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Abstract

Background and purpose: Accurate segmentation of target volumes and organs at risk is critical
for the patient treatment outcome in radiotherapy. Manual segmentation of structures is known
as the largest uncertainty in the radiotherapy process. Auto-segmentation based on artificial intel-
ligence (AI) may lead towards a faster and more consistent way of contouring. The aim of this
study was to investigate two different methods using AI for automatic segmentation of relevant
structures for radiotherapy treatment planning of breast cancer patients. This included evaluating
a deep learning (DL) thorax model, implemented in a commercial treatment planning system, and
training and testing machine learning (ML) models, implemented in Python.

Materials and method: All patient data was from left-sided breast cancer patients previously
treated with external photon beam radiotherapy at St. Olavs Hospital, using deep inspiration breath
hold. The DL thorax model was evaluated quantitatively and clinically for 20 patients by generat-
ing segmentations for the heart, the lungs, the spinal cord, and the esophagus. For segmentation
of the sternum, the left breast, and the heart, ML models using linear support vector classification
were trained with 20 and 30 patients and evaluated quantitatively. The Dice similarity coefficient
(DSC), percentile Hausdorff distances (HDs), and the average HD (AVD) were used for quantitative
evaluation.

Results: The DL thorax model used on average 3 minutes on generating AI segmentations for one
patient. The average DSC for the heart and lungs were 0,92 ± 0,02 and 0,97 ± 0,01, respectively;
the average AVD for the heart and the lungs were 2,9 ± 1,1 mm and 0,9 ± 0,4 mm, respectively.
In terms of clinical acceptability, the AI-generated segmentations passed in 42 % of the cases for
the heart, 100 % of the cases for the lungs, 85 % of the cases for the spinal cord, and 70 % of the
cases for the esophagus. The runtime for the ML models was on 30 seconds to 5 minutes. For the
models trained with 30 patients, the average DSC for the sternum, the left breast, and the heart
were 0,65 ± 0,06, 0,64 ± 0,10, and 0,66 ± 0,05, respectively; the average AVD for the sternum,
the left breast, and the heart were 1,8 ± 0,6 mm, 2,3 ± 0,5 mm, and 2,4 ± 0,5 mm, respectively.

Conclusion: Regions of interest (ROIs) can easily be contoured with a DL thorax model for breast
cancer patients. Along with high accuracy, a large majority of the segmentations were clinically
acceptable, and many of the non-accepted segmentations required minor manual corrections. This
implies that the model has the potential to improve both consistency and efficiency of segmentation
in the clinic. The ML algorithm can easily be trained to contour ROIs for breast cancer patients;
however, the ML models need further improvements in order to be clinically useful.
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Sammendrag

Bakgrunn og formål: Nøyaktig inntegning av målvolum og risikoorganer er avgjørende for resul-
tatet av pasientbehandling med stråleterapi. Manuell inntegning av strukturer er kjent som den
største usikkerheten i stråleterapiprosessen. Automatisk segmentering ved bruk av kunstig intelli-
gens (AI) kan gi en raskere og mer konsistent måte å tegne inn strukturer på. Målet med denne
studien var å undersøke to forskjellige AI-metoder for automatisk segmentering av relevante struk-
turer for strålebehandling av brystkreftpasienter. Dette inkluderte å evaluere en dyp læring (DL)-
thoraxmodell, implementert i et kommersielt doseplanleggingssystem, og å trene og teste maskin-
læring (ML)-modeller, implementert i Python.

Materiale og metode: All pasientdata var fra venstresidig brystkreftpasienter som har blitt be-
handlet med ekstern stråleterapi med fotoner ved St. Olavs hospital, ved bruk av pustestyring.
DL-thoraxmodellen ble evaluert kvantitativt og klinisk for 20 pasienter ved å generere inntegninger
for hjertet, lungene, ryggmargen og spiserøret. For segmentering av brystbenet, venstre bryst og
hjertet, ble ML-modeller som bruker lineær støttevektorklassifisering trent med 20 og 30 pasienter
og evaluert kvantitativt. Dice score (DSC), Hausdorff-avstand (HD)-persentiler og gjennomsnittlig
HD (AVD) ble brukt til kvantitativ evaluering.

Resultater: DL-thoraxmodellen brukte i gjennomsnitt 3 minutter på å generere AI-segmenteringer
for én pasient. Gjennomsnittlig DSC for hjerte og lunger var henholdsvis 0,92 ± 0,02 og 0,97 ±
0,01; gjennomsnittlig AVD for hjerte og lunger var henholdsvis 2,9 ± 1,1 mm og 0,9 ± 0,4 mm.
I den kliniske analysen passerte de AI-genererte segmenteringene i 42 % av tilfellene for hjertet,
100 % av tilfellene for lungene, 85 % av tilfellene for ryggmargen og 70 % av tilfellene for spis-
erøret. Kjøretiden for ML-modellene var på 30 sekunder til 5 minutter. For modellene trent med
30 pasienter, var gjennomsnittlig DSC for brystbenet, venstre bryst og hjertet henholdsvis 0,65 ±
0,06, 0,64 ± 0,10 og 0,66 ± 0,05; gjennomsnittlig AVD for brystbenet, venstre bryst og hjertet var
henholdsvis 1,8 ± 0,6 mm, 2,3 ± 0,5 mm og 2,4 ± 0,5 mm.

Konklusjon: Strukturer kan enkelt tegnes inn med en DL-thoraxmodell for brystkreftpasienter.
Sammen med høy nøyaktighet var et stort flertall av segmenteringene klinisk aksepterte, og mange
av de ikke-aksepterte segmenteringene krevde kun mindre manuelle korreksjoner. Dette innebærer
at modellen har et potensiale til å forbedre både konsistensen og effektiviteten av segmentering
i klinisk praksis. ML-algoritmen kan lett trenes til å tegne inn strukturer for brystkreftpasienter;
ML-modellene må imidlertid forbedres ytterligere før de kan brukes i klinisk praksis.
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1 Introduction

Radiotherapy is always a balance between destroying the cancer cells and minimizing damage to
healthy tissue. For every patient that is to receive radiotherapy, a tailor-made treatment plan is
generated. The treatment plan needs to be based on an accurate anatomical model of the patient.
Target volumes and organs at risk (OARs) are traditionally manually contoured on a computed to-
mography (CT) scan by a physician. Segmentation of the tumor and OARs is known as the largest
uncertainty in the process of radiotherapy, and accurate segmentation is critical for the patient
treatment outcome [1, 2].

The segmentation quality and time spent on contouring strongly depend on the experience of the
practitioner and complexity of the case [3, 4], a process that can take anywhere from 30 minutes
to many hours. Semi-automatic methods for segmentation have been devised and are useful tools
for speeding up the process. Nonetheless, the process of manually segmenting regions of interest
(ROIs) is time-consuming and suffers from intra- and interobserver variability. With improved au-
tomatic tools, this process can be greatly simplified and lead towards a faster and more consistent
way of contouring.

The automation of the radiotherapy planning process is both desirable and challenging. In the later
years, there have been substantial technological developments in the field of artificial intelligence
(AI), also in radiation oncology. Modern computer technology now enables the use of AI in radio-
therapy planning, and auto-segmentation approaches using machine learning (ML) algorithms and
deep learning (DL) algorithms based on convolutional neural networks (CNNs) have recently be-
come clinically available [5, 2]. These methods can improve efficiency and consistency; with this
comes a potential for better use of resources and improved quality of treatment planning [6, 7].
However, before clinical use, these methods need thorough evaluation, and clinically relevant con-
tour evaluation remains challenging.

This master thesis was carried out to investigate two different AI methods for automatic segmen-
tation of relevant structures for radiotherapy treatment planning of breast cancer patients. This
process includes different aspects, and the specific aims of this thesis were to

1. Evaluate the performance of a previously trained DL thorax model in RayStation (RaySearch
Laboratories AB, Stockholm, Sweden), in terms of accuracy and clinical applicability.

2. Train ML models for segmentation of structures relevant for breast cancer treatment and test
them in terms of accuracy.
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2 Theory

2.1 External beam radiotherapy

Radiotherapy utilizes ionizing radiation to treat cancer, either for cure or palliation. Radiotherapy
is delivered most commonly by a medical linear accelerator (linac), where high-energy X-rays with
energies of 6-15 MV or electron radiation with energies of 6-18 MeV are typically used. When
using a linac, it is called external beam radiotherapy, because the radiation enters the patient from
outside.

2.1.1 Radiotherapy workflow

The radiotherapy process can be divided into different stages: patient assessment, simulation, treat-
ment planning and quality assurance (QA), treatment delivery and monitoring, and follow-up [8].
Figure 1 presents a typical radiotherapy workflow.

Figure 1: Radiotherapy workflow, from patient consult and assessment to follow-up.

The radiotherapy process begins at the first consultation, where the clinical situation is discussed
and risks and benefits of treatment are considered. If it is decided to proceed with radiotherapy, a
CT scan of the patient is taken. This requires careful positioning and immobilization of the patient as
the treatment must be reproducible over many fractions. Further instructions include details about
scan range, treatment site, and other specifics necessary to complete the procedure appropriately.
When the CT simulation is completed and reviewed, the images are exported to a treatment plan-
ning system. If necessary, magnetic resonance (MR) imaging can provide additional information for
soft tissue contouring, and positron emission tomography (PET) scanning can be used to identify
the biological characteristics of the tumors. The full set of image data serves as a three-dimensional
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anatomical model of the patient, and the planning process starts with the segmentation of target
volumes and OARs. The planning process continues by selecting an appropriate treatment tech-
nique, setting dosimetric goals for targets and normal tissues, and iteratively modifying different
parameters until the planning goals have been achieved. This is always a compromise between de-
stroying the cancer cells and minimizing damage to the normal cells. Finally, the plan is evaluated
and approved [8]. Additionally, QA is embedded in each step of the process to ensure the safe
delivery of radiotherapy. Likewise, the patient follow-up begins at the start of the treatment and
continues after the end of the treatment.

2.1.2 The linear accelerator

The following section is based on [9] and [10]. Some details may be relevant for Elekta linacs only.
The linac delivers high-energy X-rays or electrons to the region of a patient’s tumor. The electron
beam is useful for the treatment of superficial tumors down to about 5 cm depth, but for more
deep-seated tumors, it is better to use several photon beams combined in a cross-fire. The linac is
mounted on a drum structure, named the gantry, which can rotate through 360 degrees around
the patient. The gantry enables the beam to be directed towards the patient from any direction.
To ensure precise delivery of complex treatment plans, the accuracy of rotation must be less than
2 mm. A simplified illustration of the linac and its components are shown in Figure 2.

Figure 2: Sketch of a linac. The microwaves generated by the magnetron are guided into an accelerating
waveguide, where they are used to accelerate electrons supplied from the electron gun. Further, the electrons
are deflected by a magnet and directed towards the patient. Patients are treated either using the electrons
directly or by creating bremsstrahlung photons.

The linac uses microwave technology to accelerate electrons in a part of the accelerator called the
waveguide. The waveguide is a metal tube, which is fed with propagating radio frequency waves
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produced by the magnetron. The magnetron controls the power and frequency of these radiofre-
quency waves. This action is synchronized with the injection of electrons by the electron gun. The
electrons are produced by heating a tungsten filament within the cathode, and the number of elec-
trons injected is controlled by the temperature of the filament. Furthermore, the electrons must
have the right phase relative to the radiofrequency waves in order to gain energy and be acceler-
ated along the waveguide.

The waveguide contains a series of small metal irises that increase the wavelength of the mi-
crowaves. At the same time, the frequency is constant, accelerating pulses of electrons almost to the
speed of light. Also, a vacuum is created to ensure that other particles do not embed the electron
beam. The linac must produce a stable electron beam concentrated onto a small focal spot. Thus,
the focussing and steering of the beam are controlled by modifying the current in different electro-
magnets. Two sets of focussing coils provide a static, axial magnetic field, which helps to limit the
radius of the beam, whereas two sets of steering coils provide beam centering. The electrons are
then deflected by bending magnets to be directed towards the patient.

Patients are treated either using the electrons directly or by creating bremsstrahlung photons. The
latter is achieved by letting the electrons collide with a heavy metal target to produce high-energy
X-rays. The high-energy X-rays are then shaped as they exit the machine, usually by a multileaf
collimator (MLC) that is incorporated into the head of the machine.

2.1.3 Treatment techniques

There are different techniques for delivering external radiotherapy. Common techniques include
three-dimensional conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT),
and volumetric modulated arc therapy (VMAT). Most types of radiotherapy treatments use pho-
tons, and the mentioned techniques are therefore presented for treatment with photon beams.

3D-CRT uses several fields that are shaped by a MLC to conform the dose to the target volume while
shielding normal tissues. In this way, a more uniform dose is delivered to the target volume and the
dose received by the OARs is reduced. The 3D-CRT process involves forward-planning to create ra-
diation dose distributions. In forward-planning, the number, direction, beam weighting, and shapes
of the radiation beams are defined by the treatment planner [11]. A plan is commonly evaluated
based on visual inspection of the dose distribution and dose-volume histogram (DVH)-data. This
method is time consuming, and it is not possible to explore all options [12].

Instead, more conformal and complex dose distributions can be obtained with modern planning
techniques. Modern treatment planning systems have implemented inverse planning algorithms.
In inverse planning, the main focus is the final dose distribution and not how this dose distribu-
tion is accomplished; it starts with a description of the desired dose distribution and derives the
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beam shapes as a second step. This is accomplished by defining an objective function, which is an
expression of how well the actual dose distribution compares to the requested dose distribution.
The optimization algorithm bases its strategy on the objective function and choose parameters that
make an improvement in the dose distribution. This is an iterative process where the goal is to
minimize the objective function and find the global minimum [12].

