
Development and evaluation of a
radiochromic film dosimetry
program
Application on stereotactic columna radiotherapy

August 2020

M
as

te
r's

 th
es

is

M
aster's thesis

Stine Gustavsen

2020
Stine Gustavsen

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f N
at

ur
al

 S
ci

en
ce

s
De

pa
rt

m
en

t o
f P

hy
si

cs

Development and evaluation of a
radiochromic film dosimetry program
Application on stereotactic columna radiotherapy

Stine Gustavsen

Applied Physics and Mathematics - Biophysics and medical technology
Submission date: August 2020
Supervisor: Jomar Frengen
Co-supervisor: Signe Danielsen

Norwegian University of Science and Technology
Department of Physics

Preface

The work during this master thesis have been conducted at St. Olavs Hospital during spring
2020, under the guidance of medical physicist Jomar Frengen and head of Department,
education and research, at the cancer clinic at St. Olavs Hospital and associate at the
Department of Physics Signe Danielsen. During the timeline of this work the worldwide
pandemic, Covid-19, struck forcing all experimental work to rest. Because of this the basis
for my master thesis had to change, going from an experimental assignment to focusing
more on creating a software as well as the literature of the field. I would like to give a
big thank you to both Jomar Frengen and Signe Danielsen for their substantial help and
support during this work, and for being very helpful in adjusting the basis for my master
thesis to the situation. In addition, I would like to thank product designer Lucas Cueni for
helpful tips on the design of the software Fidora, and Therese Have Gustavsen for helping
me proofreading.

Abstract

As the field of radiotherapy is constantly evolving new techniques are developed. One
such method is stereotactic radiotherapy, which is the delivery of high, precise doses. One
of the challenges during the work with stereotactic treatment planning is the dosimetry. As
the most common dosimeters have relatively large spatial extent, their resolution is too low
to give good measurements of the steep gradients typical for stereotactic radiotherapy. The
GafChromic EBT3 film is a dosimeter offering a 2D, continuous readout, and has proved
as a reliable dosimeter for use in stereotactic radiotherapy. As such, there has been a need
for an analysing tool to process the measurements done by the film. In this work such an
analysing tool was developed, named Fidora. In Fidora the user can perform background
corrections and calibrations as well as investigating profiles and dose volume histograms.

There are two parts to this work, the first being the development of Fidora with all
its functionalities. The second part has been to study the MLC model in the treatment
planning system RayStation and four different stereotactic treatment plans using Fidora.
The last part of the work has been done as a proof of concept to analyse how well Fidora
performs. It has been found that Fidora is a reliable analysing tool, proven to be able to
discover deviation in measured dose compared to planned dose plans as well as comparing
different treatment plans.

i

Sammendrag

Stråleterapifaget er stadig under utvikling og med det utvikles det nye teknikker. En slik
metode er stereotaktisk strålingsbehandling, hvor det er typisk med høye, presise doser.
En av utfordringene med behandlingsplanlegging innen stereotaksi er dosimetrien. Et-
tersom de mest brukte dosimetrene har relativt store målevolum, som resulterer i lav
oppløsning, gir de en for dårlig måling av de bratte gradientene som er typiske i stereo-
taksi. GafChromic EBT3 film er et dosimeter som tilbyr 2D, kontinuerlig målinger, og
har bevist å være et pålitelig dosimeter for bruk innen stereotaktisk strålebehandling. Med
det har det kommet et behov for et analyseverktøy for å prosessere målingene gjort med
filmen. I dette arbeidet har et slikt analyseringsverktøy blitt utviklet og fått navn Fidora.
Med Fidora har brukeren mulighet til å utføre bakgrunnskorrigering og kalibrering i tillegg
til å studere profiler og dose volum histogrammer.

Det er to deler av dette arbeidet, hvor den første delen er utviklingen av Fidora og alle
dens funksjonaliteter. Den andre delen har vært å studere MLC modellen i behandlings-
planleggingssystemet RayStation og fire stereotaktiske behandlingsplaner ved hjelp av Fi-
dora. Den siste delen av arbeidet har fungert som et ”bevis av konsept” for å analysere hvor
godt Fidora presterer. Resultatene har vist at Fidora er et pålitelig analyseringsverktøy, og
har bevist at det fungerer godt i å oppdage avvik i målte doser sammenlignet med planlagte
doseplaner og også til sammenligning av forskjellige behandlingsplaner.

i

ii

Table of Contents

Preface 1

Summary i

Summary i

Table of Contents v

List of Tables viii

List of Figures xiii

Abbreviations xiv

1 Introduction 1

2 Background 3
2.1 Interaction of radiation . 3

2.1.1 Ionizing radiation . 3
2.1.2 KERMA . 8
2.1.3 Dosimetry . 8

2.2 Introduction to radiotherapy . 11
2.2.1 Radiobiology . 11
2.2.2 The five r’s of radiotherapy . 12
2.2.3 Fractionation . 14

2.3 Dose measurements . 14
2.3.1 Cavity theroy . 15
2.3.2 Ionization chamber . 16
2.3.3 Radiochromic film . 16

2.4 Radiation treatment techniques . 18
2.4.1 Standardized volumes used in radiotherapy 18
2.4.2 Planning CT . 19

iii

2.4.3 Linear accelerator . 19
2.4.4 Multi-leaf collimators . 21
2.4.5 Dose calculation algorithms . 23
2.4.6 Treatment planning . 24
2.4.7 Stereotactic radiotherapy . 27
2.4.8 Dosimetry and dose measurements in SRT 28

2.5 Python . 30
2.5.1 Algorithms . 30

3 Materials and Method 33
3.1 The basis of Fidora . 33

3.1.1 General specification made by Fidora 34
3.1.2 How Fidora reads a scanned image 39
3.1.3 How Fidora reads a doseplan . 39

3.2 Fuctionalities of Fidora . 39
3.2.1 CoMet . 39
3.2.2 Dose response . 42
3.2.3 Profiles . 46
3.2.4 Dose volume histogram (DVH) 49

3.3 Stereotactic radiotherapy . 51
3.3.1 MLC model in Raystation . 51
3.3.2 Stereotactic treatment plans . 53

4 Results 57
4.1 Fidora . 57

4.1.1 CoMet . 58
4.1.2 Dose Response . 62
4.1.3 Profiles . 66
4.1.4 Dose volume histogram . 69

4.2 MLC model in RayStation . 71
4.3 Stereotactic treatment plans . 80

4.3.1 Treatment plan V1 . 80
4.3.2 Treatment plan V2 . 83
4.3.3 Treatment plan V3 . 85
4.3.4 Treatment plan V4 . 88

5 Discussion 91
5.1 Fidora . 91

5.1.1 CoMet . 91
5.1.2 Dose Response . 92
5.1.3 Profiles . 92
5.1.4 DVH . 93
5.1.5 MLC models in Raystation . 93
5.1.6 Stereotactic treatment . 95
5.1.7 Further work in Fidora . 98

iv

6 Conclusion 101

Bibliography 101

Appendix 107

v

vi

List of Tables

3.1 Specifications during treatment planning when using Fidora. 34
3.2 Specifications during irradiation when using Fidora. 36
3.3 Scanning specifications used in Espon scan app. 38
3.4 Specifications for treatment plans V1-V8. Arc rotation direction is in all

cases counterclockwise. 54

4.1 Standard deviation at each measured point when the difference map is
averaged over all six dose levels. The standard deviations are given for the
profile across the scanner lateral direction as well as the scanners scanning
direction. 60

4.2 Total uncertainty related to the fitting of the dose response curves. These
numbers will depend on how many calibration points are used. 66

4.3 Directed Hausdorff distance showing the largest difference in dose along
each curve. 66

4.4 Dose measured in the centre of the x-profile as the film has been filtered
using a 5-pixel median filter. The centre is measured as an average over
5mm around centre point. 73

4.5 Dose measured in the centre of the x-profile as the film has not been fil-
tered. The centre is measured as an average over 5mm around centre point. 73

4.6 Dose measured in the centre of the x-profile as the film has been filtered
using a 15-pixel median filter. The centre is measured as an average over
5mm around centre point. 73

4.7 Left and right penumbra measured in x-profile as the film has been filtered
using a 5-pixel median filter. The penumbra is measured between 20% and
80% of max dose. 74

4.8 Left and right penumbra measured in x-profile as the film has not been
filtered. The penumbra is measured between 20% and 80% of max dose. . 74

4.9 Left and right penumbra measured in x-profile as the film has been filtered
using a 15-pixel median filter. The penumbra is measured between 20%
and 80% of max dose. 74

vii

4.10 Measurements of the field size in both film and dose plan. The field size is
defined by the limits of 50% of centre dose in x-profile. Here the film has
been filtered using a 5-pixel median filter. 75

4.11 Dose measured in the centre of the y-profile as the film has been filtered
using a 5-pixel median filter. The centre is measured as an average over
5mm around centre point. 76

4.12 Dose measured in the centre of the y-profile as the film has not been fil-
tered. The centre is measured as an average over 5mm around centre point. 76

4.13 Dose measured in the centre of the y-profile as the film has been filtered
using a 15-pixel median filter. The centre is measured as an average over
5mm around centre point. 76

4.14 Left and right penumbra measured in y-profile as the film has been filtered
using a 5-pixel median filter. The penumbra is measured between 20% and
80% of max dose. 77

4.15 Left and right penumbra measured in y-profile as the film has not been
filtered. The penumbra is measured between 20% and 80% of max dose. . 77

4.16 Left and right penumbra measured in y-profile as the film has been filtered
using a 15-pixel median filter. The penumbra is measured between 20%
and 80% of max dose. 77

4.17 Measurements of the field size in both film and dose plan. The field size is
defined by the limits of 50% of centre dose in y-profile. Here the film has
been filtered using a 5-pixel median filter. 78

4.18 Measurements of the penumbra (defined between 20% and 80% of max
dose) and the length of the peak. The profile is drawn across the side of
the leaf in the MLC. 79

4.19 Measurements of the penumbra (defined between 20% and 80% of max
dose) and the length of the peak. The profile is drawn across the tip of the
leaf in the MLC . 79

4.20 Measurements from profiles and dose volume histogram for treatment plan
V1 . 83

4.21 Measurements from profiles and dose volume histogram for treatment plan
V2 . 85

4.22 Measurements from profiles and dose volume histogram for treatment plan
V3 . 88

4.23 Measurements from profiles and dose volume histogram for treatment plan
V4 . 90

viii

List of Figures

2.1 Illustration of photoelectric effect. 4
2.2 Illustration of Compton scattering. 5
2.3 An illustration of fluence in a radiation beam. 7
2.4 Curve showing the relationship between collision KERMA and dose. . . . 9
2.5 An illustration of a beam profile taken at different depths in a phantom. . 10
2.6 The cell cycle showing phase order and the typical relative duration. . . . 12
2.7 An illustration of a ionization chamber. 16
2.8 An illustration of the layers in GacChromic EBT3. 17
2.9 An illustration of the volume definitions in radiation therapy. 18
2.10 An illustration of the main components of the linac. 20
2.11 An illustration of the beam limiting device 20
2.12 An illustration of the isocenter in the treatment room. 21
2.13 An illustration of the MLC leaves. 22
2.14 An illustration of the tongue and groove in MLC leaves. 22
2.15 The concept of calculating absorbed dose using TERMA and dose kernels. 23
2.16 An illustration of geometrical offset between field being defined by the

MLC leaf tip and side. 25
2.17 The leaf-tip width of an MLC leaf. 26
2.18 An illustration of a dose volume histogram. 27
2.19 An illustration of the changes in output resulting from overlapping penum-

bra. 28

3.1 Flow chart of Fidora showing its main functionalities. 33
3.2 An illustration of the patient coordinate system. 34
3.3 An example of the dose matrix orientation in the patient coordinate system. 35
3.4 An illustration of the different patient positions. 35
3.5 Examples of how the film can be placed according to the dose matrix. The

film can be placed in any slice. The green illustrates the film, and the
arrows shows the principal axes. 36

3.6 An illustration of the three film orientations, sagittal, axial and coronal. . 36

ix

3.7 An example of the markings made on a film to find isocenter. The black
marks (shown by the red arrows) on the film marks the directional lines
going towards isocenter (shown by the blue dot). 37

3.8 An illustration of the scanning direction and orientation. 38
3.9 An image of the setup during scanning of film pieces meant for back-

ground correction. 40
3.10 Flowchart showing the main steps in CoMet. 41
3.11 Setup en experiment verifying the correction. 42
3.12 Flowchart showing the main steps in the tab Dose response. 43
3.13 An example of how to find the center of the scanner. 44
3.14 Scanner setup when doing a calibration. 45
3.15 An illustration of the effects of a flattening filter. Red line is filter free and

blue is the beam profile when using a flattening filter. The yellow dashed
line indicates the profile corresponding to the size of the film pieces used
in the experiment. 46

3.16 Example of the profiles and table with information. 47
3.17 Flow chart showing the main steps in the tab Profiles. 48
3.18 Flow chart showing the main steps in the tab DVH 50
3.19 Setup in MLC model experiment . 51
3.20 An illustration of how the MLC were used to shape the partially blocked

10cmx10cm field. 52
3.21 An illustration of how the MLC were used to shape the partially blocked

10cmx10cm field. The red lines indicate where the profiles were taken. . 52
3.22 Phantom showing the different volumes of interest. 53
3.23 Image from the setup in the linac. 55
3.24 Setup during scanning of the film. 55
3.25 Illustration of how the profiles were drawin in the treatment plans. The red

lines indicate the positions of the profiles. In V1-V4 all three profiles (a,
b and c) were plotted, while in treatment plans V5-V8 only a and c were
plotted. 56

4.1 Initial page when opening the software Fidora. The tabs on the left hold
the different functionalities included in Fidora. 58

4.2 Profile of the difference in read pixel value in relation to the centre value.
The measurements have been taken across the scanners lateral direction
and are plotted with error bars for each dose level. 58

4.3 Profile of the difference in read pixel value relation to the centre value.
The measurements have been taken across the scanners scanning direction
and are plotted with error bars for each dose level. 59

4.4 Profile of the difference in read pixel value in relation to the centre value
as an average over all six dose levels. The measurements have been taken
across the scanners lateral direction and are plotted with error bars at each
measuring point. 59

x

4.5 Profile of the difference in read pixel value in relation to the centre value
as an average over all six dose levels. The measurements have been taken
across the scanners scanning direction and are plotted with error bars at
each measuring point. 60

4.6 Profiles from a corrected image and a non-corrected image shown in green
and red, respectively. The profiles are taken in the scanner’s lateral direc-
tion across the centre of the scanner surface. 61

4.7 Screenshot of the first tab in Fidora - CoMet. In this module the user is
able to perform background corrections on a scanned image of the film. . 61

4.8 Screenshot of the first tab in Fidora, CoMet, after a successful run. The
corrected image here is used as an example. 62

4.9 Screenshot of the second tab in Fidora - Dose response. In this module
the user are able to perform a calibration as well as investigating the dose
response curve, which will be plotted on the screen. 63

4.10 Screenshot of the window where the user uploads images of scanned films.
The left image shows how the window looks at the beginning and the right
image shows how it look when files have been uploaded. 63

4.11 Screenshot of how the tab Dose Response looks like after enough mea-
surements have been uploaded and the dose response has been fitted. . . . 64

4.12 Screenshot of the window where the user can save the performed calibra-
tion for later use in Fidora. 64

4.13 Plot showing the dose response curves both when calibration is done in
Fidora and manual calibration, with fitting uncertainty ± 0.07Gy and ±
0.02Gy respectively. 65

4.14 Plot showing the dose response curves both when calibration is done in Fi-
dora and manual calibration using a flattening filter free beam, with fitting
uncertainty ± 0.06Gy and ± 0.02Gy respectively. 65

4.15 Plot showing the dose response curves created in Fidora for one flattening
filter free beam and one beam using the filter, with fitting uncertainty ±
0.06Gy and ± 0.07Gy respectively. 66

4.16 Screenshot of the fourth tab in Fidora - Profiles. In this module the user
can upload scanned images of film to study horizontal, vertical or manually
drawn profiles and compare the results in film and dose plan. 67

4.17 Screenshot of the daughter window where user marks isocenter/reference
point and ROI. This is a pop-up window showing as the film has been
uploaded. 68

4.18 Screenshot of the Profiles tab after film and treatment plan has been up-
loaded and profiles drawn. Here the user can make adjustments to the
placement of the film to make up for positioning errors. 69

4.19 Screenshot of the fifth tab in Fidora - DVH. In this module the user can
upload scanned images of film to study the dose volume histogram and
compare the results in film and dose plan. 70

4.20 Screenshot of the fifth tab in Fidora - DVH to illustrate how it looks after
a successful run. 71

xi

4.21 X-profiles from 1cmx1cm, 2cmx2cm, 3cmx3cm, 5cmx5cm and 10cmx10cm
fields. The film is represented with the red curve, while the dose plan is
represented with a blue curve. 72

4.22 Y-profiles from 1cmx1cm, 2cmx2cm, 3cmx3cm, 5cmx5cm and 10cmx10cm
fields. The film is represented with the red curve, while the dose plan is
represented with a blue curve. 75

4.23 Horizontal profile of a 10cmx10cm field with one quadrant blocked out
by the MLC leaves. The penumbra is due to blocking from the MLC side.
The drawing at the right illustrates where the profile was taken. 78

4.24 Vertical profile of a 10cmx10cm field with one quadrant blocked out by
the MLC leaves. The penumbra is due to blocking from the MLC tip. The
drawing at the right illustrates where the profile was taken. 79

4.25 Phantom showing the different volumes of interest. 80
4.26 Profiles from treatment plan V1. Their number correspond to the num-

bered lines in the last image. The green, vertical lines in profile (b) il-
lustrates the placement of the spinal cord, while the horizontal, green line
indicates dose 18Gy which comes from one of the parameters in the opti-
mization of the treatment plan. 81

4.27 Profiles from treatment plan V5 for comparison at the high dose areas with
treatment plan V1 shown in Figure 4.26. Plots (1) and (2) corresponds to
plots (a) and (c) in Figure 4.26 respectively. 81

4.28 Dose volume histogram of treatment plan V1 for both film and dose plan.
The volume is a flat volume with height 1mm and area equal to the region
shown in Figure 4.26. 82

4.29 Dose volume histogram of treatment plan V1 for both film and dose plan
showing only the curve for spinal cord and spinal cord PRV. The volume
is a flat volume with height 1mm and area equal to the region shown in
Figure 4.26. 82

4.30 Profiles from treatment plan V2. Their number correspond to the num-
bered lines in the last image. The green, vertical lines in profile (b) il-
lustrates the placement of the spinal cord, while the horizontal, green line
indicates dose 18Gy which comes from one of the parameters in the opti-
mization of the treatment plan. 83

4.31 Profiles from treatment plan V6 for comparison at the high dose areas with
treatment plan V2 shown in Figure 4.30. Plots (1) and (2) corresponds to
plots (a) and (c) in Figure 4.30 respectively. 84

4.32 Dose volume histogram of treatment plan V2 for both film and dose plan.
The volume is a flat volume with height 1mm and area equal to the region
shown in Figure 4.30. 84

4.33 Dose volume histogram of treatment plan V2 for both film and dose plan
showing only the curve for spinal cord and spinal cord PRV. The volume
is a flat volume with height 1mm and area equal to the region shown in
Figure 4.30. 85

xii

4.34 Profiles from treatment plan V3. Their number correspond to the num-
bered lines in the last image. The green, vertical lines in profile (b) il-
lustrates the placement of the spinal cord, while the horizontal, green line
indicates dose 18Gy which comes from one of the parameters in the opti-
mization of the treatment plan. 86

4.35 Profiles from treatment plan V7 for comparison at the high dose areas with
treatment plan V3 shown in Figure 4.34. Plots (1) and (2) corresponds to
plots (a) and (c) in Figure 4.34 respectively. 86

4.36 Dose volume histogram of treatment plan V3 for both film and dose plan.
The volume is a flat volume with height 1mm and area equal to the region
shown in Figure 4.34. 87

4.37 Dose volume histogram of treatment plan V3 for both film and dose plan
showing only the curve for spinal cord and spinal cord PRV. The volume
is a flat volume with height 1mm and area equal to the region shown in
Figure 4.34. 87

4.38 Profiles from treatment plan V4. Their number correspond to the num-
bered lines in the last image. The green, vertical lines in profile (b) il-
lustrates the placement of the spinal cord, while the horizontal, green line
indicates dose 18Gy which comes from one of the parameters in the opti-
mization of the treatment plan. 88

4.39 Profiles from treatment plan V8 for comparison at the high dose areas with
treatment plan V4 shown in Figure 4.38. Plots (1) and (2) corresponds to
plots (a) and (c) in Figure 4.38 respectively. 89

4.40 Dose volume histogram of treatment plan V4 for both film and dose plan.
The volume is a flat volume with height 1mm and area equal to the region
shown in Figure 4.38. 89

4.41 Dose volume histogram of treatment plan V4 for both film and dose plan
showing only the curve for spinal cord and spinal cord PRV. The volume
is a flat volume with height 1mm and area equal to the region shown in
Figure 4.38. 90

xiii

Abbreviations

Symbol = definition
IMRT = Intensity-modulated radiotherapy
VMAT = Volumetric Modulated Arc Therapy
MLC = Multi-leaf collimators
ROC = Radius of curvature
CC = Collapsed cone
MC = Monte Carlo
SABR = Stereotactic ablative radiotherapy
CT = Computer Tomography
ICRU = International Commission on Radiation Units and Measurments
CTV = Clinical target volume
PTV = Planning target volume
GTV = Gross tumor volume
OAR = Organ at risk
IAEA = International Atomic Energy Agency
FWHM = Full width at half maximum
KERMA = Kinetic energy released per unit mass
CEMA = Converted energy per unit mass
LET = Linear energy transfer
TCP = Tumor control probability
NTCP = Normal tissue complication probability
CCC = Collapsed cone classic
CCE = Collapsed cone enhances
MC = Monte Carlo
DVH = Dose volume histogram

xiv

Chapter 1
Introduction

Lung cancer, together with other cancer types like tumors near the spinal cord, in the
brain or lymph nodes are difficult to treat with conventional radiotherapy treatment as
these types of cancers are usually small and near organs of risk (Benedict et al. (2010)).
Because of this a treatment technique called stereotactic radiotherapy was developed. In
this kind of treatment, the tumor is irradiated using a small, but intense, radiation field,
usually from many different angles. This results in a high dose delivered to the tumor
while the surrounding tissue only receives a small amount of radiation, which gives bet-
ter tumor control and at the same time limits the late effects of radiation. In stereotactic
radiotherapy the accuracy of the delivery is very important, as small deviations can have
great consequences for the patient and in the worst case kill cells in organs of risk. As
such, careful validation of stereotactic treatment plans are necessary and proper dosime-
ters must be used in the dosimetry. One of the characteristics of stereotactic radiotherapy
is heterogeneous dose distributions with steep gradients. Therefore, the dosimetry must
be performed using dosimeters with resolution high enough to read the steep gradient over
small distances. Commonly used dosimeters such as ionization chambers and diodes suf-
fer from the lack of resolution as they have a fairly large spatial extent. At the beginning of
2000 radiochromic film made its entry as a dosimeter offering a continuous 2D measure-
ment of radiation fields. Unfortunately, the second generation of the film proved to have
a low accuracy which resulted in a lack of interest in radiochromic film as a dosimeter.
However, in 2011 a third generation was released having shown a much greater accuracy
(van Battum (2018)) and the interest of using radiochromic film has been rising, especially
in stereotactic radiotherapy. In this work the GafChromic EBT3 film has been used as a
dosimeter when studying stereotactic treatment plans.

Because GafChromic film is not a normally used dosimeter at the radiation clinic at
St. Olavs Hospital there was a need to develop analysing tools. Therefor the work of
this master thesis was to develop a software, named Fidora, with different functionalities
aimed at film as a dosimeter. The programme is written in collaboration with another
master student, Ane Vigre Håland. The programming language chosen for this task was
Python as this is an open source language and relatively easy manageable independent on

1

Chapter 1. Introduction

the programming background of the user. The aim of Fidora was to develop an open source
alternative to other licensed and limited versions available for purchase. In that way it is
possible to do further developments and alternations if needed and add more functionality.
As it is an open source software anyone can clone the program and adapt it to their needs,
but to do alterations to the original software a request to do so is needed. During this work
Fidora will be developed to perform calibrations of the film, measuring and comparing
profiles in both film and dose plan and studying dose volume histograms measured by the
film. In addition, since radiochromic film must be scanned and the chosen table scanner,
Epson v750 pro, suffers from a non-uniform readout over the scanner surface, Fidora will
offer the possibility to perform background corrections.

As a proof of concept, several stereotactic treatment plans will be analysed using Fi-
dora. As mentioned above, steep gradients are typical in stereotactic treatments and since
these gradients will be defined by the jaws and multi-leaf collimator in the linear acceler-
ator, the modelling of such features in the treatment planning systems are critical. There-
fore, an experiment to validate the modelling of these in RayStation, the treatment planning
system used at St. Olavs Hospital, will be studied.

2

Chapter 2
Background

2.1 Interaction of radiation
The x-rays were discovered in 1895 by Wilhelm Conrad Röntgen and used in medical
practise. It has later been widely used in various medical disciplines and the need for pro-
tection when working with x-rays has become important. To be able to predict biological
effects and reproduce in clinical cases the concept of dose has been introduced. There are
many physical quantities created to describe the dose of radiation and beams of radiation.
In the field of radiotherapy photons and electrons are most used, and in Norway today they
are used exclusively even though proton treatment is making an entrance in the coming
years. Where others are not mentioned the reference used in this section is Podgorsak
et al. (2005) and Bourland (2016).

2.1.1 Ionizing radiation
When foreseeing how photons and electrons interact when entering matter, one assumes a
stochastic behaviour and the estimate must always be thought of as a probability estimate.
Even though this is true for both photons and electrons the behaviour of each of them is
very different. While photons interact only a very few times and are attenuated exponen-
tially, electrons interact a large number of times and deposits its energy over its entire track
until it stops.

Photons

When describing photon interaction with matter one talks about cross section, σ, and atten-
uation coefficient, µ, both being target matter specific. Cross section refers to the cross-
sectional area of the target and the attenuation coefficient describes the probability for
interaction to take place when traversing the specific matter. Then the radiation intensity
at depth x is given as

I(x) = I0e
−xµ, (2.1)

3

Chapter 2. Background

where I0 is the initial intensity. The interaction between photons and matter can be cate-
gorized into three mechanisms, photoelectric effect, scattering and pair production, each
associated with a specific cross section. In radiotherapy the target is DNA and therefore
the interactions are described with atoms, meaning that cross section refers to atomic cross
section. If the energy of the incoming photon is larger than the binding energy of one or
more of the electrons in the atom one way for the radiation to interact is through photoelec-
tric effect. In this case the incoming photon interacts with the atom and is fully absorbed
while ejecting one electron from the inner orbital in the atom, see Figure 2.1.

Figure 2.1: Illustration of photoelectric effect.

As the electron is being ejected a vacancy in the inner orbital is left, needed to be filled
by one of the electrons in the outer shells. As an outer electron fills that vacancy it will
move to a lower energy state and by that release an energy amount equal to the energy
difference in the two orbitals. One of two things can come from such an energy release,
either the energy is used to eject another electron, called an auger electron, or a photon is
released. The released photon is in that case called a characteristic x-ray as its energy will
equal the energy difference between two atom orbitals, which is characteristic for each
material. For photoelectric effect in the clinical energy range one has found that the cross
section per atom is a function of the atomic number Z and the energy of the incoming
photon. A normal approximation is

σ(Z, hν) ∝ Z4

(hν)3
. (2.2)

Another way the photon can interact with the target is through Compton scattering.
Then the electron interacts with outer electrons in the atom, where the electron is consid-
ered to be free. Both the photon and electron are treated as particles during this interaction.
As the incoming photons interact with the electron it gives up a small portion of its energy
to the electron and as a result the photon is deflected an angle θ and continues with less
energy, while the electron is recoiled through an angle φ, see Figure 2.2.

4

2.1 Interaction of radiation

Figure 2.2: Illustration of Compton scattering.

At which angle the electron is recoiled will depend on the energy of the incoming
photon, where higher energy gives a larger angle and highest value gives backscattering.
The cross section related to Compton scattering has a slight dependence on the energy of
the incoming photon, where an increase in energy will decrease the cross section. The
probability of Compton scattering is independent on the atomic number but depends on
the electron density. Since the electron density is approximately the same in almost all
material the cross section related to Compton scattering is almost constant. For energies
used in external radiotherapy, Compton scattering is the most prominent interaction mech-
anism. The last mechanism, pair production, is when the photon is transformed into a
positron-electron pair and make up only a small part of the interactions in radiotherapy.
For pair production to be possible the energy needs to be above an energy threshold of
about 1.02MeV. The pair production cross section is dependent on the atomic number as
σ ∝ Z2, so heavier atoms gives a higher probability for pair production to happen.

As a photon transverse in matter it can interact several times, e.g. a photon which is
initially scattered can be scattered several times or end up with photoelectric absorption.
To get the macroscopic overview the attenuation coefficient is used, which is related to
the cross section. It is a measure of the probability of a beam of radiation being attenu-
ated when penetrating a matter and is specific for specific materials. A large attenuation
coefficient means that as the beam of radiation transverse the matter is will be quickly
attenuated.

When the primary photons enter a medium an energy transfer happens where the pro-
cess can be modelled by the energy transfer coefficient given in the following formula,

µtr = µ
Etr
hν

= µ
Etr
E0

, (2.3)

where hν is the initial energy of the incoming photon, Etr is the energy transferred and
µ is the linear attenuation coefficient. This can also be written as the energy absorption
coefficient

µen = µtr · (1− g), (2.4)

where g is the fraction of the transferred energy lost in radiation interactions. The result
of the energy transfer is production of light charged particles, e.g. secondary electrons,

5

Chapter 2. Background

which travels further into the medium and interacts. The most common choice is to use
photons in external radiotherapy, and then it is the secondary electrons which delivers the
dose.

Electrons

Since electrons generally deposits its energy by interaction through collisions when transvers-
ing the matter cross sections and attenuation coefficient is not relevant for electrons, but
instead electron range and material stopping power is used. Electron range refers to how
far the electron travels before it has deposited all its energy and material stopping power is
the specific matters ability to stop the electron. As charged particles passes through a ma-
terial it will interact along its track and lose its energy little by little before coming to rest.
A way to measure this in a material is to study the stopping power of the material. The
stopping power is given as the ratio of the loss of kinetic energy ,dE, and path travelled,
dx,

S =
dE

dx
. (2.5)

Stopping power regularly is referred to as mass stopping power which is defined as S/ρ.
The main interaction mechanism for electrons when transversing a matter is through col-
lision with other electrons, which in turn will leave the atom it belonged to ionized. The
calculation of the mass stopping power related to this mechanism was first solved by Bethe
and later extended by Sternheimer, and is given as

S

ρ
=

2πr20Neµ0

β2

(
ln
T 2(T + 2µ0)

2µI2
+
T 2/8− (2T + µ0)µ0ln2

(T + µ0)2
+ 1− β2 − δ

)
, (2.6)

where r0 is the electron radius, Ne = NA(Z/Ar), µ0 = m0c
2, T is the kinetic energy,

β = v2/c2, v is the speed of the electron, δ is a density correction term and I is the mean
excitation energy. From Equation 2.6 it is evident that the mass stopping power will be
nearly inversely proportional to the energy of the incoming electron. As I is dependent on
the atomic number Z in such a way that an increase in the atomic number gives a higher I,
that means that for heavier atoms this results in a smaller mass stopping power. Although
Ne depends on Z, the ratio Z/Ar will for all materials except hydrogen be about 0.5 as the
nucleus almost always hold as many protons as neutrons. This results in a very small over
all dependence on atomic number.

The other way the electron can interact with matter is through Coulomb force by pass-
ing the nucleus in near proximity. The electron will then be decelerated and pass its energy
as electromagnetic radiation, this is called Bremsstrahlung. The mass stopping power can
in this case be calculated as the following

S

ρ
=

1

137

(
e2

µ0

)2
NA
Ar

Z2(T + µ0)B, (2.7)

where B is a function B = B(hv/T) which only has a small dependence on Z and T and
are usually used as an average B = 16/3. It is the seen that the mass stopping power will
in this case have a strong dependence on the atomic number Sρ ∝ Z

2.

6

2.1 Interaction of radiation

Radiation beam

A radiation beam is quantified by the number of particles and their energy. To find the
number of particles in the beam in point P in space a small sphere with diameter d is
drawn around. Then the number of charged particles entering that sphere is counted and
divided by the cross section of the sphere, dA = d·π, which gives the fluence Φ,

Φ =
dN

dA
. (2.8)

The same concept can be repeated with energy fluence, Ψ, where instead of number of
particles the radiant energy, dE, is used,

Ψ =
dE

dA
= EΦ. (2.9)

As the particles interact with the medium, they start depositing energy. The sum of all
the energy deposits in a given volume is the imparted energy, Rin − Rout, which can be
measured using radiation detectors.

Figure 2.3: An illustration of fluence in a radiation beam.

The radiation beam consists of uncorrelated primary photons, which through inter-
actions produce secondary electrons that are uncorrelated to each other, and they again
produce further uncorrelated generations of electrons able to deposit energy. Even though
there is no correlation in each generation, there is a correlation between a given primary
photon, its secondary electron and further generations produced by that electron. The se-
ries of energy deposits created by the primary photon is called an (energy impartation)
event. The energy imparted by an event is the sum of all the correlated energy deposits.
The event is of a stochastic nature, as this is true for all the energy deposits. Energy
imparted can be calculated using the following formula,

ε =

N∑
i=1

ni∑
j=1

εj ,

where N is the number of events, ni the number of energy deposited at event i and εj is
energy imparted at j.

7

Chapter 2. Background

2.1.2 KERMA

Kinetic energy released per unit mass (KERMA), K = dEtr

dm , quantifies the average
amount of transferred energy, dEtr, in a small volume, dm,to electrons liberated by the
photon interaction. It does not account for what happens after the energy transfer. KERMA
is measured in Gray (Gy) which is defined as 1Gy=1J/kg. KERMA can be split into
two categories, either originating from collision interactions Kcol or radiation interactions
Krad, where K = Kcol + Krad. Further one can define

Kcol = K · (1− g), (2.10)

where g is the fraction of the transferred energy lost in radiation interactions. The total
KERMA in a point is given as K = dEtr

dm , and from Equation 2.3 it is found that the total
KERMA is related to fluence and energy fluence by the following formula,

K = ΦE
µtr
ρ

= Ψ
µtr
ρ
, (2.11)

where ρ is the mass density. From Equation 2.4, 2.10 and 2.11 it is found that

Kcol = Ψ · µen
ρ

(2.12)

Since KERMA is an average it is not of a stochastic nature.

2.1.3 Dosimetry

For ionizing radiation stemming from uncharged particles then the particles first need to
transfer its kinetic energy to charged particles, resulting in KERMA. Then the charged
particles can deposit their energy along their tracks which finally results in absorbed dose.
Ionizing radiation stemming from charged particles can directly start its deposits of energy
along its track resulting in absorbed dose. Absorbed dose D relates to the imparted energy
ε,

D =
dε

dm
, (2.13)

and is measured using Gy (=J/kg). Since photons mostly escape the small volume of
interest the radiation KERMA is of little interest, and the dose is usually related to the
collision KERMA secondary electrons. This means that mainly one sees absorbed dose as
being dependent on the deposition of energy by the charged particles, secondary electrons,
and not the photons directly. But since the secondary electrons have a finite range not all
the energy will be deposited inside the volume in which they are created, which means
that Kcol 6=D. This of course depends on the size of the volume, but is true related to dose
as dose is defined in an infinitesimal volume.

8

2.1 Interaction of radiation

Figure 2.4: Curve showing the relationship between collision KERMA and dose.

Figure 2.4 shows the relationship between collision KERMA and absorbed dose. The
ratio β is given by β = D/Kcol. Figure 2.4 is what is called a depth-dose curve, assuming
the photon fluence is constant and that the beam is attenuated when entering the material.
The first part of the curve shows a build-up which reflects the range of the secondary
electrons. The electrons travels and deposit energy a short path from where they were
liberated, meaning that the build-up is due to upstream electrons from areas close to the
surface. At a certain depth, Zmax, a maximum is reached where more secondary electrons
(or further generations) come to rest than new ones being induces.

Charged particle equilibrium

Charged particle equilibrium (CPE) is the state of constant ionization in a volume dV. In
this state the same amount of charged particles is being liberating and then leaving dV
as the amount of charged particles that have been liberated elsewhere and then enters dV.
From Figure 2.4 the case β = 1 show when a true charge particle equilibrium exists. The
build-up region for absorbed dose is related to β < 1, and the state after true equilibrium
is called transient charged particle equilibrium (TCPE). When a true CPE is achieved the
absorbed dose in the material is the same as collision KERMA, given by

D = Kcol = ΦE
µtr
ρ

= Ψ
µtr
ρ
. (2.14)

To assure achieval of CPE there is two necessary conditions that must be fulfilled. The first
saying that the medium in dV must be homogeneous in both atomic composition and mass
density, and the second condition states that the radiation field must be homogeneous in dV.
Once a beam of radiation hits a material the field will no longer be a clean field of either
photons or electrons. Once entering the material, the field will be a mixture of primary
photons, scattered photons, Bremsstrahlung radiation, secondary electrons, and further
generations of electrons. Only when there is true CPE can an accurate description of the
radiation field after the beam has entered the material be made using experiments. If there
is not equilibrium of charged particles then the field must be described using numerical

9

Chapter 2. Background

methods, e.g. Monte Carlo simulation. In reality, a true CPE is impossible and therefore
TCPE is used instead.

Beam profile

To measure and study the radiation beam one looks at a profile, beam profile, perpendicular
to the central axis of the beam at a certain depth, see Figure 2.5. This gives information
about the variation of the beam across one direction. There are typically three parts of the
profile which is defined and investigated. The central region is usually defined as the part
of the profile where the dose is above 80%. Depending on how the beam is built this can
be of different shapes but is traditionally aimed at being as flat as possible. The penumbra
defines the rapid fall-off at the edges of the profile. The ICRU has recommended defining
penumbra between 80% and 20% of the dose. The last region is the umbra region which
is defined as the part of the profile where the dose is minimal, under 20%.

Figure 2.5: An illustration of a beam profile taken at different depths in a phantom.

Using the central region of the beam profile it is possible to study how the dose varies
over the same depth. Ideally this region would be flat and the penumbra very small, giving
a very precise definition of the field size. However, this is usually not the case and should
be investigated when doing quality controls of a radiotherapy treatment. The penumbra can
be split into two components, the geometrical penumbra and the transmission penumbra.
The geometrical penumbra is a consequence of the fact that the radiation source is not
a point source, and therefore will have a fall-off at the edges. As such, the geometrical
penumbra will depend on the source size. The transmission penumbra is a result of the
beam passing through the different field shaping mechanisms in the linear accelerator, see
Section 2.4.3, and is dependent on the energy and field size. The final penumbra will
be a sum of these two components and is what is seen in the profile. In conventional
radiotherapy where the field sizes are relatively large, the size of the radiation source is of

10

2.2 Introduction to radiotherapy

little influence, and it is common the define the field size using the 50% dose level. As the
field size is decreased the influence of the geometrical part of the penumbra is increased,
and the definition of the field size gets more complicated. In this subsection the reference
used is Podgorsak et al. (2005).

2.2 Introduction to radiotherapy

With cancer being the second leading cause of death in the world today (World Health
Orginasation (2018)) it is not surprising that a lot of effort and resources are put into can-
cer research. Of special interest is the knowledge of risk factors and developing effective
treatments, there among radiation therapy. Cell growth in a tissue with normal cells is con-
trolled with a balance between the signal that suppresses cell division and the signal that
promotes it. Also, a signal telling the cell to undergo apoptosis when needed, e.g. when
the cell is damaged, controls the cell growth. These signals originate from the activities
of genes in the cell. When mutations happen in these genes, which is what creates cancer
cells, the signals will change and cell growth gets out of control. As a result, the cancer
cells have a rapid proliferation and get less dependent on signals from surrounding cells.
If the cancer at a specific place in the body is allowed to grow, then at a later stage it will
metastasize to other parts of the body. When a cell divides only a small fraction of the
resulting cells will have the ability to undergo enough divisions to create a colony, these
are called clonogenic cells. That means that only a small fraction of the cells contributes
to the out-of-control cell growth and it is these cells that is the main target when treating
cancer. To be able to cure cancer all the clonogenic cells need to be killed to prevent the
remaining cancer cells from starting to grow and spread. There are several ways to treat
cancer today, depending on the nature of the case. The most used methods are chemother-
apy, surgery and radiotherapy, and often a combination of these are used. Where others
are not mentioned the reference used in this section is Mayles et al. (2007) and Podgorsak
et al. (2005).

2.2.1 Radiobiology

Radiobiology is a medical science that study the effects of ionizing radiation to living
organisms. It explains how ionizing radiation damage the cells and the potential conse-
quences it may have.

Cell cycle

All cells in the human, except for sperm and egg, are somatic cells. When they undergo
cell division, mitosis, the resulting products are two identical daughter cells. Identical in
this case means genetically identical. The mitosis is separated into four phases, G1, S, G2
and M (see Figure 2.6).

11

Chapter 2. Background

Figure 2.6: The cell cycle showing phase order and the typical relative duration.

How sensitive the cell is to radiation has proven to be varying with phase, where it is
most radio-resistant in late S-phase and most radio-sensitive in G2 and M. When the cell
is in S-phase the synthesis of the DNA occurs, and it may be thought that the cell is in
an environment where repair is easier and the presence of a DNA template can be used
to do the repair. During G2 and M the chromosomes are lined up upon the spindle and it
can therefore be thought that repair is more difficult and a damage in this phase, e.g. from
radiation, would be fatal.

Biological damage

Biological damage to tissue when exposed to radiation mostly occurs due to damage of the
DNA, but it can also be a result of damage to other parts of the cell. In relation to cancer
treatment the biological damage one hopes to achieve is damage resulting in reproductive
death in clonogenic cells. Biological damage to the cell caused by radiation can be a
result from either a direct or indirect action. In the direct case the damage is done by
the incoming particle directly, while for the indirect case the damage is done indirectly
through the formation of free radicals which in turn creates the biological damage. Free
radicals are molecules with an unpaired valence electron and are therefore highly reactive
and breaks chemical bonds in the target which again leads to biological damage. If the
biological damage results in reproductive death as wanted, then the cell will die after some
time when it undergoes cell division or some cycles later. Radiation induced biological
damage can be put into three categories, lethal, sublethal and potentially lethal damage.
Lethal damage is irreversible and will lead to cell death, while sublethal damage can be
repaired and potentially lethal damage can be repaired under certain conditions.

2.2.2 The five r’s of radiotherapy

The main aim in radiotherapy is to get a high tumor control probability while minimizing
the damage done to normal tissue surrounding the tumor. There are several ways to opti-
mize the treatment and there are in particular five factors of special interest which can be
used to manipulate the outcome of a radiation treatment. These are called the five r’s of
radiotherapy.

12

2.2 Introduction to radiotherapy

Reoxygenation

It has been found that the presence of oxygen influences the biological effect of ionizing
radiation. This effect is called the oxygen effect. The more oxygen is presence the higher
is the biological effect of radiation, but with a saturation for high levels. The effect is
also larger for low LET radiation compared to high LET. The explanation of the oxygen
effect regarded as the most satisfactory is the oxygen fixation hypothesis created in the late
1950s (Ewing (1998)). The main aspects of this hypothesis are how free radicals created
by the indirectly ionizing radiation damage the DNA, any molecular oxygen presence
will fixate the DNA and make the damage permanent. This means that the biological
damage is a lethal damage and the cell will die. Typical in a tumor is hypoxic cells, which
means cells that have had little or no access to oxygen. This is usually due to the poorly
constructed blood vessels constructed in the tumor and closing of existing blood vessels
for some time. Then the oxygen consumption by the metabolically overactive tumor cells
near the vessels will surpass what is supplied and the cells further out will not get access
to oxygen. Normally normal tissue is well oxygenated which result in tumor cells being
more radioresistant than normal cells in relation to the oxygen effect. If one is able to kill
the oxygenated cells then the hypoxic cells will gain access to oxygen and over time be
reoxygenated and less resistant to radiation.

Repopulation

As time pass all surviving cells after irradiation will undergo cell division and over time
repopulation will happen in both tumor and normal tissue. Usually tumor cells have a
higher proliferation than normal cells, which results in a faster repopulation in tumors.

Redistribution

As the cell goes through the different phases in the cell cycle the cell will be radiosensitive
to a varying degree. It is most sensitive in G2 and M phase, and least sensitive in late
S-phase. When being exposed to radiation the cells in the tumor and normal tissue will be
at different phases in their cycle and it is reasonable that a larger fraction of cells in their
radiosensitive phase will die compared to cells in their radioresistant phase. After irradi-
ation, the surviving cells will continue their cell cycle and enter other phases, changing
their sensitivity to radiation.

Repair

Cells that are not lethally damaged will start their process of repair after irradiation. Cells
are created with different pathways of repair, but as tumor cells develop they normally
suppresses these pathways and have a smaller potential for repair.

Radiosensitivity

Apart from the factors already mentioned there is an inherent radiosensitivity to each tissue
type. Some cancer cells are more radioresistant than the average and will be harder to treat
using radiotherapy.

13

Chapter 2. Background

2.2.3 Fractionation

A much used technique in radiotherapy is fractionation. With fractionation the dose pre-
scribed is split into smaller fractions given over several deliveries. There are different
fractionation regimens suited to different tumor types. As the dose is given in fractions
with time passing between them this gives the cells the opportunity to react according to
the 5 r’s of radiotherapy. As time is allowed to pass reoxygenation will make sure that
more of the tumor cells, earlier being hypoxic, will be radiosensitive coming the follow-
ing fractions. At the same time the normal tissue which repair more than tumor cells will
get time to do that. Because of this the normal tissue will have a better chance at avoid-
ing complications without too much loss of the tumor control when using a fractionation
regime. The time between fractions will also let the cells earlier in a radioresistant cell
cycle phase to move out of their radioresistant phase and into their radiosensitive phase.
Since this is true for both the tumor cells and the normal tissue cells the fact at which speed
this happens has to be accounted for. There are drugs developed to synchronize the tumor
cells and try to hit them when they are all in their radiosensitive phase. Repopulation will
of course work against the aim of radiotherapy and needs to be considered when time be-
tween fractions are decided. In addition it has been seen that sometimes cells that have
been exposed to radiation will accelerate their repopulation rate, e.g. in some head and
neck cancers, and it is in these cases necessary to accelerate the treatment as well.

The five r’s of radiotherapy give a sound reasoning to use fractionation and this has
become a widely used strategy to gain tumor control. Since the prescribed dose is split
into smaller fractions the dose region used is smaller than it would have been without
fractionation, usually under 4Gy. This means that any detector used to measure dose
should be sensitive in that range.

2.3 Dose measurements

To make sure that the treatment used actually deliver the prescribed dose in the way it was
planned an important step in treatment development is to perform dose measurements.
Dosimetry is a science that provides a physical parameter to predict biological effects
following radiation therapy. There are many dosimetric quantities that can be used to
determine biological effects. For photons, the most common ones are fluence, KERMA,
charged particle equilibrium and absorbed dose. A dosimeter is a device that can measure
one of these quantities. There are several properties a dosimeter should have to be able to
be considered a good dosimeter. Firstly, the measurements should be easy to reproduce and
have good accuracy and precision. Secondly, there should be a known response to energy
and dose, and no saturation as the dose increases. Thirdly, there must be no directional
dependence, and at the same time a sufficient spatial resolution. Finally, the dosimeter
should be insensitive to other influences such as temperature etc. (Attix (2008)).

A fundamental problem when using a dosimeter is the presence of the detector. Since
a dosimeter extends in space it introduces a perturbation of the fluence and creates a state
which is not equal to the situation when the dose is not being measured. That means that it
is necessary to create a conversion such that the measured dose can be mapped to a value of
the absorbed dose without the presence of a detector, which is followed by an uncertainty.

14

2.3 Dose measurements

2.3.1 Cavity theroy
To find the absorbed dose, Dmed, at a point P in a medium it is necessary to introduce
a detector at that point to measure a dose, Ddet. The sensitive volume on the detector,
called a cavity, is normally made of a different material than the material one want to
measure dose in, therefore Dmed 6=Ddet. To solve this problem the cavity theory was
introduced aiming to study the modification in dose and establish a relationship between
measured and absorbed dose. Ideally the cavity should be as small as possible. Since
dose related to the photons depends among other things on the energy fluence, that means
that the detector must be larger than what is possible in radiotherapy. Because of this one
instead measures the fluence from the secondary electrons generated by the interactions of
photons. In general, the measured dose within the entire cavity can be calculated by the
following formula

Dm =

∫
Vdet

∫ Emax

E=0

Φ
Sdet
ρ
dEdr, (2.15)

where Vdet is the volume over the entire cavity, and Φ = Φ(E, r) and Sdet=Sdet(E). This
means that the measured dose is a measure of stopping power and electron fluence over
the cavity which is a result of photon interactions. A cavity can be defined in one of three
category, small, medium or large when comparing to the range of a secondary charged
particle induced inside the cavity. The small cavity is of special interest and are defined as
having dimensions small enough for the charged particle range to go far past it.

Bragg-Gray cavity theory

The Bragg-Gray cavity theory is a theory developed to provide a solution to the funda-
mental cavity problem where the cavity is considered as small. There are two Bragg-Gray
theory conditions which must be fulfilled. Firstly, when comparing to the range of the
charged particles incident on the cavity, the size of the cavity must be small. This is to en-
sure that the cavity does not influence the fluence of the particles. However, this condition
can only be valid if charged particle equilibrium or transient charged particle equilibrium
is achieved. Secondly, only those electrons crossing the cavity contribute to the absorbed
dose. The dose in the cavity is given by the following equation, given that no energy from
the crossing particles are deposited inside the cavity.

D =

∫ EK0

EK=0

Φ(EK)
S(EK)

ρ
dEk = Φ · S

ρ
, (2.16)

where EK0 is the initial energy of the secondary electrons produced by photons, EK it the
kinetic energy of the particles, Φ is the fluence and S(K0)

ρ is the mass stopping power. From
Equation 2.16 the relationship between the absorbed dose and the measured absorbed dose
in the dosimeter is given by

D =
Φ ·
(
S
ρ

)
med
·Ddet

Φ ·
(
S
ρ

)
det

=
Ddet

(
S
ρ

)
med(

S
ρ

)
det

, (2.17)

where the subscripts med and det stands for material in which one wants to measure dose
and the detector, respectively.

15

Chapter 2. Background

2.3.2 Ionization chamber

The ionization chamber is a widely used dosimeter due to its linear dose response, stability,
beam quality response independence and more (Low et al. (2011)). As other dosimeters
it can be identified as a cavity, and for ionization chambers the cavity is filled with air.
When being irradiated ions will be formed inside the cavity. Because of an electric field
in the dosimeter the ions will be drawn to either the central electrode or the chamber walls
depending on its charge. Then an absolute measure of the absorbed dose can be calculated
from the charge accumulated on the electrode. To make sure there is a true electric charge
equilibrium inside the ionization chamber a certain size of the active volume is required.
Usually the size of the chamber is around 6mm in diameter (Low et al. (2011)) which
means that the resolution of the measurement is being compromised. The detector mea-
sures a signal that is proportional to the absorbed dose over its active volume. Since the
detector is not a point measure, but extends in room, and the signal will be varying over
the volume, the measured absorbed dose is an average.

Figure 2.7: An illustration of a ionization chamber.

2.3.3 Radiochromic film

Radiochromic film is a dosimeter that measure the absorbed dose. It was first introduced
in the 1960s but had some challenges with the lack of sensitivity. In the beginning of
2000 Ashland released GafChromic EBT film which was tested and accepted as a good
tool in quality control (Saur and Frengen (2008)). Unfortunately, the second generation
proved to be less accurate and consequently film dosimetry has not been much used. How-
ever, in 2011 a third generation, EBT3, was released, which has shown a higher potential
(Sorriaux et al. (2013) and Håland and Gustavsen (2019)). Some of the advantages with
radiochromic film as a dosimeter are that in the clinically relevant energy range (megavolt-
age) the radiochromic film is water equivalent, which means there is only a small influence
on the charged particle fluence in the material. Also, in the megavoltage beam range there
is only a small energy dependence. Other advantages are that radiochromic film can be
immersed into water, it is light insensitive and self-developing (Parwaie et al. (2018)).
These factor makes the radiochromic film easier to work with, and there is no need for
chemical processing. However, the main argument for using radiochromic film is the fact
that it gives a continuous readout over two dimensions, only limited by the resolution of
the scanner used. This gives the opportunity to study areas of large dose gradients and
complex treatment plans. In addition, radiochromic film offers more flexibility as it is
possible to place the thin film piece however suits the situation.

16

2.3 Dose measurements

GafChromic EBT3

Radiochromic film is a chemical dosimeter that uses the optical characteristics, optical
density, of a dye to map the dose distribution. The optical density of a material de-
scribes its ability to absorb the light as it passes through it. That means that a material
with a high optical density will transmit less light than a material with low optical den-
sity. GafChromic EBT3 is composed of two polyester layers covering the active layer
in the middle. The active layer is crystals filled with a monomer (diacetylene: Lithium
pentacosa-10,12-diynoate (Ashland (2020))), that react upon irradiation by polymeriza-
tion, forming polymer chains. This results in loss of transparency in the film, meaning a
higher optical density. This is the characteristic that is being measured when relating to
absorbed dose. To read this increase in optical density a flat-bed scanner can be used. The
scanner will transmit light through the film piece and read how much light was not ab-
sorbed. As the dose increase less light will be transmitted through the film and the readout
in the scanner decreases. The relationship between the optical density and the dose was
earlier modelled using polynomial functions, but as pointed out by Micke et al. (2011),
this is not an especially good fit. Building on that it was found that a ’reciprocal linear vs
dose’ works better and is what is recommended by the producer of the GafChromic film
EBT3 (Mathot et al. (2014)). The relationship is modelled by the following formula,

pixel value = a+
b

D − c
, (2.18)

where the pixel value is what is read from the scanner (reflecting the optical density), D is
the dose and a, b and c are constants that needs to be fitted by performing a calibration. The
dynamic range of the GafChromic EBT3 film is between 0.1Gy and 20Gy, but optimum
dose range lies between 0.2Gy and 10Gy (Ashland (2020)). This means that it is well
suited for applications in standard radiotherapy regimens in which fractionation dose is
around 2Gy. The particles in the active layer in the GafChromic EBT3 film tends to align
along the short side of the film, resulting in anisotropic light scattering through the film.
This means that the pixel value being read will be somewhat different depending on the
scanning direction. The polymer chain in the active layer absorbs light in typical bands
at wavelengths of 636 and 585 (van Battum (2018)). The absorbance maximum is at the
wavelength corresponding to the red light. Therefore, one typically only look at the red
color channel when reading out intensity in the images scanned of irradiated radiochromic
film. This is in accordance with studies on the GafChromic EBT3 (Håland and Gustavsen
(2019)), where it was seen that the red color channel was more sensitive to irradiation than
green and blue, and therefore gives better dose resolution.

Figure 2.8: An illustration of the layers in GacChromic EBT3.

17

Chapter 2. Background

In earlier studies using the GafChromic film, (Saur and Frengen (2008)) and (Håland
and Gustavsen (2019)), it has been seen that a flat-bed scanner has a non-uniform readout
in the lateral direction of the scanner. The producer of the GafChromic EBT3, Ashland,
mentions the finite anisotropic light source in a flat-bed scanner as the reason for this vari-
ation (Ashland (2020)). Another study (van Battum (2018)) found that cross talk, optical
path and polarization, all influencing the optical density, are the properties responsible for
the variations. Nevertheless, a non-uniform readout is confirmed using a flat-bed scanner
and as follows there is a need to do a correction for this when using film dosimetry.

2.4 Radiation treatment techniques

When a patient is diagnosed with cancer one of the treatment options is radiotherapy. This
is usually chosen when the cancer was caught early and there is no spreading, or with a
palliative intention. At later stages it can be used in combination with other treatment tech-
niques. To start the process of radiotherapy treatment a planning Computer Tomography
(CT) is taken. This is used to delineate the tumor and other volumes of interest, which is
used during treatment planning, dose measurements and finally patient positioning during
treatment. Once the CT is taken the treatment planning starts, which is done as a collab-
oration between a radiation oncologists, radiation therapist and medical physicists. When
the plan is created it is possible to perform a quality check by doing dose measurements
using the dose plan, although this is not usually done. Before the delivery of each fraction
a cone beam-CT is performed to assure right position of the tumor and other volumes of
interest.

2.4.1 Standardized volumes used in radiotherapy

In conventional radiation therapy the gross tumor volume (GTV) is defined as what can be
seen, imaged or palpated. The clinical target volume (CTV) is the GTV with an extra mar-
gin to cover sub-clinical disease that have spread. This is an important volume because it
must be adequately treated to achieve a cure. Planning target volume (PTV) is the volume
that includes CTV, internal movements and an extra margin to make up for uncertainties
related to external circumstances. In addition the critical organs surrounding the volumes
to be irradiated must be delineated and are defined in organs at risk (OAR).

Figure 2.9: An illustration of the volume definitions in radiation therapy.

18

2.4 Radiation treatment techniques

2.4.2 Planning CT

Before developing a treatment plan a planning CT is performed which is the basis to dif-
ferentiate the volumes inside the patient. When the CT image is supplied the radiation
oncologists can delineate the GTV, OAR and CTV, where PTV will follow from the medi-
cal physicists’ conditions. To best be able to plan out the dose delivery it is important that
the CT during planning is taken while the patient is in treatment position. The appearance
of the tumor in the planning CT, and by that the delineation of the treatment volumes,
will be directly influenced by parameters such as slice thickness, motion during scan, gap
thickness and so on. Because of this these parameters must be controlled and considered
when processing the results. It is recommended that the slice thickness in a planning CT
should be between 1 and 3 mm (Winer-Muram et al. (2003)), which means that the data
obtained by a CT will be stored as matrices with resolution limited by the slice thickness.

A CT works by producing a narrow beam of x-rays which is rotated around a patient.
At the same time there is a detector opposite to the x-ray source which detects the x-
rays that have not been attenuated when going through the patient. By one rotation one
obtains a slice across the patient, and this can be done several times to obtain a 3D image.
As mentioned, the output in the CT image is a result of the detected x-ray not being
attenuated. This means that a CT image gives direct information about the attenuation of
the tissue, and when the delineation is done on the CT-image this gives information about
the attenuation in each of the standardized volumes. When calculation dose information
about the attenuation coefficient is necessary, see Section 2.1.

2.4.3 Linear accelerator

A linear accelerator is a tool used to generate ionizing radiation, which can be used in
radiotherapy treatment. Using a modulator, electron gun and RF power source electrons
are released and accelerated through a waveguide. The modulator provides high voltage
pulses which leads to a propagating electromagnetic field inside the waveguide. When
the free electrons are in coherence with the microwaves from the RF pulse they can be
accelerated. The waveguide is built in such a way that as the electrons, together with the
microwaves, travel down the waveguide their wavelength is increased. As the frequency
of the electrons are kept constant, this will lead to an increase in speed according to the
equation c = λ · f , where c, λ and f are speed, wavelength and frequency respectively. To
assure an accurate delivery of the ionizing beam, there are focusing and steering performed
through the waveguide. At the end of the waveguide there is a bending system, consisting
of either one magnet deflecting the beam 270◦ or three magnets deflecting a total of 112.5◦.
Now the electrons can either produce photons through Bremsstrahlung or they can be used
directly by letting them hit a scattering foil.

19

Chapter 2. Background

Figure 2.10: An illustration of the main components of the linac.

To make the beam clinical usable it must be shaped using different collimators and
filters. The first aperture is the primary collimator, which for electrons or low energy
x-rays can be an open hole, while for beams made of higher energy photons it is used
as a filter. Next follows a flattening filter. Since the bremsstrahlung photons are more
forward peaked, the fluence profile will be cone shaped. Therefor the flattening filter
has been an important component to decrease this effect, and make sure to deliver a flat
profile. Although it is most often still in use today, it is no longer necessary as the modern
planning and delivery techniques has becomes so advanced. After the secondary filter two
ion chambers are installed. The first, which is called the primary dosimetry channel, is
there to monitor the dose rate and integral dose. When the full dose is given the monitor
shuts off the beam. The second ion chamber, which is called the backup dosimetry channel,
is there in case the first chamber fails. If an electron beam is used, an electron applicator
is used to sharply define the field at the target. If the electrons have been transformed to
photons one can use multi-leaf collimators (MLC) to define the field. Also, wedges and
shutter can be used to modify the output profile. (Wangler (2008))

Figure 2.11: An illustration of the beam limiting device

20

2.4 Radiation treatment techniques

One important consideration during radiation therapy is the right placement of the
patient relative to the beam. To do this as best as possible a constant point in the treatment
room is created to be used as reference during placement of the patient. That point, called
the isocenter, is the point at which the gantry and couch rotates around, meaning that the
beam will always pass through the isocenter.

Figure 2.12: An illustration of the isocenter in the treatment room.

2.4.4 Multi-leaf collimators

When the concept of the multi-leaf collimators (MLC) was first introduced by Proimos
(1960) and Trump et al. (1961) it was not much used. It was intended to replace the Cer-
robend block, which is solid, molded field shaping devices with little flexibility, meaning
its main purpose was to shield normal tissue. It was not until later that is was used in
dosimetry to create complex conformal beams. The MLC defines the beam field used in
the linear accelerator for each treatment. With many interdigitating leaves individually
moving, continuously or stepwise, at a high speed it is possible to form a complex beam
to fit the treatment case. The gain of this flexibility has made the delivering of dose much
more laborious, and more machine power is needed to run. The MLC on the system used
at St. Olavs Hospital, Elekta Agility, is 0.5 cm wide at isocenter, around 7cm long and
made of wolfram. According to Elekta (2020), the producer of the MLC system this gives
a transmission of < 2%.

21

Chapter 2. Background

Figure 2.13: An illustration of the MLC leaves.

By changing the positions of the MLC leaves it is possible to create countless number
of fields. To monitor the movements of the leaves in real time an optical video-camera
system is used. The system is placed inside the gantry head and its accuracy is therefore
unaffected by the rotation of the gantry head as the system and the MLC leaves rotates
the same. The MLC leaves are placed parallel from two sides that meets at isocenter. The
movement of the leaves are linearly and so to minimize the penumbra and keep it constant
the tip of each leaf is rounded with a given radius of curvature (ROC). As an effect of this
the edge of the radiation field is not cut off as modelled by a light source projection. But
this has been studied and found not to affect the sharpness of the beam fall-off significantly
(Jordan and Williams (1994)). Also, the rounded edges introduce a path of leakage when
the MLC leaves are fully closed.

Tongue and groove effect

To allow for effective movements of the leaves there must be a small gap between them.
This creates a path of leakage between the leaves. To reduce this leakage the MLC leaves
have a tongue and groove design, see Figure 2.14. For a leaf that is 1 cm in isocenter it
has been shown that the actual blocking from that single leaf will be 1.1cm at isocenter
because of the tongue and groove design (Liu et al. (2008)). In addition the fall-off at the
leaf edge will not be straight, but manipulated depending on how the individual leaves are
formed together, see Figure 2.14. This will create a larger penumbra over the leaf flank.
For the dose plan system to be able to create a realistic and errorless plan it is important
that this characteristic of the MLC leaves is well modelled in the system.

Figure 2.14: An illustration of the tongue and groove in MLC leaves.

22

2.4 Radiation treatment techniques

2.4.5 Dose calculation algorithms

One important condition to use radiation as a treatment technique is the ability to model the
delivered dose in different situations originating from different radiation beams. Several
such models have been developed and implemented into hospital systems. There are two
conditions that should be met when accepting a dose calculation algorithm. The first is that
the result holds a high accuracy, and the second condition is that different results should
be easy to compare so that the planner can have confidence in the model used. The main
problem when developing a model is inefficient algorithms that take up too much time
when using a standard computer with normal processing capacity. Most models follow a
fluence-to-dose standard, and is built on simulation of the radiation source in the linear
accelerator and how the fluence exists there, total energy released per unit mass (TERMA)
and dose kernels (Brady et al. (2006)). TERMA is similar to KERMA, but unlike KERMA
it includes energy losses due to Coherent scattering, which is scattering due to interaction
with low energy photons. A dose kernel describes the amount of dose per photon at each
point relative to the interaction point. The dose inside a voxel will be a result not only
by the interactions from the primary radiation beam, but also of interaction of scattered
photons and secondary electrons originating form interactions in all other voxels. This
makes the modelling much more complicated and time consuming, and because of this
much effort has been put into developing good models of dose distribution from a photon
interaction. These models are models of the dose kernels. The dose can then be simulated
by combining TERMA and the dose kernels, by first finding the beam attenuation and
applying a dose kernel to each voxel and then using convolution with TERMA to find the
dose, see Figure 2.15.

Figure 2.15: The concept of calculating absorbed dose using TERMA and dose kernels.

Because the density in the human body can be varying, e.g. the lung, which is much
less dense than the surrounding tissue, the dose kernel should be modelled differently in
different tissues. In low density tissue the kernel will be stretched compared to tissue with
higher density. There are several ways to implement the dose kernel model but perhaps
the most common one when modelling radiation using photons is the collapse cone model
(Brady et al. (2006)).

23

Chapter 2. Background

Collapsed cone model

The collapsed cone (CCC) model was developed and described by Ahnesjö int 1989 (Ah-
nesjö (1989)). It uses the superposition method using point kernel and convolution as
described above. By using collapsing poly-energetic point kernels are modelled using
particles transported in a straight line with an exponential attenuation (Ahnesjö and As-
pradakis (1999)). The advantages of using CCC is that it can be used in tissue with dif-
ferent densities, as CCC will scale the kernel accordingly. Also, this model describes the
energy transport in a lateral direction, which was not done by earlier models. At St. Olavs
Hospital the dose calculation algorithm when using a photon beam is an enhanced version
of the CCC, namely the collapsed cone enhanced (CCE) model. The difference from the
new version compared to the old classic model is that the enhanced model considers the
fact that there is room between the MLC leaves.

2.4.6 Treatment planning

In this section the reference used is Podgorsak et al. (2005) unless other is stated. Orig-
inally treatment planning systems were created to make sure that the fields chosen in a
treatment were correct and that the volume being irradiated was indeed the target vol-
ume. As the treatment techniques have developed and become more complex the role
of the planning system is also changing and becoming more complicated. Among other
things the treatment systems today can be used to do quality checks on the field geometry,
identifying volumes of risk, patient positioning and generation of treatment plans with the
opportunity of comparing.

Before starting to plan the delivery of the treatment all slices of the planning CT must
be processed. In every slice all volume of interest and the outer contour of the patient must
be delineated. It is important for the precision of the delivery that the patient is placed
in the same position during the planning CT that it will be placed during delivery of the
treatment. Therefore, this must be planned before doing the planning CT. When uploaded
to a treatment planning system the data collected during the planning CT will make up a
3D model of the patient and all the volumes, which will be used to simulate the delivered
dose. From the data in the CT slices the treatment system is able to find the attenuation and
thereafter simulate dose in each volume depending on the radiation beam its being exposed
to. The treatment system is built on physical properties and simulate a radiation source and
properties of all the components in the beam limiting device (see Figure 2.11). Using this
and the dose calculation algorithms, e.g. collapsed cone model, for dose calculation the
treatment planning system can simulate delivered dose given different compositions of ra-
diation beams. There are different approaches when starting to plan treatment delivery
depending on the complexity of the case. In simple cases, e.g. in palliative cases, the field
is not so complicated, and an old-fashion approach is often used where the field is built
up of only a few beams (parallel or opposed) having a flat beam profile. These plans are
created manually in the treatment systems. For more complex cases, e.g. conformal treat-
ment planning, more information about the patient geometry and composition is needed
and more sophisticated methods are used, e.g. inverse treatment planning.

24

2.4 Radiation treatment techniques

Inverse treatment planning

As technology becomes more evolved this opens the opportunity to create more sophisti-
cated treatment plans. Examples of such methods are intensity modulated radiation ther-
apy (IMRT) and volumetric modulated arc therapy (VMAT). IMRT is a method where
the dose is delivered using many beams from different gantry angles. Usually the gantry
will be at 5, 7 or 9 different gantry angles delivering around 10 segments at each angle.
By segments is meant different beams being given after each other, where each segment is
different from the other by the shape of the MLC. This creates an intensity modulated field
built up by the fluence from each segment. VMAT is a method where the gantry moves
through an arc in one continuous movement whilst the MLC are changing formation. As
these kind of treatment methods are so complex and is composed of many parts, the plan-
ning is more requiring and cannot be done manually. Instead a method of inverse planning
was introduced, where the concept of inverse is used because the algorithm starts with a
condition of the delivered dose and uses conditions set by the planner to calculate how
to achieve this. This algorithm is built on an objective function, which is an expression
of the comparison between the requested dose and the simulated dose. The planner will
have to input some conditions and constraints, e.g. dose given to specific volumes, and the
algorithm will the try to minimize this objective function using an iterative process. The
fundamental problem using this approach is to make sure that the found minimum is actu-
ally the global minimum and not a local. This is solved by using a gradient decent. Once
the system comes up with a treatment plan the planner can try to adjust their conditions
and constraints and see if the plan can be further optimized.

MLC in treatment planning systems

The treatment planning systems uses models to simulate the different component involved
in dose delivery. One of these components are the MLC, which is modelled using four
parameters. The first parameter used when simulating MLC is leaf-tip offset. When cal-
ibrating the MLC according to a planned field a light field is used, and since light fields
diverge and the MLC leaf-tip is rounded this gives an offset between the field being defined
by the leaf tip and by the leaf side, see Figure 2.16.

Figure 2.16: An illustration of geometrical offset between field being defined by the MLC leaf tip
and side.

The second parameter being used when modelling MLC in treatment planning systems

25

Chapter 2. Background

is the leaf-tip width, see Figure 2.17. In the treatment planning system used during this
work the tip width used is one-half the thickness. When the parameter is set like this that
means that the radiation transmission leakage in the leaf-tip will be the square root of the
average leaf transmission factor and is a source of uncertainty. The leaf-tip offset together
with the leaf-tip width are the two parameters that will define the radiation field edge and
penumbra.

Figure 2.17: The leaf-tip width of an MLC leaf.

The third parameter used to model MLC in treatment planning systems are the leaf
radiation transmission factor, which is composed of two elements, the leakage through the
leaf body and the leakage through the gap between each leaf. Since the average leakage
through the body of the leaves are stated by the producers this is a simple matter of defin-
ing. But the leakage that originates from the gap between each leaf will depend on the
formation of the MLC and dose being delivered. Therefore, this component of the param-
eter must be modelled. The mostly used solution is to simply use the average leakage as
an estimate, and this is also done in the treatment planning system used in this work. The
last parameter used to model MLC is the tongue and groove width. This width is mod-
elled using half width of the normal leaf width as is done with the leaf tip. Therefor the
radiation transmission factor through the tongue ang groove regions will also here be the
square root of the average transmission factor. Also, when adjacent leaves about the effect
of the tongue and groove will not be taken into account by the treatment planning system.
In this subsection the reference used was Chen et al. (2015).

Dose volume histogram

As a treatment plan has been developed, one way to study the and compare different plans
is using dose volume histograms. As the treatment planning systems give information
about the dose distribution as a 3D-matrix, as well as information about the defined vol-
umes inside the dose plan, it is possible to look at the dose distribution in each of the
volumes. A dose volume histogram is a plot with volume given as a percentage at the
y-axis and dose at the x-axis. The curves then show how much of the volume obtains a
certain level of dose during irradiation. By looking at the lowest percentage one can obtain
information about the maximum dose delivered to the volume of interest, which often are
of interest when optimizing the treatment plan in inverse treatment planning. Figure 2.18
illustrates an example of how a dose volume histogram can look like. In this subsection
the reference used was Podgorsak et al. (2005).

26

2.4 Radiation treatment techniques

Figure 2.18: An illustration of a dose volume histogram.

2.4.7 Stereotactic radiotherapy

Stereotactic radiotherapy is an up and coming procedure that have proved effective in
control of early stage primary and metastatic cancers. It is used to treat cancers located
throughout the abdominopelvic and thoracic cavities, brain and at spinal and paraspinal
sites. What separates Stereotactic radiotherapy (SRT) from conventional therapy is the use
of high doses given in a few fractions to a small volume, where doses are high relative to
conventional radiotherapy. This results in a high biological effect, and to spare the normal
tissue as much as possible it is therefore critical that the dose is delivered with a steep
dose gradient away from the target. Because of this it is important to have confidence in
the accuracy of the whole treatment system, both the planning part and the delivery of
the dose. Also, a requirement for the practice of SRT is precise delineation of the specific
anatomically volumes. Many publications have affirmed the usefulness of SRT in the treat-
ment of both benign and malignant lesions. In clinical studies SRT compare favourably to
surgery with minimal adverse effects both for primary and metastatic diseases (Benedict
et al. (2010)).

