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Summary

To relate structural features to properties, phase and orientation mapping is widely used
to get information on for instance grain size distributions, crystallographic textures and
possible orientation relationships. In transmission electron microscopy, orientation map-
ping can be achieved with nanometer spatial resolution by performing scanning electron
diffraction, where a two-dimensional diffraction pattern is recorded at each pixel in a two-
dimensional scan region. Subsequent data processing and analysis is required to obtain
orientation maps, which is most commonly achieved by model based template matching.
In template matching, each experimental diffraction pattern is compared to a template bank
consisting of simulated patterns for all possible candidate phases and orientations.

This project improves the electron diffraction-based template matching procedure in
the open-source Python library pyXem, by adding two new methods for correlating ex-
perimental diffraction patterns to simulated candidate patterns; Zero-normalized cross-
correlation (ZNCC) and full-frame correlation (FFC). The two methods and the estab-
lished normalized cross-correlation (NCC) method available in pyXem were evaluated
and compared. This was done by running the template matching procedure on simulated
and experimental data from GaSb and mordenite, using different test set ups such as tilt
series. This work shows that all three methods are able to distinguish between signals from
different orientations for the ideal case where every signal has a perfect fit in the template
bank. When the simulated orientations were taken from a grid of constant angular spacing
on the fundamental zone, the NCC method provided the best results for both GaSb and
mordenite. The NCC method is also the fastest method, and requires less memory than
FFC. For experimental data, all the methods failed for the parameters used for generating
the template library.

For this comparative study, a new metric for evaluating the reliability of a template
matching result, labeled weighted reliability index (WRI), was proposed. WRI provided a
more accurate evaluation of the orientation result than the established reliability index for
all test cases of simulated GaSb and mordenite in this work. To ensure the correctness of
the methods applied in this work, key functionalities of the template matching procedure
in pyXem were investigated, including generation of a list of candidate orientations in
the fundamental zone and kinematic simulation of diffraction patterns. It was found that
the functions for generating a list of candidate orientations demonstrated unsatisfactory
performance for cubic structures, because the fundamental zone is not fully covered. Con-
sequently, the current version of pyXem must be further improved with regards to template
matching by correcting issues as complete covering pointed out in this work.

Future research should focus on improving the template matching procedure, in first
instances to tilt series, by improving the method for simulation of diffraction patterns.
While the new methods implemented here did not improve template matching for the test
cases, it might be better for precessed tilt series and data acquired with better detector
technology (ie Direct detection).
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Sammendrag

For å relatere strukturelle trekk ved et materiale til dets eganskaper er fase- og orientasjon-
skart mye brukt, for å få informasjon om fordelingen av korn, krystallografisk tekstur og
mulige sammenhenger mellom orientasjoner. I transmisjonselektronmikroskopi kan ori-
entasjonskartlegging gjøres med en romlig oppløsning på nanometerskala ved å utføre
en elektrondiffraksjonsskanning, der et todimensjonalt diffraksjonsmønster blir registrert
for hver pixel i et todimensjonalt testområde på prøven. Påfølgende dataprossesering og
analyse er påkrevd for å kunne lage orientasjonskart. Dette er vanligvis gjort ved hjelp
av modellbasert mønstersammenligning. I en mønstersammenligning blir hvert ekspri-
mentelle diffraksjonsmønster sammenlignet med en bank av simulerte mønstre for alle
mulige kandidatfaser og orientasjoner.

I dette prosjektet forbedres den elektrondiffraksjonbaserte mønstersammenligningen i
det åpent tilgjengelige Python biblioteket pyXem, ved å legge til to nye metoder for sam-
menligning av eksperimentelle differasjonsmønstre til simulerte kandidatmønstre: Null-
normalisert krysskorrelasjon (NNKK) og helbilde korrelasjon (HBK). De to metodene og
den veletablerte normalisert krysskorrelasjon (NKK), som er tilgjengelig i pyXem ble eval-
uert og sammenlignet. Dette ble gjort ved å kjøre mønstersammenligningsprosedyren på
simulerte og eksperimentelle data fra GaSb og mordenite, ved å bruke forskjellige testsitu-
asjoner, som blant annet en rotasjonsserie. Dette arbeidet viser at alle de tre metodene kan
skille mellom mønstre fra forskjellige orientasjoner for den ideele situasjonen der hvert
mønster har en perfekt match i banken av simulerte mønstre. Når de simulerte orienterin-
gene blir tatt fra et nett med en grads mellomrom i det symmetrireduserte orientasjonsrom-
met er det NKK metoden som gir de beste resultatene for både GaSb og mordenite. NKK
metoden er også den raskeste og krever mindre minne enn HBK. For eksperimentelle data
feilet alle metodene for parameterene som ble brukt for å generere en bank av simulerte
mønstre.

I dette sammnenlignende studiet ble en ny parameter for å måle et orientasjonsre-
sultat, kalt vektet troverdighetsindeks, foreslått. Vektet troverdighetsindeks gav en mer
presis vurdering av mønstersammenligningsresultater enn den etablerte troverdighetsin-
deksen for alle testsituasjoner med simulert GaSb og mordenite i dette arbeidet For å sikre
at metodene som blir brukt i dette arbeidet er riktig implementert, ble nøkkelfunksjoner
i mønstersammenligningsprosedyren i pyXem testet. Dette inkluderer funksjonen for å
lage en liste med kandidatorientasjoner i det symmetrireduserte orientasjonsrommet, og
simuleringen av kinematiske diffraksjonsmønster. Det ble oppdaget at funksjonen for å
generere kandidatorientasjoner leverte utilfredsstillende resultater for kubiske strukturer,
fordi listen ikke dekket hele det symmetrireduserte orientasjonsrommet. Det er derfor vik-
tig at den nåværende versjonen av pyXem blir videreutviklet for mønstersammenligning
ved å korrigere problemene som ble påpekt i dette arbeidet.

Videre arbeid bør fokusere på å virereutvikle mønstersammenligningsprosedyren, i
første omgang for rotasjonsserier, ved å forbedre hvordan mønstre blir simulerte. De nye
metodene som ble implementerte i denne oppgaven forbedret ikke mønstersammenligning
for testsituasjonene, men de kan muligens være bedre når rotasjonsserien blir avbildet med
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presesjon av elektronstrålen, og når en bedre detektorteknologi er i bruk, som muliggjør
direkte avbilding.
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to Håkon Wiik Ånes for your participation in discussions throughout the year, and for pro-
viding much appreciated help with the MTEX software and high performance computing.
Thank you to Dr Duncan Johnstone and Phillip Crout for your help and encouragement
with anything related to pyXem, and for your input and suggestions for the method devel-
opment.

Eirik Opheim

iii



iv



Contents

Summary i

Summary i

Preface iii

Contents vii

Abbreviations viii

1 Introduction 1
1.1 Motivation and background . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Basic Theory 5
2.1 Crystallography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Initial definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Fundamental mathematical tools . . . . . . . . . . . . . . . . . . 6
2.1.3 Crystal planes and Miller indices . . . . . . . . . . . . . . . . . . 7
2.1.4 Reciprocal Space . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Electron-matter interaction . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Further scattering criteria . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The transmission electron microscope and electron diffraction techniques 18
2.3.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Scanning Precession Electron Diffraction . . . . . . . . . . . . . 22
2.3.3 Rotation electron diffraction . . . . . . . . . . . . . . . . . . . . 24

2.4 Representation of orientation . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Euler angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Axis-angle representation . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Rotation matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



2.5 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.2 Template matching . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.3 Confidence Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.4 Evaluating Confidence Metrics . . . . . . . . . . . . . . . . . . . 34
2.5.5 Visualization of Reliability . . . . . . . . . . . . . . . . . . . . . 35

2.6 Testing the procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6.1 The von Mises - Fisher distribution . . . . . . . . . . . . . . . . 37

3 Methods 39
3.1 Material and Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Template matching for simulated data . . . . . . . . . . . . . . . . . . . 40
3.3 Template matching for experimental RED data . . . . . . . . . . . . . . 42
3.4 Hard- and Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Results 45
4.1 Simulated GaSb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Perfect Template Bank . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.2 1 Degree Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.3 Random Orientations . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 GaSb Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Simulated Mordnite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Perfect Template . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2 1 Degree Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 Random Orientations . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Mordenite Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Discussion 89
5.1 Choice of tilt series for GaSb . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Confirming that the orientation list spans the Fundamental Zone . . . . . 94
5.3 Evaluating template matching for simulated data . . . . . . . . . . . . . . 96
5.4 Reliability scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5.1 NCC on experimental GaSb . . . . . . . . . . . . . . . . . . . . 101
5.5.2 ZNCC on experimental GaSb . . . . . . . . . . . . . . . . . . . 101
5.5.3 FFC on experimental GaSb . . . . . . . . . . . . . . . . . . . . . 101
5.5.4 NCC on experimental mordenite . . . . . . . . . . . . . . . . . . 102
5.5.5 ZNCC on experimental mordenite . . . . . . . . . . . . . . . . . 102
5.5.6 FFC on experimental mordenite . . . . . . . . . . . . . . . . . . 102

5.6 Comparison of correlation methods . . . . . . . . . . . . . . . . . . . . . 103
5.6.1 NCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.6.2 ZNCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.6.3 FFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Conclusion 111

vi



7 Future Work 113
7.1 Improvements to the simulation model . . . . . . . . . . . . . . . . . . . 113
7.2 Taking experimental data with PED . . . . . . . . . . . . . . . . . . . . 113
7.3 Developing visualization tools to follow the FFC process . . . . . . . . . 113
7.4 Confusion matrix for the WRI . . . . . . . . . . . . . . . . . . . . . . . 114
7.5 Further development of tilt series testing . . . . . . . . . . . . . . . . . . 114

Bibliography 115

Appendices

A Mathematical proofs 123
A.1 Equation (2.12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.2 Maximum likelihood estimate for the Fisher - Matrix distribution . . . . . 125

B Code description 129
B.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.2 Simulating diffraction patterns . . . . . . . . . . . . . . . . . . . . . . . 129

B.2.1 Finding a proper set of orientations . . . . . . . . . . . . . . . . 129
B.2.2 Simulating data from a given orientation . . . . . . . . . . . . . . 130

C Computer code 133
C.1 Python code for analyzing random orientations . . . . . . . . . . . . . . 133
C.2 Python code tilt series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
C.3 Matlab Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

vii



Abbreviations

BFP = Back focal plane
CBED = Convergent beam electron diffraction
Cryo-EM = Cryogenic electron microscopy
CSM = Correlation score map
DF = Dark-field
EELS = Electron energy loss spectroscopy
FCC = Face-centered cubic
FFC = Full-frame correlation
NCC = Normalized cross-correlation
PED = Precession electron diffraction
RI = Reliability index
SAP = Selected area plane
SPED = Scanning precession electron diffraction
ZNCC = Zero-normalized cross-correlation

viii



Chapter 1
Introduction

1.1 Motivation and background

In the history of engineering, understanding fundamental properties of materials has been
a key factor in technological development. Central to the entire discipline of material sci-
ences is the understanding of how microscopic structures relate to macroscopic properties.
In the field of nanotechnology, the properties of a material are controlled by the length of
the material in the nm regime [1][2]. In order to properly analyze engineering and nanoma-
terials we require a means to measure this length scale. Transmission electron microscopy
(TEM) is a powerful tool in that length scale, and as technique well established.

TEM emerged during the 1930s when Max Knoll and Ernst Ruska built a microscope
that achived a resolution of 50 nm and a magnification of 12 000x [3]. A lower bound to
the obtainable resolution is given by the wavelength of the electrons in TEM. The reported
resolution of 50 nm is much bigger than the wavelength of the electrons, that would be of
25 pm for 200 kV TEM experiments. The basic components of the microscope have not
changed substantially since the late 1940s, but the introduction of aberration correction
on the apparatus lenses allow modern TEM devices to routinely provide images with a
resolution of 390 pm[4]. Although remarkable progress is made in terms of resolution,
there is a downside: achieving this resolution comes at the cost of expensive instruments,
requirements to the specimen and a cost in terms of electron dose inflicted to the specimen.
Any of these could be a showstopper in achieving high spatial information. I want to
work towards advantages of electron diffraction, as this technique has a lower cost due to
its technical simplicity and requires a lower dose of electrons. Diffraction lies the basic
principle in image formation in a TEM and in general it has been the principle behind
structural analysis starting with Bragg (ZnS) [5], to discovering the double helix structure
of DNA [6] to current rational drug design to battle COVID19 [7].

Relevant structural information such as what crystal phase or strain distribution we
have around anomalies at the nm scale can be studied directly by electron diffraction. De-
tailed structural analysis can be done by convergent beam electron diffraction (CBED)[8].
However, due the strong matter-electron interaction, this and other electron diffraction
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Chapter 1. Introduction

based techniques will require more demanding dynamic diffraction refinements in the
analysis which are complex. Recording series of diffraction patterns and applying dynamic
refinements has demonstrated that ab initio structure determination can be done. A prime
example is the work by Lukas Palentinus [9] where even hydrogen positions in aspirine
molecules could be analyzed using very small volumes and rather simple TEM hardware.
This approach is getting huge attention currently [10] as it can solve structures at low dose
from 10 nm large particles, including proteins at a fraction of the costs analysis using
corrected TEM and CryoEM [11]. One method for collecting three-dimensional electron
diffraction data is Rotation Electron Diffraction (RED), which routinely collects complete
three-dimensional electron diffraction data from crystals as small as tens of nanometres,
several orders of magnitude smaller than what can be studied on a synchrotron light source
[12].

An alternative way to reduce the dynamic contributions and hence to simplify the anal-
ysis, is to precess the electron beam and record a summed pattern [13]. As the incoming
beam come under different angles the pattern has weaker dynamical intensity variations,
and that can be analyzed by simpler kinematic diffraction theory [14]. The data analysis
can in many practical cases of structural analysis be further reduced by considering candi-
date structures. The experimental patterns are compared to a simulated bank of diffraction
patterns for relevant candidate phases and orientations. This process is labeled template
matching and can be automated [15]. The best match between experimental pattern and an
entry in the bank will give both crystal phase and orientation for the analyzed volume [16].
If the patterns are recorded point-by-point over the sample, phase and orientation maps can
be constructed down to a few nm spatial resolution [17]. Although in general it is accepted
that precessing the beam is beneficial for structural analysis [18][19], spatial resolution is
reduced, exposure time (ie dose) is increased as one precession round is needed, and the
intensity is debated [19] [20].

1.2 Objectives
A great deal of work has been undertaken to optimize experimental conditions to best
fit a kinematic simulation model [13]. It is still unclear how accurate the final result of
a template matching procedure for obtaining an orientation map is, when diffraction pat-
terns simulated with kinematic theory are matched to experimental precessed and dynamic
scattered diffraction patterns. Some of the applied algorithms have hardly been evaluated
since they were introduced [15]. The software that offer these algorithms is static and
often non-transparent. To address this, open-source software is used in the present project.

The major objective of this study was to provide an analysis of how well newly im-
plemented correlation method perform compared to the current implementation of tem-
plate matching in the crystallographic python library pyXem when experimental data is
compared to kinematic simulated templates. This should provide general insights on the
precision of the common approach of template matching for ED, allowing systematic im-
provements to the acquisition, simulation and matching routines. As the software applied
for performing template matching is an open-source library still in the beta phase, this
dissertation is dedicated to evaluating and improving key template matching functionality,
and ensure that it is correct and robust for the wider user base. In particular, this function-
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1.2 Objectives

ality should be applicable to the problem of comparing multiple template matching results
from a specific area on a single sample or, like in RED where ED data is collected for dif-
ferent sample orientations with a roughly know tilt relation to each other. By comparing
template matching results from different sample orientations it can be determined if the
obtained results from the template matching approach results are self-consistent. Such a
procedure will be applied in this project, with the aim of better determining orientations
and reducing uncertainty in orientations obtained from template matching.
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Chapter 2
Basic Theory

In order to appreciate transmission electron microscopy and its applications to solid ma-
terials, a thorough understanding of crystallography is a prerequisite. All diffraction tech-
niques make extensive use of the concept of reciprocal space, and TEM is a tool for
directly probing this space. Our theoretical development of both the crystal space and
the reciprocal space, has the mathematical footing of non-Cartesian vector calculus. The
objective of the following discussion is to relate crystal structures and their orientation
to a projection in the reciprocal space. We will be following the book Introduction to
conventional Transmission Electron Microscopy[3].

2.1 Crystallography
From a purely mathematical point of view, crystallography can be described as vector
calculus in a rectilinear, but not necessarily orthonormal or orthogonal reference frame.
For such a system we will define the vector dot product, the vector cross product, the
computation of the length of a vector and the angle between two vectors as our basic
mathematical tools.

2.1.1 Initial definitions
We can define a crystal structure as a regular arrangement of atoms decorating a periodic,
three-dimensional lattice. The lattice is described by three basis vectors a1, a2 and a3, so
that every point on the lattice is a linear combination of the basis vectors

tuvw = ua1 + va2 + wa3 u, v, w ∈ Z (2.1)

The vector in Equation (2.1) represents a direction in the crystal lattice and can be denoted
by the symbol [uvw]. Negative indices are denoted by a bar above the corresponding
index.

The length of a vector is represented by the norm symbol, so that |a1| = a, |a2| = b
and |a3| = c. The angles between the basis vectors are called α, β and γ. The set of
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αβ

γa

b

c

Figure 2.1: A general schematic representation of a unit cell, illustrating the basis vectors and the
angles between them.

numbers {a, b, c, α, β, γ} are known as the lattice parameters of the unit cell illustrated
in Figure 2.1. They can be used to distinguish between seven crystal systems. A basic
property of a lattice is that all lattice sites can be selected as the origin. The seven crystal
systems give rise to seven primitive lattices with one lattice site per unit cell. We can
create additional lattices by introducing so called centering vectors inside the unit cell.
The possible centering vectors are:

A = (0, 1
2 ,

1
2 )

B = ( 1
2 , 0,

1
2 )

C = ( 1
2 ,

1
2 , 0)

I = ( 1
2 ,

1
2 ,

1
2 )

A lattice with the I-vector present is called body centered. If the A,B and C vectors are all
present at the same time, the lattice is called face centered.

2.1.2 Fundamental mathematical tools
We will introduce the Einstein summation convention for the following section, and pro-
ceed to define the vector dot product, the vector cross product, the computation of the
length of a vector and the angle between two vectors. The Einstein summation convention
is defined: If a subscript occurs twice in the same term of an equation, then a summation
is implied over all values of this subscript and the corresponding summation sign need
not be written. A vector can be described by a linear combination of basis vectors in a
rectilinear plane. In the Einstein summation convention, this is written

p = piai, (2.2)

where pi are the linear weights. The dot product of two vectors p and q can be defined
by[21]

p · q = |p| |q| cos θ, (2.3)
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and the cross product between p and q can be defined by

p× q ≡ sin θ |p| |q| ẑ, (2.4)

where θ is the angle between p and q and ẑ is a unit vector perpendicular to both p and q.
We will further develop the vector cross product when we have introduced the reciprocal
space. By Equation (2.2) and (2.3) the length of a vector in a non-Cartesian reference
frame is given by

|p| =
√

p · p =
√
pi(ai · aj)pj .

The quantities ai · aj are fundamental in crystallography, and are therefore denoted by the
symbol

gij ≡ ai · aj = |ai| |aj | cos θij , (2.5)

commonly referred to as the direct metric tensor. The matrix gij is symmetric and has
six independent components, corresponding to the six lattice parameters {a, b, c, α, β, γ}.
The dot product between two vectors p and q is given by

p · q = piai · qjaj = pigijqj . (2.6)

From Equation (2.3) the angle θ between two vectors p and q is given by

θ = cos−1

(
p · q
|p| |q|

)
= cos−1

(
pigijqj√

pigijpj
√
qigijqj

)
. (2.7)

The tools developed above will be used as a mathematical basis for our further develop-
ment of crystallography.

2.1.3 Crystal planes and Miller indices
Description of crystal planes is a fundamental part of crystallography. While there are
many possible ways to describe a plane, it is customary to use the hkl notation and the
so-called Miller indices. Although the Miller indices were used by several crystallogra-
phers before Miller, they are attributed to Miller due to their extensive use in his book on
crystallography from 1839[22], and because he introduced the hkl notation. The Miller
indices of a plane in an arbitrary crystal can be obtained in the following way.

1. If the plane goes through the origin, translate it along the plane normal so that it no
longer contains the origin.

2. Determine the intercepts of the plane with the three basis vectors. Call those inter-
cepts s1, s2 and s3. The intercepts must be measured in units of the basis vector
length. If a plane is parallel to one or more of the basis vectors, then the correspond-
ing intercept values must be taken as∞.

3. Invert all three intercepts. If one of the intercepts is ∞, then the corresponding
number is zero.

4. Reduce the three numbers to the smallest possible integers (relative primes).
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5. Write the three numbers surrounded by round brackets. This triplet 1 of numbers
forms the Miller indices of the plane.

Parallel planes have the same Miller indices, but they behave different in a diffraction
experiment. It is therefore often necessary to consider planes of type (nh nk nl) where n
is a non-zero integer.

It is useful to relate the Miller indices to a vector that conveys meaningful information
about the corresponding plane. In order to do so, we will introduce a new set of basis
vectors a?i , a?j and a?k, known as the reciprocal basis vectors. We will later on see that the
vector g = ha?k + ka?k + la?k is perpendicular to the plane with Miller indices (hkl). The
set of plane normals equivalent to (hkl) is denoted by the family hkl, and the number of
members in the family depends on the point symmetry of the crystal [3].

2.1.4 Reciprocal Space
The reciprocal basis vectors can be defined from the following definition:

ai · a?j ≡ δij , (2.8)

where δij is the Kronecker delta, which is equal to 1 for i = j and 0 for i 6= j. From
Equation (2.8), considering the cases where δij = 0, we have that

a?1 = K(a2 × a3),

where K is a constant and × is the cross product as defined in Equation (2.4). We can
determine the value of K by considering a case where δij = 1. We then find

a1 · a?1 = Ka1 · (a2 × a3) = 1,

giving

K =
1

a1 · (a2 × a3)
≡ 1

Ω
,

where Ω is the volume of the unit cell formed by the direct-space lattice vectors. Following
the same procedure the set of reciprocal lattice vectors can be defined:

a?1 =
a2 × a3

a1 · (a2 × a3)

a?2 =
a3 × a1

a1 · (a2 × a3)

a?3 =
a1 × a2

a1 · (a2 × a3)
.

(2.9)

The reciprocal lattice is defined as the set of end-points of the vectors

g = ha?1 + ka?2 + la?3 =

3∑
i=1

gia?i = gia?i , (2.10)

1Triagonal and hexagonal lattices may be described with four axes (hkil), where i = -(h+k).
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2.2 Electron-matter interaction

where h, k and l are all integers. We will now investigate the relationship between the
reciprocal lattice vector g and the plane with Miller indices (hkl).

We find all direct space vectors r that are perpendicular to the vector g by the use of
Equation (2.3). This gives

0 = r · g = (riai) · (gja?j ) = ri(ai · a?j )gj = rigi, (2.11)

where we have used Equation (2.8) to compute the last dot product. We see from Equation
(2.11) that hx + ky + lz = 0 if r is perpendicular to g. This relation is the Equation of a
plane through the origin of the direct crystal lattice. If a plane crosses the basis vectors ai
in the positions si, then the Equation of that plane is given by [23]

x

s1
+

y

s2
+

z

s3
= 1, (2.12)

where (x,y,z) is a point in the plane. For parallel planes, the left hand side of Equation
(2.12) can be written equal, whereas the right hand side will differ by a given factor. In
particular, a plane containing the origin will have 0 on the right hand side of Equation
(2.12). A proof on this is provided in Appendix A.1. Comparing Equations (2.11) and
(2.12) we find that h, k and l are reciprocals of the intercepts of a plane with the direct
lattice basis vectors. We conclude that the reciprocal lattice vector g, with components
(h,k,l), is in fact perpendicular to the plane with Miller indices (hkl).

As the reciprocal lattice vector is perpendicular to the (hkl) plane, the unit normal to
this plane is

n =
ghkl
|ghkl|

.

The perpendicular distance from the origin to the (hkl) plane is given by the projection of
any vector t ending in the plane onto the plane normal n. This distance is by definition the
interplanar spacing dhkl

t · n = t · ghkl
|ghkl|

≡ dhkl.

We know that the (hkl) plane intersects the direct basis vectors in the points 1
h , 1

k and 1
l .

We can therefore set t = a1
h and obtain

t · ghkl =
a1

h
· (ha?1 + ka?2 + la?3) =

a1

h
· ha?1 = 1 = dhkl |ghkl| .

We observe that we have
|ghkl| =

1

dhkl
, (2.13)

and we conclude that The length of a reciprocal lattice vector is equal to the inverse of the
spacing between the corresponding lattice planes.

2.2 Electron-matter interaction
We have now had a look at how a crystal can be described in both direct and reciprocal
space. We will proceed by examining the physics of a high energy electron beam passing
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Figure 2.2: Bragg diffraction illustrated for a plane wave incoming at angle θ on the plane (hkl).

through a crystal material, as is the case in TEM. In our exploration of the topic a basic un-
derstanding of quantum mechanics is assumed, including an understanding of the bra-ket
notation, and the interpretation of quantum states with regard to probability densities. For
an instructive introduction to the topic, see the first chapter of professor Linders booklet
[24], or any textbook on quantum mechanics. Certain aspects of relativity theory are also
of importance, especially when computing the wavelength of high energy electrons. For a
derivation of the relativistic de Broglie wavelength, please refer to [25].

A TEM experiment consists of three stages,

• The illumination stage, in which a beam of electrons is created in a well-defined
reference state.

• The interaction stage, in which the sample modifies the reference state of the elec-
tron beam.

• The observation stage, in which the modified electron beam is converted into a signal
that can be detected by the human eye.

We will put the emphasis of this section on the interaction stage. In the interaction stage
a beam of electrons is incident in certain angles on all planes in the material. By Snell’s
law the electrons will be reflected at the same angle as their incidence angle[26]. Different
parts of a reflected beam will have travelled different distances, as seen in Figure 2.2.
Bragg’s law tells us that we will have constructive interference if the difference in distance
travelled is an integer number of wavelengths

2
dhkl
n

sin θ = λ. (2.14)

While the Bragg Equation is elegant and handy in determining the diffraction angles θ, it
is not of great use if one wants to calculate the absolute direction of a diffracted wave for
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Figure 2.3: (a) Illustration of how a reflection changes the direction of the electron wavevector k in
reciprocal space. ghkl is the reciprocal lattice vector corresponding to the plane where the reflection
happens. (b) The reflected wavevector is translated to complete the vector sum k′ = k + ghkl.

a given crystal structure. We would like to treat electrons as plane waves and look for a
solution to the Bragg Equation in reciprocal space. By the de Broglie relation [27]

p =
h

λ
, (2.15)

or equivalently [28]
p = hk, (2.16)

where h is Planc’s constant, an electron of momentum p can be described by a plane wave
of wavelength λ. We see from Equation (2.16) that an electron can be described by both its
momentum vector p and its wavevector k. The electron wavevector is a vector in reciprocal
space which fully characterizes the direction and wavelength of a plane wave with respect
to the crystal lattice. We remember from Section 2.1 that a plane can be described by a
vector g, and seek to develop a reciprocal space equivalent of Equation (2.14). We see
from Figure (2.3) that the relationship between the momentum vector of the wave before
and after scattering is

k′ = k + ghkl. (2.17)

Projecting every term in the Equation onto ghkl and using Equations (2.13) and (2.15)
yields

k’ · ghkl = k · ghkl + ghkl · ghkl
|k| |ghkl| sin θ = − |k| |ghkl| sin θ + |ghkl|

2

sin θ

λ
= − sin θ

λ
+

1

dhkl

from which the Bragg Equation follows. We observe that the Bragg Equation is satisfied
whenever the point C in Figure 2.3b lies on the perpendicular bisector plane of ghkl.
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Figure 2.4: (a) Schematic representation of the Ewald Sphere, with center in C. Incoming electrons
have wavevector k and scattered electrons have wavevectors k’ and k”. α and α′ are the perpendic-
ular bisectors of g and g′. (b) For high energy electrons the wavevector k will be very long, and the
Ewald sphere will have a large radius. It will therefore appear almost flat when passing through a
crystal plane

The perpendicular bisector plane of ghkl consists of all points of equal distance from
the origin and the point (h,k,l) in reciprocal space. From this realization the simple geo-
metric construction shown in Figure 2.4 can predict possible directions of the diffracted
waves, when the incident wave vector and the crystal orientation are given. The construc-
tion is known as the Ewald sphere. To obtain the Ewald sphere, first draw the reciprocal
lattice with origin O. Then draw the incident wave vector k so that the endpoint coincides
with the origin. The starting point of k is taken to be the center of the sphere, of radius
|k| = 1

λ . Whenever a reciprocal lattice point falls on the sphere, the Bragg condition is
fulfilled and a diffracted wave with wavevector k′ = k+g may occur. For the construction
in Figure 2.4, k′ and k′′ are both possible scattering directions. Although the Ewald sphere
predicts scattering in a given direction we are not certain that scattering actually will occur.
We will further examine scattering conditions in the following section.

