pm) ·
[
(pm − pn)× n̂w0X

−3
1 (Tn)

]
,

(2.155)

where X−3
1 (Tn) is defined in Eq. (2.142) with q = −3.

Using Gauss theorem in the plane, the we may rewrite the inner integral of the
second term of Eq. (2.152) to a line integral∫

Tm

dS(r− pm) ·
(

(pm − pn)×
∫
Tn

dS ′∇′s
1
R

)

=
∫
Tm

dS(r− pm) ·
[
(pm − pn)×

∫
∂Tn

dl′m̂ 1
R

]
,

(2.156)

where ∂Tn denotes all three edges of the triangle Tn, and m̂ is their outer unit
normal. By changing the order of integration, the expression in Eq. (2.156) becomes∫

∂Tn

dl′ [(pm − pn)× m̂(r′)] ·
∫
Tm

dS (r− pm)
R

=
∫
∂Tn

dl′
{

[(pm − pn)× m̂(r′)] ·X−1
2 (Tm)

}
,

(2.157)

where X−1
2 (Tm) is defined in Eq. (2.143) with q = −1.

As a result, the inner integral of both Eq. (2.155) and Eq. (2.157) may be eval-
uated analytically, and the outer integral of Eq. (2.157) is regular, and may be
evaluated using an appropriate numerical method, such as Gauss-Legendre quadra-
ture (see Section 2.6.5). The outer integral of Eq. (2.155) is still singular, but at

29

CHAPTER 2. THEORY AND METHOD Section 2.6

common points in Tm and Tn the surface gradient term will be dominant (unless
Tm and Tn lies in the same plane in which both terms will be zero) and Gaussian
quadrature will still yield reasonably accurate results [12].

Although it is tempting to apply singularity subtraction on every integral to
reduce implementation complexity, it is important to note, that singularity subtrac-
tion should only be applied in the singular or near singular case. Otherwise, kiR
may be too large when Sn and Sm are far away from each other, so that the higher
order terms in Eq. (2.103) are no longer negligible, resulting in reduced numerical
accuracy.

2.6.4 Field Distribution
After solving the matrix equation (2.99) and finding the expansion coefficients αn
and βn, the equivalent surface currents J(r′) (Eq. (2.84)) and M(r′) (Eq. (2.85)),
may be used to yield direct expressions for evaluating the electric and magnetic field
at any point inside either region [1]:

Ei(r) =
+
−


N∑
n=1

[

− αn
ωµi
i

(∫
Sn

dS ′Gi(r, r′)fn(r′) + 1
k2
i

∫
Sn

dS ′∇Gi(r, r′)∇′ · fn(r′)
)

+ βn

∫
Sn

dS ′[∇′Gi(r, r′)]× fn(r′)
]

+
{

Einc
1 (r), i = 1 and r ∈ V1,

0, i = 2 and r ∈ V2,

(2.158a)

Hi(r) =
+
−


N∑
n=1

[

− βn
ωµi
i

(∫
Sn

dS ′Gi(r, r′)fn(r′) + 1
k2
i

∫
Sn

dS ′∇Gi(r, r′)∇′ · fn(r′)
)

− αn
∫
Sn

dS ′[∇′Gi(r, r′)]× fn(r′)
]

+
{

Hinc
1 (r), i = 1 and r ∈ V1,

0, i = 2 and r ∈ V2.

(2.158b)

Here, to replace the dyadic Green’s function with the scalar, we have used the
transformation∫

Sn

dS ′Gi(r, r′) · fn(r′)

= 1
k2
i

∫
Sn

dS ′∇Gi(r, r′)∇′ · fn(r′) +
∫
Sn

dS ′Gi(r, r′)fn(r′),
(2.159)

which is similar to Eqs. (2.88) and (2.89), and the transformation of the curl of
Gi(r, r′), Eq. (2.90).

The scattered field is obtained by omitting the final term of Eq. (2.158), i.e.

Esca(r) = E1(r)− Einc
1 (r), r ∈ V1. (2.160)

30

CHAPTER 2. THEORY AND METHOD Section 2.6

When the observation point is away from the scattering surface, Gaussian quadrature
may be applied to evaluate the integrals above. However, the Green’s function and
its gradient still have a singularity. Thus, when calculating field distributions at
observation points close to the surface of the scattering surface, the singularity
subtraction techniques in Eq. (2.113) are appropriate. As follows, the calculation of
Eq. (2.158) involves both Gaussian quadrature, and evaluation of analytical integrals
using iterative formulas.

2.6.5 Line integral over a triangle
The singularity subtraction technique presented in Section 2.6.3 requires the eval-
uation of a line integral over the boundary of a triangle (see Eq. (2.157)). The 1D
Gauss-Legendre quadrature formula discussed in Section 2.4.1 is a suitable numeri-
cal method for such an integral. Be that as it may, the line integral in Eq. (2.157)
is over a line segment in 3D space, and needs to be transformed onto an axis with
the 1D limits [−1, 1]. To do this, we first note that a line integral over ∂Tn equals
the sum of the line integrals of all the edges ∂(i)Tn of the triangle Tn:∫

∂Tn

dl′g(r′) =
∫
∂(1)Tn

dl′g(r′) +
∫
∂(2)Tn

dl′g(r′) +
∫
∂(3)Tn

dl′g(r′). (2.161)

Here g(r′) is a function dependent on the source point r′, similarly to the integrand
in Eq. (2.157) where the r′-dependency lies in R and hence in X−1

2 (Tm) (2.115).
Let r′1, r′2 and r′3 be the vertices of Tn. Then the edge ∂(1)Tn is a line segment

from r′2 to r′3. If r′ is bound to that line segment, it may be parameterised as

r′(t) = r′3 − r′2
2 t+ r′3 + r′2

2 , −1 ≤ t ≤ 1, (2.162)

and we have the integral transformation∫
∂(1)T

dl′g(r′) = 1
2 |r

′
3 − r′2|

∫ 1

−1
dtg(r′(t)). (2.163)

The right hand side of this equation is on the form Eq. (2.68), and Gauss-Legendre
quadrature formulas may now be applied.

2.6.6 Reducing the Amount of Integral Evaluations
One of the major computational efforts in simulating electromagnetic scattering
using the methods presented in this chapter is to calculate the matrix elements of
H (see Eq. (2.100)). The number of matrix elements to be evaluated increases
proportional to the number of RWG basis functions squared, N2. For a closed
surface, which is the case for the combined EFIE and MFIE formulation leading to
the matrix equation (2.99) with the elements D(i)

mn and K(i)
mn, the number of bases

is equal to the number of edges, N = Ne. However, integrating over a basis Sm,
identified by its basis edge with length Lm, involves integrating over both of its

31

CHAPTER 2. THEORY AND METHOD Section 2.6

adjacent faces (triangles) T±m . Since a face has three edges, it appears in three
different RWG basis functions. Thus, evaluating the integrals in Eq. (2.95) with a
face-by-face approach, instead of basis-by-basis approach, will reduce the amount of
integral evaluations by a factor proportional to

N2
e

N2
f

= N2
e

(2
3Ne)2 = 9

4 , (2.164)

where Nf is the number of faces in the surface triangulation.
This section considers the formulation of the double integrals in Eq. (2.95) using

a face-by-face approach and double Gaussian quadrature.

Basis-by-basis approach when calculating D(i)

Consider the second term of the matrix element D(i)
mn, defined in Eq. (2.95a). Writing

out the divergence of fm(r) and fn(r′) yields

∇ · fm(r) = Lm
2A±m
∇s · (r− p±m) = Lm

A±m
, r ∈ T±m

∇′ · fn(r′) = Ln
A±n

, r′ ∈ T±n .
(2.165)

The integrals over Sm and Sn may be split into two integrals each, integrating over
both faces T±m and T±n separately

− 1
k2
i

∫
Sm

[∇ · fm(r)]
∫
Sn

Gi(r, r′)∇′ · fn(r′)

= −9LmLn
4k2

i

(
1

A+
mA

+
n

∫
T+

m

∫
T+

n

Gi(r, r′)dS ′dS

− 1
A+
mA
−
n

∫
T+

m

dS
∫
T−

n

dS ′Gi(r, r′)

− 1
A−mA

+
n

∫
T−

m

dS
∫
T+

n

dS ′Gi(r, r′)

+ 1
A−mA

−
n

∫
T−

m

dS
∫
T−

n

dS ′Gi(r, r′)
)
.

(2.166)

To rewrite the integrals on Gaussian quadrature form, such as Eq. (2.69), we use
the following transformations onto barycentric coordinates

r = αr1 + βr2 + γr3 (2.167)

r′ = ξr′1 + ηr′2 + ζr′3, (2.168)

32

CHAPTER 2. THEORY AND METHOD Section 2.6

where (α, β, γ) and (ξ, η, ζ) are the barycentric coordinates of the triangles T±m and
T±n , respectively. The double integral in Eq. (2.166) may then be approximated as∫

Sm

dS
∫
Sn

dS ′Gi(r, r′)

=
2∑
p=1

2∑
q=1

(−1)p+q
Nj∑
j=1

wj

Nk∑
k=1

wkGi(αjrp1 + βjrp2 + γjrp3, ξkr
′q
1 + ηkr′q2 + ζkr′q3),

(2.169)

where r1
i , r2

i , r′1i , and r′2i are the vertices of the faces T+
m , T−m , T+

n , and T−n , respec-
tively. The factor (−1)p+q makes sure the outer terms have the correct sign. There
are Nj quadrature points, (αj, βj, γj), on the faces T±m , and Nk quadrature points,
(ξk, ηk, ζk), on the faces T±n , with wj and wk being the corresponding weights.

With similar treatment of the first term of D(i)
mn, Gaussian quadrature in barycen-

tric coordinates yields:∫
Sm

dSfm(r)·
∫
Sn

dS ′Gi(r, r′)fn(r′)

= LmLn
4

[2∑
p=1

2∑
q=1

(−1)p+q
Nj∑
j=1

wj(αjrp1 + βjrp2 + γjrp3 − ppm)

·
Nk∑
k=1

wkG
Bary
i (r, r′)(ξkr′q1 + ηkr′q2 + ζkr′q3 − pqn)

]
,

(2.170)

where

GBary
i (r, r′) = Gi(αjrp1 + βjrp2 + γjrp3, ξkr

′q
1 + ηkr′q2 + ζkr′q3), (2.171)

and we have used the notations p1
m, p2

m, p1
n, and p2

m for the free vertices p+
m, p−m, p+

n ,
and p−n , respectively. Thus, calculation of the matrix element D(i)

mn using a basis-by-
basis approach is achieved by simply implementing the quadruple sums (2.169) and
(2.170).

Face-by-face approach for calculating D(i)

To evaluate the integrals of the matrix elements D(i)
mn using a face-by-face approach,

they must first be independent of quantities associated with a particular basis func-
tion. Because of the free vertices ppm and pqn, the Gaussian quadrature sums in

33

CHAPTER 2. THEORY AND METHOD Section 2.6

Eq. (2.170) are associated with the bases Sm and Sn. Nevertheless, by defining

Irq
ξ =

Nk∑
k=1

wkξkG
Bary
i (r, r′) (2.172a)

Irq
η =

Nk∑
k=1

wkηkG
Bary
i (r, r′) (2.172b)

Irq =
Nk∑
k=1

wkG
Bary
i (r, r′) (2.172c)

Irq
ζ = Irq − Irq

ξ − I
rq
ζ , (2.172d)

where the last equation emerges from the constraint

ζ = 1− ξ − η,

the inner sum of Eq. (2.170) may be written as

Nk∑
k=1

wkG
Bary
i (r, r′)(ξkr′q1 + ηkr′q2 + ζkr′q3 − pq)

= Irq
ξ r′q1 + Irq

η r′q3 + Irq
ζ r′q3 − Irqpq.

(2.173)

The Gaussian quadrature sums (2.172) are in fact not associated with any particular
basis. They are only dependent on the observation point r and the face represented
by q. To get the outer integral independent of basis as well, we use the Eq. (2.173)
and expand the dot product of the second innermost sum of Eq. (2.170) to obtain

∫
Sm

dSfm(r) ·
∫
Sn

dS ′Gi(r, r′)fn(r′) = LmLn
4

[2∑
p=1

2∑
q=1

(−1)p+q
(

Qpq
αξr

p
1 · r

′q
1 +Qpq

αηr
p
1 · r

′q
2 +Qpq

αζr
p
1 · r

′q
3 −Qpq

α rp1 · pqn

+Qpq
βξr

p
2 · r

′q
1 +Qpq

βηr
p
2 · r

′q
2 +Qpq

βζr
p
2 · r

′q
3 −Q

pq
β rp2 · pqn

+Qpq
γξr

p
3 · r

′q
1 +Qpq

γηr
p
3 · r

′q
2 +Qpq

γζr
p
3 · r

′q
3 −Qpq

γ rp3 · pqn

−Qpq
ξ ppm · r

′q
1 −Qpq

η ppm · r
′q
2 −Q

pq
ζ ppm · r

′q
3 +Qpqppm · pqn

)]
.

(2.174)

In obtaining this result, we have defined the following quantities,

34

CHAPTER 2. THEORY AND METHOD Section 2.6

Qpq
αξ =

Nk∑
k=1

wkαkI
rq
ξ ,

Qpq
βξ =

Nk∑
k=1

wkβkI
rq
ξ ,

Qpq
ξ =

Nk∑
k=1

wkI
rq
ξ ,

Qpq
αη =

Nk∑
k=1

wkαkI
rq
η ,

Qpq
βη =

Nk∑
k=1

wkβkI
rq
η ,

Qpq
η =

Nk∑
k=1

wkI
rq
η ,

Qpq
α =

Nk∑
k=1

wkαkI
rq,

Qpq
β =

Nk∑
k=1

wkβkI
rq,

Qpq =
Nk∑
k=1

wkI
rq,

(2.175)

and

Qpq
αζ = Qpq

α −Q
pq
αξ −Qpq

αη,

Qpq
βζ = Qpq

β −Q
pq
βξ −Q

pq
βη,

Qpq
ζ = Qpq −Qpq

ξ −Qpq
η ,

Qpq
γ = Qpq −Qpq

α −Q
pq
β ,

Qpq
γξ = Qpq

ξ −Q
pq
αξ −Q

pq
βξ,

Qpq
γη = Qpq

η −Qpq
α −Q

pq
βξ,

Qpq
γζ = Qpq

ζ −Q
pq
αζ −Q

pq
βζ .

(2.176)

as consequence of the constraints γ = 1− α− β and ζ = 1− ξ − η.
The sums (2.175) are only dependent on the vertices of the face-pair identified by

the superscript p and q, and on the particular Gaussian quadrature formula applied.
If we let p and q take any integer value from 1 to Nf , such that Eq. (2.175) may be
evaluated for all combinations of face pairs p and q, each evaluation contributes to
nine elements in D(i). This makes sense because instead of evaluating 4 double inte-
grals per basis pair, we evaluate a single double integral per face pair, i.e. reducing
the number of Gaussian quadrature sums by a factor of

4N2
e

N2
f

= 4N2
e

(2
3Ne)2 = 9, (2.177)

If the same quadrature formulas are used to evaluate the second term in D(i)
mn, then

no additional quadrature calculation is necessary for this term since the inner double
sum of Eq. (2.169) is in fact Qpq in Eq. (2.175).

35

CHAPTER 2. THEORY AND METHOD Section 2.6

Calculation of K(i)

Similarly to the terms in D(i)
mn, the double integral in K(i)

mn may be written out as
Gaussian quadrature sums∫

Sm

dSfm(r) ·
∫
Sn

dS ′[∇′Gi(r, r′)]× fn(r′)

= LmLn
4

[2∑
p=1

2∑
q=1

(−1)p+q
Nj∑
j=1

wj(αjrp1 + βjrp2 + γjrp3 − ppm)

·
Nk∑
k=1

wk

[
GBary
i (r, r′)

(1
RBary − iki

)]
R̂Bary × (ξkr′q1 + ηkr′q2 + ζkr′q3 − pqn)

]
,

(2.178)

where

RBary =
∣∣∣∣αjrp1 + βjrp2 + γjrp3 − ξkr

′q
1 − ηkr

′q
2 − ζkr

′q
3

∣∣∣∣ (2.179)

R̂Bary = 1
RBary

(
αjrp1 + βjrp2 + γjrp3 − ξkr

′q
1 − ηkr

′q
2 − ζkr

′q
3

)
. (2.180)

Straightforward implementation of Eq. (2.178) constitute a basis-by-basis approach.
By expanding the cross product, the vector pqn may be factored out of the innermost
sum such that the two inner sums in Eq. (2.178) become

Nj∑
j=1

wj(αjrp1 + βjrp2 + γjrp3 − ppm) ·
Nk∑
k=1

wk

[
GBary
i (r, r′)

(1
RBary − iki

)]
R̂Bary

× (ξkr′q1 + ηkr′q2 + ζkr′q3 − pqn) =
Nj∑
j=1

wj(αjrp1 + βjrp2 + γjrp3 − ppm) ·
{
Irq
ξ

[
(αjrp1 + βjrp2 + γjrp3)× r′q1 + r′q1 × pqn

]

+Irq
η

[
(αjrp1 + βjrp2 + γjrp3)× r′q2 + r′q2 × pqn

]
+Irq

ζ

[
(αjrp1 + βjrp2 + γjrp3)× r′q3 + r′q3 × pqn

]
−Irq [(αjrp1 + βjrp2 + γjrp3)× pqn]

}
,

(2.181)

36

CHAPTER 2. THEORY AND METHOD Section 2.6

where

Irq
ξ =

Nk∑
k=1

wkξkG
Bary
i (r, r′)

(1
RBary − iki

) 1
RBary (2.182a)

Irq
η =

Nk∑
k=1

wkηkG
Bary
i (r, r′)

(1
RBary − iki

) 1
RBary (2.182b)

Irq =
Nk∑
k=1

wkG
Bary
i (r, r′)

(1
RBary − iki

) 1
RBary (2.182c)

Irq
ζ = Irq − Irq

ξ − Irq
ζ . (2.182d)

The free vertex ppm may be factored out of the remaining sum by expanding the
dot product in Eq. (2.174). The result is presented in Appendix A. In this expan-
sion, there are 18 independent, scalar Gaussian quadrature sums (of similar form
as Eq. (2.175)), and a face-by-face approach is achieved by calculating these for
every face-pair, and let them contribute in the elements of K(i). As with D(i), a
face-by-face approach will reduce the number of integral evaluations by a factor of
9.

