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Abstract
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Ultrafast Two-Magnon Excitation in Two-Dimensional Antiferromagnetic
Insulators

by Trond Hjerpekjøn HAUG

Spin excitations in two-dimensional antiferromagnetic materials take the form of spin
waves that are more commonly referred to as magnons. Magnons are bosonic quasi-
particles that can be excited by femtosecond laser-induced inhomogeneous pertur-
bation of the exchange interaction between spins, allowing for ultrafast generation
and control of these particles that have potential applications in high-speed informa-
tion processing devices. I present the quantum theory for describing the dynamics
triggered by the optical excitation and show how the magnons produce oscillations
of the antiferromagnetic Néel vector that cannot be described using a semiclassical
approach. A connection is drawn between operators that act on magnon pairs and
the group SU(1,1), which enables the representation of the quantum state of the an-
tiferromagnet as a direct product of Perelomov coherent states. The effect of using
a spatially nonuniform optical field intensity for magnon excitation is then studied
using the techniques that proved effective for describing excitation by uniform fields.
I discuss the generalization of the standard Bogoliubov transformation and apply it
to the Hamiltonian that results from nonuniform optical fields before I present how
the sudden approximation could potentially be used to numerically obtain the quan-
tum state of the antiferromagnet after excitation by light with any spatially varying
intensity distribution.
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Chapter 1

Introduction

Magnetic phenomena have been known to humans for at least 2500 years [1] and
have grown increasingly important in technological applications as we have learned
to exploit and control them. The first big breakthrough in the understanding of mag-
netism came in the early 1800s following Hans Christian Ørsted’s discovery of its
link to moving electrical charges in 1820 [2]. A series of experiments quickly followed
at the hands of André-Marie Ampere [3], Jean-Baptiste Biot and Félix Savart [4] and
Michael Faraday [5], among others, which laid the foundations for the theory of elec-
tromagnetism. The theory was unified and summarized by James Clark Maxwell [6]
in 1873, although his famous equations and the description of the origin of electro-
magnetic waves must be ascribed to British scientists who came after him [7].

The second big leap came with the discovery of atoms and description of their
structure using quantum mechanics in the 20th century. The contributions of people
like Erwin Schrödinger [8, 9, 10], Werner Heisenberg [11], Wolfgang Pauli [12] and
Paul Dirac [13] to the field of magnetism can hardly be understated given – as we
shall see – its inherent quantum mechanical nature. This text concerns itself primarily
with antiferromagnets, a group of materials that possess magnetic ordering below a
characteristic temperature called the Néel temperature, without having a macroscopic
magnetization. The magnetic ordering was first described by Louis Néel [14] who re-
ceived the Nobel Prize in Physics in 1970 for his work on antiferromagnetism. Néel
discovered that the behavior of these antiferromagnetic materials could be explained
if the magnetic moment of an atom in the material was completely cancelled by the
magnetic moment on a nearby atom. An example is shown in Fig. 1.1, where the mag-
netic moment of each lattice site is represented by an arrow. The magnetic moment is
related to a property known as spin through the gyromagnetic ratio, meaning that the
magnetic moment of an atom is proportional to its spin. The terms are therefore often

FIGURE 1.1: A honeycomb lattice of atoms with magnetic moments
(spins) aligned in opposite directions. This material has an ordered
magnetic structure, but the macroscopic magnetization, which is the

sum of all the spins, is zero. Credit: E. Edwards.
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used interchangeably, but since spin is the more fundamental quantity I will use this
term.

By contrast, a ferromagnet is a material where all the spins are aligned parallel to
one another. That is, turn all the yellow arrows in Fig. 1.1 by 180 degrees and you
have a ferromagnet. The magnetization of the ferromagnet is simply the sum of all
the magnetic moments divided by the volume (or in the two-dimensional case, the
area) of the material. The magnetization can easily be measured and will tell us for
instance the average orientation of the spins and their magnitude. We can also change
the orientation of the spins by applying an external magnetic field, which will force
the spins in the ferromagnet to align parallel to the field.

The lack of macroscopic magnetization in antiferromagnets was originally seen as
a disadvantage when it came to possible technological applications for antiferromag-
netic materials – in fact Néel himself famously said in his Nobel lecture that antifer-
romagnetic materials do not appear to have any interesting applications [15]. How
can we exploit the magnetic order if there is no magnetization? In the recent decades
we have learned to detect and interact with the magnetic moments of the atoms [16]
rather than the macroscopic magnetization in the material, which has turned this dis-
advantage into an advantage in some areas. The absence of magnetic stray fields from
antiferromagnets make them much more suited than ferromagnets for use in devices
where we want to pack magnetic elements very close together, such as in memory
storage and data processing. Another advantage of antiferromagnets is that the spins
can be manipulated on ultrafast (sub-picosecond) timescales [17], which would make
information processing and storage devices based on antiferromagnetic spin much
faster than today’s state-of-the-art computers that use electrical current (THz vs. GHz
today).

The emerging fields that intend to exploit spin rather than electrical charge to
carry information are called spintronics and magnonics. Spintronics seeks to use the
spin of electrons to send electronic spin currents through circuits, whereas magnonics
seeks to send magnon currents through magnetic insulators. A magnon is a quantum
of excitation in a magnet that arises when the spins are moved out of their equilibrium
orientation relative to one another. The situation is illustrated in Fig. 1.2. We see
that the deflection from the equilibrium position traces out a sinusoidal wave, and
magnons are therefore known as spin waves.

FIGURE 1.2: When spins are distorted out of their equilibrium orien-
tations they precess around the equilibrium axis (shaded arrows). The
deflection looks like a wave in the spin lattice, hence the term spin

wave. Illustration originally from [18].
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In this thesis we will encounter these pure spin waves and much more besides as
we look at both static magnets and, later, antiferromagnetic dynamics. Although we
restrict the discussion to some of the simplest antiferromagnets possible, we will need
an arsenal of theories, approximations and techniques in condensed matter physics
to get a grip on the problem. I have structured the thesis so as to serve as a gentle but
thorough introduction to antiferromagnetic spin waves for graduate level students
like myself who are relatively new to this branch of physics. It is my belief that the
only priors needed to understand this text are a one-semester course in introductory
quantum mechanics, a solid foundation in the core mathematical disciplines of mul-
tivariable calculus and linear algebra, and at least some familiarity with solid state
physics, in particular reciprocal lattices and the Brillouin zone. As a consequence,
readers with a strong background in condensed matter physics will probably find
some phrases, in particular in the first couple of chapters, rather crude or perhaps
even inaccurate. The writing style may be more colloquial than what you encounter
in the average thesis as well. This is a feature, not a bug. While I have made every
effort to make sure everything in this thesis is conveyed with as much precision as
possible, I refuse to wrap the discussion in a veil of advanced terminology that only
serves to alienate newcomers to the field. I also think that the discussion in Chapters
5 and 6 is technical enough as it is even for people who have some experience with
magnonics.

As the reader has likely already noticed, I am switching frequently between "I"
and "we". This is a small pedagogical experiment on my part. The vast majority of the
text is written using the first person plural form because I want the readers to feel that
they are taking part in the discussion and it is important that they understand what is
going on. Sometimes, however, the use of the first person singular feels more natural
because I want to express my own viewpoints and opinions, to which the readers
might disagree. At some of the lengthier calculations I have also chosen to refer to
myself with the singular pronoun to explain how I arrived at the result if it does not
follow immediately from the written equations. On that note, I have tried to strike
a balance between including as many intermediate calculations that are necessary to
easily follow the derivations ("show your work"), and keeping the equations from
filling up entire pages. The readers will therefore find that the derivations are more
detailed than what you get from most scientific papers, but not as detailed as the
typical calculus exam.

The thesis is divided into chapters of variable lengths, roughly corresponding to
how much time it has taken me to study the material covered in them. Chapter 2 is
short and introduces some much-needed concepts in quantum mechanics that are not
always covered in low-level courses. Chapter 3 is even shorter and only scratches the
surface of the semiclassical description of magnetic dynamics. I included it partly to
illustrate the differences between the semiclassical and quantum theories, and partly
because I reference the semiclassical theory in Chapter 5. The main segment of the
thesis, which concerns quantum spin wave theory, is found in Chapters 4-6. The
material covered in Chapters 4 and 5 is more or less properly developed by others,
but is much more thoroughly explained than in any other single source I could find
while studying for my degree. Chapter 6 relies to a less extent on published literature
and is mostly a product of my own ideas, with the work of others duly cited when
used, of course. I hope my efforts and ideas will prove useful in some way to the
project currently undertaken by my supervisor and his collaborators, or at least help
the graduate students succeeding me on the project build a better understanding of
the challenges in a shorter period of time than I have managed.
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Chapter 2

Background

2.1 Atomic origins of magnetism

In this section I outline the most fundamental aspects of how magnetism arises in in-
sulators. The purpose is to give a motivation for why we model magnetic insulators as
arrays of spin vectors. I treat the orbital angular momentum more thoroughly because
we will need some of the derivations in later chapters, and because it is the easiest to
get a grasp on since it has a classical analog. The origin of spin angular momentum
and how the total angular momentum of an atom is calculated are discussed only
briefly to avoid getting bogged down with relativistic effects, which would make the
discussion unnecessarily long and conceptually difficult. Wave mechanics is avoided
as well, which means restrictions on the orbital quantum numbers imposed by the
spherical harmonics are not covered – both in the interest of brevity and because this
should be familiar to students who have studied introductory quantum mechanics.

2.1.1 Orbital angular momentum

The magnetic moment m caused by a circulating current I around an area A is defined
to be

m = IA. (2.1)

If we expand this expression using I = qN
t and A = pr2, where q is the charge on the

particles in the current, N is the number of charged particles passing through a cross
section of the current loop in time t and r is the radius of the current loop, then the
magnitude of the magnetic moment is

m =
qN
t

pr2. (2.2)

The non-relativistic (linear) momentum of each particle is p = m0v = m0
2pr

t , where
m0 is the rest mass of the particle. We can rewrite (2.2) as

m =
2m0

2m0

qN
t

pr2

=
qN
2m0

rm0
2pr

t

=
qN
2m0

rp

=
qN
2m0

L,

(2.3)

where L is the angular momentum of one particle in the current. Clearly, charged
particles with angular momentum are sources of magnetic moment. In an atom these
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charged particles are electrons, and to find their angular momenta we need to find
eigenvalues of the angular momentum operator L̂ = r̂ ⇥ p̂. The individual compo-
nents (x, y, z) of L̂ are

L̂x = ŷ p̂z � ẑ p̂x, L̂y = ẑ p̂x � x̂ p̂z, L̂z = x̂ p̂y � ŷ p̂x. (2.4)

The commutator
⇥
L̂x, L̂y

⇤
is

⇥
L̂x, L̂y

⇤
= [ŷ p̂z � ẑ p̂x, ẑ p̂x � x̂ p̂z]

= [ŷ p̂z, ẑ p̂x]� [ŷ p̂z, x̂ p̂z]�
⇥
ẑ p̂y, ẑ p̂x

⇤
+
⇥
ẑ p̂y, x̂ p̂z

⇤
.

(2.5)

Using the substitutions q̂ ! q and p̂q ! �ih̄ ∂
∂q for q 2 {x, y, z}, we get

[ŷ p̂z, ẑ p̂x] = �h̄2y
✓

∂

∂z
z

∂

∂x

◆
+ h̄2zy

∂2

∂x∂z

= �h̄2y
✓

∂

∂x
+ z

∂2

∂z∂x

◆
+ h̄2zy

∂2

∂x∂z

= �ih̄y
✓
�ih̄

∂

∂x

◆

= �ih̄ŷ p̂x.

(2.6)

Similarly, we have

[ŷ p̂z, x̂ p̂z] = 0,
⇥
ẑ p̂y, ẑ p̂x

⇤
= 0,

⇥
ẑ p̂y, x̂ p̂z

⇤
= ih̄x̂ p̂y. (2.7)

Putting all this together yields
⇥
L̂x, L̂y

⇤
= ih̄

�
x̂ p̂y � ŷ p̂x

�
= ih̄L̂z. (2.8)

The commutators
⇥
L̂y, L̂z

⇤
and

⇥
L̂z, L̂x

⇤
follow by cyclic permutation of the coordi-

nates:
⇥
L̂y, L̂z

⇤
= ih̄L̂x,

⇥
L̂z, L̂x

⇤
= ih̄L̂y.

(2.9)

These are the fundamental commutation relations from which the rest of the the-
ory of angular momentum follows. Crucially, the total angular momentum squared,
L̂2

⌘ L̂2
x + L̂2

y + L̂2
z , commutes with each of the components of L̂. This means that

there exist eigenstates of L̂z (or L̂y or L̂x) that are also eigenstates of L̂2, i. e. we can
know the magnitude of the total angular momentum and the magnitude of one of its
components at the same time.

The eigenvalues are easiest to find if we introduce two new operators:

L̂+ = L̂x + iL̂y,

L̂� = L̂x � iL̂y.
(2.10)

This way we obtain the commutation relations
⇥
L̂z, L̂±

⇤
=
⇥
L̂z, L̂x

⇤
± i
⇥
L̂z, L̂y

⇤
= ±h̄

�
L̂x ± iL̂y

�
= ±h̄L̂±, (2.11)

⇥
L̂2, L̂±

⇤
= 0. (2.12)
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Let |ai be an eigenstate of L̂2 and L̂z so that

L̂2
|ai = a|ai, L̂z|ai = b|ai. (2.13)

Then the commutation relations (2.11) and (2.12) ensure that

L̂2 L̂±|ai = L̂± L̂2
|ai = aL̂±|ai (2.14)

L̂z L̂±|ai = ±h̄L̂±|ai+ L̂± L̂z|ai = (±h̄ + b)L̂±|ai. (2.15)

Clearly, L̂±|ai is also an eigenstate of both L̂2 and L̂z with eigenvalues a and b ± h̄,
respectively. But a is the value of the total angular momentum squared and b ± h̄
is the z-component, which cannot be greater than the total. Evidently, there is an
eigenstate |amaxi for which L̂+|amaxi = 0. So for each eigenvalue a there exists a
maximum eigenvalue bmax of L̂z. The value of a in terms of bmax is found by noting
that

L̂± L̂⌥ =
�

L̂x ± iL̂y
� �

L̂x ⌥ iL̂y
�
= L̂2

� L̂2
z ± h̄L̂z =) L̂2 = L̂± L̂⌥ + L̂2

z ⌥ h̄L̂z, (2.16)

so that

L̂2
|amaxi =

�
L̂� L̂+ + L̂2

z + h̄L̂z
�
|amaxi =

�
b2

max + h̄bmax
�
|amaxi. (2.17)

Similarly, for each a there must exist a minimum eigenvalue bmin of L̂z. Applying the
operator in (2.16) to |amini, we get

L̂2
|amini =

�
L̂+ L̂� + L̂2

z � h̄L̂z
�
|amini =

�
b2

min � h̄bmin
�
|amini. (2.18)

From (2.17) and (2.18) we see that

b2
max + h̄bmax = b2

min � h̄bmin, (2.19)

and by definition bmax � bmin. The only solution is

bmin = �bmax. (2.20)

Moreover, since the eigenvalue of L̂z increases in n integer steps of units h̄ from �bmax
to bmax, it follows that

bmax = h̄l, l 2 {0,
1
2

, 1,
3
2

, ...} (2.21)

and
b = h̄ml , ml 2 {�l,�l + 1, ..., l � 1, l} (2.22)

The eigenvalue equations for L̂2 and L̂z in terms of the quantum numbers l and ml are
therefore

L̂2
|l mli = h̄2l(l + 1)|l mli, l 2 {0,

1
2

, 1,
3
2

, ...} (2.23)

and
L̂z|l mli = h̄ml |l mli, ml 2 {�l,�l + 1, ..., l � 1, l}. (2.24)

To summarize, we have found that a source of magnetic moment in atoms is electrons
orbiting the nucleus. The angular momenta of the electrons are quantized. If we
project the angular momentum of an electron with quantum number l onto the z-
axis, we will find that the projection is h̄ml , where ml is allowed to take any integer
value between l and �l.
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2.1.2 Spin angular momentum

There is a second contribution to the magnetic moments of atoms that arises from
relativistic effects [19] and is believed to have no direct classical analog (although
some disagreement exists [20]). It is called the electron’s spin angular momentum.
Fortunately, the theory of spin angular momentum (and indeed any general angular
momentum) is identical to the theory of orbital angular momentum if we define the
spin angular momentum operator Ŝ = Ŝx x̂ + Ŝyŷ + Ŝzẑ to be an operator that satisfies
the commutation relations in (2.8) and (2.9):

⇥
Ŝx, Ŝy

⇤
= ih̄Ŝz,

⇥
Ŝy, Ŝz

⇤
= ih̄Ŝx,

⇥
Ŝz, Ŝx

⇤
= ih̄Ŝy. (2.25)

This way the eigenvalue equations are simply

Ŝ
2
|s msi = h̄2s(s + 1)|s msi, s 2 {0,

1
2

, 1,
3
2

, ...}, (2.26)

Ŝz|s msi = h̄ms|s msi, ms 2 {�s,�s + 1, ..., s � 1, s}. (2.27)

There is an important distinction between the quantum numbers l and s, however:
the value for s is fixed at 1

2 for electrons, whereas the value of l can vary. The fact that
s = 1

2 restricts ms to the values ± 1
2 . It is common to say that an electron with ms = + 1

2
is "spin up", while an electron with ms = �

1
2 is "spin down", and we mark them as "

and #, respectively.

2.1.3 Total angular momentum

To find the atom’s total angular momentum J we need to sum up all the contributions
from the electrons’ orbital and spin angular momenta. There are two strategies we can
employ here:

1. We can add all the orbital contributions into a total orbital angular momentum,
then add all the spin contributions into a total spin angular momentum, and
finally add the total orbital and spin angular contributions:

L = Â
i

Li, S = Â
i

Si, J = L + S. (2.28)

2. We can add each individual electron’s orbtial and spin angular momenta into
a total angular momentum for the elecron, and then sum the total angular mo-
menta of the electrons in the atom:

Ji = Li + Si, J = Â
i

Ji. (2.29)

If the electrons’ spin and orbital angular momenta were totally independent of each
other, then it would make no difference which strategy we choose. However, the
interaction between an electron’s orbital angular momentum and its spin angular
momentum causes an effect known as spin-orbit coupling. The coupling is weak in
lighter atoms but increases rapidly as the nucleus becomes heavier [21]. The way the
total angular momentum is calculated will depend on the degree of spin-orbit cou-
pling in the atom. To our purposes the way the total angular momentum is calculated
is of no importance. Therefore, to keep the notation consistent with convention, we
shall from now on ignore the orbital angular momentum and only work with the spin
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contribution to the atomic angular momentum. This does not reduce the generality
of our results, since the physics would remain exactly the same had we not made this
simplification. Thus for a known total spin quantum number s (the sum of the contri-
butions from each electron’s spin), we can express the state of the system in the basis
of the spin projection along the z direction as |msi.

2.2 Second quantization

As the number of atoms in a system grows, it becomes increasingly difficult to keep
track of the state of every particle, which in turn determines the total state of the
system. If we want to deal with macroscopic collectives of atoms, we need a new
approach. Classically this was accomplished by introducing distribution functions so
that the probability of finding a system in a given state could be calculated. We can
hope to do something similar using quantum mechanics, but since we are operating
with state vectors for the system as a whole, and all identical particles are fundamen-
tally indistinguishable from one another, we must have that the observable state of
the system is not affected if we exchange two identical particles. That is, the state can
at most pick up a phase factor eif in an exchange. In the position representation we
have

|Yi = Y
�
z1, z2, ..., zi, ..., z j, ..., zN

�
= eifY

�
z1, z2, ..., z j, ..., zi, ..., zN

�
(2.30)

where zn is the coordinates and spin of the n-th particle in a system of N particles. If
we exchange the particles back again, we get

Y
�
z1, z2, ..., z j, ..., zi, ..., zN

�
= eifY

�
z1, z2, ..., zi, ..., z j, ..., zN

�
(2.31)

and therefore e2if = 1 =) eif = ±1, which means

Y
�
z1, z2, ..., zi, ..., z j, ..., zN

�
=

(
+Y

�
z1, z2, ..., z j, ..., zi, ..., zN

�

�Y
�
z1, z2, ..., z j, ..., zi, ..., zN

� .

This requirement that Y be either symmetric or antisymmetric gives rise to two differ-
ent forms of statistics: Bose-Einstein statistics for the symmetric wave functions and
Fermi-Dirac statistics for antisymmetric wave functions. Relativistic quantum me-
chanics reveals that integer-spin particles obey Bose-Einstein statistics and are called
bosons, whereas half-integer-spin particles obey Fermi-Dirac statistics and are called
fermions [22].