The small fields used in stereotactic treatments are made in the linear accelerator us-
ing either flattened or unflattened high-energy photon beams and shaped using jaws, MLC
and/or cones. The most common is to use flattening free filter, as this has shown to de-
crease treatment time and give a better overall result (Dang et al. (2017)). In general there
are three conditions to decide if a field can be considered as a small field in radiotherapy,
a) lateral charged particle equilibrium does not hold on the beam axis, b) the collimating
devices partially block the beam, and c) at the depth of measurement the cross section of

27

Chapter 2. Background

the beam is smaller or equal to the size of the detector (Palmans et al. (2018)). The actual
size that defines a small field is not an exact number but will be inside a range generally
under 4cmx4cm. The size will depend on the range of the charged particles giving the
dose, which again depends on the energy of the primary photons or electrons. For a treat-
ment using 6MV an approximate definition of a small field is 1cmx1cm (Andreo et al.
(2017)).

The radiation beam stemming from the linac originates from a source of a finite size.
In conventional therapy radiation from the entire source will be seen at a detector, while
this changes when using small fields, as the forming of a small field will cover parts of
the source. This means that the outcome is smaller than what is the case when the whole
source is used. When the field is small enough the only parts of the radiation beam that
will contribute on forming the field is the geometrical penumbra. This causes an overlap
of the penumbra on each side, as seen in Figure 2.19. Since the traditional way to define
a radiation field size is using the full width at half maximum (FWHM) method this will in
turn result in larger field sizes than intended. (Das et al. (2008)).

Figure 2.19: An illustration of the changes in output resulting from overlapping penumbra.

2.4.8 Dosimetry and dose measurements in SRT
As small static megavoltage photon fields are a relatively new method of delivering radi-
ation therapy the standard publications and reports used in dosimetry did for some time
not cover the topic. The International Commission on Radiation Units and Measurements
(ICRU) have officially defined target volumes in specific reports. Report 50, 62 and 83
are good for small volume stereotactic treatments, but for some types of tissues it has
been found necessary to give specific recommendation on image modality used when per-
forming the delineation of volumes. These tissues include lung, liver, head and neck and
prostate when using stereotactic radiation treatment. In the old reports the standard for
prescribing dose was also covered, but for conventional field sizes. In reports 50 and 62
the prescription of dose was based on using a reference point and prescribing the dose
to that point (Wilke et al. (2019)). However, as the treatment plans got more complex
and the target volumes no longer was supposed to receive a homogenous dose distribution
the method using a reference point was not as good. In report 83 they introduced a new

28

2.4 Radiation treatment techniques

method based on using multiple dose-volume histograms. A dose-volume histogram re-
lates the dose given to a volume by the percentage of the volume is give what percentage
of the dose. Still this gave a prescription of a relatively homogenous dose to the volume.
With stereotactic treatment the dose profiles are in general inhomogeneous, and there-
fore this method is not ideal. In SRT the method most used for dose prescription to the
target covers isodose lines below 100% (Wilke et al. (2019)). With an increasing need
for a formally recommendation of dose prescription in stereotactic treatment a new report
was made covering SRT, report 91 on prescribing, recording, and reporting of stereotactic
treatments with small photon beams.

Before the new reports came with specific information about dosimetry, prescribing,
recording, and reporting of stereotactic treatments the way to plan and deliver treatment
in SRT essentially followed the same steps as in conventional treatments. However, since
the new reports have become available the image modality used to obtain information
defining both the volumes and attenuation have been specified and should be followed.
The type of image modality and parameters used still depends on the nature of the case.
When it comes to prescribing, recording, and reporting this should be implemented in the
treatment systems and used when planning a SRT treatment. But even with the new reports
specifically developed to better the simulation for SRT there is still some uncertainties,
especially related to the MLC leaves and how they are simulated. As mentioned in Section
2.4.6 the approximation of the radiation transmission through the leaf tip width introduces
an uncertainty. Since a precise definition of the field edge is very important in SRT this
uncertainty can be a problem and is not very well studied for the specific combination
of treatment planning system and linear accelerator used at St. Olavs Hospital. As the
leaf-tip width will define the radiation field edge and penumbra, this is a very important
parameter in SRT treatment, and should be studied more by investigating the penumbra
over the leaf tip and flank. Also, because the fields are very small in SRT the beam profiles
should be investigated to make sure that the treatment planning system actually delivers
what is intended. As high gradients should be expected a good dosimeter to perform these
measurements are radiochromic film.

In November 2017, the International Atomic Energy Agency (IAEA) released a new
standard, IAEA TRS-483, that addresses the reference and relative dosimetry for SRT with
nominal accelerating potential up to 10MV (Palmans et al. (2018)). TRS-483 sets a stan-
dard for measuring absolute and relative doses in small fields, whereas standard formalism
before this has been limited to larger beam fields. Studies have shown that there is large
discrepancies between the ratios of measured values using different types of detector but
same beam quality and the actual ratio of absorbed dose to water (Das et al. (2008), Sauer
and Wilbert (2007) and Sánchez-Doblado et al. (2007)). The field size and detector type
is responsible for these differences, which can be very large if the active volume of the
detector is big compared to the field size, as is the case in SRT. As a detector is placed in a
conventional radiation beam the field is large enough for the charged particle to hold later-
ally, while the same is not true for small radiations fields. The differences in readings done
in small fields (0.5 x 0.5 cm2) and larger fields (10 x 10 cm2) can amount to several tens of
per cent (Sánchez-Doblado et al. (2007)). This is shown for ionization chambers, diodes
and diamond detectors with an active volume between 1 and 3 mm in diameter. The loss
of lateral charged particle equilibrium together with the fact that small fields have large

29

Chapter 2. Background

dose gradients will make the uncertainty related to corrections for volume averaging in
dose measurements large. Also, the perturbations in the fluence due to the presence of the
detector will become large for the same reasons. Since most dosimeters has a large volume
relative to the small field size, it becomes apparent that dosimetry in small field radiation
therapy is complex and has room for improvement. The new standard, IAEA TRS-483
aims to cover these problems by setting recommendations for reference dosimetry of the
radiation machines and the determination of field output factors (Palmans et al. (2018)).
One dosimeter has a growing interest in small field treatment, namely radiochromic film.
As film dosimetry offers an absolute and continuous measurement of absorbed dose, it is
ideal to study the large dose gradient without introducing any large uncertainty due to vol-
ume averaging (Wen et al. (2016)) as is done in other dosimeters, e.g. ionization chamber
(see Section 2.3.2). Also, the resolution given by other dosimeters, e.g. ionization cham-
bers, is usually too low to correctly present the large dose gradient, whereas when using the
film one gets a continuous measurement only limited by the resolution in the scanner. In
addition, as mentioned in Section 2.3.3 the radiochromic film will when used in a clinically
relevant beam range be water equivalent, which means that there will be little perturbation
of the charged particle fluence due to the presence of the film and therefore this will not
contribute much to the uncertainty. Another advantage with using radiochromic film in
SRT is the fact that the film as a dosimeter does not depend on energy, which is necessary
as different beam energies (up to 10MV) are used with different cases in SRT (Palmans
et al. (2018)).

2.5 Python

Using film dosimetry introduces the need to perform image processing on the scanned
images. To do this the producers of the GafChromic EBT3 film has created a software
with this intention. However, since this is a patented and licensed program that means that
one must pay to use it and are only able to use their functionalities without the possibility
to do any changes. Since the interest in radiochromic film often lies in studying new
methods and smaller areas of more complicated plans the user would gain ease of use by
being able to do adjustments in the image processing software. Because of this an open
source software written in a mainstream programming language, such as Python, could be
a good alternative.

2.5.1 Algorithms

Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm is the standard choice for performing curve fitting
for unconstrained problems. By expressing the function as a sum of squares of nonlinear
functions it locates the minimum using an iterative technique (Polykarpou and Kyriakides
(2016)). It is widely used in optimizing computer programming in many languages and is
implemented as standard in many of Pythons libraries, e.g. SciPy.

30

2.5 Python

Bresenham’s line algortihm

In computer science a common problem is drawing lines through random points in a
dataset. Since datasets are commonly represented as a 2D or 3D matrix there is usu-
ally no way of drawing completely straight lines across two random points. Bresenham’s
line algorithm is a well-known method of finding the shortest path between two points in a
dataset, always moving through existing indices in the matrix. It is built on a incremental
error method and moves across the dataset point by point always choosing the direction
giving the smallest error to the actual slope of the ideal line (Kennedy (2012)).

Hausdorff distance

There are several ways of comparing two datasets to see how close they are to each other.
One way is through the Hausdorff distance, which measures the longest distance between
any points in the two datasets. To compare datasets with matching indices, one can use di-
rected Hausdorff distance, where the distance is measured between corresponding points.
As a result, the directed Hausdorff distance gives the distance where the two datasets are
furthest apart (Zhao et al. (2005)).

31

Chapter 2. Background

32

Chapter 3
Materials and Method

3.1 The basis of Fidora

As mentioned in Section 2.5 an open source software written in Python (vs. 3.7.4) could
stand as a good tool to perform image processing and analysis for film dosimetry. There-
fore, a program called Fidora was developed in this work. Fidora got its name from Film
Dosimetry in Radiotherapy, and even though it was developed with a special focus on ir-
radiation on the breast and stereotactic treatment it is written as a general tool. Therefore,
most of its futures are non-specific and general with the possibility to do changes and de-
velopments in the scripts. As an analysing tool Fidora holds different functionalities to
investigate different properties of the dose plans. During this work, the functionalities for
background correction of scanned film, map dose, calibration, profiles and dose volume
histograms were developed. Figure 3.1 shows a simple overview of the functionalities.
Since Fidora is meant as an open source software, the though is that Fidora can and will
be altered as the need for new functionalities arises.

Figure 3.1: Flow chart of Fidora showing its main functionalities.

33

Chapter 3. Materials and Method

3.1.1 General specification made by Fidora
Even though Fidora is written as a tool that can import dosimetric data from any treat-
ment planning system there are some initial specifications created on treatment planning,
irradiation and scanning which must be followed.

Specifications during treatment planning

Table 3.1 shows which parameters in the treatment planning system that is specified by
Fidora. If this is not followed Fidora needs to be reprogrammed.

Specifications during treatment planning Valid choices
Slice thickness (given from planning CT) 1, 2 or 3 mm

Dose matrix resolution same as slice thickness
Dose matrix orientation in relation [1,0,0,0,1,0], [1,0,0,0,0,1],

to patient coordinate system [0,1,0,1,0,0], [0,1,0,0,0,1],
(see Figure 3.2) [0,0,1,1,0,0] or [0,0,1,0,1,0]

Patient orientation HFS, HFP, FFS, FFP,
(see Figure 3.4) HFDR, HFDL, FFDR, FFDL

Table 3.1: Specifications during treatment planning when using Fidora.

Figure 3.2: An illustration of the patient coordinate system.

As mentioned in Section 2.4.2 the slice thickness in the planning CT is recommended
to be between 1 and 3 mm, which is why Fidora is limited to using slice thickness and
resolution 1, 2 and 3 mm. The dose matrix orientation is defined by an array where the
three first entries hold the cosine of the angle of the first row relative to the patients x,
y and z axis (see Figure 3.2) and the three last entries holds the cosine of the angle for
the first column. Meaning that if the dose matrix orientation is given as [1,0,0,0,0,1] that
means that the first row in the dose matrix is parallel to the x-axis and perpendicular to the

34

3.1 The basis of Fidora

y- and z-axis, while the first column is parallel to the z-axis and perpendicular to the other
two, see Figure 3.3.

Figure 3.3: An example of the dose matrix orientation in the patient coordinate system.

The patient orientation describes how the patient is positioned at the table in the linear
accelerator and the different positions is shown in Figure 3.4. The patient coordinate
system is a standard way of orienting the dose matrix in DICOM files and is always defined
with the given patient directions as in Figure 3.2, meaning that it is independent on the
patient orientation in the treatment room.

Figure 3.4: An illustration of the different patient positions.

However, to be able to match the position of the film in the dose matrix the patient
orientation is needed so as to know how the patient coordinate system is oriented relative
to the spatial coordinate system in the treatment room.

35

Chapter 3. Materials and Method

Specifications during irradiation

One of the key parts in most of Fidoras functionalities is to align the position of the film
with the area of interest in the dose matrix from the treatment planning system. To do so
it is important that the film is irradiated with parameters specified in Table 3.2.

Specifications during irradiation Valid choices
Film orientation Sagittal, Coronal or Axial

Position reference Isocenter or reference point in phantom
Beam energy 6MV

Table 3.2: Specifications during irradiation when using Fidora.

When creating a treatment plan the final dose plan will be stored as a 3D-matrix,
meaning that all its data will be stored according to three principal axes, which gives the
dose plan a limitation on resolution. In addition, a datapoint retrieval not perpendicular
to one of the axes will further reduce the resolution. Because of this it was decided that
the radiochromic film, when using Fidora, should always be placed perpendicular to one
axes and parallel to the other two during irradiation, see Figure 3.5. Also, to lower the
uncertainty of positioning the film in the phantom it was decided that the film would only
be placed in one of three planes defined in a patient, sagittal, axial and coronal, see Figure
3.6.

Figure 3.5: Examples of how the film can be placed according to the dose matrix. The film can be
placed in any slice. The green illustrates the film, and the arrows shows the principal axes.

Figure 3.6: An illustration of the three film orientations, sagittal, axial and coronal.

36

3.1 The basis of Fidora

Before irradiation the film has to be placed at the position in the phantom which one
wants to measure. When this is done a mark on the film either on the lines leading to
isocenter or a reference point should be made, see Figure 3.7. If neither of these points are
on the film sheet a temporary point on the film must be made and a note on the distance
from that point to isocenter/reference point in lateral, vertical and longitudinal directions
has be made for later orientation in the dose plan. Fidora uses the information about dose
matrix orientation, patient orientation and film orientation to orient the film according to
the dose matrix. Then by using the reference position to the film, slice thickness and dose
matrix resolution Fidora align the scanned film to the correct position in the dose matrix.

Figure 3.7: An example of the markings made on a film to find isocenter. The black marks (shown
by the red arrows) on the film marks the directional lines going towards isocenter (shown by the blue
dot).

Specifications during scanning

In the workflow using GafChromic EBT3 film a central part is scanning of the film af-
ter irradiation. Fidora assumes that a flat-bed scanner, Epson v750 Pro, was used. The
scanner must be used doing a transmission scan, meaning that it is the light being trans-
mitted through the film that is being measured. The resolution of the scanner is limited
by how many photodiode detectors the scanner contains. A bit simplified, the scanner can
be viewed as a 2D grid of photodiodes, each detecting signal intensity and storing the in-
formation in three channels (red, green and blue). This principle is the basis for all image
processing and data representation and is the reason why results will be represented in
terms of either pixel values or dose. Pixel values are absolute measurements and allows
for different results to be compared.

The specifications listed in Table 3.3 shows the Fidora specifications regarding the
scanning of the film. These specifics are based on recommendations from the producers of
GafChromic EBT3 film. By following these specifications one assures that the scanner do
not initiate any automatic adjustments to the image, resulting in non-absolute pixel values,
and also that the data loss is minimal giving a 48-bit storing capacity and using TIFF
format. In addition, the resolution is specified to 127 dots per inch (5 pixel/mm) which
assures a resolution high enough for comparison with dose plans, which is given with a
resolution of 1, 2 or 3 pixel/mm.

37

Chapter 3. Materials and Method

Choice in Epson scan app Setting
Mode Professional

Document type Trasmission
Film type Positive film

Image type 48 bit
Resolution 127 dpi
File type Multi-TIFF

Scanner corrections No corrections

Table 3.3: Scanning specifications used in Espon scan app.

As described in Section 2.3.3 the particles in the active layer of the film has a tendency
to align along the short side of the film. It is therefore important to keep a constant orien-
tation of the film when scanning. Fidora assume that landscape orientation is always used
during scanning, see Figure 3.8.

Figure 3.8: An illustration of the scanning direction and orientation.

From earlier work (Håland and Gustavsen (2019)) it was discovered that the flat-bed
scanner needs to undergo a warm-up procedure to produce a stable readout and at least 3-5
warm-up rounds (without the film inside) should be used. Also, if the scanner is inactive
for longer than 4 minutes, the warm-up procedure needs to be repeated. In addition, to
avoid any blackening of the film because of overheating in the scanner all scans must be
done at least 1 minute apart. When performing a scan, the scanner uses its calibration area
placed at the top of the scanner as a reference to perform a self-calibration of the machine.
It is therefore very important that this area is not covered by film. To avoid varying optical
paths during scanning a glass plate is recommended to fix the film on the scanner surface.
To avoid band-artefacts this glass plate must be cleaned before every use and placed to
cover the entire calibration area.

38

3.2 Fuctionalities of Fidora

3.1.2 How Fidora reads a scanned image
The first step in all Fidoras functionalities is to process the image scanned of an irradiated
film. As the film is being scanned, using 127 dpi, every 1mm will be mapped by 5 pixels
which creates a 1270x1016x3 matrix with datapoints for used scanner. The third dimen-
sion is the color channels, red, green and blue. When processing the images in Fidora these
color channels have been separated into three 1270x1016 matrices to simplify the process
and give the opportunity to collect data from each of the color channels. Directly after the
reading of the image and before any processing of data Fidora applies a median filter with
a 5-pixel width on the datasets. This is done to avoid any ’salt and pepper’-artefacts. Also,
because the scanning is done using transmission instead of reflection that means that the
image is flipped left to right relative to how you see it. To avoid any mistakes when using
the dataset to compare to other data, e.g. dose plan, the image is flipped back as it is being
read in Python.

3.1.3 How Fidora reads a doseplan
There are three files of the treatment plan that Fidora can read, RT Dose file, RT plan
file and the structure file. These three files make up the basis for the total treatment plan
and describe how the irradiation were planned and should be delivered. More files can
be part of the total treatment plan, e.g. one dose file for each part of VMAT, but only
RT Dose (which will hold the total dose plan from all parts of the delivery), RT Plan and
the structure file are needed in Fidora. In all Fidoras functionalities using a dose plan the
RT Dose file must be uploaded. This is the file holding the dose matrix, resolution and
orientation. In addition, where Fidora must perform positioning of the film into the dose
matrix the RT Plan file also has to be uploaded, holding information about positioning of
the dose matrix relative to the treatment room. To be able to use anatomically or manually
drawn structures the structure file also needs to be uploaded. This would be relevant in
cases where one wishes to study the dose distribution in volumes of interest.

3.2 Fuctionalities of Fidora
In this section the main functionalities of Fidora will be described in detail. During this
work, each functionality is placed in separate tabs and work independently of each other,
although some of them are built on similar functions. See Figure 3.1 for an overview of
the functionalities of Fidora developed during this work.

3.2.1 CoMet
The first tab holds the further developed version of a software programmed in an earlier
project, CoMet. CoMet stands for Correction Method and is a program where the user can
upload their scanned image of GafChromic film, and the program will perform a correc-
tion. As described in Section 2.3.3, because there has been found that a flat-bed scanner
has a non-uniform readout in the lateral direction of the scanner there is a need to make
corrections for this. As such a correction matrix has been developed, which is used in
Fidora on every uploaded image.

39

Chapter 3. Materials and Method

Creating the correction matrix

The correction method in CoMet is based on an absolute subtraction method, using ma-
trices in Python. An area of 10cmx10cm of the scanner surface were studied to find the
variations along both directions of the scanner. Since a linear accelerator is not perfect, it
will not deliver a totally uniform dose across its beam field. The most precise area of the
beam field is the centre and because of this the 10cmx10cm scanner area must be mea-
sured using small film pieces each irradiated at the centre of the beam field. To cover the
area a 5x5-matrix was used, resulting in 25 measuring points over the 10cm x 10cm area
with a separation of 2cm in each direction, see Figure 3.9.

Figure 3.9: An image of the setup during scanning of film pieces meant for background correction.

Film pieces of 2cm x 2cm were cut out and irradiated with doses 0, 25, 50, 100, 200
and 400cGy using a field size of 10cm x 10cm. Every piece was then scanned in all 25
positions, and an area of 3mm x 3mm (15x15 pixels) in the centre was read and averaged
using Python. This was repeated for each dose level, resulting in a 5x5-map for each color
channel representing the surface of the scanner. Since the centre of the scanner surface is
assumed to be correct this was chosen to be the reference point. The correction matrices
in each color channel for each dose were then found by calculating the difference in each
point in reference to the centre. Because the scanning itself will contribute to increasing the
optical density of the film, it was decided that each film piece should only be scanned once
at each position. Employing cubic interpolation and extrapolation the difference matrices
were reshaped to fit the entire scanning area and the resulting matrices were written and
saved in *.txt files, which is necessary attachments included in Fidora.

40

3.2 Fuctionalities of Fidora

Figure 3.10: Flowchart showing the main steps in CoMet.

These *.txt files will be read every time Fidora is opened and stored as a 1270x1016
correction matrix for each color channel. As stated in Section 3.1, when the user uploads
an image it will be read in Fidora as three 1270x1016 matrices. Fidora will then use
the correction matrices and element by element perform an absolute subtraction on the
uploaded matrices. Fidora is written so this will happen automatically every time the user
uploads a scanned image. In the CoMet tab the user can perform this correction and the
three resulting datasets, representing each color channel, are merged together to form a
full RGB image and will be plotted in the program as well as saved in a DICOM. The
uploaded image must have been scanned according to the scanning specifics in Table 3.3.
The corrected image is stored in a DICOM file, as to not get any data loss and to use a
standard which is known in the radiation clinic.

41

Chapter 3. Materials and Method

Verification of the correction matrix

To verify the need and the consequence of the correction matrix a comparison of a cor-
rected profile vs. a non-corrected profile across the lateral scanning direction was made.
4 film pieces were cut into 10cmx10cm squares and irradiated to doses 0, 50, 100 and
200cGy using a flat beam of size 10cmx10cm. After being scanned each image was cre-
ated into a difference map using the centre datapoint to subtract from all other points.
Assuming the radiation beam was in fact flat, each element then holds the difference due
to the scanner surface position. A profile was drawn at the same position in each dataset,
giving 4 profiles, which were averaged. The image processing was repeated but with a
correction before creating the difference map. The setup can be seen in Figure 3.11.

Figure 3.11: Setup en experiment verifying the correction.

3.2.2 Dose response

The second tab in Fidora, Dose response, is created to perform a calibration of the ra-
diochromic film and further investigate the dose response curve of the film. To be able to
map the pixel value read when scanning a radiochromic film to a dose it is necessary to
create a method built on algorithms modelling the properties of the film. As stated in Sec-
tion 2.3.3 the model used is a ’reciprocal linear vs dose’ plot. Because of the nature of the
equation (Equation 2.18) at least three measurements are needed to perform a fitting. That
means that the user has to upload scanned films belonging to at least three different dose
levels before Fidora will fit the dose response, and the more data points being uploaded
the better the fit will be. Figure 3.12 shows a flow chart of the tab Dose Response.

42

3.2 Fuctionalities of Fidora

Figure 3.12: Flowchart showing the main steps in the tab Dose response.

43

Chapter 3. Materials and Method

The following procedure explains how a calibration done with Fidora should be carried
out. First, to avoid the uncertainties related to the beam non-uniformity in the linear accel-
erator and non-uniform scanning in the lateral direction the calibration should be done with
each film piece being irradiated in the centre of the beam field and scanned at the scanner
surface centre. In specified scanner used with Fidora, Epson v750 Pro, the geometrical
centre of the scanner surface is not the actual centre of the scanned image, meaning that
the correct centre must be identified. To do this one option is to scan a mm-paper placed
at the corner of the scanner surface and use the readout to find the distance to the actual
centre of the scanned image, see Figure 3.13.

Figure 3.13: An example of how to find the center of the scanner.

When this is done a mask should be cut out to fit the scanner surface such that the
centre is easily accessible for later use. That means that relatively small film pieces can
be used, e.g. 2cmx2cm. Because of the nature of the ’reciprocal linear vs dose’-model
the dose levels used for calibration should arise from a geometrical series, e.g. 0, 2, 4,
6, 8 etc. To avoid film-to-film uncertainties several film pieces should be irradiated for
each dose level. During irradiation, the film must be placed perpendicular to the radiation
beam, and the beam must be of a larger size than the cut film piece. After irradiation, the
film pieces are to be kept in an opaque envelope for at least 12 hours to avoid any post-
irradiation effects (Ashland (2020)). When the film pieces are scanned it is assumed this
happens according to the specifications in Table 3.1.1, and Fidora will reject any files not
following these. In the tab Dose response in Fidora the files can then be uploaded (see
Figure 3.12), either as groups of files each belonging to different dose levels, or one by
one. It is recommended to scan each film piece several times to minimize the scan-to-scan
uncertainty. Each file being uploaded will be read according to Section 3.1 giving three
1270x1016 matrices (red, green and blue channels). From these the centre is read as an
average over an area of 5mmx5mm, corresponding to 25x25 pixels in the matrices. As
all files have been uploaded Fidora average all measured pixel values from every scan
belonging to the same dose level. When enough datapoints are collected to perform a
fitting Fidora will do the fitting automatically, and for every new datapoint added it will be

44

3.2 Fuctionalities of Fidora

further fitted. In addition, a plot showing the dose response curve is created and maximum,
minimum and average standard deviation in the datapoints as well as the fitting uncertainty
are printed to the screen. To perform the fitting a Python function called curve fit from
the library scipy.optimize was used. The choice of method for the curve fitting was
Levenberg-Marquardt algorithm that solves a least squares problem (see Section 2.3.3).
This was chosen because the fitting was without constraints.

Testing the calibration done by Fidora

Since Fidora assumes that the calibration is done from datapoints in the centre of the
scanner. That means that Fidora will always read the same positions in the images and
could be subject to an uncertainty related to positioning of the film in the scanner, as the
film piece could be placed shifted related to the centre. To test this a calibration was
done in Fidora and compared to a manually performed calibration. By not using a general
approach, but instead study each scanned image for the correct beam centre, the calibration
will constitute a much more extensive workload, but will minimize the uncertainty related
to positioning of the film in scanner. Film pieces of size 2cmx2cm were cut and irradiated
to dose 0, 1, 3, 10, 33, 100, 333, 1000 and 2000cGy. All films were scanned according to
the scanning specifications given in Table 3.3. The scanning setup of the experiment can
be seen in Figure 3.14. First the images were run through Dose response in Fidora, which
gives the dose response curve and the fitting parameters a, b and c in Equation 2.18. In
addition, a manual calibration in Python were performed by reading and searching every
scanned image for the correct position of the centre of the beam field. This was done by
measuring all horizontal and vertical profiles across the film and stepwise moving towards
the global maximum in each direction starting from one corner. Then, as the centre was
found, an average over a 5mmx5mm area at that point was calculated. All scans from the
same dose level were averaged and the data stored as a dataset, holding dose level and
associated measured pixel value. Using the same Python function, curve fit, as Fidora
the dataset was fitted to Equation 2.18. The two dose response curves were plotted against
each other, and compared both in fitting uncertainty and directed Hausdorff distance.

Figure 3.14: Scanner setup when doing a calibration.

45

Chapter 3. Materials and Method

In stereotactic treatment it is common to use a beam without the flattening filter. Since
a flattening filter free beam is non uniform (see Figure 3.15) it is more sensitive to po-
sitional errors during both irradiation and scanning. Because of this a calibration done
using a flattening filter free beam was also performed in the same matter as the experiment
explained above, to investigate how Fidora performs and if there is a need to do separate
calibrations in cases where filter free beams are used.

Figure 3.15: An illustration of the effects of a flattening filter. Red line is filter free and blue is the
beam profile when using a flattening filter. The yellow dashed line indicates the profile corresponding
to the size of the film pieces used in the experiment.

3.2.3 Profiles
Profiles, the fourth tab in Fidora, is created to study how the measured dose profiles in
the radiochromic film compares to the planned dose distribution. It results in two profiles
plotted together, one profile belonging to the film and one belonging to the dose plan. Such
a comparison would only be valid if the profiles are drawn at the exact same position in the
dose plan as in the film. Therefore, a critical part of this functionality is to correctly match
the position of the film inside the dose matrix uploaded through the RT Dose DICOM
file from the treatment planning system. By strictly following the specifications described
in Section 3.1.1 the film will be placed correctly. However, there will always be some
uncertainty related to positioning the film inside of the phantom during irradiation and
when marking the reference point/isocenter in Fidora. To make up for this Fidora gives
the user the opportunity to adjust the placements of the region of interest in the scanned
film. To create the profiles the user needs to upload the scanned image of the film, RT Dose
file and a RT Plan file. The RT Plan file is used for positioning, while the scanned film and
RT Dose file is used to find the profiles. Fidora is written with three options when plotting
the profiles, it can be calculated over a horizontal line, a vertical line or a manually drawn
line. The map the pixel values read in the scanned image Fidora uses a saved calibration

46

3.2 Fuctionalities of Fidora

from the same film LOT. Together with the plotted profiles a table of information about the
plot is printed to the window as the computer mouse hover over the plot. The table gives
information about the match between the two profiles as a percentage at given point, the
doses at the given point in plot, how the dose at each profile compare to maximum dose in
ROI and how the dose in each profile compare to the target dose (see Figure 3.16).

Figure 3.16: Example of the profiles and table with information.

Once the profiles are matched Fidora gives the opportunity to export the plot to the
computer. In addition to the plot an image of the ROI in both the film and dose plan will
be shown in the window so the user are able to visually check that the positioning of the
film in the dose plan is as expected. In the case where the user chooses to manually draw
the profiles, an algorithm called Bresenham’s line algorithm is used (described in Section
2.5). Such an algorithm has to be used because the dataset representing the images is a
matrix, meaning that a random line drawn from one point to another will in most cases not
created a continuous line through the coordinates but needs to be approximated. Figure
3.17 show a flow chart of the functions in Profiles.

47

Chapter 3. Materials and Method

Figure 3.17: Flow chart showing the main steps in the tab Profiles.

48

3.2 Fuctionalities of Fidora

3.2.4 Dose volume histogram (DVH)

The fifth tab in Fidora is where the user can create dose volume histograms. This function-
ality is similar to the tab Profiles, in the way that is matches the position of the film onto the
dose plan in the same matter. In this tab the user must upload an addition file, the structure
file, so Fidora can find and recognize different structures in the defined region of interest.
From the structure file Fidora gets all available contours and every coordinate from the
whole dose plan given as the boundaries of each contour. Upon performing the position
matching of the film and dose plan Fidora maps all coordinates given for each contour over
to the coordinate system for which both the film and dose plan is given (see Figure 3.5).
Fidora then retrieves all coordinates defining in which slice the contour boudary belongs
and eliminate all boundary contours which is not in the same slice as the film. The struc-
ture file does not hold a complete set of all coordinates in the boundary of the contours,
meaning that the coordinates retrieved in the slice will not make a closed path. In addition,
because the film has a much better resolution compared to the dose plan, 0.2mm/pixel
compared to 1mm/pixel, 2mm/pixel or 3mm/pixel the mapping of the coordinates to the
dataset from the film also creates an unclosed path. To close the paths in both the dose
plan dataset and in the film dataset Fidora uses a function called Path() from the library
matplotlib.path. The function takes an unclosed path as parameter and close it by using
straight lines and returning a polygon. Then Fidora uses another function in the same li-
brary called contains points() and get in return every point in the region of interest which
is contained in that, now closed, contour. Using these two functions Fidora places all the
contours and calculates the dose in every given point inside each contour. Then an array
holding the dose and what percentage of the volume has reached the corresponding dose
in each element is calculated. This array is then plotted for each contour. On the screen
the user will get dose volume histograms for every possible contour from the structure file,
with the possibility to hide any one of the contours in the plot. Together with the plot an
image showing the region of interest in the dose plan is drawn to the screen. Once the user
has selected the volumes of interest it is possible to export the plot to save on the local
computer for future study. Figure 3.18 show a flow chart of the workflow in the tab DVH.

49

Chapter 3. Materials and Method

Figure 3.18: Flow chart showing the main steps in the tab DVH

50

3.3 Stereotactic radiotherapy

3.3 Stereotactic radiotherapy

As described in Section 2.4.8 radiochromic film, such as GafChromic EBT3, is a good
dosimeter when studying stereotactic treatment in radiotherapy. When developing Fidora,
the possible use in stereotactic treatment was in mind, and as such there is a need to
investigate how Fidora handles stereotactic cases.

3.3.1 MLC model in Raystation

When doing stereotactic radiotherapy the beam sizes are usually relatively small compared
to conventional radiotherapy. In addition, the dose gradients are meant to be steep, mean-
ing that the beam shaping is important in stereotactic treatment. The largest uncertainty in
this matter is the MLC, and how they are modelled in the treatment planning system, see
Section 2.4.6. Especially how the MLC is modelled at their tip and side will be important
in regards to shaping the beam field. To see how well the treatment planning system fits the
actual measured dose distribution a series of measurements were performed. First a cali-
bration was performed in Fidora using dose levels 0, 10, 20, 40, 80, 160 and 320cGy. Then
five film pieces of sizes 5cmx5cm, 6cmx6cm, 7cmx7cm, 9cmx9cm and 12cmx12cm were
cut out and irradiated according to the specifications in Section 3.1.1 with dose 2Gy using
beam field sizes of 1cmx1cm, 2cmx2cm, 3cmx3cm, 5cmx5cm, 10cmx10cm respectively.
The profiles were drawn across the centre of each field, one x-profile across the collimator
jaws and one y-profile across the MLC-tip, in Fidora. See Figure 3.19 for setup.

Figure 3.19: Setup in MLC model experiment

51

Chapter 3. Materials and Method

One film piece of size 12cmx12cm was also cut out and irradiated with dose 2Gy using
a beam field size of 10cmx10cm with the left upper quadrant blocked out using the MLC
leaves, see Figure 3.20 for setup. Then a x-profile across the collimator jaws was drawn
2.5 cm from the top giving a penumbra defined by the side of the MLC leaves. A y-profile
across the MLC leaf-tip was also drawn 2.5cm from the left giving a penumbra defined by
the tip of the MLC leaves. Both profiles were found using Fidora. See Figure 3.21 for how
the profiles were taken. When irradiating all film pieces, the film was placed at a depth of
10 cm in a solid water phantom.

Figure 3.20: An illustration of how the MLC were used to shape the partially blocked 10cmx10cm
field.

Figure 3.21: An illustration of how the MLC were used to shape the partially blocked 10cmx10cm
field. The red lines indicate where the profiles were taken.

52

3.3 Stereotactic radiotherapy

3.3.2 Stereotactic treatment plans
To see how the GafChromic EBT3 film works with Fidora compared to the treatment plan
four treatment plans were created,

• Treatment plan V1

• Treatment plan V2

• Treatment plan V3

• Treatment plan V4

The phantom used is shown in Figure 3.22, together with all the delineated volumes of
interest.

Figure 3.22: Phantom showing the different volumes of interest.

All the treatment plans are planned with three fractions delivered using a beam energy
of 6MV and a criterion saying that 99% of GTV should be covered by 95% isodose. V1-V4
are clinically relevant treatment plans and are optimized with the following parameters,

• Standarization 12.5Gy x 3 fractions,

• GTV > 35.6Gy,

• CTV > 30Gy,

• PTV > 25.1Gy,

• PTVmax < 52.2Gy,

• SpinalCord PRV < 18Gy at 0.35 cm3 and

• SpinalCord PRV < 21.9Gy at 0.01cm3.

53

Chapter 3. Materials and Method

As the prescribed dose in V1-V4 is up to around 12.5Gy for each fraction, and the
radiochromic film has an optimum region up to 10 Gy, four additional, similar plans were
made with a lower prescribed dose. Each of them technically the same as the four plans
mentioned above but re-planned so that the prescribed dose was scaled down to within the
functional region of the film. the plans, named V5, V6, V7 and V8, are scaled versions of
V1, V2, V3 and V4 respectively. The standardization dose in V5-V8 is 5Gy x 3 fractions.
These plans are not as clinically relevant but will be used to see if the measured high dose
regions are in compliance with the dose plans. In all plans the isocenter was placed in the
centre of the spinal cord (see Figure 3.22), and the optimization was done with a sliding
window with a maximum of 2cm MLC movement for each gantry angle.

Collimator Patient table Number Degrees of arcs Flattening
angle angle on arcs filter

V1 5◦ 5◦ 1 178◦-356◦ Yes
V2 5◦ 5◦ 1 178◦-356◦ No
V3 5◦ 5◦ 2 178◦-90◦ and 270◦-182◦ No
V4 90◦ 5◦ 1 178◦-356◦ No
V5 5◦ 5◦ 1 178◦-356◦ Yes
V6 5◦ 5◦ 1 178◦-356◦ No
V7 5◦ 5◦ 2 178◦-90◦ and 270◦-182◦ No
V8 90◦ 5◦ 1 178◦-356◦ No

Table 3.4: Specifications for treatment plans V1-V8. Arc rotation direction is in all cases counter-
clockwise.

In V3 two arcs were used in an attempt to lower the dose to organs of risk by avoiding
radiation being delivered to the front of the phantom. In V4 the collimator rotated at 90
degrees to let the jaws block out the spinal cord instead of the MLC-leaves. Here the jaws
are locked at the edge of the region called SpinalCord PRV (see Figure 3.22), which is
defined as the spinal cord + a 2mm margin.

When performing the irradiation the phantom was placed on the patient table in treat-
ment position Head First Supine (see Figure 3.4) and isocenter was placed in a marked
reference point. Then the table was moved -0.2cm, -17.53cm and -2.53cm in x, y and
z directions (see Figure 3.2). These values were given by the treatment plan as a refer-
ence from the marked reference point to placed isocenter. Then eight film pieces of size
10cmx10cm were cut out and irradiated in turn. Each film piece was only given one out
of three fractions from the dose plan. When placed in the correct slice of the phantom a
small piece of the top of the film piece had to be cut out to make the piece fit inside the
phantom, see Figure 3.23. Also, markings showing the isocenter on the film were made
for later use in Fidora.

54

3.3 Stereotactic radiotherapy

Figure 3.23: Image from the setup in the linac.

As the film pieces were scanned all instructions in Section 3.1.1 were followed, using a
mask made of radiochromic film to best place the film at the centre of the scanner surface.
See Figure 3.24 for the setup during scanning.

Figure 3.24: Setup during scanning of the film.

To analyse the results in Fidora the dose plan and film was compared by drawing
profiles, as seen in Figure 3.25 and looking at the dose volume histograms. Since each film

55

Chapter 3. Materials and Method

only had received one fraction, whereas three were planned, the film had to be upscaled 3
times in Fidora.

Figure 3.25: Illustration of how the profiles were drawin in the treatment plans. The red lines
indicate the positions of the profiles. In V1-V4 all three profiles (a, b and c) were plotted, while in
treatment plans V5-V8 only a and c were plotted.

56

Chapter 4
Results

As radiochromic film is a lesser used dosimeter at the radiation clinic at St. Olavs Hospital
there was a need to introduce this dosimeter as a quality assurance instrument, which was
the work in a former project done by this thesis author along with another student Ane
Vigre Håland (Håland and Gustavsen (2019)). With the quality and usefulness of the film
established in that project the need for a flexible analysing tool raised. The main results
of this work is the developed analysing tool named Fidora. As such, this chapter will start
by going through each module in Fidora and see how each of them turned out, in addition
to the results of validation of background correction and calibration procedure in the case
of CoMet and Dose Response respectively. Then, as a proof of concept, Fidora has been
used to analyse the modelling of the MLC in the treatment planning system and study four
different stereotactic treatment plans.

4.1 Fidora

Fidora is an analysing tool that performs the needed corrections on scanned film and cal-
culate the calibrations and dose response curves needed to compare film to dose plans. In
addition, Fidora uses profiles and dose volume histograms to analyse the outcome read
from film. Fidora was developed with a special focus on irradiation on the breast and
stereotactic treatment, but the functionalities included are general and can be used on other
cases as well. Figure 4.1 shows the front page of Fidora, where the tabs on the left side
holds the functionality menu.

57

Chapter 4. Results

Figure 4.1: Initial page when opening the software Fidora. The tabs on the left hold the different
functionalities included in Fidora.

4.1.1 CoMet

Figure 4.2 and 4.3 shows the profiles in the difference maps in the lateral and the scanning
directions respectively. It was confirmed that there is a deviation in each direction, but no
systematic relationship between the deviation in intensity and dose was found. As a result
the correction matrices for all six dose levels were averaged and Fidora only operates with
one correction matrix for each color channels.

Figure 4.2: Profile of the difference in read pixel value in relation to the centre value. The measure-
ments have been taken across the scanners lateral direction and are plotted with error bars for each
dose level.

58

4.1 Fidora

Figure 4.3: Profile of the difference in read pixel value relation to the centre value. The measure-
ments have been taken across the scanners scanning direction and are plotted with error bars for each
dose level.

Figure 4.4 and 4.5 shows the profiles in the difference maps in the lateral and the
scanning directions respectively. Table 4.1 gives the standard deviation for each measured
point in the difference maps as they are averaged over all dose levels.

Figure 4.4: Profile of the difference in read pixel value in relation to the centre value as an average
over all six dose levels. The measurements have been taken across the scanners lateral direction and
are plotted with error bars at each measuring point.

59

Chapter 4. Results

Figure 4.5: Profile of the difference in read pixel value in relation to the centre value as an average
over all six dose levels. The measurements have been taken across the scanners scanning direction
and are plotted with error bars at each measuring point.

Distance relative to SD in x-profile SD in y-profile
scanner center (pixel value) (pixel value)

-40 mm ± 244 ± 407
-20 mm ± 215 ± 410
0 mm ± 226 ± 344
20 mm ± 229 ± 373
40 mm ± 229 ± 374

Table 4.1: Standard deviation at each measured point when the difference map is averaged over all
six dose levels. The standard deviations are given for the profile across the scanner lateral direction
as well as the scanners scanning direction.

As a verification of the need and the consequence of using a correction matrix hori-
zontal profiles from non-corrected images were compared to horizontal profiles from cor-
rected images after subtracting the centre element. The profiles were measured across the
centre of the scanner surface. The results can be seen in Figure 4.6. It shows that the non-
corrected image has a larger error in measured dose than the non-corrected image. The
error increases with the distance from the centre of the scanner surface.

60

4.1 Fidora

Figure 4.6: Profiles from a corrected image and a non-corrected image shown in green and red,
respectively. The profiles are taken in the scanner’s lateral direction across the centre of the scanner
surface.

Figure 4.7 shows the result of the Fidora tab meant to perform image corrections,
CoMet and Figure 4.8 shows how it looks after a successful run. The the user is asked to
upload a file holding the scanned image of film, and to choose a folder where the DICOM
file holding the corrected image will be stored. The user will also be asked to input a
filename before all these choices will be confirmed as valid and the user can perform
the correction by clicking the correction button. Since the corrected image is stored as a
DICOM file the user has the option to write in the patient name/ID.

Figure 4.7: Screenshot of the first tab in Fidora - CoMet. In this module the user is able to perform
background corrections on a scanned image of the film.

61

Chapter 4. Results

Figure 4.8: Screenshot of the first tab in Fidora, CoMet, after a successful run. The corrected image
here is used as an example.

4.1.2 Dose Response

Figure 4.9 shows how Fidoras second tab, Dose response, turned out. The user can upload
scanned images of the film and perform a calibration of the film. When uploading the
images, the user must first write to Fidora what dose the film is irradiated with, then the
user is able to upload several files holding images of film irradiated with the same dose (see
Figure 4.10). To decrease any scan to scan uncertainties it is often recommended that one
uses several measurements of film irradiated with same dose. All measurements belonging
to the same dose level will be averaged. As enough datapoints are collected for Fidora to
fit the dose response curve a plot will be shown in the window along with the written
equation, minimum, maximum and average standard deviations of the measurements and
the total uncertainty of the fitting. For every dose level uploaded to Fidora a string showing
the dose and measured response in each color channel is written to the screen. This gives
the user an overview of the datapoints and the opportunity to delete a set of datapoints if
wanted as well as hide any of the color channels in the plot. Since the properties of the
GafChromic film is crucial to its ability to relate dose to pixel value, it is necessary to fit the
method of finding the dose response curve with that in mind. Assuming every film sheet
belonging to the same LOT number is created under the same conditions, it is reasonable to
assume that their properties are the same. As such, it should only be necessary to perform
a calibration for every new LOT. Therefore, Fidora gives the possibility for the user to
save the performed calibration and register the related LOT number, so that one can reuse
it every time Fidora is in use.

62

4.1 Fidora

Figure 4.9: Screenshot of the second tab in Fidora - Dose response. In this module the user are able
to perform a calibration as well as investigating the dose response curve, which will be plotted on
the screen.

Figure 4.10: Screenshot of the window where the user uploads images of scanned films. The left
image shows how the window looks at the beginning and the right image shows how it look when
files have been uploaded.

Figure 4.11 shows how the tab Dose Response looks like after enough measurements
have been uploaded and the dose response has been fitted. Also, the dose response equation

63

Chapter 4. Results

is written to the screen, along with the uncertainties related to the results. Figure 4.12
shows how the window for saving of the calibration looks like. Here the user writes in the
LOT-number and saves the calibration to the computer.

Figure 4.11: Screenshot of how the tab Dose Response looks like after enough measurements have
been uploaded and the dose response has been fitted.

Figure 4.12: Screenshot of the window where the user can save the performed calibration for later
use in Fidora.

64

4.1 Fidora

Testing the calibration done by Fidora

Figure 4.13 shows the dose response curves when the calibration is performed in Fidora
and when the calibration is done with manual readings in Python.

Figure 4.13: Plot showing the dose response curves both when calibration is done in Fidora and
manual calibration, with fitting uncertainty ± 0.07Gy and ± 0.02Gy respectively.

Figure 4.14 holds the dose response curves when using a flattening filter free beam as
the calibration is done in Fidora and done using a manual calibration in Python. Figure
4.15 shows the dose response curves created in Fidora when using a flattening filter free
beam and where the used beam has been subjected to a flattening filter.

Figure 4.14: Plot showing the dose response curves both when calibration is done in Fidora and
manual calibration using a flattening filter free beam, with fitting uncertainty ± 0.06Gy and ±
0.02Gy respectively.

65

Chapter 4. Results

Figure 4.15: Plot showing the dose response curves created in Fidora for one flattening filter free
beam and one beam using the filter, with fitting uncertainty ± 0.06Gy and ± 0.07Gy respectively.

Table 4.2 shows the total uncertainty related to fitting of the calibration curve, and
Table 4.3 shows the result of the Hausdorff distances (see Section 2.5).

Experiment Fitting uncertainty
Manual calibration ± 0.02 Gy

Calibration in Fidora ± 0.07 Gy
Manual calibration (FFF) ± 0.02 Gy

Calibration in Fidora (FFF) ± 0.06 Gy

Table 4.2: Total uncertainty related to the fitting of the dose response curves. These numbers will
depend on how many calibration points are used.

Experiment Directed Hausdorff
Distance in dose

Manual calibration vs Fidora 0.00012 Gy
Manual calibration vs Fidora (FFF) 0.00009 Gy

With filter vs FFF (Fidora) 0.00006 Gy

Table 4.3: Directed Hausdorff distance showing the largest difference in dose along each curve.

4.1.3 Profiles
Figure 4.16 shows how the fourth tab in Fidora, Profiles, turned out. When entering this
tab, the user must input the film orientation to be able to move on to uploading the scanned
image of the film. In cases where several fractions are used during treatment but the film
only has received one fraction, the number of fractions needs to be entered at the textbox

66

4.1 Fidora

referring to it. This is because the dose plan holds the total delivered dose throughout the
whole treatment.

Figure 4.16: Screenshot of the fourth tab in Fidora - Profiles. In this module the user can upload
scanned images of film to study horizontal, vertical or manually drawn profiles and compare the
results in film and dose plan.

Then the user can upload the scanned film, which will be shown in a new window.
In this window the user will select either to input an isocenter or a reference point to be
used in cases where film is not placed at the isocenter. In either case the user will mark
the image according to the markers on the film (see Section 3.1.1) and select a region of
interest defining the area where the measurements will be done. This region will be the
same region that is used in the dose plan later. See Figure 4.17 for an example of how this
window look in the case where the isocenter is selected. There the purple lines indicate the
marked lines leading to isocenter and the red dot indicates isocenter. The blue rectangle is
the marked ROI.

67

Chapter 4. Results

Figure 4.17: Screenshot of the daughter window where user marks isocenter/reference point and
ROI. This is a pop-up window showing as the film has been uploaded.

After clicking the done button, a new window opens where the user will have to choose
an earlier completed calibration. Fidora then uses the fitted dose response curve to map the
read pixel values to dose. When closing the calibration window, the button for uploading
the RT Plan file is activated and the user will have to upload a RT Plan. Then the button for
uploading the dose plan will be activated for the user. When pushing the button to upload
the dose plan Fidora asks if the user is going to upload several dose plans (which may be
the case in some treatment plans, e.g. some VMAT plans). As all necessary files has been
uploaded the user returns to the main window where the profiles are plotted. The user can
choose to draw horizontal, vertical or manually drawn profiles. To be able to adjust for
small placements error during scanning the user can use the arrow buttons to adjust the
ROI in the film to better fit the dose plan. By hovering the computer mouse across the
profiles, a table with information about the plot is written to the window. See Figure 4.18
for how the tab looks as both film and treatment plan has been uploaded and profiles has
been drawn.

68

4.1 Fidora

Figure 4.18: Screenshot of the Profiles tab after film and treatment plan has been uploaded and
profiles drawn. Here the user can make adjustments to the placement of the film to make up for
positioning errors.

4.1.4 Dose volume histogram

In Figure 4.19 is the result of how the fifth tab in Fidora, DVH, turned out. When the user
enters this tab the first thing to do is to fill out the film orientation along with how many
fractions are planned in the dose plan compared to what was given to the film. Then the
user has to upload the film, which will open a new window where the user has to choose
between marking the uploaded film with isocenter or a reference point (see Section 3.1.1)
and define a region of interest. This is necessary for the positioning of the film onto the
dose plan. Figure 4.17 shows an example of how this window can look when marking the
isocenter. There the purple lines indicate the marked lines leading to isocenter and the red
dot indicates isocenter. The blue rectangle is the marked ROI. As the processing of the film
is done the user has to choose an earlier saved calibration to convert the read pixel values
in the film to dose. As this is done the button to upload the RT Plan will be activated, and
as the user presses this button the RT plan will be uploaded and read, which in turn will

69

Chapter 4. Results

activate the button to upload the structure file.

Figure 4.19: Screenshot of the fifth tab in Fidora - DVH. In this module the user can upload scanned
images of film to study the dose volume histogram and compare the results in film and dose plan.

The structure file will read every contour given by the treatment planning system and
activate the button to upload the dose plan. While pressing the buttons and uploading files
for RT Plan, structure and dose plan there will be no events on the screen as each of them
is dependent on the former. And only as all three files have been read a complete dataset
has been collected. When finished uploading the dose plan the dose volume histogram
for each contour in the region of interest will automatically be plotted to the screen. A
list of check buttons makes it possible for the user to un-check any volume and remove it
from the plot. As the dose volume histograms are plotted a button to export the plot will
be activated, giving the user the opportunity to download the plot to the local computer.
Figure 4.20 shows how the tab DVH in Fidora looks like after a successful run.

70

4.2 MLC model in RayStation

Figure 4.20: Screenshot of the fifth tab in Fidora - DVH to illustrate how it looks after a successful
run.

4.2 MLC model in RayStation

In stereotactic radiotherapy the accuracy of the delivery is crucial, and it is important that
the models in the treatment planning system is reliable in regard to the actual delivered
dose. One of the uncertainties, especially related to small fields, is the modelling of the
MLC in the linac as this will be defining for the penumbra. Here the MLC model in
RayStation is studied by looking at measured dose, penumbra and field size for 5 different
field sizes. In addition, profiles of a field partially blocked by the MLC leaves has been
looked at to see any differences in blocking with the side or the tip of the leaf. In Figure
4.21 the x-profiles belonging to both scanned film and dose plan are plotted. In Tables 4.4,

71

Chapter 4. Results

4.5 and 4.6 the centre dose measured as an average over 5mm is found as the film has been
filtered using a 5 pixel median filter, no filter and 15 pixel median filter respectively.

Figure 4.21: X-profiles from 1cmx1cm, 2cmx2cm, 3cmx3cm, 5cmx5cm and 10cmx10cm fields.
The film is represented with the red curve, while the dose plan is represented with a blue curve.

72

4.2 MLC model in RayStation

Field size (cmxcm) Film (Gy) Dose plan (Gy) ∆ (Gy)
1cmx1cm 1.97 1.99 -0.02
2cmx2cm 2.02 1.98 0.04
3cmx3cm 2.03 1.99 0.04
5cmx5cm 1.99 1.99 0.00

10cmx10cm 2.03 1.99 0.04

Table 4.4: Dose measured in the centre of the x-profile as the film has been filtered using a 5-pixel
median filter. The centre is measured as an average over 5mm around centre point.

Field size (cmxcm) Film (Gy) Dose plan (Gy) ∆ (Gy)
1cmx1cm 1.98 1.99 -0.01
2cmx2cm 2.03 1.98 0.05
3cmx3cm 2.00 1.99 0.01
5cmx5cm 2.00 1.99 0.01

10cmx10cm 2.01 1.99 0.02

Table 4.5: Dose measured in the centre of the x-profile as the film has not been filtered. The centre
is measured as an average over 5mm around centre point.

Field size (cmxcm) Film (Gy) Dose plan (Gy) ∆ (Gy)
1cmx1cm 1.97 1.99 -0.02
2cmx2cm 2.03 1.98 0.05
3cmx3cm 2.02 1.99 0.03
5cmx5cm 1.99 1.99 0.00

10cmx10cm 2.01 1.99 0.02

Table 4.6: Dose measured in the centre of the x-profile as the film has been filtered using a 15-pixel
median filter. The centre is measured as an average over 5mm around centre point.

Tables 4.7, 4.8 and 4.9 shows the left and right penumbra on the x-profiles in both film
and dose plan as well as the difference (film - dose plan) when the film has been filtered
using a 5 pixel median filter, no filter and a 15 pixel filter respectively. The penumbra is
defined as the distance between 20% to 80% max dose.

73

Chapter 4. Results

Film (mm) Dose plan (mm) ∆ (mm)
Field size Left Right Left Right Left Right
1cmx1cm 4.38 4.51 4.03 3.68 0.35 0.83
2cmx2cm 3.80 3.80 4.69 5.02 -0.89 -1.22
3cmx3cm 7.08 6.55 4.36 5.09 2.72 1.46
5cmx5cm 4.78 4.37 4.61 4.58 0.17 -0.21

10cmx10cm 6.58 6.58 5.38 5.39 1.20 1.19

Table 4.7: Left and right penumbra measured in x-profile as the film has been filtered using a 5-pixel
median filter. The penumbra is measured between 20% and 80% of max dose.

Film (mm) Dose plan (mm) ∆ (mm)
Field size Left Right Left Right Left Right
1cmx1cm 4.69 4.70 4.00 3.39 0.69 1.31
2cmx2cm 3.82 3.69 4.35 4.68 -0.53 -0.99
3cmx3cm 7.14 6.35 4.16 5.60 2.98 0.75
5cmx5cm 4.99 5.21 4.79 4.59 0.20 0.62

10cmx10cm 6.40 6.71 5.79 5.49 0.61 1.22

Table 4.8: Left and right penumbra measured in x-profile as the film has not been filtered. The
penumbra is measured between 20% and 80% of max dose.

Film (mm) Dose plan (mm) ∆ (mm)
Field size Left Right Left Right Left Right
1cmx1cm 4.50 4.39 4.28 3.38 0.22 1.01
2cmx2cm 3.79 3.79 4.15 4.38 -0.36 -0.59
3cmx3cm 7.33 6.93 5.15 4.95 2.18 1.98
5cmx5cm 4.87 5.07 4.84 4.84 0.03 0.23

10cmx10cm 6.72 6.72 5.81 5.50 0.91 1.22

Table 4.9: Left and right penumbra measured in x-profile as the film has been filtered using a 15-
pixel median filter. The penumbra is measured between 20% and 80% of max dose.

Table 4.10 holds the measurements of the field sizes defined by full width half max-
imum in the x-profiles. The filed sizes are measured as the film has been subjected to a
5-pixel median filter and the dept of the film upon irradiation was 10 cm in a solid water
phantom.

74

4.2 MLC model in RayStation

Field size Film (mm) Dose plan (mm)
1cmx1cm 10.68 10.42
2cmx2cm 20.46 20.65
3cmx3cm 30.26 30.48
5cmx5cm 50.33 50.45

10cmx10cm 100.76 100.85

Table 4.10: Measurements of the field size in both film and dose plan. The field size is defined by
the limits of 50% of centre dose in x-profile. Here the film has been filtered using a 5-pixel median
filter.

Figure 4.22: Y-profiles from 1cmx1cm, 2cmx2cm, 3cmx3cm, 5cmx5cm and 10cmx10cm fields.
The film is represented with the red curve, while the dose plan is represented with a blue curve.

75

Chapter 4. Results

In Figure 4.22 the y-profiles belonging to both scanned film and dose plan are plotted.
In Tables 4.11, 4.12 and 4.13 the centre dose measured as an average over 5mm is found as
the film has been filtered using a 5-pixel median filter, no filter and 15-pixel median filter
respectively.

Field size (cmxcm) Film (Gy) Dose plan (Gy) ∆ (Gy)
1cmx1cm 1.97 1.99 0.02
2cmx2cm 2.04 1.98 0.06
3cmx3cm 2.03 1.99 0.04
5cmx5cm 1.98 1.99 -0.01

10cmx10cm 2.00 1.99 0.01

Table 4.11: Dose measured in the centre of the y-profile as the film has been filtered using a 5-pixel
median filter. The centre is measured as an average over 5mm around centre point.

Field size (cmxcm) Film (Gy) Dose plan (Gy) ∆ (Gy)
1cmx1cm 2.00 1.99 0.01
2cmx2cm 2.03 1.98 0.05
3cmx3cm 2.03 1.99 0.04
5cmx5cm 2.00 1.99 0.01

10cmx10cm 1.98 1.99 -0.01

Table 4.12: Dose measured in the centre of the y-profile as the film has not been filtered. The centre
is measured as an average over 5mm around centre point.

Field size (cmxcm) Film (Gy) Dose plan (Gy) ∆ (Gy)
1cmx1cm 1.97 1.99 -0.02
2cmx2cm 2.02 1.98 0.04
3cmx3cm 2.02 1.99 0.03
5cmx5cm 1.98 1.99 -0.01

10cmx10cm 2.01 1.99 0.02

Table 4.13: Dose measured in the centre of the y-profile as the film has been filtered using a 15-pixel
median filter. The centre is measured as an average over 5mm around centre point.

Tables 4.14, 4.15 and 4.16 shows the left and right penumbra on the y-profiles in
both film and dose plan as well as the difference (film - dose plan) when the film has
been filtered using a 5-pixel median filter, no filter and a 15-pixel filter respectively. The
penumbra is defined as the distance between 20% to 80% max dose.

76

4.2 MLC model in RayStation

Film (mm) Dose plan (mm) ∆ (mm)
Field size Left Right Left Right Left Right
1cmx1cm 3.05 2.87 2.90 3.03 0.15 -0.16
2cmx2cm 5.31 5.06 2.99 3.09 2.32 1.97
3cmx3cm 5.22 4.74 3.40 2.94 1.82 1.80
5cmx5cm 6.12 5.53 3.95 3.36 2.17 2.17

10cmx10cm 4.77 4.77 4.77 3.87 0.00 0.90

Table 4.14: Left and right penumbra measured in y-profile as the film has been filtered using a
5-pixel median filter. The penumbra is measured between 20% and 80% of max dose.

Film (mm) Dose plan (mm) ∆ (mm)
Field size Left Right Left Right Left Right
1cmx1cm 3.04 2.71 3.13 3.21 -0.09 -0.50
2cmx2cm 5.55 5.16 3.10 3.23 2.45 1.93
3cmx3cm 4.70 5.04 3.23 3.47 1.47 1.57
5cmx5cm 4.18 4.38 3.39 3.38 0.79 1.00

10cmx10cm 5.50 5.19 3.67 3.67 1.83 1.52

Table 4.15: Left and right penumbra measured in y-profile as the film has not been filtered. The
penumbra is measured between 20% and 80% of max dose.

Film (mm) Dose plan (mm) ∆ (mm)
Field size Left Right Left Right Left Right
1cmx1cm 2.96 3.26 3.26 3.06 -0.30 0.20
2cmx2cm 5.21 5.09 3.27 3.15 1.94 1.94
3cmx3cm 5.01 5.01 3.34 3.33 1.67 1.68
5cmx5cm 6.16 5.77 3.98 3.18 2.18 2.59

10cmx10cm 4.95 4.95 4.02 4.02 0.93 0.93

Table 4.16: Left and right penumbra measured in y-profile as the film has been filtered using a
15-pixel median filter. The penumbra is measured between 20% and 80% of max dose.

Table 4.17 holds the measurements of the field sizes defined by full width half max-
imum in the y-profiles. The filed sizes are measured as the film has been subjected to a
5-pixel median filter and the dept of the film upon irradiation was 10 cm in a solid water
phantom.

77

Chapter 4. Results

Field size Film (mm) Dose plan (mm)
1cmx1cm 10.21 10.84
2cmx2cm 20.63 20.60
3cmx3cm 30.77 30.98
5cmx5cm 50.4 50.32

10cmx10cm 100.41 101.46

Table 4.17: Measurements of the field size in both film and dose plan. The field size is defined by
the limits of 50% of centre dose in y-profile. Here the film has been filtered using a 5-pixel median
filter.

Figure 4.23 and 4.24 shows the plotted profiles of a 10cmx10cm field with one quad-
rant blocked out by the MLC side and tip respectively. Table 4.18 and 4.19 shows the
measurements done over the MLC leaves side and tip. The penumbra is defined as the
distance between 20% to 80% max dose.

Figure 4.23: Horizontal profile of a 10cmx10cm field with one quadrant blocked out by the MLC
leaves. The penumbra is due to blocking from the MLC side. The drawing at the right illustrates
where the profile was taken.

78

4.2 MLC model in RayStation

Figure 4.24: Vertical profile of a 10cmx10cm field with one quadrant blocked out by the MLC
leaves. The penumbra is due to blocking from the MLC tip. The drawing at the right illustrates
where the profile was taken.

Type of measurment Film (mm) Dose plan (mm)
Penumbra at blocking 6.28 5.68

Length of peak 50.26 50.86

Table 4.18: Measurements of the penumbra (defined between 20% and 80% of max dose) and the
length of the peak. The profile is drawn across the side of the leaf in the MLC.

Type of measurment Film (mm) Dose plan (mm)
Penumbra at blocking 4.98 5.35

Length of peak 49.54 50.24

Table 4.19: Measurements of the penumbra (defined between 20% and 80% of max dose) and the
length of the peak. The profile is drawn across the tip of the leaf in the MLC

79

Chapter 4. Results

4.3 Stereotactic treatment plans

Four stereotactic treatment plans were created to use as a proof of concept for Fidora.
The four treatment plans, called V1, V2, V3 and V4, are all stereotactic treatment plans
aimed at delivering a high and concise dose to GTV, CTV and PTV while at the same
time minimize the dose delivered to organs at risk e.g. lungs and spinal cord (see Figure
4.25 for volumes). In this case the spinal cord will be of special interest as GTV, CTV
and PTV are very close and the spinal cord generally has a very low window of tolerance.
The results for each treatment plan will be stated in turn and compared in the discussion
chapter. The results of V5-V8 will be presented along with its corresponding treatment
plan.

Figure 4.25: Phantom showing the different volumes of interest.

4.3.1 Treatment plan V1

Figure 4.26 shows two profiles (a and c) going through the spinal cord and one profile
(b) going through the area of highest dose at the GTV, CTV and PTV. In profile (b) lines
are drawn to indicate the placement of the spinal cord and the parameter used during
optimization of the treatment plan saying a maximum dose of 18Gy to this area. In Figure
4.27 profiles (1) and (2) are plotted, corresponding to the profiles (a) and (c) respectively
in Figure 4.26. The two profiles are meant for comparison of the high dose area in the
GTV, CTV and PTV.

80

4.3 Stereotactic treatment plans

Figure 4.26: Profiles from treatment plan V1. Their number correspond to the numbered lines in
the last image. The green, vertical lines in profile (b) illustrates the placement of the spinal cord,
while the horizontal, green line indicates dose 18Gy which comes from one of the parameters in the
optimization of the treatment plan.

Figure 4.27: Profiles from treatment plan V5 for comparison at the high dose areas with treatment
plan V1 shown in Figure 4.26. Plots (1) and (2) corresponds to plots (a) and (c) in Figure 4.26
respectively.

81

Chapter 4. Results

Figure 4.28 shows the dose volume histograms for treatment plan V1. As the film is
only 2D, the volume will be a flat volume with a height of 1mm and area corresponding
to the chosen region of interest shown in Figure 4.26. In Figure 4.29 only the curves be-
longing to the spinal cord and spinal cord PRV is shown. From the dose volume histogram
found for the spinal cord and spinal cord PRV the maximum dose was found, and are given
in Table 4.20 together with minimum dose in spinal cord measured in profile (b) in Figure
4.26.

Figure 4.28: Dose volume histogram of treatment plan V1 for both film and dose plan. The volume
is a flat volume with height 1mm and area equal to the region shown in Figure 4.26.

Figure 4.29: Dose volume histogram of treatment plan V1 for both film and dose plan showing only
the curve for spinal cord and spinal cord PRV. The volume is a flat volume with height 1mm and
area equal to the region shown in Figure 4.26.

82

4.3 Stereotactic treatment plans

Measurement Film (Gy) Dose plan (Gy) ∆ (Gy)
Minimum dose in spinal cord found in profile 15.8 14.3 1.5

Maximum dose measured 24.0 17.4 6.6
in DVH in the spinal cord

Maximum dose measured in 28.8 21.3 7.5
DVH in the spinal cord PRV

Table 4.20: Measurements from profiles and dose volume histogram for treatment plan V1

4.3.2 Treatment plan V2

Figure 4.30 shows two profiles (a and c) going through the spinal cord and one profile
(b) going through the area of highest dose at the GTV, CTV and PTV. In profile (b) lines
are drawn to indicate the placement of the spinal cord and the parameter used during
optimization of the treatment plan saying a maximum dose of 18Gy to this area. In Figure
4.31 profiles (1) and (2) are plotted, corresponding to the profiles (a) and (c) respectively
in Figure 4.30. The two profiles are meant for comparison of the high dose area in the
GTV, CTV and PTV.

Figure 4.30: Profiles from treatment plan V2. Their number correspond to the numbered lines in
the last image. The green, vertical lines in profile (b) illustrates the placement of the spinal cord,
while the horizontal, green line indicates dose 18Gy which comes from one of the parameters in the
optimization of the treatment plan.

83

Chapter 4. Results

Figure 4.31: Profiles from treatment plan V6 for comparison at the high dose areas with treatment
plan V2 shown in Figure 4.30. Plots (1) and (2) corresponds to plots (a) and (c) in Figure 4.30
respectively.

Figure4.32 shows the dose volume histograms for treatment plan V2. As the film is
only 2D, the volume will be a flat volume with a height of 1mm and area corresponding
to the chosen region of interest shown in Figure 4.30. In Figure 4.33 only the curves be-
longing to the spinal cord and spinal cord PRV is shown. From the dose volume histogram
found for the spinal cord and spinal cord PRV the maximum dose was found, and are given
in Table 4.21 together with minimum dose in spinal cord measured in profile (b) in Figure
4.30.

Figure 4.32: Dose volume histogram of treatment plan V2 for both film and dose plan. The volume
is a flat volume with height 1mm and area equal to the region shown in Figure 4.30.

84

4.3 Stereotactic treatment plans

Figure 4.33: Dose volume histogram of treatment plan V2 for both film and dose plan showing only
the curve for spinal cord and spinal cord PRV. The volume is a flat volume with height 1mm and
area equal to the region shown in Figure 4.30.

Measurement Film (Gy) Dose plan (Gy) ∆ (Gy)
Minimum dose in spinal cord found in profile 17.3 10.9 6.4

Maximum dose measured 24.7 15.9 8.8
in DVH in the spinal cord

Maximum dose measured in 30.2 21.9 8.3
DVH in the spinal cord PRV

Table 4.21: Measurements from profiles and dose volume histogram for treatment plan V2

4.3.3 Treatment plan V3

Figure 4.34 shows two profiles (a and c) going through the spinal cord and one profile
(b) going through the area of highest dose at the GTV, CTV and PTV. In profile (b) lines
are drawn to indicate the placement of the spinal cord and the parameter used during
optimization of the treatment plan saying a maximum dose of 18Gy to this area. In Figure
4.35 profiles (1) and (2) are plotted, corresponding to the profiles (a) and (c) respectively
in Figure 4.34. The two profiles are meant for comparison of the high dose area in the
GTV, CTV and PTV.

85

Chapter 4. Results

Figure 4.34: Profiles from treatment plan V3. Their number correspond to the numbered lines in
the last image. The green, vertical lines in profile (b) illustrates the placement of the spinal cord,
while the horizontal, green line indicates dose 18Gy which comes from one of the parameters in the
optimization of the treatment plan.

Figure 4.35: Profiles from treatment plan V7 for comparison at the high dose areas with treatment
plan V3 shown in Figure 4.34. Plots (1) and (2) corresponds to plots (a) and (c) in Figure 4.34
respectively.

86

4.3 Stereotactic treatment plans

Figure4.36 shows the dose volume histograms for treatment plan V3. As the film is
only 2D, the volume will be a flat volume with a height of 1mm and area corresponding
to the chosen region of interest shown in Figure 4.34. In Figure 4.37 only the curves be-
longing to the spinal cord and spinal cord PRV is shown. From the dose volume histogram
found for the spinal cord and spinal cord PRV the maximum dose was found, and are given
in Table 4.22 together with minimum dose in spinal cord measured in profile (b) in Figure
4.34.

Figure 4.36: Dose volume histogram of treatment plan V3 for both film and dose plan. The volume
is a flat volume with height 1mm and area equal to the region shown in Figure 4.34.

Figure 4.37: Dose volume histogram of treatment plan V3 for both film and dose plan showing only
the curve for spinal cord and spinal cord PRV. The volume is a flat volume with height 1mm and
area equal to the region shown in Figure 4.34.

87

Chapter 4. Results

Measurement Film (Gy) Dose plan (Gy) ∆ (Gy)
Minimum dose in spinal cord found in profile 17.7 13.4 4.3

Maximum dose measured 22.1 15.7 6.4
in DVH in the spinal cord

Maximum dose measured in 26.0 20.8 5.2
DVH in the spinal cord PRV

Table 4.22: Measurements from profiles and dose volume histogram for treatment plan V3

4.3.4 Treatment plan V4

Figure 4.38 shows two profiles (a and c) going through the spinal cord and one profile
(b) going through the area of highest dose at the GTV, CTV and PTV. In profile (b) lines
are drawn to indicate the placement of the spinal cord and the parameter used during
optimization of the treatment plan saying a maximum dose of 18Gy to this area. In Figure
4.39 profiles (1) and (2) are plotted, corresponding to the profiles (a) and (c) respectively
in Figure 4.38. The two profiles are meant for comparison of the high dose area in the
GTV, CTV and PTV.

Figure 4.38: Profiles from treatment plan V4. Their number correspond to the numbered lines in
the last image. The green, vertical lines in profile (b) illustrates the placement of the spinal cord,
while the horizontal, green line indicates dose 18Gy which comes from one of the parameters in the
optimization of the treatment plan.

88

4.3 Stereotactic treatment plans

Figure 4.39: Profiles from treatment plan V8 for comparison at the high dose areas with treatment
plan V4 shown in Figure 4.38. Plots (1) and (2) corresponds to plots (a) and (c) in Figure 4.38
respectively.

Figure4.40 shows the dose volume histograms for treatment plan V4. As the film is
only 2D, the volume will be a flat volume with a height of 1mm and area corresponding
to the chosen region of interest shown in Figure 4.38. In Figure 4.41 only the curves be-
longing to the spinal cord and spinal cord PRV is shown. From the dose volume histogram
found for the spinal cord and spinal cord PRV the maximum dose was found, and are given
in Table 4.23 together with minimum dose in spinal cord measured in profile (b) in Figure
4.38.

Figure 4.40: Dose volume histogram of treatment plan V4 for both film and dose plan. The volume
is a flat volume with height 1mm and area equal to the region shown in Figure 4.38.

