
Ø
ystein Torm

odsen N
ygård

Kinetic M
onte Carlo sim

ulations of precipitation in Al-M
g-Si alloys

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

M
as

te
r’s

 th
es

is

Øystein Tormodsen Nygård

Kinetic Monte Carlo simulations of the
early stages of precipitation in Al-Mg-Si
alloys using ab initio based activation
energies

Master’s thesis in Applied Physics and Mathematics

Supervisor: Jesper Friis and Jaakko Akola

July 2020

Øystein Tormodsen Nygård

Kinetic Monte Carlo simulations of the
early stages of precipitation in Al-Mg-Si
alloys using ab initio based activation
energies

Master’s thesis in Applied Physics and Mathematics
Supervisor: Jesper Friis and Jaakko Akola
July 2020

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Physics

I dedicate this work to the loving memory of my grandfather Sverre Nygaard.
He always supported me, and helped me pursue and fulfil all the different project ideas I

had, both as a child and adult.
I will always remember you fondly.

Abstract

Kinetic Monte Carlo simulations have been performed using two different expressions for
the activation energies for the purpose of getting better insight into the kinetics of the early
stages of precipitation in Al-Mg-Si alloys at an atomic level. The simulation system con-
sists of 25 × 25 × 25 face centred cubic unit cells and the alloy contains 0.67 at.% Mg
and 0.77 at.% Si. The first expression for the activation energies is from the literature
and has been thoroughly tested and benchmarked against density functional theory (DFT)
calculations in this work. The analysis show that the activation energies are not consistent
with DFT, but the method consistently produces clusters with the L10 structure at room
temperature and tracks the total energy well. Other cluster structures have not been ob-
served and the L10 clusters dissolve at T = 350 K. The second expression, developed
in this thesis, is based on cluster expansion and have been trained on DFT calculations to
produce physically accurate activation energies. The implementation of the new expres-
sion is fast to evaluate and represents the training set well with an RMSE of only 1.8 meV
and cross-validation score of 9.9 meV. Simulation results show that this method with the
current training set gives diffusivities close to the literature values, but it does not produce
any large clusters and dissolve the L10 structure at T = 400 K and higher. The method
is likely to produce better results with a larger training set that contains a representative
selection of structures for all stages of the precipitation process. It is easy to include more
lattice sites and add higher order terms to the expression, but this is currently not beneficial
due to the limited amount of information in the training set.

i

Sammendrag

Kinetisk Monte Carlo simuleringer har blitt utført med bruk av to ulike uttrykk for aktiver-
ingsenergiene med hensikt til å få bedre innsikt i kinetikken i den tidlige fasen av presip-
itering i Al-Mg-Si legeringer på atomnivå. Simuleringssystemet består av 25 × 25 × 25
kubisk flatesentrert enhetsceller og legeringen inneholder 0.67 at.% Mg og 0.77 at.% Si.
Det første uttrykket for aktiveringsenergiene er fra litteraturen og har i dette arbeidet blitt
grundig testet og sammenlignet mot beregninger basert på tetthetsfunksjonalteori (DFT).
Analysen viser at aktiveringsenergiene ikke stemmer overens med DFT beregningene, men
metoden produserer konsekvent klynger med L10 strukturen ved romtemperatur og følger
totalenergien godt. Klynger med andre strukturer har ikke blitt observert og L10 klyngene
oppløses ved T = 350 K. Det andre uttrykket har blitt utviklet i denne avhandlingen,
og er basert på klyngeekspansjon. Uttrykket har blitt trent på DFT beregninger for å gi
fysisk korrekte aktiveringsenergier. Implementasjonen av metoden er rask å evaluere og
representerer treningssettet godt med en RMSE på 1.8 meV og kryssvalideringsscore på
9.9 meV. Simuleringsresultater viser at denne metoden med det nåværende treningsset-
tet gir diffusiviteter som er nær verdiene i litteraturen, men den produserer ingen store
klynger og løser opp L10 klynger ved T = 400 K. Det er sannsynlig at metoden vil
produsere bedre resultater dersom et større treningssett som inneholder et representativt
utvalg av strukturer for alle steg i presipiteringsprosessen blir brukt. Det er lett å inklud-
ere flere atomplasseringer og høyere ordens korreksjoner i uttrykket, men dette er ikke
hensiktsmessig per nå grunnet den begrensede informasjonsmengden i treningssettet.

ii

Preface

This work is written as a master’s thesis for the degree Master of Science in Applied
Physics at the Norwegian University of Science and Technology (NTNU) in Trondheim.
The work is a mandatory part of the degree, corresponds to 30 ECTS and have been per-
formed in the period 27.01.2020 to 22.06.2020. This master’s thesis is a continuation of the
work done during my specialisation project. During the specialisation project an existing
codebase for kinetic Monte Carlo, written in the C language by Jesper Friis, was debugged,
made partly modular and updated with new features, and the results of the article by Liang
et al. [1] was recreated and extended. The focus for this thesis has been to develop and
implement a new expression for the activation energies that can be trained from density
functional theory calculations to get simulation results that are based on physically accu-
rate activation energies. The code has also been updated with new features, modularity
has been improved and a Python interface have been made to make the program easier to
configure and use.

This master thesis is a part of the research project SumAl, which is a collaboration
between NTNU, the research organisation SINTEF and several industrial partners from the
Norwegian aluminium industry. The purpose of the SumAl project is to gain better insight
into the precipitation processes in Al-Mg-Si alloys at different length scales. With this
insight the goal is to be able to manipulate solute clusters to optimise the properties of the
finished alloys. The main goal for this thesis work is to further improve the kinetic Monte
Carlo simulations to gain better insight into the kinetics of the early stages of precipitation
in Al-Mg-Si alloys at an atomic scale.

Acknowledgements
I want to express my deepest appreciation to my two supervisors, Professor Jaakko Akola,
Department of Physics at NTNU, and Senior Research Scientist Jesper Friis, SINTEF In-
dustry, Department of Materials and Nanotechnology. This work would not have been
possible without the skilled guidance provided by my supervisors. A special thanks to
Inga Gudem Ringdalen, Research Scientist at SINTEF Industry, Department of Materi-
als and Nanotechnology, for doing the labour-intensive work of executing and organising
hundreds of DFT calculations needed for training the model. I am also very grateful to the
PhD student David Kleiven who have provided expert help and guidance with the cluster
expansion. I would also like to thank Professor Normand Mousseau for fruitful discussions
and for sharing his expertise on kinetic Monte Carlo. Lastly, I want to thank my family,
and especially my significant other, Mari, for care, encouragement and support throughout
my studies.

iii

iv

Table of Contents

Abstract i

Sammendrag ii

Preface iii

Table of Contents vii

List of Tables ix

List of Figures xii

Abbreviations xiii

1 Introduction 1

2 Theory 5
2.1 Introduction to Al-Mg-Si alloys and precipitation hardening 5
2.2 Rejection-free Kinetic Monte Carlo . 8

2.2.1 Requirements for good KMC moves 11
2.2.2 Comparison to other methods 12
2.2.3 KMC for atomistic simulations of precipitation in Al-Mg-Si alloys 14

2.3 Existing expression for activation energies in Al-Mg-Si alloys 15

3 Cluster expansion 17
3.1 General cluster expansion . 17
3.2 Adapting cluster expansion for use in KMC 18
3.3 Creating the training set . 22
3.4 Determination of effective cluster interactions 23
3.5 Expanding the training set efficiently . 26

v

4 Implementation 29
4.1 Implementation of the KMC algorithm 29

4.1.1 Introduction to observers . 29
4.1.2 Total energy logging . 31
4.1.3 Update on logging of clustering rates 32
4.1.4 Minor updates . 32

4.2 Implementation of cluster expansion adapted for use in KMC 33
4.3 Python interface . 36

5 Results and discussion 37
5.1 DFT calculations of activation energies 38
5.2 Pool of possible structures . 41
5.3 Fitting of expression to the training set 41

5.3.1 L-curve criterion compared to CV minimisation 42
5.3.2 Fitting results and comparison of fits 43
5.3.3 Details of the chosen fit . 46
5.3.4 Shifting of activation energies 49

5.4 Benchmarking of the method by Liang et al. against DFT 50
5.5 Runtimes . 52
5.6 Simulation results . 53

5.6.1 Cluster evolution and snapshots 53
5.6.2 Diffusivity . 59
5.6.3 Total energy evolution . 63

5.7 Clustering rates . 69
5.7.1 Fitting of analytical expression to evaporation rates 70
5.7.2 Cluster composition . 71

5.8 Error sources and discussion of overall results 72
5.8.1 Limitations imposed by the model 72
5.8.2 Error sources for the training set 73
5.8.3 Error sources in the transition rates 74

6 Conclusion 77

7 Future work 79
7.1 Improving the activation energies . 79
7.2 Adding octahedral sites . 79
7.3 Other improvements . 80

Bibliography 81

Appendices 87

A Introduction to cluster dynamics 87
A.1 Cluster dynamics . 87

vi

B User manual and documentation 89
B.1 Running KMC simulations . 89
B.2 Observers and logging . 90
B.3 Setting up cluster expansion for KMC 91
B.4 Table of variables for main equation of CE for KMC 94
B.5 Documentation of Python interface for KMC 95

vii

viii

List of Tables

2.1 The value for all the variables in equation (2.13) 16

5.1 Statistics for the set of activation energies calculated by DFT 40
5.2 Number of solute neighbours for the structures in the training set 40
5.3 Parameters used to generate pool of possible structures 41
5.4 Overview of three different fitting methods 42
5.5 Statistics for fits defined in Table 5.4 . 44
5.6 Average ECI values . 45
5.7 Statistics for pool of structures for different fits 45
5.8 Comparison of computation time for the two methods of calculating Eact 52

B.1 Default value and description for optional arguments to run KMC.py . . . 90
B.2 Table of implemented observers . 93
B.3 Interpretation and implementation of all the variables in equation (3.4). . . 94

ix

x

List of Figures

2.1 Illustration of typical heat treatment procedure for Al alloys 6
2.2 Illustration of FCC unit cell . 7
2.3 Illustration of β′′ ”eye” . 7
2.4 TEM and HAADF-STEM images of β′′ precipitates in Al-Mg-Si alloy . . 8
2.5 Illustration of escape time . 9
2.6 Illustration of activation energy for forward and backward reaction 10
2.7 Illustration of event selection in the KMC algorithm. 10

3.1 Illustration of included lattice sites in cluster expansion 20
3.2 Illustration of how pair clusters are described in the implementation . . . 21
3.3 Workflow for iteratively expanding the training set 22
3.4 Typical form of the L-curve . 26

4.1 Program flow of KMC implementation. 30

5.1 Scatter plot of activation energies calculated by DFT 39
5.2 L-curve for fitting of ECIs to the training set 43
5.3 Value of ECIs for the three different fits 44
5.4 Comparison of CE to DFT activation energies 47
5.5 Scatter plot of CE activation energies for pool of structures 47
5.6 Predicted standard deviation for pool of structures 48
5.7 Comparison of Liang method to DFT activation energies 50
5.8 Scatter plot of Liang activation energies for pool of structures 51
5.9 Monomer concentration and average cluster size, Liang run A 54
5.10 Snapshots of cluster structures with Liang method 55
5.11 Monomer concentration and average cluster size, Liang run B 56
5.12 Monomer concentration and average cluster size, CE run A 57
5.13 Snapshots of cluster structures with CE method 58
5.14 Monomer concentration and average cluster size, CE run B 59
5.15 Diffusivities, Liang run A, with comparison of old and new implementa-

tion of diffusivity logging . 60

xi

5.16 Diffusivities, Liang run B . 61
5.17 Diffusivities, CE run A . 62
5.18 Diffusivities, CE run B . 62
5.19 Energy differences, DFT vs CE MC . 63
5.20 Total energy evolution for Liang run A 64
5.21 Total energy evolution for Liang run B 65
5.22 Energy differences, Liang vs CE MC 66
5.23 Total energy evolution for CE run A . 66
5.24 Energy differences, CE vs CE MC . 67
5.25 Total energy evolution for CE run B . 68
5.26 Condensation and evaporation rate for Mg and Si 69
5.27 Fitting of expression to evaporation rates for Mg and Si 70
5.28 Average cluster composition . 71

xii

Abbreviations

AA = Artificial ageing
ASE = Atomic simulation environment
CD = Cluster dynamics
CE = Cluster expansion
CLEASE = Cluster expansion for atomic simulation environment
CV = Cross-validation
DFT = Density functional theory
ECI = Effective cluster interaction
FCC = Face centred cubic
HAADF = High-angle annular dark-field imaging
HF = Hartree Fock
k-ART = Kinetic activation-relaxation technique
KMC = Kinetic Monte Carlo
KRA = Kinetically resolved activation barrier
LMOCV = Leave-multiple-out cross-validation
LOOCV = Leave-one-out cross-validation
MC = Monte Carlo
MEP = Minimum energy path
NA = Natural ageing
NEB = Nudged elastic band
NN = Nearest neighbour
NNN = Next nearest neighbour
RNG = Random number generator
STEM = Scanning transmission electron microscopy
SS = Solid solution
SSSS = Supersaturated solid solution
SWIG = Simplified Wrapper and Interface Generator
TEM = Transmission electron microscopy
VASP = Vienna Ab initio Simulation Package

xiii

xiv

Chapter 1
Introduction

Aluminium alloys are versatile materials that have high corrosion resistance, can be ex-
truded and cast, have a high strength to weight ratio and are energy efficient to recycle
[2]. One important use for aluminium alloys is the automotive industry, and other modes
of transportation, as the high strength to weight ratio lowers the total weight of the fin-
ished vehicle, which lowers the fuel usage and thereby emissions. The properties of an
aluminium alloy highly depend on the composition of the alloy and the heat-treatment it
undergoes. Impurities are added to the pure aluminium to create an alloy with beneficial
properties, the added alloying elements are referred to as solutes. This work will study
alloys where the solutes are magnesium and silicon, which will be called Al-Mg-Si alloys,
and these alloys are part of the 6xxx series of aluminium alloys. These alloys are com-
monly used for automotive parts, both in sheet form for body panels and extrusions for
load bearing parts [3], and for architectural constructions [2].

Not all alloys are heat treatable but the Al-Mg-Si are and can get a significant increase
in hardness due to the heat treatment. The added strength is caused by precipitates, which
are small coherent structures that usually have a high solute concentration. Precipitates
give the material increased hardness due to the interface strain between the precipitates
and the surrounding aluminium [4]. Heat treatment usually consist of several stages at
different temperatures and the time spent in each stage also varies. The size, type and
number density of precipitates that form depend on how the heat treatment was performed,
and this affects the properties of the finished alloy.

The precipitation process in Al-Mg-Si alloys have been studied using both experi-
mental and numerical techniques at different length scales to gain information about the
precipitation sequence in the alloys and their influence on the material properties. There is
however a lack of studies that have performed numerical simulations that give insight into
the kinetics of solute clustering and precipitation in Al-Mg-Si alloys at an atomistic level.
An algorithm that is well suited for studying kinetic processes in crystalline materials on
long timescales is the rejection-free kinetic Monte Carlo algorithm. This method models
the time evolution of stochastic systems through calculating transition rates to all adjacent
states and choosing the next state for the system based on these rates. The transition rates

1

Chapter 1. Introduction

are usually calculated from the activation energy needed to go from the current state to
the top of the saddle point between the adjacent- and the current state. This algorithm has
been used to study precipitation in other aluminium alloys, such as the Al-Zr-Sc system
[5], Al-Sc [6] and Al-Zn-Mg-Cu [7].

Early stages of precipitation in Al-Mg-Si alloys have been studied using KMC in an
article by Liang et al. [1]. In the utilised model all atoms must reside at a face centred cubic
lattice site, which is a good approximation in the early stages of precipitation. For each
iteration one of 12 nearest neighbours of a vacant lattice site can jump from their current
site to the vacant site. The expression they used for calculating the activation energies only
take into account the nearest neighbours of the atom that jumps and the nearest neighbours
of the vacancy. This method was implemented and used in my specialisation project [8]
to recreate and extend the work presented in the original article. The outcome of KMC
simulations are governed by the activation energies for atoms to jump to a vacant site.
The expression used in [1] does not treat atoms at different sites, relative to the jump
direction, differently and there are no interactions between the neighbours, only between
neighbour and the atom that jumps and neighbour and the vacancy. The outcome of the
simulations may therefore lack important information, which can result in the kinetics not
being consistent with the real processes.

The main focus of this master thesis is to develop an expression for calculating the ac-
tivation energy for an atom jumping to a neighbouring vacant lattice site that can easily be
expanded to include more lattice sites and higher order corrections. The expression should
be able to be trained from a set of structures with physically accurate activation energies.
This expression will be based on the principle of cluster expansions and the coefficients
of the expression, also known as effective cluster interactions, will be determined from
the training set using Bayesian regression. The training set consist of structures where the
activation energies have been accurately computed using density functional theory (DFT).
The goal is that this will produce physically accurate activation energies that result in better
and more realistic insight into the kinetics of the early stages of the precipitation process
at an atomic level.

This thesis will start with an introduction to the precipitation process in Al-Mg-Si al-
loys, followed by an introduction to rejection-free KMC and a short introduction to the
method used in the article by Liang et al. The introduction to KMC will cover the algo-
rithm, requirements for good KMC moves and compare it to other numerical methods.
The next chapter will go through cluster expansions in general and present the developed
expression for the activation energies. It will also go through how to create the training set,
how to determine the effective cluster interactions using Bayesian regression and discuss
methods for expanding the training set in an efficient way. A chapter on the implemen-
tation of the algorithms follows, which goes through updates to the existing code, how
the new expression for the activation energies have been implemented to get low memory
usage and high efficiency and go through a new Python interface for the code.

The results will start with introducing and inspecting the training set and compare
different methods for determining the optimal combination of effective cluster interactions.
In the next part, an in-depth inspection and benchmark of both the cluster expansion based
method and the method by Liang et al. is performed. Simulation results from both methods
is then presented, including cluster evolution, snapshots of the lattice, diffusivities and total

2

energy evolution. Clustering rates for the method by Liang et al. is presented together with
line fittings to the evaporation rates and compositional data for clusters. The last section
discusses error sources for the training set, the modelling assumptions and error sources
for the two methods of calculating the activation energies. The thesis is rounded off with
a conclusion and suggestions for future work.

3

Chapter 1. Introduction

4

Chapter 2
Theory

This chapter will start with a short introduction to precipitation hardening of Al-Mg-Si
alloys, covering the topics needed for this thesis. The next section will introduce the
rejection-free kinetic Monte Carlo algorithm and compare it to other methods, both at a
general level and for the purpose of simulating precipitation. After the comparison, the
details of how kinetic Monte Carlo is used to simulate precipitation is presented. In the
last section an introduction to an existing method for calculating the activation energies
for the Al-Mg-Si system is presented.

2.1 Introduction to Al-Mg-Si alloys and precipitation hard-
ening

This section will introduce Al-Mg-Si alloys and the process of precipitation hardening,
also known as age hardening. Aluminium alloys are divided into different series based on
the main alloying elements, and the Al-Mg-Si alloys belong to the 6xxx series of alloys.
This series of alloys is commonly used for automotive applications [3], both in sheet form
and extrusions, and for architectural purposes [2].

Heat treatment is an important step when producing parts out of an aluminium alloy
since the heat treatment leads to precipitation, which is an important strengthening mech-
anism [2]. The precipitates are small coherent structures that cause a strength increase due
to interface strain between the surrounding Al matrix and the precipitates [4]. A typical
heat treatment process of an aluminium alloy is illustrated in Figure 2.1. The treatment
starts at a temperature that is below the melting point, but high enough for the alloy to
form a solid solution (SS) where the solutes are well dispersed, temperature is usually
above 740 K [2]. Quenching, a rapid cooling of the alloy usually performed by submerg-
ing the part in water, follows and creates a supersaturated solid solution (SSSS) since the
atoms do not have time to reach equilibrium during the fast cooling process. The SSSS
will start to form clusters of solutes during natural ageing (NA), which is performed at
room temperature. After some time of NA, ranging from minutes to weeks, the tempera-

5

Chapter 2. Theory

ture is elevated to speed up the precipitation forming, a typical temperature for Al-Mg-Si
alloys is 450 K [2]. The time and temperature for each step can be varied and affects the
final properties of the alloy.

T
em

pe
ra

tu
re

Time

Q
uenching

Solid
solution

Natural
ageing

Artificial
ageing

Figure 2.1: Illustration of a typical heat treatment procedure for Al alloys. The alloy is heated
to a temperature below the melting temperature but high enough for the solutes to disperse evenly
and form a solid solution, the alloy is then quenched, which creates a supersaturated solid solution.
Then the alloy is aged at room temperature before the alloy is heated to an elevated temperature for
artificial ageing [2].

During the heat treatment, the alloy undergoes several different structural transforma-
tions and many of the structures are metastable. The general sequence of precipitation in
Al-Mg-Si alloys is [4]

SSSS→ solute clusters→ spherical coherent Guinier Preston zones→
needle shaped β′′ → β′,U1,U2,B′ → plate shaped β

The peak hardness of the material usually contain a high fraction of the metastable β′′

structure [9]. This thesis focuses on the early stages of precipitation, mainly during NA,
hence only the steps up to β′′ are relevant for this work.

Pure aluminium at room temperature have the face centred cubic (FCC) structure. The
FCC unit cell is as the name implies cubic and have one lattice site at each corner, shown
as white spheres in Figure 2.2, and at the centre of each face of the cube, shown as red
spheres in the figure, which results in a total of 4 lattice sites per unit cell. Alloys with low
percentage of alloying elements, often called lean alloys, are assumed to have a structure
close to FCC during supersaturated solid solution. Later in the precipitation process when
larger clusters start to form this assumption is no longer good, since the large clusters
often have a different crystal structure than the Al host matrix. This new crystal structure
is energetically favourable for the bulk of the cluster, but due to the interfacial energy
towards the Al matrix the clusters must become a certain size before the new structure has
lower total energy.

6

2.1 Introduction to Al-Mg-Si alloys and precipitation hardening

Figure 2.2: Illustration of the lattice sites in a face centred cubic (FCC) unit cell. In the figure the
corner, or cubic, lattice sites are white spheres and the face centred sites are shown in red.

Figure 2.3: The figure shows a β′′ ”eye” consisting of a layer of 4 Si atoms, sand coloured, with a
Mg atom, green, in the middle of them. The layer below has 4 Mg atoms and the rest of the structure
is Al. The structure is a slab that is only 2 layers thick, but due to periodic boundary conditions it is
an infinite column. The atom positions have been relaxed using DFT by Research Scientist Inga G.
Ringdalen at SINTEF Industry, Department of Materials and Nanotechnology.

The structure and form of the important β′′ precipitates is of great interest and have
been studied in detail in several studies. The composition was found to be Mg4Al3Si4
using high-angle annular dark-field scanning transmission electron microscope (HAADF-
STEM) but DFT indicated that Mg5Al2Si4 is the most stable structure [10]. The β′′ pre-
cipitates are coherent and elongated along a 〈100〉 direction of the Al matrix and have a
typical cross section of 1-15 nm2 and length 30-100 nm [4]. The unit cell for the β′′ is
monoclinic [10], but is closely related to the FCC structure. In Figure 2.3 a slab with a β′′

”eye” that have been relaxed with DFT is shown. The sand coloured Si atoms are pushed

7

Chapter 2. Theory

Figure 2.4: Figure a) shows a bright field TEM image with a typical β′′ microstructure in a peak
aged ultrapure 6082-like Al-Mg-Si alloy. Figure b) shows a HAADF-STEM image of a β′′ cross-
section with atomic resolution. These images have been provided by Calin D. Marioara, Senior
Research Scientist at SINTEF Industry, Department of Materials and Nanotechnology.

outwards compared to their FCC positions due to the green Mg atom that is in the middle
of the Si atoms in the same layer. A β′′ precipitate can consist of many of these eyes. A
transmission electron microscopy image of the precipitate structure in a peak aged Al-Mg-
Si alloy with a typical β′′ microstructure is shown in subfigure a) of Figure 2.4. Subfigure
b) shows a HAADF-STEM image of the cross-section of one of the β′′ precipitates, where
the ”eyes” are clearly visible.

The β′′ can not be represented in the KMC simulations by only FCC lattice sites. The
sand coloured Si atoms in Figure 2.3 and the 4 green Mg atoms forming a square can be
represented by their FCC positions even when they are slightly displaced since the KMC
does not use their exact positions for calculating activation energies. The Mg atom in the
centre of the 4 Si atoms can be represented by adding an octahedral lattice site to each
FCC unit cell. The octahedral site is in the centre of the FCC unit cell.

2.2 Rejection-free Kinetic Monte Carlo
This section will introduce the rejection-free kinetic Monte Carlo (KMC) algorithm, which
was originally introduced by Bortz et al. as the n-fold way [11]. Some of the figures
and some explanations for the governing equations are from the introduction of the KMC
algorithm given in my specialisation project [8]. The KMC algorithm is a very versatile
algorithm as the only requirement is that there must be a way obtain a set of possible
transitions, with corresponding transition rates, for every state of the system. KMC has
been used to study surface kinetics and catalysts, see review article [12], precipitation and
diffusion in metal alloys, for example Fe systems [13, 14] and Al alloys [5, 7, 15, 16], and
biological processes such as protein folding [17] and crystallisation [18]. The use in this
work will be to study precipitation in the Al-Mg-Si system on an atomic scale by having
a single vacancy in a FCC lattice where one of the nearest neighbours of the vacancy will
jump to the vacant lattice site.

8

2.2 Rejection-free Kinetic Monte Carlo

Reaction coordinate

E
ne

rg
y

Ej

Ei

Figure 2.5: Illustration of the energy landscape for the reaction going from an initial state, state i,
to an adjacent state, state j. The system may spend a long time in state i before escaping, especially
when the temperature of the system is low, KMC is efficient for such problems since it calculates the
escape time instead of simulating all the failed attempts at transitioning into an adjacent state.

The main idea behind the KMC algorithm is that instead of waiting for the system to
change state, it instead calculates the escape time from the current state and evolves the
system into a neighbouring state in a single iteration, see Figure 2.5. This is very beneficial
for systems where the escape time is large, which is the case for most systems when the
temperature of the system is low. To be able to simulate a system with KMC each state of
the system must have a set of possible transitions, which can either be calculated during
runtime or be predefined, into adjacent states, and a way to obtain the transition rate for
each of these. Which transition that is chosen each time is random, but they are chosen in
such a way that on average each transition is chosen proportional to their transition rate.

For a system in state i the transition rate for transitioning into the adjacent state j is
given by

Γij = ν exp

(
−
Eact
ij

kBT

)
, (2.1)

where ν is an attempt frequency, kB is the Boltzmann constant, T is the temperature of the
system and Eact

ij is the activation energy for the transition, often referred to as the energy
barrier for the transition. In Figure 2.6 the energy landscape for a transition between two
adjacent states is shown together with the definition of the activation energy for both the
forward and backward reaction.