When we expand Y in products of eigenfunctions of the one-particle Hamiltonian
(which form a complete set), we therefore have the restriction that Y be symmetrized
for bosons and anti-symmetrized for fermions. Mathematically, we have for bosons
that

YB
N =

r
n1!n2! · · · nN !

N! Â y1(z1)y2(z2) · · · yN(zN), (2.32)

where the sum runs over all distinguishable permutations of the indices {1, 2, ..., N}

and ni counts the number of times the one-particle wave function yi appears in YN .
The expression for fermions is a bit more involved since the exchange of one particle
with another changes the sign of YF

N . The wave function is best expressed with a
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Slater determinant:

YF
N =

r
1

N!

����������

y1(z1) y1(z2) y1(z3) · · · y1(zN)
y2(z1) y2(z2) y2(z3) · · · y2(zN)
y3(z1) y3(z2) y3(z3) · · · y3(zN)
· · · · · · · · · · · · · · ·

yN(z1) yN(z2) yN(z3) · · · yN(zN)

����������

. (2.33)

In this basis an N-particle state YN is completely defined by the set of numbers {ni}.
A more convenient notation is therefore

YN = |n1, n2, ... , nNi. (2.34)

The Hilbert space (the space in which quantum mechanical states live) spanned by
a finite or denumerably infinte number of |nii states is called a Fock space. The state
|n1, n2, ... , nNi is called a Fock state and the operators in Fock space that act on Fock
states are called second-quantized operators. These operators change the occupation
numbers ni in the Fock states and are therefore called creation and annihilation oper-
ators. I will make extensive use of these operators throughout this thesis, starting in
Chapter 4.

2.3 The three pictures of quantum mechanics

Most introductory quantum mechanics courses teach a formulation of quantum me-
chanics known as the Schrödinger picture in which the operators are time-independent
and the quantum states evolve with time. Taking the geometric view of states and
operators, the Schrödinger picture represents a view where the state vectors move
about in a static coordinate system. Most of the discussion in this thesis takes this
view. However, there is nothing that prevents us from making a change of basis so
that the coordinate system is moving as well. This might seem like an unnecessary
complication at first, but by making this transformation it often becomes easier to
deal with interactions. Since we will deal with interactions between spins and light
in Chapters 5 and 6, I present here a short summary of some important aspects that
will be useful to us from the three pictures in quantum mechanics: the Schrödinger,
interaction (Dirac) and Heisenberg pictures.

2.3.1 The Schrödinger picture

As I already mentioned, the Schrödinger picture takes the view of static operators
and evolving states. We will denote a state in the Schrödinger picture as |YS(t)i. The
Schrödinger state’s evolution is described by a unitary operator Û(t, t0) which acts on
the state at t0 and rotates it so that at time t the state is |Y(t)i. A unitary operator is
an operator whose adjoint is equal to its inverse: Û† = Û�1. Mathematically we have

|YS(t)i = Û(t, t0)|YS(t0)i. (2.35)

We can put this into the Schrödinger equation ih̄ d
dt |YS(t)i = Ĥ|YS(t)i and get an

equation for the evolution operator Û:

ih̄
d
dt

Û(t, t0) = ĤÛ(t, t0). (2.36)
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The solution is

Û(t, t0) = exp

2

4� i
h̄

tZ

t0

Ĥ(t0) dt0
3

5 . (2.37)

I have assumed that the Hamiltonians at different times commute (this assumption
is rarely wrong and certainly holds for the discussion in this text). Unless there is
some explicit time-dependence in the Hamiltonian Ĥ as a result of for instance a
temporally varying potential, the Hamiltonian is a function of static operators only
and can therefore be taken out of the integral. In that case we get

ÛS(t, t0) = exp

"
�i

Ĥ0(t � t0)
h̄

#
, (2.38)

where I added the subscript 0 to emphasize that the Hamiltonian is time-independent.

2.3.2 The interaction picture

In the case that there is some time-dependence in the Hamiltonian, we can often write
the Hamiltonian as a sum of a time-independent part and a time-varying part: Ĥ =
Ĥ0 + dĤ(t). We could have chosen to split the Hamiltonian in any way we like, but
this way of writing it will be most convenient. We now define a state in the interaction
picture as

|YI(t)i = exp

"
i
Ĥ0(t � t0)

h̄

#
|YS(t)i. (2.39)

Using (2.35) and (2.37) we see that |YI(t)i still carries some time-dependence:

|YI(t)i = exp

2

4� i
h̄

tZ

t0

dĤ(t0) dt0
3

5 |YS(t0)i, (2.40)

and in order to preserve the expectation values of operators (observables such as mo-
mentum, spin, energy and so on cannot depend on which picture we are using to
represent the system!), they must transform in a similar manner:

X̂I(t, t0) = exp

"
i
Ĥ0(t � t0)

h̄

#
X̂S exp

"
�i

Ĥ0(t � t0)
h̄

#
= Û†

SX̂SÛS, (2.41)

where X̂ is any operator. As an example, the Hamilton operator in the interaction
picture becomes

ĤI = exp

"
i
Ĥ0(t � t0)

h̄

#
�
Ĥ0 + Ĥ1(t)

�
exp

"
�i

Ĥ0(t � t0)
h̄

#

= Ĥ0 + exp

"
i
Ĥ0(t � t0)

h̄

#
Ĥ1(t) exp

"
�i

Ĥ0(t � t0)
h̄

#

= Ĥ0 + Û†
SĤ1ÛS.

(2.42)

To conclude our discussion of the interaction picture, we derive the transformed
Schrödinger equation which gives the time-evolution of states. We write |YS(t)i =
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ÛS|YI(t)i, which once inserted into the Schrödinger equation yields

ĤÛS|YI(t)i = ih̄
d
dt

ÛS|YI(t)i

= ih̄
✓

dÛS
dt

|YI(t)i+ ÛS
d
dt
Ĥ

◆

= Ĥ0ÛS|YI(t)i+ ih̄ÛS
d
dt
|YI(t)i.

(2.43)

Operating with Û†
S from the left and using Ĥ = Ĥ0 + dĤ, we get

ih̄
d
dt
|YI(t)i =

⇣
Û†

SĤ0ÛS + Û†
SdĤÛS � Û†

SĤ0ÛS

⌘
|YI(t)i = Û†

SdĤÛS|YI(t)i. (2.44)

This equation can be written even more compactly by using (2.41):

ih̄
∂

∂t
|YI(t)i = dĤ

I
(t)|YI(t)i. (2.45)

2.3.3 The Heisenberg picture

In the interaction picture we transfer some of the time-dependence of the states into
the operators. We can of course transfer all the time-dependence to the operators;
this is called the Heisenberg picture. There are no surprises in the expressions for the
states and operators – they follow from our discussion about the interaction picture:

|YHi = |YS(t0)i (2.46)

X̂H(t) = exp

2

4� i
h̄

tZ

t0

Ĥ(t0) dt0
3

5 X̂S exp

2

4 i
h̄

tZ

t0

Ĥ(t0) dt0
3

5 . (2.47)

We will not be using the Heisenberg picture in this text, so we will end the discussion
here. The pictures are treated more thoroughly in many books on quantum mechan-
ics, for instance in [23].

2.4 Squeezed states

One of the most fundamental results of quantum mechanics is that there is some in-
herent uncertainty in quantities whose operators do not commute. In fact, this is
the reason why we cannot have the angular momentum (spin) of an atom perfectly
aligned with the z-axis: the spin operators in the x-, y- and z-directions do not com-
mute, so there is no such thing as a state where the angular momentum has a precise
direction. For two Hermitian operators Â and B̂, the uncertainty relation is [23]

sAsB �

����
1
2i
h[Â, B̂]i

���� , (2.48)

where sX is the standard deviation in a measurement of the eigenvalue of the opera-
tor X̂. It is important to note that the relation is an inequality, so there is no guarantee
that we will hit the equality limit. Also, there is no lower limit on the uncertainty in
one quantity alone: we can make the measurement of A as precise as we want at the
expense of large uncertainty in B. The uncertainty in a physical quantity that follows
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FIGURE 2.1: The shaded regions represent forbidden areas because of
the uncertainty relation (2.48). The squeezed state (blue) represents a
state in which the uncertainty in A is reduced compared to the vacuum

state (red).

from its quantum nature is often called quantum noise. Put simply, squeezed states
are states that minimize the quantum noise in one observable at the expense of the
other. If we picture the uncertainties as axes of an ellipse, then reducing one of the
uncertainties is like squeezing the ellipse from two sides, increasing its elongation
(or eccentricity). The process is illustrated in Fig. 2.1. Quantum noise is obviously a
quantum effect, and hence if we want to find a quantum description that most resem-
bles a classical description of a system, then squeezing the quantum noise out of the
system is a way to do so.

Squeezed states are mostly used in the field of quantum optics, so the concept
of squeezed states in quantum magnetism can be a bit slippery. We will encounter
squeezed states in Chapter 5 as we look to find states that allow us to link the quantum
description of antiferromagnetic dynamics with the classical description in Chapter
3.
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Chapter 3

Semiclassical Dynamics in
Antiferromagnets

The goal of the semiclassical approach is to move from a description of individual
spins on a lattice to a description of a continuous field in the antiferromagnet. In a
ferromagnet this would amount to finding the magnetization M(r, t), whose dynam-
ics is described by the Landau-Lifshitz-Gilbert equation:

∂M

∂t
= �gM ⇥ He f f +

a

Ms
M ⇥

∂M

∂t
, (3.1)

where g is the gyromagnetic ratio, He f f is the effective magnetic field, a is a damping
parameter and Ms is the saturation magnetization. We would like to find a similar
dynamic equation for an antiferromagnet, but there is a problem: classically the mag-
netization of an antiferromagnet is zero. To get around this we have to introduce two
fields for the anitferromagnet. One of the techniques for doing this is called Haldane’s
mapping [24], where we map each spin Si onto two orthogonal vectors called the Néel
unitary vector ñi and the canting vector m̃i:

Si = (�1)iS
q

1 � |m̃i|2ñi + m̃i. (3.2)

From this definition of ñ and m̃ we can say something about the frequencies of os-
cillation in the spins Si. In a classical picture, we think of spin vectors as precessing
around the equilibrium axis with a frequency w. Taking the equilibrium axis to be the
direction of the Néel unitary vector, this would mean that the projection of the spin
vector onto the canting vector can be written

m̃i ⇠ m̃
0
i sin(wt). (3.3)

The projection of Si onto the Néel unitary field is

(�1)iS
q

1 � |m̃i|2 ⇡ (�1)iS
✓

1 �
1
2
|m̃i|

2
◆

. (3.4)

Inserting the value of the canting field projection yields

Si · ni ⇡ (�1)iS
✓

1 �
1
2
|m̃i|

2
◆

⇠ (�1)iS
✓

1 �
1
2
|m̃

0
i |

2 sin2(wt)
◆

= (�1)iS
✓

1 �
1
4
|m̃

0
i |

2 [1 � cos(2wt)]
◆

.

(3.5)



16 Chapter 3. Semiclassical Dynamics in Antiferromagnets

We see that, to the leading order, the oscillations in the direction along the Néel uni-
tary vector are twice as fast as the transverse oscillations, and that this is a nonlinear
effect. When we treat the dynamics using quantum mechanics in Chapter 5, we will
obtain the same result, but this time the phenomenon will be present even in a purely
linear theory.

Rather awkwardly, there is another approach to parameterize spins to continuous
fields in addition to Haldane’s mapping which is somewhat standard. This is called
the Hamiltonian approach [25] and introduces two similar-looking quantities:

mi =
S

i
A + S

i
B

2S
, (3.6)

li =
S

i
A � S

i
B

2S
, (3.7)

where mi is the vector of magnetization on site i, which now contains two spins: one
spin up (denoted with subscript A) and one spin down (denoted with subscript B).
The pairing of spins causes the number of sites in the antiferromagnet to drop by half
compared to Haldane’s mapping. The vector li is known as the antiferromagnetic
vector or the Néel vector. This definition of the Néel vector is not equivalent to the
definition in Haldane’s mapping. We are done with Haldane’s definition now: from
now on the Néel vector is defined as in (3.7). We define the unitary Néel vector in the
obvious way:

ni =
li
|li|

, (3.8)

again stressing that ni 6=
1
2 (ñ2i�1 + ñ2i) and mi 6=

1
2 (m̃2i�1 + m̃2i). We now take the

continuous limit
ni ! n(r, t), mi ! m(r, t), (3.9)

so that we obtain magnetization and Néel fields, which are expected to yield a good
description in the case where difference between vectors on neighboring cites is small
(i.e. the energy in the system is low). I will suppress the notation showing the spatial
and temporal dependence of the fields in the rest of the chapter and simply use n and
m. The fields are subject to the constraint

n · m = 0. (3.10)

Now we are ready to derive equations for the dynamics of n and m. These can be
obtained as Euler-Lagrange equations from the principle of least action through the
use of the Lagrangian density. In terms of the fields n and m it can be shown [26] that
the Lagrangian density is

L = K� U =
1
g

m · (ṅ ⇥ n)� U , (3.11)

where g is the gyromagnetic ratio, K is the kinetic energy density, U is the potential
energy density and ṅ = ∂n

∂t . The Lagrangian L is therefore

L =

•Z

�•

L d3r. (3.12)



Chapter 3. Semiclassical Dynamics in Antiferromagnets 17

We seek functions n and m that are stationaries of the Lagrangian:

dL
dn

= 0,
dL
dm

= 0, (3.13)

where dn and dm are small variations in n and m, respectively. The Néel and magne-
tization fields that satisfy (3.13) must also satisfy the Euler-Lagrange equation, which
serves the same purpose in Lagrangian mechanics as Newton’s laws of motion in
Newtonian mechanics. Using (3.11) we get that the Euler-Lagrange equation reads

∂L

∂n
�

∂

∂t
∂L

∂ṅ
= 0 =)

∂K

∂n
�

∂

∂t
∂K

∂ṅ
�

dU
dn

= 0 (3.14)

for the Néel field n and

∂L

∂m
�

∂

∂t
∂L

∂ṁ
= 0 =)

∂K

∂m
�

∂

∂t
∂K

∂ṁ
�

dU
dm

= 0 (3.15)

for the magnetization field m, where U =
R
U d3r. Inserting the expression for the

kinetic energy yields

ṅ ⇥ n = g
dU
dm

, (3.16)

2m ⇥ ṅ + ṁ ⇥ n = g
dU
dn

. (3.17)

Explicit expressions for ṅ and ṁ can be obtained by noting that ṅ ? n because |n|
2 =

1, so by crossing the equations with n from the left we obtain

ṅ = gn ⇥
dU
dm

, (3.18)

ṁ = g

✓
n ⇥

dU
dn

+ m ⇥
dU
dm

◆
. (3.19)

These coupled equations are valid independently of the sophistication of the model
we use for the antiferromagnetic free energy functional U. They are the equiva-
lent equations to the Landau-Lifshitz equation for ferromagnets. A typical, simple
model of the free energy would include the magnetostatic energy, magnetocrystalline
anisotropy with easy axis along the z-axis and an external magnetic field H:

U =
Z

U d3r =
Z ✓ a

2
|m|

2 +
A
2
|rn|

2
�

k

2
(n · ẑ)2 + Lm · (rn)� H · m

◆
d3r, (3.20)

where a is the homogeneous exchange constant, A is the exchange stiffness, k is the
anisotropy energy, rn ⌘ Âi=x,y,z

∂
∂i n and L parameterizes a parity-breaking term that

arises because we divided the antiferromagnetic lattice into pairs [26]. This allows us
to calculate the functional derivatives of U:

dU
dm

= am + (Lrn � H), (3.21)

dU
dn

= �k(n · ẑ)ẑ + Ar
2
n. (3.22)
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Inserting (3.21) into (3.18) and crossing it with �n from the left we obtain (after rear-
ranging)

m =
1
a

✓
1
g

ṅ ⇥ n + n ⇥ [n ⇥ (Lrn � H)]

◆
, (3.23)

from which we see that m is a slave variable and we can therefore find a dynamic
equation for n that does not depend on m. Moreover, it implies that the dynamic
equation for n is not affected by whether the restrictions |n|

2 = 1 and n · m = 0
are enforced through Lagrange multipliers in the derivation, which is why they were
dropped. We could at this point take the expression for m(n, ṅ,rn, H) and plug it
into (3.14) to obtain a differential equation of the form

n̈ = F(n, ṅ,rn, H). (3.24)

Although this is of the same form as Newton’s equation of motion, F will not be a
particularly pretty function and the equation will definitely not be analytically solv-
able. However, we have obtained an equation that serves the same purpose as the
Landau-Lifshitz-Gilbert equation (3.1), which is all we really need: we can use (3.24)
to find the evolution of the Néel field, which describes the motion of the spins in the
antiferromagnet.
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Chapter 4

The Antiferromagnetic Ground
State

We now turn our attention to the problem of finding the ground state energy of an
antiferromagnet at zero temperature using quantum mechanics. One of the most gen-
eral methods, applicable to systems in one, two and three dimensions and with any
value of s, is known as spin wave theory and revolves around the idea of replacing
the spin operators with creation and annihilation operators for bosons. This will di-
agonalize the Hamiltonian and allow us to compare the quantum ground state to the
classical ground state, which we call the Néel state.

4.1 Spin wave theory

In the discussion of orbital angular momentum we introduced operators L̂± that act
on eigenstates of Lz and raise (lower) the state to another eigenstate of Lz with eigen-
value h̄ above (below) the previous state, as seen from (2.15). To keep the notation
tidy, we will from now on be working in units of h̄ so that h̄ has value 1. Since the the-
ory of spin is nothing but a carbon copy of the theory of orbital angular momentum,
we have

ŜzŜ±|msi = (ms ± 1)Ŝ±|msi, (4.1)

which implies
Ŝ±|msi = c±|ms ± 1i. (4.2)

The constants c± remain to be determined. For c+ we have

hms|Ŝ†
+Ŝ+|msi =

�
Ŝ+|msi

�† Ŝ+|msi = c⇤+c+ = |c+|2. (4.3)

But Ŝ†
+ = Ŝ� and Ŝ�Ŝ+ = Ŝ2

� Ŝ2
z � h̄Ŝz. So

hms|Ŝ†
+Ŝ+|msi = hms|Ŝ2

� Ŝ2
z � Ŝz|msi

=
�
s(s + 1)� m2

s � ms
�
hms|msi

= (s � ms)(s + ms + 1)
(4.4)

and hence c+ =
p
(s � ms) (s + ms + 1) times a phase factor which we choose to be

unity. This approach applied to c� as well yields

Ŝ+|msi =
q
(s � ms) (s + ms + 1)|ms + 1i,

Ŝ�|msi =
q
(s + ms) (s � ms + 1)|ms � 1i.

(4.5)
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Of course, the states |s + 1i and |� s � 1i are unphysical, so Ŝ+|si = 0 and Ŝ�|� si =
0.

The most common way to introduce the boson operators is called the Holstein-
Primakoff transformation [27]. The idea is to set the state of maximum spin projected
onto the z-axis |si as the vacuum state and then apply the creation operator

â†
|si = c|s � 1i (4.6)

to make an excited state. This creation operator can be applied multiple times until
the state | � si is reached. The number of bosons is interpreted as the number of
deviations from the vacuum state. The adjoint â is the annihilation operator, which
has the opposite effect:

â|msi = c⇤|ms + 1i (4.7)

The constant c is defined such that when we apply the number operator n̂ ⌘ â† â, we
get the number of bosons back:

â† â|msi = (s � ms)|msi, (4.8)

which obviously means c =
p

s � ms times a phase factor which we choose to be
unity. Thus

Ŝz|msi = ms|msi = (s � s + ms) |msi =
⇣

s � â† â
⌘
|msi. (4.9)

The expressions for Ŝ+ and Ŝ� are more easily verified than derived, so I will just
state them here [28]:

Ŝ+ =
p

2s
r

1 �
n̂
2s

â, (4.10)

Ŝ� =
p

2sâ†
r

1 �
n̂
2s

. (4.11)

It is straightforward to check that these expressions yield (4.5) if applied to a state
|msi. The Holstein-Primakoff transformation’s main disadvantage is that working
with square roots of operators is notoriously difficult. This can be overcome by using
the Taylor expansion of the root around 0 – which is known as a Maclaurin expansion
– and keeping only the first one or two terms, which works best when s is large and
hn̂i is small. The price to pay is that the theory is no longer exact, but we gain insights
into the physical picture of the spin system that are otherwise not easily obtained.

