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Abstract

We present an introduction to recent diagrammatic methods in the strong-coupling
regime, developed by Carlström [1]. The method is specifically applied to the two-
dimensional Hubbard model. It serves as an attempt to alleviate the numerical sign
problem, characteristic for strongly correlated fermionic systems. The resulting diagrams
consist of so-called irreducible vertices that make the system suitable for a systematic
diagrammatic Monte Carlo approach. We construct a database for storing the irreducible
vertices, making them accessible in the Monte Carlo simulation without any expensive
evaluation. Furthermore, we do a partial summation of all irreducible vertices to the
lowest order. The partial summation constitutes a single-particle propagator and is an
example of a bold propagator method. Based on the irreducible vertices and bold propa-
gators, we suggest a possible implementation for a diagrammatic Monte Carlo approach
for the full diagrammatic expansion. To develop a simple method, we use an ergodic set
of three update pairs governing the diagram topologies and a set of updates governing
internal variables, fulfilling a detailed balance requirement.
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Sammendrag

Vi presenterer en introduksjon til nye diagrammatiske metoder i sterk-kobling regimet,
utviklet av Carlström [1]. Metoden er brukt spesifikt på den to-dimensjonale Hubbard
modellen. Den nyttes som et forsøk på å redusere det numeriske fortegnsproblemet,
karakteristisk for sterkt korrelerte fermionsystemer. De resulterende diagrammene består
av såkalte irredusible vertexer som gjør systemet passende for en systematisk diagram-
matisk Monte Carlo tilnærming. Vi konstruerer en database for å lagre de irredusible
vertexene, for å gjøre de tilgjengelig i Monte Carlo simuleringen. Videre gjør vi en delvis
summering av alle irredusible vertexer til laveste orden. Den delvise summasjonen ut-
gjør en en-partikkel propagator og er et eksempel på en fet-propagator metode. Basert
på irredusible vertexer og fete propagatorer foreslår vi en mulig implementasjon for en
diagrammatisk Monte Carlo tilnærming for den fulle diagrammatiske ekspansjonen. For
å utvikle en enkel metode bruker vi et ergodisk sett med tre oppdateringspar som styrer
diagramtopologiene og et sett med oppdateringer som styrer interne variabler som innfrir
et krav om detaljert balanse.
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Chapter 1

Introduction

1.1 Background and motivation

Feynman diagrams have been an essential tool for theoretical physicists since Richard
Feynman introduced them in 1948. The diagrams are useful for describing possible
particle processes, including interactions and propagation. The diagrammatic technique
is used for a wide range of systems, whereas the nature of the diagrammatic expansion is
highly dependent on the system considered [2]. Common for all diagrammatic expansions,
is the rapid growth of diagrams and how they represent high dimensional integrals or
sums. Monte Carlo methods are ideally suited for evaluating sums and integrals of
high dimension, making the combination of the Feynman diagrammatic approach and
stochastic computational methods a field of great potential [3].

Interacting many-body systems pose significant difficulties, as the coupling between
particles does not allow an independent particle factorization. Although challenging,
strongly interacting electron systems give rise to many fascinating phenomena such as
magnetic phases and superconducting materials. A wide range of Monte Carlo algorithms
has been applied to models for strongly correlated electron systems, such as the Hubbard
model [4]. Two examples of such algorithms are determinant quantum Monte Carlo and
path integral Monte Carlo methods [5, 6]. Common for most Monte Carlo procedures
simulating fermionic systems, is that they encounter the infamous sign problem [7]. The
problem is fundamental and in general NP-hard [8]. This means that a solution in
polynomial computational time is not expected to exist. Any improvement in the field
of computational methods for the Hubbard model is crucial because it is believed to be
the theory of high-temperature superconductivity [9].

The severity of the sign problem in conventional quantum Monte Carlo methods
scales with the volume of the system, making the thermodynamic limit inaccessible for
algorithms such as path integral Monte Carlo. In 1998, Prokof’ev and Svistunov proposed
a Monte Carlo method applied directly in the thermodynamic limit, based on sampling
Feynman diagrams through a Markov chain Monte Carlo algorithm [10]. The method,
called diagrammatic Monte Carlo (diagMC), was implemented for the polaron problem
[11], which later has become the arch-example for successful development of diagMC
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2 CHAPTER 1. INTRODUCTION

[10, 12].
Although the diagMC method provides access to observables in the thermodynamic

limit, the sign problem is still present. It merely takes a new form and originates from
setting a cutoff on an infinite alternating series. A technique for reducing the severity of
the sign problem was introduced in 2008. Prokof’ev and Svistunov employed so-called
bold propagators in the diagrammatic expansion to increase the radius of convergence
[13]. In general, a bold propagator represents a partial summation of diagrams. In
this way, the bare propagators can be replaced by propagators accounting for a subset
of processes prior to the Monte Carlo simulation. The bold line technique is system
dependent, and the scheme generally depends on the type of diagrammatic expansion.

It has the paradoxical feature that a moderate fermionic sign problem improve the
convergence properties of the expansion. Unlike bosonic systems, we get cancellation
effects from the fermionic sign, effectively reducing the configuration space of the di-
agMC approach. A developed bold propagator technique is often essential for a diagMC
approach dealing with the sign problem.

The bold line technique reduces the configuration space but does not eliminate the
factorial growth of diagrams, which is characteristic of any diagrammatic expansion.
The factorial growth hinders access to higher-order diagrams. However, the rate of
the growth may be reduced through clever expansions and ordering of diagrams. A
novel approach was introduced by Carlström [1], where a diagrammatic expansion is
performed in both on-site interactions and non-local hopping operators, simultaneously.
The resulting contractions are evaluated in so-called irreducible vertices by using recent
developments in determinant diagrammatic techniques [14]. An irreducible vertex is here
defined as a set of fully connected contractions on a single site. The arising irreducible
vertices allow for a systematic diagMC approach where the connectivity of diagrams and
the sign of the contributions are considered in a convenient manner. They allow a notably
slower factorial growth of diagrams than conventional diagrammatic expansions. This
allows higher-order diagrams to be sampled, alleviating the fermionic sign problem.

The main goal of this thesis is to provide a clear and pedagogical introduction to
the expansion in irreducible vertices established by Carlström. We include a recursive
algorithm for calculating the irreducible vertices and an advantageous form for storing the
vertices in a database. Furthermore, we define a bold propagator technique suitable for
this specific expansion, including all irreducible vertices to the lowest order. Based on the
notion of bold propagators and irreducible vertices, we present a possible implementation
using a diagrammatic Monte Carlo approach for the two-dimensional Hubbard model.

1.2 Structure

The Hubbard model, along with a discussion of the Mott-Hubbard transition, is presented
in chapter 2. In chapter 3, we develop the theory of a general perturbative expansion
and introduce related notions such as time ordering and contractions. The theory is fur-
ther applied to the two-dimensional Hubbard model, where we perform a perturbative
expansion in both the hopping parameter t and the on-site interaction U simultaneously.



1.2. STRUCTURE 3

Together, chapters 2 and 3 provide a sufficient background for understanding the method
of irreducible vertices. This method is thoroughly defined and explained in chapter 4,
where we follow Carlström’s approach. The main results of the chapter are a recursive
approach for calculating vertices and a feasible method for storing vertices in a database.
The irreducible vertices are furthermore used as constituents for resulting Feynman di-
agrams. In chapter 5, we present a specific bold propagator method for the irreducible
vertex expansion. Further, we use the irreducible vertices and bold propagators as con-
stituents for a full diagrammatic representation. This includes a discussion of the sign of
the contributions following Carlström’s use of reference contractions.

In chapter 6, we shift the focus from theoretical considerations to computational
methods. A general introduction to Markov chain Monte Carlo is provided, including
Markov chains and the Metropolis-Hastings algorithm. Subsequently, we give a thor-
ough introduction to diagrammatic Monte Carlo, as it represents a relatively new set of
methods. This includes discussions of the bold line trick, normalization, and convergence
properties.

Chapter 7 consists of two parts. The first part considers the process of obtaining
numerical values for the bold propagators defined in chapter 5 and serves as an intro-
ductory example of diagrammatic Monte Carlo. In addition, we present an alternative
semi-analytical approach in chapter 7.2, more suitable for an efficient implementation.

The second part concerns a diagMC implementation for the full diagrammatic expan-
sion based on irreducible vertices. This includes updates changing the diagram topologies
and internal variables, including acceptance ratios satisfying the Metropolis choice for a
convergent Markov chain Monte Carlo approach. Conclusively, normalization, connec-
tivity, and irreducibility are discussed.

The two parts of chapter 7 present our main contributions in this thesis. It should
serve as a pedagogical introduction to the use of diagrammatic Monte Carlo on the
expansion in irreducible vertices and as an initial idea for a fully working algorithm.
Conclusively, we present a summary of the thesis and mention the remaining steps of the
implementation.
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Chapter 2

Hubbard Model

2.1 Hamiltonian and Hilbert space

Interacting electron many-body systems as a field of study is exceptionally rich and
includes a vast amount of important scientific discoveries. The simplest model accounting
for interactions between electrons in a many-body system is the Hubbard model [4]. It
considers interacting electrons on a lattice. This deceptively simple model presented
in 1963 has been studied for decades, and although simple to write down, it has proven
incredibly difficult to solve. That is, the character of its ground state and nature of excited
states are still actively researched for dimensions d > 1. The Hubbard Hamiltonian
consists of a nearest-neighbor hopping term and an on-site interaction

H = −t
∑
〈i,j〉σ

(ciσc
†
jσ + c†iσcjσ) +

∑
i

Uni↑ni↓ − µ (ni↑ + ni↓) , (2.1.1)

where 〈i, j〉 denotes the nearest neighbor pairs on the square lattice, t denotes the hopping
parameter, U the onsite interaction originating from Coulomb interactions and µ the
chemical potential. c†iσ and ciσ denote the fermionic creation and annihilation operators
at site i with spin σ. The operators are subject to the anti-commutation relations

{ciσ, c†jσ′} = δijδσσ′ (2.1.2a)

{ciσ, cjσ′} = 0 (2.1.2b)

{c†iσ, c
†
jσ′} = 0, (2.1.2c)

where niσ = c†iσciσ denote the number operator on site i with spin σ. The fermionic
operators (2.1.2) generate the many-particle states

|Ψ〉 ∝
∏
iσ

c†iσ |0, 0〉 (2.1.3)

spanning the Hilbert space corresponding to the Hubbard model. |0, 0〉 denotes the
vacuum state. The eigenstates of the number operator niσ on a single site span a local

5



6 CHAPTER 2. HUBBARD MODEL

Hilbert space. Due to the anti-commutation relations (2.1.2), the local Hilbert space is
limited to the following four states

{|0, 0〉 , c†i↓ |0, 0〉 = |0, 1〉 , c†i↑ |0, 0〉 = |1, 0〉 , c†i↑c
†
i↓ |0, 0〉 = |1, 1〉}. (2.1.4)

The states span an occupational basis and are eigenstates of the on-site interaction Û
and the chemical potential µ̂.

The phase diagram of the system is determined by the relationship between the
parameters t, U , µ in addition to the inverse temperature β. Although the behavior
is not fully understood, the phase diagram can be obtained in certain limits of the
parameters. The system is analytically solvable in both the non-interacting limit U = 0
and the atomic limit t = 0 and a thorough discussion of both cases is given by Tasaki in
Ref. [15].

2.2 Particle-hole symmetry

Considering the chemical potential tuned to half-filling such that n = 1, the Hubbard
model exhibits a particle-hole symmetry. This symmetry requires a bipartite lattice, such
as the conventional square lattice. The particle-hole transformation is explicitly given by
the transformation

d†iσ = (−1)iciσ. (2.2.1)

The factor (−1)i takes the value 1 on one sublattice and (−1) on the other. d†iσ denotes
a hole-creation operator on site i and spin σ. Creating a hole in this way is analogous to
annihilating an electron. The hole operators satisfy fermionic anti-commutation relations,
similarly to the electron operators. The particle-hole transformation leaves the kinetic
hopping term invariant

c†iσcjσ → (−1)i+jdiσd
†
jσ = d†jσdiσ. (2.2.2)

By performing a trivial shift of the chemical potential, the Hamiltonian can be written
in a form such that the particle-hole symmetry is evident in the interaction term. The
equivalent form is

H = −t
∑
〈i,j〉σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
− µ′

∑
i

(ni↑ + ni↓) .

(2.2.3)
It can now be easily verified that the interaction is invariant under the transformation
(2.2.1). This leaves the chemical potential the only part of the Hamiltonian not invariant
under the particle-hole transformation. In conclusion, the Hamiltonian is particle-hole
symmetric for µ′ = 0, which is at half-filling n = 1.
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2.3 Mott-Hubbard transition

The half-filled Hubbard model with strong interactions U/t� 1 represents the strongly
correlated regime. The strong interactions prohibit doubly occupied sites, and each site
must be singly occupied. The wave functions localize due to the energy barrier U , and
the system becomes an insulator. This type of insulator is called a Mott insulator and
has a different origin compared to conventional band insulators [16].