However, the cost you pay to increase the computational efficiency by reducing
the number of integrals is obviously the need to store more variables. In fact, you
need to store at least 5 of the 9 independent sums in Eq. (2.175) (the ones that are
multiplied with a dot product involving ppm or pqn), and 12 of the 18 independent
sums in Eq. (A.4). This means storing a minimum of 21N2

f numbers of complex type.
The extra procedural implementations as opposed to a more direct implementation
is also an disadvantage, as it introduces the possibility for more bugs and errors.

37

Chapter 3

Numerical Implementation

The methods presented in Section 2.6 was implemented in a set of modules, becoming
the building blocks of a program aiming to simulate the electromagnetic scattering
problem introduced in Section 2.1. The modules uses an object-oriented design, writ-
ten in the Fortran programming language. The first section of the chapter discusses
all modules, their interfaces, functionalities and implementation approaches.

Fortran was chosen because of its speed, its excellent handling of scientific com-
puting, and the vast availability of scientific libraries and code. The calculation of
the matrix elements in Eq. (2.99) requires evaluation of a large number of integrals,
meaning plenty of number crunching, of which Fortran is particularly suitable. The
reliable scientific libraries may then be used to solve the resulting dense matrix
equation. Modern Fortran also support object-oriented programming.

A large number of routines were designed to test the procedures of the modules,
making sure they performed as expected. Section 3.2 introduces the testing programs
used to validate the modules and the simulation results.

Finally, the chapter contains a discussion on the compilation of the software, and
the Makefiles used.

3.1 Simulation Design
The goal of the program was to numerically simulate, based on the electric and
magnetic field integral equations (EFIE/MFIE), the scattering of electromagnetic
waves by an arbitrary shaped object using the method of moments (MoM) with
Galerkin’s method of weighted residuals and the RWG basis functions. This was
accomplished through execution of the following steps,

1. Discretising of the scattering surface using a surface triangulation technique.

2. Storing the triangulation in a suitable data structure.

3. Mapping the triangulation onto the RWG basis functions.

4. Calculating the matrix elements of Eq. (2.100) by numerical integration using
double Gaussian quadrature, or by a combination of numerical integration and

38

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.1

analytical evaluation if singularity subtraction of the integrands are appropri-
ate.

5. Finding the expansion coefficients Eq. (2.93) by solving the resulting matrix
equation.

6. Using the solution to estimate the total and scattered electric and magnetic
field distribution.

A major goal in all of the above steps was to keep generality and versatility, while
ensuring computational efficiency and balancing computation speed and memory
cost. Before going into details on each module and how they process the steps
above, we give a short introduction to all modules.

The discretisation is accomplished through the use of external software, which
outputs a file representing the triangulation. This file is read by functionality im-
plemented in the I/O module io_mod. The main data type in module mesh_mod,
called mesh_mod_type, uses io_mod to store the discretised surface in a convenient
hierarchical data structure based on faces (also called elements), edges, vertices and
nodes. The module RWG_basis_mod contains the main data type which inherits
mesh_mod_type and maps its data structure onto a new structure, suitable for eval-
uating the Rao-Wilton-Glisson (RWG) basis functions. The type mesh_mod_type is
not restricted to storing the triangulation required to construct RWG basis func-
tions. It is designed to be able to store elements having an arbitrary number vertices,
and elements having quadratic or cubic edges. In this way, mesh_mod_type is useful
for other basis functions as well, and especially suitable when a hierarchical data
structure is desired. Thus, the discretised surface is often be referred to as the mesh,
as it may or may not be a triangulation.

The main type of PMCHW_RWG_mod, called PMCHW_RWG_mod_type, inherits RWG_-
basis_mod_type, and uses its data structure to calculate the matrix elements in
Eq. (2.100) and the vector (2.101). These values are successively stored such that
the matrix equation (2.99) may be solved by internal procedures. The solution(s)
are then stored, also in PMCHW_RWG_mod_type, which encapsulate member proce-
dures for calculating the resulting electric and magnetic field distributions at any
given observation point. In addition, PMCHW_RWG_mod_type contains functionality
to calculate bistatic scattering cross sections.

Finally, results from PMCHW_RWG_mod may be written to file using a routine in
io_mod. In this project, scripts written in Python was used to produce plots from
the results calculated by PMCHW_RWG_mod.

The modules mentioned above are dependent on several additional, essential
modules called working_precision_mod, math_funcs_mod and constants_mod. The
module working_precision_mod, being imported by all other modules, defines
the working precision of the simulation. The module math_funcs_mod contains
frequently used mathematical functions, and constants_mod defines physical and
mathematical constants.

The implementation details and interface of each module are presented after a
description of the discretisation process.

39

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.1

3.1.1 Discretisation
Several versatile software packages for mesh generation and finite element method
(FEM) analysis exists. Among these are Netgen/NgSolve [35] and Gmsh [2]. They
both use high performance unstructured meshing algorithms to discretise arbitrary
surfaces and volumes. The surface mesh elements may be simplices or quadrilaterals,
or even a mix, and the shape of the elements may be locally altered using mesh
adaptation. Unstructured and adaptive meshing allows the user to chose a finer
discretisation in specific areas to increase numerical accuracy of the results, e.g. near
the boundaries of an open surface, while using coarser discretisation resolution in less
important regions to reduce the computational cost. Additionally, in FEM analysis,
it may be useful to distinguish elements according to materials or boundaries. In
Gmsh, such grouping of entities is accomplished through physical groups. It is also
possible to easily increase the order of the element edges from linear to quadratic
and cubic. In this project, surface meshes was produced by Delaunay triangulation
(see Section 2.3) using the Gmsh software package.

The generated surface and volume meshes may be exported to various formats,
both by Netgen and Gmsh. Normally, the format represents the mesh through the
coordinates of the discretisation nodes and the nodes each element is composed of.
The module mesh_mod is designed such that it is capable of reading and storing
a surface mesh represented by any format. Currently, it is compatible with the
MSH ASCII file format version 2 (Gmsh2), a fileformat available in both Gmsh and
Netgen. Moreover, tools are available in the I/O module (to be detailed later) to
ease the expansion of format versatility. An example of a surface mesh in the Gmsh2
format is presented in Appendix C.1.

3.1.2 Modules
As stated above, several of the modules are depended on other modules. Figure 3.1
shows a module diagram listing every module and their dependencies, indicated by
arrows, where the module at the arrowhead is the dependee. A dashed arrow in-
dicates inheritance with the arrowhead pointing at the descendant. It is implicit
that the inheritance applies to the main type of module. Notice that there are only
single headed arrows, meaning there are no circular dependencies, which is a useful
feature when compiling Fortran code. A description of all modules shown in the
figure will follow in this section. Note that this diagram does not distinguish direct
from indirect dependency. As an example, the module PMCHW_RWG_mod depends di-
rectly on working_precision_mod and RWG_basis_mod, while it depends indirectly
on mesh_mod.

mesh_mod

The module mesh_mod was designed to completely represent a discretised surface,
be it closed or open, triangular or quadrilateral, linear or cubic. Consequently, it
is versatile in the sense that you can use it together with different types of basis

40

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.1

working_precision_mod

io_mod

RWG_basis_mod

constants_mod is_close_mod gauss_quad_

formulas_mod

math_funcs_mod

mesh_mod

PMCHW_RWG_modtest_utilitites_mod

Figure 3.1: A module diagram illustrating the dependencies between the modules
used in the simulation program. Each box is a module and an arrow represents an
dependence, where the arrowhead points towards the dependee. A dashed arrow
represents inheritance of derived types.

41

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.1

functions, and it is generic in the sense that it may represent a broad group of
surfaces.

The module consists of a main derived type called mesh_mod_type and its mem-
ber procedures, a few constants, and some additional public and private procedures.
The interface of its Fortran file mesh_mod.f90 is printed in Appendix B.1 for refer-
ence.

The data structure of mesh_mod_type determines the memory cost of represent-
ing the mesh. It also determines the computational cost of accessing specific entities.
Storing only the coordinates of each entity will be memory efficient, but it will be
significantly computationally expensive to locate neighbouring entities. In FEM
and MoM, basis functions are usually local, consisting of adjacent entities, such that
storing adjacency relations will be computational efficient. However, storing every
possible adjacency relation for every entity consumes a lot of memory, so it is ad-
vantageous to balance the amount of adjacency relations with the computational
cost of retrieving them. Consider a mesh entity Mdi

i , where di is the entity order. A
vertex has entity order 0, while an edge and a face have orders 1 and 2, respectively.
Let Mdi

i

〈
Mdi−1

〉
be the set of lower order entities that lies on the boundary of Mdi

i .
E.g. the set of edges on the boundary of a triangle M2

i could be

M2
i [M1

±] = [M1
+i,M

1
−j,M

1
+k],

where the indices i 6= j 6= k and the ± subscript indicate the orientation of the edge
in relation to the orientation of the adjacent face. The derived type mesh_mod_type
represents a mesh by storing the following relations

M2
i [M1

±],M1
i bM0c, (3.1)

for all faces and edges. For a closed triangulated surface, this requires the storage
of

3Nf + 2Ne = 12
2 Ne,

relations. Here Nf and Ne is the number of faces and edges in the triangulation,
respectively. The three dimensional Cartesian coordinates of the vertices, M0

i , are
stored as well to complete the spatial representation. The adjacency relations in
Eq. (3.1) are of first order, so that mesh_mod_type has a topology-based and hier-
archical data structure [36], making it efficient to retrieve the coordinates of both
faces and edges, as well as retrieving the boundary edges of a face. An example of a
second order adjacency relation is the set of faces which share a specific vertex with
a particular face.

Tables 3.1 and 3.2 shows the attributes and member procedures of mesh_mod_-
type. The dimension (1) signifies an array of rank 1 with a single element, i.e. a
scalar. The dimension (4, 3) would be a rank 2 array with dimensions 4 and 3,
i.e. a 4 by 3 matrix. If the dimensions are colons instead of numbers, then the
attribute is a dynamically allocatable array. As such, the attributes faces, edges,
vertices, and nodes are all allocatable rank 1 arrays of the derived type edge_type,

42

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.1

Attributes of mesh_mod_type
Name Type Dimension
faces face_type (:)
edges edge_type (:)
vertices vertex_type (:)
nodes node_type (:)
face_order integer (1)
edge_order integer (1)
spatial_dim integer (1)
num_faces integer (1)
num_edges integer (1)
num_vertices integer (1)
num_nodes integer (1)
num_handles integer (1)
num_apertures integer (1)
num_boundary_edges integer (1)
closed_surface logical (1)

Table 3.1: The names, type and dimension of the attributes of the derived type
mesh_mod_type, which is the main type of the module mesh_mod. All attributes
are rank 1 arrays, most of them are scalars or vectors dimension 1 (identified by
(1)), and some of them have a dynamically allocatable dimension (identified by the
colon, :).

43

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.1

5

30

6

42

8

41

33

Figure 3.2: A face of order 3 with edges of order 1. The numbers represents index
identifiers of the entities. A number surrounded by a circle represents the index of
a face, an underlined number the index of an edge, and a normal number the index
of a vertex. The orientations of the edges are indicated by the arrowheads. The
orientation of the face is indicated by the curled arrow in the centre of the face. The
resulting direction of the face’s normal vector is obtained by using the right hand
rule on the face orientation.

vertex_type, and node_type, respectively. These derived types are also defined in
mesh_mod.

The derived type face_type has itself one attribute; an allocatable array of
integers identifying which particular edges the face is enclosed by. Technically, these
identifiers represents index numbers of the array edges. In this way, face_type
stores the adjacency relation M2

i [M1
±]. Similarly, edge_type stores the relation

M1
i bM0c (the vertices of which lies on the boundary of an edge) by having an array

of two integer identifies representing index numbers of the array vertices. Finally,
the vertex_type consists of only a single scalar integer attribute, pointing to an
index location in the array nodes, where node_type holds and array of 3 floating
numbers (type real), representing the Cartesian coordinates of the node.

Why have the array nodes in addition to the array vertices? Do they not
represent the same topological entity? Yes, and no. The derived type edge_type
has in fact an additional allocatable rank 1 array, where the integers represents index
numbers in the array nodes. This is because an edge may be quadratic or cubic
instead of linear, requiring storage of one or two additional nodes (see Section 5.2
in Ref. [36]). However, the total number of vertices in the mesh is independent of
the edge order, introducing the need to distinguish between nodes and vertices.

In terms of physical calculations it is important that the normal vector of every
face points in the same direction. If the mesh represents a closed surface the desired
directions of the face normals are outward. Whether a face normal is inward or
outward is determined by the the right hand rule with the face orientation, see
Fig. 3.2. The current direction in a RWG basis function (see Section 2.2.3) also
depends on the orientation of the basis edge. Therefore, it is desired to store the
orientation of faces and edges along with its adjacency relation. The orientation

44

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.1

of an edge_type is easily stored indirectly by defining the positive direction from
the vertex represented by the first element in its array vertices, to the vertex
represented by the second element in the same array. Similarly, the orientation of a
face_type may be defined by the order of the edge indices in its array edges. The
face and edges in the example Fig. 3.2 are then stored as,

faces(33)%edges = [41, 42, 8]
edges(41)%nodes = [5, 30]
edges(42)%nodes = [6, 30]
edges(8)%nodes = [6, 5]

where edges(41) accesses the edge_type element of index 41 in the edges array,
listed in table 3.1. Here the % operator accesses a derived type’s attributes. In the
case above, the attributes are the first order adjacency relation sets

M2
33[M1],

M1
41bM0c,

M1
42bM0c,

M1
8 bM0c,

respectively.
The mesh format that is currently supported by the I/O module, Gmsh2, con-

tains the nodes and faces of a mesh. The nodes are represented by their Cartesian
coordinates and a designated index, and the faces are represented by the node in-
dices of which the face is comprised (faces are called elements by the format). The
order of the node indices is such that, by following our definition of face orientation
above, all faces have normal vectors directed outwards. If this was not the case, care-
ful ordering of the constructed edges would have been necessary when storing the
relations M2

1 [M1]. An example of such careful ordering is described in the appendix
of Ref. [26].

The attributes num_faces, num_edges, num_vertices, and num_nodes in Ta-
ble 3.1 are helping integers representing the number of faces, edges, vertices, and
nodes, respectively. These are equal to the size of the arrays faces, edges, ver-
tices, and nodes, respectively. The integers num_handles, num_apertures, and
num_boundary_edges are additional topological parameters, as by the definitions
in Section 2.3.1 storing Nh, Na, and Nb, respectively. They are used to validate
the mesh using topological evaluations such as Eq. (2.64). The integer face_order
stores the number of vertices per face, and edge_order indicates whether the edges
are linear, quadratic, or cubic. Lastly, closed_surface is of Boolean data type,
and indicates whether the surface mesh has a closed or open topology.

Table 3.2 lists some of mesh_mod_type’s member procedures. Even though there
are many public member functions, the user only needs to utilise initialise to
create a usable mesh object. This routine takes a series of arguments; the path
and file format of a mesh-file, along with certain parameters describing the surface,
such as edge and face order, spatial dimension, and topological parameters. The

45

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.1

Selected procedures in mesh_mod_type
Name Encapsulation
initialise public
get_edges_on_face public
get_vertices_of_face public
get_face_coords public
face_normal public
volume public
edge_length public
face_area public

Table 3.2: The names and encapsulation of selected member procedures of the
derived type mesh_mod_type, the main type of the module mesh_mod.

amount of topological parameters required depends on the edge and face order, and
whether the surface is open or closed. The routine initialise calls on functionality
in io_mod to read the given file, then it validates its arguments together with data
from the file, and finally allocates and initialises the attributes of its derived type,
mesh_mod_type.

The function get_edges_on_face is an example of a get-function which returns
a first order adjacency relation set, in this case the edges on the boundary of a face.
Because of the data structure of mesh_mod_type, this connectivity fetch has very few
operations and thus a very low computational cost. The functions get_vertices_-
of_face and get_face_coords are also connectivity fetches with low computational
cost because of the hierarchical data structure. They return the indices and Carte-
sian coordinates of the vertices on the closure of the face, respectively. On the
other hand, the latter get-functions are a bit more computationally expensive than
get_vertices_of_face, since the relation M2

i [M0] is not stored directly, but via
Eq. (3.1).

The derived type mesh_mod_type has several calculation procedures, such as
face_normal which uses get_face_coords to calculate the unit normal vector of
a particular face, and volume which calculates the volume of a closed surface mesh
using face_normal and other procedures while iterating through the faces of the
mesh. The procedure edge_length is another useful function, especially when map-
ping onto RWG basis functions. Indeed, all of the calculation procedures are very
useful for validating the mesh representation. As is done by the testing programs
described in Section 3.2.

RWG_basis_mod

Now, using mesh_mod, we have a way reading, storing, and accessing an arbitrary
discretised surface. However, we want to apply MoM using RWG basis functions,
giving the need to evaluate integrals over these basis functions. An RWG basis,
shown in Fig. 2.2, consists of two triangular faces sharing an edge. Hence, on a

46

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.1

Attributes of RWG_basis_mod_type
Name Type Dimension
mesh mesh_type (1)
basis_edges integer (:)
adjacent_faces integer (:, :)
num_bases integer (1)
basis_edge_length real (:)

Table 3.3: The names, types and dimensions of the attributes of the derived type
RWG_basis_mod_type, the main type of the module RWG_basis_mod. Dynamically
allocatable dimensions are signified by the colon, :.

closed surface, the number of RWG basis functions, N , equals the number of edges,
while on an open surface there will be noncontributing boundary edges such that

N =
{
Ne : closed surface,
Ne −Nb : open surface,

(3.2)

where Ne and Nb are the number of edges and boundary edges on the surface,
respectively.