So far we have only considered the case where the vacuum state is |si for each
lattice site. But for antiferromagnets this is not the case. The simplest antiferromag-
netic spin systems consist of a bipartite spin lattice. Classically this means that atoms
with nonzero spin on sublattice A are surrounded by neighboring atoms on sublat-
tice B whose spins are antiparallel, because this minimizes the isotropic Heisenberg
exchange interaction H = JSA · SB between the atoms on A and their neighbors on
B when the exchange integral J is positive. If the atoms on A have vacuum state |si,
then the atoms on B have the vacuum state | � si and creating bosons increases the
value of Sz. The boson creation (annihilation) operator on sublattice B is b̂† (b̂) and
the number operator now becomes

n̂b|msi = b̂†b̂|msi = (s + ms)|msi. (4.12)
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This yields

Ŝz|msi = ms|msi = (�s + s + ms) |msi =
⇣
�s + b̂†b̂

⌘
|msi, (4.13)

Ŝ+ =
p

2sb̂†
r

1 �
n̂b
2s

, (4.14)

Ŝ� =
p

2s
r

1 �
n̂b
2s

b̂. (4.15)

Now expand in a Maclaurin series, keeping only the first term:

ŜA
+ ⇡

p

2sâ, ŜA
� ⇡

p

2sâ†, ŜB
+ ⇡

p

2sb̂† ŜB
� ⇡

p

2sb̂. (4.16)

We rewrite the Hamiltonian as a sum over every spin’s interaction with its neighbors

H =
J
2 Â

j
Â
d

Ŝj · Ŝj+d, (4.17)

where d is a vector connecting a spin on site j with its nearest neighbors. Using the
definition of Ŝ+ and Ŝ� as in (2.10), we get

H =
J
2 Â

j
Â
d


Ŝj,zŜj+d,z +

1
2
�
Ŝj,+Ŝj+d,� + Ŝj,�Ŝj+d,+

��
. (4.18)

Naturally, if the spin on site j is in sublattice A, then the neighbors are on sublattice
B, and vice versa. Hence the Hamiltonian can be expressed as a sum over sublattice
A only:

H = �
zNs2 JN

2
+

sJ
2

2 Â
j

Â
d

h
â†

j âj + b̂†
j+db̂j+d + â†

j b̂†
j+d + âj b̂j+d

i
, (4.19)

where j is now a lattice site on A, zN is the number of nearest neighbors, N is the total
number of spins and the factor 2 in front of the summation comes from the need to
count sublattice B as well. I discarded all the non-linear terms since we are looking for
a linear theory (we already discarded all non-linear terms in the Maclaruin expansion,
so we can only keep the linear terms in the Hamiltonian if we want to be consistent).

Straight away we notice that the first term in the Hamiltonian is the classical
ground state energy of the Néel state. However, the Néel state is not an eigenstate
of the Hamiltonian because the third term in the sum creates a boson on all sites if
applied to this state. Thus the Neel state is not the true quantum mechanical ground
state, and the ground state energy must be different from EClassic

0 = �
zNs2 JN

2 . Worse,
it is not immediately obvious what the quantum mechanical ground state energy is
because the Hamiltonian is very far from diagonal in the basis |ms,1 ms,2 · · · ms,Ni:
in addition to the boson-creating third term, there is an annihilating fourth term that
also creates off-diagonal elements in the matrix.

In Chapter 1 I mentioned how spin excitations in antiferromagnets manifest them-
selves as a small deflection of each spin from the antiparallel position, and that these
deflections trace out a wave in the spin lattice (see Fig. 1.2). If the quantum mechan-
ical ground state is close to the Néel state, it seems reasonable that it will contain a
small number of spin waves, so a natural next step is to make a Fourier transform of
the Hamiltonian. I am getting tired of "hatting" all the operators, so from now on the
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hat will be omitted – it should be clear from the context which symbols are operators
and which are not. The creation and annihilation operators can be expressed in terms
of their complex Fourier expansions as

a†
j =

s
1

Nunit
Â

k
exp

⇥
ik · Rj

⇤
a†

k
, (4.20)

aj =

s
1

Nunit
Â

k
exp

⇥
�ik · Rj

⇤
ak, (4.21)

b†
j =

s
1

Nunit
Â

k
exp

⇥
�ik · Rj

⇤
b†
�k

, (4.22)

bj =

s
1

Nunit
Â

k
exp

⇥
ik · Rj

⇤
b�k, (4.23)

where Nunit is the number of unit cells consisting of one spin up and one spin down
site

�
Nunit =

N
2
�
. Inserting these expansions into (4.19) yields

H = �
zNs2 JN

2
+ zN Js Â

k

⇣
a†

k
ak + b†

�k
b�k + gkakb�k + gkb†

�k
a†

k

⌘
, (4.24)

where gk = 1
zN

Â
d

exp [ik · d].

So far it looks like we have not really accomplished much because the Hamil-
tonian still contains off-diagonal akb�k and b†

�k
a†

k
terms. We continue by applying

the Bogoliubov transformation, which assumes that the eigenvectors of H are linear
combinations of spin waves on sublattice A with wave vector k and spin waves on
sublattice B with the opposite wave vector. The new operators are

ak = ukak � vkb†
�k

, (4.25)

b�k = ukb�k � vka†
k
. (4.26)

These operators must satisfy the Bose commutation relations
h
ak, a†

k

i
= 1,

h
bk, b†

k

i
= 1. (4.27)

All other pairs of operators in the set {ak, a†
k
, b�k, b†

�k
} commute. The Bose commu-

tators require that
u2

k
� v2

k
= 1, (4.28)

so both uk and vk can be taken to be real without loss of generality. Then

ak = ukak + vkb†
�k

, (4.29)

b�k = ukb�k + vka†
k
, (4.30)
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which produce the Hamiltonian

H =�
zNs2 JN

2
+ zN Js Â

k

�
u2

k
+ v2

k
+ 2gkukvk

� ⇣
a†

k
ak + b†

�k
b�k + 1

⌘

+ zN Js Â
k

⇥
gk

�
u2

k
+ v2

k

�
+ 2ukvk

⇤ ⇣
akb�k + a†

k
b†
�k

⌘

� zN Js Â
k

1.

(4.31)

We see that the off-diagonal terms vanish if

gk

�
u2

k
+ v2

k

�
+ 2ukvk = 0. (4.32)

Rearranging this equation, we obtain

gk

2

✓
uk

vk

◆2
+

uk

vk

+
gk

2
= 0, (4.33)

from which it follows that

uk

vk

=
1

gk

✓
�1 ±

q
1 � g2

k

◆
. (4.34)

From (4.28) we have

v2
k

"✓
uk

vk

◆2
� 1

#
= 1, (4.35)

which after we insert (4.34) and do the algebra yields

u2
k
+ v2

k
= ±

1q
1 � g2

k

. (4.36)

I have already taken uk and vk to be real, so the solution with the minus sign must be
discarded. We can now use (4.32) and (4.36) to rewrite the Hamiltonian in (4.31) as

H = �
zNs2 JN

2
� zN Js Â

k

1 + zN Js Â
k

q
1 � g2

k

⇣
a†

k
ak + b†

�k
b�k + 1

⌘
. (4.37)

Noting that the number of k-vectors in the magnetic Brillouin zone is Nunit =
N
2 , we

have the Hamiltonian in compact form:

H = �
zNs(s + 1)JN

2
+ Â

k

wk

⇣
a†

k
ak + b†

�k
b�k + 1

⌘
, (4.38)

where wk = zN Js
q

1 � g2
k

is the energy of an excitation. A contour map of wk for a
square lattice is shown in in Fig. 4.1.

We have now accomplished what we set out to do: the Hamiltonian is diagonal in
the basis |nak

i|nb�k
i. Evidently, even if we make sure that there are absolutely no ak-

or b�k-magnons present (i.e. the antiferromagnet is in its ground state), the magnet
still behaves like it is host to one magnon with energy wk for every k, as seen in the
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last term of (4.38). This is a purely quantum mechanical phenomenon, and these spin
fluctuations in the ground state are therefore called quantum fluctuations. They are
present even when the temperature is at absolute zero.
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FIGURE 4.1: Contour plot of the dispersion w(k) over the Billouin zone
for a square lattice in units of Js. The Brillouin zone and the axis labels

are discussed in Section 4.2.

The presence of spin fluctuations raises a rather troubling question: how much
fluctuation can the antiferromagnet bear without destroying the antiferromagnetic
ordering of the spins? We know that thermal fluctuations cause an antiferromagnet
to lose its ordering when the temperature reaches the Néel temperature. It is not
unthinkable that the ground state fluctuations would effectively lower the Néel tem-
perature to absolute zero, i.e. ordering of spins is not possible at any temperature.
We can check if the ordering is preserved by looking at the average value of the z-
component of S in one of the sublattices. Picking sublattice A for the calculation, we
have

2
N Â

j2A
hSz

j i =
2
N Â

k

⇣
s � ha†

k
aki

⌘
, (4.39)

where I used (4.9) and the Fourier expansions of the aj, a†
j operators. As expected,

the absence of ak-magnons yields the classical result of maximum alignment with the
z-axis. We may therefore write

2
N Â

j2A
hSz

j i = s �
2
N Â

k

ha†
k
aki = s � DS̄z

A, (4.40)

where DS̄z
A is the quantum correction to the classical result. For us to have a hope that

the magnetic ordering is preserved, we need DS̄z
A to be smaller than s. To evaluate

DS̄z
A we need to express ha†

k
aki in terms ak and bk using (4.25):

ha†
k
aki = u2

k
ha†

k
aki+ v2

k
hb†

�k
b�ki � ukvkha

†
k
b†
�k

i � ukvkhakb�ki+ v2
k
. (4.41)
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But ha†
k
b†
�k

i = hakb�ki = 0, so

DS̄z
A =

2
N Â

k

u2
k
ha†

k
aki+ v2

k
hb†

�k
b�ki+ v2

k
. (4.42)

We assume there are equally many ak- and b�k-magnons in the magnet (the number
of these magnons is zero in the ground state, of course) and use (4.34), (4.35) and
(4.36) to obtain

DS̄z
A = �

1
2
+

2
N Â

k

1q
1 � g2

k

✓
ha†

k
aki+

1
2

◆
. (4.43)

Our theory predicts stable antiferromagnets if the last term in (4.43) converges to a
value smaller than s + 1

2 when converted to an integral over the Brillouin zone. The
integral thus depends on the geometry of the magnet. In 1D there is only one possible
lattice (the linear lattice), and if we do the integral we will find that it diverges for any
ha†

k
aki [28]. The conclusion must be that antiferromagnetic ordering in 1D is simply

impossible with our crude theory.
The two-dimensional situation is somewhat more complicated. The integral ob-

tained from (4.43) is not in general analytically solvable, but it can be shown [28] that
ordering is possible in the presence of quantum fluctuations. However, any excited
magnons will destroy the ordering. To put it another way: antiferromagnetic order-
ing is possible at zero temperature, but any nonzero temperature will immediately
destroy it. This might seem devastating to the project of describing dynamics in two-
dimensional antiferromagnets, which relies on the excitation of magnons. Yet we
know experimentally that two-dimensional magnetic materials do exist above zero
temperature [29, 30]. There must be something missing from our model that would
provide an explanation for these observations.

As was briefly mentioned in Chapter 2, there is some degree of coupling between
the spin and orbital angular momenta of the electrons in materials. When the spin of
an electron is reoriented, the atomic orbital is also reoriented slightly because of this
spin-orbit coupling. In most materials, though, there are some configurations of the
atomic orbitals that give the maximum amount of energetically favourable overlap,
and displacing the atomic orbitals from this configuration will be costly. The extra
energy needed to rotate the spins out of their equilibrium orientation is called mag-
netocrystalline anisotropy. Often there is one crystallographic axis that is preferable
to any other axis for the spins to orient themselves along, and we call this axis the
easy axis. It is very natural to choose this axis as the quantization axis (the z-axis). We
account for an easy axis anisotropy by adding two anisotropy terms to the Heisenberg
Hamiltonian. It now reads

H =
1
2 Â

j
Â
d


JSj · Sj+d + K

⇣
Sz

j

⌘2
+ K

⇣
Sz

j+d

⌘2
�

, (4.44)

where K < 0 is the easy axis anisotropy constant. Swapping the spin operators with
Bose operators and discarding all terms that contain more than two operators, we get

H0 = Â
j

Â
d

h
(2K � J) s2 + (J � 2K) sa†

j aj + (J � 2K) sb†
j+dbj+d + Jsa†

j b†
j+d + Jsajbj+d

i
.

(4.45)
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As before, we continue by replacing the Bose operators with their Fourier series ex-
pansions:

H0 =�
zNs2(J � 2K)N

2

+ zN Js Â
k

✓
1 �

2K
J

◆⇣
a†

k
ak + b†

� k
b� k

⌘
+ gk

⇣
a†

k
b†
� k

+ akb� k

⌘� (4.46)

We will set x = 2K
J for neater notation and apply the Bogoliubov transformation:

H0 =�
zNs2(J � 2K)N

2
+ zN Js Â

k

�
(1 � x)u2

k
+ (1 � x)v2

k
+ 2gkukvk

� ⇣
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b�k + 1

⌘

+ zN Js Â
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⇥
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�
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k
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�
+ 2(1 � x)ukvk
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akb�k + a†

k
b†
�k

⌘

� zN Js Â
k

(1 � x).

(4.47)

The off-diagonal terms vanish if

gk

�
u2

k
+ v2

k

�
+ 2(1 � x)ukvk = 0 (4.48)

or, dividing the equation by 2v2
k
,

gk

2

✓
uk

vk

◆2
+ (1 � x)

uk

vk

+
gk

2
= 0. (4.49)

Use of the quadratic formula yields

uk

vk

=
1
eg

k

✓
1 ±

q
1 � eg2

k

◆
, (4.50)

where egk = gk

1�x . This means

u2
k
+ v2

k
=

1q
1 � eg2

k

, (4.51)

which leaves us with the following Hamiltonian:

H = �
zNs(s + 1)eJ

2
+ Â

k

wk

⇣
a†

k
ak + b†

�k
b�k + 1

⌘
, (4.52)

where eJ = J � 2K and wk = zNeJs
q

1 � eg2
k

is the energy of an excitation. Interest-
ingly, the addition of an easy axis magnetocrystalline anisotropy can be accounted
for simply by using

J ! eJ, gk ! egk. (4.53)

The introduction of anisotropy also takes care of any potential problems with dividing
by
q

1 � g2
k
, since egk < 1 for all k. Because of the triviality of adding anisotropy to the

calculations, I will not be taking this into consideration for the remainder of Chapters
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4 and 5. If the reader feels uneasy about potential divergence problems of the form
(4.43), use the replacements (4.53).

4.2 Comparison to the Néel state

To illustrate the effect of quantum fluctuations we will calculate the ground state en-
ergy of a square lattice antiferromagnet and compare it to the Néel state energy. The
lattice and the magnetic unit cell is shown in Fig. 4.2. In terms of magnetic unit cells
the square lattice looks like Fig. 4.3, where we define a coordinate system so that the
nearest neighbor vectors are (with hats indicating unit vectors now!)

d1 =
1
2

hx̂ +
1
2

hŷ (4.54)

d2 = �
1
2

hx̂ �
1
2

hŷ (4.55)

d3 =
1
2

hx̂ �
1
2

hŷ (4.56)

d4 = �
1
2

hx̂ +
1
2

hŷ (4.57)

where h =
p

2
2 a and a

2 is the lattice constant. Then
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2
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��
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h
2
�
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��◆
.

(4.58)

FIGURE 4.2: A part of a simple, square antiferromagnet with red cir-
cles indicating sublattice A sites and blue circles indicating sublattice

B sites. The magnetic unit cell is shown with dotted lines.
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FIGURE 4.3: The lattice of unit cells is square with lattice constant h =
p

2
2 a and the nearest neighbor vectors d make an angle p

4 with both the
x-axis and the y-axis.

The number operators a†
k
ak and b†

�k
b�k will yield 0 in the ground state, so the

ground state energy per lattice site is

E0

N
= �
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1 �
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��◆2
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(4.59)
where the sum runs over all k-vectors in the Brillouin zone, which is described by

kx, ky 2
⇥
0, 2p

h
�
. Our strategy for evaluating the sum over all k-states in the Brillouin

zone will be to convert the sum into an integral and evaluate the integral numerically.
There are N

2 states in the Brillouin zone and the total area of the Brillouin zone is
� 2p

h
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= 4p2

h2 , so the area of one state is 8p2

Nh2 . Thus

Â
k2BZ

q
1 � g2

k
!

Nh2

8p2

ZZ

BZ

s

1 �
1
4

✓
cos


h
2
�
kx + ky

��
+ cos


h
2
�
kx � ky

��◆2
dA.

(4.60)
We can make the substitutions ux = h

2 kx, uy = h
2 ky so that the integral becomes

Â
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q
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⇡
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0
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0

r
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1
4
�
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⇥
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⇤
+ cos

⇥
ux � uy

⇤�2dux duy. (4.61)

Using WolframAlpha or another numerical integration tool we find that the approx-
imate numerical value of (4.61) is 0.4210. Thus the energy difference between the
ground state and the Néel state is

DEGS =
E0

N
�

EClassic
0
N

=

✓
�

4Js(s + 1)
2

+
4Js
N

0.4210
◆
�

✓
�

4s2 J
2

◆
= �0.3159Js.

(4.62)
The result is in perfect agreement with that originally obtained by Anderson [31].
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Chapter 5

Ultrafast 2-Magnon Excitation in
Antiferromagnets

In the previous chapter we saw how our efforts to diagonalize the Hamiltonian led
to the introduction of operators (ak and b�k) that combine excitations and annihila-
tion of magnons on the two sublattices of bipartite antiferromagnets. Taking this as
a starting point, we will now look at what happens to the Hamiltonian when we in-
duce small changes in the exchange interaction J ! J + DJ by shining light on the
antiferromagnet. Theoretical calculations and experiments [18, 32] have shown that
light enables us to control the spin dynamics in antiferromagnets. The Hamiltonian
that includes the light-induced modification will motivate us to introduce new oper-
ators that work on magnon pairs. Our goal will ultimately be to find a set of coherent
states – which, rather awkwardly, are not coherent in the traditional sense but more
like squeezed states – and look at the dynamics of the quantum mechanical Néel vec-
tor, which we will see reveals some interesting features of the quantum description of
the antiferromagnet. From the coherent states we will be able to extract a parameter
that captures the dynamics on the femtosecond timescale, and whose time-evolution
can be treated classically to give a set of new equations to complement the Landau-
Lifshitz equations, yielding a complete description of antiferromagnetic dynamics for
a simple Heisenberg Hamiltonian.

5.1 Hamiltonian with light-spin interaction

The exchange interaction J that is the source of ferro- and antiferromagnetism can
be derived from the Hubbard model of interacting spin particles on a lattice. The
Hubbard model can be thought of as an extension of the tight-binding model into
the second quantization regime, with the inclusion of particle-particle interactions. A
full derivation of the exchange interaction perturbation DJ from the model is nearly a
master’s thesis in its own right [33]. I will therefore only present a short description of
the model and qualitatively show how its mapping to the Heisenberg model reveals
the nature of the exchange interaction.

5.1.1 A peak at the Hubbard model

We will consider a regular lattice of atoms on which electrons can reside. Each atom
has one orbital available for electrons to enter or leave (all the lower-lying orbitals
are already filled with bound electrons). Since electrons are fermions obeying the
Pauli exclusion principle, each atom can accommodate up to two electrons. An atom
can therefore host no electrons, one spin up electron, one spin down electron, or two
electrons with opposite spins. For atoms with two electrons there is an associated
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energy from the Coulombic repulsion of the negative charges. Thus the Hubbard
Hamiltonian will contain the potential

Vint = U Â
j

nj,"nj,# (5.1)

where U is the onsite Coulombic repulsive energy and nj,s is the number of electrons
with spin s 2 {", #} at site j. We assume that there is no Coulombic interaction
between electrons on different atoms.

The electrons are free to move around on the lattice, so we need a kinetic term
in our Hamiltonian as well. When an electron "hops" from one atom to the next, we
can model this by destroying an electron on one atom and creating an electron on a
neighboring atom. The operator c†

j,scj+d,s accomplishes this, with c†
j,s now being the

fermionic creation operator of an electron with spin s on site j. The adjoint operator cj,s
is of course the fermionic destruction operator. We also will not allow an individual
electron to change its spin.

The ease with which an electron can move between atoms will depend on the
overlap between the atomic orbitals. Since an atomic orbital is centered on its atom
and decays exponentially, we assume that only orbitals on nearest-neighbor atoms
overlap. The energy associated with the "hopping" of an electron from an atom to
another is a constant denoted by t0. The delocalization of electrons lowers the free
energy of the material, so the kinetic term will be negative. Adding the kinetic and
the Coulombic terms yields the Hubbard Hamiltonian:

HU = �t0 Â
i,d,s

c†
j,scj+d,s + U Â

j
nj,"nj,#. (5.2)

Assume now that we have two atoms and two electrons of opposite spin. There are
four ways to arrange the electrons, and we express them as kets:

| ", #i
| #, "i
| "#, 0i
| 0, "#i.