By reducing the filling fraction, we obtain the dilute limit. In this limit, the interac-
tion U can be considered a weak perturbation, as few electrons are present. The model
exhibits characteristics of the weakly interacting electron model and can be considered
metallic. Numerous attempts have been made towards understanding the transition be-
tween the Mott- and metallic phase [17, 18], but to this day, a solution is not known.
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Chapter 3

Finite temperature diagrammatic
expansion

The finite temperature behavior of many-body systems includes fascinating properties;
among these, temperature-driven phase transitions. Systematic development of quantum
field theory for finite temperature is possible, allowing a perturbative treatment of a
physical system at finite temperature [19]. In this chapter, we develop the formalism
of a general perturbative approach at finite temperature. The formalism is furthermore
applied to a diagrammatic expansion in the hopping operator t̂ and the interaction Û for
the Hubbard model.

3.1 Finite temperature formalism

The main goal of developing a finite temperature theory is to obtain a systematic method
for calculating the thermal expectation values of operators defined in the Heisenberg
picture. The Heisenberg picture can be related to the Schrödinger picture, often used in
introductory texts to quantum mechanics [20], by incorporating the time evolution into
the operators instead of the states. The operators in the Heisenberg picture ÔH(t) are
related to the operators in the Schrödinger picture ÔS as

ÔH(t) ≡ eiHtÔSe−iHt, (3.1.1)

where the operators in the Schrödinger picture ÔS are time-independent by construction
and H is the model Hamiltonian. The expectation value in the zero temperature, T = 0,
case is found by considering the time-independent ground state

〈O(t)〉0 = 〈Ψ0| ÔH(t) |Ψ0〉 , (3.1.2)

where |Ψ0〉 represents the ground state or a set of ground states for a system with
degenerate ground states. In the finite temperature, T 6= 0, case it is insufficient to
consider the ground state, and a complete set of states spanning the Hilbert space must

9
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be considered. Finite temperature expectation values are evaluated according to the
partition function Z and the density operator ρ̂ where

Z =
∑
ν

〈Ψν | e−βH |Ψν〉 (3.1.3)

and

ρ̂ =
e−βH

Z
. (3.1.4)

The expectation value of an operator in the Heisenberg picture at finite temperature,
〈O(t)〉T , is then given as

〈O(t)〉T = Tr 〈Ψ| ρ̂ÔH(t) |Ψ〉 . (3.1.5)

The trace, denoted Tr, is defined as the sum over a complete set of states. Following
the Matsubara formalism [19], we introduce a generalized Heisenberg picture in order
to treat the time evolution and the Boltzmann weight e−βH similarly. This is done by
performing a Wick rotation τ = it, where τ is now denoted imaginary time [21]. An
operator in the generalized Heisenberg picture can then be related to the Schrödinger
picture as

ÔH(τ) ≡ eHτ ÔSe−Hτ . (3.1.6)

In the rest of the thesis we will exclusively be concerned with the finite temperature case,
hence referring to Eq. (3.1.6) as the Heisenberg picture.

3.2 Correlation function

A central quantity of interest when studying many-body systems is the single-particle
correlation function, often called a Green’s function. The Green’s function quantifies
correlations in time and space and provides a basis for evaluating the correlation length of
the system. The finite temperature counterpart of the Green’s function Gαβ (xi, τ ;xj , τ

′)
is defined in terms of imaginary time. It is evaluated with respect to the grand canonical
ensemble

Gαβ
(
xi, τ ;xj , τ

′) ≡ −Tr
(
ρ̂Tτ

[
ciα(τ)c†jβ(τ ′)

])
, (3.2.1)

where the fermionic operators are in the Heisenberg picture with spin indices α and β.
Tτ is the time ordering operator and is defined as

Tτ

[
Ô2(τ ′)Ô1(τ)

]
= Ô2(τ ′)Ô1(τ)Θ(τ ′ − τ)− Ô1(τ)Ô2(τ ′)Θ(τ − τ ′), (3.2.2)

where Θ denotes the Heaviside step function. The definition of the time ordering operator
trivially extends to any finite number of operators. Each commutation of fermionic
operators gives rise to a sign due to the anti-commutation relations shown in Eq. (2.1.2).
The total number of commutations in order to obtain a time ordered product of operators
determines the total sign.
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3.3 Perturbation theory

The correlation function can be found by a perturbative treatment of the system. We
start out by splitting the Hamiltonian in an unperturbed part H0 and a perturbation H1

H = H0 +H1, (3.3.1)

where the Ĥ0 yields a completely solvable problem. It is now reasonable to treat H1

through a perturbative expansion if it is proportional to some small parameter α. In
order to obtain an expansion in a convenient form, we introduce the interaction picture.
In the interaction picture, the time evolution is split between the operators and the
states. The states |ΨI(τ)〉 are defined as

|ΨI(τ)〉 ≡ eH0τ |ΨS(τ)〉 , (3.3.2)

where |ΨS(τ)〉 denotes the state in the familiar Schrödinger picture. The operators in
the Heisenberg picture ÔH and the interaction picture ÔI are related to the Schrödinger
picture as

ÔH(τ) ≡ eHτ ÔSe−Hτ (3.3.3)

ÔI(τ) ≡ eH0τ ÔSe
−H0τ . (3.3.4)

Combined, this gives the following relation between operators in the interaction picture
and the Heisenberg picture

ÔH(τ) = eHτe−H0τ ÔIe
H0τe−Hτ . (3.3.5)

The time dependence of the operators in the Heisenberg picture, may be efficiently related
to the interaction picture by introducing the time-evolution operator

Û (τ1, τ2) ≡ eH0τ1e−H(τ1−τ2)e−H0τ2 (3.3.6)

such that
ÔH(τ) = Û(0, τ)ÔI(τ)Û(τ, 0). (3.3.7)

The time evolution operator Û governs the time evolution of the states in the interaction
picture. By using Û(τ, τ ′), we can relate the perturbed eigenstates to the supposedly
known unperturbed eigenstates by the Gell-Mann Low theorem [22]. Through a relation
between the unperturbed eigenstates and the perturbed eigenstates, we get a perturbative
expansion for the thermal expectation value of operators.

The thermal expectation value of a time-ordered product of operators Â(τ ′m)B̂(τ ′m−1)...F̂ (τ ′1)
in the Heisenberg picture, may be expressed as the perturbation series

−Tr
(
e−βH0

∑∞
n=0

(−1)n

n!

∫ β
0 dτ1...

∫ β
0 dτnTτ

[
H1(τ1)...H1(τn)Â(τ ′m)B̂(τ ′m−1)...F̂ (τ ′1)

])
Tr
(
e−βH0

∑∞
n=0

(−1)n

n!

∫ β
0 dτ1...

∫ β
0 dτnTτ [H1(τ1)...H1(τn)]

) ,

(3.3.8)
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where the denominator originates from the grand canonical partition function Z. We
integrate over all internal times τi, while the external times τ ′i remain fixed as they
originate from the external operators Â(τ ′m)B̂(τ ′m−1)...F̂ (τ ′1). We are interested in this
form applied to the single particle Green’s function in Eq. (3.2.1)

Gαβ(x, τ ;x′, τ ′) =

−Tr
(
e−βH0

∑∞
n=0

(−1)n

n!

∫ β
0 dτ1...

∫ β
0 dτnTτ

[
H1(τ1)...H1(τn)cα(x, τ)c†β(x′, τ ′)

])
Tr
(
e−βH0

∑∞
n=0

(−1)n

n!

∫ β
0 dτ1...

∫ β
0 dτnTτ [H1(τ1)...H1(τn)]

) .
(3.3.9)

Eq. (3.3.9) represents factorial many terms to each order due to the time-ordering opera-
tor Tτ and does not immediately appear manageable. The solution is to use a generalized
form of Wick’s theorem for finite temperature [23]. It reduces a perturbative expansion
as (3.3.8) to an expansion of fully contracted operators [19]. A product of operators is
fully contracted if each operator in the product is contracted with another operator. A
contraction of operators ÂB̂, is in the finite temperature formalism defined as

ÂB̂ =
〈
Tτ

[
ÂB̂
]〉

H0

= Tr
(
ρ̂0Tτ

[
ÂB̂
])
, (3.3.10)

where ρ̂0 is the density operator corresponding to the unperturbed Hamiltonian H0

such that ρ̂0 = Z−1e−βH0 . For the single particle Green’s function, with correspond-
ing fermionic operators, the contractions take the form of bare propagators

G0
αβ(xi, τ ;xj , τ

′) =
〈
Tτ

[
ĉiα(τ)ĉ†jβ(τ ′)

]〉
Ĥ0

. (3.3.11)

Fully contracted products of operators are the constituents of any diagrammatic analysis.
By factorizing sets of disconnected operators, it may be shown that, to all orders, the dis-
connected contractions cancel exactly to the denominator of the perturbative expansion.
A set of contractions is disconnected, if the set can be factored into two disjoint set of
contractions. Such a cancellation of the partition function Z is especially convenient for
methods suffering from the fermionic sign problem. In the proceeding we will consider a
specific perturbative expansion of the Hubbard Hamiltonian, giving rise to the method
of irreducible vertices in diagrammatic Monte Carlo introduced by Carlström [1].

3.4 Expansion in local and non-local parameters

In the separation of the Hamiltonian in Eq. (3.3.1) for the Hubbard model it is customary
to choose either the interaction operator Û or the hopping term t̂ as the perturbation H1

[24, 25]. The choice is usually motivated by wanting a perturbation in a small parameter,
to obtain a well-behaved and convergent expansion.

The method of irreducible vertices introduced by Carlström [1] is based on an expan-
sion in both the interaction parameter U and the hopping parameter t, that isH1 = Û+t̂.
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This leaves H0 = µ̂ both local and bi-linear. In this specific expansion, Û will serve as
a way to connect the operators originating from the hopping operator t̂. In the strong
coupling limit, where U � 0, it may seem contradictory to expand in U . However, this
will not cause additional bias due to any truncation, as all local interactions are even-
tually summed to infinite order. Due to the local unperturbed Hamiltonian H0 = µ̂, all
bare propagators must be local as well

G0
αβ(xi − xj , τ) = G0

αβ(τ)δijδαβ. (3.4.1)

The Dirac delta function δαβ originates from the fact that there are no spin-flipping
operators in the unperturbed Hamiltonian. Furthermore, this is the case for the full
Hubbard Hamiltonian as well. It is instructive to consider an example of a typical term
of the expansion for this particular choice of perturbation H1. We neglect all internal
integrations and prefactors for the moment. It can then be written

...tc†jσ′clσ′tc
†
iσcjσUc

†
jσcjσc

†
jσ′cjσ′tc

†
iσcjσ′tc

†
jσ′clσ′ ... (3.4.2)

where it is clear that both the hopping operator t̂ and the on-site interaction Û contribute.
From Eq. (3.4.1), it is clear that only contractions between operators on equal sites are
non-zero. This vastly reduces the number of contractions to consider. However, for
terms with multiple operators on the same site, the number of possible contractions is
factorial. The possible contractions on a single site may form connected and disconnected
contributions. Due to contributions from both Û and t̂, a single site may host a large
number of distinct contractions. This is captured conveniently by introducing the notion
of irreducible vertices.
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Chapter 4

Method of irreducible vertices

A perturbative expansion in both the non-local hopping operator t̂ and the on-site in-
teraction Û simultaneously, gives a vast number of possible local processes. In order to
account for both sign and connectivity of possible contractions, we will, in this section,
introduce the notion of irreducible vertices, first presented by Carlström in Ref. [1]. We
will first define the notion in terms of connected and disconnected contractions. Further,
we introduce a time-trivial operator basis. The basis gives the irreducible vertices a
convenient form for storing in a database that is constructed recursively.

4.1 Definition

In order to define the irreducible vertices, we adopt the shorthand notation used by
Carlström

Γn ≡
(−1)n

n!

∫ β

0
dτ1...dτnTτ . (4.1.1)

Expanding in both t̂ and Û it is convenient to extend the notation to

ΓnΓm ≡
(−1)n+m

n!m!

∫ β

0
dτ1...dτn+mTτ . (4.1.2)

The expansion can now be written in a simple form to n’th and m’th order in both the
interaction operator Û and hopping operator t̂∑

n

ΓnH
n
1 =

∑
n,m

ΓnΓmÛ
nt̂m, (4.1.3)

where H1 = Û + t̂ is the perturbation considered. We now use that Û =
∑

i Ûi, where i
runs over the lattice sites, and expand further to∑

n

ΓnH
n
1 =

∑
m,n1,n2...