2.2.1 Further scattering criteria
For the high energy electrons observed in TEM the dominant scattering effect is scattering
due to the electrostatic potential of the specimen [29]. The quantum mechanical equation
governing the interaction therefore has two important contributions: The kinetic energy
term, which is controlled by the accelerating voltage of the microscope, and the electro-
static lattice potential V (r), which describes how the incoming electrons interact with the
sample. Finding the correct potential for a given crystal structure is a fundamental problem
of solid state physics. It turns out that, to a very good approximation, solids can be con-
sidered to consist of spherical point scatterers, represented by atomic scattering factors
fe(s), where s is a scattering vector. The true scatter potential is then the obtained scatter
potential plus contributions from interatomic bonds. The contributions from interatomic
bonds can be ignored for most TEM applications [3]. We will be considering scattering
from a single atom, and then proceed to consider scattering from an infinite crystal and
finally effects of having a crystal with a finite extent. Only elastic scattering is considered.

The scattering of electrons by a single atom is determined by the total charge distribu-
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2.2 Electron-matter interaction

tion of that atom
ρ(r) = |e| [ρn(r)− ρe(r)], (2.18)

where ρn is the nuclear charge distribution, and ρe is the electron charge distribution.
The electrostatic atom potential V a(r) is related to the charge density through Poisson’s
Equation[30]

∆V a(r) = −|e|
ε0

[ρn(r)− ρe(r)], (2.19)

where ∆ is the Laplacian delta operator. The probability amplitude that an incident plane
wave, with wave-vector k is scattered in direction k’ by the atomic scattering potential
V a(r) can be expressed in bracket notation, or equivalently in a familiar integral notation

P = 〈e2πik′·r|V a(r)|e2πik·r〉 =

∫
V a(r)e−2πi∆k·rdr, (2.20)

where ∆k = k′ − k is the momentum transfer vector. We define the atomic scattering
amplitude fe(∆k) to be equal to this probability amplitude, and note that this is the Fourier
transform of the atomic scattering potential

fe(∆k) =

∫
V a(r)e−2πi∆k·rdr. (2.21)

The atomic scattering factor fe(∆k) expresses the probability that a certain elastic mo-
mentum transfer will occur. The x-ray scattering amplitude fx(∆k) is defined as the
fourier transform of the electron charge density ρe(k) [31]. We can approximate the nu-
clear charge density by a delta function of weight Z, the atomic number, located at the
origin. Applying now the inverse Fourier transformation to Equation (2.21) and inserting
in Equation (2.19) we obtain

∆

∫
fe(∆k)e2πi∆k·rdk = −|e|

ε0

∫
[fx(∆k)− Z]e2πi∆k·rdk. (2.22)

As Equation (2.22) holds true for any volume in reciprocal space, the integrals can be
omitted, and by letting the Laplace operate on r we obtain

fe(∆k) =
|e|

4π2ε0 |∆k|2
[fx(∆k)− Z]. (2.23)

While studying crystals, it is customary to introduce the scattering vector ∆k = 2s. By
Braggs Equation (2.14) we can find the magnitude of s to be

s =
1

2dhkl
=

λ

sin θ
=

ghkl
2
. (2.24)

We can describe the scattering factor in terms of s as

fe(s) =
|e|

16π2ε0 |s|2
[fx(s)− Z]. (2.25)
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Chapter 2. Basic Theory

known as the Mott-Bethe formula. Equations (2.24) and (2.25) can be combined to obtain
different variations of the Mott-Bethe formula, useful for instance if scattering is to be
considered in terms of scattering angles.

So far we have looked at scattering from a single atom, we now turn our attention to
an infinite crystal. Such a system can be described by

T (r) =

u,v,w=∞∑
u,v,w=−∞

δ(r− tuvw), (2.26)

where tuvw is the direct lattice vector described in Equation (2.1). Every delta function
corresponds to a single unit cell on the lattice, and every unit cell containsN atoms located
at positions rj . The potential from a single unit cell can be described by

VCell(r) =

N∑
j=1

V aj (r− rj). (2.27)

The potential for the whole crystal is found by repeating the potential from a single unit
cell for every unit cell. This process can be described mathematically by a convolution
between the structure of unit cells and the structure within a unit cell

V (r) = VCell(r)⊗ T (r). (2.28)

The potential V (r) is periodic with the periodicity of the lattice. We can transform our
potential to frequency space by applying a Fourier transform

V (q) =
1

Ω
F [V (r)]. (2.29)

Applying the convolution theorem[32], and combining Equations (2.28) and (2.29) we find

V (q) =
1

Ω
F [VCell(r)]F [T (r)]. (2.30)

By applying the Fourier transform on Equation (2.27), and using our definition of the
atomic scattering amplitude in Equation (2.21) we find

F [VCell(r)] =

N∑
j=1

fej e
−2πiq·rj , (2.31)

where fj is the scatter contribution from a single atom, as seen in Equation (2.25). Apply-
ing the Fourier transform on Equation (2.26) we find

F [T (r)] =
∑

g

δ(q− g), (2.32)

where g is the reciprocal lattice vector as defined in Equation (2.10). We define the Fourier
coefficients of the electrostatic lattice potential as

Vg =
1

Ω

N∑
j=1

fej e
−2πiq·rj . (2.33)
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2.2 Electron-matter interaction

Inserting the Fourier transformed potential back into Equation (2.30) we obtain

V (q) =
∑

g

Vgδ(q− g). (2.34)

We observe that the Fourier transformed potential is discrete, and nonzero only on the
reciprocal lattice. Setting Vg constant we can show that, for a periodic potential, the delta
function in Equation (2.34) is equivalent to Bragg’s law. If Bragg’s law is fulfilled, but
Vg = 0 we will not have scattering.

A crystal is not infinite, and we will consider the effects of the finite extent of the
crystal on the reciprocal potential. The shape of the crystal can be described by a function
D(r), with the value 1 inside the crystal and zero outside the crystal:

D(r) =

{
1 inside
0 outside

(2.35)

This results in a finite crystal potential Vf (r), expressed as a product between the infinite
crystal potential and the shape function:

Vf (r) = V (r)D(r) (2.36)

We Fourier transform the potential and apply the convolution theorem to find

Vf (q) = F [V (r)]⊗F [D(r)]. (2.37)

As the δ-function is the identity operator for the convolution product, we can combine
Equations (2.34) and (2.37) to find

Vf (q) =
∑

g

VgD(q− g). (2.38)

We see that for a finite crystal the reciprocal potential is no longer a delta function, but
the Fourier transform of the shape function centered at the points of the reciprocal lattice.

The shape function depends on the geometry of the incoming electron beam and the
shape of the crystal. Most TEM experiments are carried out with a radially symmetric
electron beam and the enlightened volume is therefore, to a good approximation, cylin-
drical with top and bottom surfaces not necessarily flat or parallel. The shape function
D(r) is determined by the intersection between the incident beam and the specimen. The
thickness of the sample will usually be much smaller than the diameter of the enlightened
area. For a sample with thickness z0, and a beam of diameter D >> z0 we can approx-
imate D(q) by calculating the Fourier transformation of a foil of infinite extent in x- and
y-directions and thickness z0:

D(q) = z0δ(qx)δ(qy)
sin(πqzz0)

πqzz0
. (2.39)

The shape described by Equation (2.39) is a one-dimensional rod that extends in the di-
rection perpendicular to the foil. Because these rods reside in reciprocal space, they are
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Figure 2.5: The reciprocal shape functionD(q) for a foil of thickness z0, and the squared reciprocal
shape function.

called reciprocal lattice rods or relrods. The rod extend infinitely in reciprocal space, but
because of the rapidly decreasing nature of the function it can be approximated by a finite
volume. The function and its square are shown in Figure 2.5. In our derivation we have
made the approximation of an infinite foil. A general relrod will have a shape determined
by the specifics of the sample and beam geometry. With the introduction of relrods, we
no longer require that the Ewald sphere passes exactly through a reciprocal lattice point,
but that it intersects the corresponding relrod to fulfill the Bragg condition. We introduce
a deviation parameter s so that s is the distance from a point on the reciprocal lattice to the
Ewald sphere along the direction of the major axis of the relrod. That is, s = sez , as seen
in Figure 2.6b.

Considering now Figure 2.6a where the k vector has been extended to 2k in order to
become the diagonal of the Ewald sphere. The reciprocal lattice vector g and the vector
2k + g are drawn in the figure, for an arbitrary point on the Ewald sphere. Applying now
a classical mathematical result: For a triangle4O′PO where C is the midpoint of the line
OO′. If |CP | = |CO|, the triangle is a right triangle[33]. The inverse is also true. That
is: For a triangle 4O′PO where C is the midpoint of the line OO′, if the angle ∠O′PO
is a right angle, then |CP | = |CO|. Applying the aforementioned results together with
Equation (2.3) we can uniquely describe the Ewald sphere by:

(2k + g) · g = 0. (2.40)

For the situation where the deviation parameter s is also present, as described in Figure
2.6b, we can follow the same logic as we applied in the process of deriving Equation
(2.40) and obtain

(2k + g + s) · (g + s) = 0. (2.41)

By introducing the angle α between the vectors (k + g) and s we can rewrite Equation
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Figure 2.6: (a) Ewald sphere geometry where the k vector has been extended to become the diameter
of the sphere. g is the vector between two arbitrary points on the Ewald sphere. The angle ∠O′PO
must be 90◦. (b) The reciprocal lattice point is not on the Ewald sphere, but the relrod of P intersects
the sphere. The vector s translates the center of P to the Ewald sphere. The gray circle to the upper
left shows a magnified version of the gray circle in the lower left. The angle α is defined as the angle
between s and the line defined by the direction (k + g).

(2.41) to

s+
s2

2 |k + g| cosα
=
−g · (2k + g)

2 |k + g| cosα
≡ sg, (2.42)

where we have introduced the excitation error sg. The excitation error is positive when the
point P lies inside the Ewald sphere, as is the case in Figure 2.6b, and negative when P lies
outside the Ewald sphere. For high energy TEM the approximation (k + g) ≈ k can be
made to simplify Equation (2.42). The excitation error is an important parameter in TEM,
as the observed contrast for both perfect and defect crystals is highly dependant on sg.

So far we have assumed that scattering is elastic, and that the detected scattering has
experienced a single scattering event. In TEM we have both inelastic scattering[34] and
multiple scattering. The effects of inelastic scattering are the apperance of Kikuchi lines
for relatively thick samples [35]. We also have observed intensity in kinematically forbid-
den scattering directions when the forbidden direction can be expressed as the sum of two
allowed scatter directions [36], and the observed intensities deviate from the kinematically
predicted intensities. The theory of multiple scattering is the theory of dynamic scattering,
a more correct description of intensity distribution for a real sample, and well understood.
For the purposes of this report however, diffraction will be treated by the simpler kinematic
theory.

By considering a simplified example an estimate of the boundaries of the kinematic
model is made. In Equation (2.20) we have that the probability for an incident electron
in a given state to enter another state is given by the Fourier transform of the electrostatic
potential. We know from quantum mechanics that the probability density of finding a
particle in a given state equals the square of the wavefunction of that given state. Assuming
now that all incoming electrons are in a given state |e2πik·r〉, the direct beam. We let the
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sample have the form of a foil of thickness z0, and we make the two-beam approximation.
That is, all scattering goes from the direct beam to a single reflection. Diffracted electrons
are thus all in the state |e2πik’·r〉. As we initially had no electrons in the scattered state,
the weight of this state at the bottom of the sample is given by the Fourier transform of the
electrostatic potential, as seen in Equation (2.20). Using the result from Equation (2.39)
for the foil, and using that we have a single point of diffraction we obtain

ck’ = P = Vgt
sin(πszt)

πszt
. (2.43)

Where sz is the excitation error in the z-direction and t is the thickness of the sample. For
othogonal wavefunctions, as is the case for the two beam approximation, the intensity at
the point of diffraction is the square of the weight

Ik’ = c2k’ = (Vgt)
2 sin2(πszt)

(πszt)2
. (2.44)

By extracting a result from dynamic theory, we can rewrite Equation (2.44) in terms of
the extinction distance ξg , defined as the distance at which the direct beam becomes zero
and the reflected beam is at a maximum. We then have [37]

Ik’ =
π2

ξ2
g

sin2(πz0sg)

(πsg)2
, (2.45)

and by assuming that we are exactly on a bragg reflection, that is sg = 0, we find

Ik’ =
π2z2

0

ξ2
g

. (2.46)

By demanding that this intensity is much smaller than the direct beam intensity we deduce

z0 <
ξg
10
. (2.47)

For the kinematic approach to be valid, we require that the sample thickness is less than
one tenth of the extinction length. This result is valid for the two-beam approximation. In
general, multi-beam effects will limit the validity of this approximation, but it has been
used with some success in certain cases [38], and can be used as a rough estimate.

As we will see in Section 2.3.2 the apparent effect of multiple elastic scattering can
be decreased by letting the electron beam precess around an axis and sum the diffraction
patterns from a full turn around the axis. This technique is known as Scanning Presession
Electron Diffraction (SPED), and will be further examined in the remainder of the report.

2.3 The transmission electron microscope and electron diffrac-
tion techniques

We have so far introduced a notation for crystallography covering both the direct and
the reciprocal space, and we have examined how electrons are diffracted when passing
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through solids. The process of sending high energy electrons through thin crystal samples
and observing the resulting patterns is what enables transmission electron microscopy to
provide images with information about the crystal structure on the length scale of inter-
atomic spacing. In this section we will examine the key components of a microscope used
for transmission electron microscopy, and examine one of the many imaging techniques
available in TEM.

2.3.1 Components
The microscope consists of five main parts, when used in transmission mode: The electron
gun, the illumination stage, the objective lens, the magnification and projection system,
often with three or more lenses, and the detector. In addition to the five main stages, the
microscope contains a number of subsystems that are important for the machine to run.

• The high voltage system is usually located in a separate unit and is connected to the
electron gun by a thick cable.

• The vacuum system allows electrons to travel through the column without getting
absorbed or scattered.

• The cooling system prevents the lens coils from heating when large electric currents
are passing through them.

• Radiation shields protect the surroundings of the microscope from the radiation
emitted whenever electrons enter solid matter.

• The photographic camera system allows the user to record the patterns acquired in
the microscope.

The main purpose of the electron gun and the illumination system is to produce a steady
current of electrons in a well known reference state, meaning that emitted electrons have
a constant kinetic energy. Ideally, all electrons should emerge from a single point on the
filament surface, so that the electron beam can be treated as a point source. Furthermore,
electrons should travel close to the optical axis of the microscope to reduce the effect
of lens abberations and the number of emitted electrons should be high enough to give
a steady current of electrons having passed the sample and reached the detector, so that
an image can be obtained in reasonable time. These quality statements can be expressed
in terms of mathematical expressions, and the design of electron guns relies on finding
geometries of the filament and potential surfaces around the tip that give the desired prop-
erties.

The electrons emitted from the electron gun will be further enhanced into a beam of
electrons in a well-defined reference state in the illumination system. With no lenses, the
electrons emitted from the electron gun will spread over a large area before it reaches the
specimen, as shown in Figure 2.7a. By introducing a lens in the path of the electrons we
can control the spread of the beam, and focus the beam to a spot of diameter Dspot = d vu ,
where d is the gun crossover diameter, and u and v are defined as seen in Figure 2.7b.
We would like to have as small spot size as possible, and therefore choose to have a very
strong lens C1, giving a small v. This will result in the electron beam exiting the lens at
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Figure 2.7: (a) No lens inserted. An apperature filters out parts of the electron beam. (b) Same setup
with one lens. The size of the beam on the sample, S, is determined by the gun crossover diameter
d, the length from beam crossover to lens, u and the length from beam to sample v. The apperature
c1a filters out parts of the electron beam. (c) With two lenses, the size of the beam when it reaches
the sample will still depend on u and v, but they are defined as show in Figure 2.7c. A smaller beam
diameter can thus be obtained. The apperature c2a filters out high angle parts of the beam.

large angels, even after passing the C1a aperture, as seen in 2.7c. We therefore introduce
a second lens, focusing the beam to a small spot on the sample. The second lens, C2,
is in focus when its focal length equals the distance from the lens to the sample. The
variable range aperature below the second lens, C2a, limits the angular range of electron
trajectories at the cost of decreased beam current.

While the primary function of the illumination stage is to create an electron beam in a
well-defined reference state, the primary function of the objective lens is to bring the vari-
ous diffracted electron beams to a cross-over while introducing minimal lens aberrations.
The objective lens can have different components depending on the imaging mode. Figure
2.8 shows a possible objective lens design in microprobe mode, which is a useful mode for
diffraction techniques. A condensor mini lens focuses the beam and creates a crossover
right above the objective condensor lens. The electrons leaving the crossover are focused
in a parallel, very narrow beam. When the parallel beam passes through the sample it is
focused into reflections at different angles, before an objective imaging lens refocuses the
beam to a symmetric crossover. An aperture is placed in the back focal plane to limit the
range of accepted angles of incoming electrons.

Electrons passing through the objective aperture of the illumination stage enter the
magnification and projection system, consisting of at least three lenses. With only the
objective lens from the illumination stage present, we would have a fixed magnification,
as the distance from the objective lens to the detector screen would determine the focal
length of the objective lens, and thus also the magnification. By introducing a projection
lens we obtain variable magnification, as illustrated for two different combinations of lens
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Figure 2.8: The objective lens consists of two or three lenses, the sample and an objective aperture
in the back focal plane.

strengths 1 and 2 in Figure 2.9a. This setup achives our goal of magnifying the image,
but has the drawback that it relies on changing the current in the objective lens. This is
not desirable, as changing the objective lens current can cause the temperature of the lens
to change, which in turn may lead to specimen drifts. Furthermore, having a constant
objective lens strength gives a fixed location for its focal and image planes, both having an
important role in conventional TEM work. It is therefore custumary to take the strength of
the objective lens as a given, and introduce an intermediate lens between the objective lens
and the projection lens to obtain variable magnification. In order to deal with the combined
effects of lens aberrations, it is essential to be able to reach the desired magnification in
more than one way. By inserting a third lens, the diffraction lens, a given magnification
can be obtained in multiple ways, and aberration effects can be analyzed.

In order to obtain information from the electron trajectories, the electrons are counted
as they hit a detector screen. A good detector screen should have sensitivity down to sin-
gle electrons while maintaining a low noise level. It should maintain a linear relationship
between incoming intensity and measured signal for a wide range of intensities. Further-
more, a high spatial resolution is required and the detector should have a high readout
speed. We also require that results are reproducible, that is, for equal input the detector
will provide the same result.

This setup allows the examination of materials on the atomic length scale, and can
obtain images in both direct and reciprocal space. There are a variety of methods available
in transmission electron microscopy. In dark field (DF) imaging only a specific diffracted
beam is selected and used to create an image. Electron energy loss spectroscopy (EELS)
allows for a three dimensional image of the specimen to be generated by comparing the
energy of the detected electrons to the energy of incoming electrons. This report will focus
on a technique called scanning precession electron diffraction (SPED), where the incom-
ing electron beam precesses around the optical axis. An advantage with the SPED tech-
nique are that the detected patterns in many cases can be approximated better by kinematic
diffraction theory than conventional patterns. Furthermore, the geometry of the precess-
ing Ewald sphere ensures that more reflections are seen relative to a stationary incoming
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Figure 2.9: (a) System with objective lens and projecting lens. Two images with different magni-
fication show how one can achieve magnification by altering the strengths of the objective lens and
the projecting lens. (b) Same setup with an extra lens, so that the strength of the objective length
is kept fixed, and thus also the back focal plane (BFP) and the selected area plane (SAP). For the
demonstrated setup the image in the selected area plane is imaged. (c) With three lenses, multiple
combinations of lens strength can give the same magnification. In this setup the back focal plane is
imaged, this produces a magnified diffraction pattern on the viewing screen.

electron beam.

2.3.2 Scanning Precession Electron Diffraction

By scanning the electron beam, diffraction patterns can be acquired pixel-by-pixel to build
up a four dimensional data set in which a two dimensional diffraction pattern is stored
for each two dimensional real space position. This type of diffraction technique can be
used to identify domain structures and changes in orientation across the examined area. In
SPED, the electron beam precesses around the optical axis of the microscope, an integer
number of complete cycles for each pixel. The advantages of using a precession electron
diffraction (PED) pattern over a static diffraction pattern is that a far greater number of
reflections are seen and that the scatter intensities appear ’more kinematic’. Information
that can be obtained from analysis of SPED data include form of overall grain structure,
texture and orientation maps.

The phenomen of more reflections appearing when the beam is precessed around the
optical axis of the microscope is explained by kinematic diffraction theory. As seen in
Section 2.2.1, for a reflection to be seen in the diffraction pattern we require that the relrod
of the given reflection intersects the Ewald sphere. For a static diffraction pattern the
Ewald sphere has a given thickness depending on the variance in electron momentum, but
remains in a fixed position in reciprocal space. For the case of a precessing electron beam
the Ewald sphere sweeps an area, as seen in Figure 2.10. This is because the momentum
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2α

k1 k2

Relrods

o

Figure 2.10: Reflections are activated for a point in the reciprocal space if its corresponding relrod
intersects the gray area swept by the precessing ewald sphere. The incoming wave vectors k1 and
k2 are equal in magnitude, and represent the initial wavevector and the wavevector when half a
precession cycle is completed. The precession angle is α. In the illustration the sample is slightly
tilted, so that the relrods lie at an angle with the direct beam axis.

of the incoming electrons precesses in reciprocal space. For the static electron beam we
require that the relrod of a given point on the reciprocal lattice intersects the ewald sphere,
whereas for the precession case it suffices that the relrod intersects the area swept by the
Ewald sphere. It is therefore much more likely to see a reflection from a given point in the
case of a precessing beam of incoming electrons.

Early works in precession electron diffraction suggested that for small scattering an-
gles using kinematic scattering theory would lead to poor refinements because of dynamic
effects. More detailed analysis has shown that although diffraction intensities are not
strictly kinematic in nature, they can in many cases be treated like kinematic intensites
and be used to solve structures[39]. A great deal of work has been done to establish the
best conditions for PED, especially in terms of precession angle[13]. Still, tests on known
structures have shown that applying a full dynamic treatment significantly improves the
quality of the result[40].

In this work, the purpose of the obtained diffraction patterns will be to compare them
with a library of possible simulated diffraction patterns from a set of orientations and
structures. To achieve reliable pattern matching it is beneficial to have many reflections,
indicating that we should choose a large precession angle. However, this limits the angular
and spatial resolution achievable [13]. As a compromise between a reliable comparison
between simulated and observed diffraction patterns and a good angular resolution most
SPED examinations are performed at a typical precession angle of around 0.5− 1.0◦.
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2.3.3 Rotation electron diffraction

SPED has proven to be an excellent tool for solving simple structures with a short unit cell
dimension (∼4 Å), where a single diffraction pattern suffices to resolve atoms [15]. Struc-
tures with longer unit cell dimensions require multiple projections in order to be solved
[41]. While combinations of techniques such as X-ray powder diffraction and multiple
PED projections have been used to solve some of the most complex zeolites known [42],
the process is extremely time-consuming. To address this problem, a method for collecting
complete 3D electron diffraction data in a standard TEM instrument was proposed [41],
and is commonly referred to as rotation electron diffraction (RED).

RED data collection is performed by combining discrete goniometer tilt steps, usually
around 2 to 3 degrees, with very fine beam tilt steps, typically 0.05 − 0.20◦, along a
common tilt axis. The goniometer steps usually range from around -40 to 40 degrees.
For every goniometer step, a series of images is taken with beam tilt ranging from -α to
α degrees, where the gonimeter tilt is 2α. The data for a given goniometer step is then
found by summing up the images from every beam tilt step. A slight overlap between
images from different goniometer steps can be used to account for the limited accuracy
of a goniometer, and secure that data collection is continuous and without gaps. The
two dimensional images can be merged into a three dimensional data-set, from which
the reciprocal space can be reconstructed. The structure unit cell can be determined as
described by W. Wan et al [12].

The RED data collection resembles that of the PED method, where the electron beam
precesses in circle around the beam direction axis and images from distinct points in the
circle are summed up. The difference is that RED shifts the beam along a line that passes
through the beam direction axis, whereas PED precesses the beam in a circle as illustrated
in Figure 2.11. Furthermore, the goniometer tilts in the same direction as the beam tilt,
whereas a typical SPED image will scan across the surface of a material. While it is diffi-
cult to sort out which reflections are fully recorded and which are only partially integrated
for a given PED image, RED data is better suited for collecting complete 3D diffraction
data.

2.4 Representation of orientation

In order to properly describe and compare orientations of crystal lattices, we require a ter-
minology for describing orientations. In material science the orientation of a crystal lattice
is described by means of a rotation relative to an external reference frame [43]. A number
of rotation representations are in use, each with distinct advantages and disadvantages with
respect to calculations and data visualization. In this report, orientations will be described
by the Euler angles representation, using the Bunge convention. Angular distance will be
described by a metric related to the axis-angle representation. Algorithms used for data
processing rely on rotation matrices, unit quaternions and Rodrigues-Frank vectors. The
interpretation of Euler angles, the axis-angle representation and rotation matrices will be
outlined below. For an introduction to the remaining representations, refer to [43].
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Figure 2.11: (a) Ray diagram for SPED, showing how the beam is rocked by deflection coils,
generating a circular motion, and a constant precession angle α. The beam is later de-rocked by a
set of deflection coils. (b) Ray diagram for RED, showing how the beam is rocked by deflection
coils, along a line. The beam generates an angle, θ, with the specimen normal ranging from -α to
α, where 2 α is the goniometer tilt angle, not to be confused with the precession angle of SPED.
The tilt axes of θ and α are aligned. For RED, there is no de-rocking after the objective lens, but the
beam tilt is stored along with the resulting diffraction pattern. The figure is inspired by Figure 1 in
[13].
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Figure 2.12: Euler angles in three steps. (a) Starting from external reference frame, a rotation
around z-axis shifting the x axis to x’ and the y axis to y’. This rotation is referred to as φ1. (b)
Rotation around shifted x-axis. This rotation is referred to as θ. (c) Rotation around shifted z-axis.
This rotation is referred to as φ2.

2.4.1 Euler angles
In the Euler angle representation, orientations are presented by rotating the reference frame
around three axes. In the Bunge convension [44], theses axes are the z-axis for the first ro-
tation, the shifted x-axis for the second rotation and the shifted z-axis for the third rotation.
Rotations are taken to be positive for counterclockwise rotations when looking from the
end point of the rotation axis towards the origin. Euler angles are represented as (φ1,θ,φ2),
interpreted as seen in Figure 2.12. The starting frame (xyz) is the external reference frame.

2.4.2 Axis-angle representation
An orientation can also be represented by an axis n̂, and an angle ω. This representation
exploits Euler’s theorem on the motion of a rigid body, stating that any rigid body dis-
placement with one fixed point can be described as a rotation about some axis[45]. The
axis-angle representation consists of four numbers, three defining the axis and one defining
the rotation. Conventionally, the angle ω is defined in the interval [0,π]. The metric used
to measure angular distance between two orientations is the smallest obtainable angle in
the axis-angle representation of the rotation from one orientation to the other [44].

2.4.3 Rotation matrices
Rotation matrices have two possible interpretations. In the active interpretation a matrix is
operating on an object, whereas in the passive interpretation where a matrix is operating on
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the reference frame. In this work the passive interpretation is used for three dimensional
rotation matrices, as is the common practice in the materials field, and particularly in the
texture community[43].