89

Chapter 4. Results

Figure 4.41: Dose volume histogram of treatment plan V4 for both film and dose plan showing only
the curve for spinal cord and spinal cord PRV. The volume is a flat volume with height 1mm and
area equal to the region shown in Figure 4.38.

Measurement Film (Gy) Dose plan (Gy) ∆ (Gy)
Minimum dose in spinal cord found in profile 8.1 4.8 3.3

Maximum dose measured 15.0 11.6 3.4
in DVH in the spinal cord

Maximum dose measured in 23.8 22.4 1.4
DVH in the spinal cord PRV

Table 4.23: Measurements from profiles and dose volume histogram for treatment plan V4

90

Chapter 5
Discussion

5.1 Fidora
As mentioned in Section 2.3.3 the relationship between the readout in the scanner and dose
is modelled using a ’reciprocal linear vs dose’ fitting (see Equation 2.18). Although this is
a good model for both the red and green color channel, it has been found during this work
that the blue color channel seems to have a dose resolution that is too low for the model to
fit. Because of this it was decided that the result for the blue channel would only be shown
as measured points and no fit was attempted. This decision is backed up by the fact that
when the dose response resolution is as low as it showed for the blue channel it will not
give a good mapping from scanner readout to dose, and therefore it could not have been
used anyways. Also, since a single channel method has been chosen as the method used in
Fidora the red color channel is better for analysis, based on its resolution and wavelength
(see Section 2.3.3).

5.1.1 CoMet

In Figures 4.2 and 4.3 the non-uniform readout in both lateral direction and scanning
direction in the scanner is established. Even though the pixel value error is relatively
small (max readout is pixel value 65535), it is seen in Figure 4.6 that this results in an
error around 0.075Gy at the most. Since the non-linear readout is assumed to be dose
independent this could possibly generate a large uncertainty for the lower dose levels.
In Figure 4.6 it is also seen at that at the same position as the maximum error for the
uncorrected image the error in the corrected image is around 0.015Gy, which supports the
need for a correction. In Table 4.1 and Figures 4.4 and 4.5 it can be seen that when the
correction is averaged over all dose levels the standard deviation becomes much larger than
if one used dose level specific corrections (found in Figures 4.2 and 4.3). For positions
close to the centre of the scanner surface it seems as if the standard deviation becomes
larger than the error due to the non-uniform readout from the scanner. This makes an
argument that the correction might be more accurate if it had been created specific for

91

Chapter 5. Discussion

each dose level. However, no systematic relationship between the deviation in intensity
and dose was found. Meaning this would result in a much heavier workload as that would
require a new correction matrix to be made for each dose used throughout every dose plan.

5.1.2 Dose Response
This tab was in first place created to perform calibration of the film to be able to map the
pixel values in the scanned image to dose. In addition, it can be used to study the dose
response curve and the dose resolution of the different color channels, red, green and blue.
To be able to create a reliable calibration it is important to use known dose levels, which is
most stable at the centre field, and scan them in a position with a stable readout. Because
of the non-linear readout in the scanner, the most reliable position at the scanner surface
is at the centre, and therefore the known dose levels should be scanned there. Therefore,
Fidora assumes that all film pieces being scanned for calibration is placed at the centre
of the scanner surface. This introduces an uncertainty related to position of the film. If
the user misplaced the film piece even by only a few millimetres, Fidora will not read the
film piece at its most accurate point. This uncertainty will increase if the irradiation of
the film piece used a flattening filter free beam, as this might give a different dose level
than expected at the read position. In Section 4.1.2 the dose response curves produced
by Fidora was compared to dose response curves produced when performing a manual
calibration, both in the case of beams using flattening filter and being flattening filter free.
Figures 4.13, 4.14 and 4.15 shows a slightly better resolution in the manually performed
calibration and also that the fitting uncertainty of the curves are larger for Fidora (±0.07Gy
and ±0.06Gy) than for the manual calibration (both ±0.02Gy). However, the differences
are very small and almost impossible to quantify visually in the plots. Therefore the di-
rected Hausdorff distance, defined by the largest difference between the two datasets, was
calculated in each plot (see Table 4.3) and found to be very small in all three cases. The
largest difference in dose found in Figure 4.13 was 0.00012Gy, the largest difference in
dose in Figure 4.14 was 0.00009Gy and the largest difference found in Figure 4.15 was
0.00006Gy. From visual inspection of plots the first two directed Hausdorff distances is
expected to be found somewhere between 2.5Gy and 7.5Gy. This means that the relative
error is between 0.0048% and 0.0016% for the case where the flattening filter was used
and between 0.0036% and 0.0012% for the case where the beam was flattening filter free.
These errors are very small, and it seems that Fidora produces good fittings of the dose
response curves and can be used in calibration of the film.

5.1.3 Profiles
In the tab Profiles the user must follow several steps before being able to study the profiles.
It is necessary to upload the scanned image of the film, the RT Plan file and the dose plan.
In addition, the user must define the orientation of the film while being irradiated and how
many fractions are used in the dose plan relative to how many fractions has been used
on the film. All of these must be defined or uploaded in a given order as the next step
always depends on what was read from the previous step. This makes the workflow a bit
cumbersome, and Fidora would benefit from a more general approach. Despite the fact
that there are many steps before plotting any profiles, Fidora works well and since it gives

92

5.1 Fidora

the user the opportunity to stay in control of the data and make adjustments to the final
ROI it is well suited as an analysing tool.

5.1.4 DVH
As for the tab Profiles the workflow in DVH is a bit cumbersome as there are four separate
data files needed to be uploaded before the dose volume histograms are plotted. Fidora
would benefit from a more general approach, which could work in the same matter as
for the tab Profiles. But once all files have been uploaded the plotting of the dose volume
histograms works well and Fidora is well suited to calculate and study the DVH of different
structures. A challenge when using film as a dosimeter when obtaining the dose volume
histogram is the fact that the film makes a 2D measurement, when dose volume histograms
usually are created with 3D measurements. In addition, because of the limitations with the
size of the film (203.2mm x 210mm) not all contours defined in the dose plan can fit on
one sheet of film. Because of this the volume being calculated in the tab DVH is a flat
volume (height 1, 2 or 3mm, depending on the resolution of the dose plan) and with an
area not covering the whole slice. This means that the dose volume histogram will not be
comparable with other DVHs taken with another positioning of the film or other regions of
interest. However, as a comparison between the measured dose on the film and the planned
dose plan it works very well, which means that it can still operates as a quality assurance
tool.

5.1.5 MLC models in Raystation
In Figures 4.21 and 4.22 the horizontal and vertical profiles, respectively, are plotted for
all five different field sizes. Overall, it appears to be a good match between the profiles
belonging to the dose plan and the ones belonging to the film. However, there are some
notes to be made. From Tables 4.4, 4.5 and 4.6, which shows the centre dose measured at
the x-profiles, it can be seen that the film has a trend to measure a higher dose than what
was expected, which in this case should be close to 2Gy. The dose plan measures centre
doses between 1.98Gy and 1.99Gy while the film measures the centre dose in the range
between 1.97Gy and 2.04Gy. That means that the deviation in the dose plan is at most 1%
and the deviation in the film is at most 2%, which is both well within the tolerance level
that would be accepted by a pass/fail test at 3% (Li et al. (2011)). The largest deviation
between film and dose plan was found to be 0.06Gy, which was in the case of the 5-pixel
median filter of the y-profile for field size 2cmx2cm. In this case the film measured a
dose 2.04Gy while the dose plan was at 1.98Gy, meaning that the uncertainty is 3% at the
most which is still within the limits of acceptance. To see how sensitive the measurements
were to noise related to the radiochromic film, the centre dose was measured without filter,
with a 5 pixel (1mm) median filter and with a 15 pixel (3mm) median filter. In the tables
mentioned and also in Tables 4.11, 4.12 and 4.13, which gives the same measurements but
for the y-profile, it is found that the use of median filter does not influence the centre dose.
Tables 4.10 and 4.17 shows the measured field sizes in both film and dose plan defined by
full width at half maximum. In both film and dose plan and for all field sizes the measured
field size tends to be higher than what was defined for each field. In the dose plan it was
expected no deviations in the field size compared to the settings. However, since the dose

93

Chapter 5. Discussion

plan is represented as a matrix with 1mm distance from one voxel centre to the next, it is
very reasonable that the true half of maximum dose was not found at a precise distance.
This means that the uncertainty related to the reading of the full width at half maximum
inherit an uncertainty of at least 1mm. As such, all measurements of the field size in the
dose plan, with a deviation ranging from 0.32mm-0.98mm, is within an acceptable range.
As the resolution in the film is better compared to the dose plan, with 0.2mm between pixel
centres, a similar but lower uncertainty is expected. In addition, systematic and random
errors related to using film as a dosimeter also play into the results (Saur and Frengen
(2008)). Overall, it appears as the actual measured field size done in the film is a good
match to what was expected.
Tables 4.7 - 4.9 and 4.14 - 4.16 shows the measured penumbras for the case with no filter,
5-pixel median filter and 15-pixel median filter used on the film. In neither the x-profiles
nor the y-profiles it seems like the use of a median filter alters the measurements of the
penumbra. As such it was decided to use a 5-pixel median filter on all film to remove any
”salt and pepper”-artefacts from the scanning, as was suggested by the producer of the
EBT3 film (Ashland (2020)). By investigating the mentioned tables, it was found that for
field sizes 3cmx3cm, 5cmx5cm and 10cmx10cm the penumbra was slightly wider in the
film compared to the dose plan. For field sizes 1cmx1cm and 2cmx2cm the penumbra was
both wider in some cases and narrower in others, suggesting that the modelling of these
small fields is not as good as for larger fields. This is in compliance with findings done in
another study (Zaghian et al. (2020)). Looking at Figures 4.21 and 4.22 it can be seen that
neither of the small fields, 1cmx1cm and 2cmx2cm, obtains a real plateau region as the
edges are too close together and the penumbras overlap. As described in Section 2.4.7 the
effect of having penumbras overlap happens as the radiation source in the linac is partially
blocked out, which will not be represented in the treatment planning system (Wan (2017)).
The overlapping penumbras can be part of the explanation as to why the small fields are
not modelled good enough.
From Figures 4.21 and 4.22 it can be seen that the film and dose plan follow each other
well for doses up to 2Gy, but in all cases the film measures a higher dose compared to the
dose plan at both ends of the profiles. It seems as if the problem is most prominent for
doses below 0.5Gy. This is a known problem in radiotherapy, namely that the dose plans
are bad at modelling the dose distribution outside of the field. Other studies, Howell et al.
(2010) and Wang and Ding (2018), has shown that the modelling of dose out of field can
be underestimated as much as 30-40%. In this case the film illustrates this by measuring a
higher out-of-field dose than what was given by the dose plan, which is an obvious flaw in
the modelling of the dose plan.
Figure 4.23 shows the horizontal profile of a 10cmx10cm field with one quadrant blocked
out by the MLC leaves. The penumbra on the right side of the profile is due to blocking
from the MLC side. Figure 4.24 shows the vertical profile of a 10cmx10cm field with
one quadrant blocked out by the MLC leaves. Here the left penumbra is due to blocking
from the MLC tip. In both profiles there seems to be a good compliance between the film
and dose plan. From Table 4.18 it can be seen that the penumbra is a bit wider in the
film compared to the dose plan, while Table 4.19 shows that the penumbra in the film is
shorter compared to the dose plan. This suggests that the tip of the MLC leaf gives a better
cut-off at the field edge compared to the side of the leaf. As described in Section 2.4.6 the

94

5.1 Fidora

modelling of the MLC in the treatment planning system has an uncertainty related to the
modelling of the tip-width of the leaves. Since the radiation field is modelled using a light
field, which diverge, and the MLC tip is rounded there will be an offset between the field
defined by the MLC side and tip. It is expected that the MLC side will give a wider field
having a less steep cut-off compared to the MLC tip. This means that the results given
in Tables 4.18 and 4.19 are as expected and shows that the modelling of the MLC in the
treatment planning system works well.
All together RayStation seems to model the MLC leaves correct, at least for field sizes
larger than 3cmx3cm, and there does not seem to be much difference between blocking
with the tip or side of the leaf. When using field sizes smaller than 3cmx3cm the smearing
effect does create a less reliable penumbra, with measured deviations up to 2.98mm. In
traditional radiotherapy, where the standardized volumes are created with safety margins
that can range up to 10 mm, e.g. for prostate cancer (Van Herk (2004)), the differences in
measured and planned penumbra is small and within an acceptable range. In stereotactic
radiotherapy the margins are generally smaller and for e.g. the spinal cord it is set to 2mm,
which is considered enough to account for the inner motion of the spinal cord (Oztek et al.
(2020)). Then variations in the penumbra seen in this work, ranging up to 2.98 mm, is too
high. This means that plans being optimized in the treatment planning system to be within
the margin may in fact be delivering a higher dose to the critical areas outside the field than
what can be accepted. With the new reports from ICRU and IAEA (see Section 2.4.8),
there is a hope that the smaller fields will be better modelled in the treatment planning
system at a later time.

5.1.6 Stereotactic treatment
The four stereotactic treatment plans, V1, V2, V3 and V4, were all created within a clini-
cal dose range. Since stereotactic radiotherapy operates with high doses and few fractions
that means that the delivered dose to the film is high, in this case around 12.5Gy at the
most. With the optimum dose range for the film being 0.2-10Gy that means that the treat-
ment plans operate outside of the optimal range. To be able to study the high dose regions,
corresponding to the GTV, CTV and PTV in this case, it was necessary to see how well the
film represented these high doses. To do this, four additional treatment plans were created,
based on V1, V2, V3 and V4. The standard dose in these four additional plans were set
to 5Gy meaning that they were inside the optimal range for the film. Limitations regard-
ing dose-rate and MLC made it impossible to create the additional plans by pure scaling.
Therefore they are build on the same principles, but optimized separately. However, they
still work for comparison in the high dose regions. By comparing profile (a) and (c) to (1)
and (2) in Figure 4.26 to 4.27, Figure 4.30 to 4.31, Figure 4.34 to 4.35 and Figure 4.38 to
4.39 it can be seen that the film seems to be representing the dose well even for the high
doses. Even though treatment plans V1-V4 has a maximum dose overreaching the optimal
range of the film it looks as if it still fits well. Looking at the dose response curves (Figure
4.13-4.15) at doses above 10Gy it agrees with the dose resolution still being high enough
to difference small dose changes. As such it was decided that treatment plans V1-V4 are
good enough to get a precise study of the treatment plans, and no additional downscaled
versions are needed. This is in accordance with another study looking into characterization
of the GafChromic film where they found the film being usable up to 40Gy (Borca et al.

95

Chapter 5. Discussion

(2013)). In that study they also looked at how the dose response of the film is dependent
on the energy used in the linac, which means that if repeating the measurements done here
with an energy other than 6MV the satisfying resolution of the film in high dose ranges
should be re-checked.
In Figures 4.26, 4.30, 4.34 and 4.38 profile (c) has a peak at the left side which is due to
the cut out done in the film pieces as described in Section 3.3.2. Where the film is cut it
splinters at the edge giving a dark color which will be read as a high dose in Fidora. As
a result, this area of the plot should be ignored. This effect can also be seen in i profile
(2) in Figures 4.27, 4.31, 4.27 and 4.27. In addition profile (c) in Figures 4.26 and 4.38
shows dose level in the dose plan dropping to 0Gy at the right side, while the film has a
much higher level. This is due to the fact that the film piece extended the boundaries of the
phantom upon being irradiation, and while the dose delivered to the patient is zero outside
of the body the film will measure the radiation there.
As mentioned in Section 3.3.2 the film only received one out of three planned fractions
in all of the treatment plans. That means that when processing the film in Fidora the
measurements were multiplied with 3. Systematic errors related to doing dosimetry with
GafChromic EBT film (Saur and Frengen (2008)) will not be as affected by this as three
separate readings would still add up to the same error. But for random errors this upscaling
of the measurements could result in a higher deviation than what should be expected, and
in addition the usual decrease of the random error through averaging over several measure-
ments does not happen in this case. However, in earlier studies (Saur and Frengen (2008))
these errors have been classified as not significant, and as a result this upscaling of the film
is not considered as a problem.
In general looking at all Figures 4.26-4.41 it seem as if the dose plan as a tendency of
underestimating the dose compared to the measurements done by the film. This is espe-
cially true for the lower doses, which can be seen in both the profiles and the dose volume
histograms. In stereotactic radiotherapy the treatment plans are built up of many small
fields being added together. As described in Section 2.4.7 a problem with small fields is
overlapping penumbras, which in turn will give larger field sizes than intended. Assuming
that this is the case for these treatment plans, this could explain why the dose plan shows
a lower dose compared to the film. In the treatment planning system RayStation the radi-
ation source is not modelled in a way that covers part of it when using small fields (Wan
(2017)), resulting in the overlapping penumbras not being modelled to the dose plan. If
all small fields in the treatment plan irradiating the film is in fact larger than intended, that
means that when added up the dose will be higher than expected across the whole field. In
RayStation the source size is one of the parameters one can adjust during the optimization
of the treatment plan. This illustrates some of the complexity and trouble with creating
good models to represent what is being delivered in the linac. With many different pa-
rameters that can be altered and each of them always being adjusted with the means of
fitting the specific treatment case, it is hard to get a general ruling of how to create the
best plan, especially with stereotactic radiotherapy which is a relatively new method. This
makes it almost impossible to redo experiments with identical models. In addition, one of
the fundamental ways of tuning the models is to use measurements to compare results. In
stereotactic radiotherapy one of the problems have been the lack of a good dosimeter to
do precise readings of the dose, as the most common dosimeters have a too large spatial

96

5.1 Fidora

extent to get accurate readings of steep gradients. The results in this work suggests that
the small fields have not been modelled well enough. The opportunity to adjust parameter
such as the source size in RayStation makes it possible to do more investigation into how
to better model the small fields. Such studies have not been done in this work but could be
useful in further work.
Profile (b) in Figures 4.26, 4.30, 4.34 and 4.38 shows the horizontal profile crossing the
spinal cord. In those profiles it can be seen that the left peak tends to be measured to a
higher dose by the film than intended, while the right peak tends to be measured to a lower
dose by the film. In addition, the minimum dose at the centre of the spinal cord seems to
be higher than planned. Looking at the results in Section 4.2 it was found that the mod-
elling of the MLC for small fields sizes was not that great, and in fact profiles with field
sizes under 3cmx3cm were affected by the fact that they never plateaued. The peaks given
in profile (b) in Figures 4.26, 4.30, 4.34 and 4.38 is created by small fields and designed
with steep gradients, meaning that this area will be highly affected by the effect seen in
Section 4.2. This, together with the effects discussed above with higher doses given by
overlapping penumbras can partly explain the unexpected profiles across the spinal cord.
However, the whole reason for such profiles are not known, and should be studied further
in future work. The deviating behaviour of profiles (b) can be seen again in the dose vol-
ume histograms in Figures 4.29, 4.33, 4.37 and 4.41 where it becomes obvious that the
film measures a higher overall dose than what was expected.
Looking again at profile (b) in Figures 4.26, 4.30, 4.34 and 4.38 where the placement of the
spinal cord is illustrated by the green lines it is possible to study the delivered dose to this
slice of the spinal cord, and in particular the minimum and maximum dose. The minimum
measured dose in the spinal cord and the maximum measured dose in both spinal cord and
spinal cord PRV is given in Tables 4.20, 4.21, 4.22 and 4.23. With the criteria of 18Gy as
maximum dose to the spinal cord and 21Gy as the maximum dose to the spinal cord PRV
none of the treatment plans measured within the limits. Only treatment plan V4 measured
an acceptable value for the spinal cord with a maximum dose of 15Gy. This illustrates
some of the challenges with working in stereotactic radiotherapy, where the models are
still not good enough to create reliable treatment plans. Looking at Tables 4.7-4.9 and
4.14-4.16 in Section 4.2 it was found that the differences in penumbra measured in film
compared to dose plan exceeded 2mm and by that gives a very large uncertainty in stereo-
tactic radiotherapy where margins are very small.
Comparing the treatment plans with each other one can compare V1 and V2, V2 and V3
and V2 and V4. V1 and V2 are the same except for V1 being with the use of a flattening
filter. Looking at Figures 4.28 and 4.32 there does not seem to be much of a difference
in the dose delivered to the GTV, CTV, PTV and lungs between the two treatment plans.
A small increase in the delivered dose to the spinal cord in V2 (maximum dose 24.7Gy)
compared to V1 (maximum dose 24.0Gy) goes in favour of choosing V1. This was unex-
pected as it has been seen in earlier reports that removing the flattening filter should reduce
the out-of-field dose in stereotactic radiotherapy (Xiao et al. (2015)). However, looking at
the differences found in dose plan and measured dose by the film, with deviations 6.6Gy
and 8.8Gy for V1 and V2 respectively, it seems as if V2 might have been modelled more
imprecise than V1 meaning that the uncertainty related to V2 is larger. Then the small
difference in maximum dose between V1 and V2, measured as 0.7Gy, makes it difficult to

97

Chapter 5. Discussion

conclude which treatment plan should be preferred. The treatment time for V1 proved to
be twice as long as for V2, which is an argument that V2 might be the better choice.

V2 and V3 difference in V2 being delivered as one arc while V3 is delivered with two
small arcs, avoiding direct radiation from the front of the phantom. Looking at Figures
4.32 and 4.36 a small gain in the delivered dose to GTV, CTV and PTV is seen in V3
compared to V2. But for lungs there is not much of a difference. In V2 the maximum
dose delivered to the spinal cord was 24.7Gy, while maximum dose to spinal cord in V3
was 22.1Gy. In addition, the deviation between measured dose by the film and dose plan
was found to be 8.8Gy and 6.4Gy for V2 and V3 respectively, meaning that V3 seems to
be built on a more reliable model compared to V2. With a slightly higher dose to GTV,
CTV and PTV and at the same time a lower dose given to the spinal cord V3 proves to be
a better plan than V2. The attempt to avoid direct irradiation to the front of the phantom,
and by that directly at the spinal cord, seems to have worked. In addition, the delivery time
for each treatment was about the same.

V4 and V2 are equal except for the collimator which in V4 are rotated 90 degrees,
meaning that it is the jaws blocking out the spinal cord instead of the MLC. In these plans
it seems as if the dose delivered to GTV, CTV, PTV and lungs are about the same, but
the difference in dose delivered to the spinal cord is large. In Figures 4.33 and 4.41 and
Tables 4.20 and 4.23 it is seen that the dose delivered to the spinal cord is considerably
reduced moving from plan V2 to V4, going from a maximum dose of 24,7Gy to 15Gy. In
addition, the treatment time is the same for both treatment plan, meaning that V4 seems
to be favourable compared to V2. This shows how the blocking with the jaws works well
at reducing the dose to the spinal cord and is an interesting result to further investigate in
future work.

5.1.7 Further work in Fidora
In Fidora the position matching of the film onto the dose plan is done by reading the DI-
COM file RT Plan which follows when creating a dose plan in RayStation. To minimize
the number of files and overview needed by the user a better solution could be to search
the dose plan for a matching isocenter given by the film. An attempt of this was done in
Fidora, but the solution took either too much of the computers Central Processing Unit
(CPU) if running threads or too much time when running single program flow. If able
to get around this problem in future work a new attempt could be worth the time. In the
current version of Fidora when using a created reference point in the phantom to place the
film, its position in the dose plan is based on isocenter and the displacement in vertical,
longitudinal and lateral directions. Since these are parameters read from the RT Plan that
means this must be renewed in a possible update of Fidora.

In the current version of Fidora it is assumed that the user places the film parallel to the
scanner’s sides. That means that the user must place the two given directions, up and side,
in true positions relative to the scanner directions. If this is not correct the readout will be
a little off compared to the dose plan. The reason why Fidora is written like this is because
the data is stored as a matrix, which means that if one wants to be able to read the film
when scanned in an angle the program needs to fit the readout through closest neighbour

98

5.1 Fidora

instead if reading the actual value. But if one can find a good solution to this problem,
a further developed version of Fidora could benefit from being given this functionality as
this would increase the generality of the program.

At this point it is only possible to upload one scanned image of a film and use this to
compare to dose plan. The size of the film piece is limited both by its initial size (203.2mm
x 254mm) and the size of the scanner surface (297mm x 210mm). In addition, since it is
recommended that the film is scanned in landscape orientation that means that the largest
possible film piece to scan has a size of (203.2mm x 210mm). Since Fidora was initially
developed to handle treatment plans treating the breast or using stereotactic treatment, this
was not a problem. But a further development version of Fidora where it was possible to
upload several images of film and merge them together to create a larger field is relatively
easily accomplished and would increase the usefulness of Fidora. In addition, this would
serve a great deal to the usefulness of the tab DVH.

One of the central functionalities developed in Fidora during this work has been the
development of the tab Profiles. As the profiles has been plotted in Fidora the user can use
the computer mouse to hover across the plot and read out different results from the current
position of the computer mouse. To further facilitate the work of reading the results in the
plot, e.g. find penumbras, Fidora could be upgraded with the possibility of pointing out
different positions in the plot and save the results on the screen for further comparison or
reading of results as e.g. penumbra.

In the current version of Fidora the user can adjust the position of the film in two
directions according to the dose plan. The two directions are defined by the plane at which
the film has been irradiated in the phantom relative to the patient position (see Section
3.1.1). This means that the positioning of the film inside the phantom and the phantom on
the treatment table are relatively large uncertainties that are not accounted for in Fidora. A
further development of Fidora where the user is able to also adjust in the third direction,
meaning that the user are able to scroll across the number of frames in the dose plan, could
benefit the accuracy of Fidora.

99

Chapter 5. Discussion

100

Chapter 6
Conclusion

During this work it has been found that the GafChromic film EBT3 has worked well as
a dosimeter when working with stereotactic treatment plans. As the film performs a 2D,
continuous reading and at the same time proves to possess an adequate dose resolution it
does a great job at representing the steep gradients and high doses delivered in stereotactic
radiotherapy. To be able to use film as a dosimeter one is reliant on a working analysing
tool, which should be flexible and with the opportunity to make changes upon needs. As
such, an analysing software named Fidora has been developed during this work. In all
the experiments done in this work Fidora has been used as the analysing tool, and it has
been found that Fidora is reliable and presents the results as expected. The experiments of
the MLC models and the stereotactic treatment plans both were performed as a proof of
concept for Fidora. In both cases Fidora has worked well as an analysing tool, proven to
be able to discover deviation in measured dose compared to planned dose plans as well as
comparing different treatment plans.

In stereotactic radiotherapy one is dependent on precise delivery of dose, and as seen
in this work the optimized dose plan often deviate from the measured fields. When adding
together many small fields, which is the case in stereotactic treatment plans, it is important
that each of the fields are modelled accurately. As seen in this work the penumbra seems
to be one of the issues when modelling small fields in the treatment planning system.
One of the assumed reasons for this is the poor modelling of overlapping penumbras,
created by partially covered radiation source, which is not modelled in treatment planning
systems such as RayStation. This results in wider fields during delivery of the dose for
each of small fields, creating an overall larger dose than planned. The work with tuning
a model to correctly represent the output from the linac is difficult and there are a lot of
compromises that needs to be done when optimizing for all parameters. In addition, the
tuning of the model depends on reliable measurements done during dosimetry, which for
small fields has been difficult with the lack of a good dosimeter. In future work the tuning
of the models in the treatment planning systems to better represent small fields should be
prioritized and using film together with Fidora has proven to be a good way of analysing
the measurements.

101

102

Bibliography

Ahnesjö, A., 1989. Collapsed cone convolution of radiant energy for photon dose calcula-
tion in heterogeneous media. Medical physics 16.

Ahnesjö, A., Aspradakis, M.M., 1999. Dose calculations for external photon beams in
radiotherapy. Physics in Medicine & Biology 44, R99.

Andreo, P., Burns, D.T., Nahum, A.E., Seuntjens, J., Attix, F.H., 2017. Fundamentals of
ionizing radiation dosimetry. John Wiley & Sons.

Ashland, 2020. Gafchromic ebt. URL: http://www.gafchromic.com/
gafchromic-film/radiotherapy-films/EBT/index.asp.

Attix, F.H., 2008. Introduction to radiological physics and radiation dosimetry. John Wiley
& Sons.

van Battum, L., 2018. Filmdosimetry: past and future .

Benedict, S.H., Yenice, K.M., Followill, D., Galvin, J.M., Hinson, W., Kavanagh, B.,
Keall, P., Lovelock, M., Meeks, S., Papiez, L., et al., 2010. Stereotactic body radiation
therapy: the report of aapm task group 101. Medical physics 37, 4078–4101.

Borca, V.C., Pasquino, M., Russo, G., Grosso, P., Cante, D., Sciacero, P., Girelli, G., Porta,
M.R.L., Tofani, S., 2013. Dosimetric characterization and use of gafchromic ebt3 film
for imrt dose verification. Journal of applied clinical medical physics 14, 158–171.

Bourland, J.D., 2016. Radiation oncology physics, in: Clinical radiation oncology. Else-
vier.

Brady, L.W., Heilmann, H., Molls, M., 2006. New technologies in radiation oncology.
Springer.

Chen, S., Yi, B.Y., Yang, X., Xu, H., Prado, K.L., D’Souza, W.D., 2015. Optimizing the
mlc model parameters for imrt in the raystation treatment planning system. Journal of
applied clinical medical physics 16.

103

http://www.gafchromic.com/gafchromic-film/radiotherapy-films/EBT/index.asp
http://www.gafchromic.com/gafchromic-film/radiotherapy-films/EBT/index.asp

Dang, T.M., Peters, M.J., Hickey, B., Semciw, A., 2017. Efficacy of flattening-filter-free
beam in stereotactic body radiation therapy planning and treatment: A systematic review
with meta-analysis. Journal of medical imaging and radiation oncology 61, 379–387.

Das, I.J., Ding, G.X., Ahnesjö, A., 2008. Small fields: nonequilibrium radiation dosimetry.
Medical physics 35, 206–215.

Elekta, 2020. Agility™ intelligent beam shaping. URL: https://www.
elekta.com/dam/jcr:6f125384-1fe5-47ea-b190-f9560f1eea81/
Agility-product-brochure.pdf.

Ewing, D., 1998. The oxygen fixation hypothesis: a reevaluation. American journal of
clinical oncology 21, 355–361.

Håland, A.V., Gustavsen, S., 2019. Film based dosimetry.

Howell, R.M., Scarboro, S.B., Kry, S.F., Yaldo, D.Z., 2010. Accuracy of out-of-field
dose calculations by a commercial treatment planning system. Physics in Medicine &
Biology 55, 6999.

Jordan, T.J., Williams, P.C., 1994. The design and performance characteristics of a multi-
leaf collimator. Physics in Medicine & Biology 39, 231.

Kennedy, J., 2012. Bresenham integer only line drawing algorithm. Santa Monica College,
Santa Monica, CA 90405.

Li, H., Dong, L., Zhang, L., Yang, J.N., Gillin, M.T., Zhu, X.R., 2011. Toward a better
understanding of the gamma index: Investigation of parameters with a surface-based
distance method a. Medical physics 38, 6730–6741.

Liu, C., Simon, T.A., Fox, C., Li, J., Palta, J.R., 2008. Multileaf collimator characteristics
and reliability requirements for imrt elekta system. International Journal of Radiation
Oncology* Biology* Physics 71, S89–S92.

Low, D.A., Moran, J.M., Dempsey, J.F., Dong, L., Oldham, M., 2011. Dosimetry tools
and techniques for imrt. Medical physics 38, 1313–1338.

Mathot, M., Sobczak, S., Hoornaert, M.T., 2014. Gafchromic film dosimetry: four years
experience using filmqa pro software and epson flatbed scanners. Physica Medica 30,
871–877.

Mayles, P., Nahum, A., Rosenwald, J.C., 2007. Handbook of radiotherapy physics: theory
and practice. CRC Press.

Micke, A., Lewis, D.F., Yu, X., 2011. Multichannel film dosimetry with nonuniformity
correction. Medical physics 38, 2523–2534.

Oztek, M.A., Mayr, N.A., Mossa-Basha, M., Nyflot, M., Sponseller, P.A., Wu, W., Hof-
stetter, C.P., Saigal, R., Bowen, S.R., Hippe, D.S., et al., 2020. The dancing cord: In-
herent spinal cord motion and its effect on cord dose in spine stereotactic body radiation
therapy. Neurosurgery .

104

https://www.elekta.com/dam/jcr:6f125384-1fe5-47ea-b190-f9560f1eea81/Agility-product-brochure.pdf
https://www.elekta.com/dam/jcr:6f125384-1fe5-47ea-b190-f9560f1eea81/Agility-product-brochure.pdf
https://www.elekta.com/dam/jcr:6f125384-1fe5-47ea-b190-f9560f1eea81/Agility-product-brochure.pdf

Palmans, H., Andreo, P., Huq, M.S., Seuntjens, J., Christaki, K.E., Meghzifene, A., 2018.
Dosimetry of small static fields used in external photon beam radiotherapy: Summary
of trs-483, the iaea–aapm international code of practice for reference and relative dose
determination. Medical physics 45, e1123–e1145.

Parwaie, W., Refahi, S., Ardekani, M.A., Farhood, B., 2018. Different dosimeters/detec-
tors used in small-field dosimetry: Pros and cons. Journal of medical signals and sensors
8, 195.

Podgorsak, E.B., et al., 2005. Radiation oncology physics. Vienna: International Atomic
Energy Agency , 22–84 and 161–222.

Polykarpou, E., Kyriakides, E., 2016. Parameter estimation for measurement-based load
modeling using the levenberg-marquardt algorithm, in: 2016 18th Mediterranean Elec-
trotechnical Conference (MELECON), IEEE. pp. 1–6.

Proimos, B.S., 1960. Synchronous field shaping in rotational megavolt therapy. Radiology
74, 753–757.

Sánchez-Doblado, F., Hartmann, G., Pena, J., Roselló, J., Russiello, G., Gonzalez-
Castaño, D., 2007. A new method for output factor determination in mlc shaped narrow
beams. Physica medica 23, 58–66.

Sauer, O.A., Wilbert, J., 2007. Measurement of output factors for small photon beams.
Medical physics 34, 1983–1988.

Saur, S., Frengen, J., 2008. Gafchromic ebt film dosimetry with flatbed ccd scanner: a
novel background correction method and full dose uncertainty analysis. Medical physics
35, 3094–3101.

Sorriaux, J., Kacperek, A., Rossomme, S., Lee, J.A., Bertrand, D., Vynckier, S., Ster-
pin, E., 2013. Evaluation of gafchromic® ebt3 films characteristics in therapy photon,
electron and proton beams. Physica Medica 29, 599–606.

Trump, J.G., Wright, K.A., Smedal, M.I., Salzman, F.A., 1961. Synchronous field shaping
and protection in 2-million-volt rotational therapy. Radiology 76, 275–275.

Van Herk, M., 2004. Errors and margins in radiotherapy, in: Seminars in radiation oncol-
ogy, Elsevier. pp. 52–64.

Wan, J., 2017. Exploring RayStation Treatment Planning System: Commissioning Varian
TrueBeam Photon and Electron Energies, and Feasibility of Using FFF Photon Beam to
Deliver Conventional Flat Beam. Ph.D. thesis. University of Toledo.

Wang, L., Ding, G.X., 2018. Estimating the uncertainty of calculated out-of-field organ
dose from a commercial treatment planning system. Journal of applied clinical medical
physics 19, 319–324.

Wangler, T.P., 2008. RF Linear accelerators. John Wiley & Sons.

105

Wen, N., Lu, S., Kim, J., Qin, Y., Huang, Y., Zhao, B., Liu, C., Chetty, I.J., 2016. Precise
film dosimetry for stereotactic radiosurgery and stereotactic body radiotherapy quality
assurance using gafchromic™ ebt3 films. Radiation Oncology 11, 132.

Wilke, L., Andratschke, N., Blanck, O., Brunner, T.B., Combs, S.E., Grosu, A.L., Mous-
takis, C., Schmitt, D., Baus, W.W., Guckenberger, M., 2019. Icru report 91 on pre-
scribing, recording, and reporting of stereotactic treatments with small photon beams.
Strahlentherapie und Onkologie 195, 193–198.

Winer-Muram, H.T., Jennings, S.G., Meyer, C.A., Liang, Y., Aisen, A.M., Tarver, R.D.,
McGarry, R.C., 2003. Effect of varying ct section width on volumetric measurement of
lung tumors and application of compensatory equations. Radiology 229, 184–194.

World Health Orginasation, 2018. Cancer. URL: https://www.who.int/
news-room/fact-sheets/detail/cancer.

Xiao, Y., Kry, S.F., Popple, R., Yorke, E., Papanikolaou, N., Stathakis, S., Xia, P., Huq, S.,
Bayouth, J., Galvin, J., et al., 2015. Flattening filter-free accelerators: a report from the
aapm therapy emerging technology assessment work group. Journal of applied clinical
medical physics 16, 12–29.

Zaghian, R., SedighiPashaki, A., Haghparast, A., Gholami, M., Mohammadi, M., 2020.
Investigation of collapsed-cone algorithm accuracy in small fields and heterogeneous
environments. Journal of Biomedical Physics and Engineering .

Zhao, C., Shi, W., Deng, Y., 2005. A new hausdorff distance for image matching. Pattern
Recognition Letters 26, 581–586.

106

https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.who.int/news-room/fact-sheets/detail/cancer

Appendix

Fidora - code scripts

notebook.py

#−−−
#
#
Version 17.08.20
#
Written by Stine Gustavsen and Ane Vigre Haaland as part of
a master thesis in Biophysics and Medical Technology at NTNU.
The program is originally meant to be used at St . Olavs Hospital
in the radiation clinic .
#
#−−−

import tkinter as tk

from tkinter import ttk, INSERT, DISABLED , GROOVE, CURRENT, Radiobutton , \
NORMAL, ACTIVE, messagebox , Menu, IntVar, Checkbutton , FLAT, PhotoImage , Label,\

SOLID, N, S, W, E, END, LEFT, Scrollbar , RIGHT, Y, BOTH, TOP, OptionMenu , \
SUNKEN, RIDGE, BOTTOM, X

import Globals

import re

import CoMet functions , intro tab functions , Map Dose functions

import Dose response functions , Profile functions , DVH functions

from PIL import Image, ImageTk

import os

import sys

Globals.form.title("FIDORA")

Globals.form.configure(bg=’#ffffff’)

Globals.form.state(’zoomed’)

Globals.form.tk.call(’wm’, ’iconphoto’, Globals.form. w , \
PhotoImage(file=’logo fidora.png’))

107

Globals.form.iconbitmap(default=’logo fidora.png’)

load = Image.open("fidora logo.png")

render = ImageTk.PhotoImage(load)

label = Label(Globals.scroll frame , image=render)

label.image = render

label.grid(row = 0, column = 0, sticky=W)

label.config(bg=’#FFFFFF’)

Globals.tab parent.add(Globals.intro tab , text=’FIDORA’)

Globals.tab parent.add(Globals.tab1, text=’CoMet’)

Globals.tab parent.add(Globals.tab2, text=’Dose Response’)

#Globals.tab parent.add(Globals.tab3, text=’Map dose’) #Under development
Globals.tab parent.add(Globals.tab4, text=’Profiles’)

Globals.tab parent.add(Globals.tab5,text=’DVH’)

#−−−
Set the style for all GUI related to Fidora.
Style is choosen by the authors
#
#Horizontal.TProgressbar−> progressbar used in CoMet
#TNotebook−> Notebook which holds every functionality in Fidora
#TNotebook.tab−> set style for each tab
#Treeview−> listbox used in Profiles
#−−−
style = ttk.Style()

style.theme create(’MyStyle’, parent= ’classic’, settings={
".": {

"configure": {
"background": ’#FFFFFF’,

"font": ’red’

}
},
"Horizontal.TProgressbar":{

"configure": {
"background": ’#2C8EAD’,

"bordercolor": ’#32A9CE’,

"troughcolor": "#ffffff",

}
},
"TNotebook": {

"configure": {
"background":’#ffffff’,

"tabmargins": [5, 5, 10, 10],

"tabposition": ’wn’,

"borderwidth": 0,

108

}
},
"TNotebook.Tab": {

"configure": {
"background": ’#0A7D76’,

"foreground": ’#ffffff’,

"padding": [30,35, 20,35],

"font": (’#FFFFFF’, ’15’),

"borderwidth": 1,

"equalTabs": True,

"width": 13

},
"map": {

"background": [("selected", ’#02B9A5’)],

"expand": [("selected", [1, 1, 1, 0])]

}
},
"Treeview":{

"configure":{
"font": (’calibri’, ’9’),

"highlightthickness": 0,

"relief": FLAT,

"borderwidth": 0

}
},
"Treeview.Heading":{

"configure":{
"font": (’calibri’, ’9’),

"highlightthickness": 0,

"relief": FLAT,

"borderwidth": 0,

"anchor": W

}
}

})
style.theme use(’MyStyle’)

#−−−
Creating a menubar (visible at top left of window)
Buttons: File , Help, Specification
File−> Restart , open, exit
Help−> Help, about
Specification−> Scanner settings , calibration , raystation
#−−−
menubar = Menu(Globals.form)

109

filemenu = Menu(menubar, tearoff=0)

filemenu.add command(label="Restart", command=CoMet functions.nothingButton)

filemenu.add command(label="Open", command=CoMet functions.nothingButton)

filemenu.add separator()

filemenu.add command(label="Exit", command=Globals.form.quit)

menubar.add cascade(label="File", menu=filemenu)

helpmenu = Menu(menubar, tearoff=0)

helpmenu.add command(label="Help", command=CoMet functions.nothingButton)

helpmenu.add command(label="About", command=CoMet functions.nothingButton)

menubar.add cascade(label="Help", menu=helpmenu)

scannermenu=Menu(menubar, tearoff=0)

scannermenu.add command(label="Scanner settings", \
command=intro tab functions.createScannerSettingsWindow)

scannermenu.add command(label="Calibration", \
command=intro tab functions.createCalibrationWindow)

scannermenu.add command(label="Raystation", \
command=intro tab functions.createRaystationWindow)

menubar.add cascade(label="Specifications", menu=scannermenu)

Globals.form.config(menu=menubar)

#−−−
Upload all images used in Fidora.
Images is created by the authors.
#−−−
upload button file = "uploadbutton3.png"

Globals.upload button image = ImageTk.PhotoImage(file=upload button file)

select folder button file = "select folder button2.png"

select folder image = ImageTk.PhotoImage(file=select folder button file)

help button file = "help button.png"

Globals.help button = ImageTk.PhotoImage(file=help button file)

done button file = "done button.png"

Globals.done button image = ImageTk.PhotoImage(file=done button file)

CoMet border dark file = "border.png"

CoMet border dark = ImageTk.PhotoImage(file=CoMet border dark file)

CoMet border light file = "border light.png"

CoMet border light = ImageTk.PhotoImage(file=CoMet border light file)

110

CoMet save button file = "save button2.png"

CoMet save button = ImageTk.PhotoImage(file=CoMet save button file)

Globals.save button = ImageTk.PhotoImage(file=CoMet save button file)

CoMet correct button file = "correct button.png"

CoMet correct button image= ImageTk.PhotoImage(file=CoMet correct button file)

CoMet clear all button file = "icon clear all.png"

CoMet clear all button image = ImageTk.PhotoImage(file=CoMet clear all button file)

dose response clear all button file = "icon clear all small.png"

dose response clear all button image = \
ImageTk.PhotoImage(file=dose response clear all button file)

CoMet empty image file = "empty corrected image.png"

CoMet empty image image = ImageTk.PhotoImage(file=CoMet empty image file)

dose response calibration button file = "save calibration button.png"

dose response calibration button image = \
ImageTk.PhotoImage(file=dose response calibration button file)

dose response dose border file = "dose border.png"

Globals.dose response dose border = \
ImageTk.PhotoImage(file=dose response dose border file)

profiles add doseplan button file = "add doseplan button.png"

Globals.profiles add doseplan button image = \
ImageTk.PhotoImage(file=profiles add doseplan button file)

profiles add film button file = "add film button.png"

profiles add film button image = \
ImageTk.PhotoImage(file=profiles add film button file)

profiles add rtplan button file = "add rtplan button.png"

profiles add rtplan button image = \
ImageTk.PhotoImage(file=profiles add rtplan button file)

profiles showPlanes file = "planes.png"

Globals.profiles showPlanes image = \
ImageTk.PhotoImage(file=profiles showPlanes file)

profiles showDirections file = ’depth directions.png’

Globals.profiles showDirections image = \
ImageTk.PhotoImage(file=profiles showDirections file)

111

profiles mark isocenter button file = ’mark isocenter button.png’

Globals.profiles mark isocenter button image = \
ImageTk.PhotoImage(file=profiles mark isocenter button file)

profiles mark ROI button file = "mark ROI button.png"

Globals.profiles mark ROI button image = \
ImageTk.PhotoImage(file=profiles mark ROI button file)

profiles scanned image text image file = "scanned image text image.png"

Globals.profiles scanned image text image = \
ImageTk.PhotoImage(file=profiles scanned image text image file)

profiles film dose map text image file = "film dose map text image.png"

Globals.profiles film dose map text image = \
ImageTk.PhotoImage(file=profiles film dose map text image file)

profiles doseplan text image file = "doseplan text image.png"

Globals.profiles doseplan text image = \
ImageTk.PhotoImage(file=profiles doseplan text image file)

profiles mark point file = "mark point button.png"

Globals.profiles mark point button image = \
ImageTk.PhotoImage(file=profiles mark point file)

profiles add doseplans button file = "add doseplan.png"

Globals.profiles add doseplans button image = \
ImageTk.PhotoImage(file=profiles add doseplans button file)

adjust button left file = "adjust button left.png"

Globals.adjust button left image = ImageTk.PhotoImage(file=adjust button left file)

adjust button right file = "adjust button right.png"

Globals.adjust button right image = \
ImageTk.PhotoImage(file=adjust button right file)

adjust button down file = "adjust button down.png"

Globals.adjust button down image = ImageTk.PhotoImage(file=adjust button down file)

adjust button up file = "adjust button up.png"

Globals.adjust button up image = ImageTk.PhotoImage(file=adjust button up file)

dose response upload files here file = "upload here dose response.png"

Globals.dose response upload files here = \
ImageTk.PhotoImage(file=dose response upload files here file)

112

dose response equation will be here file = "equation will be here.png"

Globals.dose response equation written here = \
ImageTk.PhotoImage(file=dose response equation will be here file)

export plot file = "export plot button.png"

Globals.export plot button image = ImageTk.PhotoImage(file=export plot file)

DVH add structure file = "add structure.png"

DVH add structure button image = ImageTk.PhotoImage(file=DVH add structure file)

DVH temp image file = "temp doseplan roi.png"

Globals.dVH temp image = ImageTk.PhotoImage(file=DVH temp image file)

#################################### ###############################
#################################### Tab 1 INTRO TAB ###############################
#################################### ###############################

#−−−
Code to place all widgets on the first tab ”Fidora” in Fidora
They are all placed in a canvas, intro tab canvas given in the global tab
intro tab , which is defined in the file Globals.py.
#−−−
intro tab canvas = tk.Canvas(Globals.intro tab)

intro tab canvas.config(bg=’#ffffff’, bd = 0, relief=FLAT, highlightthickness=0)

tab1 text box = tk.Frame(intro tab canvas , height=230, width=400)

tab1 text box.grid(row=0, column=0, pady=(30,30), padx=(55,0))

tab1 text box.config(bd=0, bg=’#E5f9ff’)

tab1 title text = tk.Text(tab1 text box , height=1, width=6)

tab1 title text.insert(END, "CoMet")

tab1 title text.grid(in =tab1 text box , row=0, column = 0, \
pady=(15,5), padx=(10,10))

tab1 title text.config(state=DISABLED , bd=0, bg =’#E5f9ff’, \
fg=’#130e07’, font=(’calibri’, ’25’, ’bold’))

tab1 text box.grid columnconfigure(0,weight=1)

tab1 text box.grid rowconfigure(0,weight=1)

tab1 text = tk.Text(tab1 text box , height=4, width=43)

tab1 text.grid(in =tab1 text box , row=1, column=0, sticky=N+S+W+E, \
pady=(0,0), padx=(20,20))

tab1 text.insert(INSERT,"Correct your scanned images using CoMet. A method \n\
developed to correct for non−uniformity introduced\n by the scanner. \
The correction is based on absolute \nsubtraction.")

113

tab1 text.config(state=DISABLED , bd=0, bg=’#E5f9ff’, \
fg=’#130E07’, font=(’calibri’, ’13’))

tab1 text box.grid columnconfigure(1,weight=1)

tab1 text box.grid rowconfigure(1,weight=1)

tab1 box figure = Image.open("icon comet.png")

tab1 figure = ImageTk.PhotoImage(tab1 box figure)

tab1 figure label = Label(tab1 text box , image=tab1 figure)

tab1 figure label.image = tab1 figure

tab1 figure label.grid(row=3, sticky=N+S+W+E, pady=(0,10))

tab1 figure label.config(bg=’#E5f9ff’)

tab1 text box.grid columnconfigure(3, weight=1)

tab1 text box.grid rowconfigure(3, weight=1)

tab2 text box = tk.Frame(intro tab canvas , height=230, width=400)

tab2 text box.grid(row=0, column=1, pady=(30,30), padx=(65,0))

tab2 text box.config(bd=0, bg=’#E5f9ff’)

tab2 title = tk.Text(tab2 text box , height=1, width=12)

tab2 title.grid(in =tab2 text box , row=0, column = 0, \
pady=(15,5), padx=(10,10))

tab2 title.insert(INSERT, "Dose response")

tab2 title.config(state=DISABLED , bd=0, bg = ’#E5f9ff’, \
fg=’#130e07’, font=(’calibri’, ’25’, ’bold’))

tab2 text box.grid columnconfigure(0, weight=1)

tab2 text box.grid rowconfigure(0, weight=1)

tab2 text = tk.Text(tab2 text box , height=4, width=43)

tab2 text.grid(in =tab2 text box , row=1, column=0, \
sticky=N+S+W+E, pady=(0,0), padx=(20,20))

tab2 text.insert(INSERT,"Make a calibration curve and read the dose response \n\
function. For every new batch of GafChromic film \nthere is a need to update\
the dose response. All three \nchannels (RGB) are read and calculated.")
tab2 text.config(state=DISABLED , bd=0, bg=’#E5f9ff’, \

fg=’#130E07’, font=(’calibri’, ’13’))

tab2 text box.grid columnconfigure(1, weight=1)

tab2 text box.grid rowconfigure(1, weight=1)

tab2 box figure = Image.open("icon map dose.png")

tab2 figure = ImageTk.PhotoImage(tab2 box figure)

tab2 figure label = Label(tab2 text box , image=tab2 figure)

tab2 figure label.image = tab2 figure

tab2 figure label.grid(row=3, sticky=N+S+W+E, pady=(0,10))

tab2 figure label.config(bg=’#E5f9ff’)

tab2 text box.grid columnconfigure(3, weight=1)

114

tab2 text box.grid rowconfigure(3, weight=1)

tab3 text box = tk.Frame(intro tab canvas , height=230, width=400)

tab3 text box.grid(row=1, column=0, pady=(0,30), padx=(55,0))

tab3 text box.config(bd=0, bg=’#E5f9ff’)

tab3 title = tk.Text(tab3 text box , height=1, width=8)

tab3 title.grid(in =tab3 text box , row=0, column = 0, pady=(15,5), padx=(10,10))

tab3 title.insert(INSERT, "Profiles")

tab3 title.config(state=DISABLED , bd=0, bg = ’#E5f9ff’, \
fg=’#130e07’, font=(’calibri’, ’25’, ’bold’))

tab3 text box.grid columnconfigure(0, weight=1)

tab3 text box.grid rowconfigure(0, weight=1)

tab3 text = tk.Text(tab3 text box , height=4, width=43)

tab3 text.grid(in =tab3 text box , row=1, column=0, \
sticky=N+S+W+E, pady=(0,0), padx=(20,20))

tab3 text.insert(INSERT,"Investigate profiles measured using GafChromic \n\
film and compare with the profiles in your treatment \nplan. Draw vertical, \
horizontal or manually drawn profiles.")

tab3 text.config(state=DISABLED , bd=0, bg=’#E5f9ff’, \
fg=’#130E07’, font=(’calibri’, ’13’))

tab3 text box.grid columnconfigure(1, weight=1)

tab3 text box.grid rowconfigure(1, weight=1)

tab3 box figure = Image.open("icon dose response.png")

tab3 figure = ImageTk.PhotoImage(tab3 box figure)

tab3 figure label = Label(tab3 text box , image=tab3 figure)

tab3 figure label.image = tab3 figure

tab3 figure label.grid(row=3, sticky=N+S+W+E, pady=(0,10))

tab3 figure label.config(bg=’#E5f9ff’)

tab3 text box.grid columnconfigure(3, weight=1)

tab3 text box.grid rowconfigure(3, weight=1)

tab4 text box = tk.Frame(intro tab canvas , height=230, width=400)

tab4 text box.grid(row=1, column=1, pady=(0,30), padx=(65,0))

tab4 text box.config(bd=0, bg=’#E5f9ff’)

tab4 title = tk.Text(tab4 text box , height=1, width=7)

tab4 title.grid(in =tab4 text box , row=0, column = 0, pady=(15,5), padx=(10,10))

tab4 title.insert(INSERT, "DVH")

tab4 title.config(state=DISABLED , bd=0, bg = ’#E5f9ff’, \
fg=’#130e07’, font=(’calibri’, ’25’, ’bold’))

tab4 text box.grid columnconfigure(0,weight=1)

tab4 text box.grid rowconfigure(0, weight=1)

115

tab4 text = tk.Text(tab4 text box , height=4, width=43)

tab4 text.grid(in =tab4 text box , row=1, column=0, \
sticky=N+S+W+E, pady=(0,0), padx=(20,20))

tab4 text.insert(INSERT,"Study the dose volume histogram measured\n\
in your scanned film and doseplan for comparison. \nInclude the \
volumes of your choice.")

tab4 text.config(state=DISABLED , bd=0, bg=’#E5f9ff’, \
fg=’#130E07’, font=(’calibri’, ’13’))

tab4 text box.grid columnconfigure(1, weight=1)

tab4 text box.grid rowconfigure(1, weight=1)

tab4 box figure = Image.open("icon profiles.png")

tab4 figure = ImageTk.PhotoImage(tab4 box figure)

tab4 figure label = Label(tab4 text box , image=tab4 figure)

tab4 figure label.image = tab4 figure

tab4 figure label.grid(row=3, sticky=N+S+W+E, pady=(0,10))

tab4 figure label.config(bg=’#E5f9ff’)

tab4 text box.grid columnconfigure(3, weight=1)

tab4 text box.grid rowconfigure(3, weight=1)

intro tab canvas.grid(row=0, column=0, sticky=N+S+W)

#################################### #################################
#################################### TAB 2−CoMet #################################
#################################### #################################

#−−−
Code to place widgets in the second tab ”CoMet” in Fidora
They are all placed in the global canvas tab1 canvas defined
in the the file Globals.py. Where functions is called the
functions are written in the file CoMet functions.py
#−−−

Globals.tab1 canvas.config(bg=’#ffffff’, bd = 0, relief=FLAT, highlightthickness=0)

CoMet explained = tk.Text(Globals.tab1 canvas , height=5, width=84)

CoMet explained.insert(INSERT, \
"Start the correction by choosing the correct *.tif file containing the scanned \n\
image of the GafChromic film. The film should be scanned using Epson Perfection \n\
v750 Pro with dpi setting 72 or 127. Then pick which folder the corrected file \n\
should be uploaded to. The corrected file will be saved as a DICOM. Write \
filename \nand patient name (optional) before doing the correction. An illustration \
of the \ncorrected image will appear.")
CoMet explained.grid(row=0, column = 0, columnspan=1, \

116

sticky=N+S+E+W, padx=(20,0), pady=(10,10))

Globals.tab1 canvas.grid columnconfigure(0, weight=0)

Globals.tab1 canvas.grid rowconfigure(0, weight=0)

CoMet explained.config(state=DISABLED, bg=’#ffffff’, \
font=(’calibri’, ’11’), relief=FLAT)

Globals.CoMet border 1 label = Label(Globals.tab1 canvas , \
image = CoMet border dark ,width=50)

Globals.CoMet border 1 label.image=CoMet border dark

Globals.CoMet border 1 label.grid(row=2, column=0, columnspan=2, \
sticky=N+E+W, padx=(0,80), pady=(0,0))

Globals.tab1 canvas.grid columnconfigure(1, weight=0)

Globals.tab1 canvas.grid rowconfigure(1, weight=0)

Globals.CoMet border 1 label.config(bg=’#ffffff’, borderwidth=0)

CoMet upload button frame = tk.Frame(Globals.tab1 canvas)

CoMet upload button frame.grid(row=2, column = 0, \
padx = (200, 0), pady=(0,0), sticky=N)

Globals.tab1 canvas.grid columnconfigure(2, weight=0)

Globals.tab1 canvas.grid rowconfigure(2, weight=0)

CoMet upload button frame.config(bg = ’#ffffff’)

CoMet upload button = tk.Button(CoMet upload button frame , text=’Browse’, \
image = Globals.upload button image , cursor=’hand2’,font=(’calibri’, ’9’), \

relief=FLAT, state=ACTIVE, command=CoMet functions.UploadAction)

CoMet upload button.pack(expand=True, fill=BOTH)

CoMet upload button.config(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

CoMet upload button.image = Globals.upload button image

Globals.CoMet uploaded file text = tk.Text(Globals.CoMet border 1 label , \
height=1, width=31)

Globals.CoMet uploaded file text.grid(row=0, column=0, columnspan=2, \
sticky=E, pady=(20,20), padx=(100,0))

Globals.CoMet uploaded file text.insert(INSERT, \
"Upload the image you want to correct")

Globals.CoMet uploaded file text.config(state=DISABLED , bd=0, \
font=(’calibri’, ’10’), fg=’gray’, bg=’#ffffff’)

Globals.CoMet border 2 label = Label(Globals.tab1 canvas , image = \
CoMet border dark ,width=50)

Globals.CoMet border 2 label.image=CoMet border dark

Globals.CoMet border 2 label.grid(row=3, column=0, columnspan=2, \
sticky = N+W+E, padx = (0, 80), pady=(5,0))

Globals.tab1 canvas.grid columnconfigure(3, weight=0)

117

Globals.tab1 canvas.grid rowconfigure(3, weight=0)

Globals.CoMet border 2 label.config(bg=’#ffffff’, borderwidth=0)

CoMet folder button frame = tk.Frame(Globals.tab1 canvas)

CoMet folder button frame.grid(row=3, column = 0, padx = (200, 0), \
pady=(10,0), sticky=N)

Globals.tab1 canvas.grid columnconfigure(4, weight=0)

Globals.tab1 canvas.grid rowconfigure(4, weight=0)

CoMet folder button frame.config(bg = ’#ffffff’)

CoMet folder button = tk.Button(CoMet folder button frame , text=’Browse’, \
image = select folder image ,cursor=’hand2’,font=(’calibri’, ’14’),\
relief=FLAT, state=ACTIVE, command=CoMet functions.setCoMet export folder)

CoMet folder button.pack(expand=True, fill=BOTH)

CoMet folder button.config(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

CoMet folder button.image=select folder image

CoMet save to folder = tk.Text(Globals.CoMet border 2 label , height=1, width=31)

CoMet save to folder.grid(row=0, column=0, columnspan=2, \
sticky=E, pady=(20,20), padx=(100,0))

CoMet save to folder.insert(INSERT,"Folder to save the corrected image")

CoMet save to folder.config(state=DISABLED , bd=0, \
font=(’calibri’, ’10’), fg=’gray’, bg=’#ffffff’)

def testFilename():

#−−
Function to test the filename the user chooses for
the corrected image. The filename must be no longer
than 20 characters and only letters and/or
numbers are valid characters. Default: ”Error!”.
Once approved the filename is given to the global
variable CoMet corrected image filename
#−−

Globals.CoMet corrected image filename.set\
(Globals.CoMet save filename.get("1.0",’end−1c’))

if(Globals.CoMet corrected image filename.get() == \
" " or Globals.CoMet corrected image filename.get() == "Filename"):

Globals.CoMet corrected image filename.set("Error!")

elif(len(Globals.CoMet corrected image filename.get()) >21):
messagebox.showerror("Error", "The filename must be under 20 characters")

Globals.CoMet corrected image filename.set("Error!")

elif(re.match("^[A−Za−z0−9]*$", \
(Globals.CoMet corrected image filename.get()).lstrip())==None):

messagebox.showerror\

118

("Error","Filename can only contain letters and/or numbers")

Globals.CoMet corrected image filename.set("Error!")

else:

Globals.CoMet save button 1.config(state=DISABLED)

Globals.CoMet save filename.config(state=DISABLED)

Globals.CoMet progressbar counter += 1

Globals.CoMet progressbar["value"] = Globals.CoMet progressbar counter*25
Globals.CoMet progressbar text = \

tk.Text(Globals.tab1 canvas , width = 5, height=1)

Globals.CoMet progressbar text.grid(row=1, column=0, columnspan=1, \
sticky=E, padx=(0,158), pady=(0,36))

Globals.CoMet progressbar text.insert(INSERT, \
str(Globals.CoMet progressbar counter*25) + "%")

if(Globals.CoMet progressbar counter*25 == 100):
Globals.CoMet progressbar text.config(state=DISABLED, bd=0, \

relief=FLAT, bg=’#2C8EAD’, font=(’calibri’, ’10’, ’bold’))

else:

Globals.CoMet progressbar text.config(state=DISABLED, bd=0, \
relief=FLAT, bg=’#ffffff’, font=(’calibri’, ’10’, ’bold’))

Globals.CoMet border 3 label = Label(Globals.tab1 canvas , \
image = CoMet border dark)

Globals.CoMet border 3 label.image=CoMet border dark

Globals.CoMet border 3 label.grid(row=4, column=0, columnspan=2, \
sticky = N+W+E, padx = (0,80), pady=(5,0))

Globals.tab1 canvas.grid columnconfigure(5, weight=0)

Globals.tab1 canvas.grid rowconfigure(5, weight=0)

Globals.CoMet border 3 label.config(bg=’#ffffff’, borderwidth=0)

Globals.CoMet save button frame 1 = tk.Frame(Globals.tab1 canvas)

Globals.CoMet save button frame 1.grid(row=4, column = 0, \
padx = (200, 0), pady=(10,0), sticky=N)

Globals.tab1 canvas.grid columnconfigure(6, weight=0)

Globals.tab1 canvas.grid rowconfigure(6, weight=0)

Globals.CoMet save button frame 1.config(bg = ’#ffffff’)

Globals.CoMet save button 1 = tk.Button(Globals.CoMet save button frame 1 , \
text=’Save’, image = CoMet save button ,cursor=’hand2’,font=(’calibri’, ’14’),\

relief=FLAT, state=ACTIVE, command=testFilename)

Globals.CoMet save button 1.pack(expand=True, fill=BOTH)

Globals.CoMet save button 1.config(bg=’#ffffff’, \
activebackground=’#ffffff’, activeforeground=’#ffffff’, highlightthickness=0)

Globals.CoMet save button 1.image = CoMet save button

119

Globals.CoMet save filename = tk.Text(Globals.CoMet border 3 label ,\
height=1, width=30)

Globals.CoMet save filename.grid(row=0, column=0, columnspan=2, \
sticky=E+W, pady=(20,20), padx=(100,0))

Globals.CoMet save filename.insert(END,"Filename (will be saved as *.dcm)")
Globals.CoMet save filename.config(state=NORMAL, bd=0, \

font=(’calibri’, ’10’), fg=’gray’, bg=’#ffffff’)

def writeFilename(event):

#−−
Callback function to mouse−events.
Function to delete the default text ”Filename (will
be saved as *.dcm)\n” in the global textbox
CoMet save filename when focus is on textbox and
insert the default text as focus is out unless
a filename has been written by the user.
#−−

current = Globals.CoMet save filename.get("1.0", tk.END)

if(current == "Filename (will be saved as *.dcm)\n"):
Globals.CoMet save filename.delete("1.0", tk.END)

else:

Globals.CoMet save filename.insert("1.0", \
"Filename (will be saved as *.dcm)")

Globals.CoMet save filename.bind("<FocusIn>", writeFilename)
Globals.CoMet save filename.bind("<FocusOut>", writeFilename)

def testName():

#−−
Function to test i f the user defined global
variable CoMet patientName has been given a valid
value. The patient name/ID must be less than 30
characters and letters and/or numbers. Once the
value is approved it is given to the gloabal
variable CoMet patientName
#−−

Globals.CoMet patientName.set(CoMet save patientName.get("1.0",’end−1c’))
if(Globals.CoMet patientName.get() == " " or \

Globals.CoMet patientName.get() == "Patient name"):

Globals.CoMet patientName.set("Error!")

elif(len(Globals.CoMet patientName.get()) >31):
messagebox.showerror("Error", "The Name must be under 30 characters")

Globals.CoMet patientName.set("Error!")

elif(re.match("^[A−Za−z0−9]*$", \

120

(Globals.CoMet patientName.get()).lstrip())==None):

messagebox.showerror("Error",\
"Name can only contain english letters and no spaces")

Globals.CoMet patientName.set("Error!")

else:

CoMet save button 2.config(state=DISABLED)

CoMet save patientName.config(state=DISABLED)

Globals.CoMet border 4 label = Label(Globals.tab1 canvas , \
image = CoMet border dark)

Globals.CoMet border 4 label.image=CoMet border dark

Globals.CoMet border 4 label.grid(row=5, column=0, columnspan=2, \
sticky =N+W+E, padx = (0, 80), pady=(0,3))

Globals.tab1 canvas.grid columnconfigure(7, weight=0)

Globals.tab1 canvas.grid rowconfigure(7, weight=0)

Globals.CoMet border 4 label.config(bg=’#ffffff’, borderwidth=0)

CoMet save button frame 2 = tk.Frame(Globals.tab1 canvas)

CoMet save button frame 2.grid(row=5, column = 0, \
padx = (200, 0), pady=(3,0), sticky=N)

Globals.tab1 canvas.grid columnconfigure(8, weight=0)

Globals.tab1 canvas.grid rowconfigure(8, weight=0)

CoMet save button frame 2.config(bg = ’#ffffff’)

CoMet save button 2 = tk.Button(CoMet save button frame 2 , \
text=’Save’, image = CoMet save button ,cursor=’hand2’,\

font=(’calibri’, ’14’),relief=FLAT, state=ACTIVE, command=testName)

CoMet save button 2.pack(expand=True, fill=BOTH)

CoMet save button 2.config(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

CoMet save button 2.image = CoMet save button

CoMet save patientName = tk.Text(Globals.CoMet border 4 label , height=1, width=30)

CoMet save patientName.grid(row=0, column=0, columnspan=2, \
sticky=E+W, pady=(20,20), padx=(100,0))

CoMet save patientName.insert(END,"Patient name (Optional)")

CoMet save patientName.config(state=NORMAL, bd=0, \
font=(’calibri’, ’10’), fg=’gray’, bg=’#ffffff’)

def writePname(event):

#−−
Callback function to mouse−events.
Function to delete the default text ”Patient name
(Optional)\n” when focus is on the textbox

121

CoMet save patientName, and insert the default text
when focus is out of the textbox, unless the user
has defined a valid value to the variable
CoMet save patientName
#−−

current = CoMet save patientName.get("1.0", tk.END)

if(current == "Patient name (Optional)\n"):
CoMet save patientName.delete("1.0", tk.END)

else:

CoMet save patientName.insert("1.0", "Patient name (Optional)")

CoMet save patientName.bind("<FocusIn>", writePname)
CoMet save patientName.bind("<FocusOut>", writePname)

CoMet correct button frame = tk.Frame(Globals.tab1 canvas)

CoMet correct button frame.grid(row=6, column=0,rowspan=1, \
padx = (150, 0), pady=(10,0), sticky=W)

Globals.tab1 canvas.grid columnconfigure(9, weight=0)

Globals.tab1 canvas.grid rowconfigure(9, weight=0)

CoMet correct button frame.config(bg = ’#ffffff’)

CoMet correct button = tk.Button(CoMet correct button frame , text=’Correct’, \
image = CoMet correct button image ,cursor=’hand2’,font=(’calibri’, ’14’),\

relief=FLAT, state=ACTIVE, command=CoMet functions.Correct)

CoMet correct button.pack(expand=True, fill=BOTH)

CoMet correct button.config(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

CoMet correct button.image = CoMet correct button image

Globals.CoMet print corrected image = tk.Canvas(Globals.tab1 canvas)

Globals.CoMet print corrected image.grid(row=0, column=2, rowspan=7, \
sticky=N+W+S, pady=(20,0), padx=(0,150))

Globals.CoMet print corrected image.config(bg=’#ffffff’, bd = 0, \
relief=FLAT, highlightthickness=0)

Globals.tab1 canvas.grid columnconfigure(11,weight=0)

Globals.tab1 canvas.grid rowconfigure(11, weight=0)

Globals.CoMet print corrected image.create image(180,250,\
image=CoMet empty image image)

Globals.CoMet print corrected image.image=CoMet empty image image

def clearAll():

#−−
Function to reset every variable created in the
tab CoMet. This will delete every value saved

122

in variables related to CoMet
#−−

#Clear out filename
Globals.CoMet uploaded file text = tk.Text(Globals.CoMet border 1 label , \

height=1, width=31)

Globals.CoMet uploaded file text.grid(row=0, column=0, columnspan=2, \
sticky=E+W, pady=(20,20), padx=(100,0))

Globals.CoMet uploaded file text.insert(INSERT, \
"Upload the image you want to correct")

Globals.CoMet uploaded file text.config(state=DISABLED , \
bd=0, font=(’calibri’, ’10’), fg=’gray’, bg=’#ffffff’)

Globals.CoMet uploaded filename.set("Error!")

#Clear out folder
CoMet save to folder = tk.Text(Globals.CoMet border 2 label , \

height=1, width=31)

CoMet save to folder.grid(row=0, column=0, columnspan=2, \
sticky=E+W, pady=(20,20), padx=(100,0))

CoMet save to folder.insert(INSERT,"Folder to save the corrected image")

CoMet save to folder.config(state=DISABLED , bd=0, font=(’calibri’, ’10’), \
fg=’gray’, bg=’#ffffff’)

Globals.CoMet export folder.set("Error!")

#Clear filename of corrected file
Globals.CoMet save filename = tk.Text(Globals.CoMet border 3 label , \

height=1, width=30)

Globals.CoMet save filename.grid(row=0, column=0, columnspan=2, \
sticky=E+W, pady=(20,20), padx=(100,0))

Globals.CoMet save filename.insert(END,"Filename (will be saved as *.dcm)")
Globals.CoMet save filename.config(state=NORMAL, bd=0, \

font=(’calibri’, ’10’), fg=’gray’, bg=’#ffffff’)

Globals.CoMet corrected image filename.set("Error!")

Globals.CoMet save button 1.config(state=ACTIVE)

def writeFilename(event):

#−−
Callback function to mouse−events.
Function to delete the default text ”Filename (will
be saved as *.dcm)\n” in the global textbox
CoMet save filename when focus is on textbox and
insert the default text as focus is out unless
a filename has been written by the user.
#−−

current = Globals.CoMet save filename.get("1.0", tk.END)

if(current == "Filename (will be saved as *.dcm)\n"):

123

Globals.CoMet save filename.delete("1.0", tk.END)

else:

Globals.CoMet save filename.insert("1.0", \
"Filename (will be saved as *.dcm)")

Globals.CoMet save filename.bind("<FocusIn>", writeFilename)
Globals.CoMet save filename.bind("<FocusOut>", writeFilename)

#Clear patientname
CoMet save patientName = tk.Text(Globals.CoMet border 4 label , \

height=1, width=30)

CoMet save patientName.grid(row=0, column=0, columnspan=2, \
sticky=E+W, pady=(20,20), padx=(100,0))

CoMet save patientName.insert(END,"Patient name (Optional)")

CoMet save patientName.config(state=NORMAL, bd=0, \
font=(’calibri’, ’10’), fg=’gray’, bg=’#ffffff’)

Globals.CoMet patientName.set("Error!")