ΓmΓn1Γn2 ...Û
n1
1 Ûn2

2 ...t̂m. (4.1.4)

15
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We consider the set of contractions on a single site i and make a distinction between
external operators, originating from the non-local operator t̂ and local operators origi-
nating from the on-site interaction Û . The external operators give rise to external lines
connecting the site to diagrammatic elements on other sites.

Figure 4.1 shows two of many ways to contract operators on a single site i. The
contractions form one or more pieces connected to external operators. The figure shows
two distinct sets of contractions for a site hosting six external operators originating from
the hopping operator in Eq. (4.1.4).

(a) (b)

Figure 4.1: A single site, hosting six external operators visualized as black diamonds at
the edge. The on-site interaction U is denoted as black dots. The connectivity in a)
shows how the operators form two distinct irreducible vertices, one four-legged vertex,
and one two-legged vertex. b) shows all external operators connected forming a single
six-legged irreducible vertex.

Proceeding, we consider a finite number of external operators on site i due to t̂. We
consider the product of operators to be time-ordered, and denote it Ō. This means that
Ō consists of creation and annihilation operators at imaginary times {τ1, ...τn}. In the
following, we do not write the imaginary time dependence explicitly. The product Ō
corresponds to a specific order in the hopping operator, but we keep the summation over
on-site interactions Û such that the sum can be taken to infinite order. All possible
contractions at site iis given by

T (Ō) = ±
∑
n

〈
ΓnÛ

n
i Ō
〉
µ
. (4.1.5)

The sign of this expression is a non-local property, as it depends on how the external
operators are contracted with operators on other sites. A thorough discussion of the sign
is given in section 5.2.1.

It is necessary to separate the connected set of contractions from the disconnected set
of contractions in (4.1.5), in order to develop an efficient diagrammatic approach. This
includes separating all sets of contractions that are not connected to any of the external
operators Ô. The next step is factorizing the internal contractions
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∑
n

〈
ΓnÛ

n
i Ō
〉
µ

=
∑
n,m

〈
ΓnÛ

n
i Ō
〉
µ,e

〈
ΓmÛ

m
i

〉
µ
. (4.1.6)

〈...〉e denotes all contractions connected to at least one external operator in the product Ō
while the second factor consists of contractions completely disconnected from all external
operators. We can rewrite the disconnected contractions∑

m

〈ΓmUm〉µ = Tr
(
e−β(Û+µ̂)

)
. (4.1.7)

The set of contractions connected to at least one external leg corresponds to the expec-
tation value of Ō with respect to the local Hamiltonian HL = Û + µ̂∑

n

〈
ΓnÛ

n
i Ō
〉
µ,e

=
〈
Ō
〉
µ̂+Û

. (4.1.8)

Due to the locality of the operators such an expectation value is always possible to
calculate, by considering the finite Hilbert space shown in Eq. (2.1.4).

Even though all contractions are connected to at least one external operator, this
does not imply that all external operators are connected, as shown in figure 4.1 a). We
proceed to factorize the subset of contractions into elements where all external operators
are connected. In the simplest non-trivial case, we consider a site with four external
operators c†iσ, c

†
iσ′ , ciσ, and ciσ′ , all originating from non-local hopping processes.

The four operators can be contracted in multiple ways, whereas many of them yield
zero. In conclusion, we characterize them by connectivity and write them as a sum,

∑
n

〈
ΓnÛ

n
i c
†
iσciσc

†
iσ′ciσ′

〉
µ,e

=
∑
n

〈
ΓnÛ

n
i c
†
iσciσc

†
iσ′ciσ′

〉
µ,c

+
∑
n,m

〈
ΓnÛ

n
i c
†
iσciσ

〉
µ,c

〈
ΓmÛ

m
i c
†
iσ′ciσ′

〉
µ,c

−
∑
n,m

〈
ΓnÛ

n
i c
†
iσciσ′

〉
µ,c

〈
ΓmÛ

m
i ciσc

†
iσ′

〉
µ,c
.

(4.1.9)

The subscript 〈...〉c denotes that all external operators are connected and the minus sign
of the third term arises from the commutation of the operators in order to have a time-
ordered product of operators. We have successfully decomposed Eq. (4.1.8) into a sum of
irreducible vertices, and these vertices will form the basis of the diagrammatic expansion.

For the case of only two external operators, the irreducible vertex takes the simple
form of ∑

n

〈
ΓnÛ

n
i c
†
iσciσ

〉
µ,c

=
∑
n

〈
ΓnÛ

n
i c
†
iσciσ

〉
µ,e
. (4.1.10)

It is easily evaluated according to Eq. (4.1.8), as an expectation value. Furthermore, we
can generalize the approach to any finite number of external operators. The main idea
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is to consider the expectation value as given in Eq. (4.1.8) and to subtract all possible
contractions which are reducible. The set of the reducible contractions is captured by

∑
A⊆Ō,O1∈A

ξŌ,A
∑
n,m

〈ΓnUnA〉µ,c
〈
ΓmUmŌ \A

〉
µ,e
, (4.1.11)

where ξŌ,A denotes the fermionic sign originating from the commutations of the operators
get a time-ordering

Tτ Ō → TτA× Tτ (Ō \A). (4.1.12)

The summation of A is over all proper subsets of Ō, such that Ô1 ∈ A and all external
operators in A is connected. Hence, the expectation value of the operators Ō is now fac-
torized into an irreducible vertex and all possible disconnected contractions. This is done
systematically, such that each term consists of a smaller irreducible vertex containing Ô1

and the set of contractions not connected to Ô1.
Furthermore, the scheme can be performed repeatedly by factorizing the second factor

of Eq. (4.1.11) into irreducible vertices of fewer external legs. The process terminates in
the trivial case shown in Eq. (4.1.10). The recursive relation is now given as

V [Ō] =
∑
n

〈
ΓnÛ

n
i Ō
〉
µ,c

=
∑
n

〈
ΓnÛ

n
i Ō
〉
µ,e

−
∑

A⊆Ō,O1∈A

ξŌ,A
∑
n,m

〈ΓnUnA〉µ,c
〈
ΓmUmŌ \A

〉
µ,e

(4.1.13)

The recursive procedure is reminiscent of what is done by Rossi in Ref. [14] in a deter-
minant diagrammatic approach. The computational cost is dependent on the number
of elements N that can be connected, in this case external operators. The total cost
of the recursive algorithm is estimated to O(N) = 2NN3. The N3 factor is due the
determinants of size N evaluated, while 2N corresponds to the number of determinants.
In Ref. [14], the computational cost is justified by being able to take the thermody-
namic limit directly. This is, however, not the motivation in Carlström’s method, as the
thermodynamic limit is always taken analytically in diagrammatic Monte Carlo.

In contrast to the connected operators in determinant diagrammatic Monte Carlo
methods [14], the operators considered in Eq. (4.1.11) are all localized on a single site.
This gives the irreducible vertices a convenient form to store in a database, making
the computational cost less critical as it is performed before the diagrammatic Monte
Carlo simulation. An irreducible vertex represents a large number of ways to connect
the external operators, where in each case, all the external operators are connected. The
irreducible vertices are used to ensure connectivity of the diagrams in a systematic way,
while allowing for a convenient evaluation of the sign of diagrams.
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4.2 Analytical form

Eq. (4.1.13) provides both a definition of irreducible vertices and a method for calculating
them. Consequently, we can, in principle, calculate irreducible vertices up to arbitrary
order. However, calculating the value of an irreducible vertex is computationally expen-
sive, and would not be feasible in an efficient Monte Carlo approach. In this section,
we will follow Carlström [1] and develop a convenient form of the irreducible vertices for
storing in a database.

In order to handle the time evolution of the external operators Ō, we introduce a
basis with a trivial time-evolution with respect to the local Hamiltonian HL = Û + µ̂.
This is done by introducing the operator basis

c†iσ = d†iσ + hiσ d†iσ = c†iσniσ̄ hiσ̄ = c†iσ(1− niσ̄)

ciσ = diσ + h†iσ diσ = ciσniσ̄ h†iσ̄ = ciσ(1− niσ̄).
(4.2.1)

The d-operators may be interpreted as creation and annihilation operators for a spin state
on a site, given that the complement spin state is occupied. Conversely, the h-operators
can be considered creation and annihilation operators, given that the complement spin
state is unoccupied. Note how the dagger notation of the h-operators is opposite of that
of the c-operators, in reminiscence of the hole-operators defined in section 2.2.

The number of operators in the single-site basis is doubled, rendering a total of eight
operators. The advantage of the new basis is that the time-evolution operators can be
evaluated with respect to a single state only, hindering the time evolution to mix states.
We evaluate the time dependence as

d†iσ(τ) = eτHLd†iσe
−τHL = e(U−µ)τd†iσ

hiσ̄(τ) = eτHLhiσe
−τHL = e−µτhiσ

diσ(τ) = eτHLdiσe
−τHL = e−(U−µ)τdiσ

h†iσ̄(τ) = eτHLh†iσe
−τHL = eµτh†iσ.

(4.2.2)

The calculation of the trivial time-evolution is exemplified by considering d†iσ(τ) applied
to its eigenstates. We let σ =↑ and note that d†iσ annihilates three of the four eigenstates,
namely |1, 1〉, |1, 0〉 and |0, 0〉. This leaves |0, 1〉 as the only state with a non-zero contri-
bution, and the Hamiltonian governing the time evolution can be evaluated explicitly

d†iσ(τ) |0, 1〉 = eτHLd†iσe
−τHL |0, 1〉 = eτHLeµτd†iσ |0, 1〉 =

e(U−2µ)τeµτ |1, 1〉 = e(U−µ)τ |1, 1〉
(4.2.3)

leaving the time dependence as shown in Eq. (4.2.2). The time-dependent factors can be
written as real numbers in the form of exponential functions and then factored out. We
can then write the product of external operators in the c-basis with time dependence, as



20 CHAPTER 4. METHOD OF IRREDUCIBLE VERTICES

a sum of products of operators in the time-trivial basis, with a factored time dependence
f(τi). The resulting form is

Ô1(τ1)...ÔN (τN ) = f1 ({τi}) ô1,1...ô1,N + ...+ fM ({τi}) ôM,1...ôM,N , (4.2.4)

where Ôi denote operators in the c-basis, while ôj,l denote the time-trivial part of the
operators in the time-trivial basis. The total number of operator products M equals 2N

because for each operator in the c-basis, we obtain two operators in the time-trivial basis.
To better understand Eq. (4.2.4), we consider the simple case

Ô1(τ1)Ô2(τ2) = ciσ(τ1)c†iσ(τ2). (4.2.5)

We transform the operators to the time-trivial basis and factorize the time dependence

ciσ(τ1)c†iσ(τ2) =
(
d†iσ(τ1) + hiσ(τ1)

)(
diσ(τ2) + h†iσ(τ2)

)
= d†iσ(τ1)diσ(τ2) + d†iσ(τ1)h†iσ(τ2) + hiσ(τ1)diσ(τ2) + hiσ(τ1)h†iσ(τ2).

(4.2.6)

In the present case both cross-terms d†iσ(τ1)h†iσ(τ2) and d†iσ(τ1)h†iσ(τ2) vanish. However,
in the general case it is not true that all cross-terms evaluate to zero, and a total number
of 2N terms must be evaluated. Eq. (4.2.6) simplifies to

e(U−µ)(τ2−τ1)d†iσdiσ + eµ(τ2−τ1)hiσh
†
iσ, (4.2.7)

giving a simple form for the two-legged vertex. Considering the recursive relation in Eq.
(4.1.13), we realize that each term consists of products of expectation values as given in
Eq. (4.1.8). In the time trivial basis, this expectation value takes the convenient form

〈o1(τ1)...oN (τN )〉µ̂+Û = f({τi}) 〈o1...oN 〉µ̂+Û . (4.2.8)

The second factor is a time-independent expectation value, namely a real number depen-
dent on the parameters Û , µ̂ and the inverse temperature β. The expectation value is
easily evaluated with respect to the local Hamiltonian.

As seen in Eq. (4.1.13), an irreducible vertex consists of a sum of expectation values.
Each expectation value is of a distinct subset of the operator product. Every operator
subset has a time dependence of the form given in Eq. (4.2.8). However, using the expo-
nent product rule eaeb = ea+b, the time dependence of each factor adds up to a total time
dependence equal for each term in the recursion. This causes a massive simplification, as
the time dependence for the connected and disconnected set of contractions are identical.
An irreducible vertex may now be stored as a list of time multipliers [α1, α2, ...] and a sum
of expectation values, adding up to a single expectation value stored as a floating-point
number. The simple form of the irreducible vertices makes them suitable for storing in
a database.
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Table 4.1: Operators in the time-trivial basis and their corresponding numerical repre-
sentation.

d†↑ [111]
d†↓ [110]
d↑ [101]
d↓ [100]
h†↑ [011]
h†↓ [010]
h↑ [001]
h↓ [000]

4.3 Construction of database

The irreducible vertices originate from the hopping operator t̂ connected by the on-site
interaction Û in the Hubbard model. An irreducible vertex is now defined in terms of the
eight operators given in Eq. (4.2.1). This means the number of irreducible vertices scale
as 8N , where N is the number of external operators in the vertex. This scaling effectively
limits the maximum number of legs for the irreducible vertices possible to store. However,
most of the vertices are zero and do not need to be stored explicitly, similarly to what is
done in sparse matrix methods. Note that because the local Hamiltonian conserves the
number of particles, N must be an even integer.