A surface integral over the RWG basis Sm means integrating over both faces T±m
adjacent to the basis edge Lm. However, the adjacency relation

M1
i {M2},

i.e. the set of faces sharing the edge M1
i , is not stored in the data structure of

mesh_mod_type. Adding this relation to the data structure would reduce the com-
putational cost when iterating through the bases and solving the integrals. On the
other hand, adding this adjacency relation to mesh_mod_type will reduce the versa-
tility of the mesh representation, as it may be superfluous to other basis functions
and unnecessarily use of memory space. Additionally, if the surface is open, the
relation is not necessary for every edge.

Another option is to derive a new type, who inherits mesh_mod_type, selects
the edges which form a basis, and store their adjacency relation M1

i {M2}. This is
the purpose of the main derived type in the module RWG_basis_mod, called RWG_-
basis_mod_type.

Table 3.3 lists the attributes of RWG_basis_mod_type. See Appendix B.2 for the
full interface of the module.

The inheritance of mesh_mod_type is explicitly stated with the first attribute
mesh. Essentially, this yields RWG_basis_mod_type all attributes listed in Table 3.1
as well, easily accessed via the mesh% operator.

The attribute basis_edges is an allocatable array of integers identifying which
edges in mesh that feature an RWG basis. If the surface is closed, then basis_edges
equals mesh%edges.

47

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.1

Procedures in RWG_basis_mod_type
Name Encapsulation
initialise public
deallocate_attributes public
get_free_vertices public
get_basis_edge_coords public
get_basis_edge_length public
get_adjacent_faces public
get_num_bases public
integrate_tested_func public

Table 3.4: The names and encapsulation of all member procedures of RWG_basis_-
mod_type, the main type of the module RWG_basis_mod. Their implementations are
printed in Appendix B.2.

The matrix adjacent_faces contains the set M1
i {M2} for all edges in basis_-

edges. Hence, its first dimension is always equal to the dimension of basis_edges,
while its second dimension is always equal to 2.

Furthermore, the integer num_bases is a helping quantity storing the size of
basis_edges.

The RWG basis function fm(r) (see Eq. (2.57)) contains the length of the basis
edge Lm. Often it is necessary to integrate over the RWG bases multiple times with
different integrands, as in the double integrals in Eq. (2.95), the vector (2.101), and
the field distributions defined by Eq. (2.158). Thus, storing Lm in RWG_basis_-
mod_type will improve the computational efficiency.

All member procedures of RWG_basis_mod_type are listed in Table 3.4.
Similarly to mesh_mod_type, the user only needs to run the member routine

initialise to be able to use the derived type in calculations. The routine ini-
tialise takes a single argument; an instance of the mesh_type. It then uses the
topological parameters and variables included with the mesh_type to find the edges
corresponding to an RWG basis function and stores their adjacency relation.

The routine deallocate_attributes deallocates the member attributes, if al-
located.

The function get_free_vertices returns the set of free vertices (p+
m,p−m) of the

basis function. This operation is not very expensive, since it is only a matter of
finding the vertices of T±m which are not common with the vertices of the basis edge.

The functions get_basis_edge_length and get_adjacent_faces simply re-
turns the corresponding attribute of RWG_basis_mod_type, while the function get_-
basis_edge_coords calls on internal procedures of the mesh_type attribute mesh
to get the spatial coordinates of the vertices of a basis edge.

The function integrate_tested_func is designed to evaluate the quantity
NRWG∑
m=1

∫
Sm

dSfm(r) · g(r), (3.3)

48

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.1

where g(r) is an arbitrary function, passed as an argument. The integrals are solved
by the method of Gaussian quadrature, transforming the triangle onto barycentric
coordinate system, as shown in Section 2.4. The integrals are also calculated face-
by-face, not basis-by-basis, reducing the number of integral evaluation by a factor
of 9. Face-by-face evaluation was introduced in Section 2.6.6. The function in-
tegrate_tested_func is very useful for validating the stored basis functions and
mesh structure.

PMCHW_RWG_mod

The electromagnetic scattering problem simulated in this thesis is solved by MoM us-
ing RWG basis functions, Galerkin’s method of weighted residuals, and the PMCHW-
formulation for combining the EFIE and MFIE. Nevertheless, RWG basis functions
may be used with other methods than Galerkin’s, and other combined field formu-
lations. E.g if region 2 in Fig. 2.1 is a perfect conductor, then the electrical field
inside the conductor would vanish, and the magnetic current M(r′) in Eq. (2.95)
would be zero, reducing the problem to solving

D(1)ψα = qEα (3.4)

for
ψα = [α1, α2, . . . , αN−1, αN]T , (3.5)

where qEαn = qEn for n = 1, 2, . . . , N . Thus, it is useful to separate the module
storing the RWG basis functions from the module performing the calculations and
solving the matrix equation. This is the reasoning behind implementing the module
PMCHW_RWG_mod, specialised in solving the matrix equation (2.99).

The attributes of the main derived type in PMCHW_RWG_mod are listed in Table 3.5,
and the entire interface of the module is printed in Appendix B.3. The module inher-
its the discretised surface mapped onto RWG basis functions through the attribute
RWG_basis. The variables permeabilities, permitivities, and angular_fre-
quency characterises the electromagnetic scattering problem. They represent the
permeability (µi) and permitivity (εi) of both regions i, and the angular frequency
(ω) of the incident electromagnetic wave, respectively.

The attribute PMCHW_matrix stores the matrix defined by the PMCHW-formulation,
that is, it stores Eq. (2.100). Hence, its dimensions are (2N, 2N).

Furthermore, the array q_vectors stores the vector q in Eq. (2.99). The at-
tribute is of rank 2, allowing several variations of q, corresponding to different values
of Einc

1 (r) and Hinc
1 (r). Allowing variations is computationally efficient, as one might

want to solve ψ for a set of q and a constant matrix using LU-decomposition. The
number of q variations is stored in the attribute num_q_vectors.

The matrices expansion_coeff_alpha and expansion_coeff_beta will store
the solution ψ to the matrix equation (2.99), when solved. These attributes are also
of rank 2 for the same reasons as q_vectors.

Moreover, the attributes inc_E_field_amp and inc_H_field_amp stores the
complex amplitudes, of the incident electric and magnetic field, respectively. Thus,

49

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.1

Attributes of PMCHW_RWG_mod_type
Name Type Dimension
RWG_basis RWG_basis_type (1)
permeabilities complex (2)
permitivities complex (2)
angular_frequency real (1)
PMCHW_matrix complex (:, :)
q_vectors complex (:, :)
expansion_coeff_alpha complex (:, :)
expansion_coeff_beta complex (:, :)
inc_E_field_amp complex (:, :)
inc_H_field_amp complex (:, :)
inc_wave_direction real (:, :)
inc_field_type integer (:)
num_q_vectors integer (1)

Table 3.5: The names, types and dimensions of the attributes of the derived type
PMCHW_RWG_mod_type, the main type of the module PMCHW_RWG_mod. Dynamically
allocatable dimensions are signified by the colon, :.

they have first dimensions equal to the spatial dimension of the scattering problem,
i.e. first dimensions equal to 3. Since variations of q, while having a constant ma-
trix H, essentially constitute variations in the incident field (see Eq.(2.101)), the
second dimension of inc_E_field_amp and inc_H_field_amp equals the number
of different q-vectors to solve the matrix equation (2.99) for. The attribute inc_-
wave_direction represents the unit wave vector k̂ of the incident electromagnetic
wave, i.e. the direction of propagation of the incident wave. As follows, the at-
tribute have the same dimensions as inc_E_field_amp and inc_H_field_amp. The
wavevector k of the incident wave is then found by multiplying the wavenumber

ki = ω
√
εiµi,

with the unit wavevector k̂.
The attribute inc_field_type indicates whether the incoming electromagnetic

wave is planar or spherical.
Selected member procedures of PMCHW_RWG_mod_type are listed in Table 3.6.

They are specifically chosen to demonstrate the implementation and numerical meth-
ods chosen to calculate and solve the matrix equation (2.99).

Contrary to mesh_mod_type and RWG_basis_mod_type, calling PMCHW_RWG_-
mod_type’s routine initialise is not sufficient to solve the matrix equation (2.99).
The routine initialise only initialises the problem specific attributes permeabil-
ities, permitivities, and angular_frequency, allocates memory space for the
attribute PMCHW_matrix, and sets the attribute RWG_basis, all according to the
arguments passed with the routine call.

50

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.1

Selected procedures in PMCHW_RWG_mod_type
Name Encapsulation
initialise public
calc_PMCHW_matrix public
calc_q_vectors public
solve_matrix_equation public
E_and_H_field_at_obs_pnt public

Table 3.6: The names and encapsulation of all member procedures of RWG_basis_-
mod_type, the main type of the module RWG_basis_mod. Their implementations are
printed in Appendix B.2.

The elements of PMCHW_matrix are calculated and set when calling the mem-
ber routine calc_PMCHW_matrix. The reason for performing this task in a separate
routine call is to allow resetting the matrix using different Gaussian quadrature
formulas, without having to reinitialise the instance. The quadrature formulas are
required to be passed as arguments. The routine calc_PMCHW_matrix uses, simi-
larly to the procedure integrate_tested_func of RWG_basis_mod_type, Gaussian
quadrature formulas on the form of Eq. (2.69) to evaluate the double integrals in
Eq. (2.95). By switching and argument, the user may opt to evaluate the integrals
using a face-by-face approach or basis-by-basis approach. A face-by-face approach
will reduce the number of integral evaluations by a factor of 9 (see Section 2.6.6),
and consequently reducing the computing time, but will increase the memory usage.

The routine calc_q_vectors takes the amplitudes and direction of the incoming
electromagnetic waves as arguments, along with a Gaussian quadrature formula for
triangles, and calculates the elements of q via Eq. (2.101). The routine stores the
results in the attribute q_vectors, in addition to storing the characteristics of the
incident wave in their suitable attributes. Storing these characteristics lets the user
call the function E_and_H_field_at_obs_pnt, which uses Eq. (2.158) to calculate
the electric and magnetic field distribution, without re-specifying the characteristics
of the incident wave. This implementation also prevents the user from calculating
the field distribution erroneously by using a different incident wave than the one
used to calculate q. The arguments of calc_q_vectors may have several columns,
resulting in various q-vectors.

Both the calculation of the matrix elements D(i)
mn and K(i)

mn in H, and the field dis-
tributions defined by Eq. (2.158), involves evaluation of the scalar Green’s function
for homogeneous media, Gi(r, r′), defined by Eq. (2.18). Its singularity is treated
carefully by the methods presented in Section 2.6.3. In the calculation of matrix
elements, the Green’s function is always considered near singular when the faces, of
which the double integrals are evaluated over, share one or more vertices. If the faces
do not share a vertex, then the separation distance between the faces’ centroid are
compared with a constant, proceeding with singularity subtraction if the separation
distance is the smallest. When calculating the field distributions, the separation

51

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.1

distance between the observation point and the quadrature points of the relevant
face is compared with the same constant. The value of this constant is based on
the computer systems ability to accurately represent the value 1/R3 for very small
R. If Gi(r, r′) is considered near singularity, it is replaced by its smoothed version
Gs
i (r, r′), defined by Eq. (2.105), and the integration is performed numerically using

Gaussian quadrature formulas for triangles. The integrals over the subtracted terms
are evaluated by the public routine eval_subtracted_terms using the exact itera-
tion formulas (2.142), (2.143) and (2.140). When relevant, the outer testing integral
is evaluated also using Gaussian quadrature. Because of their dependence on the
free vertices of the basis functions, p±n , the integrals of the subtracted terms must
be evaluated on a basis-by-basis approach, which is why they are handled separately
from the integrals over Gs

i (r, r′), which may be evaluated face-by-face. The double
integral of the subtracted term ∇′R−1 has special treatment. It is evaluated as a line
integral on the form of Eq. (2.157). The integrals over the face edges are transformed
to 1D integrals with limits [−1, 1] by parameterising the source point r′, as shown in
Section 2.6.5. On this form, they are evaluated using Gauss-Legendre quadrature.

Finally, the matrix equation (2.99) is solved by calling the routine solve_ma-
trix_equation. This routine takes a single optional argument, an integer repre-
senting the numerical method used to solve the matrix equation. Its default is to
use LU-decomposition [29, 30]. All matrix solvers are imported from the Open-
Blas Fortran library [37] and the particular precision of the solver is selected based
on the value of the working precision parameter wp defined by the module work-
ing_precision_mod (described below). As the design of PMCHW_RWG_mod dictates,
solve_matrix_equation has to be called after calling the routines initialise,
calc_q_vectors, and calc_PMCHW_matrix. Thus, the algorithm, or the sequential
procedure calls, or the pseudo code, to fully solve the scattering problem, is shown
in Fig. 3.3. Starting with a file representing a surface mesh in a supported for-
mat, pass it to the member procedure initialise of mesh_mod_type and pass the
resulting instance to initialise of RWG_basis_mod_type. Then initialise PMCHW_-
RWG_mod_type by passing the latter instance, call its routines calc_PMCHW_matrix
and calc_q_vectors with required arguments in either order. Then solve Eq. (2.99)
by calling solve_matrix_equation of PMCHW_RWG_mod_type. In the end, calculate
the field distribution at any given observation point by repeatedly calling the func-
tion E_and_H_field_at_obs_pnt.

io_mod

This I/O module contains all functionality concerned with input and output. There
are no main type, only a series of public and private procedures with specific pur-
poses. All procedures are listed in Table 3.7

The routine open_read_gmsh2 is concerned with opening and reading a mesh
file with the gmsh2 format1. This format lists all nodes and elements in the mesh.
A single node is given by a row of four numbers; an integer representing its index

1The file format is described at http://www.manpagez.com/info/gmsh/gmsh-2.2.6/gmsh_-
63.php

52

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.1

use mesh_type from mesh_mod
use RWG_basis_type from RWG_basis_mod
use PMCHW_RWG_type from PMCHW_RWG_mod

mesh_type%initialise(mesh_filename, topological_parameters, ...)
RWG_basis_type%initilise(mesh)
PMCHW_RWG_type%initialise(RWG_basis, physical_parameters, ...)
PMCHW_RWG_type%calc_q_vectors(incident_EM_wave_characteristics)
PMCHW_RWG_type%calc_PMCHW_matrix(Gaussian_quadrature_formula)
PMCHW_RWG_type%solve_matrix_equation(numerical_method_to_use)

loop over observation points
 field_distribution = PMCHW_RWG_type%E_and_H_field_at_obs_pnt(
 observation_point)
end loop

Figure 3.3: Pseudo code of the algorithm the a program uses to simulate the two
region scattering problem. The top three lines describes the derived types that are
used directly by the program, and which module the type is defined within.

Procedures in io_mod
Name Encapsulation
open_read_gmsh2 public
string_to_int4 public
string_to_real_wp public
read_nth_int4 public
read_n_last_int4 public
read_n_last_real_wp public
count_int4_on_string public
count_real_wp_on_sting public
capitalise_char public
r8mat_write public
get_unit public
check_ioerr_opening private
check_ioerr_reading private

Table 3.7: The names and encapsulation of all procedures defined in io_mod.
Their interface of the module and the routine open_read_gmsh2 are printed in Ap-
pendix B.4.

53

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.1

number, and three floating numbers representing its Cartesian coordinates in three
dimensional space. E.g. the line

43 3.56 -43.4 5.3

describes node number 43 positioned at (x, y, z) = (3.56,−43.4, 5.3).
An element is given by a row of 5+ integers, e.g

2 2 1 0 1 3 4

where the first integer is the element number, the second is the element type (2
describes a triangle), the third number signals the number of tags followed, and the
last three integers are the node numbers on the closure of the element. The tags are
used to separate physical from geometrical entities, or to partition the mesh.

The row sections of nodes and elements are separated by key lines such as $Nodes,
$EndNodes, $Elements, and $EndElements. As a result of this varying number of
columns on each row, and the alternations between integers and decimals, open_-
read_gmsh2 needs to be carefully designed, reading line by line, while separating
the process into several sections or levels. Level one is concerned with finding the
key line $Nodes. Level two stores the integer on the following line which represents
the total number of nodes. Level three reads node-rows such as the one above until
it reaches $EndNodes, and so on. Functions such as string_to_int4, string_to_-
real_wp, read_n_last_int4, read_n_last_real_wp, and read_nth_int4 are used
by open_read_gmsh2 to read all or specific integers and decimals in the lines of the
file. After reading and storing all nodes and elements, their values are validated by
checking for invalid integers and decimals, checking for duplicates etc.

As noted above, there is only functionality for the reading of Gmsh2 formated
files, but using the already existing framework of reading procedures, implementa-
tion of further format compatibility is facilitated.

In addition to reading procedures, io_mod includes procedures for writing ma-
trices to files, which is essential to save the simulation results.

The procedures r8mat_write and get_unit are entirely written by John Burkardt
[33], while the rest of the procedures in the module are strongly influenced by the
design of John Burkardt’s code in gmsh_io.f90 (See Ref. [33]).

math_funcs_mod

General mathematical functions and operations that are required by any module
are implemented as procedures in math_funcs_mod. Examples of procedures are
cross_prod_3D which calculates the cross product of two vectors in three dimen-
sional Cartesian space, and plane_wave which returns the value of a three dimen-
sional plane wave at any position (in Cartesian coordinates) given by the wavenum-
ber, direction, and amplitude.

working_precision_mod

It is crucial that the precision of all variables and attributes throughout every mod-
ule are the same. If not, fatal errors may occur, or even worse, loss of precision.