To choose which of the Ne available transitions from state i that will be carried out, all
the partial sums of the transition rates need to be calculated

Ri,k =

k∑
j=1

Γij . (2.2)

Then a random number u ∈ [0, 1) is drawn from a uniform distribution to determine which

9

Chapter 2. Theory

Reaction coordinate

E
ne

rg
y

E

act

ij Eact
ji

Ej

Ei

saddleE

Figure 2.6: Illustration of the energy landscape for the system going from state i to state j. The
activation energy for the transition from state i to state j is given by Eactij , and the reverse reaction
has activation energy Eactji .

event to carry out. The chosen event, event k, is the one that fulfills

Ri,k−1 ≤ uRi,Ne < Ri,k. (2.3)

For a graphical representation of the selection process see Figure 2.7. This process ensures
that any event can happen at any iteration, no matter how unlikely it is, but on average each
event will be chosen proportional to their transition rate.

Figure 2.7: Illustration of the selection process of which event to carry out in a KMC step, here
illustrated with 12 different possible events. The width of each box is proportional to the rate, Γij,
of the event, the sums of rates are given by Ri,k and u ∈ [0, 1) is a random number from a uniform
distribution. The subscript i have been left out in the Figure. The event that will be carried out is the
one that uR12 points to. The figure is a reprint from my specialisation project [8].

For each iteration the time is increased by ∆t, which represents the time the system
spent in state i before escaping to one of the adjacent states [19]. The escape time can be
calculated as

∆t =
1

C
∑Ne

j=1 Γij
=

1

CRi,Ne

, (2.4)

where C is dimensionless constant that scales the time of the system. The original algo-
rithm by Bortz et al. included a factor of ln (1/u′) where u′ is a new random number

10

2.2 Rejection-free Kinetic Monte Carlo

from the same distribution as u was drawn from. This factor is often omitted since the
expectation value of the factor is 1, some examples of this are [1, 5, 13, 19]. Omitting
this factor will make the escape time less stochastic, which will affect the time evolution
between single jumps, but it will not affect the average time evolution.

2.2.1 Requirements for good KMC moves
Both regular Monte Carlo and kinetic Monte Carlo simulations need to fulfill the criteria
of being Markovian, ergodic and obey detailed balance to correctly sample the configura-
tional space of the system. The introduction to these requirements is based on the book by
Newman and Barkema [19].

For the process of generating a new state j from the current state i to be Markovian, the
transition probability, P (i→ j), should only depend on information about the current state
and the new state. The history of how the system got to state i should therefore not impact
the chosen escape path, which is a common assumption for systems that spend a sufficient
amount of time in a state before transitioning into the next state. Another criterion is that
the transition probabilities should be time independent and the sum of all the transition
probabilities from state i should be equal to unity. The transition probabilities from state i
can in KMC simulations be calculated as

P (i→ j) =
Γij
Ri,Ne

. (2.5)

As long as the transition rates fulfil the requirements of time independence and only use
information about the current and possible new states, the transition probabilities will also
fulfil the same requirements and the requirement of summing up to unity.

The criterion of being ergodic states that the system must be able to reach every state of
the system from any starting state in finite time. This ensures that the whole configuration
space of the system can be explored if the simulation is left running long enough. In a
KMC simulation most of the transition rates from a state will be zero since normally only
a small number of adjacent states can be transitioned to. This is not a problem since the
requirement does not include any restrictions on the number of transitions needed to go
from one state to the other. The requirement is therefore fulfilled if there always exist a
chain of transitions that can bring the system from the current state to any other state in
the configuration space.

The criterion of detailed balance, together with the requirement of being ergodic and
Markovian, ensures that the configuration space is sampled correctly. Detailed balance
can be written as

piP (i→ j) = pjP (j → i), (2.6)

which means that the probability of being in state i, pi, and transitioning to state j is the
same as the probability of being in state j and transitioning to state i.

For a regular MC simulation the correct probability of observing the system in state i
when the system is in equilibrium is proportional to the Boltzmann weight of state i. This
weight is given by

pi =
exp (−Ei/kBT)

Z
, (2.7)

11

Chapter 2. Theory

whereZ is the partition function of the system. By rearranging equation (2.6) and inserting
equation (2.7) the criterion of detailed balance for MC becomes

P (j → i)

P (i→ j)
=
pi
pj

= exp

(
Ej − Ei
kBT

)
. (2.8)

By combining (2.5) and (2.1) and inspecting Figure 2.6 it can be shown that for the
KMC algorithm the ratio of the transition probabilities are

P (j → i)

P (i→ j)
=

Γji/Rj,Ne

Γij/Ri,Ne

=
Ri,Ne

Rj,Ne

exp

(
∆Eact

ij −∆Eact
ji

kBT

)
=
Ri,Ne

Rj,Ne

exp

(
Ej − Ei
kBT

)
.

(2.9)
Which is a factor Ri,Ne

/Rj,Ne
away from being the ratio of the Boltzmann weights as it

would be for detailed balance for regular MC. It has proven difficult to find a proof in the
literature of why this factor appears and if pi = Ri,Ne

exp (−Ei/kBT)/Z is the correct
probability of observing the system in state i. To get an explanation an email exchange
with Professor Normand Mousseau, the leader of the research team behind the off-lattice
KMC implementation called kinetic activation relaxation technique (k-ART) [20, 21], was
initiated. According to Mousseau the extra factor Ri,Ne

in pi comes from the fact that
KMC moves between energy basins that can contain several points of the configuration
space. The sum of the transition rates, Ri,Ne

, corresponds to the entropic weight of the
basin, which is the proper weight to account for the local ensemble of points. Detailed
balance is therefore fulfilled for the KMC algorithm and pi = Ri,Ne exp (−Ei/kBT)/Z
should be interpreted as the probability of observing the system in one of the points in the
basin which point i is part of.

This extra factor in the detailed balance requirement reflects that for getting the kinetics
correct it is not only important that the energy difference between states are correct, but
also the energy of the top of the barrier need to be correct, Esaddle in Figure 2.6. The
energy difference between states can be correct even if the value for Esaddle is incorrect if
both activation energies are too low or high by the same amount. This affects the transition
rates and can lead to an incorrect time evolution, even though it would fulfil the detailed
balance criterion for regular MC simulations.

2.2.2 Comparison to other methods
This subsection will compare KMC to other well-known numerical methods, both gener-
ally and for the purpose of studying precipitation in aluminium alloys. The methods it will
be compared to is regular Monte Carlo (MC), Molecular Dynamics (MD) and an off-lattice
KMC implementation known as kinetic activation relaxation technique (k-ART).

Monte Carlo simulations are used to sample the equilibrium distribution of the config-
urational space of a system. An iteration of a Monte Carlo simulation starts with drawing
a random number to generate a trial move, which is often non-local. For the purpose of
studying precipitation the trial move would normally be to swap two random atoms in the
lattice. To determine if the move should be accepted or rejected a new random number
u ∈ [0, 1) is drawn from a uniform distribution and compared to an acceptance criterion,
A, if u < A the move is accepted. There are many different methods for calculating the
acceptance criterion, and this will affect the efficiency of the method. One of the most

12

2.2 Rejection-free Kinetic Monte Carlo

commonly used methods is the Metropolis-Hastings acceptance rule where A, for a move
from state i to state j, is given by [19]

A(i→ j) =

{
exp(−(Ej − Ei)/kBT) if (Ej − Ei) > 0

1 otherwise
. (2.10)

If the move is rejected the original state is recounted in the sampling.
Regular MC simulations can be considered as a set of disordered non-local events and

can therefore only give thermodynamic information about the system and no kinetics. If
the goal is only to study thermodynamic quantities at equilibrium, regular MC is usually
computationally more efficient than KMC since it allows non-local moves and only com-
putes the energy of one trial configuration instead of calculating the transition rate for each
possible transition. If the temperature of the system is low, the acceptance ratio will also
become low and the KMC method can be more efficient for these cases.

For studying precipitation, MC is useful for finding ground state structures of a system
through simulated annealing [22]. This method starts with a high temperature, such that
almost any move is accepted, and then decreases the temperature until almost only moves
where the energy decreases is accepted. MC is also often used for creating phase diagrams,
for example in [23]. It is not possible to study how the clusters in the material evolve and
eventually turn into precipitates with MC, since there is no kinetics.

Molecular dynamics evolves the system in time by numerically integrating Newton’s
equations of motion. This means that all the particles in the system can move by a small
amount each timestep. To successfully integrate the equations of motion, each timestep
must be very small, typically on the order of 1 fs [24]. Due to the high computational cost
only short time scales are reachable, usually on the order of some µs [25], but purpose-
built supercomputers have been able to reach timescales of 1 ms [26]. Compared to KMC
that only calculates the escape time from the current state, MD will simulate all the failed
attempts in Figure 2.5, which uses a lot of computation time. MD is not suited for direct
atomistic simulations of the precipitation process in most alloys since the reachable time
scale is low. It is however useful for studying diffusion and other important aspects of
precipitation, one example is a study of the strengthening effect of precipitates in Al-Cu
alloys [27].

A new algorithm, based on the KMC algorithm, called the kinetic Activation Relax-
ation Technique (k-ART) have been developed by a group led by Normand Mousseau [20].
One of the main differences is that the k-ART algorithm is an off-lattice model, while the
regular KMC model used in this work is an on-lattice model where each atom must reside
at a lattice site. The advantage of an off-lattice model is that it is more realistic and can
include deformations and long-range elastic interactions. Since there is no fixed lattice, it
is not possible to use a fixed set of possible transitions. To solve this, k-ART uses ART
nouveau, see the detailed description of the algorithm in [20], to find the possible transi-
tions. The corresponding energies are calculated using empirical or ab initio potentials.
The possible transitions with corresponding rates are stored in a catalogue together with a
topological classification of the local environment. This makes it possible to reuse them
if the simulation encounter a topologically equivalent local environment. An advantage of
searching for possible transitions during the simulation is that it removes the possibility of
introducing a bias through having a fixed set of possible transitions.

13

Chapter 2. Theory

The similarity between regular KMC and k-ART is that they both calculate the rate for
all possible transitions, chooses an event to carry out and increase the time the same way.
The advantages of the off-lattice model do however come with significantly increased com-
putational cost due to the event search, topological classification and rate calculations. It
will therefore take a lot more computational time and resources to reach the same timescale
with the off-lattice model as with the on-lattice model.

From this short introduction and comparison to other numerical methods it is evident
that all of them are very useful for their own purposes. For studying equilibrium proper-
ties MC is often the best choice and MD is useful for getting accurate kinetics for short
timescales. For studying the kinetics of precipitation in aluminium alloys only the KMC
on-lattice and off-lattice, k-ART, models are suited for the job. The on-lattice model has
superior computational speed and can reach longer time scales, while the off-lattice model
includes a more realistic description since it includes deformations, long-range interactions
and creates the set of possible events at runtime.

2.2.3 KMC for atomistic simulations of precipitation in Al-Mg-Si al-
loys

The use of KMC in this thesis is to study the early stages of precipitation in Al-Mg-Si
alloys at an atomic scale. This subsection will go through the details of how the KMC
algorithm is used for simulating precipitation of alloys, with Al-Mg-Si as an example
system. The simulations are performed in the canonical ensemble, also known as the NVT
ensemble, which means that the number of atoms, the volume of the simulation cell and
the temperature of the system are constant.

The simulation system consists of a FCC lattice where every lattice site except one
is occupied by an Al, Mg or Si atom. This FCC lattice restriction does not allow β′′ to
be formed. The reason for only allowing FCC sites is that the simulations will start from
SSSS in FCC, and it is therefore important that the behaviour of the KMC simulations for
the FCC lattice works well, before additional sites are added. Adding octahedral sites to
allow β′′ to form is a natural next step after this thesis work. For each iteration of the
KMC simulation on the FCC lattice, the set of possible events is that one of the 12 nearest
neighbours of the vacancy can jump to the vacant site. This set of events ensures that any
atom can move from its current position to any other position in the lattice through a series
of jumps to the vacant lattice site. It is possible to reach all possible configurations of the
lattice if given enough time since any atom can occupy any site, the method is therefore
ergodic. For the process to be a Markov process, the transition rates, and therefore also
the calculation of the activation energies, must be time independent and only depend on
the current state and the considered new state, in addition to following the KMC algorithm
for choosing which event to carry out. The transition rates, see equation (2.1), also depend
on the jump attempt frequency, which is assumed to be constant but can have a different
value for different atom types. KMC was shown to fulfil detailed balance for the general
case in subsection 2.2.1, given that the activation energies are correct.

In alloys the vacancy concentration will vary with temperature and the total number
of vacancies in the real system will scale with system size. In the simulations there is
only one vacancy, but this can be compensated for by dividing the escape time by the

14

2.3 Existing expression for activation energies in Al-Mg-Si alloys

total number of vacancies the system would have in reality. This is equal to setting C =
NCV in equation (2.4), where N is the number of atoms in the system and CV is the
vacancy concentration. To estimate the vacancy concentration at different temperatures it
is assumed that divacancies can be neglected and the concentration of monovacancies can
be written as an Arrhenius term [28]

CV(T) = exp

(
− GF

V

kBT

)
, (2.11)

where GF
V is the Gibbs free energy of formation for monovacancies. The free energy can

be calculated from [28]
GF

V(T) = HF
V − TSF

V, (2.12)

where HF
V is the enthalpy of formation and SF

V is the entropy of formation. Both the
enthalpy and entropy of formation are assumed to be temperature independent.

2.3 Existing expression for activation energies in Al-Mg-
Si alloys

In my specialisation project [8] the method for calculating the activation energies was
from an article by Liang et al. [1]. An introduction to this method has been included in
this work, since the new method will be benchmarked against Liang et al. It will also
be used to illustrate some new features of the program. This introduction is based on the
introduction given in the specialisation project [8] and on the article by Liang et al. [1].

The expression for the activation energy for an atom jumping from site i to site j ,
Eact
ij , is in [1] given by

Eact
ij = Ed

Xi−E
f
V−

(∑
k∈NNj

εXkV +
∑

k∈NNi

εXkXi

)
+

(∑
k∈NNi

εXkV +
∑

k∈NNj

εXkXi

)
,

(2.13)
where Ed

Xi
is the theoretical diffusion activation energy for the atom type at site i, which

is denoted Xi and referred to as the occupation of site i, and Ef
V is the formation energy

of the vacancy in pure aluminium. The subscript V is used to indicate the vacancy, NNi is
the set of lattice sites that are nearest neighbours for site i and the ε are interaction energies.
The value for all of the variables in equation (2.13), as well as the jump attempt frequency
for each atom type, is given in Table 2.11. All interaction energies with aluminium have
been set to zero.

The first two terms in equation (2.13) represents the activation energy for a jump in
pure aluminium. The first pair of sums effectively count the number of bonds between the
atom at site i and its neighbours and the vacancy and its neighbours before the jump. For
the second set of sums the vacancy and the atom have switched places and represents the
number of bonds after the jump. The two pair of sums will adjust the activation energy

1The sign of the interaction energies, ε, have been switched compared to the tabulated values in [1] since
there seems to be a misprint in the original article. With the original signs no clustering happens, while the
article clearly shows clustering in the snapshots of the system.

15

Chapter 2. Theory

Table 2.1: The value for all the variables in equation (2.13) taken from the article by Liang et al.
[1].

Variable Value
νAl 1.66 · 1013 s−1

νMg 1.86 · 1013 s−1

νSi 1.57 · 1013 s−1

Ed
Al 1.29 eV

Ed
Mg 1.27 eV

Ed
Si 1.15 eV

Ef
V 0.63 eV

εMg−V −0.015 eV
εSi−V −0.025 eV
εMg−Si −0.04 eV
εMg−Mg 0.04 eV
εSi−Si 0.03 eV

based on the nearest neighbours for both site i and j. In Figure 3.1 in subsection 3.2 the
sites included in the sum over NNi are numbered 0-10 and the sum over NNj includes
sites 7-10 and 15-21 in the figure.

16

Chapter 3
Cluster expansion

This chapter will give a general introduction to cluster expansions and show how it have
been adapted to calculate activation energies for KMC simulations. How to create and ex-
pand the training set, as well as fitting of the model to the training set will also be presented
in detail. Cluster expansions are used to create an expansion for the value of a property of a
crystalline material based on the state of set of sites. This method has become a very valu-
able tool for numerical simulations, especially for computing thermodynamic quantities
for alloys [29]. One of the most common uses is to create a link between DFT calculations
and the computation of the total energy of a system when performing Monte Carlo sim-
ulations [30]. There are numerous examples of using CE together with MC simulations
on different systems listed in [29, 30], one of the uses has been to study precipitation in
Al-Mg-Si alloys [22, 31]. There are fewer examples of using CE for kinetic Monte Carlo
than for regular Monte Carlo, but some of the uses have been diffusion in LixCoOx [32],
Al-Zn alloys [16], Fe-Cr alloys [14], Ag [33], zirconia [34] and catalysts [35].

3.1 General cluster expansion
This introduction to the concept of cluster expansions are based on the article by Mueller
et al. [36] and the work of Sanchez et al. [37, 38]. Cluster expansions are used to create
an expansion for the value of a property of a crystalline material based on the state of set
of sites. The single site state variable will in this work be the type of atom occupying the
site, but other variables such as spin, used in Ising models, can also be used. There are
usually a very large number of different configurations of the site variables and it would not
be possible to calculate all of these using computationally intensive methods such as DFT.
This is one of the main advantages of cluster expansions, they create an expression that can
calculate the chosen property for any configuration of the site variables after being fitted
to a training set, computed by for example DFT. Another advantage of cluster expansions
is that they can be truncated to increase computational speed at the trade-off of reducing
the accuracy.

It is important to note that a cluster in a cluster expansion is a set of lattice sites, and

17

Chapter 3. Cluster expansion

has nothing to do with clusters forming in aluminium alloys. A cluster can consist of one
or more sites and can have different shapes. To form a complete basis, a set of single site
basis functions are needed. Basis function number b for site j is denoted by Θb,j . To
compute the value of the property of the crystalline material, F , the following expression
is used

F (~s) =
∑
~b

V~b

∏
j

Θbj ,j(sj). (3.1)

Here sj is the value of the site variable for site j, ~s is a vector of all the site variables and~b
contains which basis function to use for each site. The effective cluster interactions (ECI)
are denoted by V~b and the sum is over all possible~b. Basis function number 0 can be set to
be constant, and in this case it is set to 1. This means that to represent a single site cluster
all but one element of ~b will be nonzero, for a pair cluster two elements will be nonzero
and so on. When using Θ0,j = 1 the product over j in equation (3.1) only needs to be
taken over elements that have nonzero value for bj . The basis function for a cluster can
then be written as

Φ~b(~s) =
∏

j|bj !=0

Θbj ,j(sj). (3.2)

All symmetrically equivalent cluster functions should have the same ECI. The set of
all symmetrically equivalent ~b can be denoted by α. By adopting the notation of α and
using equation (3.2), the main equation for the cluster expansion, equation (3.1), becomes

F (~s) =
∑
α

Vα
∑
~b∈α

Φ~b(~s). (3.3)

When using cluster expansions it is common to truncate the expression to increase the
computational speed at the cost of precision. Truncation lowers the number of ECIs, which
is an advantage when fitting the model as the size of the training set is usually limited.
One way to truncate the expression is to assume that there is a finite interaction range and
remove any clusters larger than a set size [38]. It is also common to assume that the ECI
for clusters decrease rapidly as the number of sites included in each cluster increases [29],
therefore only clusters that have fewer sites than a set threshold are included.

The main challenges when creating a cluster expansion are often related to the creation
of the training set, finding which structures to expand the training set with to get the best
accuracy increase per calculation and how to fit the model parameters. A more thorough
introduction to each of these challenges, as well as the proposed solutions, will be covered
in separate sections later in this chapter.

3.2 Adapting cluster expansion for use in KMC
One of the main goals of this thesis is to develop a systematic and easily expandable
expression for the activation energies associated with an atom jumping to a vacant position
in the FCC lattice for use in KMC simulations. The expression should be able to be
fitted to a training set calculated by DFT to get physically accurate activation energies.
This section will show the details of how the general cluster expansion method have been

18

3.2 Adapting cluster expansion for use in KMC

adapted for the purpose of calculating these activation energies. The reason for needing
a way to go from a training set of some selected structures to a general expression is
that the number of possible local environments can become very high, and DFT has a
high computational cost. If only considering the nearest neighbours of site i, atom 0-10
in Figure 3.1, and only considering single site clusters, there are 2 groups of single site
clusters that each has 4 clusters, 1 that has 2 clusters and 1 that only have 1 cluster. For
the group with only 1 cluster there are 3 different configurations, for a group with two
clusters there are 6 different configurations and for the groups with 4 clusters there are
15 different configurations. The number of configurations do not take into account the
order of the atoms since this information is not included in single site clusters. With 3
different atom types that can jump, the number of different local environments becomes
3 · 3 · 6 · 152 = 12150. If all the sites in Figure 3.1 is included, and still only considering
single site clusters, the number of configurations become 3 · 32 · 66 · 153 ≈ 4.3 · 109.
Adding pairs or even higher terms will dramatically increase the number of configurations
from this already large number of configurations.

The site variable for the cluster expansion is the occupation, X , which is the type of
atom occupying the site. For the single site basis functions Kronecker delta functions
have been chosen as these make it easy to see what each ECI corresponds to. The cluster
functions are the product of these delta functions. The activation energy for the same local
environment will be different depending on which type of atom that jumps, Xi. Due to
this fact all ECIs have been chosen to depend on Xi to include this effect, even when only
single site clusters are included. This results in effectively 3 separate cluster expansions
for the Al-Mg-Si system, one for each atom type that jumps. Symmetry will be limited
to rotational symmetry around the jump direction, which increases the number of ECIs
compared to a regular CE for the total energy of a system.

The energy barriers are assumed to only depend on the local environment and the atom
type that jumps, therefore only lattice sites up to a certain cutoff will be included. The
selection of which sites to include have been done symmetrically around the centre of the
jump to include the same sites for both the forward and backward jump. This is done to
avoid introducing a bias for either of the jump directions. In this work only the nearest
and next-nearest neighbours of lattice site i and j have been included due to limitations of
the training set. The included sites are illustrated in Figure 3.1, where all the sites have a
colour based on which group of single site clusters they belong to.

The cluster expansion based expression for the activation energy for an atom at site i
to jump to the vacancy at the neighbouring site j is given by

Eactij = V Xi +
∑
α

∑
~q

V ~q,Xiα

∑
~k∈Sαij

n~q(X~k). (3.4)

The first term, V Xi , is an effective cluster interaction (ECI) that only depends on the occu-
pation, the atom type Xi occupying site i. This constant is equal to the activation energy
for a jump in pure aluminium. The remaining ECIs, denoted by V ~q,Xiα , are for single- and
multi-site clusters and depend on the occupation of site i, Xi, a decoration vector, ~q and
α. Each α contains a set of symmetrically equivalent clusters, the same as in the introduc-
tion to general cluster expansions, but here they need to be symmetrically equivalent with
respect to the jump direction. The decoration vector is a vector with the same length as the

19

Chapter 3. Cluster expansion

Figure 3.1: An illustration of the lattice sites included in the cluster expansion for the activation
energies. The green atom is jumping along the 110 direction of the lattice to the vacant position
indicated by the small red sphere. All neighbours of the same colour belong to the same group of
symmetrically equivalent single site clusters. The legend at the left specifies which 110 layer the
atoms of a given colour is part of, and whether it is nearest neighbour (1nn) or next nearest (2nn) to
the closest one of the green atom and the vacancy. The numbering of the atoms is the order that the
atom types are listed in the filenames of the output files from the DFT calculations. Figure have been
provided by Research Scientist Inga G. Ringdalen at SINTEF Industry, Department of Materials and
Nanotechnology.

number of sites in each of the clusters contained in α, and each element of ~q is either Mg
or Si for the Al-Mg-Si system. The reason for not including Al is explained in the next
paragraph. Sαij contains vectors of the lattice site indices for all clusters in α for a jump
from site i to site j, and ~k is a vector of site indices for one of these clusters. The ECI is
multiplied by the sum over all ~k in Sαij , where the cluster function n~q(X~k) is given by

n~q(X~k) =

{
1 for ~q = X~k
0 otherwise

. (3.5)

Each element of the decoration vector does not need to take on the value of all the
different atom types in the system for all information to be included, one atom type will
always be redundant [29]. For the Al-Mg-Si system the elements of ~q have been chosen
to only have the value Mg or Si. If the atom type does not match either Mg or Si it must
be Al since there is only one vacancy in the system and the lattice site of the vacancy is
not included in any cluster. If the system would have included more than one vacancy it

20

3.2 Adapting cluster expansion for use in KMC

would be necessary for the elements of ~q to take on three different values instead of two,
since each site now has four possible occupations. With the exclusion of Al from ~q, the
number of ECIs for a single site cluster in the Al-Mg-Si system will be 6 since Xi has
three different values and ~q is length one and therefore have two different values. For a
pair cluster there will be 12 ECIs, which reduces to 9 if the two sites that form the pair
have the same distance and offset.

For a jump from lattice site i to j all clusters that are rotationally symmetric around
the jump direction, ~rij , are symmetrically equivalent clusters. For a single site cluster,
a first order term, the criterion for a cluster to be part of a given α need to contain two
independent coordinates since one coordinate is left free due to rotational symmetry. For
a single site cluster, lattice site k, α is represented in the program by the distance from
site i to site k, Dik = | ~rik| and the projection of this distance onto the jump direction
Ok = (~rik · ~rij)/| ~rij |, which is reffered to as offset. A two-site cluster, also referred to as
a pair cluster, consisting of site k and l is represented by the distance and offset for each
of the two atoms as well as the distance between them, Dkl = | ~rkl|. See figure 3.2 for a
graphical illustration of the stored quantities for a pair descriptor.

Dkl

Dik Dil

Ok Ol
i

j

k l

Figure 3.2: Illustration of how a pair term is represented in the implementation of the cluster ex-
pansion for activation energies for a jump from lattice site i to site j. The distances, Dik, Dil and
Dkl, are measured from centre to centre and the offsets, Ok and Ol, are measured along the jump
direction and have positive values to the right of lattice site i. The jump direction is the 110 direction.

For clusters of size two and larger, there may exist several decoration vectors ~q that
are symmetrically equivalent to each other. In principle it is possible to leave these as
separate ECIs and the fitting procedure should be able to find out that they should have the
same value, but this will need a very large training set to happen in practice. It is therefore
beneficial to reduce all symmetrically equivalent decorations for a given cluster to a single
ECI. For a pair cluster, the two sites can be interchanged only if both the distance and offset
are equal for both sites. A pair cluster of this kind will only have one ECI for ~q = [Mg,Si]
and ~q = [Si,Mg], and equation (3.5) will give 1 if X~k matches either one of them.

21

Chapter 3. Cluster expansion

3.3 Creating the training set
The first step in the workflow for creating, training and improving the cluster expansion
shown in Figure 3.3, is to calculate the activation energy for a set of structures using den-
sity functional theory (DFT). The activation energies should be calculated by an accurate
method, such as DFT, to ensure that the cluster expansion is trained on physically cor-
rect activation energies. All the calculations for the training set have been performed by
Research Scientist Inga G. Ringdalen at SINTEF Industry, Department of Materials and
Nanotechnology. This section will therefore only give a brief overview of the utilised
methods.