Building a database for the irreducible vertices, we may store each operator as a
sequence of three boolean values, as this gives 23 = 8 possibilities. More specifically, the
first boolean value denotes if it is a d or h type of operator, the second value denotes
whether it is a creation operator or an annihilation operator, and the last value deter-
mines spin. With the convention that d-type operators, creation operators and spin up
correspond to True values, the operators are now represented as shown in Table 4.1.

Now an irreducible vertex may be stored as a string of operators in the form shown
in Table 4.1 giving a string of boolean values as

d†↑d↑...h↓h
†
↓ → 111101...000010 (4.3.1)

For each irreducible vertex represented by a string of boolean values, we store the time
multipliers {αi} and the time-independent expectation value. As most products of op-
erators evaluate to zero, we only store finite expectation values. The complete database
takes a form similar to the one shown in Table 4.2.
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Table 4.2: Irreducible vertices represented as strings of operators with their corresponding
time multipliers and a total expectation value.

111101 [U − µ,−(U − µ)]
〈
d†↑d↑

〉
Û+µ̂

011001 [µ,−µ]
〈
h†↑h↑

〉
Û+µ̂

...
...

...
111...101 [α1, ..., αn]

〈
d†↑...d↑

〉
Û+µ̂



Chapter 5

Expansion based on irreducible
vertices

The notion of irreducible vertices gives a convenient way to classify diagrams based on
connectivity. The sets of possible contractions can be represented in a diagrammatic
manner. A general diagram will then consist of external hopping lines originating from
the non-local hopping operator t̂ and irreducible vertices. To reduce the space of dia-
grams, the two-legged irreducible vertices are sorted into bold propagator lines. This is a
method for limiting the possible diagrams to skeleton diagrams, which is a common ap-
proach in diagrammatic Monte Carlo. Skeleton diagrams are often used in quantum field
theory when discussing convergence properties of diagrammatic expansions [26]. The use
of skeleton diagrams in diagrammatic Monte Carlo, as is the motivation in the present
case, is described in section 6.3.

5.1 Definition of bold propagators

The hopping operator t̂ between nearest neighboring sites is the only non-local contribu-
tion in the Hubbard Hamiltonian. This means that a relatively large diagrammatic space
must be considered for any evaluation of non-local Green’s functions in position space.
This is not feasible for fermionic models suffering from the sign problem, and techniques
for reducing the space of diagrams are essential.

We introduce the bold propagatorGb(τ,x; τ ′,x′) as the sum of a subset of contractions
connecting the external operators ciσ(τ) and c†jσ(τ ′). In this particular case, the bold
propagator represents all two-legged irreducible vertices. Consequently, all two-legged
irreducible vertices are accounted for in advance by using bold propagators. It should be
noted that a site may host multiple two-legged irreducible vertices.

From a diagrammatic point of view, a bold propagator Gb(τ,x; τ ′,x′) represents all
possible directed paths connecting site i and j, starting at imaginary time τ and ending
at imaginary time τ ′. An example of directed paths connecting two sites i and j is shown
in Figure 5.1. There are, in principle, infinitely many hopping processes connecting two
sites. However, each path’s contribution is heavily dependent on the length of the path.

23
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j

i

Figure 5.1: Examples of processes contributing to the bold line propagator between site i
and site j, where each directed path represents a hopping process. Black dots denote two-
legged irreducible vertices, while yellow dots represent more general irreducible vertices.
See text for further details.

The length of each path n is determined by the number of hoppings. In this sense, the
orange hopping process has a length of 7 hoppings, the green hopping process has length
9, and the blue hopping process has length 11. For each directed path, the contribution
is calculated according to

Gpath(τ − τ ′;xj − xi) =

tn
∫ β

0
dτ1...dτn−2

〈
Tτ

(
c†i (τ

′)ci(τ1)
)〉

1
...
〈
Tτ

(
c†j(τn−2)cj(τ

′)
)〉

n−1
,

(5.1.1)

where t denotes the hopping parameter and Tτ is the time-ordering operator. The
fermionic operators c†i (τ) and ci(τ ′), with their respective imaginary times, are the exter-
nal operators originating from the propagator. The other fermionic operators originate
from the hopping operator t̂. All fermionic operators are ordered in two-legged irreducible
vertices

〈
Tτ

(
Ô1(τ)Ô2(τ ′)

)〉
Û+µ̂

.

Feynman rules for bold propagators

We may define the following Feynman rules in order to calculate the bold propagator

1. Construct all distinct and directed paths of length n, connecting site i and site j
where each line segment start at a site and end at a nearest neighboring site.
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2. For each of the n line segments associate a factor t, denoting the hopping parameter.

3. For each of the n − 1 irreducible vertices, neglecting the starting point and end-
point, associate the thermal expectation value of the vertex and associated time
dependence.

4. For each of the n− 2 internal time variables τi, integrate from 0 to β.

The value of a bold propagator, representing all paths connecting two sites i and j, takes
the form

Gb(xi, τ ;xj , τ
′) =

∞∑
n

ant
n

∫ β

0
dτ1...dτn−2

〈
Tτ

(
c†i (τ

′)ci(τ1)
)〉

1
...
〈
Tτ

(
c†j(τn−2)cj(τ

′)
)〉

n−1

(5.1.2)

The coefficient an denotes the number of paths of length n connecting sites i and j. The
exact form of an is presented in section 7.2. This leaves the main challenge as to solve
the many-dimensional integrals in imaginary time. A product of exponential functions
can usually be integrated analytically, however, this is not as simple in the presence of
the time-ordering operator.

Properties of the bold propagators

In order to understand the properties of the series in Eq. (5.1.2), we may consider the
power series

∞∑
n

xn ≡
∞∑
n

ant
n

∫ β

0
dτ1...dτn−2{Tτ [ci(τ1)c†i (τ)]}1...{Tτ [cj(τn−2)c†j(τ

′)]}n−1. (5.1.3)

The two-legged irreducible vertex can be calculated easily as the thermal expectation
value with respect to Û + µ̂ as shown in Eq. (4.1.8) and Eq. (4.1.10). We assume,
without loss of generality, σ =↑ and let τ ′ > τ such that

V [ci↑(τ
′)c†i↑(τ)] = Tr

[
e−βHLci↑(τ

′)c†i↑(τ)
]
. (5.1.4)

To simplify the time dependence, we transform the operators to the time trivial basis in
Eq. (4.2.1) and use the trivial time dependence from Eq. (4.2.2) to factorize the time
evolution of the operators. This transformation is shown explicitly in Eq. (4.2.6) and
evaluating the trace gives

V [ci↑(τ
′)c†i↑(τ)] =

1

Z

[
e(U−µ)(τ ′−τ) 〈0, 1| e−βHLdiσd

†
iσ |0, 1〉Û+µ̂ +

eµ(τ ′−τ) 〈0, 0| e−βHLhiσh
†
iσ |0, 0〉Û+µ̂

] (5.1.5)
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where the d- and h type operators are defined such that they annihilate all but one state
in the occupational number basis in Eq. (2.1.4). Similar arguments for the case τ ′ < τ
are used after applying the time-ordering operating, giving the full expression

V
[
ci(τ

′)c†i (τ)
]

=
1

Z

[(
e−(U+µ)(τ ′−τ)e−µβ + e−µ(τ ′−τ)

)
θ(τ ′ − τ)

−
(
e−(U+µ)(τ ′−τ)e−(U+2µ)β + e−µ(τ ′−τ)e−µβ

)
θ(τ − τ ′)

] (5.1.6)

The Green’s function is anti-periodic in the time difference τ ′ − τ with a period of β,
hence it is sufficient to consider time differences on the interval [0, β]. Figure 5.2 shows
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Figure 5.2: The value of a two-legged irreducible vertex G(τ2− τ1) for different values of
µ. β = 10 in units of U and the imaginary time difference τ2 − τ1 may take any value
on the domain [−β, β]. a) shows the case for µ = −U

2 where U is the on-site interaction.
This is the case of half-filling, and the figure shows a particle-hole symmetry. b) shows
the case of µ = 0. c) shows the case of µ = U .

the value of the two-legged irreducible vertices for various values of the chemical potential
µ and on-site interaction U for the inverse temperature β = 10 in units of U . The on-site
propagator G(τ ′ − τ) =

〈
Tτ (ci(τ

′)c†i (τ)
〉
Û+µ

has a range of [−1, 1].

5.2 Full diagrammatic expansion

With a well-defined notion of irreducible vertices and bold propagators, we may define
Feynman rules full propagator Gαβ(xi, τ ;xj , τ

′) associated with the strong-coupling Hub-
bard model. The diagrams consist of points representing irreducible vertices and dotted
lines representing bold hopping lines connecting the vertices. Examples of such diagrams
are shown in Figure 5.3.

1. Draw all topologically distinct diagrams with n bold hopping lines following the
rules

(a) Each diagram is connected through irreducible vertices.
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(a) (b) (c) (d)

Figure 5.3: Low order diagrams in the expansion based on irreducible vertices. The black
dots denote irreducible vertices, with a various numbers of external legs. The dotted lines
denote bold hopping lines and the solid lines denote the operators originating from the
single-particle Green’s function.

(b) All irreducible vertices have more than two external lines since all simple
irreducible vertices are handled in the boldification process. The zeroth-order
diagram is an exception, as the external lines are due to the external operators
from the single-particle Green’s function.

2. For each of the n bold hopping lines associate a factor Gb(x′, τ ′;x, τ).

3. For each irreducible vertex, associate the time-dependent value of the irreducible
vertex stored in the database.

4. Integrate all out all internal time variables by performing the imaginary time inte-
grals

∫ β
0 dτi.

5. For each irreducible vertex, where none of the external operators originate from
Gαβ , sum over all possible positions x.

6. For each bold hopping line, sum over possible spins (↑, ↓).

7. Interpret any bold propagator at equal imaginary time as

lim
τ ′→τ+

Gb(xi, τ ;xj , τ
′)

We denote the number of bold hopping lines in a diagram as the order of the diagram.
Some examples of low order diagrams are given in Figure 5.3. Diagram a) is a first-order
diagram with a single fourth-order irreducible vertex. Diagram b) and c) are second and
third-order diagrams, consisting of six- and eight legged irreducible vertices. Diagram d)
differs from the other shown diagrams, as it may contribute to a non-local propagator.
This can be seen as it contains bold hopping lines connecting two distinct irreducible
vertices.
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5.2.1 Sign of diagram

Due to the anti-commutation relations of the fermionic operators, the time-ordering gives
rise to the sign of each diagrammatic contribution. In conventional diagrammatics, the
sign is determined by the number of fermionic loops. However, in more general models,
the sign must be identified through a connection to Wick’s theorem [27].

Following Carlström, we introduce a reference contraction, meaning a contraction
where the sign is known. Although there are many possible choices for such a contraction,
we choose the natural contraction, defined as the case where each operator is contracted
with its natural partner. An example of this is

...tc†i (τ1)cj(τ1)tc†j(τ2)ck(τ2)Uc†j(τ3)cj(τ3)c†j(τ3)cj(τ3)... (5.2.1)
It is convenient to relate the natural contraction to a reference contraction for the irre-
ducible vertices. A simple way of doing this is to require all external operators contracted
with an operator such that all fermionic lines propagate forward in time, are temporally
non-intersecting and non-overlapping. An example of such a contraction is

c†i (τ6)ci(τ5)c†i (τ4)ci(τ3)c†i (τ2)ci(τ1), (5.2.2)
where τ6 > τ5... > τ1. This particular contraction is shown in Figure 5.4 a) and it can
be shown that this contraction carries a positive sign. This is done by relating it to the
natural contraction without commuting any of the operators. Such a process conserves
the positive sign.

Knowing the reference contraction and its positive sign, we can determine the sign
of any given contraction. This is done by relating it through operations and keeping
track of any change of sign. It is sufficient to introduce two odd operations. The sign of
the contraction is given by the number of performed operations when constructing the
reference contraction from the contraction of interest.

We introduce the commutation operation which commutes two operators. The op-
eration is odd, due to the anti-commutation relation of fermionic operators. For the
reference contraction shown in Eq. (5.2.2), the application of the commutation operator
performs the transition from Figure 5.4 a) to b). The second basic update required is
the swap operator. It swaps the connectivity of external operators. This operation may
connect distinct irreducible vertices and hence construct a connected diagram contribut-
ing to the observable of interest. The swapping of operators in the reference contraction
in Eq. (5.2.2), is shown in Figure 5.4 a) to c).

