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Abstract

An important step in both quantitative image analysis and radiotherapy treat-
ment planning is the delineation of the tumor volume. This is a time-consuming
task, and it is also the greatest source of uncertainty due to interobserver vari-
ability. The purpose of this thesis was to explore a deep learning approach with
convolutional neural networks for automatic segmentation of tumor volume based
on MR images from patients with rectal cancer. This could potentially save time
for the radiologists/oncologists and contribute to a more consistent delineation.

T2 weighted and diffusion weighted images with seven different b-values be-
tween 0 s/mm2 and 1300 s/mm2 from 81 patients from the OxyTarget study with
rectal cancer patients were used. The image data was split into a training set
(51 patients), a validation set (10 patients), and a test set (20 patients), stratified
by gender and the tumor stage. A total of nine models with a U-net architecture
were created and varied in terms of which image types that were used as input and
which loss function that was used. The different loss functions that were tested
were the cross entropy loss, the Dice loss, and a modified version of the Dice loss.
Two radiologists had performed manual tumor delineations on the images, and
the union of these two was used as the ground truth for the models. The models
were evaluated based on the average Dice similarity coefficient (DSC) per patient
in the validation set. The best U-net model was then compared to the results from
a shallow machine learning approach based on the linear support vector classifier.

The performance for the different U-net models ranged from a DSC of 0.58 to
a DSC of 0.67, and the best model took T2 weighted images as input and used
the modified Dice loss function. Compared to the model with the linear support
vector classifier, which resulted in a DSC equal to 0.48, the U-net models were
superior. The DSC between the two manual delineations was calculated to 0.78,
which indicates that the U-net model needs to be improved before it can be of
clinical use.

However, the U-net model shows promising results for the automatic segmen-
tation of the tumor volume. To improve the model performance, the effect of
having input images with high resolution, and adding data augmentation and
image cropping should be explored.
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Sammendrag

Et viktig steg i både kvantitativ bildeanalyse og strålebehandling er inntegningen
av kreftsvulstvolumet. Dette er en tidkrevende oppgave, og det er den største
kilden til usikkerhet grunnet interobservatørvarabilitet. Hensikten med denne
masteroppgaven var å undersøke om kunstig intelligens i form av dyp læring
med konvolusjonelle nevrale nettverk kan benyttes for automatisk segmentering
av kreftsvulsten basert på MR-bilder fra pasienter med endetarmskreft. Dette
kan potensielt spare tid for radiologene/onkologene og bidra til en mer konsekvent
inntegning.

T2-vektede og diffusjonsvektede bilder med syv ulike b-verdier mellom 0 s/mm2

and 1300 s/mm2 fra 81 pasienter fra OxyTarget-studien med pasienter med ende-
tarmskreft ble brukt. Bildedataene ble splittet i et treningssett (51 pasienter),
et valideringssett (10 pasienter) og et testsett (20 pasienter), jevnt fordelt med
hensyn på kjønn og kreftstadier. Totalt ble det utviklet ni modeller med en U-net
arkitektur der type bilder og tapsfunksjonen varierte. De ulike tapsfunksjonene
som ble testet var cross entropy tap, Dice tap og en modifisert versjon av Dice
tapet. To radiologer hadde tegnet inn omrissene av kreftsvulstene manuelt på
bildene, og unionen av disse ble definert som fasit for modellene. Modellene ble
evaluert basert på den gjennomsnittlige Dice likhetskoeffisient (DSC) per pasient
for pasientene i valideringssettet. Den beste U-net modellen ble så sammenlignet
med resultatene fra en grunn maskinlæringsmodell basert på den lineære støt-
tevektorklassifikatoren.

Resultatet for de ulike U-net modellene varierte fra en DSC lik 0.58 til en DSC
lik 0.67, og den beste modellen brukte T2-vektede bilder og den modifiserte Dice
tapsfunksjonen. Sammenlignet med modellen med den lineære støttevektorklassi-
fikatoren, som resulterte i en DSC lik 0.48, var U-net modellene overlegne. DSC
mellom de to manuelle inntegningene ble kalkulert til å være 0.78, og dette indik-
erer at U-net modellen må forbedres før den kan brukes klinisk.

U-net modellen viser uansett lovende resultater for automatisk segmentering
av kreftsvulster. For å utvikle en forbedret modell bør effekten av å bruke bilder
med høyere oppløsning, samt å legge til data augmentasjon og bilde beskjæring,
undersøkes.
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Chapter 1

Introduction

Cancer is a group of diseases characterized by uncontrolled cell division. The
cancer cells also possess the ability to invade neighboring tissues and spread to
other parts of the body through for example the bloodstream or the lymphatic
system. It is estimated that cancer caused 9.6 million deaths worldwide in 2018
[1, 2].

In 2018 there were 34190 new cancer incidents in Norway [3]. Cancers in the
rectum and rectosigmoid had 1360 new incidents, which corresponds to 4% of
the total number of cancer incidents. This makes rectal cancer the seventh most
frequent type of cancer in Norway. The relative survival with this cancer type
after five years is 69.8% [3].

National guidelines state that patients diagnosed with rectal cancer should
undergo a preoperative magnetic resonance imaging (MRI) examination to de-
termine the stage of the disease [4]. From the image-based staging, the optimal
treatment of the patient can be decided. For patients with locally advanced rectal
cancer, the tumor has grown into the bowel wall and/or invaded nearby organs.
These patients will receive preoperative chemoradiotherapy to reduce the size of
the tumor, thereby enabling a better outcome of the subsequent surgery. Other
patients with localized disease will be directly referred to surgery only [5, 6].

The delineation of the tumor volume is needed to make plans for radiation
treatment. Today this delineation is done manually by radiologists or oncologists,
and there is a significant interobserver variation which creates uncertainties [7].
Accuracy in the delineation is crucial because it is one of the first steps in the
planning process, and an error in the target volume will generate a systematic
error in the resulting treatment plan [8, 9]. This can impact the cure rate and
toxicity of the treatment since the goal is to give a high dose to the tumor while
limiting the dose to organs at risk and normal tissue. Another drawback of manual
delineation is that it is a very time-consuming task. The time it takes to perform
the delineation for one tumor can range from one minute to approximately 20
minutes [10].

In the last few years, there have been great progress and interest in the field
of artificial intelligence and deep learning [11]. This is partly due to the rapid im-
provements in computational power, fast data storage, and parallelization, which
makes it possible to analyze large amounts of data [12]. Deep learning approaches

1



2 CHAPTER 1. INTRODUCTION

based on convolutional neural networks have shown promising results for image
segmentation with biomedical images [13, 14]. It might be possible to create a
model that automatically segments the tumor volume, and in that way provide
a standardized method for delineation. This would eliminate the interobserver
variations and be time-saving for the radiologists if the results from the model are
sufficiently accurate.

MR images were traditionally only evaluated visually by radiologists to deter-
mine the stage and size of the tumor. In recent years, MR images are also used to
identify cancer biomarkers. A biomarker is a characteristic that can be measured
objectively and act as an indicator of biology processes, pathological changes, or
response to an intervention [15]. Such markers can give more information about
the aggressiveness of the disease and be used to evaluate treatment response and
predict the survival of the patient if he/she receives a given treatment. Delin-
eations of tumor volumes are needed to calculate tumor biomarkers. Radiomics
is a growing field that seeks to identify biomarkers by analyzing a large amount
of image feature data. To make the results obtained from radiomics reliable and
reproducible, a standardized method for delineation would be beneficial [16].

The aim of this thesis was to train a deep convolutional neural network with
MR images from patients with rectal cancer in order to create a model for auto-
matic segmentation of the tumor volume. The accuracy of the model was eval-
uated and compared with results obtained from a shallow machine learning ap-
proach where classification was done based on voxel intensities and with manual
delineations by two radiologists.



Chapter 2

Theory

2.1 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is an imaging technique used to form images
of the anatomy and functions of the body. This section is taken from the author’s
project thesis, written during the fall semester of 2019, with minor adjustments,
and it is based on the book MRI in Practice [17] unless other is stated.

MRI is an imaging technique used to form images of the anatomy and functions
of the body. The technique is based on the spin and magnetic moment of nuclei.
An MR active nucleus has an odd mass number and therefore a net spin. Nuclei
with a net charge and spin will have a magnetic moment, the same way as a
current moving through a coil induces a magnetic field. In this case, the nuclei
then act as a small magnet. In human applications hydrogen (1H) is the most
used nuclei because of its relatively large magnetic moment, and the fact that a
large amount of the body consists of water which means that it is a lot of hydrogen
available. The spins are randomly oriented, but when an external magnetic field
is applied, the nuclei tend to align their axis of rotation to the magnetic field.
They can align parallel or anti-parallel to the field, and there is a slight preference
for parallel because this corresponds to a lower energy state. This leads to a net
magnetization in the direction of the magnetic field. The spins will precess around
the magnetic field, B0, with a frequency, called the Larmor frequency, w0.

w0 = γB0, (2.1)

where γ is the gyromagnetic ratio which expresses the relationship between the
magnetic moment and the angular momentum. This is a constant specific to the
nuclei type.

A radio frequency pulse can be applied at the Larmor frequency to excite the
spins. By exciting the spins, the net magnetization vector can be moved away from
alignment with B0. The flip angle is referred to as the angle the net magnetization
vector is moved out of alignment, and this angle is often 90◦. That will say that the
net magnetization is moved from the longitudinal plane to the transverse plane.
The nuclei will then precess in the transverse plane and produce magnetic field
fluctuations inside a receiver coil. This induces an electrical voltage, and this is

3



4 CHAPTER 2. THEORY

the MR signal. The net magnetization vector will try to realign with the B0 field,
and in this process, the nuclei transfer energy to the surroundings. A decrease in
the magnetization in the transverse plane and recovery of the magnetization in the
longitudinal plane will then occur. This is called T1 relaxation. It is an exponential
process, and the time it takes for 63% of the longitudinal magnetization to recover
is called T1.

The spins in the transverse plane will start in phase after the excitation pulse
and then dephase. This dephasing is due to spin-spin interactions, T2, and inho-
mogeneities in the magnetic field, T2’. The T2’ dephasing is a systematic effect
that can be reversed, while T2 is a random effect and varies with the nuclei type.
The total dephasing is referred to as T2* decay, and the relationship between T2,
T2’ and T2* is given by the following equation.

1

T2∗
=

1

T2
+

1

T2′
(2.2)

In MR sequences the repetition time, TR, is the time from the application of
the excitation pulse to the application of the next excitation pulse. This time
determines the amount of T1 relaxation that is allowed to occur before the signal
readout. The echo time, TE, is the time from the application of the excitation
pulse to the peak of the signal that is induced in the receiver coil. This determines
how much T2 relaxation that is allowed to happen before the readout.

A spin-echo sequence is one of the most used pulse sequences in MRI. In this
sequence, a 90◦ excitation pulse is applied to flip the net magnetization to the
transverse plane. A free induction decay signal will occur, and after a time TE/2
a 180◦ pulse is applied to rephase the spins and we get a spin echo signal at TE.
Figure 2.1 shows a vector representation of the dephasing and rephasing of the
spins.

To form an image it is important to determine the spatial location of the signal.
This is done with the use of magnetic field gradients. The Larmor frequency is
dependent on the magnetic field strength, and a nucleus experiencing a high mag-
netic field strength will have a lager Larmor frequency than a nucleus experiencing
a lower field strength. To select a slice in the z-direction, often the direction from
feet to head of a patient, a gradient is applied in the B0 direction. The Larmor fre-
quency of the spins will now vary along the z-direction. The excitation pulse with
a band of frequencies equal to the Larmor frequencies of the spins in the wanted
slice is applied, and only spins in this slice will get excited. The slice thickness is
dependent on the bandwidth of the pulse and the steepness of the gradient. In a
spin-echo sequence, the slice selection gradient is on during the 90◦ and 180◦ radio
frequency pulse. The two remaining directions are called the frequency encoding
direction and the phase encoding direction. A gradient in the frequency encoding
direction is switched on during the readout of the signal. Signals from different
locations along this gradient will have different frequencies. In the phase encoding
direction, a gradient is applied after the excitation pulse. This gradient is only
on for a given amount of time and induces a phase shift between spins along the
phase encoding gradient. The resulting pulse sequence with all the gradients is
shown in figure 2.2.
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In	phase Dephasing After	180o	pulse Rephasing

Figure 2.1: Vector representation of the spin dephasing and rephasing in a spin-echo
sequence. The blue arrow represents the spins that rotate at the Larmor frequency, the
green arrow represents the spins that rotates a bit faster and the red arrow represents
the spins that rotate a bit slower.

