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Abstract

Two main objectives are investigated in this thesis, both of which consist
of predicting the complex parallel transmission (PTx) weights for an
8-channel transmit (Tx) 32-channel receive (Rx) Nova head coil on a
Siemenes Magneton 7T by deep neural networks (DNNs). The main results
are based on anonymized data (B+

1 - and B0-maps) from 17 different scan
sessions, which are discerned on a volunteer-to-volunteer basis prior to being
applied in pulse designs. The proposed matching consisted of matching
reconstructed magnitude 3D images from the respective scans with the
Pearson Correlation Coefficient (PCC). The method yields a clean volunteer
separation, but is deemed sensitive to artifacts from pre-processing steps
and the choice of masking- and PCC-thresholds. Fundamental MRI-, PTx-
and Deep Learning theory is also thoroughly reviewed in this thesis.

For the first main objective, two separate multi-layer preceptron (MLP)
neural networks (NNs) are trained, validated and tested for the prediction
of 8 universal (i.e. subject-independent) PTx-weights for RF-shimming
for general volunteer applications. The predictions’ shim configurations
are aimed at maximizing the concentration of RF-amplitude over a small
(approximately) 2 × 2 × 2 cm3 cube shifted around to user-defined loca-
tions in the brain for use in e.g. Single-Voxel Spectroscopy (SVS), while
minimizing the estimated maximum and head-averaged local SAR10g. The
results indicate that a network trained with data for which the network
learns the desired universal pulse (UP) settings during network training
performs better on average than for one which the universal pulse settings
are already pre-calculated and contained within its training set. The
networks’ performance is compared to that of pre-calculated universal
shims and volunteer-tailored shims, which the two networks respectively
manage to sufficiently mimic. The PTx default-drive shim (CP-mode) and
a phase-only shim (weighted CP-mode) are also computed for comparison.
Weighted CP-mode is tailored to yield constructive phase-interference of
each transmit channel’s (complex) sensitivity at the cubes’ center voxel.
The network-predicted pulses, pre-calculated UPs and tailored pulses are
all outperformed by the weighted CP-mode. For further work, a method
is proposed to train a network in a similar fashion to those presented
here, but with weighted CP-mode shims (phase-only) instead of full shims
(amplitude and phase).

Secondly, a convolutional neural network (CNN) is trained, validated
and tested with sparse amounts of examples (13, 2 and 2 examples in the
training-, validation- and test sets, respectively) for the prediction of time-
varying PTx-weights of an 8-kT-point trajectory for whole-brain flip-angle
(FA) homogenization for general volunteer applications, with the goal of
maximizing the FA homogeneity (measured by the coefficient of variance
(CoV) of the FAs) over the brain, while minimizing the estimated maximum
and head-averaged local SAR10g. The prediction from the CNN is based
solely on the resulting RF-amplitude map from PTx default-drive (CP-
mode). For performance comparison, a UP and volunteer-tailored pulses
are computed. The CNN-predicted pulse settings share approximately
equal SAR-levels (maximum and head-average SAR10g) as its tailored
counterparts, but with approximately equal FA-inhomogeneity as the UP.
The CNN-approach presented here should be further investigated to include
more MRI data (e.g. relative RF phase data and off-resonances) in its
input to improve its predictions.

As all main results presented here rely on the discernment process
yielding true volunteer discernments, they are all only indicative. The



two main objectives of this thesis should be applied to data which is
guaranteed to originate from different volunteers. The discernment process
itself should also be verified by application on a set of volunteer data for
which the true discernment is already known. All results presented here
should also be validated over larger sets of volunteer data.

Keywords: MRI, UHF, PTx, RF, B1+, Shimming, Flip-Angle,
Homogenization, Brain, Pulse Design, Deep Learning, Neural Network,

CNN, MLP
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1 Introduction

MRI (Magnetic Resonance Imaging) systems, based on the principle of nuclear
magnetic resonance (NMR), are often characterized by their strong, static
magnetic field strength, denoted B0. With MRI systems reaching ultrahigh
magnetic field (UHF), i.e. B0 > 3T, the advantages are numerous – most
importantly, signal-to-noise ratio (SNR) is increased, hence allowing higher
image resolution and shorter scan times[1]. There are, however, a set of technical
hurdles which must be overcome before these systems can be widely adopted.
For instance, achieving control of the flip-angle (FA) across a region-of-interest
(ROI), is not a trivial matter at UHFs, where the wavelength of the transmitted
radio-frequency (RF) electromagnetic waves in the human body can be of
the same order as the spatial dimensions of the body-part being imaged (e.g.
the head). The interference between travelling waves within the object from
individual transmission coil elements gives rise to standing waves patterns[2]
in the magnetic field associated with the waves, causing spatial fluctuations in
the amplitude of the NMR-active component of the transmitted RF-field. This
fluctuation can in addition be caused (or enhanced) by true dielectric resonance
effects[3], i.e. spatial fluctuations in the amplitude depending on the overlap
between the transmitted frequency and the dielectric resonance frequencies of
the object. Regardless of its source, this problem manifest itself in UHF MR
images as either regions of complete signal voids or contrast shading across the
image.

Traditionally, at lower field strengths, single-channel transmission coils have
been used to transmit RF pulses, regardless of the type of pulses (e.g. selective,
non-selective, one-dimensional and multi-dimensional). At UHFs, multi-channel
transmission coils are essential tools to achieve the desired control of the transmit
field. The framework which describes the simultaneous, independent pulsing
of more than one channel is called Parallel Transmission (PTx), and is the
foundation which makes the desired control of the transmit-field achievable. In
this regard, the primary aim of this thesis is to

• revisit this author’s project thesis work [4] of RF-shimming with fully-
connected multi-layer perceptron (MLP) networks, to improve and verify
results with networks more adapted to generalize beyond a single transmit
sensitivity map by predicting universal PTx-settings to move the concentra-
tion of RF-amplitude to a desired location in the brain for general volunteer
application, and compare the results to tailored pulse settings and universal
pulse (UP) settings.

• investigate the feasibility of training a convolutional neural network (CNN)
with a sparse amount of training data for the prediction of time-varying
PTx-weights of an 8-kT-point excitation trajectory for general volunteer
whole-brain FA homogenization, and compare the results to tailored pulse
settings and UP settings.

The MRI data used in this thesis consists B+
1 -sensitivity maps gathered at

7T for an 8-channel transmit (Tx) 32-channel receive (Rx) Nova head coil for
17 scans of volunteers, along with the scans’ respective B0-map. The data is
completely anonymized (and may contain several scan of the same volunteer),
and consequently needs to be grouped within volunteers before it can be applied

1



to the creation of training, validation and test data. Thus, a secondary aim of
this thesis is to shortly present and apply a simple method for within-volunteer
grouping of anonymized data based upon intra-modality pixel-by-pixel comparison
of full-head magnitude images.

All MATLAB code written for this thesis is available at https://github.com/
chrisbso/MastersThesis.

The information regarding the Q-matrices used for estimation of SAR-levels
from the Nova head coil in this thesis is found in section 7.5 of the appendix.
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2 Background and Theory

2.1 Fundamentals

2.1.1 Transmission in MRI

Transmission in MRI is the action of applying another smaller magnetic field
Btransmit(r, t) in a direction1 perpendicular to the main, static magnetic field,
B0 = −B0ẑ. This nutates (”tips”) the macroscopic net magnetization vector,
M, out of equilibrium (M = M0ẑ), such that it starts precessing and induces
a time-varying voltage (i.e a signal) in receiving coils. This field is commonly
applied by transmitting an electromagnetic wave through a set of RF-coils,
whose resultant magnetic field’s sole purpose is to disturb the aforementioned
equilibrium. For a single transmission coil, the associated magnetic field in the
laboratory frame, B1(r, t), is a linearly polarized field with carrier frequency
ωRF and vector-amplitude B1amp(r, t), s.t.