54

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.2

Constants defined in constants_mod
Constant Name Value

π PI 4._wp*atan(1._wp)
µ0 PERMEABILITY_VACUUM 1.25663706212e-6_wp
ε0 PERMITIVITY_VACUUM 8.8541878128e-12_wp

Imaginary unit i I_IMAG cmplx(0._wp, 1._wp)
0 + 0i ZERO_CMPLX cmplx(0._wp, 0._wp)

Table 3.8: The constants defined as parameters in constants_mod. All numbers
have a _wp post fix to set their precision equal to the working precision wp imported
for working_precision_mod.

Therefore the parameter wp, representing the working precision of the program, is
defined in the module working_precision_mod and successively imported by all
and every other module, in which determination of precision is exclusively used by
the parameter. To change the precision of simulation, simply change the value of
wp in working_precision_mod.

constants_mod

It is useful to implement a module defining all physical and mathematical constants
used by other modules to avoid differences in values and precision across modules.
In this implementation, constants are accessed by importing constants_mod. The
constants defined in the module are listed in Table 3.8.

gauss_quad_formulas_mod

This module was created to easily define and import Gaussian quadrature Formulas.
It consists solely of rank 2 arrays, defined as parameters, representing a Gaussian
quadrature formula including weights and abscissa values.

is_close_mod

The module is_close_mod contains a single elemental function definition called
is_close. The purpose of the function is to compare two numbers of type real and
returns .true. if the numbers are close to each other. The evaluation depends on a
tolerance of absolute or relative difference. These tolerances are optional arguments
to the function.

test_utilities_mod

This module contains utility procedures useful while testing the modules discussed
in this section. Some of the procedures are concerned with run-time verbose, while
others are specialised to test a particular module.

55

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.2

3.2 Testing
Thorough testing of the module procedures is an essential part of the validation of
simulation results. Especially when the program uses several modules that depend
on each other, it is important to test each functionality individually, making sure
the dependencies are working correctly before testing the dependant. This testing
technique is also known as unit testing. Each module used by the simulation program
have a custom and adapted testing program, designed to test critical features of the
corresponding module.

In this section, some of the testing methods used in each testing program will
be described. Lastly, methods for testing the final results of the simulation program
running as a whole will be presented.

3.2.1 Module Testing
io_test.f90

The module io_mod does not depend on any other module than working_preci-
sion_mod, which itself is so trivial that it, in practical terms, does not need testing.
Therefore, testing of the I/O module is a good place to start.

Every procedure in io_mod (listed in Table 3.7) has its corresponding testing
routine defined and called in the main program of io_test.f90. Most of the test are
pretty straight forward, as the desired result after passing an arbitrary string as
argument is trivial.

However, the routine test_open_read_gmsh, which tests the procedure open_-
read_gmsh in the module io_mod, uses a custom made Gmsh2 file and compares
every resulting node and element with their expected value sequentially. The Gmsh2
file includes nodes and elements representing the surface of a tetrahedron, such as
the one illustrated in Fig. 3.4. The contents of the file is printed in Appendix C.1.
This exact surface mesh is also used when testing the modules mesh_mod and RWG_-
basis_mod, emphasising the need of this particular test.

mesh_test.f90

This program tests mesh_mod by verifying the geometry and topology of meshes
imported using the member routine initialise. The function is tested with three
different Gmsh2 files. One representing the regular tetrahedron (see Fig. 3.4), one
representing the closed cube illustrated in Fig. 3.5, and one representing the open
cube illustrated in Fig. 3.6. The following topological parameters and geometrical
values are compared after initialising each surface mesh:

• The number of faces Nf ,

• the number of edges Ne,

• the number of vertices Nv,

56

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.2

Figure 3.4: A regular tetrahedron with edge lengths of 2
√

2. The face areas are 2
√

3
with the resulting surface area of 8

√
3. Its volume equals 8/3.

• the number of nodes Nn,

• the number of handles Nh,

• the number of apertures Na,

• the number of boundary edges Nb,

• the face areas,

• the surface area,

• and the volume (if applicable).
In addition to testing initialise, the functions surface_area and volume are

tested individually. In this case a Gmsh2 file is not imported. Instead, a constructor
defined within mesh_mod to initialise a surface mesh exactly equal to the tetrahedron
is used, thus bypassing the many potential errors involved with importing the mesh
from a file. The tetrahedron constructor is also tested in isolation itself.

RWG_basis_test.f90

The RWG_basis_mod_type object produced by the function initialise in RWG_-
basis_mod is tested using the same three surfaces meshes used by mesh_test.f90.
This way, it is less probable that the mesh instance, passed as an argument, is the
source of the problem. The following member attributes of the RWG_basis_mod_-
type objects are checked against expected values:

57

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.2

Figure 3.5: A triangulated cube with sides equal to unity. The face areas equals 0.5,
the surface area 6, and the volume 1.

Figure 3.6: The triangulated cube in Fig. 3.5 with one of the faces removed, resulting
in an open surface with one aperture and three boundary edges.

58

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.2

• The number of RWG bases N ,

• the integer values and order of RWG basis edges,

• the integer values and order of the adjacent faces to each RWG basis,

• and the value of each basis edge length.

PMCHW_RWG_test.f90

The module PMCHW_RWG_mod has several procedures performing complex tasks in-
volving delicate summations and integral evaluations. This makes for careful testing
to verify the modules performance, as even a single erroneous summation sign might
cause completely unrealistic results.

A majority of the procedures in PMCHW_RWG_mod uses Gaussian quadrature to
evaluate integrals. These integrals are complicated, integrating exponential func-
tions over triangles. Hence, it may not be possible to evaluate them analytically,
making it difficult to validate the results of the procedures. One way to partly verify
the procedures, is by testing cases where the integrands are simplified such that the
integrals have analytical results. For instance, the sum (2.172a) equals

2A
∫ 1

0

∫ 1−η

0
ξGi(r, ξr′1 + ηr′2 + ζr′3)dξdη (3.6)

by following Eqs. (2.69) and (2.72). This equation may be simplified to

2
∫ 1

0

∫ 1−η

0
ξdξdη (3.7)

by setting the Green’s function, Gi(r, ξr′1 + ηr′2 + ζr′3) to unity. As this expression
may easily be evaluated analytically, this simplification allows for testing the imple-
mentations of the Gaussian quadrature sums. Then, by making sure the evaluations
of the Green’s functions are correct, one may verify the procedures as a whole. The
testing routines that uses integrand simplification to verify Gaussian quadrature
integration are test_E_and_H_field_at_obs_pnt, test_eval_green_func_inte-
grals, and test_eval_outer_integrals.

The functions face_pair_integral_EFIE and face_pair_integral_MFIE are
tested by passing arbitrary defined arguments and comparing the results with ana-
lytical calculations.

The member procedure inc_E_and_H_field_at_obs_pnt of PMCHW_RWG_mod_-
type evaluates the incident electromagnetic field at a certain observation point. The
field is evaluated analytically and thus, testing this routine is easily performed by
comparing the procedure’s result with the expected result.

Finally, the routine test_solve_matrix_equation uses the solution ψ produced
by the member routine solve_matrix_equation to calculate the relative difference

1
2N

2N∑
m=1

∣∣∣∣∣
∑2N
n=1Hmnψn − qm

qm

∣∣∣∣∣ , (3.8)

59

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.2

whereHmn and qm are element (m,n) and themth element of H and q in Eq. (2.99),
respectively. All elements are gathered from the same instance of PMCHW_RWG_mod_-
type, by which the solution ψ is calculated. With double precision, the expression
(3.8) should take a value on the order of 10−15 if the the routine works correctly.

3.2.2 Validating Simulation Results
Energy conservation

In the case where both region 1 and 2 are non-magnetic materials (µi = µ0 for i =
1, 2) and have real permitivities (εi), i.e. there is no absorption of the electromagnetic
waves, the energy of the system as a whole will be conserved. Thus, assuming that
the energy density stored in the electromagnetic field itself time averages to zero, and
that the electromagnetic force do no work on any charges, the net rate of scattered
energy crossing an imaginary sphere A of radius R surrounding the scattering region,
which we denote by Pout, should be equal to net rate of energy incident on region
2, which we denote by Pin. The Poynting vector S is defined as the energy per unit
time per unit area flowing through a surface [24]. Thus, we may define Pout as the
integral of the time average of the Poynting vector to the scattered field over A, i.e.

Pout =
∫
A
dS 〈Ssca〉t · n̂ (3.9)

where n̂ is the unit normal pointing out of the imaginary sphere A. From Bohren
and Huffman [8] we have the following definitions for time-harmonic fields

〈Ssca〉t = 1
2Re {E

sca
1 × (Hsca

1)∗} , (3.10)

〈Sinc〉t = 1
2Re

{
Einc

1 ×
(
Hinc

1

)∗}
. (3.11)

Thus, for a spherical scatterer where C is the hemisphere facing the incident plane
wave, we have

Pin = −
∫
C
dS 〈Sinc〉t · n̂

= 1
2

∫
C
dS Re

{
Einc

1 ×
(
Hinc

1

)∗}
· n̂

= 1
2

∫
C
dS Re

{
Einc

1 ×
1
Z

(
k̂× Einc

1

)∗}
· n̂,

(3.12)

where the impedance Z =
√
µ/ε, and n̂ is the unit normal of C pointing out of the

hemisphere. Using vector identity (2) in the back cover of Griffiths [24] yields

Pin = 1
2Z |E

inc
1 |2

∫
C
dSk̂ · n̂ = − 1

2Z |E
inc
1 |2πa2, (3.13)

60

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.2

where a is the radius of the scattering sphere. Since energy conservation dictates
that Pin = Pout, we may use the following equation as a verification of the numerical
results from a nonabsorbing, scatterer

1
Z
|Einc

1 |2πa2 =
∫
A
dS Re {Esca

1 × (Hsca
1)∗} · n̂. (3.14)

The right hand side of Eq. (3.14) may be numerically evaluated using a Lebedev
quadrature rule (see Section 2.4.3).

Symmetry

A plane electromagnetic wave, travelling in the ẑ-direction, and arbitrary polarised,
will have symmetry across the z-axis. Consequently, if the scattering surface has
similar symmetry (e.g. a sphere centred in origo), the scattered electric field will
have symmetry across the z-axis too, yielding a rudimentary test of the simulation
results.

Interference pattern

Because of the linearity of Maxwell’s equations, the scattered electric field Esca
1 will

superpose with the incident electric field Einc
1 and produce interference patterns in

the total field distribution E1 = Esca +Einc
1 . The peak-to-peak distance of this inter-

ference pattern has a lower bound equal to the lowest wavelength among its compo-
nents. When evaluating the field intensity, |E|2, the wavelength of the interference
pattern is cut in half, such that when considering the two region electromagnetic
scattering problem, the interference pattern of the field intensity has a lower limit
dmin = λ/2, where λ is the wavelength of the incident plane wave.

Comparison to Mie theory

In the scenario where the scattering volume, region 2 in Fig. 2.1, is a homogeneous
sphere with arbitrary radius and refractive index, we have an analytical solution to
the Maxwell’s equations, the Mie theory (see Section 2.5). The results from the nu-
merical simulation should then be comparable to this solution, and this comparison
is a powerful way of validating the simulation results.

The numerical implementation of the Mie solution was assessed from Appendix A
in Ref. [8]. A Fortran 77 routine called bhmie returns the angle dependent Mie
scattering coefficients S1 and S2, which may be used to calculate the elements of the
Mueller matrix and the following Stokes parameters (see section 4.4.4 in Ref. [8]). In
addition, the routine returns the efficiency factors for scattering and extinction, Qsca
and Qext, respectively, and the scattering angles θ, which is the angle between the
scattering direction r̂ and the direction of propagation of the incident wave ẑ. The
unit vectors r̂ and ẑ define the scattering plane, or the plane of incidence, which is
determined by the angle φ, illustrated in Fig. 3.7. As arguments, the routine takes
the scaling parameter X, the refraction index of the sphere n2, and the number

61

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.2

y

x

z

x̂

ẑ

ŷ

o

θ

ẑ

r̂

r

Particle

Scattering
plane

Incident wave

Figure 3.7: Scattering by an arbitrary particle. The incident wave is propagation in
the positive ẑ-direction, and the scattering plane is defined by r̂ and ẑ.

of angles to evaluate the Mie scattering coefficients on. The dimensionless scaling
parameter is defined as

X = 2πn1
a

λ
, (3.15)

where λ is the wavelength of the incident wave, a is the radius of the sphere, and n1
is the refraction index of the medium in which the sphere is embedded.

The scattering and extinction cross sections, Csca and Cext, may be computed
from the efficiency factors as

Csca = Qscaπa
2, Cext = Qextπa

2, (3.16)

from which we may calculate the absorption cross section

Cabs = Cext − Csca. (3.17)

The scattered and absorbed power is computed by multiplying their respective cross
sections with the flux of the incident beam, i.e. 1/(2Z0)|Einc|2 for a plane wave in
vacuum. This way, we may compare the scattered and absorbed power from the
Mie solution, with the scattered and absorbed power evaluated by the numerical
simulation, Wsca and Wa.

In addition, it is enlightening to compare the angle dependent bistatic scattering
cross section

σsim
ϕ (θ) = 4πR2 |Esca(rϕ(θ))|2

|Einc|2
, for ϕ =‖,⊥, (3.18)

to see how well the simulation results matches with the Mie solution in particular
scattering planes and at particular scattering angles. Here rϕ(θ) defines an circular

62

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.3

arc of radius R in a scattering plane parallel or perpendicular to the polarisation,
corresponding to ϕ =‖ and ϕ =⊥, respectively. In other words, r‖(θ) is the spheri-
cal vector r(R, θ, 0), and r⊥(θ) is the spherical vector r(R, θ, π/2) for θ ∈ [0, π]. Of
course, R has a lower bound of a, the radius of the sphere. Using the scattering
coefficients returned by the Mie-routine, bhmie, we may compute the scattered irra-
diance per incidence irradiance a scattering plane both parallel (plane of incidence),
and perpendicular to the incident polarisation, defined as

i‖ = |S2|2, (3.19)

and
i⊥ = |S1|2, (3.20)

respectively. From these relationships, the comparable bistatic scattering cross sec-
tions of the Mie soluttion is

σMie
ϕ = 4π

k2
1
iϕ, for ϕ =‖,⊥, (3.21)

where k1 is the wavenumber of the surrounding medium.

3.3 Building the Simulation Program
By following the algorithm presented in Fig. 3.3, one may produce a program file,
in Fortran, that contains instructions for simulating a specific scattering scenario.
However, to be able to run the simulation one must create an executable from the
programme file, which requires proper compilation of all source files, and proper
linking of all object files and modules. Because of the many dependencies across
the modules and the numerous source-files, it is very convenient to use the utility
make [38] and construct a Makefile that accumulates the various dependencies and
ensures a successful order of compilation. The tool make keeps track of which
files that need recreation as well, avoiding compilation of files which the recent
modifications do not affect. In a Makefile, rules for the compilation of source-files and
the creation of object-files, module-files, and executables are defined. For example,
in one of the Makefiles used in this project, it is explicitly stated that the object-files
working_precision_mod.o, maths_funcs_mod.o, and io_mod.o must exist prior to
creating mesh_mod.o. This is because mesh_mod depends on working_precision_-
mod, math_funcs_mod, and io_mod, and so the source file mesh_mod.f90 will not
compile without the corresponding module- and object-files present. Furthermore,
general rules for creating object- and module-files (files with suffix .o and .mod,
respectively) from source files (files with suffix .f90) are defined, which uses a user-
specified compiler and compiler-flags.

In this project, a hierarchical Makefile system was used, consisting of a recursive
parent Makefile in the top directory, and two additional Makefiles located in the
subdirectories src and testing. The Makefiles assume the directory tree illustrated
in Fig. 3.8.

63

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.3

Figure 3.8: Directory tree/structure assumed by the recursive Makefile setup used
in the project. The dot at the top represents the top directory. Bold font indi-
cates directories and normal font indicates normal files. The lines and indentations
illustrates the hierarchy of the files and directories.

The source directory, src, contains the source file to all modules presented in
Section 3.1.2, in addition to a Makefile. The directory testing contains the source
file of every testing program presented in Section 3.2, in addition to another Makefile
and the directory meshes, which includes the Gmsh2 mesh-files used by the tests.
Finally, we have the file make.inc which is imported by the Makefile in the top
directory. This is where the user specifies the desired Fortran compiler, compilation
and linking flags, the computer architecture, and the path to the required external
libraries. The Linear Algebra PACKage (LAPACK) [39] and Basic Linear Algebra
Subprograms (BLAS) [40] is the only required external library, from which routines
for solving the matrix equation (2.99) is used. The libraries LAPACK and BLAS
are both provided when using OpenBlas [37], as OpenBlas is a library that aims
at optimising BLAS and LAPACK for specific processor types. In particular, the
routine GESV is used to solve the equation using LU-factorisation in any precision
(See Section 3.1.2). All Makefiles and make.inc are found in Appendix C.2.

When using the Makefile setup, the compilation and linking process is easy.
After having updated make.inc, simply type the following command while in the
top directory:

make

This will run the contents of the top Makefile, which recursively calls the Makefile in
the directory src. The latter Makefile contains all the rules for compiling the source
files, and will move the resulting module files into a new directory called modules.

64

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.3

The object-files will remain in src. If the compilation process is successful, the
top Makefile will then call the Makefile in the directory testing. This Makefile
contains the rules for compiling and linking the testing programs located in the
same directory. The resulting executables are stored in a new directory called bin,
and they are all run sequentially after creation. If a test fails, then the whole
make process will fail, signalling that the built modules are not reliable for use in
a simulation. The source files may be compiled without subsequently running tests
by issuing the command

make lib

in the top directory, or make in the source directory src. After building all files the
directory tree should look like the one in Fig. 3.9.

All modules-files, their corresponding object-files, and the folder modules are
removed by running

make clean

in src. All test executables, their object-files and the folder bin are removed by
calling the same command in the testing directory. Both cleaning procedures above
will be executed by running make clean in the top directory.