TR
TE/2

TE

90o 180o 90o
RF

GSS

GPE

GFE

Signal
FID Echo

Figure 2.2: Spin echo pulse sequence and spatial encoding gradients. RF is the radio
frequency pulses, GSS is the slice selecting gradient, GPE is the phase encoding gradient
and GFE is the frequency encoding gradient.
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The recorded signal is mapped to a spatial frequency domain, the so-called k-
space. The horizontal lines correspond to the frequency encoding while the vertical
lines correspond to the phase encoding. A 2D Fourier Transform is applied to
reconstruct the image from k-space.

By applying different pulse sequences, different contrasts can be obtained in
the images. It is possible to have sequences that highlight the anatomy but also
sequences that highlight functional properties like diffusion.

2.1.1 T2 weighted images

In T2 weighted images, water/fluid will appear bright, fat will appear intermediate-
bright, while air and muscle will appear dark. This can be seen in the T2 weighted
image in figure 2.3. The image contrast is a result of the fact that different tissues
have different T2. Fat molecules can easily absorb energy into its lattice from the
hydrogen nuclei due to low inherent energy. From this, it follows that the lon-
gitudinal magnetization is able to recover quickly in fat, and fat has a short T1.
Water, on the other hand, has high inherent energy and does not absorb energy
into its lattice easily. Because of this, it takes water a longer time to recover the
longitudinal magnetization and it has a long T1. The fat molecules are packed
closely together, and spin-spin interactions are likely to occur. The spins in fat
will dephase quickly, which leads to a short T2. The spin-spin interactions are less
likely to occur in water because there is more space between the molecules, and
water has a long T2.

To get a T2 weighted image the difference in T2 for water and fat needs to be
enhanced, and the difference in T1 needs to be diminished. This can be controlled
by adjusting TE and TR. The TE must be long enough so that both fat and water
have time to decay. Since water has the longest T2, it will be most signal left from
water. The TR must be so long that both water and fat get time to fully recover
their longitudinal magnetization, and therefore the difference in T1 will not create
contrast in the image.

Figure 2.3: A T2 weighted image of a patient with rectal cancer. The red arrow points
at the tumor.
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2.1.2 Diffusion weighted images

Diffusion is referred to as the random Brownian motion of molecules driven by
thermal energy [18]. In a perfectly homogeneous medium, the probability for
motion will be the same in all directions, and there will be free diffusion. This is
not the case in a complex environment like the human body. In the body, there
are intracellular and extracellular compartments. In the extracellular regions, the
water molecules will experience a relatively free diffusion while there will be a more
restricted diffusion in the intracellular regions. Different tissues have different
proportions of intra- and extracellular compartments and characteristic cellular
architecture. This means that the diffusion properties vary with the tissue. In
tumors, there is a higher cell density than in healthy tissue, and this results in a
more restricted diffusion.

In a diffusion weighted image (DWI) the contrast is determined by the diffusion
of water molecules [19]. The presence of a magnetic field gradient will cause a phase
shift in the spins, and the cumulative phase shift, φ, for a single static spin is given
by

φ(t) = γB0t+ γ

∫ t

0

G(t′) · x(t′)dt′. (2.3)

In equation (2.3) the first term is due to the static B0-field and the second
term is due to a magnetic field gradient. G is the strength of the gradient, x is
the spatial location of the spin and t is the duration of the gradient.

A normal pulse sequence in DW imaging consists of a T2-weighted spin-echo
sequence and two equal gradient pulses applied before and after the 180◦ refocusing
pulse. This is called a Stejskal-Tanner sequence [20], and it is shown in figure 2.4.

The phase shift due to the applied gradient will for an individual spin be
proportional to the displacement of the spin along the direction of the gradient
[19]. At the echo time, TE, the total phase shift for a particular spin is equal to

90o 180o

Signal
FID Echo

Gradients

RF

Figure 2.4: Stejskal-Tanner sequence consisting of a spin echo pulse sequence together
with the diffusion gradients used in diffusion weighted imaging.
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φ(TE) = γ

∫ t1+δ

t1

G(t′) · x(t′)dt′ − γ
∫ t1+∆+δ

t1+∆

G(t′) · x(t′)dt′. (2.4)

Here δ is the time the gradient is applied for and ∆ is the time between the
first and the second gradient. From equation (2.4) it is clear that if there is no
displacement along the gradient, the two terms will cancel. That results in no net
phase shift. With diffusion, each spin acquires a random displacement and the
phase shift for the individual spins will vary. Only the spins with no moment will
be refocused perfectly and diffusion leads to a reduction of the signal. Regions
with strongly restricted diffusion, like tumors, will therefore appear bright in the
images while regions with relatively free diffusion will appear dark. This can be
seen in figure 2.5a.

It can be shown that the diffusion results in an echo attenuation given by

S(b, TE)SE = S0 exp (−TE
T2

) exp (−b · ADC), (2.5)

where b refers to the diffusion-sensitizing factor, also called b-value, and ADC is
the apparent diffusion coefficient. The b-value determines the amount of diffusion
weighting in the image, and it can be calculated as follows

b = γ2G2δ2(∆− δ

3
). (2.6)

A b-value equal to zero will correspond to a T2 weighted image with no diffusion
weighting. Figure 2.5b shows an ADC map, and it reflects the degree of restricted
diffusion. The ADC can be calculated from equation (2.5) by using at least two
different b-values, and one gets

ADC = − 1

b1 − b0

ln (
S(b1)

S(b0)
). (2.7)

(a) DWI (b) ADC map

Figure 2.5: A diffusion weighted image (a) and an ADC map (b) for a patient diagnosed
with rectal cancer.
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2.2 Machine learning

Machine learning is a field closely related to artificial intelligence, pattern recog-
nition, statistics, optimization, and computer science [21]. It can be defined as
the use of computer algorithms that improves the performance of a given task
by learning from experience [22]. Different statistical learning methods are used
by the algorithms to create decision boundaries, and these can be used to make
predictions on new data.

Machine learning can be divided into two main categories, supervised and
unsupervised learning. With supervised learning, both the data and the corre-
sponding labels are used to train the model, and the performance of the model
can be determined from how well predicted labels correspond to the real labels.
With unsupervised learning, on the other hand, the data has no labels and it
is up to the model to find patterns within the data. A typical example of this
is clustering which seeks to separate the data into distinct subsets. There is no
straight forward method to determine the model performance for models with un-
supervised learning. In addition to supervised and unsupervised learning, there
also exists a third category, reinforcement learning, which is often applied when
teaching a machine to play games. In this case, the model gets feedback based on
the outcome of the game [23].

The predictions made by a machine learning model can either be quantitative
or qualitative. A quantitative variable will have a numerical value, and can, for
example, be life expectancy, while a qualitative value will be set to one of N
different categories. An example of this could be a person’s gender (male or
female) or the result of a medical test (positive or negative). A regression problem
is a case where the model should output quantitative values, while a classification
problem would refer to a model that outputs qualitative values [24].

Deep learning is a subfield of machine learning where the data is processed
in several hierarchical layers in order to understand more complex features and
representations of the data [23]. Shallow machine learning approaches mainly
looks at one representation of the input data, and will therefore only be able to
make accurate predictions if this representation contains features that are clearly
related to the expected output. It, therefore, lacks the level of abstraction found in
deep learning [23]. Deep learning has the advantage that one can input raw data
and the model will learn to automatically extract the features that are relevant
for the predictions. Most deep learning models are neural networks with several
hidden layers. The following pages will give a short introduction to how neural
networks work, and how they can be used for image recognition.

2.2.1 Neural networks

A neural network is a model that consists of several layers of processing units
referred to as neurons, and an illustration of this is shown in figure 2.6. Each
neuron takes an input and process the data before it is sent to neurons in the next
layer. The connections between the different neurons can vary in strength, and
the strength of these connections will determine how the data is processed [23].
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Input	layer Hidden	layers Output	layer

Figure 2.6: Illustration of a possible structure of neurons in a neural network with
three hidden layers. The circles correspond to the neurons, and the solid lines represent
the connections between the neurons.

The neurons will have an internal state depending on the input, which is a sum
of outputs from neurons in the previous layer. A simple function for this internal
state value, or activation value, is given by the following equation.

a(x) =
∑
i

wixi, (2.8)

where xi is the input originating from neuron number i in the previous layer,
and wi is the strength of the connection between the two neurons. If one consider
x and w as vectors, the activation value will be the dot product between these
two [23]. w · x = 0 will define a hyperplane in Rd, where d is the dimension of
x. A vector x1, which gives w · x1 > 0, is a vector that lies on one side of the
hyperplane while a vector x2 such that w · x2 < 0 lies on the other side. Each
neuron can therefore act as a classifier. It is possible to include a bias which will
shift the hyperplane away from the origin, and that will result in the following
function for the activation value.

a(x) =
∑
i

wixi − b (2.9)

The output from the neuron is determined by an activation function that takes
the activation value as input, and this data processing that takes place in the
neuron is illustrated in figure 2.7. One of the simplest activation functions is
the identity function, f(a) = a. This is a linear function where the output of the



2.2. MACHINE LEARNING 11

Neuron

Activation
function

Activation
value

Input Weights

Output

Figure 2.7: Illustration of the neuron composition. The input values, xi, are multiplied
with their corresponding weight, wi, and summed up to the activation value. This
activation value is sent to the activation function which determine the output from the
neuron.

neuron equals the activation value. An example of a non-linear activation function
is the threshold function in equation (2.10). It results in activation of the neuron
(output equal to 1) if the activation value is above a certain threshold value and
an output of zero if it is below.

f(a) =

{
1 if a ≥ 0

0 if a < 0
(2.10)

A combination of the identity and the threshold function yields the Rectified
Linear Unit function, ReLU, which is shown in the following equation.

f(a) =

{
a if a ≥ 0

0 if a < 0
(2.11)

Another activation function that is commonly used is the logistic sigmoid func-
tion,

f(a) =
1

1 + exp(−a)
. (2.12)

The output from this function is bound between 0 and 1, and it can be in-
terpreted as the probability for the neuron to activate. In a neural network, all
neurons in the same layer tend to have the same activation function, but neu-
rons in different layers can have different activation functions. The choice of the
activation function is related to the underlying problem [23].

When training a neural network, the strength of the connections between dif-
ferent neurons, the weights, are first initialized as small random numbers. The
goal is then to optimize these weights so that the error in the predictions made
by the network is minimized. The error is calculated with a loss function, J(w),
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and it represents the difference between the predicted values and the true values.
For regression problems, the squared error loss function is commonly used, and it
is given as

J(w) =
∑
i

(yi − ti)2, (2.13)

where yi is the predicted value and ti is the target value or true value for sample
i. The cross entropy loss function is often used for classification problems, and for
classification with two distinct classes (1 and 0) it is defined as

J(w) = − 1

n

n∑
i=1

ti ln(σ(ai)) + (1− ti) ln(1− σ(ai)), (2.14)

where σ(ai) is the probability that sample i belongs to class 1 with the given
weights. To use the cross entropy loss function it is important to use an activa-
tion function that outputs a value between 0 and 1 that can be interpreted as a
probability function, like the logistic sigmoid function [23].

To minimize the loss function, and thus optimize the weights, the weights are
updated iteratively. One widely used method for deciding how the weights should
be updated is the gradient descent. The loss function is a function of the weights
in the network, and by calculating the gradient of the loss function, one finds the
direction with the steepest slope at given points. The weights can then be updated
in the opposite direction of the gradient, and as a result, the next iteration will
yield a lower loss. The weight update is given by the following equation.

w(i+1) = w(i) − λ∇J(w(i)), (2.15)

where λ is the magnitude of the update, the learning rate, and ∇(J(w(i))) is
the gradient of the loss function. It is important to choose a reasonable value
for the learning rate. A too small learning rate will lead to unnecessary many
iterations and one can get stuck in local minima. On the other hand, a too large
learning rate might not lead to a minimum at all, only a random location on the
curve [25].