Today, IMRT and VMAT are becoming routine for most treatment planning in the clinic [12]. IMRT
allows for the creation of irregular-shaped radiation doses that conform to the tumor whilst simulta-
neously avoiding critical organs. In this technique, not only the shape but also the intensity profile,
or the fluence, of each beam is modulated. This makes IMRT superior to the 3D-CRT technique.
For IMRT, the dose-volume requirements must be explicitly expressed. This includes both dose to
the target volume and acceptable dose limits for the OARs. Through a step-by-step process, the
planning program searches for intensity distributions in the radiation fields that provide the best
dose distribution and that meet all dose-volume requirements.

VMAT is an advanced form of IMRT that delivers the radiation dose continuously as the treatment
machine rotates around the patient. With information about the linac, the treatment planning sys-
tem calculates how the treatment device should rotate, how the MLC should move, and how the
dose rate should vary. Unlike IMRT treatments, where the treatment machine make repeated stops
and treat the tumor from a number of different angles, VMAT can deliver dose to the entire tumor
in one single gantry rotation without any stops. This significantly reduces the average treatment
time per fraction compared to IMRT [13].

2.2 Auto-segmentation methods

Segmentation of medical images aims to locate anatomic structures and contour their boundaries
on a digital source. In radiotherapy, image segmentation is an important task routinely performed to
identify the treatment target and the OARs that are to be avoided during irradiation. The ROIs are
traditionally segmented manually by a physician, and the radiotherapy dose calculation is primarily
done on CT scans. In some clinics, however, MR imaging is also being used more frequently [2].
Manual segmentation is still the standard routine for most clinics, although it is time consuming and
prone to intra- and interobserver variations. Automated segmentation methods seek to decrease the
time of segmentation and standardize the anatomical structure definition.

2.2.1 Traditional auto-segmentation

The development of auto-segmentation algorithms is related to how well algorithms utilize prior
knowledge for new segmentation tasks. Traditional auto-segmentation approaches can be grouped
as atlas-based segmentation and model-based segmentation, depending on the amount of historical
patient and plan data used in the algorithms [5].
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Atlas-based

Atlas-based segmentation methods generate a novel set of segmentations from a previously labeled,
segmented reference image. The reference image is referred to as an atlas and contains information
on locations and shapes of anatomical structures and the spatial relationships between them. For
example, an atlas can be generated by manually segmenting a selected image or by integrating
information from multiple segmented images. In single atlas-based segmentation, one reference
image with segmented ROIs is used as a template for new segmentation tasks, while multi-atlas
segmentation uses a number of atlases to compensate for variability between subjects [14].

Although many variations exist, the general approach is to map segmentations from a similar pa-
tient onto a novel patient using deformable image registration. The image is then segmented by
mapping its coordinate space to that of the atlas, in an anatomically correct way, by finding the
optimal transformation between the atlas and the new image. This process is known as the regis-
tration, and by mapping an image to an atlas, the label for each image voxel can be determined by
looking up the structure at the corresponding location in the atlas under that mapping [14].

Model-based

Model-based segmentation techniques contours organs automatically using statistical shape or ap-
pearance models for different body sites. These models utilize a set of contoured images to recog-
nize characteristic variations of shape or appearance of structures of interest. In this approach, an
organ model is first positioned over the anatomical structure in the image set, and a deformable
model algorithm then adapts the organ model to the boundaries of the anatomical structure. How-
ever, the limitation of specific shapes characterized by the statistical models makes this approach
less flexible. Another limiting factor is the size and quality of the training data available [5].

2.2.2 Artificial intelligence for auto-segmentation

In the later years, there have been substantial technological developments in the field of AI, also
in radiation oncology. Recent works in the field of medical image segmentation have used AI to
automate the image segmentation task, and algorithms using ML and DL have recently become
clinically available. ML- and DL-based segmentation can be used in auto-segmentation when larger
amounts of contoured images are available for training. The algorithms can learn appropriate priors
for structures by using an extensive patient database as input to train the segmentation model [5].
A more general description of AI, ML, and DL is given in chapter 2.3.

In order to achieve auto-segmentation using AI, one must first train a model. The workflow for
training an AI model is shown in Figure 3. The model is trained on a representative dataset, which
means CT scans with segmented structures from anonymized patient data for the appropriate diag-
nosis and treatment site. To get the most out of the available data, data augmentation may be used
to artificially expand the size of the training dataset by creating modified versions of the images
in the dataset. The augmentation includes image transformations, such as small random rotations
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and translations. This is performed during the training of the algorithm, meaning that the model is
presented with slightly different versions of the images for each training iteration. The algorithm is
optimized so that there is one for each ROI. After this, the trained model is completely anonymized
and does not contain any image data from the training dataset [15].

Figure 3: Process of training an AI model for organ segmentation. The image data is used to train the algorithm
to produce the trained model. With ML, relevant features must be manually extracted from the input data and
fed to the algorithm; with DL, the DNNs automatically extract relevant features.

When the model is applied to a new patient geometry, the input consists of the trained model and
the new CT data, as illustrated in Figure 4. For ML models, unique features, such as shape or edges,
must be identified, extracted, and given as input to the algorithm. DL algorithms do not require
feature extraction and can be applied directly to the input data. The trained neural network can
be thought of as a non-linear function taking a three-dimensional image as input and producing
a labeled image as output. The CT image stack is pushed through the neural networks to predict
ROIs. Finally, post-processing may be used to further improve the segmentation result.

Figure 4: Process of applying an AI model for organ segmentation. The trained model takes the image data as
input and outputs the labeled image. With ML, relevant features must be manually extracted from the input
data and fed to the algorithm; with DL, the DNNs automatically extract relevant features.

Conventional ML methods for automated segmentation are support vector machines and tree en-
sembles algorithms, which have shown promising results for thoracic, abdominal, and pelvic tumors
and normal tissue segmentation [5]. CNNs of U-net architecture are commonly used in DL for seg-
mentation tasks. The U-Net is a CNN that was created by Ronneberger et al. [16] for biomedical
image segmentation and has proved to be successful. The architecture is build upon the fully con-
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volutional network [17] and was modified and extended to work with fewer training images and
to yield more precise segmentations.

2.3 Artificial intelligence

The idea of AI came into existence in the 1950s, and the term was first coined in 1956 [18]. That
said, the concept of AI is not very new, although it did not gain much popularity until recently. The
reason for this is that large amounts of data did not exist earlier, and the data that existed was not
good enough to predict accurate results. However, in the contemporary era of big data, there is a
significant increase in data volumes and advanced algorithms, and together with improvements in
computer power and storage, this is making AI one of the fastest-growing areas of technology today.

AI allows computers to simulate human intelligence by reproducing human behavior and nature
learned from the surrounding environment. AI aims to give computers the ability to learn and
potentially improve the performance of their tasks. The term AI is defined in many ways. However,
a commonly used definition was provided by Elaine Rich in 1983, describing AI as "the study of
how to make computers do things at which, at the moment, people are better" [19]. Included in AI
is both ML and DL. DL is a is a more advanced type of ML. Figure 5 shows in a simple way how
these three concepts are related to each other.

Figure 5: Diagram showing how AI, ML, and DL relate to each other. AI is a technique that enables computers
to mimic human behavior. ML is a subset of AI that enables computers to learn without being explicitly pro-
grammed to do so. DL is a subset of ML again, which uses DNNs to learn many levels of abstraction, allowing
the computer to train itself.
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2.3.1 Machine learning

ML allows programs to learn and make decisions based on their past data. Arthur Samuel is one of
the pioneers of ML, and in 1959, he described ML as the study of algorithms and statistical models
that machines use to perform tasks without having to be explicitly programmed for it [20, 21]. In
other words, an ML system is trained rather than explicitly programmed. Such a system can deal
with large complex datasets, and when presented with multiple examples relevant to a task, it can
find statistical structure in these examples that eventually allows the system to come up with rules
for automating the task [22].

Types of machine learning

ML algorithms are commonly subdivided into supervised and unsupervised learning [20]. Figure 6
shows the two common types of ML and examples of the techniques. The main difference between
the two types is that in supervised learning, the model is trained using labeled data, meaning that
the data is already tagged with the correct answer. Unsupervised learning, on the other hand, deal
with mainly unlabeled data.

Figure 6: ML is broadly divided into two main categories: supervised and unsupervised ML. Regression and
classification are two types of supervised ML techniques, and clustering and dimensionality reduction are two
types of unsupervised learning techniques.

The main goal of supervised learning is to train a model from labeled data in order to make pre-
dictions about unseen or future data. With a known input and a known output, the goal is to learn
a mapping from the input to the output. An example of supervised learning is classification, which
is typically applied in medical imaging and image recognition. Regression is another common su-
pervised learning technique. In classification problems, the variables are categorized to form the
output, while in regression problems, the output variables are set as real numbers [20].
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Figure 7 shows two ML tasks. The diagram to the left shows a collection of two-dimensional data,
colored according to two different class labels. In this task, a classification algorithm can be used to
draw a dividing boundary between the two clusters of points, as shown in the figure. By drawing
this separating line, the model learns to make generalizations about new data: The algorithm can
now predict whether a new, unlabeled point is a blue or orange point [23]. The diagram to the right
shows a regression task: a simple best-fit line to a set of data. This is also an example of fitting a
model to data, and by learning from the training data, the model can be used to predict the y-value
when given an x-value.

(a) A classification problem (b) A regression problem

Figure 7: Examples of two simple supervised ML tasks.

Support vector machines are supervised learning models used for classification and regression [23].
The idea behind the support vector machines is simple: The algorithm tries to make a decision
boundary in such a way that the separation between the two classes is as wide as possible. First,
it finds the points closest to the line from both the classes. These points are the support vectors.
Next, the distance between the line and the support vectors is computed. This distance is called
the margin, and the goal is to maximize it. The hyperplane for which the margin is maximum is
the optimal hyperplane. The only points that will affect the location of the hyperplane is the points
either laying on the margin or violating it. Support vector classification (SVC) is a method that is
based on the creation of such a hyperplane. Figure 8a shows a plot of the support vectors in linear
SVC. The method of SVC can be extended to solve regression problems [23]. This method is called
support vector regression (SVR), and an example of linear SVR is shown in Figure 8b.

11



AI-based segmentation in RT

(a) Linear SVC (b) Linear SVR

Figure 8: The principle of the linear SVC and SVR methods. The hyperplane is optimized to separate the data
into two classes in SVC and to find the line that best approximates all the individual data points in SVR.

Unsupervised learning is dealing with unlabeled data or data of unknown structure. Here, only in-
put samples are given to the learning system, and data is grouped and interpret based solely on this
input data. In this case, the goal is not to predict a variable; instead, regularities and patterns in
the input data are investigated. Clustering and dimensionality reduction are examples of this type
of prediction. Clustering predictions are made by finding clusters or grouping of the input, while
dimensionality reduction refers to methods that reduce data from a higher dimensional space to
lower dimension by using the principal components [20]. Figure 9 shows an example of a cluster-
ing problem. The algorithm aims to automatic group similar objects into sets, such that the data
points in the same group are more similar to each other than to those from different groups [23].

Figure 9: Example of a simple clustering problem, which is an unsupervised ML task.

12



AI-based segmentation in RT

Building a machine learning system

The process of optimizing an algorithm is called training. It is in this process that the model learns
relevant patterns of the input samples. Figure 10 shows a diagram illustrating a typical workflow
for using ML in predictive modeling.

Figure 10: Typical workflow for using ML in predictive modeling [24]. Before training and selecting a predic-
tive model, pre-processing is necessary to get data into shape. When satisfied with its performance, the model
can be used for predicting new, unseen data instances.

Before training, the raw data needs to be pre-processed to get into the form and shape that is neces-
sary for achieving the optimal performance of the learning algorithm. Further, the dataset is divided
into separate training and test sets. The training set is used to train and optimize the model, while
the test set is used as a final evaluation of the model and contains unseen samples. When satisfied
with the model’s performance, the model can be used to predict new, future data [24].

In addition, one can divide the training set further into training and validation subsets to validate
the proposed weights after the training and observe how the model performs on new, unseen data
before the final evaluation. Following this, one can decide whether further training of the algorithm
is necessary or not, depending on how well the performance is on the validation set [24].

2.3.2 Deep learning

DL is a ML technique where algorithms train themselves and perform tasks by using deep neural
networks (DNNs). A DNN is type of artificial neural network (ANN). ANNs are sets of algorithms de-
signed to interpret sensory data and recognize patterns, inspired by the functionality of the human
brain cells. But, unlike a biological brain where any neuron can connect to any other neuron within
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a certain distance, the ANNs have discrete layers, connections, and directions of data propagation.
Like in ML, the learning can be categorized as supervised, semi-supervised, and unsupervised [25].

DNNs can consist of numerous layers of neurons that each evaluate its input signals and supply a
proceed signal to the next layer. The neurons are mathematical functions. Each neuron assigns a
weighting to its input, describing the importance of the connection relative to the other connec-
tions. Prior to training, it is common to set all weights to zero or small random numbers. Then,
when training the DL network, one iterates through the network several times, and for each train-
ing sample, the output is computed, and the weights of the connections are updated. The networks
require many training samples until the weightings of the neuron inputs are tuned precisely [24].

The neurons are typically organized into multiple layers, especially in DL. The layer that receives
external data is the input layer, and the layer that produces the result is the output layer. Between
them are zero or more hidden layers. Between two layers, multiple connection patterns are pos-
sible. When all neurons in a layer are fully connected with all neurons in another layer, the layer
is fully connected. Figure 11 is an example of a network consisting of fully connected layers and
illustrates how a DNN can look like. The network has one input layer, two hidden layers, and one
output layer. The units in the first hidden layer are fully connected to the input layer, and the output
layer is fully connected to the second hidden layer. Since this ANN has more than one hidden layer,
it is called a DNN. Layers can also be pooling, where a group of neurons in one layer connect to a
single neuron in the next layer, thereby reducing the number of neurons in that layer [26].