CoMet save button 2.config(state=ACTIVE)

def writePname(event):

#−−
Callback function to mouse−events.
Function to delete the default text ”Patient name
(Optional)\n” when focus is on the textbox
CoMet save patientName, and insert the default text
when focus is out of the textbox, unless the user
has defined a valid value to the variable
CoMet save patientName
#−−

current = CoMet save patientName.get("1.0", tk.END)

if(current == "Patient name (Optional)\n"):
CoMet save patientName.delete("1.0", tk.END)

else:

CoMet save patientName.insert("1.0", "Patient name (Optional)")

CoMet save patientName.bind("<FocusIn>", writePname)
CoMet save patientName.bind("<FocusOut>", writePname)

#Clear image
Globals.CoMet print corrected image.delete(’all’)

Globals.CoMet print corrected image.create image\
(123,148,image=CoMet empty image image)

Globals.CoMet print corrected image.image = CoMet empty image image

124

#Clear progressbar
Globals.CoMet progressbar["value"]=0

Globals.CoMet progressbar counter = 0

Globals.CoMet progressbar check file = True

Globals.CoMet progressbar check folder = True

CoMet progressbar text = tk.Text(Globals.tab1 canvas , height=1, width=5)

CoMet progressbar text.grid(row=1, column=0, columnspan=1, \
sticky=E, padx=(0,158), pady=(0,36))

CoMet progressbar text.insert(INSERT, "0%")

CoMet progressbar text.config(state=DISABLED , bd=0, \
relief=FLAT, bg=’#ffffff’,font=(’calibri’, ’10’, ’bold’))

CoMet clear all button frame = tk.Frame(Globals.tab1 canvas)

CoMet clear all button frame.grid(row=6, column=0, rowspan=1, \
padx=(350,0), pady=(10,0), sticky=W)

Globals.tab1 canvas.grid columnconfigure(13, weight=0)

Globals.tab1 canvas.grid rowconfigure(13, weight=0)

CoMet clear all button frame.config(bg=’#ffffff’)

CoMet clear all button = tk.Button(CoMet clear all button frame , text="Clear all",\
image=dose response clear all button image , cursor=’hand2’, \

font=(’calibri’, ’14’), relief=FLAT, state=ACTIVE, command=clearAll)

CoMet clear all button.pack(expand=True, fill=BOTH)

CoMet clear all button.config(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

CoMet clear all button.image=dose response clear all button image

Globals.tab1 canvas.pack(expand=True, fill=BOTH)

################################ #############################
################################ TAB 3− Dose Response #############################
################################ #############################

#−−−
Code to place all widgets related to the tab ”Dose Response” in Fidora.
They are all placed in the global canvas tab2 canvas defines in
the file Globals.py. Whenever a function is called the function
is written in the file Dose Response Function.
#−−−

Globals.tab2 canvas.config(bg=’#ffffff’, bd = 0, relief=FLAT, highlightthickness=0)

dose response explain text = tk.Text(Globals.tab2 canvas , height=4, width=140)

125

dose response explain text.insert(INSERT, "\
Upload the scanned *.tif files (there should be at least 3 of each dose level) \
and save. The dose response curve along with the equation will appear when \n\
enough data points are given. The uploaded files must have dpi setting 72 or 127. \
When saving the calibration the dose response data will be saved and can be \
\nchosen for later use of this software. The dose response curve will be found \
for all three color channels , but can be removed using the check boxes. A dose \
\nresponse equation will only be fitted for the red channel. ")

dose response explain text.grid(row=0, column=0, columnspan=5, \
sticky=N+S+E+W, pady=(20,20), padx=(20,10))

Globals.tab2 canvas.grid columnconfigure(0, weight=0)

Globals.tab2 canvas.grid rowconfigure(0, weight=0)

dose response explain text.config(state=DISABLED , \
font=(’calibri’, ’11’), bg =’#ffffff’, relief=FLAT)

dose response upload button frame = tk.Frame(Globals.tab2 canvas files)

dose response upload button frame.grid(row=0, column = 0, \
columnspan=8, padx = (60, 0), pady=(10,5))

Globals.tab2 canvas files.grid columnconfigure(0, weight=0)

Globals.tab2 canvas files.grid rowconfigure(0, weight=0)

dose response upload button frame.config(bg = ’#ffffff’)

dose response upload button = \
tk.Button(dose response upload button frame , text=’Upload file’, \
image=Globals.upload button image ,cursor=’hand2’, font=(’calibri’, ’14’), \

relief=FLAT, state=ACTIVE, command=Dose response functions.create window)

dose response upload button.pack(expand=True, fill=BOTH)

dose response upload button.config(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

dose response upload button.image = Globals.upload button image

check1 = Checkbutton(Globals.tab2 canvas files , variable=Globals.dose response var1,\
command=Dose response functions.plot dose response)

check1.grid(row=1, column=1, sticky=E, padx=(30,15))

Globals.tab2 canvas files.grid columnconfigure(5, weight=0)

Globals.tab2 canvas files.grid rowconfigure(5, weight=0)

check1.config(bg=’#ffffff’)

check2 = Checkbutton(Globals.tab2 canvas files , \
variable=Globals.dose response var2 , \

command=Dose response functions.plot dose response)

check2.grid(row=1, column=3, sticky=E, padx=(45,15))

Globals.tab2 canvas files.grid columnconfigure(6, weight=0)

Globals.tab2 canvas files.grid rowconfigure(6, weight=0)

check2.config(bg=’#ffffff’)

126

check3 = Checkbutton(Globals.tab2 canvas files , \
variable=Globals.dose response var3 , \

command=Dose response functions.plot dose response)

check3.grid(row=1, column=5, sticky=E, padx=(35,10))

Globals.tab2 canvas files.grid columnconfigure(7, weight=0)

Globals.tab2 canvas files.grid rowconfigure(7, weight=0)

check3.config(bg=’#ffffff’)

red = tk.Text(Globals.tab2 canvas files , height=1, width=4)

red.insert(INSERT, "Red")

red.grid(row=1, column=1, sticky=W, padx=(0,0))

Globals.tab2 canvas files.grid columnconfigure(1, weight=0)

Globals.tab2 canvas files.grid rowconfigure(1, weight=0)

red.config(state=DISABLED , bd=0, font=(’calibri’, ’12’))

green = tk.Text(Globals.tab2 canvas files , height=1, width=5)

green.insert(INSERT, "Green")

green.grid(row = 1, column = 3, sticky=W, padx=(0,0))

Globals.tab2 canvas files.grid columnconfigure(2, weight=0)

Globals.tab2 canvas files.grid rowconfigure(2, weight=0)

green.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

blue = tk.Text(Globals.tab2 canvas files , height=1, width=4)

blue.insert(INSERT, "Blue")

blue.grid(row=1, column=5, sticky=W, padx=(0,0))

Globals.tab2 canvas files.grid columnconfigure(3, weight=0)

Globals.tab2 canvas files.grid rowconfigure(3, weight=0)

blue.config(state=DISABLED , bd=0, font=(’calibri’, ’12’))

dose title = tk.Text(Globals.tab2 canvas files , height=1, width=10)

dose title.insert(INSERT, "Dose (cGy)")

dose title.grid(row=1, column=0, sticky=N+S+W+E, padx=(0,15))

Globals.tab2 canvas files.grid columnconfigure(4, weight=0)

Globals.tab2 canvas files.grid rowconfigure(4, weight=0)

dose title.config(state=DISABLED , bd=0, font=(’calibri’, ’12’))

Globals.upload files here canvas = tk.Canvas(Globals.tab2 canvas files)

Globals.upload files here canvas.grid(row=3, column=0, \
columnspan=13, sticky=N+S+W+E)

Globals.tab2 canvas files.grid columnconfigure(50, weight=0)

Globals.tab2 canvas files.grid rowconfigure(50, weight=0)

Globals.upload files here canvas.config(relief=FLAT, bd=0, \
bg=’#ffffff’,highlightthickness=0)

Globals.upload files here canvas.create image(70,30,\

127

image=Globals.dose response upload files here , anchor=’nw’)

Globals.dose response equation image = \
tk.Canvas(Globals.dose response equation frame , width=650)

Globals.dose response equation image.grid(row=0, column=0, sticky=N+S+W+E)

Globals.dose response equation frame.grid columnconfigure(50, weight=0)

Globals.dose response equation frame.grid rowconfigure(50, weight=0)

Globals.dose response equation image.config(bg=’#ffffff’, \
relief=FLAT, highlightthickness=0)

Globals.dose response equation image.create image(170,0, \
image=Globals.dose response equation written here , anchor=’nw’)

dose response save calibration button frame = tk.Frame(Globals.tab2 canvas)

dose response save calibration button frame.grid(row=3, column = 1, \
sticky=N+S+E+W, padx=(0,0), pady=(0,0))

Globals.tab2 canvas.grid columnconfigure(10, weight=0)

Globals.tab2 canvas.grid rowconfigure(10, weight=0)

dose response save calibration button frame.config\
(bg = ’#ffffff’, height=1, width=100)

dose response save calibration button frame.grid propagate(0)

Globals.dose response save calibration button = \
tk.Button(dose response save calibration button frame , text=’Save calibration’, \

image=dose response calibration button image , \
cursor=’hand2’, font=(’calibri’, ’12’),relief=FLAT, state=DISABLED , \

command=Dose response functions.saveCalibration)

Globals.dose response save calibration button.pack(expand=True, fill=BOTH, side=TOP)

Globals.dose response save calibration button.config(bg=’#ffffff’, \
activebackground=’#ffffff’, activeforeground=’#ffffff’, highlightthickness=0)

Globals.dose response save calibration button.image = \
dose response calibration button image

dose response clear all button frame = tk.Frame(Globals.tab2 canvas)

dose response clear all button frame.grid(row=3, column=0, \
sticky=N+S+E+W, padx=(30,0), pady=(0,0))

Globals.tab2 canvas.grid columnconfigure(11, weight=0)

Globals.tab2 canvas.grid rowconfigure(11, weight=0)

dose response clear all button frame.config(bg=’#ffffff’, height=1, width=100)

dose response clear all button frame.grid propagate(0)

dose response clear all button = tk.Button(dose response clear all button frame , \
text=’Clear all’, image=dose response clear all button image , \

cursor=’hand2’, font=(’calibri’, ’12’), relief=FLAT, state=ACTIVE, \
command=Dose response functions.clear all)

dose response clear all button.pack(expand=True, fill=BOTH, side=TOP)

128

dose response clear all button.config(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

dose response clear all button.image = dose response clear all button image

delete text = tk.Text(Globals.tab2 canvas files , height=1, widt=7)

delete text.insert(INSERT, "Delete")

delete text.grid(row=1, column=7, sticky=N+S+E+W, padx=(0,0))

Globals.tab2 canvas files.grid columnconfigure(4, weight=0)

Globals.tab2 canvas files.grid rowconfigure(4, weight=0)

delete text.config(state=DISABLED , bd=0, font=(’calibri’, ’12’))

Globals.tab2 canvas.pack(expand=True, fill=BOTH)

#################################### ##############################
#################################### TAB 4− Profiles ##############################
#################################### ##############################
#−−−
Code to place all widgets related to the tab ”Profiles” in Fidora
They are all placed in the global canvas tab4 canvas defines
in the file Globals.py.
Whereever a function is called the function is written in
the file Profiles functions .py.
#−−−

Globals.tab4 canvas.config(bg=’#ffffff’, bd = 0, relief=FLAT, highlightthickness=0)

profiles explain text = tk.Text(Globals.tab4 canvas , height=4, width=140)

profiles explain text.insert(INSERT, "\
Upload a scanned image of film, along with the RT Plan and doseplan files from the \
corresponding doseplan and investigate the profiles. There are three \npossible \
profiles , horizontal , vertical and manually drawn profile.To make up for any \
positional error when scanning the film, or marking the \nisocenter/reference \
point, it is possible to make adjustments to the placement of the ROI in the film. \
This is done using the arrow buttons above the plot.")

profiles explain text.grid(row=0, column=0, columnspan=3, \
sticky=N+S+E+W, pady=(20,20), padx=(20,10))

Globals.tab4 canvas.grid columnconfigure(0, weight=0)

Globals.tab4 canvas.grid rowconfigure(0, weight=0)

profiles explain text.config(state=DISABLED, \
font=(’calibri’, ’11’), bg =’#ffffff’, relief=FLAT)

profiles explain text.grid propagate(0)

profiles upload film frame = tk.Frame(Globals.tab4 canvas)

129

profiles upload film frame.grid(row=3, column = 0, sticky=N+S+W+E)

Globals.tab4 canvas.grid columnconfigure(1, weight=0)

Globals.tab4 canvas.grid rowconfigure(1, weight=0)

profiles upload film frame.config(bg = ’#ffffff’, height=1, width=1)

profiles upload film frame.grid propagate(0)

Globals.profiles upload button film = \
tk.Button(profiles upload film frame , text=’Browse’,\
image = profiles add film button image , cursor=’hand2’,font=(’calibri’, ’14’), \

relief=FLAT, state=ACTIVE, command=Profile functions.UploadFilm)

Globals.profiles upload button film.pack(expand=True, fill=BOTH)

Globals.profiles upload button film.config(bg=’#ffffff’, activebackground=’#ffffff’,\
activeforeground=’#ffffff’, highlightthickness=0)

Globals.profiles upload button film.image = profiles add film button image

profiles upload doseplan frame = tk.Frame(Globals.tab4 canvas)

profiles upload doseplan frame.grid(row=5, column = 0, sticky=N+S+E+W)

Globals.tab4 canvas.grid columnconfigure(3, weight=0)

Globals.tab4 canvas.grid rowconfigure(3, weight=0)

profiles upload doseplan frame.config(bg = ’#ffffff’, height=1, width=1)

profiles upload doseplan frame.grid propagate(0)

Globals.profiles upload button doseplan = \
tk.Button(profiles upload doseplan frame , text=’Browse’,\
image=Globals.profiles add doseplan button image , cursor=’hand2’, \

font=(’calibri’, ’14’), relief=FLAT, state=DISABLED , \
command=Profile functions.UploadDoseplan button function)

Globals.profiles upload button doseplan.pack(expand=True, fill=BOTH)

Globals.profiles upload button doseplan.configure(bg=’#ffffff’, \
activebackground=’#ffffff’, activeforeground=’#ffffff’, highlightthickness=0)

Globals.profiles upload button doseplan.image = \
Globals.profiles add doseplan button image

profiles upload rtplan frame = tk.Frame(Globals.tab4 canvas)

profiles upload rtplan frame.grid(row=4, column=0, sticky=N+S+W+E)

Globals.tab4 canvas.grid columnconfigure(10, weight=0)

Globals.tab4 canvas.grid rowconfigure(10, weight=0)

profiles upload rtplan frame.config(bg=’#ffffff’, height=1, width=1)

profiles upload rtplan frame.grid propagate(0)

Globals.profiles upload button rtplan = \
tk.Button(profiles upload rtplan frame , text=’Browse’,\
image=profiles add rtplan button image ,cursor=’hand2’, font=(’calibri’, ’14’), \

relief=FLAT, state=DISABLED , command=Profile functions.UploadRTplan)

Globals.profiles upload button rtplan.pack(expand=True, fill=BOTH)

130

Globals.profiles upload button rtplan.configure(bg=’#ffffff’, \
activebackground=’#ffffff’, activeforeground=’#ffffff’, highlightthickness=0)

Globals.profiles upload button rtplan.image=profiles add rtplan button image

profiles film orientation frame = tk.Frame(Globals.tab4 canvas)

profiles film orientation frame.grid(row=1, column=0, sticky=N+S+W+E)

profiles film orientation frame.config(relief=FLAT, highlightthickness=0, \
bd=0, bg=’#ffffff’, height=1, width=1)

Globals.tab4 canvas.grid columnconfigure(2, weight=0)

Globals.tab4 canvas.grid rowconfigure(2, weight=0)

profiles film orientation frame.grid propagate(0)

film orientation menu text = tk.Text(profiles film orientation frame , \
width=14, height=1)

film orientation menu text.insert(INSERT, "Film orientation:")

film orientation menu text.config(state=DISABLED , \
font=(’calibri’, ’10’), bd = 0, relief=FLAT)

film orientation menu text.pack(side=LEFT)

Globals.profiles film orientation menu = OptionMenu(profiles film orientation frame ,\
Globals.profiles film orientation , ’Axial’, ’Coronal’, ’Sagittal’)

Globals.profiles film orientation menu.pack(side=LEFT)

Globals.profiles film orientation menu.config(bg = ’#ffffff’, width=15, relief=FLAT)

profiles film orientation help frame = tk.Frame(profiles film orientation frame)

profiles film orientation help frame.pack(side=LEFT)

profiles film orientation help frame.configure(bg=’#ffffff’)

profiles help button orientation = \
tk.Button(profiles film orientation help frame , text=’help’,\

image=Globals.help button , cursor=’hand2’, font=(’calibri’, ’14’), \
relief=FLAT, state=ACTIVE, command=Profile functions.help showPlanes)

profiles help button orientation.pack(expand=True, fill=BOTH)

profiles help button orientation.configure(bg=’#ffffff’,activebackground=’#ffffff’,\
activeforeground=’#ffffff’, highlightthickness=0)

profiles help button orientation.image=Globals.help button

profiles film factor frame = tk.Frame(Globals.tab4 canvas)

profiles film factor frame.grid(row=2, column=0, sticky=N+S+W+E)

Globals.tab4 canvas.grid columnconfigure(30, weight=0)

Globals.tab4 canvas.grid rowconfigure(30, weight=0)

profiles film factor frame.config(relief=FLAT, \
highlightthickness=0, bd=0, bg=’#ffffff’, height=1, width=1)

profiles film factor frame.grid propagate(0)

131

profiles film factor = tk.Text(profiles film factor frame , width=20, height=2)

profiles film factor.insert(INSERT, "Film factor \n(number of fractions):")
profiles film factor.config(state=DISABLED , \

font=(’calibri’, ’10’), bd = 0, relief=FLAT)

profiles film factor.pack(side=LEFT)

Globals.profiles film factor input = \
tk.Text(profiles film factor frame , width=8, height=1)

Globals.profiles film factor input.pack(side=LEFT)

Globals.profiles film factor input.insert(INSERT, " ")

Globals.profiles film factor input.config(state=NORMAL, \
font=(’calibri’, ’10’), bd = 2, bg=’#ffffff’)

Globals.tab4 canvas.grid columnconfigure(31, weight=0)

Globals.tab4 canvas.grid rowconfigure(31, weight=0)

profiles resetAll frame = tk.Frame(Globals.tab4 canvas)

profiles resetAll frame.grid(row=7,column=0, sticky=N+S+W+E)

Globals.tab4 canvas.grid columnconfigure(5, weight=0)

Globals.tab4 canvas.grid rowconfigure(5, weight=0)

profiles resetAll frame.config(bg=’#ffffff’, height=1, width=1)

profiles resetAll frame.grid propagate(0)

profiles resetAll button = tk.Button(profiles resetAll frame , text=’Reset’, \
image=dose response clear all button image , cursor=’hand2’, \

font=(’calibri’, ’14’),relief=FLAT, state=ACTIVE, \
command=Profile functions.clearAll)

profiles resetAll button.pack(expand=True, fill=BOTH)

profiles resetAll button.configure(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

profiles resetAll button.image = dose response clear all button image

Globals.profiles adjust button left = \
tk.Button(Globals.profiles redefine film ROI frame , \
text="left", image=Globals.adjust button left image ,cursor=’hand2’, \

font=(’calibri’, ’12’), relief=FLAT, state=DISABLED , command=lambda: \
Profile functions.adjustROILeft\

(Globals.profiles choice of profile line type.get()))

Globals.profiles adjust button left.pack(side=LEFT)

Globals.profiles adjust button left.config(bg=’#ffffff’, activebackground=’#ffffff’,\
activeforeground=’#ffffff’, highlightthickness=0)

Globals.profiles adjust button left.image = Globals.adjust button left image

Globals.profiles adjust button up = \
tk.Button(Globals.profiles redefine film ROI frame , \

text="left", image=Globals.adjust button up image ,cursor=’hand2’, \

132

font=(’calibri’, ’12’), relief=FLAT, state=DISABLED , command=lambda: \
Profile functions.adjustROIUp\

(Globals.profiles choice of profile line type.get()))

Globals.profiles adjust button up.pack(side=LEFT)

Globals.profiles adjust button up.config(bg=’#ffffff’, activebackground=’#ffffff’,\
activeforeground=’#ffffff’, highlightthickness=0)

Globals.profiles adjust button up.image = Globals.adjust button up image

Globals.profiles adjust button down = \
tk.Button(Globals.profiles redefine film ROI frame , \
text="left", image=Globals.adjust button down image ,cursor=’hand2’, \

font=(’calibri’, ’12’), relief=FLAT, state=DISABLED , command=lambda: \
Profile functions.adjustROIDown\

(Globals.profiles choice of profile line type.get()))

Globals.profiles adjust button down.pack(side=LEFT)

Globals.profiles adjust button down.config(bg=’#ffffff’, activebackground=’#ffffff’,\
activeforeground=’#ffffff’, highlightthickness=0)

Globals.profiles adjust button down.image = Globals.adjust button down image

Globals.profiles adjust button right = \
tk.Button(Globals.profiles redefine film ROI frame , text="left", \

image=Globals.adjust button right image ,cursor=’hand2’, \
font=(’calibri’, ’12’),relief=FLAT, state=DISABLED , command=lambda: \

Profile functions.adjustROIRight\
(Globals.profiles choice of profile line type.get()))

Globals.profiles adjust button right.pack(side=LEFT)

Globals.profiles adjust button right.config(bg=’#ffffff’,activebackground=’#ffffff’,\
activeforeground=’#ffffff’, highlightthickness=0)

Globals.profiles adjust button right.image = Globals.adjust button right image

Globals.profiles adjust button return = \
tk.Button(Globals.profiles redefine film ROI frame , \
text="Original",cursor=’hand2’, font=(’calibri’, ’12’), relief=FLAT, \

state=DISABLED, command=lambda:Profile functions.\
returnToOriginalROICoordinates\

(Globals.profiles choice of profile line type.get()))

Globals.profiles adjust button return.pack(side=LEFT)

Globals.profiles adjust button return.config(bg=’#ffffff’,\
activebackground=’#ffffff’,activeforeground=’#ffffff’, highlightthickness=0)

profiles export plot frame= tk.Frame(Globals.tab4 canvas)

profiles export plot frame.grid(row=6,column=0, sticky=N+S+W+E)

Globals.tab4 canvas.grid columnconfigure(20, weight=0)

Globals.tab4 canvas.grid rowconfigure(20, weight=0)

profiles export plot frame.config(bg=’#ffffff’, height=1, width=1)

133

profiles export plot frame.grid propagate(0)

Globals.profiles export plot button = \
tk.Button(profiles export plot frame , text = "Export plot", \

image=Globals.export plot button image , cursor=’hand2’, \
font=(’calibri’, ’12’), relief=FLAT, state=DISABLED , \

command=Profile functions.nothing function)

Globals.profiles export plot button.pack()

Globals.profiles export plot button.config(bg=’#ffffff’,activebackground=’#ffffff’,\
activeforeground=’#ffffff’, highlightthickness=0)

Globals.profiles export plot button.image = Globals.export plot button image

Globals.profiles choice of profile line type.trace add(’write’, \
Profile functions.trace profileLineType)

Globals.tab4 canvas.pack(expand=True, fill=BOTH)

################################## #######################################
################################## Tab 5 DVH #######################################
################################## #######################################
#−−−
Code to place all widgets related to the tab ”DVH” in Fidora.
They are all places in the global canvas tab5 canvas defined
in the file Globals.py.
Whereever a function is called the function is written in the
file DVH functions.py
#−−−

Globals.tab5 canvas.config(bg=’#ffffff’, bd = 0, relief=FLAT, highlightthickness=0)

DVH explain text = tk.Text(Globals.tab5 canvas , height=4, width=140)

DVH explain text.insert(INSERT, "\
Upload the scanned images of film, along with RT plan, stucture and doseplan \
files and study the dose volume histogram \nof the different defined volumes. \
By un−checking the buttons for each volume it is possible to hide the volume \n\
in the plot, making it easier to study each of them separately.")

DVH explain text.grid(row=0, column=0, columnspan=7, \
sticky=N+S+E+W, pady=(20,20), padx=(20,10))

Globals.tab5 canvas.grid columnconfigure(0, weight=0)

Globals.tab5 canvas.grid rowconfigure(0, weight=0)

DVH explain text.config(state=DISABLED , \
font=(’calibri’, ’11’), bg =’#ffffff’, relief=FLAT)

134

DVH upload film frame = tk.Frame(Globals.tab5 canvas)

DVH upload film frame.grid(row=3,column=0,padx=(50,40),pady=(10,20),sticky=N+S+W)

Globals.tab5 canvas.grid columnconfigure(1, weight=0)

Globals.tab5 canvas.grid rowconfigure(1, weight=0)

DVH upload film frame.config(bg = ’#ffffff’)

Globals.DVH upload button film = tk.Button(DVH upload film frame , text=’Browse’, \
image = profiles add film button image , cursor=’hand2’,font=(’calibri’, ’14’),\

relief=FLAT, state=ACTIVE, command=DVH functions.UploadFilm)

Globals.DVH upload button film.pack(expand=True, fill=BOTH)

Globals.DVH upload button film.config(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

Globals.DVH upload button film.image = profiles add film button image

DVH upload doseplan frame = tk.Frame(Globals.tab5 canvas)

DVH upload doseplan frame.grid(row=4,column=0,\
padx=(210,0),sticky=N+S+W,pady=(10,20))

Globals.tab5 canvas.grid columnconfigure(3, weight=0)

Globals.tab5 canvas.grid rowconfigure(3, weight=0)

DVH upload film frame.config(bg = ’#ffffff’)

Globals.DVH upload button doseplan = \
tk.Button(DVH upload doseplan frame , text=’Browse’,\
image=Globals.profiles add doseplan button image ,cursor=’hand2’, \

font=(’calibri’, ’14’),relief=FLAT, state=DISABLED , \
command=DVH functions.UploadDoseplan button function)

Globals.DVH upload button doseplan.pack(expand=True, fill=BOTH)

Globals.DVH upload button doseplan.configure(bg=’#ffffff’, \
activebackground=’#ffffff’,activeforeground=’#ffffff’, highlightthickness=0)

Globals.DVH upload button doseplan.image = \
Globals.profiles add doseplan button image

DVH upload rtplan frame = tk.Frame(Globals.tab5 canvas)

DVH upload rtplan frame.grid(row=3, column=0, \
padx=(210,0), sticky=N+S+W, pady=(10,20))

Globals.tab5 canvas.grid columnconfigure(10, weight=0)

Globals.tab5 canvas.grid rowconfigure(10, weight=0)

DVH upload rtplan frame.config(bg=’#ffffff’)

Globals.DVH upload button rtplan = tk.Button(DVH upload rtplan frame , text=’Browse’,\
image=profiles add rtplan button image ,cursor=’hand2’, font=(’calibri’, ’14’),\

relief=FLAT, state=DISABLED , command=DVH functions.UploadRTplan)

Globals.DVH upload button rtplan.pack(expand=True, fill=BOTH)

Globals.DVH upload button rtplan.configure(bg=’#ffffff’, activebackground=’#ffffff’,\
activeforeground=’#ffffff’, highlightthickness=0)

135

Globals.DVH upload button rtplan.image=profiles add rtplan button image

DVH upload struct frame = tk.Frame(Globals.tab5 canvas)

DVH upload struct frame.grid(row=4, column=0, \
padx=(50,40), sticky=N+S+W, pady=(10,20))

Globals.tab5 canvas.grid columnconfigure(32, weight=0)

Globals.tab5 canvas.grid rowconfigure(32, weight=0)

DVH upload struct frame.config(bg=’#ffffff’)

Globals.DVH upload button struct = tk.Button(DVH upload struct frame , \
text=’Upload struct’, image=DVH add structure button image ,\

cursor=’hand2’, font=(’calibri’, ’14’), \
relief=FLAT, state=DISABLED, command=DVH functions.UploadStruct)

Globals.DVH upload button struct.pack(expand=True, fill=BOTH)

Globals.DVH upload button struct.configure(bg=’#ffffff’, \
activebackground=’#ffffff’, activeforeground=’#ffffff’, highlightthickness=0)

Globals.DVH upload button struct.image = DVH add structure button image

film orientation frame = tk.Frame(Globals.tab5 canvas)

film orientation frame.grid(row=1, column=0, sticky=N+S+E+W, \
pady=(10,20), padx=(40,30))

Globals.tab5 canvas.grid columnconfigure(2, weight=0)

Globals.tab5 canvas.grid rowconfigure(2, weight=0)

film orientation frame.config(bg=’#ffffff’, bd=0, highlightthickness=0, relief=FLAT)

film orientation menu text = tk.Text(film orientation frame , width=14, height=1)

film orientation menu text.insert(INSERT, "Film orientation:")

film orientation menu text.config(state=DISABLED , \
font=(’calibri’, ’10’), bd = 0, relief=FLAT)

film orientation menu text.pack(side=LEFT)

Globals.DVH film orientation menu = OptionMenu(film orientation frame , \
Globals.DVH film orientation , ’Axial’, ’Coronal’, ’Sagittal’)

Globals.DVH film orientation menu.pack(side=LEFT)

Globals.DVH film orientation menu.config(bg = ’#ffffff’, width=15, relief=FLAT)

DVH film orientation help frame = tk.Frame(film orientation frame)

DVH film orientation help frame.pack(side=LEFT)

DVH film orientation help frame.configure(bg=’#ffffff’)

DVH help button orientation = \
tk.Button(DVH film orientation help frame , text=’help’, \
image=Globals.help button , cursor=’hand2’, font=(’calibri’, ’14’), \

relief=FLAT, state=ACTIVE, command=DVH functions.help showPlanes)

DVH help button orientation.pack(expand=True, fill=BOTH)

136

DVH help button orientation.configure(bg=’#ffffff’,activebackground=’#ffffff’,\
activeforeground=’#ffffff’, highlightthickness=0)

DVH help button orientation.image=Globals.help button

DVH film factor frame = tk.Frame(Globals.tab5 canvas)

DVH film factor frame.grid(row=2, column=0, sticky=N+S+E+W, \
pady=(10,20), padx=(40,30))

Globals.tab5 canvas.grid columnconfigure(30, weight=0)

Globals.tab5 canvas.grid rowconfigure(30, weight=0)

DVH film factor frame.config(bg=’#ffffff’, bd=0, highlightthickness=0, relief=FLAT)

DVH film factor = tk.Text(DVH film factor frame , width=20, height=2)

DVH film factor.insert(INSERT, "Film factor \n(number of fractions):")
DVH film factor.config(state=DISABLED, font=(’calibri’, ’10’), bd = 0, relief=FLAT)

DVH film factor.pack(side=LEFT)

Globals.DVH film factor input = tk.Text(DVH film factor frame , width=8, height=1)

Globals.DVH film factor input.pack(side=LEFT)

Globals.DVH film factor input.insert(INSERT, " ")

Globals.DVH film factor input.config(state=NORMAL, \
font=(’calibri’, ’10’), bd = 2, bg=’#ffffff’)

DVH resetAll frame = tk.Frame(Globals.tab5 canvas)

DVH resetAll frame.grid(row=5,column=0, padx=(50,40), sticky=S+N+W, pady=(10,20))

Globals.tab5 canvas.grid columnconfigure(5, weight=0)

Globals.tab5 canvas.grid rowconfigure(5, weight=0)

profiles resetAll frame.config(bg=’#ffffff’)

DVH resetAll button = tk.Button(DVH resetAll frame , text=’Reset’, \
image=dose response clear all button image , \
cursor=’hand2’, font=(’calibri’, ’14’), relief=FLAT, state=ACTIVE, \

command=DVH functions.clearAll)

DVH resetAll button.pack(expand=True, fill=BOTH)

DVH resetAll button.configure(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

DVH resetAll button.image = dose response clear all button image

DVH export frame = tk.Frame(Globals.tab5 canvas)

DVH export frame.grid(row=5,column=0, padx=(210,0), sticky=S+N+W, pady=(10,20))

Globals.tab5 canvas.grid columnconfigure(50, weight=0)

Globals.tab5 canvas.grid rowconfigure(50, weight=0)

DVH export frame.config(bg=’#ffffff’)

Globals.DVH export button = tk.Button(DVH export frame , text=’Reset’, \
image=Globals.export plot button image , \

137

cursor=’hand2’, font=(’calibri’, ’14’), relief=FLAT, state=DISABLED , \
command=DVH functions.nothingButton)

Globals.DVH export button.pack(expand=True, fill=BOTH)

Globals.DVH export button.configure(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

Globals.DVH export button.image = Globals.export plot button image

Globals.temp image canvas = tk.Canvas(Globals.DVH view film doseplan ROI)

Globals.temp image canvas.grid(row=0, column=0, sticky=N+S+W+E)

Globals.temp image canvas.config(bg=’#ffffff’, bd=0, \
highlightthickness=0,relief=FLAT)

Globals.temp image canvas.create image(270,150, image=Globals.dVH temp image)

Globals.tab5 canvas.pack(expand=True, fill=BOTH)

##################################### End statement ################################
Globals.form.mainloop()

Globals.py

#−−−
#
Globals.py
version 26.07.20
#
File to create global variables that can be used in several files
related to Fidora
#
#−−−

import tkinter as tk

from tkinter import ttk, StringVar , IntVar, Scrollbar , RIGHT, Y, \
HORIZONTAL , E, W, N, S, BOTH, Frame, Canvas, LEFT, FLAT, INSERT, DISABLED , ALL,\

X, BOTTOM, DoubleVar , PanedWindow , RAISED, TOP, Radiobutton , \
CENTER, BooleanVar

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.figure import Figure

from matplotlib.backends.backend tkagg import FigureCanvasTkAgg

138

#−−−
Create global variables that will be defined as images
#−−−
global upload button image

global dose response dose border

global save button

global help button

global done button image

global profiles add doseplan button image

global profiles add doseplans button image

global adjust button left image

global adjust button right image

global adjust button up image

global adjust button down image

global dose response upload files here

global dose response equation written here

global export plot button image

global dVH temp image

#−−−
Create the main window form, in which a frame is placed.
Scrollbar is defined in main window
#−−−
global form

form = tk.Tk()

over all frame = tk.Frame(form, bd=0, relief=FLAT)

over all canvas = Canvas(over all frame)

xscrollbar = Scrollbar(over all frame , orient=HORIZONTAL , \
command=over all canvas.xview)

yscrollbar = Scrollbar(over all frame , command=over all canvas.yview)

scroll frame = ttk.Frame(over all canvas)

scroll frame.bind("<Configure>", \
lambda e: over all canvas.configure(scrollregion=over all canvas.bbox(’all’)))

over all canvas.create window((0,0), window=scroll frame , anchor=’nw’)

over all canvas.configure(xscrollcommand=xscrollbar.set, \
yscrollcommand=yscrollbar.set)

over all frame.config(highlightthickness=0, bg=’#ffffff’)

over all canvas.config(highlightthickness=0, bg=’#ffffff’)

over all frame.pack(expand=True, fill=BOTH)

139

over all canvas.grid(row=0, column=0, sticky=N+S+E+W)

over all frame.grid columnconfigure(0, weight=1)

over all frame.grid rowconfigure(0, weight=1)

xscrollbar.grid(row=1, column=0, sticky=E+W)

over all frame.grid columnconfigure(1, weight=0)

over all frame.grid rowconfigure(1, weight=0)

yscrollbar.grid(row=0, column=1, sticky=N+S)

over all frame.grid columnconfigure(2, weight=0)

over all frame.grid rowconfigure(2, weight=0)

#−−−
Create the Notebook (tab parent) which holds the different tabs in Fidora
Then each tab is is created as a frame. In each frame the global canvases
are placed holding all widgets placed in notebook.py
#−−−
global tab parent

tab parent = ttk.Notebook(scroll frame)

tab parent.borderWidth=0

tab parent.grid(row=1, column=0, sticky=E+W+N+S, pady=(0,0), padx =(0,0))

global intro tab

intro tab = ttk.Frame(tab parent)

intro tab.config(relief=FLAT)

global tab1

tab1 = ttk.Frame(tab parent)

global tab2

tab2 = ttk.Frame(tab parent)

global tab3

tab3 = ttk.Frame(tab parent)

global tab4

tab4 = ttk.Frame(tab parent)

global tab5

tab5 = ttk.Frame(tab parent)

global tab1 canvas

tab1 canvas = tk.Canvas(tab1)

global tab2 canvas

tab2 canvas = tk.Canvas(tab2)

global tab3 canvas

tab3 canvas = tk.Canvas(tab3)

global tab4 canvas

tab4 canvas = tk.Canvas(tab4)

global tab5 canvas

tab5 canvas= tk.Canvas(tab5)

140

#−−−
All variables defined here are related to the tab CoMet and will be used in
both notebook.py and CoMet functions.py
#−−−
global CoMet progressbar

CoMet progressbar = ttk.Progressbar(tab1 canvas ,orient ="horizontal",\
length =400, mode ="determinate")

CoMet progressbar.grid(row=1, column=0, columnspan=1, \
sticky=W+S, pady=(0,35), padx=(55,50))

tab1 canvas.grid columnconfigure(12, weight=0)

tab1 canvas.grid rowconfigure(12, weight=0)

CoMet progressbar["maximum"] = 100

CoMet progressbar["value"] = 0

global CoMet progressbar counter

CoMet progressbar counter = 0

global CoMet progressbar check file

CoMet progressbar check file = True

global CoMet progressbar check folder

CoMet progressbar check folder = True

global CoMet progressbar text

CoMet progressbar text = tk.Text(tab1 canvas , height=1, width=5)

CoMet progressbar text.grid(row=1, column=0, columnspan=1, \
sticky=E, padx=(0,158), pady=(0,36))

tab1 canvas.grid columnconfigure(14, weight=0)

tab1 canvas.grid rowconfigure(14, weight=0)

CoMet progressbar text.insert(INSERT, "0%")

CoMet progressbar text.config(state=DISABLED, bd=0, relief=FLAT, \
bg=’#ffffff’,font=(’calibri’, ’10’, ’bold’))

global CoMet dpi

CoMet dpi = StringVar(tab1)

CoMet dpi.set("127")

global CoMet saveAs

CoMet saveAs = tk.StringVar(tab1)

CoMet saveAs.set(".dcm")

global CoMet uploaded filename

CoMet uploaded filename=StringVar(tab1)

CoMet uploaded filename.set("Error!")

141

global CoMet export folder

CoMet export folder=StringVar(tab1)

CoMet export folder.set("Error!")

global CoMet image to canvas

global CoMet correcte image filename box

global CoMet corrected image filename

CoMet corrected image filename=StringVar(tab1)

CoMet corrected image filename.set("Error!")

global CoMet patientName

CoMet patientName=StringVar(tab1)

CoMet patientName.set("Error!")

global CoMet correctedImage

CoMet correctedImage=None

global CoMet border 1 label

CoMet border 1 label = tk.Label(tab1 canvas)

global CoMet border 2 label

CoMet border 2 label = tk.Label(tab1 canvas)

global CoMet border 3 label

CoMet border 3 label = tk.Label(tab1 canvas)

global CoMet border 4 label

CoMet border 4 label = tk.Label(tab1 canvas)

global CoMet save button frame 1

CoMet save button frame 1 = tk.Frame(tab1 canvas)

global CoMet save button 1

CoMet save button 1 = tk.Button(CoMet save button frame 1)

global CoMet save filename

CoMet save filename = tk.Text(CoMet border 3 label , height=1, width=30)

global CoMet print corrected image

CoMet print corrected image = tk.Canvas(tab1 canvas)

global CoMet uploaded file text

142

#−−−
All variables defined here are related to the tab Dose Response
and will be used in notebook.py and Dose response functions.py
#−−−
tab2 files frame = tk.Frame(tab2 canvas)

tab2 files frame.config(relief=FLAT, bg=’#ffffff’, highlightthickness=0, bd=0)

tab2 scroll canvas = tk.Canvas(tab2 files frame)

tab2 scroll canvas.config(bg=’#ffffff’, height=220, width=400,\
highlightthickness=0, bd=0, relief=FLAT)

tab2 scroll canvas.grid propagate(0)

scroll = Scrollbar(tab2 files frame , command=tab2 scroll canvas.yview)

scroll.config(relief=FLAT)

scrollable frame= tk.Frame(tab2 scroll canvas)

scrollable frame.bind("<Configure>", \
lambda e: tab2 scroll canvas.configure\

(scrollregion=tab2 scroll canvas.bbox(’all’)))

tab2 scroll canvas.create window((0,0), window=scrollable frame , anchor=’nw’)

tab2 scroll canvas.configure(yscrollcommand=scroll.set)

global tab2 canvas files

tab2 canvas files = tk.Canvas(scrollable frame)

tab2 canvas files.config(relief=FLAT, bg=’#ffffff’, \
highlightthickness=0, bd=0)

tab2 canvas files.pack(fill =BOTH, expand=True)

tab2 files frame.grid(row=1, column=0, columnspan=2, rowspan=2, \
sticky=N+S+E+W, padx=(10,0), pady=(10,0))

tab2 canvas.grid columnconfigure(1, weight=0)

tab2 canvas.grid rowconfigure(1, weight=0)

tab2 scroll canvas.pack(side=LEFT, fill=BOTH, expand=True)

scroll.pack(side=RIGHT, fill=Y)

global dose response save calibration button

global doseResponse dpi

doseResponse dpi=StringVar()

doseResponse dpi.set("127")

global dose response var1

dose response var1= IntVar()

143

dose response var1.set(1)

global dose response var2

dose response var2 = IntVar()

dose response var2.set(1)

global dose response var3

dose response var3 = IntVar()

dose response var3.set(1)

global dose response uploaded filenames

dose response uploaded filenames = np.array([])

global dose response new window row count

dose response new window row count = 4

global dose response new window weight count

dose response new window weight count = 4

global avg red vector

avg red vector = []

global avg green vector

avg green vector = []

global avg blue vector

avg blue vector = []

global dose response files row count

dose response files row count = 2

global dose response files weightcount

dose response files weightcount = 8

global dose response inOrOut

dose response inOrOut = True

global dose response delete buttons

dose response delete buttons = []

global dose response red list

dose response red list = []

global dose response green list

dose response green list = []

144

global dose response blue list

dose response blue list = []

global dose response dose list

dose response dose list = []

global popt red

popt red = np.zeros(3)

global pcov red

pcov red = np.zeros(3)

global dose response batch number

dose response batch number = "−"

global dose response equation frame

dose response equation frame = tk.Frame(tab2 canvas)

dose response equation frame.grid(row=3, column=3, columnspan=1, \
sticky=E+W+N+S, padx=(30,0), pady=(0,0))

tab2 canvas.grid columnconfigure(8, weight=0)

tab2 canvas.grid rowconfigure(8, weight=0)

dose response equation frame.config(bg=’#ffffff’, \
relief=FLAT, highlightthickness=0, width=650, height=210)

dose response equation frame.grid propagate(0)

global dose response equation image

global dose response plot frame

dose response plot frame = tk.Frame(tab2 canvas)

dose response plot frame.grid(row=1, column=3, rowspan=2, columnspan=4, \
sticky=N+S+E+W, pady=(0,5), padx=(30,5))

tab2 canvas.grid columnconfigure(9, weight=0)

tab2 canvas.grid rowconfigure(9, weight=0)

dose response plot frame.config(bg=’#ffffff’, \
relief=FLAT, highlightthickness=0, height=460,width=650)

dose response plot frame.grid propagate(0)

dose response fig = Figure(figsize=(6,4))

dose response a = dose response fig.add subplot(111, ylim=(0,40000), xlim=(0,500))

dose response plot canvas = FigureCanvasTkAgg\
(dose response fig , master=dose response plot frame)

dose response plot canvas.get tk widget().grid(row=0,column=0,\
columnspan=4, sticky=N+S+E+W, padx=(5,0), pady=(0,0))

dose response a.set title ("Dose−response", fontsize=12)
dose response a.set ylabel("Pixel value", fontsize=12)

145

dose response a.set xlabel("Dose", fontsize=12)

dose response fig.tight layout()

global dose response sd list red

dose response sd list red = []

global dose response sd list green

dose response sd list green = []

global dose response sd list blue

dose response sd list blue = []

global dose response sd avg red

dose response sd avg red = DoubleVar()

dose response sd avg red.set(0)

global dose response sd avg green

dose response sd avg green = DoubleVar()

dose response sd avg green.set(0)

global dose response sd avg blue

dose response sd avg blue = DoubleVar()

dose response sd avg blue.set(0)

global dose response sd min red

dose response sd min red = DoubleVar()

dose response sd min red.set(0)

global dose response sd min red dose

dose response sd min red dose = StringVar()

dose response sd min red dose.set(’−’)

global dose response sd min green

dose response sd min green = DoubleVar()

dose response sd min green.set(0)

global dose response sd min green dose

dose response sd min green dose = StringVar()

dose response sd min green dose.set(’−’)

global dose response sd min blue

dose response sd min blue = DoubleVar()

dose response sd min blue.set(0)

global dose response sd min blue dose

146

dose response sd min blue dose = StringVar()

dose response sd min blue dose.set(’−’)

global dose response sd max red

dose response sd max red = DoubleVar()

dose response sd max red.set(0)

global dose response sd max red dose

dose response sd max red dose = StringVar()

dose response sd max red dose.set(’−’)

global dose response sd max green

dose response sd max green = DoubleVar()

dose response sd max green.set(0)

global dose response sd max green dose

dose response sd max green dose = StringVar()

dose response sd max green dose.set(’−’)

global dose response sd max blue

dose response sd max blue = DoubleVar()

dose response sd max blue.set(0)

global dose response sd max blue dose

dose response sd max blue dose = StringVar()

dose response sd max blue dose.set(’−’)

global upload files here canvas

#−−−
All variables defined here is related to the tab Map Dose
and will be used in notebook.py and Map dose functions.py
#−−−

global map dose film dataset

map dose film dataset=StringVar(tab3)

map dose film dataset.set("Error!")

global map dose isocenter map x coord scaled

map dose isocenter map x coord scaled = []

global map dose isocenter map x coord unscaled

map dose isocenter map x coord unscaled = []

global map dose isocenter map y coord scaled

147

map dose isocenter map y coord scaled = []

global map dose isocenter map y coord unscaled

map dose isocenter map y coord unscaled = []

global map dose icocenter film

global map dose film batch

map dose film batch = IntVar()

map dose film batch.set(0)

global map dose ROI x start

map dose ROI x start = IntVar()

map dose ROI x start.set(0)

global map dose ROI y start

map dose ROI y start = IntVar()

map dose ROI y start.set(0)

global map dose ROI x end

map dose ROI x end = IntVar()

map dose ROI x end.set(0)

global map dose ROI y end

map dose ROI y end = IntVar()

map dose ROI y end.set(0)

#−−−
All variables defined here are related to the tab Profiles and
will be used in notebook.py and Profiles functions .py
#−−−
global profiles film orientation

profiles film orientation = StringVar()

profiles film orientation.set(’−’)

global profiles film orientation menu

global profiles film dataset

global profiles film dataset red channel

global profiles film dataset red channel dose

global profiles film variable ROI coords

global profiles film dataset ROI

global profiles film dataset ROI red channel

global profiles doseplan dataset ROI

148

global profiles film dataset ROI red channel dose

global profiles view film doseplan ROI

profiles view film doseplan ROI = tk.Canvas(tab4 canvas)

profiles view film doseplan ROI.grid(row=8, column=0, \
columnspan=10, rowspan=10, sticky=N+W)

tab4 canvas.grid columnconfigure(11, weight=0)

tab4 canvas.grid rowconfigure(11, weight=0)

profiles view film doseplan ROI.config(bg=’#ffffff’, \
relief=FLAT, highlightthickness=0)

global profile plot canvas

profile plot canvas = tk.Canvas(tab4 canvas)

profile plot canvas.grid(row=1, column=2, rowspan=7, columnspan=2, \
sticky=N+E+W, pady=(0,5), padx=(5,10))

tab4 canvas.grid columnconfigure(4, weight=0)

tab4 canvas.grid rowconfigure(4, weight=0)

profile plot canvas.config(bg=’#ffffff’, relief=FLAT, \
highlightthickness=0, width=950, height=520)

profile plot canvas.grid propagate(0)

profiles fig = Figure(figsize=(6,4))

profiles a = profiles fig.add subplot(111, ylim=(0,40000), xlim=(0,500))

profiles plot canvas = FigureCanvasTkAgg(profiles fig , master=profile plot canvas)

profiles plot canvas.get tk widget().grid(row=0,column=0,columnspan=4, \
rowspan=4, sticky=N+E+W+S, padx=(5,0), pady=(0,0))

profiles a.set title ("Profiles", fontsize=12)

profiles a.set ylabel("Dose (Gy)", fontsize=12)

profiles a.set xlabel("Distance (mm)", fontsize=12)

profiles fig.tight layout()

global profiles showPlanes image

global profiles showDirections image

global profiles depth

global profiles depth float

global profiles film factor input

global profiles mark isocenter button image

global profiles mark ROI button image

global profiles mark point button image

global profiles iscoenter coords

profiles iscoenter coords = []

149

global profiles film isocenter

global profiles film reference point

global profiles distance isocenter ROI

profiles distance isocenter ROI = []

global profiles distance reference point ROI

profiles distance reference point ROI = []

global profiles mark isocenter up down line

profiles mark isocenter up down line = []

global profiles mark isocenter right left line

profiles mark isocenter right left line = []

global profiles mark isocenter oval

profiles mark isocenter oval = []

global profiles mark ROI rectangle

profiles mark ROI rectangle = []

global profiles mark reference point oval

profiles mark reference point oval = []

global profiles ROI coords

profiles ROI coords = []

global profiles done button

profiles done button = None

global profiles done button reference point

profiles done button reference point = None

global profiles isocenter check

profiles isocenter check=False

global profiles reference point check

profiles reference point check = False

global profiles ROI check

profiles ROI check = False

global profiles ROI reference point check

profiles ROI reference point check = False

global profiles film batch

profiles film batch = IntVar()

profiles film batch.set(0)

global profiles popt red

profiles popt red = np.zeros(3)

150

global profiles upload button doseplan

global profiles upload button film

global profiles upload button rtplan

global profiles dataset doseplan

profiles dataset doseplan = None

global profiles dataset rtplan

global profiles test if added doseplan

global profiles test if added rtplan

profiles test if added doseplan = False

profiles test if added rtplan = False

global profiles isocenter mm

global profiles dose scaling doseplan

profiles dose scaling doseplan = []

global profiles max dose film

global profiles choose profile canvas

profiles choose profile canvas = tk.Canvas(profiles view film doseplan ROI)

profiles choose profile canvas.grid(row=0, column=0, sticky=N+S+W)

profiles choose profile canvas.config(bg=’#ffffff’, \
relief=FLAT, highlightthickness=0)

global profiles adjust ROI canvas

profiles adjust ROI canvas = tk.Canvas(profile plot canvas)

profiles adjust ROI canvas.grid(row=2, column=4, sticky=N+W)

profiles adjust ROI canvas.config(bg=’#ffffff’, \
relief=FLAT, highlightthickness=0)

global profiles choice of profile line type

profiles choice of profile line type = StringVar()

profiles choice of profile line type.set("h")

profiles choose profile type text = \
tk.Text(profiles choose profile canvas , height=1)

profiles choose profile type text.insert(INSERT, "How to draw the profile:")

profiles choose profile type text.pack(side=TOP)

profiles choose profile type text.config(bg=’#ffffff’, relief=FLAT, \
highlightthickness=0, state=DISABLED , font=(’calibri’, ’11’))

Radiobutton(profiles choose profile canvas , text="Horizontal", \

151

variable=profiles choice of profile line type , value="h", \
bg=’#ffffff’, cursor=’hand2’).pack(side=LEFT)

Radiobutton(profiles choose profile canvas , text="Vertical", \
variable=profiles choice of profile line type , value=’v’, \

bg=’#ffffff’, cursor=’hand2’).pack(side=LEFT)

Radiobutton(profiles choose profile canvas , text="Draw", \
variable=profiles choice of profile line type , value="d", \

bg=’#ffffff’, cursor=’hand2’).pack(side=LEFT)

profiles adjust ROI text = \
tk.Text(profiles adjust ROI canvas , width=20, height=1)

profiles adjust ROI text.insert(INSERT, "Adjust ROI in film: ")

profiles adjust ROI text.config(state=DISABLED , \
font=(’calibri’, ’11’), bg=’#ffffff’, relief=FLAT, bd=0)

profiles adjust ROI text.pack(side=TOP, padx=(0,0))

global profiles redefine film ROI frame

profiles redefine film ROI frame = tk.Frame(profiles adjust ROI canvas)

profiles redefine film ROI frame.pack(side=BOTTOM, padx=(0,0))

profiles redefine film ROI frame.config(bg=’#ffffff’)

global profiles adjust button left

global profiles adjust button right

global profiles adjust button down

global profiles adjust button up

global profiles film panedwindow

profiles film panedwindow = \
PanedWindow(profiles view film doseplan ROI , orient=’horizontal’)

profiles film panedwindow.grid(row=1, column=0, \
columnspan=3, rowspan=5, sticky=N+W)

profiles film panedwindow.configure(sashrelief = RAISED, showhandle=True)

global profiles scanned image text image

global profiles film dose map text image

global profiles doseplan text image

global doseplan write image

global film write image

global doseplan write image width

global doseplan write image height

global doseplan write image var x

doseplan write image var x= 0

global doseplan write image var y

doseplan write image var y = 0

global profiles coordinate in dataset

152

profiles coordinate in dataset = 0

global profiles first time in drawProfiles

profiles first time in drawProfiles = True

global new window factor textbox

global profiles doseplan lateral displacement

global profiles doseplan vertical displacement

global profiles doseplan longitudianl displacement

global profiles doseplan patient position

global profiles reference point in doseplan

global profiles input lateral displacement

global profiles input longitudinal displacement

global profiles input vertical displacement

global profiles isocenter or reference point

global profiles lateral

global profiles vertical

global profiles longitudinal

global profiles number of doseplans

profiles number of doseplans = 0

global profiles number of doseplans row count

profiles number of doseplans row count = 4

global profiles doseplans grid config count

profiles doseplans grid config count = 6

global profiles doseplans filenames

profiles doseplans filenames = []

global profiles doseplans factor text

profiles doseplans factor text = []

global profiles doseplans factor input

profiles doseplans factor input = []

global profiles doseplan dataset ROI several

profiles doseplan dataset ROI several = []

global profiles several img

profiles several img = []

global profiles film factor

global profiles lines

153

profiles lines = []

global end point

end point = None

global profiles line coords film

global profiles line coords doseplan

global profiles dataset film variable draw

global profiles dataset doesplan variable draw

global max dose doseplan

global profiles slice offset

global profiles offset

global profiles export plot button

#−−−
All variables defined here are related to the tab DVH and
will be used in notebook.py and DVH functions.py
#−−−

global DVH film orientation

DVH film orientation = StringVar()

DVH film orientation.set(’−’)

#global DVH doseplans scroll frame

global DVH number of doseplans

DVH number of doseplans = 0

global DVH number of doseplans row count

DVH number of doseplans row count = 4

global DVH doseplans grid config count

DVH doseplans grid config count = 6

global DVH doseplans filenames

DVH doseplans filenames = []

global DVH doseplans factor text

DVH doseplans factor text = []

global DVH doseplans factor input

DVH doseplans factor input = []

global DVH doseplan dataset ROI several

DVH doseplan dataset ROI several = []

154

global DVH several img

DVH several img = []

global profiles film factor

global DVH film orientation menu

global DVH film factor input

global DVH film factor

global DVH film dataset

global DVH film dataset red channel

global DVH film dataset ROI

global DVH film dataset ROI red channel

global DVH doseplan dataset ROI

global DVH film dataset ROI red channel dose

global DVH film write image

global DVH film dose write image

global DVH max dose film

global DVH max dose doseplan

global DVH view film doseplan ROI

DVH view film doseplan ROI = tk.Canvas(tab5 canvas)

DVH view film doseplan ROI.grid(row=1, column=1, rowspan=5, \
sticky=S+E+W+N, pady=(0,5), padx=(5,10), columnspan=6)

tab5 canvas.grid columnconfigure(11, weight=0)

tab5 canvas.grid rowconfigure(11, weight=0)

DVH view film doseplan ROI.config(bg=’#ffffff’, \
relief=FLAT, highlightthickness=0)

global temp image canvas

global DVH iscoenter coords

DVH iscoenter coords = []

global DVH film isocenter

global DVH film reference point

155

global DVH distance isocenter ROI

DVH distance isocenter ROI = []

global DVH distance reference point ROI

DVH distance reference point ROI = []

global DVH mark isocenter up down line

DVH mark isocenter up down line = []

global DVH mark isocenter right left line

DVH mark isocenter right left line = []

global DVH mark isocenter oval

DVH mark isocenter oval = []

global DVH mark ROI rectangle

DVH mark ROI rectangle = []

global DVH mark reference point oval

DVH mark reference point oval = []

global DVH ROI coords

DVH ROI coords = []

global DVH film variable ROI coords

global DVH done button

DVH done button = None

global DVH done button reference point

DVH done button reference point = None

global DVH isocenter check

DVH isocenter check=False

global DVH reference point check

DVH reference point check = False

global DVH ROI check

DVH ROI check = False

global DVH ROI reference point check

DVH ROI reference point check = False

global DVH film batch

DVH film batch = IntVar()

156

DVH film batch.set(0)

global DVH popt red

DVH popt red = np.zeros(3)

global DVH upload button doseplan

global DVH upload button film

global DVH upload button rtplan

global DVH upload button struct

global DVH dataset doseplan

global DVH dataset rtplan

global DVH dataset structure file

global DVH test if added doseplan

global DVH test if added rtplan

global DVH test if added struct

DVH test if added doseplan = False

DVH test if added rtplan = False

DVH test if added struct = False

global DVH isocenter mm

global DVH dose scaling doseplan

global DVH contour names

global DVH ROIContourSequence

global DVH contours

DVH contours = []

global DVH doseplan write image

global DVH doseplan write image width

global DVH doseplan write image height

global DVH doseplan lateral displacement

global DVH doseplan vertical displacement

global DVH doseplan longitudianl displacement

global DVH doseplan patient position

global DVH reference point in doseplan

157

global DVH input lateral displacement

global DVH input longitudinal displacement

global DVH input vertical displacement

global DVH slice offset

global DVH offset

global DVH isocenter or reference point

global DVH lateral

global DVH vertical

global DVH longitudinal

global DVH plot canvas

DVH plot canvas = tk.Canvas(tab5 canvas)

DVH plot canvas.grid(row=7, column=0, rowspan=30, columnspan=7, \
sticky=N+E+W, pady=(0,5), padx=(5,10))

tab5 canvas.grid columnconfigure(40, weight=0)

tab5 canvas.grid rowconfigure(40, weight=0)

DVH plot canvas.config(bg=’#ffffff’, relief=FLAT, \
highlightthickness=0, width=500, height=650)

DVH plot canvas.grid propagate(0)

global DVH list contours canvas

DVH list contours canvas = tk.Canvas(tab5 canvas)

DVH list contours canvas.grid(row=6, column=0, columnspan=7, sticky=N+S+W+E)

DVH list contours canvas.config(height=35, bd=0, highlightthickness=0, \
bg=’#ffffff’, relief=FLAT)

DVH list contours canvas.grid propagate(0)

DVH initial fig = Figure(figsize=(10,6))

DVH a = DVH initial fig.add subplot(111, ylim=(0,1), xlim=(0,50))

DVH initial plot canvas = FigureCanvasTkAgg(DVH initial fig , master=DVH plot canvas)

DVH initial plot canvas.get tk widget().grid(row=0,column=0,columnspan=4, \
sticky=N+E+W+S, padx=(5,0), pady=(0,0))

DVH a.set title ("Dose volume histogram", fontsize=12)

DVH a.set ylabel("Volume (%)", fontsize=12)

DVH a.set xlabel("Dose (Gy)", fontsize=12)

DVH initial fig.tight layout()

global DVH export button

#−−−
Here the correction matrix used to perform background corrections

158

on scanned images of radiochromic film are uploaded from *.txt
files . This will be used on all images of film being uploaded
into Fidora. Fidora only uses the correction matrix with 127 dpi,
but has the oppertunity to also use 72 dpi.
#−−−
global correction127 red

with open(’red 127.txt’, ’r’) as f:

correction127 red = [[float(num) for num in line.split(’,’)] for line in f]

correction127 red = np.matrix(correction127 red)

global correction127 green

with open(’green 127.txt’, ’r’) as f:

correction127 green = [[float(num) for num in line.split(’,’)] for line in f]

correction127 green = np.matrix(correction127 green)

global correction127 blue

with open(’blue 127.txt’, ’r’) as f:

correction127 blue = [[float(num) for num in line.split(’,’)] for line in f]

correction127 blue = np.matrix(correction127 blue)

global correction72 red

with open(’output red 72.txt’, ’r’) as f:

correction72 red = [[float(num) for num in line.split(’,’)] for line in f]

correction72 red = np.matrix(correction72 red)

global correction72 green

with open(’output green 72.txt’, ’r’) as f:

correction72 green = [[float(num) for num in line.split(’,’)] for line in f]

correction72 green = np.matrix(correction72 green)

global correction72 blue

with open(’output blue 72.txt’, ’r’) as f:

correction72 blue = [[float(num) for num in line.split(’,’)] for line in f]

correction72 blue = np.matrix(correction72 blue)

global correctionMatrix127

correctionMatrix127 = np.zeros((1270,1016,3))

correctionMatrix127[:,:,0] = correction127 blue[:,:]

correctionMatrix127[:,:,1] = correction127 green[:,:]

correctionMatrix127[:,:,2] = correction127 red[:,:]

global correctionMatrix72

correctionMatrix72 = np.zeros((720,576,3))

correctionMatrix72[:,:,0] = correction72 blue[:,:]

correctionMatrix72[:,:,1] = correction72 green[:,:]

correctionMatrix72[:,:,2] = correction72 red[:,:]

159

CoMet functions.py

#−−−
#
CoMet functions.py
version 26.07.20
#
To be used related to the tab CoMet in Fidora.
#
#−−−

import Globals

import tkinter as tk

from tkinter import filedialog , INSERT, DISABLED, messagebox , NORMAL, simpledialog , \
PhotoImage , BOTH, E, S, N, W, ACTIVE, FLAT

import os

from os.path import normpath , basename

import cv2

from cv2 import imread, IMREAD ANYCOLOR , IMREAD ANYDEPTH , imwrite

import numpy as np

import SimpleITK as sitk

import pydicom

from PIL import Image, ImageTk

def nothingButton():

#−−
Function to only return
Is used in cases where nothing should happen in
a active button (they will later be reconfigured)
#−−

return

def UploadAction(event=None):

#−−
Function to upload the scanned image of film.
Callback function to the button
CoMet upload button in notebook.py.
#−−

Globals.CoMet uploaded filename.set(filedialog.askopenfilename())

ext = os.path.splitext(Globals.CoMet uploaded filename.get())[−1].lower()
if(ext==".tif"):

Globals.CoMet uploaded file text = \

160

tk.Text(Globals.CoMet border 1 label , height=1, width=32)

Globals.CoMet uploaded file text.grid(row=0, column=0, columnspan=2, \
sticky=E+W, pady=(20,20), padx=(100,0))

Globals.CoMet uploaded file text.insert(INSERT, \
basename(normpath(Globals.CoMet uploaded filename.get())))

Globals.CoMet uploaded file text.config(state=DISABLED , bd=0, \
font=(’calibri’, ’10’), fg=’gray’, bg=’#ffffff’)

if (Globals.CoMet progressbar check file):

Globals.CoMet progressbar counter +=1

Globals.CoMet progressbar check file = False

Globals.CoMet progressbar["value"] = Globals.CoMet progressbar counter*25
Globals.CoMet progressbar text = \

tk.Text(Globals.tab1 canvas , height = 1, width=5)

Globals.CoMet progressbar text.grid(row=1, column=0, columnspan=1, \
sticky=E, padx=(0,158), pady=(0,36))

Globals.CoMet progressbar text.insert(INSERT, \
str(Globals.CoMet progressbar counter*25)+"%")

if(Globals.CoMet progressbar counter*25 == 100):
Globals.CoMet progressbar text.config(state=DISABLED, bd=0, \

relief=FLAT, bg=’#2C8EAD’, font=(’calibri’, ’10’, ’bold’))

else:

Globals.CoMet progressbar text.config(state=DISABLED, bd=0, \
relief=FLAT, bg=’#ffffff’, font=(’calibri’, ’10’, ’bold’))

elif(ext==""):

Globals.CoMet uploaded filename.set("Error!")

else:

messagebox.showerror("Error", "The file must be a .tif file")

Globals.CoMet uploaded filename.set("Error!")

def setCoMet export folder():

#−−
Function to choose which folder to place the
corrected image resulting in CoMet.
Callback function to the button
CoMet folder button in notebook.py.
#−−

Globals.CoMet export folder.set(filedialog.askdirectory())

if(Globals.CoMet export folder.get() == ""):

Globals.CoMet export folder.set("Error!")

else:

current folder = os.getcwd()

os.chdir(Globals.CoMet export folder.get())

161

save to folder=\
tk.Text(Globals.CoMet border 2 label , height=1, width=32)

save to folder.grid(row=0, column=0, columnspan=3, \
sticky=E+W, pady=(20,20), padx=(100,0))

save to folder.insert(INSERT, \
basename(normpath(Globals.CoMet export folder.get())))

save to folder.config(state=DISABLED , bd=0, \
font=(’calibri’, ’10’), fg=’gray’, bg=’#ffffff’)

os.chdir(current folder)

if(Globals.CoMet progressbar check folder):

Globals.CoMet progressbar counter +=1

Globals.CoMet progressbar check folder = False

Globals.CoMet progressbar["value"] = Globals.CoMet progressbar counter*25
Globals.CoMet progressbar text = \

tk.Text(Globals.tab1 canvas , height=1, width=5)

Globals.CoMet progressbar text.grid(row=1, column=0, \
columnspan=1, sticky=E, padx=(0,158), pady=(0,36))

Globals.CoMet progressbar text.insert(INSERT, \
str(Globals.CoMet progressbar counter*25) + "%")

if(Globals.CoMet progressbar counter*25 == 100):
Globals.CoMet progressbar text.config(state=DISABLED, \

bd=0, relief=FLAT, bg=’#2C8EAD’, font=(’calibri’, ’10’, ’bold’))

else:

Globals.CoMet progressbar text.config(state=DISABLED, \
bd=0, relief=FLAT, bg=’#ffffff’, font=(’calibri’, ’10’, ’bold’))

def checkAllWidgets(*args):
#−−
Function to check if all actions has been done
in CoMet and the user are ready to perform
the correction on the uploaded image.
Used in the function Correct() in current file .
#−−

if(Globals.CoMet uploaded filename.get()=="Error!" or \
Globals.CoMet export folder.get()=="Error!" or \

Globals.CoMet corrected image filename.get()=="Error!"):

return False

else:

return True

def correctionMatrix():

#−−
Function that performes the correction on the

162

uploaded image. This happens as an absolute
subtraction between the pixel values in the
image and the correction matrix.
Called in the function Correct() in current file .
#−−

dataset = cv2.imread(Globals.CoMet uploaded filename.get().lstrip(), \
cv2.IMREAD ANYCOLOR | cv2.IMREAD ANYDEPTH)

if(dataset is None):

current folder = os.getcwd()

script path = Globals.CoMet uploaded filename.get()

parent = os.path.dirname(script path)

os.chdir(parent)

dataset=cv2.imread(basename(normpath(script path)), \
cv2.IMREAD ANYCOLOR | cv2.IMREAD ANYDEPTH)

os.chdir(current folder)

if(dataset is None):

messagebox.showerror("Error", \
"Something has happen. Check that the filename only contain english letters")

return

if(dataset.shape[2] == 3):

if(dataset.shape[0]==1270 and dataset.shape[1]==1016):

temp = abs(dataset−Globals.correctionMatrix127)
Globals.CoMet correctedImage = np.clip(temp, 0, 65535)

elif(dataset.shape[0]==720 and dataset.shape[1]==576):

temp = abs(dataset− Globals.correctionMatrix72)
Globals.CoMet correctedImage = np.clip(temp, 0, 65535)

else:

messagebox.showerror("Error",\
"The resolution of the image is not \
consistent with dpi. Must be either 72 or 127")

else:

messagebox.showerror("Error",\
"The uploaded image need to be in RGB−format")

def Correct():

#−−
Function to initiate the correction on the
uploaded image.
Callback function to the button
CoMet correct button in notebook.py.
#−−

if(checkAllWidgets() is False):

163

messagebox.showerror("Error", "All boxes must be filled")

return

current folder = os.getcwd()

os.chdir(Globals.CoMet export folder.get())

if(os.path.exists(Globals.CoMet export folder.get() + ’/’ + \
Globals.CoMet corrected image filename.get().lstrip() + \

Globals.CoMet saveAs.get()) is True):

os.chdir(current folder)

messagebox.showerror("Error", \
"Filename already exists in folder. Please write a new filename")

Globals.CoMet progressbar counter −= 1
Globals.CoMet progressbar["value"] = Globals.CoMet progressbar counter*25
Globals.CoMet progressbar text = \

tk.Text(Globals.tab1 canvas , width = 5, height=1)

Globals.CoMet progressbar text.grid(row=1, column=0, \
columnspan=1, sticky=E, padx=(0,158), pady=(0,36))

Globals.CoMet progressbar text.insert(INSERT, \
str(Globals.CoMet progressbar counter*25) + "%")

if(Globals.CoMet progressbar counter*25 == 100):
Globals.CoMet progressbar text.config(state=DISABLED, \

bd=0, relief=FLAT, bg=’#ffffff’, font=(’calibri’, ’10’, ’bold’))

else:

Globals.CoMet progressbar text.config(state=DISABLED, \
bd=0, relief=FLAT, bg=’#ffffff’, font=(’calibri’, ’10’, ’bold’))

Globals.CoMet save button 1.config(state=ACTIVE)

Globals.CoMet save filename.config(state=NORMAL)

return

os.chdir(current folder)

correctionMatrix()

if (Globals.CoMet correctedImage is None):

messagebox.showerror("Error", \
"The image could not be corrected. \
Please check all the specifications and try again.")