There are several challenges with the gradient descent method. The conver-
gence speed can be low due to oscillations around the minimum, and it is possible
to get stuck in local minima. Momentum gradient descent is a method that was
developed to address these two issues [26]. With this method, the weights are
not only updated based on the current gradient but also the previous. A useful
analogy can be to think of a ball rolling down the loss function. The movement
of the ball will not only depend on the current acceleration but also the velocity
resulting from previous acceleration. If the ball has enough momentum, it will get
past the local minima and end up in the global minimum. The adjustment to the
weights, ∆w(i), with the momentum gradient descent is defined as

∆w(i) = γ∆w(i−1) − λ∇J(w(i))

w(i+1) = w(i) + ∆w(i),
(2.16)
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where γ is a parameter that controls how much the previous iteration should
be weighted.

An adaptive learning rate optimization algorithm, Adam, was proposed by
Kingma and Ba [27]. It is a versatile optimization algorithm that can be used
for large-scale high-dimensional machine learning problems and has, therefore,
become a popular algorithm to use for neural networks. Adam does not only
include the momentum, but it also modifies the learning rate for each weight.
If one weight gets a very large update in the previous iteration, this indicates
numerical instabilities, and the learning rate is decreased. Similar, if the weight
had a small update in the last iteration, it might be on a plateau, and increasing
the learning rate could lead to faster convergence. The algorithm updates the
moving average of the gradient, m(i+1), and the moving average of the squared
gradient, v(i+1), in the following manner.

m(i+1) = (1− β1)∇J(w(i)) + β1m(i)

v(i+1) = (1− β2)(∇J(w(i)))2 + β2v(i),
(2.17)

where β1 and β2 are hyper-parameters between 0 and 1 that control the ex-
ponential decay rates of m(i+1) and v(i+1). m(i+1) and v(i+1) can be seen as an
estimate of the first moment (the mean) and the second moment (the uncentered
variance) of the gradient respectively. Both the moments are initialised as zero,
and thus introduce a bias towards zero in the estimates. A bias correction is
therefore applied, and the bias-corrected moments are defined as

m̂(i+1) =
m(i+1)

1− βi1

v̂(i+1) =
v(i+1)

1− βi2
.

(2.18)

The Adam algorithm then defines the weight update as given by the following
equation.

∆w(i) = −λ(i) m̂(i+1)√
v̂(i+1) + ε

(2.19)

Here, ε is a small number included to ensure numerical stability.
When one has a neural network with only one layer, the weight optimization

can easily be understood. With several hidden layers, the method is not so straight
forward, and a method called back-propagation is used. The idea behind this
method is that the error in the last hidden layer is calculated and then an estimate
of the error in the previous layer is made. The error is propagated backward from
the last layer to the first layer [11]. A complete mathematical description of the
back-propagation algorithm is beyond the scope of this thesis, but it is mainly use
of the chain rule.
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2.2.2 Overfitting

A problem with complex models like neural networks is overfitting. An overfit-
ted model has learned the noise in the data used for training and will produce
predictions with very high accuracy for this data, but it will not perform well on
new unseen data [23]. At the beginning of the training, the model will improve
its performance on both training data and unseen data with a better optimization
based on the training data. At this stage, it is still relevant features for the model
to learn, and the model is said to be underfit. At one point the model becomes
overfitted, and it has then learned features that are specific to the training data
but that are irrelevant or misleading when it comes to new data [11]. There is a
compromise when it comes to optimization and generalization, but a model trained
on a larger amount of data will generalize better.

Training on more data is not always possible, but there are other ways to avoid
overfitting. One can regulate the quantity of information the model is allowed to
store or add a constraint on the information that can be stored. In this way, the
model is forced to focus on the most dominant patterns, and this approach is
referred to as regularization [11]. The simplest way one can do this is to reduce
the network size. The number of parameters that the model can learn depends
on the number of layers together with the number of units within each layer, and
this is called the capacity of the network. The adjustment of the capacity of the
model will be a compromise between an overfitted and an underfitted model, in
other words too much capacity or not enough capacity.

Another option is to add weight regularization. The weights can be forced to be
small by adding a cost for having large weights to the loss function. This will result
in a less complex model because the weights will have a more regular distribution
[11]. There are two common ways to implement weight regularization, L1 and L2
regularization. With L1 regularization a cost proportional to the absolute value
of the weight coefficients is added, while with L2 regularization the added cost is
proportional to the square of the value of the weight coefficients.

One of the most effective and most commonly used methods to avoid overfitting
is dropout. With this method, some output features of the layer are randomly
selected and set to zero (dropped out) during the training of the model [11]. The
model is thus forced to learn a more robust representation of the data, and the
predictions can not only depend on a few specific features. The fraction of the
features that are set to zero is the dropout rate, and this is usually between 0.2
and 0.5. The dropout is only done during the training of the model, and when it
is run on test data the output values are scaled with a factor equal to the dropout
rate. This is done to compensate for the fact that there are more active units than
during the training.
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2.2.3 Image recognition with convolutional neural networks

When applying neural networks for image recognition, a type of layers called con-
volution layers are almost always used [23]. Instead of getting input from each
of the neurons in the previous layer like fully connected layers does, a neuron
in a convolution layer only receives input from a small sub-region of neighboring
neurons in the previous layer. These neighboring neurons will correspond to neigh-
boring pixels in the image. In this way, a neural network with convolution layers,
convolutional neural networks, will reduce the number of parameters needed and
consequently help avoid overfitting [23].

A convolution layer can be seen as an image filter that highlights certain fea-
tures [23]. The filter is a two-dimensional matrix, usually 3×3 or 5×5, containing
weights that are moved across the input image as shown in figure 2.8. The filter is
usually moved one pixel at the time, and the number of pixels moved corresponds
to the stride. The result obtained from each move corresponds to the activation
value of a neuron in the convolution layer. One convolution layer can contain
several filters and the output will then be a set of images with different features or
characteristics highlighted. This set of images will be referred to as feature maps,
and the depth of the feature map, also called number of channels, corresponds to
the number of images. The depth of the output feature map will be the depth of
the input feature map multiplied with the number of different filters. A convolu-
tion layer with an input feature map with a depth equal to two and two different
filters is shown in figure 2.9.

One large advantage with convolutional neural networks is that the key pat-
terns that they learn are translation invariant [11]. A pattern that occurs at one
location and is learned by the network can be recognized by the network even if
it appears at another location in the image. With a fully connected network, the
pattern would have to be learned again if it were to appear at a different loca-
tion. Due to this, a convolutional neural network needs fewer samples to learn
representations that can be generalized compared to a fully connected network.
Convolutional neural networks can also learn hierarchies of patterns [11]. The first
convolution layer will be able to learn small local patterns, like for example edges,
while a second convolution layer will learn larger and more complex patterns from
the features in the first layers.

When convolution is applied to an image, the size of the output image becomes
smaller than the input image. A 3 × 3 filter can be centered around every pixel
in the image except the ones around the edge. This will lead to an output image
with two fewer pixels in each dimension compared to the input image, as seen in
figure 2.8. To get an output image with the same size as the input image, padding
can be applied. This is done by adding zero value pixels around the original image
[23], and the effect is shown in figure 2.10. If the filter has larger dimensions or the
stride is larger, one would need more padding to achieve the same output image
size. It is also possible to use padding to increase the size of the output image.
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Figure 2.8: Illustration of a 2D convolution. The 3 × 3 convolution kernel, or filter,
(pink) is moved across the 5× 5 input (blue) with a stride equal to 1 and produces the
3×3 output (green). The output value in the top left corner is computed in the following
way; (1 ·1)+(8 ·1)+(4 ·1)+(9 ·0)+(2 ·0)+(0 ·0)+(4 · (−1))+(5 · (−1))+(3 · (−1)) = 1.
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Figure 2.9: Convolution with two filters (pink) performed on an input feature map
with two channels (blue). The resulting output feature map has four channels and is
shown in green.

Figure 2.10: Illustration of the effect of adding same padding to a convolution with
a 3 × 3 filter and stride equal to one. Zeros are added around the input image (blue)
increasing the size with two in each dimension. The filter can then be centered around
every pixel in the input which results in an output image with the same size as the input
image.
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Figure 2.11: The max pooling operation with window size 2 × 2 and stride equal to
two. The input is divided into a grid and the output consists of the maximum value from
each of the windows. The output is consequently a 75% downsampling of the input.

Pooling layers are used in neural networks to reduce the number of feature map
coefficients that need to be processed [11]. With max pooling, one creates grids,
usually with 2× 2 windows, on each image and keep the pixel with the maximum
value within each window, as illustrated in figure 2.11. This operation will discard
75% of the neurons, and only the neurons that contribute the most will be kept
[23]. It is also possible to use mean pooling where the average of the pixel values
in the window used instead of the max, but max pooling tends to work better
[11]. In addition to reduce the number of neurons, pooling layers also make sure
that successive convolution layers look at increasingly large windows, and thus the
network will be able to learn patterns that span a large area of the image.

2.2.4 Image semantic segmentation

When the goal is to perform image segmentation, it is not enough to have a
network with only convolution layers and pooling layers. Semantic segmentation
requires all the pixels in the input image to be assigned to a class, and the output
of the network should, therefore, have the same resolution as the input. Through
downsampling operations like pooling layers, the resolution of the feature maps
are decreased, and it is therefore not straight forward to relate this to the original
spatial resolution.

Fully convolutional networks, FCNs, have shown good results for semantic
segmentation [28]. A FCN replaces the fully connected layers with convolutional
layers with a filter size equal to the size of the input, and the output is a classi-
fication heat map. In this way, the network can take images with arbitrary size
as input, but the produced heat maps are coarse and need to be upsampled to
make the pixel-wise predictions. This upsampling can be done through for ex-
ample bilinear interpolation or upconvolution, often referred to as deconvolution.
Upconvolution can be thought of as an inverse convolution since the convolution
connects several input neurons to one output neuron and the upconvolution, on
the other hand, connects one input neuron to several output neurons [29]. In this
way, the spatial resolution of the feature maps can be increased so that the original
resolution is obtained.

Instead of upsampling to the input resolution in one operation, having an
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upsampling part that mirrors the contraction part of the network has produced
good results [29, 13]. A network where both the contraction and expansion is
applied gradually creates a network architecture that is shaped like a "U", as
shown in figure 2.12. Networks with this architecture is, therefore, often referred
to as U-nets.

The contracting part of the network extract features from the input while
the expansion part produces the object segmentation. The lower layers of the
expansion tend to capture the overall shape of the object while the higher layers
encode the finer details [29].

In order to restore the spatial information lost during the downsampling, long
skip connections can be applied. Through these connections feature maps from the
contraction part of the network are joined with the feature maps in the expansion
part [30]. The input feature map to the last downsampling layer is concatenated
with the output from the first upsampling layer, the input to the second last
downsampling layer is concatenated to the output of the second upsampling layer,
and it continues like that up through the network as seen in figure 2.12.
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2.2.5 Linear support vector classifier

A shallow machine learning approach can be an alternative to the deep neural
networks for image segmentation. The linear support vector classifier, SVC, is
a classification method that is based on the creation of a hyperplane in a p-
dimensional space. A hyperplane is a (p−1)-dimensional flat subspace that divides
the p-dimensional space into two halves and is given by the equation

β0 + β1X1 + β2X2 + ...+ βpXp = 0. (2.20)

In order for the hyperplane to exist, at least one of the parameters β1, ..., βp has
to be non-zero. If a point X = (X1, X2, ..., Xp)

T satisfy equation (2.20), then
the point lies on the hyperplane [24]. For a point that is not on the hyperplane,
the sign of the left hand side of equation (2.20) will indicate which side of the
hyperplane the point belongs to.

Figure 2.13 illustrate the linear SVC method. Suppose we have n observations
with p number of features. This will result in a n × p data matrix and each
observation can be mapped to a p-dimensional space. The observations can be
categorized into two different classes, ω1 and ω2. By creating a hyperplane that
separates the two classes, any new observation can be classified depending on which
side of the hyperplane it is located. The smallest of the perpendicular distances
from each of the observations to the hyperplane is referred to as the margin.

