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Abstract

In this thesis, a density functional theory (DFT) and density functional tight
binding (DFTB) study is conducted to see how different cations will bind to
carbon dioxide (CO2) in fluorohectorite, in an attempt to predict whether
they can be used in fluorohectorite for CO2 storage. With DFT, the GGA revPBE
exchange correlation functional is used. With DFTB, two different Hamilto-
nians are used; SCC-DFTB and GFN1-xTB. The cations used are Li+, Na+, K+,
Rb+, Cs+, Be2+, Mg2+, Ca2+, Ba2+ and Ni2+.

The results show that for both models the reaction energies seem to increase
when the cation is residing in the interlayer, above the hexagonal cavity. The
cation can not reside in the hexagonal cavity when the intercalated cation
is too large. Also, CO2 is likely to be parallel to the clay surface. Using the
SCC-DFTB parametrization, the clay swells with increased amounts of CO2.
For one group I cation, larger cations are more tightly bound to CO2. Using
the GFN1-xTB parametrization, the reaction energy decreases when adding
more CO2 to the cations. At the same time, the cation–oxygen bond length
increases. The tendency is that larger cations bind CO2 better. Very small fre-
quencies means a greater likelihood for a structure with CO3 in GFN1-xTB,
especially seen in the context of a short C–O distance, which especially ap-
plies to Ca-Fh and 2Cs-Fh. With increased amounts of CO2, the C–O distance
decrease, which means a weakening of the CO2 bond.



Sammendrag

I denne oppgaven gjøres beregninger med tetthetsfunksjonalteori (DFT) og
tetthetsfunksjonalteori tight binding (DFTB) på leirematerialet fluorhektoritt
for å finne hvilke kationer som passer best for interkalasjon av CO2. Med DFT
blir utvekslingskorrelasjonsfunksjonalen GGA revPBE i den generaliserte gra-
dientapproksimasjonen brukt. Med DFTB brukes to forskjellige Hamiltonier,
SCC-DFTB og GFN1-xTB. Kationene som blir undersøkt er Li+, Na+, K+, Rb+,
Cs+, Be2+, Mg2+, Ca2+, Ba2+ og Ni2+.

Resultatene viser at reaksjonenergien øker når kationet er posisjonert over
det sekskantede hulrommet og ikke inni. Dette er mulig blant annet når det
interkalerte kationet er for stort til å få plass inni det sekskantede hulrom-
met. Dessuten ligger CO2 oftest parallell til leireoverflaten. Med SCC-DFTB
sveller leiren for økende mengder CO2. For kationer fra gruppe I er større ka-
tioner tettere bundet til CO2. Med GFN1-xTB minker reaksjonsenergien med
økende mengder CO2. Samtidig øker også X–O-bind-ingen. Tendensen er
at større kationer binder CO2 bedre. Veldig små strekkvibrasjoner for CO2 i
GFN1-xTB betyr en større sannsynlighet for at en CO3-gruppe har blitt dan-
net, spesielt når også C–O-distansen er liten. Dette gjelder i størst grad for
Ca-Fh and 2Cs-Fh. Med økende mengder CO2 minker C–O-lengden, noe som
betyr at CO2-bindingen svekkes.
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Chapter 1
Introduction

Today’s political landscape is dominated by discussions about climate change
and global warming. The Earth’s climate does have natural variations, but the
use of fossil fuels and corresponding CO2 emissions has a massive impact on
the climate [1, 2]. To keep below a 2 degree increase from pre-industrial tem-
perature, it is crucial that the CO2 levels in the atmosphere are lowered and
that CO2 emissions are reduced [3, 4]. This is one of the biggest challenges
the world is facing, and it is therefore crucial to research ways to limit the
consequences of global warming.

One possible solution is to reduce CO2 levels by the use of carbon capture and
storage (CCS). It is therefore essential to know more about how CO2 works
in the atmosphere, how far the technology behind CCS has come, and how
Fluorohectorite can be a part of the solution.

1.1 Carbon Dioxide in the Atmosphere

Energy from the Sun radiates to Earth, and around 70 % of this energy is ab-
sorbed by the Earth’s ground and atmosphere. When electromagnetic waves
of energy arrive to Earth from the Sun in various frequencies, circa one third
of it is reflected back into space by clouds, the atmosphere and the Earth. The
rest of it is absorbed to the ground and in the atmosphere. To achieve a stable
temperature on Earth, the flow of incoming solar energy and outgoing radia-
tion must be at equilibrium: Energyin = Energyout. In the lower atmosphere,
energy in the infrared spectrum is trapped by CO2, causing the energy to re-
main in the atmosphere instead of escaping out into space. This keeps the
temperatures on Earth above a livable temperature range. Trapping heat in-
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Figure 1.1: The development of atmospheric temperature, taken from [2, Figure SPM.1 (a)].
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Figure 1.2: The development of atmospheric CO2 concentrations, taken from [2, Figure SPM.4 (a)].

side a closed space is also the concept of a greenhouse, and it is why gases in
the atmosphere, such as CO2, are referred to as greenhouse gases [5, Chapter
2].

An increasing amount of CO2 in the atmosphere causes the temperature on
Earth to rise [5, Chapter 2]. Figure 1.1 shows the development of the atmo-
spheric temperature over the last 150 years, and Figure 1.2 shows the CO2

concentrations over the last 50 years. With increasing amounts of CO2, the
atmosphere traps increasing amounts of energy instead of letting excess heat
radiate out into space, which leads to increasing temperatures on Earth. Other
greenhouse gases like methane and chlorofluorocarbon (CFC) gases will also
cause this behaviour. However, the amount of these is not in the same scale
as CO2. CO2 is the greenhouse gas with the largest concentration in the atmo-
sphere, and it is also the greenhouse gas which humans emit at the highest
rate. Research shows that there is a correlation between the increase in CO2

concentrations in the atmosphere and the increase in the temperature on
Earth [1, 2].

1.2 Carbon Capture and Storage

Carbon capture can be done either from a point-source or directly from the
atmosphere [6]. The most energy efficient and easiest way to capture CO2
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is from inserted filters in power plants and factories, called point-sources.
This only reduces the local CO2 emissions. To prevent CO2 emission from
airplanes and cars, one would have to capture CO2 from the atmosphere. The
latter technology has been around for years in small scale, for example to
extract CO2 from the air in submarines [6]. The amount of CO2 in air is 1:2500,
which means one would have to process large volumes of air with an energy-
intensive extraction process in order to extract large amounts of CO2 from
the atmosphere. Modifying the air by cooling or pressurizing it would require
too much energy [6]. A better solution is to collect air through large fans and
absorb or adsorb CO2 in various ways, for example like Climework does [7, 8].
The energy to drive the CO2 capture processes has to be restricted to limit the
CO2 emissions from the process and hence capture more CO2 than is emitted.
One way to restrict the energy usage is to use nearby green energy sources like
wind and thermal power, or low-grade waste heat.

After capturing CO2, it needs to be stored, and there are several possible stor-
age methods. All methods used today look at how CO2 will adsorb to the sur-
face or interface of a material, or be absorbed into the material [6]. Adsorp-
tion is when an atom bonds with the surface atoms of a material [9, p. 103].
One method is to send the gas mixed with water underground and letting it
react with basaltic rocks to form stone [10, 5]. An important aspect of storing
CO2 is that it has to be cheap for the technology to be competitive. Another
crucial aspect is that storage sites should not leak CO2 over time [6]. Leak-
age means a less efficient system and one would have to capture more CO2

to make up for the leaked CO2. A material that seems to fulfill these require-
ments is clay, which has potential as a future carbon storage material and is
the focus of this thesis.

1.3 Clay and Fluorohectorite

Today researchers are looking into storing carbon in clay. Clay is abundant,
cheap, reusable and non-toxic [11]. The surface area of clay is large which
gives clay a good adsorption capacity. It is therefore worth looking closer
at the properties of clay, and especially fluorohectorite, which is the specific
type of clay used in this thesis.

Clay is a mineral with grain size smaller than 2µm and is found in large parts
on Earth. It makes up around 10 % of the volume of the Earth’s crust and is a
mineral with a layered structure called phyllosilicates [5, pp. 56–58]. The def-
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inition of a mineral is: “A naturally occurring solid inorganic (usually) sub-
stance with a definite chemical formula and an ordered atomic structure”
[5, p. 56]. Clay also has a specific atomic formula, unlike for example stone,
which often is a collection of different atomic formulas. Many clay minerals
need water to form as part of the structure [5, p. 34].

The stacking arrangement of the clay sheets is the main property to define a
clay mineral. On an atomic level, clay can be tetrahedral or octahedral, de-
pending on the placing of the cations of the unit cell. Clay can be categorized
in two main stacking arrangements: a 1:1 and a 2:1 layer, which is a ratio
between the tetrahedral and octahedral sheets. The 1:1 type is put together
by a tetrahedral and an octahedral sheet. The 2:1 type consists of two tetra-
hedral and one octahedral sheet per layer. Both stacking arrangements are
illustrated in Figure 1.3. A variation of the 2:1 type is one where there are two
tetrahedral and one octahedral sheet per layer and an octahedral sheet as-
sociated with the layer, this is often referred to as 2:2. The different types of
layers affect the structure of the clay and the properties of the mineral, such
as surface charge and the ability to swell [5, p. 61].

Interchanging one of the cations in the octahedral sheet of clay, with a cation
of different valence, will give the sheet a different charge. The most normal is
to interchange a cation with a lower valence cation, for example interchange
Al3+ with Mg2+ in montmorillonite, or Mg2+ with Li+ in hectorite. This gives
a net negative charge of the sheet. Thus an extra cation needs to be added
to the unit cell to make the sheet neutral. The cation can be added to the
interlayer or within the layers [5, p. 60]. The cation added in the interlayer
will be mobile and can be interchanged with other cations.

Hectorite, and thus also fluorohectorite, is a smectite clay material. It is mon-
oclinic, which means it has a crystal structure with two right angles and one
angle that is different from 90°. It has a 2:1 type layer. In this thesis, the hec-
torite chosen for computations was fluorohectorite, as it has been of experi-
mental interest at the Department of Physics at NTNU [12]. Fluorohectorite
has the formula

Xy (Mg6−y Liy )Si8O20F4. (1.1)
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Figure 1.3: Illustration of the 1:1 and 2:1 layer geometry of clay, used with permission from [12, Figure
2.2].

This means that every unit cell has 38 atoms in total when y = 0, where 20 of
these are O, 8 are Si and 4 of them are F. In the octahedral layer there are then
6 atoms of Mg. If y 6= 0, the octahedral layer will have 6− y Mg atoms and y
Li atoms. With 6 Mg atoms in the octahedral layer, the unit cell is neutral. Mg
has a chemical valence of two, while Li has a chemical valence of one. This
means that when interchanging a Mg atom for a Li atom, the total unit cell
has a negative net charge. Therefore, a metal ion with positive charge must
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be found in the interlayer to neutralize the charge. The geometry of (1.1),
with X = Na and y = 1, is illustrated in Figure 1.4.

Fluorohectorite will be shortened to Fh for simplicity. Fh with one cation
as the interlayer cation, which means y = 1 in equation 1.1, gives X-Fh. For
sodium as the interlayer cation, this would be shortened as Na-Fh. This also
holds for divalent cations. With two cations in the interlayer, for example
with sodium again, X = Na and y = 2, it will be 2Na-Fh for short.

Figure 1.4: The unit cell geometry of Na(Mg5Li)Si8O20F4 pictured in the xz-plane. Color code: Mg
= gray; Li = magenta; F = green; O = red; Si = gold; Na = blue. Figure made in Amsterdam Modelling
Suite.