	DFT	calculations,	using

NEB	or	DIMER

Create	training	set,

create_sum_file.py

Fit	ECIs,

fit_barriers.py

Run	KMC	simulation,

run_KMC.py

Predict	standard

deviation	for	pool	of

structures,

uncertain_barriers.py

sums.txt

fit.json

Review	output	and

propose	new	structures

Check	for	negative	or

very	low	activation

energies,	propose	new

structures

Modified

POSCAR	files

Pool	of	randomly

generated	POSCAR

structures

Create	training	set	(all

energies	set	to	NaN),

create_sum_file.py	
sums_pool.txt

Figure 3.3: Illustration of the workflow for creating, training and improving the cluster expansion
for activation energies for KMC simulations. Filenames for the Python scripts that are used for each
step as well as the output filenames are included in italic.

Computing the activation energies consist of two main tasks, the first one is to calcu-
late the energy of the initial state and the other one is to find and calculate the energy of

22

3.4 Determination of effective cluster interactions

the highest energy point of the minimum energy path (MEP), Esaddle in Figure 2.6. For
computing the energies DFT have been used, which calculates properties such as the en-
ergy of the system from the electron density. The field of DFT computations is large, but
an introduction to the theory with comparisons to other methods, such as Hartree Fock, is
given in the book by Leach [24]. DFT is often referred to as ab initio calculations, which,
in this context, means from first principles. Despite being called ab initio, the exchange
and correlation energy is approximated, and it is therefore important to choose a functional
that is well suited for the system that is being studied [39].

To identify the saddle point for a given transition, two different methods have been
used: The Nudged Elastic Band (NEB) method [40] and the DIMER method [41]. Both
the DIMER and NEB methods only use the first derivative of the energy and are well suited
methods to pair with plane wave formulated DFT, which is well suited for calculations on
crystalline structures due to the periodicity of the system.

The NEB method finds the minimum energy path (MEP) between an initial and a final
state using only first derivatives of the energy [40]. For finding the MEP, NEB creates a
series of intermediate images and the force acting on each image is minimised. To ensure
that the final path is continuous each adjacent image of the system is coupled with a spring
term, which is the origin of the elastic band part of the name. To find the highest point of
the MEP it is necessary to have enough images to get good resolution near this point. The
advantage of NEB is that it does not require prior knowledge about the MEP and the result
shows the energy curve for the whole transition.

The DIMER method is a method that only use first derivatives to find saddle points
on high dimensional potential surfaces and was introduced by Henkelman and Jónsson in
[41]. Instead of creating a series of images and finding the full MEP like NEB calculations
does, the DIMER method only use two images of the system, which is the origin of the
name of the method. These two images must be given a starting point and start direction.
The method can be started from the initial state of the system or from an initial guess of
the saddle point, which can speed up the process significantly if the guess is close. The
two images are moved uphill towards the top of the barrier and the dimer is rotated on the
way to calculate the lowest curvature mode for each location of the dimer, similar to the
force minimisation for each image in the NEB method.

For the purpose of finding the activation energies only the energy of the initial configu-
ration and the top of the barrier, and also the final configuration if the barrier for the reverse
reaction is wanted, are of interest. By running a NEB calculation for a jump in pure Al for
the different atom types, data about the position and direction of the top of the barrier can
be collected. This data can be used as the starting point for the DIMER method, which can
give a significant speedup compared to starting in the initial state, especially for structures
that have few solute neighbours, since the energy landscape will be similar to the jump in
pure Al.

3.4 Determination of effective cluster interactions
To determine the effective cluster interactions in equation (3.4) a Bayesian approach is
used to be able to introduce physical insight into the fitting process. The introduction to
this method is based on the article by Mueller and Ceder [36].

23

Chapter 3. Cluster expansion

Bayes theorem, adapted for the fitting of ECIs, can be written as

P (~V |X , ~y) =
P (~y|~V ,X)P (~V |X)

P (~y|X)
, (3.6)

where ~V is a vector, of length NV, that contains the value for all the ECIs in equation
(3.4). The training set is represented by ~y and X . The activation energies are stored in ~y,
which has length equal to number of structures in training set, Ns, and the matrix X , size
Ns × NV, contains the value of the rightmost sum in equation (3.4) for all ECIs for each
of the structures. The denominator in equation (3.6) can be considered a constant since
it is the probability of the activation energies found from DFT given the structures in the
training set. The left factor in the numerator is the probability of the training set activation
energies given a set of ECIs and the training set structures, which is what is maximised in
a regular least squares regression. The right term is the probability of the ECIs given the
training set structures, this is also known as the prior distribution and is where the physical
insight of the system is introduced in the fitting process. The goal of the fitting procedure
is to find the combination of ECIs, ~Voptimal, that is most likely given the training set, which
is equivalent to maximising P (~V |X , ~y).

Maximising P (~V |X , ~y) is the same as minimising − lnP (~V |X , ~y) since the natural
logarithm is a monotonically increasing function. This can be written as

~Voptimal = min
~V

[− ln (P (~y|~V ,X))− ln (P (~V |X))]. (3.7)

It is assumed that each activation energy have a normal distributed error with mean 0 and
variance σ2, which gives that

P (~y|~V ,X) ∝
∏
k

exp

(
− (yk − ~Xk · ~V)2

2σ2
k

)
, (3.8)

where ~Xk is row k of X . By inserting equation (3.8) into equation (3.7) the first term of
equation (3.7) becomes ∑

k

(yk − ~Xk~V)2

2σ2
k

. (3.9)

The variance for each structure in the training set is unknown, but it can either be set to a
constant value to weight all structures equally or it can be set individually to weight some
structures more than others. This inverse variance can be stored for each structure in a
diagonal weighting matrix, W , of size Ns ×Ns.

The prior distribution is set by the user and should be able to include information about
the value of each of the different ECIs as well as the value of one ECI relative to another
ECI. This can be achieved by setting the prior to be such that − lnP (~V |X) = ~V TQ~V /2
where Q is a matrix of sizeNV×NV. This way of representing the prior is chosen because
it fulfils all the wanted requirements and gives a practical expression for the solution for
~Voptimal, see Appendix in [36] for a full derivation. If Q is diagonal the fitting procedure
becomes the same as ridge regression, L2 regularisation or Tikhonov regularisation [36].

24

3.4 Determination of effective cluster interactions

Due to this similarity the matrix Q will be referred to as the regularisation matrix. The
maximum likelihood estimate for ~V can then be calculated as [36]

~Voptimal = (X TWX + Q)−1X TW ~y. (3.10)

The choice of prior distribution will affect the outcome of the fitting procedure, which
can improve the fitting, but it can also make it worse if the introduced bias is not consistent
with the true value of the ECIs. In the priors used for fitting the ECIs for expression (3.4)
only diagonal elements of Q are used and all ECIs with the same α are treated equally.
It can be difficult to estimate how to vary the elements of Q to get a good result, but the
user often has some insight of what factors that could play a role. One of the insights for
this system is that clusters with more sites should have a lower value than clusters with
fewer sites. Another insight is that the further away the lattice sites are from either the
middle of the jump or the initial site of the jump, the lesser impact they should have on
the activation energy. To incorporate these insights without knowing the exact way the
value should depend on these two factors, it is useful to use hyperparameters and perform
a hyperparameter optimisation. Hyperparameters are parameters for the prior and are not
connected to the system being analysed. The prior for the two aforementioned insights can
be written as

Qαα = aDb
α + dγeα + C, (3.11)

where Qαα is a diagonal element of Q, γ is the number of sites included in each cluster
in α, Dα = 1/γ

∑
kDik is the average distance for the γ lattice sites in each cluster in α

and a, b, C, d and e are hyperparameters.
When performing the hyperparameter optimisation, and the fitting in general, it is im-

portant that the resulting set of ECIs are as robust as possible for predicting the activation
energy for structures that are outside of the training set. This is the same as avoiding over-
fitting of the model, which is a relevant problem for underdetermined systems. To avoid
overfitting the model, the hyperparameters of the prior are optimised with regard to getting
the lowest cross-validation score, which is an estimate of how accurate the model will be
for structures outside of the training set. The cross-validation score can be computed by
using leave-one-out cross-validation (LOOCV) or leave-multiple-out cross-validation for
lower computational cost.

Cross-validation is performed by partitioning the total training set into Np equally
sized partitions, if Np = Ns the method is equal to LOOCV. One partition is set aside and
not included in the calculation of ~Voptimal, this is the validation partition. After calculating
the ECIs, the RMSE for the structures in the validation set is computed and stored. The
next step is to pick one of the other partitions as validation partition and perform the fit to
the other partitions and calculate the error for the validation set. This is repeated Np times
such that each structure is used for validation a single time, and the cross-validation (CV)
score is the average of all the errors that where computed for the validation structures. If
there are fewer partitions than structures, leave multiple out cross-validation (LMOCV),
the CV score will vary slightly depending on which structures are grouped together in the
partitions. If LOOCV is used, the score will be the same each time it is computed for the
same prior with the same hyperparameters since there is only 1 structure in each partition.
The implementation of the fitting procedure gives the user the option to choose the number
of partitions to use for calculation of the cross-validation score. After calculating the CV

25

Chapter 3. Cluster expansion

score from doing multiple fits with partitioned data the final fit is performed using all the
structures in the training set.

An alternative to using cross-validation to find the optimal fit is to plot the L-curve
for the fitting and identify the corner of the curve [42]. An L-curve is a log-log plot of
the solution norm, ||~V ||2, against the residual norm, ||X ~V − ~y||2. A typical shape for
the L-curve is shown in Figure 3.4. When performing the fitting both the residual norm
and the solution norm should be kept small. If the fit minimises the solution norm it can
end up with an over regularised solution which represents the data set poorly, and if the
residual norm is minimised the solution can become under-regularised which gives a large
solution norm and poor performance on data outside the training set. The regularisation
corresponding to the corner of the L-curve is supposed to be the optimal trade-off between
a small residual norm and a small solution norm [42].

Optimal point

Under-regularised

Over-regularised

Residual norm

So
lu

ti
on

 n
or

m

Figure 3.4: Illustration of the typical form of the L-curve plotted in log-log scale [42]. The solution
norm is calculated as ||~V ||2 and the residual norm as ||X ~V − ~y||2. The amount of regularisation
applied, which is applied through Q in equation (3.10), increases from the start of the curve at upper
left corner to the end of the curve. The amount of regularisation that gives the best trade-off between
small residual norm and small solution norm is located at the corner of the L-curve.

3.5 Expanding the training set efficiently
DFT calculations are computationally expensive and it is therefore important to identify
structures that will make the greatest impact on the fitting of the cluster expansion. How to
identify which structures to expand the training set with is one of the challenges of creating
a cluster expansion and there exist many different approaches.

One method used in this work is to create a large set of possible structures that are not
calculated by DFT and try to estimate the uncertainty in the prediction of the activation
energies. The first step in this method is to create Ntrain different training sets from the
complete training set that is available. Each of these Ntrain sets are made by drawing a
random structure from the complete training set and repeating this Ns times, each time
drawing from the complete set. The next step is to perform the fitting procedure on each

26

3.5 Expanding the training set efficiently

of these Ntrain training sets by using the optimal hyperparameters stored in the output file
of the original fitting procedure. Each model is used to predict the activation energy for
each of the possible structures. Then the standard deviation for the Ntrain predictions is
calculated for each structure. The assumption behind this method is that a structure where
the activation energy is very sensitive to changes in the training set composition is poorly
predicted by the model trained on the complete training set. These structures are therefore
good candidates for expanding the training set.

Another approach is to calculate the activation energy for possible structures using
the model trained on the complete training set and inspecting if any of the values are
abnormally high or low. Structures that are predicted to have negative activation energies
are good candidates for expanding the training set since the prediction must either be
wrong or the state is not stable since it is not in a local minima, either way it contains
valuable information about the system. From testing it seems like the structures that are
predicted to have negative barriers are also predicted to have amongst the highest standard
deviations using the other method.

It is important that the activation energy for the forward and backward reaction match
the energy difference between the two states, see Figure 2.6 for an illustration of the en-
ergies. A third method to expand the training set that focuses on uncovering pairs of
activation energies that match poorly is to run a KMC simulation and log the difference in
energy for each iteration using an observer and write the lattice configuration to file every
iteration. Then the energy difference between the states can be calculated using a regular
cluster expansion for the whole lattice and compare it to the logged energy difference.
This requires that the user have access to a regular cluster expansion for the whole lattice
that is trained for the same system as the one being studied. This is also possible to do on
structures generated manually or randomly as long as pairs of initial and final structures
are produced.

27

Chapter 3. Cluster expansion

28

Chapter 4
Implementation

During the work of this master thesis a lot of the time that was not spent on the physics
of the problem have gone into implementing new features, making the code more user
friendly and make it easier to maintain and expand. This have been done through extensive
use of version control, restructuring the code to become more modular, creating good
documentation and implementing automated tests. The first section of this chapter will go
through all the smaller changes to the existing code and new observers. The second section
will go through how the most important new feature, the cluster expansion based way of
calculating the activation energies, have been implemented to achieve high computational
speed and low memory usage. The last section will go through the newly created Python
interface, which makes the program easier to use without sacrificing performance. For
user manuals for running the code, as well as documentation of the Python interface, see
Appendix B. The chosen standard format for representing lattices in the project are the
POSCAR format from the Vienna Ab initio Simulation Package (VASP). Support for other
formats can easily be added by making a small Python script.

4.1 Implementation of the KMC algorithm
The goal for the implementation of the KMC algorithm have been to create a computa-
tionally fast code, to be able to reach long timescales, as well as making the code modular
to make it easy to implement new features and configure the code to the user’s needs. For
computational speed the algorithm has been implemented in C. The original codebase was
not modular in design, but during my specialisation project the logging was made modular
by introducing the concept of observers [8]. In Figure 4.1 a flowchart of the implemented
KMC algorithm is shown.

4.1.1 Introduction to observers
The goal of running a KMC simulation is usually to study the time evolution of one or more
quantities or record certain events. A simulation often consists of billions of iterations and

29

Chapter 4. Implementation

Initialise	system
Call	all	observevers	to

register	initial
configuration

Calculate	 	for	all
possible	events

Draw	random	number
and	select	event

Call	observers
meeting	their
observation
criterion

Call	all	observers	to
register	final
configuration

Carry	out	event	and
increase	 	by	

Figure 4.1: Program flow in the implementation of KMC. Observers are functions used for logging
different kinds of data during the KMC simulation, which makes it easy to setup a logging scheme
that fits the user’s needs. The figure is a reprint from my specialisation project [8].

it is therefore important that the user can easily setup what to log and when to log it. As
an example, if the user wants to log a double precision number and decides to store it
every iteration for a simulation with 1 billion iterations the disk space used will be 8 GB.
The chosen solution for getting a modular logging scheme is called observers and was
thoroughly introduced in the specialisation project [8], but a short introduction will be
given here. All observers are based on the observer struct, see listing 4.1, which ensures
that the KMC code has a consistent way of interacting with all the different observers.
Through setting the variables u s e t i m e , f a c t o r and f i x e d o f f s e t it is possible to
adjust how often the observer should be called to log. If u s e t i m e is positive the logging
is based on the time in the KMC simulation, otherwise it is based on the iteration count.
If the user wants to log with fixed interval f a c t o r is set to unity and f i x e d o f f s e t
is set to the wanted quantity. For logarithmically spaced logging f i x e d o f f s e t is set
to 1 and f a c t o r is set to larger than 1. More details on setting the logging parameters as
well as an overview of the available observers is given in Appendix B.2.

1 s t r u c t o b s e r v e r {
2 /∗ When o b s e r v e f u n c t i o n s h o u l d be c a l l e d n e x t . ∗ /
3 u i n t 6 4 t n e x t o b s ;
4 /∗ Coun te r t h a t keeps t r a c k o f how many t i m e s t h e
5 o b s e r v e f u n c t i o n has been c a l l e d . S t a r t s a t 0 . ∗ /
6 u i n t 6 4 t c a l l e d ;
7

8 /∗ A l l v a r i a b l e s below a r e k e p t c o n s t a n t a f t e r
9 i n i t i a l i s a t i o n . ∗ /

30

4.1 Implementation of the KMC algorithm

10 /∗ Fixed i n t e g e r added t o n e x t o b s each t ime o b s e r v e
11 i s c a l l e d ∗ /
12 u i n t 6 4 t f i x e d o f f s e t ;
13 /∗ F a c t o r used f o r u p d a t i n g n e x t o b s l o g a r i t h m i c a l l y ,
14 m u l t i p l i e s n e x t obs wi th f a c t o r and ro un ds down
15 t o an i n t e g e r . ∗ /
16 do ub l e f a c t o r ;
17 /∗ Bool t o d e t e r m i n e i f o b s e r v e r s h o u l d use t ime or
18 jumps t o d e t e r m i n e when t o c a l l o b s e r v e .
19 0 c o r r e s p o n d s t o i t e r a t i o n number ,
20 p o s i t i v e i n t e g e r c o r r e s p o n d s t o t ime . ∗ /
21 i n t u s e t i m e ;
22 /∗ F u n c t i o n p o i n t e r t o t h e o b s e r v e f u n c t i o n . ∗ /
23 vo id (∗ o b s e r v e) (KMC ∗kmc , o b s e r v e r ∗ s e l f) ;
24 /∗ P o i n t e r t o a s t r u c t which c o n t a i n a l l d a t a t h e
25 o b s e r v e r need . ∗ /
26 vo id ∗ d a t a ;
27 /∗ F r e e s a l l d a t a f o r t h e o b s e r v e r . ∗ /
28 vo id (∗ f r e e) (o b s e r v e r ∗ s e l f) ;
29 } ;

Listing 4.1: Declaration of the observer struct.

4.1.2 Total energy logging
An observer for logging of the total energy of the system relative to the start configuration
have been implemented. The only information available for the KMC code are the acti-
vation energies, the change in total energy must therefore be calculated as the difference
between the activation energy for the forward and backward reaction. For an iteration
where the system goes from state i to state j, or an atom jump from site i to site j, the
change in total energy is

∆Eij = Eact
ij − Eact

ji . (4.1)

To be able to keep track of the total energy it must be updated every single iteration, which
means that the value for the logging variables in the observer struct must be set accord-
ingly. The energy observer therefore have a struct stored in the d a t a field of the observer
where a separate version of u s e t i m e , f a c t o r , f i x e d o f f s e t and n e x t o b s is
stored to be able to set when the total energy should be written to file. Each row in the
output file contains the iteration number and the value for the total energy.

In addition to making it easy to visualise the time evolution of the total energy of the
system the energy observer also opens up for checking if the energy difference calculated
from the barriers are consistent with other more precise methods. The first step is to
enable both the total energy observer and the POSCAR observer, which writes the current
lattice configuration to file with POSCAR format, and set them to observe at the same
time. The total energy of the lattice configurations given in the POSCAR files can then
be calculated by for example a cluster expansion for the total energy of a lattice. If the
logging is performed every iteration it is possible to find particularly bad activation energy
pairs, otherwise it will just give an indication of the overall error.

31

Chapter 4. Implementation

4.1.3 Update on logging of clustering rates
During the specialisation project [8] an observer for logging condensation and evaporation
rates was implemented. The condensation rate, denoted as βn, is the rate at which a cluster
of size n receives a single solute atom and becomes size n + 1. Evaporation rate, αn, is
the rate for a cluster of size n to lose a single solute and become size n−1. These rates are
calculated as the inverse of the time between the last size changing event of a cluster and
the current size changing event, and can be used as input for cluster dynamics (CD). For
an introduction to the concept of CD see Appendix A. In the current implementation of
this observer clusters only consist of solutes and only solutes that are NNs are considered
to be in the same cluster. This observer has been updated to track the composition of each
cluster and include it in the output file as well as log which atom type that joined or left the
cluster. From this data it is possible to study the composition of clusters and the effect that
cluster composition has on the clustering rates for the different solute types in the system.

4.1.4 Minor updates
A bug was found and corrected in the code for logging the diffusivity of the different atom
types. The diffusivity for atom type X is given by [24]

DX = lim
t→∞

〈|~rX(t)− ~rX(0)|2〉
2tD

, (4.2)

where the average is taken over all atoms of the same atom type, ~r(0) is the initial position
of the atom, ~r(t) is the position after time t and D is the dimensionality of the system,
which in this case is D = 3. The bug was related to the averaging in equation (4.2), the
code checked atom type at site i of the lattice but calculated the diffusion distance for
the atom that originally started at site i instead of the one that is currently at site i. This
effectively led to that the average that should be over only atoms of type X included a
random set of atoms instead.

Other minor improvements have been made to the KMC code, mainly to accommodate
the newly implemented cluster expansion based way of calculating the activation energies.
The neighbourlist have been updated to include any neighbour up to a user defined radius
instead of only including nearest neighbours. Code for setting up an empty lattice and add
sites manually have been implemented to make it easier to setup lattices from POSCAR
files. Since these functions already are available adding support for initialising lattices
from other file formats, such as XYZ, can be done by just writing a small Python script.
The main KMC struct has also gotten two new function pointers, one for the rate calcu-
lation and one for the activation energy calculation. Since the rate and energy calculators
might need some data, the KMC struct has also gotten a data pointer that can be used by
these two functions. The pointer to the activation energy calculator is needed for the to-
tal energy observer and the rate calculator pointer makes it very easy to change between
different calculators when setting up the simulation.

32

4.2 Implementation of cluster expansion adapted for use in KMC

4.2 Implementation of cluster expansion adapted for use
in KMC

The implementation of the cluster expansion based way of calculating the activation en-
ergies, introduced in subsection 3.2, have to be fast to calculate and it should be easy to
adjust which sites and terms to include in the expansion. To be able to make the evaluation
as fast as possible it is important that the program is able to know which lattice sites that
makes up each cluster for each i and j without having to do any searches or calculations. In
this subsection it will be shown how this is achieved through having a sorted neighbourlist,
an orientation matrix and site groups.

Each site in the lattice has an array of indices to neighbouring sites, which in the
previous version of the program only contained nearest neighbours. In the new imple-
mentation the neighbourlist includes all sites that are within a user-defined distance. The
neighbourlist for each site is then sorted first on distance between the the neighbour and
the central atom, then on relative x, y and z coordinate. All the sorting is performed with
a tolerance since the coordinates are floats. This ensures that neighbour number k in the
neighbourlist of a site always have the same relative position to the original site for all sites
in the lattice. The program needs a way to know which neighbours it can jump to, which
in the current version is the nearest neighbours sites. This is done by setting an integer
nnn that indicates that the first nnn neighbours are nearest neighbours and can be jumped
to, which is why the neighbourlist is sorted on distance first.

The expression given in equation (3.4) use groups of clusters that are symmetrically
equivalent relative to the jump direction. This means that which neighbours in the neigh-
bourlist that is in each cluster will be different for each of the nnn jump directions. This
problem is solved by making an o r i e n t a t i o n m a t r i x that maps the neighbourlist
in such a way that the remapped neighbourlist is always sorted the same way relative to
the jump direction. To accomplish this, the o r i e n t a t i o n m a t r i x must have nnn
rows and n columns, where n is the number of neighbours in the neighbourlist. Since all
sites have the same order for their neighbourlist, the program only need one instance of
the o r i e n t a t i o n m a t r i x , which saves a lot of memory usage compared to each site
having to store nnn versions of the neighbourlist.

Row k of the o r i e n t a t i o n m a t r i x contains the mapping of the neighbourlist for
a jump to neighbour number k in the neighbourlist. The first step in setting up row k is to
calculate the vector from the initial site, site i, to neighbour number k in the neighbourlist
of site i. Then a rotation matrix R, which rotates the system such that the vector for the
jump direction is mapped to the x-axis, is made using Rodrigues rotation formula, see [43]
for details on the derivation of the formula. The Rodrigues rotation formula effectively
rotates the system π radians around a vector in the middle between the x-axis and the jump
direction. This rotation is not sufficient to ensure that the system is oriented the same
way each time since the rotation around the x-axis will not be the same after the initial
mapping. Another rotation matrix which rotates the system around the x-axis such that
atom number 5 and 6 in Figure 3.1 are in the xz-plane is therefore applied. The next step
is to calculate and sort the neighbours according to distance and relative coordinates in the
rotated system. If a site is neighbour number l in the rotated neighbourlist, for row k, and
neighbour numberm in the original neighbourlist, then o r i e n t a t i o n m a t r i x [k][l] =

33

Chapter 4. Implementation

m.
For each group of clusters, α, a struct called s i t e g r o u p , shown in listing 4.2, is

allocated and initialised. The i n d e x a r r a y stores the index to all the elements of the
neighbourlist that are part of each cluster in the group. The number of terms in the sum
for a given site group is n s i t e s / o r d e r . To describe the criteria for a cluster to be
part of the s i t e g r o u p a struct called d e s c r i p t o r , see listing 4.3, is used. This
struct contains a t y p e field to indicate the type of descriptor, a free function, a void
pointer, d a t a , to store the data needed for the descriptor and a g e t s t r function which
returns a string with all the information about the descriptor. The struct also contains a
check function which checks if a given combination of neighbours fulfils the descriptor.
The remaining fields of the s i t e g r o u p struct, n c o e f f s , c o e f f s , atomcombs
and n e q u i v a l e n t , are used to store the effective cluster interactions together with
all the symmetrically equivalent decoration vectors and the occupation of site i. Row k of
atomcombs corresponds to the ECI c o e f f s [k] and have length n e q u i v a l e n t [k]·o r d e r
+1. The first column contains the atomic number forXi and the remaining columns stores
the atomic numbers for all the equivalent decoration vectors.

1 /∗ C o n t a i n s a l l d a t a f o r a group of s i t e s d e f i n e d by t h e d e s c r i p t o r . ∗ /
2 t y p e d e f s t r u c t s i t e g r o u p {
3 /∗ S t o r e s an a r r a y o f i n d i c e s f o r a l l c l u s t e r s i n c l u d e d i n t h i s group .

The i n d i c e s a r e t h e p o s i t i o n o f t h e l a t t i c e s i t e s i n t h e n e i g h b o u r
l i s t o f s i t e i .

4 The l i s t i s s t o r e d as a 1D a r r a y , so i f t h e o r d e r i s f o r example 2 , t h e n
e l e m e n t 0 and 1 i s t h e f i r s t c l u s t e r , 2 and 3 i s t h e second c l u s t e r

and so on . ∗ /
5 i n t ∗ i n d e x a r r a y ;
6 /∗ Number o f e l e m e n t s i n i n d e x a r r a y . ∗ /
7 i n t n s i t e s ;
8 /∗ Number o f e l e m e n t s a l l o c a t e d f o r i n d e x a r r a y . ∗ /
9 i n t s i z e ;

10 /∗ Order o f t h e term , t h e number o f l a t t i c e s i t e s i n each c l u s t e r . ∗ /
11 i n t o r d e r ;
12 /∗ P o i n t e r t o a d e s c r i p t o r t h a t d e s c r i b e s t h e c o n d i t i o n s t o be a p a r t o f

t h i s s i t e g r o u p . ∗ /
13 d e s c r i p t o r ∗ d e s c r i p t o r ;
14

15 /∗ Number o f s t o r e d c o e f f i c i e n t s f o r t h i s s i t e g r o u p . ∗ /
16 i n t n c o e f f s ;
17 /∗ S t o r e s c o e f f i c i e n t s . ∗ /
18 do ub l e ∗ c o e f f s ;
19 /∗ S t o r e s a to mi c numbers f o r use wi th c o e f f i c i e n t s .
20 I t i s a 2D a r r r a y wi th n c o e f f s rows and v a r y i n g number o f columns ,
21 number o f columns f o r row k i s 1+ n e q u i v a l e n t [k]∗ o r d e r .
22 The f i r s t column i s t h e atom t y p e t h a t jumps , t h e r e m a i n i n g a r e a l l
23 e q u i v a l e n t atom c o m b i n a t i o n s f o r t h e n e i g h b o u r s . ∗ /
24 i n t ∗∗atomcombs ;
25 i n t ∗ n e q u i v a l e n t ;
26 } s i t e g r o u p ;

Listing 4.2: Declaration of the site group struct.