B1 ≡ B1(r, t) ≡ B1amp(r, t) cos (ωRFt+ φcoil) ,

where φcoil is a phase constant. We further decompose its vector-amplitude into
components along the x̂- and ŷ-directions, s.t.

B1amp(r, t) ≡ B1xx̂ +B1yŷ ≡ B1x(r, t)x̂ +B1y(r, t)ŷ.

In order to get rid of the time dependence due to the oscillation, we first introduce
a rotating frame, rotating counter-clockwise with frequency ω > 0 about the
ẑ-axis, having unit vectors

x̂′ = x̂ cos(ωt) + ŷ sin(ωt), ŷ′ = −x̂ sin(ωt) + ŷ cos(ωt), ẑ′ = ẑ. (1)

Now, we assume that we ”lock” our rotating frame to B1, such that in the
given frame, B1 constitutes a non-rotating2 field. This is equivalent to setting
ω ≡ ωRF. Furthermore, we match the frequency of our B1-field to the Lamour
frequency ω0 ≡ γB0 to meet the resonance condition,

ω = ω0 (on-resonance). (2)

This is the most effective condition to nutate spins. A macroscopic interpretation
for this is that in the rotating frame, the B1-field is synchronized perfectly
with the precession3, such that B0 vanishes from the effective magnetic field
experienced by the spins. Furthermore, any effects which may arise from (2) not
being satisfied are known as off-resonance effects, and will become important in
the later discussions.

Using phasor-notation4 we introduce the NMR-active (i.e. contributing to
spin nutation) part of B1 as the transmit B+

1 -field, defined in the rotating frame
in terms of its vector-amplitude components in the laboratory frame[5]:

B+
1 (r, t) ≡ 1

2
[B1x(r, t) + iB1y(r, t)] , (3)

1Meaning that its non-zero components are perpendicular to ẑ.
2Meaning only its amplitude may be timely dependent on the carrier frequency.
3An analogy to this is pushing someone on a swing - pushing out of sync with the swing

breaks its speed, while pushing in sync maintains or increases its speed.
4By phasor-notation, we mean assigning the x̂′-component to the real part of a complex

number, and the ŷ′-component to the number’s imaginary part.

3



The factor of one-half in the above equation arises due to a decomposition of
the linearly polarized field as the superposition of two counter-rotating fields,
where only the terms following the primed frame is considered pertinent to spin
nutation. This can easily be derived[6] by inserting definitions of eq. (1) into
the definition of the B1-field, and truncating terms which are sinusoidal in 2ω
(far off resonance) after trigonometric simplifications.

Take special note that the spatial and timely dependence in eq. (3) is not
due to the oscillatory nature of the B1-field in the laboratory frame, but rather
to emphasise that it may vary spatiotemporally – in the ideal case, B+

1 (r, t) is
spatially constant for any fixed point in time, i.e. B+

1 (r, t) is a homogeneous
field. However, in the presence of wave interference effects (prominent at UHF),
this is no longer generally true.

We have not made any restriction on the RF coil configuration for multiple
coils for eq. (3). The only assumption needed for the above discussion to be
generalized to multiple RF coils transmitting in parallel with their respective
relative carrier phase (φcoil) and vector-amplitude (B1amp(r, t)), is that they all
share the same carrier frequency ωRF. Furthermore, in practice, one considers a
timely average of eq. (3) when estimating each coil’s contribution to the resulting
B+

1 -field – this is due to the inhomogeneity problem mentioned in the previous
paragraph, and that the total transmitted field may not constitute a field which
is circularly polarized (CP), i.e. a field in which the modulus of (3) is constant
in time. The time averaged B+

1 -field is the field which yields the same spin
nutation as a CP-field over the time averaged (this will be introduced as a coil’s
sensitivity in section 2.2). CP driving schemes requires that all coils transmit
with the same-sized amplitude, and with amplitude direction and timely phase
offset coinciding with their relative spatial offset. As an example, for two coils
transmitting in quadrature with a 90° spatial offset at resonance and equal
amplitude-size B1(r, t) (i.e. a two-coil CP driving scheme), their respective fields
and their total combined fields, with superscripts 1, 2 identifying coil 1 and coil
2, can be described as

Coil 1: B1
1 = B1(r, t) cos (ωt) x̂,

Coil 2: B2
1 = B1(r, t) cos

(
ωt− π

2

)
ŷ,

Sum: B1 = B1(r, t) cos (ωt) x̂ +B1(r, t) sin (ωt) ŷ

= B1(r, t)x̂′

=⇒ B+
1 = B1(r, t).

As a last remark, if B0 was oriented along the positive ẑ-direction, the
transmit field would be the complex conjugate of eq. (3), and a natural first
instinct would be to instead denote the field as B−1 , since the corresponding field
of transmission would be its complex conjugate. However, in relevant literature,
B−1 is reserved to mean the receive field, and B+

1 reserved to mean the transmit
field, regardless of the static field orientation.

2.1.2 Small Tip Angle (STA) Approximation

The timely evolution of the macroscopic magnetization M′ ≡ M′(r, t) in the
rotating frame defined by eq. (1) is governed by the Bloch Equations. We will
now concern ourselves with the magnetization during transmission – defining
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M′ ≡Mx′x̂
′ +My′ ŷ

′ +Mz ẑ (all three components spatiotemporally dependent)
and suppressing any dependencies in the transmitted field, the Bloch equations
take the matrix form[7][8]

dM′

dt
≡ d

dt

Mx′
My′

Mz

 = γ

 0 G · r −B1y

−G · r 0 B1x

B1y −B1x 0

Mx′
My′

Mz

 , (4)

where G · r is the additional field along in the static field direction produced by
the gradient G ≡ G(t) at position r relative to the iso-center in the laboratory
frame, and γ/2π ≈ 42.58MHz T−1 is the gyromagnetic ratio of 1H[9, p. 26].
We have neglected relaxation effects in (4) as we assume the duration of the
RF-pulse is much shorter than the relaxation times of the object subject to the
pulse.

We now make the small-tip-angle (STA) approximation to (4), where we
assume the longitudinal component Mz of the magnetization remains approx-
imately constant and equal to its equilibrium value during RF-pulsing, as we
assume the magnetization vector is tipped only a small angle θ ≡ ] (ẑ,M′), i.e.

Mz ≡M0 cos θ ≈M0,

Mx′y′ ≡M0 sin θ ≈M0θ.
(5)

Here we have introduced the transversal component Mx′y′ of the magnetization,
defined in phasor-notation as

Mx′y′ ≡Mx′ + iMy′ .

Under the STA approximation (5), eq. (4) decouples for the longitudinal and
transversal component. We now assume we apply the RF-pulse for time t ∈ [0, Tp].
For initial condition M′(r, t = 0) = M0ẑ, the solution5 for the transversal
magnetization at time t = Tp (i.e. at the end of the pulse) is

Mx′y′(r, Tp) = iγM0

∫ Tp

0

B+
1 (r, t)eir·k(t)dt, (6)

where we define the transmit k-space trajectory as

k(t) ≡ −γ
∫ Tp

t

G(τ)dτ.

This trajectory exists in the same k-space which is commonly associated with
image encoding, but the trajectory itself is expressed as time-inverted integral
compared to its image encoding counterpart. Citing [10], an interpretation of
this time-inversion is that ”as the RF-pulse is being played out, new transverse
magnetisation is being created, which is then subject to all future applied
gradients”.