It will not always be possible to separate the classes with a hyperplane, and

Hyperplane

Margin

X1

X2

Support	vectors

Class	1

Class	2

Figure 2.13: The principle of the linear support vector classification. An optimized
hyperplane separates the two different classes, and observations violating the defined
margin or the hyperplane are the support vectors.
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in some cases, it is necessary to have some observations on the wrong side of the
margin or the hyperplane in order to classify most of the observations correctly.
The SVC determines the hyperplane so that it is a solution to the following opti-
mization problem.

maximize
β0, β1, ..., βp, ε1, ..., εn,M

M

subject to

p∑
j=1

β2
j = 1,

yi(β0 + β1xi1 + β2xi2 + ...+ βpxip ≥M(1− εi),

εi ≥ 0,
n∑
i=1

εi ≤ C,

(2.21)

whereM is the width of the margin, ε1, ..., εn are slack variables and C is a non-
negative tuning parameter [24]. The slack variables make it possible for individual
observations to be on the wrong side of the margin or the hyperplane. These
violations are controlled by the tuning parameter. A smaller C will allow fewer
observations to be located on the wrong side of the margin (and the hyperplane),
and it also limits the severity of these violations.

The only observations that will affect the location of the hyperplane are the
observations either laying on the margin or violating it. These observations are
called the support vectors.

2.2.6 Performance metrics

When evaluating the performance of a classification model, it is useful to take a
look at the confusion matrix. The confusion matrix is a square matrix containing
the number of true positive (TP ), true negative (TN), false positive (FP ) and
false negative (FN) predictions made by the classifier as shown in figure 2.14.

In a binary classification problem, each observation is labeled as either class 1
or class 2 by the model. For simplicity, positive will be used as the label for class 1
and negative will be used as the label for class 2. The true positive is then defined
as the number of observations that are correctly labeled as positive, and the true
negative is the number of observation that are correctly labeled as negative. The
number of observations that are classified as positive by the model, but in reality
belongs to the negative class, is referred to as the false positive. Equivalent, the
false negative is the number of observation classified as false when the true label
is positive. The relation between these terms is shown in figure 2.15.
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Figure 2.14: The typical construction of the confusion matrix. TP is the number of
true positives, FP is the number of false positives, FN is the number of false negatives
and TN is the number of true negatives.

TN

FP FN

Prediction Ground	truth

TP

Figure 2.15: A Venn diagram showing the relation between true negative (TN), true
positive(TP ), false positive (FP ) and false negative (FN) for a binary classification
problem.
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Most performance metrics are based on these values that are given in the
confusion matrix. The error (ERR) and the accuracy (ACC) are defined as the
number of misclassified predictions divided by the total number of predictions
and the number of correct classified predictions divided by the total number of
predictions respectively [31]. In terms of the values in the confusion matrix, they
can be expressed as

ERR =
FP + FN

TP + TN + FP + FN
(2.22)

ACC =
TP + TN

TP + TN + FP + FN
= 1− ERR. (2.23)

These metrics give general information of the amount of misclassification made
by the model, but can also be misleading in cases where the dataset is imbalanced.
This means that the number of observations belonging to one class is much larger
than the number of observations belonging to the other class. The model will hence
be able to achieve high accuracy and low error by classifying all the observations
as the class with the highest occurrence.

When dealing with imbalanced classes it can be useful to look at the true
positive rate (TPR), also called recall, and the false positive rate (FPR) [31].
These are defined as

TPR =
TP

TP + FN
(2.24)

FPR =
FP

TN + FP
. (2.25)

The TPR gives the ratio between the number of observations correctly pre-
dicted as positive and the total number of positive observations, while the FPR
gives the ratio between the number of observations that are misclassified as positive
and the total number of negative observations. This gives a better understanding
of the degree of error within each class.

Another metric that is used in image segmentation is precision (PRE). This
gives the ratio between the number of true positive predictions and the total
number of positive predictions as seen from the following equation.

PRE =
TP

TP + FP
(2.26)

One of the most frequently used metric for medical image segmentation is the
Dice similarity coefficient (DSC) [32]. DSC gives the spatial overlap between two
segments [33], and it can be seen as a combination of the PRE and TPR as shown
in the following equation.

DSC = 2
PRE × TPR
PRE + TPR

=
2TP

2TP + FP + FN
(2.27)
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A complete overlap will result in FP = FN = 0 and hence DCS = 1. No
overlap at all will give TP = 0 and therefore DCS = 0.

The DSC is a special case of the Fβ-score which includes a weighting variable,
β, to put different emphasis on the PRE and TPR. The general definition of the
Fβ-score is

Fβ =
1 + β2

β2

TPR
+ 1

PRE

=
(1 + β2)PRE × TPR
β2PRE + TPR

. (2.28)

For the DSC β is set equal to 1, and it is therefore often referred to as the
F1-score.
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Chapter 3

Materials and methods

3.1 OxyTarget study

The images used in this thesis are from patients participating in the study "The
OxyTarget study - Functional MRI of Hypoxia-Mediated Rectal Cancer Aggres-
siveness". The study includes a total of 192 patients diagnosed with rectal cancer
and treated at Akershus University Hospital. They were enrolled in the study be-
tween October 2013 and December 2017. The Institutional Review Board and the
Regional Committee for Medical and Health Research Ethics gave their approval
for the study, and all patients participating gave a written informed consent [34].
The study aims to identify novel imaging biomarkers of hypoxia-induced rectal
cancer aggressiveness, and this is important in order to predict patients with poor
response to chemoradiotherapy and high risk of poor metastasis-free survival at
the time of diagnosis [35].

A Phillips Achieva 1.5T system (Phillips Healthcare, Best, The Netherlands)
was used to perform the MRI. The patients were given glucagon (1 mg/mL, 1 mL
intramuscularly) and Buscopan (10 mg/mL, 1 mL intravenously) before the scan-
ning to reduce bowel movement [34]. High-resolution T2 weighted images were
acquired perpendicular to the tumor axis used for delineation, and with a field of
view (FOV) equal to 180× 180 mm2 with 512× 512 voxels in each slice. The size
of the voxels was 0.3516× 0.3516× 2.5 mm3, and there was a 2.75 mm spacing be-
tween the slices. DWI with seven different b-values, 0, 25, 50, 100, 500, 1000 and
1300 s/mm2, were also acquired, and these images had a FOV of 160 × 160 mm2

with 128 × 128 resolution. The voxel size for the DWI was 1.25 × 1.25 × 4 mm3,
and they had a 4.3 mm spacing. The tumor delineations were made on the T2
weighted images by two different radiologists with 14 and 7 years of experience
[34]. The DWI could be used for extra guidance.

Four of the 192 patients were excluded due to withdrawal from the study,
and 19 patients lacked the histological confirmation of rectal cancer and were
therefore also excluded. In addition to this, 75 other patients were excluded. 23
of these patients had non-consistent MRI sequence, 20 had dynamic images with
poor quality, for six patients there were difficulties in the co-registration due to
bowel movements or small tumor volume, and for 26 patients there were difficulties
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encountered during the clinical MRI acquisition. Of the remaining 94 patients,
images from 81 were used in this thesis. These patients had a complete set of
images of acceptable quality, which includes T2 weighted images and DWI with
all seven b-values.

3.2 Pre-processing

In the first part of this master thesis the raw data was sorted, co-registered, and
resampled. The raw data consisted of the MR images stored as DICOM (Digital
Imaging and Communications in Medicine) files and the delineations which were
stored as NIfTI files. The NIfTI format is a common format used to store MRI
data, and it is made up of a header containing metadata and the image data,
similar to the DICOM format. The NIfTI format stores a 3D image in one file
while DICOM, on the other hand, often has one file for every 2D slice. A newer
DICOM format allows storing of a 3D image in one file, but for the OxyTarget
images, each slice was stored as separate files.

Co-registration was done so that the T2 weighted images and the DWI aligned.
Through the process of co-registration, the images are transformed into a common
coordinate system so corresponding voxels represent homologous biological points
[36]. This is done by defining a fixed image and then find a coordinate transform
that deforms a moving image in such a way that it will match the fixed image. The
transform parameters are optimized so that the difference between the two images
is minimized. In this case, a rigid registration, which only allow for translation
and rotation, was used. The DWI were first registered internally to correct for
movements that occurred during the sequence. In the next step, the T2 weighted
images were set as the fixed images and the DWI with b-value equal to zero acted
as the moving images. The resulting transformation was then applied to the rest
of the DWI. It was also created a dataset with only DWI, and for this dataset,
the delineation masks, defined on the T2 weighted images, were transformed to
match the DWI.

As a part of the co-registration, the DWI that were aligned with the T2
weighted images were interpolated using third-order B-spline interpolation and
resampled to match the resolution of the T2 weighted images. Nearest Neigh-
bour interpolation was used for the masks that were aligned with the DWI to give
the masks the same resolution as the images. This resulted in two datasets, one
containing T2 weighted images, DWI and masks with the resolution of the T2
weighted images, and one with only DWI and corresponding mask with the DWI
resolution.

For two of the patients, the size of the T2 weighted images was larger than the
standard. They had a size equal to 528×528 and 560×560 instead of the standard
512×512. The images of these two patients were therefore cropped to the standard
size by removing voxels around the edges. There were also several patients where
the voxel size slightly deviated from the standard, but these variations were so
small that they were assumed negligible.

It was decided to remove image slices at the beginning and end of the image
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stacks where neither of the radiologists had delineated any tumor. This was done
to reduce the size of the data, and because it was assumed that these slices would
not contribute with any useful information to the model.

3.3 Train, validation and test split
Before using the data to train models, it was split into training, validation, and
test sets. The training set is used to train the model, the validation set is used to
evaluate the model and tune the model parameters, and the test set is used for
the final test of the model. It is important to have both a validation set and a test
set because when the model is tuned based on the performance on the validation
set, information about the validation set leaks into the model [11]. The model
can therefore easily end up being overfitted to the validation set. To evaluate how
well the model generalizes it needs to be tested on a dataset that it has never seen
before, the test set.

To make sure that all three groups contained a representative selection of the
dataset, the data was stratified on a patient basis according to gender and disease
stage. The stage is determined by how deep into surrounding tissues the tumor
has grown, and it is defined as either T1, T2, T3, or T4. In the T1 stage the
tumor has grown into the submucosa (the lining of the colon), in the T2 stage it
has grown into the muscularis propria which is the thick layer of muscle outside
the submucosa, in the T3 stage it has grown through the muscularis propria and
into the fatty tissue surrounding the rectum (the mesorectum), and in the T4
stage the tumor has grown into the surface of the visceral peritoneum (T4a) or
it has grown into surrounding organs (T4b) [37, 38]. The patients in this dataset
had tumors in stage T2, T3, and T4, and consequently, the data could be divided
into six different groups based on gender and stage.

Of the 81 patients, 51 (63%) was placed in the training set, 10 (12%) in the
validation set, and 20 (25%) in the test set. The patients in these three sets
were randomly picked within the six different groups, but the relation between
the number of patients from each group was kept as similar as possible for the
different sets. The distribution for the training, validation, and test set is shown
in figure 3.1 and an overview of the number of patients and number of image slices
in each of the sets is given in table 3.1.
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(a) Total dataset (b) Training set

(c) Validation set (d) Test set

Figure 3.1: Histograms showing the number of patients within each group for the total
dataset (a), the training set (b), the validation set (c) and the test set (d).

Table 3.1: Overview of the number of patients and number of image slices in the
training, validation and test set.

Number of patients
Number of image slices

T2 weighted DWI

Train 51 962 580
Validation 10 188 114

Test 20 374 227

Total 81 1534 921
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3.4 Data structure
Hierarchical Data Format version 5 (HDF5) is a convenient format for storing large
numerical arrays of homogenous type, and it allows for the data to be organized
in a hierarchical structure [39]. The data in an HDF5 file lies on disk until it is
required which makes it possible to deal with datasets that exceed the RAM of
the computer. The structure within an HDF5 file can be thought of as a folder
structure, but instead of folders, there are groups. A file can contain several
groups, and each group can contain several subgroups and datasets. A dataset is
build up like an array, and the format allows for array slicing directly from disk.
This structure makes the HDF5 format efficient for reading and writing to file [39].