CO2 can adsorb to the clay mineral by bonding with the atoms in the inter-
layer [5, p. 107]. Because of the layered structure of clay, the atoms of CO2 will
in this case bond with the interlayer. When clay adsorbs a molecule like CO2

into the interlayer, it often results in the volume of clay expanding, referred
to as swelling [5, p. 107].

1.4 Structure of the Report

In this thesis, DFT and DFTB calculations were done to see how well different
interlayer cations in fluorohectorite adsorb CO2, looking at cations in group
I and II as well as nickel. The following chapter will go through the theory
behind DFT and DFTB. Chapter 3 gives an overview of the computational
details, followed by Chapter 4 where the results will be presented along with
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discussions of the results. Lastly, Chapter 5 will give some concluding re-
marks and thoughts on further work on the topic.



Chapter 2
Density Functional Theory

The main aim with DFT calculations on a many body problem is to find the
most stable molecule structure. The most stable structure for a molecule is
the structure that has the lowest ground state energy, E0. To find the answer
to this, the Schrödinger equation has to be solved.

The background for DFT was laid in 1964 and in 1965 by Kohn and Hohen-
berg [13], and Kohn and Sham, respectively [14]. It has since become a well-
known and well-used method to solve calculations in computational physics
and chemistry, especially after its breakthrough in 1990 when the accuracy
of the method was refined [15]. In 1998, Walter Kohn won the Nobel Prize in
chemistry for the foundation of DFT, shared with John Pople for his quantum
chemistry computer methods [16].

2.1 Schrödinger’s Equation in a Many Body Problem

Looking at a molecule means looking at multiple nuclei at the same time,
which means working with a many body problem. Solving the Schrödinger
equation for a many body problem is more complicated than for just a one
body problem, with a more complicated Hamiltonian.

This problem can be split in two mathematical problems because of the fact
that the nuclei are much heavier than the electrons. This is known as the
Born–Oppenheimer approximation. First the nuclei can be seen as fixed in
space, while the problem is solved for the motion of the electrons. With M
nuclei at positions R1,...,RM , the ground state energy of the system will de-
pend on the positions, E(R1,...,RM ). When this is calculated, it is possible
to solve the Schrödinger equation for nuclei that are moved around. The



10 2.2. Reciprocal Space and Bloch’s Theorem

Schrödinger equation can be written as

Ĥψ=
[
− ħ2

2m

N∑
i=1

∇2
i +

N∑
i=1

V (ri )+
N∑

i=1

∑
j<i

U (ri ,r j )

]
ψ= Eψ, (2.1)

where Ĥ is the Hamiltonian,ψ is the electron wave function, m is the electron
mass and E is the ground state energy . Here the electronic spin is neglected.
Inside the brackets, the three terms are kinetic energy for the electrons, the
potential energy between a single electron and nuclei as a collection, and the
energy due to the electron–electron interaction [9, p. 10]. ψ is a function of
the coordinates of all the N electrons, thus ψ = ψ(r1, ....,rN ). However, for a
many body problem, this can be approximated by multiplying the different
wave functions for the individual N electrons, ψ=ψ1(r1)ψ2(r2)...ψN (rN ), as-
suming all particles are independent.

2.2 Reciprocal Space and Bloch’s Theorem

A crystal in real space with lattice vectors a1, a2 and a3 can be expressed in
terms of atomic coordinates R = n1a1 +n2a2 +n3a3, where ni are arbitrary
integers [9, p. 51].

The properties of crystalline materials can be computed accurately with DFT
calculations. Crystals are conveniently described in reciprocal space due to
their periodic nature, and it is therefore relevant to look at the concepts of
reciprocal space, often referred to as momentum space or k-space, where k
is the wave vector. k in reciprocal space is equivalent to r in real space. The
reciprocal lattice is the representation of the Fourier transform of the crystal
lattice structure. With the plane wave e i k·r, the definition of the reciprocal
lattice is that k has to satisfy e i k·R = 1 for all R [17, p. 12]. The reciprocal lattice
vectors are b1, b2 and b3. By definition, ai ·b j = 2πδi j , where δi j = 1 when
i = j and 0 otherwise. This gives the following relation between the real space
lattice vectors and the reciprocal lattice vectors:

b1 = 2π
a2 ×a3

a1 · (a2 ×a3)
, b2 = 2π

a3 ×a1

a2 · (a3 ×a1)
, b3 = 2π

a1 ×a2

a3 · (a1 ×a2)
. (2.2)

The reciprocal lattice vectors define the unit cell in the reciprocal space, which
is called the first Brillouin zone. The Brillouin zone is important in the band
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theory of materials. From the definition it is can be seen that the volume of
the Brillouin zone, VBZ, and the volume of the cell in real space, Vcell, have the
relation

VBZ = (2π)3

Vcell
. (2.3)

This means that a large volume in real space gives a small volume in recipro-
cal space and vice versa.

The wave functions for the electrons moving in a non vanishing periodic po-
tential in crystals must satisfy Bloch’s theorem which states

ψk(r) = e i k·ruk(r). (2.4)

Here uk(r) is a lattice periodic function with the same periodicity as the lat-
tice, namely uk(r+R) = uk(r). Because of this periodicity, the first Brillouin
zone explains the physics of the material. These Bloch waves are illustrated
in Figure 2.1.

Figure 2.1: The real part of the Bloch wave in one dimension. The grey circles denote atoms. The
dotted line is from the plane wave, e i k·r.

2.3 The Hartree–Fock Method

The Hartree–Fock method is an iterative method that approximates the en-
ergy and wave function of a many body problem. Equation (2.1) can be sim-
plified by assuming that there is no electron–electron interaction between
the N electrons. In this case, the Hamiltonian can be written

H =
N∑

i=1

hi , (2.5)

where hi takes into account the kinetic and potential energy for electron i .
This gives the Schrödinger equation for one electron: hχ = Eχ. The spin of
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each electron is included by constructing spin orbital eigenfunctions that can
be written as χ j (xi ) ( j = 1,2...), where xi expresses the position and spin state
of electron i [9, p. 20]. The energy for spin orbital χ j is denoted E j . The
simplest total wave function for a system of N electrons is called the Hartree
product. It is the product of the wave functions for the single electron spin
orbitals, χ j :

ψ(x1, ...,xN ) =χ j1(x1)χ j2(x2)...χ jN (xN ). (2.6)

Summing the energies of the spin orbitals gives the total energy of the sys-
tem. Electrons are fermions, hence the wave function must change sign if
two electrons are interchanged due to the antisymmetry principle [18]. This
is not a feature the Hartree product possesses. That is why the Slater deter-
minant for N electrons is more appropriate,

ψ(x1, ...,xN ) = 1p
N !

∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) ... χN (x1)
χ1(x2) χ2(x2) ... χN (x2)

... ... ... ...
χ1(xN ) χ2(xN ) ... χN (xN )

∣∣∣∣∣∣∣∣∣ . (2.7)

The factor in front of the determinant is a normalizing factor. The sign of
the Slater determinant will change if two electrons are interchanged, mathe-
matically represented by changing the determinant’s rows. This is therefore a
good way to represent a system of fermions. If two electrons are in the same
state, the Slater determinant will become zero, as it should to fulfill the Pauli
principle. As an example for two electrons, the Slater determinant becomes

ψ(x1,x2) = 1p
2

[
χ j (x1)χk(x2)−χ j (x2)χk(x1)

]
, (2.8)

which is zero when χ j =χk [9, p. 20]. The Pauli principle says that two identi-
cal fermions cannot occupy the same quantum state at the same time, that is,
the same orbital state and spin. This means ψ(x1,x2) satisfies the Pauli prin-
ciple. Hartree–Fock calculations are similar to DFT. By fixing the atomic nu-
clei in space and then look at the N electron wave function, the Schrödinger
equation becomes

[
− ħ2

2m
∇2

j +V (r)+VH (r)

]
χ j (x) = E jχ j (x). (2.9)
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In the brackets, the first two terms are as in Equation (2.1), while the third
term is the Hartree potential

VH (r) = e2

ˆ
n(r′)
|r− r′|d

3r ′. (2.10)

This means that an electron feels the average Coulomb potential from the
other electrons. The spin orbitals can be approximated as

χ j (x) =
K∑

i=1

α j ,iφi (x). (2.11)

The expansion coefficient is expressed by α j ,i . The basis set, φ, is a finite set
of functions from φ1 to φK . From this it is obvious that the calculations will
be more precise with a larger K , thus a larger basis set [9, p. 22]. However it
will also require more computing capacity.

This is everything needed to do the Hartree–Fock calculations. The next step
is to make a guess for the spin orbitals by specifying α j ,i . Then, the electron
density, n(r), must be calculated to find the single electron spin orbitals. The
electron density at a position in space depends on the individual electron
wave functions:

n(r) = 2
∑

i

ψ∗
i (r)ψi (r), (2.12)

where the factor of 2 reflects the two spin states of electrons. This procedure
has to be repeated until the calculated spin orbitals are close enough to the
initial guess, hence the calculations have to reach a pre-chosen convergence
limit before the calculations have converged.

The Hartree–Fock calculations do not take into consideration all the electron–
electron interactions. This means that the energy found with the Hartree–
Fock method will not be the true energy of the system. The difference be-
tween the exact energy and the Hartree–Fock energy is usually called the cor-
relation energy.
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2.4 The Kohn–Sham Equations

An alternative to the Hartree–Fock method is DFT. The first fundamental the-
orem for DFT is: “The ground-state energy from Schrödinger’s equation is
a unique functional of the electron density” [9, p. 11], formulated by Kohn
and Hohenberg. This means that there is a one-to-one mapping between the
wave function and the electron density. A functional takes a function and
defines a single number from it. An example of a functional is

F [ f ] =
ˆ 1

−1
f (x)d x, (2.13)

where f (x) is the function and F [ f ] is its functional. By using, e.g., f (x) = x3−
1, one gets F [ f ] = −2. This then means that the energy can be expressed by
the electron density, E [n(r)]. By using a functional, the 3N variable problem
for finding the ground state energy is reduced to finding the electron density,
a function of 3 spatial variables.

However, the theorem does not specify what the functional actually is. That
is why the second theorem is helpful: “The electron density that minimizes
the energy of the overall functional is the true electron density corresponding
to the full solution of the Schrödinger equation” [9, p. 12]. This can also be
expressed with the energy functional for the single electron wave function,
ψi :

E [ψi ] = Eknown[ψi ]+EXC[ψi ], (2.14)

where Eknown is all the energy terms already known, and EXC is all other ener-
gies, like the many body terms. EXC is also known as the exchange–correlation
(XC) functional. The known terms for the energies are the electron kinetic en-
ergy, the electron–nuclei Coulomb interaction, the electron–electron Coulomb
interaction, and the Coulomb interactions between nuclei:

Eknown[ψi ] =− ħ2

2m

∑
i=1

ˆ
ψ∗

i ∇2ψi d 3r +
ˆ

V (r)n(r)d 3r

+e2

2

ˆ ˆ
n(r)n(r′)
|r− r′| d 3r d 3r ′+Eion.

(2.15)

The final Kohn–Sham equations are
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[
− ħ2

2m
∇2

i +V (r)+VH (r)+VXC(r)

]
ψi (r) = εiψi (r), (2.16)

which is similar to Equation (2.1). This equation is only based on 3 variables
and the single-electron wave function and hence no sum as in the Schrödinger
equation (2.1). The three potential terms on the left-hand side are, respec-
tively, the potential for interaction between the electron and the collection of
nuclei, the Hartree potential and the potential for the exchange–correlation
functional:

VXC(r) = δEXC(r)

δn(r)
. (2.17)

This is formally the functional derivative of the exchange–correlation energy.