Using this basis, the Hubbard Hamiltonian can be written in matrix form as

HU =

2

664

0 0 �t0 �t0
0 0 �t0 �t0

�t0 �t0 U 0
�t0 �t0 0 U

3

775 . (5.3)

We can use a computer program to diagonalize the matrix for us (again, WolframAl-
pha is a convenient tool). We find HU = PDP�1 with

D =

2

66664

0 0 0 0
0 U 0 0

0 0 U
2 �

U
2

q
1 + 16t2

0
U2 0

0 0 0 U
2 + U

2

q
1 + 16t2

0
U2

3

77775
. (5.4)

The unitary matrix P is of no importance to us, since we are only interested in the
eigenvalues of (5.3). We can expand the roots in (5.4) as a Maclaurin series

p
1 + x2 ⇡
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1 + x2

2 provided U � t0 so that the eigenvalues are approximately

�
4t2

0
U

, 0, U, U +
4t2

0
U

.

Thus the difference between the ground state and the first excited state is 4t2
0

U .
We will now see what we get if we use the Heisenberg Hamiltonian to find the

energy difference between the ground state and the first excited state. For two inter-
acting spins we get from (4.18):

H = J


Sz
1Sz

2 +
1
2
�
S+

1 S�

2 + S�

1 S+
2
��

. (5.5)

The eigenstates should be familiar to anyone who has studied introductory quantum
mechanics. They are

triplet :

8
><

>:

| ", "i
1
p

2
(| ", #i+ | #, "i)

| #, #i

singlet :
1
p

2
(| ", #i � | #, "i) .

The eigenvalues are J
4 for the triplet states and �

3J
4 for the singlet state. So the dif-

ference is J and thus, upon comparison with the results from the Hubbard model, we
get J = 4t2

0
U .

5.1.2 Light-induced perturbation to the exchange interaction

When light is interacting with the lattice, we model this by including in the hopping
term a phase factor exp [ieA · d] so that

t0 ! t0 exp [ieA · d] , (5.6)

where e is the elementary charge and A = ∂E
∂t is the vector potential of the electric

field. For monochromatic laser light the field is simply E(t) = E0 sin wt with E0 the
electric field amplitude, so the vector potential is A(t) = �

1
w E0 cos wt. Substituting

(5.6) into the Hubbard Hamiltonian (5.2), the task is then to find the energy spectrum
similarly to what we did for the unperturbed two-particle case above, but for a large
number of particles.

In the derivation by Mentink, Balzer and Eckstein [34], the Hubbard Hamiltonian
is brought into Fourier space and Floquet theory is used to find the energy spectrum.
In the limit where the electric field amplitude is small compared to the electromag-
netic energy, by which I mean eE0 · d ⌧ h̄w, and the onsite Coulombic interaction is
much stronger than the hopping integral, U � t0, it is possible to simplify the Hub-
bard Hamiltonian to the point where standard perturbation theory on the hopping
integral yields [34]

DJ =
t2
0

2U
(eE0 · d)2

U2 � h̄2w2
. (5.7)

We see that the sign of the perturbation changes when the energy of the light goes
from being smaller than U to greater than U. Also worth noting is that this model
breaks down for photon energies close to the band gap h̄w ⇡ U.
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5.1.3 The perturbed Hamiltonian

When we insert the exchange perturbation DJ into the Heisenberg Hamiltonian, we
get

H =
J
2 Â

j,d
Ŝj · Ŝj+d +

1
2

f (t)Â
j,d

DJ(d)Ŝj · Ŝj+d = H0 +dH, (5.8)

where the time profile of the light pulse is captured by the function f whose max-
imum amplitude is normalized to 1. The unperturbed Hamiltonian H0 we already
diagonalized using the operators ak and b�k. We should therefore try to write dH in
terms of these operators as well. Luckily, the perturbation looks very much like the
unperturbed Hamiltonian, so we can apply the Holstein-Primakoff transformation to
get

dH = � f (t)
s2N

2 Â
d

DJ(d)

+ f (t)
s
2

2 Â
j

Â
d

DJ(d)
h

a†
j aj + b†

j+dbj+d + a†
j b†

j+d + ajbj+d

i
.

(5.9)

We continue as before by expressing the Bose operators in the form of their complex
Fourier series expansions given in (4.20)-(4.23). This yields

dH = � f (t)
s2N

2 Â
d

DJ(d)

+ f (t)
s
2

2 Â
k

Â
d

DJ(d)
h

a†
k
ak + b†

�k
b�k + exp [ik · d]

⇣
a†

k
b†
�k

+ akb�k

⌘i
.

(5.10)

The next step is to apply the Bogoliubov transformation:

dH =� f (t)
s2N

2 Â
d

DJ(d)

+ f (t)s Â
k

Â
d

DJ(d)
�
u2

k
+ v2

k
+ 2 exp [ik · d] ukvk

� ⇣
a†

k
ak + b†

�k
b�k + 1

⌘

+ f (t)s Â
k

Â
d

DJ(d)
⇥
exp [ik · d]

�
u2

k
+ v2

k

�
+ 2ukvk

⇤ ⇣
akb�k + a†

k
b†
�k

⌘

� f (t)s Â
k

Â
d

DJ(d).

(5.11)

Now let
L = Â

d

DJ(d) (5.12)

and
xk =

1
L Â

d

DJ(d) exp [ik · d] . (5.13)
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Using (4.36) and (4.32) linking uk and vk to gk, we get

dH =�
f (t)Ls(s + 1)N

2

+ f (t)Ls Â
k

1 � xkgkq
1 � g2

k

⇣
a†

k
ak + b†

�k
b�k + 1

⌘

+ f (t)Ls Â
k

xk � gkq
1 � g2

k

⇣
akb�k + a†

k
b†
�k

⌘
(5.14)

We see that the operators ak and b�k do not diagonalize the perturbation to the
Heisenberg Hamiltonian unless xk = gk. The picture becomes a little clearer if we
collect constants so that W = zN Js and dwR = Ls and define

dwk = dwR
1 � xkgkq

1 � g2
k

, (5.15)

Vk = dwR
xk � gkq

1 � g2
k

. (5.16)

The entire Hamiltonian can then be written

H =�
(W + f (t)dwR) N (s + 1)

2
+ Â

k

(wk + f (t)dwk)
⇣

a†
k
ak + b†

�k
b�k + 1

⌘

+ Â
k

f (t)Vk

⇣
akb�k + a†

k
b†
�k

⌘
.

(5.17)

In short, the perturbation shifts the reference energy (first term), shifts the frequency
of magnons that are already present in the antiferromagnet (first sum), and excites
and annihilates pairs of magnons (second sum). The frequency shift disappears after
the light is turned off.

Before we conclude this section we will briefly discuss the light polarization de-
pendence of the parameters dwk and Vk. First of all we notice that the z-component
of the electric field has no effect on neither L nor xk, and hence any electric field per-
pendicular to the xy-plane will not induce any excitations of magnons. Moreover, the
value of dwR is independent of the polarization in the xy-plane for both square and
hexagonal lattices. The only anisotropy is found in the term xk, which is a result of
the non-circular shape of the magnetic Brillouin zone. More pronounced polarization
dependence could likely be derived by including anisotropic interactions such as the
spin-orbit interaction and magnetoelastic strain the model, but is beyond the scope of
this discussion.

5.2 Magnon pair operators

We see from the third line in the Hamiltonian (5.17) that the magnon excitations al-
ways come in pairs of ak and b�k magnons. The eigenstates of the number operators
a†

k
ak and b†

� k
b� k are |n",ki and |n#,�ki, respectively. The reason I have included the

spin states " and # in the notation is that for magnons close to the egde of the Brillouin
zone, the oscillations are predominantly localizied to one sublattice only. To see this
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we can add (4.28) and (4.36) to get

2u2
k
= 1 +

1q
1 � g2

k

. (5.18)

This implies that uk ⇡ ±1 if g2
k

is close to zero. The value of g2
k

for a square lattice is
plotted as a contour map in Fig. 5.1 for kx, ky 2

⇥
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FIGURE 5.1: Plot of g2
k

for a square lattice.

We notice that g2
k

is very small for k near the Brillouin zone boundary. In that case
u2

k
is close to unity, v2

k
must be close to zero and a†

k
⇡ ±a†

k
. The magnonic density

of states is larger near the edge of the Brillouin zone than near the center [18], so the
majority of ak and b�k magnons will be located primarily on sublattices A (spin ")
and B (spin #), respectively.

The fact that the magnons always come in pairs motivates us to introduce the
two-magnon (2M) operators

K+
k
= a†

k
b†
�k

, K�

k
= akb�k, Kz

k
=

1
2

⇣
a†

k
ak + b†

�k
b�k + 1

⌘
. (5.19)

Their commutation relations follow from the Bose commutation relations of ak and
b�k:

⇥
K�

k
, K+

k

⇤
= akb�ka†

k
b†
�k

� a†
k
b†
�k

akb�k

=
⇣

1 + a†
k
ak

⌘ ⇣
1 + b†

�k
b�k

⌘
�

⇣
a†

k
ak

⌘ ⇣
b†
�k

b�k

⌘

= 1 + a†
k
ak + b†

�k
b�k = 2Kz

k
,

(5.20)
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⇥
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⇤
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� a†
k
a†

k
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�k
� a†

k
b†
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�k

b�k

⌘

=
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a†
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h
ak, a†

k

i
b†
�k

+ a†
k
b†
�k

h
b�k, b†

�k

i⌘
= K+

k
,

(5.21)

and similarly
⇥
Kz

k
, K�

k

⇤
= �K�

k
.

5.3 Groups, Lie algebra and symmetry

It is interesting to compare the 2M operators to the standard spin operators S+, S�, Sz
that we started with:

⇥
Kz

k
, K±

k

⇤
= ±K±

k
,
⇥
K�

k
, K+

k

⇤
= 2Kz

k

[Sz, S±] = ±S±, [S�, S+] = �2Sz.

To get a sense of the behavior of the operators and how they are related, we will
employ the concept of groups. Group theory is branch of mathematics that studies
transformations and their symmetry. To keep things from getting out of hand – and
because this is strictly speaking a subject of graduate level mathematics – I will keep
the discussion short and informal. A comprehensive coverage of the application of
group theory to quantum mechanics can be found in [35].

A group G is a set of transformations {A, B, ...} with a composition rule (a rule for
how to combine two transformations in the set) satisfying four axioms:

1. Closure: If A, B 2 G, then A • B 2 G, where A • B is the composition of A and
B.

2. Identity: There exists and element I 2 G so that I • A = A.

3. Inverse: For any A 2 G there exists and inverse A�1 so that A�1
• A = I.

4. Associativity: For A, B, C 2 G, we have (A • B) • C = A • (B • C).

As a very simple example, consider the set "rotations in a plane". The composition
rule will be "addition of angles", so if A rotates by p

4 and B rotates by p
2 , the composi-

tion A • B rotates by 3p
4 . The composition is also a rotation in the plane, and therefore

the closure axiom is satisfied. The identity is rotation by 0 and the inverse will be
rotation in the opposite direction. It is easy to check that the rest of the axioms are
satisfied by this group.

Many groups can be represented as invertible matrices. A group of n ⇥ n invert-
ible matrices with complex entries (or any closed subgroup of this group) is called
a matrix Lie group. With any Lie group there is an associated Lie algebra that com-
pletely characterizes the behavior of the group near the identity element (e.g. small
rotations in the example of 2D rotations). To our purposes it suffices to say that the Lie
algebra is a vector space of matrices satisfying a specific condition. The Lie algebra is
spanned by a set of matrices know as the generators of the group. A generator gA is
a vector of matrices such that the matrix A in the group can be written

A = exp [igA · v] , (5.22)
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where v is a vector that parameterizes the transformation. The exponential function in
this case is defined by its Maclaurin series expansion. Again returning to our rotation
example, v = v would be the rotation angle (a scalar, in this case) and gA = gA would
be a matrix so that

A = exp [igAv] =


cos(v) � sin(v)
sin(v) cos(v)

�
, (5.23)

because A now rotates the vector [x0, y0]
T by an angle v. The Lie algebra of the group

"rotations in a plane" will tell us what the generators gA that satisfy (5.23) are. Con-
versely, if we have matrices that satisfy the Lie algebra of the group "rotation in the
plane", we know what these matrices in fact can be thought of as generating rotations
in the plane.

5.3.1 The group SU(2) and its representations

We will take a closer look at a group known as the special unitary group of degree 2,
or SU(2). The "special" means that in the matrix representation of SU(2), the matrices
have determinant +1. The "unitary" means just that: the matrices are unitary, i. e.
U†U = I. The degree 2 means that the matrices are 2 ⇥ 2.

Any 2 ⇥ 2 unitary matrix with determinant 1 (i. e. any U in SU(2)) can be written

U =


z w

�w⇤ z⇤

�
; |z|2 + |w|

2 = 1, (5.24)

or, with z = v4 + iv3 and w = v2 + iv1 for v1, v2, v3, v4 2 R:

U =


v4 + iv3 v2 + iv1
�v2 + iv1 v4 � iv3

�
= v4


1 0
0 1

�
+ v3


i 0
0 �i

�
+ v2


0 1
�1 0

�
+ v1


0 i
i 0

�
.

(5.25)
The matrices in the latter three terms we recognize as i times the Pauli matrices, so
that

U = v4 I + iv3sz + iv2sy + iv1sx = v4 I + iv · s. (5.26)

From (5.24) we have the condition

v2
4 + |v|

2 = 1, (5.27)

so setting v4 = cos q
2 and |v| = sin q

2 makes sure this is satisfied and we get

Un =

✓
cos

q

2

◆
I + i

✓
sin

q

2

◆
n̂ · s = exp

h
iqn̂ ·

s

2

i
(5.28)

where n̂ = v

|v|
and I used (n · s)2 = I. We have q 2 (0, 2p] but I will not justify it here

(see [36]). Apparently the generators of SU(2) are the matrices 1
2 sj for j 2 {x, y, z}.

Their commutators are
hsx

2
,

sy

2

i
= i

sz

2
,
hsy

2
,

sz

2

i
= i

sx

2
,
hsz

2
,

sx

2

i
= i

sy

2
, (5.29)

exactly the commutators for the spin operators Sx, Sy and Sz from (2.25). However, it
is not immediately obvious what the significance of this result is. After all:

1. The spin operators Sx, Sy and Sz are 2 ⇥ 2 matrices in the basis |s msi if s = 1
2 ,

but in general there are 2s + 1 possible values of ms, and so the spin operators
must be (2s + 1)⇥ (2s + 1) matrices. Are they still generators of SU(2)?
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2. We need to know what the transformations in SU(2) do. Why do we care that
Sx, Sy and Sz are generators of this group?

3. The operators we are interested in are S+, S� and Sz, not Sx, Sy and Sz. What
can we say about the raising and lowering operators from what we learn about
the spin operators?

It turns out that spin operators that are (2s+ 1)⇥ (2s+ 1) are also generators of SU(2)
because there exists a linear mapping that maps the generators in 2 dimensions to a
set of generators in 2s + 1 dimensions while preserving the commutation relations in
(5.29). In other words, the spin operators Sx, Sy, Sz 2 C(2s+1)⇥(2s+1) are images of the
generators of SU(2) under a linear map from 2 dimensions to 2s + 1 dimensions. The
mapping is called a representation of the Lie algebra of SU(2). The representation
with s = 1

2 is called the defining representation because then every matrix U 2 SU(2)
is represented by itself.

To get a sense of what the transformations in SU(2) do, we will look at the set of
transformations that rotate a vector in 3D around an arbitrary axis by an arbitrary
angle. Let’s say we want to rotate a vector r around the direction n̂ by an angle y. The
transformation R(y) can be written using Rodrigues’ rotation formula:

R(y)r = cos (y) r + [1 � cos (y)] (n̂ · r) n̂ + [sin (y)] n̂ ⇥ r. (5.30)

The Maclaurin expansion for small angles dy to first order is

R(dy)r ⇡ r + dyn̂ ⇥ r =

2

4
rx
ry
rz

3

5+ dy

2

4
0 �nz ny
nz 0 �nx
�ny nx 0

3

5

2

4
rx
ry
rz

3

5 . (5.31)

This means we can write the rotation R(dy) as

R(dy) = I + idy

0

@nx

2

4
0 0 0
0 0 i
0 �i 0

3

5+ ny

2

4
0 0 �i
0 0 0
i 0 0

3

5+ nz

2

4
0 i 0
�i 0 0
0 0 0

3

5

1

A . (5.32)

We will denote the matrices as Jx, Jy and Jz (from left to right above) and J =
⇥

Jx, Jy, Jz
⇤
.

To construct a rotation by an angle y, we can make a series of p very small rotations:
R(y) =

h
R(y

p )
ip

. Then setting p = 1
dy yields

R(y) = lim
1

dy!•
[R(y · dy)]

1
dy = lim

1
dy!•

[I + dy · iyn̂ · J]
1

dy = exp [iyn̂ · J] , (5.33)

where I used the limit definition of the exponential function ex = lim
p!•

⇣
1 + x

p

⌘p
in the

last step.
The expression for a rotation in 3D around a direction n̂ by an angle y looks very

much like a general element from SU(2) in (5.28). The 3D rotation group is known
as SO(3) because it consists of orthogonal 3 ⇥ 3 matrices with determinant +1, and
the group is closely linked to SU(2) [35]. The central idea here is that we can consider
the group SU(2) to be rotations as well, although obviously not in real space. In fact,
transformations in SU(2) do not act on vectors but on spinors, which have no real
space representation at all. Nevertheless, it is sometimes convenient to think of the
spin operators as generators of rotations constrained to the unit sphere in spin space.
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Before we move on to consider the 2M operators, we note that the operators S+, S�

and Sz are a basis for the complexified Lie algebra of SU(2). In particular, by allowing
the entries in v from (5.22) to be complex we can construct a transformation using this
basis. This representation makes it harder to see that SU(2) is a rotation group because
it is impossible to write the transformation in a form that looks like (5.28) and (5.33),
but it is still a valid representation.

5.3.2 The group SU(1,1) and the 2M operators

The 2M operators are a basis for the (complexified) Lie algebra of the group SU(1,1).
A general matrix V in SU(1,1) can be written

V =


z w

w⇤ z⇤

�
; |z|2 � |w|

2 = 1. (5.34)

This way of writing an element of SU(1,1) shows us clearly the connection with the
Bogoliubov transformation we made in Chapter 4. For the creation and annihilation
operators ak and b†

�k
, we have


ak

b†
�k

�
=


uk �vk

�vk uk

� 
ak

b†
�k

�
; u2

k
� v2

k
= 1, (5.35)

or simply 
ak

b†
�k

�
= V


ak

b†
�k

�
. (5.36)

Evidently, the Bogoliubov transformation is an SU(1,1) transformation. No won-
der the 2M operators are generators of SU(1,1) – they were constructed from the
Bogoliubov-transformed operators.

We saw in our description of SU(2) that we can think of an element of the group
SO(3) as a rotation on the unit sphere of Euclidian space. We then looked at the
similarity of SO(3) with SU(2) and said that the SU(2) group has in essence the same
effect. This "detour" through an orthogonal group can be used to study the action of
the group SU(1,1) as well. The group in question is SO(2,1), and it is related to SU(1,1)
in the same way that SO(3) is related to SU(2).

The unit sphere S
2 in Euclidian space is

S
2 = {r = rx x̂ + ryŷ + rzẑ | r2

x + r2
y + r2

z = 1}. (5.37)

Any element in SO(3) preserves the relation r2
x + r2

y + r2
z = 1 when acting on a vector

r. Similarly, it can be shown that any element in SO(2,1) preserves the relation u2
x +

u2
y � u2

z = �1 when acting on a vector u. The set of points

H2 = {r = ux x̂ + uyŷ + uzẑ | u2
x + u2

y � u2
z = �1}. (5.38)

form a hyperboloid of two sheets. The upper sheet (uz > 0) of H2 is sometimes called
a pseudosphere because it can be mapped to a Poincaré disk in the (ux, uy)-plane in
the same way that a sphere is mapped to a plane – a mapping called a stereographic
projection. The Poincaré disk is a model of two-dimensional hyperbolic geometry, the
description of which is beyond the scope of this discussion. However, this analogy
justifies the statement that we can think of H2 as a hyperbolic unit sphere, and the 2M
operators as generators of rotations on this sphere.
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The true power in connecting the 2M operators to the SU(1,1) group lies in the
fact that it enables us to use the theory that has been developed by mathematicians to
study our physical system. In a sense, we acquire a new set of tools that we can apply
to structures that might seem very unfamiliar. An excellent example of how we can
utilize mathematical results from studies of SU(1,1) in order to obtain a description of
our physical system will be given when we look for coherent states at the end of this
chapter.