The image dataset used in this thesis was saved as HDF5 files before it was used
as input for the model, and the structure of the files is shown in figure 3.2. The data
were divided into eight groups, five that belonged to the training set, one for the
validation set, and two for the test set. These groups each contained six datasets.
The dataset named "images" consisted of all the image slices for the patients
in the group, "mask 1" contained the delineations corresponding to the image
slices in "images" performed by radiologist 1, "mask 2" contained the delineation
performed by radiologist 2, "mask intersection" contained the intersection of the
two delineations, and "mask union" contained the union of the delineations. The
last dataset, "patient id" consisted of the patient IDs for the patients in the group.

There were created three different HDF5 files. One that contained only the T2
weighted images, one with only DWI and one that contained both image types.
In the file with the DWI alone, the image slices were stored with seven channels,
one for each b-value. The file with both image types contained the DWI that were
co-registered to the T2 weighted images, and each image slice consequently had
eight channels. One channel for T2 weighted and seven for DWI.

In the process of saving the images as HDF5 files, they were downsampled to
64× 64 voxels to speed up the training of the networks, and also make it less time
consuming to debug.

3.5 Model parameters
The network architecture is based on a standard U-net as the one in figure 2.12,
and an overview of the different layers is given in table 3.2. The convolution layers
have a 3 × 3 kernel and same padding is applied. For these layers, the ReLU is
used as the activation function. A window size of 2× 2 and a stride of two is used
in the max pooling layers. Skip connections occur between convolution layers
in the contracting part and the expansion part of the network to restore spatial
information.
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Figure 3.2: The structure of the HDF5 files. The file contains eight groups, and they
each contain six datasets. The groups in blue belongs to the training set, the group in
the green is the validation set and the two groups in red are the test set.
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Table 3.2: The U-net architecture used in this thesis. All the convolution layers have
a 3× 3 kernel, same padding and ReLU as activation function. The window size for the
max pooling layers is 2× 2.

Layer Type Input No. output channels

Conv 1 Convolutional Input image 64
Conv 2 Convolutional Conv 1 64
MaxPool 1 Max Pooling Conv 2 64
Conv 3 Convolutional MaxPool 1 128
Conv 4 Convolutional Conv 3 128
MaxPool 2 Max Pooling Conv 4 128
Conv 5 Convolutional MaxPool 2 256
Conv 6 Convolutional Conv 5 256
MaxPool 3 Max Pooling Conv 6 256
Conv 7 Convolutional MaxPool 3 512
Conv 8 Convolutional Conv 7 512
MaxPool 4 Max Pooling Conv 8 512
Conv 9 Convolutional MaxPool 4 1024
Conv 10 Convolutional Conv 9 1024
Upconv 1 Upconvolutional Conv 10 512
Conv 11 Convolutional Upconv 1, Conv 8 512
Conv 12 Convolutional Conv 11 512
Upconv 2 Upconvolutional Conv 12 256
Conv 13 Convolutional Upconv 2, Conv 6 256
Conv 14 Convolutional Conv 13 256
Upconv 3 Upconvolutional Conv 14 128
Conv 15 Convolutional Upconv 3, Conv 4 128
Conv 16 Convolutional Conv 15 128
Upconv 4 Upconvolutional Conv 16 64
Conv 17 Convolutional Upconv 4, Conv 2 64
Conv 18 Convolutional Conv 17 64
Conv 19 Convolutional Conv 18 1
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The cross entropy was used as loss function in the model, but a problem with
this loss function is that it is sensitive to class imbalance. In the dataset, there are
a lot fewer tumor voxels than normal tissue voxels, and this imbalance might result
in that the cross entropy loss function has a local minimum when most voxels are
classified as normal tissue. To deal with this Milletari, Navab, and Ahmadi [40]
defined a loss function based on the DSC that they called Dice loss. For a binary
classification problem, it is defined as

J(p,g) = 1− 2
∑

i pigi∑
i p

2
i +

∑
i g

2
i

, (3.1)

where gi is the ground truth for voxel i, and pi is the predicted probability
that voxel i will belong to the positive class.

Different models were trained by varying the input and the loss function, and
the loss function was either the cross entropy (2.14), the Dice loss (3.1), or a mod-
ified version of the Dice loss where the squaring of the terms in the denominator
is removed. The modified Dice loss is thus given by the following equation.

J(p,g) = 1− 2
∑

i pigi∑
i pi +

∑
i gi

, (3.2)

Table 3.3 contains an overview of the different models that were trained, and
all the hyperparameters for the models are listed in table 3.4. The Adam algorithm
(2.19) was used to optimize the loss function during the training of the networks,
and the learning rate was set to 0.0001. The training went on for 500 epochs, which
corresponds to 500 iterations through the whole training set, and the weights in
the network were updated after every 16th image. For all the models the union of
the two delineations was used as ground truth.

Table 3.3: Overview of the different models that were trained. The input and the loss
function were the parameters that varied.

Model number Loss function Input

1 Cross entropy T2w images
2 Cross entropy DWI
3 Cross entropy T2w images, DWI
4 Dice T2w images
5 Dice DWI
6 Dice T2w images, DWI
7 Modified Dice T2w images
8 Modified Dice DWI
9 Modified Dice T2w images, DWI
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Table 3.4: The different hyperparameters used for the models.

Activation function ReLU
Optimizer Adam
Learning rate 0.0001
Batch size 16
Epochs 500

3.6 Model with linear support vector classifier

In her project thesis, the author developed an automatic segmentation model
based on the linear support vector classifier. For this model, the same dataset
was used but the images were pre-processed differently, and this pre-processing is
visualized in figure 3.3. The T2 weighted images and the DWI were co-registered
and resampled to isotropic voxels (1 mm × 1 mm × 1 mm). To reduce the size of
the data and obtain a more balanced dataset, the images were cropped. This was
done so that there was a 20 mm margin outside the largest extent of the tumor
amongst all the slices. After the resampling and cropping, both the T2 weighted
and the DWI for a given patient contained the same field of view (FOV) and equal
voxel size. The processed images were then saved as NIfTI files.

In order to use the image data as input for the model, it was first structured in
matrices where each element corresponded to the intensity value of a voxel. Each
matrix corresponded to one of the patients in the data set, and figure 3.4 illustrates
how these matrices were constructed. For each patient, the NIfTI images were
loaded into the program and converted to three-dimensional arrays. These arrays
were then flattened to one-dimensional arrays and set as columns in the matrix.
The matrix had between 170000 and 1380000 rows, and this number corresponded
to the number of voxels in the images of the patient. Normalization to a mean of
zero and a standard deviation of one was performed on the data to compensate for
varying intensities between images, and the data from the DWI for each patient
were normalized together to keep the relation between the different b-values. The
matrices were stored in a dictionary with the given patient names as keys to make
it convenient to access data for different patients later.

To train and evaluate the classification model, the data needed to be divided
into training and test sets. Leave-out-one cross-validation was used to perform
this task, and the principle of this method is illustrated in figure 3.5. Each patient
was in turn used as the test set while the rest of the patients were used for training.
In this way, it is possible to see how the model performs on all the patients.

Since the images were cropped with a 20 mm margin outside the tumor vol-
umes, it might be that this exceeded the original FOV on some of the images.
This will lead to missing values, and the voxels are stored with an intensity value
equal to zero. In the training set, these values were removed, so that they would
not affect the model. For the test set, the indexes of these values were stored, and
in that way, they could be corrected after the prediction was made.
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(a) Original image (b) Processed image

Figure 3.3: A T2w image before (a) and after (b) resampling to isotropic voxels and
cropping. The blue and red areas are the manual delineations of the tumor volume.

Voxel	1
Slice	1

Voxel	2
Slice	1

Last	voxel
Last	slice

T2w DWI	b0 DWI	b1 DWI	b2 DWI	b5DWI	b4DWI	b3 DWI	b6

Figure 3.4: The structure of the matrix constructed from the image data for each
patient. T2w refers to the T2 weighted image, DWI referrers to diffusion weighted
images and b0, b1, b2, b3, b4, b5 and b6 stands for the different b-values.
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Iteration	1

Iteration	2

Iteration	N

Iteration	3
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=	Training

Figure 3.5: Illustration of the leave-out-one cross validation for a cohort of N patients.
Each patient is in turn used as test set (red) while the rest is used as the training set
(blue). This results in a total of N iterations.

Even though the images were cropped, the dataset was still very imbalanced.
In this case, the data set contained 94% non-tumor voxels, and only 6% tumor
voxels. Training on an imbalanced data set can cause problems because most
classification models seek to maximize the accuracy and reduce the error. If the
number of observations in one class is much larger than the other, the model might
make a prediction boundary that classifies almost every new observation as the
class with the largest number of observations. From the observations the model
has seen, one class will be the correct prediction for most of the observations. To
account for this, the data in the training set was re-sampled so that the training
set contained an equal number of tumor voxels and non-tumor voxels. This was
done by counting the number of tumor voxels and then randomly select the same
amount amongst the non-tumor voxels for each patient.

3.7 Code and software

SimpleElastix was utilized to co-register and interpolate the images. This library
acts as a binding to the Elastix toolbox, which contains a collection of medical
image registration algorithms [36]. Ph.D. student Franziska Knuth wrote the
Python code for this pre-processing step.

The code used for creating and running the models was developed by Ngoc
Huynh Bao, a master student from the Norwegian University of Life Sciences
(NMBU). It is a CNN framework for Python developed especially for automatic
delineation of cancer tumors. The framework, deoxys, is based on Keras, a deep
learning API that runs on top of the machine learning platform TensorFlow 2.0
[41]. Keras has implementations of building blocks that are essential for deep
learning models, like different layers, activation functions, and optimizers. The
deoxys framework code can be accessed from the GitHub repository https://

https://github.com/huynhngoc/deoxys
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github.com/huynhngoc/deoxys.
To create models with the framework, the CNN architecture and the hyperpa-

rameters have to be defined in a JSON (JavaScript Object Notation) file, and the
data must be structured in an HDF5 file. The Python scripts for generating the
HDF5 files and running the CNN models, as well as the JSON files, were written
by Yngve Mardal Moe, head engineer at NMBU, and they are available from the
GitHub repository https://github.com/yngvem/ntnu-analysis.

3.7.1 Linear support vector classifier

For the SVC model, data processing and machine learning were performed in
Python version 3.7.5. The main libraries used were NumPy, SimpleITK, Scikit-
learn, and Dask. NumPy is used for creating n-dimensional array objects, and it
is a fundamental package for scientific programming in Python [42]. SimpleITK
is a simplified version of the Insight Segmentation and Registration Toolkit (ITK)
that is used for image analysis [43]. With SimpleITK one can easily load different
images types to Python and then converting these images to NumPy arrays. It
also provides a function that can generate images from NumPy arrays. The Scikit-
learn library includes a large collection of supervised and unsupervised learning
algorithms for machine learning, and it works well with NumPy arrays [44]. Dask
is a library for parallel computing in Python [45]. This makes it possible to
work with large data that exceeds the RAM of the computer. Dask arrays are
built up of several NumPy arrays, and the Dask library includes functions for
machine learning where one can combine the Dask arrays with some of the learning
algorithms from Scikit-learn.

The machine learning algorithm used to create this model was the
sklearn.linear_model.SDGClassifier from the Scikit-learn library together
with the wrapper function dask_ml.wrappers.Incremental from the Dask li-
brary. This allows for out-of-core learning, which is convenient when working
with large data sets. The sklearn.linear_model.SDGClassifier optimizes the
loss function for the linear support vector classifier, given in equation (2.21), with
the stochastic gradient descent method. The complete code is available from the
GitHub repository https://github.com/elinefs/prosjektoppgave.

3.8 Analysis of model performance

The predictions made by the U-net models were given as heatmaps where each
voxel got a score that indicated whether the model found it likely that the voxel
was a tumor voxel or not. A score close to one indicated tumor while a score close
to zero indicated non-tumor. To generate binary prediction masks, a threshold of
0.5 was applied to the heatmaps. For the SVC model, the predictions were given
as binary masks, so no threshold was needed.