65

CHAPTER 3. NUMERICAL IMPLEMENTATION Section 3.3

Figure 3.9: Directory tree/structure after building the modules and testing executa-
bles. The dot at the top represents the top directory. Bold font indicates directories,
italic font indicates executables, and normal font indicates normal files. The lines
and indentations illustrates the hierarchy of the files and directories.

66

Chapter 4

Results and Discussion

In this chapter we present and discuss the results from running the simulation pro-
gram described in Chapter 3, that is, we look at the scattering of electromagnetic
waves by arbitrary surfaces, numerically simulated by using the method of moments
(MoM) and Galerkin’s method for the weighted residuals. In all of the various scat-
tering scenarios considered, the incident wave is planar, directed along the z-axis,
and x-polarised. Additionally, both regions of the scattering geometry are consid-
ered nonmagnetic, i.e. the permeability equals the vacuum permeability, µi = µ0.
Furthermore, the surrounding medium is assumed to be vacuum, such that its re-
fractive index and relative permitivity, n1 and εr,1, equals unity. The refractive
index and relative permitivity of region 2 is from here on referred to as n and εr,
respectively.

We begin by looking at the scattering of a dielectric sphere, whose permitivity is
homogeneous and real, and assert the quality of the numerical simulation by com-
paring them the results obtained from the Mie solution (see Section 2.5), in addition
to looking at symmetry properties, interference patterns and energy conservation.

Next, we look at a nonspherical scattering surface, the rectangular prism, and
try a complex permitivity. The simulation program is then tested with multiple
scattering surfaces, in particular a rectangular prism dipole. Using the permitivity
of gold and the resonance wavelength found by Kern and Martin in Ref. [1], we
demonstrate the ability to simulate localised surface plasmon resonance (LSPR).

Finally, results, computational efficiency, and memory use the face-by-face (FBF)
and basis-by-basis (BBB) approach in calculating the matrix elements D(i)

mn and K(i)
mn

(see Eq. (2.95)) are compared.

4.1 The Sphere
Interference, symmetry and energy conservation

Fig. 4.1 shows a contour plot of the electric field intensity |E|2 around and inside a
dielectric sphere of refractive index n = 4, corresponding to a relative permitivity
εr = 16. The sphere is centred at origo, and its radius is a = λ/2, where λ is the
wavelength of the incident, x-polarised, planar wave that is incident from the far left

67

CHAPTER 4. RESULTS AND DISCUSSION Section 4.1

Figure 4.1: The the electric field intensity |E|2 in the yz-plane from scattering by a
sphere with n = 4. The incident wave is x-polarised, has intensity |Einc|2 = 1 and
wavelength λ. The radius of the sphere is λ/2, and the DOF of the MoM is 10110.

(z = −∞). The amplitude of the incident wave is unity, such that |Einc|2 = 1. In
this specific simulation, the surface mesh contains 3370 faces, corresponding to 10110
degrees of freedom (DOF). The DOF is equal to the number of unknown coefficients
αn and βn, i.e. DOF is twice the number of edges in the mesh, or equivalently, three
times the number of faces. The relationship ka = 2πa/λ is from here on referred
to as the scaling parameter. The intensity in Fig. 4.1 is plotted in the yz-plane, i.e.
a plane parallel to the propagation of the incident wave, but perpendicular to its
polarisation. We clearly see an interference pattern in region 1 on both sides of z = 0,
although the pattern from the forward scattering is less prominent and have a larger
peak-to-peak distance. The interference pattern arising from the back scattering
has an average peak-to-peak distance of davg

1 = 0.55± 0.02λ, which is slightly larger
than the minimum peak-to-peak distance dmin

1 = 0.5λ, expected from theory. Similar
interference patterns are visible when plotting the electric field intensity in the xy-
plane, as shown in Fig 4.2. Interference patterns with much shorter peak-to-peak
distance are visible inside the scattering sphere (in region 2) as well. Measurement
of a few peaks yields the distance davg

2 = 0.144 ± 0.015λ. Inside region 2, there are
no incident wave present, but the transmitted wave scatters on the inside of the

68

CHAPTER 4. RESULTS AND DISCUSSION Section 4.1

Figure 4.2: The the electric field intensity |E|2 in the xy-plane from scattering by a
sphere with n = 4. The incident wave is x-polarised, has intensity |Einc|2 = 1 and
wavelength λ. The radius of the sphere is λ/2, and the DOF of the MoM is 10110.

boundary and interfere with itself. The wavenumber of the electromagnetic wave
inside the sphere is k2 = ω

√
εrε0µ0 = 4k1, where ω is the angular frequency of the

field in both regions, and k1 = 2π/λ is the wavenumber of the field in region 1.
Thus, the expected minimum peak-to-peak distance of the interference pattern in
region 2 is dmin

2 = dmin
1 /4 = 0.125λ, serving well as a lower bound of the observed

pattern.
From looking at Figs. 4.1–4.2 it is apparent that the scattered electric field in

the yz-plane, is symmetric across the xz-plane. Similarly, the scattered field in the
xy-plane is symmetric across the z-axis. A proper test of the symmetric properties
is presented in Fig 4.3, where the bistatic cross section (BSCS, see Eq. (3.18)) on
the interval θ ∈ [0, π] is compared with the BSCS on the interval θ ∈ [π, 2π] for
both scattering planes ϕ =‖,⊥. Here θ is the angle of scattering with respect to the
positive z-axis (the incident direction of propagation). The figure shows that the
symmetric properties are very well respected, which is a consequence of the spherical
symmetries of the scatterer. Thus, this i a verification of the spherical symmetries
the surface mesh representation should contain.

The energy for the particular scattering scenario shown in Figs. 4.1–4.3 was con-

69

CHAPTER 4. RESULTS AND DISCUSSION Section 4.1

Figure 4.3: The bistatic scattering cross section of the sphere in Fig. 4.1. The BSCS
across the symmetry planes are also plotted, along with the root mean square error
(RMSE) between them.

70

CHAPTER 4. RESULTS AND DISCUSSION Section 4.1

Figure 4.4: The ratio between incoming Pin and outgoing Pout average energy per
unit time for scattering by a sphere of refractive index n = 4 and varying scaling
parameter ka.

served with a precision of 4.7%. Thus, by simulating realistic interference patterns,
keeping symmetry properties, and conserving energy, the numerical implementation
seems to be working and giving fairly accurate results.

Fig. 4.4 shows how well energy is conserved in the scattering simulations when
varying scaling parameter. The conservation of energy is evaluated by looking at
the ratio

Pout

Pin
,

where Pin is the average energy per unit time flowing into the cross section of the
scattering sphere, as in Eq. (3.13), and Pout is the average energy per unit time
scattered out of an imaginary sphere of radius R, surrounding the sphere, as in
Eq. (3.9). The energy conservation is unfortunately not very consistent when varying
ka, which may indicate erroneous scattering amplitudes, caused by e.g. a scaling
error in the implementation. The possibility of errors is discussed further in the next
section.

Comparison with Mie theory

The BSCS shown in Fig. 4.3 is plotted with polar projection in Fig. 4.5, together
with the BSCS evaluated by the Mie theory for a similar scattering scenario (i.e.
sphere with n = 4 and ka = π). The Mie solution is calculated using the Fortran
routine bhmie from Bohren and Huffman [8] (see Section 3.2.2). The BSCS in a

71

CHAPTER 4. RESULTS AND DISCUSSION Section 4.1

Figure 4.5: A polar plot of the bistatic scattering cross section of a sphere with
refractive index n = 4. Results from both numerical simulation and the Mie solution.

scattering plane perpendicular to the polarisation of the incident plane wave and
parallel to its propagation, i.e. σ⊥(θ) for θ ∈ [0, π], is plotted in the upper half of the
polar plot. In the lower half, the BSCS in a plane parallel to both the polarisation
and propagation (the plane of incidence), i.e. σ‖(θ) for θ ∈ [0, π], is plotted. For
reference, the polar angle θ = 0 is forward scattering.

Although the BSCS of the numerical simulation and the Mie solution are not
perfectly equal, we may point out several similarities. The amplitudes are in general
of the same order of magnitude, across all angles. Both have less backward scattering
than forward, and the parallel and perpendicular scattering are of approximately the
same magnitude for the same angle, except at a range around θ = π/2, where both
exhibit enhancement in amplitude.

Figure 4.6 compares the numerical simulation result to the Mie solution for a
few different scaling parameters ka and refractive index n.

Figure 4.7 shows the integrated error

Σϕ =

√√√√√ 1
π

∫ π

0
dθ

[
σsim
ϕ (θ)− σMie

ϕ (θ)
]2

σMie
ϕ (θ)2 , for ϕ =‖,⊥, (4.1)

and the total error
Σ = Σ‖ + Σ⊥, (4.2)

where the superscripts sim and Mie denote the BSCS from the numerical simulation
and Mie solution, respectively, as a function of DOF. Compared to the equivalent
figure in Kern and Martin [1], the errors arising from the numerical implementation

72

CHAPTER 4. RESULTS AND DISCUSSION Section 4.1

Figure 4.6: The BSCS of a sphere for a few different scaling parameters ka and
permitivities εr. The upper half of the polar plots constitutes BSCS in a plane
perpendicular to the polarisation and propagation of the incident wave, while the
lower half constitutes BSCS in the plane of incidence.

73

CHAPTER 4. RESULTS AND DISCUSSION Section 4.1

Figure 4.7: Integrated error (see Eq. (4.1)) of the numerical simulation compared to
the Mie solution.

in this thesis are relatively large. In addition, the trend when increasing DOF
is not falling, which indicates that the implementation may have a bug. For an
increasing DOF, the surface mesh should be an increasingly better approximation
of the perfect sphere assumed by the Mie theory. In addition, a higher DOF should
result in a better MoM discretisation, i.e. a more accurate approximation of the
equivalent currents defined by Eqs. (2.84) and (2.85). The reason for this behaviour
is currently not known, but as touched upon above when discussing the conservation
of energy, there might be a scaling error in the implementation, leading to erroneous
scattering amplitudes. This makes sense since the BSCS result follows the trend of
the Mie solution when varying θ, but has a consistently lesser amplitude. However,
the scaling error cannot lie in the field distribution evaluation (Eq. (2.158)), which
would scale the amplitude equally for all scattering angles. On the other hand,
there could be a possible scaling error in the matrix elements of Eq. (2.100) or the
elements of the vector q (defined by Eq. (2.101)), since this would alter the matrix
equation (2.99) and affect the expansion coefficients αn and βn.

Alternatively, the large errors and instability could be caused by having too
few quadrature points when evaluating the integrals using Gaussian quadrature, es-
pecially when the integrands are close to being singular. Convergence tests were
conducted for some integrals, and the results seemed to converge when having 7 or
more quadrature points within each triangle. The maximum number of quadrature
points tested was 13, so that the results could have had a different convergence if a
much larger range of quadrature points were tested. In the available literature on
singularity treatment, it is common to test the methods with quadrature points up
to several hundred [12, 15, 16]. However, the results from the numerical implemen-
tation in this thesis, showed little or no improvement when increasing the number
of quadrature points from 3 to 13.

There is also the possibility of more trivial errors, such as a wrong sign or index

74

CHAPTER 4. RESULTS AND DISCUSSION Section 4.2

in any of the numerous calculations. Such an error could produce correct symmetric
properties of the result, while still having a significant effect on the energy conser-
vation. This type of error would most likely occur in the PMCHW_RWG_mod-module
(see Section 3.1.2) because of two, main reasons; it is where the majority of the
calculations are performed, including all of the integrals, and it comprises the nu-
merical evaluations which are most difficult to test. The latter reason arises from
the fact that there are, in most of the isolated calculations, no analytical solution
to compare the numerical result to. The implementation of the singularity subtrac-
tion is particularly vulnerable to sign and index errors, as well as typos, because
of its many transformations and minor calculations. Similar reasoning applies to
the implementation of the FBF approach to the integral evaluations, although in
this case we had the BBB implementation to compare the results to. The BBB
approach is much more straight forward to implement, and therefore less prone to
errors. Since the FBF and BBB approaches consistently gave equal results, we may
with reasonably confidence conclude that the FBF approach implementation is, to
certain extent, bug-free.

Furthermore, the current numerical implementation does not treat the system
parameters dimensionless. Since the magnitudes of the permitivities and permeabil-
ities remain constant while scaling the magnitude of λ and the mesh edges, there
will be a risk of loss in precision. If the scaling parameter and dielectric properties
of the media involved are kept constant and independent of wavelength, the results
should be the same independent of the order of magnitude of λ and sphere radius a.
Naturally, a test was conducted, showing that the results are approximately equal
in the range λ ∈ [2 · 10−10m, 2 · 103m] for ka = 1/2. Consequently, the numerical
implementation should be adapted to dimensionless parameters for simulating even
larger or smaller systems. When the scale of the sphere is too small, the quantity
1/R will be less accurately computed, and the singularities of the integrals become
more prominent.

Of course, we cannot ignore that the plots of the Mie solution may be wrong.
They do however, stem from a very well established and reviewed implementation,
and the BSCS plots are consistent with the one presented by Kern and Martin [1]
with equal problem parameters, even though the amplitudes of the BSCS are not
verified by this reference. Nevertheless, independent of the Mie solution, the results
from the numerical simulation should conserve energy.

All the same, as it is the main motivation for implementing MoM with the
surface integral equation (SIE) formulation, it is interesting to see how the numerical
implementation tackles scattering of surface shapes other than the sphere. This issue
we will now address.

75

CHAPTER 4. RESULTS AND DISCUSSION Section 4.2

Figure 4.8: Left: The electric field intensity resulting from scattering by a nonabsorb-
ing rectangular prism. Right: The electric field intensity resulting from scattering
by an absorbing rectangular prism. Incident is directed along the positive z-axis
and its intensity is |Einc|2 = 1.

4.2 Nonspherical shapes
The rectangular prism

In this section, we exploit the advantages of using a numerical method applicable
to scattering surfaces of arbitrary shape. Figure 4.8 shows the the electric field
intensity around and inside of a rectangular prism with length λ/2 and a square
cross section of side length λ/5. The surface mesh approximating the prism is
illustrated in Fig. 4.9, having DOF = 5796. The rectangular prism in the left
subplot of Fig. 4.8 is nonabsorbing with relative permitivity εr = 16 (n2 = 4), while
the rectangular prism in the right subplot of Fig. 4.8 is absorbing with relative
permitivity εr = −13.86 + 1.028i. The scattered energy in the nonabsorbing case is
far larger than the scattered energy in the absorbing case, which means a fraction
of the energy is absorbed in the prism, as expected. It is also clearly visible that the
absorbing prism acts like a sink because of the almost vanishing intensity.

As with the scattering from a sphere, there are visible interference patterns with
peak-to-peak distance approximately equal to half the incident wavelength, or larger.
In addition, the symmetric properties of the scattering surface are well respected.

The dipole antenna

The gold dipole antenna scenario described by Kern and Martin in Ref. [1] (section
3.B) is an excellent example for testing the numerical program’s ability to simulate
scattering from multiple scattering surfaces. It is also an appropriate test to whether
the program is able to replicate LSPR effects. The rectangular prism in the section
above is scaled to nm size, giving a length of 100 nm and sides of 40 nm, and is
mirrored across the yz-plane, such that there is a gap of 30 nm between the square
cross sections of the duplicates (see Fig. 4.10). The mesh is coarser at DOF=1527

76

CHAPTER 4. RESULTS AND DISCUSSION Section 4.2

Figure 4.9: Mesh of rectangular prism generated by Gmsh [2]. DOF = 5796.

per prism. Figure 4.11 shows the electric field intensity |E|2 emerging when an
incident plane wave of λ = 662 nm (the resonance wavelength found by Kern and
Martin), meets the dipole with relative permitivity εr = −13.86 + 1.028i. The
permitivity, corresponding to a gold dipole at wavelength λ = 662 nm, is accessed
from Ref. [41]. The contour plot clearly reveals a resonance in the gap between the
prisms and at their corners. With, |Einc|2 = 1 the field is magnified with a factor of
approximately 250 in the gap, and 500 at the inner corners.

The fact that the simulation replicates the contour plot by Kern and Martin rea-
sonable well, in spite of the different order of intensity, verifies the implementations
ability to successfully represent multiple surface meshes.

4.2.1 Performance comparison off FBF and BBB approach
A considerable amount of work was put into implementing an FBF approach in
evaluating the matrix elements of H (Eq. (2.100)). As derived in Section 2.6.6, an
FBF approach will reduce the amount of integral evaluations by a factor of 9, which
will lead to considerable reduction of the overall simulation time. Using an FBF
approach when evaluating the vector q (Eq. (2.101)) and when calculating the field
distributions (Eq. (2.158)), will also reduce the number of integrals to evaluate by a
factor of 9. However, the majority of the integrals, and thus the major computational
effort, lies in evaluating H, whose size scales as 2N2, where N is the number of basis
functions in the MoM.

On the other hand, the efficiency of the algorithm for solving the matrix equation
(2.99) may scale faster than 2N2, such that for large enough N , the dominant
computing effort lies in solving Eq. (2.99).

Nevertheless, Fig. 4.12 compares the time spent when computing the matrix H
by the use of the FBF and BBB approach, as a function of DOF. The computing
times are relative to the shortest one among them, that is, relative to the time used
by the FBF approach on a mesh of DOF = 378. From the figure, we see that the FBF

77

CHAPTER 4. RESULTS AND DISCUSSION Section 4.2

Figure 4.10: Mesh of dipole antenna generated by Gmsh [2]. There are 1527 DOF
per prism.

Figure 4.11: A gold dipole antenna showing LSPR. The incident resonance wave-
length is λ = 662 nm. The figure is a reproduction of Fig. 6 in [1].

78

CHAPTER 4. RESULTS AND DISCUSSION Section 4.2

Figure 4.12: Computing time of the FBF and BBB approach as a function of DOF.

approach seems to be reducing the computing time by factor of about 20, which is a
significant improvement. On the workstation used to produce this figure, 3.20GHz
CPU and 32 GiB of RAM, the unitary computing time equalled approximately 1.19
seconds.