Let the original and the rotated reference frame be represented by the Cartesian unit
vectors ej and e

′

i, respectively. If we now define a matrix αij so that

αij = e
′

i · ej (2.48)

then the matrix αij represents a passive rotation from the original reference frame to the
rotated reference frame. Note that in Equation (2.48) we have again made use of the Ein-
stein summation convention introduced in section 2.1.2. With αij representing a passive
rotation, we have

e
′

i = αijej . (2.49)

A vector p, that has components pi in the original reference frame will have components

p
′

i = αijpj (2.50)

in the rotated reference frame.
Rotation matrices belong to the set of special orthonormal matrices SO(3). For every

row and column in the matrix, the sum of the squares of the indices equals 1. Furthermore
the determinant of a Rotation matrix is 1, and the transpose of a rotation matrix is equal to
its inverse.

2.4.4 Visualization
Conventional TEM observations usually result in two-dimensional images or diffraction
patterns. As the object giving rise to those images is three-dimensional, it is necessary to
represent the relevant crystallographic information in a two dimensional drawing. One of
the most important 2D representations is the stereographic projection.

The Stereographic Projection

A stereographic projection is a two dimensional representation of a certain characteristic
of a three dimensional object [3]. This characteristic can be anything with a directional
character, such as the set of directions parallel to the surfaces of the object. While the
stereographic projection was developed in ancient times, it became increasingly popular
after its conformality, the correctness of angles and shapes, was realized by Edmond Halley
[46]. The application of the stereographic projection in crystallography was first suggested
by the work of F. E. Naumann and was further developed by W. H. Miller as a systematic
way to represent the normals to the faces of natural crystals in a 2D drawing [47].

Starting from the plane normals described above, a point P can be defined as the in-
tersection between a plane normal and an enclosing sphere. In order to obtain the stere-
ographic projection, SP, of P, the point is connected with the south pole, S, by a straight
line. The intersection between the line connecting the point and the south pole and the
Equatorial plane, EP, gives the stereographic projection, as seen in Figure 2.14. Points on
the southern hemisphere would be projected outside the projection circle of the Equatorial
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plane. In order to avoid very large figures, it is customary to project points on the southern
hemisphere to the north pole, N, and represent the projections with open circles. Angles
can be read out from the stereographic projection by the use of the Wulff net [3]. The
Wulff net is the the projection of a collection of great and small circles, which represent
lines of latitude (small circles) and lines of longitude (great circles) on the sphere, as seen
in Figure 2.13 .

Longitude

Latitude

10°
10°

Figure 2.13: A standard Wulff net has a resolution of 1 degree, and a diameter of 20 cm. For the
purposes of illustration, the resolution has been set to 10 degrees and the figure dimension has been
reduced.

Pole Figures and Inverse Pole figures

The stereographic projection of the directional distribution of all crystallographically equiv-
alent lattice vectors [uvw] or reciprocal lattice vectors (hkl) is referred to as Pole figures
[48]. The pole figure does not show the orientation directly, but the effect the orientation
has on the respective pole distribution. The directional distribution of the crystal reference
vectors in terms of a fixed crystallographic frame (The specimen frame) depicts the inverse
pole figure of the three reference vectors.

The commonly used term Inverse Pole Figure (IPF) is related to the inverse pole figure,
but has a very specific interpretation. Properly expressed, the IPF is the directional distri-
bution of the crystal reference vectors in terms of a fixed crystallographic frame, within
the fundamental region of the respective Laue group. That is, only the unique part of the
inverse pole figure is shown. This concept is illustrated in Figure 2.15.
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Figure 2.14: The stereographic projection, SP, of a point, P, on the sphere is found by connecting
the point to the south pole, S. The intersection between the line connecting the point and the south
pole and the equatorial plane, EP, is the stereographic projection, SP.
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Figure 2.15: The fundamental regions for (a) a cubic structure (b) an orthorhobic structure.
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2.5 Data processing

The ultimate goal for the data processing step is to find the correct orientation and structure
for each pixel in the two dimensional region of interest of the probed sample. This is done
by comparing simulated diffraction patterns from a set of orientations and structures to the
diffraction pattern stored in each pixel. Data from a SPED examination has the form of a
four-dimensional array, where each location stores an intensity from 0, no intensity, to the
bit dept, the maximum value for intensity measures in the detector. Two of the array indices
correspond to the two dimensional position on the sample, the navigation dimension and
can be used to select a given pixel or a set of pixels. The other two correspond to the
coordinates in the diffraction pattern of a given pixel, the signal dimension. For each
pixel in the navigation dimension the stored diffraction pattern is compared to the set of
simulated diffraction patterns, and through a method of comparison the best fit is chosen.
The orientation that gave rise to the simulated diffraction pattern with the best fit is then
taken to be the orientation of the sample in that pixel. A flow diagram of the process is
found in Figure 2.16, and the key aspects for each step is listed in Table 2.1. A more
detailed explanation of how each step is implemented is provided in Appendix B.

SPED
Data

List of
Candidate
Orientations

Template
Library 

Prepared
SPED
data

Orientation
Data

Kinematic
Simulation
Model

Pre-
processing

Method of
Comparison

Figure 2.16: The data processing can be visualized as seen above. For a list of candidate orientations
and structures we use a kinematic simulation model to generate a template library. SPED data, that
has gone through some preprocessing, is then compared to the template library. Through a method
of comparison the best fit is chosen to generate orientation data for the examined area on our sample.

2.5.1 Preprocessing

With preprocessing of data there are many sophisticated methods for improving the data
quality by operations like for instance removing random noise. The problem with this
set of techniques is that we are altering our experimental data. Furthermore, many of
the preprocessing algorithms rely on tuning parameters, that are chosen as data is being
analyzed. The choise of these parameters can potentially alter the final outcome of the
process, and as one typically has an expectation as of what to find in the sample, these
parameters could potentially introduce a bias towards the expected result.

We would like to keep our use of preprocessing methods to a minimum. Many of
the methods of comparison between the experimental and simulated data do however rely
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Table 2.1: The key aspects for each step of data processing. For a more detailed description, see
Appendix B.

Steps of data processing

1. Preprocessing
• Centering the direct beam for the diffraction pattern.

2. Finding a set of orientations for template library
• Generate a list of orientations that span set of possible orientations.
• Ensure that orientations that are symmetrically equivalent appear only once.
• Ensure that distance between neighbouring orientations is set by the stated resolution.

3. Simulating data from a given orientation
• Diffraction patterns are simulated in accordance with kinematic diffraction theory.
• The shape function is approximated by a linear function in z-direction.

4. Comparing and correlating
• The best fitting template is selected for a given diffraction pattern.
• The decision is based on a function for evaluating correlation scores.

on the experimental data being processed to fit the format of the simulated data. For the
case of template matching methods, it is often required that for every diffraction pattern
in the SPED dataset, the direct beam is in the center of the diffraction pattern. This can
usually be achieved by shifting the pattern a few pixels in a given direction. While altering
the data, this operation conserves all relative intensities and distances, and should not be
prone to introducing bias. A great advantage of template matching methods is that it can
be used with a minimal amount of preprocessing, and it is therefore a more objective and
reproducible set of methods, although the choice of candidate orientations and phases will
affect the result.

2.5.2 Template matching

One of the most fundamental means of object detection within an image field is by template
matching, in which a single classification function is applied to compare samples from a
population with a set of candidate distributions [49][50]. In crystallography, template
matching refers to the process where a experimental diffraction image is compared to a set
of previously simulated templates by a correlation function [15]. The template giving the
highest correlation score with the digital diffraction image is selected as the best match.
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Normalized Cross-Correlation

A viable correlation function is the normalized cross- correlation, described by Rauch and
Dupuy [15]

γ =

∑m
i=1 f(xi, yi)t(xi, yi)√∑m

i=1 t
2(xi, yi)

∑m
i=1 f

2(xi, yi)
. (2.51)

Here, f(xi, yi) is the value of the experimental diffraction pattern at coordinates (xi, yi),
and t(xi, yi) is the value of the simulated diffraction pattern at the same coordinates. It
is essential that the templates and the experimental images are properly aligned in the
preprosessing step. The normalized cross-correlation holds the advantage that it can be
implemented with high computational efficiency, and will provide a correlation score be-
tween 0 and 1, where 1 is a perfect fit. For the implementation in pyxem [51], the fac-
tor
√∑m

i=1 f
2(xi, yi) is omitted for computational speed. This changes the correlation

scores so that they are no longer normalized, but does not change which template is se-
lected. While the Normalized Cross-Correlation can be defined to return a score between
0 and 1, it is not invariant under a constant change in image brightness [52]. To provide
this invariance, the zero-normalized cross-correlation is used.

Zero-Normalized Cross-Correlation

The correlation function for zero-normalized cross-correlation is given by

γ =

∑m
i=1(f(xi, yi)− f̄)(t(xi, yi)− t̄)√∑m

i=1(f(xi, yi)− f̄)2
∑m
i=1(t(xi, yi)− t̄)2

(2.52)

where f̄ and t̄ are the average intensities of the diffraction pattern and the template, re-
spectively. This correlation metric will return a correlation score between -1 and 1, where
1 is a perfect fit. The zero-normalized cross-correlation is comparable in computational
speed to the normalized cross-correlation [53]. For an in-dept analysis of computational
performance and precision of an extensive set of correlation functions in real space, the
interested reader is referred to [53].

Full-Frame Correlation

Another approach to correlate the experimental and the correlated patterns is to perform
the correlation in the frequency domain, by applying the Fourier transform to both the
templates and the image [54]. The correlation function is then

γm,n = F−1(F (f)�F (t)), (2.53)

where F (f) and F (t) are the Fourier transformations of the image and the template, and
� is the Hadamard product, the index-wise multiplication between two arrays. The result
of the correlation is an array with the same dimensions as the image and the template.
Every array entry (m,n) is the correlation score given that the image is shifted by m
pixels in the x-direction and n pixels in the y-direction. The selected correlation score is
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therefore the maximum value of the correlation array, and can be normalized to provide a
value between 0 and 1 by dividing by the norms of the template and the image.

One advantage of doing the correlation in Fourier space is that the correlation score
function has a broader peak, so that fewer templates are required to obtain a result. This
means that upon moving away from the true result, the correlation score decreases more
quickly for the Normalized Cross-Correlation and Zero-Normalized Cross-Correlation
than for the Full-Frame Correlation. Furthermore, the procedure takes possible misalign-
ment of the image and the template into account. A similar procedure can be used for
both drift correction and identifying the position of a template in a larger image. A third
advantage is that a refinement of the orientation can be calculated to provide an orientation
precision which is substantially better than the precision of library sampling, by applying
the duality of the gnomonic projection and assuming that the result is within an angular
distance of around 7◦ from the true value [54]. A disadvantage of the Fourier based ap-
proach is that even when the Fast Fourier Transform [55] is used, the real space methods
are substantially faster.

2.5.3 Confidence Metrics
As template matching methods select the pattern with the highest correlation score, they
will always provide a solution. While a solution is provided, it is not necessarily a good
one. As the correlation score determines the quantitative correlation between an image
and a template, it is possible that multiple templates have similar correlation scores for a
given image.

The Reliability Index

This indistinctness may be quantified by the orientation reliability index, R, defined as [15]

R =

(
1− γ2

γ1

)
, (2.54)

where γ1 and γ2 are the correlation scores for the best and second best fit, respectively. A
high reliability index corresponds to a single template receiving a higher correlation score
than all other templates, while a lower reliability index signals that multiple templates have
similar correlation scores. This metric provides an insight on how sure we are that we have
the best match and not the second best match.

The Near Match Similarity Index

While the Reliability Index considers how the highest correlation score relates to the sec-
ond highest score, it does not take into account the angular distance between the Euler
angles related to each correlation score. One approach to address this issue is to compare
the list of best matches for a given position with the list of best matches for the images
in neighbouring positions in the tilt series. As the rotation between each image is usu-
ally relatively small, 3-4 degrees, the list of best matches should have some overlap with
neighbouring indices (I do not believe this, if we use for instance 1 degree resolution in
orientation library, there should be many orientations that are closer to the best fit than the
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tilt series neighbour. There could be something I do not understand, though). For a list of
the 20 to 30 best matches for a given index, the near-match similarity index for position i,
ηi is given by

ηi =
1

2
(#(Si−1 ∩ Si) + #(Si ∩ Si+1)), (2.55)

where Si is the set of N best matches for position i, and # is the cardinality of the given
set, that is the number of unique members. This metric will provide a high score if neigh-
bouring positions share many top matches, and a low score if the opposite is the case.

The Weighted Average Reliability Index

In order to take into account both the correlation score and the angular distance from the
best fit to the respective orientation, a new metric is proposed. The metric is inspired by
the fidelity index for EBSD patterns [56]

1

m

m∑
k=1

cos−1(|v̂d,k · v̂c,k|) (2.56)

where v̂d,k is a normalized detected plane normal and v̂c,k is another estimate for the same
plane normal. The fidelity index gives the average angle between the detected vectors, and
will provide a score close to one if the two estimates have a small angular distance between
them. By combining Equations (2.54) and (2.56) a new metric is suggested. The metric is
defined by the expression

Rw =
1

N − 1

N∑
i=2

(
1− γi

γ1

θi,1
θmax

)
, (2.57)

where γi is the correlation score of the i-th index, θi,1 is the angular distance between the
orientations corresponding to the best fit and the i-th best fit and θmax is the maximum
angular distance between orientations for a given crystal symmetry. For this metric the
N highest correlation scores are considered. The metric will provide a value close to 1 if
the angles with high correlation scores are aligned with the best fit, and a lower score if
orientations with high correlation scores have a larger angular distance to the best fit.

2.5.4 Evaluating Confidence Metrics
A good confidence metric should provide a high score if the result is to be trusted and
a lower score if the result is uncertain. For orientation mapping, the angular distance
from the true orientation to the obtained orientation can be used as a quality parameter,
as a good template matching result is close to the true orientation, while a bad template
matching result is further from the true orientation. For a good confidence metric, higher
confidence values should coincide with orientations that are closer to the true value. That
is, when the confidence metric gives a high value, the result is more likely to be close
to the true result. By computing the confidence metrics for a template matching result
where the true orientations are known, the correlation between the quality of the result and
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the confidence metric can be computed. The correlation coefficient examines if there is a
linear relationship between two distributions, and is defined as [57]:

r =

√
S2
xy

S2
xxS

2
yy

(2.58)

where

S2
xy =

n∑
i=1

(xi − x̄)(yi − ȳ), S2
xx =

n∑
i=1

(xi − x̄)2, S2
yy =

n∑
i=1

(yi − ȳ)2

and x and y are the two distributions. By comparing the angular distances from the true
result to the values of a given confidence metric, the credibility of the confidence metric
can be analyzed.

2.5.5 Visualization of Reliability
While the confidence metrics provide a numerical estimate of the reliability of a result, a
more complete picture of the result can be conveyed through visualizations. For a template
matching result from a tilt series, the correlation score of the N best matches for every
index in the tilt series can be plotted as a color-map in a N by M matrix, where M is the
number of indices in the tilt series. This visualization will be referred to as a correlation
score map, and provides an overview of the correlation scores for all the indices. Another
visualization of reliability is plotting orientations from the N best matches of a selected
index in an inverse pole figure, with a color gradient corresponding to the correlation
score of the given orientation. This visualization conveys information on both angular
distance between the best matches and the corresponding correlation scores, but is limited
to one tilt series index per plot. This visualization will be referred to as a IPF index plot,
and conveys information on both correlation scores and angular distance between the best
matches.

2.6 Testing the procedure
A common way to obtain crystallographic data is through a tilt series. The sample is
tilted a fixed amount around a given axis between subsequent examinations. The tilt angle
between subsequent sample entries is therefore constant within experimental deviations,
and can be used to examine the precision of the orientation mapping procedure.

In order to determine the precision of an orientation mapping procedure performed on
data from a tilt series, the rotation between subsequent orientations is found. A simple test
to estimate the quality of the result is to consider the angular distance between subsequent
orientations, as discussed in section 2.4.2. If the tilt angle remains close to constant, at a
value not far from the expected tilt angle, it would indicate a successful template matching.
If the tilt angle varies substantially between different pairs of subsequent orientations, the
orientation mapping results are likely to be wrong. This test corresponds to finding the
blue area in Figure 2.17, while the area we would like to find is the green area. The green
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area can be found by adding a further refinement step. Define a density function by letting
every rotation that has been labeled as correct give a value +1 to the region of orientation
space withing an angle ∆θ from the rotation. Find the region of the density function in
orientation space with the highest value. The value of this region is the number of rotations
within the green area in Figure 2.17. The center of this region is now the estimate of µ. If
two disconnected regions both contain the max value, the center of the largest region is the
estimate for µ. The value of the region in which µ is confined is the number of rotations
within the green area in Figure 2.17.

μ(0,0,0)
μθ

2Δ

Δθ

θ

Figure 2.17: Illustration in 2D of the region in orientation space (green circle) around the true
rotation estimate µ that should be accepted as correct. The parameter ∆θ defines the strictness of
the test. The true rotation estimate is at a distance θµ from the (0,0,0) orientation. Any rotations that
is confined within the blue area will be accepted as correct, in the basic model.

As will be discussed in section 2.6.1, random errors in SO(3) should be modelled by
the von Mises - Fisher distribution rather than the normal distribution. Computing param-
eters such as the mean and variance for the obtained angular distances to quantitatively
determine the quality of a template matching result is therefore not justified. This test
is therefore only meant to provide an indication on whether the template matching has
been successful or not, and is not suited to quantitatively analyze and compare different
template matching procedures.
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2.6.1 The von Mises - Fisher distribution
The Gaussian normal distribution is used to model random errors in the Euclidean space.
For directional data distributed on the unit hyper-sphere, the von Mises - Fisher distribution
[58] is the analogue of the normal distribution in Euclidean space [59]. The von Mises -
Fisher (vMF) distribution is defined by two paramets: The concentration, κ, and the mean
orientation µ.

A d-dimensional unit vector, x, is von Mises - Fisher distributed if it has a probability
density function

f(x|µ,κ) = cd(κ)eκµ
Tx (2.59)

where cd(κ) is a normalization constant. cd(κ) is defined by

cd(κ) =
κ

d
2−1

(2π)
d
2 I d

2−1(κ)
(2.60)

where Ir is the modified Bessel function of the first kind, and order r.
The maximum likelihood estimates of µ and κ may be obtained from a set of vMF-

distributed orientations with equations [60]:

µ̂ =

∑N
i=1 xi

||
∑N
i=1 xi||

, (2.61)

and

Ad(κ̂) =
I d

2
(κ̂)

I d
2−1(κ̂)

=
||
∑N
i=1 xi||
N

= r̄. (2.62)

Since computing κ̂ involves an implicit equation (2.62) that is a ratio of Bessel functions,
it cannot be solved analytically, and numerical or asymptotic methods must be applied to
obtain an approximation.

Two asymptotic approximations can be found when considering r̄ [61]. For r̄ ≈ 1 we
have

κ̂ ≈ d− 1

2(1− r̄)
, (2.63)

while for r̄ << 1 we have

κ̂ ≈ dr̄{1 +
d

d+ 2
r̄2 +

d2(d+ 8)

(d+ 2)2(d+ 4)
r̄4 +O(r̄6)}. (2.64)

An iterative approximation can be found using Newtons method [23] and inserting A′d(κ̂)
as given in [61]

κ̂i+1 = κ̂i −
Ad(κ̂i)− r̄

1− d−1
κ̂i
Ad(κ̂i)−Ad(κ̂i)2

. (2.65)

An initial estimate of κ̂ can be found using Equation (2.63).
An estimate of κ̂ with an empirical touch is provided in [60] to handle the cases falling

between the asymptotic limits:

κ̂ ≈ r̄d− r̄3

1− r̄2
. (2.66)
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Equation (2.66) has the benefit that the number of iterations does not have to be specified,
while the domain of use covers the full range of r̄.

The axis-angle representation of a set of rotations can be divided into a set of rotation
axes and a set of rotation angles to be treated separately. The rotation axes are then ana-
lyzed within the von-Mises framework, while the rotation angle distribution is treated with
Gaussian statistics.
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The main objective of this work was to further develop a template matching procedure
in the python library pyXem and apply it to two experimental RED datasets. The results
of the template matching procedure were evaluated to examine how the reliability of the
result depends on the selected method for performing the correlation step, and the choice
of parameters used to generate a template library.

In order to examine how the template matching procedure performs, a tilt series was
simulated for each of the two structures in the experimental RED datasets. The template
matching results from the simulated tilt series were analyzed to provide an initial estimate
of the precision of the orientation mapping procedure for each of the two structures. Sub-
sequently, the same template matching procedure was performed on the two experimental
RED datasets.

3.1 Material and Data acquisition
Experimental series 1 is from GaSb. A GaSb wafer was scratched with a fine diamond
scriber and the fine debris material was transferred via a droplet of isopropanol to a 300
mesh Cu grid with a holey amorphous C-film (ca. 20 nm thick). This preparation proce-
dure is an adaption of the routine described in [62]. Data were collected by Tom Willham-
mar and Hongyi Xu using a DM-script (unpublished data and script) on a JEOL JEM-2100
instrument, operated 200 kV, using a 2k Gatan Orius camera placed above the viewing
screen. The series consist of 30 frames (512x512 pixels), in the range -29.4 degrees to
27.99 degrees tilt, with a 1.98 degree tilt step. The second experimental series, series 2,
is a RED set of orthorhombic zeolite mordenite, published on Zenodo [63]. Details of the
experimental settings are given in M. O. Cichocka et al [64]. The data sets consist of 395
frames (516x516 pixels), from -43.9 degrees to 58.65 degrees, with a 0.2336 degree tilt
step. As every tenth frame was extracted, the tilt step in the analyzed dataset was 2.336
degrees. GaSb has space group 216 and Laue Group m3̄m [65]. The crystallographic in-
formation file used for GaSb is derived from [66]. Mordenite has space group 63 and Laue
Group mmm [65]. The crystallographic information file used for mordenite is derived
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from [67].

3.2 Template matching for simulated data
In order to simulate RED data, a tilt series was defined by choosing an initial orientation,
a tilt axis and a constant tilt step. For every orientation in the tilt series a diffraction
pattern was simulated. For the simulation the crystal structure, the energy of electrons
in the electron beam, the maximum excitation error and the reciprocal radius were the
input parameters. Furthermore a spread parameter was defined, that determines how broad
the Gaussian distribution of a single reflection should be. The selected values for the 2
materials studied are summarized in Table 3.1.

Table 3.1: Parameters used to simulate data.

GaSb Mordenite
Tilt Angle (◦) 4 4
Tilt Axis [1,1,1] [1,1,1]
Energy (keV) 200 200
Maximum Excitation Error (Å−1) 0.025 0.025
Reciprocal Radius (Å−1) 2 0.89
Spread (Å−1) 0.03 0.008

To confirm that the methods were correctly implemented, and that sensible parameters
had been chosen for the simulated data a template match was run with a template con-
sisting of only orientations in the tilt series. With such a template bank, every entry in
the simulated data would correspond to a template in the template bank. The procedure
should therefore be able to correctly index every entry in the simulated data. Due to a
round-off error close to the edges of diffraction patterns for the simulated data in pyXem,
the reciprocal radius of the template patterns was chosen slightly smaller than that of the
simulated patterns.

After the initial analysis, a new template bank was generated, by having orientations
evenly distributed on the fundamental zone, with a given maximum angular distance be-
tween neighbouring orientations. The fundamental zone, also known as the fundamental
sector, is the sector describing the entirety of all representative orientations, and is defined
by a size and shape which is often uniquely determined by the respective point group sym-
metry [48]. The functionality related to generating the orientation grid on the fundamental
zone was tested in a previous project[68], and it has been confirmed that recent changes
to the functionality have overcome the issues reported in the previous project1. From the
evenly spaced grid of orientations, a set of templates were generated, using the same crys-
tal structure, electron energy, maximum excitation error and reciprocal radius as for the
simulated data. For the templates the convergence angle is not considered and no Gaus-
sian spread is applied so a reflection consists of a single pixel. The simulated data was
compared to the template bank using each of the three correlation metrics; Normalized

1The discussion if found in PR60 - Pyxem/Diffsims and PR47 - Pyxem/Diffsims on GitHub
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Cross-Correlation (NCC), Zero-Normalized Cross-Correlation (ZNCC) and Full-Frame
Correlation (FFC). For NCC and ZNCC the template bank had a resolution of 1 degree,
while the template bank had a resolution of 3 degrees for FFC. The limited resolution of
the FFC method was due to the extensive memory usage from a Fourier transformed tem-
plate library. For mordenite 3 degrees was the highest resolution obtainable on the high
performence computer, with 150 GB memory.

In addition to the tilt series, a set of 1000 random orientations for GaSb and 300 ran-
dom orientations for mordenite were generated for each of the three correlation methods.
Using the parameters in Table 3.1 a signal was simulated and matched against the template
libraries with the same resolution as for the simulated tilt series. The angular distance from
the true value was determined for each random orientation. By defining every orientation
within an angular distance of 3 degrees from the true result as correct and every orienta-
tion further than 3 degrees from the true result as misindexed the each correlation method
got a score for percentage of correctly indexed orientations, which was used to evaluate
the correlation methods. The standard deviation of the correctly indexed orientations was
computed.

As the true orientation is not known for experimental patterns, another test was made,
based on the distance between orientations. Two integers, int1 and int2 were drawn from
the pseudo-random number generator random.randomint in the standard python library
random, so that both int1 and int2 were between 0 and the number of random orientations.
The distance between the true orientation at index int1 and the true orientation at index int2
was found. Then the distance between the corresponding template matching orientations
was computed. The difference between the true distance, and the distance between tem-
plate matching orientations was computed. If this distance was smaller than 1.8 degrees,
the result was defined to be correct. The distance of 1.8 degrees was selected to be as large
as possible, without including the 0 rotation, when applied to the tilt series of GaSb and
mordenite, with 1.98 and 2.3 degree tilt steps.

In order to evaluate the confidence metrics, the angular distance distribution was com-
pared to the weighted average reliability index scores (WARI) and the reliability index
scores (RI) using Equation (2.58). Equation (2.58) was also used to analyze if the total
intensity of a signal would affect the chances for a correct indexation by comparing the
distribution of total intensities with the angular distance distribution.

The resulting orientations and the rotations between subsequent orientations were plot-
ted in the inverse pole figure using MTEX [69], as discussed in Section 2.4.4. Furthermore,
the angular distance from the best fit to the true value was computed, and the angular dis-
tance between subsequent entries in the tilt series was computed, as discussed in Section
2.6. The confidence metrics for the results, that is the reliability index and the weighted
average reliability index, were computed as discussed in Section 2.5.3, and a correlation
score map was generated, as described in Section 2.5.5. By analyzing the distance to the
true value and the scores for different confidence metrics, certain entries in the tilt series
were selected for further analysis. The selected entries were analyzed using an IPF in-
dex plot, discussed in section 2.5.5, and by visually comparing individual templates to the
simulated signal.
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3.3 Template matching for experimental RED data
The first step in analyzing the experimental RED datasets was to center the direct beam
for every frame. The parameters used to center the direct beam are summarized in Table
3.2. The centering was verified manually, by plotting the signal and confirming that the
direct beam was centered. For the mordenite dataset, the center direct beam function was
run two times with the same input parameters. The number of pixels in every frame was
reduced for computational efficiency, by cropping regions with no visible reflections of the
mordenite dataset. For the mordenite dataset, a separate version of the data was created
for the Full-Frame correlation by applying the rebin function for signals in pyxem. This
function reduces the numbers of pixels in each frame merging multiple pixels into a single
pixel while summing their intensities. This was done to reduce the memory demands of
running the Full-Frame algorithm, and reduced the dimensions of the cropped dataset from
(357x357 pixels) to (128x128 pixels).

Table 3.2: Parameters for center direct beam.