When solving for B+
1 (r, t) in (6) through iterative methods, it is often

feasible to include contributions to the phase-term in eq. (6) due to (static)
inhomogeneties ∆B0(r) in the static field, i.e. B0(r) = (B0 + ∆B0(r))ẑ. These
inhomogeneties may arise from technical imperfections in the MRI system and
the inability to achieve perfect shimming, susceptibility variations across the

5See appendix, section 7.2.1, for details.
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imaged object or chemical shifts effects[8]. To incorporate these contributions,
one augments the accrued phase in the integral of (6), specifically[8]

exp(ir · k(t))→ exp (ir · k(t) + iγ∆B0(r)(t− Tp)) . (7)

The validity of this augmented solution can be verified by setting

G · r→ G · r + ∆B0(r)

in eq. (4) and following the same derivation as outlined above.

2.1.3 B0-mapping

B0-mapping is the process of estimating the off-resonance contributions

∆B0(rn) ∀ n,

associating each of n = 1, . . . Ns, discretized spatial points rn with a (non-
overlapping) voxel. The mapping can be done by calculating the phase-difference
between the two images obtained in a dual-echo (DE) gradient recalled echo
(GRE) sequence, each with echo times TE1 and TE2, respectively. We here
outline its theory[11]: let

Z1 = µ1e
iφ1 ,

Z2 = µ2e
iφ2 ,

be the complex pixel value of the two images associated with the voxel at rn.
The off-resonance map can be calculated as[9]

∆B0(rn) =
φdiff

γ(TE1 − TE2)
, (8)

where φdiff is the (unwrapped) phase difference between the two images for voxel
at rn. See figure 1 for a simplified sequence diagram. The phase difference can
be calculated by the four-quadrant arctan function ATAN2[·, ·],

φdiff = ATAN2[Im(Z1Z
∗
2 ),Re(Z1Z

∗
2 )],

but needs to be unwrapped prior to be used in (8). For e.g 3-D dual-echo gradient
recalled echo (3DEGRE) sequences, a phase unwrapping method is presented in
[12].

6



Figure 1: A simplified 3-D dual echo gradient recalled echo (3DEGRE) sequence
used for B0-mapping. The RF pulse is non-selective. φ is the phase

accumulated from the x-gradient Gx and static field inhomogeneties only (we
have left out the phase accrued due to the y- and z-gradients Gy and Gz). The
dashed and solid lines along indicate the accrued phase with and without static
field inhomogeneties, respectively. Ellipses indicate a sufficiently long repetition

time before the sequence is repeated for the next Fourier line.

2.1.4 B0-shimming

After off-resonance contributions have been mapped, the field can be corrected
by the use of shimming coils. B0(r) must satisfy Laplace’s equation (and thus
also its ẑ-component), implying

∇2(∆B0(r)) = 0. (9)

Denoting Xm
l ≡ Xm

l (r) as the lth order real solid spherical harmonic function
of degree |m| ≤ l and Cml its corresponding (real) coefficient, the solution to
(9) can be written as a linear combination of all real solid spherical harmonic
functions[13][14],

7



∆B0(r) =

∞∑
l=0

m=l∑
m=−l

Cml X
m
l ,

where Xm
l ≡

{
cos(mµ)Pml (cos ν), m ≥ 0

sin(−mµ)P−ml (cos ν), m < 0
.

(10)

Here, Pml (·) is the lth order associated Legendre polynomial[13][15] of degree m,
and (r, ν, µ) the spherical coordinates, related to Cartesian coordinates (x, y, z)
by

r =
√
x2 + y2 + z2, ν = ATAN2[y, x], µ = arccos

(
z√

x2 + y2 + z2

)
.

(11)
Denote now Xm

l (rn) ≡ Xm
l,n, i.e Xm

l evaluated at voxel position rn ≡ [xn, yn, zn].

Suppose we have shimming coils, each able to produce6 magnetic fields Cml X
m
l (r)ẑ

of orders l = 0, . . . , L for all r = rn, whose coefficient Cml we can freely choose.
This coefficient can be interpreted physically as a measure of the current we
drive the coil of order and degree l,m with. Let b0 ∈ Rn be the off-resonance
vector whose nth entry is ∆B0(rn). Define c ∈ RL(L+2) as7

c ≡
[
C0

0 C−1
1 C0

1 C1
1 . . . C−LL C−L+1

L . . . CLL
]T
,

and the shimming system matrix X ∈ RNs×L(L+2) as

X ≡


X0

0,1 X−1
1,1 X0

1,1 X1
1,1 . . . X−LL,1 X−L+1

L,1 . . . XL
L,1

X0
0,2 X−1

1,2 X0
1,2 X1

1,2 . . . X−LL,2 X−L+1
L,2 . . . XL

L,2
...

...
...

...
...

...
...

...
...

X0
0,Ns

X−1
1,Ns

X0
1,Ns

X1
1,Ns

. . . X−LL,Ns
X−L+1
L,2 . . . XL

L,Ns

 .
The entries of X can be calculated at any voxel position by the relations in (11).
We calculate the shimming corrections to bcorr

0 up to Lth order as

bcorr
0 = X ĉ, where ĉ ≡ arg min

c
||Xc− b0||2. (12)

Thus, the static field resonance offset after shimming can be replaced as

b0 → b0 − bcorr
0 .

Eq. (12) can be solved by e.g. the conjugate gradient method for least-squares[16].
Of course, any shim coil can be removed from the optimization by removing its
corresponding column in X and entry in c.

6This is a simplification – due to the nature and shape of the coils, each coil cannot produce
a field corresponding to a single spherical harmonic basis function, and a basis-to-coil conversion
matrix can be included in the calculation. Here, the conversion matrix is simply the identity
matrix.

7The dimension of c is easily calculated by counting all combinations of l,m for l ≤ L, and
making use of the sum of all natural numbers up to L.
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2.1.5 B+
1 -mapping

Volumetric B+
1 -mapping can be done by means of the slice-by-slice Dual Refo-

cusing Echo Acquisition Mode (DREAM) sequence[17], in which the B+
1 -field

is estimated from a series of slice-stacked flip-angle maps, each calculated from
the ratio between the intensities of two 2-D images, made from a free induction
decay (FID) signal and a stimulated echo (STE) signal, respectively. Before
the imaging sequence, the magnetization is first prepared through a stimulated
echo acquisition mode (STEAM) preparation sequence, where to two equal
slice-selective RF-pulses (nominal FA of α), separated in time by Ts, are used. A
small amount of the prepared magnetization is then repeatedly turned into trans-
verse magnetization by a slice-selective imaging pulse (nominal FA of β), which
yields two echos through gradient recalling (with echo times TEFID and TESTE,
respectively). The slice-thickness of the α-pulses is chosen at least twice that of
the β-pulse to avoid signal contamination due to slice profile imperfections[18].
See figure 2 for a simplified sequence diagram.

Let the signal intensity images be IFID of the FID and ISTE of the STE,
respectively. We now assume the imaging k-space is sampled center-to-out.
This is to minimize longitudinal relaxation effects and the effect of exhaustion
of the prepared magnetization due to the repeated β-pulsing[19]. Under this
assumption, the intensity images can be written[20]

ISTE =
1

2
sin(β) sin2(α)M0

IFID = sin(β) cos2(α)M0,

which gives the flip-angle map (assuming 0° < α < 90°)

α = arctan

(√
2ISTE

IFID

)
=⇒ B̂+

1 =
α

γ w
∫ τ

0
pα(t)dt

, (13)

where τ is the length of the STEAM preparation pulse, pα(t) its complex pulse
shape in units of µT/V, and B̂+

1 is the estimated average B+
1 -field map. A

simplified derivation of the intensity equations are given in section 7.2.4 of the
appendix. We have assumed Ts is chosen according to

Ts = TEFID − TESTE

to compensate for transversal relaxation effects due to both spin-spin interactions
and inhomogeneities in the B0-field[21]. This choice gives the desired compensa-
tion due to the magnetization of both signals existing in a transversal state for
an equal amount of time before read-out.
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Figure 2: A simplified diagram of the DREAM sequence used for B+
1 -mapping.