The model performance was evaluated by calculating the DSC (3.1) between
the prediction and the union of the two manual delineations for each patient in
the validation set. The average DSC was used to compare the different models.

https://github.com/huynhngoc/deoxys
https://github.com/huynhngoc/deoxys
https://github.com/yngvem/ntnu-analysis
https://github.com/elinefs/prosjektoppgave
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Ideally, the best performing model should also have been evaluated on the test
set to see how well it generalizes, but since several modifications could be done to
further improve the performance, it was decided to save the test set until a more
precise model was obtained. The modification will be elaborated in the discussion
chapter under the section about further work.
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Chapter 4

Results

The different U-net models that were created had a performance that ranged
from a DSC of 0.58 to 0.67, calculated as the mean DSC for the patients in the
validation set. The DSC on a patient basis ranged from about 0.21 and up to 0.85.
In figure 4.1 the training and validation curves for the models trained with both
image types are presented. As one can see, there are slight differences between
the different loss functions, but they all stabilize around the same values. The
binary Fβ term refers to the DSC calculated on all the image slices in the dataset
combined, with a threshold equal to 0.5. The training and validation curves for
the rest of the models can be found in Appendix A. In the following sections, the
performance of the different models will be presented in detail.

4.1 Effect of input images

4.1.1 T2 weighted images

The models trained with only the T2 weighted images resulted in a mean DSC of
0.61 with cross entropy loss, 0.58 with Dice loss, and 0.67 with the modified Dice
loss. The performance for each of the patients in the validation set is shown in
the scatter plot in figure 4.2. In this plot, the DSC between the two delineations,
the interobserver variation, is marked with a black line for each patient.

From figure 4.2 one can see that there is only a small difference between the
three models, with a few exceptions. The model with the Dice loss function seems
to be performing poorly on patient 72, and also patient 125. It is also worth
noticing that all three models seem to be struggling with patient 124.

When compared with the interobserver variation, the performance for five of
the patients is fairly close to this or even higher. For patient 88 and 157, the DSC
for the interobserver variation is a bit lower than for the rest of the validation set,
which indicates a larger disagreement between the two radiologists. These two
patients have an interobserver DSC close to 0.6, while the rest have a DSC around
0.8.
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(c) Modified dice

Figure 4.1: Training and validation curves for the models with T2 weighted images
and DWI as input. (a) corresponds to the model with cross entropy loss (2.14), (b)
corresponds to the model with dice loss (3.1), and (c) corresponds to the model with
modified dice loss (3.2). The binary Fβ is the DSC calculated on all image slices in
the dataset combined, with a threshold equal to 0.5. The green curves represent the
validation set while the blue curves represent the training set.
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Figure 4.2: The DSC for the patients in the validation set for the models with T2
weighted images as input. The blue triangles represent the model with the cross entropy
loss, the green triangles represent the model with the Dice loss, while the red stars
represent the model with the modified Dice loss. The black horizontal lines are the
interobserver variation for each patient.
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4.1.2 Diffusion weighted images

The models trained with DWI had a DSC of 0.63, 0.65, and 0.66 for cross en-
tropy loss, Dice loss, and modified Dice loss, respectively. Figure 4.3 visualize the
performance for each of the patients in the validation set for these models.

Here one notices that there are relatively small variations between the different
loss functions for most of the patients. Compared to the models trained with T2
weighted images the models with DWI gives a better prediction for patient 124
and 125, while they perform worse for patient 88.
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Figure 4.3: The DSC for the patients in the validation set for the models with DWI
as input. The blue triangles represent the model with the cross entropy loss, the green
triangles represent the model with the Dice loss, while the red stars represent the model
with the modified Dice loss. The black horizontal lines are the interobserver variation
for each patient.
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4.1.3 Combined T2 weighted and diffusion weighted images

The third input that was tested was the T2 weighted images and DWI combined.
For this input the model with the cross entropy loss gave a DSC equal to 0.66,
the Dice loss resulted in a DSC of 0.67 and the modified Dice loss gave a DSC of
0.67. In figure 4.4 the DSC for the patients in the validation set is shown for the
models that have this combined input.

From the plot in figure 4.4 on can see that, in this case, changing the loss
function has very little impact on the results. Other than that, the performance is
similar to the performance of the models that had only one of the image types as
input. One might expect that more input data to the model would yield improved
results, but this does not seem to be the case here.
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Figure 4.4: The DSC for the patients in the validation set for the models with T2
weighted images and DWI as input. The blue triangles represent the model with the
cross entropy loss, the green triangles represent the model with the Dice loss, while the
red stars represent the model with the modified Dice loss. The black horizontal lines are
the interobserver variation for each patient.
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4.2 Best performing model
Table 4.1 contains the mean DSC and standard deviation for all the different
models. From this one can see that the model trained with T2 weighted images and
the modified Dice loss function results in the best performance, but the differences
are marginal.

Figure 4.5 shows a boxplot with the different models, and here one can also see
that the model with T2 weighted images and the modified Dice loss performs best.
This is also the model with the least spread. All the patients in the validation set
have a DSC between 0.52 and 0.85, except one outlier with a DSC of 0.27. The
exact DSC for each of the patients in the validation set with the best performing
model is given in table 4.2. Some of the other models yield better performance
for some of the patients, but this model has the highest average.

Table 4.1: An overview of the mean DSC and corresponding standard deviation for the
validation set with the different U-net models.

Loss function Input DSC

Cross entropy T2w 0.613± 0.164
Cross entropy DWI 0.631± 0.150
Cross entropy T2w, DWI 0.656± 0.143
Dice T2w 0.581± 0.210
Dice DWI 0.648± 0.146
Dice T2w, DWI 0.667± 0.143
Modified Dice T2w 0.672± 0.164
Modified Dice DWI 0.660± 0.140
Modified Dice T2w, DWI 0.670± 0.157

Table 4.2: The DSC for the patients in the validation set obtained with the U-net
model that took T2 weighted images as input and used the modified Dice loss function.

Patient ID DSC

Oxytarget 72 0.742
Oxytarget 74 0.821
Oxytarget 88 0.598
Oxytarget 124 0.271
Oxytarget 125 0.681
Oxytarget 128 0.804
Oxytarget 148 0.736
Oxytarget 156 0.688
Oxytarget 157 0.528
Oxytarget 164 0.850
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Figure 4.5: Boxplot with the performance of all the different U-net models on the
validation set. The blue boxes represent the models with the cross entropy loss, the
green boxes represent the models with the Dice loss and the red boxes represent the
models with the modified Dice loss. The horizontal line within each box is the median
DSC for the model, and 50% of the patients should have a DSC that lies within the box.
The criterion for the outliers (circles) is that they are more than 1.5 times the box height
away from the box edge.

In figure 4.6 the delineations made by the model are shown together with the
union of the manual delineations made by the radiologists for some image slices
from Oxytarget patient 164. This is the patient with the highest DSC, and the
delineations made by the model are, therefore, relatively accurate. Figure 4.7,
on the other hand, shows the predicted and manual delineations for Oxytarget
patient 124 which has the lowest DSC in the validation set. Here the model did
not perform well, and there is little overlap between the predicted and manual
delineations. The delineations on images from the rest of the patients in the
validation set can be found in Appendix B
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Figure 4.6: The delineation predicted by the best U-net model (red) and the union of
the delineations made by the two radiologists (blue) on a selection of T2 weighted image
slices from OxyTarget patient 164. The DSC for this patient is 0.85.
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Figure 4.7: The delineation predicted by the best U-net model (red) and the union of
the delineations made by the two radiologists (blue) on a selection of T2 weighted image
slices from OxyTarget patient 124. The DSC for this patient is 0.27.
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4.3 Threshold
For the heatmaps that were outputted from the U-net models, the threshold was
set to 0.5, but this threshold is not necessarily the one that yields the best perfor-
mance. To explore this, the performance in terms of average DSC on the validation
set was plotted against the threshold. Figure 4.8 shows this curve for the model
with T2 weighted images and cross entropy loss, and the light blue area represents
the standard deviation. Appendix C contains the threshold curves for the other
models.

The threshold curve is relatively flat, which means that the performance will
not change significantly by changing the threshold. There is however a small peak
very close to zero. The performance for all the models was therefore also calculated
with a threshold of 0.01, and the results are displayed in table 4.3. From this table,
one can see that changing the threshold makes the largest difference for the models
with the cross entropy loss and the models with Dice loss that includes the T2
weighted images. For the models with the modified Dice loss, the change is very
small.
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Figure 4.8: The average DSC plotted against the threshold for the U-net model which
took T2 weighted images as input and used the cross entropy loss function. The light
blue area corresponds to the standard deviation.
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Table 4.3: The mean DSC and the corresponding standard deviation for all the U-
net models with threshold equal to 0.5 and 0.01. The percentage performance increase
obtained by changing the threshold from 0.5 to 0.01 is given to the far right.

Loss function Input Threshold= 0.5 Threshold= 0.01 ∆

Cross entropy T2w 0.613± 0.164 0.667± 0.141 8.8%
Cross entropy DWI 0.631± 0.150 0.669± 0.103 6.0%
Cross entropy T2w, DWI 0.656± 0.143 0.699± 0.109 6.6%
Dice T2w 0.581± 0.210 0.621± 0.192 6.9%
Dice DWI 0.648± 0.146 0.675± 0.090 4.2%
Dice T2w, DWI 0.667± 0.143 0.712± 0.106 6.7%
Modified Dice T2w 0.672± 0.164 0.684± 0.154 1.8%
Modified Dice DWI 0.660± 0.140 0.668± 0.129 1.2%
Modified Dice T2w, DWI 0.670± 0.157 0.687± 0.142 2.5%
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4.4 Comparison with the support vector classifier
Compared to the SVC model, the U-net models performed considerably better.
The best results for the SVC model were obtained when both T2 weighted images
and DWI were used as input and the union of the delineations was used as the
ground truth. This SVC model gave an average DSC of 0.48, while the average
DSC with the best U-net model was 0.67. This corresponds to a performance
increase of 40%. In figure 4.9 the DSC values for patients in the validation set is
shown for both models together with the interobserver variation. One can observe
that the U-net model gives a significantly higher DSC for most of the patients,
and patient 124 is the only one where the SVC model gives a better result. For
patients 72 and 157 there is not a large difference between the two models.

The boxplot in figure 4.10 gives a more clear picture of the overall performance.
The U-net model has a performance that is relatively close to the interobserver
variation which has an average DSC of 0.74 for the patients in the validation set.
The average DSC between the two delineations on the whole data set is 0.78.
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Figure 4.9: The DSC for the patients in the validation set for the SVC model and
the U-net model with T2 weighted images as input and the modified Dice loss as the
loss function. The blue triangles represent the U-net model while the green triangles
represent the SVC model. The black horizontal lines are the interobserver variation for
each patient.
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Figure 4.10: Boxplot with the performance of the SVC model, the highest performing
U-net model and the interobserver variation on the validation set. The blue box rep-
resents the U-net model, the green box represents the SVC model and the black box
represents the interobserver variation. The horizontal line within each box is the median
DSC for the model, and 50% of the patients should have a DSC that lies within the box.
The criterion for the outliers (circles) is that they are more than 1.5 times the box height
away from the box edge.
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Chapter 5

Discussion

The U-net models for segmentation of rectal tumor volume from MR images de-
veloped as a part of this master thesis showed some promising results, but with
an average DSC ranging from 0.58 to 0.67 for the different models, there is still
room for improvements. This chapter will consist of a discussion of the model
performance, challenges regarding the input image data, comparisons with similar
models, and a discussion of the clinical impact of such a model. This is followed
by a section containing suggestions for further work.

5.1 Model performance

The training and validation curves in figure 4.1 and in Appendix A show that the
models trained with cross entropy loss almost immediately went up to relatively
high performance, before a slow increase until about 300 epochs into the training.
After that, both the training and validation curve is more or less flat. One can
observe some downward spikes on the curves, and this might suggest that the
models are very sensitive to some specific weight updates. For the models trained
with the Dice loss, it takes a little over 100 epochs to reach a score of over 0.8 for
the training set. When the training curve reaches 1.0, the curves flatten out, and
also here some downward spikes can be observed, but they are much smaller than
for the models with the cross entropy loss function. The curves for the models
trained with the modified Dice loss are relatively similar to the ones for the models
with the Dice loss, which makes sense since the two loss functions are quite similar
and share some of the same properties. For all the models the validation curve
is stabilizing around 0.6, except for the one trained with T2 weighted images and
Dice loss. Here the curve is more uneven and does not seem to have stabilized
completely after 500 epochs. By training this model for a larger number of epochs
the performance on the validation set might have increased further. One other
thing to notice about these curves are the gaps between the training and validation
curves. These gaps indicate that not a lot of information from the validation set
has leaked into the models. One can, therefore, speculate that the performance
on the validation set is close to what would have been the case for the test set if
the model was tested on this. The size of the gap also indicates that the models
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are well fitted to the training data, but are struggling a bit to generalize to the
validation data.