GaSb Mordenite
Method Cross-correlate Cross-correlate
Maximum radius 10 10
Minimum radius 1 1

In order to create a template bank, a list of candidate orientations on a fundamental
zone grid were generated, by specifying a crystal symmetry and an angular resolution,
where the angular resolution is the maximum distance between neighbouring orientations.
A template bank was generated from the list of candidate orientations after specifying the
lattice parameters and atomic coordinates from the cif file, the energy of electrons in the
electron beam, the maximum excitation error and the reciprocal radius. As the maximum
excitation error is a parameter that has a huge impact on the number of reflections in a
template bank, while being implemented in a rather nonphysical way in the current version
of pyXem, some fine tuning had to be done in order to arrive at a sensible value, where the
number of reflections resemble that of the dataset to be analyzed. The interval of values
that were considered for the maximum excitation error was [0.025 - 0.055]. The relevant
experimental parameters are included in Table 3.3 for the two experimental data sets. For
NCC and ZNCC the library resolution was 1 degree, while the FFC library had a 3 degree
resolution.

Table 3.3: Experimental parameters.

GaSb mordenite
Maximum excitation error 0.025 0.025
Calibration 1.01 1.01
Reciprocal Radius (Å−1 2 0.89
Beam Energy (kev) 200 200

The comparison between the experimental signal and the templates was done for all
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three correlation metrics, providing three results for each dataset. The resulting orienta-
tions and the rotations between subsequent orientations were plotted in the inverse pole
figure and the angular distance between subsequent orientations was found. The confi-
dence metrics for the results were computed, and the correlation score map was generated.
Based on the results from the confidence metrics, inverse pole figure plots and the angular
distance between subsequent orientations, certain indices were selected for further detailed
analysis, using IPF index plots and and plotting high-scoring templates on the signal.

3.4 Hard- and Software
All data analysis was performed in the developer version of pyXem 0.12.0 [51] down-
loaded 30.05.2020 on a branch where the Full-Frame Correlation method is under devel-
opment. A description of the used code is given in a tutorial style in Appendix B.

For plotting of Inverse Pole Figures, MTEX version 5.3 [69] was used for MATLAB
R2020a.

Workflows were run on a HP laptop 15db0xxx, with a AMD Ryzen 5 processor and 8
GB RAM. MATLAB scripts were run on Microsoft Windows 10, and Python scripts were
run on Ubuntu 18.04.4 LTS in the integrated development environment (IDE) Oracle VM
VirtualBox.

For Template matching workflows with a large (more than 100,000 library entries) tem-
plate library the NTNU IDUN computing cluster [70] was used. The cluster has more than
70 nodes and 90 GPGPUs. Each node contains two Intel Xeon cores, at least 128 GB of
main memory, and is connected to an Infiniband network. Half of the nodes are equipped
with two or more Nvidia Tesla P100 or V100 GPGPUs. Idun’s storage is provided by two
storage arrays and a Lustre parallel distributed file system.
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4.1 Simulated GaSb

4.1.1 Perfect Template Bank

The orientations in the tilt series were used to generate a template library, and the simu-
lated data was matched to the template library, hence there should be a perfect match for
every orientation in the created library. The inverse pole figures of the template match-
ing orientations and the rotations between subsequent template matching orientations are
shown in Figures 4.1, 4.2 and 4.3 for NCC, ZNCC and FFC, respectively. The template
matching results for orientations 1 to 16 in the tilt series are shown in the (a) panels. Ori-
entations 16 + n coincide with orientations 16 - n for the inverse pole figures in both x and
z directions. Orientations 1 to 16 were selected because a plot of 30 orientations would be
too crowded. This choice will be the discussed later.

Therefore, For every orientation a unimodal ODF function was generated with a half
width of one degree and a weight determined by the correlation score of the orientation.
The summed unimodal ODF functions for orientations 1 to 16 gave rise to the intensity
of the orientations, while the red squares show the exact position of every orientation.
The colorbar represents the intensity of the summed unimodal ODF functions. The red
numbers below every orientation are the positions in the tilt series. The colored rectangle
insets show the template plotted together with the signal for selected orientations in the
tilt series. In every insert the Euler angle of the template, the correlation score and the
rank of the template are reported, where the rank of the highest scoring template is 0,
the second highest scoring template is 1, and so on. Every insert has two colorbars, one
representing the signal intensities and one representing the template intensities. In the (b)
panels of Figures 4.1 4.2 and 4.3 the rotations between subsequent orientations in the tilt
series are shown, for orientations 1 to 30. For every rotation an unimodal ODF function
was generated with a half width of one degree and a constant weight of 1. The summed
ODF functions give rise to the intensity function on the IPF, and the colorbar represent the
summed intensity of the ODF functions. Every rotation is plotted as a red square. The red
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numbers are the Euler angle of the rotations in the Bunge Convention. The big red frame
shows a magnified version of the motif in the smaller red frame. In this specific tilt series
(see Table 3.1) the tilt axis was [1,1,1] and the tilt angle was 4 degrees.

For NCC and ZNCC, the orientations seen in Figures 4.1a and 4.2a form a smooth
line, and the templates for selected orientations perfectly fit the signal. The rotations seen
in Figures 4.1b and 4.2b are all stacked in one position on the inverse pole figure. For FFC
the orientations in Figure 4.3a are perfectly aligned, apart from an interchange of the 9th
and 10th orientation. In the green and yellow rectangles corresponding to the 9th and 10th
orientation, respectively, the templates do not match the signal, even though a high corre-
lation score is obtained. In Figure 4.3b, the rotations are stacked in two positions on the
IPFs. One position contains the projection of Euler angles 46,3,316 and 224,3,134, while
the other position contains the Euler angle 47,7,317. The 46,3,316 rotation is recognized
from Figures 4.1b and 4.2b, as corresponding to the correct rotation, while 224,3,134 and
47,7,317 are not seen in either of Figures 4.1b and 4.2b.

The angular distance from the template matching orientation to the true orientation,
and the angular distance between subsequent template matching orientations are shown
in Figure 4.4. For NCC and ZNCC, the correct orientation is obtained at every index,
as seen in Figures 4.4a and 4.4b. Furthermore, the rotation angle between orientations
is constant at the expected value, as seen in Figures 4.4d and 4.4e. For FFC, template
matching orientations 9 and 10 are at a distance 4 degrees from the true orientation, as
seen in Figure 4.4c. For a perfect result every orientation should be at a distance 0 from
the true value, as seen in Figures 4.4a and 4.4b. The rotation angle between orientations
differ from the expected value of 4 degrees at indices 9 and 11 as seen in Figure 4.4f.
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Material: GaSb
Signal: Simulated
Template: Perfect
Method: NCC

1 1

16

(a)

(b)

Figure 4.1: Inverse pole figures for NCC on a simulated GaSb tilt series with a perfect template
input, for (a) orientations and (b) rotations in x and z direction. Numbers in (a) refer to sequential
orientations in the tilt series and in insert in (b) to Euler angle. For the orientations in (a) three
example cases are selected marked by colored squares. Signal and template patterns, with Euler
angles, rank and correlation score, are overlaid.
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Material: GaSb
Signal: Simulated
Template: Perfect
Method: ZNCC

1

16

1

(a)

(b)

Figure 4.2: Inverse pole figures for ZNCC on a simulated GaSb tilt series with a perfect template
input, for (a) orientations and (b) rotations in x and z direction. Numbers in (a) refer to sequential
orientations in the tilt series and in insert in (b) to Euler angle. For the orientations in (a) three
example cases are selected marked by colored squares. Signal and template patterns, with Euler
angles, rank and correlation score, are overlaid.
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Material: GaSb
Signal: Simulated
Template: Perfect
Method: FFC

1

16

(a)

(b)

Figure 4.3: Inverse pole figures for FFC on a simulated GaSb tilt series with a perfect template
input, for (a) orientations and (b) rotations in x and z direction. Numbers in (a) refer to sequential
orientations in the tilt series and in insert in (b) to Euler angle. For the orientations in (a) three
example cases are selected marked by colored squares. Signal and template patterns, with Euler
angles, rank and correlation score, are overlaid.
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(a) NCC (b) ZNCC (c) FFC

(d) NCC (e) ZNCC (f) FFC

Figure 4.4: Distance of template matched orientation to true orientation for GaSb with a perfect
template input for correlation methods (a) NCC, (b) ZNCC and (c) FFC for 30 simulated orienta-
tions. Angular distance to the previous orientation in the template matching result for (d) NCC, (e)
ZNCC and (f) FFC. The expected result is shown as a red line in every plot, and every template
matched result is represented by a blue star.
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4.1.2 1 Degree Grid
A template library was generated by creating an equally spaced grid on the fundamental
zone, and the simulated data was matched against the template library. The grid spacing
was 1 degree for NCC and ZNCC and 3 degrees for FFC. The inverse pole figures of the
template matching orientations and the rotations between subsequent template matching
orientations are seen in Figures 4.5, 4.6 and 4.7 for the methods NCC, ZNCC and FFC,
respectively. For Figure 4.5a template matching orientations 1 to 12 are aligned on the in-
verse pole figure for both the x- and z- projections. Indices 13,14 and 15 are not following
the trend from orientations 1 to 12. For the selected indices, the template coincides with
the signal for a few high intensity positions for the red and green rectangles corresponding
to indices 13 and 15, but the template does not match the signal. For index number 16 the
template coincides perfectly with the signal. In Figure 4.5b, there is

The angular distance from the obtained orientation to the true orientation and the an-
gular distance between subsequent indices are shown in Figure 4.8. NCC predicts orienta-
tions that are close to the true value for most indices, but fails for indices 13, 14, 15 and 25.
ZNCC also predicts orientations that are generally close to the true value, but fails for 11
different indices, as seen in Figure 4.8b. For FFC, the predicted orientations are not close
to the true value, and Figure 4.7a does not resemble a tilt series. The reliability index, the
weighted reliability index and the correlation score maps are seen in Figure 4.9.

The reliability metrics for the template matching results are found as described in
Section 2.5.3. By comparing the reliability metrics with the distance to the true orientation,
the reliability metrics can be evaluated.
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Material: GaSb
Signal: Simulated
Template: 1 Deg
Method: NCC

1 1

(a)

(b)

Figure 4.5: Inverse pole figures for NCC on a simulated GaSb tilt series with a template bank of 1
degree resolution, for (a) orientations and (b) rotations in x and z direction. Numbers in (a) refer
to sequential orientations in the tilt series and in insert in (b) to Euler angle. For the orientations in
(a) three example cases are selected marked by colored squares. Signal and template patterns, with
Euler angles, rank and correlation score, are overlaid.
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Material: GaSb
Signal: Simulated
Template: 1 Deg
Method: ZNCC

(a)

(b)

Figure 4.6: Inverse pole figures for ZNCC on a simulated GaSb tilt series with a template bank of
1 degree resolution, for (a) orientations and (b) rotations in x and z direction. Numbers in (a) refer
to sequential orientations in the tilt series and in insert in (b) to Euler angle. For the orientations in
(a) three example cases are selected marked by colored squares. Signal and template patterns, with
Euler angles, rank and correlation score, are overlaid.
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Material: GaSb
Signal: Simulated
Template: 3 Deg
Method: FFC

(a)

(b)

Figure 4.7: Inverse pole figures for FFC on a simulated GaSb tilt series with a template bank of 3
degree resolution, for (a) orientations and (b) rotations in x and z direction. Numbers in (a) refer
to sequential orientations in the tilt series and in insert in (b) to Euler angle. For the orientations in
(a) three example cases are selected marked by colored squares. Signal and template patterns, with
Euler angles, rank and correlation score, are overlaid.
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(a) NCC (b) ZNCC (c) FFC

(d) NCC (e) ZNCC (f) FFC

Figure 4.8: Distance of template matched orientation to true orientation for GaSb with a template
library of 1 (NCC and ZNCC) or 3 (FFC) degree resolution for correlation methods (a) NCC, (b)
ZNCC and (c) FFC for 30 simulated orientations. Angular distance to the previous orientation in the
template matching result for (d) NCC, (e) ZNCC and (f) FFC. The expected result is shown as a red
line in every plot, and every template matched result is represented by a blue star.
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(a) NCC - Reliability Index (b) ZNCC - Reliability Index (c) FFC - RI

(d) NCC - WRI (e) ZNCC - WRI (f) FFC - WRI

(g) NCC - Correlation score-map (h) ZNCC - Correlation score-map (i) FFC - Correlation score-map

Figure 4.9: Top row: Reliability index for GaSb with a template library of 1 (NCC and ZNCC) or
3 (FFC) degree resolution for 30 orientations in a simulated tilt series for correlation methods (a)
NCC, (b) ZNCC and (c) FFC. A higher score indicates a higher reliability as defined in Equation
(2.54) . Middle row: Weighted reliability index for correlation methods (d) NCC, (e) ZNCC and (f)
FFC. A higher score indicates a higher weighed reliability as defined by Equation (2.57), where 1 is
the highest score. Bottom row: 20 Best correlation scores represented in a map for every orientation
in the tilt series for the correlation methods (g) NCC, (h) ZNCC and (i) FFC, with color representing
the correlation score.
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4.1.3 Random Orientations

The inverse pole figure for NCC applied to a set of 1000 random orientations for simu-
lated GaSb, with a template bank of 1 degree resolution. A local averaging algorithm was
applied to the orientations to generate a smooth result and identify regions where many
orientations are misindexed. The colorbar represents the angular distance from the true
value. A dark area is an area where the majority of orientations have been correctly in-
dexed, while a bright area is an area where the average distance to the true value is higher.
The insets show the signal together with the best fitting templates for selected positions on
the IPF. Every inset contains the Euler angle for the template, the correlation score and the
rank of the template. The colorbars represent signal intensity and template intensity. (a)
Shows the x-projection of the inverse pole figure, while (b) shows the z-projection of the
inverse pole figure. — The angular distance from the obtained value to the true orientation
for the NCC method. (a) Shows the x-projection. (b) Shows the z-projection.

A new simulated dataset was generated by drawing 1000 random orientations, and
simulate data with an Energy, Max excitation error, reciprocal radius and spread as de-
fined in Table 3.1. A template library was generated from an equally spaced grid on the
fundamental zone, where the grid spacing was 1 degree for NCC and ZNCC and 3 degrees
for FF. The distance from the true result to the template matching result was computed.
Figures 4.10, 4.11 and 4.12 show the angular distance to the true value for the x and z
directions of the Inverse Pole Figure. A local averaging algorithm was applied to the set
of 1000 orientations to generate the figures.

By defining a correctly indexed orientation as an orientation that has an angular dis-
tance of less than 3 to the true orientation all orientations were divided into correct and
wrong results. The correct results were further analyzed by computing the standard devia-
tion, with a zero mean, as zero represents the true orientation. The results are presented in
Table 4.1.

Table 4.1: Fraction of correctly indexed orientations for the correlation methods NCC, ZNCC and
FFC, computed by defining a template matching result within 3 degrees from the true value to be
correct. The standard angular deviation from the true result is reported

Method Correctly indexed (%) Standard Deviation (◦)
NCC 60.1 0.89
ZNCC 55.8 1.06
FFC 3.1 1.66

For the same data, pairs of random orientations were drawn. The distance between the
true value of the orientations was found. The distance between the corresponding template
matching orientations was computed, and compared to the true distance. A deviation of
less than 1.8 degrees was taken to be correct. The result of the test is presented in Table
4.2.

By comparing the angular distance to the score of the reliability index and the weighted
reliability index, the correlation coefficients for RI and WRI were computed. In order to
test if there were a correlation between the total intensity of the simulated signal and
the indexation error, the correlation coefficient between the total signal intensity and the
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Table 4.2: Fraction of correctly indexed orientations for the correlation methods NCC, ZNCC and
FFC, computed by defining a distance between template matching orientations within 1.8 degrees
from the true distance to be correct.

Method Correctly indexed (%)
NCC 47.3
ZNCC 42.6
FFC 10.0

angular distance to the true value were computed.

Table 4.3: Correlation coefficients - Distance to true value vs Reliability Metric

Method NCC ZNCC FFC
WRI -0.281 -0.428 -0.372
RI -0.137 -0.184 -0.084
Itot -0.096 -0.133 0.001

58



4.1 Simulated GaSb

Material: GaSb
Signal: Simulated
Library: 1 Deg
Method:NCC

(a)

(b)

Figure 4.10: Inverse pole figure for NCC to a set of 1000 random orientations for simulated GaSb,
with a template bank of 1 degree resolution in (a) X and (b) Z direction. A local averaging algorithm
was applied to the orientations to generate a smooth result. The color bar represents the angular
distance from the true value. A dark area is an area where the majority of orientations have been
correctly indexed. The insets show the signal together with the best fitting templates for selected
example positions on the IPF marked by colored squares in (a) and (b). Euler angles for the template
and correlation score are indicated for the selected cases.
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Material: GaSb
Signal: Simulated
Library: 1 Deg
Method:ZNCC

(a)

(b)

Figure 4.11: Inverse pole figure for ZNCC to a set of 1000 random orientations for simulated
GaSb, with a template bank of 1 degree resolution in (a) X and (b) Z direction. A local averaging
algorithm was applied to the orientations to generate a smooth result. The color bar represents the
angular distance from the true value. A dark area is an area where the majority of orientations
have been correctly indexed. The insets show the signal together with the best fitting templates for
selected example positions on the IPF marked by colored squares in (a) and (b). Euler angles for the
template and correlation score are indicated for the selected cases.
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4.1 Simulated GaSb

Material: GaSb
Signal: Simulated
Library: 3 Deg
Method: FFC

(a)

(b)

Figure 4.12: Inverse pole figure for FFC to a set of 1000 random orientations for simulated GaSb,
with a template bank of 3 degree resolution in (a) X and (b) Z direction. A local averaging algorithm
was applied to the orientations to generate a smooth result. The color bar represents the angular
distance from the true value. A dark area is an area where the majority of orientations have been
correctly indexed. The insets show the signal together with the best fitting templates for selected
example positions on the IPF marked by colored squares in (a) and (b). Euler angles for the template
and correlation score are indicated for the selected cases.
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4.2 GaSb Dataset
A template library was generated by creating an equally spaced grid on the fundamental
zone, and the GaSb dataset was matched against the template library. The inverse pole
figures of the resulting rotations and orientations are shown in Figures 4.13, 4.14 and 4.15.

While some orientations are aligned in the inverse pole figure for NCC, it is very hard
to see a tilt series. By considering the selected templates plotted together with the signal,
it would seem like a few, high intensity template positions correspond well with high
intensity positions in the signal, while most template positions do not correspond to an
intensity in the signal. For the rotations, there is a noticeable concentration of rotations
around a small area in the inverse pole figure. There are also many rotations scattered over
the IPF far from the area where the concentration of rotations is higher.

The results for the ZNCC, seen in Figure 4.14 are similar to those of NCC. The in-
dices 2-6 seem to be aligned well, and there are other sequences of indices that seem to be
aligned, but in general the result does not resemble a tilt series. For the templates plotted
together with the signal, only the green rectangle, corresponding to index 19 looks cor-
rectly indexed. For the red and yellow rectangles, the template coincides with the signal
in a some positions, but there are also many signal reflections that do not correspond to a
template entry. Figure 4.14b shows many rotations that are spread over the inverse pole
figure, but there is a region with higher intensity close to the [001] corner. By considering
Figure 4.16, we observe that there are a number of rotations with a rotation angle not far
from the expected oscillation angle of 1.98 degrees, reported by the group that collected
the data.

For FFC, seen in Figure 4.15 the orientations are spread over the inverse pole figure
for the x-projection, and concentrated in 4 positions on the z-projection. The templates
plotted together with the signal do not resemble the signal they are fitted to. The rotations
are also spread over the inverse pole figure for the x-projection, while the z- projection has
a density of rotations close to the [001] corner of the inverse pole figure, and 14 rotations
spread along a line at a distance from the [001] corner. In Figure 4.16 only a few rotations
have rotation angles that are close to the expected value.

Considering the reliability indices in Figure 4.17, we observe that the scores for the
Weighted reliability indices now provides lower values in general for all correlation meth-
ods. The reliability index is close to 0 for most indices, and the Correlation score maps
resemble what we have seen in Figure 4.21.
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4.2 GaSb Dataset

Material: GaSb
Signal: Real
Template: 1 Deg
Method: NCC

(a)

(b)

Figure 4.13: Inverse pole figures for NCC on an experimental GaSb tilt series with a template bank
of 1 degree resolution, for (a) orientations and (b) rotations in x and z direction. Numbers in (a) refer
to sequential orientations in the tilt series and in insert in (b) to Euler angle. For the orientations in
(a) three example cases are selected marked by colored squares. Signal and template patterns, with
Euler angles, rank and correlation score, are overlaid.
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Material: GaSb
Signal: Real
Template: 1 Deg
Method: ZNCC

(a)

(b)

Figure 4.14: Inverse pole figures for ZNCC on an experimental GaSb tilt series with a template bank
of 1 degree resolution, for (a) orientations and (b) rotations in x and z direction. Numbers in (a) refer
to sequential orientations in the tilt series and in insert in (b) to Euler angle. For the orientations in
(a) three example cases are selected marked by colored squares. Signal and template patterns, with
Euler angles, rank and correlation score, are overlaid.
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4.2 GaSb Dataset

Material: GaSb
Signal: Real
Template: 3 Deg
Method: FFC

(a)

(b)

Figure 4.15: Inverse pole figures for FFC on an experimental GaSb tilt series with a template bank
of 3 degree resolution, for (a) orientations and (b) rotations in x and z direction. Numbers in (a) refer
to sequential orientations in the tilt series and in insert in (b) to Euler angle. For the orientations in
(a) three example cases are selected marked by colored squares. Signal and template patterns, with
Euler angles, rank and correlation score, are overlaid.

65



Chapter 4. Results

(a) NCC (b) ZNCC (c) FFC

Figure 4.16: Angular distance to the previous orientation in the template matching result for experi-
mental GaSb with a template bank of 1 (NCC and ZNCC) or 3 (FFC) degree resolution for (a) NCC,
(b) ZNCC and (c) FFC. The expected result is shown as a red line in every plot, and every template
matched result is represented by a blue star.
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4.2 GaSb Dataset

(a) NCC - Reliability Index (b) ZNCC - Reliability Index (c) FFC - Reliability Index

(d) NCC - Weighted Reliability In-
dex (e) ZNCC - WRI (f) FFC - WRI

(g) NCC - Correlation score-map (h) ZNCC - Correlation score-map (i) FFC - Correlation score-map

Figure 4.17: Top row: Reliability index for GaSb with template library of 1 (NCC and ZNCC) or
3 (FFC) degree resolution for 30 orientations in an experimental tilt series for correlation methods
(a) NCC, (b) ZNCC and (c) FFC. A higher score indicates a higher reliability as defined in Equation
(2.54) . Middle row: Weighted reliability index for correlation methods (d) NCC, (e) ZNCC and (f)
FFC. A higher score indicates a higher weighed reliability as defined by Equation (2.57), where 1 is
the highest score. Bottom row: 25 Best correlation scores represented in a map for every orientation
in the tilt series for the correlation methods (g) NCC, (h) ZNCC and (i) FFC, with color representing
the correlation score.
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4.3 Simulated Mordnite
The parameters described in Table 3.1 were used to generate a simulated diffraction pattern
for a tilt series.

4.3.1 Perfect Template
The orientations in the tilt series were used to generate a template library, and the simu-
lated data was matched to the template library. The inverse pole figures of the resulting
orientations and rotations between subsequent orientations are shown in Figures 4.18, 4.19
and 4.20. The figures also show the best matching template together with the signal for
selected indices.

Both NCC and ZNCC correctly identify all indices in the tilt series, while FFC method
misses for two orientations, as seen in Figure 4.21c.
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4.3 Simulated Mordnite

1

Material: Mordenite
Signal: Simulated
Template: Perfect
Method: NCC

(a)

(b)

Figure 4.18: Inverse pole figures for NCC on a simulated mordenite tilt series with a perfect template
input, for (a) orientations and (b) rotations in x and z direction. Numbers in (a) refer to sequential
orientations in the tilt series and in insert in (b) to Euler angle. For the orientations in (a) three
example cases are selected marked by colored squares. Signal and template patterns, with Euler
angles, rank and correlation score, are overlaid.
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1

Material: Mordenite
Signal: Simulated
Template: Perfect
Method: ZNCC

(a)

(b)

Figure 4.19: Inverse pole figures for ZNCC on a simulated mordenite tilt series with a perfect
template input, for (a) orientations and (b) rotations in x and z direction. Numbers in (a) refer to
sequential orientations in the tilt series and in insert in (b) to Euler angle. For the orientations in
(a) three example cases are selected marked by colored squares. Signal and template patterns, with
Euler angles, rank and correlation score, are overlaid.
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4.3 Simulated Mordnite

14

15,16
15,16

Material: Mordenite
Signal: Simulated
Template: Perfect
Method: FFC

1

(a)

0,0,0 46,3,316

47,7,317

0,0,0

46,3,316

47,7,317

(b)

Figure 4.20: Inverse pole figures for FFC on a simulated mordenite tilt series with a perfect template
input, for (a) orientations and (b) rotations in x and z direction. Numbers in (a) refer to sequential
orientations in the tilt series and in insert in (b) to Euler angle. For the orientations in (a) three
example cases are selected marked by colored squares. Signal and template patterns, with Euler
angles, rank and correlation score, are overlaid.
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(a) NCC (b) ZNCC (c) FFC

(d) NCC (e) ZNCC (f) FFC

Figure 4.21: Distance of template matched orientation to true orientation for mordenite with a
perfect template input for correlation methods (a) NCC, (b) ZNCC and (c) FFC for 30 simulated
orientations. Angular distance to the previous orientation in the template matching result for (d)
NCC, (e) ZNCC and (f) FFC. The expected result is shown as a red line in every plot, and every
template matched result is represented by a blue star.
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4.3 Simulated Mordnite

4.3.2 1 Degree Grid
A template library was generated by creating an equally spaced grid on the fundamental
zone, and the simulated data was matched against the template library. The inverse pole
figures of the resulting rotations and orientations are seen in Figures 4.22, 4.23 and 4.24.
The angular distance from the obtained orientation to the true orientation, and the angu-
lar distance between subsequent orientations are shown in Figure 4.25. The Reliability
metrics for the template matching result are shown in Figure 4.26.

None of the three correlation methods are able to correctly index the data, as seen in
Figure 4.25.
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Material: Mordenite
Signal: Simulated
Template: 1 Deg
Method: NCC

(a)

(b)

Figure 4.22: Inverse pole figures for NCC on a simulated mordenite tilt series with a template bank
of 1 degree resolution, for (a) orientations and (b) rotations in x and z direction. Numbers in (a) refer
to sequential orientations in the tilt series and in insert in (b) to Euler angle. For the orientations in
(a) three example cases are selected marked by colored squares. Signal and template patterns, with
Euler angles, rank and correlation score, are overlaid.
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4.3 Simulated Mordnite

Material: Mordenite
Signal: Simulated
Template: 1 Deg
Method: ZNCC

19-21

(a)

(b)

Figure 4.23: Inverse pole figures for ZNCC on a simulated mordenite tilt series with a template bank
of 1 degree resolution for (a) orientations and (b) rotations in x and z direction. Numbers in (a) refer
to sequential orientations in the tilt series and in insert in (b) to Euler angle. For the orientations in
(a) three example cases are selected marked by colored squares. Signal and template patterns, with
Euler angles, rank and correlation score, are overlaid.
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30
1

Material: Mordenite
Signal: Simulated
Template: 3 Deg
Method: FFC

(a)

(b)

Figure 4.24: Inverse pole figures for FFC on a simulated mordenite tilt series with a template bank
of 3 degree resolution for (a) orientations and (b) rotations in x and z direction. Numbers in (a) refer
to sequential orientations in the tilt series and in insert in (b) to Euler angle. For the orientations in
(a) three example cases are selected marked by colored squares. Signal and template patterns, with
Euler angles, rank and correlation score, are overlaid.
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4.3 Simulated Mordnite

(a) NCC (b) ZNCC (c) FFC

(d) NCC (e) ZNCC (f) FFC

Figure 4.25: Distance of template matched orientation to true orientation for mordenite with a tem-
plate library of 1 (NCC and ZNCC) or 3 (FFC) degree resolution for correlation methods (a) NCC,
(b) ZNCC and (c) FFC for 30 simulated orientations. Angular distance to the previous orientation
in the template matching result for (d) NCC, (e) ZNCC and (f) FFC. The expected result is shown
as a red line in every plot, and every template matched result is represented by a blue star.
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(a) NCC - RI (b) ZNCC - RI (c) FFC - RI

(d) NCC - WRI (e) ZNCC - WRI (f) FFC - WRI

(g) NCC - CSM (h) ZNCC - CSM (i) FFC - CSM

Figure 4.26: Top row: Reliability index for mordenite with a template library of 1 (NCC and
ZNCC) or 3 (FFC) degree resolution for 30 orientations in a simulated tilt series for correlation
methods (a) NCC, (b) ZNCC and (c) FFC. A higher score indicates a higher reliability as defined
in Equation (2.54) . Middle row: Weighted reliability index for correlation methods (d) NCC, (e)
ZNCC and (f) FFC. A higher score indicates a higher weighed reliability as defined by Equation
(2.57), where 1 is the highest score. Bottom row: 20 Best correlation scores represented in a map
for every orientation in the tilt series for the correlation methods (g) NCC, (h) ZNCC and (i) FFC,
with color representing the correlation score.
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4.3 Simulated Mordnite

4.3.3 Random Orientations

Table 4.4: Results for random orientations

Method Correctly indexed (%) Standard Deviation (◦)
NCC 54.3 0.74
ZNCC 30.3 1.38
FFC 7.3 1.83

For the same data, pairs of random orientations were drawn. The distance between the
true value of the orientations was found. The distance between the corresponding template
matching orientations was computed, and compared to the true distance. A deviation of
less than 1.8 degrees was taken to be correct. The result of the test is presented in Table
4.5.