Gm is the gradient used to separate the FID and STE. The slice-selective
preparation and imaging pulses are referred to by their (spatially variant) FAs α
and β, respectively. TR is the repetition time for the imaging sequence, Td is
the effective time delay, Ts is the time between the two α-pulses, and TEFID

and TESTE are the echo times of the FID and STE, respectively. Gp and Ge are
used to center the echoes for read-out. G1 and G2 are spoiling gradients, whose
function is to destroy any spurious signal. The arrows in the accrued phase φ

indicates spoiling – the longitudinal and transversal magnetizations are
indicated by dashed and soild lines, respectively. The echos are formed when the
solid lines cross the tightly stapled line. We have left out both the slice-selective

and phase encoding gradients in this figure for the sake of simplicity.

2.1.6 Non-Selective Transmit k-space Trajectory: kT-points

We briefly introduce the concept of kT-points[22] (kT being shorthand for trans-
mission k-space) – a k-space trajectory which visits low-frequency k-space lo-
cations, and remaining stationary at these locations (the kT-points) while RF
power is transmitted, see figure 3. The RF-pulse is divided into sub-pulses,
with each sub-pulse being played out while stationary at a kT point. The non-
selectivity is evident (see eq. (5)) as there is no spatial encoding appearing
from the gradients during RF-pulsing, and is therefore a common choice for e.g.
whole-brain FA homogenization[23]. The location for NkT points can be chosen
as the k-space locations corresponding to the NkT largest magnitude components
of the 3D Fourier transform of the brain mask[22], with the trajectory travers-
ing the shortest path between adjacent points. Another method is to sample
NkT points corresponding to some of the highest frequency components of the

10



FOV, e.g. choosing some or all kT -points with components ±1/(2 · FOVd) for
the field-of-view (FOV) in the d = x̂, ŷ, ẑ directions in Cartesian coordinates.
Lastly, the kT -points can be chosen similar to the FOV-method, but choosing
kT -points with components in the d = x̂, ŷ, ẑ directions corresponding (roughly)
to the inverse of the wavelength of RF in tissue at the given (or higher) field
strength[23].

Figure 3: An example 5-kT-points transmit k-space trajectory for
non-selectivity. Here, B+

1 (r, t) ≡ 0 while traversing the stapled lines.

This transmit trajectory is a counter-measure to B+
1 -inhomogeneities: increasing

the number of kT-points gives more control of the resulting magnetization, at
the cost of longer pulse duration and sensitivity to off-resonance effects[24].
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2.2 Parallel Transmission (PTx)

Parallel Transmission (PTx) is the framework which describes the transmission
from multiple RF transmission coils in parallel, each driven by their own, in-
dependent RF front-end. This yields full control of each coil’s amplitude and
relative phase, in which each coil constitutes its own respective channel. During
pulsing, the resulting B+

1 -field (3) is the superposition of the B+
1,j-field for the

jth channel, from all NC channels[10],

B+
1 (r, t) =

NC∑
j=1

B+
1,j(r, t).

Each B+
1,j can be further decomposed, as an approximation, into a spatial part,

Sj(r), and a temporal part, pj(t), yielding

B+
1 (r, t) ≈

NC∑
j=1

Sj(r)pj(t). (14)

Here, Sj(r) and pj(t) (both complex) are the transmit sensitivity and the pulsed
waveform of the jth channel, respectively. There are many ways to assign units
to eq. (14). Here, we explicitly assign the units

[Sj(r)] = µT/V and [pj(t)] = V.

2.2.1 Iterative STA Pulse Design with PTx

For practical reasons regarding computational efficiency, we will from here on
assume all channels transmit the same waveform, modulated by a channel-specific
constant complex weighting during the RF-pulse. Let

pj(t) ≡ p(t)wj(t), with [p(t)] ≡ V s.t. [wj(t)] = 1, (15)

where wj(t) is the complex weighting of the jth channel and p(t) is the
(unitless) common waveform across all channels. Under the STA approximation,
the traverse magnetization created by the RF-pulse transmitted in parallel from
NC channels can by (14) thus be written as

Mx′y′(r, Tp) ≈ iγM0

NC∑
j=1

Sj(r)

∫ Tp

0

p(t)wj(t)e
ir·k(t)+iγ∆B0(r)(t−Tp)dt, (16)

now have taking into account the accrued phase described by eq. (7). We will
now discretize (16) timely and/or spatially, depending on the application, and
present the details regarding iterative pulse designs for each application.

Before any pulse sequences can be used for applied for clinical purposes,
the energy deposited in tissue by the associated electric field of the RF-pulses
needs to be accounted for to ensure the specific absorption rate (SAR) is within
regulatory limits. The SAR is a measure of the absorbed RF power averaged
either globally over the whole body mass, or locally, often over 10 grams of tissue.
To quantify a relative measure of the global RF power deposited in tissue during
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the RF-pulse, SARgbl, we will regularize our pulse design on the L2-norm of the
channel weights:

SARgbl(t) ∝
NC∑
j=1

w2
j (t).

2.2.2 Static PTx for RF-shimming

Assuming no gradients8 and constant channel weighting (i.e. wj(t) = wj) during
the RF-pulse, and neglecting inhomogeneity effects in the static field, eq. (16)
simplifies to

Mx′y′(r, Tp)

iγM0

∫ Tp

0
p(t)dt

≈
NC∑
j=1

Sj(r)wj . (17)

By comparison with eq. (14), we note that RF-shimming reduces the pulse design
problem to deciding optimal weightings wj of the superpositioned sensitivites
Sj(r), where ”optimal” depends on the target field pattern. The resulting flip-

angles are found from rescaling the result after p(t) is set by its integral
∫ Tp

0
p(t)dt.

Now, associating each of Ns discretized spatial points rn, n = 1, . . . Ns, with a
non-overlapping voxel within the ROI, and introducting

• S as the Ns ×NC sensitivity matrix whose entry at (n, j) is Sj(rn)

• w as the NC × 1 vector whose jth entry is wj

• b as the Ns × 1 vector whose nth entry is B̂+
1 (rn)

then eq. (17) can be approximated as a matrix multiplication by

b ≈ Sw.

If we restrict ourselves to optimizing the modulus of (17) across the ROI, then
for a predefined, desired target field pattern btar, the matrix inversion problem
for the estimation ŵ of w can be cast as a regularized magnitude least-squares
problem, i.e.

ŵ = arg min
w

(
|| |Sw| − btar ||22 + λ||w||22

)
. (18)

where λ||w||22 is the regularization cost term penalizing on SARgbl across the
imaged volume, parameterized by the Tikhonov regularization factor λ ≥ 0.
Eq. (18) can be solved with a combination of a multishift conjugate gradient
least-squares (mCGLS) method and a local variable exchange method (see [25]
for details).

2.2.3 Dynamic PTx for Non-Selective kT-point Pulses

Dynamic PTx is the extension of static PTx, where the RF-pulse is divided
into a set of constant-weighted sub-pulses. We will now focus on pulse design
where NkT -spoke sub-pulses share a common waveform across all channels. Let
ρ(t) be the sub-pulse waveform, with timely equidistant samples ρm ≡ ρ(tm),

8A constant gradient can easily be included for slice-selectivity, but is omitted here for
simplicity.
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m = 1, . . . , Nt, and keep the same spatial discretization rn as before. Following
[26], defining wjk as the complex weight of the jth channel for the kth sub-pulse,
∆t ≡ t2 − t1 as the sampling period, t′k the remaining time from the end of the
kth sub-pulse to the end of the RF-pulse, and

aknj ≡ iγM0∆tSj(rn)eirn·k(t′k)
Nt∑
m=1

ρme
iγ∆B0(rn)(t′k+(Nt−m)∆t),

with

• Ak as the Ns ×NC system matrix whose entry at (n, j) is aknj

• pk as the NC × 1 vector whose jth entry is wjk

• m as the Ns × 1 vector whose nth entry is Mx′y′(rn, Tp)

the discretized approximation to (16) for an Nspk-spokes RF-pulse can be written
as

m ≈ Ap, (19)

where we have used the horizontal concatenation [·] to define

A ≡ [A1 A2 . . . ANkT
], p ≡ [p1 p2 . . . pNkT

]T .