2.5 The Exchange–Correlation Functional

Kohn–Sham’s theorems do not give the solution for the exact functional, it
merely states that it exists and the definition of it. To solve DFT problems
with many atoms, we want to find a functional that explains the world as
precisely as possible and can be solved mathematically. This is yet to be done,
but instead it is possible to make a functional that is simpler and somewhat
similar to the true functional.

The simplest form for the exchange–correlation functional is the local density
approximation (LDA), when assuming the material in question is a uniform
electron gas and that n(r) is constant:

V LDA
XC (r) =V uniform electron gas

XC [n(r)]. (2.18)

Of course, this is not a perfect representation of real materials, where the den-
sity varies, and hence, it is not the true exchange–correlation functional for a
material.

Another class of functionals that has been shown to work well, is the general-
ized gradient approximation (GGA). As well as having information about the
local electron density, it also has information about the local gradient in the
electron density, more specific the derivative of the electron density:
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V GGA
XC (r) =VXC[n(r),∇n(r)]. (2.19)

This has more physical information than LDA, which makes it less an ap-
proximation and closer to the exact solution. However, it will also require
more computing, and it will not always be a better functional simply because
it includes more information. Incorporating more information to the prob-
lem means the probability increases for systematic errors in DFT calculations
versus what true nature looks like.

There are several different GGA functionals, and one of the most used ones is
the Perdew–Burke–Ernzerhof (PBE) functional. This is a non empirical func-
tional which satisfies the uniform density limit. The revised PBE, namely re-
vised GGA PBE (GGA revPBE), is also a much used funtional and is more ac-
curate than the PBE, especially when it comes to atoms and molecules bond-
ing to surfaces [19]. revPBE also improves the total atomic energies and re-
duces the maximum absolute error compared to PBE [20].

2.6 Potential Energy Surfaces and Normal Modes

The potential energy of a molecule depends on the coordinates of the indi-
vidual atoms in the molecule. This is referred to as the potential energy sur-
face (PES). Hence, if the atoms in the molecule move, the potential energy
changes [21, p. 4]. With a system of N atoms, this potential energy is a func-
tion of 3N cartesian coordinates or 3N −6 internal coordinates. The minima
of the PES are of interest because these are the energies for which the atoms
of the molecule are in a stable state. Moving away from these minima in any
direction the potential energy is larger. Finding the minima is easier when
knowing the curvature of the PES, which is the second derivative of the po-
tential energy for each individual coordinate. These second derivatives can
be gathered in the Hessian matrix:

H =


∂2E
∂x2

1

∂2E
∂x1∂x2

· · · ∂2E
∂x1∂x3N

∂2E
∂x2∂x1

∂2E
∂x2

2
· · · ∂2E

∂x2∂x3N

· · · · · · . . . · · ·
∂2E

∂x3N∂x1

∂2E
∂x3N∂x2

· · · ∂2E
∂x2

3N

 . (2.20)

When the eigenvalues of the Hessian are all non-negative, the solution is a
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A TS B

E

x

Figure 2.2: One-dimensional figure of two local energy minima, A and B, and the transition state (TS)
that connects them.

local minimum [21, p. 272]. One or more negative eigenvalues gives a local
maximum [22]. The most interesting path between two local minima is called
the minimum energy path and passes through a first order saddle point called
the transition state (TS), illustrated in Figure 2.2 [9, p. 134]. The Hessian ma-
trix for the transition state has exactly one negative eigenvalue. This is the
point with the largest energy on the path. The energy cost to get from one
minimum to the transition state is called the activation energy (Ea). Going
from A to B, this energy is defined as

Ea = E(TS)−E(A), (2.21)

where E(TS) is the energy at the transition state, and E(A) is the energy at A.
With Mi j = miδi j , the mass-weighted Hessian is:

F = 1p
mi

∂2E

∂xi∂x j

1p
m j

. (2.22)

The mass-weighted Hessian matrix has 3N eigenvectors, ei , with correspond-
ing eigenvalues, λi , which have to satisfy:

Fei =λi ei . (2.23)

Hence, the characteristic vibrational frequency of the bond length oscilla-
tions is
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νi = 1

2π

√
λi , (2.24)

with i = 1,2, ...,3N . These vibrations are called normal modes. They are spe-
cial solutions to equation (2.23) and describe the vibrations in the molecule
[9, pp. 114–118]. When calculating normal modes in DFT calculations, there
is often a small numerical inaccuracy that may result in some low frequency
vibrations being reported as imaginary [9, p. 127]. This is because of numer-
ical errors when the Hessian matrix is calculated [23]. When vibrational fre-
quencies are in bulk systems, they are called phonons [9, p. 127]. The vibra-
tional frequencies calculated here are for k = 0 [24, p. 78].

A

B

C

Figure 2.3: The different types of vibrational modes. Mode A is a symmetric stretch, B is the anti-
symmetric stretch, and C is the degenerate bending mode.

A molecule has 3N degrees of freedom of motion, where 3 of them are for
translation in three directions (x, y , z), and 3 for rotation around the three
axes [25]. However, a linear molecule only has two modes of rotations as it
does not rotate around its own axis. The remaining degrees of freedom are
the vibrational degrees of freedom, for a non-linear molecule 3N − 6, and
for a linear molecule 3N −5. CO2 is a linear molecule, hence it has 3×3−5
normal vibrations. The vibration modes are illustrated in Figure 2.3. Mode
A in the figure, a symmetric stretch, is when carbon is at rest, and the two
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oxygen atoms move away from carbon, in opposite directions at the same
time. Mode B, an antisymmetric strech, is when the two oxygen atoms move
in the same direction, and carbon moves in the opposite direction. Mode C
is degenerate and is the two bending modes, moving perpendicular to the
plane [25].

The vibrational modes can be measured by Fourier transform infrared spec-
troscopy (FTIR) [25, p. 2]. The symmetric stretch is a Raman active mode. In
Raman spectroscopy, the vibrational frequency is measured as a shift from
the incident beam frequency in the UV-region [25, p. 15]. This symmetric Ra-
man mode will not be excited by electromagnetic waves. To get an oscillating
electric dipole, it is necessary with an infrared (IR) active mode. These are
found in the lab by looking at a sample and finding the amount of IR absorp-
tion [25, p. 13].

2.7 Density Functional Tight Binding

To do computations on large systems, it can be good to do cheap computa-
tions that are more efficient than DFT but still include quantum effects [26].
The DFTB computation method does this, using Bloch waves of a linear com-
bination of atomic orbitals to look at the atomic states [17, p. 111]. This is a
better approach for covalent bonded crystals than the free electron approach.
With the single atom Hamiltonian

Hat =−ħ2∇2

2me
+Vat(r), (2.25)

where Vat(r) is the atomic one-electron potential [17, p. 111]. The Hamilto-
nian for the solid becomes:

Hsolid = Hat +
∑
R6=0

Vat(r−R). (2.26)

Hence, the Hamiltonian of the solid is the Hamiltonian of an atom at the ori-
gin and the correction potential of all other atoms in the solid. The Hamil-
tonian only depends on the single atomic Hamiltonian and the interatomic
distances in the molecule. This potential has the periodicity of the lattice.

Looking at neighbouring atoms that interact with each other, with the atomic
wave function, φn, the wave function of the solid becomes:
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ψk(r) = 1p
N

∑
R

e i k·Rφn(r−R). (2.27)

With

γ(R) =−
ˆ
φ∗

n(r)
∑
R6=0

Vat(r−R)φn(r−R)dr, (2.28)

it follows that the band structure then becomes

E(k) = En −β− ∑
R6=0

γ(R)e i k·R. (2.29)

Here −β is introduced because of the existence of other atom potentials, and
it is a little shift in the atomic energy level. It is assumed thatψ is normalized.
The wave functions are made up of Bloch waves and must therefore fulfill the
Bloch theorem, Equation (2.4) [27, p. 32]. For atoms on a one-dimensional
chain separated with a distance a, the energy for spherically symmetric s-
orbitals becomes [17, p. 114]

Es(k) = Es −βs −2γs cos(ka). (2.30)

The energy is the smallest for k = 0 and largest for k = π/a, that is, at the
boundaries of the Brillouin zone. An atom put together of several orbitals
will give rise to several bands for the various orbitals, a band per orbital. The
width of the band is given by 4γs . The difference between the bands for the
various orbitals will give rise to a band gap. The band gap will separate an
empty band at the top and a full band at the bottom. This gap will increase
when the interatomic distance decreases. When the band gaps overlap, the
collection of atoms at hand is a metal [27, p. 37]. In the opposite case, when
the band gap is large, it is an insulator.

By combining the tight binding model with DFT one gets DFTB. Hence DFTB
is an approximation of the Kohn–Sham method. In standard DFTB, the total
energy is not calculated iteratively because it does not include the fluctua-
tions of the energy density [28].

The DFTB method has several Hamiltonians, and the two used in this the-
sis are SCC-DFTB and GFN1-xTB. SCC-DFTB is the self consistent charge-
correction. Here the fluctuations of the energy density are calculated, as op-
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posed to normal DFTB calculations [28, 29]. The SCC-DFTB Hamiltonian is
based on the theory of the Slater–Koster technique. This type of DFTB cal-
culations reduces the linear algebra operations and can store integrals [30].
GFN1-xTB is the Grimme version of extended tight-binding and is also self
consistent [30]. It is similar to the SCC-DFTB Hamiltonian, but it does not
store integrals in the same way. It makes use of Slater-type orbitals. Also, this
Hamiltonian makes use of an extended Hückel-like approximation [30].

2.8 K-Space Sampling

In DFT and DFTB calculations, a function on the form

ḡ = Vcell

(2π)3

ˆ
BZ

g (k)dk (2.31)

is evaluated by dividing it into smaller parts and evaluating them in a set
number of discrete points. The individual parts are then summed together
to find a result close to the true integral [9, p. 53]. Using more k-points gives
a numerical convergence closer to the exact integral and hence better accu-
racy. However, it also requires more computer time [31, 32].

The number of k-points in each direction in the reciprocal space has to be
specified in the computations. With three identical lattice vectors and M k-
points per lattice vector, the total amount of k-points for the calculation is
M ×M ×M [9, pp. 55–59]. The density of k-points should be equal in all di-
rections, which means that if lattice vector |a1| > |a2|, then M1 < M2. This
method was developed by Monkhorst and Pack in 1976 [33]. A good way to
save computation time is to see that the Brillouin zone is symmetric, and
hence use fewer k-points. A convergence test can be conducted to check the
accuracy of the results. They are said to be well converged when the energy
is independent of the number of k-points [9, p. 55].