Figure 11: An example of an DNN with two hidden layers. The circles represent activation units, and the
number of activation units in the first layer depends on the number of variables in the input data. The final layer
is the output signal from the network. In between are the hidden layers, where the information is processed.
The blue lines represent connections, each with a given weight.

14



AI-based segmentation in RT

Figure 12 illustrates how the architecture of a DNN can be. The input samples and the correspond-
ing weights are combined to compute the net input. The net input is then passed on to the activation
function, which, based on the information from the network, computes a prediction for the given
sample. During the learning phase, this output is used to calculate the error of the prediction and
update the weights [24].

Figure 12: Diagram illustrating how the architecture of a DNN can be. The inputs of sample x and the corre-
sponding weights w are processed through a net input function and an activation function before the model
obtains an output, and the weights are updated.

Activation functions are mathematical equations that determine whether a neuron should be ac-
tivated or not, based on whether its input is relevant for the model’s prediction. Many different
activation functions exist. It can be a simple step function that turns the neuron output on and off,
depending on a rule or threshold. Or it can be a transformation that maps the input signals into
output signals that are needed for the neural network to function. For instance, a linear activation
function takes the form

f(z) = wTx = a, (2.1)

where z is the net input computed with the transposed weights vector wT and the samples vector
x [24]. The scalar a is the resulting activation, which is forward propagated to the next layer. This
type of function takes the inputs, multiplied by the weights for each neuron, and creates an output
signal proportional to the input. Another example of an activation function is rectified linear unit
(ReLU), which is defined as:

f(z) = max(0, z). (2.2)

ReLU sends an activation signal to the next neuron layer only if the input value is above zero, as
shown in Figure 13. It introduces non-linearity and allows the network to converge very quickly,
making it computationally efficient [24].
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Figure 13: ReLu activation function where z is the net input, and f(x) is the activation function.

Convolutional neural networks

A CNN is a class of DNNs, most commonly applied to analyzing visual images. CNNs are neural
networks that use convolution instead of general matrix multiplication in at least one of their layers
[27]. A CNN consists of an input and an output layer, as well as multiple hidden layers. Typically,
CNNs are composed of several convolutional layers and pooling layers that are followed by one or
more fully connected layers at the end [24]. The activation function is commonly a ReLU layer.

A key to performance for any ML or DL algorithm is to successfully extract relevant features. Neural
networks can automatically learn the features from raw data that are most useful for a particular
task. The early layers, the ones right after the input layer, extract low-level features. Deep CNNs
combine these low-level features in a layer-wise fashion to form high-level features. For example,
when dealing with medical images, low-level features, such as lines and edges, are extracted from
the earlier layers, which are combined together to form high-level features, such as object shapes
like target volumes or OARs [24]. Layering of convolutions allow the network to account for in-
creasingly more complex patterns.

2.3.3 Artificial intelligence in radiation oncology

AI is rapidly transforming many areas of technology. In the field of radiation oncology, efforts have
been made to advance the possibilities of using AI systems to facilitate and improve the efficiency
of the radiotherapy workflow process, which was illustrated in Figure 1. AI, with the use of ML and
DL, have been applied in almost every part of this process. In particular, AI has been proposed for
automatic organ segmentation and automatic plan generation [8].

For organ segmentation, several commercial auto-segmentation algorithms already exist. However,
the underlying technology often relies on an atlas-based and model-based strategy rather than
utilizing AI. The performance of atlas-based methods depend highly on the type of structure, show-
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ing better results for high-contrast organs while struggling with soft tissue organs [28]. Further,
the use of model-based segmentation is generally limited to specific organs. Currently, such auto-
segmentation tools in treatment planning are most commonly viewed as an efficient tool for the
clinicians to provide them with a good starting point for review and adjustment [2].

However, recent advances in DL have come up with faster and more accurate solutions for auto-
segmentation. For example, Lustberg et al. [29] compared the aspects of contouring ROIs manually
with atlas-based and DL-based contouring for lung cancer patients, showing promising results for
DL. The DL contouring outperformed the atlas-based contouring for several structures and in time
saved. Men et al. [30] proposed a DL method using CNNs for auto-segmentation of ROIs in rec-
tal cancer. The results showed that this method could improve the consistency of contouring and
increase the efficiency of the radiotherapy workflow. Tong et al. [31] developed a DL method us-
ing CNNs for segmentation of OARs in head and neck cancer radiotherapy. This method showed
competitive performance, and it took shorter time to segment multiple organs in comparison to
state-of-the-art method.

While it is clear that each of the methods described above are useful, all remain within the do-
main of research and have not been made available commercially. However, vendors of modern
treatment planning systems have recently integrated AI in their software. For example, RayStation
8B (RaySearch Laboratories AB, Stockholm, Sweden) was the first treatment planning system to
incorporate ML applications. This system uses a classical ML method based on random forest for
automatic plan generation and DNNs for organ segmentation. Also, the first-ever patient treatments
generated using ML in RayStation took place in May 2019. Another commercial software utilizing
AI in its applications is EclipseTM v16 (Varian Medical Systems, Palo Alto, California). This system
uses an atlas-based ML model in which a group of representative plans is used as a base model.
This system also include the first clinical application of ML in proton treatment planning. However,
the commercially available products utilizing AI are not frequently used in clinical practice.

Even though DL solutions shows promising results compared to existing solutions for auto-segmentation,
most remain within the domain of research. However, with continuous ongoing research, it is rea-
son to believe that AI-based methods will have a significant role in generating segmentations in near
future, at a much faster and more consistent manner than what is possible to do at present. Further,
it is reasonable to expect increased availability of commercial AI-based auto-segmentation tools for
radiotherapy treatment planning over the next years; and with this, an increased acceptance and
implementation of AI-based auto-segmentation tools in clinical practice.
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2.4 Breast cancer

Breast cancer is the most common type of cancer in women worldwide, with 2,1 million new cases
diagnosed in 2018 [32]. In Norway, breast cancer contributes to about 22 % of all cancer cases
affecting women, and more than 3500 patients are diagnosed with this disease every year [33].

2.4.1 Anatomy and physiology

Breast cancer develops from the tissues of the breast. Figure 14 gives an illustration of the female
breast. Each breast has 15 to 20 sections called lobes, and each lobe comprises many smaller sec-
tions called lobules, at the end of which are glands that produce milk in response to hormones. The
lobes, lobules, and glands are linked by thin tubes called ducts. The most common type of breast
cancer is called ductal carcinoma and begins in the cells of the ducts. Another type of breast cancer
is lobular carcinoma, which begins in the lobes or lobules. Invasive breast cancer is breast cancer
that has spread from where it began in the breast ducts or lobules to surrounding normal tissue.
Breast cancer occurs in both men and women, although male breast cancer is rare [34].

Figure 14: Anatomy of the female breast—courtesy of [34]. The nipple and areola are shown on the outside of
the breast. The lymph nodes, lobes, lobules, ducts, and other parts of the inside of the breast are also shown.

2.4.2 Treatment modalities

Breast cancer is treated in different ways, depending on the size of the tumor, the characteristics
of the cancer cells, and whether the cancer cells have spread to nearby lymph nodes. Alongside
surgery, chemotherapy, and hormone treatment, radiotherapy is commonly used for breast cancer
treatment. Most breast cancer tumors can be removed with surgery. In the majority of the cases,
breast-conserving surgery is performed, where only the tumor with nearby tissue is removed. If the
tumor is large compared to the breast, or there are multiple tumors spread around the mammary
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gland, the entire breast is removed. Radiotherapy is given after breast-conserving surgery to remove
possible remaining cancer cells. When the entire breast is removed, radiotherapy is given in the case
of spread to lymph nodes, or if any cancerous tissue was missed during surgery. If the disease cannot
be cured, radiotherapy can limit the disease and provide palliation. In addition, chemotherapy is
used to prevent spread and to reduce the risk of cancer recurrence. Further, some types of breast
cancers are affected by hormones, and hormone therapy is then used mainly to prevent recurrence
[35].

Radiotherapy

Most breast cancer patients receive radiotherapy treatment following surgery. The relevant target
volumes are the breast, the chest wall, and the regional lymph nodes, as shown in Figure 15. For
patients with locoregionally advanced disease, the following regional lymph nodes are considered
in addition to the breast: the axillary nodes, the supraclavicular region, the interpectoral nodes,
and the internal mammary nodes region [36]. Recommended radiation doses are hypofractionated
regimes consisting of 40 Gy in 15 fractions or conventionally fractionated regimes consisting of 50
Gy in 25 fractions. Additionally, a boost to the tumor bed is given to patients younger than 50 years
old after breast-conserving surgery [37].

(a) Transverse plane (b) Coronal plane

Figure 15: Example of ROIs relevant for breast cancer radiotherapy. The target volumes include the breast
and different regional lymph nodes and are shown in purple colors. The OARs are shown in green and yellow
colors and include the heart, the lungs, the contralateral breast, and the LAD.

Relevant OARs to consider for breast cancer patients are also shown in Figure 15 and include the
heart, the lungs, the left anterior descending coronary artery (LAD), and the contralateral breast.
If regional lymph nodes are included in the target volume, medulla spinalis and plexus brachialis
should also be considered [37]. These structures are routinely defined and contoured on the patient
scan by a physician or radiation therapist.
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3 Materials and method

3.1 Evaluation of a DL thorax model

A DL-based model for auto-segmentation of organs in the thorax region, implemented in a com-
mercial treatment planning system, was evaluated by generating segmentations for the heart, the
left and right lungs, the spinal cord, and the esophagus.

3.1.1 The model

The thorax model in RayStation 9A (RaySearch Laboratories AB, Stockholm, Sweden) is an organ
segmentation model based on DL. The model is based on lung cancer patients, and it is suitable for
CT image modality and patient position head first-supine. The model came pre-trained in RaySta-
tion and was trained using supervised learning on annotated images, starting from a randomly
initialized model. The model was trained with 65 segmented image sets, originating from Centre
Oscar Lambret (Lille, France). The training data was augmented by rotations, translations, and
elastic deformations.

The model algorithm is a CNN of U-net architecture, and the originator of the scripting environ-
ment is RaySearch. The DL segmentation algorithm is a voxel classifier using DNN architectures
with multiple hidden layers to learn features from a training set by modeling complex non-linear
relationships. Each voxel in the image is classified as belonging either to unspecified tissue or to a
specific structure. The algorithm is trained on a large number of segmented images to learn how
to classify the voxels. The specific network used is a three-dimensional CNN of U-net architecture,
which can combine image features on different levels of abstraction to generate a segmentation
map. Figure 16 shows a simplified illustration of the network.

This type of network combines encoding and decoding paths with skip-connections to concatenate
features from the encoding to the decoding layers, allowing the network to work with features
at different resolutions. The number of features available to the algorithm is predefined, but the
features themselves are not. Instead, the algorithm learns the most important features from the
dataset used during the training of the model. With a constant number of features, the algorithm
can learn from an unlimited number of training cases without affecting the size or runtime of the
model. In addition, the algorithm is graphics processor unit (GPU)-powered, which allows for fast
segmentation [15].
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Figure 16: A simplified illustration of the CNN of U-net architecture. Each block represents a set of consecutive
convolutional layers, and the orange arrows are skip connections. The output of the blocks is downsampled
on the left side of the network and upsampled on the right side.

3.1.2 Patient data

All use of patient data in this study was applied for and pre-approved by the Regional Committees
for Medical and Health Research Ethics (REK Midt ref. 92685). All patients were diagnosed with
left-sided breast cancer and previously treated with external photon beam radiotherapy at St. Olavs
Hospital, using deep inspiration breath hold. This is a controlled breathing technique in which the
patient performs a breath hold during treatment. Radiotherapy planning and treatment were per-
formed according to the protocol at St. Olavs Hospital, which includes several patient fixation steps.
Breast boards, most commonly WingSTEP from ELEKTA, were used to enable easy positioning, pre-
cise repositioning, and patient comfort during treatment. When needed, a 10 degrees elevation
cushion was put under the breast board to lift the upper body and thereby facilitate breathing. The
arms were positioned above the head and out of the treatment fields, and a head rest, knee pillow,
and arm support could be used to support the neck and stabilize the back and pelvis.

Radiotherapy planning CTs for 20 patients treated in 2019 were selected for testing the DL thorax
model in RayStation 9A. All patients received locoregional treatment except 2, which received only
breast irradiation. A hybrid technique that incorporates both conventional fields and VMAT was
used in 17 of the cases, while in the last 3 cases, the patients were treated with full VMAT. Further,
8 of the patients were treated with 2,67 Gy x 15, and 12 of the patients were treated with 2 Gy x
23. All segmentations were previously clinically approved and used in the delivered radiotherapy
plans.
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3.1.3 Evaluation

For each patient, the CT images with segmented ROIs, originally planned in RayStation 6, were
anonymized and exported to a non-clinical installation of RayStation 9A. The original planning
CT was used to retrospectively create new segmentations of the heart, the left and right lungs, the
spinal cord, and the esophagus for each patient using the DL thorax model in RayStation. RayStation
supports scripting, and scripts were written in Python to extract data for quantitative analysis. A
script for extracting dose values is attached in appendix A, and a script for computing quantitative
measures for comparison of ROIs is attached in appendix B. The overall segmentation time for the
AI structures were measured for each patient. The DL contouring used a graphics card to perform
the calculations, and the GPU used was a NVIDIA Quadro K5200 with 8 GB of GDDR5 memory.

Dosimetric analysis

When evaluating treatment plans in radiotherapy, several parameters are used to determine whether
a treatment plan gives good enough dose coverage to the tumor and good enough sparing of the
OARs. DVH parameters are commonly used to evaluate treatment plans, together with inspection
of the three-dimensional dose distribution. It is therefore interesting to see whether the differences
in manual and automatic contouring affects the calculated OAR doses.