This can, similar to (18), be cast as a regularized magnitude least-squares
problem for the estimation p̂ of p, if we only look to optimize the modulus of m
towards a magnetization target mtar, i.e.

p̂ = arg min
p

(
|| |Ap| −mtar ||22 + λ||p||22

)
. (20)

of the previous section 2.2.3. The k-space trajectory k(t) is here of course an
NkT -kT-points trajectory.

2.2.4 Universal Pulse Designs

We will briefly introduce the concept of universal pulse (UP) design. UPs are
designed by jointly optimizing the PTx-weights for a given mtar for e.g. RF-
shimming (eq. (18)) or kT-points (eq. (20)), over different volunteers’ data
(i.e. their transmit sensitivities and/or B0 data). This yields PTx-weights
which gives an estimated optimal compromise between the volunteers for the
target. Ideally, this obviates the necessity the time-costly procedures of gathering
patient data and subsequently optimizing for a patient-tailored pulse designs.
However, universal pulse relies on the assumption that the sensitivity and
B0-fields varies sufficiently little between patients such that the pulse gives a
resulting excitation pattern sufficiently replicates the desired excitation pattern.
What is deemed sufficient is based on the application – for e.g. whole-brain FA
homogenization using kT points, universal pulses are shown to give results on-par
with tailored-pulses, however, not quite as inch-perfect as their patient-tailored
counter-parts[27].

One way to cast the UP optimization problem is to construct the each
volunteers’ system matrix and target vector as presented in section 2.2.2 for
RF-shimming or 2.2.3 for kT-points. The system matrices and target vectors
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are then vertically concatenated, respectively, to yield a new UP system matrix
and UP target matrix. These can subsequently be plugged in to replace the
system matrix and target vector, respectively, in eq. (18) for RF-shimming or eq.
(20) for kT-points, and solved in the same manner as the non-UP optimization
problems. We will refer to the UP pulses designed for RF-shimming as RF-UP,
and those designed for a kT-trajectory as kT-UP.

2.2.5 L-curve Approach for Regularization

The quadratic optimization problems posed in eq. (18) and (20) require the
Tikhonov regularization parameter λ to be given before any optimization can
be performed. The choice of this parameter value can be decided by means
of an L-curve approach, where the optimization problem is solved for a set of
parameter values λ = λi ∈ [λmin, λmax], and choosing the solution corresponding
to the λi for which the curvature of the graph traced by plotting the solution
norm versus the normalized residual norm has the highest curvature. In the case
of e.g. eq. (20), this can be stated as choosing the solution p̂λi

for which the
graph traced by the points(

|| |Ap̂λi
| −mtar ||22 / ||mtar||22, ||p̂λi

||22
)
,

has the highest curvature. An example is shown in figure for λi ∈ [0.1, 1000].

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.8

1

1.2

1.4

1.6

1.8

2
Tikhonov regularisation parameter range: 0.1 to 1000

(0.23256, 1.7557) Tikh = 53.7228 all
in use

Figure 4: An example of the L-curve approach, here for eq. (20). The corner
value chosen here corresponds to λi = 53.7228.
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2.2.6 Local and Whole-Brain Specific Absorption Rate (SAR)

Associated with the RF-field from each PTx channel j is also its electric field
Ej(r, t). As the amplitudes and relative phases of each channel are changed, one
needs to consider not only the superposition of each channel’s magnetic field,
but also their combined electric field,

E(r, t) =

NC∑
j=1

Ej(r, t),

as it gives rise to energy deposition in tissue and thus causes heating in the subject
being scanned – focal heating is a prominent issue at UHFs[28]. Therefore, for
any PTx configuration, the associated electric field needs to be accounted and
ensured to give both local and global SAR levels which are within regulatory
limits before the pulse can be applied for in vivo scanning.

We now assume our PTx weights are normalized to the relative amplitudes
of a chosen maximum driving voltage, Vmax, over all the channels, such that
|wj | ≤ 1. This is the same as choosing (see eq. (15))

p(t) = p̃(t)Vmax, (21)

where p̃(t) it the normalized waveform s.t. |p̃(t)| ≤ 1 ∀ t. We now decompose
each channel’s electric field in the same manner as we did for their magnetic
fields in eq. (14), into a normalized spatial field Ẽj(r), and its temporal part
(same as for its channel’s associated magnetic field’s waveform) pj(t) ≡ p(t)wj(t),
i.e.

Ej(r, t) ≈ Ẽj(r)pj(t) = Ẽj(r)p̃(t)Vmaxwj(t)),

such that we now can write the combined electric field as the matrix multiplication

E(r, t) = Vmaxp̃(t)Ẽ(r)w(t),

where we have defined Ẽ(r) as the 3 × NC matrix whose entry at (i, j) is the
normalized electric field component Ẽi,j in the ith spatial direction from the jth

channel. The vector w(t) is as defined in section 2.2.2, except its entries are
here time-dependent. By adapting the SAR-calculations presented in [29], the
local SAR in a sample of volume V at a position r during a sample period ti
can calculated as

SARsample(r, ti) = V 2
max|p̃(ti)|2w(t)HQ(r)w(t), (22)

where superscript H indicates taking the Hermitian transpose and Q(r) is the
Q-matrix (of size NC ×NC), calculated as

Q(r) ≡ 1

V

∫
V

σ(r)

2ρ(r)
Ẽ(r)H Ẽ(r)dV.

with the electrical conductivity σ(r) and mass density ρ(r) of the tissue. (22)
over all Nt time-samples of the the applied RF-pulse, the local SAR of the entire
pulse can be calculated as
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SARpulse(r) =
V 2

max

Nt

Nt∑
m=1

|p̃(ti)|2w(ti)
HQ(r)w(ti) (23)

Eq. (23) can further be multiplied by a duty-cycle factor, i.e. the ratio between
the pulse duration and sequence repetition time to give the realistic SAR time-
average of the pulse used in a sequence.

The normalized electric fields can be estimated by a numerical simulation[5]
of Maxwell’s equations for a set of voxels, assuming a model head as the subject.
The model head can e.g. represent a healthy adult male, such as the model
Duke[28]. For computational efficiency, the grid of voxels can be down-sampled
by using the virtual observation points (VOPs) technique[30] for a conservative
estimation of maximum local SAR.

2.2.7 Sensitivity Mapping

The sensitivities Sj(rn) can be inferred from repeating the DREAM sequence
for M ≥ NC measurements by the unity-weighted encoding process[31]

Sj(rn) =

M∑
m=1

εj,mB̂
+
1,m(rn), (24)

where we have defined

• εj,m as the entry at (j,m) of the matrix ((EHE)−1EH)

• B̂+
1,m(rn) ∈ CM is the estimated average (complex) B+

1 -field map at voxel

position rn from the mth measurement of the DREAM sequence.

Here, E ∈ RM×NC is the encoding matrix whose entry at (m, j) is the static
PTx complex weight of the jth channel for the mth measurement.

For each measurement m, we take into account the relative channels phases by
a phase-preserving sum-of-magnitude reconstruction method[18, eq. (23)]. Let
each receiving channel be indexed by k = 1, . . . ,K, and let Ik,m be the complex
intensity at an arbitrary voxel in either the FID- or STE-image measured by
receive channel k in measurement m. For each voxel, we choose the measurement
mref as reference, which has the maximum sum-of-magnitude intensity,

mref = arg max
m=1,...,M

K∑
k=1

|Ik,m|

and perform the phase-preserving reconstruction such that the resulting (complex)
intensity contribution Îm to the corresponding voxel in the mth reconstructed
FID- or STE-image image can be written

Îm =

K∑
k=1

Ik,mI
∗
k,mref

|Ik,mref
|.