Table 4.5: Fraction of correctly indexed orientations for the correlation methods NCC, ZNCC and
FFC, computed by defining a distance between template matching orientations within 1.8 degrees
from the true distance to be correct.

Method Correctly indexed (%)
NCC 39.5
ZNCC 17.0
FFC 7.7

By comparing the angular distance to the score of the Reliability index and the weighted
reliability index, the correlation coefficients for RI and WRI were computed. In order to
test if there were a correlation between the total intensity of the simulated signal and the in-
dexation error, the correlation coefficient between the total signal intensity and the angular
distance to the true value were computed.

Table 4.6: Correlation coefficients - Distance to true value vs Reliability Metric

Method NCC ZNCC FFC
WRI -0.547 -0.371 -0.168
RI -0.172 -0.170 -0.122
Itot -0.009 -0.082 -0.266
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Material: Mordenite
Signal: Simulated
Library: 1 Deg
Method: NCC

(a)

(b)

Figure 4.27: Inverse pole figure for NCC to a set of 300 random orientations for simulated mor-
denite, with a template bank of 1 degree resolution in (a) X and (b) Z direction. A local averaging
algorithm was applied to the orientations to generate a smooth result. The color bar represents the
angular distance from the true value. A dark area is an area where the majority of orientations have
been correctly indexed. The insets show the signal together with the best fitting templates for se-
lected example positions on the IPF marked by colored squares in (a) and (b). Euler angles for the
template and correlation score are indicated for the selected cases.
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4.3 Simulated Mordnite

Material: Mordenite
Signal: Simulated
Library: 1 Deg
Method: ZNCC

(a)

(b)

Figure 4.28: Inverse pole figure for ZNCC to a set of 300 random orientations for simulated mor-
denite, with a template bank of 1 degree resolution in (a) X and (b) Z direction. A local averaging
algorithm was applied to the orientations to generate a smooth result. The color bar represents the
angular distance from the true value. A dark area is an area where the majority of orientations have
been correctly indexed. The insets show the signal together with the best fitting templates for se-
lected example positions on the IPF marked by colored squares in (a) and (b). Euler angles for the
template and correlation score are indicated for the selected cases.
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Material: Mordenite
Signal: Simulated
Library: 3 Deg
Method: FFC

(a)

(b)

Figure 4.29: Inverse pole figure for FFC to a set of 300 random orientations for simulated mordenite,
with a template bank of 1 degree resolution in (a) X and (b) Z direction. A local averaging algorithm
was applied to the orientations to generate a smooth result. The color bar represents the angular
distance from the true value. A dark area is an area where the majority of orientations have been
correctly indexed. The insets show the signal together with the best fitting templates for selected
example positions on the IPF marked by colored squares in (a) and (b). Euler angles for the template
and correlation score are indicated for the selected cases.
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4.4 Mordenite Dataset

4.4 Mordenite Dataset
A template library was generated by creating an equally spaced grid on the fundamental
zone, with a 1 degree spacing for NCC and ZNCC and 3 degrees spacing for FF. The
mordenite dataset was matched against the template library. The inverse pole figures of
the resulting rotations and orientations are shown in Figures 4.30, 4.31 and 4.32. The
distance to the previous index is plotted in Figure 4.33.

The reliability metrics are shown in Figure 4.17. The scores for the Weighted reliability
indices provides higher values for NCC than for ZNCC. For FFC the WRI score is low for
most indices. The reliability index is close to 0 for most indices for all three correlation
methods. The Correlation score maps of NCC and ZNCC look very similar, with 25
templates obtaining a similar correlation score for all indices. For FFC the difference
between the best scoring templates and the subsequent templates is bigger.
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30
1

Material: Mordenite
Signal: Real
Template: 1 Deg
Method: NCC

9,11,13

7,20,25

(a)

(b)

Figure 4.30: Inverse pole figures for NCC on an experimental mordenite tilt series with a template
bank of 1 degree resolution for (a) orientations and (b) rotations in x and z direction. Numbers
in (a) refer to sequential orientations in the tilt series and in insert in (b) to Euler angle. For the
orientations in (a) three example cases are selected marked by colored squares. Signal and template
patterns, with Euler angles, rank and correlation score, are overlaid.
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4.4 Mordenite Dataset

Material: Mordenite
Signal: Real
Template: 1 Deg
Method: ZNCC

28-30
10,32-34

(a)

(b)

Figure 4.31: Inverse pole figures for ZNCC on an experimental mordenite tilt series with a template
bank of 1 degree resolution for (a) orientations and (b) rotations in x and z direction. Numbers
in (a) refer to sequential orientations in the tilt series and in insert in (b) to Euler angle. For the
orientations in (a) three example cases are selected marked by colored squares. Signal and template
patterns, with Euler angles, rank and correlation score, are overlaid.
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Material: Mordenite
Signal: Real
Template: 3 Deg
Method: FFC

1

2-8,11-17
19-32,34-39

(a)

(b)

Figure 4.32: Inverse pole figures for FFC on an experimental mordenite tilt series with a template
bank of 3 degree resolution for (a) orientations and (b) rotations in x and z direction. Numbers
in (a) refer to sequential orientations in the tilt series and in insert in (b) to Euler angle. For the
orientations in (a) three example cases are selected marked by colored squares. Signal and template
patterns, with Euler angles, rank and correlation score, are overlaid.
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4.4 Mordenite Dataset

(a) NCC (b) ZNCC (c) FFC

Figure 4.33: Angular distance to the previous orientation in the template matching result for exper-
imental mordenite with a template bank of 1 (NCC and ZNCC) or 3 (FFC) degree resolution for (a)
NCC, (b) ZNCC and (c) FFC. The expected result is shown as a red line in every plot, and every
template matched result is represented by a blue star.
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(a) NCC - RI (b) ZNCC - RI (c) FFC - RI

(d) NCC - WRI (e) ZNCC - WRI (f) FFC - WRI

(g) NCC - CSM (h) ZNCC - CSM (i) FFC - CSM

Figure 4.34: Top row: Reliability index for mordenite with a template library of 1 (NCC and
ZNCC) or 3 (FFC) degree resolution for 39 orientations in an experimental tilt series for correlation
methods (a) NCC, (b) ZNCC and (c) FFC. A higher score indicates a higher reliability as defined
in Equation (2.54). Middle row: Weighted reliability index for correlation methods (d) NCC, (e)
ZNCC and (f) FFC. A higher score indicates a higher weighed reliability as defined by Equation
(2.57), where 1 is the highest score. Bottom row: 25 Best correlation scores represented in a map
for every orientation in the tilt series for the correlation methods (g) NCC, (h) ZNCC and (i) FFC,
with color representing the correlation score.
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Chapter 5
Discussion

In this work the correlation methods NCC, ZNCC and FFC have been applied for eight
different test cases:

1. A simulated GaSb tilt-series and a perfect template bank.

2. A simulated GaSb tilt-series with a template bank of equally spaced orientations on
the fundamental zone.

3. A simulated GaSb signal for 1000 random orientations with a template bank of
equally spaced orientations on the fundamental zone.

4. An experimental GaSb tilt-series with a template bank of equally spaced orientations
on the fundamental zone.

5. A simulated mordenite tilt-series with a perfect template bank.

6. A simulated mordenite tilt-series with a template bank of equally spaced orientations
on the fundamental zone.

7. A simulated mordenite signal for 300 random orientations with a template bank of
equally spaced orientations on the fundamental zone.

8. An experimental mordenite tilt-series with a template bank of equally spaced orien-
tations on the fundamental zone.

Due to memory constraints the resolution of the template banks of equally spaced orienta-
tions on the fundamental zone varied, and was 1 degree for NCC and ZNCC and 3 degrees
for FFC.

5.1 Choice of tilt series for GaSb
In Figure 5.1 the full tilt series is plotted on the inverse pole figure in x and z directions. As
orientations 16 - n and 16 + n coincide for both x and y directions they are symmetrically
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Chapter 5. Discussion

equivalent orientations, and should produce the same result. Still, in Figure 4.4c, the result
for 16 + n is not the same as the result for 16 - n for orientations 10 and 22 or 9 and 23. This
shows that, although the orientations in 16 + n and 16 - n are symmetrically equivalent,
they are not behaving as such.

1

3,29

5,27

7,25

9,23
11,21

13,19
15,17

1

3,29

5,27

7,25

9,23
11,21

13,19
15,17

Figure 5.1: The inverse pole figure for the GaSb tilt series defined in Table 3.1, in the X and Y
directions. The numbers refer to sequential orientations in the tilt series

To further examine this, the templates of orientations 10 and 22 are plotted together
in Figure 5.2. The red line in the figure indicates the mirror symmetry that relates the
two patterns. For the GaSb structure, the two templates should be indistinguishable for
a cubic structure. A previous work by the author [68] found a bug in the simulations of
diffraction patterns that lead to a discussion in the pyxem/diffsims forum1, which in turn
lead to changes in the simulation of diffraction patterns. The process of simulating the
diffraction pattern of a given orientation is described in Appendix B.2.2. Rotating the
structure is complicated in the pyxem code because it relies on the diffpy.structure library
[71], where the active rotation convention is used. For the remainder of the pyxem code,
and for this work, the passive rotation convention has been used, as discussed in Section
2.4.3. This leads to complications related to the conversion between conventions, and it is
possible that the phenomenon showed in this section stems from a bug in the conversion
between conventions.

The ramifications of this phenomenon will greatly impact template matching results
for both simulated and experimental results. The orientations in the template library are
generated from a fundamental zone, which constitutes a set of unique symmetry opera-
tions. The fundamental zone is a property of the structure symmetry, and any complete set
of rotations on SO(3) will have a subset that is the fundamental zone. It is not limited to
the Euler angles in the Bunge convention that are used in pyxem. Now, a rotation opera-
tions that is supposed to generate the same result as its projection in the fundamental zone,
generates a different result. Therefore, either (1) there is another rotation operation within
the fundamental zone that corresponds to the new result, or (2) there are two operations
within the defined fundamental zone that will produce the same result. These two hy-
potheses follow from the realization that even if rotations are applied in an erroneous way,
there is still a fundamental zone defined by the structure symmetry, that has a one-to-one

1pyxem/diffsims Pull request # 60.
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5.1 Choice of tilt series for GaSb

Figure 5.2: Templates for orientations 10 and 22 in the tilt series of GaSb with a template library of
1 degree resolution. The red dotted line shows the mirror line that translates the signal for orientation
10 into the signal for orientation 22.

correspondence with all other fundamental zones in SO(3) (24 for cubic structures). If (2)
is true, then the defined fundamental zone is not a true fundamental zone in the rotation
convention that is being applied, and there are diffraction patterns that will have no match
in the template library. This is, assuming that the function used to create a grid of constant
spacing for the fundamental zone function is correctly implemented, and that there are no
symmetrically equivalent orientations in the grid.

Assume first that (1) is true, and consider the case where NCC method was applied
with a template library of 1 degree resolution. In Figure 4.8a, the distances to the true ori-
entation is plotted. For orientations 1-16 and 16-30 the results are close to the true value.
If there was an orientation at a different place in the fundamental zone that corresponded
well to one of the orientations in the tilt series, it would give a large deviation from the
expected result. This is not seen for either orientations 1-16 or 16-30. To further examine
the difference between orientations 1-16 and 16-30, the best fitting templates for orienta-
tions 10 and 22 are plotted in Figure 5.3. The signal red dotted line is the mirror line that
translates orientation 10 to orientation 22. The best fitting templates for the two signals
do not share the mirror symmetry, but we see that the templates are a near perfect fit for
both orientation 10 and orientation 22. This indicates that both orientation 10 and orien-
tation 22 belong to areas covered by the Fundamental zone of the template bank. This is
not expected, as they are symmetrically equivalent orientations, and should appear only
once in the Fundamental zone. The implementation is that the fundamental zone grid is
not correct, which removes the premise of hypotheses (1) and (2). The finding is that the
fundamental zone grid spans more than the fundamental zone, which is not a big issue
unless computational speed is considered. What is a serious issue is if the fundamental
zone is not spanned.

In order to confirm the result from the previous paragraph the full tilt series NCC on
the simulated GaSb with a template bank of 1 degree resolution is shown in Figure 5.4. In
5.4a, the antipodal symmetry operation is applied in projecting orientations to the funda-
mental zone. In 5.4b the antipodal symmetry operation is not applied. In the (b) template,
orientations 1-12 are missing for the z direction of the inverse pole figure, and 3-11 are
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Figure 5.3: Templates together with signal for orientations 10 and 22 in the tilt series of GaSb with
a template library of 1 degree resolution. The red dotted line shows the mirror line that translates the
signal for orientation 10 into the signal for orientation 22.

missing for the x direction. This shows that without the antipodal symmetry operation, ori-
entations 16 + n do not coincide with orientations 16 - n. Friedel’s law, stated by Friedel in
1913 [72], says that the reflections [hkl] and [h̄ k̄ l̄] can not be distinguished. There should
therefore be no need to apply antipodal symmetry for the orientations to coincide, and
the result is an indication that the simulation is wrong, and also that a set of orientations
greater than the fundamental zone is covered by the template bank. Although the premise
for hypotheses (1) and (2) is removed, the underlying concept, that the structure has a
symmetry and a well defined fundamental zone still holds. If the rotations are applied in
an erroneous way, so that patterns that should be identical are not identical, it necessarily
also implies that patterns that should not be identical will be identical, as there is a one-to-
one correspondence between different fundamental zones. In the following discussion of
template matching, it is therefore important to consider carefully if a template matches the
signal, and not only that the obtained result is sensible, when different correlation methods
are evaluated. A positive aspect of the simulation error is that the template bank covers all
the orientations in the tilt series, and that pairs of diffraction patterns are equal, apart from
a mirror operation. This simplifies the study of what goes wrong for instance for template
10 in the tilt series with a perfect template for the FFC method, seen in Figure 4.4c, as the
situation can be compared to an equivalent case in template 22, where the correct template
was selected.

In order to fix the issue of missing symmetry in the simulated patterns, the code for
rotating the structure must be reevaluated. In order to test that the reevaluated code works,
an orientation must be chosen, and a list of all equivalent orientations from symmetry op-
erations generated. Ideally the pattern of the orientation should not have much symmetry,
so a pattern off zone-axis is to be selected. For every orientation in the list of equivalent
orientations, a diffraction pattern is simulated, and the structure is rotated correctly if all
the symmetry equivalent orientations produce the same simulated diffraction pattern.
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Figure 5.4: Inverse pole figure of the full tilt series for GaSb with a template bank of 1 degree
resolution. In (a) the antipodal symmetry operation about (0,0,0) is applied, while in (b) it is not
applied. The numbers refer to sequential orientations in the tilt series. Orientations 3 - 12 are not
seen in the X direction in (b) and orientations 1 to 12 are not seen in the Z direction in (b)
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5.2 Confirming that the orientation list spans the Funda-
mental Zone

In light of the discussion in the previous section it should be confirmed that the function
for generating a grid on the fundamental zone spans the full fundamental zone. This was
done in a previous project in an indirect way [68], but is repeated here in a more direct way
with the plotting tools provided in MTEX [69]. In Figure 5.5 the list of orientations on the
fundamental zone are plotted for cubic and orthorhombic grids. For the Z direction of the
inverse pole figure for the cubic grid, there is a hole near the [1̄11] corner, outlined with a
red outline. No orientations have been projected, and the result shows that the fundamental
zone for GaSb is not fully covered, while the fundamental zone for mordenite is covered.
Notice also that the inverse pole figures for both the cubic and the orthorhombic grids are
more densely populated near the [001] corner of the Z direction. This is an artifact of
choosing to have an equal angle between orientations in the grid, rather than having an
equal area covered by each orientation. Both options are available in pyxem, but both have
the same characteristic zone with no orientations for the Z direction of the inverse pole
figure. This bug will have ramifications for orientations that belong to the zone where the
template bank has no entries. The closest possible match for an orientation in this area will
be further from the true value, and this extra distance will contribute to a worse template
matching result. The procedure for finding a set of orientations spanning the fundamental
zone is described in Appendix B.2.1.
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(a)

(b)

Figure 5.5: Randomly drawn orientations from the list of orientations spanning the fundamental
zone are projected to the X and Z directions of the inverse pole figure for (a) a cubic structure (b) an
orthorhobic structure. The area marked by a red outline for the Z direction in (a) is an area without
any orientations projected to it.
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5.3 Evaluating template matching for simulated data
Consider the top rows of Figures 4.4 and 4.21. The NCC method correctly identified all
indices for the simulated GaSb and mordenite tilt series, when the template bank consisted
of only orientations present in the tilt series. This was also the case for ZNCC. The FFC
method got 28/30 orientations correct for both GaSb and mordenite with a perfect template
bank, with a four degree deviation from the true result for the misindexed orientations.
This demonstrates that all three methods are able to differentiate between 30 patterns in a
simulated tilt series, when every orientation in the tilt series has a perfect fit in the template
bank. All three methods are therefore applicable to the correlation between a template and
a signal, and can be further evaluated in a more realistic test where the orientations in
the simulated signal are assumed to be unknown when generating the template bank. The
template bank is then generated by selecting orientations on an equally spaced grid on the
fundamental zone.

Consider cases where orientation mapping is performed with a template bank of equally
spaced orientations on the fundamental zone. As a threshold value for labeling an orienta-
tion as correct, an angular distance of 3 degrees to the true value was chosen for this work.
This threshold value should be selected based on the objective of the study in question.
One common use of orientation mapping is for determining grain boundaries [73]. For
studies of grain boundaries, the minimum misorientation for defining a grain boundary
varies depending on the purpose of the study. For two example works with grain bound-
aries, the minimum misorientation angles to define a grain boundary were 3 degrees [74]
and 4 degrees [75]. The misorientation imprecision is

√
2 times larger than the orientation

imprecision [76], and the threshold value for labeling an orientation as correct should be
selected with this in mind. The selected threshold value for this work would correspond to
a minimum misorientation angle of around 4.2 degrees.

For random orientations, the standard deviation of the orientations that are defined to
be correct is reported in addition to the fraction of orientations that are correctly indexed.
This provides a number for the spread of the orientations taken to be correct around the true
orientation. A mathematically correct treatment would take into account the orientation
distribution of orientations on SO(3) for the computation of the spread. The simplification
of the von Mises distribution for misorientations in Section 2.6.1 is not applicable to this
problem, as the distribution is centered at zero distance from the true orientation, where the
rotation axis from the observed orientation to the true orientation is not well defined. The
problem can be treated with von Mises - Fisher statistics by considering the full orientation
matrix treatment discussed in Appendix A.2, but for a distribution of small (Book does not
provide an exact definition of small) variance around a mean orientation, the von Mises
- Fisher distribution is well approximated by Gaussian statistics [61]. Although the book
does not provide an exact definition of small, it stresses that even for the variance where
the von Mises - Fisher distribution is furthest from the wrapped normal distribution, the
differences between the two are very small, allowing the statistician to use the distribution
best suited for his/her work.

Table 5.1 summarized the contents shown in the top rows of Figures 4.8 and 4.25 to-
gether with the Correctly indexed columns of Tables 4.1 and 4.4. For all test cases the NCC
method shows the best results, by correctly indexing a larger fraction of the orientations.
The overall results of ZNCC are better than those of FFC, as ZNCC correctly indexes a
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significantly higher fraction of orientations in three out of four tests. All methods fail for
the mordenite tilt series. When the methods were applied to a simulated dataset of random
orientations, with the same simulation parameters, the fraction of correctly indexed orien-
tations is significantly higher for all methods. For GaSb and the NCC method, the opposite
is the case. For the tilt series, 26/30 orientations are correctly indexed, while for random
orientations the number is only 60.1%. To better understand this phenomenon, NCC is fur-
ther studied as an example case. The true orientations of the tilt series are plotted together
with the angular distance heatmaps from Figures 4.10 and 4.27 in Figure 5.6.

Table 5.1: Fraction of correctly indexed orientations. Numbers refer to the test index in the intro-
duction of this section.

NCC ZNCC FFC
2. GaSb - 1-Degree Template 26/30 19/30 2/30
3. GaSb Random Orientations - 1 Degree Template 60.1% 55.8% 3.1%
6. Mordenite - 1-Degree Template 2/30 0/30 1/30
7. Mordenite Random Orientations - 1 Degree Template 54.4% 30.3% 7.3%

Considering Figure 5.6a for the GaSb tilt series, it is observed that indices 14-16 are in
areas with a higher average distance to the true value for both the X and Z direction of the
inverse pole figure. Futhermore, the indices 6-8 and 13 are in areas with slightly higher
average distance to the true value. The remainder of the orientations from 1-16 are in areas
with low average distance to the true value. This coincides well with what is observed in
Figure 4.5, where orientations 13 to 15 are misindexed.

For Figure 5.6b for the mordenite tilt series it is observed that all orientations lie in
areas of the inverse pole figure with a high average distance to the true value for the Z
direction. For the X direction orientations 4-7 and 16-17 are on areas with a low average
distance with the remainder of the orientations being in areas with high average distance to
the true value. This could in part explain why only a few of the orientations in the tilt series
are correctly indexed, while for random orientations the percentage of correct indexations
is much higher.

The implications of the recent discussion of Table 5.1 are that the success rate of tem-
plate matching is a local, not global parameter in the orientation space. While the general
success rate, found from random orientations, is a parameter that can be used to compare
correlation methods, the success rate of a specific tilt series might deviate a great deal from
the general success rate. This observation is strengthened by considering Figures 4.10 to
4.12 and 4.27 to 4.29, where the average distance to the true value varies a great deal across
the inverse pole figures. An issue with this realization is that the average angular distance
to the true value is a property depending on the true orientation, not the template matching
orientation. For situations where it is not known which orientations to expect, the general
success rate will therefore be the only applicable estimate for expected success rate before
running the template matching.
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Material: GaSb
Signal: Simulated
Library: 1 Deg
Method: NCC

1 1

(a)

1

Material: Mordenite
Signal: Simulated
Library: 1 Deg
Method: NCC

(b)

Figure 5.6: Inverse pole figure in X and Z direction for NCC to a set of (a) 1000 random orientations
for simulated GaSb (b) 300 random orientations for simulated mordenite, with a template bank of 1
degree resolution. A local averaging algorithm was applied to the orientations to generate a smooth
result. The color bar represents the angular distance from the true value. A dark area is an area where
the majority of orientations have been correctly indexed. Orientations in the tilt series described in
Table 3.1 are seen as red markers on the figure, and numbers refer to sequential orientations in the
tilt series.
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5.4 Reliability scores
WRI and RI were computed for template matching on simulated signals from a set of
random orientations, when the methods NCC, ZNCC and FFC had been applied. Table
5.2 summarizes the results in Tables 4.3 and 4.6 for GaSb and mordenite, respectively. The
distance from the true value has been correlated to the reliability metrics, using Equation
(2.58). A large negative correlation coefficient indicates a good result, as -1 is a perfect
negative correlation where a high value for the metric means that the distance to the true
orientation is small. The WRI provides a stronger linear relationship to the deviation from
the true value for both GaSb data and mordenite data, across all three methods. On average,
the WRI provides a correlation of -0.36 while the RI provides a correlation of -0.15. So
the average, based on 2 example materials and 3 different methods (that are evaluated and
differently valued) gives indication that WRI to a higher degree is able to predict which
template matching results are correct. Assuming that NCC is best based on the previous
discussion and that it is the default method in commercial software and pyXem, comparing
RI and WRI, comes to the same conclusion that WRI is a better indicator of how correct
prediction is.

Table 5.2: Correlation coefficients - Distance to true value vs Reliability Metric for NCC, ZNCC
and FFC applied to simulated GaSb and mordenite data from random orientations.

Method RI WRI
NCC - GaSb -0.137 -0.281
ZNCC - GaSb -0.184 -0.428
FFC - GaSb -0.084 -0.372
NCC - mordenite -0.172 -0.547
ZNCC - mordenite -0.170 -0.371
FFC - mordenite -0.122 -0.168
Average -0.145 -0.361

Reliability metrics are used to tell if a template matching result is reliable or not. The
result in Table 5.2 shows that high values for the WRI coincide with better template match-
ing results in general terms, the matching scores themselves are difficult to interpret in
physical meaning and vary in general for the three correlation methods (ie hard to com-
pare scores directly). In practice, reliability metrics are used to answer the question: ”Is
my result reliable?”, and the expected answer is either ”yes” or ”no”. To provide such an
answer, a threshold value has to be set, so that any template matching result with a WRI
score lower than the threshold value is labeled as wrong. The properties of the test, after
setting a threshold value can be examined by a confusion matrix [77]. Considering the top
row of Figure 4.8 together with the middle row of Figure 4.9. An initial test is done with
course cut-off values. A threshold value for the WRI of around 0.9 was chosen so that if
the WRI value is higher than this value for an orientation in Figure 4.9, then it should be
close to the true value for the corresponding orientation in Figure 4.8. Table 5.3 shows the
confusion matrix of a WRI threshold value of 0.9 for NCC on simulated data from 1000
random orientations. When WRI gives a value higher than 0.9, 71.8 % of the orientations
are correctly indexed, while for WRI values lower than 0.9, only 32.3 % of the orientations
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are correctly indexed. For all orientations, 60.1 % of the orientations are correct, as seen
in 4.1. It is clear that computing the WRI adds valuable information to the analysis of
template matching results.

Table 5.3: Confusion table for WRI test with threshold value 0.9 for data from 1000 random orien-
tations for NCC on simulated GaSb data.

WRI > 0.9 WRI < 0.9
Distance < 3 deg 505 96
Distance > 3 deg 198 201

5.5 Experimental Data
For the Experimental datasets of both GaSb and mordenite, the true orientation is not
known. What is known is that both stem from a tilt series, with reported oscillation angles
of 1.98 degrees and 2.336 degrees, respectively. The results are therefore evaluated on
whether a tilt series is observable on the inverse pole figure, and by considering the best
matching template compared to the signal, to evaluate if it is a good fit. While finding the
rotation axis is not the primary objective of this study, the rotation axis will be observable
if a sufficient number of orientations have been correctly indexed, as seen in Figure 4.5.

By comparing Table 4.2 to Table 4.1 it is clear that although the two methods for mea-
suring the fraction of correct data do not coincide perfectly, they are strongly related. The
same is observed when considering Tables 4.5 and 4.4. As the estimates found by compar-
ing rotations in Tables 4.2 and 4.5 require both selected orientations to be correctly indexed
to give a true result, the estimates are for the squared probability of correctly indexing an
orientation. For a tilt series, the results for subsequent orientations are correlated. Count-
ing the number of correct orientations will therefore be done by considering the number
of rotation in the correct angular range (As discussed in section 2.6 this is a very rough
estimate). If a rotation is correct while the previous rotation was not correct, we count
the rotation as +2, because two orientations are required to be correctly indexed to give
a correct result. If the previous rotation is also correct, we count +1, as we have already
counted the previous orientation.

Considering now the experimental tilt series, and letting a rotation that deviate less
than 1.8 degrees from the reported tilt series rotation be labeled as correct. In Figure 4.16,
there are a total of 10 rotations within the expected range of rotations for NCC. Counting
as described above, this amounts to an estimated 15/30 orientations correctly indexed. For
ZNCC the number of rotations within the expected range is 11, amounting to an estimate of
17/30 rotations within the expected range. For FFC 2 rotations, amounting to an estimate
of 4 orientations are within the expected range. By considering Figure 4.17 we observe
that for NCC 8 orientations have a WRI score of higher than 0.9. For ZNCC the number
is also 8, while FFC has only 2 orientations of WRI higher than 0.9.