The segmentations obtained with the DL thorax model were compared to the manual segmenta-
tions in terms of dose to the heart and lungs. For the heart, the average dose was considered, and
for the lungs, the average dose and the volume that receives either 18 Gy or 20 Gy, depending on
the used fractionation regime, were considered.

The dose evaluation criteria for the lungs are dependent on whether the patient has received lo-
coregional radiotherapy or not. The criteria considered in this study are based on the clinical goals
used at St. Olavs Hospital and are summarized in Table 1. For irradiation of the breast and regional
lymph node ares, the following criteria apply:

• For 2 Gy x 25 fractions, less than 35 % of the lung should receive 20 Gy (V20 ≤ 35 %).
• For 2,67 Gy x 15 fractions, less than 35 % of the lung should receive 18 Gy (V18 ≤ 35 %).

For irradiation of the breast only, the criteria are:

• For 2 Gy x 25 fractions, less than 15 % of the lung should receive 20 Gy (V20 ≤ 15 %).
• For 2,67 Gy x 15 fractions, less than 15 % of the lung should receive 18 Gy (V18 ≤ 15 %).

Table 1: Dose evaluation criteria for lungs.

Locoregional Breast only

2 Gy × 25 fractions V20 < 35 % V20 < 15 %
2,67 Gy × 15 fractions V18 < 35 % V18 < 15 %
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3.2 Training and testing of ML models

ML-based models for auto-segmentation were trained and tested for contouring of the sternum, the
left breast, and the heart. The sternum was chosen because this is a structure routinely contoured
at St. Olavs Hospital to help with matching of the setup images before treatment. In addition,
the sternum is a well-defined structure and was therefore assumed to be suitable for ML-based
contouring and relatively few training dataset would be required.

3.2.1 The algorithm

The ML method is developed at the Department of Physics, NTNU (Trondheim, Norway) for auto-
matic detection of image structures, originally for the use of MR images. From before, the model
has been trained for automatic segmentation of the tumor volume for rectal cancers [38]. It uses
linear SVC to do a voxelwise classification on the images to separate the structure and the normal
tissue. In general, each voxel in the image is classified as belonging either to unspecified tissue or
to a specific structure. The model is developed in Python version 3.7.5, and the main libraries used
are NumPy, SimpleITK, Scikit-learn, and Dask. NumPy is the core library for scientific programming
in Python and is used for creating multi-dimensional array objects. SimpleITK is a simplified ver-
sion of the Insight Segmentation and Registration Toolkit (ITK), which provides a broad set of tools
required for image analysis. Scikit-learn is tool for predictive data analysis and includes a large
collection of ML algorithms. Dask is a library for parallel computing, making it possible to work
with large datasets that exceed the memory of the computer.

The model starts by splitting the dataset into training and test sets. The training set is put into
the ML algorithm together with the corresponding class labels, which generates a model that takes
the test set as input and outputs predicted labels. The model is then evaluated by comparing the
predicted labels to the real labels of the test set. The ML algorithm used in the models is the
sklearn.linear_model.SDGClassifier from the Scikit-learn library together with the wrapper
function dask_ml.wrappers.Incremental from the Dask library.

3.2.2 Patient data

Radiotherapy images from 30 patients were used for training and testing the ML models. These
are from patients participating in the COBRA study [39], which include left-sided breast cancer
patients. All patients were treated with external photon beam radiotherapy at St. Olavs Hospital
between 2017 and 2018, using deep inspiration breath hold. Radiotherapy planning and treatment
were performed according to the protocol at St. Olavs Hospital, as described in section 3.1.2. The
patients are CT scanned with the same protocol, but field-of-view vary to some extent, depending
on the size of the patient. The standard is 512 pixels both in x and y directions, but due to varying
field-of-view, the exact pixel size is different for different patients. In the longitudinal direction, the
scan is taken between the angle of the mandible and the bottom of the lungs, meaning that the
number of slices also vary. The slice thickness and distance is fixed at 3 mm.
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3.2.3 Training and testing

For each patient, planning CTs, together with the segmented target volumes and OARs, were
anonymized in the clinical version of RayStation 8B and exported to a non-clinical installation
of RayStation 8B. The sternum was manually segmented and exported together with the clinical
segmentations of the left breast, the heart, and the CT images as DICOM files. The image data was
then converted to NIfTI format, as this is the format the ML algorithm is built to work with. The
NIfTI format is a common format used to store MR imaging data, and it is made up of a header
file containing the metadata and a data file containing the image data. This data was then used to
train the ML models to automatically segment the different ROIs. The models were trained with
both 20 image series and 30 image series to see if increasing the amount of training data could im-
prove performance of the models. Scripts were written in Python to calculate data for quantitative
analysis, and functions from the SITK library were mainly used for this.

Pre-processing

Before training the models, the images were processed. The different images were modified in a
similar manner as shown in Figure 17. The images were cropped to a fixed region around the
structure of interest to reduce the size of the data and obtain a more balanced dataset. This was
done such that there was a 15 mm margin outside the largest extent of the ROI amongst all the
slices. This could simulate the process of a physician that draws a box around the ROI to assist the
classification. New, modified images were also created by changing window/level and added to the
training dataset to see if they alone or in combination could improve the results.

(a) Original image

(b) Cropped image

(c) Cropped and modified image

Figure 17: Example showing how the images were processed before they were used as input data to the ML
model for the sternum. The image before (a) and after cropping (b) and changing window/level (c) is shown.
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Cross-validation

In order to train and evaluate the models, the data needed to be divided into training and test
sets. Leave-one-out cross-validations were used to perform this task. The principle of this method is
illustrated in Figure 18. With this method, each patient is used as test set in turn, while the rest of
the patients are used for training. The number of iterations will then equal the number of patients,
making this method suitable for a small dataset.

Figure 18: Leave-one-out cross-validation on a group of 20 patients. Each square represent a patient, and each
patient is used for testing (n) in one iteration and for training (n) in the remaining iterations.

Post-processing

To improve the results, the images were processed after training the model as well. Morphological
operations were applied to the predicted masks to remove noise and fill holes. Different approaches
were investigated for the different ROIs. One approach was to remove areas smaller than a chosen
number of voxels for each slice. For the sternum this limit was 100 voxels, while areas smaller
than around 1000 and 2000 voxels were removed for the breast and heart, respectively. Another
approach was to look at all the image slices for each patient put together and remove volumes
smaller than a chosen number of voxels. Other approaches included binary morphological opening
and closing of the images to remove small structures or fill small holes.

3.3 Description of methods used for comparison

The evaluation of the DL thorax model was based on segmentations of the heart, the lungs, the
esophagus, and the spinal cord. The AI segmentations of the heart and the lungs were compared to
the clinical segmentations, and a quantitative and clinical evaluation were performed. The esopha-
gus and the spinal cord were not contoured manually, and these AI structures were therefore evalu-
ated with only a clinical evaluation. For the ML models, the evaluation was based on segmentations
of the sternum, the left breast, and the heart, and a quantitative evaluation was performed.
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3.3.1 Quantitative evaluation

Evaluation of segmentation results is most commonly performed with overlap methods, which es-
timate the overlap of two volumes as a fraction of their total volume. The most common overlap
method is the Dice similarity coefficient (DSC). Another standard measure is the Hausdorff dis-
tance (HD). Both methods are useful measures for the geometric quantification of segmentation
similarities [40] and were therefore used to analyze the segmentations obtained with the different
auto-segmentation methods. For evaluation of the DL thorax model, the DSCs, the 75-, 90-, 95-
and 100-percentile HDs, and the average HDs (AVDs) for the AI and clinical segmentations were
calculated. The 75-, 90-, 95- and 100-percentile HDs are denoted H75, H90, H95 and H100, re-
spectively. For evaluation of the ML models, the DSCs and the different HD values for the AI and
manual segmentations were calculated.

Dice similarity coefficient

The DSC is a simple spatial overlap index and reproducibility validation metric, first proposed by
Dice in 1945 [41]. It is the metric most frequently used in literature to quantify the spatial overlap
between two binary segmentation results [2]. Given two volumes of interest, X and Y, the DSC is
defined as:

DSC =
2|X ∩ Y |
|X|+ |Y |

(3.1)

where X and Y are the two volumes under comparison, and X ∩ Y is the union of the two volumes,
as illustrated in Figure 19. Using the definition of true positive (TP), false positive (TP), and false
negative (TP), this can be rewritten as:

DSC =
2TP

2TP + FP + FN
. (3.2)

The value of the DSC ranges from 0 to 1, where 0 indicates no spatial overlap, and 1 indicates
complete overlap.

Figure 19: Illustration of evaluation measures used in this study: the parameters of the DSC to the left and
the HD to the right.
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Hausdorff distance

The maximum distance to agreement, or the HD, measures how far two subsets of a metric space
are from each other. Mathematically, it is defined as the maximum distance of a set to the nearest
point in the other set, as illustrated in Figure 19. The HD between two finite point sets X and Y is
defined to be

HD(X,Y ) = max(h(X,Y ), h(Y,X)) (3.3)

where h(X,Y ) is the directed HD from X to Y, given by

h(X,Y ) = max
x∈X

min
y∈Y
‖x− y‖ . (3.4)

Here, ‖x− y‖ is some norm, commonly Euclidean distance [42]. Essentially, two distance trans-
forms are computed for measuring the HD: (1) Each point on the surface of ROI X is assigned the
minimum distance to a point on the surface of ROI Y, and (2) each point on the surface of ROI Y is
assigned the minimum distance to a point on the surface of ROI X. HD is then given by taking the
maximum. In the case of complete overlap, HD is 0.

The HD is generally sensitive to outliers. The Hausdorff quantile method is a more robust alterna-
tive to the HD, proposed by Huttenlocher et al. [43]. In this method, the HD is defined to be the qth

quantile of distances instead of the maximum, so that possible outliers are excluded. The quantile
q is selected depending on the application and the nature of the measured point sets.

The average distance to agreement, or AVD, is the HD averaged over all, N, points. The AVD is
known to be stable and less sensitive to outliers compared to the HD [42]. It is defined by

AVD(X,Y ) =
1

2
(d(X,Y ), d(Y,X)) (3.5)

where d(X,Y ) is the directed average HD from X to Y, given by

d(X,Y ) =
1

N

∑
x∈X

min
y∈Y
‖x− y‖ . (3.6)

3.3.2 Clinical evaluation

The segmentations obtained with the DL thorax model were also reviewed qualitatively and eval-
uated subjectively by a physician at St. Olavs Hospital. For the heart and lung segmentations, the
AI structures were compared to the clinical structures, and the physician pointed out which seg-
mentation was preferred for each patient and evaluated whether each segmentation was clinically
acceptable or not. For the esophagus and the spinal cord, each structure was assessed as (1) the
structure is good as it is, (2) the structure needs small adjustments but serves as a good starting
point, or (3) the structure does not form a useful basis for further editing, and starting over again
is preferable. The reviewer could also comment on each result.
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3.3.3 Statistical analysis

Different statistical methods were used to visualize and analyse the quantitative evaluation results.

Test of normality

The Shapiro-Wilk test was used to assess whether the data was likely from a normal distribution or
not. The null hypothesis was rejected if the p-value was less than a chosen significance level of 5 %;
in that case, the conclusion was that the data was not from a population with a normal distribution.
If the p-value was greater than 5 %, the null hypothesis could not be rejected, indicating that the
data was normally distributed. Q-Q plots were added for visual examination to support the conclu-
sion. A Q-Q plot is a scatter plot created by plotting two sets of quantiles against one another. If the
points form a roughly straight line, this supports the assumption of normally distributed data.

Appendix C shows the results from the normality test of some of the dosimetric parameters mea-
sured for the clinical segmentations and the AI segmentations produced with the DL thorax model,
as an example of how the normality tests were conducted.

Wilcoxon signed-rank test

The Wilcoxon signed-rank test was used to examine whether there was a statistically significant
difference between relevant dosimetric parameters measured for the clinical segmentations and
the AI segmentations produced with the DL thorax model. This is a non-parametric test and was
chosen since the sample size was small, and the test statistics could not be assumed to follow a
normal distribution. The Wilcoxon signed-rank test is a paired difference test and tries out the null
hypothesis that the population mean ranks of two related samples are equal. The null hypothesis
was rejected for a p-value less than a chosen significance level of 5 %.

Wilcoxon rank sum test

The Wilcoxon rank sum test was used to examine whether there was a statistically significant differ-
ence between the DSCs and AVDs obtained with the ML models trained with 20 and 30 image sets.
This is a non-parametric test and was chosen since the sample size was small, and the test statistics
could not be assumed to follow a normal distribution. The Wilcoxon rank sum test tries out the null
hypothesis that two samples are likely to derive from the same population. The null hypothesis was
rejected for a p-value less than a chosen significance level of 5 %.

Student’s t-test

A two-sample t-test was used to examine whether there was a statistically significant difference
between DSCs and AVDs for the clinically acceptable and not clinically acceptable heart segmenta-
tions for the DL thorax model. This test assumes that the test statistic follows a normal distribution.
The paired t-test tries out the null hypothesis that the means of the two samples are equal. The null
hypothesis was rejected for a p-value less than a chosen significance level of 5 %.
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Boxplots

Boxplots were used to visualize the distribution of data. The line inside the box represents the
median of the sample, and if the median is not centered in the box, this shows skewness of the
sample. The box is divided in two parts where 25 % of the scores fall below the lower quartile and
75 % percent of the scores fall below the upper quartile value. The length of the box is called the
interquartile range and represents the middle 50 % of the observations, and the whiskers represent
scores outside the interquartile range. Outliers are observations that deviates more than 1,5 times
the interquartile range and are displayed with circles [44]. The average of the sample is displayed
as a cross.
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4 Results

4.1 Evaluation of a DL thorax model

The DL thorax model used on average 3 minutes on generating AI segmentations of the heart, the
lungs, the spinal cord, and the esophagus for one patient.