1 /∗ G e n e r a l d e s c r i p t o r s t r u c t t o have a c o n s i s t e n t way of f r e e i n g and
c h e c k i n g d i f f e r e n t d e s c r i p t o r s . ∗ /

2 t y p e d e f s t r u c t d e s c r i p t o r d e s c r i p t o r ;

34

4.2 Implementation of cluster expansion adapted for use in KMC

3 s t r u c t d e s c r i p t o r {
4 /∗ S t r i n g d e s c r i b i n g t h e t y p e o f d e s c r i p t o r ∗ /
5 c h a r ∗ t y p e ;
6 /∗ Free a l l d a t a f o r d e s c r i p t o r and t h e d e s c r i p t o r i t s e l f . ∗ /
7 vo id (∗ f r e e) (d e s c r i p t o r ∗ s e l f) ;
8 /∗ Number o f n e i g h b o u r s t h a t need t o be i n t h e n e i g h b o u r s l i s t s e n t t o

t h e check f u n c t i o n . ∗ /
9 i n t n n e i g h b o u r s ;

10 /∗ Check i f n e i g h b o u r s f u l f i l l s t h e r e q u i r e m e n t s o f t h e d e s c r i p t o r ∗ /
11 i n t (∗ check) (c o n s t d e s c r i p t o r ∗ s e l f , c o n s t L a t t i c e ∗ l a t t i c e , i n t i , i n t

j , i n t ∗ n e i g h b o u r s) ;
12 /∗ F u n c t i o n t o g e t s t r i n g wi th i n f o a b o u t d e s c r i p t o r . ∗ /
13 c h a r ∗ (∗ g e t s t r) (c o n s t d e s c r i p t o r ∗ s e l f) ;
14 /∗ P o i n t e r t o a l l d a t a needed by d e s c r i p t o r . ∗ /
15 vo id ∗ d a t a ;
16 } ;

Listing 4.3: Declaration of the descriptor struct.

To store all the data for calculating the activation energies during a KMC simulation
the E a c t d a t a struct is used, see listing 4.4. This stores a list of s i t e g r o u p point-
ers, an instance of the o r i e n t a t i o n m a t r i x , the number of different elements in the
lattice and the jump attempt frequency for each element. When calculating the sum for a
s i t e g r o u p for a jump from site i to site j, which is neighbour number k for site i, the
program finds the site index corresponding to element l in the i n d e x a r r a y in the fol-
lowing way s i . n e i g h b o u r s [o r i e n t a t i o n m a t r i x [k] [i n d e x a r r a y [l]]] ,
where s i is a pointer to site struct for site i. This implementation with the presented structs
fulfil the goal of being easy to configure, fast to evaluate and is very memory efficient.

1 t y p e d e f s t r u c t E a c t d a t a {
2 /∗ Array c o n t a i n i n g a l l s i t e g r o u p s f o r t h e p o t e n t i a l . ∗ /
3 s i t e g r o u p ∗∗ s i t e g r o u p s ;
4 /∗ Number o f s i t e g r o u p s . ∗ /
5 i n t n g r o u p s ;
6 /∗ A l l o c a t e d s i z e o f s i t e g r o u p s . ∗ /
7 i n t s i z e ;
8 /∗ Number o f d i f f e r e n t e l e m e n t s i n t h e l a t t i c e , e x c l u d i n g t h e vacancy .

∗ /
9 i n t n e lem ;

10 /∗ Array of l e n g t h n e lem t h a t c o n t a i n s t h e jump a t t e m p t f r e q u e n c y f o r
t h e d i f f e r e n t e l e m e n t s . Same o r d e r a s l a t t i c e −>Z . ∗ /

11 do ub l e ∗ j u m p f r e q ;
12 /∗ An a r r a y wi th s i z e n nn X n n e i g h b o u r s .
13 The f i r s t d imens ion i s t h e number o f jump p o s s i b i l i t i e s f o r an atom ,

t h e second d imens ion i s t h e number o f e l e m e n t s i n t h e n e i g h b o u r l i s t
o f t h e atom .

14 The a r r a y c o n t a i n s i n d i c e s t o e l e m e n t s i n t h e n e i g h b o u r l i s t .
15 I f an atom jumps t o s i t e number j i n t h e o r i g i n a l s i t e s n e i g h b o u r l i s t ,

row j o f t h i s a r r a y s h o u l d be used when a c c e s s i n g e l e m e n t s .
16 n e i g h b o u r s [o r i e n t a t i o n m a t r i x [j] [o t h e r n e i g h b o u r i n d e x]] . ∗ /
17 o r i e n t a t i o n m a t r i x ∗ o r i e n t a t i o n m a t r i x ;
18 } E a c t d a t a ;

Listing 4.4: Declaration of the Eact data struct.

35

Chapter 4. Implementation

4.3 Python interface
During the work of this master thesis the KMC code and the newly implemented cluster
expansion based code have been interfaced to Python to make it easier to setup simulations
and access C functions from Python, see Appendix B.5 for documentation of the interface.
Without the interface, the code had to be recompiled if any change to the simulation setup
was needed, except for a few settings that was available from the command line. The KMC
simulations still operate entirely in C after the setup has finished and the simulation has
been launched from Python, there is therefore no noticeable impact on the performance of
the code.

Another important reason for interfacing the C code to Python was to avoid having any
duplicates of code related to the cluster expansion. It is crucial that the sums in equation
(3.4) are calculated the same way when creating training sets as during the KMC simula-
tions. It is therefore better to make an interface and use the same code for both instead of
having one C version and one Python version. Another benefit is that it makes setting up
the wanted combination of site groups when creating the training set easier as it is done
from Python. After the combination of site groups have been set during the creation of the
training set, the setup of site groups and ECIs are done automatically from the information
in the output file of the fitting procedure. The setup procedure also checks that the correct
number of sites was added to each site group.

The KMC simulations can now be started from a POSCAR file instead of a random
configuration by specifying the filename as a command line option. This can for example
be used to restart a simulation from the last logged POSCAR if a simulation was aborted or
if the user decides to run the simulation longer after the original simulation have finished.
It has also proven to be very useful to check if a given lattice configuration, for example
one with large clusters that are known to be stable from other studies, is stable in the KMC
simulation at different temperatures. This would not be possible to check without this
option since there might be situations where a random start configuration does not lead to
any clustering due to small clusters being unstable while a large cluster is stable.

The interface has been created using Simplified Wrapper and Interface Generator
(SWIG)1, which allows structures to be extended to become class like objects. Most of
the key structs in the program have been extended, for a detailed overview of the interface
see appendix subsection B.5. One challenge of interfacing C code to Python with SWIG
is memory handling. Memory allocated in C can be exposed to Python, which is very
powerful since it allows the memory to be modified in place from Python, but can give
problems related to ownership and deallocation of the object. This can be solved by refer-
ence counting, i. e. incrementing and decrementing counters manually that indicate if the
memory is in use by another thread. To minimise the risk of memory related problems the
interface uses get functions, that return a copy of the object, and set functions instead of
exposing the memory allocated by C.

1See swig.org for more information

36

Chapter 5
Results and discussion

This chapter will first present and discuss the DFT results, then different fitting strategies
will be compared and a final fit to use for the rest of the chapter will be chosen. The
next part of the chapter will do an in-depth inspection of both the cluster expansion based
way of calculating the activation energies and the method by Liang et al. [1]. The two
methods will be benchmarked against DFT calculations, stress tested on a pool of different
structures and the energy difference between states, calculated from pairs of activation
energies, will be compared to energy differences calculated from a CE of the total lattice.
Runtime for the different methods will also be included. Simulation results, including
monomer concentration, average cluster size, diffusivities and total energy evolution, will
be shown and discussed for two different runs at different temperatures for both methods.
The new features of the updated clustering rates observer will be shown for an average
over many realisations of the system using the activation energy expression from Liang et
al. The last section will go through error sources and discuss the overall results.

For all KMC simulations the following settings, which are mostly the same as the ones
used in [1], are used, except for cases where other values are stated explicitly. The simu-
lation system consists of 25× 25× 25 face centred cubic (FCC) unit cells, corresponding
to 62 500 lattice sites. Periodic boundary conditions are used since the goal is to study
precipitation processes in bulk material. Lattice spacing is set to a = 4.05 Å, this value
does not affect the physics of the system since the calculation of the transition rates do not
depend on this parameter, but it will affect diffusivities and other quantities that use the
spacing or the volume of the system. All lattice sites except one, which is left vacant, are
occupied by an Al, Mg or Si atom. All presented runs use the default alloy of the program
that contains 0.67 at.% of Mg and 0.77 at.% of Si, which is close in composition to the
lean 6060 alloy without any trace elements. This is the same composition as used in the
article by Liang et al. [1]. Since the simulations are only of the early stages of precipitation
the default temperature is room temperature T = 293.15 K, which corresponds to natural
ageing.

The vacancy concentration of the system is not related to the actual vacancy con-
centration of the simulation system, since the simulation always contain just one va-

37

Chapter 5. Results and discussion

cancy, but only used to scale the time evolution as explained in subsection 2.2.3. In the
presented results for the cluster expansion based transition rates the vacancy concentra-
tion have been calculated using equations (2.11) and (2.12). The value for the enthalpy
of formation for a vacancy is set to HF

V = 0.66 eV and the corresponding entropy is
SF
V = 1.6kB [28]. These values are equilibrium values and give a vacancy concentration

of CV(T = 293.15 K) = 2.23 · 10−11 at room temperature. For all results for the method
by Liang et al. the vacancy concentration have been set to the one used in the article [1],
which is CV(T = 293.15 K) = 1.41 · 10−4. For calculating the vacancy concentration
for other temperatures for the runs with the Liang method it have been assumed that the
Gibbs free energy G is temperature independent since they have not stated in the article
which values for HF

V and SF
V they used to get this value1. The vacancy concentration will

be discussed in subsection 5.6.2
The jump attempt frequencies have been set to the values given in Table 2.1, which are

the same as used in the article by Liang et al. [1] and are originally from [44]. Correspond-
ing jump frequencies were calculated in [45] for Al self-diffusion and Si diffusion in Al
using transition state theory and first principles molecular dynamics. They found νAl to be
between 6 · 1012 s−1 and 3.8 · 1013 s−1 and νSi was found to be between 4 · 1012 s−1 and
5 · 1012 s−1. The values seem to be in the correct order of magnitude and the transition
rates given by equation (2.1) only scale linearly with the jump attempt frequency.

5.1 DFT calculations of activation energies
The activation energies for the training set have been computed using DFT together with
the NEB or DIMER method for locating the saddle point. For performing the DFT cal-
culations the Vienna Ab initio Simulation Package (VASP) have been used [46, 47]. All
the calculations presented in this section have been performed within the SumAl project
by research scientist Inga Gudem Ringdalen at SINTEF Industry, Department of Materials
and Nanotechnology.

The DFT calculations provided by Inga have been performed at the PBE-GGA level
[48] with a plane wave energy cut-off of 400 eV. Convergence criterion for the total energy
was set to 1 · 10−5 eV, force convergence was set to 0.01 eV during ionic relaxation and
a Gamma sampling of 0.08 k-point per Å was used to model the Brillouin zone. The
simulation cell for the DFT calculations consisted of 3×3×3 FCC unit cells, with periodic
boundary conditions and lattice parameter a = 4.0396 Å. All the calculated structures only
have one vacant site out of the 108 lattice sites, to be consistent with the situation in the
KMC simulations. The atom positions have been relaxed when calculating the energy, but
the volume of the simulation cell have been kept constant. For all the calculated structures
all atoms in the simulation cell that are not shown in Figure 3.1 have been set to Al. This
unfortunately means that the set does not contain any situations where the vacancy is close
to a larger cluster, which will affect the jumps in the DFT calculations.

For most of the calculations the DIMER method has been used for finding the saddle
point as this method is faster than NEB due to calculating fewer images of the system. This
method have proved itself to be good for structures with few solute neighbours where the

1They have given the valuesHF
V = 0.67 eV and SF

V = 0.7kB, but these values inserted into equation (2.11)
and (2.12) does not give CV(T = 293.15 K) = 1.41 · 10−4, which is the value they state was used.

38

5.1 DFT calculations of activation energies

energy landscape is similar to the one for a jump in pure Al, which means that the initial
guess based on NEB simulation in pure Al is close to the real position of the saddle point.
The DIMER method struggled for some of the structures with many solute neighbours
where the energy landscape is more complex. NEB have therefore been used on structures
that have many solute neighbours and on structures where DIMER was attempted but
failed.

The calculated activation energy for the structures in the training set are shown in
Figure 5.1 and the maximum, minimum, average and pure Al activation energy are listed
in Table 5.1. The black horizontal lines in the figure show the activation energy for a jump
in pure aluminium. Many of the calculations have both the forward and backwards barrier
to ensure that the information about the energy difference of the two states are available
to the CE. It is relatively cheap to obtain the backwards barrier when the forward barrier
is known since only the final state needs to be calculated when Esaddle, defined in Figure
2.6, is already known.

Figure 5.1: The calculated activation energy for jumping from one lattice site to a vacant nearest
neighbour site. The type of atom that jumps, Xi, is indicated by the colour of the marker and the
black horizontal line indicates the activation energy for a jump in pure Al. The different calculations
are distributed along the horizontal axis to improve viewing clarity.

The quantity referred to as activation energy, energy barrier or Eact in this thesis is
often referred to as the migration barrier or ∆Hm in the literature. Migration barriers
for Mg and Si in pure Al as well as Al self-diffusion have been calculated by Mantina et
al. using DFT with the local density approximation [44]. The migration barriers for Al
self-diffusion and Si in pure Al have also been studied by Løvvik et al. where they used
first principles molecular dynamics and transition state theory at two different levels of
precision [45]. All of these values are listed in Table 5.1 together with the values found by

39

Chapter 5. Results and discussion

DFT in this work. The barriers found in this thesis are slightly higher for Mg and Al and
slightly lower for Si compared to the values by Mantina et al. For the results of Løvvik et
al. the range for both Si and Al include the results found in this work.

Table 5.1: Maximum, minimum and average of the activation energies calculated by DFT presented
in Figure 5.1, all quantities are given in eV. The activation energy for a jump in pure Al found in this
thesis, indicated by the black lines in Figure 5.1, are listed in the pure Al column. Literature values
by Løvvik et al. [45] and by Mantina et al. [44] for jumps in pure Al are listed in the two rightmost
columns.

Jump type Min Max Average Pure Al Løvvik et al. Mantina et al.
Mg 0.093 0.715 0.449 0.470 - 0.42
Al 0.127 0.892 0.575 0.594 0.49-0.62 0.58
Si 0.296 0.818 0.497 0.518 0.42-0.55 0.55

In Table 5.2 the number of structures in the training set for each jump type is listed
together with how many of the numbered sites in Figure 3.1 that are solutes. The Table
shows that most of the structures only have 1 or 2 solute neighbours. This is suboptimal
for the purpose of training the CE since only a few of the rightmost sums in equation
(3.4) will be nonzero for each structure. The reason for having many structures with few
solutes is that these were calculated early in the project when there was free capacity at
the utilised supercomputers and the CE was not ready to test fitting yet. The structures
with more solute neighbours have taken more work since the potential energy landscape
deviates more from the jump in pure Al than the structures with few solutes. Some of
the structures have therefore been calculated with NEB instead of DIMER. Getting more
calculations with more solutes have also been difficult both due to calculation problems
and a lack of available computational resources2.

Table 5.2: The leftmost column in the table is the total number of solutes occupying the numbered
lattice sites in Figure 3.1, and the three remaining columns are how many structures there are in the
training set, presented in Figure 5.1, that have the given number of solutes in the structure for Mg,
Al and Si jumps.

Number of solutes Xi = Mg Xi = Al Xi = Si
0 1 1 1
1 22 24 24
2 105 104 105
3 4 4 4
4 9 8 8
5 6 4 4
6 0 2 1
7 2 2 2
8 4 4 4
9 0 0 2

2The utilised supercomputers were filled up with computations from Norwegian Institute of Public Health for
a longer period due to the current world pandemic

40

5.2 Pool of possible structures

5.2 Pool of possible structures
To better visualise the spread of the activation energies and test the limits of the different
methods, a pool of possible structures with a wide compositional span have been created.
Each structure in the pool is made by starting with Al matrix and then for each of the
numbered positions shown in Figure 3.1 a random atom type, Al, Mg or Si is assigned
to the site. To capture a wide variety of structures and try to find the outer limits of the
activation energies, the set includes many structures and the probability for each atom
type was varied. The detailed settings used for producing the pool of structures are listed
in Table 5.3. The pool includes the same amount of structures for each type of atom that
jumps, and the field # structures in the table is per jump type.

Table 5.3: Table show parameters used for generating the pool of random structures used for testing
different methods for calculating the activation energy. The # structures column is the number of
structures made for each of three atom types that can jump. Each numbered site in Figure 3.1 is set
to Mg with probability P(Mg), Si with probability P(Si) and Al with P(Al).

structures P(Mg) P(Al) P(Si)
1000 0.10 0.80 0.10
1000 0.20 0.60 0.20
1000 0.33 0.33 0.33
500 0.30 0.60 0.10
500 0.10 0.60 0.30
500 0.50 0.00 0.50
1 0.00 1.00 0.00

5.3 Fitting of expression to the training set
The training set, presented in section 5.1, have 444 nonzero columns in X , out of 822 total,
when pairs with pair distance up to 4th NN are included. All the columns corresponding
to single site clusters are nonzero, which means that there are 378 ECIs for pair clusters
that do not appear in any of the structures in the training set. All the ECIs that correspond
to an empty column in X , as well as the column itself, are removed before the fitting
procedure begins. The fitting procedure have been done by using two different priors,
and for one of the priors both the CV score method and the L-curve method have been
used to optimise the ECIs. The three different combinations of prior and optimisation
method are listed in Table 5.4, from now on they will be referred to as fit I, II and III.
The table also shows the value for the hyperparameters that gave the best fit according to
the chosen optimisation method. For fit I and II the hyperparameter was varied between
1 · 10−20 eV−2 and 5 eV−2, represented by 300 log-spaced values. For fit III the initial
fit started with a wide allowable range for each of the hyperparameters, and 5000 random
combinations were tested. The second fitting, used as the final result, was performed the
same way as the initial fit with a narrower range of hyperparameter values, centred around
the optimal values from the initial fit. The range for b and e for the final fit was the integers

41

Chapter 5. Results and discussion

from 0 to 5, for d it was 100 logarithmically spaced values from 1 · 10−18 eV−2 to 1 eV−2

and for a and C it was 50 log-spaced values from 1 · 10−20 eV−2 to 1 · 10−10 eV−2.

Table 5.4: The table shows the three different fitting methods used to fit the ECIs in equation (3.4)
to the dataset introduced in section 5.1. The method is how the fitting have determined the optimal
regularisation and the values for Qαα, which are used in equation (3.10) and are the same as the
prior, are given in eV−2. For explanation of the variables in the expression for Qαα for fit III see
equation (3.11).

Fit Qαα Method Optimal Qαα
I C LOOCV 2.05 · 10−2

II C L-curve 3.46 · 10−9

III aDb
α + dγeα + C LOOCV 1.05 · 10−19D1

α + 1.52 · 10−2γ2α + 6.55 · 10−20

5.3.1 L-curve criterion compared to CV minimisation
The L-curve for fitting the ECIs with the constant prior, fit I and II, is shown in Figure 5.2.
Fit I is shown as the blue dot and fit II is shown as a black dot and the inset plot is zoomed
in on the corner of the L. The CV optimised fit has around 7 orders of magnitude higher
regularisation than fit II, but fit I is still relatively close to the corner and hard to separate
from the black dot in the full-size plot. Since fit I has more regularisation than fit II it leads
to fit I having a slightly higher residual norm and slightly lower solution norm compared
to fit II, as can be seen from Table 5.5.

The L-curve method can be a lot faster than the CV method since the CV calculation
requires the same amount of fits as the number of partitions that the training set is split into
for each of the hyperparameter combinations. For LOOCV the number of fits performed
per hyperparameter combination is equal to the number of structures in the training set.
The L-curve only requires one fit performed on the complete training set per hyperparam-
eter combination since only the residual and solution norm needs to be calculated.

The L-curve also have some disadvantages, the most important one is the problem
of identifying which point that is the corner of the ”L”. It is possible in many cases to
determine the corner by visual inspection, but this is not a robust method for automated
fitting. If the L-curve is continuous, the criterion is that the corner is where the curvature
of the L-curve has it maximum. This can be numerically approximated for the case of
fit I and II, but for fit III where there are more than one hyperparameter and the value of
Qαα is not the same for all ECIs, it is not well defined how to approximate the curvature.
The problem of identifying the corner of a discrete L-curve in a robust way is discussed in
[49], where a two-step pruning algorithm is proposed as the best solution. This solution
has not been implemented since the CV method is already implemented, is robust and
gives similar results as the L-curve. If considerably larger training sets and/or more ECIs
are included, then it should be considered to implement this method to save time when
fitting the ECIs. It is also possible to save a lot of time by using fewer partitions for the
initial fitting when using the CV criterion, and then do a second fitting with a narrower
range for the hyperparameters with more partitions.

42

5.3 Fitting of expression to the training set

Figure 5.2: L-curve for fitting of ECIs to the training set presented in section 5.1 by setting Q = λI .
The annotations give the value for λ and the inset plot shows a better view of the corner of the plot.
The value at the corner of the curve is indicated by a black dot and corresponds to fit II, the point
found by CV optimisation, fit I, is shown as a blue dot.

5.3.2 Fitting results and comparison of fits
The resulting ECIs, for single site clusters and pairs, for the three different fits listed in
Table 5.4 are shown in Figure 5.3. The constant ECI for each jump type, V Xi , have not
been included in the Figure since they naturally have much higher values, but they are
listed in Table 5.5. All the fits have V Xi that are close to the value for jump in pure Al
found by DFT in Table 5.1, but fit II and III are closer than fit I. The table also includes the
residual norm, solution norm, LOOCV score and RMSE for the three different fits. All of
the fits have similar results with very low RMSE but fit II has slightly lower residual norm
and higher solution norm compared to fit I and III that used the LOOCV minimisation.

The ECIs for the single site clusters and pair clusters are not as easy to benchmark,
since these cannot be measured directly in the same way as V Xi . Even if a DFT calculation
is performed on a structure that only have one nonzero sum over ~k in equation (3.4), the
value of the ECI should not necessarily be the value computed from this DFT calculation.
This is because the contribution of a solute in that group of single site clusters may vary
with the configuration of the rest of the structure. This average contribution of each cluster
is what the fitting tries to optimise. The value of an ECI, for example an ECI for a single
site cluster, may also vary depending on which other terms that are included in the cluster
expansion, since these other terms will catch some of the variations that the ECI must
average over if the other terms are left out.

For fit III 5 out of the 6 largest ECIs, in absolute value, of range A in Figure 5.3 are

43

Chapter 5. Results and discussion

Figure 5.3: The value of all the ECIs for the three different fits. Range A contains the ECIs for single
site clusters, range B, C, D and E contain ECIs for pairs that have pair distance equal to 1st NN, 2nd
NN, 3rd NN and 4th NN respectively. The value for jumps in pure Al, V Xi , are not included in the
figure but are listed in Table 5.5.

for L4 1nn in Figure 3.1. In range B, pairs with pair distance equal to NN distance, the
4 largest ECIs are for pairs in the L4 1nn layer, the pairs are atom 7 and 8 and 9 and 10.
For range C, pairs with second nearest neighbour pair distance, the 6 largest ECIs are all
for pairs between atom 7 and 9 and 8 and 10 in layer L4 1nn. In range D, 3rd nearest
neighbour pair distance, 7 out of 8 are for diagonal pairs between the 4 atoms in L4 1nn,
and the last one of the 8 is for the 4 pairs between site 1-9, 2-10, 3-7 and 4-8 in Figure 3.1.
The last range for pairs with 4th nearest neighbour pair distance have three different site
groups at the top. The largest one is for Si75SiSi, which means that Xi = Si, ~q = (Si,Si)
and site group is number 75, which is the pair 15-16 in the figure. The second largest is
Al65MgMg and is for the pairs 1-10, 2-9, 3-8, 4-7, and the last one is Si67SiSi which is
for the pair 5-6.

Table 5.5: Residual norm, solution norm, LOOCV score, RMSE and the value for the three V Xi

for the three different fits defined in Table 5.4. The values for V Xi are given in eV.

Fit ||X ~V − ~y||2 ||~V ||2 LOOCV RMSE V Mg V Al V Si

I 32.6 meV 1.033 eV 10.26 meV 1.51 meV 0.467 0.592 0.514
II 29.2 meV 1.044 eV 10.79 meV 1.35 meV 0.470 0.595 0.517
III 38.2 meV 1.031 eV 9.86 meV 1.77 meV 0.469 0.594 0.516

The average absolute value of the ECIs for each section of Figure 5.3 are listed in
Table 5.6. From the table it is apparent that the average ECI is the highest for fit II which

44

5.3 Fitting of expression to the training set

Table 5.6: The average absolute value of the ECIs in the different ranges in Figure 5.3 for the
different fits from Table 5.4.

Fit 〈|A|〉 〈|B|〉 〈|C|〉 〈|D|〉 〈|E|〉
I 52.02 meV 16.62 meV 12.34 meV 8.85 meV 4.22 meV
II 52.62 meV 16.86 meV 12.81 meV 10.12 meV 4.28 meV
III 52.46 meV 15.97 meV 11.77 meV 7.99 meV 3.70 meV

was optimised with the L-plot method, which is reasonable since the other two fits have a
lower solution norm since they on average have more regularisation, see Table 5.4 and 5.5.
It is also evident that the prior of fit III succeeds in making the average for second order
terms, γα = 2, range B, C, D and E, lower than the first order terms, γα = 1. This is also
visible in Figure 5.3 where fit III have the lowest value of the three fits for the two largest
ECIs in range D. It is not as easy to see the effects of the distance term, Dα, from this table
since the ranges are only split based on order and pair distance, not the distance from site
i which is what Dα is based on. The prefactor for this term of the prior is however very
small and will affect the fitting by only a small amount compared to the term based on γα.

Another way of gaining some information about the different fits is to stress test them
on the pool of structures created in section 5.2. This test will show the distribution of the
activation energies and try to find the upper and lower limits of the activation energies.
The results of calculating the activation energies for the pool of structures with the three
different fits are presented in Table 5.7. Unfortunately, all of the fits have some negative
activation energies, which means that the predicted activation energy is either wrong or
inaccurate or the initial state of the jump is not a stable state since it is not an energy min-
imum. If one of the possible transitions have a negative or very low activation energy it
will get a very high transition rate and dominate the selection process in the KMC algo-
rithm, which can lead to the vacancy getting stuck for a long time. The very high transition
rates also lead to the time increase defined in equation (2.4) becoming very low. Since the
KMC simulations are mostly dominated by the low barriers, it is more important that the
low barriers are close to their correct value than the high barriers.