2.9 Dispersion Correction

Weak forces, like the van der Waals forces, are not taken into consideration in
the DFT calculations. These forces are important in weakly bonded systems,
for example in layered structures as clay, and arise from electron interactions
[9, p. 225]. The dispersion between two spherically symmetric atoms, with r
the distance between the atoms, and other physical constants, C , is
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V dispersion =−C

r 6
. (2.32)

Stefan Grimme et al. developed a method to include the dispersion correc-
tion in DFT calculations in the early 2000s [34]. It was named DFT-D3, and in
2010 this was renewed for a more accurate version, D4 [35]. The D4 disper-
sion correction is dependent on the atomic charges. The energy for DFT-D3
is

EDFT-D3 = EKS-DFT +Edisp, (2.33)

where EKS-DFT is the Kohn–Sham energy, and Edisp is the dispersion energy,
which has the following form [34, 35]

Edisp =
∑
AB

∑
n=6,8,10...

sn

C AB
(n)

R (n)
AB

f (n)
damp(RAB ). (2.34)

Here, AB denotes an atom pair, with R (n)
AB the distance between these atoms,

and sn is a scaling factor. The damping factor, f (n)
damp(RAB ), is included to avoid

singularities for R (n)
AB close to zero. The n-th order dispersion coefficient, C AB

(n) ,
is calculated recursively from the Casimir–Polder integration. With α(iω) as
the atomic polarizabilities, the first coefficient is:

C AB
6 = 3

π

ˆ ∞

0
dω αA(iω)αB (iω). (2.35)

For SCC-DFTB, computations can be done with or without empirical van der
Waals potentials [28]. For the Hamiltonian GFN1-xTB, the dispersion correc-
tion energy is a part of the total energy, and hence the weak van der Waals
forces are included in this Hamiltonian [34, 30]
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Computational Details

In this project, the calculations were done with DFT and DFTB, using the
quantum chemistry program Amsterdam Modelling Suite (AMS) from Soft-
ware for Chemistry & Materials (SCM) [36, 37, 38, 39]. For the clay calcula-
tions in DFT, the periodic BAND program was used [40, 41]. For non-periodic
atoms and molecules, Amsterdam Density Functional (ADF) was used. The
ADF program uses a combination of slater type orbitals (STO) and natural
atomic orbitals (NAO) [42].

Throughout the thesis, DFTB computations were done on the Linux cluster
at the Department of Physics running five processes in parallel per job. The
more demanding DFT computations were performed on the NTNU IDUN
computing cluster [43]. The cluster has more than 70 nodes and 90 GPGPUs.
Each node contains two Intel Xeon cores, at least 128 GB of main memory,
and is connected to an Infiniband network. Half of the nodes are equipped
with two or more Nvidia Tesla P100 or V100 GPGPUs. Idun’s storage is pro-
vided by two storage arrays and a Lustre parallel distributed file system. The
DFT computations were done running 20 processes in parallel per job.

The amount of CO2 captured in fluorohectorite depends on the cation in the
interlayer. Calculations were done to see how many molecules of CO2 could
fit in fluorohectorite with group I cations Li+, Na+, K+, Rb+ and Cs+, group
II cations Be2+, Mg2+, Ca2+ and Ba2+, as well as the transition metal Ni2+. By
looking at the energy differences, it is possible to predict if CO2 will bind to
a system of fluorohectorite or not. In this project, the reaction energy, ∆E , is
defined as

∆E = Eproduct −Ereactants, (3.1)

and is seen as larger the more negative it is. It was also of interest to see what
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orientation in space the molecules will have and hence how big the bond
length will be. The bond length dX–O is taken as the average distance between
the cation, X, and the closest oxygen atom of CO2 molecules. In the formation
of CO3, the bond length dC–O is taken as the distance between the carbon in
CO2 and the closest oxygen in the fluorohectorite.

One way to reduce the required computational power is to simulate the prob-
lem at hand with an effective ion core where several electrons are included,
known as the frozen core approximation. Trying to simulate all electrons in
a molecule gives a lot of variables. Using less electrons in the calculations
will not necessarily mean less physical accurate calculations. This is because
the electrons closest to the ion core often do not interact with other electrons
and can be seen as an effective frozen core. By using a large frozen core, one
looks at the problem as if most of the electrons in the problem are part of the
ion core. This reduces the required computational power considerably, but it
is not a good physical representation of electrons in a material. On the con-
trary, using a small frozen core, only the innermost electrons are looked upon
as part of the ion core. This requires more computational power than a large
frozen core.

Choosing the correct basis set will have an impact on the computational time,
memory usage and accuracy of the calculations. Basis sets with less infor-
mation will reduce the computational time, but will also include less infor-
mation about the physical system. The basis sets have different sizes. For
STO orbitals these are single-, double-, and triple-zeta, and they come with
or without polarization functions.

For all DFT calculations, geometry optimization was used with the same set-
tings. The numerical quality can be set to Basic – Normal – Good – Very Good
– Excellent. For these calculations Good was used. The XC functional used
was the GGA revPBE. The frozen core can be set to Large – Medium – Small,
which reflects the amount of atomic orbitals frozen to the core. It was here
set to Medium. The basis set used was triple zeta polarization (TZP). These
DFT calculations will be referred to as revPBE. Some DFT calculations took
the van der Waals forces into account, using the Grimme3 BJDAMP disper-
sion correction. These calculations will be referred to as revPBE Grimme.

For ADF calculations on single atoms or molecules, the settings were a little
different from the BAND calculations. The numerical quality can be set to
Basic – Normal – Good – Very Good – Excellent. For these calculations, Good
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was used. The frozen core can be set to Large – Small – None. It was here set
to Small. The same XC functional and basis sets were used as for the BAND
calculations, namely GGA revPBE, and TZP. Hence, these calculations will
also be referred to as revPBE calculations.

In the SCC-DFTB calculations, we use the QUASINANO2015 parameter set,
restricted to elements H to Ca [44]. GFN1-xTB supports all atoms up to radon,
but this method fails for 3D periodic systems. Hence, only slab calculations
were done with this Hamiltonian. For both Hamiltonians in DFTB, the nu-
merical quality of the k-space integration can be set to GammaOnly – Basic
– Normal – Good – VeryGood – Excellent. For these calculations, Good was
used. For all DFT and DFTB calculations, the frequencies and normal modes
of vibrations were calculated. For both SCC-DFTB and GFN1-xTB, there was
a stronger emphasis on geometries than chemical reaction energies in the
parametrization [45, 44]. As a consequence, we expect geometries to be more
reliable than reaction energies in our calculations.

In this project, several models were used to meet different needs. DFT revPBE
and revPBE Grimme were of interest, but would be too time consuming. SCC-
DFTB is a good model for organic materials and can model bulk structures,
but it can not accommodate for all atoms. Especially nickel is of interest be-
cause of experimental results. Hence, GFN1-xTB was used to model atoms
which were not possible with SCC-DFTB, but this model does not support
slab computations. Hence, GFN1-xTB was applied to slab models of Ni-Fh.

To exemplify the time difference between DFT and DFTB calculations, two
identical jobs were done with SCC-DFTB and revPBE, both without disper-
sion correction. Both were run on the same computer with five processes in
parallel per job. Doing DFTB computations gives an elapsed time of 73.42
seconds. The results from DFT took 72033.24 seconds, which is a factor of
1000 more.

The simulation has converged when the convergence criteria are reached.
For the simulations in this project, the default criteria in the ADF program
were used when finding the energy minima: for the change in the energy
from one geometry to the next, 10−3 Hartree; for the change in nuclear gra-
dients, 10−3 Hartree/Angstrom; for the step size from a converged geometry,
10−3 Angstrom; and for the threshold for optimizing the lattice vectors, 5·10−4

Angstrom [46].
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3.1 Optimization Methods

An important geometry optimization algorithm of the DFTB and DFT cal-
culations is the fast inertial relaxation (FIRE). This is a good method for big
systems with more than 1000 atoms and hence thousands of degrees of free-
dom [46]. It uses molecular dynamics to decide the atomic displacements
from one geometry to the next. The gradient of the energy is used as the
convergence criteria. This is opposed to other methods like the large scale
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) and conjugate gradient (CG),
which are quasi-Newton methods and use the change in energy, the change
of geometry and the change of the energy gradient as the convergence criteria
[47, 48]. It is a simple but fast method that does not require a lot of memory.
The time of the calculations only depends on the engine performance [46].
Also, it works well for coordinate constraints, fixed atoms constraints, and for
lattice optimization and coordinate constraints.
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Results and Discussion

To investigate the possibility of CO2 storage in fluorohectorite, several sim-
ulations were done with DFT and DFTB to see how CO2 binds to various
cations in fluorohectorite. The cations used were Li+, Na+, K+, Rb+, Cs+, Ca2+,
Ba2+ and Ni2+. Lab experiments show that especially Ni2+, Li+ and Na+ are
good for adsorbing CO2 [12]. Simulations were also done for Be2+ and Mg2+

to look at trends within periodic groups and for atom sizes. The binding en-
ergy, ∆E , and the basal interlayer distance, d001, were found for all systems,
together with the bond lengths between the cation and the closest oxygen of
the CO2 molecules, dX–O. The lattice vectors for plain fluorohectorite can be
seen in Figure 4.1.

The basal interlayer distance and |a3| are the same when the angles α and β

are approximately 90°. With SCC-DFTB calculations, these angles are: 80.22°<
α < 99.85°, 81.80°<β < 92.43°, and 89.07°< γ < 91.02°, which in this case is seen
as “close enough”. The smallest values for |a1| and |a2| are 9.63 Å and 5.55 Å,
respectively. The largest values are 10.26 Å and 5.96 Å, respectively. With
GFN1-xTB slab calculations, the angle is 89.71°<α < 91.23°, while 7.91 Å < |a1|
< 9.03 Å and 4.57 Å < |a2| < 5.23 Å. With revPBE calculations, the angles are
89.85°< α < 92.43°, 88.87°< β < 93.37° and 90°< γ < 90.54°, and |a1| ' 8.97 Å
and |a2| ' 5.18 Å.

Discussions with the experimental group working with fluorohectorite at the
Department of Physics at NTNU influenced the chosen number of CO2 mole-
cules used in the computations. Their results typically give a mass increase
of around 9 %, which means an uptake of 1-2 molecules of CO2 per unit cell
[49]. Results from Cavalcanti et al. can indicate that fluorohectorite may be
able to adsorb more [50]. Consequently, it is natural to examine structures
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(a) Fluorohectorite in the x y-plane with a1 and a2. The values are for plain
fluorohectorite. (revPBE).

d 001

(b) Fluorohectorite in the xz-plane with d001 indicated.

Figure 4.1: Fluorohectorite. Color code: Mg = gray; F = green; O = red; Si = gold. Figure made in
Amsterdam Modelling Suite.

containing up to 3 CO2 molecules per unit cell.

In this chapter, there are three main sections. Firstly, DFT and DFTB will
be compared with respect to reaction energies, the basal interlayer distance,
and the X–O distance. Computations were done on a small selection of single
cations and 1 CO2, and then all the models were applied to 2Li-Fh. Secondly,
the two DFTB methods are used to look at various structures with cations
and CO2 in fluorohectorite. Finally, vibrational frequencies associated with
the intercalated CO2 molecules are presented.
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4.1 DFT vs. DFTB

Going into this project, the results from the specialization project were in
mind, illustrated in Figure 4.2. When looking at single cations and various
amounts of CO2 with revPBE, nickel was the best cation in terms of binding
to CO2, while cesium was the least promising candidate. In general, smaller
cations and cations with a higher valence were found to make the strongest
bonds to CO2.

1 2 3 4 5 6
Number of CO2 molecules
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Figure 4.2: The results from computations in the specialization project last autumn. Reaction energy
for single cations with various amounts of CO2. (revPBE).

Computations were done on four single cations with 1 CO2 with the three
models revPBE, SCC-DFTB and GFN1-xTB. The results can be seen in Table
4.1. For revPBE and GFN1-xTB, nickel has the largest reaction energy out of
the four cations, and lithium has larger energies than sodium. Hence GFN1-
xTB follows the same pattern as revPBE from the specialization project. How-
ever, for SCC-DFTB, out of the three cations that could be simulated, lithium
has the largest reaction energy.