4.1.1 Heart

The average DSC and HD values for the heart segmentations obtained with the DL thorax model
and the clinical segmentations are displayed in Table 2. Boxplots with all the DSCs and HD values
for the test data, seen in Figure 20, shows that the performance of the model varied between the
individual patients in the dataset for the heart segmentation.

Table 2: Average values for all metrics for the heart segmentations obtained with the DL thorax model. All HD
values are in mm.

Metric Average STD Min Max

DSC 0,92 0,02 0,88 0,96
H75 14,6 4,1 8,9 21,0
H90 16,6 5,7 8,9 27,2
H95 17,9 7,9 8,9 40,2
H100 19,7 11,1 8,9 53,2
AVD 2,9 1,1 1,1 6,1

(a) DSC (b) HD values

Figure 20: Boxplots with the DSC and different HD results for the heart segmentations obtained with the DL
thorax model.
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The result of the clinical evaluation is shown in Figure 21. The AI-generated segmentations passed
in 42 % of the cases, in terms of clinical acceptability. The model seemed to struggle especially with
the cranial part of the heart. The clinical segmentations were preferred over the AI segmentations
in 89 % of the cases. However, 5 of the 19 clinical segmentations were also assessed as inadequate.

Figure 21: Clinical assessment of the heart segmentations obtained with the DL thorax model. Green indi-
cates that the AI segmentation is clinically acceptable and red are clinically non-acceptable cases. Dark green
indicates that the AI segmentation is preferred over the clinical segmentation.

Figure 22 shows an example of a clinically acceptable heart segmentation generated with the DL
thorax model, together with the clinical heart segmentation. In this case, the DSC = 0,91, the
H100 = 18,7 mm, and the AVD = 2,9 mm. The calculated average heart dose differed with 18,55
cGy for the AI and clinical segmentation. In this case, the AI segmentation of the heart was pre-
ferred over the clinical segmentation.

The Wilcoxon signed rank test of the paired differences (clinical - AI) in average dose to the heart
calculated for the clinical segmentations and the AI-generated segmentations gave a p-value of
0,387. The median, minimum, and maximum paired differences were -4,3 cGy, -52,0 cGy, and 29,9
cGy, respectively. This means that the calculated average heart dose did not differ significantly
between the AI segmentations (192 ± 81 cGy) and the clinical segmentations (192 ± 73 cGy).
However, Figure 23 shows that for individual patients, the difference in segmentation resulted in a
quite different heart dose; the maximum change was over 50 cGy.
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(a) Transvere plane

(b) Coronal plane

(c) Sagittal plane

Figure 22: Example of a patient with a clinically acceptable heart segmentation produced with the DL thorax
model (n), together with the clinical heart segmentation (n) for one patient.

(a) Dose (b) Dose difference

Figure 23: Boxplots with the average heart doses and average heart dose differences (clinical - AI) calculated
for the clinical segmentations and the AI-generated segmentations obtained with the DL thorax model.
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4.1.2 Lungs

The average DSC and HD values for the left and right lung segmentations obtained with the DL
thorax model and the clinical segmentations are displayed in Table 3. Boxplots with all DSCs and
HD values for the test data are shown in Figure 24 and 25, respectively. The model performed better
and more uniform for lung segmentation compared to for heart segmentation.

Table 3: Average values for all metrics for the left and right lung segmentations obtained with the DL thorax
model. All HD values are in mm.

Left lung Right lung

Metric Average STD Min Max Average STD Min Max

DSC 0,97 0,01 0,93 0,99 0,98 0,01 0,94 0,99
H75 19,5 4,1 8,8 23,7 19,0 5,8 7,0 25,3
H90 20,5 4,4 8,8 26,7 20,5 6,3 7,0 28,5
H95 21,0 4,7 8,8 29,2 21,5 7,5 7,0 39,5
H100 21,8 5,8 8,8 36,4 22,5 8,7 7,0 42,9
AVD 1,1 0,4 0,4 2,5 0,8 0,3 0,6 2,0

Figure 24: Boxplot with the DSCs for the left and right lung segmentations obtained with the DL thorax model.
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(a) Left lung (b) Right lung

Figure 25: Boxplots with the different HD values for the left and right lung segmentations obtained with the
DL thorax model.

The result of the clinical evaluation is shown in Figure 26. Overall, the AI segmentations of the
lungs were almost as good as the clinical segmentations. All of the AI-generated segmentations
were assessed as clinical acceptable. However, the clinical segmentations were preferred over the
AI segmentations in 70 % of the cases. In particular, the lower lung restrictions appeared to be
difficult for the model.

Figure 26: Clinical assessment of the lung segmentations obtained with the DL thorax model. Green indi-
cates that the AI segmentation is clinically acceptable and red are clinically non-acceptable cases. Dark green
indicates that the AI segmentation is preferred over the clinical segmentation.
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Figure 27 shows a representative example of the lung segmentations generated with the DL tho-
rax model, together with the clinical lung segmentations. For the left lung, the DSC = 0,97, the
H100 = 20,3 mm, and the AVD = 1,0 mm. For the right lung, the DSC = 0,98, the H100 = 16,0 mm,
and the AVD = 0,7 mm. The calculated average dose to the left and right lungs differed with 15,26
cGy and 1,60 cGy, respectively, for the AI and clinical segmentations. In this case, the AI segmen-
tations of the lungs were deemed clinically acceptable. However, the clinical segmentations were
preferred over the AI segmentations, because the lungs were worse in the basal end, as shown in
Figure 27c.

(a) Coronal plane

(b) Transverse plane

(c) Transverse plane

Figure 27: Example showing the lung segmentations produced with the DL thorax model (n n) and the
clinical lung segmentations (n n) for one patient.
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Table 4 shows the result of the Wilcoxon signed rank test of the paired differences (clinical - AI) in
dose to the lungs for the clinical segmentations and the AI-generated segmentations. Average dose
to the left lung differed significantly for the AI segmentations (1114 ± 196 cGy) and the clinical
segmentations (1120 ± 191 cGy); as did average dose to the right lung for the AI segmentations
(93 ± 42 cGy) and the clinical segmentations (94 ± 42 cGy). The fraction of the left lung volume
that receives 18 or 20 Gy differed significantly for the AI segmentations (24 ± 4 %) and the clinical
segmentations (24 ± 4 %). For the right lung, where the volumes that receive 18 or 20 Gy were
close to zero, there was no significant difference. Boxplots visualizing these results are shown in
Figure 28.

Table 4: Result from the Wilcoxon signed rank test of the differences in dose to the lungs calculated for the
clinical segmentations and AI-generated segmentations. Whether V18 or V20 for the lungs is relevant depends
on the dose fractionation.

Paired differences (clinical - AI)

Median Min Max p-value

Average left lung dose (cGy) -8,9 -23,9 48,4 0,022
Average right lung dose (cGy) -0,5 -1,6 0,8 0,038
V18/20 left lung (%) -0,2 -0,01 0,01 0,016
V18/20 right lung (%) 0,0 0,0 0,0 0,286

(a) Dose (b) Dose difference

Figure 28: Boxplots with the average lung doses and average lung dose differences (clinical - AI) calculated
for the clinical segmentations and the AI-generated segmentations obtained with the DL thorax model.
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4.1.3 Spinal cord and esophagus

The result from the clinical evaluation of the AI spinal cord and esophagus segmentations produced
with the DL thorax model is shown in Figure 29. Overall, the result was satisfactory. The spinal cord
segmentations were deemed good as they are in 85 % of the cases, and 25 % of the cases needed
only small adjustments. In general, the AI structures were inaccurate in the top and bottom slices
for the spinal cord.

For the esophagus, 70 % of the segmentations were deemed good as they are, 10 % needed only
small adjustments, while 20 % were deemed useless. The caudal part of the esophagus was in par-
ticular of poor quality in some cases.

(a) Spinal cord (b) Esophagus

Figure 29: Clinical assessment of the spinal cord and esophagus segmentations obtained with the DL thorax
model. Dark green indicates that the AI segmentation is good as it is; light green suggests that small adjust-
ments are needed, but the structure serves as a good starting point; red indicates that the structure is useless,
and starting over again is preferable.

Figure 30 shows a representative example of the esophagus and spinal cord segmentations gener-
ated with the DL thorax model for one patient. In this case, both AI segmentations were assessed
good as they are.
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(a) Sagittal plane (b) Transverse plane

(c) Sagittal plane (d) Transverse plane

Figure 30: Example showing the spinal cord (n) and the esophagus (n) segmentations produced with the DL
thorax model for one patient.

39



AI-based segmentation in RT

4.2 Training and testing of ML models

The runtime for the ML models was from 30 seconds to 5 minutes depending on the ROI and the
number of patients used for training the model. This time includes loading the data, training the
model, and calculating evaluation metrics.

Model performance with different amount of training data

Table 5 and Figure 31 compare the result achieved with the different ML models trained with 20
image series and 30 image series. The result of the Wilcoxon rank sum test is shown in Table 5.
Training the ML models with 10 more patients did not affect the result significantly, although the
boxplots in Figure 31 may indicate that the result is somewhat worse for the sternum, while small
improvements are seen for the left breast and the heart.

Table 5: Result from the Wilcoxon rank sum test of the DSCs and HDs for the ML models trained with 20 and
30 patients.

Median DSC Median AVD (mm)

20 30 p-value 20 30 p-value

Sternum 0,66 0,65 0,368 1,55 1,68 0,389
Left breast 0,65 0,68 0,533 2,31 2,16 0,572
Heart 0,66 0,66 0,714 2,54 2,51 0,774

(a) DSC (b) AVD

Figure 31: Boxplots with the DSC and AVD results for the ML models trained for the sternum, the left breast,
and the heart with 20 and 30 patients.
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4.2.1 Sternum

The average values for all metrics for the AI segmentations and the clinical segmentations for the
ML model trained for the sternum with 30 image series are displayed in Table 6. The performance
of the ML model varied between the individual patients in the dataset, as seen in Figure 32. The
lowest and highest DSCs were 0,54 and 0,80, respectively; the lowest and highest AVD values were
0,3 mm and 3,1 mm, respectively.

Table 6: Average values for all metrics for the sternum segmentations obtained with the ML model trained
with 30 patients. All HD values are in mm.

Metric Average STD Min Max

DSC 0,65 0,06 0,54 0,80
H75 22,6 4,1 10,4 28,9
H90 24,4 5,4 10,4 35,5
H95 24,8 5,7 10,4 35,9
H100 25,9 6,9 10,4 44,3
AVD 1,7 0,6 0,3 3,1

(a) DSC (b) HD values

Figure 32: Boxplots with the DSC and the different HD results for the AI segmentations obtained with the ML
model trained for the sternum with 30 patients.
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Figure 33 shows some of the segmentations achieved with the ML model trained for the sternum
with 30 image series, together with the manual segmentations. Figure 33a shows a patient that got
a high DSC and low HDs, Figure 33b is an example from a patient with a DSC and HDs close to the
average performance of the model, and Figure 33c is an example from a patient with a low DSC and
high HDs. In general, the model struggled with the first and last slices, and this was seen for every
patient. The AI segmentation still maintained a good agreement with the manual segmentation for
the middle slices.

(a) High DSC, low HD

(b) Average DSC, HD

(c) Low DSC, high HD

Figure 33: Examples from three different patients showing the sternum segmentations produced with the ML
model (n) and the manual sternum segmentations (n). From left to right: cranial to caudal.
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4.2.2 Left breast

The average values for all metrics for the AI segmentations and the clinical segmentations for the
ML model trained for the left breast with 30 image series are displayed in Table 7. The model per-
formed less uniform in terms of DSC for the left breast compared to for the sternum, as seen in
Figure 34. The lowest and highest DSCs were 0,32 and 0,77, respectively; the lowest and highest
AVD values were 1,3 mm and 3,7 mm, respectively.

Table 7: Average values for all metrics for the left breast segmentations obtained with the ML model trained
with 30 patients. All HD values are in mm.

Metric Average STD Min Max

DSC 0,64 0,10 0,32 0,77
H75 40,0 6,5 25,0 49,7
H90 42,7 8,2 25,0 56,9
H95 43,2 8,5 25,0 57,0
H100 44,3 9,1 25,0 60,7
AVD 2,3 0,5 1,3 3,7

(a) DSC (b) HD values

Figure 34: Boxplots with the DSC and the different HD results for the AI segmentations obtained with the ML
model trained for the left breast with 30 patients.
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Figure 35 shows some of the segmentations achieved with the ML model trained for the left breast
with 30 image series, together with the clinical segmentations. Figure 35a shows a patient that got
a high DSC and low HDs, Figure 35b is an example from a patient with a DSC and HDs close to
the average performance of the model, and Figure 35c shows a case with a low DSC and high HDs.
Also in this case, the model struggled especially with the first and last slices.

(a) High DSC, low HD

(b) Average DSC, HD

(c) Low DSC, high HD

Figure 35: Examples from three different patients showing the left breast segmentations produced with the
ML model (n) and the clinical breast segmentations (n). From left to right: cranial to caudal.
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4.2.3 Heart

Table 8 shows the average values for all metrics for the AI segmentations and the clinical segmen-
tations for the ML model trained for the heart with 30 image series. The ML model for the heart
performed better and more uniform in terms of DSC compared to for the sternum and the left
breast. Figure 36 shows how the model varied between the patients. The lowest and highest DSCs
were 0,52 and 0,73, respectively; the lowest and highest AVD values were 1,5 mm and 3,6 mm,
respectively.

Table 8: Average values for all metrics for the heart segmentations obtained with the ML model trained with
30 patients. All HD values are in mm.