Table 5.7: Statistics from calculating the activation energies of the structures in the pool introduced
in section 5.2 with the three different fits introduced in Table 5.4. Min, max and average are given
in eV.

Fit Xi Min Max Avg # negative
Mg −0.271 1.267 0.422 85

I Al −0.275 1.280 0.506 58
Si −0.311 1.584 0.457 85

Mg −0.224 1.289 0.421 72
II Al −0.271 1.292 0.505 44

Si −0.320 1.649 0.458 77
Mg −0.264 1.266 0.418 77

III Al −0.240 1.255 0.505 39
Si −0.225 1.509 0.453 56

45

Chapter 5. Results and discussion

The cause for the negative predicted barriers might be that the training set is missing
important structures, which can lead to predicting these structures poorly since it is effec-
tively extrapolating from the knowledge available in the training set. The LOOCV score
is supposed to give an indication of how well the model fits structures outside the training
set, but this estimate should be considered as a lower bound estimate since this is predicted
from partitioning of the training set. During the project several predicted negative barriers
have been computed using DFT and have been found to be low barriers, but positive. One
example is a structure where Xi = Mg and site 7-10 in Figure 3.1 is Si, the remaining
sites were occupied by Al atoms. This structure was predicted to be −0.07 eV with an
earlier fit, when the training set only had structures with 1 and 2 solutes, and was found to
be 0.129 eV when calculated with DFT. It is possible that some of the predicted negative
barriers actually are unstable configurations and will not converge to the FCC structure if
calculated by DFT. These will be highly interesting as they might be jumps that start the
structure for β′′ or other precipitates that do not have the FCC structure. Currently these
types of events are not implemented in the code, but the plan is to include at least the octa-
hedral sites to allow β′′ to form. Out of all the negative predicted barriers found from fit III
and the structure pool, the structure with the lowest number of solutes had 10 solutes out
of the 26 numbered positions in Figure 3.1. The training set still have few structures with
many solute neighbours, which can be seen from Table 5.2. An important step towards
improving the problem with negative predictions will be to include more structures with
many solutes in the training set. A temporary solution for circumventing the problem of
low and negative activation energies, for the purpose of being able to run simulations with
the current fit, will be presented in the last subsection of this section.

5.3.3 Details of the chosen fit
For the rest of the result chapter only fit III, presented in Table 5.4, will be used. The
choice is based on the information available from Table 5.5, 5.6 and 5.7 and Figure 5.3.
Fit III have the lowest LOOCV score, the lowest solution norm and have values for V Xi
that are close to the true value in the training set given in table 5.1. The fit also have a
lower average ECI value for second order terms than the two other fits, which is consistent
with the physical insights presented in [36]. The last factor for choosing fit III is that it has
fewer negative barrier predictions than fit I and II and also have a higher minimum barrier
for Al and Si than the other two fits.

In Figure 5.4 the DFT activation energies are plotted against the activation energies cal-
culated with fit III of the cluster expansion. All the circles are close to the black line where
Eact

CE = Eact
DFT, which is expected since the RMSE listed in Table 5.5 is only 1.77 meV.

The activation energies for the pool of structures introduced in section 5.2 are shown in
Figure 5.5. From the figure it seems like there are many structures in the pool that have
predicted barriers that are outside of the range of the barriers in the training set, listed in
Table 5.1. Some of the predictions might be wrong, especially the negative values, but it
also indicates that the training set does not represent the whole range of activation energies
well.

46

5.3 Fitting of expression to the training set

Figure 5.4: Comparison between the activation energies computed by DFT, shown in Figure 5.1,
and activation energies computed by equation (3.4) with ECIs fitted to the same DFT training set
using fit III in Table 5.4. The optimal result is that all the circles lay on the straight line as this is
where Eact

CE = Eact
DFT.

Figure 5.5: The activation energy for the pool of structures, created using the parameters in Table
5.3, calculated using equation (3.4) with fit III from Table 5.4. The different calculations are dis-
tributed along the horizontal axis to improve viewing clarity and the colour of the circles indicates
the atom type that jumps. The black horizontal lines indicate the activation energy for a jump in pure
Al.

47

Chapter 5. Results and discussion

Figure 5.6: The predicted standard deviation for the pool of structures made with parameters given
in Table 5.3. The prediction is made by fitting the ECIs to 100 different training sets made by the
method described in section 3.5 with the optimal Qαα values from fit III in Table 5.4. The number
of solutes referred to in the legend is how many of the numbered sites in Figure 3.1 that are occupied
by a solute atom.

The standard deviation for the predicted activation energies shown in Figure 5.5 have
been approximated by fitting the model to 100 different training sets and calculate the
standard deviation of the predictions for each structure. The details of this procedure
are described in the second paragraph of section 3.5. The predicted standard deviations
are shown in Figure 5.6 as a histogram. From the figure it is evident that the structures
with few solutes have on average lower standard deviation than the structures with many
solutes. Predicted standard deviation will naturally be larger for structures with more
solute neighbours since more of the sums over ~k in equation (3.4) will be nonzero, and
therefore get larger variations since more coefficients are used to calculate the barriers. It
is therefore important that the further expansion of the training set focuses on structures
with many solutes. In the previous subsection it was found that the structures with negative
activation energies have at least 10 solute neighbours, which in Figure 5.6 have relatively
large standard deviation compared to the thermal energy at room temperature 25.3 meV.
This means that both the method of calculating the energies of the pool of structures and
identifying the most negative and positive activation energies and the method of predicting
the standard deviation for finding new structures to add to the training set proposes some of
the same structures. It is therefore a good idea to expand the training set with the structures
that both methods predict to be good additions to the set.

48

5.3 Fitting of expression to the training set

5.3.4 Shifting of activation energies
The cluster expansion trained on the final training set presented in section 5.1 results in
some negative and very low activation energies as shown in Figure 5.5 and Table 5.7. Both
the low and the negative activation energies will lead to very large transition rates and
will therefore be picked by the KMC algorithm almost every iteration if available. This
can lead to the vacancy getting stuck in a loop of jumps with high transition rates, which
results in simulations where nothing interesting happens. This subsection will present a
temporary solution that will be used to shift the activation energies up until the training set
becomes more complete.

The problem of having two or more adjacent states with a very low activation energy
can happen even if all the activation energies are accurate, this is also known as flicker-
ing states [21]. Even if this trapping of the vacancy happens in the real materials, it is
still a problem for KMC simulations since all the CPU time is wasted on simulating the
same loop of events repeatedly. In the k-ART implementation of KMC they handle flick-
ering states by using an algorithm called basin-autoconstructing Mean Rate Method that
calculates the average escape time from the basin of flickering states [21]. It should be
considered to implement this method when the training set is larger and more complete,
and the cluster expansion does not give low or negative barriers as often as it does now.

For the current situation the simulations encounter very low and negative energy bar-
riers at a regular basis, especially if there are any clusters in the system. In an attempt at
getting better simulation results activation energies below a set threshold are shifted up. To
not alter the difference in energy between states, both the forward and the corresponding
backward activation energy must be shifted by the same amount. This means that when
the KMC requests the activation energy Eact

ij , the cluster expansion will need to calculate
both Eact

ij and Eact
ji to check if either of them are below a set threshold.

The shifting has been done in such a way that all activation energies below Ehigh is
shifted up such that it is betweenElow andEhigh. The added energy toEact

ij , which is only
added if Eact

ij or Eact
ji are below Ehigh, is called Eshift

ij and is calculated as

Eshift
ij = Eshift

ji = Elow −min(Eact
ij , E

act
ji) + max(a(Eact

ij + Eact
ji)/2 + b, 0), (5.1)

where Elow, a and b are parameters. Parameter a is set according to a = (Ehigh −
Elow)/(Emin − Ehigh), where Emin is the value of the lowest expected activation en-
ergy, and b = −aEhigh. For the results in this work Ehigh = 0.30 eV, Elow = 0.20 eV
and Emin = −0.30 eV. These values have been chosen based on simulations getting stuck
when Elow is set lower, Ehigh has been set to 0.10 eV higher than the lower bound to give
some variation to the shifted barriers. The final parameter, Emin, is set slightly lower than
the lowest recorded value for fit III in Table 5.7.

This solution does not conserve Ri,Ne and therefore not detailed balance given by
equation (2.9). The solution does however conserve the ratio of the Boltzmann weights
since both Eact

ij and Eact
ji are shifted up by the same amount. The runtime will increase to

almost the double, since the amount of activation energy calculations are doubled. This is
not a good long-term solution, but it is necessary at the time due to the properties of the fit
to the current training set.

49

Chapter 5. Results and discussion

5.4 Benchmarking of the method by Liang et al. against
DFT

This section will show a benchmark of the Liang method, presented in section 2.3, against
the DFT calculations presented in section 5.1. In Figure 5.7 the activation energy com-
puted by the Liang method is compared to the activation energies found by DFT. The
black line indicates where Eact

Liang = Eact
DFT, the optimal result is that all the circles lie on

this line. It is evident that the Liang method is far away from being consistent with the
barriers calculated by DFT. The method is especially far off for the lowest and highest
barriers. If a circle is to the left of the black line the Liang value is higher than the DFT
value and opposite if it is to the right of the line. Most of the activation energies for the Mg
jumps, blue circles, seem to be overestimated compared to DFT, this also seems to be the
case for Al and Si jumps, but not to the same extent. The root mean square error (RMSE)
for this method compared to the DFT calculations is 151 meV, which is high compared to
the thermal energy at room temperature kB · 293.15 K = 25.3 meV.

Figure 5.7: Comparison between the activation energies computed by DFT, shown in Figure 5.1,
and activation energies computed by equation (2.13) with values as listed in Table 2.1. The colour
of the circle indicate the atom type that jumps to the vacancy, and all the circles should lie on the
black line if the two methods give the same results.

The spread of the activation energy calculated with the Liang method for the pool of
structures is shown in Figure 5.8. From the figure it is evident that the Al jumps have
a much narrower range of possible values for the activation energy than for Mg and Si.
The DFT calculations, however, do not have a narrower range for the Al jumps than for
Mg and Si. By inspecting equation 2.13 and the values for the interaction energies in
Table 2.1 the reason is that since every interaction with Al is set to 0, only the interactions

50

5.4 Benchmarking of the method by Liang et al. against DFT

with the vacancy alters the barrier. This means that the expression predicts that solutes
surrounding an Al atom that jumps does not affect the energy landscape for the Al atom.
In cluster expansions it is normal to set the interactions with one atom type to 0 since each
site must be occupied by either Al, Mg or Si, so only two interactions are needed since the
third is the baseline. The choice of which atom type that is redundant, set to zero, should
not affect the outcome of the activation energies. With the method presented by Liang
et al. the atom type that is set as the baseline will automatically get a narrower range of
activation energies. One of the premises for setting all pair interactions that contains one
or more atoms of the redundant type to zero in a cluster expansion is that all sub-clusters
of the pair are already included in the expression [29]. The expression by Liang et al. only
includes pair interactions, and even though the expression is not a cluster expansion it is
still a plausible reason for why the choices they made give such a narrow range for Al
jumps.

Another thing to note from Figure 5.8 is that there are no negative activation energies
and there are very few low barriers. The minimum value for both Mg and Al is a lot
higher than the minimum value found by DFT in the training set, which are listed in Table
5.1. This ensures that the vacancy does not get stuck for any extended period at room
temperature or higher temperatures.

Figure 5.8: The activation energy for a pool of structures, created using the parameters in Table
5.3, calculated using equation (2.13) with values listed in Table 2.1. The different calculations are
distributed along the horizontal axis to improve viewing clarity and the colour of the circle indicates
the atom type that jumps. The black horizontal lines indicate the activation energy for a jump in pure
Al.

51

Chapter 5. Results and discussion

5.5 Runtimes
An important goal for the in-house developed KMC implementation that have been used
and extended during the work with this master thesis have been to achieve high compu-
tational speed to enable long time scales to be simulated. This is the main reason for
writing all the simulation code in C instead of Python or other high-level programming
languages. Python can be very fast if most of the computation time is spent in library
functions, such as matrix computations, since these are written in other languages and are
highly optimised. The KMC algorithm, however, is inherently based on a loop and have
many low-cost computations that need to be done each iteration, see flowchart of the im-
plementation of the algorithm in Figure 4.1. The computational speed will therefore be
much higher in a compiled language such as C than in for example Python.

The time per iteration for the KMC implementation is listed in Table 5.8 for a selec-
tion of different activation energy calculators. The listed runtimes have been obtained by
running the KMC simulation without any observers on a single core of an i7-8700 CPU.
Cluster expansion with only the constant and single site clusters give 69 ECIs and is ap-
proximately 8 times slower than the method by Liang et al. [1]. The reason for this is
that for each ECI, the sum over symmetrically equivalent clusters must be computed. The
Liang method has effectively 3 different constants and 2 different site groups, given by
NNi and NNj , and have 5 interaction energies per site group. This can roughly be con-
sidered as 3+2 ·5 = 13 ”ECIs”, which is five times fewer than the CE with only single site
clusters. The CE with pair clusters is a factor 9 slower than the CE with only single site
clusters. All of the CE runtimes are measured without the use of the shifting described in
equation (5.1), with the shifting the runtime is close to double for the CE with most ECIs
since the activation energy calculations use most of the computation time.

Table 5.8: Single core performance on an i7-8700 processor without any observers for the method
by Liang et al. [1] and the cluster expansion given by equation (3.4). The CE with 69 ECIs are for
only single site clusters, while the one with 444 includes pair clusters up to 4th nearest neighbour
pair distance, see Figure 3.2 for definition. The iteration count refers to the number of complete
KMC iterations, which all includes 12 transition rate calculations.

Method Number of ECIs Time per iteration Iterations per second
Liang - 0.60 µs 1.65 · 106

CE 69 4.64 µs 2.16 · 105

CE 444 40.2 µs 2.49 · 104

When running the code without any observers the calculation of the transition rates
uses most of the time, at least when using the CE method. In an attempt to speedup the
program the loop that calculates all the transition rates for one iteration, 12 in this case,
was parallelised using OpenMP3. Since all of the rate calculations are independent from
each other and do not alter the KMC struct no race conditions can occur4. A race condition

3OpenMP enables parallelisation of code on shared memory systems by using compiler directives, see
openmp.org for more information.

4In the current implementation, if the shifting described by equation (5.1) is enabled the transition rate cal-
culation changes the KMC struct temporarily for calculating the reverse transition rate, which will cause race
conditions, and should therefore not be used together with parallelisation.

52

5.6 Simulation results

is when the outcome of a parallel process can have different outcomes based on the execu-
tion order of the different threads or processes. The parallelised code was approximately
80 times slower than the serial code on a quad core processor with hyperthreading, with
transition rates calculated by CE with just under 400 ECIs. The reason for the code becom-
ing slower even though it has access to more computational power is related to overhead
and the short time per iteration. For each iteration the master thread will fork several slave
threads and distribute the calculations to all of the threads. When the slave threads are fin-
ished calculating the transition rates that was designated to them, they will join the master
thread again. This process of forking and joining threads add some overhead, which in
this case is large compared to the calculation time needed for the 12 transition rates, and
the program therefore runs slower.

It is likely that a more advanced parallelisation scheme that uses several worker threads
that are kept alive during the entire simulation can give a speedup. This requires a bit more
communication, but should be a lot faster since the overhead of forking and joining is
removed. Results from simulations of statistical systems should usually be averaged over
many realisations of the system to get good data, and any parallelisation will always add
some overhead due to communication and/or forking and joining of threads. It is therefore
not much to gain by parallelising the code, even if it would give a significant speedup,
unless the user has access to more processor cores than the number of realisations of the
system that is needed. The best solution is currently to run many instances of the same
serial program, with different seeds, at the same time.

5.6 Simulation results
This section will present and compare results from simulations performed with the cluster
expansion based transition rates and the transition rates calculated by the method by Liang
et al. [1]. Since the CE method unfortunately does not produce any real clustering yet,
there will not be presented results where the results have been averaged over many real-
isations of the system. The focus has instead been on inspecting the behaviour of single
runs. For averaged results created using the method of Liang et al. see the result chapter
in my specialisation project [8].

5.6.1 Cluster evolution and snapshots
Two different simulations that use the method by Liang et al. will be presented in this
section, and they will be referred to as Liang run A and Liang run B throughout the section.
Run A is started from a random initial configuration, use all the default settings and have
an end time of t = 1 · 108 s. The monomer concentration, C1, and the average cluster size
for run A is shown in Figure 5.9. In this work the monomer concentration will refer to the
ratio of single solutes to the total number of solutes in the system, which is 900. Clusters
are here defined as all solutes that are connected through NN interactions with each other
and have cluster size of 2 or larger. The threshold for being a cluster would normally be
higher to avoid including random fluctuations as clusters, but since the CE method shows
very little clustering this convention have been used to be able to present both methods in

53

Chapter 5. Results and discussion

Figure 5.9: Monomer concentration, C1, and average cluster size from a KMC simulation starting
from randomly dispersed solutes, referred to as Liang run A. The transition rates are calculated using
the method of Liang et al. [1].

the same way. Results with the Liang method where the criterion has been set to size 30
was shown in my specialisation project [8].

In Figure 5.10 snapshots of the position of all solutes that are part of a cluster of size 2
or larger are shown for different times for Liang run A and run B, which will be introduced
in the next paragraph. The initial random configuration of the lattice for run A is shown
in subfigure 5.10a. After 20 h at room temperature some larger clusters start to form
as shown in subfigure 5.10b. The final configuration shown in subfigure 5.10c contains
mainly one large cluster and one smaller cluster that looks like two small clusters but are
connected through the periodic boundaries. The large cluster have alternating layers of
Mg and Si, where the layers are in the 100 family of planes. This structure is known as the
L10 structure and was studied by DFT and MC in the article by Kleiven and Akola [31].
They found that this structure is a stable configuration for Mg and Si within the Al host
matrix. They also studied the interfacial energy for the side of the structure consisting of
alternating bands of Mg and Si and found that this interface has approximately half the
interfacial energy of the average interfacial energy of pure Al-Mg and Al-Si interfaces.
This is consistent with the elongated shape of the final cluster along the plane normal
direction, since this increases the percentage of the surface area of the cluster that is of the
alternating Mg Si type.

To check the stability of the L10 structured cluster, a simulation referred to as Liang
run B was started from the end configuration of Liang run A, subfigure 5.10c, at a slightly
elevated temperature of T = 350 K. A plot of the monomer concentration and average
cluster size is shown in Figure 5.11. The figure shows that the large cluster dissolves and

54

5.6 Simulation results

(a) Liang A, CE A: t = 0 s (b) Liang A: t = 20 h

(c) Liang A: t = 3.2 yr, Liang B: t = 0 s

(d) Liang B: t = 1.1 h (e) Liang B: t = 2.4 h

Figure 5.10: Snapshots of the position of all solute atoms that is part of a cluster of size 2 or larger
for Liang run A and B. The start position of CE run A is the same as for Liang run A. The Mg atoms
are green and the Si atoms are sand coloured.

55

Chapter 5. Results and discussion

Figure 5.11: Monomer concentration and average cluster size from KMC simulation with transition
rates calculated by the method presented by Liang et al. [1]. The simulation was started from the final
configuration of Liang run A shown in subfigure 5.10c and the temperature was set to T = 350 K.

the end configuration contain many smaller clusters as the average cluster size is around 3
and C1 fluctuates between 0.40 and 0.45. The snapshot in subfigure 5.10d is taken after
1.1 h and show that the large cluster has decreased in size and become more spherical
compared to the initial structure. The final configuration shown in subfigure 5.10e show
that there are only very small clusters left, but there are a lot more of them compared
to the random distribution in subfigure 5.10a. Several other temperatures have also been
tested, higher temperatures lead to the cluster dissolving faster. A lower temperature of
T = 325 K was also tested, for this temperature the cluster was stable for the duration of
the simulation. Why the clusters dissolve will be discussed in subsection 5.6.3.

The results from two simulation runs where the cluster expansion have been used to
calculate the transition rates will be presented, and are referred to as CE run A and B. The
transition rates have been calculated using the cluster expansion described in equation (3.4)
with ECIs from fit III in Table 5.4 and a shift have been added to low barriers according to
equation (5.1). The monomer concentration and average cluster size for CE run A, which
starts from the same random initial configuration as Liang run A, see snapshot in subfigure
5.10a, is shown in Figure 5.12. From the Figure it is apparent that no large clusters form
during the simulation run at T = 293.15 K since the average cluster size is never above
2.5 and C1 stays above 0.70. This can also be seen from the snapshot of the final state
of the simulation in subfigure 5.13a. A run without any shifting was also tested, but this
produced similar results until the vacancy got stuck, no clusters larger than a few solutes
were observed.

In Figure 5.14 the average cluster size and monomer concentration is shown for a run

56

5.6 Simulation results

Figure 5.12: Monomer concentration and average cluster size for a simulation starting from the
same random initial configuration as Liang run A, see snapshot in subfigure 5.10a. The transition
rates are calculated using fit III from Table 5.4 with the shifting of low barriers as described by
equation (5.1).

starting from the clustered configuration shown in subfigure 5.13b, this will be referred
to as CE run B. The transition rates are calculated the same way as for CE run A and the
temperature have been set to T = 450 K. The figure shows that very little happens to
either of the quantities before it rapidly dissolves the clusters. From visual inspection of
the lattice during the simulation it seems like the vacancy reorganises the L10 structure
to a disordered cluster with more aluminium inside the structure. A snapshot of an inter-
mediate state where the clusters are close to dissolved is shown in subfigure 5.13c. Then
the solutes that are sticking out of the cluster are picked off one by one, dissolving the
clusters. Towards the end of run B the system is back to solid solution, but C1 is slightly
higher and the average cluster size slightly lower compared to the solid solution of CE
run A, which is as expected since the temperature is higher for run B. A snapshot of this
solid solution is shown in subfigure 5.13d. From the figure it seems like there also are
some dimers consisting of only Si or only Mg, which is not common to see in runs with
the Liang method. Lower temperatures, T = 293 K, T = 350 K and T = 400 K, was
also tested. If given enough time, around one week of CPU time running on a single core,
the clusters will dissolve at T = 400 K. At the lower temperatures the vacancy seems to
stay inside one of the large clusters and move solutes around, but the clusters does not get
dissolved.

57

Chapter 5. Results and discussion

(a) CE A: t = 9.7 yr (b) CE B: t = 0 s

(c) CE B: t = 3.5 s (d) CE B: t = 0.9 h

Figure 5.13: Snapshots of the position of all solute atoms that is part of a cluster of size 2 or larger
for CE run A and B. Snapshot of the initial configuration for CE run A is shown in subfigure 5.10a.
The Mg atoms are green and the Si atoms are sand coloured.

58

5.6 Simulation results

Figure 5.14: Monomer concentration and average cluster size for a simulation starting from the
clustered state shown in subfigure 5.13b at T = 450 K. The transition rates are calculated using fit
III from Table 5.4 with the shifting of low barriers as described by equation (5.1).

5.6.2 Diffusivity
In Figure 5.15 the diffusivities for the different elements have been plotted for Liang run
A. The left subplot is for the old diffusion logging that had a bug in it as mentioned in
subsection 4.1.4, and the right subplot is the fixed implementation of the logging. The
problem with the old implementation was that it checked which atom type that occupies
the lattice site now, but calculated the diffusion distance for the atom that started at the site
instead of the one that is there now. This resulted in that the averaging over all atoms of the
same type in equation (4.2) effectively became just the average over a random selection of
atoms after all the atoms had been moved around, which explains why the diffusivities are
all grouped together after some time.

The diffusivities in Figure 5.15 decrease over time, this can have several causes and
was studied during my specialisation project [8]. The initial decrease and sporadic data
points are due to the calculation being based on very few moves per atom. The continued
decrease is related to that as clusters start to form, some of the atoms on the inside of the
clusters become close to stationary. Another contribution is that the time increase for each
iteration, given by equation (2.4), increases throughout the simulation. In the specialisa-
tion project the cause for this effect was not clear, but this might partly be explained by
Figure 5.8, which shows that the activation energies for Al have a narrow range and no
low barriers. Many of the solute jump activation energies are low and will cause the time
to increase slowly since they have large transition rates. Since less solutes are reachable
for the vacancy as clusters start to form fewer iterations with very low ∆t will occur and
the time will on average increase faster, which leads to lower diffusivities.

59

Chapter 5. Results and discussion

Figure 5.15: Comparison of the old implementation, which had a bug, and the new implementation
for logging diffusivities. The old implementation did not include the correct atoms in the average in
equation (4.2), which is why they almost merge together in the end. The data for both subplots are
from Liang run A.

The diffusivity for Si is the highest, followed by Mg and then Al in Figure 5.15, and
the spread is approximately one order of magnitude. In the article by Løvvik et al. [45],
they found DAl = 8.47 · 10−27 m2 s−1 and DSi = 2.12 · 10−28 m2 s−1 at T = 293.15 K.
In an older article by Mantina et al. [44] they report the values for Mg and Si to be DSi =
6.21 · 10−26 m2 s−1 and DMg = 1.75 · 10−27 m2 s−1 at T = 293.15 K. This means that
the results obtained by the KMC with the Liang method are 2-4 orders of magnitude too
high, when using the diffusivities near the end of the simulation, and the ratio between
Si and Al diffusivity is not consistent with [45]. If only the order of magnitude would
have been different, it would be possible to just scale the time evolution by adjusting the
vacancy concentration, but this will just shift all of them down and not alter the order
of them. The true vacancy concentration is difficult to find since the alloy will probably
have a higher concentration than the equilibrium concentration, at least in the beginning,
because of the quenching step in Figure 2.1. This rapid cooling can ”freeze-in” vacancies
since the alloy is not in equilibrium during the cooling. The value used in the article by
Liang et al. [1], corresponds to the equilibrium concentration at T = 732 K when using
the values HF

V = 0.66 eV and SF
V = 1.6kB from [28].

For Liang run B the diffusivities are shown in Figure 5.16. This shows that the ini-
tial decrease is present in this simulation also, but when the clusters dissolve the values
increase again. The initial decrease and fluctuation might be due to the diffusion distance
being based on very few jumps per atom, as stated earlier. The expression used for cal-
culating the diffusivities is given in equation (4.2), which shows that the limit of t → ∞
should be taken to get the correct values. The calculated diffusivities should therefore be

60

5.6 Simulation results

Figure 5.16: Diffusivities for Liang run B calculated from equation (4.2).

given some time to settle. The increase when the clusters dissolve is consistent with the
decrease shown in Figure 5.15 when the system is clustering.