For mordenite, the distance to previous plot is shown in Figure 4.33. For NCC, 5
rotations are within the expected range, amounting to an estimate of 8 correct orientations.
For ZNCC, there are 9 rotations within the expected range, amounting to an estimate of
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16 correct orientations. For FFC there are three orientations within the expected range,
amounting to an estimate of 6 correct orientations. The WRI values in Figure 4.34, show
that NCC has 10 orientations with a WRI above 0.9, ZNCC also has 10 orientations while
FFC has none.

As the WRI has demonstrated to be related to the distance from the true value, a high
score makes a template matching result more reliable, but there is still a need for further
evaluation. The method of counting rotations between template matching results would be
much stronger if the accepted rotations were also limited to a rotational direction, not only
an absolute rotation value. It is therefore necessary to consider the plot of orientations and
rotations on the IPF, and consider if the results look like a tilt series.

5.5.1 NCC on experimental GaSb
The result of the NCC method applied on the experimental GaSb dataset is seen in Figure
4.13. There are areas on the inverse pole figure where subsequent indices lie in close
vicinity, as expected for a tilt series. Indices 3-6, 12-14 and 25-27 resemble a tilt series
locally for both the x- and z-projections. The general picture is, however, not that of a tilt
series, and it is hard to identify the tilt axis from looking at the inverse pole figures. The
template and the signal for selected indices do not match very well, apart from in a couple
of high-intensity positions. This would indicate that for the selected indices we have not
found the true answer. The plot of the rotations on the inverse pole figure show that there
is a region with a large concentration of rotations, that could correspond to the constant
tilt in the tilt series. Within this region the orientations are quite spread, and it is hard to
determine the true tilt-axis and angle of rotation. The NCC method fails to determine the
orientations from the experimental GaSb dataset.

5.5.2 ZNCC on experimental GaSb
For ZNCC on the experimental GaSb dataset the results seen in Figure 4.14 resemble
those of NCC. The indices 2-6, 12-14 and 25-27 are locally aligned for both the x- and
z-projections, while the remainder of the indices are scattered over the inverse pole figure,
making it hard to identify the tilt axis in the tilt series. The template and the signal matches
quite well for the green rectangle representing index 19, but do not match well for the red
and yellow rectangles, representing indices 13 and 29, respectively. Both IPFs for rotations
have a region with higher density, but again the rotations are quite spread within this
region, making it difficult to determine the tilt-axis and angle of the tilt-series. The ZNCC
method also fails in determining the orientations from the experimental GaSb dataset.

5.5.3 FFC on experimental GaSb
The result for FFC on the experimental GaSb dataset, seen in Figure 4.15, does not have
any areas where subsequent indices are aligned for both the x- and z- projections of the
inverse pole figure. For the x-projection the orientations are scattered over the IPF, while
the z- projection has only 4 different points to which all orientations in the tilt-series are
projected. The template does not match the signal for any of the selected indices where
the template is plotted together with the signal. Neither of the IPFs for rotations have a
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region of noticeably higher concentration. No tilt series can be identified from the tem-
plate matching result, and the FFC method fails in determining the orientations from the
experimental GaSb dataset.

5.5.4 NCC on experimental mordenite

For NCC on the experimental mordenite dataset, seen in Figure 4.30, there are no areas
where subsequent indices are aligned on the inverse pole figure. The plots of selected
templates together with the signal show that the template matches the signal only in a
few high intensity positions, sometimes just a single position, as for the yellow rectangle
representing index 38. The plots of rotations on the IPF do not look like those of tilt series,
as rotations are spread all over the inverse pole figure, while we would expect there to be
a an area of increased density representing the constant tilt of the tilt series. The NCC
method fails in determining the orientations from the experimental mordenite dataset.

5.5.5 ZNCC on experimental mordenite

Considering ZNCC on the experimental mordenite dataset, seen in Figure 4.31, the results
again resemble those of NCC. There are no areas where subsequent indices are aligned
on the inverse pole figure, but there are certain subsequent indices that have the same or
almost the same position in both the x- and z-projection, such as indices 15-17 and 31-33.
As the orientations are not aligned, but rather identified to the same area, there could be
a common high intensity reflection for the indices in question, that would give a higher
correlation score for templates from a given area. From the plots of templates together
with signal we observe that the highest-scoring templates do not resemble the signal for
any of the three selected indices. The plot of rotations on the IPF does not resemble a tilt
series, as no single position has a higher concentration of rotations. The ZNCC method
fails in determining the orientations from the experimental mordenite dataset.

5.5.6 FFC on experimental mordenite

Moving on to FFC on the experimental mordenite dataset, seen in Figure 4.32, all ori-
entations are projected onto 5 points on the x-projection of the IPF and 3 points on the
z-projection of the IPF. All points are in close vicinity to each other. This is a clear indica-
tion that the method has not worked as intended, as the data spans a range of 100 degrees,
which would correspond to a much larger area of the IPF being covered. The plots of
templates together with signal for selected indices show that the selected templates look
very different from the signal. The inverse pole figures showing the rotations have a high
intensity in the [100] corner for the x-projection and a high intensity in the [001] corner
for the z-projection. This indicates that many subsequent indices are identified to be the
same orientation. This could again indicate that many of indices share a common trait that
is picked up by the FFC method, but not the trait the method is intended to identify. The
FFC method fails to determine the orientations in the experimental mordenite dataset.
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5.6 Comparison of correlation methods
Considering Table 5.1, the findings of this work show that for GaSb and mordenite, the
NCC method performs well for perfect templates on simulated data and for GaSb with a
simulated data input of 1 degree resolution. The ZNCC method gives in general the same
or very similar result as NCC especially for 5 of 6 test cases. ZNCC performs slightly
worse for simulated GaSb with a template library of 1 degree. FCC performs worse than
NCC and ZNCC for all tests but can correctly identify orientations for simulated data of
both GaSb and mordenite with a perfect template library. For Experimental data of both
GaSb and mordenite, all tested correlation methods fail, as discussed in Section 5.5.

To further examine the correlation methods, specific example orientations are selected
for every method, and further elaborated on to provide an understanding of what might be
the underlying cause that a template is misindexed.

5.6.1 NCC

Considering now the orientation in the red frame in Figure 4.10b. This orientation lies in
an area that is identified as difficult to index for the NCC algorithm, based on a set of 1000
random orientations, as the bright color in the area of the red frame on the inverse pole
figure represents. By creating a template from the true orientation, and match this template
against the simulated signal, the perfect match is found. The template found in template
matching with a 1 degree grid and the perfect match template are plotted on the same
signal in Figure 5.7. Considering the image of the 1 degree template, a line of reflections
in the center of the template matches the signal well. In addition there are two points in
the top half of the pattern match the underlying signal. None of the intensities in the lower
half of the pattern are matched. This gives a correlation score of 1.34 for the template, as
reported in the title above the template on signal plot. For the perfect template the template
and the signal coincide for all reflections, by construct. This results is a correlation score
of 1.35.

(a) (b)

Figure 5.7: The orientation marked with a red square in Figure 4.10b is plotted with (a) the best
fitting template from a template bank of 1 degree resolution and (b) the perfect template.
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It is important to notice that the colorbar of the template from the 1 degree library has a
maximum value of around 1200, while the colorbar of the perfect template has a maximum
value of around 900. As the high intensity reflections of the 1 degree template coincide
perfectly with the two highest intensity spots in the signal, this constitutes the major part
of the correlation score. Notice also that all other intensities in the template are much
weaker than the two central spots. For the perfect template, the fraction of the correlation
score stemming from the two central spots will be smaller, as more points coincide with
the signal. If the template is not perfect, but close to to the true orientation, the positions
of the reflections will be slightly shifted, and the correlation score lower. Meanwhile, a
template from another region of orientation space achieves a correlation score close to
that of the perfect template by only matching the signal in the center, with spots of very
high intensity, as seen in Figure 5.8. This could explain why the are on the inverse pole
figure from which the signal is collected is hard to match; There are other areas on the
inverse pole figure where the diffraction patterns have reflections of higher intensity in the
center, and these reflections coincide with the high intensity reflections of the signal of the
selected orientation. Hence, the correlation score on its own can be a poor parameter to
determine if the indexation is correct or not.

Material: GaSb
Signal: Simulated
Template: 1 Deg
Method: NCC

1: 
2: 
3: 

Figure 5.8: The orientation marked with a red square in Figure 4.10b is plotted as a big red square
on the inverse pole figure in X and Z directions together with the 25 best fits, shown as blue dots
on the IPFs. The three best fitting templates are shown in colored frames. The numbers show the
position among the best fitting templates, and to which frame each template belongs.

This observation points to a general problem of both the NCC and the ZNCC methods.
As the formulae, expressed in Equations (2.51) and (2.52), for computing the correlation
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score is a product function of the signal intensity and the template intensity, the correlation
score is easily dominated by high intensity reflections in the signal that coincide with high
intensity reflections in the template. The effect of matching the low intensity reflections
becomes negligible. This is in part accounted for by dividing with the norm of the template
intensities, but the effect is still clear for the example in Figure 5.7. To further analyze how
NCC performs, Figure 5.9 shows the orientations marked by a green and a red square in
Figure 4.30a. For the signal in Figure 5.9a, there are four high intensity template entries
that coincide well with high intensity positions in the signal, close to the center. Apart from
the line in the center, a so-called systematic row, there is not much visible signal, but the
template has light blue entries with medium level intensity spread across the pattern that do
not correspond to any visible underlying signal. For the signal in Figure 5.9b the template
only coincides with the signal for two high intensity positions near the center. Interestingly,
the scale of the colorbar representing the intensity only goes to 2500, while the colorbar
of the template in Figure 5.9a goes to 5000. Thus, we can expect there to be templates
with a higher intensity in the template bank, that could also coincide with reflections in the
signal. This indicates that division by the template norm is indeed working as intended, for
normalizing templates. Still, the effect that the high intensity template entries dominate
the result is clear for both images, and a template with a larger fraction of its total intensity
located at a few intensity maxima, can dominate the correlation score in another region of
orientation space, as seen in Figure 5.7.

(a) (b)

Figure 5.9: The template together with signal for the orientation marked with (a) a green square and
(b) a red square in Figure 4.30a.

5.6.2 ZNCC
ZNCC shares many of the same attributes as NCC, but is invariant under constant change
in image brightness [52]. This makes it easier to compare correlation scores from different
experimental diffraction patterns and between different experiments. For the testing on
simulated data, the NCC and ZNCC methods provided similar results for 5 of 6 tests. The
greatest difference was for simulated mordenite data, where NCC was able to correctly

105



Chapter 5. Discussion

index 54.3 % of the orientations, while ZNCC correctily indexed 30.3 %, as seen in Table
4.6. Figure 5.10 shows the template together for the signal for the orientations marked
with a green (a) and yellow (b) square in Figure 4.28, which will be studied further. As is
seen in the title above the diffraction patterns, both templates receive the same correlation
score of 0.09, even though one is correctly indexed (b), while the other (a) is far from the
true orientation. For the template and signal in Figure 5.10a the highest intensity templates
match well with two strong reflections in the signal, one up and to the right from the center,
and one down and to the left. Otherwise, no template reflections coincide with the signal.
For the template and signal in Figure 5.10b, almost every template intensity coincides with
a reflection in the signal. This shows that the ZNCC function has the same issue as NCC,
as a few high intensity reflections can dominate the correlation score, while low intensity
reflections become irrelevant.

(a) (b)

Figure 5.10: The template together with signal for the orientations marked with (a) a green square
and (b) a yellow square in Figure 4.28b.

The current model of simulation, described in Appendix B.2.2, tends to provide two
very strong reflections, as seen in Figure 5.10. This, together with correlation functions
for NCC and ZNCC that multiply the template intensity with the signal intensity, clearly
weights high intensity reflections much more than low intensity reflections. The preces-
sion technique for collecting signals ensures more illumination and also distributes the
illumination more uniformly. Therefore, taking data with the PED technique could im-
prove the results for both NCC and ZNCC, as the peaks in the signal will be stronger.
The same effect can be achieved by incorporating precession in the simulation of tem-
plates. Another option is to demand from a match result that a minimum number of points
match the unerlying signal. This will remove templates with high intensity matches for
only two reflections from consideration. Furthermore, introducing a function such as the
log function or square root function in Equations (2.51) and (2.52), to map the correlation
scores from a single reflection onto a more flat distribution can be considered. Another
option is to perform the cross-correlation in another space, which is done in FFC. Here,
both the templates and the signal are transformed into Fourier space, where the correlation
computations are performed.
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5.6.3 FFC
FFC is a completely different method from NCC and ZNCC. For the cases of perfect
templates for simulated GaSb and mordenite tilt series, the FFC method performed well,
and it was proved that it can distinguish between orientations in a tilt series in Figures 4.4c
and 4.21c. With a template library of 3 degree resolution the performance was not good,
as only 3.1 % of random GaSb orientations and 3 % of random mordenite orientations, as
seen in Tables 4.1 and 4.4. This is in part expected, as the template library had a lower
resolution due to memory constraints, but also because the FFC method is meant to be
followed with a refinement procedure, as described in [54], where the objective of the
FFC step is to match an orientation to within 7 degrees of the true orientation, as a starting
point for the subsequent refinement. Considering Figure 4.8c, it is clear that only 9 out of
30 orientations are confined to within 7 degrees of the true orientation. Considering now
the cases of templates 10 and 22 from the perfect template bank analysis of the GaSb tilt
series, discussed in section 5.1. This is an ideal case for testing, as two patterns that are
identical apart from a mirror symmetry behave differently, in that one is correctly indexed,
while the other is not, as seen in Figure 4.4c.

Templates for both orientations are plotted together with the signal in Figure 5.11.
Although the template in (a) does not fit the signal, it still gets a higher correlation score
than the perfect template for the signal in (b). In this case, the cause of error is very
different from what has been shown for NCC and ZNCC. To further examine this, the
Fourier transform has to be considered.

(a) (b)

Figure 5.11: The template together with signal for orientations 10 and 22 from the tilt series of
GaSb with FFC on perfect template.

Figure 5.12 shows the real and imaginary parts of the Fourier transforms of orienta-
tions 10 and 22 in the tilt series. The intensity scale is the same for all images. There
intensities rapidly oscillate between the minimum and maximum values for all the subfig-
ures. This could be because of the sharp peaks in the templates, of only one pixel width.
Comparing now with Figure 5.13 where the real and imaginary parts of the simulated sig-
nal are shown. Again the scales of the colorbars are exactly the same. It is very hard to
extract relevant information from such a plot. In Equation (2.53) the Hadamard product
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between the Fourier transform of the template and the Fourier transform of the signal is
inverse Fourier transformed to provide a correlation score, the max value in the resulting
matrix. It is clear that following the steps in the process with visualization tools developed
for point based correlation methods does not suffice, and new ways of portraying the pro-
cess will have to be developed in order to better understand the FFC process. An educated
guess is that the results would improve if the templates were made more similar to actual
signals, by simulating reflections larger than just one pixel. This method of simulating
patterns is very specialized towards the point based methods, NCC and ZNCC, and could
be a showstopper for methods performing the correlation in other domains.

(a) (b)

(c) (d)

Figure 5.12: Real and imaginary parts of the Fourier transforms of the templates for orientations 10
and 22 for FFC on the tilt series of GaSb with a perfect template.

Considering that NCC is the most computationally efficient method and provides the
most accurate results, this method should be applied when running template matching for
GaSb and mordenite, given the current model of simulation. As all methods have been
proven to work for ideal cases, it is likely that both ZNCC and FFC can be tuned to work
well, by considering simulation parameters, and also the model of simulation.
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(a) (b)

(c) (d)

Figure 5.13: Real and imaginary parts of the Fourier transforms of the simulated signal for orienta-
tions 10 and 22 for FFC on the tilt series of GaSb with a perfect template.
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Chapter 6
Conclusion

Two new methods for correlating simulated templates to signals; Zero-normalized cross-
correlation (ZNCC) and full-frame correlation (FFC) were implemented and tested to-
gether with the standard method, normalized cross-correlation (NCC) that was present in
pyXem at the start of the project, and is the common routine for template matching for
scanning electron diffraction data stacks. The test cases were simulated and experimen-
tal tilt series data from GaSb and mordenite. This work demonstrated that all these three
methods are able to distinguish between signals from different orientations for the ideal
case where every signal has a perfect fit in the template bank. When the orientations
were taken from a grid of constant angular spacing on the fundamental zone, the NCC
method provided the best results for both GaSb and mordenite for simulated data. The
NCC method is also the fastest method, and requires less memory than FFC.

Experimental data were tilt series of GaSb and mordenite taken with the RED tech-
nique. None of the methods studied in this work were able to correctly index the GaSb or
the mordenite tilt series for template banks of 1 degree resolution, when the max excita-
tion error was set to 0.025. Results can be improved by precessing the electron beam when
taking the tilt series instead of using the RED technique, to reduce dynamical effects.

For the evaluation and comparison of the correlation algorithms, a new reliability met-
ric was proposed: The weighted reliability index (WRI). It showed a significantly stronger
relationship with the angular distance from the true value for simulated data than that of
the well established reliability index. For all three correlation methods and for both GaSb
and mordenite the weighted reliability index showed an average correlation coefficient of -
0.36 with the angular distance from the true value. This means that the weighted reliability
index better predicts if a template matching result is close to the true value. This reliability
analysis can also be used to analyze other aspects of the total workflow than correlation,
such as data acquisition, preprosessing or the simulation parameters.

The analysis of the different test cases provided in this report has revealed an issue
in the functionality applied for the template matching procedure within pyXem, including
the orientation list not spanning the fundamental zone. The orientation list has a bug for
cubic crystal structures, where it will contain symmetrically equivalent orientations from
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different fundamental zones, while it does not span the full fundamental zone. The issue
has been reported at the pyxem/diffsims discussion page on github1.

There is still a need for further development and testing before the template matching
procedure is applicable for tilt series. In this work, the functionality related to correlating
template diffraction patterns to simulated and experimental patterns has been systemati-
cally analyzed. For different cases the results show that the NCC method already present
in pyXem provides the best results for the test cases. It is clear that for all the methods cer-
tain templates in the template library are chosen as the best fit for diffraction patterns with
a very different diffraction profile than that of the signal. For NCC and ZNCC this happens
when the central intensities in the experimental diffraction pattern coincide best with the
template, the contribution from low intensity reflections is limited. For FFC it has yet to
be determined what features in a pattern frame dominate the correlation and the choice
of a potentially erroneous orientation. Possible improvements to the template matching
procedure include acquiring precessed electron diffraction, which is more kinematic like
in appearance and afterwards account for precession in the simulation model.

The code developed in this project is made available in version 0.11.x of the open
source python library pyXem. Computations of the WRI reliability metric was done within
the framework of pyxem 0.11.0, but it does not have a dedicated function integrated in the
library. The code for computing this metric, and all other analysis performed in this project
is made available in the Appendix.

1Issue # 93
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Future Work

The results and discussion in Chapters 4 and 5, show that NCC, ZNCC and FFC all work
in ideal cases, and should be continously tested and evaluated as the template matching
procedure develops. This work has considered the correlation step, and has also introduced
a new metric for measuring the reliability of a template matching result.

7.1 Improvements to the simulation model
For the point based correlation methods NCC and ZNCC, this work revealed that a few
high intensity reflections can dominate the correlation score, and can cause templates that
only coincide with the signal in for two or three reflections to be selected as the best match.
One of the causes for this was that the simulation model often generates templates with two
very strong reflections. By introducing precession in the simulation model, templates will
have more intensity in general, and also more spread of intensity between the reflections.

7.2 Taking experimental data with PED
In this work, data collection was done with the RED technique. For template matching
it might be better if the electron beam is precessed when data is taken, to give more in-
tensity in the signal, and intensity that is distributed across more reflections. This should
especially effect the point based correlation methods NCC and ZNCC.

7.3 Developing visualization tools to follow the FFC pro-
cess

For signal and templates plotted in the direct domain, visualization tools such as plotting
the template together with the signal are useful for evaluating the methods, and spotting
sources of error. For methods like the FFC method, that makes use of other domains,

113



Chapter 7. Future Work

it is harder to follow the steps of the algorithm, as discussed in section 5.6.3. It was
demonstrated that FFC can distinguish between orientations in a tilt series, and that it fails
for a equally spaced template library, but analyzing the underlying mechanisms causing
the method to fail is hard without proper analysis tools. Future work should focus on
developing tools that can identify and illustrate the steps of the FFC method, for both
transparency in the workflow and better intuition among users.

7.4 Confusion matrix for the WRI
In section 5.4 the correlation coefficient between WRI and the angular distance from the
true value was computed, and the Confusion matrix was created for a test case of 1000
random orientations, and a threshold value of 0.9. Future work should focus on doing
more extensive and systematic testing, to find optimal threshold values for WRI.

7.5 Further development of tilt series testing
In section 2.6 a method for evaluating tilt series results with a roughly known tilt relation
between subsequent orientations was proposed. In this work a simplified version of this
method has been applied. A future project should implement the full and more correct
treatment, to better evaluate template matching results from experimental tilt series data.
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Appendix A
Mathematical proofs

In this section we will outline some proofs omitted in the text because they might be of
interest to a limited fraction of the readers, and also of a certain length.

A.1 Equation (2.12)
We start of examining Equation (2.12). We have stated that for parallel planes the left
hand side of the Equation will remain the same, while the right hand side changes. For the
purposes of this proof we will consider parallel planes to be planes with parallel normal
vectors. We consider two parallel planes A and B as seen in Figure A.1. Plane A intersects
the basis vectors ai in the points s1, s2 and s3. Plane B intersects the basis vectors in the
points s′1, s′2 and s′3. The distance d from the origin to a plane along the plane normal, n
can be found by

dA = n · [Os1] = n · [Os2] = n · [Os3]

and
dB = n · [Os′1] = n · [Os′2] = n · [Os′3]

where O is the origin, and n is a unit vector in the direction of the plane normal. We make
use of Equation (2.3) to write

dA
dB

=
|Os1| cos θ1

|Os′1| cos θ1
=
|Os1|
|Os′1|

=
s1

s′1

where θ1 is the angle between the normal vector and the basis vector in direction 1, that is,
the axis on which s1 and s′1 lies. Likewise it can be shown that

s1

s′1
=
s2

s′2
=
s3

s′3
=
dA
dB

(A.1)

We now consider Equation (2.12) for plane A. We let dAdB = C, substitute si for Cs′i and
get

x

s′1
+

y

s′2
+

z

s′3
= C. (A.2)
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Figure A.1: Two planes, with si and s′i defined along the coordinate axes.

The only assumption we have made for the planes is that they are parallel. This proof
holds as long as dA 6= 0. Should this be the case we can interchange the names of planes
A and B and proceed with our proof. We have shown that for translation of parallel planes
along the plane normal the left side of Equation (2.12) remains unchanged, whereas the
right side is changed by a factor depending on the relative change in the distance from the
origin to the plane.
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A.2 Maximum likelihood estimate for the Fisher - Matrix
distribution

The von Mises - Fisher distribution is the analogue of the normal distribution for modelling
the spread of random misorientations [76]. Given a set of rotation matricesR1,R2, ...,Rk,
the objective is to determine the maximum likelihood estimate for the parameters of the
Fisher Matrix distribution.

The probability density function for the generalized Fisher Matrix distribution is given
by

FvMF (R;F ) =
exp{tr(FTR)}

c(F )
(A.3)

where R is a 3x3 rotation matrix, F is a parameter matrix and c(F) is a normalizing constant
[78]. Both [78] and [58] report the normalizing constant to be

c(F ) = 0F1(
d

2
;
FFT

4
) =

∫
SO(3)

exp{tr(FTR)}dR (A.4)

where 0F1 is the hypergeometric function of matrix argument and d is the dimension of
the rotation matrix. For crystallographic textures we are interested in the case d = 3.

We now define the parameter

R̄ =

∑k
i=1Ri
N

. (A.5)

Following section four of [58], the parameter F can be uniquely decomposed as

F = ∆DφΓ (A.6)

given that the first row of ∆ is non-negative and F is of rank d. It is also assumed that the
d largest eigenvalues of R̄R̄T are g2

i so that g2
1 > g2

2 > g2
3 . Let Dg be the diagonal matrix

with entries g1, g2 and g3. The maximum likelihood estimators of ∆ and Γ are then given
by the singular value decomposition of R̄:

R̄ = ∆DgΓ. (A.7)

The matrix Dφ is a diagonal matrix, where the maximum likelihood estimate for the i-th
entry is given by:

1

c(Dφ)

∂c(Dφ)

∂φi
− gi = 0. (A.8)

In order to solve Equation A.8, the following equations will be useful, given that ∆ and Γ
are proper rotation matrices [79]:

c(Dφ) can be evaluated by a 1-D integral as

c(Dφ) =

∫ 1

−1

1

2
I0[

1

2
(φi − φj)(1− u)]

× I0[
1

2
(φi + φj)(1 + u)]exp{φku}du,

(A.9)
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where Ii is the Bessel function of the first kind and order i.
Furthermore, the derivatives of c(Dφ) can be evaluated as

∂c(Dφ)

∂φi
=

∫ 1

−1

1

4
(1− u)I1[

1

2
(φi − φj)(1− u)]

× I0[
1

2
(φi + φj)(1 + u)]exp{φku}

+
1

4
(1 + u)I0[

1

2
(φi − φj)(1− u)]

× I1[
1

2
(φi + φj)(1 + u)] exp{φku} du,

(A.10)

∂c(Dφ)

∂φj
=

∫ 1

−1

−1

4
(1− u)I1[

1

2
(φi − φj)(1− u)]

× I0[
1

2
(φi + φj)(1 + u)]exp{φku}

+
1

4
(1 + u)I0[

1

2
(φi − φj)(1− u)]

× I1[
1

2
(φi + φj)(1 + u)] exp{φku} du

(A.11)

and

∂c(Dφ)

∂φk
=

∫ 1

−1

1

2
I0[

1

2
(φi − φj)(1− u)]

× I0[
1

2
(φi + φj)(1 + u)]u exp{φku} du

(A.12)

for (i, j, k) ∈ (1, 2, 3), (2, 3, 1), (3, 1, 2). Finally, the second derivatives of C(Dφ) are
given by

∂2c(Dφ)

∂2φi
=

∫ 1

−1

1

2
I0[

1

2
(φj − φk)(1− u)]

× I0[
1

2
(φj + φk)(1 + u)]u2 exp{φiu} du.

(A.13)

and

∂2c(Dφ)

∂φi∂φj
=

∫ 1

−1

1

4
I1[

1

2
(φj − φk)(1− u)]

× I0[
1

2
(φj + φk)(1 + u)]u(1− u) exp{φiu}

+
1

4
I0[

1

2
(φj − φk)(1− u)]

× I1[
1

2
(φj + φk)(1 + u)]

× u(1 + u) exp{φiu} du

(A.14)
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for i, j ∈ (1, 2, 3).