Metric Average STD Min Max

DSC 0,66 0,05 0,52 0,73
H75 41,9 4,4 33,0 47,0
H90 43,5 5,2 33,0 51,0
H95 43,8 5,3 33,0 51,7
H100 44,6 6,0 33,0 58,3
AVD 2,4 0,5 1,5 3,6

(a) DSC (b) HD values

Figure 36: Boxplots with the DSC and the different HD results for the AI segmentations obtained with the ML
model trained for the heart with 30 patients.
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Figure 37 shows some of the segmentations achieved with the ML model trained for the heart with
30 patients, together with the clinical segmentations. Figure 37a shows a case with a high DSC
and low HDs, Figure 37b is an example from a patient with a DSC and HDs close to the average
performance of the model, and Figure 37c shows a patient with a low DSC and high HDs. The
model struggled especially with the first and last slices for the heart as well, while the middle slices
of the AI segmentations maintained a better agreement with the clinical segmentations.

(a) High DSC, low HD

(b) Average DSC, HD

(c) Low DSC, high HD

Figure 37: Examples from three different patients showing the heart segmentations produced with the ML
model (n) and the clinical heart segmentations (n). From left to right: cranial to caudal.
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5 Discussion

5.1 Evaluation of a DL thorax model

A DL model for automatic segmentation of organs in the thorax region, implemented in a commer-
cial treatment planning system, was evaluated. The AI segmentations of the heart and the lungs
were evaluated with comparison to the clinical segmentations. The average DSC and AVD for the
heart were 0,92 ± 0,02 and 2,9 ± 1,1 mm, respectively. For the lungs, the average DSC and AVD
were 0,97 ± 0,01 and 0,9 ± 0,4 mm, respectively. Although there is no consensus on the inter-
pretation of overlap indices, a DSC greater than 0,7 is commonly used to indicate good agreement
[45, 46, 47]. DL approaches have shown promising results in thoracic segmentation. Lei et al. [48]
reported an average DSC of 0,87, 0,97, 0,90, and 0,75 for the heart, lungs, spinal cord, and esoph-
agus, respectively. Mamani et al. [49] reported an average DSC of 0,95 for the lungs, and Trullo
et al. [50] obtained an average DSC of 0,67 for the esophagus and 0,90 for the heart. Compared
to these results, the DL thorax model performed especially well, in terms of DSC, for the heart and
lung segmentations.

Additionally, five different DL-based methods for auto-segmentation were developed by different
institutes for the thoracic auto-segmentation challenge organized at the 2017 annual meeting of
American Association of Physicists in Medicine (AAPM) [51]. The DSC and AVD segmentation re-
sults from the five institutes are listed together with the results for the DL thorax model in Table
9. The average DSC ranged between 0,85 and 0,93 for the heart, 0,95 and 0,98 for the lungs, 0,83
and 0,89 for the spinal cord, and 0,55 and 0,72 for the esophagus. The DL thorax model achieved
similar DSC and AVD for the heart and the lungs.

These findings also indicate that it is difficult to achieve as good results for the esophagus as for
the other OARs. This can be explained by two factors that are important for segmentation perfor-
mance: the visualization of the boundary of the organ and the organ volume. For instance, the lungs
have high contrast edges that are relatively easy to detect for both software and a human observer.
Contrarily, the esophagus has low contrast edges, which are much harder to detect. As for manual
segmentation, auto-segmentation methods are therefore typically less accurate for small, less visible
soft-tissue boundaries, such as the esophagus. Although the esophagus segmentation with the DL
thorax model was satisfactory, 4 out of the 20 the cases were deemed useless by the reviewer. The
addition of multi-modal images, such as MR imaging that provide improved soft tissue contrast,
could potentially improve the result for the esophagus.
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Table 9: A segmentation comparison of the DL thorax model with the five DL methods that participated in the
AAPM thoracic auto-segmentation challenge [51]. The results are given in average DSC and AVD, where bold
indicates the best values.

DSC Heart Left lung Right lung Spinal cord Esophagus

Model 1 0,93 ± 0,02 0,97 ± 0,02 0,97 ± 0,02 0,88 ± 0,04 0,72 ± 0,10
Model 2 0,92 ± 0,02 0,98 ± 0,01 0,97 ± 0,02 0,89 ± 0,04 0,64 ± 0,20
Model 3 0,91 ± 0,02 0,98 ± 0,02 0,97 ± 0,02 0,87 ± 0,11 0,71 ± 0,12
Model 4 0,92 ± 0,02 0,96 ± 0,03 0,95 ± 0,05 0,85 ± 0,04 0,61 ± 0,11
Model 5 0,85 ± 0,04 0,95 ± 0,03 0,96 ± 0,02 0,83 ± 0,08 0,55 ± 0,20
DL thorax 0,92 ± 0,02 0,97 ± 0,01 0,98 ± 0,01
AVD (mm)

Model 1 2,05 ± 0,62 0,74 ± 0,31 1,08 ± 0,54 0,73 ± 0,21 2,23 ± 2,82
Model 2 2,42 ± 0,82 0,61 ± 0,26 0,93 ± 0,53 0,69 ± 0,25 6,30 ± 9,08
Model 3 2,98 ± 0,93 0,62 ± 0,35 0,91 ± 0,52 0,76 ± 0,60 2,08 ± 1,94
Model 4 2,61 ± 0,69 2,90 ± 6,94 2,70 ± 4,84 1,03 ± 0,84 2,48 ± 1,15
Model 5 4,55 ± 1,59 1,22 ± 0,61 1,13 ± 0,49 2,10 ± 2,49 13,1 ± 10,4
DL thorax 2,87 ± 1,11 1,06 ± 0,04 0,79 ± 0,03

The dosimetric impact of the segmentations obtained with the DL thorax model was also evaluated
by comparing the dose to the heart and the lungs for the clinical and AI-generated segmentations.
The average heart doses did not differ significantly, while for the average lung doses and the frac-
tion of the left lung volume that receives 18 or 20 Gy, the p-values were less than 0,05, which
indicates a statistically significant dose difference. The left lung dose metrics for both clinical and
AI-generated segmentations were all less than 14,17 Gy, and the dose differences were less than
0,24 Gy, except for one patient with a dose difference of 0,48 Gy for average dose. For the right
lung, the dose metrics for both clinical and AI-generated segmentations were all less than 2,17 Gy,
and the dose differences were less than 0,02 Gy. Although the p-values were less than 0,05, the
dose differences of 0,00 Gy to 0,48 Gy are minimal.

Whether differences between clinical and AI-generated segmentations result in clinically relevant
alterations in calculated doses to OARs depends partly on proximity of normal structures to the
treatment volume and the dose gradient. For all patients, the left lung lies closest to the target
volume, and it is therefore expected that the dose metrics and dose metric differences in the left
lung are larger than those of the heart and right lung. Even though the average heart dose differ-
ences were not significant, the largest individual differences were seen for the heart. For 6 of the
20 patients, the average heart dose differences were more than 0,30 Gy. In clinical evaluation, the
treatment planner strives for an average heart dose below 2 Gy, which means that a difference of
0,5 Gy may change the treatment plan.

Although the DSC and HD have shown to be good measures for geometric similarity, they do not
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always correlate with clinical applicability of the segmentations. In clinical practice, segmentations
are either made by or reviewed by a physician. The AI segmentations made with the DL thorax
model were therefore reviewed qualitatively by an experienced and skilled oncologist at St. Olavs
Hospital. The clinical approval was not based on any predefined criteria but was a qualitative evalu-
ation made by the reviewer for each ROI and patient. The AI-generated heart segmentations passed
in 42 % of the cases, in terms of clinical acceptability. For the lungs, all of the AI-generated seg-
mentations were assessed clinically acceptable, although the clinical segmentations were preferred
over the AI segmentations in 70 % of the cases. The spinal cord and esophagus segmentations were
satisfactory and only 10 % of the segmentations were deemed useless. Especially for the heart,
where the AI segmentations were not approved in 12 of the 20 cases, it would be useful to know
how far away the non-approved segmentations were from being approved. A way for scoring the
non-approved segmentations could therefore be beneficial. For example, each segmentation could
be given a score based on how demanding or time-consuming it is to adjust in order to make it
acceptable according to local clinical standards. A method similar to this was conducted by Lusting
et al. [29] for example.

Figure 38 shows boxplots of the DSCs and AVDs grouped for the clinical accepted and non-accepted
heart segmentations for the DL thorax model. There was no significant difference between the mean
of the DSCs for the two groups (p = 0,279), nor for the mean of the AVDs for the two groups (p =
0,897).

(a) DSC (b) AVD

Figure 38: Boxplots where DSCs and AVDs for segmentations of the heart for the DL thorax model are grouped
by clinical and non-clinical acceptable segmentations.

An important point in this analysis is that the clinical segmentations were not critically reviewed
previous to this study, and they were contoured by several different physicians. But after all, they
were used for treatment and should therefore be of good quality. However, the comments from the
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reviewer suggest that there was certainly room for improvements in the manual segmentations as
well. The ground truth that the AI-generated structures were compared to should therefore have
been better quality assured to make the quantitative evaluation more valuable.

The DL thorax model used on average about 3 minutes on generating AI segmentations for one
patient. Even though 21 % of the AI segmentations required further improvements or adjustments,
using them as a starting point for manual segmentation may save time. Many studies show time-
savings compared to full manual segmentation [29, 52, 53, 54, 55].

Lustberg et al. [29] provided a clinical evaluation of a DL-based method for automatic segmen-
tation for radiotherapy treatment planning for lung cancer using commercial software (Mirada
Medical Ltd., Oxford, United Kingdom). Similar to the results for the DL thorax model, this DL-
based method performed well for the lungs, with DSCs > 0,97, and the segmentations needed little
or no corrections to conform to local clinical standards. Likewise, many of the heart segmentations
gave satisfactory results, with DSCs > 0,80, while some of the segmentations needed further edit-
ing. These researchers showed that time was saved when using the auto-generated segmentations
as starting point for manual segmentation: The total median time saved was 10 minutes for the
AI segmentations with user adjustment with respect to the manual segmentations. This is a large
reduction compared to the median time required to contour the OARs, including the heart, the left
and right lung, the esophagus, the spinal cord, and the mediastinum, which for Lustberg et al. were
20 minutes. This means that the median time required to contour all OARs was halved with the
DL-based method.

As mentioned, further improvement was especially needed for the heart segmentations produced
with the DL thorax model; adjustments were needed in 12 of the 20 cases, according to the re-
viewer. For further work, it would be interesting to measure how much more time would be needed
to make all AI segmentations clinically acceptable. For instance, Schreier et al. [56] constructed
a DL method for auto-segmentation of the breasts and heart, where they asked two experienced
dosimetrists and two radiation oncology specialists to correct the AI-generated segmentations to
make them clinically acceptable according to their guidelines and measure the time needed for
the corrections. Using an approach like this would be to show time-savings, if any, for the auto-
segmentation, despite the need for manual corrections, compared to full manual segmentation.

The DL thorax model came pre-trained in RayStation and was trained with 65 segmented image
sets for lung cancer patients, originating from Centre Oscar Lambret. The model performed well
for the breast cancer patients treated with deep inspiration breath hold despite being trained with
lung cancer patients. It would still be interesting to see if training the model with local data could
improve the results. This would ensure that the segmentation guidelines are in accordance with
those used at St. Olavs Hospital and thus the data used to evaluate the model. Additionally, training
the model with more image sets could potentially improve the results. It should also be mentioned
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that the DL thorax model has not been validated by RaySearch.

5.2 Training and testing of ML models

An ML method using linear SVC for automatic segmentation in medical images, developed at NTNU,
was trained for segmentation of the sternum, the left breast, and the heart and validated in terms
of accuracy. Training the ML models with 20 or 30 patients made no significant difference to the re-
sults in study. This was possibly due to a large variation in the dataset. However, the models trained
with 30 patients were considered for further analysis, because more training data should in theory
improve the result. In general, the models struggled with the first and last slices but performed
better for the middle slices. For the ML models trained with 30 images, the average DSC and AVD
were 0,65 ± 0,06 and 1,8 ± 0,6 mm, respectively, for sternum. For the breast, the average DSC and
AVD were 0,64 ± 0,10 and 2,3 ± 0,5 mm, respectively, and for the heart, the average DSC and AVD
were 0,65 ± 0,05 and 2,4 ± 0,5 mm, respectively. The planning of conformal radiotherapy requires
accurate segmentations of ROIs and this result is not good enough for clinical use.

The predicted volumes for most of the structures in the dataset contained a large amount of false
positives. This means that relatively large areas with non-organ voxels were predicted as the organ.
This was seen for all three ROIs but especially for the left breast, the first slices of the sternum, and
the last slices of the heart. The patient that got one of the lowest DSCs for the breast segmentation,
shown in Figure 35c, had a relatively small left breast compared to the other patients. It is reason-
able to think that with a high amount of false positives, the model will perform worse in terms of
DSC for small structures. For this patient, the DSC would be relatively low even if the whole breast
volume was classified correct. This means that the DSC will be very sensitive to the number of false
positives and false negatives compared to the DSC for a patient with a larger breast. This property
of the DSC is further discussed in section 5.3.

Post-processing was an important step in the development of the model. Especially, the removal
of small areas and volumes from the predicted volumes increased the average DSC. The threshold
for the size was adjusted to give the best results overall; however, for some patients it looked like
this threshold was set too high, and the actual ROI volume was removed. This was seen for some
patients where the AI structure of the sternum was missing in the last slices. Also, the large volumes
that the model incorrectly predicted as the ROI have a much larger impact on the results compared
to the small volumes. Removing these would have a larger effect on the results, but it would also
be more challenging.

One method that could have been used to remove these larger incorrect volumes is a click approach
that simulates the physician clicking on the selected structure, and everything that is not connected
to the structure is removed. This method separates connected regions and gets a list of seeds, which
are positions that are inside the ground truth mask, before removing all objects not connected to a
seed. This method could be effective to remove the large number of false positives seen for many
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of the predictions and in that way improve the result. Such a method is possible to implement with
functions from the SITK library for example.