(25)

The magnitude of the map B̂+
1,m is now found by eq. (13) for each measurement

m, but replacing both the complex waveform-integral and intensity ratio by
their respective magnitudes in the calculation. The phase of B̂+

1,m is set equal to
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the phase of Îm for each corresponding voxel, where the choice of the FID- or
STE-image as reference is the same across all measurements.

We now assume we do M measurements with each channel transmitting with
equal amplitude for all measurements, but for measurement m we set the relative
phase of the jth channel (and thus the entry at (m, j) of the encoding matrix E)
to

exp

(
2πi(m− 1)j

M

)
.

We can now show that (see section 7.2.5 of the appendix)

EHE = MIM ,

where IM ∈ RM×M is the identity matrix, giving

(
(EHE)−1EH

)
=
EH

M
=⇒ εj,m =

exp
(

2πi(1−m)j
M

)
M

.

We can now use eq. (24) to calculate each channel’s sensitivity map after all M
measurements are gathered. We note that the sensitivities are just the Discrete
Fourier Transform[32] over the sequence of measurements.
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2.3 Deep Neural Regression

Deep Regression is the process of performing regression by means of a Deep
Neural Network (DNN), here with a fully-connected, feed-forward, multi-layer
perceptron (MLP) network. Here, an input X ∈ RNin is propagated forward
through the network NETΘ : RNin → RNout , parameterized by its weights and
biases, jointly referred to as Θ, to make a predicted output Ŷ ∈ RNout ,

Ŷ = NETΘ(X).

2.3.1 The Forward Pass

The network consists of a structure of layers l = 0, 1, . . . , L of nodes, where
each layer is associated with a forward function. Let l = 0 be the input layer,
l = 1, . . . , L − 1 be the hidden layers, l = L be the output layer. Denote the
forward function of a hidden layer or the output layer l as fΘl

: RK → RJ ,
which is parameterized by its set Θl of weights and biases for K nodes of the
preceding layer l − 1 and J nodes in layer l. The layers l = 0, L have with Nin

and Nout nodes, respectively. Introducing Θ ≡ {Θ1, . . . ,ΘL} as the set of all
network parameters, we can write the network’s forward pass as the composition
of each preceding layer’s forward function,

NETΘ(X) = fΘL
◦ fΘL−1

◦ . . . ◦ fΘ1
(X).

We will now shift focus to the forward pass on a layer-by-layer basis: let
k = 1, . . . ,K and j = 1, . . . , J count over the nodes of the preceding layer l − 1
and current layer l, respectively. For layers l = 1, . . . , L, introduce

• W (l) ∈ RJ×K as the weight matrix of layer l whose entry at (j, k) is the

weight w
(l)
jk connecting node k to j

• b(l) ∈ RJ as the bias vector of layer l whose jth entry is the bias term b
(l)
j

of node j

• a(l−1) ∈ RK as the activation vector of layer l − 1 whose kth entry is the

activation a
(l−1)
k of node k

• z(l) ∈ RJ as the weighted sum vector of layer l whose jth entry is the

weighted sum z
(l)
j ≡

∑
k w

(l)
jk a

(l−1)
k + b

(l)
j of node j

• a(l) ∈ RJ as the activation vector of layer l whose jth entry is the activation

a
(l)
j ≡ σ(z

(l)
j ) of node j

where σ : R→ R is the activation function (or non-linearity), here chosen to be
the same across all nodes of the hidden layers for simplicity. We can now write
the forward pass to from layer l − 1 to layer l in matrix form as

a(l) ≡ σvec

(
z(l)
)
≡ σvec

(
W (l)a(l−1) + b(l)

)
. (26)

Here, σvec : RJ → RJ is the (vector) activation function for which σ(·) is
applied element-wise to its input. In short, computing a single forward pass is
straight forward – one computes eq. (26) for layers l = 1, . . . , L (in that order).
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For completeness, we here introduce the rectified layer unit (ReLU) activation
function,

σ(x) =

{
x, x ≥ 0

0, x < 0

for the hidden layers. For layer L, we assume its activation function is always
the identity mapping x 7→ x. We notice a node with a ReLU activation function
will feed forward its node output in the network if and only if it is non-negative.
The ReLU activation has been shown to have benefits over many other common
activation functions[33][34].

As a final remark, we note that under the activation notation, we can explicitly
write the network’s input X and output Ŷ as

• a(L) ≡ Ŷ

• a(0) ≡ X

An illustration of an MLP network is given in figure 5.

Figure 5: An illustration used to visualize an MLP network. Here, Nin =
Nout = 2, and we have chosen L = 3 and hidden layers l = 1, 2 of sizes J = 4, 3,

respectively. The edges connecting each node are the weights, indicated
explicitly for the edge between node 4 of layer l = 2 to node 3 of layer l− 1 = 1.

2.3.2 The Cost Function

In order to measure the network’s performance, we introduce the cost function
C : RNout+Nout → R, here as the half-mean-square-error (hMSE) metric:

C ≡ C(Y, Ŷ) =
1

2Nout
||Y − Ŷ||22

Here, Y ∈ RNout is the given true output which we desire from the network for
a prediction Ŷ.

20



2.3.3 Weight-Regularization of the Cost Function

Overfitting refers to the case where a network data trains well (i.e. returns a
low cost) over the training examples, but fails to generalize to examples which
are not contained in the training set. To reduce overfitting, one can add a
Tikhonov regularization term Rλw

, paramterized by the weight regularization
factor λw > 0, to the cost function to punish having large network weights (i.e.
weight decay). The new objective function J subject to minimization during
training is now the regularized cost function, i.e. the original cost function C,
but with the added regularization term:

J ≡ C +Rλw
, where Rλw

≡ λw
2

∑
l,j,k

(
w

(l)
j,k

)2

.

2.3.4 The Network Gradient

In order to improve the network’s performance, we wish to minimize the regular-
ized cost function with respect to the set Θ of all network parameters,

Θ ≡
{
w

(l)
jk , b

(l)
j

}
,

where l, j, k run over all valid indices. This can be done through e.g. gradient
descent, which requires its gradient (or an approximation to it) with respect
to Θ. Thus, for a single given true output Yn ≡ [y1, . . . , yNout

]T and input Xn

with predicted output Ŷn ≡ [a
(L)
1 , . . . , a

(L)
Nout

]T , we wish to calculate the network
gradient ∇θCn as the set that contains all partial derivatives for the parameters
in the network with respect to the non-regularized cost function,

∇θCn ≡

{
∂Cn

∂w
(l)
jk

,
∂Cn

∂b
(l)
j

}

where Cn ≡ C(Yn, Ŷn) and l, j, k run over all valid indices – in addition, we also
wish to calculate the set that contains all partial derivatives for the parameters
in the network with respect to the regularization term,

∇θRλw
≡

{
∂Rλw

∂w
(l)
jk

,
∂Rλw

∂b
(l)
j

}
=
{
w

(l)
jk , 0

}
,

where l, j, k run over all valid indices. We do not specify the form of ∇θCn or
∇θRλw

further than saying that we will make use of the notation

Θ− η

(
1

N

∑
n

∇θCn −∇θRλw

)

≡

{
w

(l)
jk − η

(
1

N

∑
n

∂Cn

∂w
(l)
jk

− λww(l)
jk

)
, b

(l)
j −

η

N

∑
n

∂Cn

∂b
(l)
j

}
(27)

for any η,N > 0, and l, j, k run over all valid indices.
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2.3.5 The Backward Pass

We now wish to state an efficient way of calculating ∇θCn. We will do this by
backpropagation (BP), in which we calculate the error at each layer l, starting
from L, and propagate the error backwards to the preceding layer l− 1. Because
of the implicit dependencies of the activations a(l) on {Θl,Θl−1, . . . ,Θ1}, it is
natural to approach the problem with the chain rule. We now define[35]

• δ(l)
n ∈ RJ as the error vector of layer l for example n whose jth entry is

the error9

δ
(l)
j,n ≡

∂Cn

∂a
(l)
j

of node j. Equivalently defined for layer l − 1 for data n, but with
l→ l − 1, J → K, j → k.