5.4 Néel vector dynamics

The Néel vector l was first introduced in Chapter 3 in an effort to find macroscopic
fields that would enable a classical description of the dynamics of an antiferromagnet.
Having defined the Néel vector twice already, I will give yet another definition of the
Néel vector, although the similarity with the previous definition in (3.7) should be
obvious. In this section I will be referring to the classical Néel vector as the difference
between the sublattice magnetizations:

Lclas = MA � MB. (5.39)

Here the sublattice magnetizations MA, MB are

MA = g Â
i2A

Si = g
N
2

SA, (5.40)

MB = g Â
j2B

Si = g
N
2

SB, (5.41)

where SA, SB are the average spin per unit volume in sublattices A and B, respectively,
and g is the gyromagnetic ratio. Inserting this expression into the definition of Lclas
and setting g = 1 yields

Lclas =
N
2
(SA � SB) . (5.42)

The use of the volumetric average in the defition of the classical Néel vector is knwon
as the mean field approximation and breaks down when moving to a quantum me-
chanical description because of quantum correlations. As an example, consider the
(normalized) state for two spin- 1

2 particles |fi = c| ", #i+ d| #, "i. The total spin is

hStoti = hS1 + S2i = hSx
1 + Sx

2ix̂ + hSy
1 + Sy

2iŷ + hSz
1 + Sz

2iẑ. (5.43)

Using hf|Sx
j |fi = hf|Sy

j |fi = 0 because Sx
j = 1

2
�
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i + S�

i
�

and Sy
j = �i
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⇣
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j � S�

j

⌘

with j 2 {1, 2}, we get

hStoti = hSz
1 + Sz

2iẑ =

✓
|c|2

2
+

�|d|2

2
+

�|c|2

2
+

|d|2

2

◆
ẑ = 0. (5.44)

The fact that the total spin is zero would force the classical spin vectors SA and SB
to be oppositely aligned with equal magnitude, which again would mean that the
length Lclas is fixed. However, if we redefine the Néel vector and total magnetization
in terms of quantum mechanical average:

L = Â
A
hSii � Â

B
hSji, (5.45)
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M = Â
A
hSii+ Â

B
hSji, (5.46)

we see that the length of the Néel vector can vary for two spin- 1
2 particles even though

hMi = 0:

|L| = |hS1 � S2i| =

����
|c|2

2
+

�|d|2

2
�

�|c|2

2
�

|d|2

2

���� =
��|c|2 � |d|2

�� . (5.47)

The deviation from the classical result can be explained by looking at spin correlations
hS1S2i:

hSz
1Sz

2i = �
|c|2 + |d|2

4
= �

1
4

, hSx
1Sx

2i = hSy
1Sy

2i =
cd⇤ + c⇤d

4
. (5.48)

Depending on the weights c and d, the system experiences changes in the spin corre-
lations with an accompanying variation in the length of the Néel vector, which could
take any value from 0 to 1. Time-dependent weights would therefore cause the length
of the Néel vector to oscillate, as illustrated in Fig 5.2 for |fi = cos t| ", #i+ sin t| #, "i.
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FIGURE 5.2: Oscillations of |L| in the state |fi = cos t| ", #i+ sin t| #
, "i.

For a general bipartite antiferromagnet with arbitrary spin we can employ spin
wave theory from Chapter 4 to express the longitudinal component of the Néel vector
in terms of spin correlations. We start from (5.45) and invoke (4.9) and (4.13) to get
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Sz
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Sz

j
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2
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⌘
.

(5.49)
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Here Lz is an operator so that L · ẑ = hLz
i. In the derivation of the ground state

Heisenberg Hamiltonian (4.24) we found that

Â
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Â
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Sz
j Sz

j+d ⇡ �
zNs2N

2
+ zNs Â

k

⇣
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k
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�k
b�k

⌘
, (5.50)

where we ignored the second-order term in the magnon number operators. The lon-
gitudinal component of the Néel vector operator can therefore be rewritten as

Lz =
Ns
2

�
1

zNs Â
j

Â
d

Sz
j Sz

j+d. (5.51)

By applying the Bogoliubov transformation to (5.50) we get
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(5.52)

We again use (4.32) and (4.36) that link uk and vk to gk and insert the definition of the
2M operators from (5.19):
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(5.53)

and finally we insert the expression for the spin correlations into (5.51), which then
reads

Lz = Ns � Â
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. (5.54)

The fact that Lz contains the 2M raising and lowering operators K±

k
implies that the

longitudinal component of the Néel vector is not conserved because these operators
do not commute with the time-independent Hamiltonian. On the other hand, we can
repeat (5.49) for the magnetization to get

Mz = Â
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⇣
a†

k
ak � b†

�k
b�k

⌘

= Â
k

⇣
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k
ak � b†

�k
b�k

⌘
.

(5.55)

The longitudinal magnetization is therefore constant as long as the magnons always
come in pairs, which is precisely what we found for light-induced perturbations to
the exchange interaction. Assuming no other excitation mechanism has created an
uneven number of ak and bk magnons, we get that the longitudinal magnetization is
zero. The state of the antiferromagnet, which in general lives in the full Hilbert space
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spanned by |nak
i|nb�k

i, now lives on the subspace spanned by |nak
i|nb�k

i = |nki|nki,
where it is implied that the b-magnon has opposite wave vector to the a-magnon. The
states are eigenstates of Kz

k
with eigenvalue nk +

1
2 and K±

k
create and annihilate the

2M states:

K+
k
|nki|nki = (nk + 1) |nk + 1i|nk + 1i

K�

k
|nki|nki = nk|nk � 1i|nk � 1i.

(5.56)

5.4.1 Transition to the interaction picture

So far we have been working in the Schrödinger picture with time-independent states.
To simplify the analysis, we make a change of basis so that the operators and the state
vectors are brought to the interaction picture. We split the Schrödinger Hamiltonian
in (5.17) so that H = H0 +dH with

H0 = �
(W + f (t)dwR) N (s + 1)

2
+ Â

k
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k
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b�k + 1

⌘
, (5.57)

dH = f (t)Â
k
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⌘
+ Vk
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k
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⌘i
. (5.58)

For small perturbations we have dwR ⌧ W, so H0 can be treated as time-independent.
A general state in the interaction picture can be written

|YI(t)i = U(t, t0)|YI(t0)i = U(t, t0) exp [i H0 t] |yS(t0)i, (5.59)

where U(t, t0) is the unitary evolution operator in the interaction picture and |ySi is
a time-independent state in the Schrödinger picture. The raising operator in the the
interaction picture becomes
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(5.60)

where I used the commutation relation
⇥
H0, K+

k

⇤
= 2wkK+

k
. Similarly we obatin
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k
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k
. (5.61)

With the 2M operators in the interaction picture we obtain the interaction Hamilto-
nian

H
I
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(t) = H0, (5.62)
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k
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⇤

. (5.63)

We are now interested in finding an explicit expression for the unitary evolution
operator U(t, t0) so that we can calculate the time-dependence of the expectation
values of the 2M operators. Plugging |YIi = U(t, t0)|Y(t0)i into the transformed
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Schrödinger equation (2.45) yields the equation for the time evolution of U(t, t0):

i∂tU(t, t0) = dHI U(t, t0). (5.64)

The differential equation is separable with solution

U(t, t0) = exp

2

4�i
tZ

t0

dHI(t0)dt0
3

5 . (5.65)

We set t0 < 0 as the starting point of the the evolution of the state. For exciting laser
pulses t much shorter than the oscillation period of the magnons we can model the
exciting laser pulse as f (t) = td(t), where d(t) is the Dirac delta function. Inserting
this into (5.65) we get

U(t, 0) = ’
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�it{VkK+
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k
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. (5.66)

The expectation value of 2M operator can therefore be written
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k
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k
Uk|YI(0)i

= hexp [it Hk] K±,z
k

exp [�it Hk]i,
(5.67)

where U = ’k Uk = ’k exp [�itdHk]. To find explicit expressions for hK±,z
k

(t)i we
use the identity

eABe�A = B + [A, B] +
1
2!
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1
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[A, [A, [A, B]]] + · · · . (5.68)

Keeping only the first three terms leaves us with
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(5.69)

But hK+
k
i = hK�

k
i = 0, so
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i2itVk (1 + itdwk) exp [2iwkt] . (5.70)

To first order in t we have 1 + itdwk = exp [itdwk]. Making this substitution yields

hK+
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i2itVk exp [i (2wkt + tdwk)] . (5.71)

Similar calculations yield the following expressions for the two other 2M operators:
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We can now express the time-dependent longitudinal component of the Néel vector
from (5.54) as
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(5.74)

where I collected terms so that

DL = Â
k

0

@ 2hKz
k
i

q
1 � g2

k

� 1

1

A . (5.75)

and
dL(t) = 4t Â

k

gkVkq
1 � g2

k

hKz
k
i sin (2wkt + tdwk) . (5.76)

From (5.75) it should be clear that magnons in the antiferromagnet reduce the
length of the longitudinal component of the Néel vector, and hence reduce the length
of the Néel vector itself. The fact that there are magnons present even in the ground
state implies that the length of the quantum Néel vector is always smaller than that
of its classical counterpart. We also see from (5.76) that the light pulse induces oscil-
lations in the length of the Néel vector with a frequency twice as large as the magnon
frequency wk. Thinking back to our example with just two spin- 1

2 particles, we were
able to explain oscillations in the Néel vector as a transition between the two states
| ", #i and | #, "i in the superposition state |fi = c(t)| ", #i+ d(t)| #, "i. It is the same
story for a general antiferromagnet: on top of the reduction in |L| caused by ground
state magnons, oscillations are triggered by varying contributions from the 2M states
to the total state of the system |Y(t)i. The amplitude of the oscillations is proportional
to the energy of the excited magnons, which in turn is proportional to the change in
the exchange interaction:

dL(t)max µ Vk µ dwR µ DJ. (5.77)

The period of the oscillations is inversely proportional to the strength of the interac-
tion:

Tk =
p

wk

⇠
1
J

. (5.78)

The oscillations in the Néel vector are illustrated in Fig. 5.3. We conclude this section
by quickly noting that in the limit of large s and large N the first term (5.74) dominates
the two latter terms, and so we recover the classical result for the Néel vector, as
required.
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FIGURE 5.3: Illustration of the dynamics of the Néel vector length L.
(a) The quantum Néel vector length is reduced compared to the clas-
sical Néel vector and oscillates as a result of light-induced excitations.
(b) The oscillations in L can be viewed as stemming from varying con-
tributions from the 2M states to the total state of the antiferromagnet.
In this case transitions from the Néel state |0ki|0ki to the state where
one 2M magnon is present are shown. The coloring of the states cor-
responds to the sublattice in which the magnons are predominantly

localized (see Fig. 4.2). Illustration originally from [18].

5.5 Spin correlations

In the previous section we found the expression (5.53) for the longitudinal spin cor-
relator along the z-axis. While useful for calculating Néel vector dynamics, this ex-
pression tells us nothing about the correlations between two individual spins in the
magnet. Another problem with the correlator is the approximation that we made in
(5.50) where we ignored the term containing four Bose operators. Without making
this approximation, the spin correlator in (5.53) picks up an extra term

Â
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j+dbj+d = zN Â
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b� k4 exp
⇥
i (k1 + k4 � k3 � k2) · r j

⇤
,

(5.79)
where the Fourier series expansions (4.20)-(4.23) were used. As before we can exploit
destructive wave interference so that

Â
j

exp
⇥
i (k1 + k4 � k3 � k2) · r j

⇤
=

N
2

dk4,k2 + k3 � k1 , (5.80)

but we are still left with three wave vectors k1, k2 and k3 that will yield six Bogoliubov
magnon operators (ak, b� k , k = k1, k2 k3) after the transformation. The upshot is that
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the right hand side of (5.79) will be a sum over every combination of three reciprocal
lattice vectors of 16 terms with four magnon operators in each term. When we transi-
tion to the interaction picture we will have to find the commutator of all these terms
with the unperturbed Hamiltonian, which in itself is a massive problem. Even worse,
the time-evolution operator (5.66) contains three times as many magnon operators as
the unperturbed Hamiltonian, tripling the number of commutators that have to be
calculated. The procedure is straightforward but incredibly time-consuming.

The reason I bring this up is that this growing complexity as a result of more and
more wave vectors entering the problem is a recurring theme in my project. Unfortu-
nately, the number of terms in (5.79) is not even the worst horror story in this regard.
As an example, consider the correlator

hSz
j Sz

i i = �s2 + s
⇣
ha†

j aji+ hb†
i bii

⌘
� ha†

j ajb†
i bii, (5.81)

where r j is a site on sublattice A and ri is a site on sublattice B. The last term is similar
to the term in (5.79) but lacking the sum over all lattice sites, meaning we can not
exploit the destructive interference expressed by (5.80) to remove the fourth sum over
the Brillouin zone. Hence the operator a†

j ajb†
i bi in Fourier space will be a sum over

every combination of four reciprocal lattice vectors. It is definitely doable to keep
working in Fourier space and with the Bogoluibov transformation, but at some point
the number of terms grows so large that this approach is no longer practical. For this
reason I have spent a considerable amount of time looking for techniques that let us
reduce the number of terms relative to the Bogoliubov transformation. An interesting
candidate is the generalization of the Bogoliubov transformation, which is described
in section 6.2. However, this generalization is not useful for dealing with the last term
of (5.81) either. I am not aware of any method where the calculation of ha†

j ajb†
i bii is

not a tremendously tedious endeavor.
The expectation value of the operator a†

j aj is possible to calculate using the Bo-
goliubov transformation without too much difficulty, so we will go through the steps
here. The expectation value of the number operator on any other site is calculated
similarly, of course. In order to keep track of the different wave vectors more easily I
will label wave vectors with l,µ and n, rather than k with a subscript. We will need
the following commutators for the 2M number operator Kz
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For K�

l we have: h
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The first step is to express the operator a†
j aj in terms of the Bogolibov magnons. Until

now we have first made the Fourier transform and then used (4.29), but because (5.80)
cannot be used we should combine (4.21) and (4.29) so that the Bogoliubov coefficients
for site r j are
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is the Bogoliubov transformation. Thus, the number operator a†
j aj in the Schrödinger

picture is
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The next step is to bring the operator over to the interaction picture. With our

experience calculating the 2M interaction picture operators in the previous section,
we immediately see that
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Making use of (5.68) and the commutators (5.82)-(5.85), we find
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(5.98)

To arrive at this expression I did not truncate the sum on the right hand side of (5.68),
so it is exact. However, for the subsequent calculations we have to make the same
approximations as before: we model the light pulse with the Dirac delta function so
that f (t) = td(t) and keep terms only to second order in t. That is,
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Using (5.82)-(5.93) multiple times leaves us with
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Looking back at (5.94), we see that
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and so the expectation value ha†
j aji is the same for every site on sublattice A after the

excitation. Thus,
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(5.102)

Repeating the steps for the operator b†
i bi for a site ri on sublattice B yields
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(5.103)

Using that the expectation values for the number operators in spin sites are all equal,
we get

hSz
j Sz

i i =
2

NzN
Â

j
Â
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hSz
j Sz

j+di = 1 �
2s
N
hLz(t)i, (5.104)

where I used (5.51) and hLz(t)i is given by (5.74). The fact that the spin correlator in
(5.104) is independent of the spin sites is unsurprising because each spin is treated
equivalently by the perturbation, and the Bogoliubov transformation does not ac-
count for spins on the edges of the magnet (i.e. we do not consider edge effects).
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5.6 Coherent states and macroscopic dynamics

In the final section of this chapter we will be looking for ways to incorporate the
results from our quantum treatment of antiferromagnets into a semi-classical theory.
We shall start by looking at a system where the connection between the classical and
quantum states is easier to draw: the simple harmonic oscillator.

5.6.1 Harmonic oscillator coherent states

Classically the position of a particle in a harmonic oscillator potential is given by
Newton’s second law

d2q
dt2 + w2q = 0, (5.105)

where w =
q

k
m , m is the particle’s mass and U = 1

2 kq2 is the potential for some con-
stant k and displacement q from the center. The solution is simple harmonic motion
of the form

q(t) = A cos (wt + f), (5.106)

where the amplitude A and phase f is determined by boundary conditions. In quan-
tum mechanics the particle’s position is determined by its wavefuntion Y(q, t) =
y(q) exp [iwt], which satisfies the Schrödinger equation
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Y = ih̄

∂
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Y. (5.107)

Once the wave function is obtained from (5.107), the probability density of finding the
particle in position q at time t is |Y(q, t)|2. That is, according to the statistical interpre-
tation of quantum mechanics, the probability of finding the particle in some interval
Dq is

R
Dq |Y(q, t)|2dq. Of course, we can never hope to find a wave function that yields

a deterministic value for the position and momentum simultaneously because the op-
erators for position and momentum do not commute, but we can certainly try to find
states where the uncertainties are at a minimum (i.e. (2.48) is satisfied with equality).
We also might hope to find states where the width of |y(q)|2 is constant in time:

|Y(q, t)|2 = |Y(q � f (t), 0)|2, (5.108)

and where the center of the distribution follows classical simple harmonic motion:

d2 f
dt2 + w2 f 2 = 0 (5.109)

These states would be the quantum states that come closest to reproducing the classi-
cal motion of the particle.

The remaining discussion of harmonic oscillator coherent states is inspired by the
discussion presented in [37]. We will start with finding the y(q) that satisfies (5.107)
with minimal uncertainty. The possible solutions can be looked up in [23]. After
normalization they are
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(5.110)
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or any linear combination of them, where Hn is the Hermite polynomial of degree n
and n is a non-negative integer. Next we need to find a state that hits the uncertainty
limit

DqDp =
1
2i
| [q, p] | =

h̄
2

, (5.111)

where p is the momentum of the particle and Dx =
p
hx2i � hxi2 is the uncertainty in

x 2 {q, p}. This is the case for the ground state:
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mw

2h̄
q2
i

, (5.112)

because by symmetry we have

hqi =
⇣mw

ph̄

⌘ 1
2

•Z

�•

q exp
h
�

mw

h̄
q2
i

dq = 0 (5.113)

hpi = �ih̄
⇣mw

ph̄

⌘ 1
2

•Z

�•

exp
h
�

mw

2h̄
q2
i d

dq
exp

h
�

mw

2h̄
q2
i

dq = 0, (5.114)

while the two non-vanishing integrals are

hq2
i =

⇣mw

ph̄

⌘ 1
2

•Z

�•

q2 exp
h
�

mw

h̄
q2
i

dq =
h̄

2mw
(5.115)

and

hp2
i = �h̄2

⇣mw

ph̄

⌘ 1
2

•Z

�•

exp
h
�

mw

h̄
q2
i d2

dq2 exp
h
�

mw

h̄
q2
i

dq =
mwh̄

2
. (5.116)

So we find that the uncertainty product in the ground state is

DqDp =
q
hq2i � hqi2

q
hp2i � hpi2 =

h̄
2

, (5.117)

exactly what we wanted.
Equipped with a minimal uncertainty state, we are now able to write up the gen-

eral form of the coherent wave function. Using the dimensionless variable

j =

r
mw

h̄
q, (5.118)

we have
Y µ exp


�

1
2
(j � f (t))2

�
exp [iF(j, f ; t)] , (5.119)

where F is some real functional. The wave function must satisfy the Schrödinger
equation (5.107), which in terms of the dimensionless variable j reads

i∂tY =
w

2

✓
�

∂2

∂j2 + j2
◆

Y. (5.120)
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Inserting (5.119) into (5.120) yields

2i ḟ (j � f )� 2Ḟ = w
⇥
2 f j + 2iF0 (j � f ) + F02

� f 2
� iF00 + 1

⇤
, (5.121)

where
ḟ =

d f
dt

, Ḟ =
∂F
∂t

, F0 =
∂F
∂j

.

We are free to choose the phase F as we please, so setting

F(j, f ; t) =
j ḟ (t)

w
� c(t)�

iwt
2

(5.122)

makes (5.121) reduce to

ḟ 2 + 2j
�

f̈ + w2 f
�
� f 2w2 = 2ċw. (5.123)

All that remains is to find c so that any f that satisfies (5.109) also satisfies (5.123). We
can get rid of ḟ if we set

c(t) =
1
2

✓
ḟ (t) f (t)

w
+ C

◆
=) ċ =

1
2

✓
ḟ (t)2

w
+

f̈ (t) f (t)
w

◆
(5.124)

with C some irrelevant constant phase factor. This yields

2j
�

f̈ + w2 f
�
� w2 f 2 = f̈ f , (5.125)

which we see is indeed satisfied by any function that satisfies (5.109). The coherent
state wave function for an harmonic oscillator is therefore

Y(q, t) =
⇣mw

ph̄

⌘ 1
4 exp

"
�

1
2

✓r
mw

h̄
q � f (t)

◆2#

⇥ exp

"
i
pmw

h̄ q ḟ (t)
w

� i
ḟ (t) f (t)

2w
� i

wt
2

#
,

(5.126)

where I excluded an arbitrary constant phase factor that is determined by the initial
state.