The reference contraction of a six-legged irreducible vertex and examples of the com-
mutation and swap operations are shown in Figure 5.4 a) to d). a) shows the reference
contraction where all external lines are connected, non-intersecting, and propagate for-
ward in imaginary time. The irreducible vertices, a) and b) are connected by a commute
update. Similarly, one can go from a) to c) by applying the swap update. Consequently,
both b) and c) carry a negative sign. Further, d) is connected to b) by either a commute
or swap update, while c) and d) are connected by a commutation giving a positive sign
for d).
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(b)

τ

(c)

τ

(d)

τ

τ

(e)

τ
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(f)

Figure 5.4: Contractions on irreducible vertices. The irreducible vertices are related by
the odd operations commute and swap and can be used to determine the sign of the
contributions. See text for details.

Diagrams consisting of more than one irreducible vertices, can give rise to non-local
contributions. An example of such a contribution consisting of two four-legged irreducible
vertices is shown in Figure 5.4 e). The diagram is disconnected but still carries a positive
sign. It is related to f) by the swap update, rendering the sign of f) negative.

The case of two-legged vertices, constituting the bold propagator, is particularly sim-
ple. As in the general case, the reference contraction is given as only forward propagating
hopping lines, as shown in Figure 5.5. The sign of any bold hopping line can now be
found as a two-step process. For each irreducible vertex, we can commute the external
operators, such that a negative sign arises for each commutation needed. Secondly, in
order to connect the irreducible vertices, the connectivity of lines are swapped. The sign
obtained from the number of swap updates is given by the number of irreducible vertices.
In total, the sign is given as (−1)c+s where c denotes the number of commutations and
s denotes the number of hoppings.

It is, in general, computationally expensive to find the sign of a diagram, as it is
a non-local property. In a diagrammatic Monte Carlo approach, the solution is to, for
each diagrammatic update, keep track of the parity of the update. Updates constituting
a diagrammatic Monte Carlo algorithm are in general more complex than the commute
and swap update. However, these updates can be used to determine the parity of the
update and hence keep track of the sign of the total contribution.
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Figure 5.5: The figures a) to d) show the odd operators commute and swap applied in
order to construct a set of three connected two-legged irreducible vertices. By connecting
the irreducible vertices by odd operators, we obtain the sign of the contribution.



Chapter 6

Markov chain Monte Carlo

This section will include a general introduction to Markov chain Monte Carlo, a numer-
ical method well-suited for calculating physical quantities in many-body systems. The
main idea of any Markov chain Monte Carlo method is to do a stochastic sampling of a
stationary distribution. In 1998, Prokof’ev and Svistunov used this method to sample di-
agrammatic contributions to physical observables, introducing the diagrammatic Monte
Carlo (diagMC) method [10]. This method and its developments will be the main topic
of this section.

6.1 Markov Chains, ergodicity and balance equations

A Markov chain is a stochastic procedure giving rise to a sequence of states, such that
the probability distribution for xj+1 given that the system is in state xj is independent
of the state xj−1. That is, given an initial state x0 the process generates a sequence
of states x0, x1, x2, x3.... The sequence is stochastic, and we denote the probability of
generating a state x′ given a state x as the transition probability P (x′ → x). The set
of possible states {xi} is called the configuration space S. For complex systems with
a configuration space too large to sample completely, Markov Chains can be used to
construct a stationary distribution [28].

In Markov chain Monte Carlo each state x ∈ S needs to be sampled according to
its importance, or weight π(x). In order for the Markov chain to visit the states xi
according to this underlying stationary distribution, two properties are required, namely
the ergodic property and global balance.

A Markov Chain is ergodic if, for any initial state xi, any state in the configuration
state can be reached in a finite number of steps through transitions with a finite transition
probability. This is required, as a non-ergodic Markov process would assign a false zero
probability to states with a finite weight.

In order to obtain the stationary distribution, the weight of each state must be con-
served. This is ensured by requiring that for each state x

31
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∑
x′

π(x)P (x→ x′) =
∑
x′

π(x′)P (x′ → x), (6.1.1)

where π(x) denotes the weight of the state x and the sum runs over all states in the
configuration space. The requirement is called global balance, and ensures that the
resulting distribution is stationary. Although ergodicity and global balance are sufficient
conditions for the process to converge to the underlying stationary distribution, the
requirements do not guarantee an efficient algorithm. For an efficient Markov process
the choice of updates and transition probabilities is essential.

Algorithms ensuring global balance may be very efficient [29, 30]. In practice, often,
an even stricter condition is used, called detailed balance. Although more restrictive, it
is often easier to implement and to enforce. Detailed balance implies global balance, and
requires the following to hold for each possible transition

π(x)P (x→ x′) = π(x′)P (x′ → x). (6.1.2)

In practice, π(x) is proportional to the underlying physical distribution, while P (x→ x′)
is determined by the specific algorithm used. An ergodic Markov chain with detailed
balance is shown in figure 6.1.

The states in the Markov chain are typically autocorrelated and does not provide
an independent equilibrium distribution. In order to reduce the autocorrelation between
measurements, we typically only measure each Nτ ’th state. Nτ is an integer chosen,
preferably of the order of autocorrelation time.

6.2 Metropolis-Hastings

The Metropolis-Hastings algorithm [31] is a Markov chain Monte Carlo method suitable
when the relative weight of each state x is known. That is, a distribution function Π(x)
is known such that P (x) = 1

ZΠ(x) is a normalised distribution. Z is often extremely
difficult to calculate; however, for the Metropolis-Hastings algorithm, it is sufficient to
know the relative weights π(x).

The method consists of a number of steps. From an arbitrary state x, an update
x → x′ is proposed. The update is accepted with a probability Wa(x → x′) such
that the detailed balance requirement is fulfilled. In order to determine the acceptance
probability Wa, we decompose the transition probability P (x → x′) into an proposal
probability Q(x→ x′) and the acceptance probability Wa(x→ x′) such that

P (x→ x′) = Q(x→ x′)Wa(x→ x′) (6.2.1)

The proposal probability Q(x→ x′) is, in general, dependent on the number of possible
updates and the nature of the configuration space S. In more sophisticated algorithms,
importance sampling can be used to obtain acceptance probabilities Wa(x → x′) close
to unity. This will, in general, reduce the auto-correlation time.
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Figure 6.1: An ergodic Markov chain with transitions according to detailed balance. A
pair of arrows denote a set of reverse updates with probabilities related through detailed
balance requirement. Each letter corresponds to a state, and is sampled according to its
weight π.

There is in general some freedom of choice determining the acceptance probability,
fulfilling detailed balance. One of the most common approaches is the Metropolis choice

Wa(x→ x′) = min

(
1,
π(x′)Q(x′ → x)

π(x)Q(x→ x′)

)
. (6.2.2)

Using the Metropolis choice, a Markov chain Monte Carlo algorithm can be broken down
into the following steps

1. Initialize the system by choosing an arbitrary state x0 and setting the Monte Carlo
time t = 0.

2. Traverse the configuration space S by iteration

(a) Generate a new state x′ from the proposal distribution Q(x→ x′).
(b) Calculate the acceptance probability Wa(x → x′) through the Metropolis

choice criterion.
(c) Either accept or reject the update by generating a (pseudo-) random number

u from a uniform distribution [0, 1].
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• If u < Wa, accept the update. Let xt+1 = x′. Increment the Monte Carlo
time t by setting t = t+ 1.

• If u > Wa, reject the update. Let xt+1 = x. Increment the Monte Carlo
time t by setting t = t+ 1.

3. Thermalize the system by performing the iterative scheme (2) until t = tthermal

thermal, where tthermal corresponds to the longest possible autocorrelation time.
This ensures the sampling process is independent of the arbitrary initialization.

4. Continue the iterative scheme. For every Nτ ’th iteration, perform a measurement.

6.3 Diagrammatic Monte Carlo

In this section, we introduce the ideas behind diagrammatic Monte Carlo. The general
concepts will then further be used to develop an efficient algorithmic to evaluate the
diagrammatic expansion introduced in section 5.2.

Diagrammatic expansion

The main goal of any diagrammatic approach is to estimate a quantity Q(y) by evaluating
a series of Feynman diagrams. This is a well-established approach in quantum field
theory [32]. The diagrammatic expansion can be evaluated as an infinite sum, where
each term consists of a multidimensional integral over internal variables. Following the
introduction to diagrammatic Monte Carlo by Van Houcke et al. [33], we may write a
general diagrammatic expansion as

Q(y) =

∞∑
m=0

∑
ξm

∫
D(ξm, y, x1, ..., xm) dx1...dxm, (6.3.1)

where y corresponds to a set of external variables determining the quantity Q, m is the
order of the diagram, whereas ξm distinguishes the various diagrams of orderm. For each
diagram, D(ξm, y, x1...xm) denotes its integrand, with the internal variables {xi}. Note
that for any discrete internal variable, the integral takes the form of a sum. Relevant
examples of this are lattice positions and internal spin variables.

The idea of using a Markov chain Monte Carlo approach to evaluate a diagrammatic
expansion of the type in Eq. (6.3.1) was introduced by Prokof’ev and Svistunov in 1998.
They provided an approach for the polaron problem [10]. The configuration space S
associated with the method generally consists of all possible diagrams up to fixed order
mmax, with their respective internal variable configuration. In this way, the method
performs both the sum over all diagrams and the internal integrals, simultaneously.

For a fermionic system, the expansion in Eq. (6.3.1) consists of both positive and neg-
ative terms D. In order to deal with this, the weight of each state is given by the absolute
value |D| and sampled accordingly. The sign of the contribution sD = ±1 is taken into
account as the contribution from a given measurement. The number of diagrams scales
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factorial with the order m, while the value of each diagram decreases exponentially with
the order, due to some small expansion parameter g. As the factorial growth is larger
than the exponential decay for large m, this leaves the total weight of the configuration
space S unbounded. For the Markov process to converge to a stationary distribution,
a cutoff in the order m is needed. This can be done with a soft cutoff, adjusting the
associated weight of high-order terms, or a hard cutoff at mmax. To extrapolate the
answer to the m→∞ limit, one may apply resummation techniques. Figure 6.2 shows a
typical configuration space in diagMC, where the dimension of the integral represented
by diagrams, increases with their order, and the number of diagrams to a given order
m is typically factorial large. A diagMC approach samples both the distinct diagram
topologies and the domain of internal variables.

Figure 6.2: A typical configuration space in a diagrammatic Monte Carlo algorithm.
Each generalized box represents a diagram, while each generalized sphere represents a
set of internal variables. The levels, separated by distinct colors, represent the order of
the diagrams, whereas the upper-level boxes denote diagrams of a higher order. The
dimension of the internal integrals scales linearly with the order of the diagram, while
the number of diagrams of a given order scales factorial.
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Sign problem

The rapid sign alternation of the expansion in Eq. (6.3.1) causes massive cancellation
between terms of a given order m. The cancellation is the manifestation of the fermionic
sign problem and generally hinders sensible results for quantum Monte Carlo methods.
In other quantum Monte Carlo methods such as path integral Monte Carlo and auxiliary
field Monte Carlo [34, 35], the sign problem scales exponentially with the system size.
This makes the thermodynamic limit inaccessible. In contrast, diagrammatic Monte
Carlo works directly in the thermodynamic limit. This is one of the big advantages of
the method.

The sign problem is still present and merely takes a different form. The sign problem
causes an exponential scaling of computation time with the maximum order mmax. This
makes it difficult to extrapolate the quantity Q(y) to the m→∞ limit. Many tricks can
be employed to alleviate the sign problem in diagrammatic Monte Carlo.

The method can be naturally combined with an analytical evaluation of diagrams,
reducing the sampled configuration space. Any analytically evaluated term should be
left out of the Markov chain, and the contribution is instead added subsequently. This
is especially relevant for low order diagrams.

Bold propagators

The method of bold propagators is an essential technique for any diagrammatic Monte
Carlo approach for fermionic systems [13]. The main goal of the method is to reduce
the number of diagrams in the configuration space. This is essential, as the fermionic
sign problem scales exponentially with the number of diagrams, and any reduction of
the diagrammatic space alleviates the problem. The method of bold propagators is a
family of methods where the bare propagator G0(τ,x; τ ′,x′) is replaced with a bold
propagator Gb(τ,x; τ ′,x′). The bold propagator accounts for a number of processes not
included in the bare propagator, reducing the sampling space. The arch-example of a
bold propagator approach is the Dyson’s equation [27].

An extension of the bold propagator method is, to sum up, certain contributions to
the propagator prior to the diagMC algorithm. This approach is highly dependent on the
system considered, and the boldification scheme may be implemented to various degrees.
Common for all systems is the cancellation effect, which is accounted for in advance. For
the polaron problem, the process is performed by solving the Dyson equation for certain
diagrammatic elements self-consistently.