Globals.CoMet progressbar["value"]=0

Globals.CoMet progressbar text = \
tk.Text(Globals.tab1 canvas , height=1, width=5)

Globals.CoMet progressbar text.grid(row=1, column=0, columnspan=1, \
sticky=E, padx=(0,158), pady=(0,36))

Globals.CoMet progressbar text.insert(INSERT, "0%")

Globals.CoMet progressbar text.config(state=DISABLED, bd=0, \
relief=FLAT, bg=’#ffffff’, font=(’calibri’, ’10’, ’bold’))

else:

Globals.CoMet progressbar counter +=1

164

Globals.CoMet progressbar["value"] = Globals.CoMet progressbar counter*25
Globals.CoMet progressbar text = \

tk.Text(Globals.tab1 canvas , height=1, width=5)

Globals.CoMet progressbar text.grid(row=1, column=0, \
columnspan=1, sticky=E, padx=(0,158), pady=(0,36))

Globals.CoMet progressbar text.insert(INSERT, \
str(Globals.CoMet progressbar counter*25) + "%")

if(Globals.CoMet progressbar counter*25 == 100):
Globals.CoMet progressbar text.config(state=DISABLED, \

bd=0, relief=FLAT, bg=’#2C8EAD’, font=(’calibri’, ’10’, ’bold’))

else:

Globals.CoMet progressbar text.config(state=DISABLED, \
bd=0, relief=FLAT, bg=’#ffffff’, font=(’calibri’, ’10’, ’bold’))

R=Globals.CoMet correctedImage[:,:,2]

G=Globals.CoMet correctedImage[:,:,1]

B=Globals.CoMet correctedImage[:,:,0]

if(Globals.CoMet dpi.get()=="127"):

corrImg dicom = np.zeros((1270,1016,3))

corrImg dicom = corrImg dicom.astype(’uint16’)

corrImg dicom[:,:,0]=R; corrImg dicom[:,:,1]=G;corrImg dicom[:,:,2]=B

elif(Globals.CoMet dpi.get() =="72"):

corrImg dicom = np.zeros((720,576,3))

corrImg dicom = corrImg dicom.astype(’uint16’)

corrImg dicom[:,:,0]=R; corrImg dicom[:,:,1]=G;corrImg dicom[:,:,2]=B

else:

messagebox.showerror("Error", \
"Wrong DPI in image. No correction.\n\
Please check all specifications and try again.")

corrImg dicom = np.moveaxis(corrImg dicom,−2,1)
corrImg dicom = np.rollaxis(corrImg dicom ,2,0)

img dicom = sitk.GetImageFromArray(corrImg dicom)

current folder = os.getcwd()

os.chdir(Globals.CoMet export folder.get())

sitk.WriteImage(img dicom , \
Globals.CoMet corrected image filename.get().lstrip() + \

Globals.CoMet saveAs.get())

os.chdir(current folder)

mod NameAndModality = pydicom.dcmread(Globals.CoMet export folder.get() + \
’/’ + Globals.CoMet corrected image filename.get().lstrip() + \

Globals.CoMet saveAs.get())

mod NameAndModality.Modality = "RTDOSE"

if(Globals.CoMet patientName.get() != "Error!"):

165

mod NameAndModality.PatientName = Globals.CoMet patientName.get()

else:

mod NameAndModality.PatientName = "First^Last"

mod NameAndModality.save as(Globals.CoMet export folder.get() + ’/’ \
+ Globals.CoMet corrected image filename.get().lstrip() \

+ Globals.CoMet saveAs.get())

ds = pydicom.dcmread(Globals.CoMet export folder.get() + ’/’ \
+ Globals.CoMet corrected image filename.get().lstrip() \

+ Globals.CoMet saveAs.get())

img = ds.pixel array

RGB image = np.zeros((img.shape[1], img.shape[2], 3))

for i in range(img.shape[0]):

RGB image[:,:,i] = img[i, :,:]

img8 = (RGB image/256).astype(’uint8’)

img8 = cv2.resize(img8, dsize=(int(img8.shape[1]/2.67),\
int(img8.shape[0]/2.67)))

height, width, channels = img8.shape

img8 = Image.fromarray(img8, ’RGB’)

Globals.CoMet image to canvas = ImageTk.PhotoImage(image=img8)

Globals.CoMet print corrected image.delete(’all’)

Globals.CoMet print corrected image.create image(180,250,\
image=Globals.CoMet image to canvas)

Globals.CoMet print corrected image.image = Globals.CoMet image to canvas

Dose response functions.py

#−−−
#
Version 16.08.20
#
Fuctions used in relation to the tab Dose Response
#−−−

import Globals

import tkinter as tk

import tkinter.ttk

from tkinter import filedialog , INSERT, DISABLED, messagebox , NORMAL, simpledialog , \
PhotoImage , BOTH, Toplevel, GROOVE, ACTIVE, FLAT, N, S, W, E, ALL, ttk, LEFT, \

166

RIGHT, Y, Label, X, END, Button, StringVar , Scrollbar

import cv2

import numpy as np

import os

from os.path import normpath , basename

import matplotlib

import matplotlib.pyplot as plt

from matplotlib.figure import Figure

from matplotlib.backends.backend tkagg import FigureCanvasTkAgg

from scipy.optimize import curve fit

from scipy.optimize import curve fit , OptimizeWarning

from PIL import Image, ImageTk

import sys

from datetime import datetime

import re

import warnings

warnings.filterwarnings("error")

def nothingButton():

#−−
Function to only return
Is used in cases where nothing should happen in
a active button (they will later be reconfigured)
#−−

return

def saveCalibration():

#−−
Function to save the calibration performed
#
This is a callback function for the button
dose response save calibration button in
notebook.py
#−−

ask batch window = tk.Toplevel(Globals.tab2)

ask batch window.geometry("400x180")

ask batch window.grab set()

ask batch window canvas = tk.Canvas(ask batch window)

ask batch window canvas.config(bg=’#ffffff’, bd=0, highlightthickness=0)

ask batch window canvas.pack(expand=True, fill=BOTH)

batch info = tk.Text(ask batch window canvas , width=50, height=3)

batch info.grid(row=0, column=0, columnspan=2, sticky=N+S+E+W, \

167

padx=(10,10), pady=(30,10))

ask batch window canvas.grid columnconfigure(0, weight=0)

ask batch window canvas.grid rowconfigure(0, weight=0)

batch info.insert(INSERT, ’Write the LOT number of current GafChromic film:\n\
(Defaults to −)’)

batch info.config(state=DISABLED , bd = 0, font=(’calibri’, ’12’))

batch = tk.Text(ask batch window canvas , width=20, height=1)

batch.grid(row=1, column=0, sticky=N+S+W+E, padx=(5,5), pady=(10,10))

ask batch window canvas.grid columnconfigure(1, weight=0)

ask batch window canvas.grid rowconfigure(1, weight=0)

batch.insert(INSERT, " ")

batch.config(state=NORMAL, bd = 3, font=(’calibri’, ’12’))

def save batch():

#−−
Function to read the earlier saved calibration−file
#
This is a callback function for the button
save batch button in function save calibration
#−−

Globals.dose response batch number= batch.get("1.0",’end−1c’)
if(Globals.dose response batch number == " "):

Globals.dose response batch number = "−"
save batch button.config(state=DISABLED)

ask batch window.destroy()

elif(re.match("^[A−Za−z0−9]*$", \
(Globals.dose response batch number).lstrip())==None):

messagebox.showerror("Error","LOT number can only contain letters and/or numbers")

ask batch window.destroy()

saveCalibration()

return

else:

save batch button.config(state=DISABLED)

ask batch window.destroy()

f = open(’calibration.txt’, ’r’)

lines = f.readlines()

f.close()

string to file = str(datetime.now()) + " " + \
str(Globals.dose response batch number) + " " + \
str(Globals.popt red[0]) + " " + str(Globals.popt red[1]) \

+ " " + str(Globals.popt red[2]) + "\n"
if(len(lines)< 5):

f = open(’calibration.txt’, ’a’)

168

f.write(string to file)

f.close()

else:

new lines = [lines[1], lines[2], lines[3], lines[4], string to file]

f = open(’calibration.txt’, ’w’)

for i in range(len(new lines)):

f.write(new lines[i])

f.close()

messagebox.showinfo("Info", "The calibration has been saved")

save button frame = tk.Frame(ask batch window canvas)

save button frame.grid(row=1, column = 1, padx=(5,5), pady=(10,10))

ask batch window canvas.grid columnconfigure(2, weight=0)

ask batch window canvas.grid rowconfigure(2, weight=0)

save button frame.config(bg = ’#ffffff’)

save batch button = tk.Button(save button frame , text=’Save’, \
image=Globals.save button , cursor=’hand2’,font=(’calibri’, ’14’),\

relief=FLAT, state=ACTIVE, command=save batch)

save batch button.pack(fill=BOTH, expand=True)

save batch button.image = Globals.save button

def UploadAction(new window , event=None):

#−−
Function upload scanned film files .
#
This is a callback function for the button
upload button in the function create window()
#−−

file = filedialog.askopenfilename()

ext = os.path.splitext(file)[−1].lower()
if(ext==".tif"):

Globals.dose response uploaded filenames = \
np.append(Globals.dose response uploaded filenames , file)

uploaded filename = tk.Text(new window , height=1, width=1)

uploaded filename.grid(row=Globals.dose response new window row count , \
column=0, columnspan=2, sticky=E+W, pady=(5,5), padx=(100,0))

new window.grid columnconfigure\
(Globals.dose response new window weight count , weight=0)

new window.grid rowconfigure\
(Globals.dose response new window weight count , weight=0)

uploaded filename.insert(INSERT, basename(normpath(file)))

uploaded filename.config(state=DISABLED , bd=0, \

169

font=(’calibri’, ’12’), fg=’gray’)

Globals.dose response new window row count+=1

Globals.dose response new window weight count+=1

elif(ext==""):

return

else:

messagebox.showerror("Error", "The file must be a .tif file")

def readImage(filename):

image = cv2.imread(filename, cv2.IMREAD ANYCOLOR | cv2.IMREAD ANYDEPTH)
if(image is None):

current folder = os.getcwd()

parent = os.path.dirname(filename)

os.chdir(parent)

image=cv2.imread(basename(normpath(filename)), \
cv2.IMREAD ANYCOLOR | cv2.IMREAD ANYDEPTH)

os.chdir(current folder)

if(image is None):

messagebox.showerror("Error", \
"Something has happen. Check that the filename only contain latin")

return

if(image.shape[2] == 3):

if(image.shape[0]==1270 and image.shape[1]==1016):

Globals.doseResponse dpi.set("127")

image = abs(image−Globals.correctionMatrix127)
image = np.clip(image, 0, 65535)

elif(image.shape[0]==720 and image.shape[1]==576):

Globals.doseResponse dpi.set("72")

image = abs(image− Globals.correctionMatrix72)
image = np.clip(image, 0, 65535)

else:

messagebox.showerror("Error",\
"The resolution of the image is not consistent with dpi")

else:

messagebox.showerror("Error","The uploaded image need to be in RGB−format")

sum red=0;sum green=0;sum blue=0

if(Globals.doseResponse dpi.get() == "127"):

for i in range(622,647):

for j in range(495, 520):

sum red += image[i,j,2]

sum green += image[i,j,1]

sum blue += image[i,j,0]

170

sum red = sum red/(25*25)
sum green = sum green/(25*25)
sum blue = sum blue/(25*25)
return sum red , sum green , sum blue

elif(Globals.doseResponse dpi.get() == "72"):

for i in range(352,367):

for j in range(280,295):

sum red+=image[i,j,2]

sum green+=image[i,j,1]

sum blue+=image[i,j,0]

sum red = sum red/(15*15)
sum green = sum green/(15*15)
sum blue = sum blue/(15*15)
return sum red , sum green , sum blue

else:

messagebox.showerror("Error", \
"Something has gone wrong with the doseResponse dpi")

return False

def plot dose response():

#−−
Function to plot the dose response curve
#
The function is called on in delete lines() ,
avgAllFiles() and clear all ().
#−−

sd red arr =[];sd green arr=[];sd blue arr=[]

temp dose = [item[0] for item in Globals.avg red vector]

temp avg red = [item[1] for item in Globals.avg red vector]

temp avg green = [item[1] for item in Globals.avg green vector]

temp avg blue = [item[1] for item in Globals.avg blue vector]

for i in range(len(temp dose)):

sd red arr.append(np.std(Globals.dose response sd list red[i]))

sd green arr.append(np.std(Globals.dose response sd list green[i]))

sd blue arr.append(np.std(Globals.dose response sd list blue[i]))

if(len(sd red arr)> 0):

Globals.dose response sd avg red.set(sum(sd red arr)/len(sd red arr))

Globals.dose response sd avg green.set(sum(sd green arr)/len(sd green arr))

Globals.dose response sd avg blue.set(sum(sd blue arr)/len(sd blue arr))

Globals.dose response sd max red.set(max(sd red arr))

Globals.dose response sd max red dose.set(str(temp dose[sd red arr.index\

171

(Globals.dose response sd max red.get())]))

Globals.dose response sd max green.set(max(sd green arr))

Globals.dose response sd max green dose.set(str(temp dose[sd green arr.index\
(Globals.dose response sd max green.get())]))

Globals.dose response sd max blue.set(max(sd blue arr))

Globals.dose response sd max blue dose.set(str(temp dose[sd blue arr.index\
(Globals.dose response sd max blue.get())]))

Globals.dose response sd min red.set(min(sd red arr))

Globals.dose response sd min red dose.set(str(temp dose[sd red arr.index\
(Globals.dose response sd min red.get())]))

Globals.dose response sd min green.set(min(sd green arr))

Globals.dose response sd min green dose.set(str(temp dose[sd green arr.index\
(Globals.dose response sd min green.get())]))

Globals.dose response sd min blue.set(min(sd blue arr))

Globals.dose response sd min blue dose.set(str(temp dose[sd blue arr.index\
(Globals.dose response sd min blue.get())]))

else:

Globals.dose response sd avg red.set(0)

Globals.dose response sd avg green.set(0)

Globals.dose response sd avg blue.set(0)

Globals.dose response sd max red.set(0)

Globals.dose response sd max red dose.set(’−’)
Globals.dose response sd max green.set(0)

Globals.dose response sd max green dose.set(’−’)
Globals.dose response sd max blue.set(0)

Globals.dose response sd max blue dose.set(’−’)
Globals.dose response sd min red.set(0)

Globals.dose response sd min red dose.set(’−’)
Globals.dose response sd min green.set(0)

Globals.dose response sd min green dose.set(’−’)
Globals.dose response sd min blue.set(0)

Globals.dose response sd min blue dose.set(’−’)

for widget in Globals.dose response plot frame.winfo children():

widget.destroy()

fig = Figure(figsize=(6,4))

a = fig.add subplot(111)

canvas = FigureCanvasTkAgg(fig, master=Globals.dose response plot frame)

canvas.get tk widget().grid(row=0,column=0,columnspan=4, sticky=N+S+E+W,\
padx=(25,0), pady=(0,0))

if(Globals.dose response var1.get()):

a.errorbar(temp dose ,temp avg red ,yerr=sd red arr , fmt=’ro’)

172

if(Globals.dose response var2.get()):

a.errorbar(temp dose , temp avg green , yerr=sd green arr , fmt=’g^’)

if(Globals.dose response var3.get()):

a.errorbar(temp dose , temp avg blue , yerr=sd blue arr , fmt=’bs’)

if(len(temp avg red)> 3):

sorted temp red = sorted(Globals.avg red vector ,key=lambda l:l[0])

sorted temp avg red = [item[1] for item in sorted temp red]

sorted temp dose = [item[0] for item in sorted temp red]

sorted temp green = sorted(Globals.avg green vector , key=lambda l:l[0])

sorted temp avg green = [item[1] for item in sorted temp green]

sorted temp blue = sorted(Globals.avg blue vector , key=lambda l:l[0])

sorted temp avg blue = [item[1] for item in sorted temp blue]

try:

Globals.popt red , Globals.pcov red = curve fit(fitted dose response , \
sorted temp dose , sorted temp avg red , \

p0=[1700, 15172069, −390], maxfev=10000)
popt green , pcov green = curve fit(fitted dose response , \

sorted temp dose , sorted temp avg green , \
p0=[1700, 15172069, −390], maxfev=10000)

try:

Globals.dose response equation image.destroy()

except:

nothingButton()

perr = np.sqrt(np.diag(Globals.pcov red))

perr prosent = np.array([perr[0]/Globals.popt red[0], \
perr[1]/Globals.popt red[1], perr[2]/Globals.popt red[2]])*100

fitting uncertainty = np.sqrt(perr prosent[0]**2 + \
perr prosent[1]**2 + perr prosent[2]**2)

xdata = np.linspace(0,2000,1001)

ydata red = np.zeros(len(xdata));ydata green=np.zeros(len(xdata))

for i in range(len(xdata)):

ydata red[i] = fitted dose response(xdata[i], Globals.popt red[0], \
Globals.popt red[1], Globals.popt red[2])

ydata green[i] = fitted dose response(xdata[i], popt green[0], \
popt green[1], popt green[2])

if(Globals.dose response var1.get()):

a.plot(xdata, ydata red , color=’red’)

if(Globals.dose response var2.get()):

a.plot(xdata, ydata green , color=’green’)

if(Globals.dose response var3.get()):

173

a.plot(sorted temp dose , sorted temp avg blue , color=’blue’)

a.set title("Dose−response", fontsize=12)
a.set ylabel("Pixel value", fontsize=12)

a.set xlabel("Dose", fontsize=12)

fig.tight layout()

out text function = "Pixel value = " + str(round(Globals.popt red[0])) \
+ " + " + str(round(Globals.popt red[1])) + "/(dose− (" \

+ str(round(Globals.popt red[2])) + "))"

standardavvik rgb = "Standard deviation red = " + \
str(round(Globals.dose response sd avg red.get()))

fitting inc = str(round(fitting uncertainty))

def drawEquation(a,b,c):

tmptext = StringVar()

if c< 0:

c = abs(c)

a=str(a);b=str(b);c=str(c)

latex= a + "+ " "\\frac {" + f"{b}" + "}{"+ "D" + "+" \
+ f"{c}" + "}"

else:

a=str(a);b=str(b);c=str(c)

latex= a + "+ " "\\frac {" + f"{b}" + "}{"+ "D" + "−" \
+ f"{c}" + "}"

tmptext.set(latex)

tmptext = "$"+tmptext.get()+"$"

axLatex.clear()

axLatex.text(0.01,0.5, "PV = "+tmptext, fontsize = 6)

canvasLatex.draw()

labelLatex = Label(Globals.dose response equation frame)

labelLatex.grid(row=0,column=0, rowspan=15, sticky=N+W)

labelLatex.config(bg=’#ffffff’, bd=0, highlightthickness=0)

figLatex = matplotlib.figure.Figure(figsize=(1.2, 1), dpi=250)

figLatex.subplots adjust(bottom=−0.01, top=1.2, left=−0.01, right=2)
axLatex = figLatex.add subplot(111)

canvasLatex = FigureCanvasTkAgg(figLatex, master=labelLatex)

canvasLatex.get tk widget().grid(row=0, column=0, sticky="N")

canvasLatex. tkcanvas.grid(row=0, column=0,sticky="N")

174

axLatex.get xaxis().set visible(False)

axLatex.get yaxis().set visible(False)

a =round(Globals.popt red[0])

b =round(Globals.popt red[1])

c =round(Globals.popt red[2])

drawEquation(a ,b ,c)

def drawSD(sd text ,sd text 1 ,sd text 2 ,sd text 3 ,sd text 4 ,sd text 5 ,\
sd text 6 ,sd text 7 ,sd text 8 ,sd text 9 ,sd text 10 ,sd text 11 ,\
sd text 12 ,sd text 13 ,sd text 14 ,sd text 15 ,sd text 16 ,sd text 17):

text = "Standard deviations (SD): "

sd text.config(state=NORMAL)

sd text.insert(INSERT, text)

sd text.config(state=DISABLED)

sd text 1.config(state=NORMAL)

sd text 1.insert(INSERT, " ")

sd text 1.config(state=DISABLED)

sd text 2.config(state=NORMAL)

sd text 2.insert(INSERT, "Average")

sd text 2.config(state=DISABLED)

sd text 3.config(state=NORMAL)

sd text 3.insert(INSERT, "Minimum")

sd text 3.config(state=DISABLED)

sd text 4.config(state=NORMAL)

sd text 4.insert(INSERT, "Maximum")

sd text 4.config(state=DISABLED)

sd text 5.config(state=NORMAL)

sd text 5.insert(INSERT, "Red:")

sd text 5.config(state=DISABLED)

avgR=str(round(Globals.dose response sd avg red.get()))

sd text 6.config(state=NORMAL)

sd text 6.insert(INSERT, avgR)

sd text 6.config(state=DISABLED)

minR=str(round(Globals.dose response sd min red.get()))

sd text 7.config(state=NORMAL)

175

sd text 7.insert(INSERT, minR)

sd text 7.config(state=DISABLED)

maxR=str(round(Globals.dose response sd max red.get()))

sd text 8.config(state=NORMAL)

sd text 8.insert(INSERT, maxR)

sd text 8.config(state=DISABLED)

sd text 9.config(state=NORMAL)

sd text 9.insert(INSERT, "Green:")

sd text 9.config(state=DISABLED)

avgG=str(round(Globals.dose response sd avg green.get()))

sd text 10.config(state=NORMAL)

sd text 10.insert(INSERT, avgG)

sd text 10.config(state=DISABLED)

minG=str(round(Globals.dose response sd min green.get()))

sd text 11.config(state=NORMAL)

sd text 11.insert(INSERT, minG)

sd text 11.config(state=DISABLED)

maxG=str(round(Globals.dose response sd max green.get()))

sd text 12.config(state=NORMAL)

sd text 12.insert(INSERT, maxG)

sd text 12.config(state=DISABLED)

sd text 13.config(state=NORMAL)

sd text 13.insert(INSERT, "Blue:")

sd text 13.config(state=DISABLED)

avgB=str(round(Globals.dose response sd avg blue.get()))

sd text 14.config(state=NORMAL)

sd text 14.insert(INSERT, avgB)

sd text 14.config(state=DISABLED)

minB=str(round(Globals.dose response sd min blue.get()))

sd text 15.config(state=NORMAL)

sd text 15.insert(INSERT, minB)

sd text 15.config(state=DISABLED)

maxB=str(round(Globals.dose response sd max blue.get()))

sd text 16.config(state=NORMAL)

sd text 16.insert(INSERT, maxB)

sd text 16.config(state=DISABLED)

176

latex fitting="Fitting uncertainty of the plot: " + fitting inc

out = str(latex fitting)

sd text 17.config(state=NORMAL)

sd text 17.insert(INSERT, out)

sd text 17.config(state=DISABLED)

sd text = tk.Text(Globals.dose response equation frame , \
height=1, width=40)

sd text.grid(row=0, column=1, columnspan=4, sticky=N+S+W+E)

sd text.config(state=DISABLED , bd=0, font=(’calibri’, ’12’))

sd text 1 = tk.Text(Globals.dose response equation frame , \
height=1, width=4)

sd text 1.grid(row=1, column=1, sticky=N+S+W+E)

sd text 1.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

sd text 2 = tk.Text(Globals.dose response equation frame , \
height=1, width=1)

sd text 2.grid(row=1, column=2, sticky=N+S+W+E)

sd text 2.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

sd text 3 = tk.Text(Globals.dose response equation frame , \
height=1, width=1)

sd text 3.grid(row=1, column=3, sticky=N+S+W+E)

sd text 3.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

sd text 4 = tk.Text(Globals.dose response equation frame , \
height=1, width=1)

sd text 4.grid(row=1, column=4, sticky=N+S+W+E)

sd text 4.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

sd text 5 = tk.Text(Globals.dose response equation frame , \
height=1, width=4)

sd text 5.grid(row=2, column=1, sticky=N+S+W+E)

sd text 5.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

sd text 6 = tk.Text(Globals.dose response equation frame , \
height=1, width=1)

sd text 6.grid(row=2, column=2, sticky=N+S+W+E)

sd text 6.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

sd text 7 = tk.Text(Globals.dose response equation frame , \
height=1, width=1)

sd text 7.grid(row=2, column=3, sticky=N+S+W+E)

sd text 7.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

sd text 8 = tk.Text(Globals.dose response equation frame , \
height=1, width=1)

sd text 8.grid(row=2, column=4, sticky=N+S+W+E)

sd text 8.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

sd text 9 = tk.Text(Globals.dose response equation frame , \
height=1, width=4)

177

sd text 9.grid(row=3, column=1, sticky=N+S+W+E)

sd text 9.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

sd text 10 = tk.Text(Globals.dose response equation frame , \
height=1, width=1)

sd text 10.grid(row=3, column=2, sticky=N+S+W+E)

sd text 10.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

sd text 11 = tk.Text(Globals.dose response equation frame , \
height=1, width=1)

sd text 11.grid(row=3, column=3, sticky=N+S+W+E)

sd text 11.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

sd text 12 = tk.Text(Globals.dose response equation frame , \
height=1, width=1)

sd text 12.grid(row=3, column=4, sticky=N+S+W+E)

sd text 12.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

sd text 13 = tk.Text(Globals.dose response equation frame , \
height=1, width=4)

sd text 13.grid(row=4, column=1, sticky=N+S+W+E)

sd text 13.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

sd text 14 = tk.Text(Globals.dose response equation frame , \
height=1, width=1)

sd text 14.grid(row=4, column=2, sticky=N+S+W+E)

sd text 14.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

sd text 15 = tk.Text(Globals.dose response equation frame , \
height=1, width=1)

sd text 15.grid(row=4, column=3, sticky=N+S+W+E)

sd text 15.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

sd text 16 = tk.Text(Globals.dose response equation frame , \
height=1, width=1)

sd text 16.grid(row=4, column=4, sticky=N+S+W+E)

sd text 16.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

sd text 17 = tk.Text(Globals.dose response equation frame , \
height=1, width=40)

sd text 17.grid(row=5, column=1, columnspan=4, sticky=N+S+W+E)

sd text 17.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

drawSD(sd text ,sd text 1 ,sd text 2 ,sd text 3 ,sd text 4 ,sd text 5 ,\
sd text 6 ,sd text 7 ,sd text 8 ,sd text 9 ,sd text 10 ,sd text 11 ,\
sd text 12 ,sd text 13 ,sd text 14 ,sd text 15 ,sd text 16 ,sd text 17)

Globals.dose response save calibration button.config(state=ACTIVE)

except OptimizeWarning:

messagebox.showwarning("Warning", \
"It appears that you have optimization problems. \
Try adding more data points to improve the optimization.\
Or, check that your specified dose matches your uploaded files.")

except RuntimeError:

178

messagebox.showwarning("Warning", \
"It appears that you have optimization problems. \
Try adding more data points to improve the optimization. \
Or, check that your specified dose matches your uploaded files.")

a.set title("Dose−response", fontsize=12)
a.set ylabel("Pixel value", fontsize=12)

a.set xlabel("Dose", fontsize=12)

fig.tight layout()

def delete line(delete button):

#−−
Function to delete a measurement
#
The function is a callback funtion to the
button delete button defined in function
avgAllFiles()
#−−

button index = Globals.dose response delete buttons.index(delete button)

Globals.dose response red list[button index].destroy()

Globals.dose response green list[button index].destroy()

Globals.dose response blue list[button index].destroy()

Globals.dose response dose list[button index].destroy()

Globals.dose response delete buttons[button index].destroy()

del(Globals.dose response red list[button index])

del(Globals.dose response green list[button index])

del(Globals.dose response blue list[button index])

del(Globals.dose response dose list[button index])

if(len(Globals.dose response delete buttons)> 1):

del(Globals.avg red vector[button index])

del(Globals.avg green vector[button index])

del(Globals.avg blue vector[button index])

del(Globals.dose response delete buttons[button index])

del(Globals.dose response sd list red[button index])

del(Globals.dose response sd list green[button index])

del(Globals.dose response sd list blue[button index])

else:

Globals.avg red vector = []

Globals.avg green vector = []

Globals.avg blue vector = []

Globals.dose response delete buttons = []

Globals.dose response sd list red = []

Globals.dose response sd list green = []

179

Globals.dose response sd list blue = []

Globals.dose response files row count = 2

for i in range(len(Globals.dose response delete buttons)):

Globals.dose response red list[i].grid\
(row=Globals.dose response files row count , column=1, \

sticky=N+S+W+E, padx=(0,0))

Globals.dose response green list[i].grid\
(row=Globals.dose response files row count , column=3, \

sticky=N+S+W+E, padx=(0,0))

Globals.dose response blue list[i].grid\
(row=Globals.dose response files row count , column=5, \

sticky=N+S+W+E, padx=(0,5))

Globals.dose response dose list[i].grid\
(row=Globals.dose response files row count , column=0, \

sticky=N+S+W+E, padx=(0,15))

Globals.dose response delete buttons[i].grid\
(row=Globals.dose response files row count , column=7, \

sticky=N+S+W+E, padx=(5,5))

Globals.dose response files row count+=1

if(len(Globals.dose response delete buttons)< 4):

Globals.dose response save calibration button.config(state=DISABLED)

plot dose response()

def fitted dose response(D, a, b, c):

#−−
Function to map between pixel value and dose
#
The function is a called in the funtion
plot dose response()
#−−

return a + b/(D−c)

def avgAllFiles(write dose box , new window):

#−−
Function to find the mean of uploaded
images with same dose.
#
The function is a callback function for
the button done button in create window()
#−−

dose input = write dose box.get("1.0",’end−1c’)

180

if (dose input == " "):

messagebox.showerror("Error", "Input dose")

return

try:

dose input = float(dose input)

except:

messagebox.showerror("Error","The dose must be a number")

return

if(len(Globals.dose response uploaded filenames) == 0):

messagebox.showerror("Error", "No files uploaded")

return

try:

Globals.upload files here canvas.destroy()

except:

nothingButton()

avg red=0;avg green=0;avg blue=0

red temp sd list = []; green temp sd list = []; blue temp sd list = []

for i in range(0, len(Globals.dose response uploaded filenames)):

if(readImage(Globals.dose response uploaded filenames[i])==False):

messagebox.showerror("Error", "A mistake has happend in readImage()")

return

red, green, blue = readImage(Globals.dose response uploaded filenames[i])

avg red+=red

avg green+=green

avg blue+=blue

red temp sd list.append(red)

green temp sd list.append(green)

blue temp sd list.append(blue)

avg red = avg red/len(Globals.dose response uploaded filenames)

avg green = avg green/len(Globals.dose response uploaded filenames)

avg blue = avg blue/len(Globals.dose response uploaded filenames)

temp dose = [item[0] for item in Globals.avg red vector]

isTest = False

try:

indx = temp dose.index(dose input)

Globals.avg red vector[indx][1] = (avg red + \
Globals.avg red vector[indx][1])/2

Globals.avg green vector[indx][1] = (avg green + \
Globals.avg green vector[indx][1])/2

Globals.avg blue vector[indx][1] = (avg blue + \

181

Globals.avg blue vector[indx][1])/2

for i in range(0, len(red temp sd list)):

Globals.dose response sd list red[indx].append(red temp sd list[i])

Globals.dose response sd list green[indx].append(green temp sd list[i])

Globals.dose response sd list blue[indx].append(blue temp sd list[i])

except:

Globals.avg red vector.append([dose input , avg red])

Globals.avg green vector.append([dose input , avg green])

Globals.avg blue vector.append([dose input , avg blue])

Globals.dose response sd list red.append(red temp sd list)

Globals.dose response sd list green.append(green temp sd list)

Globals.dose response sd list blue.append(blue temp sd list)

isTest = True

temp dose = [item[0] for item in Globals.avg red vector]

if(isTest):

result red = tk.Text(Globals.tab2 canvas files , height=1, width=7)

result red.insert(INSERT, round(avg red))

result red.grid(row=Globals.dose response files row count , column=1, \
sticky=N+S+W+E, padx=(0,0))

Globals.tab2 canvas files.grid columnconfigure\
(Globals.dose response files weightcount , weight=0)

Globals.tab2 canvas files.grid rowconfigure\
(Globals.dose response files weightcount , weight=0)

result red.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

Globals.dose response red list.append(result red)

Globals.dose response files weightcount+=1

result green = tk.Text(Globals.tab2 canvas files , height=1, width=7)

result green.insert(INSERT, round(avg green))

result green.grid(row=Globals.dose response files row count , column=3, \
sticky=N+S+W+E, padx=(0,0))

Globals.tab2 canvas files.grid columnconfigure\
(Globals.dose response files weightcount , weight=0)

Globals.tab2 canvas files.grid rowconfigure\
(Globals.dose response files weightcount , weight=0)

result green.config(state=DISABLED, bd=0, font=(’calibri’, ’12’))

Globals.dose response green list.append(result green)

Globals.dose response files weightcount+=1

182

result blue = tk.Text(Globals.tab2 canvas files , height=1, width=7)

result blue.insert(INSERT, round(avg blue))

result blue.grid(row=Globals.dose response files row count , column=5, \
sticky=N+S+W+E, padx=(0,5))

Globals.tab2 canvas files.grid columnconfigure\
(Globals.dose response files weightcount , weight=0)

Globals.tab2 canvas files.grid rowconfigure\
(Globals.dose response files weightcount , weight=0)

result blue.config(state=DISABLED , bd=0, font=(’calibri’, ’12’))

Globals.dose response blue list.append(result blue)

Globals.dose response files weightcount+=1

dose print = tk.Text(Globals.tab2 canvas files , height=1, width=10)

dose print.insert(INSERT, dose input)

dose print.grid(row=Globals.dose response files row count , column=0, \
sticky=N+S+W+E, padx=(0,15))

Globals.tab2 canvas files.grid columnconfigure\
(Globals.dose response files weightcount , weight=0)

Globals.tab2 canvas files.grid rowconfigure\
(Globals.dose response files weightcount , weight=0)

dose print.config(state=DISABLED , bd=0, font=(’calibri’, ’12’))

Globals.dose response dose list.append(dose print)

Globals.dose response files weightcount+=1

path = os.path.dirname(sys.argv[0])

path = path + r"\delete.png"
img = ImageTk.PhotoImage(file=path)

delete button = tk.Button(Globals.tab2 canvas files , text=’Remove’, \
image=img, cursor=’hand2’,font=(’calibri’, ’18’),\

highlightthickness= 0, relief=FLAT, state=ACTIVE, width = 15)

delete button.image = img

Globals.dose response delete buttons.append(delete button)

delete button.config(command=lambda: delete line(delete button))

delete button.grid(row=Globals.dose response files row count , column=7, \
sticky=N+S+W+E, padx=(5,5))

Globals.tab2 canvas files.grid columnconfigure\
(Globals.dose response files weightcount , weight=0)

Globals.tab2 canvas files.grid rowconfigure\
(Globals.dose response files weightcount , weight=0)

delete button.config(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

Globals.dose response files row count+=1

Globals.dose response files weightcount+=1

183

else:

Globals.dose response red list[indx].config(state=NORMAL)

Globals.dose response red list[indx].delete(’1.0’, END)

Globals.dose response red list[indx].insert(INSERT, \
round(Globals.avg red vector[indx][1]))

Globals.dose response red list[indx].config(state=DISABLED)

Globals.dose response green list[indx].config(state=NORMAL)

Globals.dose response green list[indx].delete(’1.0’, END)

Globals.dose response green list[indx].insert(INSERT, \
round(Globals.avg green vector[indx][1]))

Globals.dose response green list[indx].config(state=DISABLED)

Globals.dose response blue list[indx].config(state=NORMAL)

Globals.dose response blue list[indx].delete(’1.0’, END)

Globals.dose response blue list[indx].insert(INSERT, \
round(Globals.avg blue vector[indx][1]))

Globals.dose response blue list[indx].config(state=DISABLED)

plot dose response()

new window.destroy()

def create window():

#−−
Function to create the window where the user
upload the files of scanned film
#
The function is a callback function for
the button dose response upload button
in notebook.py
#−−

new window = tk.Toplevel(Globals.tab2)

new window.geometry("360x500")

new window.grab set()

new window frame = tk.Frame(new window)

new window frame.config(relief=FLAT, bg=’#ffffff’, highlightthickness=0)

new window scroll canvas = tk.Canvas(new window frame)

new window scroll canvas.config(bg=’#ffffff’, height=450, \
width=200,highlightthickness=0, relief=FLAT)

new window scroll canvas.grid propagate(0)

new window scroll = Scrollbar(new window frame , \
command=new window scroll canvas.yview)

184

scrollable frame= tk.Frame(new window scroll canvas)

scrollable frame.config(highlightthickness=0, relief=FLAT)

scrollable frame.bind("<Configure>", lambda e: \
new window scroll canvas.configure\

(scrollregion=new window scroll canvas.bbox(’all’)))

new window scroll canvas.create window\
((0,0), window=scrollable frame , anchor=’nw’)

new window scroll canvas.configure(yscrollcommand=new window scroll.set)

new window canvas = tk.Canvas(scrollable frame)

new window canvas.config(relief=FLAT, bg=’#ffffff’, highlightthickness=0)

new window canvas.pack(fill=BOTH, expand=True)

new window frame.pack(expand=True, fill = BOTH)

new window scroll canvas.pack(side=LEFT, fill=BOTH, expand=True)

new window scroll.pack(side=RIGHT, fill=Y)

Globals.dose response uploaded filenames = []

explain text = tk.Text(new window canvas , height=11, width = 47)

explain text.grid(row=0, column = 0, rowspan = 3, columnspan=2, \
sticky=N+S+W+E, pady=(20,10), padx=(10,10))

new window canvas.grid columnconfigure(0, weight=0)

new window canvas.grid rowconfigure(0, weight=0)

explain text.insert(INSERT, "\
Here you can upload several files all irradiated with \nthe same dose. \
Fill in dose and an average will be \ncalculated and used in the calibration. \
You are also \nable to upload only one file each time, and FIDORA \nwill keep \
track and average before fitting the \ndose−response.")

explain text.config(state=DISABLED, bd=0, font=(’calibri’, ’11’))

write dose box frame = tk.Frame(new window canvas)

write dose box frame.grid(row=2, column=1, sticky=N+S+E+W,\
pady=(0,30), padx=(0,10))

new window canvas.grid columnconfigure(1, weight=0)

new window canvas.grid rowconfigure(1, weight=0)

write dose box frame.config(bg=’#ffffff’)

dose border label = Label(write dose box frame , \
image = Globals.dose response dose border)

dose border label.image=Globals.dose response dose border

dose border label.config(bg=’#ffffff’, borderwidth=0)

185

dose border label.pack(expand=True, fill=BOTH)

write dose text = tk.Text(new window canvas , height=1, width=19)

write dose text.insert(INSERT, "Write dose here (cGy):")

write dose text.config(state=DISABLED, bd=0, \
font=(’calibri’, ’11’), bg=’#ffffff’)

write dose text.grid(row=1, column=1, sticky=E+W, pady=(140,0), padx=(5,5))

new window canvas.grid columnconfigure(3, weight=0)

new window canvas.grid rowconfigure(3, weight=0)

write dose box = tk.Text(dose border label , height=1, width=8)

write dose box.grid(row=0,column=0, sticky=N+S+W+E, pady=(10,0), padx=(20,5))

write dose box.insert(INSERT, " ")

write dose box.config(state=NORMAL, bd=0, font=(’calibri’, ’18’), bg=’#ffffff’)

upload button frame = tk.Frame(new window canvas)

upload button frame.grid(row=2, column=0, sticky=N+S+W+E, pady=(0,30))

new window canvas.grid columnconfigure(2, weight=0)

new window canvas.grid rowconfigure(2, weight=0)

upload button frame.config(bg=’#ffffff’)

upload button = tk.Button(upload button frame , text=’Upload file’, \
image=Globals.upload button image , cursor=’hand2’, font=(’calibri’, ’14’), \
relief=FLAT, state=ACTIVE,command=lambda: UploadAction(new window canvas))

upload button.pack(expand=True, fill=BOTH)

upload button.config(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

upload button.image=Globals.upload button image

Globals.dose response inOrOut = True

done button = tk.Button(new window , text=’DONE’, cursor=’hand2’, \
font=(’calibri’, ’20’, ’bold’),relief=FLAT, state=ACTIVE,\

command=lambda: avgAllFiles(write dose box , new window))

done button.config(activebackground=’#04BAA6’, bg= ’#04BAA6’, \
activeforeground=’#ffffff’, fg=’#ffffff’, height=1)

done button.pack(expand=True, fill=X)

def clear all():

#−−
Function to clear are variables
#
The function is a callback function for

186

the button dose response clear all button
in notebook.py
#−−

for i in range(len(Globals.dose response delete buttons)):

Globals.dose response red list[i].destroy()

Globals.dose response green list[i].destroy()

Globals.dose response blue list[i].destroy()

Globals.dose response delete buttons[i].destroy()

Globals.dose response dose list[i].destroy()

Globals.dose response dose list = []

Globals.dose response red list = []

Globals.dose response green list = []

Globals.dose response blue list = []

Globals.dose response delete buttons = []

Globals.dose response sd list red = []

Globals.dose response sd list green = []

Globals.dose response sd list blue = []

Globals.dose response var1.set(1)

Globals.dose response var2.set(1)

Globals.dose response var3.set(1)

Globals.avg red vector = []

Globals.avg green vector = []

Globals.avg blue vector = []

Globals.dose response batch number = "−"
Globals.popt red = np.zeros(3)

Globals.dose response inOrOut = True

Globals.dose response files weightcount = 8

Globals.dose response files row count = 2

Globals.dose response save calibration button.config(state=DISABLED)

plot dose response()

Profile functions.py

#−−−
#
Version 17.08.20
#

187

Fuctions used in relation to the tab Profiles
#−−−

import Globals

import tkinter as tk

from tkinter import filedialog , INSERT, DISABLED, messagebox , NORMAL, simpledialog,\
PhotoImage , BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton , \

GROOVE, ACTIVE, FLAT, END, Scrollbar , HORIZONTAL , VERTICAL , \
ttk, TOP, RIGHT, LEFT, ttk

import os

from os.path import normpath , basename

from PIL import Image, ImageTk

import cv2

from cv2 import imread, IMREAD ANYCOLOR , IMREAD ANYDEPTH , imwrite

import pydicom

from matplotlib.figure import Figure

from matplotlib.backends.backend tkagg import FigureCanvasTkAgg

import matplotlib as mpl

from matplotlib import cm

import matplotlib.pyplot as plt

from matplotlib.backends.backend tkagg import \
FigureCanvasTkAgg , NavigationToolbar2Tk

import numpy as np

def nothing function():

#−−
Function to only return
Is used in cases where nothing should happen in
a active button (they will later be reconfigured)
#−−

return

def clearAll():

#−−
Function to clear all variables
#
This functions is a callback to the button
profiles resetAll button in notebook.py
#−−

Globals.profiles film orientation.set(’−’)
Globals.profiles film orientation menu.config(state=ACTIVE, \

bg = ’#ffffff’, width=15, relief=FLAT)

Globals.profiles film dataset red channel dose = None

188

Globals.profiles film variable ROI coords = None

Globals.profiles film dataset ROI = None

Globals.profiles film dataset ROI red channel = None

Globals.profiles doseplan dataset ROI = None

Globals.profiles film dataset ROI red channel dose = None

profiles fig = Figure(figsize=(6,4))

profiles a = profiles fig.add subplot(111, \
ylim=(0,40000), xlim=(0,500))

profiles plot canvas = FigureCanvasTkAgg(profiles fig , \
master=Globals.profile plot canvas)

profiles plot canvas.get tk widget().grid(row=0,column=0,columnspan=4, \
rowspan=4, sticky=N+E+W+S, padx=(5,0), pady=(0,0))

profiles a.set title ("Profiles", fontsize=12)

profiles a.set ylabel("Dose (Gy)", fontsize=12)

profiles a.set xlabel("Distance (mm)", fontsize=12)

profiles fig.tight layout()

Globals.profiles depth = None

Globals.profiles depth float = None

Globals.profiles film factor input = None

Globals.profiles distance reference point ROI = []

Globals.profiles mark isocenter up down line = []

Globals.profiles mark isocenter right left line = []

Globals.profiles mark isocenter oval = []

Globals.profiles mark ROI rectangle = []

Globals.profiles isocenter check=False

Globals.profiles reference point check = False

Globals.profiles ROI check = False

Globals.profiles ROI reference point check = False

Globals.profiles film batch.set(0)

Globals.profiles popt red = np.zeros(3)

Globals.profiles upload button doseplan.config(state=DISABLED)

Globals.profiles upload button film.config(state=ACTIVE)

Globals.profiles upload button rtplan.config(state=DISABLED)

Globals.profiles dataset doseplan = None

Globals.profiles dataset rtplan = None

189

Globals.profiles test if added doseplan = False

Globals.profiles test if added rtplan = False

Globals.profiles isocenter mm = None

Globals.profiles dose scaling doseplan = []

Globals.profiles max dose film = None

Globals.profiles choice of profile line type.set("h")

for widget in Globals.profiles film panedwindow.winfo children():

widget.destroy()

Globals.doseplan write image = None

Globals.film write image = None

Globals.doseplan write image width = None

Globals.doseplan write image height = None

Globals.doseplan write image var x= 0

Globals.doseplan write image var y = 0

Globals.profiles coordinate in dataset = 0

Globals.profiles first time in drawProfiles = True

Globals.profiles doseplan lateral displacement = None

Globals.profiles doseplan vertical displacement = None

Globals.profiles doseplan longitudianl displacement = None

Globals.profiles doseplan patient position = None

Globals.profiles input lateral displacement = None

Globals.profiles input longitudinal displacement = None

Globals.profiles input vertical displacement = None

Globals.profiles isocenter or reference point = None

Globals.profiles lateral = None

Globals.profiles vertical = None

Globals.profiles longitudinal = None

Globals.profiles number of doseplans = 0

Globals.profiles number of doseplans row count = 4

Globals.profiles doseplans grid config count = 6

Globals.profiles doseplans filenames = []

Globals.profiles doseplans factor text = []

190

Globals.profiles doseplans factor input = []

Globals.profiles reference point in doseplan = None

Globals.profiles doseplan dataset ROI several = []

Globals.profiles several img = []

Globals.profiles film factor = None

Globals.profiles lines = []

Globals.end point = None

Globals.profiles line coords film = None

Globals.profiles line coords doseplan = None

Globals.profiles dataset film variable draw = None

Globals.profiles dataset doesplan variable draw = None

Globals.max dose doseplan = None

Globals.profiles iscoenter coords = []

Globals.profiles film isocenter = None

Globals.profiles film reference point = None

Globals.profiles mark isocenter up down line = []

Globals.profiles mark isocenter right left line = []

Globals.profiles mark isocenter oval = []

Globals.profiles mark reference point oval = []

Globals.profiles mark ROI rectangle = []

Globals.profiles ROI coords = []

Globals.profiles isocenter check = False

Globals.profiles ROI check = False

Globals.profiles reference point check = False

Globals.profiles ROI reference point check = False

Globals.profiles upload button film.config(state=ACTIVE)

Globals.profiles upload button doseplan.config(state=DISABLED)

Globals.profiles upload button rtplan.config(state=DISABLED)

Globals.profiles distance isocenter ROI = []

Globals.profiles film dataset = None

Globals.profiles film dataset red channel = None

Globals.profiles film dataset ROI = None

191

Globals.profiles film dataset ROI red channel = None

Globals.profiles film match isocenter dataset = np.zeros((7,7))

Globals.profiles dataset doseplan = None

Globals.profiles dataset rtplan = None

Globals.profiles isocenter mm = None

Globals.profiles test if added rtplan = False

Globals.profiles test if added doseplan = False

Globals.profiles export plot button.config(state=DISABLED)

Globals.profiles slice offset = None

Globals.profiles offset = None

Globals.tab4 canvas.unbind("<Up>")
Globals.tab4 canvas.unbind("<Down>")
return

def getCoordsInRandomLine(x1,y1,x2,y2):

#−−
Function to calculate the coordinates
in a random line
#
This functions is called when drawing
manual profiles in DrawProfile()
#−−

points = []

issteep = abs(y2−y1)− abs(x2−x1)
if issteep> 0:

x1, y1 = y1, x1

x2, y2 = y2, x2

rev = False

if x1> x2:

x1, x2 = x2, x1

y1, y2 = y2, y1

rev = True

deltax = x2− x1
deltay = abs(y2−y1)
error = int(deltax / 2)

y = y1

ystep = None

if y1< y2:

ystep = 1

else:

192

ystep = −1
for x in range(x1, x2 + 1):

if issteep:

points.append((y, x))

else:

points.append((x, y))

error −= deltay
if error< 0:

y += ystep

error += deltax

if rev:

points.reverse()

return points

def drawProfiles(even):

#−−
Function to draw profiles
#
This functions is a called at almost all
functions in Profil functions
#−−

if Globals.profiles choice of profile line type.get() == ’h’ \
or Globals.profiles choice of profile line type.get() == ’v’:

Globals.profiles lines = []

if Globals.profiles dataset doseplan == None:

return

Globals.profiles adjust button right.config(state=ACTIVE)

Globals.profiles adjust button left.config(state=ACTIVE)

Globals.profiles adjust button down.config(state=ACTIVE)

Globals.profiles adjust button up.config(state=ACTIVE)

Globals.profiles adjust button return.config(state=ACTIVE)

def draw(line orient , dataset film , dataset doseplan):

Globals.profile plot canvas.delete(’all’)

fig= Figure(figsize=(6,4))

a = fig.add subplot(111)

plot canvas = FigureCanvasTkAgg(fig, master=Globals.profile plot canvas)

plot canvas.get tk widget().grid(row=0,column=0,columnspan=4, \
rowspan=5, sticky=N+E+W+S, padx=(5,0), pady=(0,0))

cols = \

193

(’ ’, ’Point match’, ’Distance’, ’Dose’, ’Rel. to max’, ’Rel. to target’)

listBox = \
ttk.Treeview(Globals.profile plot canvas , columns=cols, show=’headings’)

for col in cols:

listBox.heading(col, text=col, anchor=W)

listBox.column(col ,width=84, stretch=False, anchor=W)

listBox.grid(row=8, column=0, columnspan=4)

lst = [[’Film: ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’],\
[’Doseplan: ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’]]

for i, (name, m, dis, d, rdROI, rdTarget) in enumerate(lst):

listBox.insert("", "end", values=(name, m, dis, d, rdROI, rdTarget))

v line = a.axvline(x=0, ymin=0, ymax=50, c=’gray’)

if line orient == ’h’:

if(Globals.profiles dataset doseplan.PixelSpacing==[1, 1]):

dy = Globals.profiles doseplan dataset ROI.shape[1]/2

elif(Globals.profiles dataset doseplan.PixelSpacing==[2, 2]):

dy = Globals.profiles doseplan dataset ROI.shape[1]*2/2
else:

dy = Globals.profiles doseplan dataset ROI.shape[1]*3/2
dx = dataset film.shape[1]*0.2/2
x = np.linspace(−dx,dx, dataset film.shape[1])
y = np.linspace(−dy,dy, Globals.profiles doseplan dataset ROI.shape[1])
plot film = dataset film[Globals.profiles coordinate in dataset ,:]/100

plot doseplan = \
dataset doseplan[Globals.profiles coordinate in dataset , :]

film = a.plot(x,plot film , color=’r’, label=’Film’)

dose = a.plot(y,plot doseplan , color=’b’, label=’Doseplan’)

elif line orient == ’v’:

if(Globals.profiles dataset doseplan.PixelSpacing==[1, 1]):

dy = Globals.profiles doseplan dataset ROI.shape[0]/2

elif(Globals.profiles dataset doseplan.PixelSpacing==[2, 2]):

dy = Globals.profiles doseplan dataset ROI.shape[0]*2/2
else:

dy = Globals.profiles doseplan dataset ROI.shape[0]*3/2
dx = dataset film.shape[0]*0.2/2
x = np.linspace(−dx,dx, dataset film.shape[0])
y = np.linspace(−dy,dy, Globals.profiles doseplan dataset ROI.shape[0])
plot film = dataset film[:,Globals.profiles coordinate in dataset]/100

plot doseplan = \
dataset doseplan[:, Globals.profiles coordinate in dataset]

film=a.plot(x,plot film , color=’r’, label=’Film’)

dose=a.plot(y,plot doseplan , color=’b’, label=’Doseplan’)

elif line orient == ’d’:

194

start f x , start f y = Globals.profiles line coords film[0]

end f x , end f y = Globals.end point

dx=np.sqrt(((end f x−start f x)*0.2)**2 + \
((end f y−start f y)*0.2)**2)/2

if(Globals.profiles dataset doseplan.PixelSpacing==[1, 1]):

start d x , start d y = Globals.profiles line coords doseplan[0]

end d x , end d y = Globals.end point

end d x=end d x /5; end d y=end d y/5

dy=np.sqrt(((end d x−start d x))**2 + ((end d y−start d y))**2)/2
elif(Globals.profiles dataset doseplan.PixelSpacing==[2, 2]):

start d x , start d y = Globals.profiles line coords doseplan[0]

end d x , end d y = Globals.end point

end d x=end d x /10; end d y=end d y /10

dy=np.sqrt(((end d x−start d x)*2)**2 + \
((end d y−start d y)*2)**2)/2

else:

start d x , start d y = Globals.profiles line coords doseplan[0]

end d x , end d y = Globals.end point

end d x=end d x /15; end d y=end d y /15

dy=np.sqrt(((end d x−start d x)*3)**2 + \
((end d y−start d y)*3)**2)/2

x = np.linspace(−dx,dx,len(dataset film))
y = np.linspace(−dy,dy,len(dataset doseplan))
plot film=dataset film/100

plot doseplan=dataset doseplan

film = a.plot(x,plot film , color=’r’, label=’Film’)

dose= a.plot(y,plot doseplan , ’b’, label=’Doseplan’)

else:

messagebox.showerror("Error", \
"Fatal error. Something has gone wrong, try again \n(Code: draw")

return

def export plot():

plt.figure()

plt.plot(x, plot film , color=’r’, label=’Film’)

plt.plot(y, plot doseplan , ’b’, label=’Doseplan’)

plt.ylabel(’Dose (Gy)’)

plt.xlabel(’Distance (mm)’)

plt.title("Profiles")

plt.show()

Globals.profiles export plot button.configure\

195

(state=ACTIVE, command=export plot)

a.legend()

a.set title("Profiles", fontsize=12)

a.set ylabel("Dose (Gy)", fontsize=12)

a.set xlabel("Distance (mm)", fontsize=12)

def mouseMove(event):

if event.inaxes == a:

dist = event.xdata

idx film = np.searchsorted(x, dist)

idx doseplan = np.searchsorted(y, dist)

if idx film == 0:

idx film = 0

elif idx film == len(x):

idx film = len(x)−1
else:

if abs(x[idx film−1]−dist)< abs(x[idx film]−dist):
idx film = idx film−1

else:

idx film = idx film

if idx doseplan == 0:

idx doseplan = 0

elif idx doseplan == len(y):

idx doseplan = len(y)−1
else:

if abs(y[idx doseplan−1]−dist)< abs(y[idx doseplan]−dist):
idx doseplan = idx doseplan−1

else:

idx doseplan = idx doseplan

idx film = int(np.round(idx film))

if idx film < 0:

idx film = 0

if idx film >= len(plot film):
idx film = len(plot film)− 1

idx doseplan = int(np.round(idx doseplan))

if idx doseplan < 0:

idx doseplan = 0

if idx doseplan >= len(plot doseplan):
idx doseplan = len(plot doseplan)− 1

match text = "\tGraph match: \t"
match = str(np.round(min(plot film[idx film], \

plot doseplan[idx doseplan])/max(plot film[idx film], \
plot doseplan[idx doseplan])*100, 2)) + "\n"

196

distance text = "Distance:\t "
dose text = "Dose: \t"
rel target dose text = "Relative to target dose: \t "
rel mx dose ROI text = "Relative to max dose in ROI: \n"
distance = str(np.round(dist ,2)) + "\n"
film = "FILM: \t"
dose film = str(np.round(plot film[idx film],2)) + "\t"
rel target dose film = str(np.round(100*plot film[idx film]/\

Globals.max dose doseplan ,2)) + "\t\t\t"
rel mx dose ROI film = str(np.round(100*plot film[idx film]/\

np.max(plot film),2)) + "\n"
doseplan = "DOSEPLAN: \t"
dose doseplan = \

str(np.round(plot doseplan[idx doseplan],2)) + "\t"
rel target dose doseplan = \

str(np.round(100*plot doseplan[idx doseplan]/\
Globals.max dose doseplan ,2)) + "\t\t\t"

rel mx dose ROI doseplan = \
str(np.round(100*plot doseplan[idx doseplan]/+
np.max(plot doseplan),2))

notation = match text + distance text + dose text , \
rel target dose text + rel mx dose ROI text +\

film + dose film + rel target dose film + \
rel mx dose ROI film+ doseplan + dose doseplan\

+ rel target dose doseplan + \
rel mx dose ROI doseplan

children = listBox.get children()

for item in children:

listBox.delete(item)

lst = [[’Film: ’, match, distance , dose film , \
rel mx dose ROI film , rel target dose film],\
[’Doseplan: ’, match, distance, dose doseplan , \

rel mx dose ROI doseplan , rel target dose doseplan]]

for i, (name, m, dis, d, rdROI, rdTarget) in enumerate(lst):

listBox.insert("", "end", \
values=(name, m, dis, d, rdROI, rdTarget))

y min = max(plot film[idx film], plot doseplan[idx doseplan])\
−0.3*max(np.max(plot film), np.max(plot doseplan))

if y min < 0:

y min = 0

y max = max(plot film[idx film], plot doseplan[idx doseplan])\
+0.3*max(np.max(plot film), np.max(plot doseplan))

if y max > max(np.max(plot film), np.max(plot doseplan)):

y max = max(np.max(plot film), np.max(plot doseplan))

197

v line.set xdata(dist)

v line.set visible(True)

fig.canvas.draw idle()

def freezeData(event):

fig.canvas.mpl disconnect(cid)

v line.set visible(False)

fig.canvas.draw idle()

def startData(event):

fig.canvas.mpl disconnect(cid2)

fig.canvas.mpl disconnect(cid3)

draw(line orient , dataset film , dataset doseplan)

cid3 = fig.canvas.mpl connect(’button press event’, startData)

cid2 = fig.canvas.mpl connect(’button press event’, freezeData)

else:

return

cid3 = None

cid = fig.canvas.mpl connect(’motion notify event’, mouseMove)

fig.tight layout()

if even:

draw(’d’, Globals.profiles dataset film variable draw , \
Globals.profiles dataset doesplan variable draw)

return

if(Globals.profiles choice of profile line type.get() == ’h’\
and Globals.profiles dataset doseplan.PixelSpacing == [1, 1]):

dataset film = np.zeros(\
(Globals.profiles doseplan dataset ROI.shape[0], \

Globals.profiles film dataset ROI red channel dose.shape[1]))

for i in range(dataset film.shape[0]−1):
dataset film[i,:] = \

Globals.profiles film dataset ROI red channel dose[int((i*5)+2),:]
try:

dataset film[dataset film.shape[0]−1,:] =\
Globals.profiles film dataset ROI red channel dose[int\

((dataset film.shape[0]−1)*5+2), :]
except:

dataset film[dataset film.shape[0]−1,:] = \

198

Globals.profiles film dataset ROI red channel dose\
[Globals.profiles film dataset ROI red channel dose.shape[0]−1,:]

line doseplan = Globals.doseplan write image.create line\
(0,Globals.doseplan write image var x ,\
Globals.doseplan write image width ,\

Globals.doseplan write image var x , fill=’red’)

line film = Globals.film write image.create line\
(0,Globals.doseplan write image var x ,\
Globals.doseplan write image width ,\

Globals.doseplan write image var x , fill=’red’)

Globals.profiles lines.append(line doseplan)

Globals.profiles lines.append(line film)

def up button pressed(event):

temp x = Globals.doseplan write image var x − 5
if(temp x < 0):

return

Globals.doseplan write image var x = temp x

Globals.profiles coordinate in dataset = int(temp x/5)

Globals.doseplan write image.coords(line doseplan ,0,\
Globals.doseplan write image var x ,\

Globals.doseplan write image width ,\
Globals.doseplan write image var x)

Globals.film write image.coords(line film , 0,\
Globals.doseplan write image var x ,\

Globals.doseplan write image width ,\
Globals.doseplan write image var x)

draw(’h’, dataset film , Globals.profiles doseplan dataset ROI)

def down button pressed(event):

temp x = Globals.doseplan write image var x + 5

if(temp x >= Globals.doseplan write image height):
return

Globals.profiles coordinate in dataset = int(temp x/5)

Globals.doseplan write image var x = temp x

Globals.doseplan write image.coords(line doseplan ,0,\
Globals.doseplan write image var x ,\

Globals.doseplan write image width ,\
Globals.doseplan write image var x)

Globals.film write image.coords(line film , 0,\
Globals.doseplan write image var x ,\

Globals.doseplan write image width ,\

199

Globals.doseplan write image var x)

draw(’h’, dataset film , Globals.profiles doseplan dataset ROI)

Globals.form.bind("<Up>", up button pressed)
Globals.form.bind("<Down>", down button pressed)

if Globals.profiles first time in drawProfiles:

Globals.profiles first time in drawProfiles = False

draw(’h’, dataset film , Globals.profiles doseplan dataset ROI)

elif(Globals.profiles choice of profile line type.get()==’h’ \
and Globals.profiles dataset doseplan.PixelSpacing==[2, 2]):

dataset film = np.zeros(\
(Globals.profiles doseplan dataset ROI.shape[0], \

Globals.profiles film dataset ROI red channel dose.shape[1]))

for i in range(dataset film.shape[0]−1):
dataset film[i,:] = \

Globals.profiles film dataset ROI red channel dose[int((i*10)+5),:]
try:

dataset film[dataset film.shape[0]−1,:] = \
Globals.profiles film dataset ROI red channel dose\

[int((dataset film.shape[0]−1)*10+5), :]
except:

dataset film[dataset film.shape[0]−1,:] = \
Globals.profiles film dataset ROI red channel dose\

[Globals.profiles film dataset ROI red channel dose.shape[0]−1,:]

line doseplan = Globals.doseplan write image.create line\
(0,Globals.doseplan write image var x ,\

Globals.doseplan write image width ,\
Globals.doseplan write image var x , fill=’red’)

line film = Globals.film write image.create line\
(0,Globals.doseplan write image var x ,\

Globals.doseplan write image width ,\
Globals.doseplan write image var x , fill=’red’)

Globals.profiles lines.append(line doseplan)

Globals.profiles lines.append(line film)

def up button pressed(event):

temp x = Globals.doseplan write image var x − 10
if(temp x < 0):

return

Globals.doseplan write image var x = temp x

200

Globals.profiles coordinate in dataset = int(temp x/10)

Globals.doseplan write image.coords(line doseplan ,0,\
Globals.doseplan write image var x ,\

Globals.doseplan write image width ,\
Globals.doseplan write image var x)

Globals.film write image.coords(line film , 0,\
Globals.doseplan write image var x ,\

Globals.doseplan write image width ,\
Globals.doseplan write image var x)

draw(’h’, dataset film , Globals.profiles doseplan dataset ROI)

def down button pressed(event):

temp x = Globals.doseplan write image var x + 10

if(temp x >= Globals.doseplan write image height):
return

Globals.profiles coordinate in dataset = int(temp x/10)

Globals.doseplan write image var x = temp x

Globals.doseplan write image.coords(line doseplan ,0,\
Globals.doseplan write image var x ,\

Globals.doseplan write image width ,\
Globals.doseplan write image var x)

Globals.film write image.coords(line film , 0,\
Globals.doseplan write image var x ,\

Globals.doseplan write image width ,\
Globals.doseplan write image var x)

draw(’h’, dataset film , Globals.profiles doseplan dataset ROI)

Globals.form.bind("<Up>", up button pressed)
Globals.form.bind("<Down>", down button pressed)

if Globals.profiles first time in drawProfiles:

Globals.profiles first time in drawProfiles = False

draw(’h’, dataset film , Globals.profiles doseplan dataset ROI)

elif(Globals.profiles choice of profile line type.get() == ’h’ \
and Globals.profiles dataset doseplan.PixelSpacing==[3, 3]):

dataset film = np.zeros(\
(Globals.profiles doseplan dataset ROI.shape[0], \

Globals.profiles film dataset ROI red channel dose.shape[1]))

for i in range(dataset film.shape[0]−1):
dataset film[i,:] = Globals.profiles film dataset ROI red channel dose\

[int((i*15)+7),:]
try:

dataset film[dataset film.shape[0]−1,:] = \
Globals.profiles film dataset ROI red channel dose\

201

[int((dataset film.shape[0]−1)*15+7), :]
except:

dataset film[dataset film.shape[0]−1,:] = \
Globals.profiles film dataset ROI red channel dose\

[Globals.profiles film dataset ROI red channel dose.shape[0]−1,:]

line doseplan = Globals.doseplan write image.\
create line(0,Globals.doseplan write image var x ,\

Globals.doseplan write image width ,\
Globals.doseplan write image var x , fill=’red’)

line film = Globals.film write image.create line\
(0,Globals.doseplan write image var x ,\

Globals.doseplan write image width ,\
Globals.doseplan write image var x , fill=’red’)

Globals.profiles lines.append(line doseplan)

Globals.profiles lines.append(line film)

def up button pressed(event):

temp x = Globals.doseplan write image var x − 15
if(temp x < 0):

#Outside the frame
return

#inside the frame
Globals.doseplan write image var x = temp x

Globals.profiles coordinate in dataset = int(temp x/15)

Globals.doseplan write image.coords(line doseplan ,0,\
Globals.doseplan write image var x ,\

Globals.doseplan write image width ,\
Globals.doseplan write image var x)

Globals.film write image.coords(line film , 0,\
Globals.doseplan write image var x ,\

Globals.doseplan write image width ,\
Globals.doseplan write image var x)

draw(’h’, dataset film , Globals.profiles doseplan dataset ROI)

def down button pressed(event):

temp x = Globals.doseplan write image var x + 15

if(temp x >= Globals.doseplan write image height):
#Outside the frame
return

#Inside the frame
Globals.profiles coordinate in dataset = int(temp x/15)

Globals.doseplan write image var x = temp x

202

Globals.doseplan write image.coords(line doseplan ,0,\
Globals.doseplan write image var x ,\

Globals.doseplan write image width ,\
Globals.doseplan write image var x)

Globals.film write image.coords(line film , 0,\
Globals.doseplan write image var x ,\

Globals.doseplan write image width ,\
Globals.doseplan write image var x)

draw(’h’, dataset film ,Globals.profiles doseplan dataset ROI)

Globals.form.bind("<Up>", up button pressed)
Globals.form.bind("<Down>", down button pressed)

if Globals.profiles first time in drawProfiles:

Globals.profiles first time in drawProfiles = False

draw(’h’, dataset film , Globals.profiles doseplan dataset ROI)

elif(Globals.profiles choice of profile line type.get() == ’v’ \
and Globals.profiles dataset doseplan.PixelSpacing == [1, 1]):

dataset film = np.zeros(\
(Globals.profiles film dataset ROI red channel dose.shape[0],\

Globals.profiles doseplan dataset ROI.shape[1]))

for i in range(dataset film.shape[1]−1):
dataset film[:,i] = \

Globals.profiles film dataset ROI red channel dose[:,int((i*5)+2)]
try:

dataset film[:,dataset film.shape[1]−1] = \
Globals.profiles film dataset ROI red channel dose\

[:,int((dataset film.shape[1]−1)*5+2)]
except:

dataset film[:,dataset film.shape[1]−1] = \
Globals.profiles film dataset ROI red channel dose[:,\

Globals.profiles film dataset ROI red channel dose.shape[1]−1]

line doseplan = Globals.doseplan write image.create line\
(Globals.doseplan write image var y , 0,\

Globals.doseplan write image var y , \
Globals.doseplan write image height , fill=’red’)

line film = Globals.film write image.create line\
(Globals.doseplan write image var y ,0,\

Globals.doseplan write image var y ,\
Globals.doseplan write image height , fill=’red’)

Globals.profiles lines.append(line doseplan)

203

Globals.profiles lines.append(line film)

def left button pressed(event):

temp y = Globals.doseplan write image var y − 5
if(temp y < 0):

return

Globals.doseplan write image var y = temp y

Globals.profiles coordinate in dataset = int(temp y/5)

Globals.doseplan write image.coords(line doseplan,\
Globals.doseplan write image var y , 0,\

Globals.doseplan write image var y , \
Globals.doseplan write image height)

Globals.film write image.coords(line film , \
Globals.doseplan write image var y , 0,\

Globals.doseplan write image var y , \
Globals.doseplan write image height)

draw(’v’, dataset film , Globals.profiles doseplan dataset ROI)

def right button pressed(event):

temp y = Globals.doseplan write image var y + 5

if(temp y >= Globals.doseplan write image width):
return

Globals.profiles coordinate in dataset = int(temp y/5)

Globals.doseplan write image var y = temp y

Globals.doseplan write image.coords(line doseplan,\
Globals.doseplan write image var y , 0,\

Globals.doseplan write image var y , \
Globals.doseplan write image height)

Globals.film write image.coords(line film , \
Globals.doseplan write image var y , 0,\

Globals.doseplan write image var y , \
Globals.doseplan write image height)

draw(’v’, dataset film , Globals.profiles doseplan dataset ROI)

Globals.form.bind("<Left>", left button pressed)
Globals.form.bind("<Right>", right button pressed)

if Globals.profiles first time in drawProfiles:

Globals.profiles first time in drawProfiles = False

draw(’v’, dataset film , Globals.profiles doseplan dataset ROI)

elif(Globals.profiles choice of profile line type.get() == ’v’ and \
Globals.profiles dataset doseplan.PixelSpacing == [2, 2]):

204

dataset film = np.zeros(\
(Globals.profiles film dataset ROI red channel dose.shape[0], \

Globals.profiles doseplan dataset ROI.shape[1]))

for i in range(dataset film.shape[1]−1):
dataset film[:,i] = \

Globals.profiles film dataset ROI red channel dose[:,int((i*10)+5)]
try:

dataset film[:,dataset film.shape[1]−1] = \
Globals.profiles film dataset ROI red channel dose[:,\

int((dataset film.shape[1]−1)*10+5)]
except:

dataset film[:,dataset film.shape[1]−1] = \
Globals.profiles film dataset ROI red channel dose[:,\

Globals.profiles film dataset ROI red channel dose.shape[1]−1]

line doseplan = Globals.doseplan write image.create line\
(Globals.doseplan write image var y , 0,\

Globals.doseplan write image var y , \
Globals.doseplan write image height , fill=’red’)

line film = Globals.film write image.create line\
(Globals.doseplan write image var y ,0,\

Globals.doseplan write image var y ,\
Globals.doseplan write image height , fill=’red’)

Globals.profiles lines.append(line doseplan)

Globals.profiles lines.append(line film)

def left button pressed(event):

temp y = Globals.doseplan write image var y − 10
if(temp y < 0):

return

Globals.doseplan write image var y = temp y

Globals.profiles coordinate in dataset = int(temp y/10)

Globals.doseplan write image.coords(line doseplan,\
Globals.doseplan write image var y , 0,\

Globals.doseplan write image var y , \
Globals.doseplan write image height)

Globals.film write image.coords(line film , \
Globals.doseplan write image var y , 0,\

Globals.doseplan write image var y , \
Globals.doseplan write image height)

draw(’v’, dataset film , Globals.profiles doseplan dataset ROI)

def right button pressed(event):

205

temp y = Globals.doseplan write image var y + 10

if(temp y >= Globals.doseplan write image width):
return

Globals.profiles coordinate in dataset = int(temp y/10)

Globals.doseplan write image var y = temp y

Globals.doseplan write image.coords(line doseplan,\
Globals.doseplan write image var y , 0,\

Globals.doseplan write image var y , \
Globals.doseplan write image height)

Globals.film write image.coords(line film , \
Globals.doseplan write image var y , 0,\

Globals.doseplan write image var y , \
Globals.doseplan write image height)

draw(’v’, dataset film , Globals.profiles doseplan dataset ROI)

Globals.form.bind("<Left>", left button pressed)
Globals.form.bind("<Right>", right button pressed)

if Globals.profiles first time in drawProfiles:

Globals.profiles first time in drawProfiles = False

draw(’v’, dataset film , Globals.profiles doseplan dataset ROI)

elif(Globals.profiles choice of profile line type.get() == ’v’ and \
Globals.profiles dataset doseplan.PixelSpacing == [3, 3]):

dataset film = np.zeros(\
(Globals.profiles film dataset ROI red channel dose.shape[0], \

Globals.profiles doseplan dataset ROI.shape[1]))

for i in range(dataset film.shape[1]−1):
dataset film[:,i] = \

Globals.profiles film dataset ROI red channel dose[:,int((i*15)+7)]
try:

dataset film[:,dataset film.shape[1]−1] = \
Globals.profiles film dataset ROI red channel dose[:,\

int((dataset film.shape[1]−1)*15+7)]
except:

dataset film[:,dataset film.shape[1]−1] = \
Globals.profiles film dataset ROI red channel dose[:,\

Globals.profiles film dataset ROI red channel dose.shape[1]−1]

line doseplan = Globals.doseplan write image.create line\
(Globals.doseplan write image var y , 0,\

Globals.doseplan write image var y ,\
Globals.doseplan write image height , fill=’red’)

206

line film = Globals.film write image.create line\
(Globals.doseplan write image var y ,0,\

Globals.doseplan write image var y ,\
Globals.doseplan write image height , fill=’red’)

Globals.profiles lines.append(line doseplan)

Globals.profiles lines.append(line film)

def left button pressed(event):

temp y = Globals.doseplan write image var y − 15
if(temp y < 0):

return

Globals.doseplan write image var y = temp y

Globals.profiles coordinate in dataset = int(temp y/15)

Globals.doseplan write image.coords(line doseplan,\
Globals.doseplan write image var y , 0,\

Globals.doseplan write image var y , \
Globals.doseplan write image height)

Globals.film write image.coords(line film , \
Globals.doseplan write image var y , 0,\

Globals.doseplan write image var y , \
Globals.doseplan write image height)

draw(’v’, dataset film , Globals.profiles doseplan dataset ROI)

def right button pressed(event):

temp y = Globals.doseplan write image var y + 15

if(temp y >= Globals.doseplan write image width):
return

Globals.profiles coordinate in dataset = int(temp y/15)

Globals.doseplan write image var y = temp y

Globals.doseplan write image.coords(line doseplan,\
Globals.doseplan write image var y , 0,\

Globals.doseplan write image var y , \
Globals.doseplan write image height)

Globals.film write image.coords(line film , \
Globals.doseplan write image var y , 0,\

Globals.doseplan write image var y , \
Globals.doseplan write image height)

draw(’v’, dataset film , Globals.profiles doseplan dataset ROI)

Globals.form.bind("<Left>", left button pressed)
Globals.form.bind("<Right>", right button pressed)

if Globals.profiles first time in drawProfiles:

207

Globals.profiles first time in drawProfiles = False

draw(’v’, dataset film , Globals.profiles doseplan dataset ROI)

elif(Globals.profiles choice of profile line type.get() == ’d’\
and Globals.profiles dataset doseplan.PixelSpacing == [1, 1]):

start point = [0,0]

def mousePushed(event):

start point = [event.y, event.x]

if not len(Globals.profiles lines)==0:

Globals.doseplan write image.delete(Globals.profiles lines[0])

Globals.film write image.delete(Globals.profiles lines[1])

Globals.profiles lines = []

line doseplan = Globals.doseplan write image.create line(start point[1],\
start point[0],start point[1],start point[0], fill=’red’)

line film = Globals.film write image.create line(start point[1], \
start point[0],start point[1],start point[0], fill=’red’)

Globals.profiles lines.append(line doseplan)

Globals.profiles lines.append(line film)

def mouseMoving(event):

Globals.doseplan write image.coords(line doseplan , \
start point[1], start point[0], event.x, event.y)

Globals.film write image.coords(line film , start point[1], \
start point[0], event.x, event.y)