The fact that the models are very well fitted to the training set and not to
the validation set can suggest overfitting. This is a common problem for complex
models like deep neural networks. One way to deal with overfitting is to reduce the
size and complexity of the network. Another option is to add weight regularization
and/or layers with dropout. A larger training set would also contribute to a lower
risk of overfitting, and this could be obtained by adding data augmentation. Data
augmentation is transforming an image by processes like rotation, flipping, and
cropping in order to create several versions of the image [46].

As seen from table 4.1, there are some variations in the model performance
when changing the loss function and the input to the models. The choice of loss
function made the most impact for the models with only T2 weighted images
as input, and the models trained with the modified Dice loss gave the highest
performance for all three input variations. However, since most of the models
have relatively similar performance, the loss function and input that gives the
best performance might change if the models are tested with another dataset.

The best U-net model gave a lower DSC than the interobserver variation be-
tween the two manual delineations for the OxyTarget data. Still, less than 20%
performance increase is needed before the model is as good as the interobserver
variation. This is relatively promising considering that very little pre- and post-
processing are implemented in the current model.

For all the U-net models patient 124 had a relatively low DSC, which can be
seen from figure 4.2, 4.3 and 4.4. In figure 4.7 one can see that the delineated
tumor is quite large and complex for this patient, and that is a possible reason for
why the models have problems with the prediction. Another thing one can notice
is that the images for this patient look quite different from the images in figure
4.6 from patient 164. This is due to a different image orientation, and not having
a consistent image orientation could also pose a problem for the models.

The models that only take the DWI as input had a low performance for patient
88, and this is the case for all three models, as seen in figure 4.3. After comparing
the DWI for patient 88 to the DWI for the other patients, it was discovered that
the images for patient 88 are slightly darker and that makes it hard to detect
structures. In figure 5.1, a DWI with b-value 0 s/mm2 is shown for patient 88
and patient 72 together with a histogram of the voxel intensities for these images.
Here one can see the difference in brightness. A way to account for this would be
to do a patient wise normalization of the image intensities before the images were
taken as input to the models. This was done for the SVC model, but not for the
U-net models.

Looking at figure 4.2 one observes that patient 72 has low DSC when the Dice
loss function is used, but not for the other two models with T2 weighted images
as input. A closer look at the predictions for this patient revealed that the model
with Dice loss does not seem to recognize the tumor in many of the image slices,
and instead wrongly predicts some voxels at the black edge to the left of the image
as tumor. An example of this is given in figure 5.2. This may also be the case
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Figure 5.1: DWI with b-value 0 s/mm2 for OxyTarget patient 88 (a) and OxyTarget
patient 72 (b). On can observe that image (b) is brighter than image (a), and more
details are visible in this image. The histogram (c) shows the distribution of intensities
for the two images.
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Figure 5.2: The predicted delineation (red) resulting from the model with T2 images
as input and the Dice loss function, together with the ground truth (blue), on a selected
T2 weighted image slice from OxyTarget patient 72. Here the model failed to locate the
tumor.

with other patients. It is no obvious explanation for why this happens with this
particular model, but it might be possible to avoid by cropping the images.

One might have expected that training models with both T2 weighted images
and DWI would give a higher performance compared to models that were only
trained on one image type. This does not seem to be the case here, and the best
model was trained with only T2 weighted images, as can be seen from table 4.1
and figure 4.5. There is not a significant difference in the performance of the
different models, and including both image types seem to result in models with
an average performance of the models trained with only T2 weighted images and
the models with only DWI. This can mean that there are few relations between
the T2 weighted images and the DWI that the U-net is able to detect, and that
will give valuable information regarding the classification.

As shown in section 4.3, the choice of threshold in the heatmaps to create
binary prediction masks did not have a large impact on the results. This indicates
that the models mostly set a score that is either close to zero or close to one, and
very few voxels get a score in between. The fact that it is a slight increase in
the model performances by setting a low threshold (0.01), makes it reasonable to
think that when the models are not certain of which class the voxel belongs to,
they will rather classify the voxel as non-tumor than tumor. This often results in
that the models predict smaller tumor volumes than what is the case according
to the manual delineations.
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(a) Original image (b) Downsampled image

Figure 5.3: A T2 weighted image slice from OxyTarget patient 164 with the original
512× 512 resolution (a) and the downsampled 64× 64 resolution (b).

5.2 The images

There are several things regarding the images used to train and validate the models
that are not optimal. The large degree of downsampling that is performed on the
images before they are used as input to the models to reduce the training time
might cause loss of important features in the images. This is most crucial for the
T2 weighted images since the resolution here is reduced by a factor of eight. Figure
5.3 shows a T2 weighted image with the original resolution and the same image
with the downsampled resolution. It is clear that even for a trained human eye it
is much more difficult to locate the tumor in the latter. Since the downsampling
causes trouble for the human eye, it is reasonable to think that this will also cause
some difficulties for the U-net models. With the DWI this will not be as substantial
considering that they only get downsampled by a factor of two. However, a full
resolution would most likely have been preferred for these images as well.

When the DWI were matched to and used together with the T2 weighted
images, it was discovered that for approximately half of the patients the FOV of
the DWI did not cover the whole tumor volume delineated on the T2 weighted
images. As a result, in the dataset with both image types it occurred image slices
where voxels within the tumor mask only had values for the T2 weighted image
and in the DWI they were set to zero. This phenomenon was present in several
image slices for patient 52, and it is visualized in figure 5.4. Due to this mismatch
of FOV, the models trained with both image types might learn that voxels that
are black in the DWI and have some specific values in the T2 weighted image
correspond to tumor. This can again lead to incorrect predictions, and it might
be part of the explanation as to why using both image types did not give improved
performance. A simple solution to this problem would be to remove all slices where
this occurs, in other words, use the FOV of the DWI when both image types are
used as input. The downside of this is that some information will be lost, and this
will be information about the tumor edges which might already be challenging to
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Figure 5.4: Visualization of the difference in FOV between the T2 weighted image
and DWI for OxyTarget patient 52. The DWI is overlaid on the T2 weighted image
making the region with both image types brighter. The tumor delineation from one of
the radiologists is shown in green. The tumor extends beyond the FOV of the DWI on
both sides.

predict due to a small tumor area in these slices.
The national guidelines for MR imaging of rectal cancer state that the image

slices should be placed perpendicular to the tumor axis [4]. This causes a large
variation in image orientation with regard to surrounding anatomy for the patients
in the dataset. A consequence of this is that the images look different and it can
be hard for the models to find consistent patterns with a limited amount of data.
If the models try to make a prediction on images with an uncommon anatomical
orientation, they might not recognize the tumor and/or predict a tumor in the
wrong area. By adding data augmentation on the input images, the models would
be exposed to different orientations and the size of the dataset would increase.
As a result, this might get the models to learn the different anatomical image
orientations and hence provide increased performance.

5.3 The support vector classifier model

By only looking at figure 4.9 and 4.10 it seems like the U-net model is superior
to a shallow machine learning approach like the SVC. However, these two models
might not be comparable. The images that are used as input to the model are
different both in terms of which images are used and how they are pre-processed.
For the SVC model, both T2 weighted images and DWI were used, while the U-
net model only used the T2 weighted images. Thus, the models have access to
different information and can not be directly compared.

Another important factor is that the images used for the SVC model were
cropped significantly. The predictions were therefore done on a restricted part of
the image where the tumor was placed in the center. This also removed the po-
tential problem of having black edges around the images. For the images used as
input to the U-net model, minimal pre-processing were performed, but they were
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downsampled with a factor of eight. This gives a voxel size in the plane of about
2.8× 2.8 mm2, which is almost three times the size of the isotropic voxels used for
the SVC model. As discussed above, less downsampling might give an increased
performance for the U-net models, and one might also expect an increased per-
formance by adding cropping of the images so that the tumor voxels make up a
larger fraction of the total number of voxels, and thus increase the class balance.

No post-processing was done for the U-net model, and the only post-processing
that was done for the SVC model was to remove the voxels in the tumor region
that were not included in the FOV for both image types. These voxels were set
to zero both in the prediction and ground truth before calculating the DSC. Since
the U-net model used for the comparison only included T2 weighted images, the
difference in FOV between the T2 weighted images and DWI was not a problem for
this model. The predictions from the SVC model contained both large areas and
smaller islands outside the true tumor volume, and could, therefore, benefit a lot
from post-processing where one would remove these. With the U-net model, this
was not a large problem, and it, therefore, seems like this type of post-processing
will not be needed for this model.

It is also important to consider the training and validation process of the two
models. The U-net model was trained on a cohort consisting of 51 patients and
10 different patients were used for the validation. The SVC model, on the other
hand, used leave-one-out cross-validation and none of the patients were hold out
as a final test set. It might have been better to train the SVC model on the same
cohort that was used for training of the U-net model, and then tested the model
on the validation set. In this way, it would have made more sense to compare the
performance on the patients in the validation set. As for now, it is uncertain how
the SVC model would perform on a separate dataset, and the U-net model is also
not tested with a completely independent dataset.

5.4 Related work

The recent years there have been several approaches and attempts on automatic
segmentation of tumor volumes and organs at risk for radiotherapy purposes based
on medical images. Trebeschi et al. [14] developed a CNN for automatic segmen-
tation of rectal cancer on multi-parametric MRI, similar to what was done in this
thesis. They used a dataset consisting of T2 weighted images and DWI with four
different b-values, ranging from 0 s/mm2 to 1100 s/mm2, from 140 patients with
locally advanced rectal cancer. The classification was done by extracting a fixed
patch around a voxel, the patch was then classified by the network and a proba-
bility was assigned to the corresponding voxel. By repeating this procedure for all
the voxels in the image, a heatmap was generated. In this way, no encoder-decoder
architecture was needed. To balance the training set an equal number of voxels
was sampled from the tumor region and non-tumor region. For the non-tumor
region the sampling was weighted to favor challenging regions like the tumor bor-
der and areas, apart from the tumor, that appeared bright in the DWI. This was
done because it was assumed that the network would need more training to make
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correct predictions in these regions. As a post-processing step, the largest compo-
nent of the predicted segmentation was chosen as the tumor volume. Two expert
radiologists had delineated the tumor volumes, and the first was used to train the
network while the other one acted as an additional evaluation. It was reported a
DSC of 0.68 and 0.70 for the two delineations respectively, and this is very similar
to the results obtained on the validation set with the U-net models in this thesis.

Lee et al. [47] proposed a model for rectal cancer segmentation where they
first segmented the rectum on the images and included data augmentation in
order to reduce the model variance. The rectum segmentation was motivated by
the geometric correlation between the rectum and rectal cancer. T2 weighted
images from 457 patients were used, and one to two image slices was selected
from each patient. This resulted in a dataset consisting of 907 image slices. The
network consisted of an encoder-decoder architecture similar to the U-net models.
By adding a rectum segmentation task they reported a reduction in the model
variation by a factor of 0.90, and data augmentation further decreased the variance
by a factor of 0.89. The resulting DSC for the rectal cancer delineations was
0.742 ± 0.0185 which is a slight improvement from the U-net models that were
explored in this thesis. The DSC for the rectum segmentation was 0.943± 0.072,
and this proves that the model in most cases was very accurate when predicting
the location of the rectum.