Convergence properties of diagrammatic expansion

The convergence properties is an important issue for any diagrammatic expansion. The
expansion in Eq. (6.3.1) can be written as a power series

∞∑
n

ang
n (6.3.2)
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where n denotes the order of a set of diagrams, g is the expansion parameter and an is
some coefficient. For such a series, the radius of convergence R is defined as

R ≡ 1

lim supn→∞ |an|
1
n

(6.3.3)

where lim supn→∞ denotes the upper bound of the possibly oscillating nature of an as
n→∞. For |g| > R the series diverges, as the general term ang

n does not go to zero as
n→∞. If |g| < R the series converges absolutely

∞∑
n=0

|angn| <∞ (6.3.4)

In the case of a diagrammatic expansion, the form of an is non-trivial. It is a finite sum
over diagrams, such that

an =
∑
D

bD (6.3.5)

where D is a diagram, and bD denotes the value of the diagram. In order to find an
expression of an, one would in principle have to count the number of diagrams with
order n, and calculate them. The number of diagrams to a given order depends on the
expansion in question, but typically scales factorial with n. In a sign alternating series
cancellation effects occur and we may have∣∣∣∣∣∑

D

bD

∣∣∣∣∣�∑
D

|bD| (6.3.6)

as bD takes both positive and negative values.
For bosonic theories like Euclidean φ4-theory [32], all terms are positive, resulting in

R = 0. In contrast, for fermionic theories, a finite convergence radius is possible. The
convergence properties can, however, only be checked a posteriori [36]. The possibility
of convergent diagrammatic series is sometimes called a sign blessing [37]. It should be
noted that divergent diagrammatic series are still often of great interest, as they tend to
diverge asymptotically.

Updates

The stochastic sampling of Q(y) in diagrammatic Monte Carlo generally consists of two
parts. The first part consists of updates transitioning between different diagrams and is
arguably the most interesting part. In mathematical terms, this means updates changing
the structure of the kernel D(ξm, y, x1, ..., xm) in Eq. (6.3.1). There are numerous types
of possible schemes, and the approach is highly dependent on the expansion in question.
A method proven successful is the worm-algorithm introduced by Boninsegni et al. [38].
The method used for the expansion in irreducible vertices is thoroughly discussed in
section 7.3.
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The second part involves updates changing the internal or external variables (y, x1, ..., xm)
for a given diagram, without changing the structure of the kernel D itself. The procedure
is similar to the case of sampling multidimensional integrals and sums over the set of
internal variables {xi}.

Normalization

The samples measured through the Monte Carlo scheme mimics the underlying distri-
bution governing the physical system, up to a constant factor C, when the number of
measurements N → ∞. The constant C is directly proportional to the computational
time and does not carry physical significance. To normalize the sampled distribution, we
denote a set of states {xi} as the normalization bin. The states forming the normalization
bin may be physical or unphysical. If they are physical they contribute to the sampled
statistics as well. After a completed sampling process, the full distribution is normalized,
such that the states in the normalization bin take their proper, known value. For an
unphysical state, the weight is arbitrary but should be both sampled and normalized
according to its chosen weight. A conventional method in diagMC is to introduce an
unphysical zeroth-order diagram and normalize with respect to it.

Symmetries of the real space and imaginary time scheme

Diagrammatic Monte Carlo schemes can be performed in real space or momentum space
and with imaginary time or in Matsubara frequency formalism. Imaginary time is often
preferred, in order to avoid having to deal with poles [33], while both momentum space
and real space algorithms can be efficient.

While boldification methods deal with the reduction of the diagrammatic states, there
are also numerous ways to reduce the space of internal variables using the symmetries of
the model Hamiltonian. This section introduces the possible symmetries for the Hubbard
model in real space and imaginary time on a two-dimensional lattice. The imaginary time
τ is discretized into N time steps of length ∆τ , in order to have states with finite weight
π. As the Hamiltonian (2.1.1) has temporal and spatial translational invariance, the
correlation function is translational invariant as well,

G(τ,x; τ ′,x′) = G(τ − τ ′;x− x′). (6.3.7)

This reduces the space of external variables sampled considerably.
Due to the properties of the trace function Tr, the Green’s function for fermions

must be anti-periodic in the imaginary time τ [27]. Hence, it is sufficient to restrict the
external difference τ −τ ′ to the interval [0, β]. The domain of all internal times is limited
to the compact interval [0, β], leaving all temporal integrals convergent.

A further restriction can be made by utilizing the spatial symmetries of the square
lattice. The Hamiltonian is invariant under inversions about the x-axis and y-axis, namely
the transformation x → −x and y → −y. A third symmetry is given by exchanging x
and y. In conclusion, we can divide the two dimensional lattice into 23 = 8 equivalent
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sections and map all points to the first half-quadrant. A natural choice, is to map all
points to the section {x > 0, y > 0, x > y} as shown in figure 6.3.

Figure 6.3: The eight equivalent sections under the three symmetries x → −x, y → −y
and x→ y, y → x.
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Chapter 7

Implementation of diagrammatic
Monte Carlo

In the following section, we will introduce a diagrammatic Monte Carlo (diagMC) scheme
based on the principles presented in section 7.3. In the first part, a diagMC scheme
for the boldification of hopping lines is introduced. This is needed both for the full
implementation of the diagrammatic approach, in addition to serving as an example of a
diagMC algorithm. Furthermore, we introduce a diagMC scheme for the full expansion
in Eq. (4.1.4), represented with diagrams in real space and imaginary time. In this
algorithm, the use of irreducible vertices and bold hopping lines are combined.

7.1 Diagrammatic Monte Carlo as bold propagator scheme

The goal of a boldification process is to evaluate the power series defined in Eq. (6.3.2)
partially. In this section we will develop a scheme for calculating a bold propagator
according to our definition in section 5.1. The bold propagator will then include all two-
legged irreducible vertices. The partial summation of the power series will hence include
all paths connecting two points in space r and r′ at different times τ and τ ′.

The main idea of the boldification process is to consider all contributions from two-
legged irreducible vertices. The implementation of the bold propagator scheme is done in
an object-oriented manner. Each path is represented as a doubly-linked list of irreducible
vertices. The information stored in such a vertex consists of time variables τ1 and τ2 for
the fermionic creation and annihilation operators, respectively, a position (x, y) on the
two-dimensional square lattice and pointers to the previous and next irreducible vertex.

The weight of a path is found from considering the contractions and depends ex-
clusively on the length and time configuration of the path, given the input parameters
t, U, µ, and β. The weight is given as

W = tN
〈
Tτ

[
ci(τ2)c†i (τ1)

]〉
µ+Û

...
〈
Tτ

[
cj(τN )c†j(τN−1)

]〉
µ+Û

(dτ)N−2, (7.1.1)

41
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where N is the total number of hoppings, t is the hopping parameter, and the value
of the irreducible vertices is shown in Figure 5.2. Since the total weight of a path
is given by integrating with respect to all internal times τi from 0 to β the weight
includes a differential dτ for each internal time. This is nothing but a way to account
for normalization of the temporal integrals. Note that the value of the first and last
irreducible vertex are not accounted for in the weight because these vertices are not
an intrinsic part of the bold hopping line and are instead accounted for in the general
diagrammatic Monte Carlo algorithm.

Due to spatial- and temporal translation symmetry, it is sufficient to fix the starting
vertex to the origin at time 0 or β. A further algorithmic simplification is to vary the ex-
ternal variables in the same manner as intermediate irreducible vertices. In practice, this
means that Gb is sampled for all possible position- and temporal differences in the same
computational run. This gives two simplifications. Firstly, the propagator is sampled
according to its importance, meaning the computing time for propagation over a large
distance x− x′ scales naturally with its importance π(x), and the most important short
propagation lines are sampled more thoroughly. Secondly, the normalization procedure
simplifies, as a common normalization bin can be used for all external variables.

A minimal set of updates providing ergodicity consists of the updates governing the
geometrical form of the path, extend path, and shorten path. These are shown in Figure
7.1. In addition, it is natural to include a change time update, to traverse the space of
imaginary time variables.

Updates

The pair of updates governing the geometrical form of the path is shown in Figure 7.1.
The extend path update acts on a path of length N , adds a vertex VN+1 with a randomly
selected time τ2 for annihilation the operator and a τ1 equal to the annihilation time
variable to the former last vertex VN . The position of VN+1 is randomly chosen from the
neighboring sites of VN , meaning the update can give rise to four geometrically distinct
states. In order to determine the acceptance probability Wa(x → x′) for fulfillment of
the detailed balance requirement, we consider the reverse update.

The shorten path update similarly acts on a path of length N > 0 and removes the
last vertex in the path and corresponding hopping. Let Q(x→ x′) denote the probability
of choosing the extend update in a specific direction and adding a vertex with a specific
time variable τN+1

Q(x→ x′) =
Pext

4

dτ

β
, (7.1.2)

where Pext denotes the probability of choosing the extend path type of update. The
reverse update has a simpler proposal probability because the proposal state is uniquely
determined from the current state.

Q(x′ → x) = Pshort, (7.1.3)
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where Pshort denotes the probability of choosing the shorten path type of update. Con-
sidering the relative weight π(x′)/π(x) where π(x) is the weight of the a current state
and π(x′) is the weight of the extended state, Eq. (7.1.1) gives

π(x′)

π(x)
= t
〈
Tτ (ci(τN )c†i (τN−1)

〉
µ+Û

dτ. (7.1.4)

In conclusion, the acceptance probability of the extend update is given by

Wa = min

(
1,
π(x′)Q(x′ → x)

π(x)Q(x→ x′)

)
= min

1,
4tβ

〈
Tτ (ci(τN )c†i (τN−1)

〉
µ+Û

Pshort

Pext

 .

(7.1.5)
Note how the time step dτ cancels, ensuring that the acceptance ratio does not vanish
in the continuous limit. This is an important point, as the vanishing acceptance ratios,
would make the autocorrelation time diverge. The acceptance probability of the shorten
update is given in terms of the inverse of Eq. (7.1.5).

The extend/shorten pair of updates is sufficient to obtain all possible path topologies.
Due to the stochastic nature of the extend update, these updates provide ergodicity in
the internal time domain as well. However, it is natural to add an update change time
in order to reduce the autocorrelation time.

The change time update takes a path of length N , picks a hopping with associated
time τi randomly and suggests to change τi → τj where τj is picked from a uniform
probability distribution from the interval [0, β]. The time dependence for the irreducible
vertex shown in figure 5.2 indicates that importance sampling methods [28] could increase
the acceptance probability considerably for both the extend and change time. This can be
seen as the value of the two-legged irreducible vertices is close to zero on a considerable
part of the domain. Since the change time update is its own reverse, the proposal
probability takes the simple form

Q(x→ x′) = Q(x′ → x) =
dτ

Nβ
Pchange, (7.1.6)

where N is the number of imaginary time variables and Pchange is the proposal probability
of the change time update. The change in weight originates from the change of the
two neighboring irreducible vertices connected by the chosen hopping. This leaves the
acceptance probability Wa to

Wa = min

(
1,
π(x′)

π(x)

)
= min

1,

〈
Tτ (ci(τ

′
i)c
†
i (τi−1)

〉
µ+Û

〈
Tτ (cj(τi+1)c†j(τ

′
i)
〉
µ+Û〈

Tτ (ci(τi)c
†
i (τi−1)

〉
µ+Û

〈
Tτ (cj(τi+1)c†j(τi)

〉
µ+Û

 .

(7.1.7)
τ ′i denotes the proposed time, while τi denotes the current time of the hopping.
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In the special case where the time of the first or last hopping is changed, the starting
vertex or end vertex do not affect the weight, but rather the external variables governing
the sampled bold propagator Gb(xi − xj ; τ − τ ′).

τ1 τ2
τ3

τ4 j

i τ1 τ2
τ3

τ4

k

i

τ5

τ1 τ2
τ3

τ4

m
i

τ5
τ1 τ2

τ3

τ4 l

i

τ5

Figure 7.1: A typical path of length N = 4. The extend update may extend the path
to any of the three possible sites k, l, or m. Although not shown, extending the path
backward is also possible, giving a total of four directions. The weight is independent
of the direction of the extension but is reduced due to the new irreducible vertex, time
dependence, and hopping parameter. Note that the number of internal time variables
increases as the path is extended.

Due to the fermionic nature of the propagators, the sign of each contribution must be
accounted for. It is discussed in section 5.2.1 and is a result of the number of propagators
backward in time and the number of total hoppings. This is an inexpensive calculation
and may be performed before each measurement made.

A path of zero length assigned a weight of unity is added to the configuration space
to normalize the resulting propagator. As this does not represent any hopping line, it
is considered an unphysical state, and it does not contribute as a part of the sampled
statistics.