Globals.film write image.bind("<B1−Motion>", mouseMoving)

def mouseReleased(event):

Globals.end point = [event.y, event.x]

Globals.doseplan write image.coords(line doseplan , \
start point[1], start point[0], event.x, event.y)

Globals.film write image.coords(line film , \
start point[1], start point[0], event.x, event.y)

Globals.profiles line coords film = getCoordsInRandomLine\
(start point[1], start point[0], \

Globals.end point[1], Globals.end point[0])

Globals.profiles line coords doseplan = getCoordsInRandomLine\
(int(start point[1]/5), int(start point[0]/5), \
int(Globals.end point[1]/5), int(Globals.end point[0]/5))

Globals.profiles dataset film variable draw = \
np.zeros(len(Globals.profiles line coords film))

Globals.profiles dataset doesplan variable draw=\

208

np.zeros(len(Globals.profiles line coords doseplan))

for i in range(len(Globals.profiles dataset film variable draw)):

coord = Globals.profiles line coords film[i]

try:

Globals.profiles dataset film variable draw[i] = \
Globals.profiles film dataset ROI red channel dose\

[coord[0]−1, coord[1]−1]
except:

return

for i in range(len(Globals.profiles dataset doesplan variable draw)):

coord = Globals.profiles line coords doseplan[i]

try:

Globals.profiles dataset doesplan variable draw[i] =\
Globals.profiles doseplan dataset ROI\

[coord[0]−1, coord[1]−1]
except:

return

draw(’d’, Globals.profiles dataset film variable draw , \
Globals.profiles dataset doesplan variable draw)

Globals.film write image.bind("<ButtonRelease−1>", mouseReleased)
Globals.film write image.bind("<Button−1>", mousePushed)

elif(Globals.profiles choice of profile line type.get() == ’d’ and \
Globals.profiles dataset doseplan.PixelSpacing == [2, 2]):

start point = [0,0]

def mousePushed(event):

start point = [event.y, event.x]

if not len(Globals.profiles lines)==0:

Globals.doseplan write image.delete(Globals.profiles lines[0])

Globals.film write image.delete(Globals.profiles lines[1])

Globals.profiles lines = []

line doseplan = Globals.doseplan write image.create line(start point[1],\
start point[0],start point[1],start point[0], fill=’red’)

line film = Globals.film write image.create line(start point[1],\
start point[0],start point[1],start point[0], fill=’red’)

Globals.profiles lines.append(line doseplan)

Globals.profiles lines.append(line film)

def mouseMoving(event):

209

Globals.doseplan write image.coords(line doseplan , \
start point[1], start point[0], event.x, event.y)

Globals.film write image.coords(line film , start point[1], \
start point[0], event.x, event.y)

Globals.film write image.bind("<B1−Motion>", mouseMoving)

def mouseReleased(event):

Globals.end point = [event.y, event.x]

Globals.doseplan write image.coords(line doseplan , start point[1],\
start point[0], event.x, event.y)

Globals.film write image.coords(line film , start point[1], \
start point[0], event.x, event.y)

Globals.profiles line coords film = getCoordsInRandomLine\
(start point[1], start point[0], \

Globals.end point[1], Globals.end point[0])

Globals.profiles line coords doseplan = \
getCoordsInRandomLine(int(start point[1]/10), \

int(start point[0]/10), \
int(Globals.end point[1]/10), \

int(Globals.end point[0]/10))

Globals.profiles dataset film variable draw = \
np.zeros(len(Globals.profiles line coords film))

Globals.profiles dataset doesplan variable draw=\
np.zeros(len(Globals.profiles line coords doseplan))

for i in range(len(Globals.profiles dataset film variable draw)):

coord = Globals.profiles line coords film[i]

try:

Globals.profiles dataset film variable draw[i] = \
Globals.profiles film dataset ROI red channel dose\

[coord[0]−1, coord[1]−1]
except:

return

for i in range(len(Globals.profiles dataset doesplan variable draw)):

try:

Globals.profiles dataset doesplan variable draw[i] = \
Globals.profiles doseplan dataset ROI[int\

(Globals.profiles line coords doseplan[i][1])−1,\
int(Globals.profiles line coords doseplan[i][0])−1]

except:

return

210

draw(’d’, Globals.profiles dataset film variable draw , \
Globals.profiles dataset doesplan variable draw)

Globals.film write image.bind("<ButtonRelease−1>", mouseReleased)
Globals.film write image.bind("<Button−1>", mousePushed)

elif(Globals.profiles choice of profile line type.get() == ’d’ and \
Globals.profiles dataset doseplan.PixelSpacing == [3, 3]):

start point = [0,0]

def mousePushed(event):

start point = [event.y, event.x]

if not len(Globals.profiles lines)==0:

Globals.doseplan write image.delete(Globals.profiles lines[0])

Globals.film write image.delete(Globals.profiles lines[1])

Globals.profiles lines = []

line doseplan = Globals.doseplan write image.create line\
(start point[1], start point[0],\

start point[1],start point[0], fill=’red’)

line film = Globals.film write image.create line(start point[1], \
start point[0],start point[1],start point[0], fill=’red’)

Globals.profiles lines.append(line doseplan)

Globals.profiles lines.append(line film)

def mouseMoving(event):

Globals.doseplan write image.coords(line doseplan , start point[1], \
start point[0], event.x, event.y)

Globals.film write image.coords(line film , start point[1], \
start point[0], event.x, event.y)

Globals.film write image.bind("<B1−Motion>", mouseMoving)

def mouseReleased(event):

Globals.end point = [event.y, event.x]

Globals.doseplan write image.coords(line doseplan , start point[1], \
start point[0], event.x, event.y)

Globals.film write image.coords(line film , start point[1], \
start point[0], event.x, event.y)

Globals.profiles line coords film = getCoordsInRandomLine\
(start point[1], start point[0], \

Globals.end point[1], Globals.end point[0])

Globals.profiles line coords doseplan = getCoordsInRandomLine\
(int(start point[1]/15), int(start point[0]/15), \

211

int(Globals.end point[1]/15), int(Globals.end point[0]/15))

Globals.profiles dataset film variable draw = \
np.zeros(len(Globals.profiles line coords film))

Globals.profiles dataset doesplan variable draw=\
np.zeros(len(Globals.profiles line coords doseplan))

for i in range(len(Globals.profiles dataset film variable draw)):

coord = Globals.profiles line coords film[i]

try:

Globals.profiles dataset film variable draw[i] = \
Globals.profiles film dataset ROI red channel dose\

[coord[0]−1, coord[1]−1]
except:

return

for i in range(len(Globals.profiles dataset doesplan variable draw)):

try:

Globals.profiles dataset doesplan variable draw[i] = \
Globals.profiles doseplan dataset ROI[int\

(Globals.profiles line coords doseplan[i][0])−1, \
int(Globals.profiles line coords doseplan[i][1])−1]

except:

return

draw(’d’, Globals.profiles dataset film variable draw , \
Globals.profiles dataset doesplan variable draw)

Globals.film write image.bind("<ButtonRelease−1>", mouseReleased)
Globals.film write image.bind("<Button−1>", mousePushed)

else:

messagebox.showerror("Error", \
"Fatal error. Something went wrong, try again \n(Code: drawProfiles)")

return

def trace profileLineType(var, indx, mode):

#−−
Function to trace the profile type
#
Function is a callback to
profiles choice of profile line type .trace add
in notebook.py
#−−

test drawProfiles()

def test drawProfiles():

212

#−−
Function to make the winwow ready for plotting
#
This functions is a called in
trace profileLineType()
#−−

if Globals.profiles dataset doseplan == None:

return

else:

Globals.doseplan write image.delete(Globals.profiles lines[0])

Globals.film write image.delete(Globals.profiles lines[1])

Globals.form.unbind("<Up>")
Globals.form.unbind("<Down>")
Globals.form.unbind("<Left>")
Globals.form.unbind("<Rigth>")
Globals.profiles first time in drawProfiles = True

drawProfiles(False)

def adjustROILeft(line orient):

#−−
Function to adjust ROI to the left
#
This functions is a callback to the button
profiles adjust button left in notebook.py
#−−

if not line orient == ’d’:

Globals.doseplan write image.delete(Globals.profiles lines[0])

Globals.film write image.delete(Globals.profiles lines[1])

if(Globals.profiles film variable ROI coords[2]−1< 0):

messagebox.showwarning("Warning", \
"Reached end of film \n(Code: adjustROILeft)")

return

Globals.profiles film variable ROI coords = \
[Globals.profiles film variable ROI coords[0],\

Globals.profiles film variable ROI coords[1],\
Globals.profiles film variable ROI coords[2]−1, \

Globals.profiles film variable ROI coords[3]−1]
Globals.profiles film dataset ROI red channel dose = \

Globals.profiles film dataset red channel dose\
[Globals.profiles film variable ROI coords[0]:\

Globals.profiles film variable ROI coords[1],\
Globals.profiles film variable ROI coords[2]:\

Globals.profiles film variable ROI coords[3]]

Globals.profiles first time in drawProfiles = True

213

if line orient == ’d’:

for i in range(len(Globals.profiles dataset film variable draw)):

coord = Globals.profiles line coords film[i]

try:

Globals.profiles dataset film variable draw[i] = \
Globals.profiles film dataset ROI red channel dose\

[coord[0]−1, coord[1]−1]
except:

return

for i in range(len(Globals.profiles dataset doesplan variable draw)):

try:

Globals.profiles dataset doesplan variable draw[i] =\
Globals.profiles doseplan dataset ROI[int\

(Globals.profiles line coords doseplan[i][0])−1, \
int(Globals.profiles line coords doseplan[i][1])−1]

except:

return

drawProfiles(True)

else:

drawProfiles(False)

def adjustROIRight(line orient):

#−−
Function to adjust ROI to the right
#
This functions is a callback to the button
profiles adjust button right in notebook.py
#−−

if not line orient == ’d’:

Globals.doseplan write image.delete(Globals.profiles lines[0])

Globals.film write image.delete(Globals.profiles lines[1])

if(Globals.profiles film variable ROI coords[3]+1> \
Globals.profiles film dataset red channel dose.shape[1]):

messagebox.showwarning("Warning", \
"Reached end of film \n(Code: adjustROIRight)")

return

Globals.profiles film variable ROI coords = \
[Globals.profiles film variable ROI coords[0], \

Globals.profiles film variable ROI coords[1],\
Globals.profiles film variable ROI coords[2]+1, \

Globals.profiles film variable ROI coords[3]+1]

Globals.profiles film dataset ROI red channel dose = \
Globals.profiles film dataset red channel dose\

[Globals.profiles film variable ROI coords[0]:\
Globals.profiles film variable ROI coords[1],\

214

Globals.profiles film variable ROI coords[2]:\
Globals.profiles film variable ROI coords[3]]

Globals.profiles first time in drawProfiles = True

if line orient == ’d’:

for i in range(len(Globals.profiles dataset film variable draw)):

coord = Globals.profiles line coords film[i]

try:

Globals.profiles dataset film variable draw[i] = \
Globals.profiles film dataset ROI red channel dose\

[coord[0]−1, coord[1]−1]
except:

return

for i in range(len(Globals.profiles dataset doesplan variable draw)):

try:

Globals.profiles dataset doesplan variable draw[i] = \
Globals.profiles doseplan dataset ROI[int\

(Globals.profiles line coords doseplan[i][0])−1, \
int(Globals.profiles line coords doseplan[i][1])−1]

except:

return

drawProfiles(True)

else:

drawProfiles(False)

def adjustROIUp(line orient):

#−−
Function to adjust ROI up
#
This functions is a callback to the button
profiles adjust button up in notebook.py
#−−

if not line orient == ’d’:

Globals.doseplan write image.delete(Globals.profiles lines[0])

Globals.film write image.delete(Globals.profiles lines[1])

if(Globals.profiles film variable ROI coords[0]−1< 0):

messagebox.showwarning("Warning", \
"Reached end of film \n(Code: adjustROIUp)")

return

Globals.profiles film variable ROI coords = \
[Globals.profiles film variable ROI coords[0]−1, \

Globals.profiles film variable ROI coords[1]−1,\
Globals.profiles film variable ROI coords[2], \

Globals.profiles film variable ROI coords[3]]

Globals.profiles film dataset ROI red channel dose = \
Globals.profiles film dataset red channel dose\

215

[Globals.profiles film variable ROI coords[0]:\
Globals.profiles film variable ROI coords[1],\

Globals.profiles film variable ROI coords[2]:\
Globals.profiles film variable ROI coords[3]]

Globals.profiles first time in drawProfiles = True

if line orient == ’d’:

for i in range(len(Globals.profiles dataset film variable draw)):

coord = Globals.profiles line coords film[i]

try:

Globals.profiles dataset film variable draw[i] = \
Globals.profiles film dataset ROI red channel dose\

[coord[0]−1, coord[1]−1]
except:

return

for i in range(len(Globals.profiles dataset doesplan variable draw)):

try:

Globals.profiles dataset doesplan variable draw[i] = \
Globals.profiles doseplan dataset ROI[int\

(Globals.profiles line coords doseplan[i][0])−1, \
int(Globals.profiles line coords doseplan[i][1])−1]

except:

return

drawProfiles(True)

else:

drawProfiles(False)

def adjustROIDown(line orient):

#−−
Function to adjust ROI down
#
This functions is a callback to the button
profiles adjust button down in notebook.py
#−−

if not line orient == ’d’:

Globals.doseplan write image.delete(Globals.profiles lines[0])

Globals.film write image.delete(Globals.profiles lines[1])

if(Globals.profiles film variable ROI coords[1]+1> \
Globals.profiles film dataset red channel dose.shape[0]):

messagebox.showwarning("Warning", \
"Reached end of film \n(Code: adjustROIDown)")

return

Globals.profiles film variable ROI coords = \
[Globals.profiles film variable ROI coords[0]+1, \

Globals.profiles film variable ROI coords[1]+1,\
Globals.profiles film variable ROI coords[2], \

216

Globals.profiles film variable ROI coords[3]]

Globals.profiles film dataset ROI red channel dose = \
Globals.profiles film dataset red channel dose\

[Globals.profiles film variable ROI coords[0]:\
Globals.profiles film variable ROI coords[1],\

Globals.profiles film variable ROI coords[2]:\
Globals.profiles film variable ROI coords[3]]

Globals.profiles first time in drawProfiles = True

if line orient == ’d’:

for i in range(len(Globals.profiles dataset film variable draw)):

coord = Globals.profiles line coords film[i]

try:

Globals.profiles dataset film variable draw[i] = \
Globals.profiles film dataset ROI red channel dose\

[coord[0]−1, coord[1]−1]
except:

return

for i in range(len(Globals.profiles dataset doesplan variable draw)):

try:

Globals.profiles dataset doesplan variable draw[i] = \
Globals.profiles doseplan dataset ROI[int\

(Globals.profiles line coords doseplan[i][0])−1, \
int(Globals.profiles line coords doseplan[i][1])−1]

except:

return

drawProfiles(True)

else:

drawProfiles(False)

def returnToOriginalROICoordinates(line orient):

#−−
Function to adjust ROI to original placement
#
This functions is a callback to the button
profiles adjust button return in notebook.py
#−−

if not line orient == ’d’:

Globals.doseplan write image.delete(Globals.profiles lines[0])

Globals.film write image.delete(Globals.profiles lines[1])

Globals.profiles film variable ROI coords = \
[Globals.profiles ROI coords[0][1], Globals.profiles ROI coords[2][1],\

Globals.profiles ROI coords[0][0], Globals.profiles ROI coords[1][0]]

Globals.profiles film dataset ROI red channel dose = \
Globals.profiles film dataset red channel dose\

217

[Globals.profiles film variable ROI coords[0]:\
Globals.profiles film variable ROI coords[1],\

Globals.profiles film variable ROI coords[2]:\
Globals.profiles film variable ROI coords[3]]

Globals.profiles first time in drawProfiles = True

if line orient == ’d’:

for i in range(len(Globals.profiles dataset film variable draw)):

coord = Globals.profiles line coords film[i]

try:

Globals.profiles dataset film variable draw[i] = \
Globals.profiles film dataset ROI red channel dose\

[coord[0]−1, coord[1]−1]
except:

return

for i in range(len(Globals.profiles dataset doesplan variable draw)):

Globals.profiles dataset doesplan variable draw[i] = \
Globals.profiles doseplan dataset ROI[int\

(Globals.profiles line coords doseplan[i][0])−1, \
int(Globals.profiles line coords doseplan[i][1])−1]

drawProfiles(True)

else:

drawProfiles(False)

def pixel to dose(P,a,b,c):

#−−
Function to map between pixel value and dose
#
#−−

ret = c + b/(P−a)
return ret

def processDoseplan usingReferencePoint(only one):

#−−
Function to process the doseplan as the
user has choosen to use reference point
#
This functions is a called in UploadDoseplan()
#−−

################ RT Plan ######################
iso 1 = abs(Globals.profiles dataset doseplan.ImagePositionPatient[0]− \

Globals.profiles dataset rtplan.BeamSequence[0].\
ControlPointSequence[0].IsocenterPosition[0])

iso 2 = abs(Globals.profiles dataset doseplan.ImagePositionPatient[1]− \
Globals.profiles dataset rtplan.BeamSequence[0].\

218

ControlPointSequence[0].IsocenterPosition[1])

iso 3 = abs(Globals.profiles dataset doseplan.ImagePositionPatient[2]− \
Globals.profiles dataset rtplan.BeamSequence[0].\

ControlPointSequence[0].IsocenterPosition[2])

Globals.profiles isocenter mm = [iso 1 , iso 2 , iso 3]

try:

Globals.profiles vertical = int(Globals.profiles vertical)

except:

messagebox.showerror("Error", "Could not read the \
vertical displacements\n (Code: displacements to integer)")

return

try:

Globals.profiles lateral = int(Globals.profiles lateral)

except:

messagebox.showerror("Error", "Could not read the \
lateral displacements\n (Code: displacements to integer)")

return

try:

Globals.profiles longitudinal = int(Globals.profiles longitudinal)

except:

messagebox.showerror("Error", "Could not read the \
longitudinal displacements\n (Code: displacements to integer)")

return

lateral = Globals.profiles lateral

longit = Globals.profiles longitudinal

vertical = Globals.profiles vertical

isocenter px = np.zeros(3)

distance in doseplan ROI reference point px = []

if(Globals.profiles dataset doseplan.PixelSpacing==[1, 1]):

isocenter px[0] = np.round(iso 1)

isocenter px[1] = np.round(iso 2)

isocenter px[2] = np.round(iso 3)

distance in doseplan ROI reference point px.append\
([np.round(Globals.profiles distance reference point ROI[0][0]),\

np.round(Globals.profiles distance reference point ROI [0][1])])

distance in doseplan ROI reference point px.append\
([np.round(Globals.profiles distance reference point ROI[1][0]),\

np.round(Globals.profiles distance reference point ROI [1][1])])

distance in doseplan ROI reference point px.append\
([np.round(Globals.profiles distance reference point ROI[2][0]),\

np.round(Globals.profiles distance reference point ROI [2][1])])

219

distance in doseplan ROI reference point px.append\
([np.round(Globals.profiles distance reference point ROI[3][0]),\

np.round(Globals.profiles distance reference point ROI [3][1])])

lateral px = np.round(lateral)

vertical px = np.round(vertical)

longit px = np.round(longit)

doseplan lateral displacement px = \
np.round(Globals.profiles doseplan lateral displacement)

doseplan vertical displacement px = \
np.round(Globals.profiles doseplan vertical displacement)

doseplan longitudinal displacement px = \
np.round(Globals.profiles doseplan longitudianl displacement)

elif(Globals.profiles dataset doseplan.PixelSpacing==[2, 2]):

isocenter px[0] = np.round(iso 1/2)

isocenter px[1] = np.round(iso 2/2)

isocenter px[2] = np.round(iso 3/2)

distance in doseplan ROI reference point px.append\
([np.round((Globals.profiles distance reference point ROI[0][0])/2),\

np.round((Globals.profiles distance reference point ROI [0][1])/2)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.profiles distance reference point ROI[1][0])/2),\

np.round((Globals.profiles distance reference point ROI [1][1])/2)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.profiles distance reference point ROI[2][0])/2),\

np.round((Globals.profiles distance reference point ROI [2][1])/2)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.profiles distance reference point ROI[3][0])/2),\

np.round((Globals.profiles distance reference point ROI [3][1])/2)])

lateral px = np.round(lateral/2)

vertical px = np.round(vertical/2)

longit px = np.round(longit/2)

doseplan lateral displacement px = \
np.round((Globals.profiles doseplan lateral displacement)/2)

doseplan vertical displacement px = \
np.round((Globals.profiles doseplan vertical displacement)/2)

doseplan longitudinal displacement px = \
np.round((Globals.profiles doseplan longitudianl displacement)/2)

else:

220

isocenter px[0] = np.round(iso 1/3)

isocenter px[1] = np.round(iso 2/3)

isocenter px[2] = np.round(iso 3/3)

distance in doseplan ROI reference point px.append\
([np.round((Globals.profiles distance reference point ROI[0][0])/3),\

np.round((Globals.profiles distance reference point ROI [0][1])/3)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.profiles distance reference point ROI[1][0])/3),\

np.round((Globals.profiles distance reference point ROI [1][1])/3)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.profiles distance reference point ROI[2][0])/3),\

np.round((Globals.profiles distance reference point ROI [2][1])/3)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.profiles distance reference point ROI[3][0])/3),\

np.round((Globals.profiles distance reference point ROI [3][1])/3)])

lateral px = np.round(lateral/3)

vertical px = np.round(vertical/3)

longit px = np.round(longit/3)

doseplan lateral displacement px = \
np.round((Globals.profiles doseplan lateral displacement)/3)

doseplan vertical displacement px = \
np.round((Globals.profiles doseplan vertical displacement)/3)

doseplan longitudinal displacement px = \
np.round((Globals.profiles doseplan longitudianl displacement)/3)

temp ref point doseplan = np.zeros(3)

if(Globals.profiles doseplan patient position==’HFS’):

temp ref point doseplan[0] = \
int(isocenter px[0]+ doseplan lateral displacement px − lateral px)

temp ref point doseplan[1] = \
int(isocenter px[1]− doseplan vertical displacement px + vertical px)

temp ref point doseplan[2] = \
int(isocenter px[2]+ doseplan longitudinal displacement px − longit px)

elif(Globals.profiles doseplan patient position==’HFP’):

temp ref point doseplan[0] = \
isocenter px[0]− doseplan lateral displacement px+ lateral px

temp ref point doseplan[1] = \
isocenter px[1]+ doseplan vertical displacement px − vertical px

temp ref point doseplan[2] = \
isocenter px[2]+ doseplan longitudinal displacement px − longit px

elif(Globals.profiles doseplan patient position==’HFDR’):

221

temp ref point doseplan[0] = \
isocenter px[0]− doseplan vertical displacement px + vertical px

temp ref point doseplan[1] = \
isocenter px[1]+ doseplan lateral displacement px − lateral px

temp ref point doseplan[2] = \
isocenter px[2]+ doseplan longitudinal displacement px − longit px

elif(Globals.profiles doseplan patient position==’HFDL’):

temp ref point doseplan[0] = \
isocenter px[0]+ doseplan vertical displacement px − vertical px

temp ref point doseplan[1] = \
isocenter px[1]− doseplan lateral displacement px + lateral px

temp ref point doseplan[2] = \
isocenter px[2]+ doseplan longitudinal displacement px − longit px

elif(Globals.profiles doseplan patient position==’FFS’):

temp ref point doseplan[0] = \
isocenter px[0]− doseplan lateral displacement px + lateral px

temp ref point doseplan[1] = \
isocenter px[1]+ doseplan vertical displacement px − vertical px

temp ref point doseplan[2] = \
isocenter px[2]− doseplan longitudinal displacement px + longit px

elif(Globals.profiles doseplan patient position==’FFP’):

temp ref point doseplan[0] = \
isocenter px[0]+ doseplan lateral displacement px− lateral px

temp ref point doseplan[1] = \
isocenter px[1]− doseplan vertical displacement px + vertical px

temp ref point doseplan[2] = \
isocenter px[2]− doseplan longitudinal displacement px + longit px

elif(Globals.profiles doseplan patient position==’FFDR’):

temp ref point doseplan[0] = \
isocenter px[0]− doseplan vertical displacement px + vertical px

temp ref point doseplan[1] = \
isocenter px[1]− doseplan lateral displacement px + lateral px

temp ref point doseplan[2] = \
isocenter px[2]− doseplan longitudinal displacement px + longit px

else:

temp ref point doseplan[0] = \
isocenter px[0] + doseplan vertical displacement px − vertical px

temp ref point doseplan[1] = \
isocenter px[1] + doseplan lateral displacement px − lateral px

temp ref point doseplan[2] = \
isocenter px[2]− doseplan longitudinal displacement px + longit px

Globals.profiles reference point in doseplan = temp ref point doseplan

reference point = np.zeros(3)

222

######################## Doseplan ##################################
if(Globals.profiles dataset doseplan.ImageOrientationPatient\

==[1, 0, 0, 0, 1, 0]):

reference point[0] = temp ref point doseplan[2]

reference point[1] = temp ref point doseplan[1]

reference point[2] = temp ref point doseplan[0]

if(Globals.profiles film orientation.get()==’Coronal’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

elif(Globals.profiles film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

elif(Globals.profiles film orientation.get()==’Axial’):

dataset swapped = Globals.profiles dataset doseplan.pixel array

else:

messagebox.showerror("Error", "Something has gone wrong here.")

clearAll()

return

elif(Globals.profiles dataset doseplan.ImageOrientationPatient\
==[1, 0, 0, 0, 0, 1]):

reference point[0] = temp ref point doseplan[1]

reference point[1] = temp ref point doseplan[2]

reference point[2] = temp ref point doseplan[0]

if(Globals.profiles film orientation.get()==’Coronal’):

dataset swapped = Globals.profiles dataset doseplan.pixel array

elif(Globals.profiles film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

dataset swapped = np.swapaxes(dataset swapped , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

elif(Globals.profiles film orientation.get()==’Axial’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

223

reference point[0] = reference point[1]

reference point[1] = temp ref

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

elif(Globals.profiles dataset doseplan.ImageOrientationPatient\
==[0, 1, 0, 1, 0, 0]):

reference point[0] = temp ref point doseplan[2]

reference point[1] = temp ref point doseplan[0]

reference point[2] = temp ref point doseplan[1]

if(Globals.profiles film orientation.get()==’Coronal’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

dataset swapped = np.swapaxes(dataset swapped , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

elif(Globals.profiles film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

dataset swapped = np.swapaxes(dataset swapped , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

elif(Globals.profiles film orientation.get()==’Axial’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

elif(Globals.profiles dataset doseplan.ImageOrientationPatient\
==[0, 1, 0, 0, 0, 1]):

reference point[0] = temp ref point doseplan[0]

reference point[1] = temp ref point doseplan[2]

224

reference point[2] = temp ref point doseplan[1]

if(Globals.profiles film orientation.get()==’Coronal’):

dataset swapped =\
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

elif(Globals.profiles film orientation.get()==’Sagittal’):

dataset swapped =\
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

elif(Globals.profiles film orientation.get()==’Axial’):

dataset swapped =\
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

dataset swapped = np.swapaxes(dataset swapped , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

elif(Globals.profiles dataset doseplan.ImageOrientationPatient\
==[0, 0, 1, 1, 0, 0]):

reference point[0] = temp ref point doseplan[1]

reference point[1] = temp ref point doseplan[0]

reference point[2] = temp ref point doseplan[2]

if(Globals.profiles film orientation.get()==’Coronal’):

dataset swapped\
= np.swapaxes(Globals.profiles dataset doseplan.pixel array , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

elif(Globals.profiles film orientation.get()==’Sagittal’):

dataset swapped \
= np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

elif(Globals.profiles film orientation.get()==’Axial’):

225

dataset swapped =\
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

dataset swapped = np.swapaxes(dataset swapped , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

elif(Globals.profiles dataset doseplan.ImageOrientationPatient\
==[0, 0, 1, 0, 1, 0]):

reference point[0] = temp ref point doseplan[0]

reference point[1] = temp ref point doseplan[1]

reference point[2] = temp ref point doseplan[2]

if(Globals.profiles film orientation.get()==’Coronal’):

dataset swapped =\
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

dataset swapped = np.swapaxes(dataset swapped , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

elif(Globals.profiles film orientation.get()==’Sagittal’):

dataset swapped = Globals.profiles dataset doseplan.pixel array

elif(Globals.profiles film orientation.get()==’Axial’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

226

if(reference point[0]<0 or reference point[0]>dataset swapped.shape[0]):
messagebox.showerror("Error", "Reference point is outside of dosematrix\n\

(Code: first dimension , number of frames in dosematrix)")

return

if(reference point[1]<0 or reference point[1]>dataset swapped.shape[1]):
messagebox.showerror("Error", "Reference point is outside of dosematrix\n\

(Code: second dimension , rows in dosematrix)")

return

if(reference point[2]<0 or reference point[2]>dataset swapped.shape[2]):
messagebox.showerror("Error", "Reference point is outside of dosematrix\n\

(Code: third dimension , columns in dosematrix)")

return

dose slice = dataset swapped[int(reference point[0]),:,:]

doseplan ROI coords = []

top left test side = False; top left test down = False

top right test side = False; top right test down = False

bottom left test side = False; bottom left test down = False

bottom right test side = False; bottom right test down = False

top left side corr = 0; top left down corr = 0

top right side corr = 0; top right down corr = 0

bottom left side corr = 0; bottom left down corr = 0

bottom right side corr = 0; bottom right down corr = 0

top left to side = reference point[2]− \
distance in doseplan ROI reference point px [0][0]

top left down = reference point[1]− \
distance in doseplan ROI reference point px [0][1]

if(top left to side < 0):

top left test side = True

top left side corr = abs(top left to side)

top left to side = 0

if(top left to side > dose slice.shape[1]):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(top left down < 0):

top left test down = True

top left down corr = abs(top left down)

top left down = 0

if(top left down > dose slice.shape[0]):

messagebox.showerror("Fatal Error", "Fatal error: \

227

marked ROI is out of range in doseplan. Try again")

clearAll()

return

top right to side = reference point[2]− \
distance in doseplan ROI reference point px [1][0]

top right down = reference point[1]− \
distance in doseplan ROI reference point px [1][1]

if(top right to side < 0):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(top right to side > dose slice.shape[1]):

top right test side = True

top right side corr = top right to side − dose slice.shape[1]

top right to side = dose slice.shape[1]

if(top right down < 0):

top right test down = True

top right down corr = abs(top right down)

top right down = 0

if(top right down > dose slice.shape[0]):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

bottom left to side = reference point[2] −\
distance in doseplan ROI reference point px [2][0]

bottom left down = reference point[1]− \
distance in doseplan ROI reference point px [2][1]

if(bottom left to side < 0):

bottom left test side = True

bottom left side corr = abs(bottom left to side)

bottom left to side = 0

if(bottom left to side > dose slice.shape[1]):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(bottom left down < 0):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

228

if(bottom left down > dose slice.shape[0]):

bottom left down corr = bottom left down − dose slice.shape[0]

bottom left down = dose slice.shape[0]

bottom left test down = True

bottom right to side = reference point[2]− \
distance in doseplan ROI reference point px [3][0]

bottom right down = reference point[1]− \
distance in doseplan ROI reference point px [3][1]

if(bottom right to side < 0):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(bottom right to side > dose slice.shape[1]):

bottom right side corr = bottom right to side − dose slice.shape[1]

bottom right to side = dose slice.shape[1]

bottom right test side = True

if(bottom right down < 0):

messagebox.showerror("Fatal Error", "Fatal error:\
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(bottom right down > dose slice.shape[0]):

bottom right down corr = bottom right down − dose slice.shape[0]

bottom right down = dose slice.shape[0]

bottom right test down = True

if(top right test side or top right test down \
or top left test side or top left test down \

or bottom right test side or bottom right test down or \
bottom left test side or bottom left test down):

ROI info = "Left side: " + str(max(top left side corr , \
bottom left side corr)) + " pixels.\n" + "Right side: " + \

str(max(top right side corr , bottom right side corr))+" pixels.\n "\
+ "Top side: " + str(max(top left down corr , \

top right down corr)) + " pixels.\n" + "Bottom side: " \
+str(max(bottom left down corr , bottom right down corr))+\

" pixels."

messagebox.showinfo("ROI info", "The ROI marked \
on the film did not fit with the size of the doseplan and had to \

be cut.\n" + ROI info)

doseplan ROI coords.append([top left to side , top left down])

229

doseplan ROI coords.append([top right to side , top right down])

doseplan ROI coords.append([bottom left to side , bottom left down])

doseplan ROI coords.append([bottom right to side , bottom right down])

if only one:

Globals.profiles doseplan dataset ROI = \
dose slice[int(top left down):int(bottom left down), \

int(top left to side):int(top right to side)]\
*Globals.profiles dataset doseplan.DoseGridScaling

img=Globals.profiles doseplan dataset ROI

if(Globals.profiles dataset doseplan.PixelSpacing==[1, 1]):

img = cv2.resize(img, dsize=(img.shape[1]*5,img.shape[0]*5))
elif(Globals.profiles dataset doseplan.PixelSpacing==[2, 2]):

img = cv2.resize(img, dsize=(img.shape[1]*10,img.shape[0]*10))
else:

img = cv2.resize(img, dsize=(img.shape[1]*15,img.shape[0]*15))

mx=np.max(img)

Globals.max dose doseplan = mx

img = img/mx

PIL img doseplan ROI = Image.fromarray(np.uint8(cm.viridis(img)*255))

wid = PIL img doseplan ROI.width;heig = PIL img doseplan ROI.height

doseplan canvas = tk.Canvas(Globals.profiles film panedwindow)

doseplan canvas.grid(row=2, column=0, sticky=N+S+W+E)

Globals.profiles film panedwindow.add(doseplan canvas , \
height=max(heig, Globals.profiles doseplan text image.height()), \

width=wid + Globals.profiles doseplan text image.width())

doseplan canvas.config(bg=’#ffffff’, relief=FLAT, highlightthickness=0, \
height=max(heig, Globals.profiles doseplan text image.height()), \

width=wid + Globals.profiles doseplan text image.width())

Globals.doseplan write image = tk.Canvas(doseplan canvas)

Globals.doseplan write image.grid(row=0,column=1,sticky=N+S+W+E)

Globals.doseplan write image.config(bg=’#ffffff’, relief=FLAT, \
highlightthickness=0, width=wid, height=heig)

doseplan text image canvas = tk.Canvas(doseplan canvas)

doseplan text image canvas.grid(row=0,column=0,sticky=N+S+W+E)

doseplan text image canvas.config(bg=’#ffffff’, relief=FLAT,\
highlightthickness=0, width=Globals.profiles doseplan text image\

.width(), height=Globals.profiles doseplan text image.height())

230

scaled image visual = PIL img doseplan ROI

scaled image visual = ImageTk.PhotoImage(image=scaled image visual)

Globals.doseplan write image width = scaled image visual.width()

Globals.doseplan write image height = scaled image visual.height()

Globals.doseplan write image.create image(0,0,\
image=scaled image visual , anchor="nw")

Globals.doseplan write image.image = scaled image visual

doseplan text image canvas.create image(0,0,\
image=Globals.profiles doseplan text image , anchor="nw")

doseplan text image canvas.image=Globals.profiles doseplan text image

drawProfiles(False)

else:

img=dose slice[int(top left down):int(bottom left down),\
int(top left to side):int(top right to side)]

Globals.profiles doseplan dataset ROI several.append(img)

Globals.profiles number of doseplans+=1

if(Globals.profiles dataset doseplan.PixelSpacing==[1, 1]):

Globals.profiles several img.append(img)

elif(Globals.profiles dataset doseplan.PixelSpacing==[2, 2]):

Globals.profiles several img.append(img)

else:

Globals.profiles several img.append(img)

def processDoseplan usingIsocenter(only one):

#−−
Function to process the doseplan as the
user has choosen to use isocenter
#
This functions is a called in UploadDoseplan()
#−−

################ RT Plan ######################
iso 1 = abs(Globals.profiles dataset doseplan.ImagePositionPatient[0] −\

Globals.profiles dataset rtplan.BeamSequence[0].\
ControlPointSequence[0].IsocenterPosition[0])

iso 2 = abs(Globals.profiles dataset doseplan.ImagePositionPatient[1] −\
Globals.profiles dataset rtplan.BeamSequence[0].\

ControlPointSequence[0].IsocenterPosition[1])

iso 3 = abs(Globals.profiles dataset doseplan.ImagePositionPatient[2] −\
Globals.profiles dataset rtplan.BeamSequence[0].\

ControlPointSequence[0].IsocenterPosition[2])

231

Globals.profiles isocenter mm = [iso 1 , iso 2 , iso 3]

isocenter px = np.zeros(3)

distance in doseplan ROI reference point px = []

if(Globals.profiles dataset doseplan.PixelSpacing==[1, 1]):

isocenter px[0] = np.round(iso 1)

isocenter px[1] = np.round(iso 2)

isocenter px[2] = np.round(iso 3)

distance in doseplan ROI reference point px.append\
([np.round(Globals.profiles distance isocenter ROI[0][0]),\

np.round(Globals.profiles distance isocenter ROI[0][1])])

distance in doseplan ROI reference point px.append\
([np.round(Globals.profiles distance isocenter ROI[1][0]),\

np.round(Globals.profiles distance isocenter ROI[1][1])])

distance in doseplan ROI reference point px.append\
([np.round(Globals.profiles distance isocenter ROI[2][0]),\

np.round(Globals.profiles distance isocenter ROI[2][1])])

distance in doseplan ROI reference point px.append\
([np.round(Globals.profiles distance isocenter ROI[3][0]),\

np.round(Globals.profiles distance isocenter ROI[3][1])])

elif(Globals.profiles dataset doseplan.PixelSpacing==[2, 2]):

isocenter px[0] = np.round(iso 1/2)

isocenter px[1] = np.round(iso 2/2)

isocenter px[2] = np.round(iso 3/2)

distance in doseplan ROI reference point px.append\
([np.round((Globals.profiles distance isocenter ROI[0][0])/2),\

np.round((Globals.profiles distance isocenter ROI [0][1])/2)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.profiles distance isocenter ROI[1][0])/2),\

np.round((Globals.profiles distance isocenter ROI [1][1])/2)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.profiles distance isocenter ROI[2][0])/2),\

np.round((Globals.profiles distance isocenter ROI [2][1])/2)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.profiles distance isocenter ROI[3][0])/2),\

np.round((Globals.profiles distance isocenter ROI [3][1])/2)])

else:

isocenter px[0] = np.round(iso 1/3)

isocenter px[1] = np.round(iso 2/3)

232

isocenter px[2] = np.round(iso 3/3)

distance in doseplan ROI reference point px.append\
([np.round((Globals.profiles distance isocenter ROI[0][0])/3),\

np.round((Globals.profiles distance isocenter ROI [0][1])/3)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.profiles distance isocenter ROI[1][0])/3),\

np.round((Globals.profiles distance isocenter ROI [1][1])/3)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.profiles distance isocenter ROI[2][0])/3),\

np.round((Globals.profiles distance isocenter ROI [2][1])/3)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.profiles distance isocenter ROI[3][0])/3),\

np.round((Globals.profiles distance isocenter ROI [3][1])/3)])

reference point = np.zeros(3)

######################## Doseplan ##################################
if(Globals.profiles dataset doseplan.ImageOrientationPatient\

==[1, 0, 0, 0, 1, 0]):

reference point[0] = isocenter px[2]

reference point[1] = isocenter px[1]

reference point[2] = isocenter px[0]

if(Globals.profiles film orientation.get()==’Coronal’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

elif(Globals.profiles film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

elif(Globals.profiles film orientation.get()==’Axial’):

dataset swapped = Globals.profiles dataset doseplan.pixel array

else:

messagebox.showerror("Error", "Something has gone wrong here.")

clearAll()

return

elif(Globals.profiles dataset doseplan.ImageOrientationPatient\
==[1, 0, 0, 0, 0, 1]):

reference point[0] = isocenter px[1]

reference point[1] = isocenter px[2]

233

reference point[2] = isocenter px[0]

if(Globals.profiles film orientation.get()==’Coronal’):

dataset swapped = Globals.profiles dataset doseplan.pixel array

elif(Globals.profiles film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

dataset swapped = np.swapaxes(dataset swapped , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

elif(Globals.profiles film orientation.get()==’Axial’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

elif(Globals.profiles dataset doseplan.ImageOrientationPatient\
==[0, 1, 0, 1, 0, 0]):

reference point[0] = isocenter px[2]

reference point[1] = isocenter px[0]

reference point[2] = isocenter px[1]

if(Globals.profiles film orientation.get()==’Coronal’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

dataset swapped = np.swapaxes(dataset swapped , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

elif(Globals.profiles film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

dataset swapped = np.swapaxes(dataset swapped , 1,2)

234

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

elif(Globals.profiles film orientation.get()==’Axial’):

dataset swapped =\
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

elif(Globals.profiles dataset doseplan.ImageOrientationPatient\
==[0, 1, 0, 0, 0, 1]):

reference point[0] = isocenter px[0]

reference point[1] = isocenter px[2]

reference point[2] = isocenter px[1]

if(Globals.profiles film orientation.get()==’Coronal’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

elif(Globals.profiles film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

elif(Globals.profiles film orientation.get()==’Axial’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

dataset swapped = np.swapaxes(dataset swapped , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

elif(Globals.profiles dataset doseplan.ImageOrientationPatient\

235

==[0, 0, 1, 1, 0, 0]):

reference point[0] = isocenter px[1]

reference point[1] = isocenter px[0]

reference point[2] = isocenter px[2]

if(Globals.profiles film orientation.get()==’Coronal’):

dataset swapped =\
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

elif(Globals.profiles film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

elif(Globals.profiles film orientation.get()==’Axial’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

dataset swapped = np.swapaxes(dataset swapped , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

elif(Globals.profiles dataset doseplan.ImageOrientationPatient\
==[0, 0, 1, 0, 1, 0]):

reference point[0] = isocenter px[0]

reference point[1] = isocenter px[1]

reference point[2] = isocenter px[2]

if(Globals.profiles film orientation.get()==’Coronal’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

dataset swapped = np.swapaxes(dataset swapped , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

236

elif(Globals.profiles film orientation.get()==’Sagittal’):

dataset swapped = Globals.profiles dataset doseplan.pixel array

elif(Globals.profiles film orientation.get()==’Axial’):

dataset swapped = \
np.swapaxes(Globals.profiles dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

####################### Match film and doseplan ###############################

if Globals.profiles dataset doseplan.PixelSpacing == [1, 1]:

offset = int(np.round(Globals.profiles offset))

dose slice = dataset swapped[int(reference point[0] + offset)]

elif Globals.profiles dataset doseplan.PixelSpacing == [2, 2]:

offset = int(np.round(Globals.profiles offset/2))

dose slice = dataset swapped[int(reference point[0] + offset)]

else:

offset = int(np.round(Globals.profiles offset/3))

dose slice = dataset swapped[int(reference point[0]+ offset)]

doseplan ROI coords = []

top left test side = False; top left test down = False

top right test side = False; top right test down = False

bottom left test side = False; bottom left test down = False

bottom right test side = False; bottom right test down = False

top left side corr = 0; top left down corr = 0

top right side corr = 0; top right down corr = 0

bottom left side corr = 0; bottom left down corr = 0

bottom right side corr = 0; bottom right down corr = 0

top left to side = reference point[2]− \
distance in doseplan ROI reference point px [0][0]

237

top left down = reference point[1]− \
distance in doseplan ROI reference point px [0][1]

if(top left to side < 0):

top left test side = True

top left side corr = abs(top left to side)

top left to side = 0

if(top left to side > dose slice.shape[1]):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(top left down < 0):

top left test down = True

top left down corr = abs(top left down)

top left down = 0

if(top left down > dose slice.shape[0]):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

top right to side = reference point[2]− \
distance in doseplan ROI reference point px [1][0]

top right down = reference point[1]− \
distance in doseplan ROI reference point px [1][1]

if(top right to side < 0):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(top right to side > dose slice.shape[1]):

top right test side = True

top right side corr = top right to side − dose slice.shape[1]

top right to side = dose slice.shape[1]

if(top right down < 0):

top right test down = True

top right down corr = abs(top right down)

top right down = 0

if(top right down > dose slice.shape[0]):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

bottom left to side = reference point[2]− \

238

distance in doseplan ROI reference point px [2][0]

bottom left down = reference point[1]− \
distance in doseplan ROI reference point px [2][1]

if(bottom left to side < 0):

bottom left test side = True

bottom left side corr = abs(bottom left to side)

bottom left to side = 0

if(bottom left to side > dose slice.shape[1]):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(bottom left down < 0):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(bottom left down > dose slice.shape[0]):

bottom left down corr = bottom left down − dose slice.shape[0]

bottom left down = dose slice.shape[0]

bottom left test down = True

bottom right to side = reference point[2]− \
distance in doseplan ROI reference point px [3][0]

bottom right down = reference point[1]− \
distance in doseplan ROI reference point px [3][1]

if(bottom right to side < 0):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(bottom right to side > dose slice.shape[1]):

bottom right side corr = bottom right to side − dose slice.shape[1]

bottom right to side = dose slice.shape[1]

bottom right test side = True

if(bottom right down < 0):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(bottom right down > dose slice.shape[0]):

bottom right down corr = bottom right down − dose slice.shape[0]

bottom right down = dose slice.shape[0]

bottom right test down = True

239

if(top right test side or top right test down or \
top left test side or top left test down or bottom right test side \

or bottom right test down or bottom left test side or \
bottom left test down):

ROI info = "Left side: " + str(max(top left side corr , \
bottom left side corr)) + " pixels.\n"+ "Right side: " + \

str(max(top right side corr , bottom right side corr)) + \
" pixels.\n "+ "Top side: " + str(max(top left down corr ,\

top right down corr)) + " pixels.\n"+ "Bottom side: " + \
str(max(bottom left down corr , bottom right down corr))\

+ " pixels."

messagebox.showinfo("ROI info", "The ROI marked on the \
film did not fit with the size of the doseplan and had to \

be cut.\n" + ROI info)

doseplan ROI coords.append([top left to side , top left down])

doseplan ROI coords.append([top right to side , top right down])

doseplan ROI coords.append([bottom left to side , bottom left down])

doseplan ROI coords.append([bottom right to side , bottom right down])

if(only one):

Globals.profiles doseplan dataset ROI = \
dose slice[int(top left down):int(bottom left down), \

int(top left to side):int(top right to side)]*\
Globals.profiles dataset doseplan.DoseGridScaling

img=Globals.profiles doseplan dataset ROI

if(Globals.profiles dataset doseplan.PixelSpacing==[1, 1]):

img = cv2.resize(img, dsize=(img.shape[1]*5,img.shape[0]*5))
elif(Globals.profiles dataset doseplan.PixelSpacing==[2, 2]):

img = cv2.resize(img, dsize=(img.shape[1]*10,img.shape[0]*10))
else:

img = cv2.resize(img, dsize=(img.shape[1]*15,img.shape[0]*15))

mx=np.max(img)

Globals.max dose doseplan = mx

max dose = mx

img = img/mx

PIL img doseplan ROI = Image.fromarray(np.uint8(cm.viridis(img)*255))

wid = PIL img doseplan ROI.width;heig = PIL img doseplan ROI.height

doseplan canvas = tk.Canvas(Globals.profiles film panedwindow)

doseplan canvas.grid(row=2, column=0, sticky=N+S+W+E)

240

Globals.profiles film panedwindow.add(doseplan canvas , \
height=max(heig, Globals.profiles doseplan text image.height()), \

width=wid + Globals.profiles doseplan text image.width())

doseplan canvas.config(bg=’#ffffff’, relief=FLAT, highlightthickness=0, \
height=max(heig, Globals.profiles doseplan text image.height()), \

width=wid + Globals.profiles doseplan text image.width())

Globals.doseplan write image = tk.Canvas(doseplan canvas)

Globals.doseplan write image.grid(row=0,column=1,sticky=N+S+W+E)

Globals.doseplan write image.config(bg=’#ffffff’, relief=FLAT, \
highlightthickness=0, width=wid, height=heig)

doseplan text image canvas = tk.Canvas(doseplan canvas)

doseplan text image canvas.grid(row=0,column=0,sticky=N+S+W+E)

doseplan text image canvas.config(bg=’#ffffff’, relief=FLAT, \
highlightthickness=0,width=Globals.profiles doseplan text image.width(),\

height=Globals.profiles doseplan text image.height())

scaled image visual = PIL img doseplan ROI

scaled image visual = ImageTk.PhotoImage(image=scaled image visual)

Globals.doseplan write image width = scaled image visual.width()

Globals.doseplan write image height = scaled image visual.height()

Globals.doseplan write image.create image(0,0,\
image=scaled image visual , anchor="nw")

Globals.doseplan write image.image = scaled image visual

doseplan text image canvas.create image(0,0,\
image=Globals.profiles doseplan text image , anchor="nw")

doseplan text image canvas.image=Globals.profiles doseplan text image

drawProfiles(False)

else:

img=dose slice[int(top left down):int(bottom left down),\
int(top left to side):int(top right to side)]

Globals.profiles doseplan dataset ROI several.append(img)

Globals.profiles number of doseplans+=1

if(Globals.profiles dataset doseplan.PixelSpacing==[1, 1]):

Globals.profiles several img.append(img)

elif(Globals.profiles dataset doseplan.PixelSpacing==[2, 2]):

Globals.profiles several img.append(img)

else:

Globals.profiles several img.append(img)

241

def UploadRTplan():

#−−
Function to upload the RT Plan
#
This functions is a callback to the button
profiles upload button rtplan in notebook.py
#−−

file = filedialog.askopenfilename()

ext = os.path.splitext(file)[−1].lower()
if(not(ext == ’.dcm’)):

if(ext == ""):

return

else:

messagebox.showerror("Error", "The file must be a *.dcm file")
return

current folder = os.getcwd()

parent = os.path.dirname(file)

os.chdir(parent)

dataset = pydicom.dcmread(file)

os.chdir(current folder)

Globals.profiles dataset rtplan = dataset

try:

isocenter mm = \
dataset.BeamSequence[0].ControlPointSequence[0].IsocenterPosition

Globals.profiles isocenter mm = isocenter mm

except:

messagebox.showerror("Error", "Could not read the \
RT plan file. Try again or try another file.\n\
(Code: isocenter reading)")

return

try:

Globals.profiles doseplan vertical displacement = \
dataset.PatientSetupSequence[0].TableTopVerticalSetupDisplacement

except:

messagebox.showerror("Error", "Could not read the RT plan file.\

242

Try again or try another file. \n\
(Code: vertical table displacement)")

try:

Globals.profiles doseplan lateral displacement = \
dataset.PatientSetupSequence[0].TableTopLateralSetupDisplacement

except:

messagebox.showerror("Error", "Could not read the RT plan file. \
Try again or try another file−\n\
(Code: lateral table displacement)")

try:

Globals.profiles doseplan longitudianl displacement = \
dataset.PatientSetupSequence[0].TableTopLongitudinalSetupDisplacement

except:

messagebox.showerror("Error", "Could not read the RT plan file.\
Try again or try another file\n\
(Code: longitudinal table displacement)")

try:

patient position = dataset.PatientSetupSequence[0].PatientPosition

Globals.profiles doseplan patient position = patient position

except:

messagebox.showerror("Error", "Could not read the RT plan file. \
Try again or try another file\n\
(Code: Patient position)")

if(not(patient position==’HFS’ or patient position==’HFP’ or \
patient position==’HFDR’ or patient position == ’HFDL’ or \

patient position==’FFDR’ or patient position==’FFDL’ or \
patient position==’FFP’ or patient position==’FFS’)):

messagebox.showerror("Error","Fidora does only support patient positions:\n\
HFS, HFP, HFDR, HFDL, FFP, FFS, FFDR, FFDL")

return

Globals.profiles test if added rtplan = True

Globals.profiles upload button doseplan.config(state=ACTIVE)

Globals.profiles upload button rtplan.config(state=DISABLED)

def UploadDoseplan button function():

yes = messagebox.askyesno("Question", "Are you going to \
upload several doseplans and/or use a factor on a plan?")

if not yes:

UploadDoseplan(True)

return

243

several doseplans window = tk.Toplevel(Globals.tab4 canvas)

several doseplans window.geometry("600x500+10+10")

several doseplans window.grab set()

doseplans over all frame = \
tk.Frame(several doseplans window , bd=0, relief=FLAT)

doseplans over all canvas = Canvas(doseplans over all frame)

doseplans xscrollbar = Scrollbar(doseplans over all frame , \
orient=HORIZONTAL , command=doseplans over all canvas.xview)

doseplans yscrollbar = Scrollbar(doseplans over all frame , \
command=doseplans over all canvas.yview)

Globals.doseplans scroll frame = ttk.Frame(doseplans over all canvas)

Globals.doseplans scroll frame.bind("<Configure>", \
lambda e: doseplans over all canvas.configure\

(scrollregion=doseplans over all canvas.bbox(’all’)))

doseplans over all canvas.create window((0,0), \
window=Globals.doseplans scroll frame , anchor=’nw’)

doseplans over all canvas.configure(xscrollcommand=doseplans xscrollbar.set, \
yscrollcommand=doseplans yscrollbar.set)

doseplans over all frame.config(highlightthickness=0, bg=’#ffffff’)

doseplans over all canvas.config(highlightthickness=0, bg=’#ffffff’)

doseplans over all frame.pack(expand=True, fill=BOTH)

doseplans over all canvas.grid(row=0, column=0, sticky=N+S+E+W)

doseplans over all frame.grid columnconfigure(0, weight=1)

doseplans over all frame.grid rowconfigure(0, weight=1)

doseplans xscrollbar.grid(row=1, column=0, sticky=E+W)

doseplans over all frame.grid columnconfigure(1, weight=0)

doseplans over all frame.grid rowconfigure(1, weight=0)

doseplans yscrollbar.grid(row=0, column=1, sticky=N+S)

doseplans over all frame.grid columnconfigure(2, weight=0)

doseplans over all frame.grid rowconfigure(2, weight=0)

upload doseplan frame = tk.Frame(Globals.doseplans scroll frame)

upload doseplan frame.grid(row=0, column = 0, padx = (30,30),\
pady=(30,0), sticky=N+S+E+W)

Globals.doseplans scroll frame.grid columnconfigure(0, weight=0)

Globals.doseplans scroll frame.grid rowconfigure(0, weight=0)

upload doseplan frame.config(bg = ’#ffffff’)

upload button doseplan = tk.Button(upload doseplan frame , \

244

text=’Browse’, image=Globals.profiles add doseplans button image ,\
cursor=’hand2’, font=(’calibri’, ’14’), relief=FLAT, state=ACTIVE, \

command=lambda: UploadDoseplan(False))

upload button doseplan.pack(expand=True, fill=BOTH)

upload button doseplan.configure(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

upload button doseplan.image = Globals.profiles add doseplans button image

def closeUploadDoseplans():

if(len(Globals.profiles doseplan dataset ROI several) == 0):

messagebox.showinfo("INFO", "No doseplan has been uploaded")

return

for i in range(len(Globals.profiles doseplan dataset ROI several)):

if Globals.profiles doseplans factor input[i].get\
("1.0", ’end−1c’) == " ":
factor = 1

else:

try:

factor = float(Globals.profiles doseplans factor input[i].\
get("1.0", ’end−1c’))

except:

messagebox.showerror("Error", "Invalid factor. \
Must be number.\n (Code: closeUploadDoseplans)")

return

if i == 0:

doseplan ROI = Globals.profiles doseplan dataset ROI several[i]\
*Globals.profiles dose scaling doseplan[i]

doseplan ROI= doseplan ROI*factor

img ROI = Globals.profiles several img[i]\
*Globals.profiles dose scaling doseplan[i]

img ROI = img ROI*factor
else:

doseplan ROI+= \
factor*Globals.profiles doseplan dataset ROI several[i]\

*Globals.profiles dose scaling doseplan[i]
img ROI+= factor*Globals.profiles several img[i]*\

Globals.profiles dose scaling doseplan[i]

img ROI = cv2.resize(img ROI , dsize=(img ROI.shape[1]*5,img ROI.shape[0]*5))
Globals.profiles doseplan dataset ROI = doseplan ROI

mx=np.max(img ROI)

Globals.max dose doseplan = mx

img ROI = img ROI/mx

245

PIL img doseplan ROI = Image.fromarray(np.uint8(cm.viridis(img ROI)*255))

wid = PIL img doseplan ROI.width;heig = PIL img doseplan ROI.height

doseplan canvas = tk.Canvas(Globals.profiles film panedwindow)

doseplan canvas.grid(row=2, column=0, sticky=N+S+W+E)

Globals.profiles film panedwindow.add(doseplan canvas , \
height=max(heig, Globals.profiles doseplan text image.height()), \

width=wid + Globals.profiles doseplan text image.width())

doseplan canvas.config(bg=’#ffffff’, relief=FLAT, highlightthickness=0, \
height=max(heig, Globals.profiles doseplan text image.height()), \

width=wid + Globals.profiles doseplan text image.width())

Globals.doseplan write image = tk.Canvas(doseplan canvas)

Globals.doseplan write image.grid(row=0,column=1,sticky=N+S+W+E)

Globals.doseplan write image.config(bg=’#ffffff’, relief=FLAT, \
highlightthickness=0, width=wid, height=heig)

doseplan text image canvas = tk.Canvas(doseplan canvas)

doseplan text image canvas.grid(row=0,column=0,sticky=N+S+W+E)

doseplan text image canvas.config(bg=’#ffffff’, \
relief=FLAT, highlightthickness=0, \

width=Globals.profiles doseplan text image.width(), \
height=Globals.profiles doseplan text image.height())

scaled image visual = PIL img doseplan ROI

scaled image visual = ImageTk.PhotoImage(image=scaled image visual)

Globals.doseplan write image width = scaled image visual.width()

Globals.doseplan write image height = scaled image visual.height()

Globals.doseplan write image.create image(0,0,\
image=scaled image visual , anchor="nw")

Globals.doseplan write image.image = scaled image visual

doseplan text image canvas.create image(0,0\
,image=Globals.profiles doseplan text image , anchor="nw")

doseplan text image canvas.image=Globals.profiles doseplan text image

Globals.profiles doseplan dataset ROI = doseplan ROI

Globals.profiles upload button doseplan.config(state=DISABLED)

several doseplans window.after(500, \
lambda: several doseplans window.destroy())

drawProfiles(False)

doseplans done button frame = tk.Frame(Globals.doseplans scroll frame)

246

doseplans done button frame.grid(row=0, column = 1, \
padx=(0,40), pady=(30,0), sticky=N+S+W+E)

doseplans done button frame.config(bg=’#ffffff’)

Globals.doseplans scroll frame.grid rowconfigure(3, weight=0)

Globals.doseplans scroll frame.grid columnconfigure(3, weight=0)

doseplans done button = tk.Button(doseplans done button frame , \
text=’Done’, image=Globals.done button image , cursor=’hand2’, \

font=(’calibri’, ’14’), relief=FLAT, state=ACTIVE, \
command=closeUploadDoseplans)

doseplans done button.pack(expand=True, fill=BOTH)

doseplans done button.configure(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

doseplans done button.image = Globals.done button image

filename title = tk.Text(Globals.doseplans scroll frame , width = 15, height= 1)

filename title.insert(INSERT, "Filename")

filename title.grid(row=2, column=0, sticky=N+S+E+W, pady=(40,0), padx=(45,15))

filename title.config(bg=’#ffffff’, relief=FLAT, \
state=DISABLED, font=(’calibri’, ’15’, ’bold’))

Globals.doseplans scroll frame.grid rowconfigure(1, weight=0)

Globals.doseplans scroll frame.grid columnconfigure(1, weight=0)

factor title = tk.Text(Globals.doseplans scroll frame , width=30, height=2)

factor title.insert(INSERT, "Here you can write a factor to use \n\
on the doseplan. Defaults to 1.")

factor title.grid(row=2, column=1, sticky=N+W+S+E, pady=(37,10), padx=(15,25))

factor title.config(bg=’#ffffff’, relief=FLAT, state=DISABLED , \
font=(’calibri’, ’15’, ’bold’))

Globals.doseplans scroll frame.grid columnconfigure(2,weight=0)

Globals.doseplans scroll frame.grid rowconfigure(2, weight=0)

def UploadDoseplan(only one):

#−−
Function to upload the doseplan
#
This functions is a callback funtion to the button
profiles upload button doseplan in notebook.py
#−−

file = filedialog.askopenfilename()

ext = os.path.splitext(file)[−1].lower()
if(not(ext == ’.dcm’)):

247

if(ext == ""):

return

else:

messagebox.showerror("Error", "The file must be a *.dcm file")
return

current folder = os.getcwd()

parent = os.path.dirname(file)

os.chdir(parent)

dataset = pydicom.dcmread(file)

try:

dose summation type = dataset.DoseSummationType

except:

messagebox.showerror("Error", "Could not upload the doseplan correctly. \
Try again or another file.\n (Code: dose summation)")

return

if(not(dose summation type == "PLAN")):

ok = messagebox.askokcancel("Dose summation", "You did not upload \
the full doseplan. Do you want to continue?")

if not ok:

return

os.chdir(current folder)

doseplan dataset = dataset.pixel array

if(not((dataset.PixelSpacing==[1, 1] and dataset.SliceThickness==1) \
or (dataset.PixelSpacing==[2, 2] and dataset.SliceThickness==2) \
or (dataset.PixelSpacing==[3, 3] and dataset.SliceThickness==3))):

messagebox.showerror("Error", \
"The resolution in doseplan must be 1x1x1, 2x2x2 or 3x3x3")

return

if(not(dataset.ImageOrientationPatient==[1, 0, 0, 0, 1, 0] or \
dataset.ImageOrientationPatient==[1, 0, 0, 0, 0, 1] or \
dataset.ImageOrientationPatient==[0, 1, 0, 1, 0, 0] or \
dataset.ImageOrientationPatient==[0, 1, 0, 0, 0, 1] or \
dataset.ImageOrientationPatient==[0, 0, 1, 1, 0, 0] or \
dataset.ImageOrientationPatient==[0, 0, 1, 0, 1, 0])):

messagebox.showerror("Error", "The Image Orientation \
(Patient) must be parallel to one of the main axis and \
perpendicular to the two others.")

return

if not only one and Globals.profiles number of doseplans > 1:

if(not (Globals.profiles dataset doseplan.PixelSpacing\
==dataset.PixelSpacing)):

messagebox.showerror("Error", "Resolution of the \

248

doseplans must be equal. \n(Code: UploadDoseplan)")
return

if(not (Globals.profiles dataset doseplan.DoseGridScaling \
== dataset.DoseGridScaling)):

messagebox.showerror("Error", "Dose grid scaling of \
the doseplans must be equal. \n(Code: UploadDoseplan)")

return

Globals.profiles dataset doseplan = dataset

Globals.profiles dose scaling doseplan.append(dataset.DoseGridScaling)

Globals.profiles test if added doseplan = True

if(Globals.profiles test if added rtplan):

if(Globals.profiles isocenter or reference point == "Isocenter"):

processDoseplan usingIsocenter(only one)

elif(Globals.profiles isocenter or reference point == "Ref point"):

processDoseplan usingReferencePoint(only one)

else:

messagebox.showerror("Error", "Something went wrong. \
Try again.\n (Code: processDoseplan)")

return

if only one:

Globals.profiles upload button doseplan.config(state=DISABLED)

if not only one:

filename = basename(normpath(file))

textbox filename = tk.Text(Globals.doseplans scroll frame , \
width = 30, height = 1)

textbox filename.insert(INSERT, filename)

textbox filename.config(bg=’#ffffff’, font=(’calibri’, ’12’), \
state=DISABLED, relief=FLAT)

textbox filename.grid(row = Globals.profiles number of doseplans row count ,\
column = 0, sticky=N+S+W+E, pady=(10,10), padx=(10,10))

Globals.doseplans scroll frame.grid columnconfigure\
(Globals.profiles doseplans grid config count , weight=0)

Globals.doseplans scroll frame.grid rowconfigure\
(Globals.profiles doseplans grid config count , weight=0)

Globals.profiles doseplans filenames.append(textbox filename)

Globals.profiles doseplans grid config count+=1;

textbox factor = tk.Text(Globals.doseplans scroll frame,\
width = 6, height = 1)

textbox factor.insert(INSERT, "Factor: ")

textbox factor.config(bg=’#ffffff’, font=(’calibri’, ’12’), \
state=DISABLED, relief=FLAT)

249

textbox factor.grid(row = Globals.profiles number of doseplans row count , \
column = 1, sticky=N+S+W+E, pady=(10,10), padx=(10,10))

Globals.doseplans scroll frame.grid columnconfigure\
(Globals.profiles doseplans grid config count , weight=0)

Globals.doseplans scroll frame.grid rowconfigure\
(Globals.profiles doseplans grid config count , weight=0)

Globals.profiles doseplans factor text.append(textbox factor)

Globals.profiles doseplans grid config count+=1;

textbox factor input = tk.Text(Globals.doseplans scroll frame , \
width=3, height=1)

textbox factor input.insert(INSERT, " ")

textbox factor input.config(bg=’#E5f9ff’, font=(’calibri’, ’12’), \
state=NORMAL, bd = 2)

textbox factor input.grid(row = \
Globals.profiles number of doseplans row count , column = 1, \

sticky=N+S, pady=(10,10), padx=(40,10))

Globals.doseplans scroll frame.grid columnconfigure\
(Globals.profiles doseplans grid config count , weight=0)

Globals.doseplans scroll frame.grid rowconfigure\
(Globals.profiles doseplans grid config count , weight=0)

Globals.profiles doseplans factor input.append(textbox factor input)

Globals.profiles number of doseplans row count+=1

Globals.profiles doseplans grid config count+=1;

def markIsocenter(img, new window isocenter tab , image canvas , cv2Img):

#−−
Function to mark the isocenter
#
This functions is a callback to button
mark isocenter button in uploadFilm()
#−−

if(len(Globals.profiles mark isocenter oval)>0):
image canvas.delete(Globals.profiles mark isocenter up down line[0])

image canvas.delete(Globals.profiles mark isocenter right left line[0])

image canvas.delete(Globals.profiles mark isocenter oval[0])

Globals.profiles mark isocenter oval=[]

Globals.profiles mark isocenter right left line=[]

Globals.profiles mark isocenter up down line=[]

Globals.profiles iscoenter coords = []

250

img mark isocenter = ImageTk.PhotoImage(image=img)

mark isocenter window = tk.Toplevel(new window isocenter tab)

mark isocenter window.geometry("1035x620+10+10")

mark isocenter window.grab set()

mark isocenter over all frame = tk.Frame(mark isocenter window,\
bd=0, relief=FLAT)

mark isocenter over all canvas = Canvas(mark isocenter over all frame)

mark isocenter xscrollbar = Scrollbar(mark isocenter over all frame ,\
orient=HORIZONTAL , command=mark isocenter over all canvas.xview)

mark isocenter yscrollbar = Scrollbar(mark isocenter over all frame , \
command=mark isocenter over all canvas.yview)

mark isocenter scroll frame = ttk.Frame(mark isocenter over all canvas)

mark isocenter scroll frame.bind("<Configure>", lambda e: \
mark isocenter over all canvas.configure\

(scrollregion=mark isocenter over all canvas.bbox(’all’)))

mark isocenter over all canvas.create window((0,0), \
window=mark isocenter scroll frame , anchor=’nw’)

mark isocenter over all canvas.configure\
(xscrollcommand=mark isocenter xscrollbar.set, \

yscrollcommand=mark isocenter yscrollbar.set)

mark isocenter over all frame.config(highlightthickness=0, bg=’#ffffff’)

mark isocenter over all canvas.config(highlightthickness=0, bg=’#ffffff’)

mark isocenter over all frame.pack(expand=True, fill=BOTH)

mark isocenter over all canvas.grid(row=0, column=0, sticky=N+S+E+W)

mark isocenter over all frame.grid columnconfigure(0, weight=1)

mark isocenter over all frame.grid rowconfigure(0, weight=1)

mark isocenter xscrollbar.grid(row=1, column=0, sticky=E+W)

mark isocenter over all frame.grid columnconfigure(1, weight=0)

mark isocenter over all frame.grid rowconfigure(1, weight=0)

mark isocenter yscrollbar.grid(row=0, column=1, sticky=N+S)

mark isocenter over all frame.grid columnconfigure(2, weight=0)

mark isocenter over all frame.grid rowconfigure(2, weight=0)

mark isocenter image canvas = tk.Canvas(mark isocenter scroll frame)

mark isocenter image canvas.grid(row=0,column=0, rowspan=10, \
columnspan=3, sticky=N+S+E+W, padx=(0,0), pady=(0,0))

mark isocenter scroll frame.grid columnconfigure(0, weight=0)

mark isocenter scroll frame.grid rowconfigure(0, weight=0)

mark isocenter image canvas.create image(0,0,\

251

image=img mark isocenter ,anchor="nw")

mark isocenter image canvas.image = img mark isocenter

mark isocenter image canvas.config(cursor=’hand2’, bg=’#ffffff’, \
relief=FLAT, bd=0, scrollregion=mark isocenter image canvas.bbox(ALL), \

height=img mark isocenter.height(), width=img mark isocenter.width())

mark isocenter image canvas.grid propagate(0)

def findCoords(event):

mark isocenter image canvas.create oval\
(event.x−2, event.y−2, event.x+2, event.y+2, fill=’red’)

if(Globals.profiles iscoenter coords==[]):

Globals.profiles iscoenter coords.append([event.x, event.y])

mark isocenter image canvas.config(cursor=’hand2’)

elif(len(Globals.profiles iscoenter coords)==1):

Globals.profiles iscoenter coords.append([event.x, event.y])

Globals.profiles film isocenter = \
[Globals.profiles iscoenter coords[0][0], \

Globals.profiles iscoenter coords[1][1]]

x1,y1 = Globals.profiles iscoenter coords[0]

x4,y4 = Globals.profiles iscoenter coords[1]

x2 = x1;y3=y4

y2=2*Globals.profiles film isocenter[1]−y1
x3=2*Globals.profiles film isocenter[0]−x4
up down line = image canvas.create line\

(int(x1/2),int(y1/2),int(x2/2),int(y2/2),\
fill=’purple’, smooth=1, width=2)

right left line = image canvas.create line\
(int(x3/2),int(y3/2),int(x4/2),int(y4/2), \

fill=’purple’, smooth=1, width=2)

oval = image canvas.create oval\
(int(Globals.profiles film isocenter[0]/2)−3, \

int(Globals.profiles film isocenter[1]/2)−3,\
int(Globals.profiles film isocenter[0]/2)+3, \

int(Globals.profiles film isocenter[1]/2)+3, fill=’red’)

Globals.profiles mark isocenter up down line.append(up down line)

Globals.profiles mark isocenter right left line.append(right left line)

Globals.profiles mark isocenter oval.append(oval)

mark isocenter window.after(500, lambda: mark isocenter window.destroy())

Globals.profiles isocenter check = True

if(Globals.profiles ROI check):

Globals.profiles done button.config(state=ACTIVE)

252

mark isocenter image canvas.bind("<Button 1>",findCoords)

def markReferencePoint(img, new window reference point tab , \
image canvas reference tab , cv2Img):

#−−
Function to mark the reference point
#
This functions is a callback to the button
mark point button in uploadFilm()
#−−

if(len(Globals.profiles mark reference point oval)>0):
image canvas reference tab.delete\

(Globals.profiles mark reference point oval[0])

Globals.profiles mark reference point oval=[]

img mark reference point = ImageTk.PhotoImage(image=img)

mark reference point window = tk.Toplevel(new window reference point tab)

mark reference point window.geometry("1035x620+10+10")

mark reference point window.grab set()

mark reference point over all frame = \
tk.Frame(mark reference point window , bd=0, relief=FLAT)

mark reference point over all canvas = \
Canvas(mark reference point over all frame)

mark reference point xscrollbar = \
Scrollbar(mark reference point over all frame , orient=HORIZONTAL , \

command=mark reference point over all canvas.xview)

mark reference point yscrollbar = \
Scrollbar(mark reference point over all frame , \

command=mark reference point over all canvas.yview)

mark reference point scroll frame = \
ttk.Frame(mark reference point over all canvas)

mark reference point scroll frame.bind("<Configure>", \
lambda e: mark reference point over all canvas.configure\

(scrollregion=mark reference point over all canvas.bbox(’all’)))

mark reference point over all canvas.create window((0,0), \
window=mark reference point scroll frame , anchor=’nw’)

mark reference point over all canvas.configure\
(xscrollcommand=mark reference point xscrollbar.set, \

yscrollcommand=mark reference point yscrollbar.set)