In computations with fluorohectorite systems, SCC-DFTB and GFN1-xTB give
some different results than revPBE. Mainly giving the same trend as for sin-
gle cations and CO2, bonding less strongly for more amounts of CO2. The
revPBE computations are time consuming and could not be applied to all
the different cations in fluorohectorite. Therefore, geometry optimizations
for various cations and a number of CO2 in fluorohectorite were done with
SCC-DFTB and GFN1-xTB. However, it is interesting to see how “good” these
models are compared to revPBE for one specific type of cation. These com-
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revPBE SCC-DFTB GFN1-xTB
Reaction ∆E (eV) dX–O (Å) ∆E (eV) dX–O (Å) ∆E (eV) dX–O (Å)

Li+ + CO2 –> (LiCO2)+ −0.80 1.87 −2.90 1.55 −1.26 1.77
Na+ + CO2 –> (NaCO2)+ −0.46 2.32 −1.08 2.24 −0.66 2.13

Ca2+ + CO2 –> (CaCO2)2+ −1.65 2.21 −1.12 2.65 −3.35 2.04
Ni2+ + CO2 –> (NiCO2)2+ −4.68 1.94 − − −10.62 1.75

Table 4.1: Reaction energy and X–O bond distance for single cations and 1 CO2. Comparison of DFT
and DFTB methods. SCC-DFTB only supports elements H to Ca.
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Figure 4.3: (a) Reaction energy, and (b) basal interlayer distance with 1, 2 and 3 intercalating CO2 for
2Li-Fh done with various computation methods.

putations were done to see how the trend differs between the three types of
computation methods. The type of cation is here 2Li-Fh (see Section 1.3 and
Equation (1.1) for the abbreviations). One series was done with revPBE, and
one for revPBE with the Grimme dispersion correction.

Looking at the reaction energies for these four methods in Figure 4.3a and in
Table 4.2, the trends are quite different. SCC-DFTB and GFN1-xTB follow the
trend expected from computations with only cations and CO2 seen in Figure
4.2, namely that the reaction becomes less favorable when adding more CO2

to the system. For 3 CO2 in SCC-DFTB, the reaction energy is endothermic,
with∆E = 1.77 eV from 2 to 3 CO2. For both revPBE methods, the reaction be-
comes more favorable the more CO2 is added. We expect calculations done
with revPBE to be more accurate than DFTB calculations. These results sug-
gest it is difficult to accommodate 1 CO2, but then the first CO2 makes room
for more CO2.

The general trend for d001 is that it increases with an increasing amounts of
CO2 added, which means clay swelling, seen in Figure 4.3b and Table 4.2.
However, for all three methods, going from 1 to 2 CO2 does not increase
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d001 much. This might be because the unit cell has two cations in the inter-
layer. Adding another CO2 to an existing CO2 makes the geometry symmet-
ric, which might be favored. Cavalcanti et al. reported a d001 of 10.3 Å with no
CO2, and 11.9 Å with 2.3 CO2 per unit cell [50]1. All methods are qualitatively
in agreement with these experimental results.

The basal interlayer distance is quite similar for revPBE Grimme and SCC-
DFTB, as they are both ca. 13 Å for 3 CO2, and they start at 9.3 Å and 10.3
Å, respectively. It is larger for revPBE than the other two for all number of
CO2 added. The basal interlayer distance is larger for revPBE than for revPBE
Grimme, which was expected because of the van der Waals forces pulling the
sheets together. In general, the X–O bond distance increases with increasing
amounts of CO2. However, for revPBE and revPBE Grimme, CO2 comes closer
to the interlayer cations when adding 2 CO2, and then dX–O increases when
adding the third CO2.

Looking at Figure 4.4, the geometries for the four methods are quite similar.
The lithium atoms are placed inside the tetrahedral sheet of oxygen and sil-
icon, often referred to as the hexagonal cavity [51]. For the SCC-DFTB and
revPBE Grimme geometries, all three CO2 are placed quite similarly, namely
a somewhat parallel orientation to the fluorohectorite layers. Parallel orien-
tation of the CO2 seems to be the most optimal orientation because of the
cation charge on the clay surface [5, p. 112].

When the distance between the clay layers increases, the CO2 alignment tends
to change from parallel to somewhat tilted, which also has been seen ex-
perimentally [5, p. 112]. This seems to support the results from revPBE vs.
revPBE Grimme. The former has a larger distance between the layers, seen
from Figure 4.3b, and also more of an angle to CO2 than for revPBE Grimme.
However, this angle of CO2 only applies to the last of 3 CO2 to be added to
the system. Because the revPBE Grimme takes the van der Waals forces into
account, this is thought to be a more realistic model for a clay material [5,
p. 180]. When adding dispersion correction to the SCC-DFTB model, the
van der Waals forces pull the sheets together, observing that d001 is slightly
smaller with dispersion correction than without it, as expected.

In the slab calculations with GFN1-xTB, there is some tendency of formation
of CO3 entities upon reaction between a CO2 molecule and an oxygen atom in
the clay surface (Figure 4.4d). Although we have not found any experimental

1For lithium, where Cavalcanti et al. use y = 1.2 in Equation (1.1).
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evidence in the literature, we believe that CO3 groups cannot be ruled out
in these systems. Whenever present, they should be easily visible in FTIR
spectroscopy, see Section 4.3.

(a)

(b)

(c) (d)

Figure 4.4: Geometry of the unit cell of 2Li-Fh together with 3 CO2 for (a) revPBE, (b) revPBE Grimme,
(c) SCC-DFTB, and (d) GFN1-xTB. (Mg = gray; F = green; O = red; Si = gold; Li = purple; C = black; X =
blue; here X = Li.)
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4.2 Geometries and Energies

4.2.1 SCC-DFTB

# CO2 Li-Fh Na-Fh K-Fh 2Li-Fh 2Na-Fh 2K-Fh Be-Fh Mg-Fh Ca-Fh

1 −0.91 −0.25 −0.22 −1.46 1.76 0.54 −0.35 −0.36 0.57
2 −0.24 −0.35 −0.82 −0.78 −1.12 −1.05 −0.77 −0.63 0.05
3 0.02 −0.06 −0.19 1.77 −0.12 −0.28 −0.33 −0.35 −0.40

Table 4.3: Reaction energy ∆E (eV) for adsorption of the first three CO2 molecules with one and two
cations pr unit cell. (SCC-DFTB.)

# CO2 Li-Fh Na-Fh K-Fh 2Li-Fh 2Na-Fh 2K-Fh Be-Fh Mg-Fh Ca-Fh

1 4.31 2.40 2.66 1.67 2.41 2.72 1.31 2.01 3.51
2 4.42 2.39 2.65 2.02 2.40 2.72 1.43 3.17 2.80
3 4.09 3.37 2.65 4.13 3.28 2.65 3.96 3.55 2.85

Table 4.4: Bond distances dX–O (Å) with up to three adsorbed CO2 molecules with one and two cations
pr unit cell. (SCC-DFTB.) For 2X-Fh: average of two X–O distances.

# CO2 Li-Fh Na-Fh K-Fh 2Li-Fh 2Na-Fh 2K-Fh Be-Fh Mg-Fh Ca-Fh

0 11.82 10.70 11.30 9.79 10.18 11.26 12.60 12.02 10.40
1 12.81 12.39 12.29 11.15 12.13 12.22 12.12 12.59 11.67
2 12.78 12.75 12.48 11.43 12.66 12.49 12.14 12.59 12.58
3 12.82 12.60 13.81 13.08 12.51 12.77 12.72 12.47 12.77

Table 4.5: Basal interlayer distance d001 (Å) with up to three adsorbed CO2 molecules with one and
two cations pr unit cell. (SCC-DFTB.)
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Figure 4.5: (a) Reaction energy and (b) basal interlayer distance with 1, 2 and 3 intercalating CO2

molecules and one group I interlayer cation. (X = Li, Na, K). SCC-DFTB calculations.
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(a)

(b) (c)

Figure 4.6: SCC-DFTB geometry of the unit cell and 2 CO2 for (a) Li-Fh, (b) Na-Fh and (c) K-Fh. (Mg
= gray; F = green; O = red; Si = gold; Li = purple; C = black; X = blue.)

One group I interlayer cation

The reaction energies for one group I cations in the interlayer, Li-Fh, Na-Fh
and K-Fh, are illustrated in Figure 4.5a and can be seen in Table 4.3. At first
sight, it would seem intuitive that it should become more difficult the more
CO2 one tries to add into the clay, and hence that the reaction energy for Li-Fh
is the most correct. However, for larger amounts of CO2, the reaction energy
is larger for the larger cations potassium and sodium. This is in agreement
with results from Cavalcanti et al. [50]. We suggest that this is mainly due to
potassium and sodium being more exposed than lithium.

It looks like the CO2 molecules for Li-Fh are closer to the oxygens in the clay
layer than they are to the interlayer cation. Lithium is well packed into the
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hexagonal cavity, illustrated by Li-Fh in Figure 4.6a, which has essentially the
same geometry as with no CO2. Because lithium is a small cation, and hence
can fit into the hexagonal cavity, adding CO2 means adding them to the vac-
uum layer of the clay, without it being able to bond much with the cation.
This can also be backed by looking at the much larger values for dX–O in Table
4.4, where the values are larger for Li-Fh than for K-Fh and Na-Fh. Because
the CO2 molecules cannot access the cation, they will instead bond weakly
with the other atoms in the clay, primarily the oxygen atoms.

For K-Fh and Na-Fh, the potassium and sodium cations are positioned more
above the hexagonal cavity and not in it as for Li-Fh, seen in Figures 4.6b
and 4.6c. This is also observed for sodium by Kalo et al. [51]. Hence CO2

bonds to the cation rather than to the oxygen atoms in the clay. The CO2

molecules are more bound to the cation for K-Fh and Na-Fh, with dX–O ca.
2.65 Å for potassium for all numbers of CO2 and 2.40 Å for sodium, see Table
4.4. However, for Na-Fh it changes when adding the third CO2. Two of the
CO2 molecules for Na-Fh are then, as for Li-Fh, positioned above an oxygen
atom, with no bond to sodium, and dX–O increases to 3.37 Å. When the CO2

molecules are further away from the cation, the reaction energy decreases, as
seen for Na-Fh in Figure 4.5a.

Potassium is a larger cation and hence can accommodate more CO2 than
the smaller lithium and sodium. This seems to fit the explanation by Caval-
canti et al., where the larger cations can accommodate larger amounts of CO2

[50]. From this it would be natural to suggest that potassium might be the
best cation from these three because of the larger reaction energy for higher
amounts of added CO2. However, experimentally there is some disagreement
if larger cations or smaller cations are the better CO2 adsorbers. Loganathan
et al. and Bowers et al. claim that larger cations are better [52, 53], while
Seljelid claims small cations are better [12]. Loganathan et al. proposed that
large cations are better because they should lower the energy barrier for ad-
sorbing CO2, and also that they result in a large basal interlayer spacing.

Looking at the changes in d001 in Figure 4.5b and Table 4.5, K-Fh and Na-Fh in
general have smaller values than Li-Fh, even though lithium is better packed
in the hexagonal cavity. When there is CO2 added to the clay structures, this
may be explained by the CO2 that lies approximately parallel to the clay and
hence takes up less space in the d001 direction, as for K-Fh and Na-Fh. For K-
Fh, this changes when the third CO2 is added and has a larger angle to the clay
than for the other CO2, hence gives a much larger value for d001. The orienta-
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tion of CO2 for Li-Fh has an angle for all CO2 and also larger values for d001.
In general, d001 should become larger when adding CO2 to the clay material,
and hence it seems reasonable that it becomes larger for larger amounts of
CO2 [50].