As mentioned in Section 2.6.6, the price we pay for increased computational
efficiency is increased memory usage. Thus, to review the downside of an FBF
approach, we include a plot of peak memory use as a function of DOF, shown in
Fig. 4.13. Both approaches have exponentially increasing memery usage, reaching
the order of gigabytes when crossing 103 DOF. The FBF approach uses consider-
able more memory than the BBB approach, although the BBB approach seems to
converge towards the slope of the FBF approach.

In addition to the increased memory usage, the requirement of temporarily stor-
ing variables makes an FBF approach more difficult to parallelise on systems with
distributed memory. The BBB approach is straight forward, where the calculation
of the individual matrix elements may be more easily distributed.

Reducing memory usage

It is apparent from Fig. 4.13 that finite memory capacity may be a limiting factor
when increasing the DOF in order to achieve desired accuracy. However, in the
current code, there are several possible modifications that would decrease memory
use. Although they will increase the computational effort, the major advantages of
an FBF approach are kept. Among these modifications are:

1. Cease to temporary store the quadrature points of all faces, and instead calcu-
late them progressively. In this case, all quadrature points will be calculated
9 times each.

2. Optimise the number of temporary stored complex variables per face-pair.

79

CHAPTER 4. RESULTS AND DISCUSSION Section 4.2

Figure 4.13: Peak memory use of the FBF and BBB approach as a function of DOF.

Reduces the memory usage with a factor proportional to 4/9N2.

3. Reduce the DOF of the surface mesh while increasing the number of quadrature
points to maintain accuracy.

4. Avoid the temporary storing of the matrices D(i) and K(i).

Moreover, using an FBF approach only on the inner integrals of the matrix elements
would decrease the memory use significantly, but also decrease the computational
speed. As a result, this approach may be an attractive compromise.

If the memory use is too extensive even with the BBB approach, which is probable
for large DOF, one may resort to reevaluation of the data structure representing the
surface mesh and the RWG-basis functions.

Firstly, in the case where the edges of the mesh are linear, which is consistent
with MoM using RWG basis functions, the array vertices in the derived type
mesh_mod_type is superfluous because the number of nodes equals the number of
vertices. Thus, we may avoid storing Nv instances of the derived type vertex_type
by accessing the nodes directly as if they were the vertices.

Secondly, the derived type storing the RWG basis function representation, RWG_-
basis_mod_type, contains the array basis_edges, which storesN indices represent-
ing the edge of which the basis function is associated with. If the scattering surface is
closed, which is consistent with the PMCHW-formulation, then basis_edges con-
tain no new information, as all edges have an associated basis function, and the
allocation of this array may be omitted.

Finally, RWG_basis_mod_type stores the adjacency relation M1
i {M2} and the

length of the basis edge Ln, which both may be calculated progressively. This
increases the computing time, but reduces the memory usage by 2N integers and

80

CHAPTER 4. RESULTS AND DISCUSSION Section 4.2

N floating numbers. In contrast to the two suggestions above, this modification
would increase the computational effort, and since the adjacency relation M1

i {M2}
and length Ln is used in all matrix elements, the increased computing time would
be proportional to N2. Since the gain in memory capacity is about the same as the
two former suggestions, this modification should not be prioritised ahead of them.

However, the above modifications only reduces memory usage proportional to
N , insignificant compared to improvements proportional to N2, such as item 4. on
the list above. This modification, along with item 1., would also affect the BBB
approach.

81

Chapter 5

Conclusion and Outlook

In this thesis, we have used modular programming in Fortran to design and develop
a framework for numerically simulating the two region electromagnetic scattering
problem using the surface integral formulation (SIE). The framework uses an object-
oriented approach to represent the discretised surface as a mesh through derived
types. The main type uses a topology-based and hierarchical data structure in
order to reduce memory usage while still enabling efficient fetching of adjacency
relations. In addition, it includes functionality that, via an I/O module, imports
pre-generated surface meshes in the Gmsh2 ASCII format. The modular and object-
oriented approach makes it easy to extend the framework’s compatibility to other
file formats.

Furthermore, modules for solving the Maxwell equations with an SIE formula-
tion of the Galerkin Method of Moments (MoM) was implemented. The triangulated
surface was mapped onto the Rao-Wilton-Glisson (RWG) basis functions through
inheritance of the derived type storing the triangulation. The electric field integral
equation (EFIE) and the magnetic field integral equation (MFIE) were combined
using the PMCHW-formulation, and the resulting matrix equation was stored in a
derived type inheriting the RWG basis function mapping. Using singularity subtrac-
tion methods, the singular integrals of the matrix elements were separated (where
relevant) into nonsingular, regular parts, which where numerically evaluated using
Gaussian quadrature, and singular parts, which were analytically evaluated.

Results from the scattering from a sphere centred at the origo showed that the
numerical implementation was able to reproduce the expected interference patterns,
having a lower limit in the peak-to-peak distance at half of the incident wavelength.
The scattered field was symmetric across the xz- and yz-planes, as expected from
the spherical symmetry of the scatterer and the symmetric properties of the inci-
dent plane wave. The angular trend of the bistatic scattering cross section (BSCS)
followed that of the Mie solution, and the amplitudes had equal order of magnitude.
Be that as it may, the energy of the simulated system was not consistently con-
served, and the BSCS did not converge towards a better approximation of the Mie
solution as the degrees of freedom (DOF) of the simulation increased. These results
indicate that the numerical implementation probably has one or more significant
errors. Based on the complexity of the numerical and analytical integration, and on

82

CHAPTER 5. CONCLUSION AND OUTLOOK Section 5.0

the simulation results consistency with the expected symmetry, it is assumed that
the error lies in the evaluation of the matrix elements, likely in the singularity sub-
traction, manifesting itself as a scaling error or a more trivial faulty sign or index.
On the contrary, the error may also be caused by having too few quadrature points
when numerically evaluating the regularised integrals.

Nevertheless, by simulating the scattering of a rectangular prism, the numerical
implementation was found to successfully adapt to nonspherical scattering surfaces
and absorbing regions. In addition, a reproduction of the gold dipole antenna res-
onance scattering scenario described by Kern and Martin in Ref. [1], verified the
ability to represent and evaluate multiple scattering surfaces, as well as reproduce
similar resonance patterns.

On the topic of optimising the computational efficiency of the code, the integrals
of the matrix equation were evaluated face-by-face, instead of base-by-base. As a
result, the number of integral evaluations was reduced by a factor of 9, as compared
to a base-by-base implementation. The resulting computation time was reduced by
a factor of about 20. On the other hand, the face-by-face approach requires signif-
icantly more memory usage, becoming the limiting factor for simulations of large
DOF. Moreover, the face-by-face approach will prove more challenging to parallelise
on systems of distributed memory, because the face-by-face integrals needs to be
stored before calculating each matrix element.

Several modifications of the numerical implementation aiming to reduce the
memory usage was suggested. For both the face-by-face and the basis-by-basis
approach, it was concluded that the most effective measure was to omit storing the
complex type matrices D(i) and K(i) (see Eq. (2.95)), which would reduce the mem-
ory usage by an amount equivalent to storing 4N2 variables of complex type, where
N is the number of basis functions comprising the surface mesh. The most effective
modification to reduce the memory use of the face-by-face approach even further,
was the optimisation of the number of necessary additional variables.

There are various interesting extensions and improvements of the numerical im-
plementation to pursue in the future. Although, given more time, the primary goal
would have been to ensure energy conservation by further testing and search for the
source of the error, e.g. by extensive convergence tests of the integral evaluations.

In addition to comparison with the Mie solution, it would be interesting to
investigate the consistency of the simulation results with the simulation toolkits
scuff-em [42,43] and COMSOL [44]. They would also provide a check of the Mie
solution implemented in this thesis.

Furthermore, the memory usage of the implementation would have been opti-
mised, such that applications to systems large DOF would be practical. This way,
the numerical implementation would be suitable for scattering scenarios where the
wavelength of the incident plane wave is much smaller than the scattering parti-
cle, as the spatially more frequent oscillations of the incident wave provides the
requirement of a finer surface discretisation.

Ideally, the parameters of the implementation would have been dimensionless to
maintain numerical precision. Hence, converting to a dimensionless implementation

83

CHAPTER 5. CONCLUSION AND OUTLOOK Section 5.0

is natural further work.
Likewise, the addition of adaptive quadrature will reduce the number of quadra-

ture points in the integral evaluations to a minimum, and ensure the convergence
of ill-behaved integrands. As follows, adaptive quadrature will improve the compu-
tational efficiency and numerical accuracy of the implementation. The computing
efficiency could be further improved by the exploitation of multi-cored, modern
computer systems through parallel programming. For shared-memory systems, it
could be achieved through the straight forward use of OpenMP [45]. On distributed-
memory systems, the task is naturally more complex due to the extensive memory
use. However, it could be accomplished by careful design and implementation of e.g.
Message Passing Interface (MPI) or a master/slave-model.

Although the numerical implementation in this thesis was found to have some
issues leading to deviation from energy conservation, we have successfully designed
and implemented a modular Fortran code, capable of simulating electromagnetic
scattering by a single, or multiple, arbitrary shaped surfaces using MoM. We strongly
believe that the shortcomings of the results presented are due to minor issues with
our implementation, which the lack of time has made it difficult to locate, and not
the design of the software or the methodology that it is based on.

84

Bibliography

[1] A. M. Kern and O. J. F. Martin. Surface integral formulation for 3D simula-
tions of plasmonic and high permittivity nanostructures. J. Opt. Soc. Am. A,
26(4):732–740, Apr 2009.

[2] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh genera-
tor with built-in pre- and post-processing facilities. International Journal for
Numerical Methods in Engineering, 79(11):1309–1331, 2009.

[3] A. T. Young. Rayleigh scattering. Physics Today, 35(1):42–48, 1982.

[4] E. Petryayeva and U. J. Krull. Localized surface plasmon resonance: Nanostruc-
tures, bioassays and biosensing—a review. Analytica Chimica Acta, 706(1):8–24,
2011.

[5] P. Singh. LSPR Biosensing: Recent Advances and Approaches, pages 211–238.
Springer International Publishing, Cham, 2017.

[6] M. Sui, S. Kunwar, P. Pandey, and J. Lee. Strongly confined localized surface
plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles. Scientific
Reports, 9(16582), Nov 2019.

[7] G. Mie. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen.
Annalen der Physik, 330(3):377–445, 1908.

[8] C. F. Bohren and D. R. Huffman. Absorption and Scattering by a Sphere,
chapter 4, pages 82–129. John Wiley & Sons, Ltd, 1998.

[9] A. Bondeson, T. Rylander, and P. Ingelström. Computational Electromagnetics.
Springer, New York, N.Y. London, 2005.

[10] B. T. Draine and P. J. Flatau. Discrete-dipole approximation for scattering
calculations. J. Opt. Soc. Am. A, 11(4):1491–1499, Apr 1994.

[11] S. Rao, D. Wilton, and A. Glisson. Electromagnetic scattering by surfaces of
arbitrary shape. IEEE Transactions on Antennas and Propagation, 30(3):409–
418, 1982.

[12] P. Yla-Oijala and M. Taskinen. Calculation of CFIE impedance matrix elements
with RWG and n × RWG functions. IEEE Transactions on Antennas and
Propagation, 51(8):1837–1846, 2003.

85

BIBLIOGRAPHY Section 5.0

[13] I. Hänninen, M. Taskinen, and J. Sarvas. Singularity Subtraction Integral For-
mulae for Surface Integral Equations with RWG, Rooftop and Hybrid Basis
Functions. Progress In Electromagnetics Research, 63:243–278, 2006.

[14] R. D. Graglia. On the numerical integration of the linear shape functions times
the 3-D Green’s function or its gradient on a plane triangle. IEEE Transactions
on Antennas and Propagation, 41(10):1448–1455, 1993.

[15] M. T. H. Reid, J. K. White, and S. G. Johnson. Generalized taylor–duffy
method for efficient evaluation of galerkin integrals in boundary-element
method computations. IEEE Transactions on Antennas and Propagation,
63(1):195–209, 2015.

[16] A. G. Polimeridis, J. M. Tamayo, J. M. Rius, and J. R. Mosig. Fast and accurate
computation of hypersingular integrals in galerkin surface integral equation
formulations via the direct evaluation method. IEEE Transactions on Antennas
and Propagation, 59(6):2329–2340, jun 2011.

[17] Ismatullah and Eibert. Adaptive singularity cancellation for efficient treatment
of near-singular and near-hypersingular integrals in surface integral equation
formulations. IEEE Transactions on Antennas and Propagation, 56(1):274–
278, 2008.

[18] M. G. Duffy. Quadrature Over a Pyramid or Cube of Integrands with a Sin-
gularity at a Vertex. SIAM Journal on Numerical Analysis, 19(6):1260–1262,
1982.

[19] A. G. Polimeridis and J. R. Mosig. Complete semi-analytical treatment of
weakly singular integrals on planar triangles via the direct evaluation method.
International Journal for Numerical Methods in Engineering, 83(12):1625–1650,
2010.

[20] A. G. Polimeridis, F. Vipiana, J. R. Mosig, and D. R. Wilton. Directfn:
Fully numerical algorithms for high precision computation of singular integrals
in galerkin sie methods. IEEE Transactions on Antennas and Propagation,
61(6):3112–3122, 2013.

[21] A. W. Glisson. On the development of numerical techniques for treating
arbitrarily-shaped surfaces. PhD thesis, University of Mississippi, 1978.

[22] X. Q. Sheng, J. . Jin, J. Song, W. C. Chew, and C. . Lu. Solution of combined-
field integral equation using multilevel fast multipole algorithm for scattering
by homogeneous bodies. IEEE Transactions on Antennas and Propagation,
46(11):1718–1726, 1998.

[23] C. Tai. Dyadic Green Functions in Electromagnetic Theory. IEEE Press Pub-
lication Series. IEEE Press, 1994.

86

BIBLIOGRAPHY Section 5.0

[24] D. J. Griffiths. Introduction to Electrodynamics. Cambridge University Press,
4 edition, 2017.

[25] R. Harrington. Field computation by moment methods. IEEE Press, Piscataway,
NJ, 1993.

[26] S. Rao, D. Wilton, and A. Glisson. Electromagnetic scattering by arbitrary
surfaces. Rome Air Development Center, Griffiss AFB, NY, Tech. Rep. RADC-
TR-79-325, March 1980.

[27] P. J. Frey and P. G. Mesh generation : Application to finite elements. ISTE
John Wiley & Sons, London Hoboken, NJ, 2008.

[28] C. Bär. Elementary differential geometry. Cambridge University Press, Cam-
bridge New York, 2010.

[29] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University
Press, USA, 3 edition, 2007.

[30] T. Sauer. Numerical Analysis Second Edition. Pearson Education Limited,
2014.

[31] P. C. Hammer, O. J. Marlowe, and A. H. Stroud. Numerical integration over
simplexes and cones. Mathematics of Computation, 10:130–137, 1956.

[32] G. R. Cowper. Gaussian quadrature formulas for triangles. International Jour-
nal for Numerical Methods in Engineering, 7(3):405–408, 1973.

[33] J. Burkardt. FORTRAN90 Source Codes. Accessed November 2020.

[34] K. Rottmann. Matematisk Formelsamling. Spektrum forlag, 2014.

[35] J. Schöberl. NETGEN an advancing front 2d/3d-mesh generator based on
abstract rules. Computing and Visualization in Science, 1(1):41–52, July 1997.

[36] M. W. Beall and M. S. Shepard. A General Topology-Based Mesh Data Struc-
ture. International Journal for Numerical Methods in Engineering, 40(9):1573–
1596, 1997.

[37] Z. Xianyi, W. Qian, and Z. Yunquan. Model-driven Level 3 BLAS Performance
Optimization on Loongson 3A Processor. In 2012 IEEE 18th International
Conference on Parallel and Distributed Systems, pages 684–691, 2012.

[38] GNU Software. GNU make Manual.

[39] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide, third edition, August 1999.

87

BIBLIOGRAPHY Section .0

[40] L. S. Blackford, A.e Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel,
J. Dongarra, I. Duff, S. Hammarling, G. Henry, et al. An updated set of
basic linear algebra subprograms (blas). ACM Transactions on Mathematical
Software, 28(2):135–151, 2002.

[41] P. B. Johnson and R. W. Christy. Optical constants of the noble metals. Phys.
Rev. B, 6:4370–4379, Dec 1972.

[42] M. T. H. Reid and S. G. Johnson. Efficient Computation of Power, Force, and
Torque in BEM Scattering Calculations. ArXiv e-prints, July 2013.

[43] http://github.com/homerreid/scuff-EM.

[44] S. Yushanov, J. S. Crompton, and K. C. Koppenhoefer. Mie scattering of
electromagnetic waves. AltaSim Technologies, 2013.

[45] D. Clark. Openmp: a parallel standard for the masses. IEEE Concurrency,
6(1):10–12, 1998.

88

Appendix A

Expansion of K(i)
mn

As discussed in Section 2.6.6, the double integral in K(i)
mn has the form

1
ApmA

q
n

∫
T p

dS(r− ppm) ·
∫
T p

dS ′[∇′Gi(r, r′)]× (r′ − pqn), (A.1)

which may be approximated by the double sum

Nj∑
j=1

wj(αjrp1 + βjrp2 + γjrp3 − ppm) ·
{
Irq
ξ

[
(αjrp1 + βjrp2 + γjrp3)× r′q1 + r′q1 × pqn

]

+Irq
η

[
(αjrp1 + βjrp2 + γjrp3)× r′q2 + r′q2 × pqn

]
+Irq

ζ

[
(αjrp1 + βjrp2 + γjrp3)× r′q3 + r′q3 × pqn

]
−Irq [(αjrp1 + βjrp2 + γjrp3)× pqn]

}
.