The diffusivities for CE run A are shown in Figure 5.17, which shows that they are rel-
atively stable throughout the run since no large clusters form as seen from Figure 5.12. The
magnitudes of the diffusivities are slightly closer to the literature than the results for the
end of Liang run A and the order is the same as for Liang run A and B. This order is as dis-
cussed not consistent with the literature values in [45]. The vacancy concentration for this
run is set to the equilibrium concentration, which is CV(T = 293.15 K) = 2.23 · 10−11

at room temperature. This concentration is 7 orders of magnitude lower than the one used
in Liang run A, which means that if the same vacancy concentration as for Liang run A
would be used here, the diffusivities would be shifted up by 7 orders of magnitude since
D ∝ 1/t ∝ CV. The real vacancy concentration will probably lie somewhere between
these two values and most likely change with time as it moves towards the equilibrium
value.

The diffusivities for CE run B is shown in Figure 5.18. The aluminium diffusivity does
not show a value in the beginning since the vacancy started close to a cluster and does not
move any Al atoms in the beginning. Again the plot shows that the diffusivities need some
time to get a stable estimate and it also shows that the diffusivities goes up when the cluster
dissolves, but the change is much smaller than for Liang run B shown in Figure 5.16. The
order of the diffusivities is also the same as for CE run A and Liang run A and B. Since the
temperature is higher, and therefore have a higher vacancy concentration, the diffusivities
are also higher.

61

Chapter 5. Results and discussion

Figure 5.17: Diffusivities for CE run A calculated from equation (4.2).

Figure 5.18: Diffusivities for CE run B calculated from equation (4.2).

62

5.6 Simulation results

5.6.3 Total energy evolution
In this subsection logs of the total energy relative to the initial lattice configuration is
going to be presented for Liang run A and B and CE run A and B and compared to the
total energy of the lattice computed by a cluster expansion of the whole lattice. In this
setting the total energy is the zero-point energy of the system, since both the lattice CE
and the activation energy CE have been trained on DFT calculations performed at 0 K.
The energy evolution logged from the KMC simulations are calculated from the backward
and forward activation energies by using equation (4.1). To distinguish the CE for the total
lattice from the CE for the activation energies, the lattice CE will be denoted as CE MC
since it is often used for regular MC simulations. The CE for the activation energies will
be denoted as just CE and sometimes as CE KMC.

Introduction and benchmark of CE MC for lattice

Figure 5.19: Comparison of the energy difference between states calculated from the DFT activation
energies for the forward and reverse jump and the energy difference calculated from the CE MC of
the corresponding initial and final lattice configuration. The RMSE is 50.3 meV.

The CE used for calculating the total energy of the lattice, referred to as CE MC, have
been created by PhD student David Kleiven using cluster expansion for atomic simulation
environment (CLEASE) [50]. The CE MC is trained for Al-Mg-Si-X system and have
been trained on DFT calculations performed with the DFT Python code GPAW5. Calcula-
tions have been performed on a wide variety of configurations ranging from 0 to 100 at.%
of Mg, Al and Si and 0-20 at.% of vacancies. The atom positions have been kept fixed, but

5See https://wiki.fysik.dtu.dk/gpaw/ for documentation.

63

Chapter 5. Results and discussion

the cell volume have been relaxed. The expansion includes all clusters up to 4 sites and a
maximum cluster size of 5 Å. The trained model have a CV score of 6 meV atom−1, this
is for the whole spectrum of possible structures.

In Figure 5.19 the energy difference between pairs of adjacent states have been com-
pared for the CE MC method and for the DFT calculated activation energies from section
5.1. The RMSE is 50.3 meV, which is 0.47 meV atom−1 since the cells contain 108 lat-
tice sites. This is well below the CV score of the CE MC model and might be related
to that it is energy differences between two very similar states that is calculated and not
the total energy. Some of the differences may also be related to the DFT calculations the
CE MC have been trained on have been performed in a different program with different
settings than the ones performed in this work.

Total energy evolution from simulations

The total energy evolution for Liang run A is shown in Figure 5.20. The logged total
energy decreases faster than the CE MC between t = 1 s and approximately t = 1 · 104 s,
but then they drift together again and end up relatively close to each other. Fine details of
the curves seem to match well throughout the whole run. The final configuration of the
lattice is approximately 110 eV lower than the initial, which corresponds to a decrease in
energy of 1.8 meV atom−1.

Figure 5.20: The total energy evolution for Liang run A, both from logging during the KMC sim-
ulation and from calculations of the total energy of the lattice using CE MC. The energy is given
relative to the initial configuration of the lattice.

The total energy evolution for Liang run B is shown in Figure 5.21. From the initial
configuration of run B, which is the final state of run A, the energy increases by approxi-
mately 90 eV, which is 1.4 meV atom−1. This means that the final configuration of B has

64

5.6 Simulation results

Figure 5.21: The total energy evolution of Liang run B, both from logging during the KMC sim-
ulation and from calculations of the total energy of the lattice using CE MC. The energy is given
relative to the initial configuration of the lattice.

a lower energy than the initial configuration of A. The energy curve is much steeper for
the dissolving cluster, and it is therefore difficult to see if there is any drift between the
two, but they end up at slightly different total energies.

The total energy of Liang run B increases throughout the run, which is unusual, espe-
cially since the temperature is only 57 K higher than run A that showed clustering. It is the
transition rates that dictate the evolution of the system when running KMC, and increasing
the temperature results in the transition rates for different activation energies become more
similar than at lower temperatures. This indicates that the difference in the activation ener-
gies for clustering and dissolving events are close to each other, even though clustering is
slightly lower. Free energy calculations are not available from the program in the current
implementation, but it seems unlikely that the free energy decreases when the zero-point
energy increases by approximately 90 eV and the temperature is only T = 350 K.

In Figure 5.22 the energy difference between adjacent states have been plotted for
the 6000 first iterations for Liang run A and B against the energy difference found from
CE MC. The energy differences for Liang run B, which starts from the clustered con-
figuration, have a much wider span than the differences for the random initial configu-
ration of run A. The RMSE for the points from run A is 25.7 meV and for run B it is
102 meV. Both of these are well below the CV score of the CE MC since they correspond
to 0.41 µeV atom−1 and 1.6 µeV atom−1. It is also visible that the discretisation of the
method is relatively coarse, which causes bands of possible values. The differences for
both run A and B seem to have approximately equally many differences on each side of
the solid black line, which results in that they follow each other well on average.

65

Chapter 5. Results and discussion

Figure 5.22: Benchmarking of the energy difference between adjacent states for the 6000 first jumps
for Liang run A and B against the CE MC. The RMSE for run A is 25.7 meV and for run B the
RMSE is 102 meV.

Figure 5.23: The total energy evolution of CE run A, both from logging during the KMC simulation
and from calculations of the total energy of the lattice using CE MC. The energy is given relative
to the initial configuration of the lattice. Note the that the two time series are plotted on separate
y-axes.

66

5.6 Simulation results

The total energy evolution for CE run A is shown in Figure 5.23. Note that the CE MC
of the lattice and the KMC log have been plotted on separate y-axes due to the large
difference in size. It is apparent that the total energy logged from KMC with CE activation
energies suffers from a large drift and ends up with a energy lower than −3000 eV while
the CE MC ends up fluctuating around approximately −3.0 eV. The fine detail of the
CE MC is not reflected in the log from KMC. For the comparison of the energy difference
between adjacent states in Figure 5.24 the RMSE is 32.2 meV for this run. This is not a
lot higher than the method by Liang et al., but the differences might be larger later in the
run.

Figure 5.24: Benchmarking of the energy difference between adjacent states for the 6000 first jumps
for CE run A and B against the CE MC method. The RMSE for run A is 32.2 meV and for run B
the RMSE is 227 meV. The reason for few data points for run B is that many of the jumps are
performed back and forth several times.

Total energy evolution for run B is shown in Figure 5.25. For run B the situation looks
very similar to the situation in run A, but here the CE MC energy increases, as expected
when the clusters dissolves, but the logged energy still become negative. The size of
the relative total energy is also very different between the two methods, CE MC ends up
at approximately 75 eV while the KMC log ends up close to −3.5 · 105 eV. It also seems
like the logged energy stabilises shortly after the clusters dissolve, but then after some time
starts to decrease fast again. Why this happens have not been identified. The continued
decrease after the CE MC have stabilised indicates that just moving around in the solid
solution without altering the monomer concentration or the average cluster size by any
considerable amount, see Figure 5.14, there is a large negative drift in the total energy.

The problem of the total energy drifting severely can be solved by using the approach
known as Kinetically Resolved Activation barrier (KRA) introduced by Van der Ven et al.

67

Chapter 5. Results and discussion

Figure 5.25: The total energy evolution of CE run B, both from logging during the KMC simulation
and from calculations of the total energy of the lattice using CE MC. The energy is given relative
to the initial configuration of the lattice. Note the that the two time series are plotted on separate
y-axes.

[32]. The KRA method uses a local cluster expansion to find the energy of the top of the
saddle point minus the average of the energy of all the states reachable from the top of the
barrier, which is the quantity they refer to as ∆EKRA. This can be formulated as

∆EKRA = Esaddle −
1

n

n∑
k=1

Ek, (5.2)

where Ek is the energy of the system in endpoint number k out of the n different possible
endpoints from the top of the barrier. The activation energy from state i to state j can then
be calculated from

∆Eij = Eact
ij = ∆EKRA +

1

n

n∑
k=1

Ek − Ei. (5.3)

This method explicitly includes the energy difference between adjacent states and will
therefore be much more robust when it comes to getting the total energy correct, than the
approach introduced in this thesis where the energy differences are only included implic-
itly. The disadvantage of the KRA method is that the total energy for each of the n states
reachable from the top of the barrier must be computed to obtain the activation energy
for the one event. For the KMC, assuming that for each barrier top only two states are
reachable, state i and j, the program must calculate the cluster expansion for ∆EKRA plus
the cluster expansion for the total energy of state i and state j for each of the possible

68

5.7 Clustering rates

transitions. The energy of state i is of course common for all the possible transitions, but
the method is still much more computationally intensive than the single cluster expansion
given by equation (3.4).

It is possible to calculate ∆EKRA from the existing cluster expansion for the activa-
tion energy for the forward and backward reaction instead of creating and training a new
expansion for ∆EKRA directly. By inspecting Figure 2.6 the following relation can be
found

Eact
ij + Eact

ji

2
= Esaddle −

Ei + Ej
2

= ∆EKRA. (5.4)

Even though the KRA method from [32] most likely will fix the problem of the logged to-
tal energy drifting, it would still not ensure that the time evolution of the system becomes
more correct, since this is governed by the barriers, not the energy differences. Consid-
ering that the KRA method is significantly more computationally expensive and does not
ensure the correct time evolution it seems like it is a good idea to continue expanding and
improving the training set to try to get the cluster expansion proposed in this thesis to work
well.

5.7 Clustering rates

Figure 5.26: The condensation and evaporation rate for Mg and Si atoms as a function of cluster
size. The results are averaged over 100 KMC simulations with end time 1 · 106 s and transition rates
calculated by the method by Liang et al. [1]. Only data points with relative error below 0.30 have
been included.

This section will show and discuss results for the clustering rates and cluster compo-
sition logged by the cluster rate observer from 100 different KMC simulation runs. The

69

Chapter 5. Results and discussion

transition rates have been calculated using the method by Liang et al. [1] and the end-time
for each simulation is 1 · 106 s.

In Figure 5.26 the evaporation and condensation rate for Mg and Si is shown as a
function of the number of solutes in the cluster, n. Only data points with relative error
below 0.30 have been included. To calculate the relative error the average of each run
has been treated as a single data point to avoid getting too low error estimates due to
correlation between iterations in the KMC simulations. From the figure the condensation
rate for Mg is the highest, followed by the evaporation rate for Si, condensation rate for
Si and the evaporation rate for Mg. The Mg-Si ratio is close to 1 for the clusters, even
though the condensation rate is much higher than the evaporation rate for Mg while they
are similar for Si. One possible explanation for this is that not all size changing events are
registered, only the ones where a single solute leaves or joins one cluster is registered due
to the formulation of cluster dynamics. This means that there can be many ways to merge
or split clusters that does not get registered.

5.7.1 Fitting of analytical expression to evaporation rates

(a) Mg: A = 1.14 · 103, c = −2.78, σ̄ = 0.078 (b) Si: A = 1.08 · 105, c = −3.02, σ̄ = 0.067

Figure 5.27: A nonlinear least squares fit of a log-spaced selection of the data from Figure 5.26 to
the expression for the evaporation rate from cluster dynamics, given by equation (A.6). The average
interfacial free energy for clusters, σ̄, is given in J m−2, A is given in s−1 and c is dimensionless.
The value for A, c and σ̄ for the two fits are listed in the caption of the subfigures.

The expression for the evaporation rate given in equation (A.6), which uses the cap-
illary approximation and assumes spherical clusters, includes the average interfacial free
energy for clusters. It is therefore possible to obtain an estimate for the interfacial en-
ergy by fitting the expression to the logged rates from the KMC simulations. The results
from the fitting procedure, for both Mg and Si, is shown in Figure 5.27. The fitting has
been performed on a log-spaced selection of cluster sizes to weight each interval of cluster
sizes equally. As seen from the figure the smallest cluster sizes still have a higher evap-
oration rate than the fitting predicts, this is much more prominent if all the data points
are used. The average interfacial free energy obtained from the fitting to the Mg rates is
σ̄Mg = 0.078 J m−2 and for the Si rates it is σ̄Si = 0.067 J m−2. Both values are similar,

70

5.7 Clustering rates

as they should be, even though the prefactor A differs by two orders of magnitude. The
values are also close to the values found by DFT slab calculations on the L10 structure that
was performed by Kleiven et al. in [31]. They found the interfacial free energy for the in-
terface where the surface normal of the Mg and Si layers are parallel to the interface to be
γ‖ = 30 mJ m−2. For the calculations where the interface is perpendicular to the surface
normals, the average of the interfacial free energy for the Al-Mg and Al-Si interfaces, the
interfacial free energy is γ⊥ = 75 mJ m−2. The average interface free energy found from
the evaporation rates, σ̄, will be a combination of both the normal and parallel interfaces
since clusters consist of a combination of these two.

5.7.2 Cluster composition

Figure 5.28: The average Mg percentage in clusters of size n is plotted as blue dots, and the orange
lines are ± one standard deviation. Data is gathered from 100 different runs starting from different
random configurations. End time for the simulations are 1 · 106 s and the transition rates have been
calculated with the method of Liang et al. [1].

One of the new features of the cluster rate observer is that the composition of a cluster
is logged every time a clustering event is logged. This information can be used to find
the average cluster composition as a function of cluster size. The results for the average
cluster composition, based on data from 100 KMC runs with the Liang et al. [1] method, is
shown in Figure 5.28. The blue dots are the average values and the orange lines are ± one
standard deviation. The standard deviation decrease fast in the beginning and the average
value for the Mg content seems to settle at ≈ 0.47. The blue dot in the beginning that are
much lower than the rest is for n = 3 and indicates that clusters with 2 or 3 Si atoms are
more common than clusters with 2 or 3 Mg atoms a for clusters of size 3. From inspection

71

Chapter 5. Results and discussion

of the raw data, clusters of pure Si of size 2 is observed 87 times more often than clusters
of pure Mg of size 2. For clusters of size 3 the same ratio is 128, for larger clusters pure
Si or Mg is observed much more seldom, but pure Si remains more common than Mg.

5.8 Error sources and discussion of overall results
This section will discuss the overall results presented in this chapter and discuss some of
the error sources caused by the model for the system, the calculations in the training set
and the two different expressions for the activation energies.

5.8.1 Limitations imposed by the model
The two main limitations set by the model is that every atom must reside at an FCC lat-
tice site and the only possible jumps are nearest neighbour jumps. These two limitations
are coupled to each other, if the lattice representation changes the possible jumps should
be re-evaluated. For the current FCC lattice, it would be possible to allow next nearest
neighbours jump to the vacant site, but this would mean that 18 transition rates must be
calculated for each iteration instead of 12. Another disadvantage of this is that the 6 addi-
tional rates would most likely need their own expression, which for the cluster expansion
based method means that a new training set for next nearest neighbour jumps must be
created. Adding these jumps will not alter the type of clusters that can be constructed
since every atom still must reside at an FCC lattice site, but it is possible that it affects the
kinetics.

The FCC lattice restriction is more important to lift since it does not allow the impor-
tant β′′ precipitates to form. By adding vacant octahedral lattice sites, the site in the middle
of the FCC unit cell, it is possible to represent the β′′ structure. Adding the octahedral sites
means that the set of possible jump events must be updated to include jumps in and out of
octahedral sites. It is important that this is done in a way that preserve the ergodicity of the
simulation. With the new lattice sites the cluster expansion for regular nearest neighbour
jumps must be updated and trained to include the effect of occupied octahedral sites close
to the jump. A separate cluster expansion must be trained for calculating the activation
energy for jumps in and out of the octahedral sites. This will require some changes to the
implementation and new DFT calculations must be performed, but it is an important step
towards getting better and more realistic precipitate structures in the simulations.

Both main limitations mentioned here could also be lifted by using the off-lattice KMC
implementation k-ART [20, 21], which identifies the possible transitions based on the local
environment during run time. Another advantage of the method is that it includes lattice
deformations and long-range interactions, which are not possible to capture equally well
in the on-lattice model. Some of the effects are included implicitly in the on-lattice model
through the fact that the cluster expansion based method of determining the activation en-
ergies is trained on DFT calculations which include these effects. The predicted activation
energies are therefore based on a relaxed lattice even though the lattice is represented by
a fixed lattice in the KMC simulations. This will be discussed in more detail in the next
subsection. The disadvantage of this method is the much higher computational cost, and
it also needs to have a good force potential for the studied system to give good results.

72

5.8 Error sources and discussion of overall results

Since long time scales are needed to study the precipitation process in Al-Mg-Si alloys it
is beneficial to use the on-lattice method, given that the octahedral sites are successfully
added to the model.

5.8.2 Error sources for the training set
The expression for the activation energies given by equation (3.4) is able to represent the
training set very well as shown in Figure 5.4, but the simulations does not produce any
larger clusters. This problem can have several causes, the training set is missing important
information, error sources in the DFT calculations or poor fitting of the ECIs to the training
set. This subsection will discuss the two causes regarding the training set.

The training set will never be complete because of the vast number of possible local en-
vironments, but it is important that the training set contain a wide variety of environments
that the KMC simulation may encounter. Currently the training set only have a limited set
of structures that contain more than a few solutes as can be seen from Table 5.2. When
the simulations encounter structures with many solutes the calculated activation energy is
only based on the information available from the structures with few solutes, which may
give poor results. The energy differences between adjacent states calculated from CE MC
shown in Figure 5.22 have a much wider range of ∆E than the training set does, see Fig-
ure 5.19. This shows that the training set is missing information about activation energies
between states that have a large energy difference. Some of the structures related to large
energy differences are likely to include many solute neighbours since it is the simulation
that was started from a clustered state that gave the largest energy differences in Figure
5.22. Structures with more solute neighbours should therefore be computed by DFT and
added to the training set.

There are several choices that must be made when calculating the acitvation energy
with DFT that can affect the activation energies to some degree. One of the choices is if
the cell volume should be fixed or relaxed. For calculating the activation energies for the
NVT ensemble it seems logical to keep the volume fixed, but it would also be possible
to run the simulations in the NPT ensemble instead and relax the lattice volume in the
DFT simulations. The lattice can still be fixed in the KMC since the barriers are based on
the information in the training set and not the actual positions of the atoms in the KMC
lattice, and no other changes would need to be done to the KMC since N and T is still
constant. For the calculations presented in section 5.1 the cell volume was fixed but the
lattice positions were relaxed. With more Mg atoms the pressure in the DFT simulations
are observed to increase, due to the positive misfit volume of Mg compared to Al, which
can cause the activation energy for some jumps to become lower since the jumping atom
can be pushed towards the vacant site due to the increased pressure.

Another important factor is that the activation energies calculated by DFT does include
long-range interactions and strain effects. This means that these effects are implicitly
included in the cluster expansion even though the atoms that are causing these effects in
the DFT not necessarily are on one of the numbered lattice sites in Figure 3.1. For the
calculations of the training set presented in section 5.1, all the sites that are not part of the
cluster expansion have been set to Al. This means that the cluster expansions ECIs does
not represent an average over different environments outside the included sites since all of
them are Al. It should be tested how much this affects the activation energy by doing some

73

Chapter 5. Results and discussion

test calculations with DFT. This might be extra important for jumps that are typically on
the interface between Al and a cluster, and inside clusters, since the clusters usually induce
some strain due to misfit. The reason for not including solutes outside the numbered sites
was that the calculations were faster to perform with only Al since they were closer to the
NEB calculation for jumps in pure Al.

The size of the simulation cell in the DFT calculations can also affect the activation
energy. For calculating the training set for this work a cell size of 3 × 3 × 3 was used,
which saves a lot of time compared to using a larger cell, such as 4 × 4 × 4. This will
as stated earlier affect the activation energy, even if only Al atoms are added to make the
simulation cell larger. Due to the periodic boundary conditions some of the different sites
shown in Figure 3.1 will effectively be closer to each other than they appear in the figure,
which can influence the results. A test of how much this affects the activation energies for
some of the structures with the most solute neighbours have been requested but was not
made available in time.

5.8.3 Error sources in the transition rates
This subsection will first discuss the effect of the parameters used in the transition rates
that are common for the method by Liang et al. and the cluster expansion based method
presented in this thesis. The vacancy concentration has already been discussed in sub-
section 5.6.2 that presented the diffusivities, since ∆t ∝ 1/CV and D ∝ 1/t. It can be
difficult to find the true vacancy concentration since it can depend on the temperature his-
tory of the alloy and can also change over time. Since the parameter is only used to scale
the time per iteration in the KMC simulation linearly and does not affect the outcome of
the simulation it is not a big error source for other results than the diffusivities.

The jump attempt frequencies, given in Table 2.1, affect the transition rates linearly
and therefore also affects the outcome of the simulations. It will also affect the order of
the diffusivities indirectly since higher transition rates for one atom type will lead to that
type being picked more often which can lead to higher diffusivity for that type. All of the
jump attempt frequencies are in the order of 1 · 1013 s−1 and are based on the values from
[44]. According to [21] the jump attempt frequency for all types of KMC simulations are
usually in the order of 1 · 1012 s−1 to 1 · 1013 s−1.

The size of the simulation system is set to 25 × 25 × 25 unit cells, this will set a
restriction on the size of clusters and precipitates that can be observed. For the CE method
this is not a concern yet, but for the method by Liang et al. the size of the largest cluster
will be limited after running the simulation for some time. One example of this is the large
cluster shown in subfigure 5.10c which contains 595 out of the 900 solutes in the system.

The method by Liang et al. [1] consistently produces the L10 structure and follows
the total energy very well. Tracking the total energy well does not necessarily imply that
the activation energies are also good, since the total energy only depends on the difference
between pairs of activation energies. The single activation energies have relatively poor
agreement with the DFT calculations and the range of activation energies for Al jumps is
much narrower than the range for Mg and Si jumps. The narrow range for Al jumps is not
observed in the DFT calculations or in the cluster expansion method. At only 350 K the
large L10 clusters dissolve and the system returns to solid solution, this temperature seems
low considering the increase in zero-point energy is more than 90 eV. From running sev-

74

5.8 Error sources and discussion of overall results

eral hundred simulations with the method during my specialisation project and this master
thesis, all the observed large clusters have a L10 structure, it therefore seems unlikely that
this method will produce any other structures of interest.

The method for calculating the activation energies that was developed during this mas-
ter thesis is based on the principle of cluster expansions and is able to represent the train-
ing set well and have good computational efficiency. Several methods have been tested to
avoid overfitting, which can be a problem since there are only 15 more unique structures
in the training set than there are ECIs in the used expression. Both the L-curve criterion
and LOOCV agree well and give similar results, which is a good indication that they find
a close to optimal amount of regularisation. The L-curve in Figure 5.2 also shows that
the amount of regularisation have been varied from under-regularised, high solution norm,
to over-regularised, high residual norm during the hyperparameter optimisation. This is
important since the best LOOCV score does not give the best fit if none of the attempted
hyperparameter combinations are close to the optimal regularisation amount. The LOOCV
score for the chosen fit is 9.86 meV, which is relatively good considering this is for the
total structure and not per atom. This score must however be treated as a minimum esti-
mate since it is only calculated from structures in the training set and will probably give
less accurate predictions for structures that are very different from any of the structures it
is trained on.

The results from running the simulations are unfortunately not good enough yet and
show no clustering when starting from randomly distributed solutes. It is however difficult
to know how the correct clustering evolution will look like in KMC simulations since it is
not guaranteed that the method by Liang et al. shows the correct evolution even though it
produces L10 clusters. Regardless of how the correct clustering evolution will look like in
KMC simulations, the CE method currently have a problem with a negative drift for the
total energy, and it is present both when the total energy decreases and when it increases.
The lack of clustering and drift of total energy might be caused by poor fitting of the ECIs,
but this seems unlikely due to the measures taken to find the optimal fit. Another possible
cause is that the training set is missing important information, or that the information in
the training set is not representative for the structures encountered in the KMC simulation,
which was discussed in more detail in the previous subsection.

75

Chapter 5. Results and discussion

76

Chapter 6
Conclusion

The goal of this master thesis has been to develop a new and more physically accurate
way to calculate activation energies needed for KMC simulations of Al-Mg-Si alloys. The
purpose is to get better insight into the kinetics of early stages of precipitation in Al-Mg-Si
alloys at an atomic level.

During this master thesis a new method for calculating the activation energies needed
in KMC simulations based on the concept of cluster expansion has been developed, pre-
sented and thoroughly tested. The expression have been trained on a set of structures with
activation energies calculated by DFT, which resulted in a low RMSE of 1.77 meV and
LOOCV score of 9.86 meV. Both minimisation of the LOOCV score and the L-curve
criterion have been tested to avoid overfitting the model and both gave similar results. The
fitted expression predicts that some structures have negative activation energies. Most of
these structures will likely have low, but positive, activation energies when calculated with
DFT, but some of them may be negative. If an activation energy is negative it means that
the initial structure is not a local energy minimum and therefore not stable, which indicates
that the structure is not FCC and can therefore not be represented in the current version of
the code.

A workaround to be able to use the current fit to run simulations that conserves the
energy difference between states have been developed and used. Inspection of simulation
results show that no large clusters form at room temperature and large clusters dissolve
if the temperature is T = 400 K or higher. The diffusivities are close to the literature
values if the equilibrium vacancy concentration is used. Total energy relative to the initial
configuration of the lattice have a negative drift compared to the CE MC calculations. A
probable cause for both the total energy drift and lack of clustering is that the training set
has a fairly limited amount of variation in the structures it contains and is therefore missing
important information.

The runtime of the method is low, and a single KMC iteration, which includes calcu-
lation of 12 transition rates, uses 40 µs when running on a single CPU core. This leaves
room for including more lattice sites and higher order terms in the expansion and still be
able to reach long timescales. Due to the limited amount of information in the training

77

Chapter 6. Conclusion

set it is currently not possible to include more sites and not beneficial to include terms for
clusters larger than two.