A 3D U-net was recently suggested by Gurney-Champion et al. [48] for the
delineation of metastatic lymph nodes in head and neck cancer. The dataset con-
sisted of DWI taken from 48 patients and a total of 68 lymph nodes. Images
were taken both before and during the treatment, and the patients were divided
into two groups. One group of patients received definitive chemo-radiotherapy
and the other received induction-chemotherapy. The images were cropped before
they were used as input to the network, and this was done by selecting a random
voxel within the lymph node contour to simulate a "mouse click" from a clini-
cian, and then placing a bounding box with fixed size centered at the selected
voxel. With 8-fold cross-validation, it was reported a DSC of 0.87 for the patients
that received definitive chemo-radiotherapy and DSC of 0.80 for the patients that
received induction-chemotherapy. The model was also tested on an independent
dataset from an MR-Linac consisting of 3 patients and 8 lymph nodes, and this
resulted in a DSC of 0.80. Considering that this model was used to delineate
lymph nodes in head and neck cancer, it is not directly comparable to the models
in this thesis, but it still proves that U-nets has a great potential in medical image
segmentation. The high DSC for this model can be due to the cropping of the
images. By cropping the images, one can obtain a data set that is relatively bal-
anced between tumor voxels and non-tumor voxels, one removes areas that might
be confusing for the models, and it limits the number of voxels that the model can
classify incorrectly because there are fewer voxels in total.
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5.5 Clinical impact

A method for automatic segmentation of tumor volume could potentially be time-
saving. An ideal model would be able to take any image as input and output the
segmentation of the tumor volume with an accuracy that is at least as good as a
manual delineation made by an expert. A similar model could be used for the seg-
mentation of organs at risk, and in that way limit the workload and time it takes
to create radiotherapy treatment plans. As a result, this enables the possibility
of changing the treatment plans between fractions, also known as adaptive radio-
therapy, in order to optimize the treatment response for the individual patient.

The model required manual delineations for the training and validation process,
and there is important to be aware that this makes the model biased in terms of the
reader that made the delineations. The interobserver variation can be relatively
large, and the two manual delineations used in this thesis resulted in a DSC equal
to 0.78. The model will only be as good as the ground truth that is used, and
one can ask the question of how accurate one would wish such a model to be. If a
model gives an extremely accurate performance on a test set that has delineations
from the same reader that made the delineations used for the training set, it is
reasonable to think that a test set with delineations from a different reader would
not perform as good. One should, therefore, consider if a model that performs
reasonably well for a large range of delineations is a better option than a model
that performs great but is biased towards delineations from a specific reader. An
alternative to using the manual delineations as the ground truth would be to
evaluate the predicted masks against the pathology of the tumors. In this way,
one could obtain a more exact ground truth, but it would only be possible for
the patients who undergo surgery and it might not be intuitive how the shape
obtained from pathology relates to the images in terms of rotation.

In order to truly get an insight into how well an automatic segmentation model
performs, the predictions should be evaluated and rated by several experts. There
might be inaccuracies in the model predictions that can be tolerated and are no
worse than the interobserver variations, but there can also be mistakes that can
possibly get large consequences. Thus, if a model for automatic segmentation were
to be implemented in the clinic, it is important that the predicted delineations are
checked by experts before they are used for treatment planning.

An automatic segmentation would not only be beneficial for radiotherapy treat-
ment planning, but also for research areas like quantitative image biomarkers and
radiomics. Radiomics utilize statistical methods and machine learning approaches
to explore shape and texture features in medical images in order to predict re-
sponse to treatment and prognosis. This will make it possible to develop more
personalized treatments for cancer patients. The data used in the analysis is ex-
tracted from the segmented volumes, and hence the segmentation is a crucial step
in the radiomics process [16, 49]. The interobserver variation in the delineations
can, therefore, cause reproducibility issues for the results obtained. Radiomics
require large datasets, and the fact that manual delineation is a time-consuming
task can be challenging. With an automatic segmentation model, one could ob-
tain a standardized and fast method for segmentation, and hence more robust and
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reproducible results for the image biomarkers and radiomics.

5.6 Further work

Several modifications can be implemented that might improve the model per-
formance. A relatively easy modification would be to train the model without
downsampling the images, and then see how this will affect the performance.
Gurney-Champion et al. [48] investigated the image resolution in relation to their
U-net model, and they found that a lower resolution decreased the performance
slightly. Based on this finding, it is reasonable to believe that less downsampling
will result in an improved model, but it will also result in longer training time.

To solve the issue with the different anatomical image orientations, data aug-
mentation could be applied. By flipping and transforming the images, the model
gets exposed to several variations of the same image. Data augmentation was
shown to reduce the model variance by Lee et al. [47], and it could potentially
improve the model’s capability to give accurate predictions on a large variety of
image orientations. As a consequence, it is also probable that this will improve
the model’s ability to generalize to other datasets.

Another approach to deal with the image orientation could be to create a model
based on a 3D convolutional neural network like V-net [40] or 3D U-net [50] which
have proven to give good results. This would allow the model to take 3D images
as input, and thus the image orientation of the individual image slices would most
likely not be important.

The U-net models took the complete images as input, and it should be investi-
gated how the performance would change by adding cropping to the pre-processing.
One can explore different amounts of cropping, and it will also be interesting to
implement the "mouse click" approach that was used by Gurney-Champion et al.
[48]. Having the radiologist click inside the tumor could be easily implemented in
the clinic. Cropping of the images would lead to a more balanced dataset, and
possibly also reduce the time it takes to train the models due to fewer voxels in
each image.

For models that take both T2 weighted images and DWI as input, the FOV on
the T2 weighted images should be matched to the FOV of the DWI to avoid having
image slices with information from only one image type. It would be interesting to
see if this results in improved performance for models including both image types.
One can also investigate if it is necessary to include all seven different b-values for
the DWI, or if the same performance can be achieved by only using a couple.

Except for the loss function, the hyperparameters for the models were kept
unchanged. In a more thorough study, the hyperparameters like learning rate,
batch size, and the number of epochs should be tuned to achieve the optimal
model. The choice of activation function and optimizer should also be examined
further.

Finally, when a model with adequately good performance for the validation set
is found, the model should be evaluated on a test set it has never seen before. The
result from this will then give an indication of the degree of overfitting present in
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the model, and it will give a more generalized evaluation of the model performance.
To take it one step further, the model could also be tested with datasets obtained
from other hospitals. This will be completely independent datasets, both when it
comes to the image acquisition and the manual delineation, and hence the ultimate
test to see how well the model generalizes.
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Chapter 6

Conclusion

In this thesis, a deep convolutional neural network was explored for the task of
automatic segmentation of rectal tumor volume based on MR images. The dataset
consisted of T2 weighted images and DWI with seven different b-values, ranging
from 0 s/mm2 to 1300 s/mm2, from 81 patients. The data was divided between
training, validation, and test set, and the union of manual delineations made by
two radiologists was used as the ground truth. A total of nine models with a U-net
architecture were trained. Between the different models, the input and the loss
function were varied.

The best performing model was trained with T2 weighted images and the
modified Dice loss function, and it resulted in a DSC of 0.67 for the validation
set. The DSC for each patient in the validation set ranged from 0.27 to 0.85. This
U-net model proved to be superior to a shallow machine learning model based on
the SVC, which gave an average DSC of 0.48.

Compared to the interobserver variation of the two manual delineations, the
U-net model had a lower DSC, but several modifications can be done in an at-
tempt to improve the performance. Having less image downsampling, and adding
data augmentation and cropping are modifications that are believed to give in-
creased performance. In conclusion, a convolutional neural network with U-net
architecture gives promising results for rectal tumor segmentation, and it should
be explored further.
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Figure A.1: Training and validation curves for the models with T2 weighted images as
input. (a) corresponds to the model with cross entropy loss, (b) corresponds to the model
with dice loss, and (c) corresponds to the model with modified dice loss. The binary Fβ
is the DSC calculated on all image slices in the dataset combined, with a threshold equal
to 0.5. The green curves represent the validation set while the blue curves represent the
training set.

73



74 APPENDIX A. TRAINING AND VALIDATION CURVES

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

B
in

ar
y 

F

Train
Validation

(a) Cross entropy

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

B
in

ar
y 

F
Train
Validation

(b) Dice

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

B
in

ar
y 

F

Train
Validation

(c) Modified dice

Figure A.2: Training and validation curves for the models with DWI as input. (a)
corresponds to the model with cross entropy loss, (b) corresponds to the model with dice
loss, and (c) corresponds to the model with modified dice loss. The binary Fβ is the
DSC calculated on all image slices in the dataset combined, with a threshold equal to
0.5. The green curves represent the validation set while the blue curves represent the
training set.
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Delineations on the validation set
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(a) Slice 1 (b) Slice 4 (c) Slice 6

(d) Slice 8 (e) Slice 11 (f) Slice 13

(g) Slice 16 (h) Slice 18 (i) Slice 21

Figure B.1: The delineation predicted by the best U-net model (red) and the union of
the delineations made by the two radiologists (blue) on a selection of T2 weighted image
slices from OxyTarget patient 72. The DSC for this patient is 0.74.
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(a) Slice 1 (b) Slice 4 (c) Slice 8

(d) Slice 11 (e) Slice 14 (f) Slice 17

(g) Slice 20 (h) Slice 24 (i) Slice 27

Figure B.2: The delineation predicted by the best U-net model (red) and the union of
the delineations made by the two radiologists (blue) on a selection of T2 weighted image
slices from OxyTarget patient 74. The DSC for this patient is 0.82.
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(a) Slice 1 (b) Slice 4 (c) Slice 6

(d) Slice 8 (e) Slice 10 (f) Slice 12

(g) Slice 14 (h) Slice 16 (i) Slice 18

Figure B.3: The delineation predicted by the best U-net model (red) and the union of
the delineations made by the two radiologists (blue) on a selection of T2 weighted image
slices from OxyTarget patient 88. The DSC for this patient is 0.60.



79

(a) Slice 1 (b) Slice 3 (c) Slice 5

(d) Slice 7 (e) Slice 9 (f) Slice 11

(g) Slice 13 (h) Slice 15 (i) Slice 18

Figure B.4: The delineation predicted by the best U-net model (red) and the union of
the delineations made by the two radiologists (blue) on a selection of T2 weighted image
slices from OxyTarget patient 125. The DSC for this patient is 0.68.
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(a) Slice 1 (b) Slice 3 (c) Slice 5

(d) Slice 7 (e) Slice 9 (f) Slice 10

(g) Slice 12 (h) Slice 14 (i) Slice 16

Figure B.5: The delineation predicted by the best U-net model (red) and the union of
the delineations made by the two radiologists (blue) on a selection of T2 weighted image
slices from OxyTarget patient 128. The DSC for this patient is 0.80.
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(a) Slice 1 (b) Slice 4 (c) Slice 6

(d) Slice 8 (e) Slice 10 (f) Slice 12

(g) Slice 14 (h) Slice 16 (i) Slice 19

Figure B.6: The delineation predicted by the best U-net model (red) and the union of
the delineations made by the two radiologists (blue) on a selection of T2 weighted image
slices from OxyTarget patient 148. The DSC for this patient is 0.74.
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(a) Slice 1 (b) Slice 3 (c) Slice 4

(d) Slice 6 (e) Slice 8 (f) Slice 10

(g) Slice 12 (h) Slice 13 (i) Slice 15

Figure B.7: The delineation predicted by the best U-net model (red) and the union of
the delineations made by the two radiologists (blue) on a selection of T2 weighted image
slices from OxyTarget patient 156. The DSC for this patient is 0.69.
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Figure B.8: The delineation predicted by the best U-net model (red) and the union of
the delineations made by the two radiologists (blue) on a selection of T2 weighted image
slices from OxyTarget patient 157. The DSC for this patient is 0.53.
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Figure C.1: The average DSC plotted against the threshold for the U-net models with
the cross entropy loss function. (a) corresponds to the model with T2 weighted images
as input, (b) corresponds to the model with DWI as input, and (c) corresponds to the
model with the two image types combined. The light blue areas represent the standard
deviation.
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Figure C.2: The average DSC plotted against the threshold for the U-net models with
the Dice loss function. (a) corresponds to the model with T2 weighted images as input,
(b) corresponds to the model with DWI as input, and (c) corresponds to the model with
the two image types combined. The light blue areas represent the standard deviation.
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Figure C.3: The average DSC plotted against the threshold for the U-net models with
the modified Dice loss function. (a) corresponds to the model with T2 weighted images
as input, (b) corresponds to the model with DWI as input, and (c) corresponds to the
model with the two image types combined. The light blue areas represent the standard
deviation.
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