(A.2)

To enable a face-by-face approach in evaluating the double integrals of K(i)
mn, the

sums in Eq. (A.2) must be independent of the free vertices ppm and pqn. Further
expansion of Eq. (A.2) yields

89

APPENDIX A. EXPANSION OF K(I)
MN Section A.0

(r′q1 × pqn) ·
[
Qpq
αξr

p
1 + Qpq

βξr
p
2 + Qpq

γξr
p
3 −Qpq

ξ ppm
]

+(r′q2 × pqn) ·
[
Qpq
αηr

p
1 + Qpq

βηr
p
2 + Qpq

γηr
p
3 −Qpq

η ppm
]

+(r′q3 × pqn) ·
[
Qpq
αζr

p
1 + Qpq

βζr
p
2 + Qpq

γζr
p
3 −Qpq

ζ ppm
]

+(rq1 × r′q1) ·
[
Qpq
ααξr

p
1 + Qpq

βαξr
p
2 + Qpq

γαξr
p
3 −Qpq

αξppm
]

+(rq2 × r′q1) ·
[
Qpq
αβξr

p
1 + Qpq

ββξr
p
2 + Qpq

γβξr
p
3 −Qpq

βξppm
]

+(rq3 × r′q1) ·
[
Qpq
αγξr

p
1 + Qpq

βγξr
p
2 + Qpq

γγξr
p
3 −Qpq

γξppm
]

−(rq1 × pqn) ·
[
Qpq
ααrp1 + Qpq

αβrp2 + Qpq
αγr

p
3 −Qpq

α ppm
]

−(rq2 × pqn) ·
[
Qpq
βαrp1 + Qpq

ββrp2 + Qpq
βγr

p
3 −Qpq

β ppm
]

−(rq3 × pqn) ·
[
Qpq
γαrp1 + Qpq

γβrp2 + Qpq
γγr

p
3 −Qpq

γ ppm
]

+(rq1 × r′q2) ·
[
Qpq
ααηr

p
1 + Qpq

βαηr
p
2 + Qpq

γαηr
p
3 −Qpq

αηppm
]

+(rq2 × r′q2) ·
[
Qpq
αβηr

p
1 + Qpq

ββηr
p
2 + Qpq

γβηr
p
3 −Qpq

βηppm
]

+(rq3 × r′q2) ·
[
Qpq
αγηr

p
1 + Qpq

βγηr
p
2 + Qpq

γγηr
p
3 −Qpq

γηppm
]

+(rq2 × r′q3) ·
[
Qpq
ααζr

p
1 + Qpq

βαζr
p
2 + Qpq

γαζr
p
3 −Qpq

αζppm
]

+(rq2 × r′q3) ·
[
Qpq
αβζr

p
1 + Qpq

ββζr
p
2 + Qpq

γβζr
p
3 −Qpq

βζppm
]

+(rq3 × r′q3) ·
[
Qpq
αγζr

p
1 + Qpq

βγζr
p
2 + Qpq

γγζr
p
3 −Qpq

γζppm
]
,

(A.3)

where

90

APPENDIX A. EXPANSION OF K(I)
MN Section A.0

Qpq
αξ =

Nk∑
k=1

wkαkIrq
ξ ,

Qpq
βξ =

Nk∑
k=1

wkβkIrq
ξ ,

Qpq
ξ =

Nk∑
k=1

wkIrq
ξ ,

Qpq
αη =

Nk∑
k=1

wkαkIrq
η ,

Qpq
βη =

Nk∑
k=1

wkβkIrq
η ,

Qpq
η =

Nk∑
k=1

wkIrq
η ,

Qpq
α =

Nk∑
k=1

wkαkIrq,

Qpq
β =

Nk∑
k=1

wkβkIrq,

Qpq =
Nk∑
k=1

wkIrq,

Qpq
ααξ =

Nk∑
k=1

wkα
2
kI

rq
ξ ,

Qpq
ααη =

Nk∑
k=1

wkα
2
kIrq
η ,

Qpq
αα =

Nk∑
k=1

wkα
2
kIrq,

Qpq
ββξ =

Nk∑
k=1

wkβ
2
kIrq
η ,

Qpq
ββη =

Nk∑
k=1

wkβ
2
kIrq
η ,

Qpq
ββ =

Nk∑
k=1

wkβ
2
kIrq,

Qpq
αβξ =

Nk∑
k=1

wkαkβkIrq
ξ ,

Qpq
αβη =

Nk∑
k=1

wkαkβkIrq
η ,

Qpq
αβ =

Nk∑
k=1

wkαkβkIrq,

(A.4)

and

91

APPENDIX A. EXPANSION OF K(I)
MN Section A.0

Qpq
αζ = Qpq

α −Qpq
αξ −Qpq

αη,

Qpq
βζ = Qpq

β −Qpq
βξ −Qpq

βη,

Qpq
ζ = Qpq −Qpq

ξ −Qpq
η ,

Qpq
γ = Qpq

ζ −Qpq
α −Qpq

β ,

Qpq
γξ = Qpq

ξ −Qpq
αξ −Qpq

βξ,

Qpq
γη = Qpq

η −Qpq
αη −Qpq

βη,

Qpq
γζ = Qpq

ζ −Qpq
αζ −Qpq

βζ ,

Qpq
ααζ = Qpq

αα −Qpq
ααξ −Qpq

ααη,

Qpq
ββζ = Qpq

ββ −Qpq
ββξ −Qpq

ββη,

Qpq
αβζ = Qpq

αβ −Qpq
αβξ −Qpq

αβη,

Qpq
γ = Qpq

ζ −Qpq
α −Qpq

β ,

Qpq
αγξ = Qpq

αξ −Qpq
ααξ −Qpq

αβξ,

Qpq
αγη = Qpq

αη −Qpq
ααη −Qpq

αβη,

Qpq
αγζ = Qpq

αγ −Qpq
αγξ −Qpq

αγη,

Qpq
αγ = Qpq

α −Qpq
αα −Qpq

αβ,

Qpq
βγ = Qpq

β −Qpq
αβ −Qpq

ββ,

Qpq
γγξ = Qpq

γξ −Qpq
αγξ −Qpq

βγξ,

Qpq
γγη = Qpq

γη −Qpq
αγη −Qpq

βγη,

Qpq
γγ = Qpq

γ −Qpq
αγ −Qpq

βγ,

Qpq
γγζ = Qpq

γγ −Qpq
γγξ −Qpq

γγη,

Qpq
βγξ = Qpq

βξ −Qpq
αβξ −Qpq

ββξ,

Qpq
βγη = Qpq

βη −Qpq
αβη −Qpq

ββη,

Qpq
βγζ = Qpq

βγ −Qpq
βγξ −Qpq

βγη,

(A.5)

as consequence of the constraints γ = 1− α− β and ζ = 1− ξ − η.

92

Appendix B

Module Interfaces

In this appendix we list the Fortran code defining the interfaces of selected modules
that are discussed in Section 3.1.2. The reader is referred to the code attached to
the report for the Fortran modules in their entirety.

B.1 mesh_mod

The listing below contains the interface of the module mesh_mod. The complete
module is defined in the Fortran file mesh_mod.f90.

,
1 module mesh_mod
2 ! !===
3 ! This module represents a mesh in the hierarchical structure :
4 ! face --> edge --> vertex --> point
5 !
6 ! A mesh_type is initialised by reading a .msh - formated file.
7 !
8 ! Abbreviations :
9 ! CS - Closed Surface
10 ! OS - Open Surface
11 !‘
12 ! Last edited : March 7th 2021.
13 ! !===
14
15 ! !==============!!
16 ! Use statements !
17 ! ================!===
18 use working_precision , only: wp
19 use math_funcs_mod , only: cross_prod_3D
20 use io_mod , only: open_read_gmsh2
21 use io_mod , only: r8mat_write
22 use iso_fortran_env , only: real64
23 use is_close_mod , only: is_close
24 use constants_mod , only: PI
25 use constants_mod , only: ZERO
26
27 implicit none

93

APPENDIX B. MODULE INTERFACES Section B.1

28
29 ! !===================!!
30 ! External procedures !
31 ! =====================!==
32 external :: dnrm2 ! BLAS level 1: Euclidean norm (double)
33
34
35 ! !=================================!!
36 ! Public types/ procedures / constants !
37 ! ===================================!============================
38 public :: mesh_type ! Main type
39 public :: face_type
40 public :: edge_type
41 public :: vertex_type
42 public :: node_type
43
44 ! !==================================!!
45 ! Private types/ procedures / constants !
46 ! ====================================!===========================
47 private :: eval_Euler_characteristic_CS
48 private :: check_input_triangulated_surface
49 private :: eval_topology_on_triangulated_surface
50
51 ! From here on everything is by defualt decleared private
52 private
53
54 !!------------------------!!
55 ! Derived type definitions !
56 ! --------------------------!-------------------------------------
57 type face_type
58 ! Type to store indices related to the edges
59 ! forming a face on the mesh.
60 integer , dimension (:), allocatable :: edges
61 end type face_type
62
63 type edge_type
64 ! Type to store the indicies related to the vertices
65 ! forming an edge.
66 integer , dimension (2) :: vertices
67 ! Length of node_idx depends on edge order:
68 ! linear : len = 0
69 ! quadratic : len = 1
70 ! cubic: len = 2
71 integer , dimension (:), allocatable :: node_idx
72 contains
73 procedure , pass(this), public :: initialise_edge
74 end type edge_type
75
76 type vertex_type
77 ! Type to store the index of the node at which
78 ! the vertex is located .
79 integer :: node_idx
80 end type vertex_type
81

94

APPENDIX B. MODULE INTERFACES Section B.1

82 type node_type
83 ! Type to store the 3D coordinates of a node.
84 real(wp), dimension (3) :: coords
85 end type node_type
86
87 !!---------!!
88 ! Main type !
89 ! -----------!--
90 type mesh_type
91 type (face_type) , dimension (:), allocatable :: faces
92 type (edge_type) , dimension (:), allocatable :: edges
93 type (vertex_type), dimension (:), &
94 allocatable :: vertices
95 type (node_type) , dimension (:), allocatable :: nodes
96 integer :: edge_order
97 integer :: spatial_dim
98 integer :: face_order
99 integer :: num_faces
100 integer :: num_edges
101 integer :: num_vertices
102 integer :: num_nodes
103 integer :: num_handles
104 integer :: num_apertures
105 integer :: num_boundary_edges
106 logical :: closed_surface
107 contains
108 ! Initialisers
109 procedure , pass(this), public :: initialise
110 procedure , pass(this), public :: initialise_tetrahedron
111 ! Writing procedures
112 procedure , pass(this), public :: write_mesh
113 ! Deallocation of attributes
114 procedure , pass(this), public :: deallocate_attributes
115 ! Get - procedures
116 procedure , pass(this), public :: get_closed_surface
117 procedure , pass(this), public :: get_edge_order
118 procedure , pass(this), public :: get_spatial_dim
119 procedure , pass(this), public :: get_face_order
120 procedure , pass(this), public :: get_num_handles
121 procedure , pass(this), public :: get_num_faces
122 procedure , pass(this), public :: get_num_edges
123 procedure , pass(this), public :: get_num_vertices
124 procedure , pass(this), public :: get_num_nodes
125 procedure , pass(this), public :: get_topology
126 procedure , pass(this), public :: get_edges_on_face
127 procedure , pass(this), public :: get_vertices_of_edge
128 procedure , pass(this), public :: get_vertices_of_face
129 procedure , pass(this), public :: get_vertex_coords
130 procedure , pass(this), public :: get_edge_coords
131 procedure , pass(this), public :: get_face_coords
132 ! Calculations
133 procedure , pass(this), public :: face_normal
134 procedure , pass(this), public :: face_unit_normal
135 procedure , pass(this), public :: face_area

95

APPENDIX B. MODULE INTERFACES Section B.2

136 procedure , pass(this), public :: face_centroid
137 procedure , pass(this), public :: edge_length
138 procedure , pass(this), public :: surface_area
139 procedure , pass(this), public :: volume
140 ! Other routines
141 procedure , pass(this), public :: print
142 procedure , pass(this), public :: scale_nodes
143 ! For determining whether a point is inside or outside
144 ! of meshe_nodes
145 procedure , pass(this), public :: solid_angle_spanned_by_face
146 procedure , pass(this), public :: solid_angle_spanned_by_mesh
147 procedure , pass(this), public :: is_obs_pnt_inside_mesh
148 ! Private procedures for internal use
149 procedure , pass(this), private :: create_member_types_linear
150
151 end type mesh_type
152
153
154 ! !==============================!!
155 ! Overloaded operator interfaces !
156 ! ================================!===============================
157 ! Overloaded operator interfaces
158 interface operator (==)
159 module procedure is_edges_equal
160 end interface operator (==)

B.2 RWG_basis_mod

The listing below contains the interface of the module RWG_basis_mod. The complete
module is defined in the Fortran file RWG_basis_mod.f90.

,
1 module RWG_basis_mod
2 ! !==
3 ! This module defines the RWG basis type , which inherits the
4 ! mesh_mod_type
5 ! from mesh_mod .f90 and represents an RWG basis function mapping of
6 ! a surface mesh.
7 !
8 ! Abbreviations :
9 ! CS - Closed Surface

10 ! OS - Open Surface
11 ! GQ - Gaussian Quadrature
12 !
13 ! Last edited : March 7th 2021.
14 ! !==
15
16 ! !==============!!
17 ! Use statements !
18 ! ================!==
19 use working_precision , only: wp
20 use iso_fortran_env , only: real64

96

APPENDIX B. MODULE INTERFACES Section B.2

21 use mesh_mod , only: mesh_type
22 use math_funcs_mod , only: cross_prod_3D
23 use is_close_mod , only: is_close
24 use constants_mod , only: PI
25 use io_mod , only: r8mat_write
26
27 implicit none
28
29 ! !===================!!
30 ! External procedures !
31 ! =====================!===
32
33
34 ! !=================================!!
35 ! Public types/ procedures / constants !
36 ! ===================================!=============================
37 public :: RWG_basis_type ! Main type
38
39 ! Constants
40 integer , parameter , public :: SPATIAL_DIM = 3
41 integer , parameter , public :: NUM_FACES_IN_BASIS = 2
42 integer , parameter , public :: NUM_FACE_VERTICES = 3
43 character (*), parameter , public :: MODULE_NAME = ’RWG_basis_mod ’
44
45
46 ! !==================================!!
47 ! Private types/ procedures / constants !
48 ! ====================================!============================
49 private
50
51 !!------------------------!!
52 ! Derived type definitions !
53 ! --------------------------!--------------------------------------
54
55
56 !!---------!!
57 ! Main type !
58 ! -----------!---
59 type RWG_basis_type
60 type (mesh_type) :: mesh
61 integer :: num_bases
62 integer , dimension (:) , allocatable :: basis_edges
63 integer , dimension (:, :) , allocatable :: adjacent_faces
64 real(wp), dimension (:) , allocatable :: basis_edge_length
65 contains
66 ! Initialisers
67 procedure , pass(this), public :: initialise
68 ! Deallocation
69 procedure , pass(this), public :: deallocate_attributes
70 ! Get - functions
71 procedure , pass(this), public :: get_num_bases
72 procedure , pass(this), public :: get_free_vertices
73 procedure , pass(this), public :: get_basis_edge_coords
74 procedure , pass(this), public :: get_basis_edge_length

97

APPENDIX B. MODULE INTERFACES Section B.3

75 procedure , pass(this), public :: get_adjacent_faces
76 ! Calculations
77 procedure , pass(this), public :: integrate_tested_func
78 ! Validations
79 procedure , pass(this), public :: validate_current_direction
80 ! Write procedures
81 procedure , pass(this), public :: write_RWG_basis
82
83 end type RWG_basis_type

B.3 PMCHW_RWG_mod

The listing below contains the interface of the module PMCHW_RWG_mod. The complete
module is defined in the Fortran file PMCHW_RWG_mod.f90.

,
1 module PMCHW_RWG_mod
2 ! !===
3 ! This module uses PMCHW (Poggio , Miller , Chang , Harrington ,
4 ! and Wu) formulation for combining EFIE and MFIE to simulate
5 ! electromagnetic scattering on an arbitrary surface . The
6 ! scattering problem is solved using method of moments (MoM)
7 ! (often called boundary element method) with RWG basis (Rao ,
8 ! Wilson , and Glisson) functions using Gelerkin ’s method . Integrals
9 ! are solved numerically using Gaussian quadrature formulas .