• ∇aCn ∈ RNout as the cost gradient at the output layer L for example n,
whose jth entry is

∂Cn

∂a
(L)
j

=

(
yj − a(L)

j

)
Nout

.

• ∇(l)
w Cn ∈ RJ×K as the weight gradient matrix of non-input layer l for

example n, whose entry at (j, k) is

∂Cn

∂w
(l)
jk

• ∇(l)
b Cn ∈ RJ as the bias gradient vector of non-input layer l for example n

whose jth entry is
∂Cn

∂b
(l)
j

• σvec
′ (z(L)

)
∈ RJ as the vector of layer l whose jth entry is σ′(z

(L)
j )

and express the essential equations in terms of matrices we can compute:

δ(L)
n = ∇aCn (BP1)

δ(l)
n =

(
W (l+1)

)T (
δ(l+1)
n � σvec

′
(
z(l+1)

))
(BP2)

∇(l)
w Cn =

(
δ(l)
n � σvec

′
(
z(l)
))(

a(l−1)
)T

(BP3)

∇(l)
b Cn = δ(l)

n � σvec
′
(
z(l)
)

(BP4)

Here, � indicates element-wise multiplication. These four equations are known
as the BP equations, and are computed after all activations are found from a
single forward pass. In short, for a single backward pass, we compute (BP1) and
(BP3)-(BP4) for l = L, and repeat (BP2)-(BP4) for l = L− 1, . . . , 1. Element-
wise derivation of the above equations are given in the appendix, see section
7.2.3.

9The error can be chosen to be defined as ∂Cn/∂z
(l)
j , and makes some of the forumlas

presented shorter. However, the choice of error in the main text is done to accommodate for
the forward- and backward pass through convolutional layers, see sections 2.3.9 and 7.3.
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2.3.6 Initializing Network Parameters

Before we can use the network, we need to initialize its weights and biases. A
common way[36] to initialize the biases is to set them equal to zero. For the

weights, the He initialization method can be used: at layer l, each weight w
(l)
jk is

sampled from a normal distribution with zero mean and variance 2/K.

2.3.7 Deep Learning

With the forward and backward pass for a single training example (Xn,Yn) ac-
counted for, we now introduce Deep Learning as the process of optimizing the reg-
ularized cost function J on the grounds of training data set {(Xn,Yn)}n=1,...,Ntrain .
We will here focus on the common learning algorithm stochastic gradient descent
(SGD). We will run through the entire training set for e = 1, . . . , Nepoch epochs.
For each epoch, we will shuffle the order of the training set randomly, and split the
data set into Nmini mini-batches, each mini-batch of size NMBS ≡ bNtrain/Nminic.
After each mini-batch is run through, we update the network parameters by
doing a step ∆Θ in the direction of (approximated) steepest descent for J ,

∆Θ := −η

(
1

NMBS

NMBS∑
n=1

∇θCn +∇θRλw

)
,

where η > 0 is the network learning parameter. As the training progresses past
a certain amount of epochs, the learning rate from outset may become too large,
and the training algorithm may begin to overshoot. To accommodate for this,
certain parameters often replace the learning rate: the initial learning rate η0

is the learn rate used from the first iteration, with a learning rate schedule
determining when changes to the learning rate should occur over the training
period (e.g. piece-wise implying a periodic change). In the case of a piece-wise
learning rate schedule, the learning rate drop period P ∈ N determines the
amount of epochs passed before the current learning rate is multiplied by the
learning rate drop factor 0 ≤ D ≤ 1.

A small adjustment can be made to the SGD-algorithm. Before a new
step is made in the approximated steepest descent direction, the direction is
perturbed to include a fraction of the direction from the previous step. The new
direction keeps some of its previous ”momentum”, thus giving rise to the adjusted
algorithm stochastic gradient descent with momentum (SGDM). The fraction
included is decided by the momentum coefficient αm ∈ [0, 1]. This method is
often more robust than its standard counter-part as it reduces oscillations in the
search trajectory.

During training, the network may exhibit signs of either overfitting or under-
fitting, the latter referring to a network which is unable to capture the degree of
non-linearity in the training data[37]. To detect if these effect are present in the
network during training, the cost function is calculated over a validation data set,
with a validation frequency determining the amount of epochs passed before the
validation cost is re-calculated. The validation set is ideally generated separately
from the training library, and should capture the data which we would like the
network to generalize to after training is complete. In the case of overfitting,
early stopping of the training can be implemented to terminate the training by
introducing a validation patience, i.e. the number of times that the validation
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cost can be equal to or larger than its previously smallest calculated value before
network training is terminated. In the case of underfitting, the mean validation
and mean training cost are equal or nearly equal, and neither cease to decrease
in spite of further training. In this case, the network is not complex enough
and/or the quality of the training data is insufficient.

A simplified example of Deep Learning with SGDM is demonstrated by
the pseudo-code presented in Algorithm 1. Note that we have left out all the
validation procedures in the example to make the code short and simple to read.

Algorithm 1 Simplified Deep Learning with Stochastic Gradient Descent with
Momentum (SGDM)

Require: network architecture and its layers’ activation function σvec(·)
Require: training set {(Xn,Yn)}n=1,...,Ntrain

Require: weight regularization factor λw > 0
Require: momentum coefficient 0 ≤ αm ≤ 1
Require: initial learning rate η > 0
Require: learning rate drop period P
Require: learning rate drop factor D
Require: mini-batch size Nmini

Require: number of epochs Nepoch

initialize biases (e.g. to zero) and weights (e.g. He initializer)
initialize search direction ∆Θ := 0
set mini-batch size NMBS := bNtrain/Nminic
for epoch e = 1, . . . , Nepoch do

if e mod P == 0 then
η := Dη

end if
shuffe training and split shuffled set into Nmini mini-batches of sizes NMBS

for mini-batch m = 1, . . . , Nmini do
for example n = 1, . . . , NMBS in mini-batch do

for layer l = 1, . . . , L (forward pass) do
a(l) := σvec

(
W (l)a(l−1) + b(l)

)
.

end for
for layer l = L, . . . , 1 (backward pass) do

if l == L then
δ

(L)
n := ∇aCn

else
δ

(l)
n :=

(
W (l+1)

)T (
δ

(l+1)
n � σvec

′ (z(l+1)
))

end if
∇(l)
w Cn :=

(
δ

(l)
n � σvec

′ (z(l)
)) (

a(l−1)
)T

∇(l)
b Cn :=

(
δ

(l)
n � σvec

′ (z(l)
))

end for
end for
∆Θ := −η

(
1

NMBS

∑
n∇θCn +∇θRλw

)
+ αm∆Θ

Θ := Θ + ∆Θ
end for

end for
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2.3.8 The Adaptive Moment Estimation (Adam) Solver

By treating the objective function itself as a stochastic function, adjustments
can be made to adapt the learning rate by a bias-corrected estimation of the
function’s first- and second order moments – which is the idea behind the
Adaptive Moment Estimation (Adam) solver[38]. In short, each iteration t made
while attempting to minimize the objective function comes down to computing
a moving average of the gradient, mt, and a moving average of the gradient’s
squared values, vt, defined recursively as

mt =β1mt−1 + (1− β1)

(
1

NMBS

∑
n

∇θCn +∇θRλw

)
,

vt =β2vt−1 + (1− β2)

(
1

NMBS

∑
n

∇θCn +∇θRλw

)2

,

and updating the learning rate ηt and descent-step at iteration t as

ηt :=η

√
(1− βt2)

(1− βt2)
,

∆Θ :=− ηt
mt√
vt + ε

.