It should be noted that all patients had lead wires placed on the skin around the palpable breast.
This wire is placed on the patient by a physician prior to CT scanning and is used to help defining
the breast for when it is segmented afterwards. It is reasonable to think that this lead wire may
have had an impact on the way the ML model for the left breast was thinking. It is conceivable that
the wire is useful as it helps to define the breast. However, the images in Figure 35 shows that it
is more likely that the wire has confused the algorithm rather than helping it, if it has affected the
model at all.

While few auto-segmentation methods using SVC for thoracic OARs have been published, support
vector machines have shown promising results for segmentation of brain tumors [57] and tumors in
the prostate [58] with MR imaging. Dong et al. [59] have suggested an ML method using random
forest classification for efficient mass segmentation for breast cancer patients. The model was com-
pared to different support vector machines, and the proposed random forest classifier outperformed
all of the other methods. This suggests that random forest classification may be superior compared
to a support vector classifier in tumor segmentation for breast cancer patients. Yet, it is unknown if
these results apply to segmentation of the OARs.

One advantage of the ML algorithm is that it is very flexible, and it can easily be extended to include
other ROIs or images types. However, the amount of training data applied could potentially have
limited the performance of the models. It could be that the models do not generalize well after
training, and therefore perform poorly on new, unseen data. An attempt to improve the models
was conducted by training them with 10 more patients; however, this did not result in any sig-
nificant change to the results. Augmented data could also have been used to increase the training
data. Yet, it is not given that augmented data can represent realistic subjects and increase the gener-
alization of a model. An even larger dataset could potentially provide results that are more realistic.

There is no definite answer to what amount of data is needed for training, but the amount of data
required is generally less for ML approaches compared to DL approaches, because the learning al-
gorithm is less complex. This is an advantage of ML as high quality data is often hard to collect due
to patient data privacy and the fact that an absolute ground truth does not exist. Also, very large
imaging datasets will require large storage and memory requirements along with high training time
for the models. However, DL algorithms often perform better when given more data, which is not
typical for ML algorithms after a plateau is reached. Yet, it would be interesting to see if the ML
models would perform better when trained on more patients.

Also, it is important to ensure the quality of the data put into the model. The ROI segmentations
used as ground truth were not reviewed thoroughly prior to training the model. It would have been
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favorable if all structures were segmented by the same person to reduce interobserver variation.
Another option that could be explored is to use the union or the intersection of segmentations from
two different experts as ground truth.

5.3 Metrics used for comparison

While many methods are available for comparing segmentations in contouring studies [4], clinically
relevant segmentation evaluation remains challenging. Selecting suitable metrics is not a trivial task
as metrics have different properties, with biases and sensitivities. Overlap methods account for both
volume and positional variability between segmentations and are widely used [4, 60]. The most
popular overlap method is the DSC; Sharp et al. [2] stated in their review on auto-segmentation
methods that this index should be included in any evaluation as it is the most commonly reported
metric used in literature. Thus, the model performances were evaluated in terms of the DSC for the
predicted segmentations and the clinical segmentations in the present study.

Spatial distance based metrics are widely used in the evaluation of image segmentation as dis-
similarity measures. They are recommended when the overall accuracy of the segmentation is of
importance [42]. The HD is a distance based metric and was used as a second quantitative eval-
uation metric to complement the DSC. H100 is generally sensitive to outliers and because noise
and outliers are common in medical segmentation, more robust variants of the HD were used as
supplements to the H100. This included the quantile method proposed by Huttenlocher et al. [43]
and the AVD, which are known to be more stable and less sensitive to outliers compared to the
H100. Using percentiles rather than the maximum distance is more robust as issues with noisy seg-
mentations are avoided. In some cases, the segmentations can look good qualitatively but have a
few stray voxels. Using the maximum penalizes these cases heavily. So, the H100 is this not a good
approach for such cases.

Different metrics may complement each other and do not necessarily correlate. The DSCs and H100s
plotted against each other for the DL thorax model is shown in Figure 39. These plots show that
there is a weak correlation between the DSC and H100 for the heart, while there is no correlation
between the DSC and H100 for the lungs. For the lungs, this means that optimizing for one metric
does not optimize the other. The correlation between the DSC and HD generally decreases with
decreasing overlap. This is because the DSC, in contrast to the HD, do not consider the position
of false positive voxels. This means that the DSC does not consider the positions of voxels that are
not in the overlap region and thus provides the same value independent of the distance between
the voxels. For the lungs, the predicted AI segmentations have some regions that are not in the
overlap, as seen in Figure 27a. These regions will not be considered differently by the DSC but will
give different results for the H100. This may explain the lack of correlation between the DSCs and
H100s for the lung segmentations.
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(a) Heart (b) Lungs

Figure 39: The DSC and H100 values plotted against each other for the heart and lung segmentations for the
DL thorax model.

There is an inverse relation between structure size and the overlap between the structure in the
ground truth and that in the segmentation under test. For small structures, the probability of small
or zero overlap is high. This is seen in the last slices of some of the sternum segmentations for ex-
ample, as shown in Figure 40. In such a case, overlap metrics are not suitable, since they providee
the same value regardless of how far the structures are from each other, once the overlap is zero.
Thus, the HD may be better suited over the DSC as an evaluation metric when structures are small.

Figure 40: Example showing three different slices for a patient where the DSC for the AI segmentation and
the manual segmentation of the sternum is the same and equal zero.

The DSC is correlated with the size of the structure and is therefore organ-dependent. What is
assessed good will depend on the clinical context, and the DSC thus become a less meaningful mea-
sure when comparing the quality of the segmentations between different organs. It usually achieves
higher scores for bigger organs. This can be explained by looking at the definition of the DSC given
in Equation (3.2). For small structures, the number of true positives in the prediction will be low
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even if the whole ROI volume is classified correct. The DSC will then be very sensitive to the num-
ber of false positives and false negatives compared to the DSC for a patient with a larger structure.
As mentioned, the predictions made by the ML models included a large number of false positives,
and the DSC is therefore highly correlated with the size of the structure for these predictions.

This property may also explain the high DSCs obtained for the lung segmentations with the DL
thorax model. It is reasonable to believe that the lung volumes could be so large that the DSC gives
a high value even if the obtained AI segmentation differ quite much from the clinical segmentation.
Therefore, the HD may be a better choice for comparison of the lung segmentations; although HD
is not perfect either, it only says something about the largest deviation.

As mentioned, these metrics are intuitive and quantitative, but they do not always correlate with
clinical applicability of the segmentations. Vaassen et al. [40] suggest that quantitative measures to
predict time-saving using automatically generated segmentations are better indicators of clinical ap-
plicability and quality. These researchers introduced two new evaluation measures: the surface DSC
and the added path length (APL). These measures were found to be better indicators for clinical
segmentation time saved, and thus clinical applicability and quality, compared to the commonly-
used volumetric DSC and HD. For further segmentation studies, these measure could be included
for more clinically relevant measures.

Lustberg et al. [29] grouped the DSCs, HDs, and time saved based on how well the OARs performed
according to the subjective score of a technician and found that there was a relation between the
quantitative measures and the subjective score. This demonstrates that the DSC and HD can cor-
relate with clinical applicability well, even though better alternatives, such as the surface DSC and
APL, may exist. Nonetheless, both the DSC and HD are useful for comparison to the works done by
other researchers.

Even if the evaluation measures were more correlated with clinical applicability of the segmenta-
tions, evaluating knowledge-based segmentation methods still remains challenging, the main rea-
son being the absence of an absolute ground truth that can be directly derived from CT data. In
this study, all segmentations are assessed based on deviations from single observer manual seg-
mentations. The segmentations, provided by different observers, are assumed to be correct and are
therefore used as a ground truth. However, manual segmentation is prone to intra- and interob-
server variations, and quite different segmentations of the same ROI can be accepted in compliance
with local clinical guidelines. For instance, Lustberg et al. [29] found that the even after adjusting
the automatically generated esophagus segmentation to meet the clinical guidelines, the DSC was
0,78 when comparing to the manual segmentation.

In fact, results presented at the Norwegian Radiotherapy Meeting 2018 [61] showed that target
volume and OAR segmentation vary for breast cancer between the different radiotherapy depart-
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ments in Norway. Prior to the meeting, the different radiotherapy departments received a patient
case, where they segmented the target volumes and OARs based on their local guidelines. Figure
41 shows some of the submitted results that were collected and compared for the clinical target
volume breast and the heart. The volume of the breast ranged from approximately 320 cm3 to 360
cm3 with the different segmentations. For the heart, the volume ranged from approximately 440
cm3 to 560 cm3. One reason for these variations may be explained by the different guidelines em-
ployed. Also, the segmentation of the heart is performed by different professions at the different
radiotherapy departments. In half of the departments, physicians segment the heart; in the other
half, radiation therapists segment the heart, while a physician control the segmentation afterwards.

(a) Left breast (b) Heart

Figure 41: The left breast and the heart manually segmented for the same patient at different radiotherapy
departments in Norway — courtesy of [61].

Again, the ground truths that the AI-generated structures were compared to should have been re-
viewed prior to this study: Better quality assurance of the ground truths would have made the
quantitative evaluation more meaningful. For further work, it could also be interesting to compare
the DSC and HD result using ground truth segmentations from different experts. This would be
to measure how much the quantitative result is affected by using another set of ground truths. In
addition, one could see if the accuracy of the AI-generated segmentations are similar to expert inter-
observer variability. For instance, Wong et al. [62] proposed a DL method for auto-segmentation of
OARs and compared the differences in DSC and H95 for different expert segmentations and for the
DL method and the expert segmentations.

5.4 Management of patient data

The use of AI in radiotherapy challenges in many areas, and particularly is the question of privacy
and security of medical data. Using AI on sensitive, personal data for training ML or DL models
could be problematic as it may violate the health data law [63].

Regarding the management of patient data for evaluating the DL thorax model in RayStation, all
patient data was fully anonymized. For each patient, the original planning CT, together with the
segmented target volumes and OARs were used. This information was anonymized in the clini-
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cal version of RayStation 8, meaning that all patient information, including name, social security
number, date of birth, and gender, was permanently removed from the data. In addition, the date,
time, and institution name were removed. The fully anonymized planning CT, together with the
segmented target volumes and OARs, were then exported to a non-clinical installation of RaySta-
tion 9A.

As for the data used to train the ML models implemented in Python, this patient data was also
anonymized in the same manner before being exported. Once the model is trained, the model itself
does not contain any patient-identifiable information nor medical images from the training dataset.
A fully trained model consists of a single file that is entirely anonymous. As a result, the model
can be utilized to run predictions on new, unseen patients independent of sensitive medical data.
Also, the use of this data was applied for and approved by the Regional Committees for Medical
and Health Research Ethics (REK Midt ref. 92685). REK considered that the project was sound and
that the interests of the participants’ welfare and integrity would be taken care of. Exemption from
the duty of confidentiality were therefore given so that CT images and contoured structures could
be de-idenitfied without breaching confidentiality. The committee justified this decision with the
fact that the exposed information is CT images and structures, and this health information will be
anonymous on the researcher’s hand. Additionally, the research project was considered to serve the
interests of society, and the risk and privacy disadvantage of participating in the study was consid-
ered to be minimal.

Further, there is the challenge of creation and curation of large datasets. Although it is unlikely that
robust models can be built with data from a single institution alone, barriers associated with the
use of patient data can be a substantial challenge to the development of such models [8]. ML and
DL models require patient data, and model training relies on access to large datasets of high qual-
ity data. However, obtaining sufficient data is a challenge as labeling image data requires expert
knowledge. Collaboration between multiple hospitals could address this challenge but is difficult
because of strict internal policies for data sharing and privacy protection imposed by most clinical
sites. Sheller et al. [64] introduced the use of federated learning. This is a technique that enables
collaborating clinical institutions to train ML models without sharing patient data, thus addressing
critical issues such as data privacy, data security, and data access rights.

Another potential solution to the challenges associated with data sharing between institutions is the
use of distributed learning, a technique that learns from data without the data leaving the hospital.
Jochems et al. [65] developed a predictive model based on a large volume of historical patient
data and serves as a proof of concept to demonstrate the distributed learning approach. Using this
approach, it is the model that is moved, not the data. Sharing of already trained models is not a
problem as the trained ML models and DNNs have no patient data in them. This means that a model
can be used in another clinic or another country.
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Further, establishing a large, publicly available database of clinical cases with ground truth esti-
mated from multiple expert segmentations would enable standardization of evaluation criteria and
provide training data for development of ML algorithms. A successful first step in this direction is
the publicly available clinical data provided by The Cancer Imaging Archive [66], a service which
de-identifies and hosts a large archive of medical images of cancer patients. However, the way to-
wards availability of large collections of clinical data is still difficult. An absolute ground truth must
be decided on, which may be challenging because different clinics have different traditions and
standards in their segmentation routines.

There is great potential for better use of resources with less time spent on segmentation and more
uniform quality; however, it is currently uncertain how well this potential can be exploited due to
challenges related to privacy and data security.

5.5 Further work

As this work included patient CT scans with ROIs segmented by several different physicians, it
would be interesting to repeat the comparisons of the AI-generated segmentations and the clini-
cal segmentations with more consistent and critically reviewed clinical segmentations. This would
make the quantitative analysis of the segmentation results more meaningful, as well as proving the
ML models with training data of higher quality.

It would also be beneficial to extend the clinical analysis of the AI segmentations made by the DL
thorax model to provide more information about potential time savings. The ideal would be to
measure how much time a physician would spend on manual corrections to make all AI-generated
segmentations clinically acceptable. This would be to see if auto-segmentation with AI could save
time in total, despite the need for manual adjustments in some of the AI-generated segmentations.
However, such a study would require more time and resources. Further improvements of the study
could be achieved by comparing the DL thorax segmentation to other auto-segmentation methods
implemented in the treatment planning system, such as atlas- or model-based auto-segmentation.
For example, the same data could be used for generating atlases in RayStation. Comparing the
AI-based segmentations with atlas-based segmentations would be very relevant; maybe some struc-
tures could just as easily be based on atlases?