However, the larger d001 for Li-Fh does not necessarily make sense when there
is no CO2 present. Cavalcanti et al. found in experiments that Na-Fh has a
larger interlayer separation than Li-Fh, and hence Na-Fh can hold more CO2

than Li-Fh [50]. Assuming a larger interlayer separation means a larger d001,
it would be natural to assume that d001 should be larger for Na-Fh than for
Li-Fh, which it is not here. The basal interlayer distance is the largest for
Li-Fh and smallest for Na-Fh, with K-Fh in between. Hence the size of the
atoms does not seem to be the reason, nor the position of the cation over
the hexagonal cavity. The basal interlayer distance might be large for Li-Fh
because lithium resides inside the hexagonal cavity, and hence the oxygen
atoms at the top of one layer repel the oxygen atoms in the layer above.

Two group I interlayer cations

The reaction energies for two group I cations in the interlayer, 2Li-Fh, 2Na-
Fh and 2K-Fh, are illustrated in Figure 4.7a and Table 4.3. As for Li-Fh, the
reaction energy for 2Li-Fh decreases with increasing amounts of CO2, and it
would again seem intuitive that to be able to get 1 CO2 into hectorite, one
would first have to fit 1 CO2 in. Hence that the reaction energy for 2Li-Fh
would be the most correct of the three. However, the difference in trends
may be explained by the geometry. 2Na-Fh without any CO2, Figure 4.8c, is
tightly bound and partly in the hexagonal cavity, but for 1 CO2, Figure 4.8d,
the cations are positioned above the hexagonal cavity. Hence it needs some
activation energy to “pop” out of the cavity, and thus explain the positive re-
action energy when adding 1 CO2 for 2Na-Fh.

For 2Li-Fh, the two lithium cations start inside the hexagonal cavity, as for the
geometry with 3 CO2 seen in Figure 4.8b. For 1 and 2 CO2 illustrated in Fig-
ure 4.8a, the cations “pop” out of the cavity and are situated above the cavity.
Adding a third CO2, the cations withdraw into the cavity again. The with-
drawing cation can also explain the difference in X–O bond distance seen in
Table 4.4. For 1 and 2 CO2, this distance is at 1.72 Å and 2.31 Å. For 3 CO2

this distance is 3.91 Å. When the cation is above the hexagonal cavity, it is
more exposed and can hence bond with CO2. As discussed for Na-Fh, the in-
crease in dX–O, meaning the CO2 molecules are further away from the cation,
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Figure 4.7: (a) Reaction energy and (b) basal interlayer distance with 1, 2 and 3 intercalating CO2

molecules and two group I interlayer cations. (X = 2Li, 2Na, 2K). SCC-DFTB calculations.

reduces the reaction energy for 2Li-Fh.

For 2 and 3 CO2 the reaction energy is practically the same for 2Na-Fh and
2K-Fh. The d001, seen in Figure 4.7b, and geometries, shown for Na-Fh in
4.8c and 4.8d, are also very similar in these cases. The difference is, as for
K-Fh and Na-Fh earlier, that potassium is a larger cation and hence is a little
bit more elevated above the hexagonal cavity for all number of CO2. For 1
CO2, potassium is positioned more above the hexagonal cavity than sodium.
Hence 2K-Fh requires less energy for adding 1 CO2 than 2Na-Fh. Adding the
third CO2 to 2K-Fh, d001 is increased. This is probably because the third CO2

is still closely bonded with the cation, with dX–O = 2.65 Å, and hence to fit
the new CO2, d001 expands. For 2Na-Fh, adding the third CO2 gives a slightly
smaller d001 as the two sodium cations withdraw into the hexagonal cavity,
and dX–O = 3.28 Å, which is an increase.

In general, the geometries, reaction energies and basal interlayer distance for
one and two group I cations are quite similar. The trend of the energies are
similar, but for two interlayer cations the reaction energy is positive for 1 CO2

for 2K-Fh and 2Na-Fh and hence the reaction is predicted to be unlikely. This
is also the case for 2Li-Fh with 3 CO2. However, as mentioned in Chapter 3,
the DFTB methods are expected to be more reliable for predicting geometries
than reaction energies

The basal interlayer distance is in general smaller for 2Li-Fh than for Li-Fh,
and the same goes for dX–O. The largest difference between 2Li-Fh and Li-Fh
are the geometries, where for 2Li-Fh the cations “pop” out of the hexago-
nal cavity as explained above. From this it would be natural to assume that
the optimal geometry is for the cation to be positioned above the hexagonal
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(a)

(b)

(c) (d)

Figure 4.8: Geometry (SCC-DFTB) of the unit cell of fluorohectorite with 2 interlayer group I cations
for (a) 2Li-Fh with 2 CO2, (b) 2Li-Fh with 3 CO2, (c) 2Na-Fh, and (d) 2Na-Fh with 1 CO2. (Mg = gray; F
= green; O = red; Si = gold; Li = purple; C = black; X = blue.)

cavity, so the CO2 can bond with the cation, and hence give larger reaction
energies and swelling.

Group II interlayer cations

The geometries for Ca-Fh are similar to the ones of K-Fh, which makes sense
since the two cations have a similar size. As for K-Fh, calcium is positioned
above the hexagonal cavity. However, the first CO2 seems to position itself far
away from the cation, with dX–O = 3.51 Å. The carbon in CO2 is 2.66 Å away
from the closest clay oxygen, which is probably the reason for the small re-
action energy when adding 1 CO2 to Ca-Fh. The distances from the cation
to the CO2 decrease when more CO2 are added, and the energy is also in-
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Figure 4.9: (a) Reaction energy and (b) basal interlayer distance with 1, 2 and 3 intercalating CO2

molecules and one group II interlayer cation. (X = Be, Mg, Ca). SCC-DFTB calculations.

creased, see Figure 4.9a and Table 4.3. However, the energy for Ca-Fh with
3 CO2 is only barely larger than for Mg-Fh and Be-Fh. Maybe adding more
CO2 would prove Ca-Fh better for storing CO2 in larger amounts. Looking at
d001 for Ca-Fh in Figure 4.9b and Table 4.5, Ca-Fh clearly swells with added
amounts of CO2, as it should [50].

For Mg-Fh, the geometries are also similar to K-Fh and Ca-Fh, but the cation
is placed inside the hexagonal cavity, like Li-Fh. As discussed for 2Li-Fh, the
magnesium cation “pops” out of the cavity for 1 CO2, but then goes back into
the cavity for 2 and 3 CO2. The distance from the cation to the CO2 increases
with an increasing number of CO2, and the CO2 are placed more in the vac-
uum layer than actually bonded to the cation. One CO2 seems to bond with
the cation while the other CO2 are positioned ca. 3 Å above a clay oxygen.

Be-Fh is quite different than all other cations discussed so far. All geometries
for Be-Fh are illustrated in Figure 4.10. As for Li-Fh, beryllium is a small atom
and hence can fit into the hexagonal cavity. However, when 1 CO2 is added,
the cation “pops” out of the cavity, creating a bond with the CO2 molecule
together with one of the oxygen atoms in the clay, and hence forming a CO3

group. This is the only cation to form a CO3 group in SCC-DFTB, and might be
because it is both a small and divalent cation. Adding another CO2 to Be-Fh
breaks the CO3, and adding the third CO2, beryllium is brought back into the
cavity. Another interesting observation is that it looks like beryllium bonds
with one fluorine atom when it resides in the hexagonal cavity. The bond
length dBe-F = 1.44 Å, which is close to the bond length in BeF2 of 1.34 Å. How-
ever, beryllium is not suitable for storing CO2 in clay because of its poisonous
nature.
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(a) (b)

(c) (d)

Figure 4.10: Geometry (SCC-DFTB) of the unit cell of fluorohectorite with Be as the interlayer cation
for (a) plain Be-Fh, (b) Be-Fh with 1 CO2, (c) Be-Fh with 2 CO2, and (d) Be-Fh with 3 CO2. (Mg = gray;
F = green; O = red; Si = gold; Li = purple; C = black; X = blue.)

The reaction energy for Be-Fh and Mg-Fh is similar to K-Fh and Na-Fh with
the same trend of increasing when adding 2 CO2 and decreasing for the third
CO2. The increase in energy for both must be caused by the change in ge-
ometry. For Be-Fh this means breaking apart the CO3 group, and for Mg-Fh
magnesium “pops” back into the cavity. Both beryllium and magnesium are
small cations and reside inside the cavity for 0 and 3 CO2. For both, dX–O in-
crease a lot going from 1 CO2 to 2 CO2.

Looking at d001 for Be-Fh in Figure 4.9b, it has a different trend than for Mg-Fh
and Ca-Fh. It decreases when adding the first and second CO2. Comparing
this with the discussion for the geometry, the smaller values for d001 can be
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understood in terms of the beryllium cation residing well above the hexag-
onal cavity. This might mean that the positively charged cation attracts the
negatively charged bottom sheet of the oxygen layer above, and hence the
decrease of d001.

An interesting observation for the basal interlayer distance, also observed
when comparing Li-Fh vs. K-Fh and Na-Fh, is how it for Ca-Fh with no CO2

is so much smaller than Be-Fh and Mg-Fh. This despite magnesium and
beryllium being smaller cations and position inside the hexagonal cavity. As
discussed for Be-Fh when beryllium is positioned above the hexagonal cav-
ity, here the positively charged calcium might attract the bottom sheet of the
layer above it, and hence pull the layers together.

A difference for the divalent cations in group II compared to the cations in
group I is that the octahedral sheet with magnesium and lithium is a little
crooked. This is illustrated in the geometry for Be-Fh in Figures 4.10a and
4.10d when beryllium is positioned inside the hexagonal cavity. This might
just be the charge of the cation that pulls the octahedral sheet in different
directions.
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4.2.2 GFN1-xTB
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Figure 4.11: Reaction energies (GFN1-xTB) with 1, 2 and 3 intercalating CO2 molecules and the dif-
ferent interlayer cations. (a) Group II cations, (b) one cation from group I and (c) two group I cations.
2Cs-Fh calculations failed for 3 CO2.

With GFN1-xTB, only slab calculations were performed, since bulk calcula-
tions did not work properly with this method. It is interesting to see if any
trends emerge, especially looking at larger interlayer cations like Rb+, Cs+,
Ba2+ and Ni2+. Especially Ni2+ has given good results in experiments [50].

The most interesting result from GFN1-xTB after looking at SCC-DFTB, is that
the first CO2 added to the various X-Fh formes CO3 with one of the oxygens
in fluorohectorite, and stays a CO3 when adding more CO2. X-Fh are illus-
trated in Figure 4.12. Another difference is that all the geometries for X-Fh
are a lot more similar to each other than for geometries with SCC-DFTB. For
example, all cations are positioned in the hexagonal cavity and not so much
above the cavity, as some of the larger cations experienced for SCC-DFTB.
This difference might be from the fact that GFN1-xTB computations are slab
computations and not bulk as for SCC-DFTB.