10 !
11 ! The problem consists of two regions , inside and outside of the
12 ! closed surface . The regions have different permeability and
13 ! permitivity .
14 !
15 ! The main type of the module inherits the discretisation of the
16 ! scattering surface and the RWG basis function mapping through an
17 ! instance of the RWG_basi_mod_type defined in RWG_basis_mod .f90.
18 !
19 ! Abbreviations :
20 ! CS - Closed Surface
21 ! OS - Open Surface
22 ! GQ - Gaussian Quadrature
23 ! GQF - Gaussian Quadrature Formula
24 ! GLQF - Gauss - Legendre Quadrature Formula
25 ! EFIE - Electric Field Integral Formulation
26 ! MFIE - Magnetic Field Integral Formulation
27 !
28 ! Last edited : March 7th 2021.
29 ! !===
30
31 ! !==============!!
32 ! Use statements !
33 ! ================!===
34 use iso_fortran_env , only: real32 , real64 , real128
35 use ieee_arithmetic , only: ieee_is_finite
36 use working_precision , only: wp

98

APPENDIX B. MODULE INTERFACES Section B.3

37 use RWG_basis_mod , only: RWG_basis_type
38 use math_funcs_mod , only: cross_prod_3D
39 use math_funcs_mod , only: plane_wave
40 use constants_mod , only: PI
41 use constants_mod , only: I_IMAG
42 use constants_mod , only: ZERO_CMPLX
43 use constants_mod , only: ZERO
44 use constants_mod , only: UNITY
45 use constants_mod , only: PI4_INV
46 use is_close_mod , only: is_close
47 use io_mod , only: r8mat_write
48 use gauss_quad_formulas_mod , only: GQF_triangle_3pnt
49 use gauss_quad_formulas_mod , only: GQF_Legendre_3pnt
50 use gauss_quad_formulas_mod , only: GQF_Legendre_5pnt
51
52 implicit none
53
54 ! !===================!!
55 ! External procedures !
56 ! =====================!==
57 external :: CGESV
58 external :: ZGESV
59
60 ! !=================================!!
61 ! Public types/ procedures / constants !
62 ! ===================================!============================
63 public :: PMCHW_RWG_type ! Main type
64
65 integer , parameter , public :: NUM_REGIONS = 2
66 integer , parameter , public :: INC_FIELD_TYPE_PLANE_WAVE = 1
67 integer , parameter , &
68 public :: INC_FIELD_TYPE_SPHERICAL_WAVE = 2
69 integer , parameter , public :: OUTER_REGION_IDX = 1
70 integer , parameter , public :: INNER_REGION_IDX = 2
71 integer , parameter , public :: X_IDX = 1
72 integer , parameter , public :: Y_IDX = 2
73 integer , parameter , public :: Z_IDX = 3
74 integer , parameter , public :: SPATIAL_DIM = 3
75 integer , parameter , public :: NUM_FACE_VERTICES = 3
76 integer , parameter , public :: NUM_FACES_IN_BASIS = 2
77 integer , parameter , public :: GQF_WEIGHT_IDX = 1
78 integer , parameter , public :: GQF_XI_IDX = 2
79 integer , parameter , public :: GQF_ETA_IDX = 3
80 integer , parameter , public :: GQF_ZETA_IDX = 4
81 integer , parameter , public :: GQF_LEGENDRE_POINT_IDX = 2
82 real(wp) , parameter , &
83 public :: PROP_CONST_OBS_PNT_SRC_CLOSE = -1. _wp!e -11
84 logical , parameter , public :: CAUCHY = .false.
85
86 public :: eval_green_func_integrals
87 public :: eval_outer_integrals
88 public :: face_pair_integral_EFIE
89 public :: face_pair_integral_MFIE
90 public :: surface_intgr_solution

99

APPENDIX B. MODULE INTERFACES Section B.3

91 public :: line_intgr_solution
92 public :: inner_intgr_of_subtr_terms
93 public :: green_func_smoothened
94 public :: calc_edge_unit_normals
95 public :: map_GLQF_pnt_to_triangle_edge
96 public :: dbl_singularity_intgr
97 public :: eval_subtracted_terms
98 public :: calc_green_func
99 public :: calc_grad_of_green_func
100 public :: Cauchy_principal_value
101
102 ! ====================================!
103 ! Private types/ procedures / constants !
104 ! ====================================!===========================
105
106 private
107 !!------------------------!!
108 ! Derived type definitions !
109 ! --------------------------!-------------------------------------
110
111 !!---------!!
112 ! Main type !
113 ! -----------!--
114 type PMCHW_RWG_type
115 type (RWG_basis_type) :: RWG_basis
116 complex (wp), dimension (NUM_REGIONS) :: permeabilities
117 complex (wp), dimension (NUM_REGIONS) :: permitivities
118 real(wp) :: angular_frequency
119 complex (wp), dimension (:, :), allocatable :: PMCHW_matrix
120 complex (wp), dimension (:, :), allocatable :: q_vectors
121 complex (wp), dimension (:, :), &
122 allocatable :: expansion_coeff_alpha
123 complex (wp), dimension (:, :), &
124 allocatable :: expansion_coeff_beta
125 complex (wp), dimension (:, :), allocatable :: inc_E_field_ampl
126 complex (wp), dimension (:, :), allocatable :: inc_H_field_ampl
127 real(wp) , dimension (:, :), &
128 allocatable :: inc_wave_direction ! unit -
129 integer , dimension (:) , allocatable :: inc_field_type
130 integer :: num_q_vectors
131 contains
132 ! Initialisers
133 procedure , pass(this), public :: initialise
134 ! Deallocation
135 procedure , pass(this), public :: deallocate_attributes
136 ! Get - functions
137 procedure , pass(this), public :: get_permeability
138 procedure , pass(this), public :: get_permitivity
139 procedure , pass(this), public :: get_angular_frequency
140 procedure , pass(this), public :: get_num_q_vectors
141 procedure , pass(this), public :: get_PMCHW_matrix_size
142 procedure , pass(this), public :: get_q_vectors_size
143 procedure , pass(this), public :: get_q_vectors
144 procedure , pass(this), public :: get_PMCHW_matrix

100

APPENDIX B. MODULE INTERFACES Section B.4

145 procedure , pass(this), public :: get_solutions
146 ! Calculations
147 procedure , pass(this), public :: calc_q_vectors
148 procedure , pass(this), public :: calc_q_vectors_direct
149 procedure , pass(this), public :: calc_PMCHW_matrix
150 procedure , pass(this), public :: D_and_K_matrix_element_mn
151 procedure , pass(this), public :: inc_E_and_H_field_at_obs_pnt
152 procedure , pass(this), public :: solve_matrix_equation
153 procedure , pass(this), &
154 public :: E_and_H_field_at_obs_pnt
155 procedure , pass(this), &
156 public :: E_and_H_field_at_obs_pnt_direct
157 procedure , pass(this), &
158 public :: bistatic_scattering_cross_section
159 procedure , pass(this), public :: face_centroid
160 procedure , pass(this), public :: are_obs_pnt_and_src_close
161 procedure , pass(this), public :: get_edge_lengths
162 procedure , pass(this), &
163 public :: D_and_K_matrix_element_mn_direct
164 ! Writing data
165 procedure , pass(this), public :: write_solutions
166
167 end type PMCHW_RWG_type

B.4 io_mod

The listing below contains the interface of the module io_mod. The complete module
is defined in the Fortran file io_mod.f90.

,
1 module io_mod
2 ! !===
3 ! This module contains I/O procedures , and has a procedure
4 ! specifically designed to read Gmsh2 files. To be used together
5 ! with mesh_mod .
6 !
7 ! Last edited : March 7th 2021.
8 ! !===
9

10 ! !==============!!
11 ! Use statements !
12 ! ================!===
13 use working_precision , only: wp
14 use iso_fortran_env , only: IOSTAT_END
15 use iso_fortran_env , only: ERROR_UNIT
16 use ieee_arithmetic , only: ieee_is_finite
17 use ieee_arithmetic , only: ieee_is_nan
18
19 implicit none
20
21
22 ! !=================================!!

101

APPENDIX B. MODULE INTERFACES Section B.4

23 ! Public types/ procedures / constants !
24 ! ===================================!============================
25 public :: open_read_gmsh2
26 public :: string_to_int4
27 public :: string_to_real_wp
28 public :: read_nth_int4
29 public :: read_n_last_int4
30 public :: read_n_last_real_wp
31 public :: count_int4_on_string
32 public :: count_real_wp_on_string
33 public :: capitalise_char
34 ! Procedures by John Burkardt for writing tables to file
35 public :: r8mat_write
36 public :: get_unit
37
38 ! !==================================!!
39 ! Private types/ procedures / constants !
40 ! ====================================!===========================
41 private :: check_ioerr_opening
42 private :: check_ioerr_reading
43
44
45 ! =======!=========================!==============================
46 contains ! /\/\/\/\/\/\/\/\/\/\/\/\!/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\
47 ! =======!=========================!==============================
48
49
50 ! !=================!!
51 ! Public procedures !
52 ! ===================!==
53
54 !!---!!
55 ! Specific file format open and read routines !
56 ! ---!------------------
57 subroutine open_read_gmsh2 (FILENAME , spatial_dim , &
58 element_order , nodes , elements)
59 character (len =*) , intent (in) :: FILENAME
60 integer , intent (in) :: spatial_dim
61 integer , intent (in) :: element_order
62 real(wp), dimension (:, :), allocatable , intent (out) :: nodes
63 integer , dimension (:, :), allocatable , intent (out) :: elements
64 ! Variables for internal use ----------------------------------
65 integer , parameter :: BUFFER_LEN = 255
66 integer , parameter :: IOMSG_LEN = 255
67 character (len= BUFFER_LEN) :: line
68 character (len= IOMSG_LEN) :: iotxt
69 integer :: line_nr
70 integer :: num_nodes
71 integer :: num_elements
72 integer :: num_elements_tot
73 integer :: element_line_start
74 integer :: element_line_end
75 integer :: unit_nr
76 integer :: level

102

APPENDIX B. MODULE INTERFACES Section B.4

77 integer :: int4_value
78 real(wp) :: real_wp_value
79 integer :: length
80 integer :: ioerr
81 integer :: error_state
82 integer :: i, j, k
83 ! __
84 !/_/_/_/_/_/_/_/_/_/\ __DOCSTRING__ /_/_/_/_/_/_/\
85 ! This routine loads a Gmsh2 ASCII file given by a file name ,
86 ! the spatial order of the mesh , and the element order. It
87 ! reads the file line by line and successively progresses
88 ! through levels , which are activated by
89 ! keywords in the .msh -file.
90 !
91 ! Arguments :
92 ! FILENAME - The path to the .msh
93 ! spatial dim - The spatial order of the mesh
94 ! element order - The order of the elements in the mesh.
95 ! Result :
96 ! nodes - A matrix contain the nodes of the mesh and their
97 ! Cartesian
98 ! coordinates .
99 ! elements - A matrix containing the elements of the mesh ,
100 ! defined by
101 ! the indices of the nodes it comprises .
102 ! __
103
104 open (newunit =unit_nr , file=FILENAME , status =’old ’, &
105 action =’read ’, iostat =ioerr , iomsg=iotxt)
106 call check_ioerr_opening (ioerr , iotxt , IOMSG_LEN , FILENAME , &
107 1, ’reading ’)
108
109 ! Read file and interpret line by line
110 level = 0
111 num_elements = 0
112 line_nr = 0
113 do
114 length = 1
115 line_nr = line_nr + 1
116
117 read (unit_nr , ’(a)’, iostat =ioerr , iomsg=iotxt) line
118 if (ioerr /= 0) then
119 call check_ioerr_reading (ioerr , iotxt , IOMSG_LEN ,&
120 FILENAME , 3)
121 exit
122 end if
123 ! Read nodes
124 if (level == 0) then
125 if (line (1:6) == ’$Nodes ’) then
126 level = 1
127 end if
128 else if (level == 1) then
129 call string_to_int4 (line , length , int4_value , &
130 error_state)

103

APPENDIX B. MODULE INTERFACES Section B.4

131 num_nodes = int4_value
132 allocate (nodes(num_nodes , spatial_dim))
133 j = 0
134 level = 2
135 else if (level == 2) then
136 if (line (1:9) == ’$EndNodes ’) then
137 level = 3
138 else
139 j = j + 1
140 call read_n_last_real_wp (line , spatial_dim , &
141 nodes(j, :), &
142 num_real_wp_in =(spatial_dim + 1))
143 end if
144
145 ! Read elements
146 else if (level == 3) then
147 if (line (1:9) == ’$Elements ’) then
148 level = 4
149 end if
150 else if (level == 4) then
151 call string_to_int4 (line , length , int4_value , &
152 error_state)
153 num_elements_tot = int4_value
154 level = 5
155 else if (level == 5) then
156 int4_value = read_nth_int4 (line , 2)
157 if (int4_value == 2) then
158 element_line_start = line_nr
159 num_elements = 1
160 level = 6
161 end if
162 else if (level == 6) then
163 if (line (1:12) == ’$EndElements ’) then
164 level = 7
165 rewind (unit_nr)
166 else
167 int4_value = read_nth_int4 (line , 2)
168 if (int4_value /= 2) then
169 level = 7
170 rewind (unit_nr)
171 end if
172 end if
173 if (level == 6) then
174 num_elements = num_elements + 1
175 end if
176 else if (level == 7) then
177 allocate (elements (num_elements , element_order))
178 level = 8
179 j = 0
180 element_line_end = line_nr - 1
181 line_nr = 1
182 else if (level == 8) then
183 if (line (1:12) == ’$EndElements ’) then
184 exit

104

APPENDIX B. MODULE INTERFACES Section B.4

185 else if (j == num_elements) then
186 exit
187 else if (line_nr == element_line_end) then
188 exit
189 else if (line_nr >= element_line_start) then
190 j = j + 1
191 call read_n_last_int4 (line , element_order , &
192 elements (j, :))
193 end if
194 end if
195 end do
196
197 close (unit_nr)
198
199 call validate_nodes_and_elements (spatial_dim , element_order , &
200 num_nodes , num_elements , nodes , elements)
201
202 end subroutine open_read_gmsh2

105

Appendix C

Gmsh2 format and Makefiles

C.1 A Gmsh2 ASCII file
The Gmsh2 file for the tetrahedron in Fig. 3.4 is listed below. See Section 3.1.2 for
a description of the format.

,
1 $MeshFormat
2 2.000000 0 8
3 $EndMeshFormat
4 $Nodes
5 4
6 1 1. -1. 1.
7 2 -1. 1. 1.
8 3 1.0 1.0 -1.0
9 4 -1. -1. -1.

10 $EndNodes
11 $Elements
12 4
13 1 2 0 1 3 2
14 2 2 0 1 2 4
15 3 2 0 2 3 4
16 4 2 1 0 1 4 3
17 $EndElements

C.2 Makefiles
This section lists two of the Makefiles used to compile and organise the numerical
implementation of Chapter 3, in addition to the file make.inc. See Section 3.3 for
description of Make and how the Makefiles below are used.

C.2.1 Top directory Makefile
#==
Top level Makefile for pre-processing, compiling and linking all

106

APPENDIX C. GMSH2 FORMAT AND MAKEFILES Section C.2

files
#
Last edited: Marhch 7th 2021.
#==
.SUFFIXES:
TOPDIR = .
include $(TOPDIR)/make.inc

PROGRAMS = lib testing

all: $(PROGRAMS)
@echo "Build successfull.."

lib:
$(MAKE) -C src

testing: lib
$(MAKE) -C testing

sims: lib
$(MAKE) -C programs

clean_sims:
$(MAKE) -C programs clean
clean:
$(MAKE) -C src clean
$(MAKE) -C testing clean
$(MAKE) -C programs clean
@echo "Clean successfull.."

C.2.2 Makefile in the src directory
#==
Makefile for compiling fortran modules in src.
First level of Makefile recursion.
#
Last edited: March 7th 2020.
#==
.SUFFIXES:
TOPDIR = ..
include $(TOPDIR)/make.inc

MODPATH = $(TOPDIR)/$(MOD_DIR)
LDFLAGS += -I$(MODPATH) -J$(MODPATH)

107

APPENDIX C. GMSH2 FORMAT AND MAKEFILES Section C.2

working_precision needs to be listed first as it is used by all
modules.
Dependency on working_precision may be explicitly stated instead
SOURCES = \
working_precision.f90 \
mesh_mod.f90 \
io_mod.f90 \
test_utilities.f90 \
RWG_basis_mod.f90 \
gauss_quad_formulas_mod.f90 \
math_funcs_mod.f90 \
is_close_mod.f90 \
constants_mod.f90 \
PMCHW_RWG_mod.f90

OBJECTS = $(subst .f90,.o, $(SOURCES))
MODULES = $(subst .f90,.mod, $(SOURCES))

all: $(MODPATH) $(OBJECTS)

$(MODPATH):
@mkdir -p $(MODPATH)

%.o $(MODPATH)/%.mod: %.f90
$(FC) $(LDFLAGS) -c $< $(LDLIBS)
@touch $@

io_mod.o: \
working_precision.o

mesh_mod.o: \
working_precision.o \
math_funcs_mod.o \
is_close_mod.o \
constants_mod.o \
io_mod.o

RWG_basis_mod.o: \
working_precision.o \
mesh_mod.o \
math_funcs_mod.o \
is_close_mod.o

108

APPENDIX C. GMSH2 FORMAT AND MAKEFILES Section C.2

test_utilities.o: \
working_precision.o \
mesh_mod.o \
RWG_basis_mod.o

PMCHW_RWG_mod.0: \
working_precision.o \
RWG_basis_mod.o \
math_funcs_mod.o \
constants_mod.o \
is_close_mod.o \
gauss_quad_formulas_mod.o

math_funcs_mod.o: \
working_precision.o \
is_close_mod.o \
constants_mod.o

constants_mod.o: \
working_precision.o

gauss_quad_formulas_mod.o: \
working_precision.o

is_close_mod.o: \
working_precision.o

clean:
$(RM) $(OBJECTS)
$(RM) $(MODPATH)/*.mod
$(RM) -d $(MODPATH)

C.2.3 make.inc
#==
make include file
#
Last edited: March 7th 2021.
#==

SHELL = /bin/sh

109

APPENDIX C. GMSH2 FORMAT AND MAKEFILES Section .0

Modify the variables to desired compiler, flags and machine
architecture.
#
FC = gfortran
FFLAGS = --pedantic
LDFLAGS = -O3 #-g -fcheck=all -ffpe-trap=invalid
TARGET_ARCH = -march=x86-64

Choose libraries. LAPACK and BLAS is required.
LAPACK = -llapack
BLAS = -lblas
OPENBLAS = -lopenblas
LAPACK95 = -llapack95
#
#LDLIBS = $(OPENBLAS)
LDLIBS = $(LAPACK) $(BLAS)

Path to directories where module files are stored.
MOD_DIR = modules
Path to where executables are stored
BIN_DIR = bin

110

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

Eilif Som
m

er Ø
yre

Electrom
agnetic Scattering Calculations for Arbitrarily Shaped Closed Surfaces using the M

ethod of M
om

ents

Eilif Sommer Øyre

Electromagnetic Scattering
Calculations for Arbitrarily
Shaped Closed Surfaces using the
Method of Moments

Master’s thesis in Applied Physics and Mathematics
Supervisor: Ingve Simonsen

March 2021

M
as

te
r’s

 th
es

is