In order to find Dφ, define three functions from Equation (A.8).

a(φ1, φ2, φ3) =
1

c(Dφ)

∂c(Dφ)

∂φ1
− g1, (A.15)

b(φ1, φ2, φ3) =
1

c(Dφ)

∂c(Dφ)

∂φ2
− g2 (A.16)

and

c(φ1, φ2, φ3) =
1

c(Dφ)

∂c(Dφ)

∂φ3
− g3. (A.17)

Define a vector function G(Dφ), so that

G(Dφ) = a(φ1, φ2, φ3)φ̂1 + b(φ1, φ2, φ3)φ̂2 + c(φ1, φ2, φ3)φ̂3, (A.18)

with a, b and c as defined above. Now, solving Equation (A.8) is equivalent to finding
the values (φ1, φ2, φ3) so that G(Dφ) = [0, 0, 0]. This is a problem that can be solved
numerically, making use of the ordinary newtons method [80]

G′(xk)∆xk = −G(xk), xk+1 = xk + ∆xk, (A.19)

where F (xk) is a vector function, F ′(xk) is the Jacobi matrix and xk is a vector of param-
eters. The Jacobi matrix for G(Dφ) is [21]

G′(Dφ) =


∂a
∂φ1

∂a
∂φ2

∂a
∂φ3

∂b
∂φ1

∂b
∂φ2

∂b
∂φ3

∂c
∂φ1

∂c
∂φ2

∂c
∂φ3

 (A.20)
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with

∂a

∂φ1
=

1

c(Dφ)

∂2c(Dφ)

∂φ2
1

−
(

1

c(Dφ)

∂c(Dφ)

∂φ1

)2

∂b

∂φ2
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1

c(Dφ)

∂2c(Dφ)

∂φ2
2

−
(

1

c(Dφ)

∂c(Dφ)

∂φ2

)2
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∂φ2
3
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1
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(A.21)

Initially the values of Dφ can be set to Dg . A numerical estimation is obtained using
Equation (A.18), with G′(Dφ) as defined in Equation (A.20), with entries found from
Equation (A.21) together with eqs. (A.9) to (A.14). In order to solve the integrals in
eqs. (A.9) to (A.14), numerical integration is applied.
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Appendix B
Code description

B.1 Preprocessing

The most important part of the Preprocessing step is to make sure that the direct beam is
centered for every diffraction pattern from the SPED scan. Other procedures that might
be considered are affine transforming the image, correcting for stretching effects in the
camera setup, and noise reduction in which random noise is removed.

The process of centering the direct beam can be performed by an interpolation proce-
dure. For every diffraction pattern two arrays are created, one for the x-axis and one for
the y-axis. All intensity for a line in the diffraction pattern corresponding to a given value
for the x- or y- coordinate is summed up, and stored in the corresponding position in the x
or y array. This procedure results in two sets of discrete data points. By interpolating the
data sets and independently finding the coordinate corresponding to the highest intensity,
the (x,y) coordinate of the center is approximated, and the diffraction pattern is shifted
to ensure that this point is in its center. By providing additional information, such as a
window in which we are sure that the center beam is found, the accuracy and computation
time of the procedure can be improved.

B.2 Simulating diffraction patterns

B.2.1 Finding a proper set of orientations

In order to obtain a good library of diffraction pattern templates for a sample for which
we have no prior knowledge of possible orientations, we need a list of Euler Angles that
span the set of possible orientations. For a given resolution the library should have the
property that the distance between two neighbouring orientations never exceeds the stated
resolution. The library should also have the property that rotations that are symmetrically
equivalent only appear once, meaning that orientations that can be translated into each
other by the symmetry operations of the structure appear only once. In finding the list of
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orientations, we will be following the conventions described in Rowenhorsts article from
2015[43].

Euler angles in the Bunge convention are denoted (φ1, θ, φ2). Following Rowenhosts
article the starting point of obtaining the orientation list should be to generate three lists of
numbers, one for each of the three Euler angles. For φ1 and φ2 the list goes from 0 to 360
(degrees) and for θ the list goes from 0 to 180, with a step-size determined by the stated
resolution. A list of triplets is generated by systematically combining one number from
each list in every way. A simple procedure isolates a single realization of the euler angles
subject to gimbal lock[81], by demanding that when θ = 0, we also have φ2 = 0.

Rotations can equivalently be described by the axis-angle convention [43]. In this
convention the angle ω is limited to a maximum degree for structures of a given point group
[82]. By transforming the list of euler angles to the axis-angle convention and limiting the
accepted angles to the ones where ω < ωmax we exclude a portion of the rotations. A final
filter to accept a rotation is found in the Rodrigues-Frank representation[43]. All rotations
that lie outside the asymetric domain in Rodrigues-Frank space can be removed [78]. This
is done by performing a filtering routine in Rodrigues-Frank space, where every orientation
in the orientation list is projected to the Rodrigues-Frank space, and the orientations within
the asymetric domain are kept. The remaining rotations are transformed back to the Euler
representation, and constitute a minimum set spanning the Euler space for point group.

B.2.2 Simulating data from a given orientation

In order to correctly determine an electron diffraction pattern from a crystal structure with
a given orientation we rely on information on a number of quantities. As seen in Equation
(2.17), scattering depends on the reciprocal lattice vector, which again depends on the
lattice parameters as seen in Section 2.1.4. Furthermore, the specifics of the unit cell
provides additional scattering criteria, as seen in Equations (2.31) and (2.34). Another
important parameter is the set of atomic form factors, expressed in Equation (2.25), which,
together with the specifics of the unit cell, tells us how strong the intensity of the scattering
will be. In Equation (2.39), and in Figure 2.5 the effects of finite size effects are seen for
a thin foil. Although a sample in general is not a thin foil, we will approximate it to be so,
and consider the one dimensional relrod length lrel to be a parameter for our simulation.
Figure 2.4 illustrates how the diffraction pattern also depends on the length of the wave
vectors, and thereby the electron energy or acceleration voltage. Finally, we have two
parameters corresponding to the zoom or camera length in a SPED scan, telling how far
off the direct beam we should look for reflections and how much the relative distances
in the resulting diffraction pattern should be scaled. We will call these parameters the
reciprocal radius and the calibration.

For a given structure, represented by a set of atoms, their positions in the unit cell
and the lattice parameters, the first step in simulating the diffraction pattern is rotating the
structure according to a given rotation. This can be done by expressing the orientation in
terms of a rotation matrix relative to an external reference frame, and letting the matrix
operate on the lattice vectors, expressed by the direct matrix tensor gij in Equation (2.5).
The atoms of the unit cell will have the same relative coordinates in the rotated unit cell.
By expressing these coordinates in terms of the original lattice coordinates, we find the
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Figure B.1: The shape function of a thin foil and the function used to approximate the shape func-
tion. Noteably there is a diffrence between the two, and certain points that are extinct in the shape
function have a non-zero value in the approximated function.

rotated structure coordinates. From the rotated lattice, the reciprocal lattice is found by
performing a matrix inversion.

Potential reflections to be considered are points on the reciprocal lattice that fall within
a sphere centered at the origin, of radius given by the reciprocal radius parameter. By
definition, the Ewald sphere intersects the origin of reciprocal space. The radius of the
Ewald sphere is calculated from the reported acceleration voltage applied to incoming
electrons, using the relativistic formula for electron wavelength. The distance from a point
that has fallen within the reciprocal radius to the Ewald sphere, the excitation error, is
found by considering the distance along the z-axis from the point to the Ewald sphere.
If the excitation error is shorter than the relrod length, the intensity of the reflection is
calculated. The atomic form factor is then estimated by evaluating Equation (2.25) as
described in Lobato and van Dycks article from 2014[83]. When the atomic form factor is
known, the positions of the atoms in the rotated unit cell are translated to the corresponding
reciprocal lattice sites, and the Fourier transform of the unit cell potential F [VCell(r)] is
calculated using Equation (2.31). By Equation (2.44) the intensity at a given point is given
by the Fourier transform of the unit cell potential multiplied by its complex conjugate
times the shape function of a thin foil. We will approximate this thin foil shape function
with a linear function, symmetric around zero, as seen in Figure B.1. The coordinates of
points with non-zero intensities, along with the corresponding intensities are stored and
used as the simulated diffraction pattern for the given orientation. The final step is to scale
the relative distances to fit the requested calibration. This is done by scaling the distances
in reciprocal space, and keeping points that stay within the field of view.

The described process is implemented in the method ”get diffraction library()” in the
DiffractionLibraryGenerator class in pyXem.
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Appendix C
Computer code

C.1 Python code for analyzing random orientations
Analyze data from a list of random orientations together with corresponding template

matching results.
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Analyze	a	template	matching	result	with	random	orientations
In	[	]:

#Standard	Libraries	and	pyxem	+	hyperspy
%matplotlib	qt
import	numpy	as	np
import	math
import	hyperspy.api	as	hs
import	pyxem	as	pxm
import	diffpy.structure
from	matplotlib	import	pyplot	as	plt

#Orix	imports
from	orix.quaternion.orientation	import	Orientation,	Misorientation,	Rotation
from	orix.quaternion.symmetry	import	O,C1,D6h,Oh,D2h
from	orix.quaternion.orientation_region	import	OrientationRegion
from	orix.quaternion.rotation	import	von_mises
from	orix	import	plot
from	orix.vector.neo_euler	import	AxAngle

#Diffsims	imports
from	diffsims.generators.diffraction_generator	import	DiffractionGenerator
from	diffsims.libraries.structure_library	import	StructureLibrary
from	diffsims.generators.library_generator	import	DiffractionLibraryGenerator
import	diffsims.generators.rotation_list_generators	as	rotation_list_generators

#Pyxem	imports
from	pyxem.utils.sim_utils	import	sim_as_signal
from	pyxem.generators.indexation_generator	import	IndexationGenerator

In	[	]:

import	matplotlib.pylab	as	pylab
params	=	{'legend.fontsize':	'xx-large',
										'figure.figsize':	(7,	6),
									'axes.labelsize':	'xx-large',
									'axes.titlesize':'xx-large',
									'xtick.labelsize':'xx-large',
									'ytick.labelsize':'xx-large'}
pylab.rcParams.update(params)
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In	[	]:

from	pyxem.signals.indexation_results	import	TemplateMatchingResults
import	numpy	as	np
def	load_template_matching_results(filename):
				"""
				---
				Reads	a	.npy	file	and	returns	a	TemplateMatchingResults	object.

				Parameters
				----------
				filename	:	str
								The	name	of	the	.npy	file	to	be	read

				Returns
				-------
				match_results	:	TemplateMatchingResults
								A	TemplateMatchingResults	object	containing	the	loaded	data
				---
				"""
								
				try:
								loaded_numpy_array	=	np.load(filename)
				except	ValueError:
								raise	ValueError('Could	not	open	file:	{}'.format(filename))

				dimensions	=	loaded_numpy_array.shape
				if	len(dimensions)	==	3:
								match_results_data	=	np.zeros((dimensions[0],	dimensions[1],	dimensions[2]	-	2),	dtype	=	object)
								for	i	in	range(dimensions[0]):
												for	j	in	range(dimensions[1]):
																match_results_data[i,	j,	0]	=	int(loaded_numpy_array[i,	j,	0])
																match_results_data[i,	j,	-1]	=	loaded_numpy_array[i,	j,	-1]
																my_array	=	np.asarray([loaded_numpy_array[i,	j,	1],
																																							loaded_numpy_array[i,	j,	2],
																																							loaded_numpy_array[i,	j,	3]])
																match_results_data[i,	j,	1]	=	my_array

								return	TemplateMatchingResults(match_results_data)

				elif	len(dimensions)	==	4:
								match_results_data	=	np.zeros((dimensions[0],	dimensions[1],	dimensions[2],	dimensions[3]	-	2),	dtype	=	o
bject)
								for	i	in	range(dimensions[0]):
												for	j	in	range(dimensions[1]):
																for	k	in	range(dimensions[2]):
																				match_results_data[i,	j,	k,	0]	=	int(loaded_numpy_array[i,	j,	k,	0])
																				match_results_data[i,	j,	k,	-1]	=	loaded_numpy_array[i,	j,	k,	-1]
																				my_array	=	np.asarray([loaded_numpy_array[i,	j,	k,	1],
																																											loaded_numpy_array[i,	j,	k,	2],
																																											loaded_numpy_array[i,	j,	k,	3]])
																				match_results_data[i,	j,	k,	1]	=	my_array

								return	TemplateMatchingResults(match_results_data)

				else:
								raise	ValueError('Could	not	load	file	of	dimensions	{}'.format(dimensions))

Load	template	matching	results	and	corresponding	true	orientations

In	[	]:

match_results	=	load_template_matching_results("../Results/RandomOri/IdunDeg1sigma0.03GaSbRandomOrientations_Fast
.npy")

In	[	]:

true_orientations	=	np.load("../Results/RandomOri/random_orientation_list_fast.npy")

Reliability	Index

= (1 − )2

1
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In	[	]:

correlation_scores	=	match_results.data[:,	:2,	2]
N	=	correlation_scores.shape[0]
reliability_indices	=	np.zeros((N))
for	i	in	range	(N):
				reliability_indices[i]	=	1	-	correlation_scores[i,	1]	/	correlation_scores[i,	0]

In	[	]:

np.save("../Results/RandomOriMord/RI_FF_Mord",	reliability_indices)

Weighted	Average	Reliability	Index

= (1 − )1
−1 ∑ =2 1

,1

In	[	]:

N_best	=	20
best_orientations	=	match_results.data[:,	:N_best,	1]
correlation_scores	=	match_results.data[:,	:N_best,	2]
symmetry	=	O
theta_max	=	120	#Is	known	from	crystal	symmetry.
#See	https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2017.0274	Fig	5,	and	find	omega_max.	(Here	theta)

In	[	]:

def	find_distance_rad	(orientation1,	orientation2,	symmetry):
				"""
				Takes	two	input	Euler	orientations	and	the	symmetry	of	the	system,	and	computes	the	distance	between	them
				in	radians.
				"""
				orientations	=	list([orientation1,	orientation2])
				ori	=	Orientation.from_euler(np.deg2rad(orientations))
				misori_base	=	Misorientation(ori).set_symmetry(symmetry,symmetry)
				distlist	=	misori_base.distance()
				
				return	distlist[0,1]

In	[	]:

N	=	correlation_scores.shape[0]
weighted_average_reliability_index	=	np.zeros(N)

for	i	in	range	(N):
				if	i%10	==	0:
								print(i)
				score	=	0
				for	j	in	range	(1,	N_best):
								score	+=	(1	-	(correlation_scores[i,	j]	/	correlation_scores[i,	0])
																		*	(find_distance_rad(best_orientations[i,	0],	best_orientations[i,	j],	D2h)
																		/	np.deg2rad(theta_max)))
				
				weighted_average_reliability_index[i]	=	score	/	(N_best	-	1)

In	[	]:

np.save("../Results/RandomOriMord/WARI_FF_Mord",	weighted_average_reliability_index)

Distance	to	truth
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In	[	]:

def	set_distances_to_truth	(orientation_list,	truth_list,	symmetry):
				"""
				Finds	the	distance	from	every	orientation	in	an	orientation_list	to	the	true	orientation.
				"""
				distances	=	np.zeros(len(orientation_list))
				for	i	in	range(len(orientation_list)):
								if	i	%	100	==	0:
												print(i)
								distances[i]	=	find_distance(orientation_list[i],	truth_list[i],	symmetry)
								
				return	distances

def	find_distance	(orientation1,	orientation2,	symmetry):
				"""
				Takes	two	input	Euler	orientations	and	the	symmetry	of	the	system,	and	computes	the	distance	between	them
				in	degrees.
				"""
				orientations	=	list([orientation1,	orientation2])
				ori	=	Orientation.from_euler(np.deg2rad(orientations))
				misori_base	=	Misorientation(ori).set_symmetry(symmetry,symmetry)
				distlist	=	misori_base.distance()
				
				return	np.rad2deg(distlist[0,1])

In	[	]:

from	orix.quaternion.symmetry	import	D2h

In	[	]:

predictions	=	match_results.data[:,	0,	1]

In	[	]:

angular_distances	=	set_distances_to_truth(predictions,	true_orientations,	D2h)

In	[	]:

np.save("../Results/RandomOriMord/angular_distances_FF_Mord",	angular_distances)

Save	angular	distances	and	corresponding	orientations	to	MTEX	readable	format

In	[	]:

true_orientations	=	np.load("../Results/RandomOriMord/random_orientation_list_fast_Mord.npy")

In	[	]:

angular_distances	=	np.load('../Results/RandomOriMord/angular_distances_Fast_Mord.npy')

In	[	]:

N	=	len(angular_distances)
ret_arr_AD	=	np.zeros((N,7))
for	i	in	range	(N):
				ret_arr_AD[i,:]	=	[0,	true_orientations[i][0],
																				true_orientations[i][1],	true_orientations[i][2],	angular_distances[i],i,i]

In	[	]:

np.savetxt("../Results/RandomOriMord/to_MTEX_angular_distances_FF_Mord.csv",	ret_arr_AD)

Plot	simulated	data	from	selected	indices

In	[	]:

true_orientations	=	np.load("../Results/RandomOri/random_orientation_list_FullFrame.npy")

In	[	]:

match_results	=	load_template_matching_results("../Results/RandomOri/IdunDeg3sigma0.03GaSbRandomOrientations_Full
Frame.npy")

Reconstruct	the	templates	that	matched	the	simulated	data
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Extract	all	Euler	angles	for	matching	templates

In	[	]:

angle_list	=	[	]
shape	=	match_results.data.shape
best_orientations	=	match_results.data[:,:,1]
for	i	in	range(shape[0]):
				for	j	in	range(shape[1]):
								if	not	any((best_orientations[i,	j]	==	x).all()	for	x	in	angle_list):
												angle_list.append(best_orientations[i,j])

In	[	]:

N	=	len(angle_list)
ret_arr_AD	=	np.zeros((N,7))
for	i	in	range	(N):
				ret_arr_AD[i,:]	=	[0,	angle_list[i][0],
																				angle_list[i][1],	angle_list[i][2],	1,i,i]

Set	simulation	parameters,	must	be	the	same	as	the	ones	used	when	computing	the	template	matching
results

In	[	]:

#Parameters,	known	from	about	file
phase_name	=	['GaSb']
beam_energy	=	200
ediff	=	DiffractionGenerator(beam_energy,	0.025)
pattern_size	=	256
half_pattern_size	=	pattern_size	//	2
reciprocal_radius	=	2.0
calibration	=	1.0	*	reciprocal_radius	/	half_pattern_size
sigma	=	0.03

In	[	]:

structure_GaSb	=	diffpy.structure.loadStructure("./Cif/GaSb.cif")

In	[	]:

orientation_list	=	true_orientations

Simulate	diffraction	patterns

In	[	]:

sample_lib	=	StructureLibrary(phase_name,	[structure_GaSb],	[orientations_list])

diff_gen	=	DiffractionLibraryGenerator(ediff)
library	=	diff_gen.get_diffraction_library(sample_lib,
																																											calibration=calibration,
																																											reciprocal_radius=reciprocal_radius,
																																											half_shape=(half_pattern_size,	half_pattern_size),
																																											with_direct_beam=False)

data_GaSb	=	[]

for	angle	in	orientations_list:
				pattern	=	sim_as_signal(library.get_library_entry(phase=phase_name[0],	angle=angle)['Sim'],
																												pattern_size,sigma	=	sigma,max_r	=	reciprocal_radius)

				data_GaSb.append(pattern)

data	=	[x.data	for	x	in	data_GaSb]

test_data	=	pxm.ElectronDiffraction2D(np.asarray(data).reshape(len(orientations_list),	pattern_size,	pattern_size
))
test_data.set_diffraction_calibration(calibration)

Simulate	templates	from	the	list	of	Euler	Angles	of	the	highest	scoring	templates
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In	[	]:

structure_library	=	StructureLibrary.from_orientation_lists(['GaSb'],	[structure_GaSb],	[angle_list])
diff_gen	=	DiffractionLibraryGenerator(ediff)
template_library	=	diff_gen.get_diffraction_library(structure_library,
																																																				calibration=calibration,
																																																				reciprocal_radius=reciprocal_radius,
																																																				half_shape=(half_pattern_size,	half_pattern_size),
																																																				with_direct_beam=False)

Define	functionality	for	plotting	templates	together	with	signals

In	[	]:

class	IndexTracker(object):
				def	__init__(self,	ax1,	ax2,	signal,	storage,	kwargs_for_signal	=	{},	kwargs_for_template_scatter	=	{}):
								
								self.ax1	=	ax1
								self.ax2	=	ax2
								
								self.signal	=	signal
								
								self.slices	=	signal.shape[0]
								self.ind	=	self.slices	//	2
								self.rank	=	0
								self.max_rank	=	len(storage[0])
								self.storage	=	storage
								
								phase	=	self.storage[self.ind][self.rank][0]
								angle	=	self.storage[self.ind][self.rank][1]
								correlation_score	=	self.storage[self.ind][self.rank][2]
								coordinates	=	self.storage[self.ind][self.rank][3]
								intensities	=	self.storage[self.ind][self.rank][4]
								x,y	=	zip(*coordinates)
								
								self.im	=	ax1.imshow(self.signal[self.ind],	**kwargs_for_signal)
								self.im2	=	ax2.imshow(self.signal[self.ind],	**kwargs_for_signal)
								self.line1	=	ax2.scatter(x	=	x,	y	=	y,	c	=	intensities,	**kwargs_for_template_scatter)
								self.cbar	=	plt.colorbar(self.line1)
								self.cbar2	=	plt.colorbar(self.im)
								self.cbar.set_label("Template",	size	=	15)
								self.cbar2.set_label("Signal",	size	=	15)
								self.cbar.ax.tick_params(labelsize=15)
								#cbar.ax.set_autoscale_on(True)
								self.cbar2.ax.tick_params(labelsize=15)
								self.update()

				def	onscroll(self,	event):
								if	event.button	==	'up':
												self.ind	=	(self.ind	+	1)	%	self.slices
								else:
												self.ind	=	(self.ind	-	1)	%	self.slices
								self.update()
								
				def	click(self,	event):
								self.rank	=	(self.rank	+	1)	%	self.max_rank
								self.update()

				def	update(self):
								
								self.im.set_data(self.signal[self.ind,:,:])
								self.ax1.set_ylabel('slice	%s'	%	(self.ind	+	1))
								self.ax1.set_title('Signal')
								self.im.axes.figure.canvas.draw()
								
								phase	=	self.storage[self.ind][self.rank][0]
								angle	=	self.storage[self.ind][self.rank][1]
								correlation_score	=	self.storage[self.ind][self.rank][2]
								coordinates	=	self.storage[self.ind][self.rank][3]
								intensities	=	self.storage[self.ind][self.rank][4]
								x,y	=	zip(*coordinates)
								
								self.im2.set_data(self.signal[self.ind,:,:])
								self.line1.set_offsets(coordinates)
								self.line1.set_array(intensities)
								self.ax2.set_title('Euler	Angle:	({0:.0f},{1:.0f},{2:.0f})	\n	Rank:	{3}	Correlation	Score:	{4:.2f}'.forma
t(angle[0],
																																																																																					angle[1],
																																																																																					angle[2],
																																																																																					self.rank,
																																																																																					correlation_score),	fontsize	
=	20)
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=	20)
								

								self.line1.set_clim(vmin=intensities.min(),vmax=intensities.max())
								self.cbar.update_normal(self.line1)
								self.cbar.draw_all()
								self.im2.axes.figure.canvas.draw()
								

from	pyxem.utils.indexation_utils	import	get_nth_best_solution

def	peaks_from_best_n_templates(tm_results,	library,	n	=	None):
				number_of_templates	=	tm_results.data.shape[0]
				if	n	==	None:
								n	=	tm_results.data.shape[1]
				
				storage	=	[]
				for	i	in	range(number_of_templates):
								peaks_and_intensities	=	[]
				
								for	j	in	range(n):
												best_fit	=	get_nth_best_solution(tm_results.data[i],	mode	=	'template',	rank=j)
												phase_names	=	list(library.keys())
												phase_index	=	int(best_fit[0])
												phase	=	phase_names[phase_index]
												simulation	=	library.get_library_entry(
																phase=phase,
																angle=tuple(best_fit[1]))
												peaks	=	simulation['pixel_coords']		
												intensities	=	simulation['intensities']
												peaks_and_intensities.append([phase,	best_fit[1],	best_fit[2],	peaks,	intensities])
								storage.append(peaks_and_intensities)
				return	storage

def	plot_results_on_signal(tm_results,	signal,	library,	*args,	**kwargs):
				storage	=	peaks_from_best_n_templates(tm_results,	library)
				
				fig,	[ax1,ax2]	=	plt.subplots(1,	2,	gridspec_kw={'width_ratios':	[5,	8]})
				plt.axis('off')

				tracker	=	IndexTracker(ax1,	ax2,	signal,	storage,	kwargs_for_signal	=	{"cmap"	:	"inferno_r",	"vmax"	:	0.1,	"v
min":	0},	**kwargs)

				fig.canvas.mpl_connect('scroll_event',	tracker.onscroll)
				fig.canvas.mpl_connect('button_press_event',	tracker.click)
				plt.show()
				return	tracker

Plot	signal	and	templates	together
Scroll	to	go	to	next	index,	click	to	go	to	next	rank	(the	next	best	fitting	template)

In	[	]:

plot_results_on_signal(match_results,	test_data.data,	template_library,	kwargs_for_template_scatter	=	{"cmap"	:	"
viridis",	"s":	50,	"marker"	:	"x"})

Compute	number	of	correctly	indexed	orientations	and	STD	of	correctly	indexed	orientations

In	[	]:

distance_from_truth	=	angular_distances

In	[	]:

len(distance_from_truth)

In	[	]:

distance_from_truth	=	np.load('../Results/RandomOriMord/angular_distances_ZNCC_Mord.npy')

In	[	]:

correct_results	=	[x	for	x	in	distance_from_truth	if	x	<	3]

In	[	]:

len(correct_results)
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In	[	]:

len(correct_results)	/	len(distance_from_truth)

In	[	]:

correct_results	=	np.asarray(correct_results)
std	=	np.sqrt(	sum(correct_results	*	correct_results)	/	len(correct_results)	)

In	[	]:

std

Finding	number	of	rotations	within	the	correct	rotation	range

In	[	]:

import	time
import	random

In	[	]:

random.seed(time.time())

In	[	]:

random.randint(0,max_index)

In	[	]:

true_orientations	=	np.load("../Results/RandomOriMord/random_orientation_list_fast_Mord.npy")

In	[	]:

match_results	=	load_template_matching_results("../Results/RandomOriMord/IdunDeg1sigma0.008GaSbRandomOrientations
_Fast_Mord.npy")

In	[	]:

number_of_estimates	=	1000
symmetry	=	O
max_index	=	len(true_orientations)	-	1

In	[	]:

distance_error	=	np.zeros((number_of_estimates))
for	i	in	range(number_of_estimates):
				if	i%100	==	0:
								print(i)
				index2	=	random.randint(0,max_index)
				index1	=	random.randint(0,max_index)
				while	index1	==	index2:
								index1	=	random.randint(0,max_index)
				true_distance	=	find_distance(true_orientations[index1],	true_orientations[index2],	symmetry)
				estimated_distance	=	find_distance(match_results.data[index1,0,1],	match_results.data[index2,0,1],	symmetry)
				distance_error[i]	=	np.abs(true_distance	-	estimated_distance)

In	[	]:

correct_distances	=	[dist	for	dist	in	distance_error	if	dist	<	1.8]

In	[	]:

len(correct_distances)

Compute	correlation	coefficient	between	reliability	metrics	and	distance	from	truth

In	[	]:

I	=	np.sum(test_data.data,	axis	=	(1,2))

In	[	]:

distance_from_truth	=	np.load('../Results/RandomOriMord/angular_distances_ZNCC_Mord.npy')
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In	[	]:

distance_from_truth[50]

In	[	]:

WARI	=	np.load('../Results/RandomOriMord/WARI_ZNCC_Mord.npy')

In	[	]:

RI	=	np.load('../Results/RandomOriMord/RI_ZNCC_Mord.npy')

In	[	]:

max_angle	=	120

Normalize	angular	distances

In	[	]:

distance_from_truth	=	distance_from_truth	/	max_angle

In	[	]:

avg_dist	=	np.average(distance_from_truth)
std_dist	=	np.std(distance_from_truth)
standard_distance	=	(distance_from_truth	-	avg_dist)	/	std_dist

In	[	]:

avg_I	=	np.average(I)
std_I	=	np.std(I)
standard_I	=	(I	-	avg_I)	/	std_I

In	[	]:

avg_WARI	=	np.average(WARI)
std_WARI	=	np.std(WARI)
standard_WARI	=	(WARI	-	avg_WARI)	/	std_WARI

In	[	]:

avg_RI	=	np.average(RI)
std_RI	=	np.std(RI)
standard_RI	=	(RI	-	avg_RI)	/	std_RI

In	[	]:

corr_WARI	=	np.sum(standard_distance	*	standard_WARI)	/	(len(WARI)	-	1)

In	[	]:

corr_RI	=	np.sum(standard_distance	*	standard_RI)	/	(len(RI)	-	1)

In	[	]:

corr_I	=	np.sum(standard_distance	*	standard_I)	/	(len(I)	-	1)

In	[	]:

corr_I

In	[	]:

corr_RI

In	[	]:

corr_WARI

In	[	]:

plt.figure()
plt.plot(distance_from_truth,	RI,	'*')
plt.show()
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C.2 Python code tilt series
Generate a tilt series for simulated data in Python.
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Template	matching	on	simulated	tilt	series	data,	with	subsequent	data
analysis	using	the	von	Mises	-	Fisher	distribution
In	this	notebook	a	tilt	series	is	specified	by	defining	a	tilt	axis,	a	rotation	angle	and	the	number	of	tilts.	For	every	orientation	in	the	tilt	series,	a	diffraction
pattern	is	simulated.	Thereafter,	a	template	library	is	generated	and	used	to	identify	the	orientations	in	the	tilt	series	through	template	matching.