An in-depth inspection of the method by Liang et al. [1] have been performed during
this work. Simulation results show that the method consistently produces large clusters of
the L10 structure at room temperature, but dissolves them if the temperature is elevated
to T = 350 K. This temperature is relatively low while the increase in zero-point energy
due to dissolving the clusters is over 90 eV, which indicates that the clusters should be
stable at this temperature. It is the activation energies that determines the evolution of the
KMC simulations, this indicates that the activation energies are not very good since they
do not behave as predicted when the temperature is changed from room temperature. The
diffusivities are a few orders of magnitude too high compared to the literature, but this
can be related to the high vacancy concentration that is used. Total energy evolution is
tracked well and only have a small drift compared to the total energy calculations using
the CE MC method. Clustering rates have been logged and the analytical expression for
the evaporation rate have been fitted to the data. The average interfacial energy found from
this line fitting is very close to literature values for the L10 structure. Benchmarking show
that the method is not consistent with the activation energies calculated by DFT and testing
on a large pool of structures show that the Al jumps have a suspiciously narrow range of
activation energies.

Overall, the results show that the method by Liang et al. gives good results for room
temperature and the L10 structure, but benchmarking show that the activation energies are
not physically accurate. A way to calculate more physically accurate activation energies
for the Al-Mg-Si system is needed to obtain information about other cluster structures
than the L10 structure. The developed expression based on cluster expansion shows good
potential, represents the training set very well and is a fast method considering the amount
of terms included. In the current state it does not produce good simulation results, but a
larger and more varied training set will likely improve this.

78

Chapter 7
Future work

This section will present suggestions for how the KMC simulations can be improved to
give better simulation results.

7.1 Improving the activation energies
The current training set is accurately represented by the cluster expansion given by equa-
tion (3.4), but the expansion does not perform well in simulations. This indicates that the
training set is missing important information that the expansion is not able to extrapolate
well. A thorough check of the existing calculations should also be performed to ensure that
the information available is representative for the local environments the KMC simulation
encounters.

If more solutes are added to the DFT calculations it is easy to expand the cluster ex-
pansion to include more lattice sites. Higher order terms can also be implemented if the
expansion is not able to represent the new training set well enough with second order
terms.

7.2 Adding octahedral sites
Octahedral lattice sites should be added to the program to make it possible to form and
represent the important β′′ precipitates. Adding the lattice sites is easy and the octahedral
sites can be given a different site tag in the program than the FCC sites to differentiate
them. This will require some changes to the activation energy calculation, since a separate
expression need to be used for jumps to and from octahedral sites. The addition of the
octahedral sites will also require a change in the expression for the activation energies for
the nearest neighbour jumps, since any occupied octahedral site close to the jump will
affect the barrier. Both these changes to the activation energies will require new DFT
calculations to the train the model on.

79

Chapter 7. Future work

During this work it can be a good idea to make a modular system for event generation
that generates the possible events and assigns the correct activation energy function to
each of them. Care should be taken to ensure that the event generation leads to an ergodic
system.

7.3 Other improvements
Implementing a method for handling flickering states efficiently should be considered
since the DFT calculations have shown that there are some very low activation energies.
The method used in the k-ART implementation, the basin-autoconstructing Mean Rate
Method, calculates the average escape time from the basin of flickering states [21]. It
should be investigated if this method would be a good solution for the on-lattice KMC
program used in this thesis.

Precipitates in the Al-Mg-Si system can contain aluminium, this is the case for the β′′

precipitates, but the current cluster identification only looks for solutes connected through
NN interactions. This has been sufficient so far since the method by Liang et al. [1] only
produces the L10 structure, which only consist of solutes. The cluster identification should
therefore be changed to a method that is not purely based on solute NN interactions. Iden-
tification of different types of clusters and precipitates will also be a useful addition, since
this would allow logged quantities to be dependent on the type of cluster or precipitate.

80

Bibliography

[1] Z. Liang, C. S. T. Chang, C. Abromeit, J. Banhart, and J. Hirsch. The kinetics
of clustering in Al-Mg-Si alloys studied by Monte Carlo simulation. International
Journal of Materials Research, 103(8):980–986, 2012. doi: https://doi.org/10.3139/
146.110798.

[2] R. N. Lumley. Fundamentals of Aluminium Metallurgy : Production, Processing
and Applications. Woodhead Publishing in Materials. Woodhead Publishing, 2011.
ISBN 9781845696542.

[3] J. Hirsch. Automotive trends in aluminium - the european perspective. Materials
Forum, 28:15, 01 2004.

[4] C. D. Marioara, S. J. Andersen, H. W. Zandbergen, and R. Holmestad. The influence
of alloy composition on precipitates of the Al-Mg-Si system. Metallurgical and
Materials Transactions A, 36(13):691–702, 2005. doi: 10.1007/s11661-005-1001-7.

[5] E. Clouet, M. Nastar, A. Barbu, C. Sigli, and G Martin. Precipitation in Al-Zr-Sc
alloys: a comparison between kinetic Monte Carlo, cluster dynamics and classical
nucleation theory. arXiv preprint cond-mat/0507259, 2005.

[6] A. de Moura and A. Esteves. Simulation of the nucleation of the precipitate Al3Sc
in an aluminum scandium alloy using the kinetic Monte Carlo method. In 2013
13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), pages
438–441, Aug 2013. doi: 10.1109/NANO.2013.6721003.

[7] G. Sha and A. Cerezo. Kinetic monte carlo simulation of clustering in an
Al–Zn–Mg–Cu alloy (7050). Acta Materialia, 53(4):907 – 917, 2005. doi: https:
//doi.org/10.1016/j.actamat.2004.10.048.

[8] Ø. T. Nygård. Atomistic simulations of the kinetics of early stages of precipitation in
Al-Mg-Si alloys using kinetic Monte Carlo. Specialisation project at NTNU, 2020.

[9] S.J. Andersen, H.W. Zandbergen, J. Jansen, et al. The crystal structure of the β′′

phase in Al–Mg–Si alloys. Acta Materialia, 46(9):3283 – 3298, 1998. doi: https:
//doi.org/10.1016/S1359-6454(97)00493-X.

81

[10] P. H. Ninive, A. Strandlie, S. Gulbrandsen-Dahl, et al. Detailed atomistic insight
into the β′′ phase in Al-Mg-Si alloys. Acta Materialia, 69:126 – 134, 2014. doi:
https://doi.org/10.1016/j.actamat.2014.01.052.

[11] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz. A new algorithm for Monte Carlo
simulation of Ising spin systems. Journal of computational physics, 17(1):10–18,
1975. doi: https://doi.org/10.1016/0021-9991(75)90060-1.

[12] M. Stamatakis and D. G. Vlachos. Unraveling the complexity of catalytic reactions
via kinetic Monte Carlo simulation: Current status and frontiers. ACS Catalysis, 2
(12):2648–2663, 2012. doi: 10.1021/cs3005709.

[13] D. Molnar, R. Mukherjee, A. Choudhury, et al. Multiscale simulations on the coars-
ening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, molecular dynamics
and phase-field simulations. Acta Materialia, 60(20):6961 – 6971, 2012. ISSN 1359-
6454. doi: https://doi.org/10.1016/j.actamat.2012.08.051.

[14] M. Yu. Lavrentiev, D. Nguyen-Manh, and S. L. Dudarev. Cluster expansion models
for Fe-Cr alloys, the prototype materials for a fusion power plant. Computational
Materials Science, 49(4, Supplement):S199 – S203, 2010. ISSN 0927-0256. doi:
https://doi.org/10.1016/j.commatsci.2010.04.033.

[15] M. Slabanja and G. Wahnström. Kinetic Monte Carlo study of Al-Mg precipitation.
Acta Materialia, 53(13):3721 – 3728, 2005. ISSN 1359-6454. doi: https://doi.org/
10.1016/j.actamat.2005.04.024.

[16] S. Müller, L-W Wang, and A. Zunger. First-principles kinetic theory of precipitate
evolution in Al-Zn alloys. Modelling and Simulation in Materials Science and Engi-
neering, 10(2), 2002. doi: https://doi.org/10.1088/0965-0393/10/2/303.

[17] D. E. Makarov and H. Metiu. A model for the kinetics of protein folding: Kinetic
Monte Carlo simulations and analytical results. The Journal of Chemical Physics,
116(12):5205–5216, 2002. doi: 10.1063/1.1450123.

[18] J. S. Kwon, M. Nayhouse, P. D. Christofides, and G. Orkoulas. Modeling and control
of crystal shape in continuous protein crystallization. Chemical Engineering Science,
107:47 – 57, 2014. ISSN 0009-2509. doi: https://doi.org/10.1016/j.ces.2013.12.005.

[19] M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in Statistical Physics.
Oxford Univerity Press, 2011.

[20] L. K. Béland, P. Brommer, F. El-Mellouhi, and N. Joly, J.F. Mousseau. Kinetic
activation-relaxation technique. Phys. Rev. E, 84:046704, Oct 2011. doi: 10.1103/
PhysRevE.84.046704.

[21] N. Mousseau, L. K. Béland, P. Brommer, et al. Following atomistic kinetics on exper-
imental timescales with the kinetic Activation-Relaxation Technique. Computational
Materials Science, 100:111 – 123, 2015. doi: https://doi.org/10.1016/j.commatsci.
2014.11.047. Special Issue on Advanced Simulation Methods.

82

[22] N. Sandberg, M. Slabanja, and R. Holmestad. Ab initio simulations of clustering
and precipitation in Al-Mg-Si alloys. Computational Materials Science, 40(3):309 –
318, 2007. ISSN 0927-0256. doi: https://doi.org/10.1016/j.commatsci.2007.01.001.

[23] D. Kleiven, O. L. Ødegård, K. Laasonen, and J. Akola. Atomistic simulations of
early stage clusters in Al-Mg alloys. Acta Materialia, 166:484 – 492, 2019. ISSN
1359-6454. doi: https://doi.org/10.1016/j.actamat.2018.12.050.

[24] A. R. Leach. Molecular Modelling Principles and Applications. Prentice Hall, 2nd
ed edition, 2001.

[25] J. L. Klepeis, K. Lindorff-Larsen, R. O. Dror, and D. E. Shaw. Long-timescale
molecular dynamics simulations of protein structure and function. Current Opin-
ion in Structural Biology, 19(2):120 – 127, 2009. doi: https://doi.org/10.1016/j.sbi.
2009.03.004. Theory and simulation / Macromolecular assemblages.

[26] D. E. Shaw, R. O. Dror, J. K. Salmon, et al. Millisecond-Scale molecular dynam-
ics simulations on anton. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, pages 1–11, New York, NY,
USA, 2009. Association for Computing Machinery. ISBN 9781605587448. doi:
10.1145/1654059.1654126.

[27] W. Verestek, A. P. Prskalo, M. Hummel, P. Binkele, and S. Schmauder. Molecular
dynamics investigations of the strengthening of Al-Cu alloys during thermal ageing.
Physical Mesomechanics, 20(3):291–304, 2017. doi: 10.1134/S1029959917030055.

[28] K. M. Carling, G. Wahnström, T. R. Mattsson, N. Sandberg, and G. Grimvall. Va-
cancy concentration in Al from combined first-principles and model potential calcu-
lations. Phys. Rev. B, 67:054101, Feb 2003. doi: 10.1103/PhysRevB.67.054101.

[29] X. Zhang and M. H.F. Sluiter. Cluster expansions for thermodynamics and kinetics of
multicomponent alloys. Journal of Phase Equilibria and Diffusion, 37:44–52, 2016.
doi: 10.1007/s11669-015-0427-x.

[30] Q. Wu, B. He, T. Song, J. Gao, and S. Shi. Cluster expansion method and its applica-
tion in computational materials science. Computational Materials Science, 125:243 –
254, 2016. ISSN 0927-0256. doi: https://doi.org/10.1016/j.commatsci.2016.08.034.

[31] D. Kleiven and J. Akola. Precipitate formation in aluminium alloys: Multi-scale
modelling approach. Acta Materialia, 195:123 – 131, 2020. ISSN 1359-6454. doi:
https://doi.org/10.1016/j.actamat.2020.05.050.

[32] A. Van der Ven, G. Ceder, M. Asta, and P. D. Tepesch. First-principles theory of
ionic diffusion with nondilute carriers. Phys. Rev. B, 64:184307, Oct 2001. doi:
10.1103/PhysRevB.64.184307.

[33] T. Rehman, M. Jaipal, and C. Abhijit. A cluster expansion model for predicting
activation barrier of atomic processes. Journal of Computational Physics, 243:244 –
259, 2013. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2013.03.005.

83

[34] E. Lee, F. B. Prinz, and W. Cai. Ab initio kinetic Monte Carlo model of ionic con-
duction in bulk yttria-stabilized zirconia. Modelling and Simulation in Materials
Science and Engineering, 20(6), 2012. ISSN 0021-9991. doi: https://doi.org/10.
1088/0965-0393/20/6/065006.

[35] J. Nielsen, M. d’Avezac, J. Hetherington, and M. Stamatakis. Parallel kinetic
Monte Carlo simulation framework incorporating accurate models of adsorbate lat-
eral interactions. The Journal of Chemical Physics, 139(22):224706, 2013. doi:
10.1063/1.4840395.

[36] T. Mueller and G. Ceder. Bayesian approach to cluster expansions. Phys. Rev. B, 80:
024103, Jul 2009. doi: 10.1103/PhysRevB.80.024103.

[37] J. Sanchez. Cluster expansions and the configurational energy of alloys. Physical
review. B, Condensed matter, 48:14013–14015, 12 1993. doi: 10.1103/PhysRevB.
48.14013.

[38] J.M. Sanchez, F. Ducastelle, and D. Gratias. Generalized cluster description of mul-
ticomponent systems. Physica A: Statistical Mechanics and its Applications, 128
(1):334 – 350, 1984. ISSN 0378-4371. doi: https://doi.org/10.1016/0378-4371(84)
90096-7.

[39] K. Burke and L. O. Wagner. Dft in a nutshell. International Journal of Quantum
Chemistry, 113(2):96–101, 2013. doi: 10.1002/qua.24259.

[40] G. Henkelman and H. Jónsson. Improved tangent estimate in the nudged elastic
band method for finding minimum energy paths and saddle points. The Journal of
Chemical Physics, 113(22):9978–9985, 2000. doi: 10.1063/1.1323224.

[41] G. Henkelman and H. Jónsson. A dimer method for finding saddle points on high
dimensional potential surfaces using only first derivatives. The Journal of Chemical
Physics, 111(15):7010–7022, 1999. doi: 10.1063/1.480097.

[42] P. C. Hansen and D. P. O-Leary. The use of the L-Curve in the regularization of
discrete ill-posed problems. SIAM Journal on Scientific Computing, 14(6):1487–
1503, 1993. doi: 10.1137/0914086.

[43] J. E. Mebius. Derivation of the Euler-Rodrigues formula for three-dimensional ro-
tations from the general formula for four-dimensional rotations. arXiv Mathematics
e-prints, January 2007.

[44] M. Mantina, Y. Wang, L.Q. Chen, Z.K. Liu, and C. Wolverton. First principles
impurity diffusion coefficients. Acta Materialia, 57(14):4102 – 4108, 2009. ISSN
1359-6454. doi: https://doi.org/10.1016/j.actamat.2009.05.006.

[45] O. M. Løvvik, E. Sagvolden, and Y. J. Li. Prediction of solute diffusivity in Al as-
sisted by first-principles molecular dynamics. Journal of Physics: Condensed Mat-
ter, 26(2):025403, dec 2013. doi: 10.1088/0953-8984/26/2/025403.

84

[46] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev.
B, 47:558–561, Jan 1993. doi: 10.1103/PhysRevB.47.558.

[47] G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for
metals and semiconductors using a plane-wave basis set. Computational Materials
Science, 6(1):15 – 50, 1996. doi: https://doi.org/10.1016/0927-0256(96)00008-0.

[48] J. P. Perdew, J. A. Chevary, S. H. Vosko, et al. Atoms, molecules, solids, and surfaces:
Applications of the generalized gradient approximation for exchange and correlation.
Phys. Rev. B, 46:6671–6687, Sep 1992. doi: 10.1103/PhysRevB.46.6671.

[49] P. C. Hansen, T. K. Jensen, and G. Rodriguez. An adaptive pruning algorithm for the
discrete L-curve criterion. Journal of Computational and Applied Mathematics, 198
(2):483 – 492, 2007. doi: https://doi.org/10.1016/j.cam.2005.09.026. Special Issue:
Applied Computational Inverse Problems.

[50] J. H. Chang, D. Kleiven, M. Melander, et al. CLEASE: a versatile and user-friendly
implementation of cluster expansion method. Journal of Physics: Condensed Matter,
31(32):325901, may 2019. doi: 10.1088/1361-648x/ab1bbc.

[51] E. Clouet, A. Barbu, L. Laé, and G. Martin. Precipitation kinetics of Al3Zr and Al3Sc
in aluminium alloys modeled with cluster dynamics. Acta Materialia, 53(8):2313 –
2325, 2005. ISSN 1359-6454. doi: https://doi.org/10.1016/j.actamat.2005.01.038.

85

86

Appendix A
Introduction to cluster dynamics

This chapter is an excerpt from my specialisation project [8] and introduces cluster dy-
namics. The introduction is useful for understanding the changes done to the cluster rate
observer and for the discussion of the results presented in section 5.7.

A.1 Cluster dynamics
Cluster dynamics is a mesoscopic model for modelling time evolution of cluster size dis-
tribution in materials. This method has a very low computational cost compared to KMC
and is suited to simulate larger systems for larger timescales. The limitation of the model
is that it is not possible to study structures of precipitates and spatial distribution as only
the cluster size distribution is available. The introduction of cluster dynamics given in this
section is for a binary alloy and is based on the work by Clouet et al. [51]. The governing
equations for cluster dynamics are

dCn
dt

= Jn−1→n − Jn→n+1 ∀n ≥ 2 (A.1a)

dC1

dt
= −2J1→2 −

∑
n≥2

Jn→n+1, (A.1b)

where Cn is the probability of observing a cluster of size n and Jn→n+1 is the flux of
clusters going from size n to n+ 1. The fluxes can be calculated as

Jn→n+1 = βnCn − αn+1Cn+1, (A.2)

where βn is the condensation rate for clusters of size n and αn is the evaporation rate. The
condensation rate is the rate at which a cluster of size n receives a single solute from solid
solution and becomes size n + 1. The evaporation rate αn is correspondingly the rate for
a cluster of size n loose a single solute and becomes size n− 1.

87

By solving the diffusion problem under the assumption of the clusters being spherical,
the condensation rate can be obtained

βn = 4πrn
D

Ω
C1, (A.3)

where D is the diffusivity for the solute in pure aluminium and Ω is the average volume
per FCC lattice site.

The evaporation rate cannot be obtained directly. In [51] the expression for the evap-
oration rate is determined by assuming that the evaporation rate does not depend on the
surrounding solid solution, then solving the governing equations, equation (A.1), with
zero fluxes and divide the free energy of forming the cluster into a volume and surface
contribution. The resulting expression for the evaporation rate is

αn+1 = 4πrn
D

Ω
exp [(36π)1/3a2((n+ 1)2/3σn+1 − n2/3σn − σ1)/kBT], (A.4)

where σn is the interface free energy for a cluster of size n. To approximate σn an exten-
sion of the capillary approximation is used

σn = σ̄(1 + cn−1/3 + dn−2/3), (A.5)

where c is a constant for the line contribution, d is a constant for the point contribution and
σ̄ is the isotropic average interface free energy. By assuming spherical clusters, rn ∝ n1/3,
and inserting equation (A.5) into (A.4) the expression for αn can be written as

αn = An1/3 exp [(36π)1/3a2σ̄{(n+ 1)2/3 − n2/3 + c((n+ 1)1/3 − n1/3)}/kBT],
(A.6)

where A is a temperature dependent constant given by

A =

(
4
√

3π

Ω

)2/3

D exp [−(36π)1/3a2σ̄{1 + c+ d}/kBT]. (A.7)

88

Appendix B
User manual and documentation

This appendix includes some user manuals for how to get started with using the code. It
will cover how to setup and run simulations, show the different available observers and
how to implement new observers, how to setup a cluster expansion, including creation of
training set and fitting of ECIs, a table of the interpretation of all the variables in equation
(3.4) and documentation of the Python interface. The project is currently in a private
repository on gitlab under NTNUMaterialsTheory/skmc. The project is setup such that
gitlabs servers will automatically compile the code and run the implemented test cases
when pushing commits, which ensures that the code is in a working condition at all times.
When implementing new features, new tests should also be added to ensure that the code
is always in a working condition. All Python scripts referred to in this appendix is stored
in the folder scripts of the skmc repository while the C code is stored in the src folder.

B.1 Running KMC simulations
With the new Python interface, it is easier to setup KMC simulations, either by modifying
the existing script run KMC.py or by creating a script from scratch. The default script,
run KMC.py, have many command line options, which are listed in Table B.1 together
with the default values. The command line options are very useful when performing many
simulations with the same logging scheme since then they can all be launched manually
from the terminal or from a simple bash script without altering the Python script.

For changing the logging scheme, it is necessary to edit the lines in run KMC.py that
adds observers to the KMC object. For more information on the available observers and
the meaning of the different parameters for setting the logging schedule for each observer
see the next subsection.

Setting up the lattice is currently either done by the KMC script with a random start
configuration or from a POSCAR file. The POSCAR file needs to include the vacancy
position and mark the type of the atom as ”X” for the code to automatically find the po-
sition of the vacancy which is needed for running the simulation. Setup of a lattice from
a POSCAR file is done by a script that uses the Python interface to make an empty lattice

89

with the correct cell size and then each lattice site with the correct atom type is added
one by one. It is therefore easy to implement support for other lattice formats such as
XYZ by implementing a short Python script similar to the one already implemented in
read poscar.py.

If the simulation is using the cluster expansion based rate calculator, selected by the
”-r CE” command line option, then the filepath to a json file needs to be specified with the
option ”-j”. The setup of the cluster expansion is automatic except from the user needs to
set ”--Ndist” to a large enough value manually to ensure that the neighbourlist contains all
neighbours that are included in the clusters of the cluster expansion.

Table B.1: The default value and description for all the optional arguments to the script run KMC.py.
For most of the options there is a shortcut (-) in addition to the long option name (--). If vacancy
concentration is not set manually it is calculated according to equations (2.11) and (2.12), with values
given in the start of chapter 5.

Option Default Description
--seed, -s 42 Seed for random number generator (RNG)
--endTime, -e 1 End time for the KMC simulation (s)
--ratecalc, -r liang Rate calculator [CE, liang]
--jsonFname, -j None Relative path to json file from fit barriers.py
--poscarInputLattice, -p None Relative path to POSCAR file
--temperature, -t 293.15 K Temperature of system (K)
--Cv, -c None Set vacancy concentration manually
--MgAtPerc 0.67 at.% Set at.% of Mg for random start config
--SiAtPerc 0.77 at.% Set at.% of Si for random start config
--Ndist 4.45 Å Cutoff distance for neighbourlist
--NNdist 3.0 Å Cutoff distance for nearest neighbours

B.2 Observers and logging
Observers are used to log and observe different quantities during the KMC simulation, a
flowchart that shows when observers observe function is called is shown in Figure 4.1. The
selection of available observers, together with what they observe and the filename pattern
for their output files, are listed in Table B.2. All observers are based around the observer
struct shown in listing 4.1.

In addition to logging the initial and final state, the observers can also be set to log
during the simulation. As mentioned in section 4.1 it is possible to set the logging interval
to be fixed, logarithmic or a combination of the two. After each call to the observers
o b s e r v e () function n e x t o b s is updated according to n e x t o b s = f a c t o r ·
n e x t o b s + f i x e d o f f s e t . For fixed interval logging f a c t o r should be set to
unity. For logarithmic logging f i x e d o f f s e t should usually be set to 1 instead of 0 to
ensure that even when f a c t o r · n e x t o b s is less than 1 the next observation will still
be increased by at least one.

To implement a new observer, the first step is to find out what to observe and what
kind of data that is needed to do the logging. The observe function have two parameters,

90

the observer struct, which is needed to access the observers information, and the KMC
struct, which contain all data for the current state of the simulation, but no history except
for information about the last jump. Any additional information that the observer needs
to keep track of should be made into a struct that can be saved in the data pointer of
the observer struct. The next step is to implement (i) a f r e e () function, that frees the
allocated data and the observer struct, (ii) the o b s e r v e () function that performs the
logging and (iii) a function for allocating and initialising the observer. For the observer to
be visible to Python a binding function should be added to the SWIG file.

B.3 Setting up cluster expansion for KMC
The goal of this section is to go through the details of the workflow for going from a set
of output files from DFT calculations to a finished fit that can be used as an input file for
KMC simulations. For a graphical illustration of the workflow see Figure 3.3.

The only information that is needed from the DFT calculations are the activation ener-
gies, given in eV. These energies must be paired with the initial unrelaxed lattice for the
jump as well as the index for site i and site j. The reason for having the unrelaxed lattice
is that the KMC simulations are performed on a fixed FCC lattice. Furthermore, it is also
necessary for setting up the site groups consistently for all the structures in the training set.
All of this information can be stored in a slightly modified POSCAR file. The first line in
a POSCAR file is a comment line, this line is used to store the activation energy, and has
the form ”DEnergy=x.xxxx”. A regular POSCAR file does not store any vacancies, but
since it is needed for setting up the site groups it is added to the POSCAR and marked with
atom type ”X”. The last convention is that the first lattice site in the POSCAR is always
the vacancy, j = 0, and the atom performing the jump is always the next lattice site, i = 1.

The next step is to create the training set consisting of X and ~y, as introduced in section
3.4, which is the input for the fitting procedure. The activation energies are stored in the
vector ~y and each row in matrix X contains the rightmost sum in equation (3.4) for all the
ECIs in ~V . The training set will be stored in a text file where the first section of the file
contains information about all the different site groups and the rest contains one line per
POSCAR. The first element of each line is the filename, the next elements are the sums for
all the different site groups and combinations ofXi and ~q, the last element is the activation
energy. To create this text file the python script create sum file.py is used. The path to the
folder containing the special POSCAR files is given as the first argument, the other options
are to set a relative path for the output file, -o, print out the poscar and the site group data,
-i, and creating a second file where no duplicate sum combinations are included.

It is during the creation of the training set that the combination of site groups is deter-
mined by the user, after the training set has been created the setup of site groups for calcula-
tions will be done automatically. Before running create sum file.py any changes to the site
group combinations should be done by editing the function s e t u p E a c t d a t a m a n u a l ()
and the arrays used by this function. There are functions for creating all pair site groups
with a given pair distance or creating all single site groups within a certain distance. It is
however recommended to explicitly setup the site groups since the small DFT simulation
cells can give some pairs that are only there because of the cell size and the periodic bound-
ary conditions. If these are included in the training set the automatic setup of E a c t d a t a

91

will fail since these site groups will be empty in the larger KMC simulation lattice. To get
the correct site groups when NNN of site i and j are included, the cell size must be at least
4× 4× 4 unit cells. A script to pad 3× 3× 3 cells into 4× 4× 4 is located in the scripts
folder in the gitlab repository.

The text file created by create sum file.py is used as input to the fitting routine and
the path to this file is the first input parameter for fit barriers.py. The option --strategy
is used to set the strategy for the hyperparameter optimization and can be set to grid or
random, with random as the default value. If the random strategy is used --num attempts
can be used to set the number of attempts. For prior distributions with few combinations
of hyperparameter values, it is wise to use the grid strategy since this will test all possible
combinations once. When the number of combinations is large it can be useful to first use
a random search and then do a grid search with values close to the ones found by the initial
random search. The number of partitions used to calculate the cross-validation score can
be set by using the option --partitions. The last option is --out and sets the path for the
output file. This fitting creates a json file which contains all the information from the input
file, the coefficients and the inverse variance used for the best fit.