253

mark reference point over all frame.config(highlightthickness=0, bg=’#ffffff’)

mark reference point over all canvas.config(highlightthickness=0, bg=’#ffffff’)

mark reference point over all frame.pack(expand=True, fill=BOTH)

mark reference point over all canvas.grid(row=0, column=0, sticky=N+S+E+W)

mark reference point over all frame.grid columnconfigure(0, weight=1)

mark reference point over all frame.grid rowconfigure(0, weight=1)

mark reference point xscrollbar.grid(row=1, column=0, sticky=E+W)

mark reference point over all frame.grid columnconfigure(1, weight=0)

mark reference point over all frame.grid rowconfigure(1, weight=0)

mark reference point yscrollbar.grid(row=0, column=1, sticky=N+S)

mark reference point over all frame.grid columnconfigure(2, weight=0)

mark reference point over all frame.grid rowconfigure(2, weight=0)

mark reference point image canvas = \
tk.Canvas(mark reference point scroll frame)

mark reference point image canvas.grid(row=0,column=0, rowspan=10, \
columnspan=3, sticky=N+S+E+W, padx=(0,0), pady=(0,0))

mark reference point scroll frame.grid columnconfigure(0, weight=0)

mark reference point scroll frame.grid rowconfigure(0, weight=0)

mark reference point image canvas.create image(0,0,\
image=img mark reference point ,anchor="nw")

mark reference point image canvas.image = img mark reference point

mark reference point image canvas.config(cursor=’hand2’, \
bg=’#ffffff’, relief=FLAT, bd=0, \
scrollregion=mark reference point image canvas.bbox(ALL), \

height=img mark reference point.height(), \
width=img mark reference point.width())

mark reference point image canvas.grid propagate(0)

def findCoords(event):

mark reference point image canvas.create oval\
(event.x−2, event.y−2, event.x+2, event.y+2, fill=’red’)

Globals.profiles film reference point = [event.x, event.y]

oval = image canvas reference tab.create oval\
(int(Globals.profiles film reference point[0]/2)−3, \

int(Globals.profiles film reference point[1]/2)−3, \
int(Globals.profiles film reference point[0]/2)+3, \

int(Globals.profiles film reference point[1]/2)+3,fill=’red’)

Globals.profiles mark reference point oval.append(oval)

mark reference point window.after(500, \
lambda: mark reference point window.destroy())

254

Globals.profiles reference point check = True

if(Globals.profiles ROI reference point check):

Globals.profiles done button reference point.config(state=ACTIVE)

mark reference point image canvas.bind("<Button 1>",findCoords)

def markROI(img, tab, canvas, ref point test):

#−−
Function to mark the ROI
#
This functions is a callback to the button
mark ROI button and mark ROI reference point button
in UploadFilm()
#−−

if(len(Globals.profiles mark ROI rectangle)>0):
canvas.delete(Globals.profiles mark ROI rectangle[0])

Globals.profiles mark ROI rectangle = []

Globals.profiles ROI coords = []

img mark ROI = ImageTk.PhotoImage(image=img)

mark ROI window = tk.Toplevel(tab)

mark ROI window.geometry("1035x620+10+10")

mark ROI window.grab set()

mark ROI over all frame = tk.Frame(mark ROI window , bd=0, relief=FLAT)

mark ROI over all canvas = Canvas(mark ROI over all frame)

mark ROI xscrollbar = Scrollbar(mark ROI over all frame , \
orient=HORIZONTAL , command=mark ROI over all canvas.xview)

mark ROI yscrollbar = Scrollbar(mark ROI over all frame , \
command=mark ROI over all canvas.yview)

mark ROI scroll frame = ttk.Frame(mark ROI over all canvas)

mark ROI scroll frame.bind("<Configure>", lambda e: \
mark ROI over all canvas.configure\

(scrollregion=mark ROI over all canvas.bbox(’all’)))

mark ROI over all canvas.create window((0,0), \
window=mark ROI scroll frame , anchor=’nw’)

mark ROI over all canvas.configure\
(xscrollcommand=mark ROI xscrollbar.set, \

yscrollcommand=mark ROI yscrollbar.set)

mark ROI over all frame.config(highlightthickness=0, bg=’#ffffff’)

255

mark ROI over all canvas.config(highlightthickness=0, bg=’#ffffff’)

mark ROI over all frame.pack(expand=True, fill=BOTH)

mark ROI over all canvas.grid(row=0, column=0, sticky=N+S+E+W)

mark ROI over all frame.grid columnconfigure(0, weight=1)

mark ROI over all frame.grid rowconfigure(0, weight=1)

mark ROI xscrollbar.grid(row=1, column=0, sticky=E+W)

mark ROI over all frame.grid columnconfigure(1, weight=0)

mark ROI over all frame.grid rowconfigure(1, weight=0)

mark ROI yscrollbar.grid(row=0, column=1, sticky=N+S)

mark ROI over all frame.grid columnconfigure(2, weight=0)

mark ROI over all frame.grid rowconfigure(2, weight=0)

mark ROI image canvas = tk.Canvas(mark ROI scroll frame)

mark ROI image canvas.grid(row=0,column=0, rowspan=10, columnspan=3, \
sticky=N+S+E+W, padx=(0,0), pady=(0,0))

mark ROI scroll frame.grid columnconfigure(0, weight=0)

mark ROI scroll frame.grid rowconfigure(0, weight=0)

mark ROI image canvas.create image(0,0,image=img mark ROI ,anchor="nw")

mark ROI image canvas.image = img mark ROI

mark ROI image canvas.config(bg=’#E5f9ff’, relief=FLAT, bd=0, \
scrollregion=mark ROI image canvas.bbox(ALL), height=img mark ROI.height(),\

width=img mark ROI.width())

mark ROI image canvas.grid propagate(0)

rectangle = mark ROI image canvas.create rectangle(0,0,0,0,outline=’green’)

rectangle top corner = []

rectangle bottom corner = []

def buttonPushed(event):

rectangle top corner.append([event.x, event.y])

def buttonMoving(event):

mark ROI image canvas.coords(rectangle , rectangle top corner[0][0], \
rectangle top corner[0][1], \

event.x, event.y)

def buttonReleased(event):

rectangle bottom corner.append([event.x, event.y])

mark ROI image canvas.coords(rectangle , rectangle top corner[0][0], \
rectangle top corner[0][1],\

rectangle bottom corner[0][0], rectangle bottom corner[0][1])

mark ROI image canvas.itemconfig(rectangle , outline=’Blue’)

Globals.profiles ROI coords.append\
([rectangle top corner[0][0], rectangle top corner[0][1]])

Globals.profiles ROI coords.append\
([rectangle bottom corner[0][0], rectangle top corner[0][1]])

256

Globals.profiles ROI coords.append\
([rectangle top corner[0][0], rectangle bottom corner[0][1]])

Globals.profiles ROI coords.append\
([rectangle bottom corner[0][0], rectangle bottom corner[0][1]])

rect = canvas.create rectangle\
(int((rectangle top corner[0][0])/2), \

int((rectangle top corner[0][1])/2),\
int((rectangle bottom corner[0][0])/2), \

int((rectangle bottom corner[0][1])/2), \
outline=’Blue’, width=2)

Globals.profiles mark ROI rectangle.append(rect)

if(ref point test):

Globals.profiles ROI reference point check = True

if(Globals.profiles reference point check):

Globals.profiles done button reference point.config(state=ACTIVE)

else:

Globals.profiles ROI check = True

if(Globals.profiles isocenter check):

Globals.profiles done button.config(state=ACTIVE)

mark ROI window.after(500, lambda: mark ROI window.destroy())

mark ROI image canvas.bind("<B1−Motion>", buttonMoving)
mark ROI image canvas.bind("<Button−1>", buttonPushed)
mark ROI image canvas.bind("<ButtonRelease−1>", buttonReleased)

def UploadFilm():

if(Globals.profiles film orientation.get() == ’−’):
messagebox.showerror("Missing parameter", "Film orientation missing \n\

(Code: UploadFilm)")

return

if Globals.profiles film factor input.get("1.0", ’end−1c’) == " ":
Globals.profiles film factor = 1

else:

try:

Globals.profiles film factor = \
float(Globals.profiles film factor input.get("1.0", ’end−1c’))

except:

messagebox.showerror("Missing parameter", "Film factor invalid \
format. \n (Code: UploadFilm)")

return

257

file = filedialog.askopenfilename()

ext = os.path.splitext(file)[−1].lower()
if(ext == ’.tif’):

current folder = os.getcwd()

parent = os.path.dirname(file)

os.chdir(parent)

img = Image.open(file)

img = img.transpose(Image.FLIP LEFT RIGHT)

cv2Img = cv2.imread(basename(normpath(file)), \
cv2.IMREAD ANYCOLOR | cv2.IMREAD ANYDEPTH)

cv2Img = cv2.medianBlur(cv2Img, 5)

if(cv2Img is None):

messagebox.showerror("Error", "Something has gone wrong. \
Check that the filename only contain english letters")

return

if(cv2Img.shape[2] == 3):

if(cv2Img.shape[0]==1270 and cv2Img.shape[1]==1016):

cv2Img = abs(cv2Img−Globals.correctionMatrix127)
cv2Img = np.clip(cv2Img, 0, 65535)

cv2Img = cv2.flip(cv2Img ,1)

img scaled = img.resize((508, 635), Image.ANTIALIAS)

img scaled = ImageTk.PhotoImage(image=img scaled)

Globals.profiles film dataset = cv2Img

Globals.profiles film dataset red channel = cv2Img[:,:,2]

else:

messagebox.showerror("Error","The resolution of the \
image is not consistent with dpi")

return

else:

messagebox.showerror("Error","The uploaded image \
need to be in RGB−format")

return

os.chdir(current folder)

if(not (img.width == 1016)):

messagebox.showerror("Error", "Dpi in image has to be 127")

return

Globals.profiles film orientation menu.configure(state=DISABLED)

Globals.profiles film factor input.config(state=DISABLED)

258

h = 635 + 20

w = 508 + 625

new window = tk.Toplevel(Globals.tab4)

new window.geometry("%dx%d+0+0" % (w, h))

new window.grab set()

new window over all frame = tk.Frame(new window , bd=0, relief=FLAT)

new window over all canvas = Canvas(new window over all frame)

new window xscrollbar = Scrollbar(new window over all frame , \
orient=HORIZONTAL , command=new window over all canvas.xview)

new window yscrollbar = Scrollbar(new window over all frame , \
command=new window over all canvas.yview)

new window scroll frame = ttk.Frame(new window over all canvas)

new window scroll frame.bind("<Configure>", lambda e: \
new window over all canvas.configure\

(scrollregion=new window over all canvas.bbox(’all’)))

new window over all canvas.create window((0,0), \
window=new window scroll frame , anchor=’nw’)

new window over all canvas.configure\
(xscrollcommand=new window xscrollbar.set, \

yscrollcommand=new window yscrollbar.set)

new window over all frame.config(highlightthickness=0, bg=’#ffffff’)

new window over all canvas.config(highlightthickness=0, bg=’#ffffff’)

new window over all frame.pack(expand=True, fill=BOTH)

new window over all canvas.grid(row=0, column=0, sticky=N+S+E+W)

new window over all frame.grid columnconfigure(0, weight=1)

new window over all frame.grid rowconfigure(0, weight=1)

new window xscrollbar.grid(row=1, column=0, sticky=E+W)

new window over all frame.grid columnconfigure(1, weight=0)

new window over all frame.grid rowconfigure(1, weight=0)

new window yscrollbar.grid(row=0, column=1, sticky=N+S)

new window over all frame.grid columnconfigure(2, weight=0)

new window over all frame.grid rowconfigure(2, weight=0)

new window explain text = tk.Text(new window scroll frame , \
height= 3, width=120)

new window explain text.insert(INSERT, \
"To match the film with the doseplan you have to mark either isocenter or \
a reference point on the film of your choice.In the case of the reference \
point you \nwill be asked to input the lenght in lateral, longitudinal and \
vertical to a reference point used in the linac. It the reference point in \

259

the film is the same as \nthe one in the phantom/linac you can input all zeros, \
in other cases your input is in mm. Later you will have the oppertunity to make \
small adjustments \nto the placement of either the reference point or isocenter.")

new window explain text.config(state=DISABLED , \
font=(’calibri’, ’13’, ’bold’), bg = ’#ffffff’, relief=FLAT)

new window explain text.grid(row=0, column=0, \
columnspan=5, sticky=N+S+W+E, pady=(15,5), padx=(10,10))

new window scroll frame.grid rowconfigure(0, weight=0)

new window scroll frame.grid columnconfigure(0, weight=0)

new window notebook = ttk.Notebook(new window scroll frame)

new window notebook.borderWidth=0

new window notebook.grid(row=2, column=0, columnspan=5, \
sticky=E+W+N+S, pady=(0,0), padx =(0,0))

new window scroll frame.grid rowconfigure(4, weight=0)

new window scroll frame.grid columnconfigure(4, weight=0)

new window isocenter tab = ttk.Frame(new window notebook)

new window notebook.add(new window isocenter tab , text=’Isocenter’)

new window reference point tab = ttk.Frame(new window notebook)

new window notebook.add\
(new window reference point tab , text=’Reference point’)

new window manually tab = ttk.Frame(new window notebook)

new window notebook.add(new window manually tab , text=’Manually’)

image canvas = tk.Canvas(new window isocenter tab)

image canvas.grid(row=0,column=0, rowspan=12, columnspan=3, \
sticky=N+S+E+W, padx=(0,0), pady=(0,0))

new window isocenter tab.grid rowconfigure(1, weight=0)

new window isocenter tab.grid columnconfigure(1, weight=0)

image canvas.create image(0,0,image=img scaled ,anchor="nw")

image canvas.image = img scaled

image canvas.config(bg=’#ffffff’, relief=FLAT, bd=0, \
scrollregion=image canvas.bbox(ALL), \

height=img scaled.height(), width=img scaled.width())

image canvas.grid propagate(0)

image canvas reference tab = tk.Canvas(new window reference point tab)

image canvas reference tab.grid(row=0,column=0, rowspan=10, \
columnspan=3, sticky=N+S+E+W, padx=(0,0), pady=(0,0))

new window reference point tab.grid rowconfigure(1, weight=0)

new window reference point tab.grid columnconfigure(1, weight=0)

image canvas reference tab.create image(0,0,image=img scaled ,anchor="nw")

image canvas reference tab.image = img scaled

260

image canvas reference tab.config(bg=’#ffffff’, relief=FLAT, \
bd=0, scrollregion=image canvas.bbox(ALL), \

height=img scaled.height(), width=img scaled.width())

image canvas reference tab.grid propagate(0)

film window mark isocenter text = tk.Text(new window isocenter tab , \
width=55, height=7)

film window mark isocenter text.insert(INSERT, \
"When clicking the button \"Mark isocenter\" a window showing \n\
the image will appear and you are to click on the markers \n\
made on the film upon irradiation to find the isocenter. Start \n\
with the marker showing the direction of the film (see the \n\
specifications in main window). When both marks are made \n\
you will see the isocenter in the image. If you are not happy \n\
with the placement click the button again and repeat.")

film window mark isocenter text.config(bg=’#ffffff’, relief=FLAT,\
bd=0, state=DISABLED , font=(’calibri’, ’11’))

film window mark isocenter text.grid(row=0, column=3, rowspan=3, \
sticky=N+S+E+W, padx=(10,10), pady=(10,0))

new window isocenter tab.columnconfigure(2, weight=0)

new window isocenter tab.rowconfigure(2, weight=0)

film window mark reference point text = \
tk.Text(new window reference point tab , width=55, height=5)

film window mark reference point text.insert(INSERT, \
"When clicking the button \"Mark point\" a window showing \n\
the image will appear and you are to click on the marker \n\
made on the film upon irradiation to find the point. When\n\
the mark are made you will see the isocenter in the image.\n\
If you are not happy with the placement click the button \n\
again and repeat.")

film window mark reference point text.config(bg=’#ffffff’, \
relief=FLAT, bd=0, state=DISABLED , font=(’calibri’, ’11’))

film window mark reference point text.grid(row=0, column=3, \
rowspan=3, sticky=N+S+E+W, padx=(10,10), pady=(5,0))

new window reference point tab.columnconfigure(2, weight=0)

new window reference point tab.rowconfigure(2, weight=0)

mark isocenter button frame = tk.Frame(new window isocenter tab)

mark isocenter button frame.grid(row=3, column=3, \
padx=(10,10), pady=(0,10))

mark isocenter button frame.configure(bg=’#ffffff’)

new window isocenter tab.grid columnconfigure(3, weight=0)

new window isocenter tab.grid rowconfigure(3, weight=0)

261

mark isocenter button = tk.Button(mark isocenter button frame , \
text=’Browse’, image=Globals.profiles mark isocenter button image ,\

cursor=’hand2’,font=(’calibri’, ’14’), relief=FLAT, state=ACTIVE,\
command=lambda: markIsocenter(img, new window isocenter tab , \

image canvas , cv2Img))

mark isocenter button.pack(expand=True, fill=BOTH)

mark isocenter button.config(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

mark isocenter button.image=Globals.profiles mark isocenter button image

mark point button frame = tk.Frame(new window reference point tab)

mark point button frame.grid(row=3, column=3, padx=(10,10), pady=(30,0))

mark point button frame.configure(bg=’#ffffff’)

new window reference point tab.grid columnconfigure(3, weight=0)

new window reference point tab.grid rowconfigure(3, weight=0)

mark point button = tk.Button(mark point button frame , text=’Browse’, \
image=Globals.profiles mark point button image ,cursor=’hand2’,\

font=(’calibri’, ’14’), relief=FLAT, state=ACTIVE, command=lambda:\
markReferencePoint(img, new window reference point tab , \

image canvas reference tab , cv2Img))

mark point button.pack(expand=True, fill=BOTH)

mark point button.config(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

mark point button.image=Globals.profiles mark point button image

write displacement relative to reference point = \
tk.Text(new window reference point tab , width = 55, height=3)

write displacement relative to reference point.insert(INSERT, "\
If the marked reference points in the film does not match\n\
the reference point in the phantom you can write the\n\
displacemnet here (in mm). Defaults to zero ")

write displacement relative to reference point.grid(row=4, \
column=3, rowspan=2, sticky=N+S+E+W, padx=(10,10), pady=(0,10))

write displacement relative to reference point.config(bg=’#ffffff’, \
relief=FLAT, bd=0, state=DISABLED , font=(’calibri’, ’11’))

new window reference point tab.grid rowconfigure(6, weight=0)

new window reference point tab.grid columnconfigure(6, weight=0)

input lateral text = tk.Text(new window reference point tab , \
width=12, height=1)

input lateral text.insert(INSERT, "Lateral:")

input lateral text.config(bg=’#ffffff’, relief=FLAT, bd=0, \
state=DISABLED, font=(’calibri’, ’10’))

input lateral text.grid(row=5, column=3, sticky=N+S, \

262

padx=(0,250), pady=(25,0))

new window reference point tab.grid rowconfigure(10, weight=0)

new window reference point tab.grid rowconfigure(10, weight=0)

Globals.profiles input lateral displacement = \
tk.Text(new window reference point tab , width=5, height=1)

Globals.profiles input lateral displacement.insert(INSERT, " ")

Globals.profiles input lateral displacement.config(bg=’#E5f9ff’, \
relief=GROOVE, bd=2, state=NORMAL, font=(’calibri’, ’11’))

Globals.profiles input lateral displacement.grid(row=5, column=3, \
padx=(0,285), pady=(35,0))

new window reference point tab.grid rowconfigure(7, weight=0)

new window reference point tab.grid columnconfigure(7, weight=0)

input vertical text = tk.Text(new window reference point tab , \
width=12, height=1)

input vertical text.insert(INSERT, "Vertical:")

input vertical text.config(bg=’#ffffff’, relief=FLAT, bd=0, \
state=DISABLED, font=(’calibri’, ’10’))

input vertical text.grid(row=5, column=3, sticky=N+S, \
padx=(0,0), pady=(25,0))

new window reference point tab.grid rowconfigure(11, weight=0)

new window reference point tab.grid rowconfigure(11, weight=0)

Globals.profiles input vertical displacement = \
tk.Text(new window reference point tab , width=4, height=1)

Globals.profiles input vertical displacement.insert(INSERT, " ")

Globals.profiles input vertical displacement.config(bg=’#E5f9ff’, \
relief=GROOVE, bd=2, state=NORMAL, font=(’calibri’, ’11’))

Globals.profiles input vertical displacement.grid(row=5, \
column=3, padx=(0,25), pady=(35,0))

new window reference point tab.grid rowconfigure(8, weight=0)

new window reference point tab.grid columnconfigure(8, weight=0)

input long text = tk.Text(new window reference point tab , width=12, height=1)

input long text.insert(INSERT, "Longitudinal:")

input long text.config(bg=’#ffffff’, relief=FLAT, bd=0, \
state=DISABLED, font=(’calibri’, ’10’))

input long text.grid(row=5, column=3, sticky=N+S, padx=(250,0), pady=(25,0))

new window reference point tab.grid rowconfigure(12, weight=0)

new window reference point tab.grid rowconfigure(12, weight=0)

Globals.profiles input longitudinal displacement = \
tk.Text(new window reference point tab , width=5, height=1)

Globals.profiles input longitudinal displacement.insert(INSERT, " ")

263

Globals.profiles input longitudinal displacement.config(bg=’#E5f9ff’, \
relief=GROOVE, bd=2, state=NORMAL, font=(’calibri’, ’11’))

Globals.profiles input longitudinal displacement.grid(row=5, \
column=3, padx=(240,0), pady=(35,0))

new window reference point tab.grid rowconfigure(9, weight=0)

new window reference point tab.grid columnconfigure(9, weight=0)

film window mark ROI text = tk.Text(new window isocenter tab , \
width=55, height=7)

film window mark ROI text.insert(INSERT, \
"When clicking the button \"Mark ROI\" a window showing the\n\
image will appear and you are to drag a rectangle marking \n\
the region of interest. Fidora will assume the film has been\n\
scanned in either portrait or landscape orientation. When\n\
the ROI has been marked it will appear on the image. If you\n\
are not happy with the placement click the button again.")

film window mark ROI text.config(bg=’#ffffff’, relief=FLAT, bd=0, \
state=DISABLED, font=(’calibri’, ’11’))

film window mark ROI text.grid(row=5, column=3, rowspan=4, \
sticky=N+S+E+W, padx=(10,10), pady=(0,0))

new window isocenter tab.grid columnconfigure(4, weight=0)

new window isocenter tab.grid rowconfigure(4, weight=0)

film window mark ROI reference point text = \
tk.Text(new window reference point tab , width=55, height=5)

film window mark ROI reference point text.insert(INSERT, \
"When clicking the button \"Mark ROI\" a window showing the\n\
image will appear and you are to drag a rectangle marking \n\
the region of interest. Fidora will assume the film has been\n\
scanned in either portrait or landscape orientation. When\n\
the ROI has been marked it will appear on the image. If you\n\
are not happy with the placement click the button again.")

film window mark ROI reference point text.config(bg=’#ffffff’, relief=FLAT, \
bd=0, state=DISABLED , font=(’calibri’, ’11’))

film window mark ROI reference point text.grid(row=6, column=3, rowspan=3, \
sticky=N+E+W, padx=(10,10), pady=(10,0))

new window reference point tab.grid columnconfigure(4, weight=0)

new window reference point tab.grid rowconfigure(4, weight=0)

mark ROI button frame = tk.Frame(new window isocenter tab)

mark ROI button frame.grid(row=8, column=3, padx=(10,0), pady=(0,5))

mark ROI button frame.configure(bg=’#ffffff’)

new window isocenter tab.grid columnconfigure(5, weight=0)

new window isocenter tab.grid rowconfigure(5, weight=0)

264

mark ROI button = tk.Button(mark ROI button frame , text=’Browse’, \
image=Globals.profiles mark ROI button image ,cursor=’hand2’,\

font=(’calibri’, ’14’), relief=FLAT, state=ACTIVE, \
command=lambda: markROI(img, new window isocenter tab , \

image canvas , False))

mark ROI button.pack(expand=True, fill=BOTH)

mark ROI button.config(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

mark ROI button.image=Globals.profiles mark ROI button image

slice offset text = tk.Text(new window isocenter tab , width=25, height=1)

slice offset text.insert(INSERT, "Slice offset, mm (default 0):")

slice offset text.config(state=DISABLED, font=(’calibri’, ’10’), \
bd = 0, relief=FLAT)

slice offset text.grid(row=9, column=3, padx=(5,110), pady=(0,0))

new window isocenter tab.grid columnconfigure(6, weight=0)

new window isocenter tab.grid rowconfigure(6, weight=0)

Globals.profiles slice offset = tk.Text(new window isocenter tab , \
width=8, height=1)

Globals.profiles slice offset.grid(row=9, column=3, \
padx=(110,10), pady=(0,0))

Globals.profiles slice offset.insert(INSERT, " ")

Globals.profiles slice offset.config(state=NORMAL, \
font=(’calibri’, ’10’), bd = 2, bg=’#ffffff’)

new window isocenter tab.grid columnconfigure(7, weight=0)

new window isocenter tab.grid rowconfigure(7, weight=0)

mark ROI button reference point frame = \
tk.Frame(new window reference point tab)

mark ROI button reference point frame.grid\
(row=9, column=3, padx=(10,10), pady=(0,5))

mark ROI button reference point frame.configure(bg=’#ffffff’)

new window reference point tab.grid columnconfigure(5, weight=0)

new window reference point tab.grid rowconfigure(5, weight=0)

mark ROI reference point button = \
tk.Button(mark ROI button reference point frame , text=’Browse’, \

image=Globals.profiles mark ROI button image , cursor=’hand2’,\
font=(’calibri’, ’14’), relief=FLAT, state=ACTIVE, \

command=lambda: markROI(img, \
new window reference point tab , \

image canvas reference tab , True))

mark ROI reference point button.pack(expand=True, fill=BOTH)

mark ROI reference point button.config(bg=’#ffffff’, \

265

activebackground=’#ffffff’, activeforeground=’#ffffff’, \
highlightthickness=0)

mark ROI reference point button.image=Globals.profiles mark ROI button image

def finishFilmMarkers(ref test):

Globals.profiles slice offset.config(state=DISABLED)

if(ref test):

if(not(Globals.profiles input lateral displacement.\
get("1.0",’end−1c’)==" ")):
try:

test = float(Globals.profiles input lateral displacement.\
get("1.0",’end−1c’))

Globals.profiles lateral = test

except:

messagebox.showerror("Error", "The displacements must \
be numbers\n (Code: lateral displacement)")

return

else:

Globals.profiles lateral = 0

if(not(Globals.profiles input longitudinal displacement.\
get("1.0",’end−1c’)==" ")):
try:

test = \
float(Globals.profiles input longitudinal displacement.\

get("1.0", ’end−1c’))
Globals.profiles longitudinal = test

except:

messagebox.showerror("Error", "The displacements must \
be numbers\n (Code: longitudinal displacement)")

return

else:

Globals.profiles longitudinal = 0

if(not(Globals.profiles input vertical displacement.\
get("1.0",’end−1c’)==" ")):
try:

test = float(Globals.profiles input vertical displacement.\
get("1.0", ’end−1c’))

Globals.profiles vertical = test

except:

messagebox.showerror("Error", "The displacements must \
be numbers\n (Code: vertical displacement)")

return

else:

Globals.profiles vertical = 0

Globals.profiles input vertical displacement.\

266

config(state=DISABLED)

Globals.profiles input longitudinal displacement.\
config(state=DISABLED)

Globals.profiles input lateral displacement.\
config(state=DISABLED)

else:

if not Globals.profiles slice offset.get("1.0",’end−1c’)==" ":
try:

offset = float(Globals.profiles slice offset.\
get("1.0",’end−1c’))

Globals.profiles offset = offset

except:

messagebox.showerror("Error", "Slice offset \
must be a number \n(Code: finishFilmMarkers(false)")

return

else:

Globals.profiles offset = 0

if(ref test):

choose batch window = tk.Toplevel(new window reference point tab)

else:

choose batch window = tk.Toplevel(new window isocenter tab)

choose batch window.geometry("670x380+50+50")

choose batch window.grab set()

choose batch frame = tk.Frame(choose batch window)

choose batch frame.pack(expand=True, fill=BOTH)

choose batch frame.configure(bg=’#ffffff’)

batch cnt = 0

weight cnt = 0

read = open(’calibration.txt’, ’r’)

lines = read.readlines()

read.close()

row cnt=0

for l in lines:

words = l.split()

line = "Batch nr. : " + words[2] + ". Date: "\
+ words[0] + " " + words[1] + "."

write batch nr = tk.Text(choose batch frame , width=10, height=1)

write batch nr.grid(row=row cnt , column=0, sticky=N+S+W+E, \
padx=(10,5), pady=(10,10))

choose batch frame.grid columnconfigure(weight cnt , weight=0)

choose batch frame.grid rowconfigure(weight cnt , weight=0)

write batch nr.insert(INSERT, "Batch nr.: ")

267

write batch nr.config(state=DISABLED , bd = 0, \
font=(’calibri’, ’12’, ’bold’))

weight cnt+=1

write batch = tk.Text(choose batch frame , width=20, height=1)

write batch.grid(row=row cnt , column=1, sticky=N+S+W+E,\
padx=(10,5), pady=(10,10))

choose batch frame.grid columnconfigure(weight cnt , weight=0)

choose batch frame.grid rowconfigure(weight cnt , weight=0)

write batch.insert(INSERT, words[2])

write batch.config(state=DISABLED, bd = 0, font=(’calibri’, ’12’))

weight cnt+=1

write batch date = tk.Text(choose batch frame , width=8, height=1)

write batch date.grid(row=row cnt , column=2, sticky=N+S+W+E, \
padx=(10,5), pady=(10,10))

choose batch frame.grid columnconfigure(weight cnt , weight=0)

choose batch frame.grid rowconfigure(weight cnt , weight=0)

write batch date.insert(INSERT, "Date: ")

write batch date.config(state=DISABLED , bd = 0, \
font=(’calibri’, ’12’, ’bold’))

weight cnt+=1

write date = tk.Text(choose batch frame , width=30, height=1)

write date.grid(row=row cnt , column=3, sticky=N+S+W+E, \
padx=(10,5), pady=(10,10))

choose batch frame.grid columnconfigure(weight cnt , weight=0)

choose batch frame.grid rowconfigure(weight cnt , weight=0)

write date.insert(INSERT, words[0] + ", " + words[1] + "")

write date.config(state=DISABLED, bd = 0, font=(’calibri’, ’12’))

weight cnt+=1

Radiobutton(choose batch frame , text=’’,bg=’#ffffff’, \
cursor=’hand2’,font=(’calibri’, ’14’), \

variable=Globals.profiles film batch , \
value=batch cnt).grid(row=row cnt , column=4, \

sticky=N+S+W+E, padx=(5,5), pady=(10,10))

choose batch frame.grid columnconfigure(weight cnt , weight=0)

choose batch frame.grid rowconfigure(weight cnt , weight=0)

weight cnt+=1;row cnt+=1;batch cnt+=1

def set batch():

choose batch window.destroy()

f = open(’calibration.txt’, ’r’)

lines = f.readlines()

words = lines[Globals.profiles film batch.get()].split()

Globals.profiles popt red[0] = float(words[3])

Globals.profiles popt red[1] = float(words[4])

268

Globals.profiles popt red[2] = float(words[5])

f.close()

Globals.profiles film dataset ROI red channel dose = \
np.zeros((Globals.profiles film dataset ROI red channel\

.shape[0],Globals.profiles film dataset ROI red channel\
.shape[1]))

for i in range\
(Globals.profiles film dataset ROI red channel dose.shape[0]):

for j in range(Globals.\
profiles film dataset ROI red channel dose.shape[1]):

Globals.profiles film dataset ROI red channel dose[i,j] \
= Globals.profiles film factor*pixel to dose\

(Globals.profiles film dataset ROI red channel[i,j],\
Globals.profiles popt red[0], \

Globals.profiles popt red[1], \
Globals.profiles popt red[2])

Globals.profiles film dataset red channel dose = \
np.zeros((Globals.profiles film dataset red channel.shape[0],\
Globals.profiles film dataset red channel.shape[1]))

for i in range\
(Globals.profiles film dataset red channel dose.shape[0]):

for j in range(Globals.\
profiles film dataset red channel dose.shape[1]):

Globals.profiles film dataset red channel dose[i,j] = \
Globals.profiles film factor*pixel to dose(\

Globals.profiles film dataset red channel[i,j], \
Globals.profiles popt red[0], \

Globals.profiles popt red[1], \
Globals.profiles popt red[2])

Globals.film write image.create image(0,0,\
image=scaled image visual , anchor="nw")

Globals.film write image.image = scaled image visual

mx film=np.max(Globals.profiles film dataset ROI red channel dose)

Globals.profiles max dose film = mx film

film scanned image text canvas.create image(0,0,\
image=Globals.profiles scanned image text image , anchor="nw")

film scanned image text canvas.image = \
Globals.profiles scanned image text image

new window.destroy()

269

set batch button frame = tk.Frame(choose batch frame)

set batch button frame.grid(row=row cnt , column=1, \
columnspan=3, padx=(10,0), pady=(5,5))

set batch button frame.configure(bg=’#ffffff’)

choose batch frame.grid columnconfigure(weight cnt , weight=0)

choose batch frame.grid rowconfigure(weight cnt , weight=0)

set batch button = tk.Button(set batch button frame , text=’OK’, \
image=Globals.done button image , cursor=’hand2’,\
font=(’calibri’, ’14’), relief=FLAT, state=ACTIVE,command=set batch)

set batch button.pack(expand=True, fill=BOTH)

set batch button.image=Globals.done button image

img ROI = Globals.profiles film dataset\
[Globals.profiles ROI coords[0][1]:\

Globals.profiles ROI coords[2][1],\
Globals.profiles ROI coords[0][0]:\

Globals.profiles ROI coords[1][0], :]

img ROI red channel = img ROI[:,:,2]

Globals.profiles film variable ROI coords = \
[Globals.profiles ROI coords[0][1], \

Globals.profiles ROI coords[2][1],\
Globals.profiles ROI coords[0][0], \

Globals.profiles ROI coords[1][0]]

Globals.profiles film dataset ROI = img ROI

Globals.profiles film dataset ROI red channel = img ROI red channel

R = img ROI[:,:,2];B = img ROI[:,:,0]; G = img ROI[:,:,1]

img ROI RGB = np.zeros(img ROI.shape)

img ROI RGB[:,:,0]=R; img ROI RGB[:,:,1]=G; img ROI RGB[:,:,2]=B

PIL img ROI = (img ROI RGB /256).astype(’uint8’)

PIL img ROI = Image.fromarray(PIL img ROI , ’RGB’)

wid = PIL img ROI.width;heig = PIL img ROI.height

film image canvas = tk.Canvas(Globals.profiles film panedwindow)

film image canvas.grid(row=0,column=0, sticky=N+S+W+E)

Globals.profiles film panedwindow.add(film image canvas , \
height=max(heig,Globals.profiles scanned image text image.height()),\

width=wid + Globals.profiles scanned image text image.width())

film image canvas.config(bg=’#ffffff’, relief=FLAT, highlightthickness=0,\
height=max(heig,Globals.profiles scanned image text image.height()),\

width=wid + Globals.profiles scanned image text image.width())

Globals.film write image = tk.Canvas(film image canvas)

270

Globals.film write image.grid(row=0,column=1,sticky=N+S+W+E)

Globals.film write image.config(bg=’#ffffff’, relief=FLAT, \
highlightthickness=0, width=wid, height=heig)

film scanned image text canvas=tk.Canvas(film image canvas)

film scanned image text canvas.grid(row=0,column=0,sticky=N+S+W+E)

film scanned image text canvas.config(bg=’#ffffff’, relief=FLAT, \
highlightthickness=0, height=\

Globals.profiles scanned image text image.height(), \
width=Globals.profiles scanned image text image.width())

scaled image visual = PIL img ROI

scaled image visual = ImageTk.PhotoImage(image=scaled image visual)

Globals.profiles upload button doseplan.config(state=DISABLED)

Globals.profiles upload button rtplan.config(state=ACTIVE)

Globals.profiles upload button film.config(state=DISABLED)

if(ref test):

Globals.profiles distance reference point ROI.append\
([(Globals.profiles film reference point[0]−\

Globals.profiles ROI coords[0][0])*0.2, \
(Globals.profiles film reference point[1] −\

Globals.profiles ROI coords[0][1])*0.2])
Globals.profiles distance reference point ROI.append\

([(Globals.profiles film reference point[0]− \
Globals.profiles ROI coords[1][0])*0.2,\

(Globals.profiles film reference point[1]− \
Globals.profiles ROI coords[1][1])*0.2])

Globals.profiles distance reference point ROI.append\
([(Globals.profiles film reference point[0]− \

Globals.profiles ROI coords[2][0])*0.2,\
(Globals.profiles film reference point[1]− \

Globals.profiles ROI coords[2][1])*0.2])
Globals.profiles distance reference point ROI.append\

([(Globals.profiles film reference point[0]− \
Globals.profiles ROI coords[3][0])*0.2,\

(Globals.profiles film reference point[1]− \
Globals.profiles ROI coords[3][1])*0.2])

Globals.profiles isocenter or reference point = "Ref point"

else:

Globals.profiles distance isocenter ROI.append\
([(Globals.profiles film isocenter[0]−\

Globals.profiles ROI coords[0][0])*0.2, \

271

(Globals.profiles film isocenter[1] −\
Globals.profiles ROI coords[0][1])*0.2])

Globals.profiles distance isocenter ROI.append\
([(Globals.profiles film isocenter[0]− \

Globals.profiles ROI coords[1][0])*0.2,\
(Globals.profiles film isocenter[1]− \

Globals.profiles ROI coords[1][1])*0.2])
Globals.profiles distance isocenter ROI.append\

([(Globals.profiles film isocenter[0]− \
Globals.profiles ROI coords[2][0])*0.2,\

(Globals.profiles film isocenter[1]− \
Globals.profiles ROI coords[2][1])*0.2])

Globals.profiles distance isocenter ROI.append\
([(Globals.profiles film isocenter[0]− \

Globals.profiles ROI coords[3][0])*0.2,\
(Globals.profiles film isocenter[1]− \

Globals.profiles ROI coords[3][1])*0.2])

Globals.profiles isocenter or reference point = "Isocenter"

done button frame = tk.Frame(new window isocenter tab)

done button frame.grid(row=10, column=3, padx=(10,10), \
pady=(5,5), sticky=N+S+W+E)

done button frame.configure(bg=’#ffffff’)

new window isocenter tab.grid columnconfigure(5, weight=0)

new window isocenter tab.grid rowconfigure(5, weight=0)

Globals.profiles done button = tk.Button(done button frame , \
text=’Done’, image=Globals.done button image,\
cursor=’hand2’, font=(’calibri’, ’14’), relief=FLAT, \

state=DISABLED, command=lambda: finishFilmMarkers(False))

Globals.profiles done button.pack(expand=True, fill=BOTH)

Globals.profiles done button.config(bg=’#ffffff’,activebackground=’#ffffff’,\
activeforeground=’#ffffff’, highlightthickness=0)

Globals.profiles done button.image=Globals.done button image

done button reference point frame = tk.Frame(new window reference point tab)

done button reference point frame.grid(row=10, column=3, \
padx=(10,10), pady=(5,5), sticky=N+S+W+E)

done button reference point frame.configure(bg=’#ffffff’)

new window reference point tab.grid columnconfigure(5, weight=0)

new window reference point tab.grid rowconfigure(5, weight=0)

Globals.profiles done button reference point= \

272

tk.Button(done button reference point frame , text=’Done’, \
image=Globals.done button image ,cursor=’hand2’, \

font=(’calibri’, ’14’), relief=FLAT, state=DISABLED , \
command=lambda: finishFilmMarkers(True))

Globals.profiles done button reference point.pack(expand=True, fill=BOTH)

Globals.profiles done button reference point.config(bg=’#ffffff’, \
activebackground=’#ffffff’, activeforeground=’#ffffff’, \

highlightthickness=0)

Globals.profiles done button reference point.image=Globals.done button image

elif(ext==""):

return

else:

messagebox.showerror("Error", "The file must be a *.tif file")

def help showPlanes():

#−−
Function to show the help−image in film orientation
#
This functions is a callback to the button
profiles help button orientation in notebook.py
#−−

new window = tk.Toplevel(Globals.tab4)

w = Globals.profiles showPlanes image.width()

h = Globals.profiles showPlanes image.height()

new window.geometry("%dx%d+0+0" % (w, h))

new window.grab set()

canvas = tk.Canvas(new window)

canvas.config(relief=FLAT, bg=’#ffffff’, highlightthickness=0)

canvas.create image(0, 0, image=Globals.profiles showPlanes image , anchor=’nw’)

canvas.pack(expand=True, fill=BOTH)

DVH functions.py

#−−−
DVH functions.py
version 18.08.20
#
To be used related to the tab DVH in Fidora.
#
#−−−

273

import Globals

import tkinter as tk

from tkinter import filedialog , INSERT, DISABLED, messagebox , NORMAL,simpledialog,\
PhotoImage , BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton , GROOVE, \

ACTIVE, FLAT, END, Scrollbar , HORIZONTAL , VERTICAL , ttk, TOP, RIGHT, LEFT, \
ttk, Checkbutton , IntVar

import os

from os.path import normpath , basename

from PIL import Image, ImageTk

import cv2

from cv2 import imread, IMREAD ANYCOLOR , IMREAD ANYDEPTH , imwrite

import pydicom

from matplotlib.figure import Figure

from matplotlib.backends.backend tkagg import FigureCanvasTkAgg

import matplotlib as mpl

from matplotlib import cm

import matplotlib.pyplot as plt

from matplotlib.backends.backend tkagg import \
FigureCanvasTkAgg , NavigationToolbar2Tk

import numpy as np

import random

def nothingButton():

#−−
Function to only return
Is used in cases where nothing should happen in
a active button (they will later be reconfigured)
#−−

return

def clearAll():

#−−
Function to reset all variables
#
This function is called when the user
wants to restart the program
#−−

for widget in Globals.DVH view film doseplan ROI.winfo children():

widget.destroy()

Globals.temp image canvas = tk.Canvas(Globals.DVH view film doseplan ROI)

Globals.temp image canvas.grid(row=0, column=0, sticky=N+S+W+E)

Globals.temp image canvas.config(bg=’#ffffff’,bd=0, \
highlightthickness=0,relief=FLAT)

Globals.temp image canvas.create image(270,150, image=Globals.dVH temp image)

274

Globals.DVH export button.config(state=DISABLED , command=nothingButton)

Globals.DVH film orientation.set(’−’)
Globals.DVH number of doseplans = 0

Globals.DVH number of doseplans row count = 4

Globals.DVH doseplans grid config count = 6

Globals.DVH doseplans filenames = []

Globals.DVH doseplans factor text = []

Globals.DVH doseplans factor input = []

Globals.DVH doseplan dataset ROI several = []

Globals.DVH several img = []

Globals.profiles film factor = None

Globals.DVH film orientation menu = None

Globals.DVH film factor input = None

Globals.DVH film factor = None

Globals.DVH film dataset = None

Globals.DVH film dataset red channel = None

Globals.DVH film dataset ROI = None

Globals.DVH film dataset ROI red channel = None

Globals.DVH doseplan dataset ROI = None

Globals.DVH film dataset ROI red channel dose = None

Globals.DVH film write image = None

Globals.DVH film dose write image = None

Globals.DVH max dose film = None

Globals.DVH max dose doseplan = None

Globals.DVH iscoenter coords = []

Globals.DVH film isocenter = None

Globals.DVH film reference point = None

Globals.DVH distance isocenter ROI = []

Globals.DVH distance reference point ROI = []

Globals.DVH mark isocenter up down line = []

Globals.DVH mark isocenter right left line = []

Globals.DVH mark isocenter oval = []

Globals.DVH mark ROI rectangle = []

Globals.DVH mark reference point oval = []

Globals.DVH ROI coords = []

Globals.DVH film variable ROI coords = None

Globals.DVH done button = None

Globals.DVH done button reference point = None

Globals.DVH isocenter check=False

Globals.DVH reference point check = False

275

Globals.DVH ROI check = False

Globals.DVH ROI reference point check = False

Globals.DVH film batch.set(0)

Globals.DVH popt red = np.zeros(3)

Globals.DVH upload button doseplan.config(state=DISABLED)

Globals.DVH upload button film.config(state=ACTIVE)

Globals.DVH upload button rtplan.config(state=DISABLED)

Globals.DVH upload button struct.config(state=DISABLED)

Globals.DVH dataset doseplan=None

Globals.DVH dataset rtplan = None

Globals.DVH dataset structure file = None

Globals.DVH test if added doseplan = False

Globals.DVH test if added rtplan = False

Globals.DVH test if added struct = False

Globals.DVH isocenter mm=None

Globals.DVH dose scaling doseplan = None

Globals.DVH contour names = None

Globals.DVH ROIContourSequence = None

Globals.DVH contours = []

Globals.DVH doseplan write image = None

Globals.DVH doseplan write image width = None

Globals.DVH doseplan write image height = None

Globals.DVH doseplan lateral displacement = None

Globals.DVH doseplan vertical displacement = None

Globals.DVH doseplan longitudianl displacement = None

Globals.DVH doseplan patient position = None

Globals.DVH reference point in doseplan = None

Globals.DVH input lateral displacement = None

Globals.DVH input longitudinal displacement = None

Globals.DVH input vertical displacement = None

Globals.DVH slice offset = None

Globals.DVH offset = None

Globals.DVH isocenter or reference point = None

Globals.DVH lateral = None

Globals.DVH vertical = None

Globals.DVH longitudinal = None

for widget in Globals.DVH plot canvas.winfo children():

276

widget.destroy()

DVH initial fig = Figure(figsize=(10,6))

DVH a = DVH initial fig.add subplot(111, ylim=(0,1), xlim=(0,50))

DVH initial plot canvas = FigureCanvasTkAgg\
(DVH initial fig , master=Globals.DVH plot canvas)

DVH initial plot canvas.get tk widget().grid(row=0,column=0,columnspan=4, \
sticky=N+E+W+S, padx=(5,0), pady=(0,0))

DVH a.set title ("Dose volume histogram", fontsize=12)

DVH a.set ylabel("Volume (%)", fontsize=12)

DVH a.set xlabel("Dose (Gy)", fontsize=12)

DVH initial fig.tight layout()

for widget in Globals.DVH list contours canvas.winfo children():

widget.destroy()

return

def calculateDVH(data, data film , initial, include contours):

#−−
Function to calculate the dose volume histogram
#
The function is called in processDoseplan Isocenter
and processDoseplan Reference Point, as well as
it is a callback function for the button
check indise this function
#−−

names = [item[0] for item in data]

dose array = [item[1] for item in data]

prc array = [item[2] for item in data]

dose array film = [item[1] for item in data film]

prc array film = [item[2] for item in data film]

if initial:

include contours = []

checkbuttons = []

for name in names:

var = IntVar()

var.set(1)

check = Checkbutton(Globals.DVH list contours canvas , \
text=name, variable=var, command=lambda: \

calculateDVH(data, data film , False, include contours))

check.pack(side=LEFT)

check.config(bg=’#ffffff’)

include contours.append(var)

checkbuttons.append(check)

DVH fig = Figure(figsize=(10,6))

277

DVH a = DVH fig.add subplot(111, ylim=(−0.1,1.1), xlim=(0,50))
DVH plot canvas = FigureCanvasTkAgg(DVH fig , master=Globals.DVH plot canvas)

DVH plot canvas.get tk widget().grid(row=0,column=0,columnspan=4, \
sticky=N+E+W+S, padx=(5,0), pady=(0,0))

legend names = []

for i in range(len(include contours)):

if include contours[i].get():

color = (random.random(), random.random(), random.random())

plot dose array = list(dose array[i])

plot dose array.insert(0,0)

plot dose array.insert(len(plot dose array),100)

plot prc array = list(prc array[i])

plot prc array.insert(0,1)

plot prc array.insert(len(plot prc array),0)

DVH a.plot(np.array(plot dose array),np.array(plot prc array), c=color)

plot dose array film = list(dose array film[i])

plot dose array film.insert(0,0)

plot dose array film.insert(len(plot dose array film),100)

plot prc array film = list(prc array film[i])

plot prc array film.insert(0,1)

plot prc array film.insert(len(plot prc array film), 0)

DVH a.plot(np.array(plot dose array film), \
np.array(plot prc array film), c=color, ls=’−−’)

legend names.append(names[i])

legend names.append(names[i] + " (Film)")

def export plot():

messagebox.showinfo("Info", "This button has not been written")

return

Globals.DVH export button.config(state=ACTIVE, command=export plot)

DVH a.legend(legend names ,loc=’center left’, bbox to anchor=(1, 0.5))

DVH a.set title ("Dose volume histogram", fontsize=12)

DVH a.set ylabel("Volume (%)", fontsize=12)

DVH a.set xlabel("Dose (Gy)", fontsize=12)

DVH fig.tight layout()

def processDoseplan usingReferencePoint(only one):

#−−
Function to process the doseplan when reference
point is choosen to define the position.
Is called in UploadDoseplan

278

#
Parameter: only one−to test i f only one doseplan
is uploaded in Fidora.
#−−

################ RT Plan ######################
iso 1 = abs(Globals.DVH dataset doseplan.ImagePositionPatient[0]− \

Globals.DVH isocenter mm[0])

iso 2 = abs(Globals.DVH dataset doseplan.ImagePositionPatient[1]− \
Globals.DVH isocenter mm[1])

iso 3 = abs(Globals.DVH dataset doseplan.ImagePositionPatient[2]− \
Globals.DVH isocenter mm[2])

Globals.DVH isocenter mm = [iso 1 , iso 2 , iso 3]

try:

Globals.DVH vertical = int(Globals.DVH vertical)

except:

messagebox.showerror("Error", "Could not read the vertical \
displacements\n (Code: displacements to integer)")

return

try:

Globals.DVH lateral = int(Globals.DVH lateral)

except:

messagebox.showerror("Error", "Could not read the lateral \
displacements\n (Code: displacements to integer)")

return

try:

Globals.DVH longitudinal = int(Globals.DVH longitudinal)

except:

messagebox.showerror("Error", "Could not read the longitudinal \
displacements\n (Code: displacements to integer)")

return

lateral = Globals.DVH lateral

longit = Globals.DVHlongitudinal

vertical = Globals.DVH vertical

isocenter px = np.zeros(3)

distance in doseplan ROI reference point px = []

if(Globals.DVH dataset doseplan.PixelSpacing==[1, 1]):

isocenter px[0] = np.round(iso 1)

isocenter px[1] = np.round(iso 2)

isocenter px[2] = np.round(iso 3)

distance in doseplan ROI reference point px.append\
([np.round(Globals.DVH distance reference point ROI[0][0]),\

279

np.round(Globals.DVH distance reference point ROI [0][1])])

distance in doseplan ROI reference point px.append\
([np.round(Globals.DVH distance reference point ROI[1][0]),\

np.round(Globals.DVH distance reference point ROI [1][1])])

distance in doseplan ROI reference point px.append\
([np.round(Globals.DVH distance reference point ROI[2][0]),\

np.round(Globals.DVH distance reference point ROI [2][1])])

distance in doseplan ROI reference point px.append\
([np.round(Globals.DVH distance reference point ROI[3][0]),\

np.round(Globals.DVH distance reference point ROI [3][1])])

lateral px = np.round(lateral)

vertical px = np.round(vertical)

longit px = np.round(longit)

doseplan lateral displacement px = \
np.round(Globals.DVH doseplan lateral displacement)

doseplan vertical displacement px = \
np.round(Globals.DVH doseplan vertical displacement)

doseplan longitudinal displacement px = \
np.round(Globals.DVH doseplan longitudianl displacement)

elif(Globals.DVH dataset doseplan.PixelSpacing==[2, 2]):

isocenter px[0] = np.round(iso 1/2)

isocenter px[1] = np.round(iso 2/2)

isocenter px[2] = np.round(iso 3/2)

distance in doseplan ROI reference point px.append\
([np.round((Globals.DVH distance reference point ROI[0][0])/2),\

np.round((Globals.DVH distance reference point ROI [0][1])/2)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.DVH distance reference point ROI[1][0])/2),\

np.round((Globals.DVH distance reference point ROI [1][1])/2)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.DVH distance reference point ROI[2][0])/2),\

np.round((Globals.DVH distance reference point ROI [2][1])/2)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.DVH distance reference point ROI[3][0])/2),\

np.round((Globals.DVH distance reference point ROI [3][1])/2)])

lateral px = np.round(lateral/2)

vertical px = np.round(vertical/2)

longit px = np.round(longit/2)

doseplan lateral displacement px = \

280

np.round((Globals.DVH doseplan lateral displacement)/2)

doseplan vertical displacement px = \
np.round((Globals.DVH doseplan vertical displacement)/2)

doseplan longitudinal displacement px = \
np.round((Globals.DVH doseplan longitudianl displacement)/2)

else:

isocenter px[0] = np.round(iso 1/3)

isocenter px[1] = np.round(iso 2/3)

isocenter px[2] = np.round(iso 3/3)

distance in doseplan ROI reference point px.append\
([np.round((Globals.DVH distance reference point ROI[0][0])/3),\

np.round((Globals.DVH distance reference point ROI [0][1])/3)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.DVH distance reference point ROI[1][0])/3),\

np.round((Globals.DVH distance reference point ROI [1][1])/3)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.DVH distance reference point ROI[2][0])/3),\

np.round((Globals.DVH distance reference point ROI [2][1])/3)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.DVH distance reference point ROI[3][0])/3),\

np.round((Globals.DVH distance reference point ROI [3][1])/3)])

lateral px = np.round(lateral/3)

vertical px = np.round(vertical/3)

longit px = np.round(longit/3)

doseplan lateral displacement px = \
np.round((Globals.DVH doseplan lateral displacement)/3)

doseplan vertical displacement px = \
np.round((Globals.DVH doseplan vertical displacement)/3)

doseplan longitudinal displacement px = \
np.round((Globals.DVH doseplan longitudianl displacement)/3)

temp ref point doseplan = np.zeros(3)

if(Globals.DVH doseplan patient position==’HFS’):

temp ref point doseplan[0] = int(isocenter px[0]+ \
doseplan lateral displacement px − lateral px)

temp ref point doseplan[1] = int(isocenter px[1]− \
doseplan vertical displacement px + vertical px)

temp ref point doseplan[2] = int(isocenter px[2]+ \
doseplan longitudinal displacement px − longit px)

elif(Globals.DVH doseplan patient position==’HFP’):

281

temp ref point doseplan[0] = isocenter px[0]− \
doseplan lateral displacement px+ lateral px

temp ref point doseplan[1] = isocenter px[1]+ \
doseplan vertical displacement px − vertical px

temp ref point doseplan[2] = isocenter px[2]+ \
doseplan longitudinal displacement px − longit px

elif(Globals.DVH doseplan patient position==’HFDR’):

temp ref point doseplan[0] = isocenter px[0]− \
doseplan vertical displacement px + vertical px

temp ref point doseplan[1] = isocenter px[1]+ \
doseplan lateral displacement px − lateral px

temp ref point doseplan[2] = isocenter px[2]+ \
doseplan longitudinal displacement px − longit px

elif(Globals.DVH doseplan patient position==’HFDL’):

temp ref point doseplan[0] = isocenter px[0]+ \
doseplan vertical displacement px − vertical px

temp ref point doseplan[1] = isocenter px[1]− \
doseplan lateral displacement px + lateral px

temp ref point doseplan[2] = isocenter px[2]+ \
doseplan longitudinal displacement px − longit px

elif(Globals.DVH doseplan patient position==’FFS’):

temp ref point doseplan[0] = isocenter px[0]− \
doseplan lateral displacement px + lateral px

temp ref point doseplan[1] = isocenter px[1]+ \
doseplan vertical displacement px − vertical px

temp ref point doseplan[2] = isocenter px[2]− \
doseplan longitudinal displacement px + longit px

elif(Globals.DVH doseplan patient position==’FFP’):

temp ref point doseplan[0] = isocenter px[0]+ \
doseplan lateral displacement px− lateral px

temp ref point doseplan[1] = isocenter px[1]− \
doseplan vertical displacement px + vertical px

temp ref point doseplan[2] = isocenter px[2]− \
doseplan longitudinal displacement px + longit px

elif(Globals.DVH doseplan patient position==’FFDR’):

temp ref point doseplan[0] = isocenter px[0]− \
doseplan vertical displacement px + vertical px

temp ref point doseplan[1] = isocenter px[1]− \
doseplan lateral displacement px + lateral px

temp ref point doseplan[2] = isocenter px[2]− \
doseplan longitudinal displacement px + longit px

else:

temp ref point doseplan[0] = isocenter px[0] + \
doseplan vertical displacement px − vertical px

temp ref point doseplan[1] = isocenter px[1] + \

282

doseplan lateral displacement px − lateral px

temp ref point doseplan[2] = isocenter px[2]− \
doseplan longitudinal displacement px + longit px

Globals.DVH reference point in doseplan = temp ref point doseplan

reference point = np.zeros(3)

######################## Struct file ##################################
i=0

for name in Globals.DVH contour names:

sequences = Globals.DVH ROIContourSequence[i].ContourSequence

temp x = [];temp y = [];temp z = []

for sequence in sequences:

if(Globals.DVH dataset doseplan.PixelSpacing==[1, 1]):

temp x.append([int(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[0]−x)) for x in sequence.ContourData[0::3]])

temp y.append([int(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[1]−y)) for y in sequence.ContourData[1::3]])

temp z.append([int(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[2]−z)) for z in sequence.ContourData[2::3]])

elif(Globals.DVH dataset doseplan.PixelSpacing==[2, 2]):

temp x.append([int(np.round(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[0]−x)/2)) for \

x in sequence.ContourData[0::3]])

temp y.append([int(np.round(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[1]−y)/2)) for \

y in sequence.ContourData[1::3]])

temp z.append([int(np.round(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[2]−z)/2)) for \

z in sequence.ContourData[2::3]])

else:

temp x.append([int(np.round(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[0]−x)/3)) for \

x in sequence.ContourData[0::3]])

temp y.append([int(np.round(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[1]−y)/3)) for \

y in sequence.ContourData[1::3]])

temp z.append([int(np.round(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[2]−z)/3)) for \

z in sequence.ContourData[2::3]])

Globals.DVH contours.append\
([i, name.ROIObservationLabel , temp x , temp y , temp z])

i+=1

######################## Doseplan ##################################

283

if(Globals.DVH dataset doseplan.ImageOrientationPatient==[1, 0, 0, 0, 1, 0]):

reference point[0] = temp ref point doseplan[2]

reference point[1] = temp ref point doseplan[1]

reference point[2] = temp ref point doseplan[0]

for i in range(len(Globals.DVH contours)):

temp x = Globals.DVH contours[i][2]

temp y = Globals.DVH contours[i][3]

temp z = Globals.DVH contours[i][4]

Globals.DVH contours[i][2] = temp z

Globals.DVH contours[i][3] = temp y

Globals.DVH contours[i][4] = temp x

if(Globals.DVH film orientation.get()==’Coronal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = temp c

elif(Globals.DVH film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

elif(Globals.DVH film orientation.get()==’Axial’):

dataset swapped = Globals.DVH dataset doseplan.pixel array

else:

messagebox.showerror("Error", "Something has gone wrong here.")

clearAll()

return

elif(Globals.DVH dataset doseplan.ImageOrientationPatient==[1, 0, 0, 0, 0, 1]):

reference point[0] = temp ref point doseplan[1]

reference point[1] = temp ref point doseplan[2]

reference point[2] = temp ref point doseplan[0]

for i in range(len(Globals.DVH contours)):

temp x = Globals.DVH contours[i][2]

temp y = Globals.DVH contours[i][3]

284

temp z = Globals.DVH contours[i][4]

Globals.DVH contours[i][2] = temp y

Globals.DVH contours[i][3] = temp z

Globals.DVH contours[i][4] = temp x

if(Globals.DVH film orientation.get()==’Coronal’):

dataset swapped = Globals.DVH dataset doseplan.pixel array

elif(Globals.DCH film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

dataset swapped = np.swapaxes(dataset swapped , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

elif(Globals.DVH film orientation.get()==’Axial’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = temp c

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

elif(Globals.DVH dataset doseplan.ImageOrientationPatient==[0, 1, 0, 1, 0, 0]):

reference point[0] = temp ref point doseplan[2]

reference point[1] = temp ref point doseplan[0]

reference point[2] = temp ref point doseplan[1]

for i in range(len(Globals.DVH contours)):

temp x = Globals.DVH contours[i][2]

285

temp y = Globals.DVH contours[i][3]

temp z = Globals.DVH contours[i][4]

Globals.DVH contours[i][2] = temp z

Globals.DVH contours[i][3] = temp x

Globals.DVH contours[i][4] = temp y

if(Globals.DVH film orientation.get()==’Coronal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

dataset swapped = np.swapaxes(dataset swapped , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

elif(Globals.DVH film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = temp c

dataset swapped = np.swapaxes(dataset swapped , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

elif(Globals.DVH film orientation.get()==’Axial’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 1,2)

286

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

elif(Globals.DVH dataset doseplan.ImageOrientationPatient==[0, 1, 0, 0, 0, 1]):

reference point[0] = temp ref point doseplan[0]

reference point[1] = temp ref point doseplan[2]

reference point[2] = temp ref point doseplan[1]

for i in range(len(Globals.DVH contours)):

temp x = Globals.DVH contours[i][2]

temp y = Globals.DVH contours[i][3]

temp z = Globals.DVH contours[i][4]

Globals.DVH contours[i][2] = temp x

Globals.DVH contours[i][3] = temp z

Globals.DVH contours[i][4] = temp y

if(Globals.DVH film orientation.get()==’Coronal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

elif(Globals.DVH film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

elif(Globals.DVH film orientation.get()==’Axial’):

dataset swapped = \

287

np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = temp c

dataset swapped = np.swapaxes(dataset swapped , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

elif(Globals.DVH dataset doseplan.ImageOrientationPatient==[0, 0, 1, 1, 0, 0]):

reference point[0] = temp ref point doseplan[1]

reference point[1] = temp ref point doseplan[0]

reference point[2] = temp ref point doseplan[2]

for i in range(len(Globals.DVH contours)):

temp x = Globals.DVH contours[i][2]

temp y = Globals.DVH contours[i][3]

temp z = Globals.DVH contours[i][4]

Globals.DVH contours[i][2] = temp y

Globals.DVH contours[i][3] = temp x

Globals.DVH contours[i][4] = temp z

if(Globals.DVH film orientation.get()==’Coronal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

elif(Globals.DVH film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,1)

288

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = temp c

elif(Globals.DVH film orientation.get()==’Axial’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = temp c

dataset swapped = np.swapaxes(dataset swapped , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

elif(Globals.DVH dataset doseplan.ImageOrientationPatient==[0, 0, 1, 0, 1, 0]):

reference point[0] = temp ref point doseplan[0]

reference point[1] = temp ref point doseplan[1]

reference point[2] = temp ref point doseplan[2]

if(Globals.DVH film orientation.get()==’Coronal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

dataset swapped = np.swapaxes(dataset swapped , 0,1)

289

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = temp c

elif(Globals.DVH film orientation.get()==’Sagittal’):

dataset swapped = Globals.DVH dataset doseplan.pixel array

elif(Globals.DCH film orientation.get()==’Axial’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

if(reference point[0]<0 or reference point[0]>dataset swapped.shape[0]):
messagebox.showerror("Error", "Reference point is outside of dosematrix\n\

(Code: first dimension , number of frames in dosematrix)")

return

if(reference point[1]<0 or reference point[1]>dataset swapped.shape[1]):
messagebox.showerror("Error", "Reference point is outside of dosematrix\n\

(Code: second dimension , rows in dosematrix)")

return

if(reference point[2]<0 or reference point[2]>dataset swapped.shape[2]):
messagebox.showerror("Error", "Reference point is outside of dosematrix\n\

(Code: third dimension , columns in dosematrix)")

return

dose slice = dataset swapped[int(reference point[0]),:,:]

structures in plane = []

for contour in Globals.DVH contours:

290

in plane = False

temp row=[];temp column=[]

for i in range(len(contour[2])):

lst = contour[2][i]

for j in range(len(lst)):

plane = lst[j]

if(plane == int(reference point[0])):

temp row.append(contour[3][i][j])

temp column.append(contour[4][i][j])

in plane = True

if in plane:

structures in plane.append([contour[1], temp row , temp column])

doseplan ROI coords = []

top left test side = False; top left test down = False

top right test side = False; top right test down = False

bottom left test side = False; bottom left test down = False

bottom right test side = False; bottom right test down = False

top left side corr = 0; top left down corr = 0

top right side corr = 0; top right down corr = 0

bottom left side corr = 0; bottom left down corr = 0

bottom right side corr = 0; bottom right down corr = 0

top left to side = reference point[2]− \
distance in doseplan ROI reference point px [0][0]

top left down = reference point[1]− \
distance in doseplan ROI reference point px [0][1]

if(top left to side < 0):

top left test side = True

top left side corr = abs(top left to side)

top left to side = 0

if(top left to side > dose slice.shape[1]):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(top left down < 0):

top left test down = True

top left down corr = abs(top left down)

top left down = 0

if(top left down > dose slice.shape[0]):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

291

clearAll()

return

top right to side = reference point[2]− \
distance in doseplan ROI reference point px [1][0]

top right down = reference point[1]− \
distance in doseplan ROI reference point px [1][1]

if(top right to side < 0):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(top right to side > dose slice.shape[1]):

top right test side = True

top right side corr = top right to side − dose slice.shape[1]

top right to side = dose slice.shape[1]

if(top right down < 0):

top right test down = True

top right down corr = abs(top right down)

top right down = 0

if(top right down > dose slice.shape[0]):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

bottom left to side = reference point[2]− \
distance in doseplan ROI reference point px [2][0]

bottom left down = reference point[1]− \
distance in doseplan ROI reference point px [2][1]

if(bottom left to side < 0):

bottom left test side = True

bottom left side corr = abs(bottom left to side)

bottom left to side = 0

if(bottom left to side > dose slice.shape[1]):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(bottom left down < 0):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(bottom left down > dose slice.shape[0]):

292

bottom left down corr = bottom left down − dose slice.shape[0]

bottom left down = dose slice.shape[0]

bottom left test down = True

bottom right to side = reference point[2]− \
distance in doseplan ROI reference point px [3][0]

bottom right down = reference point[1]− \
distance in doseplan ROI reference point px [3][1]

if(bottom right to side < 0):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(bottom right to side > dose slice.shape[1]):

bottom right side corr = bottom right to side − dose slice.shape[1]

bottom right to side = dose slice.shape[1]

bottom right test side = True

if(bottom right down < 0):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(bottom right down > dose slice.shape[0]):

bottom right down corr = bottom right down − dose slice.shape[0]

bottom right down = dose slice.shape[0]

bottom right test down = True

if(top right test side or top right test down or top left test side or \
top left test down or bottom right test side or bottom right test down \

or bottom left test side or bottom left test down):

ROI info = "Left side: " \
+ str(max(top left side corr , bottom left side corr)) + " pixels.\n"\

+ "Right side: " + str(max(top right side corr , \
bottom right side corr)) + " pixels.\n "+ "Top side: " + \

str(max(top left down corr , top right down corr)) +\
" pixels.\n"+ "Bottom side: " + \
str(max(bottom left down corr , \

bottom right down corr)) + " pixels."

messagebox.showinfo("ROI info", "The ROI marked on \
the film did not fit with the size of the doseplan and had to \
be cut.\n" + ROI info)

for i in range(len(structures in plane)):

for j in range(len(structures in plane[i][1])):

293

row = structures in plane[i][1][j]

if row< top left down:

structures in plane[i][1][j] = 0

elif row> bottom left down:

structures in plane[i][1][j] = bottom left down−top left down
else:

structures in plane[i][1][j] = row− top left down

for k in range(len(structures in plane[i][2])):

column = structures in plane[i][2][k]

if column< top left to side:

structures in plane[i][2][k] = 0

elif column> top right to side:

structures in plane[i][2][k] = top right to side−top left to side
else:

structures in plane[i][2][k] = column− top left to side

doseplan ROI coords.append([top left to side , top left down])

doseplan ROI coords.append([top right to side , top right down])

doseplan ROI coords.append([bottom left to side , bottom left down])

doseplan ROI coords.append([bottom right to side , bottom right down])

if only one:

Globals.DVH doseplan dataset ROI = \
dose slice[int(top left down):int(bottom left down), \

int(top left to side):int(top right to side)]*\
Globals.DVH dataset doseplan.DoseGridScaling

if(Globals.DVH dataset doseplan.PixelSpacing==[1, 1]):

factor = 5

elif(Globals.DVH dataset doseplan.PixelSpacing==[2, 2]):

factor = 10

else:

factor = 15

img=Globals.DVH doseplan dataset ROI

drawing of contours = dose slice[int(top left down):int(bottom left down)+1,\
int(top left to side):int(top right to side)+1]*\

Globals.DVH dataset doseplan.DoseGridScaling

img film = Globals.DVH film dataset ROI red channel dose /100

structures = []

for j in range(len(structures in plane)):

temp struct = []

for i in range(len(structures in plane[j][1])):

294

drawing of contours[int(structures in plane[j][1][i]), \
int(structures in plane[j][2][i])] = 0

temp struct.append(np.array([int(structures in plane[j][1][i]), \
int(structures in plane[j][2][i])]))

structures.append(temp struct)

dvh data = []

dvh data film = []

for k in range(len(structures)):

number of points = 0

dose = []

dose film = []

number of points per dose = []

number of points per dose film = []

vertics = mpl.path.Path(structures[k])

for i in range(img.shape[0]):

for j in range(img.shape[1]):

if vertics.contains point((i,j)):

number of points+=1

try:

idx = dose.index(img[i,j])

exist = True

except:

exist = False

if not exist:

dose.append(img[i,j])

number of points per dose.append(1)

else:

number of points per dose[idx] +=1

try:

idx film = dose film.index(img film[i*factor, j*factor])
exist film = True

except:

exist film = False

if not exist film:

if not i == img.shape[0]:

dose film.append(img film[i*factor,j*factor])
number of points per dose film.append(1)

else:

number of points per dose film[idx film] +=1

temp dvh data = []

for i in range(len(dose)):

temp dvh data.append([dose[i], number of points per dose[i]])

temp dvh data.sort(key=lambda x: x[0])

295

temp dvh data film = []

for i in range(len(dose film)):

temp dvh data film.append([dose film[i], \
number of points per dose film[i]])

temp dvh data film.sort(key=lambda x: x[0])

dose array = np.array([item[0] for item in temp dvh data])

prc array = [item[1] for item in temp dvh data]

for i in range(len(dose array)):

temp = prc array[i:len(prc array)]

prc array[i] = sum(temp)

dvh data.append([structures in plane[k][0], dose array , \
np.array(prc array)/number of points])

dose array film = np.array([item[0] for item in temp dvh data film])

prc array film = [item[1] for item in temp dvh data film]

for i in range(len(dose array)):

temp = prc array film[i:len(prc array film)]

prc array film[i] = sum(temp)

dvh data film.append([structures in plane[k][0], dose array film , \
np.array(prc array film)/number of points])

if(Globals.DVH dataset doseplan.PixelSpacing==[1, 1]):

img = cv2.resize(img, dsize=(img.shape[1]*5,img.shape[0]*5))
elif(Globals.DVH dataset doseplan.PixelSpacing==[2, 2]):

img = cv2.resize(img, dsize=(img.shape[1]*10,img.shape[0]*10))
else:

img = cv2.resize(img, dsize=(img.shape[1]*15,img.shape[0]*15))

mx=np.max(img)

Globals.DVH max dose doseplan = mx*Globals.DVH dose scaling doseplan
img = img/mx

PIL img doseplan ROI = Image.fromarray(np.uint8(cm.viridis(img)*255))

wid = PIL img doseplan ROI.width;heig = PIL img doseplan ROI.height

Globals.temp image canvas.destroy()

doseplan canvas = tk.Canvas(Globals.DVH view film doseplan ROI)

doseplan canvas.grid(row=2, column=0, sticky=N+S+W+E)

doseplan canvas.config(bg=’#ffffff’, relief=FLAT, highlightthickness=0, \
height=max(heig, Globals.profiles doseplan text image.height()), \

width=wid + Globals.profiles doseplan text image.width())

Globals.DVH doseplan write image = tk.Canvas(doseplan canvas)

Globals.DVH doseplan write image.grid(row=0,column=1,sticky=N+S+W+E)

296

Globals.DVH doseplan write image.config(bg=’#ffffff’, relief=FLAT,\
highlightthickness=0, width=wid, height=heig)

scaled image visual = PIL img doseplan ROI

scaled image visual = ImageTk.PhotoImage(image=scaled image visual)

Globals.DVH doseplan write image width = scaled image visual.width()

Globals.DVH doseplan write image height = scaled image visual.height()