7.2 Semi-analytical approach to boldification

The current approach, diagrammatic Monte Carlo, for the boldification process, gives a
simple introduction to the method and includes simple updates and tractable convergence
properties. However, the problem can be solved much more efficiently by calculating the
number of possible paths analytically. This reduces the problem to only considering
multidimensional integrals in time, while the number of paths is found by counting.

Given two sites i and j we calcuate the number of paths of length L connecting the
sites. The number is denoted M(L). Knowing M(L) reduces the problem to calcu-
lating the integrals in Eq. (5.1.1) for each L up to an appropriate cutoff value Lmax.
Conventional Monte Carlo integration is a suitable approach for the multidimensional
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integrals.
Let the two points on lattice be i = (0, 0) and j = (r, u), meaning r and u denote the

number of net steps required in the x- and y-direction, respectively. In order to find the
number of paths M of length L, connecting the sites, we split the calculation into three
cases.

Case 1: L < |r|+ |u|

In this case, the length of the path is too short to connect the two points, givingM(L) =
0.

Case 2: L = |r|+ |u|

The paths have to be monotonic in order to connect the sites. These are the shortest
possible paths. The total number of paths of this length is given by M(L) =

(
L
r

)
. The

red line in Figure 5.1 is an example of such a monotonic path.

Case 3: L > |r|+ |u|

In this case, the length L is longer than what is minimally required. This gives rise to
paths such as the green and blue path shown in Figure 5.1. We realize that for each extra
step, compared to a minimal monotonic path, the path must take a step in the opposite
direction. We define

|r|+ |u|+ 2x = L, (7.2.1)

such that 2x denotes the number of extra steps. We split 2x into extra pairs of steps
along the x-axis Px and y-axis Py such that Px + Py = x. Px must take an integer value
from on the interval [0, x], which gives x+ 1 possibilities. Without loss of generality, we
assume r > 0 and u > 0 and conclude that the type of steps from site i to j must be of
the following form

• Number of right steps: (r + Px)

• Number of left steps: (Px)

• Number of up steps: (u+ x− Px)

• Number of down steps: (x− Px)

Given these possible configurations, we need to count all possible orderings of the
steps. This is done by the permutations of the numbers given in the list. The total
number of paths of length L is then given by

M(L) =

x∑
Px=0

(
L

r + Px

)(
L− (r + Px)

Px

)(
L− (r + 2Px)

u+ x− Px

)
. (7.2.2)
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Introducing the dummy variable k = Px and fix x = L−r−u
2 we get the slightly more

general form

M(L) =

L−r−u
2∑

k=0

(
L

r + k

)(
L− (r + k)

k

)(
L− (r + 2k)
L+u−r

2 − k

)
. (7.2.3)

7.3 Diagrammatic Monte Carlo for full diagrammatic ex-
pansion

We have introduced methods for obtaining the value of irreducible vertices and bold
hopping lines. With this, the stage is set to develop a full diagrammatic approach for the
Hubbard model in the strong-coupling limit based on the irreducible vertex expansion.
In the following, we describe the general framework for the diagrammatic Monte Carlo
algorithm. The specific updates are described, whereas, for each update, the parity of
the update must be considered. Along with the updates, we present the probabilities
and weights concerning the Metropolis choice.

For algorithmic simplicity, the diagrams are represented in closed form. A diagram
is considered in closed form if all bold hopping lines start and close on an irreducible
vertex. This simplifies the updates because all lines can be treated equivalently. All
closed-form diagrams up to order N = 4 in the bold hopping lines are shown in Figure
7.2. The transition from a closed diagram to an open diagram is performed through the
notion of a measuring line which we define in the following.

The weight of a contribution is, according to Eq. (6.3.1), the absolute value of the
kernel |D(xi − xj ; τ − τ ′)|. The kernel is given by the product of all bold propagators
and irreducible vertices

Wtot =

∣∣∣∣∣∏
n

G(xin − xjn ; τin − τjn)
∏
m

V [Ōm]

∣∣∣∣∣, (7.3.1)

where n runs over all bold hopping lines, except the measuring line, with their respective
variables xin−xjn and τin−τjn . m runs over all irreducible vertices V [Ōm] where Ōm de-
notes the external operators defining the irreducible vertex. As in conventional diagMC,
the weight is positive, while the sign of the contribution s = ±1 is what contributes to
accumulated statistics.

Measuring an observable

In order to sample an observable, more specifically the single-particle Green’s function,
we interpret one of the hopping lines as a measuring line. The measuring line is given
a weight of unity, as it does not represent a physical hopping process. Note, however,
that it does contribute to the weight of its corresponding irreducible vertices. When
a measurement is performed, the closed diagram is interpreted as an open diagram by
using the assigned measurement line.
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(a) (b) (c)

(d) (e) (f)

Figure 7.2: All closed diagram topologies up to order N = 4 in boldified hopping lines.

An important update for sampling all relevant diagram topologies is to swap mea-
suring line. The swap update picks a bold hopping line randomly and swaps the mea-
surement line status from the current to this line. The value of the chosen line is set to
unity, and the former measuring line takes the value associated with a bold hopping line
with its corresponding internal variables. A closed diagram topology may correspond to
several open diagram topologies, as shown in Figure 7.3.

Data structures

In order to store a diagram as a numerical object, we introduce the following classes.
Bold hopping line A bold hopping line is stored as an object, including a set of

coordinates consisting of the start time, end time, start position, end position, and a spin
variable forming the set (τ1, τ2,x1,x2, σ). Using the parameter differences τ2 − τ1 and
x2−x1, the value can be determined from the distribution Gb(τ2−τ1;x2−x1) constructed
from the boldification scheme. The value is stored as a floating-point number along with
a sign. The line also carries a spin variable, which does not affect the value of the line.
Further, the class has a boolean variable describing if it is the measuring line. The line
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(a) (b)

Figure 7.3: Closed diagram with corresponding open diagrams with respect to the mea-
suring line in red. One closed topology can correspond to multiple open topologies
depending on the chosen measuring line.

has pointers to its originating and terminating irreducible vertices.
Irreducible vertex The irreducible vertex class consists of a list of pointers to

incoming hopping lines and a list of pointers to outgoing hopping lines. The position on
the lattice is stored as a pair of integers. One vertex should carry a fixed position to avoid
double-counting when exploiting the spatial translation symmetry. The set of external
operators, originating from the bold hopping lines with respective time dependence,
uniquely determines the irreducible vertex value.

Although the value of the irreducible vertex is stored in a database, the evaluation is
a relatively expensive operation. The operators originating from the bold hopping lines
are in the c-basis. In order to use the convenient time dependence, the string of operators
must be converted to the time trivial basis from Eq. (4.2.1). Furthermore, each possible
product is obtained from the database, making the computational cost of the irreducible
vertex evaluation exponentially expensive in the number of legs.

Diagram The diagram class stores all irreducible vertices and bold hopping lines.
In addition, a pointer to the measuring line is stored, along with the total sign of the
diagram.

7.3.1 Updates governing topology of closed diagrams

The diagrammatic expansion gives rise to a number of diagrams scaling factorial with
the diagram order, and in order to traverse this space of topologies, a set of updates is
needed. There are numerous possible ways to choose such updates, as long as they satisfy
the ergodicity requirement; however, the proposed set has some advantages. The set is
small, containing only three pair of updates, which will be presented in the following.
Each update is local, meaning any evaluation for the Metropolis criterion has a constant
computational cost, with respect to the size of the diagram. In contrast to other diagMC
methods such as the worm algorithm [38, 39], this set of updates only allows a small
fraction of unphysical diagrams, including the normalization bin and single-particle re-
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ducible diagrams. A caveat is that checking for connectivity is a non-local process, and
scale with the system size. Such a check is nevertheless computationally cheap for the
diagrams of interest, as they are represented by relatively small graphs. For all pairs
of updates we present the proposal probabilities Q(x→ x′), corresponding weights π(x)
and π(x′) along with acceptance probabilityWa(x→ x′) determined from the Metropolis
choice introduced in section 6.2.

Addition and removal of loops

Figure 7.4: The add/remove loop update for a chosen irreducible vertex.

The add loop/remove loop update pair regards hopping lines starting and ending at
the same irreducible vertex. It is shown in Figure 7.4. From here on, we denote such
a hopping line as a loop. The add loop update selects a vertex randomly and proposes
a loop, including a starting time, end time and a spin, (τ1, τ2, σ). The update increases
the number of external legs for the chosen irreducible vertices by two. If the update
creates an irreducible vertex with more than the maximum number of external legs, the
update is automatically rejected. The size of the irreducible vertex database determines
the maximum number of external legs allowed.

The remove loop update picks a random loop and removes it. This update is au-
tomatically rejected if the chosen loop is the measuring line. If the vertex is reduced
to a two-legged vertex, it should not contribute to a physical diagram, as it is already
accounted for by the boldification of hopping lines. This also leads to the update being
automatically rejected. An exception is made for the case of the first order diagram,
shown in Figure 7.2 a).

The Metropolis criterion for the pair of updates is found by considering the proposal
probabilities and relative weights. Now let x and x′ denote the state before and after a
loop is added. The proposal probability of the add loop update is given as

Q(x→ x′) =
dτ2Padd

2nvβ2
, (7.3.2)
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where nv denotes the number of irreducible vertices in the diagram, 2 counts the spin
possibilities and Padd is the probability the for which the type of update is suggested,
among all possible updates.

For the reverse update, the loop to be removed is chosen independently of the number
of vertices, and the proposal probability is

Q(x′ → x) =
Premove

nl
, (7.3.3)

where Premove denotes the proposal probability of the update, and nl denotes the number
of loops in the current diagram.

The weight of the updated diagram is affected by the additional hopping line and
the change of the relevant irreducible vertex. In addition, the number of internal time
variables increases, hence two infinitesimals dτ are accounted for. We let the starting
time and end time of the introduced loop be τ and τ ′. The relative weight of the updated
state is then

π(x′) = Gb(τ
′ − τ)V (Ō′) dτ2. (7.3.4)

The relative weight of the former state is

π(x) = V (Ō), (7.3.5)

where V (Ō) denotes the irreducible vertex with its external operators Ō and Gb(τ ′ − τ)
denotes the value of the bold loop hopping line. The update requires to look up the
new potential irreducible vertex and bold hopping line in their respective databases.
Consequently, the acceptance probability Wa for the add loop update is

Wa = min

(
1,
nvβ

2Gb(τ
′ − τ, 0)V (Ō′)Premove

2(nl + 1)V (Ō)Padd

)
. (7.3.6)

By reversing the expression, the acceptance probability of removing a suggested loop is

Wa = min

(
1,

2nlV (Ō)Padd

nvβ2Gb(τ ′ − τ, 0)V (Ō′)Premove

)
. (7.3.7)

The number of loops nl naturally changes in the transition, and this is accounted for
as it changes the proposal probability. If simplicity is preferred over the optimization of
acceptance rates, one can choose Padd = Premove.

Addition and removal of straight lines

The add straight lines update selects two distinct irreducible vertices and adds two
straight lines between them as shown in Figure 7.5. In this section, we denote all bold
hopping lines, which are not loops, as straight lines. In order for the update to create a
physical diagram with finite weight, the lines have opposite directions and carry particles
of the same spin σ. Lines of this type are essential in order to give rise to non-local
contributions to the single-particle propagator. Similarly to the add loop update, if the
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Figure 7.5: The add/remove straight lines update for two chosen irreducible vertices.

number of legs for any irreducible vertex exceeds the maximum number of legs allowed,
the update is automatically rejected.

The remove straight lines update removes lines of the same type, given that they have
the opposite direction and equal spin. Note, however, that if one of the chosen lines is
the measuring line, the update is automatically rejected, as this would leave the diagram
unphysical.

The add straight lines update is performed as follows. Given that the update is chosen
with probability P ′add, two distinct irreducible vertices are chosen, where the order does
not matter. Note that Padd 6= P ′add as the first term is used for the loop update, while
the primed term is for the straight line update. Parameters for the lines are suggested,
including four internal time variables and a spin variable. In total, this gives a proposal
probability as

Q(x→ x′) = P ′add

2

nv(nv − 1)

dτ4

2β4
. (7.3.8)

Naturally, the update is rejected if the current diagram does not include more than
one vertex. For the reverse update, remove straight lines, chosen with probability P ′remove,
the update selects a vertex A and one of the straight lines originating at this vertex. The
chosen line ends at another vertex B, as it is not a loop. A new line is chosen connecting A
and B, originating at B, sharing the same spin as the first line. The proposal probability
takes the form

Q(x′ → x) = P ′remove

2

nvlAlBA
, (7.3.9)
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where lA denotes the number of straight lines originating from vertex A and lBA denotes
the number of hopping lines from B to A. By interchanging A and B we get a factor 2
as this is the same update chosen in two different ways. The weight changes because of
the added straight lines and affect the weight of vertex A, vertex B, in addition to the
weight of the added lines. The update is computationally expensive to evaluate, but is
also a proportionally large change in the topology.