The calculation of the Qαα term for each ECI, also referred to as inverse variance
in the program, is implemented as classes in the file inv var.py. The choice of inverse
variance calculator, which is effectively the choice of prior distribution, is done by altering
the corresponding lines of code in fit barriers.py. Since the inverse variance calculators
are implemented as classes it is easy to implement a new prior by making a new class for
it.

92

Table B.2: Available observers, can be added by calling kmc.add obs ”name”, the output file names
are on the form ”basename””called” ”output extension”, where ”basename” is from the KMC struct
and called is the number of times the observer has been called. The energy, append statfile and
CD rates observers only use one output file and appends a new line each time the observe function
is called.

Name Function Output extension

print info Prints current iteration, KMC time
and CPU time to terminal None

energy Logs the total energy of the system
relative to the start configuration. tot energy.txt

CD rates

Logs rates for evaporation and
condensation of single solutes. For
each event start and end size for the
cluster, cluster composition and
time between events are logged.

.rates

write XYZ Writes lattice to XYZ format. .xyz

write POSCAR Writes lattice to POSCAR format. .POSCAR

write POSCAR noAl Writes lattice to POSCAR format,
Al is excluded. .POSCAR-noAl

write cube Writes lattice to Gaussian cube
format .cube

write KMC Writes the KMC struct to file .kmc

append statfile

Logs KMC time, iterations, CPU
time, number of clusters, average-,
minimum- and maximum cluster
size, percentage of solutes that are
part of dimer or larger clusters and
diffusivities

.stat

write XYZ clusters
Writes all solutes participating in
clusters of size>= 2 to XYZ
format

clusters.xyz

write cluster hist Writes histogram of cluster sizes to
file .hist

write cluster pos
Writes position of all solutes
participating in clusters of
size>= 2 to file

.pos

write neighbours

Write all sites in the neighbourlist
of specified site to file first time its
observe function is called. Option
to use different atomic element for
each site to visualise the sorting

Neighbours site”site
index”.xyz

93

B.4 Table of variables for main equation of CE for KMC

Table B.3: Interpretation and implementation of all the variables in equation (3.4).

Variable Interpretation Implementation

Eact
ij

Activation energy needed for atom
at site i to jump to site j

Return value of function
g e t E a c t E a c t d a t a

Xi Atom type at site i Stored as first element of each row
in atomcombs

V Xi ECI for a jump in pure aluminium Stored as coefficients in a
s i t e g r o u p with o r d e r =0

α
Contains a set of symmetrically

equivalent clusters

The properties for a cluster to be
part of α is stored in the

d e s c r i p t o r struct of the
s i t e g r o u p

Sαij

Contains the lattice site indices to
all the clusters in α for a jump from

site i to j

Indices to their position in
neighbourlist of site i is stored in

i n d e x a r r a y 1

~k
Vector of lattice site indices for a

cluster from Sαij
See implementation field of Sαij

~q

Decoration vector, length equal to
number of sites in cluster, each

element is [Mg, Si]. Together with
equation (3.5) it defines a cluster

basis function

For each coefficient the
corresponding decoration vector is

stored in atomcombs 2

n~q(X~k)
Cluster basis function for cluster
consisting of lattice sites ~k and

decoration vector ~q

Calculated by c a c l u l a t e s u m ,
where the sum is over all ~k ∈ Sαij

and any equivalent ~q

1To get lattice site index for element l of the i n d e x a r r a y use
s i−>n e i g h b o u r s [o r i e n t a t i o n m a t r i x [k] [i n d e x a r r a y [l]]] where k is the position of
site j in the neighbourlist of site i.

2The first element of atomcombs is reserved for Xi. If several decoration vectors are equivalent they
will be automatically added to the row of atomcombs and the number of vectors in the row are stored in
n e q u i v a l e n t .

94

Contents
Module skmc.skmc 2
Classes . 2

Class Basis . 2
Instance variables . 2

Class Eact_data . 2
Instance variables . 2
Methods . 3

Class KMC . 5
Instance variables . 5
Methods . 6

Class Lattice . 8
Instance variables . 8
Methods . 9

Class Model . 11
Instance variables . 11
Methods . 11

Class Site . 12
Instance variables . 12
Methods . 12

Class descriptor . 13
Instance variables . 13

Class pair_descriptor_data . 13
Instance variables . 13

Class single_descriptor_data . 14
Instance variables . 14

Class site_group . 14
Instance variables . 14
Methods . 15

1

B.5 Documentation of Python interface for KMC

95

Module skmc.skmc

Python bindings to skmc.

Classes

Class Basis

class Basis(sitetag: int, symbol: char const *, sx: double, sy: double,
sz: double)

Proxy of C _Basis struct.
Represents a basis site in the unit cell - only used for creating the lattice.

Instance variables

Variable sitetag Application specific tag for this site

Variable symbol Symbol of element occupying this site (use “X” for vacancy)

Variable sx Scaled x-coordinate for this site

Variable sy Scaled y-coordinate for this site

Variable sz Scaled z-coordinate for this site

Variable thisown The membership flag

Class Eact_data

class Eact_data()

Proxy of C _Eact_data struct.
Struct for storing all data needed for calculation of activation energies using cluster expansion method.

Instance variables

Variable site_groups Array containing all site_groups for the potential.

Variable n_groups Number of site_groups.

Variable size Allocated size of site_groups.

Variable n_elem Number of different elements in the lattice, excluding the vacancy.

Variable jump_freq Array of length n_elem that contains the jump attempt frequency for the different
elements.
Same order as lattice->Z.

2

Variable orientation_matrix An array with size n_possible_swaps X n_neighbours.
The first dimension is the number of swap possibilities for an atom, the second dimension is the number
of elements in the neighbour list of the atom.
The array contains indices to elements in the neighbour list.
If swapping an atom to site number j in the original sites neighbourlist, row j of this array should be
used when accessing elements.
neighbours[orientation_matrix[j][other_neighbour_index]].

Variable thisown The membership flag

Methods

Method add_const_site_group

def add_const_site_group(self) -> 'void'

Adds site group for constants in Eact_data.

Method add_pair_site_group

def add_pair_site_group(self, lattice: Lattice, dist1: double, dist2: double,
pr_dist: double, offset1: double, offset2: double, tol: double) -> 'int'

Set up a pair site group for the given parameters.

Method add_pair_site_group_irow

def add_pair_site_group_irow(self, lattice: Lattice, dist1: double,
dist2: double, pr_dist: double, offset1: double, offset2: double, tol: double,
i: int, row: int) -> 'int'

Set up a pair site group for the given parameters using specified i and row during setup.

Method add_pair_site_groups

def add_pair_site_groups(self, lattice: Lattice, pr_dist: double, tol: double)
-> 'void'

Will add all possible pairs with given pr_dist and tol from neighbouring sites that are part of a ‘single’
site group.

Method add_pair_site_groups_irow

def add_pair_site_groups_irow(self, lattice: Lattice, pr_dist: double,
tol: double, i: int, row: int) -> 'void'

Will add all possible pairs with given pr_dist and tol from neighbouring sites that are part of a ‘single’
site group. Uses specified i and row during setup.

Method add_single_site_group

def add_single_site_group(self, lattice: Lattice, distance: double,
offset: double, tol: double) -> 'int'

Set up a single site group for the given parameters.

Method add_single_site_group_irow

def add_single_site_group_irow(self, lattice: Lattice, distance: double,
offset: double, tol: double, i: int, row: int) -> 'int'

Set up a single site group for the given parameters using specified i and row during setup.

3

Method add_single_site_groups

def add_single_site_groups(self, lattice: Lattice, maxdist: double,
tol: double) -> 'void'

Set up site groups based on single_descriptors.All neighbours with distance <= maxdist, will be included
in a site group.

Method add_single_site_groups_irow

def add_single_site_groups_irow(self, lattice: Lattice, maxdist: double,
tol: double, i: int, row: int) -> 'void'

Set up site groups based on single_descriptors.All neighbours with distance <= maxdist, will be included
in a site group. Uses specified i and row during setup.

Method get_header_for_sums

def get_header_for_sums(self) -> 'char *'

Returns header for sums calculated using calculate_sums_from_lattice.

Method get_jump_freq

def get_jump_freq(self) -> 'obj_t *'

Returns a copy of array of jump attempt frequency for the different elements.

Method get_n_groups

def get_n_groups(self) -> int

Returns n_groups from Eact_data.

Method get_orientation_matrix_row

def get_orientation_matrix_row(self, row: int) -> 'obj_t *'

Returns specified row of the orientation matrix.

Method get_poscar_fname

def get_poscar_fname(self, lattice: Lattice, j: int, i: int) -> 'char *'

Returns poscar filename for the jump from i to j based on the single site groups in data.

Method get_site_group

def get_site_group(self, i: int) -> 'struct _site_group *'

Returns site group number i.

Method resize_to_n_groups

def resize_to_n_groups(self) -> 'void'

Resizes site_groups to the current number of groups.

Method set_jump_freqs

def set_jump_freqs(self, jump_freqs: obj_t *) -> 'void'

Sets the jump frequencies for the Eact_data. jump_freqs should be a numpy array of type double and
length of n_elem, sorted same way as the n_elem first elements of Z in lattice.

4

Method show

def show(self) -> 'void'

Prints Eact data to terminal.

Method write_site_groups_to_xyz

def write_site_groups_to_xyz(self, lattice: Lattice, j: int, i: int,
filename: char const *) -> 'void'

Writes site groups in Eact_data to a xyz file with different element for each site group.

Class KMC

class KMC(lattice: Lattice, model: Model, end_time: double, j: int,
rate_function: char *)

Proxy of C _KMC struct.
Struct describing the complete KMC model.

Instance variables

Variable lattice Pointer to lattice structure.
This structure will not be changed.
Hence, the elements in lattice-sites corresponds to the initial configuration.

Variable time Current simulation time (s).

Variable end_time End time for the simulation (s).

Variable jumps Current number of KMC-steps performed.

Variable model Model parameters provided by the user.

Variable solutes Array of element numbers for solute elements.
Length: model.nsolutes

Variable perm Array with element permutations.
The current element at site i is given by lattice->sites[perm[i]].elem.

Variable iperm The inverse of perm.
Atoms are ordered according to their original positions in lattice.
A pointer to the current site of atom i can be obtained with lattice->sites + iperm[i].

Variable dd Array of diffusion data for each atom.
The order of the elements in this array is fixed and corresponds to the initial configuration in lattice-
>sites.
Length: lattice->n

Variable diffusion_time Time at which we started to collect diffusion data (i.e. time since last call to
resetDiffusion()) (s).

5

Variable diffusion_jump Same as diffusion_time but stores iteration number instead of time.

Variable timescale Time scale (1/s).

Variable nnmax Max number of nearest neighbors of any site.

Variable R Cumulative sum of rates; length: nnmax+1

Variable observers List of observers.

Variable observers_len Allocated length of ‘observers’.

Variable get_rate Function pointer to the rate finder for the KMC.
Returns the jump rate for a jump (of the vacancy) from site j to i.

Variable get_energy Function pointer to the energy calculator for the KMC. Returns the activation
energy for a jump (of the vacancy) from site j to i.

Variable get_rate_data Void pointer to all extra data needed by the get_rate function.

Variable j Index to site with vacancy.

Variable old_j Index to where vacancy was before most recent kmcStep.

Variable thisown The membership flag

Methods

Method add_obs_CD_rates

def add_obs_CD_rates(self) -> 'void'

Add CD_rates observer to KMC.

Method add_obs_append_statfile

def add_obs_append_statfile(self, fixed_offset: uint64_t, factor: double,
use_time: int, cl_data: struct _cluster_data *) -> 'void'

Add append_statfile observer to KMC. Appends a line of statistics in the statfile each time observe is
called.

Method add_obs_print_info

def add_obs_print_info(self, fixed_offset: uint64_t, factor: double,
use_time: int) -> 'void'

Add print_info observer to KMC.

6

Method add_obs_write_KMC

def add_obs_write_KMC(self, fixed_offset: uint64_t, factor: double,
use_time: int) -> 'void'

Add write_KMC observer to KMC, writes KMC struct to file.

Method add_obs_write_POSCAR

def add_obs_write_POSCAR(self, fixed_offset: uint64_t, factor: double,
use_time: int) -> 'void'

Add write_POSCAR observer to KMC, writes lattice to file using the POSCAR format of VASP.

Method add_obs_write_POSCAR_noAl

def add_obs_write_POSCAR_noAl(self, fixed_offset: uint64_t, factor: double,
use_time: int) -> 'void'

Add write_POSCAR observer to KMC, writes lattice to file using the POSCAR format of VASP. Ex-
cludes all Al atoms

Method add_obs_write_XYZ

def add_obs_write_XYZ(self, fixed_offset: uint64_t, factor: double,
use_time: int) -> 'void'

Add write_XYZ observer to KMC, writes lattice to file using extended XYZ format.

Method add_obs_write_XYZ_clusters

def add_obs_write_XYZ_clusters(self, fixed_offset: uint64_t, factor: double,
use_time: int, cl_data: struct _cluster_data *) -> 'void'

Add write_XYZ_clusters observer to KMC. Writes lattice to file using extended XYZ format, but only
atoms in clusters of size>=2 are included.

Method add_obs_write_cluster_hist

def add_obs_write_cluster_hist(self, fixed_offset: uint64_t, factor: double,
use_time: int, cl_data: struct _cluster_data *) -> 'void'

Add write_cluster_hist observer to KMC. Calculates histogram of cluster sizes and writes it to .hist file.

Method add_obs_write_cluster_pos

def add_obs_write_cluster_pos(self, fixed_offset: uint64_t, factor: double,
use_time: int, cl_data: struct _cluster_data *) -> 'void'

Add write_cluster_pos observer to KMC. Writes position of all cluster atoms to a .pos file.

Method add_obs_write_cube

def add_obs_write_cube(self, fixed_offset: uint64_t, factor: double,
use_time: int) -> 'void'

Add write_cube observer to KMC, writes lattice to file using Gaussian Cube format.

7

Method add_obs_write_neighbours

def add_obs_write_neighbours(self, i: int, differentElement: int) -> 'void'

Add write_neighbours observer to KMC, writes neighbours of site i at initial configuration to file. If
differentElement is true the function will give each site a different element such that it is possible to show
the sorting of the neighbours in for example ovito.

Method add_obs_energy

def add_obs_energy(self, fixed_offset: uint64_t, factor: double, use_time: int)
-> 'void'

Add energy observer to kmc, logs the change in total energy for each jump and writes the energy to file
with set logging scheme.

Method make_cl_data

def make_cl_data(self) -> 'struct _cluster_data *'

Allocate and initialize cluster_data struct for given KMC

Method run

def run(self) -> 'void'

Run KMC until end_time is reached.

Method set_get_rate_data

def set_get_rate_data(self, data: void *) -> 'void'

Set the get_rate_data pointer for the KMC struct.

Class Lattice

class Lattice(nx: int, ny: int, nz: int, a: double, symbol: char const *,
maxdistMultiplier: double = 0.9)

Proxy of C _Lattice struct.
Represents a periodic lattice supercell of size nx * ny * nz. The default initiator creates a fcc lattice with
lattice parameter a of element symbol. maxdistMultiplier is multiplied with a to set the cutoff radius for
neighbour lists.

Instance variables

Variable cell Three vectors, cell[0], cell[1], cell[2], defining the simulation cell

Variable volume Volume of the simulation cell (Åˆ3)

Variable orthorhombic Whether the lattice is orthorhombic (cell vectors are perpendicular and along
the Cartesian axis)

Variable n Number of sites

Variable sites Array of sites; Length: n

8

Variable nele Number of different atomic elements in the system

Variable Z Array of atomic numbers of the different elements in the system sorted in descending order;
Length: nele

Variable thisown The membership flag

Methods

Method addRandomSolute

def addRandomSolute(self, n: int, symbol: char const *, sitetag: int = 0,
put_symbol: char const * = None) -> 'void'

Adds n solute atoms of thpe symbol to the lattice, replacing existing atoms. If sitetag is equal or greater
than zero, solutes will only be added to sites with this sitetag. If elem is equal to or greater than zero,
solutes will only be added to sites with this atom.

Method addSolute

def addSolute(self, i: int, symbol: char const *) -> 'void'

Adds solute atom symbol to site i.

Method add_site

def add_site(self, s: Site, symbol: char const *) -> 'void'

Adds a site to the lattice and sets elem according to specified atomic symbol, disregards elem field of the
given site.

Method calculate_energy_Eact_data

def calculate_energy_Eact_data(self, data: Eact_data, j: int, i: int) ->
'double'

Calculate energy from current lattice configuration instead of using the perm array. This function will
only be used for calculating energy for POSCAR files.

Method calculate_energy_liang

def calculate_energy_liang(self, j: int, i: int) -> 'double'

Returns the activation energy for a jump from site i to j.Calculated from the initial configuration of the
lattice, not used for running kmc, only for calculating energy of jumps from poscar files.

Method calculate_sums_from_lattice

def calculate_sums_from_lattice(self, data: Eact_data, j: int, i: int) ->
'obj_t *'

Calculate sums from current lattice configuration instead of using the perm array. This function will
only be used for calculating sums for precalculated energies.

Method calculate_vector_from_iToj

def calculate_vector_from_iToj(self, i: int, j: int) -> 'obj_t *'

Return the vector from lattice site i to lattice site j.

9

Method copy

def copy(self) -> 'struct _Lattice *'

Returns a deep copy of the lattice.

Method defineNN

def defineNN(self, maxdistNN: double, maxdist: double) -> 'void'

Defines nearest neighbours in the lattice, include all sites with distance <maxdist. Resulting neigh-
bourlist is not sorted.

Method elementNumber

def elementNumber(self, symbol: char const *, add: int) -> 'int'

Returns element number of symbol, or -1 if add is zero and symbol is not already in lattice->Z. If add
is non-zero and symbol is not already in lattice->Z, it is added to the lattice->Z.

Method getMaxN

def getMaxN(self) -> int

Returns the maximum number of neighbours of any site in the lattice.

Method getMaxNN

def getMaxNN(self) -> int

Returns the maximum number of nearest neighbours of any site in the lattice.

Method get_Z

def get_Z(self) -> 'obj_t *'

Returns a copy of array of atomic numbers of all elements in the system (including vacancy).

Method get_cell

def get_cell(self) -> 'obj_t *'

Returns a copy of the supercell vectors (cell vectors along rows).

Method get_elements

def get_elements(self) -> 'obj_t *'

Returns a copy of elem for each site.

Method get_n

def get_n(self) -> int

Returns number of sites in lattice.

Method get_positions

def get_positions(self) -> 'obj_t *'

Returns an Nx3 array with position of each site.

10

Method get_site

def get_site(self, i: int) -> 'struct _Site *'

Returns the site instance at index i.

Method get_sitetags

def get_sitetags(self) -> 'obj_t *'

Returns a copy of the tags for each site.

Method make_empty_Eact_data

def make_empty_Eact_data(self) -> 'struct _Eact_data *'

Creates and returns an empty Eact_data instance for lattice.

Method sortAllNeighbourListsFCC

def sortAllNeighbourListsFCC(self) -> 'void'

Sorts the neighbour list for all sites in the lattice, sorted by distance, relx, rely and relz, smallest first.
This ensures that nearest neighbours are first, second nearest are next and so on.

Class Model

class Model(Cv: double, T: double, basename: char *)

Proxy of C _Model struct.
Struct filled in by user to describe the model.

Instance variables

Variable Cv Vacancy consentration (at. fraction). This may be changed during simulation, e.g. in
response to temperature changes.

Variable T Temperature of the system in Kelvin.

Variable nsolutes Number of solute elements.

Variable solute_names Array of chemical symbols of solute elements; Length: nsolutes

Variable basename Base name of for output files.

Variable thisown The membership flag

Methods

Method addSoluteName

def addSoluteName(self, symbol: char *) -> 'int'

Add symbol to solute_names. Returns -1 if symbol is already in solute_names.

11

Method show

def show(self) -> 'void'

Prints model struct to terminal.

Class Site

class Site(elem: int, x: double, y: double, z: double, sitetag: int = 0,
n_nn: int = 0, n: int = 0, neighbours: int * = None)

Proxy of C _Site struct.
Represents a lattice site.

Instance variables

Variable elem Element index (lattice->Z[elem] gives atomic number)

Variable sitetag Application specific tag for this site

Variable x x-coordinate of site (Å)

Variable y y-coordinate of site (Å)

Variable z z-coordinate of site (Å)

Variable n_nn Number of nearest neighbours

Variable n Number of neighbours

Variable neighbours Array of neighbour indices; Length: n. First n_nn elements are nearest neigh-
bours.

Variable wrap Array of wrap flags; Length: n

Variable dists Array of nearest neighbour distances (Å); Length: n

Variable thisown The membership flag

Methods

Method get_dists

def get_dists(self) -> 'obj_t *'

Returns a copy of the array of the distances to the neighbours.

Method get_n

def get_n(self) -> int

Returns number of neighbours.

12

Method get_neighbours

def get_neighbours(self) -> 'obj_t *'

Returns a copy of the neighbour indices.

Method get_positions

def get_positions(self) -> 'obj_t *'

Returns a copy of the position of this site in absolute coordinates.

Method get_wrapflags

def get_wrapflags(self) -> 'obj_t *'

Returns a copy of wrapflags array.

Class descriptor

class descriptor()

Proxy of C descriptor struct.

Instance variables

Variable type String describing the type of descriptor

Variable free Free all data for descriptor and the descriptor itself.

Variable n_neighbours Number of neighbours that need to be in the neighbours list sent to the check
function.

Variable check Check if a neighbour fulfills the requirements of the descriptor

Variable get_str Function to get string with info about descriptor.

Variable data Pointer to all data needed by descriptor.

Variable thisown The membership flag

Class pair_descriptor_data

class pair_descriptor_data()

Proxy of C pair_descriptor_data struct.

Instance variables

Variable dist1 Distance to site 1, measured from initial site of atom.

Variable dist2 Distance to site 2, measured from initial site of atom.

13

Variable offset1 The offset for site 1, measured along swap direction, with origin in the initial site of
atom.

Variable offset2 The offset for site 2, measured along swap direction, with origin in the initial site of
atom.

Variable pr_dist Distance between the two sites in the pair.

Variable tol Tolerance used for checking.

Variable thisown The membership flag

Class single_descriptor_data

class single_descriptor_data()

Proxy of C single_descriptor_data struct.
init(self) -> single_descriptor_data

Instance variables

Variable distance Distance from the atom that is being swapped.

Variable offset The offset is measured along swap direction, with origin in the initial site of atom.

Variable tol Tolerance used for checking.

Variable thisown The membership flag

Class site_group

class site_group()

Proxy of C _site_group struct.
Stores all symmetrically equivalent clusters that fulfill the descriptor of the site group. Also stores all
coefficients, with their respective atomic combinations, for this collection of clusters.

Instance variables

Variable index_array Stores an array of indices for all clusters included in this group. The indices are
the position of the lattice sites in the neighbour list of site i.
The list is stored as a 1D array, so if the order is for example 2, then element 0 and 1 is the first cluster,
2 and 3 is the second cluster and so on.

Variable n_sites Number of elements in index_array.

Variable size Number of elements allocated for index_array.

Variable order Order of the term, the number of lattice sites in each cluster.

14

Variable descriptor Pointer to a descriptor that describes the conditions to be a part of this
site_group.

Variable n_coeffs Number of stored coefficients for this site.

Variable coeffs Stores coefficients.

Variable atomcombs Stores atomic numbers for use with coefficients.
It is a 2D arrray with n_coeffs rows and varying number of columns, number of columns for row k is
1+n_equivalent[k]*order.
The first column is the atom type that jumps, the remaining are all equivalent atom combinations for
the neighbours.

Variable n_equivalent Array that stores number of equivalent combinations for each row of atom-
combs.

Variable thisown The membership flag

Methods

Method add_coefficient

def add_coefficient(self, coeff: double, atomcomb: obj_t *) -> 'int'

Adds a coefficient to a site group.atomcomb is a 1D array that wil be added as a column in atomcombs.If
arr_size does not match order+1 it will abort and return -1.If the given atomcomb is already present
it will change the value of coeff and return 2.If atomcomb does not already exist, both coefficient and
atomcomb is added and return 1.

Method get_index_array

def get_index_array(self) -> 'obj_t *'

Returns a copy of the index array.

Method get_n_sites

def get_n_sites(self) -> int

Returns n_sites for a site_goup.

Method get_order

def get_order(self) -> int

Returns order of site_group.

Method get_str

def get_str(self) -> 'char *'

Returns string with info about site_goup.

Method get_str_coeffs

def get_str_coeffs(self) -> 'char *'

Returns string with info about the coefficients for a site_goup.

15

Method print_coeffs

def print_coeffs(self) -> 'void'

Prints site group coefficients to terminal.

Method show

def show(self) -> 'void'

Prints site group to terminal.

16

Ø
ystein Torm

odsen N
ygård

Kinetic M
onte Carlo sim

ulations of precipitation in Al-M
g-Si alloys

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

M
as

te
r’s

 th
es

is

Øystein Tormodsen Nygård

Kinetic Monte Carlo simulations of the
early stages of precipitation in Al-Mg-Si
alloys using ab initio based activation
energies

Master’s thesis in Applied Physics and Mathematics

Supervisor: Jesper Friis and Jaakko Akola

July 2020

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Theory
	Introduction to Al-Mg-Si alloys and precipitation hardening
	Rejection-free Kinetic Monte Carlo
	Requirements for good KMC moves
	Comparison to other methods
	KMC for atomistic simulations of precipitation in Al-Mg-Si alloys

	Existing expression for activation energies in Al-Mg-Si alloys

	Cluster expansion
	General cluster expansion
	Adapting cluster expansion for use in KMC
	Creating the training set
	Determination of effective cluster interactions
	Expanding the training set efficiently

	Implementation
	Implementation of the KMC algorithm
	Introduction to observers
	Total energy logging
	Update on logging of clustering rates
	Minor updates

	Implementation of cluster expansion adapted for use in KMC
	Python interface

	Results and discussion
	DFT calculations of activation energies
	Pool of possible structures
	Fitting of expression to the training set
	L-curve criterion compared to CV minimisation
	Fitting results and comparison of fits
	Details of the chosen fit
	Shifting of activation energies

	Benchmarking of the method by Liang et al. against DFT
	Runtimes
	Simulation results
	Cluster evolution and snapshots
	Diffusivity
	Total energy evolution

	Clustering rates
	Fitting of analytical expression to evaporation rates
	Cluster composition

	Error sources and discussion of overall results
	Limitations imposed by the model
	Error sources for the training set
	Error sources in the transition rates

	Conclusion
	Future work
	Improving the activation energies
	Adding octahedral sites
	Other improvements

	Bibliography
	Appendices
	Introduction to cluster dynamics
	Cluster dynamics

	User manual and documentation
	Running KMC simulations
	Observers and logging
	Setting up cluster expansion for KMC
	Table of variables for main equation of CE for KMC
	Documentation of Python interface for KMC