There are some exceptions to these trends. Firstly, nickel and barium do not
form CO3 when adding the first CO2, it is just a normal CO2. For nickel, CO3
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(a) (b)

(c) (d)

Figure 4.12: Geometry (GFN1-xTB) of the unit cell of fluorohectorite for (a) plain X-Fh, (b) X-Fh with
1 CO2, (c) X-Fh with 2CO2, and (d) X-Fh with 3 CO2. (Mg = gray; F = green; O = red; Si = gold; Li =
purple; C = black; X = blue.)

appears when adding more CO2, and for barium CO3 is formed when the
third CO2 is added. Secondly, for calcium with 2 CO2, the first CO2 is a CO3,
and the second CO2 is not linear, but bent. Thirdly, the two divalent cations
calcium and barium give a crooked geometry for the six cations in the oc-
tahedral sheet in the middle of the clay structure, illustrated in Figure 4.13.
This probably comes from them being too large to fit properly into the cavity
and hence pushing the other atoms away. Cesium is also a large cation, but it
does not make the octahedral sheet crooked. Fouthly, both nickel and beryl-
lium make a bond to one of the fluorine atoms in the clay material. The bond
lengths are dNi-F = 2.00 Å and dBe-F = 1.59 Å, which is not too different from
the bond lengths in NiF2 and BeF2, which are dNi-F = 1.64 Å and dBe-F = 1.38
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(a) (b)

Figure 4.13: Geometry (GFN1-xTB) of the unit cell of fluorohectorite with a cation as the interlayer
cation for (a) Ba-Fh and Ca-Fh (essentially indistinguishable geometries), and (b) Ba-Fh and Cs-Fh
with 3 CO2 (essentially indistinguishable geometries). (Mg = gray; F = green; O = red; Si = gold; Li =
purple; C = black; X = yellow.)

Å, respectively. Lastly, the CO2 are mostly in the vacuum layer for all cations,
parallel to the clay, but not for the large cations cesium, rubidium and bar-
ium. For Ba-Fh, Rb-Fh and Cs-Fh, the third CO2 is positioned with more of
an angle to the clay layer.

Looking at the reaction energies for group I cations in Figures 4.11b and 4.11c,
the curves look the same as when looking at single cations and CO2 without
fluorohectorite, see Figure 4.2. That is, the reaction energy is large for adding
1 CO2 into the clay, and then adding more CO2 is less efficient. For SCC-DFTB
the same trend arises for Li-Fh. The common denominator for SCC-DFTB Li-
Fh and the monovalent cations with GFN1-xTB, is that the cation resides in
the hexagonal cavity, which might be a reason for the reaction energy trend.
However, there is no d001 to compare for GFN1-xTB. Also for group I cations,
the energy increases with increasing cation size, apart from rubidium and
cesium switching place, seen in Figure 4.11b.

Loganathan et al. found that calcium, magnesium and sodium need H2O to
prop the layer in clay open and thus adsorb CO2 [54]. From this is interest-
ing that Ca-Fh does so well energetically, seen in Figure 4.11a. It even binds
more strongly with CO2 than all group I cations. Nickel was expected to do
especially well from experiments, however it does not stand out much from
the other divalent cations. This might have been different with bulk com-
putations. An interesting observation however, is that the trend in the reac-
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tion energy for divalent cations is different from group I cations. Instead of
decreasing with increasing amounts of CO2, the form of the graph is more
similar to the reaction energy for many structures done with SCC-DFTB, a
v-shaped curve.

Looking at Table 4.7 for the X–O distance between the CO2 and the cations,
the trend is an increased dX–O for increasing amounts of CO2, which was also
the case for some SCC-DFTB computations, especially for the last CO2 added.
The C–O distance between an oxygen in the clay layer and the carbon in the
CO3 formation in general decreases for increasing amounts of CO2 added to
the system, which is the opposite for dX–O. This can be seen in Table 4.8. The
shortest dC–O is for Ca-Fh with 3 CO2. With dC–O = 1.41 Å, it is close to the
distance for a C–O bond in CO3, which is 1.31 Å. These bonds are more sym-
metric than for the other structures and close to a real CO3 structure. For
2Cs-Fh with 3 CO2 there are no results. This is because the geometry could
not be optimized with GFN1-xTB. It was not possible to do computations for
2Na-Fh, 2K-Fh and 2Rb-Fh because the AMS program crashed 2. However,
being able to do the same computations for 2Li-Fh might be because lithium
is small enough to “hide” inside the hexagonal cavity.

However, comparing the results for 2Li-Fh and Li-Fh, the geometries are prac-
tically identical. The only difference is that there is a second cation for 2Li-
Fh, mirroring the first cation, sitting in the bottom hexagonal cavity just as
for the top cation. For both 2Li-Fh and Li-Fh, dX–O increases with increasing
amounts of CO2, while the dC–O decrease. The similarities between 2Li-Fh
and Li-Fh also apply to 2Cs-Fh vs. Cs-Fh. It would not be very drastic to as-
sume that this would apply also for the third CO2 for 2Cs-Fh. The difference
between one and two intercalated cations can be seen in the reaction ener-
gies. For two cations this energy is larger than for one cation.

In conclusion, the charge of the cation will influence the uptake of CO2 in
clay, as seen in experiments [50]. A cation will polarize the non-polar CO2

molecule, which gives a larger interaction between the two. This seems to
agree with the results from our simulations as well. Experiments have shown
that the clay–cation interaction might be more important than the polar-
ization between the cation and CO2 [55]. This also seems to be the case in
this thesis, as the differences between the various Fh structures are relatively

2Information from SCM said that the GFN1-xTB model collapses for periodic systems where the bonding
situation is “molecule like”, like organic crystals. This comes from a problem with the original parametrization
not supporting materials and periodic systems.
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small.

4.3 Vibrational Frequencies

CO2 is a linear molecule, and the expected outcome of adding a cation to
CO2 is a linear molecule with a X–O–C angle of approximately 180°. This is
the case for most cations, see Figure 4.14a. However, the Ni–O–C angle is
152.2° with revPBE, and 172.5° with GFN1-xTB, illustrated in Figure 4.14b.
With GFN1-xTB, the Mg–O–C angle is also less than 180°, at 157.8°. With SCC-
DFTB the two cations calcium and sodium have a bent angle, with a Ca–O–
C=156.5° and a Na–O–C=164.5°. These cations with non-linear geometry will
hence give an extra vibrational frequency, which is a non-degenerate bending
mode. Vibrational frequencies are typically given in units of cm−1.

The selection of what cations give rise to a bend in the geometry seems arbi-
trary. Some are divalent, some are large cations, and there is no trend. If the
modes were not bent, the trend would be that the larger the cation, the larger
frequency for the bending mode.

(a) (b)

Figure 4.14: The two geometries of a cation and 1 CO2. (a) Most cations give a linear geometry, (b)
some give a non-linear geometry. The latter apply to Ni2+ (revPBE), Mg2+ and Ni2+ (GFN1-xTB), and
Ca2+ and Na+ (SCC-DFTB). (O = red; C = black; X = gray.)

Figure 4.15 and Table 4.9 compare the various vibrational modes for a sin-
gle molecule of CO2, without the cations, for the three calculation methods
revPBE, SCC-DFTB and GFN1-xTB, and the experimental values from Na-
tional Institute of Standards and Technology (NIST) [56]. The three methods
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Vibrational frequency revPBE SCC-DFTB GFN1-xTB Experimental

Asymmetric stretch 2338 2929 2612 2349
Symmetric stretch 1292 1614 1447 1333

Bending mode 449 549 628 667

Table 4.9: Comparing the vibrational frequencies (cm−1) for CO2 with the three different computation
models and experimental values [56].

Asymmetric stretch Symmetric stretch Bending mode

500

1000

1500

2000

2500

3000

F
re

q
u

en
cy

(c
m
−

1
)

SCC-DFTB

GFN1-xTB

revPBE

Experimental

Figure 4.15: Comparing the vibrational frequencies for CO2 with the three different computation
models and experimental values [56].

give rather large differences in the vibrational frequencies. For the asymmet-
ric stretch, GFN1-xTB yields ca. 300 cm−1 larger than revPBE, and SCC-DFTB
is ca. 300 cm−1 larger than GFN1-xTB. The symmetric stretch deviates only
200 cm−1 between the three methods. For both stretching modes, the revPBE
method is closest to experimental results from NIST, which are 2349 cm−1 for
the asymmetric stretch and 1333 cm−1 for the symmetric stretch [56]. SCC-
DFTB is the method furthest away from the experimental values. However,
for the bending mode, SCC-DFTB is closer to the experimental values, and
revPBE is furthest away. This difference is not as large as for the asymmetric
and symmetric stretch.

These differences between the three methods are also observed when adding
various cations to CO2 and calculating the vibrational frequencies. The vibra-
tional frequencies computed with SCC-DFTB and GFN1-xTB are in general
larger than for revPBE.

In Figure 4.16, all three modes are illustrated from revPBE calculations. The
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Figure 4.16: The revPBE vibrational frequencies for CO2 when a single CO2 is put together with a
cation from group I and II as well as nickel.

asymmetric stretch lies in the range 2100–2400 cm−1, the symmetric stretch
around 1200–1400 cm−1 and the bending modes lie around 600 cm−1. For the
asymmetric and symmetric stretch, nickel stands out. The value for nickel
is considerably smaller than with other cations. This might be explained by
it being a transition metal. Hence it is very different from the other cations.
Beryllium also stands out for the asymmetric and symmetric stretch, having
the largest frequencies for both stretches.

Results for the asymmetric and symmetric stretch for the different computa-
tion methods are illustrated in more detail in Figures 4.17 and 4.18, respec-
tively. The frequencies decrease when the mass of the cation increases within
a group. This is understandable in terms of a simple one-dimensional har-
monic oscillator. The vibration frequency depends on a mass and a spring
constant, f = ω/2π = p

k/m/2π [57, p. 412]. In a system with several atoms
and hence several masses and spring constants, these are seen as an “effec-
tive mass” and “effective spring constant”.

For the symmetric modes, the cation vibrates in phase with the oxygen fur-
thest away, and out of phase with the closest oxygen. Hence the harmonic
oscillator approach seems reasonable. For the asymmetric modes the cation
is essentially at rest and therefore the mass of the cation is not the reason for
the trend we see in the vibrational frequencies. However, the bond between
the atoms might decrease with increasing mass and hence give rise to these
results. Another interesting observation is that the symmetric stretch is IR
active for CO2 together with a cation, while it is IR inactive for CO2 alone.
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Figure 4.17: Asymmetric stretch for CO2 when put together with the various cations, compared to the
vibrational modes for CO2 alone. (a) revPBE, (b) SCC-DFTB and (c) GFN1-xTB.

As mentioned earlier, some of the cations give rise to a non-linear geome-
try with SSC-DFTB and GFN1-xTB. The cations with non-linear geometries
breaks the trend for decreasing frequency for increasing mass. In Figure 4.18b,
sodium should be larger for the trend to fit properly. This holds group II mag-
nesium in Figure 4.18c as well. Also breaking the trend is the group I elements
in GFN1-xTB, where the frequencies has a slight increase for increasing mass.

From computations with revPBE, the trend of the bending modes are in-
creased frequencies with increased mass, see Figure 4.19a. In general, SCC-
DFTB and GFN1-xTB does not match the trend from revPBE. This might partly
be because of the non-linear geometry that gives rise to to non-degenerate
bending modes. These non-degenerate modes can be seen in Figure 4.19 and
are marked in gray. Also standing out are the bending modes for group I for
GFN1-xTB in Figure 4.19c which seem to converge to 624 cm−1. If the spring
constant does not change, there should be an asymmetric boundary value
for increasing mass, which 624 cm−1 seems to be in this case. Another inter-
esting observation is that beryllium gives rise to a non-degenerate bending
mode even though the geometry is linear with a Be–O–C angle of 180°.
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Figure 4.18: Symmetric stretch for CO2 when put together with the various cations, compared to the
vibrational modes for CO2 alone. (a) revPBE, (b) SCC-DFTB and (c) GFN1-xTB.