The weight of the state after the addition of lines is given as

π(x′) = Gb(τ
′ − τ,x′ − x)Gb(τ

′′ − τ ′′′,x− x′)VA(Ō′)VB(Ō′′)dτ4, (7.3.10)

whereas in comparison, the relative value of the update is given by the previous value of
the irreducible vertices is

π(x) = VA(Ō)VB(Ō). (7.3.11)

Combining the proposal probabilities and weights, the acceptance probability for
adding two straight hopping lines takes the form

Wa = min

(
1,
P ′remove

P ′add

(nv − 1)

lAlBA

2β4G2
bVA(Ō′)VB(Ō′′)

VA(Ō)VB(Ō)

)
, (7.3.12)

where Gb is shorthand notation for the added lines. The reverse update gets a reverse
acceptance probability of

Wa = min

(
1,

P ′add

P ′remove

lAlBA
(nv − 1)

VA(Ō)VB(Ō)

2β4G2
bVA(Ō′)VB(Ō′′)

)
(7.3.13)

Addition and removal of irreducible vertex

The third pair of updates differs in nature as it changes the number of irreducible vertices
and the number of bold hopping lines. Similar to the addition of straight lines, it is a
relatively computationally expensive update to evaluate, with a correspondingly large
change in the diagrammatic topology.

As shown in Figure 7.6, an irreducible vertex is added to an existing bold hopping line,
splitting the line into two distinct lines. These new lines form the legs of the irreducible
vertex with imaginary times τ1 and τ2 chosen randomly. In general, the update will
create a diagram already accounted for through the boldification of the hopping lines. In
general, unphysical states are not problematic, as long as they do not contribute to any
observable and may be helpful to reduce autocorrelation. However, in the present case,
allowing such diagrams in the algorithm increases the size of the configuration space a lot,
without contributing correspondingly much to an efficient algorithm. A natural solution
to this problem is to extend the update further to create a physical diagram. This is done
by adding a loop to the introduced vertex rendering it a four-legged irreducible vertex
not counted in the boldification process.
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Figure 7.6: The add/remove vertex update for a chosen bold hopping line. The interme-
diate state is avoided by addition of a loop.

The process adds two hopping lines and a four-legged vertex in total. This includes
four new internal time variables and a spin variable. As the update introduces an irre-
ducible vertex, an internal position for the vertex must be chosen. The position should
be chosen from a normalized discrete distribution similar to the underlying weight, to
have a well-defined selection process. This is the idea behind importance sampling.

The simplest method is to choose a position r from a subset of positions around the
midpoint of the neighboring vertices. The midpoint is defined as (x̄, ȳ) = (x1,y1)+(x2,y2)

2
such that the subset takes the form

{(xi, yi) | |(xi − x̄)| < n ∩ |(yi − ȳ)| < n}, (7.3.14)

where n is a positive integer. Assuming a decreasing correlation with distance, choosing
a position from Eq. (7.3.14) would include the states with the largest weights.

In order for the remove irreducible vertex update to be a reverse update, it has some
restrictions. The update may only delete a vertex if it is on the form shown at the
rightmost end of Figure 7.6, that is, a four-legged vertex with a loop. In addition, the
vertex position must be contained in a set, as defined in Eq. (7.3.14).

The update is suggested with probability Pv, and selects a hopping line randomly,
with value Gb and spin σ. The spin is conserved for the two lines formed, such that the
only spin variable introduced is for the hopping loop added. In total, four imaginary
times are picked, and a position is uniformly chosen from the set (7.3.14). In total, this
gives a proposal probability of

Q(x→ x′) =
Pv dτ4

2β4nlV
, (7.3.15)

where V is the number of lattice sites in the subset (7.3.14) and nl is the total number
of bold hopping lines, excluding the measuring line.

The reverse update proposal probability is given as

Q(x′ → x) =
Prem

nv
, (7.3.16)
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where nv is the number of vertices in total, and Prem is the probability of choosing this
particular update. The proposal probability has a simple form, as any can irreducible
vertex is chosen. The possibility of the update is checked subsequently. If a vertex
is not fulfilling the criteria required, the update is automatically rejected. The naive
proposal procedure may lead to an unnecessary amount of rejections. However, automatic
rejections are computationally cheap. More sophisticated proposals are possible, but this
would decrease the simplicity of the implementation.

The weight of the state x, relative to the updated state x′, is given by the single line,
which is cut in half.

π(x) = Gb(current) (7.3.17)

where the argument denotes the parameters before the update (x′,x; τ ′, τ). The weight
of the updated state has a richer structure, as it includes three new hopping lines Gb(1),
Gb(2), Gb(loop)and an additional four-legged vertex V (Ō).

π(x′) = Gb(1)Gb(2)Gb(loop)V (Ō) dτ4. (7.3.18)

dτ4 is used to normalize the four introduced temporal integrals
∫

dτ . The acceptance
probability for the addition of vertex is in total given as

Wa = min

(
1,

2Premβ
4nlGb(1)Gb(2)Gb(loop)V (Ō)

nvPvGb(current)

)
, (7.3.19)

while the acceptance criterion for the reverse update is

Wa = min

(
1,

nvPvGb(current)

2Premβ4nlGb(1)Gb(2)Gb(loop)V (Ō)

)
. (7.3.20)

7.3.2 Updates governing internal and external variables of diagrams

The strength of the diagrammatic Monte Carlo approach is to sample a large number
of diagram topologies while performing a summation and integration over all internal
variables. These are in general high dimensional sums and integrals, hence well suited
for a Monte Carlo approach.

Although the set of updates presented so far is ergodic, it is natural to connect
internal sets of variables without altering the topology of the diagram. This is done by
introducing updates for changing internal variables as imaginary times and the position
of the irreducible vertices. The update of internal variables are simple, as each update is
its own inverse, Q(x → x′) = Q(x′ → x). Consequently, it is unnecessary to keep track
of proposal probabilities.

Change imaginary time

Changing an imaginary time variable τ is done by choosing a hopping line at random, and
one of its ends, meaning either a creation- or annihilation operator. A new imaginary time
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variable τ ′ is selected randomly from the discretized domain [0, β]. This changes both
the hopping line and the associated irreducible vertex, giving the acceptance probability

Wa =
π(x′)

π(x)
=
Gb(τ

′)V (Ō′)

Gb(τ)V (Ō)
. (7.3.21)

Changing the time of the measuring line must be handled in a special manner, as the
value of the measuring line is always unity. Consequently, the weight due to a change in
external times is only affected by the change of the vertex.

Change position

In contrast to the finite imaginary time domain, the positional space is unbounded.
For the change position update, an irreducible vertex is selected randomly. The vertex
position is shifted by a single unit in either x- or y-direction. The position can be shifted
in both positive and negative direction, giving a total of four possible directions. The
weight of the irreducible vertex is left unchanged, as all operators are local and evaluated
with respect to a local Hamiltonian. However, all hopping lines connected to the chosen
vertex change weight, and must be considered for the acceptance probability. Note that
even though the measuring line may change, it keeps the weight of unity. In addition,
loops are naturally not affected by the change in position due to translation invariance.
The acceptance probability is given by

Wa =
π(x′)

π(x)
=

∏
iGbi(x

′)∏
iGbi(x)

, (7.3.22)

where i runs over all hopping lines connected to the vertex.

7.4 Normalization of sampled distribution

The normalization bin is chosen to consist of a single unphysical diagram. It is connected
to the single loop diagram shown in Figure 7.2 a) through the add/remove loop update.
The diagram can be visualized as a vertex without any hopping lines. Note that this
is the only case where removing the measuring line is not automatically rejected. The
weight of the normalization diagram is set to unity. However, such a weight only has
meaning relative to the weight of actual physical diagrams.

7.5 Schemes for ensuring connected and irreducible dia-
grams

A diagrammatic Monte Carlo approach, working directly in the thermodynamic limit,
can only include connected diagrams. This is because all disconnected diagrams cancel
against the partition function Z, and is of great numerical importance as the spatial
sums would lead to a configuration space S of unbounded total weight. The connectivity
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of diagrams is a non-local property, and the computational cost typically scales with the
size of the diagram.

It is sufficient to consider connectivity only after a remove straight lines update is
accepted. This is the only update that can separate a diagram into two disconnected
pieces. Evaluating the connectivity of a graph is a thoroughly discussed subject of graph
theory. However, for the relatively small graphs in question, a simple breadth-first search
for the two irreducible vertices related by the straight lines suffices [40]. If the update
constructs a disconnected diagram, it is automatically rejected.

For each state contributing to the sampled statistics, the connectivity of the diagram
is guaranteed if the previous arguments are taken into account. For obtaining a well-
behaved expansion, the Dyson’s equation introduced in Ref. [27] can be applied. For
the state to contribute to the accumulated statistic for the so-called self-energy Σ(τ ′ −
τ,x′ − x), single-particle irreducibility is required as well. A diagram is irreducible, if
it cannot be divided into two disconnected pieces, by cutting a single propagator line.
Irreducibility must be considered with respect to a measuring line, as a diagram in closed
form can correspond to reducible and irreducible diagrams depending on the choice of
measuring line, as shown in Figure 7.3. There are numerous algorithms determining
irreducibility [40]. A naive but sufficient approach for small diagrams is to find a path
connecting the two external points, which is guaranteed to exist. Then connectivity is
checked once more, disregarding the first path. If the diagram is doubly connected, it is
irreducible and a proper contribution to the self-energy Σ(τ ′ − τ,x′ − x).



Chapter 8

Summary and remaining steps

Following the recent work by Carlström [1], we have used perturbation theory to obtain
a Feynman diagrammatic expansion for the two-dimensional Hubbard model. We make
the unconventional choice of expanding in both the non-local hopping operator t̂ and
the on-site interaction Û . This results in a large number of possible local contractions.
The local contractions are furthermore ordered into what we define as irreducible ver-
tices. The method is reminiscent of what is done in recent developments in determinant
diagrammatic Monte Carlo methods [14]. By using an operator basis with trivial time de-
pendence, we can efficiently store the irreducible vertices in a database. It is constructed
using a recursive algorithm, where each term can be calculated by considering deter-
minants. In the calculation of irreducible vertices, the on-site interaction Û is summed
to infinite order, avoiding any truncation bias due to the potentially large interaction
parameter U .

The irreducible vertices give rise to a diagrammatic expansion suitable for a diagram-
matic Monte Carlo approach, as both the sign of the contributions and the connectivity
can be handled conveniently. The distinct irreducible vertices are connected by bold
propagators. The bold propagators are defined in terms of two-legged irreducible ver-
tices and constitute the non-local contributions of the diagrams. We develop a simple
diagrammatic Monte Carlo algorithm for obtaining the bold propagator distribution with
a small set of updates. The algorithm serves as an introduction to a stochastic sampling
of diagrammatic contributions. In addition, a semi-analytical approach is presented,
where we use a closed expression for the number of directed paths connecting two lattice
sites. This reduces the problem of obtaining the bold propagator distribution to solving
conventional high-dimensional integrals.

The number of diagrams has a slow factorial growth in the resulting diagrammatic
expansion, compared to other conventional expansions. This leaves high-order diagrams
accessible. The main work of this thesis is to introduce a diagrammatic Monte Carlo
implementation for this specific expansion. We use a conventional Metropolis-Hastings
algorithm in the suggested implementation. A set of three pairs of updates governs the
topological changes of diagrams. The updates fulfill the ergodicity requirement, mak-
ing all connected diagrams in the expansion accessible. For efficiency, all updates are
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local and use the provided database for irreducible vertices and bold propagators. Fur-
thermore, the algorithm consists of updates governing the diagrams’ internal variables,
namely positions and imaginary times. Such updates reduce the autocorrelation time
and allow efficient evaluation of internal integrals and sums. Applying the method of
bold propagators in the expansion of irreducible vertices should give rise to cancellation
effects alleviating the numerical sign problem.

Remaining steps

A few steps remain before a working implementation for the full diagrammatic Monte
Carlo approach is in place.

The total sign of the diagrams must be stored for the general diagrammatic approach.
In principle, this is determined by the odd operations introduced in section 5.2.1. How-
ever, in practice, it can be done by counting commutations for a time-ordered list of
external operators for the vertices considered for each update. This procedure should be
an integrated part of the local updates. It does not affect the weight of the state, and is
only necessary for accepted updates.

A powerful resummation technique should be applied to improve the convergence
properties of the sampled free energy Σ(ω,k). There are several possible choices, such
as the Cesàro-Riesz resummation, as suggested in Ref. [33] or a Borel resummation as
in Ref. [41]. In general, resummation techniques are important for obtaining sensible
results for diagrammatic Monte Carlo approaches for systems suffering from the sign
problem.

We suspect the algorithm to be prone to autocorrelation, compared to other recently
developed diagMC approaches. An alleviation of such autocorrelation issues would be
to increase acceptance rates. This can be done by applying conventional importance
sampling methods to the integration over internal variables.
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