Globals.DVH doseplan write image.create image(0,0,\
image=scaled image visual , anchor="nw")

Globals.DVH doseplan write image.image = scaled image visual

calculateDVH(dvh data , dvh data film , True, [])

def processDoseplan usingIsocenter(only one):

#−−
Function to process the doseplan when isocenter
is choosen to define the position.
Is called in UploadDoseplan
#
Parameter: only one−to test i f only one doseplan
is uploaded in Fidora.
#−−

################ RT Plan ######################
iso 1 = abs(Globals.DVH dataset doseplan.ImagePositionPatient[0]− \

Globals.DVH isocenter mm[0])

iso 2 = abs(Globals.DVH dataset doseplan.ImagePositionPatient[1]− \
Globals.DVH isocenter mm[1])

iso 3 = abs(Globals.DVH dataset doseplan.ImagePositionPatient[2]− \
Globals.DVH isocenter mm[2])

Globals.DVH isocenter mm = [iso 1 , iso 2 , iso 3]

isocenter px = np.zeros(3)

distance in doseplan ROI reference point px = []

if(Globals.DVH dataset doseplan.PixelSpacing==[1, 1]):

isocenter px[0] = np.round(iso 1)

isocenter px[1] = np.round(iso 2)

isocenter px[2] = np.round(iso 3)

distance in doseplan ROI reference point px.append\
([np.round(Globals.DVH distance isocenter ROI[0][0]),\

np.round(Globals.DVH distance isocenter ROI [0][1])])

distance in doseplan ROI reference point px.append\
([np.round(Globals.DVH distance isocenter ROI[1][0]),\

297

np.round(Globals.DVH distance isocenter ROI [1][1])])

distance in doseplan ROI reference point px.append\
([np.round(Globals.DVH distance isocenter ROI[2][0]),\

np.round(Globals.DVH distance isocenter ROI [2][1])])

distance in doseplan ROI reference point px.append\
([np.round(Globals.DVH distance isocenter ROI[3][0]),\

np.round(Globals.DVH distance isocenter ROI [3][1])])

elif(Globals.DVH dataset doseplan.PixelSpacing==[2, 2]):

isocenter px[0] = np.round(iso 1/2)

isocenter px[1] = np.round(iso 2/2)

isocenter px[2] = np.round(iso 3/2)

distance in doseplan ROI reference point px.append\
([np.round((Globals.DVH distance isocenter ROI[0][0])/2),\

np.round((Globals.DVH distance isocenter ROI [0][1])/2)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.DVH distance isocenter ROI[1][0])/2),\

np.round((Globals.DVH distance isocenter ROI [1][1])/2)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.DVH distance isocenter ROI[2][0])/2),\

np.round((Globals.DVH distance isocenter ROI [2][1])/2)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.DVH distance isocenter ROI[3][0])/2),\

np.round((Globals.DVH distance isocenter ROI [3][1])/2)])

else:

isocenter px[0] = np.round(iso 1/3)

isocenter px[1] = np.round(iso 2/3)

isocenter px[2] = np.round(iso 3/3)

distance in doseplan ROI reference point px.append\
([np.round((Globals.DVH distance isocenter ROI[0][0])/3),\

np.round((Globals.DVH distance isocenter ROI [0][1])/3)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.DVH distance isocenter ROI[1][0])/3),\

np.round((Globals.DVH distance isocenter ROI [1][1])/3)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.DVH distance isocenter ROI[2][0])/3),\

np.round((Globals.DVH distance isocenter ROI [2][1])/3)])

distance in doseplan ROI reference point px.append\
([np.round((Globals.DVH distance isocenter ROI[3][0])/3),\

np.round((Globals.DVH distance isocenter ROI [3][1])/3)])

reference point = np.zeros(3)

298

######################## Struct file ##################################
i=0

for name in Globals.DVH contour names:

sequences = Globals.DVH ROIContourSequence[i].ContourSequence

temp x = [];temp y = [];temp z = []

for sequence in sequences:

if(Globals.DVH dataset doseplan.PixelSpacing==[1, 1]):

temp x.append([int(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[0]−x)) for x in sequence.ContourData[0::3]])

temp y.append([int(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[1]−y)) for y in sequence.ContourData[1::3]])

temp z.append([int(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[2]−z)) for z in sequence.ContourData[2::3]])

elif(Globals.DVH dataset doseplan.PixelSpacing==[2, 2]):

temp x.append([int(np.round(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[0]−x)/2)) for \

x in sequence.ContourData[0::3]])

temp y.append([int(np.round(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[1]−y)/2)) for \

y in sequence.ContourData[1::3]])

temp z.append([int(np.round(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[2]−z)/2)) for \

z in sequence.ContourData[2::3]])

else:

temp x.append([int(np.round(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[0]−x)/3)) for \

x in sequence.ContourData[0::3]])

temp y.append([int(np.round(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[1]−y)/3)) for \

y in sequence.ContourData[1::3]])

temp z.append([int(np.round(abs(Globals.DVH dataset doseplan.\
ImagePositionPatient[2]−z)/3)) for \

z in sequence.ContourData[2::3]])

Globals.DVH contours.append\
([i, name.ROIObservationLabel , temp x , temp y , temp z])

i+=1

######################## Doseplan ##################################
if(Globals.DVH dataset doseplan.ImageOrientationPatient==[1, 0, 0, 0, 1, 0]):

reference point[0] = isocenter px[2]

reference point[1] = isocenter px[1]

reference point[2] = isocenter px[0]

299

for i in range(len(Globals.DVH contours)):

temp x = Globals.DVH contours[i][2]

temp y = Globals.DVH contours[i][3]

temp z = Globals.DVH contours[i][4]

Globals.DVH contours[i][2] = temp z

Globals.DVH contours[i][3] = temp y

Globals.DVH contours[i][4] = temp x

if(Globals.DVH film orientation.get()==’Coronal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = temp c

elif(Globals.DVH film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

elif(Globals.DVH film orientation.get()==’Axial’):

dataset swapped = Globals.DVH dataset doseplan.pixel array

else:

messagebox.showerror("Error", "Something has gone wrong here.")

clearAll()

return

elif(Globals.DVH dataset doseplan.ImageOrientationPatient==[1, 0, 0, 0, 0, 1]):

reference point[0] = isocenter px[1]

reference point[1] = isocenter px[2]

reference point[2] = isocenter px[0]

for i in range(len(Globals.DVH contours)):

temp x = Globals.DVH contours[i][2]

temp y = Globals.DVH contours[i][3]

temp z = Globals.DVH contours[i][4]

Globals.DVH contours[i][2] = temp y

Globals.DVH contours[i][3] = temp z

Globals.DVH contours[i][4] = temp x

300

if(Globals.DVH film orientation.get()==’Coronal’):

dataset swapped = Globals.DVH dataset doseplan.pixel array

elif(Globals.DVH film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

dataset swapped = np.swapaxes(dataset swapped , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

elif(Globals.DVH film orientation.get()==’Axial’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = temp c

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

elif(Globals.DVH dataset doseplan.ImageOrientationPatient==[0, 1, 0, 1, 0, 0]):

reference point[0] = isocenter px[2]

reference point[1] = isocenter px[0]

reference point[2] = isocenter px[1]

for i in range(len(Globals.DVH contours)):

temp x = Globals.DVH contours[i][2]

temp y = Globals.DVH contours[i][3]

temp z = Globals.DVH contours[i][4]

Globals.DVH contours[i][2] = temp z

Globals.DVH contours[i][3] = temp x

301

Globals.DVH contours[i][4] = temp y

if(Globals.DVH film orientation.get()==’Coronal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

dataset swapped = np.swapaxes(dataset swapped , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

elif(Globals.DVH film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = temp c

dataset swapped = np.swapaxes(dataset swapped , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

elif(Globals.DVH film orientation.get()==’Axial’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

302

temp c = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

elif(Globals.DVH dataset doseplan.ImageOrientationPatient==[0, 1, 0, 0, 0, 1]):

reference point[0] = isocenter px[0]

reference point[1] = isocenter px[2]

reference point[2] = isocenter px[1]

for i in range(len(Globals.DVH contours)):

temp x = Globals.DVH contours[i][2]

temp y = Globals.DVH contours[i][3]

temp z = Globals.DVH contours[i][4]

Globals.DVH contours[i][2] = temp x

Globals.DVH contours[i][3] = temp z

Globals.DVH contours[i][4] = temp y

if(Globals.DVH film orientation.get()==’Coronal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

elif(Globals.DVH film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

elif(Globals.DVH film orientation.get()==’Axial’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

303

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = temp c

dataset swapped = np.swapaxes(dataset swapped , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

elif(Globals.DVH dataset doseplan.ImageOrientationPatient==[0, 0, 1, 1, 0, 0]):

reference point[0] = isocenter px[1]

reference point[1] = isocenter px[0]

reference point[2] = isocenter px[2]

for i in range(len(Globals.DVH contours)):

temp x = Globals.DVH contours[i][2]

temp y = Globals.DVH contours[i][3]

temp z = Globals.DVH contours[i][4]

Globals.DVH contours[i][2] = temp y

Globals.DVH contours[i][3] = temp x

Globals.DVH contours[i][4] = temp z

if(Globals.DVH film orientation.get()==’Coronal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 1,2)

temp ref = reference point[1]

reference point[1] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

elif(Globals.DVH film orientation.get()==’Sagittal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

for i in range(len(Globals.DVH contours)):

304

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = temp c

elif(Globals.DVH film orientation.get()==’Axial’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = temp c

dataset swapped = np.swapaxes(dataset swapped , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp 4

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

elif(Globals.DVH dataset doseplan.ImageOrientationPatient==[0, 0, 1, 0, 1, 0]):

reference point[0] = isocenter px[0]

reference point[1] = isocenter px[1]

reference point[2] = isocenter px[2]

if(Globals.DVH film orientation.get()==’Coronal’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

dataset swapped = np.swapaxes(dataset swapped , 0,1)

temp ref = reference point[0]

reference point[0] = reference point[1]

reference point[1] = temp ref

for i in range(len(Globals.DVH contours)):

305

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][3]

Globals.DVH contours[i][3] = temp c

elif(Globals.DVH film orientation.get()==’Sagittal’):

dataset swapped = Globals.DVH dataset doseplan.pixel array

elif(Globals.DVH film orientation.get()==’Axial’):

dataset swapped = \
np.swapaxes(Globals.DVH dataset doseplan.pixel array , 0,2)

temp ref = reference point[0]

reference point[0] = reference point[2]

reference point[2] = temp ref

for i in range(len(Globals.DVH contours)):

temp c = Globals.DVH contours[i][2]

Globals.DVH contours[i][2] = Globals.DVH contours[i][4]

Globals.DVH contours[i][4] = temp c

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

else:

messagebox.showerror("Error", "Something has gone wrong.")

clearAll()

return

####################### Match film and doseplan ###############################
if Globals.DVH dataset doseplan.PixelSpacing == [1, 1]:

offset = int(np.round(Globals.DVH offset))

dose slice = dataset swapped[int(reference point[0]) + offset ,:,:]

elif Globals.DVH dataset doseplan.PixelSpacing == [2, 2]:

offset = int(np.round(Globals.DVH offset/2))

dose slice = dataset swapped[int(reference point[0] + offset),:,:]

else:

offset = int(np.round(Globals.DVH offset/3))

dose slice = dataset swapped[int(reference point[0]) + offset ,:,:]

structures in plane = []

for contour in Globals.DVH contours:

in plane = False

temp row=[];temp column=[]

for i in range(len(contour[2])):

lst = contour[2][i]

for j in range(len(lst)):

306

plane = lst[j]

if(plane == int(reference point[0])+offset):

temp row.append(contour[3][i][j])

temp column.append(contour[4][i][j])

in plane = True

if in plane:

structures in plane.append([contour[1], temp row , temp column])

doseplan ROI coords = []

top left test side = False; top left test down = False

top right test side = False; top right test down = False

bottom left test side = False; bottom left test down = False

bottom right test side = False; bottom right test down = False

top left side corr = 0; top left down corr = 0

top right side corr = 0; top right down corr = 0

bottom left side corr = 0; bottom left down corr = 0

bottom right side corr = 0; bottom right down corr = 0

top left to side = reference point[2]− \
distance in doseplan ROI reference point px [0][0]

top left down = reference point[1]− \
distance in doseplan ROI reference point px [0][1]

if(top left to side < 0):

top left test side = True

top left side corr = abs(top left to side)

top left to side = 0

if(top left to side > dose slice.shape[1]):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(top left down < 0):

top left test down = True

top left down corr = abs(top left down)

top left down = 0

if(top left down > dose slice.shape[0]):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

top right to side = reference point[2]− \
distance in doseplan ROI reference point px [1][0]

top right down = reference point[1]− \

307

distance in doseplan ROI reference point px [1][1]

if(top right to side < 0):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(top right to side > dose slice.shape[1]):

top right test side = True

top right side corr = top right to side − dose slice.shape[1]

top right to side = dose slice.shape[1]

if(top right down < 0):

top right test down = True

top right down corr = abs(top right down)

top right down = 0

if(top right down > dose slice.shape[0]):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

bottom left to side = reference point[2]− \
distance in doseplan ROI reference point px [2][0]

bottom left down = reference point[1]− \
distance in doseplan ROI reference point px [2][1]

if(bottom left to side < 0):

bottom left test side = True

bottom left side corr = abs(bottom left to side)

bottom left to side = 0

if(bottom left to side > dose slice.shape[1]):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(bottom left down < 0):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(bottom left down > dose slice.shape[0]):

bottom left down corr = bottom left down − dose slice.shape[0]

bottom left down = dose slice.shape[0]

bottom left test down = True

bottom right to side = reference point[2]− \
distance in doseplan ROI reference point px [3][0]

308

bottom right down = reference point[1]− \
distance in doseplan ROI reference point px [3][1]

if(bottom right to side < 0):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(bottom right to side > dose slice.shape[1]):

bottom right side corr = bottom right to side − dose slice.shape[1]

bottom right to side = dose slice.shape[1]

bottom right test side = True

if(bottom right down < 0):

messagebox.showerror("Fatal Error", "Fatal error: \
marked ROI is out of range in doseplan. Try again")

clearAll()

return

if(bottom right down > dose slice.shape[0]):

bottom right down corr = bottom right down − dose slice.shape[0]

bottom right down = dose slice.shape[0]

bottom right test down = True

if(top right test side or top right test down or top left test side or \
top left test down or bottom right test side or bottom right test down or\

bottom left test side or bottom left test down):

ROI info = "Left side: " + str(max(top left side corr , \
bottom left side corr)) + " pixels.\n"+ "Right side: " + \

str(max(top right side corr , bottom right side corr)) +\
" pixels.\n "+ "Top side: " + str(max(top left down corr ,\

top right down corr)) + " pixels.\n"+ "Bottom side: " + \
str(max(bottom left down corr , \

bottom right down corr)) + " pixels."

messagebox.showinfo("ROI info", "The ROI marked on the film did not \
fit with the size of the doseplan and had to be cut.\n" + ROI info)

for i in range(len(structures in plane)):

for j in range(len(structures in plane[i][1])):

row = structures in plane[i][1][j]

if row< top left down:

structures in plane[i][1][j] = 0

elif row> bottom left down:

structures in plane[i][1][j] = bottom left down−top left down
else:

structures in plane[i][1][j] = row− top left down

for k in range(len(structures in plane[i][2])):

309

column = structures in plane[i][2][k]

if column< top left to side:

structures in plane[i][2][k] = 0

elif column> top right to side:

structures in plane[i][2][k] = top right to side−top left to side
else:

structures in plane[i][2][k] = column− top left to side

doseplan ROI coords.append([top left to side , top left down])

doseplan ROI coords.append([top right to side , top right down])

doseplan ROI coords.append([bottom left to side , bottom left down])

doseplan ROI coords.append([bottom right to side , bottom right down])

#dose slice = cv2. flip (dose slice , 1)
if(only one):

Globals.DVH doseplan dataset ROI = \
dose slice[int(top left down):int(bottom left down), \

int(top left to side):int(top right to side)]*\
Globals.DVH dataset doseplan.DoseGridScaling

if(Globals.DVH dataset doseplan.PixelSpacing==[1, 1]):

factor = 5

elif(Globals.DVH dataset doseplan.PixelSpacing==[2, 2]):

factor = 10

else:

factor = 15

img=Globals.DVH doseplan dataset ROI

img film = Globals.DVH film dataset ROI red channel dose /100

drawing of contours = dose slice[int(top left down):\
int(bottom left down)+1, int(top left to side):int(top right to side)+1]\

*Globals.DVH dataset doseplan.DoseGridScaling

structures = []

for j in range(len(structures in plane)):

temp struct = []

temp struct film = []

for i in range(len(structures in plane[j][1])):

drawing of contours[int(structures in plane[j][1][i]), \
int(structures in plane[j][2][i])] = 0

temp struct.append(np.array([int(structures in plane[j][1][i]), \
int(structures in plane[j][2][i])]))

structures.append(temp struct)

310

dvh data = []

dvh data film = []

for k in range(len(structures)):

number of points = 0

dose = []

dose film = []

number of points per dose = []

number of points per dose film = []

vertics = mpl.path.Path(structures[k])

for i in range(img.shape[0]):

for j in range(img.shape[1]):

if vertics.contains point((i,j)):

number of points+=1

try:

idx = dose.index(img[i,j])

exist = True

except:

exist = False

if not exist:

dose.append(img[i,j])

number of points per dose.append(1)

else:

number of points per dose[idx] +=1

try:

idx film = dose film.index(img film[i*factor, j*factor])
exist film = True

except:

exist film = False

if not exist film:

if not i == img.shape[0]:

dose film.append(img film[i*factor,j*factor])
number of points per dose film.append(1)

else:

number of points per dose film[idx film] +=1

temp dvh data = []

for i in range(len(dose)):

temp dvh data.append([dose[i], number of points per dose[i]])

temp dvh data.sort(key=lambda x: x[0])

temp dvh data film = []

for i in range(len(dose film)):

311

temp dvh data film.append([dose film[i], \
number of points per dose film[i]])

temp dvh data film.sort(key=lambda x: x[0])

dose array = np.array([item[0] for item in temp dvh data])

prc array = [item[1] for item in temp dvh data]

for i in range(len(dose array)):

temp = prc array[i:len(prc array)]

prc array[i] = sum(temp)

dvh data.append([structures in plane[k][0], dose array , \
np.array(prc array)/number of points])

dose array film = np.array([item[0] for item in temp dvh data film])

prc array film = [item[1] for item in temp dvh data film]

for i in range(len(dose array film)):

temp = prc array film[i:len(prc array film)]

prc array film[i] = sum(temp)

dvh data film.append([structures in plane[k][0], \
dose array film , np.array(prc array film)/number of points])

if(Globals.DVH dataset doseplan.PixelSpacing==[1, 1]):

img = cv2.resize(img, dsize=(img.shape[1]*5,img.shape[0]*5))
elif(Globals.DVH dataset doseplan.PixelSpacing==[2, 2]):

img = cv2.resize(img, dsize=(img.shape[1]*10,img.shape[0]*10))
else:

img = cv2.resize(img, dsize=(img.shape[1]*15,img.shape[0]*15))

mx=np.max(img)

Globals.DVH max dose doseplan = mx*Globals.DVH dose scaling doseplan
max dose = mx*Globals.DVH dose scaling doseplan
img = img/mx

PIL img doseplan ROI = Image.fromarray(np.uint8(cm.viridis(img)*255))

wid = PIL img doseplan ROI.width;heig = PIL img doseplan ROI.height

Globals.temp image canvas.destroy()

doseplan canvas = tk.Canvas(Globals.DVH view film doseplan ROI)

doseplan canvas.grid(row=2, column=0, sticky=N+S+W+E)

doseplan canvas.config(bg=’#ffffff’, relief=FLAT, highlightthickness=0, \
height=max(heig, Globals.profiles doseplan text image.height()), \

width=wid + Globals.profiles doseplan text image.width())

Globals.DVH doseplan write image = tk.Canvas(doseplan canvas)

312

Globals.DVH doseplan write image.grid(row=0,column=1,sticky=N+S+W+E)

Globals.DVH doseplan write image.config(bg=’#ffffff’, relief=FLAT, \
highlightthickness=0, width=wid, height=heig)

scaled image visual = PIL img doseplan ROI

scaled image visual = ImageTk.PhotoImage(image=scaled image visual)

Globals.DVH doseplan write image width = scaled image visual.width()

Globals.DVH doseplan write image height = scaled image visual.height()

Globals.DVH doseplan write image.create image(0,0,\
image=scaled image visual , anchor="nw")

Globals.DVH doseplan write image.image = scaled image visual

calculateDVH(dvh data , dvh data film , True, [])

def UploadDoseplan(only one):

#−−
Function to upload the doseplan
#
Is called in function UploadDoseplan button()
#−−

file = filedialog.askopenfilename()

ext = os.path.splitext(file)[−1].lower()
if(not(ext == ’.dcm’)):

if(ext == ""):

return

else:

messagebox.showerror("Error", "The file must be a *.dcm file")
return

current folder = os.getcwd()

parent = os.path.dirname(file)

os.chdir(parent)

dataset = pydicom.dcmread(file)

try:

dose summation type = dataset.DoseSummationType

except:

messagebox.showerror("Error", "Could not upload the \
doseplan correctly. Try again or another file.\n (Code: dose summation)")

return

if(not(dose summation type == "PLAN")):

ok = messagebox.askokcancel("Dose summation", "You \
did not upload the full doseplan. Do you want to continue?")

313

if not ok:

return

os.chdir(current folder)

doseplan dataset = dataset.pixel array

if(not((dataset.PixelSpacing==[1, 1] and dataset.SliceThickness==1) \
or (dataset.PixelSpacing==[2, 2] and dataset.SliceThickness==2) \
or (dataset.PixelSpacing==[3, 3] and dataset.SliceThickness==3))):

messagebox.showerror("Error", "The resolution \
in doseplan must be 1x1x1, 2x2x2 or 3x3x3")

return

if(not(dataset.ImageOrientationPatient==[1, 0, 0, 0, 1, 0] or \
dataset.ImageOrientationPatient==[1, 0, 0, 0, 0, 1] or \
dataset.ImageOrientationPatient==[0, 1, 0, 1, 0, 0] or \
dataset.ImageOrientationPatient==[0, 1, 0, 0, 0, 1] or \
dataset.ImageOrientationPatient==[0, 0, 1, 1, 0, 0] or \
dataset.ImageOrientationPatient==[0, 0, 1, 0, 1, 0])):

messagebox.showerror("Error", "The Image Orientation \
(Patient) must be parallel to one of the main \
axis and perpendicular to the two others.")

return

Globals.DVH dataset doseplan = dataset

Globals.DVH dose scaling doseplan = dataset.DoseGridScaling

Globals.DVH test if added doseplan = True

if(Globals.DVH test if added rtplan and Globals.DVH test if added struct):

if(Globals.DVH isocenter or reference point == "Isocenter"):

processDoseplan usingIsocenter(only one)

elif(Globals.DVH isocenter or reference point == "Ref point"):

processDoseplan usingReferencePoint(only one)

else:

messagebox.showerror("Error", "Something went wrong. Try again.\n\
(Code: processDoseplan)")

return

if only one:

Globals.DVH upload button doseplan.config(state=DISABLED)

def UploadDoseplan button function():

#−−
Function to call on the function to upload doseplan
#
Is a callback function for button
DVH upload button doseplan in notebook.py
#−−

UploadDoseplan(True)

314

def UploadRTplan():

#−−
Function to upload the RT Plan file
#
Is a callback function for button
DVH upload button rtplan in notebook.py
#−−

file = filedialog.askopenfilename()

ext = os.path.splitext(file)[−1].lower()
if(not(ext == ’.dcm’)):

if(ext == ""):

return

else:

messagebox.showerror("Error", "The file must be a *.dcm file")
return

current folder = os.getcwd()

parent = os.path.dirname(file)

os.chdir(parent)

dataset = pydicom.dcmread(file)

os.chdir(current folder)

Globals.DVH dataset rtplan = dataset

try:

isocenter mm = \
dataset.BeamSequence[0].ControlPointSequence[0].IsocenterPosition

Globals.DVH isocenter mm = isocenter mm

except:

messagebox.showerror("Error", "Could not read the RT plan file. \
Try again or try another file.\n\
(Code: isocenter reading)")

return

try:

Globals.DVH doseplan vertical displacement = \
dataset.PatientSetupSequence[0].TableTopVerticalSetupDisplacement

except:

messagebox.showerror("Error", "Could not read the RT plan file. \
Try again or try another file. \n\
(Code: vertical table displacement)")

try:

Globals.DVH doseplan lateral displacement = \

315

dataset.PatientSetupSequence[0].TableTopLateralSetupDisplacement

except:

messagebox.showerror("Error", "Could not read the RT plan file. \
Try again or try another file−\n\
(Code: lateral table displacement)")

try:

Globals.DVH doseplan longitudianl displacement = \
dataset.PatientSetupSequence[0].TableTopLongitudinalSetupDisplacement

except:

messagebox.showerror("Error", "Could not read the RT plan file. \
Try again or try another file\n\
(Code: longitudinal table displacement)")

try:

patient position = dataset.PatientSetupSequence[0].PatientPosition

Globals.DVH doseplan patient position = patient position

except:

messagebox.showerror("Error", "Could not read the RT plan file. \
Try again or try another file\n\
(Code: Patient position)")

if(not(patient position==’HFS’ or patient position==’HFP’ or\
patient position==’HFDR’ or patient position == ’HFDL’or \

patient position==’FFDR’ or patient position==’FFDL’ or \
patient position==’FFP’ or patient position==’FFS’)):

messagebox.showerror("Error", "Fidora does only support \
patient positions: \nHFS, HFP, HFDR, HFDL, FFP, FFS, FFDR, FFDL")

return

Globals.DVH test if added rtplan = True

Globals.DVH upload button struct.config(state=ACTIVE)

Globals.DVH upload button rtplan.config(state=DISABLED)

def UploadStruct():

#−−
Function to upload the structure file
#
Is a callback function for button
DVH upload button struct in notebook.py
#−−

file = filedialog.askopenfilename()

ext = os.path.splitext(file)[−1].lower()
if(not(ext == ’.dcm’)):

if(ext == ""):

316

return

else:

messagebox.showerror("Error", "The file must be a *.dcm file")
return

current folder = os.getcwd()

parent = os.path.dirname(file)

os.chdir(parent)

dataset = pydicom.dcmread(file)

os.chdir(current folder)

Globals.DVH dataset structure file = dataset

try:

Globals.DVH contour names = dataset.RTROIObservationsSequence

except:

messagebox.showerror("Error", "You must upload a strucure file \n\
(Code: UploadStruct())")

return

try:

Globals.DVH ROIContourSequence = dataset.ROIContourSequence

except:

messagebox.showerror("Error", "You must upload a strucure file \n\
(Code: UploadStruct())")

return

Globals.DVH test if added struct = True

Globals.DVH upload button doseplan.config(state=ACTIVE)

Globals.DVH upload button struct.config(state=DISABLED)

def pixel to dose(P,a,b,c):

#−−
Function to map between pixel value and dose
#
#−−

ret = c + b/(P−a)
return ret

def markIsocenter(img, new window isocenter tab , image canvas , cv2Img):

#−−
Function mark the Isocenter
#
Is a callback function for the button

317

mark isocenter button in UploadFilm()
#−−

if(len(Globals.DVH mark isocenter oval)>0):
image canvas.delete(Globals.DVH mark isocenter up down line [0])

image canvas.delete(Globals.DVH mark isocenter right left line[0])

image canvas.delete(Globals.DVH mark isocenter oval[0])

Globals.DVH mark isocenter oval=[]

Globals.DVH mark isocenter right left line=[]

Globals.DVH mark isocenter up down line=[]

Globals.DVH iscoenter coords = []

img mark isocenter = ImageTk.PhotoImage(image=img)

mark isocenter window = tk.Toplevel(new window isocenter tab)

mark isocenter window.geometry("1035x620+10+10")

mark isocenter window.grab set()

mark isocenter over all frame = tk.Frame(mark isocenter window , \
bd=0, relief=FLAT)

mark isocenter over all canvas = Canvas(mark isocenter over all frame)

mark isocenter xscrollbar = Scrollbar(mark isocenter over all frame , \
orient=HORIZONTAL , command=mark isocenter over all canvas.xview)

mark isocenter yscrollbar = Scrollbar(mark isocenter over all frame , \
command=mark isocenter over all canvas.yview)

mark isocenter scroll frame = ttk.Frame(mark isocenter over all canvas)

mark isocenter scroll frame.bind("<Configure>", lambda e: \
mark isocenter over all canvas.configure\

(scrollregion=mark isocenter over all canvas.bbox(’all’)))

mark isocenter over all canvas.create window((0,0), \
window=mark isocenter scroll frame , anchor=’nw’)

mark isocenter over all canvas.configure\
(xscrollcommand=mark isocenter xscrollbar.set, \

yscrollcommand=mark isocenter yscrollbar.set)

mark isocenter over all frame.config(highlightthickness=0, bg=’#ffffff’)

mark isocenter over all canvas.config(highlightthickness=0, bg=’#ffffff’)

mark isocenter over all frame.pack(expand=True, fill=BOTH)

mark isocenter over all canvas.grid(row=0, column=0, sticky=N+S+E+W)

mark isocenter over all frame.grid columnconfigure(0, weight=1)

mark isocenter over all frame.grid rowconfigure(0, weight=1)

mark isocenter xscrollbar.grid(row=1, column=0, sticky=E+W)

mark isocenter over all frame.grid columnconfigure(1, weight=0)

318

mark isocenter over all frame.grid rowconfigure(1, weight=0)

mark isocenter yscrollbar.grid(row=0, column=1, sticky=N+S)

mark isocenter over all frame.grid columnconfigure(2, weight=0)

mark isocenter over all frame.grid rowconfigure(2, weight=0)

mark isocenter image canvas = tk.Canvas(mark isocenter scroll frame)

mark isocenter image canvas.grid(row=0,column=0, rowspan=10, \
columnspan=3, sticky=N+S+E+W, padx=(0,0), pady=(0,0))

mark isocenter scroll frame.grid columnconfigure(0, weight=0)

mark isocenter scroll frame.grid rowconfigure(0, weight=0)

mark isocenter image canvas.create image(0,0,\
image=img mark isocenter ,anchor="nw")

mark isocenter image canvas.image = img mark isocenter

mark isocenter image canvas.config(cursor=’hand2’, \
bg=’#ffffff’, relief=FLAT, bd=0, \
scrollregion=mark isocenter image canvas.bbox(ALL), \

height=img mark isocenter.height(), width=img mark isocenter.width())

mark isocenter image canvas.grid propagate(0)

def findCoords(event):

mark isocenter image canvas.create oval\
(event.x−2, event.y−2, event.x+2, event.y+2, fill=’red’)

if(Globals.DVH iscoenter coords==[]):

Globals.DVH iscoenter coords.append([event.x, event.y])

mark isocenter image canvas.config(cursor=’hand2’)

elif(len(Globals.DVH iscoenter coords)==1):

Globals.DVH iscoenter coords.append([event.x, event.y])

Globals.DVH film isocenter = \
[Globals.DVH iscoenter coords[0][0], \

Globals.DVH iscoenter coords[1][1]]

x1,y1 = Globals.DVH iscoenter coords[0]

x4,y4 = Globals.DVH iscoenter coords[1]

x2 = x1;y3=y4

y2=2*Globals.DVH film isocenter[1]−y1
x3=2*Globals.DVH film isocenter[0]−x4
up down line = image canvas.create line\

(int(x1/2),int(y1/2),int(x2/2),int(y2/2),\
fill=’purple’, smooth=1, width=2)

right left line = image canvas.create line\
(int(x3/2),int(y3/2),int(x4/2),int(y4/2), \

fill=’purple’, smooth=1, width=2)

oval = image canvas.create oval\
(int(Globals.DVH film isocenter[0]/2)−3, \

319

int(Globals.DVH film isocenter[1]/2)−3,\
int(Globals.DVH film isocenter[0]/2)+3, \

int(Globals.DVH film isocenter[1]/2)+3, fill=’red’)

Globals.DVH mark isocenter up down line.append(up down line)

Globals.DVH mark isocenter right left line.append(right left line)

Globals.DVH mark isocenter oval.append(oval)

mark isocenter window.after(500, lambda: mark isocenter window.destroy())

Globals.DVH isocenter check = True

if(Globals.DVH ROI check):

Globals.DVH done button.config(state=ACTIVE)

mark isocenter image canvas.bind("<Button 1>",findCoords)

def markReferencePoint(img, new window reference point tab , \
image canvas reference tab , cv2Img):

#−−
Function to mark reference point
#
Is a callback function for button
mark point button in UploadFilm()
#−−

if(len(Globals.DVH mark reference point oval)>0):
image canvas reference tab.delete(Globals.DVH mark reference point oval[0])

Globals.DVH mark reference point oval=[]

img mark reference point = ImageTk.PhotoImage(image=img)

mark reference point window = tk.Toplevel(new window reference point tab)

mark reference point window.geometry("1035x620+10+10")

mark reference point window.grab set()

mark reference point over all frame = tk.Frame(mark reference point window , \
bd=0, relief=FLAT)

mark reference point over all canvas = \
Canvas(mark reference point over all frame)

mark reference point xscrollbar = \
Scrollbar(mark reference point over all frame , orient=HORIZONTAL , \

command=mark reference point over all canvas.xview)

mark reference point yscrollbar = \
Scrollbar(mark reference point over all frame , \

command=mark reference point over all canvas.yview)

mark reference point scroll frame = \

320

ttk.Frame(mark reference point over all canvas)

mark reference point scroll frame.bind("<Configure>", \
lambda e: mark reference point over all canvas.configure\

(scrollregion=mark reference point over all canvas.bbox(’all’)))

mark reference point over all canvas.create window((0,0), \
window=mark reference point scroll frame , anchor=’nw’)

mark reference point over all canvas.configure\
(xscrollcommand=mark reference point xscrollbar.set, \

yscrollcommand=mark reference point yscrollbar.set)

mark reference point over all frame.config(highlightthickness=0, bg=’#ffffff’)

mark reference point over all canvas.config(highlightthickness=0, bg=’#ffffff’)

mark reference point over all frame.pack(expand=True, fill=BOTH)

mark reference point over all canvas.grid(row=0, column=0, sticky=N+S+E+W)

mark reference point over all frame.grid columnconfigure(0, weight=1)

mark reference point over all frame.grid rowconfigure(0, weight=1)

mark reference point xscrollbar.grid(row=1, column=0, sticky=E+W)

mark reference point over all frame.grid columnconfigure(1, weight=0)

mark reference point over all frame.grid rowconfigure(1, weight=0)

mark reference point yscrollbar.grid(row=0, column=1, sticky=N+S)

mark reference point over all frame.grid columnconfigure(2, weight=0)

mark reference point over all frame.grid rowconfigure(2, weight=0)

mark reference point image canvas = tk.Canvas(mark reference point scroll frame)

mark reference point image canvas.grid(row=0,column=0, rowspan=10, \
columnspan=3, sticky=N+S+E+W, padx=(0,0), pady=(0,0))

mark reference point scroll frame.grid columnconfigure(0, weight=0)

mark reference point scroll frame.grid rowconfigure(0, weight=0)

mark reference point image canvas.create image(0,0,\
image=img mark reference point ,anchor="nw")

mark reference point image canvas.image = img mark reference point

mark reference point image canvas.config(cursor=’hand2’, \
bg=’#ffffff’, relief=FLAT, bd=0, \
scrollregion=mark reference point image canvas.bbox(ALL), \

height=img mark reference point.height(), \
width=img mark reference point.width())

mark reference point image canvas.grid propagate(0)

def findCoords(event):

mark reference point image canvas.create oval\
(event.x−2, event.y−2, event.x+2, event.y+2, fill=’red’)

Globals.DVH film reference point = [event.x, event.y]

321

oval = image canvas reference tab.create oval\
(int(Globals.DVH film reference point[0]/2)−3, \

int(Globals.DVH film reference point[1]/2)−3, \
int(Globals.DVH film reference point[0]/2)+3, \

int(Globals.DVH film reference point[1]/2)+3, fill=’red’)

Globals.DVH mark reference point oval.append(oval)

mark reference point window.after(500, \
lambda: mark reference point window.destroy())

Globals.DVH reference point check = True

if(Globals.DVH ROI reference point check):

Globals.DVH done button reference point.config(state=ACTIVE)

mark reference point image canvas.bind("<Button 1>",findCoords)

def markROI(img, tab, canvas, ref point test):

#−−
Function to mark ROI
#
Is a callback function for button
mark ROI button in UploadFilm()
#−−

if(len(Globals.DVH mark ROI rectangle)>0):
canvas.delete(Globals.DVH mark ROI rectangle[0])

Globals.DVH mark ROI rectangle = []

Globals.DVH ROI coords = []

img mark ROI = ImageTk.PhotoImage(image=img)

mark ROI window = tk.Toplevel(tab)

mark ROI window.geometry("1035x620+10+10")

mark ROI window.grab set()

mark ROI over all frame = tk.Frame(mark ROI window , bd=0, relief=FLAT)

mark ROI over all canvas = Canvas(mark ROI over all frame)

mark ROI xscrollbar = Scrollbar(mark ROI over all frame , \
orient=HORIZONTAL , command=mark ROI over all canvas.xview)

mark ROI yscrollbar = Scrollbar(mark ROI over all frame , \
command=mark ROI over all canvas.yview)

mark ROI scroll frame = ttk.Frame(mark ROI over all canvas)

mark ROI scroll frame.bind("<Configure>", lambda e: \
mark ROI over all canvas.configure\

(scrollregion=mark ROI over all canvas.bbox(’all’)))

322

mark ROI over all canvas.create window((0,0), \
window=mark ROI scroll frame , anchor=’nw’)

mark ROI over all canvas.configure\
(xscrollcommand=mark ROI xscrollbar.set, \

yscrollcommand=mark ROI yscrollbar.set)

mark ROI over all frame.config(highlightthickness=0, bg=’#ffffff’)

mark ROI over all canvas.config(highlightthickness=0, bg=’#ffffff’)

mark ROI over all frame.pack(expand=True, fill=BOTH)

mark ROI over all canvas.grid(row=0, column=0, sticky=N+S+E+W)

mark ROI over all frame.grid columnconfigure(0, weight=1)

mark ROI over all frame.grid rowconfigure(0, weight=1)

mark ROI xscrollbar.grid(row=1, column=0, sticky=E+W)

mark ROI over all frame.grid columnconfigure(1, weight=0)

mark ROI over all frame.grid rowconfigure(1, weight=0)

mark ROI yscrollbar.grid(row=0, column=1, sticky=N+S)

mark ROI over all frame.grid columnconfigure(2, weight=0)

mark ROI over all frame.grid rowconfigure(2, weight=0)

mark ROI image canvas = tk.Canvas(mark ROI scroll frame)

mark ROI image canvas.grid(row=0,column=0, rowspan=10, \
columnspan=3, sticky=N+S+E+W, padx=(0,0), pady=(0,0))

mark ROI scroll frame.grid columnconfigure(0, weight=0)

mark ROI scroll frame.grid rowconfigure(0, weight=0)

mark ROI image canvas.create image(0,0,image=img mark ROI ,anchor="nw")

mark ROI image canvas.image = img mark ROI

mark ROI image canvas.config(bg=’#E5f9ff’, relief=FLAT, bd=0, \
scrollregion=mark ROI image canvas.bbox(ALL), \

height=img mark ROI.height(), width=img mark ROI.width())

mark ROI image canvas.grid propagate(0)

rectangle = mark ROI image canvas.create rectangle(0,0,0,0,outline=’green’)

rectangle top corner = []

rectangle bottom corner = []

def buttonPushed(event):

rectangle top corner.append([event.x, event.y])

def buttonMoving(event):

mark ROI image canvas.coords(rectangle , rectangle top corner[0][0], \
rectangle top corner[0][1], event.x, event.y)

def buttonReleased(event):

rectangle bottom corner.append([event.x, event.y])

mark ROI image canvas.coords(rectangle , rectangle top corner[0][0], \

323

rectangle top corner[0][1],rectangle bottom corner[0][0], \
rectangle bottom corner[0][1])

mark ROI image canvas.itemconfig(rectangle , outline=’Blue’)

Globals.DVH ROI coords.append([rectangle top corner[0][0], \
rectangle top corner[0][1]])

Globals.DVH ROI coords.append([rectangle bottom corner[0][0], \
rectangle top corner[0][1]])

Globals.DVH ROI coords.append([rectangle top corner[0][0], \
rectangle bottom corner[0][1]])

Globals.DVH ROI coords.append([rectangle bottom corner[0][0], \
rectangle bottom corner[0][1]])

rect = canvas.create rectangle(int((rectangle top corner[0][0])/2), \
int((rectangle top corner[0][1])/2),\

int((rectangle bottom corner[0][0])/2), \
int((rectangle bottom corner[0][1])/2), outline=’Blue’, width=2)

Globals.DVH mark ROI rectangle.append(rect)

if(ref point test):

Globals.DVH ROI reference point check = True

if(Globals.DVH reference point check):

Globals.DVH done button reference point.config(state=ACTIVE)

else:

Globals.DVH ROI check = True

if(Globals.DVH isocenter check):

Globals.DVH done button.config(state=ACTIVE)

mark ROI window.after(500, lambda: mark ROI window.destroy())

mark ROI image canvas.bind("<B1−Motion>", buttonMoving)
mark ROI image canvas.bind("<Button−1>", buttonPushed)
mark ROI image canvas.bind("<ButtonRelease−1>", buttonReleased)

def UploadFilm():

#−−
Function to upload the Film
#
Is a callback function for button
DVH upload button film in notebook.py
#−−

if(Globals.DVH film orientation.get() == ’−’):
messagebox.showerror("Missing parameter", "Film orientation missing \n \

(Code: UploadFilm)")

324

return

if Globals.DVH film factor input.get("1.0", ’end−1c’) == " ":
Globals.DVH film factor = 1

else:

try:

Globals.DVH film factor = \
float(Globals.DVH film factor input.get("1.0", ’end−1c’))

except:

messagebox.showerror("Missing parameter", "Film factor invalid format.\n\
(Code: UploadFilm)")

return

file = filedialog.askopenfilename()

ext = os.path.splitext(file)[−1].lower()
if(ext == ’.tif’):

current folder = os.getcwd()

parent = os.path.dirname(file)

os.chdir(parent)

img = Image.open(file)

img = img.transpose(Image.FLIP LEFT RIGHT)

cv2Img = cv2.imread(basename(normpath(file)), \
cv2.IMREAD ANYCOLOR | cv2.IMREAD ANYDEPTH)

cv2Img = cv2.medianBlur(cv2Img, 5)

if(cv2Img is None):

messagebox.showerror("Error", "Something has gone wrong. \
Check that the filename only contain english letters")

return

if(cv2Img.shape[2] == 3):

if(cv2Img.shape[0]==1270 and cv2Img.shape[1]==1016):

cv2Img = abs(cv2Img−Globals.correctionMatrix127)
cv2Img = np.clip(cv2Img, 0, 65535)

cv2Img = cv2.flip(cv2Img ,1)

img scaled = img.resize((508, 635), Image.ANTIALIAS)

img scaled = ImageTk.PhotoImage(image=img scaled)

Globals.DVH film dataset = cv2Img

Globals.DVH film dataset red channel = cv2Img[:,:,2]

else:

messagebox.showerror("Error","The resolution of \
the image is not consistent with dpi")

return

else:

messagebox.showerror("Error","The uploaded \
image need to be in RGB−format")

325

return

os.chdir(current folder)

if(not (img.width == 1016)):

messagebox.showerror("Error", "Dpi in image has to be 127")

return

Globals.DVH film orientation menu.configure(state=DISABLED)

Globals.DVH film factor input.config(state=DISABLED)

h = 635 + 20

w = 508 + 625

new window = tk.Toplevel(Globals.tab5)

new window.geometry("%dx%d+0+0" % (w, h))

new window.grab set()

new window over all frame = tk.Frame(new window , bd=0, relief=FLAT)

new window over all canvas = Canvas(new window over all frame)

new window xscrollbar = Scrollbar(new window over all frame , \
orient=HORIZONTAL , command=new window over all canvas.xview)

new window yscrollbar = Scrollbar(new window over all frame , \
command=new window over all canvas.yview)

new window scroll frame = ttk.Frame(new window over all canvas)

new window scroll frame.bind("<Configure>", lambda e: \
new window over all canvas.configure\

(scrollregion=new window over all canvas.bbox(’all’)))

new window over all canvas.create window((0,0), \
window=new window scroll frame , anchor=’nw’)

new window over all canvas.configure\
(xscrollcommand=new window xscrollbar.set, \

yscrollcommand=new window yscrollbar.set)

new window over all frame.config(highlightthickness=0, bg=’#ffffff’)

new window over all canvas.config(highlightthickness=0, bg=’#ffffff’)

new window over all frame.pack(expand=True, fill=BOTH)

new window over all canvas.grid(row=0, column=0, sticky=N+S+E+W)

new window over all frame.grid columnconfigure(0, weight=1)

new window over all frame.grid rowconfigure(0, weight=1)

new window xscrollbar.grid(row=1, column=0, sticky=E+W)

new window over all frame.grid columnconfigure(1, weight=0)

new window over all frame.grid rowconfigure(1, weight=0)

326

new window yscrollbar.grid(row=0, column=1, sticky=N+S)

new window over all frame.grid columnconfigure(2, weight=0)

new window over all frame.grid rowconfigure(2, weight=0)

new window explain text = tk.Text(new window scroll frame ,\
height= 3, width=120)

new window explain text.insert(INSERT, \
"To match the film with the doseplan you have to mark either isocenter or a \
reference point on the film of your choice.In the case of the reference point \
you \nwill be asked to input the lenght in lateral, longitudinal and vertical \
to a reference point used in the linac. It the reference point in the film is \
the same as \nthe one in the phantom/linac you can input all zeros, in other \
cases your input is in mm. Later you will have the oppertunity to make small\
adjustments \nto the placement of either the reference point or isocenter.")

new window explain text.config(state=DISABLED , \
font=(’calibri’, ’13’, ’bold’), bg = ’#ffffff’, relief=FLAT)

new window explain text.grid(row=0, column=0, columnspan=5, \
sticky=N+S+W+E, pady=(15,5), padx=(10,10))

new window scroll frame.grid rowconfigure(0, weight=0)

new window scroll frame.grid columnconfigure(0, weight=0)

new window notebook = ttk.Notebook(new window scroll frame)

new window notebook.borderWidth=0

new window notebook.grid(row=2, column=0, columnspan=5, \
sticky=E+W+N+S, pady=(0,0), padx =(0,0))

new window scroll frame.grid rowconfigure(4, weight=0)

new window scroll frame.grid columnconfigure(4, weight=0)

new window isocenter tab = ttk.Frame(new window notebook)

new window notebook.add(new window isocenter tab , text=’Isocenter’)

new window reference point tab = ttk.Frame(new window notebook)

new window notebook.add(new window reference point tab , \
text=’Reference point’)

new window manually tab = ttk.Frame(new window notebook)

new window notebook.add(new window manually tab , text=’Manually’)

image canvas = tk.Canvas(new window isocenter tab)

image canvas.grid(row=0,column=0, rowspan=12, columnspan=3, \
sticky=N+S+E+W, padx=(0,0), pady=(0,0))

new window isocenter tab.grid rowconfigure(1, weight=0)

new window isocenter tab.grid columnconfigure(1, weight=0)

image canvas.create image(0,0,image=img scaled ,anchor="nw")

image canvas.image = img scaled

image canvas.config(bg=’#ffffff’, relief=FLAT, bd=0, \
scrollregion=image canvas.bbox(ALL), \

327

height=img scaled.height(), width=img scaled.width())

image canvas.grid propagate(0)

image canvas reference tab = tk.Canvas(new window reference point tab)

image canvas reference tab.grid(row=0,column=0, rowspan=10, \
columnspan=3, sticky=N+S+E+W, padx=(0,0), pady=(0,0))

new window reference point tab.grid rowconfigure(1, weight=0)

new window reference point tab.grid columnconfigure(1, weight=0)

image canvas reference tab.create image(0,0,image=img scaled ,anchor="nw")

image canvas reference tab.image = img scaled

image canvas reference tab.config(bg=’#ffffff’, relief=FLAT, bd=0, \
scrollregion=image canvas.bbox(ALL), \

height=img scaled.height(), width=img scaled.width())

image canvas reference tab.grid propagate(0)

film window mark isocenter text = \
tk.Text(new window isocenter tab , width=55, height=7)

film window mark isocenter text.insert(INSERT, \
"When clicking the button \"Mark isocenter\" a window showing \n\
the image will appear and you are to click on the markers \n\
made on the film upon irradiation to find the isocenter. Start \n\
with the marker showing the direction of the film (see the \n\
specifications in main window). When both marks are made \n\
you will see the isocenter in the image. If you are not happy \n\
with the placement click the button again and repeat.")

film window mark isocenter text.config(bg=’#ffffff’, relief=FLAT, bd=0, \
state=DISABLED, font=(’calibri’, ’11’))

film window mark isocenter text.grid(row=0, column=3, rowspan=3, \
sticky=N+S+E+W, padx=(10,10), pady=(10,0))

new window isocenter tab.columnconfigure(2, weight=0)

new window isocenter tab.rowconfigure(2, weight=0)

film window mark reference point text = \
tk.Text(new window reference point tab , width=55, height=5)

film window mark reference point text.insert(INSERT, \
"When clicking the button \"Mark point\" a window showing \n\
the image will appear and you are to click on the marker \n\
made on the film upon irradiation to find the point. When\n\
the mark are made you will see the isocenter in the image.\n\
If you are not happy with the placement click the button \n\
again and repeat.")

film window mark reference point text.config(bg=’#ffffff’, \
relief=FLAT, bd=0, state=DISABLED, font=(’calibri’, ’11’))

film window mark reference point text.grid(row=0, column=3, \
rowspan=3, sticky=N+S+E+W, padx=(10,10), pady=(5,0))

328

new window reference point tab.columnconfigure(2, weight=0)

new window reference point tab.rowconfigure(2, weight=0)

mark isocenter button frame = tk.Frame(new window isocenter tab)

mark isocenter button frame.grid(row=3, column=3, padx=(10,10), pady=(0,10))

mark isocenter button frame.configure(bg=’#ffffff’)

new window isocenter tab.grid columnconfigure(3, weight=0)

new window isocenter tab.grid rowconfigure(3, weight=0)

mark isocenter button = tk.Button(mark isocenter button frame , \
text=’Browse’, image=Globals.profiles mark isocenter button image ,\

cursor=’hand2’,font=(’calibri’, ’14’), relief=FLAT, state=ACTIVE, \
command=lambda: markIsocenter(img, new window isocenter tab , \

image canvas , cv2Img))

mark isocenter button.pack(expand=True, fill=BOTH)

mark isocenter button.config(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

mark isocenter button.image=Globals.profiles mark isocenter button image

mark point button frame = tk.Frame(new window reference point tab)

mark point button frame.grid(row=3, column=3, padx=(10,10), pady=(30,0))

mark point button frame.configure(bg=’#ffffff’)

new window reference point tab.grid columnconfigure(3, weight=0)

new window reference point tab.grid rowconfigure(3, weight=0)

mark point button = tk.Button(mark point button frame , text=’Browse’, \
image=Globals.profiles mark point button image ,\

cursor=’hand2’,font=(’calibri’, ’14’), relief=FLAT, \
state=ACTIVE, command=lambda: markReferencePoint(img, \

new window reference point tab , image canvas reference tab , \
cv2Img))

mark point button.pack(expand=True, fill=BOTH)

mark point button.config(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

mark point button.image=Globals.profiles mark point button image

write displacement relative to reference point = \
tk.Text(new window reference point tab , width = 55, height=3)

write displacement relative to reference point.insert(INSERT, "\
If the marked reference points in the film does not match\n\
the reference point in the phantom you can write the\n\
displacemnet here (in mm). Defaults to zero ")

write displacement relative to reference point.grid(row=4, column=3, \
rowspan=2, sticky=N+S+E+W, padx=(10,10), pady=(0,10))

write displacement relative to reference point.config(bg=’#ffffff’, \

329

relief=FLAT, bd=0, state=DISABLED, font=(’calibri’, ’11’))

new window reference point tab.grid rowconfigure(6, weight=0)

new window reference point tab.grid columnconfigure(6, weight=0)

input lateral text = tk.Text(new window reference point tab , \
width=12, height=1)

input lateral text.insert(INSERT, "Lateral:")

input lateral text.config(bg=’#ffffff’, relief=FLAT, bd=0, \
state=DISABLED, font=(’calibri’, ’10’))

input lateral text.grid(row=5, column=3, sticky=N+S, \
padx=(0,250), pady=(25,0))

new window reference point tab.grid rowconfigure(10, weight=0)

new window reference point tab.grid rowconfigure(10, weight=0)

Globals.DVH input lateral displacement = \
tk.Text(new window reference point tab , width=5, height=1)

Globals.DVH input lateral displacement.insert(INSERT, " ")

Globals.DVH input lateral displacement.config(bg=’#E5f9ff’, \
relief=GROOVE, bd=2, state=NORMAL, font=(’calibri’, ’11’))

Globals.DVH input lateral displacement.grid(row=5, column=3, \
padx=(0,285), pady=(35,0))

new window reference point tab.grid rowconfigure(7, weight=0)

new window reference point tab.grid columnconfigure(7, weight=0)

input vertical text = tk.Text(new window reference point tab , \
width=12, height=1)

input vertical text.insert(INSERT, "Vertical:")

input vertical text.config(bg=’#ffffff’, relief=FLAT, bd=0, \
state=DISABLED, font=(’calibri’, ’10’))

input vertical text.grid(row=5, column=3, sticky=N+S, \
padx=(0,0), pady=(25,0))

new window reference point tab.grid rowconfigure(11, weight=0)

new window reference point tab.grid rowconfigure(11, weight=0)

Globals.DVH input vertical displacement = \
tk.Text(new window reference point tab , width=4, height=1)

Globals.DVH input vertical displacement.insert(INSERT, " ")

Globals.DVH input vertical displacement.config(bg=’#E5f9ff’, \
relief=GROOVE, bd=2, state=NORMAL, font=(’calibri’, ’11’))

Globals.DVH input vertical displacement.grid(row=5, column=3, \
padx=(0,25), pady=(35,0))

new window reference point tab.grid rowconfigure(8, weight=0)

new window reference point tab.grid columnconfigure(8, weight=0)

input long text = tk.Text(new window reference point tab , \

330

width=12, height=1)

input long text.insert(INSERT, "Longitudinal:")

input long text.config(bg=’#ffffff’, relief=FLAT, bd=0, \
state=DISABLED, font=(’calibri’, ’10’))

input long text.grid(row=5, column=3, sticky=N+S, \
padx=(250,0), pady=(25,0))

new window reference point tab.grid rowconfigure(12, weight=0)

new window reference point tab.grid rowconfigure(12, weight=0)

Globals.DVH input longitudinal displacement = \
tk.Text(new window reference point tab , width=5, height=1)

Globals.DVH input longitudinal displacement.insert(INSERT, " ")

Globals.DVH input longitudinal displacement.config\
(bg=’#E5f9ff’, relief=GROOVE, bd=2, state=NORMAL, font=(’calibri’, ’11’))

Globals.DVH input longitudinal displacement.grid\
(row=5, column=3, padx=(240,0), pady=(35,0))

new window reference point tab.grid rowconfigure(9, weight=0)

new window reference point tab.grid columnconfigure(9, weight=0)

film window mark ROI text = tk.Text(new window isocenter tab ,\
width=55, height=7)

film window mark ROI text.insert(INSERT, \
"When clicking the button \"Mark ROI\" a window showing the\n\
image will appear and you are to drag a rectangle marking \n\
the region of interest. Fidora will assume the film has been\n\
scanned in either portrait or landscape orientation. When\n\
the ROI has been marked it will appear on the image. If you\n\
are not happy with the placement click the button again.")

film window mark ROI text.config(bg=’#ffffff’, relief=FLAT, \
bd=0, state=DISABLED , font=(’calibri’, ’11’))

film window mark ROI text.grid(row=5, column=3, rowspan=4, \
sticky=N+S+E+W, padx=(10,10), pady=(0,0))

new window isocenter tab.grid columnconfigure(4, weight=0)

new window isocenter tab.grid rowconfigure(4, weight=0)

film window mark ROI reference point text = \
tk.Text(new window reference point tab , width=55, height=5)

film window mark ROI reference point text.insert(INSERT, \
"When clicking the button \"Mark ROI\" a window showing the\n\
image will appear and you are to drag a rectangle marking \n\
the region of interest. Fidora will assume the film has been\n\
scanned in either portrait or landscape orientation. When\n\
the ROI has been marked it will appear on the image. If you\n\
are not happy with the placement click the button again.")

film window mark ROI reference point text.config(bg=’#ffffff’, \

331

relief=FLAT, bd=0, state=DISABLED, font=(’calibri’, ’11’))

film window mark ROI reference point text.grid(row=6, column=3, \
rowspan=3, sticky=N+E+W, padx=(10,10), pady=(10,0))

new window reference point tab.grid columnconfigure(4, weight=0)

new window reference point tab.grid rowconfigure(4, weight=0)

mark ROI button frame = tk.Frame(new window isocenter tab)

mark ROI button frame.grid(row=8, column=3, padx=(10,0), pady=(0,5))

mark ROI button frame.configure(bg=’#ffffff’)

new window isocenter tab.grid columnconfigure(5, weight=0)

new window isocenter tab.grid rowconfigure(5, weight=0)

mark ROI button = tk.Button(mark ROI button frame , text=’Browse’, \
image=Globals.profiles mark ROI button image ,cursor=’hand2’,\

font=(’calibri’, ’14’), relief=FLAT, state=ACTIVE, command=lambda:\
markROI(img, new window isocenter tab , image canvas , False))

mark ROI button.pack(expand=True, fill=BOTH)

mark ROI button.config(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

mark ROI button.image=Globals.profiles mark ROI button image

slice offset text = tk.Text(new window isocenter tab , width=25, height=1)

slice offset text.insert(INSERT, "Slice offset, mm (default 0):")

slice offset text.config(state=DISABLED, font=(’calibri’, ’10’), \
bd = 0, relief=FLAT)

slice offset text.grid(row=9, column=3, padx=(5,110), pady=(0,0))

new window isocenter tab.grid columnconfigure(6, weight=0)

new window isocenter tab.grid rowconfigure(6, weight=0)

Globals.DVH slice offset = tk.Text(new window isocenter tab , \
width=8, height=1)

Globals.DVH slice offset.grid(row=9, column=3, padx=(110,10), pady=(0,0))

Globals.DVH slice offset.insert(INSERT, " ")

Globals.DVH slice offset.config(state=NORMAL, \
font=(’calibri’, ’10’), bd = 2, bg=’#ffffff’)

new window isocenter tab.grid columnconfigure(7, weight=0)

new window isocenter tab.grid rowconfigure(7, weight=0)

mark ROI button reference point frame = \
tk.Frame(new window reference point tab)

mark ROI button reference point frame.grid(row=9, column=3, \
padx=(10,10), pady=(0,5))

mark ROI button reference point frame.configure(bg=’#ffffff’)

new window reference point tab.grid columnconfigure(5, weight=0)

new window reference point tab.grid rowconfigure(5, weight=0)

332

mark ROI reference point button = \
tk.Button(mark ROI button reference point frame , text=’Browse’, \

image=Globals.profiles mark ROI button image ,cursor=’hand2’,\
font=(’calibri’, ’14’), relief=FLAT, state=ACTIVE, \

command=lambda: markROI(img, \
new window reference point tab , \

image canvas reference tab , True))

mark ROI reference point button.pack(expand=True, fill=BOTH)

mark ROI reference point button.config(bg=’#ffffff’, \
activebackground=’#ffffff’, activeforeground=’#ffffff’, \
highlightthickness=0)

mark ROI reference point button.image=\
Globals.profiles mark ROI button image

def finishFilmMarkers(ref test):

Globals.DVH slice offset.config(state=DISABLED)

if(ref test):

if(not(Globals.DVH input lateral displacement.get\
("1.0",’end−1c’)==" ")):
try:

test = float(Globals.DVH input lateral displacement.get\
("1.0",’end−1c’))

Globals.DVH lateral = test

except:

messagebox.showerror("Error", "The displacements \
must be numbers\n (Code: lateral displacement)")

return

else:

Globals.DVH lateral = 0

if(not(Globals.DVH input longitudinal displacement.get\
("1.0",’end−1c’)==" ")):
try:

test = float(Globals.DVH input longitudinal displacement.get\
("1.0", ’end−1c’))

Globals.DVH longitudinal = test

except:

messagebox.showerror("Error", "The displacements must \
be numbers\n (Code: longitudinal displacement)")

return

else:

Globals.DVH longitudinal = 0

if(not(Globals.DVH input vertical displacement.get\
("1.0",’end−1c’)==" ")):
try:

333

test = float(Globals.DVH input vertical displacement.get\
("1.0", ’end−1c’))

Globals.DVH vertical = test

except:

messagebox.showerror("Error", "The displacements \
must be numbers\n (Code: vertical displacement)")

return

else:

Globals.DVH vertical = 0

Globals.DVH input vertical displacement.config(state=DISABLED)

Globals.DVH input longitudinal displacement.config(state=DISABLED)

Globals.DVH input lateral displacement.config(state=DISABLED)

else:

if not Globals.DVH slice offset.get("1.0",’end−1c’)==" ":
try:

offset = float(Globals.DVH slice offset.get("1.0",’end−1c’))
Globals.DVH offset = offset

except:

messagebox.showerror("Error", "Slice offset must \
be a number \n(Code: finishFilmMarkers(false)")

return

else:

Globals.DVH offset = 0

if(ref test):

choose batch window = tk.Toplevel(new window reference point tab)

else:

choose batch window = tk.Toplevel(new window isocenter tab)

choose batch window.geometry("670x380+50+50")

choose batch window.grab set()

choose batch frame = tk.Frame(choose batch window)

choose batch frame.pack(expand=True, fill=BOTH)

choose batch frame.configure(bg=’#ffffff’)

batch cnt = 0

weight cnt = 0

read = open(’calibration.txt’, ’r’)

lines = read.readlines()

read.close()

row cnt=0

for l in lines:

words = l.split()

line = "Batch nr. : " + words[2] + ". Date: " + words[0] +\
" " + words[1] + "."

334

write batch nr = tk.Text(choose batch frame , width=10, height=1)

write batch nr.grid(row=row cnt , column=0, sticky=N+S+W+E, \
padx=(10,5), pady=(10,10))

choose batch frame.grid columnconfigure(weight cnt , weight=0)

choose batch frame.grid rowconfigure(weight cnt , weight=0)

write batch nr.insert(INSERT, "Batch nr.: ")

write batch nr.config(state=DISABLED , bd = 0, \
font=(’calibri’, ’12’, ’bold’))

weight cnt+=1

write batch = tk.Text(choose batch frame , width=20, height=1)

write batch.grid(row=row cnt , column=1, sticky=N+S+W+E, \
padx=(10,5), pady=(10,10))

choose batch frame.grid columnconfigure(weight cnt , weight=0)

choose batch frame.grid rowconfigure(weight cnt , weight=0)

write batch.insert(INSERT, words[2])

write batch.config(state=DISABLED, bd = 0, font=(’calibri’, ’12’))

weight cnt+=1

write batch date = tk.Text(choose batch frame , width=8, height=1)

write batch date.grid(row=row cnt , column=2, sticky=N+S+W+E, \
padx=(10,5), pady=(10,10))

choose batch frame.grid columnconfigure(weight cnt , weight=0)

choose batch frame.grid rowconfigure(weight cnt , weight=0)

write batch date.insert(INSERT, "Date: ")

write batch date.config(state=DISABLED , bd = 0, \
font=(’calibri’, ’12’, ’bold’))

weight cnt+=1

write date = tk.Text(choose batch frame , width=30, height=1)

write date.grid(row=row cnt , column=3, sticky=N+S+W+E, \
padx=(10,5), pady=(10,10))

choose batch frame.grid columnconfigure(weight cnt , weight=0)

choose batch frame.grid rowconfigure(weight cnt , weight=0)

write date.insert(INSERT, words[0] + ", " + words[1] + "")

write date.config(state=DISABLED, bd = 0, \
font=(’calibri’, ’12’))

weight cnt+=1

Radiobutton(choose batch frame , text=’’,bg=’#ffffff’, \
cursor=’hand2’,font=(’calibri’, ’14’), \

variable=Globals.DVH film batch , value=batch cnt).\
grid(row=row cnt , column=4, sticky=N+S+W+E, \

padx=(5,5), pady=(10,10))

choose batch frame.grid columnconfigure(weight cnt , weight=0)

choose batch frame.grid rowconfigure(weight cnt , weight=0)

weight cnt+=1;row cnt+=1;batch cnt+=1

335

def set batch():

choose batch window.destroy()

f = open(’calibration.txt’, ’r’)

lines = f.readlines()

words = lines[Globals.DVH film batch.get()].split()

Globals.DVH popt red[0] = float(words[3])

Globals.DVH popt red[1] = float(words[4])

Globals.DVH popt red[2] = float(words[5])

f.close()

Globals.DVH film dataset ROI red channel dose = \
np.zeros((Globals.DVH film dataset ROI red channel.shape[0],\
Globals.DVH film dataset ROI red channel.shape[1]))

for i in range\
(Globals.DVH film dataset ROI red channel dose.shape[0]):

for j in range\
(Globals.DVH film dataset ROI red channel dose.shape[1]):

Globals.DVH film dataset ROI red channel dose[i,j] = \
Globals.DVH film factor*pixel to dose\

(Globals.DVH film dataset ROI red channel[i,j], \
Globals.DVH popt red[0], \

Globals.DVH popt red[1], \
Globals.DVH popt red[2])

Globals.DVH film dataset red channel dose = \
np.zeros((Globals.DVH film dataset red channel.shape[0],\
Globals.DVH film dataset red channel.shape[1]))

for i in range\
(Globals.DVH film dataset red channel dose.shape[0]):

for j in range\
(Globals.DVH film dataset red channel dose.shape[1]):

Globals.DVH film dataset red channel dose[i,j] = \
Globals.DVH film factor*pixel to dose\

(Globals.DVH film dataset red channel[i,j], \
Globals.DVH popt red[0], \

Globals.DVH popt red[1], \
Globals.DVH popt red[2])

mx film=np.max(Globals.DVH film dataset ROI red channel dose)

Globals.DVH max dose film = mx film

new window.destroy()

set batch button frame = tk.Frame(choose batch frame)

336

set batch button frame.grid(row=row cnt , column=1, columnspan=3, \
padx=(10,0), pady=(5,5))

set batch button frame.configure(bg=’#ffffff’)

choose batch frame.grid columnconfigure(weight cnt , weight=0)

choose batch frame.grid rowconfigure(weight cnt , weight=0)

set batch button = tk.Button(set batch button frame , text=’OK’, \
image=Globals.done button image , cursor=’hand2’,\

font=(’calibri’, ’14’), relief=FLAT, state=ACTIVE, \
command=set batch)

set batch button.pack(expand=True, fill=BOTH)

set batch button.image=Globals.done button image

img ROI = Globals.DVH film dataset[Globals.DVH ROI coords[0][1]:\
Globals.DVH ROI coords[2][1],Globals.DVH ROI coords[0][0]:\

Globals.DVH ROI coords[1][0], :]

img ROI red channel = img ROI[:,:,2]

Globals.DVH film variable ROI coords = \
[Globals.DVH ROI coords[0][1], Globals.DVH ROI coords[2][1],\

Globals.DVH ROI coords[0][0], Globals.DVH ROI coords [1][0]]

Globals.DVH film dataset ROI = img ROI

Globals.DVH film dataset ROI red channel = img ROI red channel

R = img ROI[:,:,2];B = img ROI[:,:,0]; G = img ROI[:,:,1]

img ROI RGB = np.zeros(img ROI.shape)

img ROI RGB[:,:,0]=R; img ROI RGB[:,:,1]=G; img ROI RGB[:,:,2]=B

Globals.DVH upload button doseplan.config(state=DISABLED)

Globals.DVH upload button rtplan.config(state=ACTIVE)

Globals.DVH upload button film.config(state=DISABLED)

if(ref test):

Globals.DVH distance reference point ROI.append\
([(Globals.DVH film reference point[0]−\

Globals.DVH ROI coords[0][0])*0.2, \
(Globals.DVH film reference point[1] −\

Globals.DVH ROI coords[0][1])*0.2])
Globals.DVH distance reference point ROI.append\

([(Globals.DVH film reference point[0]− \
Globals.DVH ROI coords[1][0])*0.2,\

(Globals.DVH film reference point[1]− \
Globals.DVH ROI coords[1][1])*0.2])

Globals.DVH distance reference point ROI.append\
([(Globals.DVH film reference point[0]− \

337

Globals.DVH ROI coords[2][0])*0.2,\
(Globals.DVH film reference point[1]− \

Globals.DVH ROI coords[2][1])*0.2])
Globals.DVH distance reference point ROI.append\

([(Globals.DVH film reference point[0]− \
Globals.DVH ROI coords[3][0])*0.2,\

(Globals.DVH film reference point[1]− \
Globals.DVH ROI coords[3][1])*0.2])

Globals.DVH isocenter or reference point = "Ref point"

else:

Globals.DVH distance isocenter ROI.append\
([(Globals.DVH film isocenter[0]−\

Globals.DVH ROI coords[0][0])*0.2, \
(Globals.DVH film isocenter[1] −\

Globals.DVH ROI coords[0][1])*0.2])
Globals.DVH distance isocenter ROI.append\

([(Globals.DVH film isocenter[0]− \
Globals.DVH ROI coords[1][0])*0.2,\

(Globals.DVH film isocenter[1]− \
Globals.DVH ROI coords[1][1])*0.2])

Globals.DVH distance isocenter ROI.append\
([(Globals.DVH film isocenter[0]− \

Globals.DVH ROI coords[2][0])*0.2,\
(Globals.DVH film isocenter[1]− \

Globals.DVH ROI coords[2][1])*0.2])
Globals.DVH distance isocenter ROI.append\

([(Globals.DVH film isocenter[0]− \
Globals.DVH ROI coords[3][0])*0.2,\

(Globals.DVH film isocenter[1]− \
Globals.DVH ROI coords[3][1])*0.2])

Globals.DVH isocenter or reference point = "Isocenter"

done button frame = tk.Frame(new window isocenter tab)

done button frame.grid(row=10, column=3, padx=(10,10), \
pady=(5,5), sticky=N+S+W+E)

done button frame.configure(bg=’#ffffff’)

new window isocenter tab.grid columnconfigure(5, weight=0)

new window isocenter tab.grid rowconfigure(5, weight=0)

Globals.DVH done button = tk.Button(done button frame , text=’Done’, \
image=Globals.done button image ,cursor=’hand2’, font=(’calibri’, ’14’),\

relief=FLAT, state=DISABLED, command=lambda: \

338

finishFilmMarkers(False))

Globals.DVH done button.pack(expand=True, fill=BOTH)

Globals.DVH done button.config(bg=’#ffffff’, activebackground=’#ffffff’, \
activeforeground=’#ffffff’, highlightthickness=0)

Globals.DVH done button.image=Globals.done button image

done button reference point frame = \
tk.Frame(new window reference point tab)

done button reference point frame.grid(row=10, column=3, \
padx=(10,10), pady=(5,5), sticky=N+S+W+E)

done button reference point frame.configure(bg=’#ffffff’)

new window reference point tab.grid columnconfigure(5, weight=0)

new window reference point tab.grid rowconfigure(5, weight=0)

Globals.DVH done button reference point= \
tk.Button(done button reference point frame , text=’Done’, \

image=Globals.done button image ,cursor=’hand2’, \
font=(’calibri’, ’14’), relief=FLAT, state=DISABLED , \

command=lambda: finishFilmMarkers(True))

Globals.DVH done button reference point.pack(expand=True, fill=BOTH)

Globals.DVH done button reference point.config(bg=’#ffffff’, \
activebackground=’#ffffff’, activeforeground=’#ffffff’, \

highlightthickness=0)

Globals.DVH done button reference point.image=Globals.done button image

elif(ext==""):

return

else:

messagebox.showerror("Error", "The file must be a *.tif file")

def help showPlanes():

new window = tk.Toplevel(Globals.tab5)

w = Globals.profiles showPlanes image.width()

h = Globals.profiles showPlanes image.height()

new window.geometry("%dx%d+0+0" % (w, h))

new window.grab set()

canvas = tk.Canvas(new window)

canvas.config(relief=FLAT, bg=’#ffffff’, highlightthickness=0)

canvas.create image(0, 0, image=Globals.profiles showPlanes image , anchor=’nw’)

canvas.pack(expand=True, fill=BOTH)

339