Import	libraries

In	[	]:

#Standard	Libraries	and	pyxem	+	hyperspy
%matplotlib	qt
import	numpy	as	np
import	math
import	hyperspy.api	as	hs
import	pyxem	as	pxm
import	diffpy.structure
from	matplotlib	import	pyplot	as	plt

#Orix	imports
from	orix.quaternion.orientation	import	Orientation,	Misorientation,	Rotation
from	orix.quaternion.symmetry	import	O,C1,D6h,Oh
from	orix.quaternion.orientation_region	import	OrientationRegion
from	orix.quaternion.rotation	import	von_mises
from	orix	import	plot

#Diffsims	imports
from	diffsims.generators.diffraction_generator	import	DiffractionGenerator
from	diffsims.libraries.structure_library	import	StructureLibrary
from	diffsims.generators.library_generator	import	DiffractionLibraryGenerator
import	diffsims.generators.rotation_list_generators	as	rotation_list_generators

#Pyxem	imports
from	pyxem.utils.sim_utils	import	sim_as_signal
from	pyxem.generators.indexation_generator	import	IndexationGenerator

Create	a	list	of	orientations	from	a	tilt	series.

In	[	]:

from	orix.vector.neo_euler	import	AxAngle
from	orix.quaternion.symmetry	import	O	

Set	tilt	series	parameters

In	[	]:

rotation_axis	=	[1,	1,	1]	#Axis	on	which	the	rotation	is	performed
rotation_angle	=	4	#Degrees
initial_orientation_euler	=	[0.,	0.,	0.]	#Euler	angles
nb_tilts	=	30	#Number	of	tilts	in	the	tilt	series.

Define	a	constant	rotation	and	the	initial	orientation

In	[	]:

axis_angle	=	AxAngle.from_axes_angles(rotation_axis,	np.radians(rotation_angle))
constant_rotation	=	Rotation.from_neo_euler(axis_angle)
initial_orientation	=	Orientation.from_euler(np.radians(initial_orientation_euler))
initial_orientation	=	initial_orientation.set_symmetry(O)

Generate	tilt	series
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In	[	]:

tilt_series	=	[initial_orientation_euler]
current_orientation	=	initial_orientation

for	_	in	range	(nb_tilts	-	1):
				current_orientation	=	constant_rotation	*	current_orientation	
				current_euler	=	current_orientation.to_euler()	
				tilt_series.append(*np.rad2deg(current_euler))

Simulate	data

Set	simulation	parameters

In	[	]:

phase_name	=	['GaSb']
beam_energy	=	200
max_exitation_error	=	0.025
ediff	=	DiffractionGenerator(beam_energy,	max_exitation_error)	
pattern_size	=	256
half_pattern_size	=	pattern_size	//	2
reciprocal_radius	=	2.0
calibration	=	1.0	*	reciprocal_radius	/	half_pattern_size	
sigma	=	0.03	

Import	structure	from	.cif	file

In	[	]:

structure_GaSb	=	diffpy.structure.loadStructure("Cif/GaSb.cif")

Simulate	diffraction	data

In	[	]:

sample_lib	=	StructureLibrary(phase_name,	[structure_GaSb],	[tilt_series])

diff_gen	=	DiffractionLibraryGenerator(ediff)
library	=	diff_gen.get_diffraction_library(sample_lib,
																																											calibration=calibration,
																																											reciprocal_radius=reciprocal_radius,
																																											half_shape=(half_pattern_size,	half_pattern_size),
																																											with_direct_beam=False)

data_GaSb	=	[]

for	angle	in	tilt_series:
				pattern	=	sim_as_signal(library.get_library_entry(phase=phase_name[0],	angle=angle)['Sim'],
																												pattern_size,sigma	=	sigma,max_r	=	reciprocal_radius)
																												
				data_GaSb.append(pattern)
								
data	=	[x.data	for	x	in	data_GaSb]	

test_data	=	pxm.ElectronDiffraction2D(np.asarray(data).reshape(len(tilt_series),	pattern_size,	pattern_size))
test_data.set_diffraction_calibration(calibration)

Generate	a	template	library

Create	template	library

In	[	]:

structure_library	=	StructureLibrary.from_orientation_lists(['GaSb'],[structure_GaSb],[tilt_series])
diff_gen	=	DiffractionLibraryGenerator(ediff)
template_library	=	diff_gen.get_diffraction_library(structure_library,
																																																				calibration=calibration,
																																																				reciprocal_radius=reciprocal_radius,
																																																				half_shape=(half_pattern_size,	half_pattern_size),
																																																				with_direct_beam=False)
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Run	template	matching

In	[	]:

indexer	=	IndexationGenerator(test_data,	template_library)
match_results	=	indexer.correlate(n_largest=5,	method	=	"full_frame_correlation")#,	method	=	"zero_mean_normalize
d_correlation"

Computation	of	Reliability	metrics

Reliability	Index

= (1 − )2

1

In	[	]:

correlation_scores	=	match_results.data[:,	:2,	2]

For	ZNCC,	as	correlation	score	is	in	range	(-1,1)

In	[	]:

correlation_scores	=	(correlation_scores	+	1)	/	2	

In	[	]:

N	=	correlation_scores.shape[0]
reliability_indices	=	np.zeros((N))
for	i	in	range	(N):
				reliability_indices[i]	=	1	-	correlation_scores[i,	1]	/	correlation_scores[i,	0]

In	[	]:

plt.figure()
xValues	=	np.array(range(len(reliability_indices)))
plt.plot(xValues	+	1,reliability_indices,	'x')
plt.ylim(0,1)
plt.title("Reliability	Index",	fontsize	=	18)
plt.xlabel("Index",	fontsize	=	15)
plt.ylabel("",	fontsize	=	30)
plt.show()

Near-Match	Similarity	Index

= (#( ∩ ) + #( ∩ ))1
2 −1 +1

In	[	]:

N_best	=	5	#Number	of	best	matches	to	be	considered
best_orientations	=	match_results.data[:,	:N_best,	1]
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In	[	]:

N	=	correlation_scores.shape[0]
near_match_similarity_index	=	np.zeros(N)

#General
for	i	in	range	(1,	N-1):
				overlap	=	0
				for	j	in	range	(N_best):
								for	k	in	range	(N_best):
												if	all(best_orientations[i,	j]	==	best_orientations[i-1,	k]):	#Replace	with	np.approx_equal?
																overlap	+=	1
												if	all(best_orientations[i,	j]	==	best_orientations[i+1,	k]):
																overlap	+=	1
				near_match_similarity_index[i]	=	overlap/2

#Edges
overlap_start	=	0
overlap_end	=	0
for	j	in	range	(N_best):
				for	k	in	range	(N_best):
								if	all	(best_orientations[0,	j]	==	best_orientations[1,	k]):
												overlap_start	+=	1
								if	all	(best_orientations[-1,	j]	==	best_orientations[-2,	k]):
												overlap_end	+=	1
near_match_similarity_index[0]	=	overlap_start
near_match_similarity_index[-1]	=	overlap_end

near_match_similarity_index

In	[	]:

plt.figure()
plt.plot(near_match_similarity_index)
plt.ylim(0,N_best)
plt.show()

Weighted	Average	Reliability	Index

= (1 − )1
−1 ∑ =2 1

1−cos ,1
1−cos

In	[	]:

N_best	=	5
best_orientations	=	match_results.data[:,	:N_best,	1]
correlation_scores	=	match_results.data[:,	:N_best,	2]
symmetry	=	O
theta_max	=	61.86	#Is	known	from	crystal	symmetry.
#See	https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2017.0274	Fig	5,	and	find	omega_max.	(Here	theta)

In	[	]:

def	find_distance_rad	(orientation1,	orientation2,	symmetry):
				"""
				Takes	two	input	Euler	orientations	and	the	symmetry	of	the	system,	and	computes	the	distance	between	them
				in	radians.
				"""
				orientations	=	list([orientation1,	orientation2])
				ori	=	Orientation.from_euler(np.deg2rad(orientations))
				misori_base	=	Misorientation(ori).set_symmetry(symmetry,symmetry)
				distlist	=	misori_base.distance()
				
				return	distlist[0,1]
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In	[	]:

N	=	correlation_scores.shape[0]
weighted_average_reliability_index	=	np.zeros(N)

for	i	in	range	(N):
				score	=	0
				for	j	in	range	(1,	N_best):
								score	+=	(1	-	(correlation_scores[i,	j]	/	correlation_scores[i,	0])
																		*	((1	-	np.cos(find_distance_rad(best_orientations[i,	0],	best_orientations[i,	j],	symmetry)))
																		/	(1	-	np.cos(np.deg2rad(theta_max)))))
				
				weighted_average_reliability_index[i]	=	score	/	(N_best	-	1)

weighted_average_reliability_index
				

In	[	]:

plt.figure()
plt.plot(weighted_average_reliability_index)
plt.ylim(0,1)
plt.show()

Plotting	and	data	analysis

Define	plotting	functions
Allows	plotting	distance	to	true	value	and	plotting	distance	to	previous	orientation	in	the	tilt	series

In	[	]:

def	find_distance	(orientation1,	orientation2,	symmetry):
				"""
				Takes	two	input	Euler	orientations	and	the	symmetry	of	the	system,	and	computes	the	distance	between	them
				in	degrees.
				"""
				orientations	=	list([orientation1,	orientation2])
				ori	=	Orientation.from_euler(np.deg2rad(orientations))
				misori_base	=	Misorientation(ori).set_symmetry(symmetry,symmetry)
				distlist	=	misori_base.distance()
				
				return	np.rad2deg(distlist[0,1])	

def	set_distances_to_first	(orientation_list,symmetry):
				"""
				Finds	the	distance	from	every	orientation	in	an	orientation_list	to	the	first	orientation.
				"""
				distances	=	np.zeros((len(orientation_list)))
				for	i	in	range(len(orientation_list)):
								distances[i]	=	find_distance(orientation_list[i],orientation_list[0],symmetry)
								
				return	distances

def	set_distances_to_previous	(orientation_list,symmetry):
				"""
				Finds	the	distance	from	every	orientation	in	an	orientation_list	to	the	previous	orientation.
				"""
				distances	=	np.zeros((len(orientation_list)-1))
				for	i	in	range(1,len(orientation_list)):
								distances[i-1]	=	find_distance(orientation_list[i],orientation_list[i-1],symmetry)
								
				return	distances

def	set_distances_to_origin	(orientation_list,symmetry):
				"""
				Finds	the	distance	from	every	orientation	in	an	orientation_list	to	the	(0,0,0)	orientation.
				"""
				distances	=	np.zeros((len(orientation_list)-1))
				for	i	in	range(1,len(orientation_list)):
								distances[i-1]	=	find_distance(orientation_list[i],[0,0,0],symmetry)
								
				return	distances

def	set_distances_to_truth	(orientation_list,	truth_list,	symmetry):
				"""
				Finds	the	distance	from	every	orientation	in	an	orientation_list	to	the	true	orientation.
				"""
				distances	=	np.zeros(len(orientation_list))
				for	i	in	range(len(orientation_list)):
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				for	i	in	range(len(orientation_list)):
								distances[i]	=	find_distance(orientation_list[i],	truth_list[i],	symmetry)

								
				return	distances

def	linear_regression(angle_list):
				"""
				Computes	coefissients	for	a	linear	regression.
				"""
				n	=	len(angle_list)
				sum_x	=	0
				sum_y	=	0
				sum_xy	=	0
				sum_y2	=	0
				sum_x2	=	0
				for	i	in	range(n):
								sum_x	+=	(i)
								sum_y	+=	angle_list[i]
								sum_xy	+=	(i)*angle_list[i]
								sum_y2	+=	pow(angle_list[i],2)
								sum_x2	+=	pow(i,2)
								
				b	=	(sum_y*sum_x2-sum_x*sum_xy)/(n*sum_x2-pow(sum_x,2))
				a	=	(n*sum_xy	-	sum_x*sum_y)/(n*sum_x2-pow(sum_x,2))
				
				return	a,b

def	linear_regression_plot(orientation_list,symmetry,method):
				"""
				Plots	the	linear	regression	along	with	the	points	used	to	compute	the	regression.
				"""
				
				if	method	==	'to_first':
								angle_list	=	set_distances_to_first(orientation_list,symmetry)
				elif	method	==	'to_previous':
								angle_list	=	set_distances_to_previous(orientation_list,symmetry)
				elif	method	==	'to_origin':
								angle_list	=	set_distances_to_origin(orientation_list,symmetry)
				
				a,b	=	linear_regression(angle_list)
				regPlot	=	[]
				xValues	=	[]
				
				for	i	in	range(len(angle_list)):
								regPlot.append(a*i+b)
								xValues.append(i)
				
				plt.figure()
				plt.plot(xValues,regPlot,'r-',xValues,angle_list,'b*')
				plt.ylim(0,max(max(regPlot),max(angle_list))+2)
				plt.show()
				
def	linear_regression_plot_to_truth(orientation_list,	truth_list,	symmetry):
				"""
				Plots	the	linear	regression	along	with	the	points	used	to	compute	the	regression.
				"""
				angle_list	=	set_distances_to_truth(orientation_list,	truth_list,	symmetry)
				
				a,b	=	linear_regression(angle_list)
				regPlot	=	[]
				xValues	=	[]
				
				for	i	in	range(len(angle_list)):
								regPlot.append(a*i+b)
								xValues.append(i)
				
				plt.figure()
				plt.plot(xValues,regPlot,'r-',xValues,angle_list,'b*')
				plt.ylim(0,max(max(regPlot),max(angle_list))+2)
				plt.show()
				
def	constant_plot_to_truth(orientation_list,	truth_list,	symmetry,	constant):
				angle_list	=	set_distances_to_truth(orientation_list,	truth_list,	symmetry)
				constant_list	=	np.ones((len(angle_list)))	*	constant
				xValues	=	np.array(range(len(angle_list)))
				
				plt.figure()
				plt.plot(xValues	+	1,	constant_list,	'r-',	label	=	'Expected')
				plt.plot(xValues	+	1,	angle_list,	'b*',	label	=	'Measurement')
				plt.legend(fontsize	=	15,	loc	=	'upper	right')
				plt.title("Distance	to	True	Orientation",	fontsize	=	18)
				plt.xlabel("Index",	fontsize	=	18)
				plt.ylabel("Angular	Distance	"	+	r'$(\degree)$',	fontsize	=	18)
				plt.ylim(0,max(max(constant_list),max(angle_list))+2)
				plt.show()
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				plt.show()

				
def	constant_plot_to_previous(orientation_list,	symmetry,	constant):
				angle_list	=	set_distances_to_previous(orientation_list,symmetry)
				constant_list	=	np.ones((len(angle_list)))	*	constant
				xValues	=	np.array(range(len(angle_list)))
				
				plt.figure()
				plt.plot(xValues	+	2,constant_list,'r-',	label	=	'Expected')
				plt.plot(xValues	+	2,angle_list,'b*',	label	=	'Measurement')
				plt.ylim(0,max(max(constant_list),max(angle_list))+2)
				plt.legend(fontsize	=	15,	loc	=	'upper	right')
				plt.title("Distance	to	Previous	Index",	fontsize	=	18)
				plt.xlabel("Index",	fontsize	=	18)
				plt.ylabel("Angular	Distance	"	+	r'$(\degree)$',	fontsize	=	18)	
				plt.show()
				
				

Set	parameters	for	plots	in	matplotlib

In	[	]:

import	matplotlib.pylab	as	pylab
params	=	{'legend.fontsize':	'xx-large',
										'figure.figsize':	(7,	6),
									'axes.labelsize':	'xx-large',
									'axes.titlesize':'xx-large',
									'xtick.labelsize':'xx-large',
									'ytick.labelsize':'xx-large'}
pylab.rcParams.update(params)

In	[	]:

array	=	match_results.data[:,0,1]
constant_plot_to_truth(array,	tilt_series,	O,	0)
constant_plot_to_previous(array,	O,	4)

In	[	]:

array	=	match_results.data[:,0,1]
linear_regression_plot(array,	O,	'to_previous')
linear_regression_plot_to_truth(array,	tilt_series,	O)

To	MTEX

orientations

In	[	]:

N	=	match_results.data.shape[0]
ret_arr	=	np.zeros((N,7))
for	i	in	range	(N):
				ret_arr[i,:]	=	[0,	match_results.data[i,0,1][0],
																				match_results.data[i,0,1][1],	match_results.data[i,0,1][2],	match_results.data[i,	0,	2],i,i]

In	[	]:

np.savetxt("..//to_MTEX_orientations_correlation_score_FF.csv",	ret_arr)

rotations

In	[	]:

euler_angles_from_best_matches	=	match_results.data[:,0,1]	
euler_angles_from_best_matches	=	euler_angles_from_best_matches.tolist()

orientations_1	=	Orientation.from_euler(np.radians(euler_angles_from_best_matches[:-1]))
orientations_2	=	Orientation.from_euler(np.radians(euler_angles_from_best_matches[1:]))
orientations_1	=	orientations_1	
orientations_2	=	orientations_2	

rotation_list	=	Rotation(orientations_2	*	~orientations_1)	
rotation_array	=	np.rad2deg(rotation_list.to_euler())
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In	[	]:

N	=	len(rotation_array)
ret_arr_rot	=	np.zeros((N,7))
for	i	in	range	(N):
				ret_arr_rot[i,:]	=	[0,	rotation_array[i][0],
																				rotation_array[i][1],	rotation_array[i][2],	1,	i,	i]

In	[	]:

np.savetxt("..//to_MTEX_rotations_FF.csv",	ret_arr_rot)

Other

In	[	]:

N	=	match_results.data.shape[0]
ret_arr	=	np.zeros((N,7))
for	i	in	range	(N):
				ret_arr[i,:]	=	[0,	match_results.data[i,0,1][0],
																				match_results.data[i,0,1][1],	match_results.data[i,0,1][2],	match_results.data[i,0,2],	i,	i]

In	[	]:

np.savetxt("..//101GaSbFF.csv",	ret_arr)

Plot	result	on	signal	functions

In	[	]:

class	IndexTracker(object):
				def	__init__(self,	ax1,	ax2,	signal,	storage,	kwargs_for_signal	=	{},	kwargs_for_template_scatter	=	{}):
								
								self.ax1	=	ax1
								self.ax2	=	ax2
								
								self.signal	=	signal
								
								self.slices	=	signal.shape[0]
								self.ind	=	self.slices	//	2
								self.rank	=	0
								self.max_rank	=	len(storage[0])
								self.storage	=	storage
								
								phase	=	self.storage[self.ind][self.rank][0]
								angle	=	self.storage[self.ind][self.rank][1]
								correlation_score	=	self.storage[self.ind][self.rank][2]
								coordinates	=	self.storage[self.ind][self.rank][3]
								intensities	=	self.storage[self.ind][self.rank][4]
								x,y	=	zip(*coordinates)
								
								self.im	=	ax1.imshow(self.signal[self.ind],	**kwargs_for_signal)
								self.im2	=	ax2.imshow(self.signal[self.ind],	**kwargs_for_signal)
								self.line1	=	ax2.scatter(x	=	x,	y	=	y,	c	=	intensities,	**kwargs_for_template_scatter)
								self.cbar	=	plt.colorbar(self.line1)
								self.cbar2	=	plt.colorbar(self.im)
								self.cbar.set_label("Template",	size	=	15)
								self.cbar2.set_label("Signal",	size	=	15)
								self.cbar.ax.tick_params(labelsize=15)
								self.cbar2.ax.tick_params(labelsize=15)
								self.update()

				def	onscroll(self,	event):
								if	event.button	==	'up':
												self.ind	=	(self.ind	+	1)	%	self.slices
								else:
												self.ind	=	(self.ind	-	1)	%	self.slices
								self.update()
								
				def	click(self,	event):
								self.rank	=	(self.rank	+	1)	%	self.max_rank
								self.update()

				def	update(self):
								
								self.im.set_data(self.signal[self.ind,:,:])
								self.ax1.set_ylabel('slice	%s'	%	(self.ind	+	1))
								self.ax1.set_title('Signal')
								self.im.axes.figure.canvas.draw()
								
								phase	=	self.storage[self.ind][self.rank][0]
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								phase	=	self.storage[self.ind][self.rank][0]
								angle	=	self.storage[self.ind][self.rank][1]
								correlation_score	=	self.storage[self.ind][self.rank][2]
								coordinates	=	self.storage[self.ind][self.rank][3]
								intensities	=	self.storage[self.ind][self.rank][4]
								x,y	=	zip(*coordinates)
								
								self.im2.set_data(self.signal[self.ind,:,:])
								self.line1.set_offsets(coordinates)
								self.line1.set_array(intensities)
								self.ax2.set_title('Euler	Angle:	({0:.0f},{1:.0f},{2:.0f})	\n	Rank:	{3}	Correlation	Score:	{4:.2f}'.forma
t(angle[0],
																																																																																					angle[1],
																																																																																					angle[2],
																																																																																					self.rank,
																																																																																					correlation_score),	fontsize	
=	20)
								
								self.line1.set_clim(vmin=intensities.min(),vmax=intensities.max())
								#self.cbar2.set_ticks(cbar_ticks)
								self.cbar.update_normal(self.line1)
								self.cbar.draw_all()
								self.im2.axes.figure.canvas.draw()
								
								
								

from	pyxem.utils.indexation_utils	import	get_nth_best_solution

def	peaks_from_best_n_templates(tm_results,	library,	n	=	None):
				number_of_templates	=	tm_results.data.shape[0]
				if	n	==	None:
								n	=	tm_results.data.shape[1]
				
				storage	=	[]
				for	i	in	range(number_of_templates):
								peaks_and_intensities	=	[]
				
								for	j	in	range(n):
												best_fit	=	get_nth_best_solution(tm_results.data[i],	mode	=	'template',	rank=j)
												phase_names	=	list(library.keys())
												phase_index	=	int(best_fit[0])
												phase	=	phase_names[phase_index]
												simulation	=	library.get_library_entry(
																phase=phase,
																angle=tuple(best_fit[1]))
												peaks	=	simulation['pixel_coords']		
												intensities	=	simulation['intensities']
												peaks_and_intensities.append([phase,	best_fit[1],	best_fit[2],	peaks,	intensities])
								storage.append(peaks_and_intensities)
				return	storage

def	plot_results_on_signal(tm_results,	signal,	library,	*args,	**kwargs):
				storage	=	peaks_from_best_n_templates(tm_results,	library)
				
				fig,	[ax1,ax2]	=	plt.subplots(1,	2,	gridspec_kw={'width_ratios':	[5,	8]})
				plt.axis('off')

				tracker	=	IndexTracker(ax1,	ax2,	test_data.data,	storage,	kwargs_for_signal	=	{"cmap"	:	"inferno_r",	"vmax"	:	
0.1},	**kwargs)

				fig.canvas.mpl_connect('scroll_event',	tracker.onscroll)
				fig.canvas.mpl_connect('button_press_event',	tracker.click)
				plt.show()
				return	tracker

In	[	]:

plot_results_on_signal(match_results,	test_data,	template_library,	kwargs_for_template_scatter	=	{"cmap"	:	"virid
is",	"s":	50,	"marker"	:	"x"})

Plot	Template	Library	index	FT
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In	[	]:

index	=	9
orientation	=	tilt_series[index]
coordinates	=	template_library.get('GaSb')['pixel_coords'][index]
intensities	=	template_library.get('GaSb')['intensities'][index]

picture	=	np.zeros((test_data.data.shape[1:]))
fsize	=	np.asarray(picture.shape)	*	2	-	1

for	i	in	range	(len(coordinates)):
				picture[coordinates[i,0],	coordinates[i,1]]	=	intensities[i]
				
picture_FT	=	np.fft.fftshift(np.fft.fftn(picture,	fsize))

In	[	]:

plt.figure()
plt.axis('off')
plt.imshow(np.imag(picture_FT),	cmap	=	'inferno')
plt.colorbar()
plt.title('Template:	{}	Imaginary'.format(index+1))
plt.show()

In	[	]:

x,y	=	zip(*coordinates)

plt.figure()
plt.axis('off')
plt.imshow(np.zeros(test_data.data.shape[1:]),	cmap	=	'inferno_r')
plt.scatter(x	=	x,	y	=	y,	c	=	intensities,	s	=	20,cmap	=	'viridis')
plt.colorbar()
plt.title('Template:	{}	'.format(index+1))
plt.show()

In	[	]:

index	=	21
test_data.data[index]

signal_FT	=	np.fft.fftshift(np.fft.fftn(picture,	fsize))

In	[	]:

plt.figure()
plt.axis('off')
plt.imshow(np.imag(signal_FT),	cmap	=	'inferno_r')
plt.colorbar()
plt.title('Signal:	{}	Imaginary'.format(index+1))
plt.show()

Correlation	Score	Map	plot

In	[	]:

image	=	np.asarray(match_results.data[:,	:,	2],	dtype	=	float)
image	=	image.T
plt.figure()
plt.imshow(image,	cmap	=	'inferno')
plt.colorbar()
plt.title("Correlation	scores")
plt.xlabel("Crystal	Index")
plt.ylabel("nth	best	match")
plt.plot()
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C.3 Matlab Code
The following pages contain the matlab script in which all inverse pole figure plots

presented in this report have been generated.
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% Load pyxem results from .csv
datadir = 'C:\Users\eirik\Documents\PerfectTemplate';
fname = 'to_MTEX_orientations_correlation_score_Fast.csv';
file = fullfile(datadir, fname);

% Set crystal symmetry
cs = crystalSymmetry('m-3m', 'mineral', 'au'); %'-43m' 'mmm'
column_names = {'phase', 'euler1', 'euler2', 'euler3', 'score', 'y', 'x'};

%Load first file
sped = EBSD.load(file, 'cs', cs, 'ColumnNames', column_names);

%Load second file (for comparison)
datadir2 = 'C:\Users\eirik\Documents\simulert_data1deg';
fname2 = 'to_MTEX_orientations_correlation_score_0p03sigFast1degGaSb.csv';
file2 = fullfile(datadir2, fname2);

sped2 = EBSD.load(file2, 'cs', cs, 'ColumnNames', column_names);

%Set colormap preference
setMTEXpref('defaultColorMap', 'viridis')

ebsd_au = sped;
colors = ebsd_au.score;

% Import orientations and set symmetry
o = ebsd_au.orientations;%(1:30);
o2 = sped2.orientations;
o2.CS = crystalSymmetry('m-3m');
o.CS = crystalSymmetry('m-3m');

%Create unimodal ODF function from orientation data
odf = 0.7*unimodalODF(o, 'halfwidth', 1*degree);

%Define indices for plot
indices = cell(0,0);

for i = 1:length(o)
    number = ebsd_au.id(i);
    indices{end+1} = int2str(ebsd_au.id(i));
end

%Code below allows for extraction of Euler angle indices in place of
%numbers

%for i = 1:29
%    phi1 = o.phi1(i);
%    Phi = o.Phi(i);
%    phi2 = o.phi2(i);
%    indices{end+1} = strcat(sprintf('%.0f', phi1 * 180 / pi), ',',...
%    sprintf('%.0f', Phi * 180 / pi), ',', ...
%    sprintf('%.0f', phi2 * 180 / pi));
%end

1
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% Plot IPF and annotate indices
figure
plotIPDF(o, vector3d.Z, 'antipodal')%, 'smooth')%, 'complete')%,

hold on
annotate(o, 'marker','s','MarkerSize', 10, 'MarkerFaceColor', 'r',...
        'label', indices, 'Color', 'r')
%hold on

%Plot second set of orientations, if interesting.
%plotIPDF(o2, vector3d.Z, 'markerfacecolor', 'r','markersize'...
%         ,5, 'antipodal') 
%annotate(o2, 'marker','s','MarkerSize', 5, 'MarkerFaceColor', 'r', ...
% 'label', indices, 'Color', 'r')
mtexColorbar

2
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