The nonlinear geometries, and hence non-degenerate bending modes, from
computations with GFN1-xTB and SCC-DFTB is different than for revPBE.
This might be explained by the models themselves. The second derivatives
in the Hessian matrix might not be correct and hence give too large values.

Compared to the experimental result from NIST, which gives a frequency of
667 −1 for the bending mode for a single CO2 [56], the revPBE bending modes
are the closest. The bending modes for SCC-DFTB are too small and GFN1-
xTB are a little too large, which is surprising from comparing methods for a
single CO2 in Figure 4.15.
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Figure 4.19: Bending modes for CO2 when put together with the various cations, compared to the
vibrational modes for CO2 alone. (a) revPBE, (b) SCC-DFTB and (c) GFN1-xTB. Blue bars are the
degenerate modes from linear molecules, and gray bars for non degenerate modes from non-linear
molecules.

Cations in Fluorohectorite

CO2 in Fh vibrates together with the atoms of Fh. The frequencies for the
bending modes of CO2 are very close to many of the frequencies of the atoms
in Fh. This coupling makes it difficult to distinguish the bending modes of
CO2 from the other frequencies. For this reason, the bending modes will
not be discussed any further. However, the large values for the asymmetric
and symmetric stretch modes for CO2 are easier to observe. Vibrational fre-
quency computations for revPBE are not within the scope of this thesis, and
the coming discussion of vibrational frequencies will be for SCC-DFTB (3D
bulk systems) and GFN1-xTB (2D slab systems). Only systems with one ad-
sorbed CO2 molecule will be discussed, to avoid the complexity of multiple
vibrational modes when two or more CO2 molecules are present.

In Figure 4.20, a summary of the asymmetric CO2 stretch frequency is pre-
sented for bulk systems (4.20a; SCC-DFTB) and slab systems (4.20b; GFN1-
xTB). Figure 4.21 gives a similar summary of the symmetric CO2 stretch fre-
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Figure 4.20: Asymmetric stretch for 1 CO2 in Fh for (a) SCC-DFTB and (b) GFN1-xTB. The dashed
line represents the asymmetric stretch for CO2 in the respective models. (For SCC-DFTB, Be-Fh is an
outlier of 2125 cm−1 and not in the plot.)
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Figure 4.21: Symmetric stretch for 1 CO2 in Fh and various cations, for (a) SCC-DFTB and (b) GFN1-
xTB. The dashed line represents the symmetric stretch for CO2 in the respective models.

quency. For both models, the asymmetric stretch frequencies for CO2 in Fh
are smaller than for a single CO2. The symmetric stretch frequencies with
GFN1-xTB are also smaller than for a single CO2, except for Ba-Fh, which
is approximately unchanged. For symmetric stretch frequencies with SCC-
DFTB, 2Li-Fh and 2K-Fh give a large increase, 2Na-Fh, Na-Fh, K-Fh and Be-
Fh are close to the frequency of the single CO2, while the rest of the structures
have smaller frequencies than a single CO2.

For Ni-Fh, there is only a small reduction in both asymmetric and symmetric
stretch. This is consistent with the geometry. There is a relatively weak bond
between nickel and CO2 because of the relatively long X–O distance of dX–O =
2.82 Å. The frequencies are only moderately affected by the environment of
CO2.

The asymmetric stretch for Be-Fh is an outlier in the SCC-DFTB system, with
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a small value compared to the other structures, and is hence not in the plot of
Figure 4.20a. The other structures have a frequency around 2850 cm−1, while
it in Be-Fh is 2125 cm−1. As illustrated in Figure 4.10b, the geometry of Be-
Fh is special because of the relatively symmetric CO3 group. Beryllium forms
a connection between one oxygen atom in CO2 and an oxygen atom in the
clay layer above. The asymmetric stretch for CO3 in SCC-DFTB is 1595 cm−1,
which beryllium is closer to than the single CO2 frequency of 2929 cm−1. The
Be-Fh symmetric stretch at 1618 cm−1 is also close to one of the symmetric
stretches in CO3 of 1594 cm−1.

Looking at the asymmetric vibrations for SCC-DFTB, Figure 4.20a, the fre-
quencies for two group I cations decrease with increasing mass. Within one
group I cations, the frequency overall increase with increasing mass of the
cation, while it decrease with mass for the divalent cations. However, K-
Fh gives a slightly smaller frequency than for Na-Fh, and as already men-
tioned, Be-Fh is a large deviation. For two cations and the divalent cations,
this trend coincides with the trends seen for the asymmetric modes for SCC-
DFTB without Fh, but the values are ca. 100 cm−1 smaller when in Fh. In
summary, the movement of CO2 decreases when it is inserted into X-Fh due
to its interaction with the other atoms in the clay.

Looking at Figure 4.20b, the asymmetric stretch frequencies vary more for
GFN1-xTB than for SCC-DFTB, from 1900 cm−1 for Ca-Fh to 2587 cm−1 for
Ba-Fh. The values are in general smaller than for SCC-DFTB. The large span
in frequencies is quite striking based on how similar the geometries for GFN1-
xTB were, discussed in Section 4.2.2. Two cations in Fh give decreasing fre-
quencies for increasing mass, as for SCC-DFTB. This trend also applies for the
other group I cations. However, the frequencies for the divalent cations gen-
erally increase with increasing mass. Here, Ca-Fh stands out with its small
value and not following the trend for its group. Compared to the frequen-
cies for CO2 and cations without Fh, the frequencies are smaller by ca. 200
cm−1 for group I cations, while the difference is not very large for the largest
divalent cations.

A surprising result looking at the values for the GFN1-xTB asymmetric stretch,
is that some of them seem be too large for CO3 groups. The asymmetric
stretch for CO3 with GFN1-xTB 1385 cm−1. From looking at the geometries in
Figure 4.12, most of the geometries gave the formation of CO3. An explana-
tion for this might be that even though from the geometry it looks like a CO3

has formed, the CO2 and the oxygen below might not be as strongly bonded
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as it looks like. The CO2 is still intact, but with a bent geometry. Ca-Fh and
2Cs-Fh have small enough frequencies to be very close to CO3.

The frequencies can also be seen in connection to the C–O distances, (Table
4.8). Ca-Fh has the shortest distance to the oxygen below, and can be an-
other indication that this bond actually is CO3. The second shortest distance
is for 2Cs-Fh, which also supports this idea because of the small stretch fre-
quencies. The large frequencies for Ba-Fh and Ni-Fh can be explained by the
discussion from Section 4.2.2. For both these geometries, there is no CO3, but
plain CO2, which gives larger frequencies.

The general trend for the symmetric stretch frequencies in SCC-DFTB, see
Figure 4.21a, is a decreasing frequency for increasing mass within a group.
This does not apply to Li-Fh and 2Na-Fh, which have lower values. These
also have a larger distance between the cation and the CO2 within their group,
from Table 4.4. However, Be-Fh does not deviate from the trend as it did for
the asymmetric modes. This might be due to the CO3 bond not influencing
the symmetric modes. This missing deviation of Be-Fh can be a little sur-
prising from the results from the cation and CO2 without Fh in Figure 4.17b.
For the four atom system, the symmetric vibration for Be is a lot larger than
for the other atoms. However, in the Fh structure, there are many atoms and
bonds that can be the reason for this.

For the symmetric vibrations for GFN1-xTB, seen in Figure 4.21b, the trend
is the same as for the asymmetric vibrations for the same model. Within
groups, the vibrations decrease with increasing mass. As for the asymmet-
ric modes, Ba-Fh and Ni-Fh do not follow the trend, and are larger than for
the other molecules. This because there is no CO3. Also, the frequency for Ca-
Fh is here smaller than for the other structures, as for the asymmetric mode.
Again, for Ca-Fh the CO2 molecule has a shorter distance to the other oxygen
atom forming CO3 with than the other structures.

The general trend for the frequencies when adding more CO2 is that the fre-
quency belonging to CO3 decreases for each CO2 added. This also adds up
when the distance decreases, meaning the CO2 bond is weakened.

In conclusion, the vibrational frequencies supports the idea that CO3 is formed
for all structures in GFN1-xTB computations except for Ni-Fh and Ba-Fh, and
only for Be-Fh with SCC-DFTB. Also, the structures with the shortest dC–O

seem to be the structures with the lowest frequencies and hence strongest
CO3 bonds.



Chapter 5
Conclusion

5.1 Concluding Remarks

A DFT and DFTB study was conducted to see how different cations would
bind to CO2 in fluorohectorite, in an attempt to predict whether they can be
used in fluorohectorite for CO2 storage.

SCC-DFTB is seen as a better method to model clay molecules than GFN1-
xTB. This because it can model a 3D molecule, which is not the case for
GFN1-xTB. 3D computations take swelling into account, which is a physi-
cal component important for clay materials. The parametrization for DFTB
has a geometry focus and hence the reaction energies are given low priority.

The trends show that for SCC-DFTB the reaction energy is the most optimal
when adding 2 CO2 and that the interlayer distance increases with an increas-
ing amount of CO2. This means more swelling and is in accordance with ex-
perimental results [50]. The systems with two intercalated cations per unit
cell do not lead to more swelling than for one cation. They also require more
energy to get 1 CO2 into fluorohectorite, but they will give better reaction en-
ergies for larger amounts of CO2. For one group I cation, CO2 is more tightly
bound with the cation for larger cations.

Common to both models is that the reaction energies in general seem to in-
crease when the cation is residing in the interlayer, above the hexagonal cav-
ity. This is possible when when the intercalated cation is too large to reside
inside the cavity. For the positioning for CO2, it seems like they prefer to be
parallel to the clay surface.

For GFN1-xTB, the results show that the reaction energy decreases when adding
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more CO2 to the Fh structures. At the same time, the cation–oxygen bond
length increases. Ca-Fh performed the best, with ∆E = −2.39 eV for 2 CO2.
The tendency is that larger cations bind CO2 better, and cations with valence
of two have higher reaction energies than cations with valence of one. This
can be seen from the larger reaction energies and the smaller X–O distances.
This might also be the case when larger atoms can be tested with SCC-DFTB
in the future when it supports larger atoms in its parametrization.

All GFN1-xTB computations give a geometry which looks like a CO3 group.
The vibrational frequency analysis can help understanding these geometries.
Very small frequencies means a more likeliness for a structure with CO3, es-
pecially seen in the context of a short C–O distance. This applies to Ca-Fh and
2Cs-Fh. Ba-Fh and Ni-Fh have large frequencies, which means non-existing
CO3 groups. With increased amounts of CO2, the C–O distance decreases,
which means a weakening of the CO2 bond.

5.2 Further Studies

Future work should include computations on systems of fluorohectorite with
CO2 and H2O, as water helps the clay prop open and accommodate more CO2

[54, 5]. Looking at the atomic density profiles might also give a better under-
standing of where the various atoms could be placed. The start geometry
could also be changed and hence give different results with more stable ge-
ometries.

Some studies show that it is possible to get more amounts of intercalated CO2

for every cation, especially for cations like nickel [50]. It would be interest-
ing to see if the trends found in this thesis would be replicated also for more
amounts of intercalated CO2.

When the parametrization of SCC-DFTB in the future supports larger atoms
than calcium, it would be of interest to do bulk computations with these
larger atoms as intercalated cations, especially nickel. If the computations
capacity is present, these kind of computations could be done with revPBE.
Another possibility is to use a different program than AMS which might sup-
port larger atoms, and hence make it possible to look at the basal interlayer
distance.
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