For the ML models, there is large room for improvements. Increasing the amount of training data
with 10 patients did not improve the results significantly, but a larger increase in training data may
still be of importance and should be further explored. Also, it would be interesting to see if other ML
methods, such as random forest classification, could achieve better results than the linear support
vector classifier. Specific values used for pre- and post-processing of the image series used as input
to the ML models were selected based on a trial and error method. While there are many options
for processing the data, only a few were tested. In this study, locally cropping around the ROI and
multiple image sets with different window/level were used as input data. For future work, adding
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new features to the input data, such as texture features or new window/levels, should be further
investigated. For post-processing, the mentioned click approach would be interesting to test, as well
as more morphological operations to remove holes and smooth boarders, for example. Future stud-
ies should also address the pre- and post-processing in a more detailed manner.

The whole dataset was used for the cross-validation, and how the ML models perform on previously
unseen data was therefore not explored. Future work should consider to also test the models on a
different dataset to see how well the they generalize.

Further, it would be of interest to extend the ML models to include more structures, such as the
thyroid, caput humeri, esophagus, and trachea. Especially, anatomically well-defined normal struc-
tures, such as caput humeri, could have potential to give good results. It would also have been
interesting to train the algorithm for other diagnoses than breast cancer. The ML algorithm has
only been used for automatic segmentation of tumor volume in rectal cancer before. For instance,
an ML model could be trained for segmentation of brain tumors or tumors in the prostate.

In principle, it should be possible to upload the ML models in RayStation and use them directly as a
script to contour ROIs. With this comes a potential for improving the model for every new patient.
For further work, it would be of high interest to implement the ML models in RayStation to see how
well they work directly in the treatment planning system. The models could then be trained for any
structure available, and training data would be easily accessible without having to leave the clinic.
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6 Conclusion

A DL thorax model was evaluated for radiotherapy planning for 20 left-sided breast cancer patients
using commercial software. Auto-segmentation with this model provided segmentations of high
quality, with an average DSC and AVD of 0,92 ± 0,02 and 2,9 ± 1,1 mm, respectively, for the heart
and an average DSC and AVD of 0,97 ± 0,01 and 0,9 ± 0,4 mm, respectively, for the lungs. The
model generated clinically acceptable results in 42 % of the cases for the heart, 100 % of the cases
for the lungs, 85 % of the cases for the spinal cord, and 70 % of the cases for the esophagus. As a
large majority of the segmentations were acceptable, and many of the non-accepted segmentations
required minor manual corrections, this implies that the model has potential to improve both con-
sistency and efficiency of segmentation in the clinic.

Additionally, ML models for automatic segmentation of the sternum, the left breast, and the heart
were trained and tested for 30 left-sided breast cancer patients. The ML algorithm was successfully
adapted to train models based on clinical breast cancer segmentations, but the models need further
improvements in order to be clinically useful. The average DSC and AVD for the sternum were 0,65
± 0,06 and 1,8 ± 0,6 mm, respectively; the average DSC and AVD for the left breast were 0,64 ±
0,10 and 2,3 ± 0,5 mm, respectively; the average DSC and AVD for the heart were 0,66 ± 0,05
and 2,4 ± 0,5 mm, respectively. This is a fast and flexible method that can easily be extended to
include other anatomical structures or image types. However, there are many options to improve
the results, including pre- and post-processing of the data, that should be further explored before
the model can be implemented in clinical practice.

To conclude, this study demonstrates that auto-segmentation methods based on AI have potential
as a useful tool in radiotherapy planning.
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A Python script for extracting dose values in RayStation

This script is written in Python and was used in RayStation to extract different dose measures for a
selection of ROIs in a treatment plan. The script creates an Excel spreadsheet with the dose values
for each ROI for a chosen patient.

import c l r , sy s
from connect import*

c l r . AddReference (’Office’)
c l r . AddReference (’Microsoft.Office.Interop.Excel’)

import Microso f t . O f f i c e . In te rop . Exce l as i n t e rop_exce l
import System . Array

exce l = in t e rop_exce l . A p p l i c a t i o n C l a s s ( V i s i b l e=True )
workbook = exce l . Workbooks . Add()
worksheet = workbook . Worksheets . Add()

# Create two-dimensional array
def c r ea t e_a r ray (m, n) :

dims = System . Array . Crea te Ins tance ( System . Int32 ,2 )
dims [0] = m
dims [1] = n
return System . Array . Crea te Ins tance ( System . Object , dims )

try :
p a t i e n t = ge t_cur ren t (’Patient’)
plan = ge t_cur ren t (’Plan’)

except :
print ’Patient␣and␣plan␣are␣not␣loaded.␣Exits␣script.’
sys . e x i t ( )

# Set up header row
header_row = crea te_a r ray (1 , 4)
header_row [0 ,1] = ’Averge␣dose/V18␣Gy’
header_row [0 ,3] = ’V20␣Gy’

s t a r t c e l l = worksheet . C e l l s (1 , 1)
header_range = worksheet . Range( s t a r t c e l l , s t a r t c e l l . C e l l s ( header_row . GetLength (0) ,

header_row . GetLength (1) ) )
header_range . Value = header_row

data_array = crea t e_a r ray (4 , 5)
data_array [0 ,0] = p a t i e n t .Name
data_array [0 ,1] = "Man"
data_array [0 ,2] = "AI"
data_array [0 ,3] = "Man"
data_array [0 ,4] = "AI"
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data_array [1 ,0] = ’Heart’
data_array [2 ,0] = ’Left␣lung’
data_array [3 ,0] = ’Right␣lung’

r o i s = ["Heart" , "Lung_left" , "Lung_right"]
r o i s _ A I = ["Heart_AI" , "Lung_left_AI" , "Lung_right_AI"]

summedDose = p a t i e n t . Cases [ 0 ] . TreatmentDel ivery . F ra c t i onEva lua t i on s [ 0 ] . DoseOnExaminations
[ 0 ] . DoseEvaluat ions [0]

# Average dose to heart
data_array [1 , 1] = summedDose . G e t D o s e S t a t i s t i c (RoiName="Heart" , DoseType = "Average" )
data_array [1 , 2] = summedDose . G e t D o s e S t a t i s t i c (RoiName="Heart_AI" , DoseType = "Average" )

# V18 Gy and V20 Gy to left lung
data_array [2 , 1] = summedDose . GetRelat iveVolumeAtDoseValues (RoiName="Lung_left" ,

DoseValues =[1800]) [0]
data_array [2 , 2] = summedDose . GetRelat iveVolumeAtDoseValues (RoiName="Lung_left_AI" ,

DoseValues =[1800]) [0]
data_array [2 , 3] = summedDose . GetRelat iveVolumeAtDoseValues (RoiName="Lung_left" ,

DoseValues =[2000]) [0]
data_array [2 , 4] = summedDose . GetRelat iveVolumeAtDoseValues (RoiName="Lung_left_AI" ,

DoseValues =[2000]) [0]

# V18 Gy and V20 Gy to right lung
data_array [3 , 1] = summedDose . GetRelat iveVolumeAtDoseValues (RoiName="Lung_right" ,

DoseValues =[1800]) [0]
data_array [3 , 2] = summedDose . GetRelat iveVolumeAtDoseValues (RoiName="Lung_right_AI" ,

DoseValues =[1800]) [0]
data_array [3 , 3] = summedDose . GetRelat iveVolumeAtDoseValues (RoiName="Lung_right" ,

DoseValues =[2000]) [0]
data_array [3 , 4] = summedDose . GetRelat iveVolumeAtDoseValues (RoiName="Lung_right_AI" ,

DoseValues =[2000]) [0]

s t a r t c e l l = worksheet . C e l l s (2 ,1)
data_range = worksheet . Range( s t a r t c e l l , s t a r t c e l l . C e l l s ( data_array . GetLength (0) ,

data_array . GetLength (1) ) )
data_range . Value = data_array
worksheet . Columns . AutoF i t ( )
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B Python script for calculating quantitative metrics in RayStation

This script is written in Python and was used in RayStation for calculating overlap indices and
spatial distance based metrics for two sets of ROIs that were to be compared. The script creates an
Excel spreadsheet with the calculated DSC, HD, precision, sensitivity, specificity, and AVD for each
ROI for a chosen selection of patients.

from connect import*
import c l r , sy s

c l r . AddReference (’Office’)
c l r . AddReference (’Microsoft.Office.Interop.Excel’)

import Microso f t . O f f i c e . In te rop . Exce l as i n t e rop_exce l
import System . Array

# Create two-dimensional array
def c r ea t e_a r ray (m, n) :

dims = System . Array . Crea te Ins tance ( System . Int32 ,2 )
dims [0] = m
dims [1] = n
return System . Array . Crea te Ins tance ( System . Object , dims )

# Load patient database
pat ient_db = get_cur ren t (’PatientDB’)

# All relevant patients have ID 19061996
try :

i n f o = pat ient_db . QueryPat ient In fo ( F i l t e r ={’PatientID’ : ’19061996’})
except :

print ("Could␣not␣find␣patient␣info" )

data_array = crea t e_a r ray (50 , 50)

for i in range (len ( i n fo ) ) :
p a t i e n t = pat ient_db . LoadPat ient ( P a t i e n t I n f o=in fo [ i ])
plan = p a t i e n t . Cases [ 0 ] . TreatmentPlans [0]
s t r u c t u r e _ s e t = plan . GetS t ruc tureSe t ()

Lung_le f t , Lung_r ight = ’Lung_left’ , ’Lung_right’
for r in s t r u c t u r e _ s e t . RoiGeometries :

if r . OfRoi .Name == ’Lung_Right’ and r . HasContours () :
Lung_r ight = ’Lung_Right’

for r in s t r u c t u r e _ s e t . RoiGeometries :
if r . OfRoi .Name == ’Lung_Left’ and r . HasContours () :

Lung_ le f t = ’Lung_Left’

data_array [ i , 0] = p a t i e n t .Name
# Extract evaluation metrics for heart, left lung and right lung
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# Metrics: ’DiceSimilarityCoefficient’, ’Precision’, ’Sensitivity’, ’Specificity’, ’
MeanDistanceToAgreement’, ’MaxDistanceToAgreement’

data_array [ i , 1] = s t r u c t u r e _ s e t . ComparisonOfRoiGeometries ( RoiA=Heart , RoiB=’Heart_AI
’ , ComputeDistanceToAgreementMeasures=Fa l se ) [’DiceSimilarityCoefficient’]

data_array [ i , 2] = s t r u c t u r e _ s e t . ComparisonOfRoiGeometries ( RoiA=Lung_le f t , RoiB=’
Lung_left_AI’ , ComputeDistanceToAgreementMeasures=Fa l se ) [’
DiceSimilarityCoefficient’]

data_array [ i , 3] = s t r u c t u r e _ s e t . ComparisonOfRoiGeometries ( RoiA=Lung_right , RoiB=’
Lung_right_AI’ , ComputeDistanceToAgreementMeasures=Fa l se ) [’
DiceSimilarityCoefficient’]

f i l e _ p a t h = None
c l o s e _ e x c e l = True

try :
# Open Excel with new worksheet
exce l = in t e rop_exce l . A p p l i c a t i o n C l a s s ( V i s i b l e=True )
workbook = exce l . Workbooks . Add( in t e rop_exce l . XlWBATemplate . xlWBATWorksheet )
worksheet = workbook . Worksheets [1]

# Set up header row
header_row = crea te_a r ray (1 ,5)
header_row [0 , 0] = ’Patient’
header_row [0 , 1] = ’Heart’
header_row [0 , 2] = ’Left␣lung’
header_row [0 , 3] = ’Right␣lung’

# Add header row to work sheet
s t a r t c e l l = worksheet . C e l l s (1 , 1)
header_range = worksheet . Range( s t a r t c e l l , s t a r t c e l l . C e l l s ( header_row . GetLength (0) ,

header_row . GetLength (1) ) )
header_range . Value = header_row

# Add ROI data array to work sheet
s t a r t c e l l = worksheet . C e l l s (2 ,1)
data_range = worksheet . Range( s t a r t c e l l , s t a r t c e l l . C e l l s ( data_array . GetLength (0) ,

data_array . GetLength (1) ) )
data_range . Value = data_array

# Auto-fit the width of all columns
worksheet . Columns . AutoF i t ( )

finally :
# The following is needed for the excel process to die when user closes worksheet
if f i l e _ p a t h != None and c l o s e _ e x c e l :

exce l . Quit ( )
System . Runtime . I n t e r o p S e r v i c e s . Marshal . FinalReleaseComObject ( worksheet )
System . Runtime . I n t e r o p S e r v i c e s . Marshal . FinalReleaseComObject ( workbook )
System . Runtime . I n t e r o p S e r v i c e s . Marshal . FinalReleaseComObject ( exce l )
s e r i e s C o l l e c t i o n = None
char t = None
worksheet = None
workbook = None
exce l = None
System .GC. Wai tForPend ingF ina l i ze r s ()
System .GC. C o l l e c t ()
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C Normality test

Figure 42 to 44 show some of the results of the Shapiro-Wilk tests, which was used to assess whether
the differences in dose values, described in chapter 3.1.3, follow a normal distribution. The samples
in Figure 42 and 44 can be assumed to follow a normal distribution (p > 0,05), while the sample
in Figure 43 cannot be assumed to follow a normal distribution (p < 0,05).

Figure 42: Normal Q-Q plots for the average heart dose differences between clinical and AI segmentations
obtained with the DL thorax model.
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AI-based segmentation in RT

Figure 43: Normal Q-Q plots for the average left lung dose differences between clinical and AI segmentations
obtained with the DL thorax model.

Figure 44: Normal Q-Q plots for the average right lung dose differences between clinical and AI segmentations
obtained with the DL thorax model.
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