Our analysis so far has revealed three distinct characteristics of coherent states for
the harmonic oscillator:

1. They are minimum uncertainty states.

2. They evolve without spreading.

3. The peak of the probability density moves harmonically.

All of these are traits we associate with the classical harmonic oscillator. Before we
can start to look for coherent magnon states, however, we need to introduce a differ-
ent formalism that allows us to work with coherent states without resorting to wave
mechanics. We start by writing up the usual ladder operators for the harmonic oscil-
lator:

a† =
1

p
2h̄mw

(�ip + mwq) , a =
1

p
2h̄mw

(ip + mwq) . (5.127)
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We can express the coordinate and momentum operators in terms of the raising and
lowering operators:

q =

r
h̄

2mw

⇣
a† + a

⌘
, p = i

r
h̄

2mw

⇣
a†

� a
⌘

, (5.128)

so that the harmonic oscillator Hamiltonian becomes

Hhar = h̄w

✓
a†a +

1
2

◆
(5.129)

whose n-th normalized eigenstate is

|ni =
1

p
n!

⇣
a†
⌘n

|0i. (5.130)

We know from the wave mechanics analysis that the coherent states are formed from
the ground state. Evidently, there must be some unitary operator D(z) that produces
the coherent state |zi from |0i. The operator must be unitary because we require

hz|zi = h0|D†D|0i = h0|0i = 1. (5.131)

We can expand |zi in the energy eigenstates:

|zi =
•

Â
n=0

cn|ni =
•

Â
n=0

cn
p

n!

⇣
a†
⌘n

|0i. (5.132)

Interestingly, if we choose cn(z) = c0(z)zn
p

n!
then

|zi = c0(z)
•

Â
n=0

�
za†�n

n!
|0i = c0(z)eza†

|0i. (5.133)

Clearly, D(z)|0i = c0(z)eza†
|0i if the choice of cn is valid. We must choose c0(z) so

that

Y(q, 0) = hq|zi = c0

•

Â
n=0

zn

n!
hq|
⇣

a†
⌘n

|0i, (5.134)

where Y(q, 0) is given by (5.126) at t = 0. In view of (5.130), the sum in (5.134) contains
terms of the form 1

p
n!
hq|ni. But hq|ni are the wave functions given by (5.110), so

hq|zi =
⇣mw

ph̄

⌘ 1
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. (5.135)

The sum in the bracket is the generating function of the Hermite polynomials:

•

Â
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◆
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, (5.136)

so we get

hq|zi =
⇣mw

ph̄

⌘ 1
4 c0 exp
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2
+

r
2mw

h̄
zq

#
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�
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2h̄
q2
i

. (5.137)
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Comparing this expression with the one for Y(q, 0) from (5.123), we have

�
z2

2
+

r
2mw

h̄
zq + loge c0(z) =

r
mw

h̄
q f (0)�

1
2

f (0)2
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r
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q ḟ (0)� i

ḟ (0) f (0)
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(5.138)

Collecting like powers of q on both sides, we see that
r

mw

h̄
p

2z =

r
mw

h̄


f (0) +
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ḟ (0)
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=) z =
1
p

2


f (0) + i
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and hence

loge c0 =
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� f (0)2
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ḟ (0) f (0)
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=
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� f (0)2
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(5.140)

After all that work we are finally ready to write up the general coherent state for the
harmonic oscillator:

|zi = e�
|z|2

2 eza†
|0i = D(z)|0i, (5.141)

where z is a complex number whose real and complex parts are the starting position
and starting velocity, respectively, of the corresponding classical oscillator. But wait:
was not D supposed to be unitary? To fix this problem, we can expand (5.141) as

|zi = e�
|z|2

2 eza†
e�z⇤a

|0i = D(z)|0i (5.142)

and use
⇥
a, a†⇤ = 1 and the Baker–Campbell–Hausdorff formula

eAeBe�
1
2 [A,B] = eA+B (5.143)

to write
D(z) = exp

h
za†

� z⇤a
i

. (5.144)

This is the fundamental result of our discussion of harmonic oscillator coherent states.
D is called a displacement operator because it displaces a state by z in phase space.
So a coherent state is constructed by taking the ground state and displacing it in
phase space (i.e. giving the particle an initial position q0 = f (0) and initial velocity
v0 = ḟ (0)). Before we move on to the 2M coherent states, we note that the harmonic
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oscillator coherent state evolves in time as
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(5.145)

This means z(t) = z(0)e�iwt = 1
p

2

⇣
f (t) + i ḟ (t)

w

⌘
, as expected, where f (t) solves the

classical equation of motion for the harmonic oscillator (5.109).

5.6.2 2M coherent states and macroscopic dynamics

Having found the coherent states for the harmonic oscillator, it is natural to look at
what properties, if any, can be generalized to other quantum systems, and how we
can construct such coherent states. We will start by looking at the latter problem.
Our starting point will be the displacement operator D(z) in (5.144), which we saw
constructed the coherent states from the ground state of the harmonic oscillator. This
operator is called the Weyl-Heisenberg translation operator because it is an element of
a group called the Weyl-Heisenberg group. The Lie algebra of this group is spanned
by operators q, p, I that satisfy

[q, p] = ih̄I, [q, I] = 0, [p, I] = 0. (5.146)

The more commonly used complexified Lie algebra is spanned by the raising and
lowering operators a, a† together with the identity operator:

h
a, a†

i
= I, [a, I] = 0,

h
a†, I

i
= 0. (5.147)

The extension of coherent states from the Weyl-Heisenberg group to an arbitrary
Lie group is due to Perelomov [38]. These states are therefore called Perelomov co-
herent states. The definition is rather long and involved, but the upshot is that for any
system of operators X, Y, Z that form a closed algebra, that is

[X, Y] = czZ, [Y, Z] = cxX, [Z, X] = cyY, (5.148)

where cx, cy, cz 2 C, the generalized Perelomov coherent states are constructed from
a state |yi in Hilbert space by a unitary, irreducible representation T of a Lie group G
whose Lie algebra is given by (5.148). So for any group element g 2 G, the operator

T(g) = exp [ig · v] (5.149)

with g = Xê1 +Yê2 + Zê3 and v = v1ê1 + v2ê2 + v3ê3, produces a Perelomov coherent
state

|µi = T(g)|yi, (5.150)
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from any state |yi in Hilbert space. Hence, for each state |yi there is an associated set
of coherent states {T(g)|yi}. As was pointed out in Section 5.3.2, the 2M operators are
a basis for the complexified Lie algebra of SU(1,1). Our task, therefore, is to construct
a set of coherent states for this group. In order to achieve this, we need to

1. Construct a basis for the Lie algebra of SU(1,1)

2. Choose a suitable state |yi from which to construct a set of coherent states

3. Parameterize the coherent states

The idea is to use the obtained parameter to study the ultrafast dynamics semiclassi-
cally.

1: Basis for the algebra. We will start with a basis for the regular Lie algebra
of SU(1,1) and then move to the complexified version once we have constructed the
coherent states. The basis we will use is {Kx, Ky, Kz

}. The commutation relations
between these operators are

[Kx, Ky] = �iKz, [Ky, Kz] = iKx, [Kz, Kx] = iKy. (5.151)

I will use the shorthand notation K = Kx
x̂ + Ky

ŷ + Kz
ẑ. The operator that produces

the 2M coherent states can now be written

T(r) = exp [iK · v(r)] , v(r) 2 R3. (5.152)

The significance of the vector r will become apparent in a few moments. For now it is
just a vector specifying an element of SU(1,1).

2: Choice of starting state. Next, we need to choose an appropriate starting state.
It is difficult to say a priori which state will be easiest to work with, but we can take
inspiration from the harmonic oscillator states and choose the 2M ground state. We
will therefore define the 2M coherent states as the set of states

T(r)|0i (5.153)

where Kz
|0i = 1

2 |0i.
3: Parameterization. With everything properly defined, we can begin the pro-

cess of parameterizing the coherent states. We could of course use the vector v from
(5.152), but we can do better than that. According to the discussion in Section 5.3.2,
SU(1,1) transformations are rotations on the upper half of the hyperboloid H2 defined
in (5.38) and restated below:

H2 = {r = rx x̂ + ryŷ + rzẑ | r2
x + r2

y � r2
z = �1}.

That means we can associate each coherent state T(r)|0i with the point r on the upper
sheet of H2. Parameterizing the coherent states then becomes equivalent to parame-
terizing the vector r. We will use the parameterization

r (q, f) = (sinh q cos f) x̂ + (sinh q sin f) ŷ + (cosh q) ẑ, (5.154)

where q, f 2 R are the new parameters. The unrotated vector r(0, 0) = r0 = ẑ

corresponds to the 2M starting state |0i.
I claim that with the chosen parameterization, every r can be written

r(q, f) = exp [�iqK · w] r0, w = cos
h
f �

p

2

i
x̂ + sin

h
f �

p

2

i
ŷ. (5.155)
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FIGURE 5.4: If K were a basis for the Lie algebra of SO(3), the rotation
exp [�iqK · w] would produce r = sin q cos fx̂ + sin q sin fŷ + cos qẑ

from r0.

That is, r can be written as a rotation of r0 around the vector w by �q. If the operators
K were a basis for the Lie algebra of SO(3), this rotation would be on a sphere as
depicted in Fig. 5.4. However, with K a basis for the SU(1,1) Lie algebra, this rotation
is lifted to the pseudosphere {r 2 H2

| rz > 0}. When we insert the expression for w,
we obtain

T(r) = exp
h
�iq

⇣
cos

h
f �

p

2

i
Kx + sin

h
f �

p

2

i
K̂y
⌘i

= exp [�iq (sin fKx
� cos fKy)]

= exp


q

2
(�2i sin fKx + cos fKx

� cos fKx + 2i cos fKy + sin fKy
� sin fKy)

�

= exp


q

2

⇣
e�ifKx + ie�ifKy

�

⇣
eifKx

� ieifKy
⌘⌘�

= exp


q

2

⇣
e�if (Kx + iKy)� eif (Kx

� iKy)
⌘�

.

(5.156)

But the operators K± = Kx
± iK� are the 2M creation and annihilation operators

because their commutation relations with Kz are (5.19). So the operator

T(e) = exp
⇥
eK+

� e⇤K�
⇤

(5.157)

is the constructor of a 2M coherent state

|ei = exp
⇥
eK+

� e⇤K�
⇤
|0i (5.158)

parameterized by the complex number e = q
2 e�if, where q, f parameterize a rotation

on the upper half of the hyperboloid H2.
Looking back at the expression of the time-evolution operator (5.66), we see that
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the evolution of a 2M mode |na
k
i|nb

� k
i ⌘ |nki looks somewhat like a Perelomov co-

herent state:

Uk(t, 0)|nki = exp
⇥
�it{VkK+

k
(t) + VkK�

k
(t) + 2dwkKz

k
(t)}

⇤
|nki. (5.159)

If we assume that each mode is unoccupied at t = 0, i.e. the antiferromagnet starts
out in the ground state, then to first order in t we have

Uk|0ki ⇡ |0ki+
�
�it{VkK+

k
(t) + VkK�

k
(t) + 2dwkKz

k
(t)}

�
|0ki

= |0ki � itVkK+
k
(t)|0ki � itVkK�

k
(t)|0ki � itdwk|0ki

= (1 � itdwk) |0ki � itVkK+
k
(t)|0ki � itVkK�

k
(t)|0ki

⇡ e�itdwk |0ki � itVkK+
k
(t)|0ki � itVkK�

k
(t)|0ki

(5.160)

The first term on the right is just the unoccupied mode times an irrelevant phase
factor, so we can absorb the phase into the ket:

e�itdwk |0ki ! |0ki. (5.161)

This leads to

Uk|0ki ⇡ |0ki � itVkK+
k
(t)eitdwk |0ki � itVkK�

k
(t)eitdwk |0ki

⇡ exp
h
�itVkK+

k
(t)eitdwk � itVkK�

k
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i
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= exp
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�itVkK+
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e2iwkteitdwk � itVkK�

k
e�2iwteitdwk

i
|0ki

= T(ek)|0ki,

(5.162)

with ek = �itVke2iwkt+itdwk . We may write a 2M coherent state in terms of the Fock
states as [39]

Uk|0ki ⌘ |µki =
q

1 � |µk|
2

•

Â
n=0

µn
k
|ni, (5.163)

where µk = tanh
�

q
2
�

e�if with

q = �2tVk, f = 2wkt + tdwk +
p

2
. (5.164)

It is interesting to see which properties of the harmonic oscillator coherent states
have survived the generalization to Perelomov coherent states. For instance, are the
Perelomov coherent states minimal uncertainty states? A paper by Wódkiewicz and
Eberly [40] gives us the variances in the Hermitian operators Kx

k
, Ky

k
in a coherent

state:
D2

Kx
k

=
1
4

⇣
1 + sinh2(q) cos2(f)

⌘
, (5.165)

D2
Ky

k

=
1
4

⇣
1 + sinh2(q) sin2(f)

⌘
. (5.166)

The expectation value of their commutator is

|h
⇥
Kx

k
, Ky

k

⇤
i| = i|hKz

k
i| =

i
2

cosh (q) . (5.167)
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Inserted into the uncertainty relation (2.48), we obtain (after squaring both sides):
⇣

1 + sinh2(q) cos2(f)
⌘ ⇣

1 + sinh2(q) sin2(f)
⌘
� cosh2 (q) . (5.168)

We notice that the lower uncertainty limit is now a function of how far the coherent
state |µki = T (q, f) |0ki has been displaced the ground state. The 2M ground state
(q = 0) is the state with the lowest uncertainty, and any other coherent state (q 6= 0)
will have greater uncertainty in Kx

k
and Ky

k
. This is true even if f is an integer multiple

of 2p, in which case (5.168) holds with equality.
The generalized coherent states have therefore lost the property of being minimal

uncertainty states. In fact, the generalizations of coherent states (of which Perelo-
mov’s is one) from the harmonic oscillator to general systems are more concerned
with preserving the mathematical properties of harmonic oscillator coherent states
than the physical properties [39, 41]. In some cases the generalized coherent states
are the quantum states that physically resemble classical states, but from what I can
tell this is more a serendipitous perk possessed by a limited number of generalized
coherent states than a requirement for the label "coherent" in mathematical physics.
So what is the point of introducing the Perelomov coherent states if we cannot re-
tain the relation to the classical description that we get with ordinary coherent states?
The fact that the Perelomov coherent states are not very close to classical states does
not mean they are not the closest, as stated by Bossini et al.[18] but not justified. So
if we are looking for a classical description, the Perelomov coherent states might be
the best we can do. However, and I suspect more importantly, the time-evolution op-
erator naturally produce Perelomov coherent states from the ground state, which is
very convenient. Since a coherent state is completely specified by the parameter µk,
we have a parameter that can be used to represent the macroscopic spin dynamics in
antiferromagnets. Also, for the 2M operators the displacement operator (5.157) is on
the same form as the two-mode squeezing operator from quantum optics [42]:

S(ek) = T(�ek) = exp
⇥
e⇤

k
K�

k
� ekK+

k

⇤
. (5.169)

In this sense the coherent states can be viewed as a form of squeezed states. Usually
squeezed states are time-independent states with reduced quantum noise compared
to the some other time-independent state. The Perelomov coherent states used here
are not time-independent, so some caution is advised when thinking about squeezing
in this context.

We see from Fig. 5.3 that the oscillations triggered by the excitation of magnons
actually periodically compensate for the reduction in the Néel vector length caused
by ground state magnons. In the case where the coherent states |µki have the same
frequency and phase (i.e. classical coherence), the oscillations in the states shown in
Fig. 5.3 will add constructively and cause the Néel vector’s oscillation to become de-
tectable on a macroscopic level. The degree to which the coherent states are classically
coherent is determined by the k-dependence of wk and dwk; slowly varying wk and
dwk with k will produce the strong classical coherence needed for macroscopically
detectable Néel vector oscillations.

We will now treat µk as a classical parameter and look for the classical equation
of motion that µk must satisfy. Of course, the classical dynamics of SU(1,1) coherent
states has been studied before by mathematical physicists, for example in [43]. The
equation of motion is

∂µk

∂t
= {µk,Hclass}, (5.170)
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where
Hclass = ’

k

hµk| (H0 +dH) |µki (5.171)

and the Poisson bracket {} is shorthand for
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. (5.172)

Inserting the Schrödinger Hamiltnoinan H = H0 +dH from (5.17) into (5.171) yields
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⇥
(wk + f (t)dwk) hKz
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+ f (t)Vk
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. (5.173)

In terms of µk the expectation values of the time-independent 2M operators are [42]

hK+
k
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2 ; hK�

k
iµk

=
µk

1 � |µk|
2 ; hKz

k
iµk

=
1
2

1 + |µk|
2

1 � |µk|
2 . (5.174)

Using (5.171)-(5.174) we get that (5.170) reads

i
∂µk
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k

= 2 ((wk + f (t)dwk) µk + f (t)Vk
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�
. (5.175)

This is the quasi-classical equation of motion for the parameter that represents the
spin dynamics on the femtosecond scale in antiferromagnets. In the classical descrip-
tion of Néel vector dynamics, any change in the Néel vector induces a change in the
antiferromagnet’s magnetization because purely longitudinal variations are not al-
lowed. Not so in the quasi-classical description we have derived. To first order in t
we can express the longitudinal dynamics of the Néel vector using (5.54) and (5.174)
as

hLz
i = Ns � Â

k

1p
1 � g

k
2

1 + |µk|
2

1 � |µk|
2 + Â

k

gkp
1 � g

k
2

2Re{µk}

1 � |µk|
2 , (5.176)

and together (5.175) and (5.176) complement the traditional Landau-Lifshitz equa-
tions for antiferromagnet dynamics. Whereas the Landau-Lifshitz equations describe
precessional dynamics on the timescale of 100 ps [18], the parameters µk capture the
quantum dynamics that happens on considerably smaller timescales: for an exchange
interaction J ⇠ 100 meV we get a period of oscillations on the order of 10 fs. The aver-
age number of magnon pairs nk with wavevector ±k in the antiferromagnet is given
by

nk =
1
2

⇣
a†

k
ak + b†

�k
b�k

⌘

= hKz
k
iµk

�
1
2

=
1
2

1 + |µk|
2

1 � |µk|
2 �

1
2

=
|µk|

2

1 � |µk|
2 .

(5.177)
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The probability of observing nk magnons in a mode is

|hnk|µki|
2 =

�
1 � |µk|

2�
|µk|

2nk

= (1 � |µk|
2)nk+1 |µk|

2nk

(1 � |µk|
2)nk

=
nk

nk

(1 + nk)nk+1 .

(5.178)
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Chapter 6

Excitation from Nonuniform Fields

Until now we have assumed that the electric field that causes the change in the ex-
change interaction is uniform across the antiferromagnet. At any particular instance
in time, the electric field from the laser pulse used to excite magnons was assumed to
be

E(r) = E0. (6.1)

We will now look at the consequences of allowing the electric field to vary spatially.
We will use the electric field

E(r) = E0

q
g(r), (6.2)

where the function g(r) � 0 captures the spatial profile of the electric field strength.
This allows us to write the light-induced perturbation to the exchange interaction as

DJ = DJ(d)g(r). (6.3)

The perturbation Hamiltonian is a discrete function of space, so we have to decide in
advance how to sample g at various positions r. We will choose to sample g at the
middle of each bond. This means that for a spin located at r j, DJ = DJ(d)g(rj + 1

2 d)
and the perturbation Hamiltonian becomes

dH(r j, t) =
1
2

f (t)Â
j

Â
d

DJ(d)g(rj +
1
2

d)Sj · Sj+d. (6.4)

This choice of sampling preserves the symmetry of the Hamiltonian so that we may
express it as a sum over one sublattice only:

dH(r j, t) = f (t) Â
j2A

Â
d

DJ(d)g
✓

r j +
1
2

d

◆
Sj · Sj+d (6.5)

We may also continue using the Holstein-Primakoff transformation to express dH in
terms of Bose operators. In particular, the Hamiltonian (6.4) after the transformation
reads

dH = f (t)Â
j

Â
d

DJ(d)
⇣
�s2 + sa†

j aj + sb†
j+dbj+d + sa†

j b†
j+d + sajbj+d

⌘
g
✓

r j +
1
2

d

◆

(6.6)
However, the Bogoliubov transformation we applied in Chapter 5 will no longer help
us reduce the complexity of the perturbation Hamiltonian. In Section 6.1 we continue
to use the Bogoliubov transformation to (6.6) and look at the effect of g(r) on the
Néel vector dynamics. In Section 6.2 we will employ a more general transformation
and look for a way to obtain the quantum states numerically after the perturbation is
switched off, which involves use of the sudden approximation.
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6.1 Fourier analysis

The success of the Bogiliubov transformation in diagonalizing a Hamiltonian of the
form (4.24) is owed to the fact that every Bose operator ak, b� k and their adjoints al-
ways appear together with a Bose operator with the same or opposite wave vector.
The Fourier transform takes advantage of the translational invariance of the Hamil-
tonian so that "interference" on the form (5.80) kills all other operators. Thus simple
linear combinations of the Bose operators on the form of (4.25) and (4.26) provide an
elegant solution to the diagonalization problem. We are bound to run into trouble
once this translational invariance breaks down if we continue to use the same trans-
formation. Still, there is one very good reason for sticking with it: the unperturbed
Hamiltonian is diagonal after the transformation is applied. So as long as we are not
forced to do too many calculations with the perturbation, continuing with the Bogoli-
ubov transformation is reasonable. If we try to apply a different transformation to
reduce the complexity of the perturbation Hamiltonian, we gain complexity in the
unperturbed Hamiltonian. In this section we will continue using Fourier analysis
– despite the loss of translational invariance – because H0 is easy to work with in
Fourier space. Like before we express each operator and the function g in terms of
Fourier series:

aj =

r
2
N Â

k

exp
⇥
ik · rj

⇤
ak (6.7)

bj+d =

r
2
N Â

k

exp
⇥
ik · r j

⇤
exp [ik · d] bk (6.8)

g
✓

r j +
1
2

d

◆
= Â

k

exp
⇥
ik · rj

⇤
exp


i
1
2

k · d

�
gk. (6.9)

The choice to factor out
q

N�1
unit from the Bose operators ak and bk but not from gk is

in anticipation of the resulting expression for dH, which will take a simpler and more
familiar form using this definition. Since we are now going to work with products of
three different Fourier expansions, I will again switch notation so that wave vectors
are represented by l, µ and n. The first double sum in the Hamiltonian (6.6) is

� s2 Â
j

Â
d

DJ(d)g
✓

r j +
1
2

d

◆
= �s2G, (6.10)

The second double sum is

Â
j

Â
d

DJ(d)a†
j ajg(r j) =

2
N Â

j
Â
d

DJ(d)

"

Â
l

e�il·r j a†
l

# "

Â
µ

eiµ·r j aµ

# "

Â
n

ein·r j e
i
2 n · dgn

#

=
2
N Â

j
Â
d

DJ(d)Â
l

Â
µ

Â
n

a†
laµgnei(n�(l�µ))·r j e

i
2 n · d

=
2
N Â

d

DJ(d)Â
l

Â
µ

Â
n

a†
laµgne

i
2 n · d Â

j
ei(n�(l�µ))·r j

=
2
N Â

d

DJ(d)Â
l

Â
µ

Â
n

a†
laµgne

i
2 n · d N

2
dn,l�µ

= Â
d

DJ(d)Â
l

Â
µ

a†
laµgl�µe

i
2 (l� µ)·d.

(6.11)
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We see that unless the only nonzero Fourier coefficient of g(r j +
1
2 d) is g0, we get con-

tributions from operators al and a†
µ that act on states with different wave vectors. The

upshot is that we have transformed the operators a†
j aj, which produce diagonal terms

in the Hamiltonian matrix, into a sum of operators a†
laµ that produce off-diagonal

terms in that matrix as well. By repeating the steps in (6.11) we find the last three
double sums in (6.6) to be

Â
j

Â
d

DJ(d)b†
j+dbj+dg(r j) = Â

d

DJ(d)Â
l

Â
µ

b†
lbµgl�µe

i
2 (µ�l)·d, (6.12)

Â
j

Â
d

DJ(d)a†
j b†

j+dg(r j) = Â
d

DJ(d)Â
l

Â
µ

a†
lb†

�µgl�µe
i
2 (l+µ)·d, (6.13)

Â
j

Â
d

DJ(d)ajbj+dg(r j) = Â
d

DJ(d)Â
l

Â
µ

alb�µgµ�le�
i
2 (l+µ)·d. (6.14)

Putting it all together yields the following expression for dH in Fourier space:

dH = �s2G f (t)

+ f (t)sL Â
l

Â
µ

a†
laµgl�µx l� µ

2
+ b†

lbµgl�µx µ� l
2

+ f (t)sL Â
l

Â
µ

a†
lb†

�µgl�µx l+ µ
2

+ alb�µgµ�lx � l� µ
2

(6.15)

where L and xk are as defined in (5.12) and (5.13). It is easy to check that (6.15) reduces
to (5.10) if the electric field is uniform, because then

g(r j +
1
2

d) = 1 =) gk = dk,0 (6.16)

and all terms with µ 6= l vanish.
We continue by applying the Bogoliubov transformation given by (4.29) and (4.30).

I will abandon the notation with superscripts for x and g and instead use parentheses
for clarity. I believe this will not cause too much confusion, and it should be clear
from the context whether g is in real or Fourier space. After the transformation the
resulting expression for dH is

dH = �s2 f (t)G

+ f (t)sL Â
l

Â
µ

g (D) x

✓
D

2

◆ h
uluµa†

laµ + ulvµa†
lb†

�µ + uµvlaµb�l + vlvµb�lb†
�µ

i

+ f (t)sL Â
l

Â
µ

g (�D) x

✓
D

2

◆ h
uluµb†
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µ + uµvlb�µal + vlvµala†
µ

i

+ f (t)sL Â
l

Â
µ

g (D) x

✓
S

2

◆ h
uluµa†

lb†
�µ + ulvµa†

laµ + uµvlb�lb†
�µ + vlvµaµb�l

i

+ f (t)sL Â
l

Â
µ

g (�D) x

✓
S

2

◆ h
uluµalb�µ + ulvµala†

µ + uµvlb†
�lb�µ + vlvµa†

µb†
�l

i

(6.17)

where I have defined
D = l� µ, S = l+ µ, (6.18)
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for cleaner notation. We collect equal terms in the magnon operators and interchange
summation indices where appropriate to obtain

dH = �s2 f (t)G + f (t)sLg (0)Â
l

�
2v2

l + 2ulvlxl

�

+ f (t)sL Â
l

Â
µ

a†
laµg (D)

✓
x

✓
D

2

◆ ⇥
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⇤
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2

◆ ⇥
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⇤◆
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✓
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D

2
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⇤
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✓
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✓
D
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ulvµ + vluµ

⇤
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S
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⇤◆
,

(6.19)

where I used the commutators
h
al, a†

µ

i
= dl,µ,

h
bl, b†

µ

i
= dl,µ. (6.20)

We see that dH for nonuniform fields contains operators a†
laµ and b†

� µb� l that shift
the momentum of magnons as well as operators a†

lb†
� µ and aµb� l that create and

destroy 2M states, respectively, that can carry a nonzero momentum. Using (6.18) to
express µ in terms of l and D, we get

dH = �s2 f (t)G + f (t)sLg (0)Â
l

�
2v2

l + 2ulvlxl

�

+ f (t)sL Â
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D

a†
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✓
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D
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◆
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D
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✓
D

2

◆
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D
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Â
D
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[ulul�D + vlvl�D]

(6.21)

We cannot apply (4.32) and (4.36) that link ul and vl to the structure factor gl directly
except when D = 0. I propose to use first-order expansions

ul�D ⇡ ul �rlul · D, vl�D ⇡ vl �rlvl · D, (6.22)
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which will carry an error of the order |D |
2. The structure factor x can also be ex-

panded in a first-order Taylor series. Keeping only terms that are linear in D yields

x

✓
D

2

◆
[ulul�D + vlvl�D] = x (0)

⇥
u2

l + v2
l

⇤
+

1
2
rlx (0) · D

⇥
u2

l + v2
l

⇤

� x (0) [ulrlul + vlrlvl] · D .
(6.23)

By using

rlul =
∂u

∂gl
rlgl (6.24)

and combining (4.28) and (4.36) to obtain

ul = ±

vuut
1
2
+

1

2
q

1 � g2
l

, (6.25)

vl = ±

vuut
1

2
q

1 � g2
l

�
1
2

, (6.26)

we get

rlul =
gl

4ul

�
1 � g2

l

�� 3
2
rlgl, (6.27)

rlvl =
gl

4vl

�
1 � g2

l

�� 3
2
rlgl. (6.28)

In view of (4.36), the expression in (6.23) reduces to

x
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D

2

◆
[ulul�D + vlvl�D] =

1q
1 � g2

l

 
1 +

D
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"
rlx (0)�

glrlgl
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l

#!
, (6.29)

where I used x (0) = 1. Similarly we see that

x

✓
l�

D

2

◆
[ulul�D + vlvl�D] =

x (l)q
1 � g2

l

 
1 �
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"
rlx (l)

x (l)
+
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(6.30)
Next we will be looking at the cross terms of the form

x

✓
D

2

◆
[ulvl�D + vlul�D] = x (0) [2ulvl] +

1
2
rlx (0) · D [2ulvl]

� x (0) [ulrlvl + vlrlul] · D .
(6.31)

We have
ulrlvl + vlrl =

✓
ul

vl
+

vl

ul

◆
gl

4
�
1 � g2
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�� 3
2
rlgl, (6.32)

which, when we use (4.32) so that

ul

vl
+

vl

ul
=

u2
l + v2

l

ulvl
= �

2
gl

, (6.33)
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transforms (6.31) into

x
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D
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◆
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(6.34)
Finally we have
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#!
.

(6.35)
The structure factor xl is an even function for square antiferromagnets, so its gradi-
ent at the origin must be zero. Substituting (6.29), (6.30), (6.34) and (6.35) into the
Hamiltonian (6.21) and collecting terms with the same operators, we obtain

dH = � f (t)s (sG + Lg(0)) + f (t)sLg (0)Â
l

dwl

+ f (t)sL Â
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Â
D
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(6.36)

In the limit of uniform fields, i.e. g(D) = dD,0, we recover the expression in (5.14),
as required. As always with Fourier transforms, symmetric light profiles centered in
the middle of the magnet will yield exclusively real Fourier components g(D), while
translation of the light distribution in the real domain causes the Fourier components
to pick up a complex part as well. The hermicity of (6.36) is preserved by this trans-
lation on account of the properties of the Fourier transform. Still, it seems reasonable
to assume that most practical laser pulses will be a symmetric distribution applied to
the center of the magnet, so unless otherwise stated I will assume g(D) is real. An-
other advantage of working with symmetric, centered light profiles is that the Fourier
coefficients g(D) in this case are even in D. We can exploit this property in (6.19) by
swapping the two wave vectors l and µ in the third and fifth lines. Subsequent use
of (6.18) leaves us with (6.36) but with the substitutions

b†
� l+Db� l ! b†

� lb� l+D, al�Db� l ! alb� l+D. (6.37)

The reason I prefer to use these substitutions is simply because they bring more order
to the Hamiltonian (6.36) by making sure D always occurs on the second operator
from the left.
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6.1.1 Spin correlations and Néel vector oscillation

The equations we obtained in Chapter 5 for the spin correlations (5.53) and the lon-
gitudinal component of the Néel vector (5.54) are valid independently of the form of
the perturbation, so we will reuse those two equations here. Our strategy will be to
"simply" repeat the steps we made to obtain (5.74). The perturbation Hamiltonian
in this case will be more complicated and will require many more calculations to be
made because of the off-diagonal terms in the wave vector. As a result I have had to
move the calculations to Appendix A. I will only consider the case where g(D) is even
as it simplifies the bookkeeping in the calculations tremendously. To see why, we will
rewrite (6.19) as

dH(t) = �s f (t) (sG + Lg(0)) + f (t)sL Â
l

dwl
l

+ f (t)sL Â
l

Â
µ

⇣
a†

laµ + b†
� lb� µ

⌘
dw

µ
l

+ f (t)sL Â
l

Â
µ

⇣
a†

lb†
� µ + alb� µ

⌘
Vµ

l ,

(6.38)

where I have defined

dw
µ
l = g (D)

✓
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✓
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2

◆ ⇥
uluµ + vlvµ

⇤
+ x

✓
S

2

◆ ⇥
ulvµ + vluµ

⇤◆
(6.39)

and
Vµ

l = g (D)
✓

x

✓
D

2

◆ ⇥
ulvµ + vluµ

⇤
+ x

✓
S

2

◆ ⇥
uluµ + vlvµ

⇤◆
(6.40)

and exploited the fact that g(D) is even so that I could apply the substitutions (6.37).
Since the expressions in (6.39) and (6.40) are invariant with the interchange of wave
vectors l $ µ, we do not have to worry about keeping track of where in the expres-
sions two wave vectors enter. This might seem trivial when only two wave vectors are
considered, but as seen from the calculations in Appendix A and in the discussions
below, it will come in handy when we will be dealing with sums of four different
wave vectors simultaneously that each can be any vector in the magnetic Brillouin
zone.

As before, we will be working in the interaction picture. The time-evolution op-
erator is given by (5.65) and we will again model the time pulse as f (t) = td(t). This
yields

U = exp

"
�it Â

l
Â
µ

n
dw

µ
l

⇣
a†

laµ + b†
� lb� µ + dl,µ

⌘
+ Vµ

l

⇣
a†

lb†
� µ + alb� µ

⌘o#
,

(6.41)
where I have factored out the irrelevant phase eits(sG+Lg(0)). We are interested in
the expectation values of the 2M operators but, unfortunately, each 2M operator will
commute with many off-diagonal terms in (6.41) and therefore it is necessary to keep
working with U in its full glory. The expectation values we seek are

hK±,z
n (t)i = hYI(0)|U†K±,z

n (t)U|YI(0)i, (6.42)
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where K±,z
n (t) are given by (5.60) and (5.61). By using (5.68) and keeping only the first

three terms, we have

U†K±,z
n (t)U = K±,z

n (t) +
⇥
itdH(0), K±,z

n (t)
⇤
+

1
2
⇥
itdH(0),

⇥
�idH(0), K±,z

n (t)
⇤⇤

.
(6.43)

The calculations of the commutators can be found in Appendix A. After taking the
expectation values of (A.1)-(A.20) and collecting like terms we find

hK+
n (t)i = e2iwnt

 
2itVn

n hK
z
ni+ 2(it)2 Â

l

dwl
n Vl

n hK
z
li

!
. (6.44)

Similarly using (A.21)-(A.40), we obtain

hK�

n (t)i = �e�2iwnt

 
2itVn

n hK
z
ni � 2(it)2 Â

l

dwl
n Vl

n hK
z
li

!
. (6.45)

Finally we can use all 40 equations in Appendix A to get

hKz
n(t)i = hKz

ni � (it)2 Â
l

⇢⇣
Vl

n

⌘2
[hKz

li+ hKz
ni] +

⇣
dwl

n

⌘2
[hKz

li � hKz
ni]

�
. (6.46)

We see that, compared to the uniform light profile results of (5.71)-(5.73), the ex-
pectation values for the 2M operators are now influenced by the average value of
number of magnons in other modes (l 6= n). Remember: the expectation value of
Kz

l is nonzero for every l in every state. It should be said that the contribution is
likely to be very small apart from the states with n close to l, since for realistic light
profiles g(r) the only significant Fourier coefficients g (D) are going to be very close
to D = l� n = 0. As an example, consider the light profile in Fig. 6.1a for a square
magnet consisting of N = 200 spins in each dimension. The profile is an amplitude-
normalized, centered Gaussian

g(x, y) = exp

"
�

�
x �

N
2
�2

2s2
x

�

�
y �

N
2
�2

2s2
y

#
. (6.47)

with standard deviations sx = sy = 10 spins. Its major Fourier components (also nor-
malized) are plotted in Fig. 6.1b. (Other normalizations, e.g. volume-normalization,
of the Gaussian will just scale the colorbars and has no effect on the relative amplitudes
of the Fourier components). The off-diagonal contributions enter as a second-order
effect and both dwl

n and Vl
n are proportional to g(D), as can be seen from

dwl
n ⇡

g (D)q
1 � g2

l

 
1 � glxl +

D

2

"
glrlxl +

(xl � gl)rlgl

1 � g2
l

#!
, (6.48)

Vl
n ⇡

g (D)q
1 � g2

l

 
xl � gl �

D

2

"
rlxl �

(1 � xlgl)rlgl

1 � g2
l

#!
, (6.49)

where I used the linear expansions in (6.22).
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(A)

(B)

FIGURE 6.1: A) Gaussian light profile for a 200-by-200 square antifer-
romagnet and B) its fast Fourier transform (absolute values), both with
amplitudes normalized. The Fourier transform is purely real since the
light profile is symmetric about the center of the magnet, so no infor-

mation is lost by taking the absolute value.

6.2 The Tyablikov-Bogoliubov transformation

In this section I will attempt to find the energy spectrum and eigenstates of the anti-
ferromagnet Hamiltonian

H = �s2 Â
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d
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2

d
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d
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�
,

(6.50)

where the index j runs over sublattice A, l runs over sublattice B and eJ = J � 2K as
before. I will mostly neglect the constant term, as it only sets the reference energy and
does not come into consideration as we seek the states that diagonalize the Hamil-
tonian. For cleaner notation I will from now on write the strength of the exchange
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perturbation as

DJ(d)g
✓

r j +
1
2

d

◆
= DJj,d (6.51)

and similarly with the interchange j $ l. Rather than using the standard Bogoliubov
transformation, I will employ a generalized version that is due to Tyablikov and Bo-
goliubov [44]. The idea is similar to the standard Bogoliubov transformation (4.25)
and (4.26) in that we seek new Bose operators that are linear combinations of the
operators aj and bj+d. However, I will not express the operators as a Fourier series,
since we saw in Section 6.1 that the perturbation Hamiltonian dH in Fourier space
contains many more off-diagonal elements if the light profile g(r) contains a consid-
erable amount of non-zero Fourier coefficients gk. The transformation is

aj = Â
k

⇣
uj,kak + v⇤j,kb†

k

⌘
(6.52)

bl = Â
k

⇣
yl,kbk + z⇤l,ka†

k

⌘
, (6.53)

where ak,bk are new Bose operators that satisfy

i∂tak = wa
k ak, i∂ta

†
k = �wa

k a†
k , (6.54)

i∂tbk = w
b
k bk, i∂tb

†
k = �w

b
k b†

k , (6.55)

and wa
k + w

b
k is an eigenvalue of (6.50) when we neglect the constant term. It is im-

portant to stress that k is in general not a wave vector; it is an index used to designate
a specific eigenstate.

The equations of motion for the untransformed Bose operators aj and bj+d and
their adjoints are

i∂taj =
⇥
aj,H

⇤
, i∂ta†

j =
h

a†
j ,H

i
, i∂tbl = [bl ,H] , i∂tb†

l =
h
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l ,H
i

. (6.56)

We proceed by calculating the explicit expressions using (6.50) and inserting (6.52)-
(6.55) where appropriate. The result is

Â
k

⇣
uj,kwa

k ak � v⇤j,kw
b
k b†

k

⌘
=+ s Â

k
Â
d

⇣
eJ + DJj,d

⌘
uj,kak

+ s Â
k

Â
d

⇣
eJ + DJj,d

⌘
v⇤j,kb†

k

+ s Â
k

Â
d

�
J + DJj,d

�
y⇤j+d,kb†

k

+ s Â
k

Â
d

�
J + DJj,d

�
zj+d,kak

(6.57)
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(6.58)
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(6.60)

By recognizing that ak, bk, a†
k and b†

k are linearly independent, we can exploit the fact
that their coefficients in Eqs. (6.57) - (6.60) must match individually (for each k). This
yields the following linear equations for the coefficients uj,k, vj,k, yj+d,k and zj+d,k:

uj,kwa
k = s Â

d
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eJ + DJj,d

⌘
uj,k + s Â

d

�
J + DJj,d

�
zj+d,k, (6.61)

� z⇤l,kwa
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d

(J + DJl,d) u⇤

l+d,k, (6.62)

yl,kw
b
k = s Â

d
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eJ + DJl,d

⌘
yl,k + s Â

d

(J + DJl,d) vl+d,k, (6.63)
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b
k = s Â
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⇣
eJ + DJj,d

⌘
v⇤j,k + s Â

d

�
J + DJj,d

�
y⇤j+d,k. (6.64)

We see that the system of equations consists of two subsystems: Eqs. (6.61) and (6.62)
form an independent system of 2Nunit linear equations and (6.63), and (6.64) form an
identical system of equations. This underlines the equivalence between a-magnons
and b-magnons. If we add a term to our Hamiltonian in (6.50) that breaks the re-
flectional symmetry about the xy-plane, for instance an external magnetic field, we
would expect the above equations to no longer decouple into two equivalent subsys-
tems. Given that our Hamiltonian splits nicely in two with the generalized a- and
b-magnons, we shall simply need to solve for one and immediately have the solution
for the other. Eqs. (6.61)-(6.64) can be solved numerically to obtain the energy spec-
trum and eigenstates of the antiferromagnet for any light profile g(r). They are totally
equivalent to the eigenvalue equation involving the Hamiltonian in (6.50).

6.2.1 Proof of diagonalization

We shall first prove that the operators ak, bk diagonalize (6.50). Let

S = eJ + DJj,d, R = J + DJj,d. (6.65)
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When we insert the definitions (6.52) and (6.53) into (6.50), we get (up to a constant)
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(6.66)

Using (6.61)-(6.64) and the fact that wk, S and R are all real, we get
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This yeilds the following Hamiltonian:
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We can interchange the summation indices l $ µ in the last line of (6.75) to get
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where I used the commutators for the new Bose operators. Since the system of equa-
tions (6.63) + (6.64) is identical to (6.61) + (6.62), we must have wa

k = w
b
k = wk. Using

(6.61)-(6.64), we obtain
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But
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so when we subtract (6.78) from (6.77) we obtain
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Hence, the off-diagonal terms in (6.76) vanish:
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All that remains is to show that Âj(u⇤

j,luj,µ � z⇤j+d,lzj+d,µ) µ dl,µ. From the inverse
relations
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Therefore, the diagonal Hamiltonian is
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where
Q = Â

j
|vj,k|

2. (6.87)

6.2.2 Tyablikov-Bogoliubov transformation with uniform electric field

As noted before, when dealing with arbitrary light profiles g(r), Eqs. (6.61) and (6.62)
will yield a system of 2Nunit equations for the coefficients uj,k and zj,k that have to be
solved simultaneously. However, if the light profile is uniform, then Eqs. (6.61) and
(6.62) become
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and we see that uj,k and zj,k must satisfy the same equation for every j, l. This effec-
tively reduces the number of equations from 2Nunit to 2:
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Specifically, we will be looking for plane wave solutions:
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⇥
i k ·r j

⇤
, zl,k =
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exp [i k ·rl ] , (6.92)

where k is a reciprocal lattice vector in the magnetic Brillouin zone. This yields the
following equations for the (real) wave amplitudes uk and zk:
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The solution is subject to the normalization constraint (6.84), which becomes

|uk|
2
� |zk|

2 = 1, (6.95)

just as in the normal Bogoliubov transformation. The solution can be easily obtained
analytically. We find

wa
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⌘2
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2, (6.96)
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, (6.97)

z2
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wa
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� 1

!
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Of course, the energy of the b-magnons is also given by (6.96), and the equations for
y2

k and v2
k are identical to (6.97) and (6.98), respectively.

The numerical solutions for uj,k in the ten lowest modes given by the system the
system (6.88) and (6.89) for a 200-by-200 square antiferromagnet of the type shown
in Fig. 6.2a are plotted in Fig. 6.3. Plotting uj,k is a challenge because sublattice A
on which uj,k is defined is not square. To get around the problem, I have used the
average of uj,k on the nearest neighbors to plot uj,k on sites of sublattice B, illustrated
in Fig. 6.2b. It should be stressed that this averaging is only done to make the plots in
Fig. 6.3 look smoother. I have included a small amount of anisotropy (K = �10�4 J)
to ensure that the ground state is well behaved. The light is polarized so that DJ(d)
is independent of the direction d and the perturbation is set to 5 % of the the unper-
turbed exchange J. The solutions were found using MATLAB’s built-in function for
finding eigenvalues and eigenvectors. Unlike our analytical solution for an infinitely
large magnet, the solution obtained numerically for finite magnets yields real uj,k and
zl,k. The energies w are also lower than the analytical solution, which can attributed
to edge effects in the numerical solution; spins on the edges are coupled to fewer
neighboring spins, which lowers the energy of excitation. As the size of the magnet
increases, so does the spectrum w(k). I am unable to verify convergence of the spectra
toward the analytical result because the computational power available to me only al-
lows magnets up to on the order of 10 000 spins to be solved, even if only the lowest
eigenstates are sought. However, for a 2-by-2 magnet the analytical and numerical
solutions are identical because each spin in that case has equally many nearest neigh-
bors (two). The amplitudes uj,k and zl,k decrease with the size of the magnet because
of the normalization condition (6.84).

Increasing the anisotropy in the magnet has the effect of flattening the distribution
uj,k while increasing the amplitudes in opposing corners the magnet, as illustrated in

(A) (B)

FIGURE 6.2: Illustration of A) a bipartite square antiferromagnet and
B) how I obtain average values of uj,k on sites where it is not defined.
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(A) (B)

(C) (D)

(E) (F)

(G) (H)

(I) (J)

FIGURE 6.3: Surface plots of uj,k for the ten lowest values energies wa
k

with K = 10�4 J, DJ(d) = 0.05J x̂ · d for a 200-by-200 square antiferro-
magnet.

Fig. 6.4. To explain this effect we will look at the average of Sz
j in a 2M state. We have
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(6.99)
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where I used (6.52) and (6.20) and nk is the number of magnons in the 2M state spec-
ified by the number k. We see that small values of uj,k and vj,k are associated with
the spin on site r j being closely aligned with the z-axis. This is favored my the strong
anisotropy. The exchange interaction favors all neighboring spins to be as close to
parallel as possible, which is achieved by forming a smooth wave as in Fig. 6.4a. The
profile in Fig. 6.4b is therefore a "compromise" between the the anisotropy and the
exchange given that uj,k and vj,k cannot be zero everywhere: most of the deflection
from the z-axis is put on the spins with the fewest nearest neighbors in the corners
where the cost to the exchange is smallest, and then the spins rapidly align with the
z-axis as you move inward towards the center of the magnet. I should stress that vj,k
has a similar profile to uj,k but with smaller amplitude, and therefore does not affect
the reasoning above. The anisotropy’s effect on the profile of uj,k is not present in
the analytical solution because it does not take into account that there are edges or
corners.

(A) (B)

FIGURE 6.4: The first excited state of magnet with A) K = 10�4 J and
B) 0.01J. The light is polarized so that DJ is 0.05J in the x-direction.

6.3 The sudden approximation for nonuniform electric fields

In Section 6.1 we studied the effect of the introduction of a non-uniform field to the
Hamiltonian of our antiferromagnet in Fourier space. In this section we will try to
find an estimate for the effect of nonuniform excitation fields using the sudden ap-
proximation technique. The idea is to model the laser pulse in time as a Heaviside
function:

f (t) = Q(t)� Q(t � t), (6.100)

where t is the duration of the laser pulse (as before). We will then diagonalize the
Hamiltonian (6.50) using the transformation of the previous section so that we can
find its eigenstates. For a magnet that starts out in the ground state |0i of the unper-
turbed Hamiltonian, we will be able to calculate the transition probabilities to each of
the eigenstates of (6.50) by calculating their inner products with |0i. Specifically, we
have

|Y(t)i = Â
j
hfj|0i|fjie

�iwfj t (6.101)

where |fji is an eigenstate of (6.50) with eigenvalue wfj . After the perturbation is
switched off instantly at t = t, we find that the (unnormalized) state of the magnet is

|Y(t > t)i = Â
h
hyh|Y(t)i|yhie�iwyh (t�t), (6.102)
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where |yhi is an eigenstate of the unperurbed Hamiltonian. Inserting (6.101) into
(6.102), we get

|Y(t > t)i = Â
h

Â
j
hyh|fjihfj|0i|yhi exp

h
�i
n

wyh t +
⇣

wfj � wyh

⌘
t
oi

. (6.103)

Obviously, for this method to work we need to be able to calculate inner products be-
tween states with relative ease. Because every state can be reached from the ground
state by applying the appropriate magnon raising operators, this amounts to calcu-
lating matrix elements of the form

yh0|A|0if, (6.104)

where A is some product of annihilation and creation operators, |0iy = |0i is the
ground state of the unperturbed Hamiltonian and |0if is the ground state of the per-
turbed Hamiltonian.

It turns out that the evaluation of matrix elements of the form (6.104) is not trivial,
and so I have had to spend much more time exploring the machinery for evaluating
them than I had originally planned. I will therefore only present a strategy for how
the matrix elements can be evaluated and discuss briefly what the challenges are and
what it will take to overcome them.

Before we start looking for ways to evaluate the matrix elements, we should make
life a bit easier for ourselves by writing a Tyablikov-Bogoliubov transformation in a
more compact form. For Bose operators aj, a†

j , bl , b†
l , we have

2

664

a

b

a
†

b
†

3

775 =

2

664

U 0 0 V⇤

0 Y Z⇤ 0
0 V U⇤ 0
Z 0 0 Y⇤

3

775

2

664

a
b
a†

b†,

3

775 (6.105)

where the vectors contain a sequence of the operators so that, for instance, a =
a1, a2, ..., aN , and the matrices U, Y, V, Z contain the Tyablikov-Bogoliubov coefficients.
We may write the transformation even more compactly by merging the two sequences
a and b into the sequence x, so that


x

x
†

�
=


O P⇤

P O⇤

� 
c
c†

�
= B


c
c†

�
, (6.106)

with
O =


U 0
0 Y

�
, P =


0 V
Z 0

�
. (6.107)

The 2Nx2N matrix B is obviously the transformation on the operators. However, we
are going to need the transformation on the states as well. There exists a theorem
due to Thouless [45] which gives a way to express a any state the vacuum state |0iy

when the states are Slater determinants. The theorem can be recast for bosons, and
the version we will using is given by [46]:

|0iy = fh0|0iy exp

"
1
2 Â

k
Â

l
Mkl f†

k f†
l

#
|0if, (6.108)
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where, for two different Tyablikov-Bogoliubov transformations


x

x
†

�
=


O P⇤

P O⇤

� 
f
f†

�
=


W X⇤

X W⇤

� 
y
y†

�
, (6.109)

the matrix M = ZT is given by

M =

✓h
OTX � PTW

i h
O†W � P†X

i�1
◆⇤

. (6.110)

The overlap integral between the two vacuum states is

fh0|0iy = exp

�

1
2

Tr loge

⇣
O†W � P†X

⌘�
. (6.111)

With the expression (6.108) relating the vacuum states of two different Bose oper-
ators, we can in principle evaluate inner products of the form hfj|0i. Any eigenstate
|fji of the full Hamiltonian (6.50) can be reached by application of a product of raising
operators f† to the vacuum state |0if. Hence,

’
j
hnf

j |0i = fh0|0iy fh0|’
j

fj exp

"
1
2 Â

k
Â

l
Mkl f†

k f†
l

#
|0if, (6.112)

where nf
j is the number of f-magnons in mode j. First of all we notice that odd-

numbered magnon states have zero overlap with the ground state, so the laser pulse
cannot excite odd numbers of magnons. Second, if we look closer at the matrix Z
we will find that the overlap is nonzero only for states ’j |nji that contain an equal
amount of magnons from the a-brach and b-branch. To see this, we can write

W =


U0 0
0 Y0

�
, X =


0 V 0

Z0 0

�
. (6.113)

The matrix products in (6.110) are then easily found to be

OTX � PTW =


0 UTV 0

� ZTY0

YTZ0
� VTU0 0

�
, (6.114)

O†W � P†X =


U†U0

� Z†Z0 0
0 Y†Y0

� V†V 0

�
. (6.115)

Assuming U†U0
� Z†Z0 and Y†Y0

� V†V 0 are invertible, we have [47]

⇣
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��1 0
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��1

#
. (6.116)

Thus,

M =

"
0

�
UTV 0

� ZTY0
� �

Y†Y0
� V†V 0

��1

�
YTZ0

� VTU0
� �

U†U0
� Z†Z0

��1 0

#⇤
.

(6.117)
The first N

2 elements of f belong to the a-branch and the remaining N
2 elements

belong to the b-branch. So if k 
N
2 so that fk is an a-magnon, we see that the nonzero
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elements on the k-th row of M are all in columns with l > N
2 , and fl in this case is a

b-magnon.
Suppose we have a state with two magnons (one from each branch). Then,

fh0|fifj exp

"
1
2 Â

k
Â

l
Mkl f†

k f†
l

#
|0if =

1
2 Â

k
Â

l
Mkl

�
dk,idl,j + dk,jdl,i

�

= Mj,i,

(6.118)

where the first equality follows from the Bose commutators and the last equality fol-
lows from the fact that M is symmetric. So the overlap with the ground state |0iy is
simply given by the matrix element Mj,i times the overlap between the vacuum states
given by (6.111). For states with four magnons (two from each branch) or more, we
are required to do more complicated calculations. In general, a state with n magnon
pairs will require calculation of

fh0|
j2n

’
j=j1

fj

N

Â
k1=0

· · ·

N

Â
kn=0

1
n!

✓
1
2

◆n
Mk1,k2 Mk3,k4 · · · Mk2n�1,k2n f†

k1
f†

k2
· · · f†

k2n
|0if, (6.119)

where the factor 1
n!
� 1

2
�n is from the exponential. There exists a therorem, known as

Wick’s theorem, that can be used to calculate such matrix elements by reordering the
sequence of the operators f, f† to normal order, which means that all creation op-
erators are to the left of all annihilation operators. I do not have the time to start
evaluating the inner products of the form (6.119), but I will make some general re-
marks.

Straight away we notice that the factor 1
n!
� 1

2
�n will become very small when n

grows large. However, according to Wick’s theorem,

fh0|fj1 · · · fj2n f†
k1
· · · f†

k2n
|0if = Â

perm.
dk1,jj dk2,j2 · · · dk2n,j2n , (6.120)

where the sum runs over all permutations of the indices k and j (assuming each op-
erator fj enters only once). From what I can tell this amounts to 2n! permutations,
so states with many magnons need not have vanishingly small overlap with |0if. We
therefore have to calculate the overlap between |0if and every other state in Hilbert
space, which on its face seems like a very large problem. We can write this problem
compactly as

fh1j1 · · · 1j2n 0j2n+1 · · · 0jN |0if =
1

n!2n Â
perm.

Mj1,j2 · · · Mj2n�1,j2n , (6.121)

where the sum runs over all permutation of the indices j, which specify which magnons
are excited in the state whose overlap with |0if we seek. For instance, if we have a
state |1a1b1c1di with two magnon pairs (four magnons in total), the overlap is

h1a1b1c1d|0if =
1
8
(Mab Mcd + Mab Mdc + Mac Mbd + Mac Mdb + Mad Mbc + Mad Mcb

+ Mba Mcd + Mba Mdc + Mbc Mad + Mbc Mda + Mbd Mac + Mbd Mca

+ Mca Mbd + Mca Mdb + Mcb Mad + Mcb Mda + Mcd Mab + Mcd Mba

+ Mda Mbc + Mda Mcb + Mdb Mac + Mdb Mca + Mdc Mab + Mdc Mba).
(6.122)
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Although each term is a just a product of matrix elements and is calculated in a frac-
tion of a millisecond on any computer, the fact that there are so many (2n!) of them
makes this approach rather useless. The only thing I can think of that would save this
approach is if we could prove that the highly occupied states have negligible overlap
in some other way, but I have not found one.

The calculation of matrix elements of the form hyh|fji = hfj|yhi
⇤ follows imme-

diately from (6.108):

hfj|yhi = fh0|0iy fh0|
j2n

’
j=j1

h2m

’
h=h1

fjy
†
h exp

"
1
2 Â

k
Â

l
Mkl f†

k f†
l

#
|0if, (6.123)

where m is the number of y-magnon pairs. This is essentially the same problem as the
previous overlap, but the magnons yh have to be expressed in terms of the magnons
fj by making the transformation


y
y†

�
=


W X⇤

X W⇤

��1 O P⇤

P O⇤

� 
f
f†

�
. (6.124)

However, the problem is even more complex because of the number of terms in the
transformation (6.124). Again, I think that unless it can be shown that the highly
occupied states have very negligible overlap with states near the ground state, these
calculations become too large for any reasonably sized magnet.
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Chapter 7

Summary, Outlook & Some
Reflections

In this thesis I have studied quantum antiferromagnets using spin wave theory. I
began with the basics, building on little more than a fundamental understanding of
quantum mechanics usually acquired in a one-semester undergraduate course. From
there I started building up the theory of bosonic spin waves piece by piece. In Chap-
ter 4 I outlined the approach for studying static antiferromagnets, i.e. how the exci-
tation and annihilation of spin waves can be combined so that the time-independent
Heisenberg Hamiltonian becomes diagonal, from which the eigenstates and energy
eigenvalues are easily obtained. This was the first encounter with the Bogoliubov
transformation, which plays a central role in the subsequent chapters. I also briefly
discussed the stability of antiferromagetic order, showed how magnetic anisotropy
increases this stability and how the effect of easy-axis anisotropy can be included
in the calculations with minimal difficulty. This triviality was used as justification for
ignoring anisotropy and instability in the following discussion. The purpose of Chap-
ter 4 was to introduce the techniques that are used in conventional spin wave theory,
which are also used for the more interesting case of antiferromagnetic spin dynamics.

Chapter 5 was devoted to the study of these dynamics launched by interaction be-
tween the magnet and electromagnetic waves. I showed how the electric field triggers
dynamics as a results of a perturbation of the exchange interactions, greatly elaborat-
ing on the discussion and theory section of a recently published article on the subject
[18]. A series of important concepts were developed in that chapter, including a link
between the physics of spin and the mathematical concept of groups. While the spin
correlations and Néel vector dynamics were described well without the results of the
group theory discussion, it turned out that knowledge of the SU(1,1) group would
allow us to study the state of the magnet after the excitation because the states were
Perelomov coherent states of this group. Despite some confusion about what is meant
by "coherent" in this regard, I showed how these states were fully described by a sin-
gle parameter and I outlined how this parameter connects the action of the perturba-
tions on the quantum state to the rotation of a vector on the upper sheet of a hyper-
boloid. As well as providing an elegant description of the magnetic quantum states,
the coherent state parameter can be treated semiclassically to capture the quantum
femtosecond dynamics that complement classical dynamics, which are described by
the Landau-Lifshitz equations (Chapter 3) and characterized by considerably longer
time scales.

In Chapter 6 I attempted to look at the implications of using spatially nonuniform
excitation fields, which from what I can tell has not been done before. As a start I
continued with the Fourier and Bogoliubov transformations that had been so effec-
tive in dealing with uniform excitation fields, following the same steps as in Chapter
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5 but with a factor in the perturbation part of the Hamiltonian that captured the spa-
tial profile of the exciting electric field. While this approach was tangible, the loss
of translational invariance made the Fourier transform less suited to reduce the com-
plexity in the calculations. The correction to the Néel vector dynamics caused by the
nonuniformity of the exciting electric field was calculated and found to be of second
order in the perturbation strength and duration. In an effort to reduce the complex-
ity of the calculations, I studied the generalization of the Bogoliubov transformation
described by Tyablikov [44], which can diagonalize any quadratic form such as the
Hamiltonians in this thesis. I proved this for the Heisenberg Hamiltonian with a con-
stant exchange perturbation with respect to time, and I did so in a way that illustrates
the separation and independence of the two branches of the magnon spectrum.

After having written computer code that could diagonalize the Heisenberg Hamil-
tonian with or without the exchange perturbation, I started developing the machinery
for finding the quantum state of the magnet following a sudden pulse of excitation
in the final part of Chapter 6. I showed how the problem reduces to an evaluation
of inner products and I outlined how those inner products can be evaluated using
only the results from the numerical diagonalization. The discussion was cut short by
my running out of time before the thesis submission deadline, so I ended with some
thoughts on what it would take to make this approach viable. I left the discussion on
a rather pessimistic note, though I am not certain that obstacles I see are as difficult to
overcome as they appear as of this writing.

Going forward, I think it will be worthwhile to consider whether the evaluation
of inner products can be made simple enough to make the sudden approximation a
realistic approach. Its strength lies in its conceptual simplicity and ability to handle a
wide range of perturbations for relatively large magnets; most current laptops would
have little trouble handling magnets of size roughly 100-by-100 spins. It could turn
out that the number of approximations needed to make this approach work is simply
too great. If so, then at least the knowledge of why it does not work will guide the
next attempt at studying the problem.

Having worked on this project for quite some time, it has become increasingly
clear to me that there are shortcomings to all approaches, and that only by attacking
the problem from multiple angles can a proper understanding be built. The main
thing I take away from my thesis – apart from how to use all the techniques presented
in the previous chapters – is that I now have a much better understanding of the
strengths and weaknesses of some of the tools used in the study of quantum magnets.
This is important because it enables me to appreciate what makes a problem difficult,
and only by understanding the problem can I really hope to find a solution. Most of
this thesis was written before I had my current level of understanding, and often have
I felt that I was taking a shot in the dark, especially when the literature could no longer
guide me. But every missed attempt at a solution has grown my understanding of the
problem, like a lumberjack who learns where to strike a tree to bring it down. So the
next time I swing my axe, I will have a better idea of where I should strike. And as
we all know: a tree does not fall with the first swing. "Eigi fellr tré við fyrsta hǫgg".
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Appendix A

Spin correlations and Néel vector
dynamics calculations

The following commutators were evaluated to arrive at the results in Section 6.1.1.

A.1 Commutators involving the 2M raising operator
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A.2 Commutators involving the 2M lowering operator

A.2.1 First order
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A.2.2 Second order
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