Here, β1, β2 ∈ [0, 1] are known as the gradient decay factor and squared gradient
decay factor, respectively, and ε is the offset factor which can help the algorithm
avoid division by (values close to) zero when the second-order moving average is
small. Both averages are initialized to zero for t = 0. The square- and square-root
operations in the equations above refer to element-wise operations.

2.3.9 Convolutional and Pooling Layers

We will here briefly introduce the concept of convolutional and pooling layers, and
how a one can extend the definitions of the previous discussion on regressional
MLP networks to a neural network containing these layers, i.e. a convolutional
neural network (CNN). For the sake of simplicity, the introduction will here
focus on 2-D convolutional layers (i.e. convolution layers which accept and pass
forward 2-D feature maps, e.g. grayscale images). All the presented discussion
can easily be extended to N-D. Furthermore,the mathematical details of the
forward pass and backward pass through such layers are covered extensively in
section 7.3 of the appendix. They are omitted here due to their cumbersome
and lengthy derivations.

A 2-D convolutional layer is a layer in a neural network which takes a set of
C1 channeled input feature maps of size H1 ×W2, convolves each input with a
unique kernel/filter of size k1 × k2, and sums up the input to produce an output
feature map of size H2 ×W2 (the latter’s size is decided by the padding and
stride of the convolution process) after passing the sum through an activation
function. This process can be repeated C2 number of times with different sets of
kernels to produce C2 channels. Thus, the resulting total set of kernels is a 4-D
tensor of size C2 × C1 × k1 × k2. The process is illustrated in 6.
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Figure 6: The forward pass of a 2-D convolutional layer. Each of the C1 input
feature maps of size H ×W are convolved with a unique k1 × k2 kernel. For

each input feature map, the resulting convolution is summed up to produce an
output feature map, which size depends on the details (padding, stride) of the
convolution process. In the figure, valid convolution (i.e. no padding with unity
stride) is shown for C1 = 3 input channels of size H1 ×W1 = 7× 7, each kernel
of size k1 × k2 = 3× 3, which produces an H2 ×W2 = 5× 5 output, where we

have chosen C2 = 4 output channels.

Convolutional layers introduce the idea of shared parameters – instead of a full
connection table between the input and output pixels (e.g. as in a FCL), the
number of trainable parameters is reduced to the choice of kernel size. This is
beneficial in terms of overfitting and combating the unstable gradient problem
which is very common in fully connected feed-forward networks.

As we are training a kernel rather than a fully connected table of parameters,
the kernel is trained to recognize features (e.g. shapes) which ultimately reduces
the cost function. Thus, this layer introduces translational invariance of our
input feature maps, rather than training on a pixel-by-pixel basis of the input
layer.

Note that an FCL is equivalent to a non-padded convolution layer with
kernel dimensions matching the input feature map dimensions. Therefore, any
fully-connected MLP network can be regarded as a CNN with each convolutional
layers having said structure, with the number of ”fully connected nodes” chosen
by setting the layers’ number of output channels.

Usually present in a convolutional network architectures are pooling layers,
e.g. max pooling layers or average pooling layers, whose function is to down-
sample the feature map sizes and to reduce overfitting of the networks. A
max pooling layer is similar to the convolutional layer, except its kernel has no
optimizeable parameters, and its kernel only passes forward the maximum value
for a given input-with-kernel ”overlap”, where the input channel size matches
the output channel size (each output channel is the max-sampled version of its
input channel). An average pooling is similar to the max pooling layer, as its
kernel also has no optimizeable parameters, but passes forward the average value
for a given input-with-kernel ”overlap”, where the input channel size matches
the output channel size (each output channel is the averaged-sampled version of
its input channel).
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2.3.10 Previous applications of Machine Learning in Pulse Designs

Several examples where Machine Learning (not necessarily restricted to Deep
Learning) has been applied to pulse designs can be found in recent MRI literature.
Ianni et al.[39] successfully predicted shimming weights using a machine learning
approach, from a large set of simulated sensitivity maps and corresponding MLS
shim solutions. This was done using a method of Iteratively Projected Ridge
Regression, which had the advantage of not requiring full information of the
sensitivity maps, while being SAR-efficient and slice-specific.

Vinding et al.[40] trained an MLP network to predict RF-settings for localized
excitation on training sets constructed from an image library. The images
were processed to create target flip-angle maps across an 64 × 64-grid, with
corresponding best RF-settings calculated by means of optimisation. This served
as training data for the neural networks. The predicted RF-settings from the
network were deemed feasible even with a relatively small (N ≈ 2000) training
set.
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3 Material and Methods

3.1 Volunteer Scans

The MRI data used for this thesis were all provided and collected prior to this
thesis from an 8-channel transmit (Tx), 32-channel receive (Rx) Nova head coil
on a Siemenes Magneton 7T in Maastricht, The Netherlands, and consisted of
17 scans. Associated with each head scan is the data needed to construct the
complex B+

1 -sensitivity map per transmission channel and the B0-map.
Data for the complex B+

1 -maps were collected with a DREAM sequence (see
figure 2) to obtain stacked slices in the head-feet (HF) orientation (α = 49°,
β = 7°, TR = 6.20ms, TESTE = 1.98ms, TEFID = 3.96ms, Ts = 1.98ms,
Td = 7.10ms, FOV = 256× 224 mm2 (anterior-posterior (AP) × right-left (RL)),
voxel size = 4 mm isotropic, phase-encoding direction right-left, preparation
pulse slice thickness = 8 mm, imaging pulse slice thickness = 4 mm, imaging
inter-slice distance (center-to-center) = 8 or 10 mm (varied between scans),
even-odd slice ordering, center-to-out phase encoding order, repetition time per
slice = 8.00s). The number of slices obtained per scan varied between 15 to 21
slices. The B+

1 -mapping process was repeated for M = 16 measurements using
the Fourier phase encoding described in 2.2.7, yielding the NC = 8 complex
sensitivity maps.

The data for the off-resonance maps were collected with a 3DEGRE sequence
(see figure 1, nominal FA = 8°, TR = 30.0ms, TE1 = 1.00ms, TE2 = 2.98ms,
FOV = 200× 200× 176 mm3 (anterior-posterior × right-left × head-feet), voxel
size = 4 mm isotropic, first and second phase-encoding directions AP and LR,
respectively, total scan time = 1min 49s). Phase unwrapping was performed
by an implementation of the algorithm presented in [12]. A shimming routine
corrected the maps with all spherical harmonics up to and including order L = 3,
for a ROI defined by a brain mask, see the next paragraph. During pulse
designs, the off-resonance maps were interpolated to the space of their associated
complex B+

1 -maps using a linear interpolation method from MATLABs standard
library[41].

Brain masks were constructed using the Statistical Parametric Mapping
(SPM) software[42], where a reconstructed magnitude image from the DREAM
data and 3DEGRE data, respectively, was used for template matching. The
magnitude image from the DREAM data was reconstructed by the sum-of-
squares over all read-channels and measurements of the FID, while the magnitude
image from the 3DEGRE data was reconstructed as the square-rooted element-
wise product of the magnitude images of the two echos, each of which were
reconstructed by the sum-of-squares over all read-channels. Both magnitude
images were subsequently filtered through a minimum-5%-of-maximum-intensity
threshold filter before being fed into SPM for brain mask construction.
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3.2 Within-Volunteer Grouping of Anonymized Data

All the 17 head scans provided for this thesis were completely anonymized, and
needed to be grouped on a volunteer-by-volunteer basis before they could be
used to ensure proper separation during creation of data sets for Deep Learning.
The separation was based on the calculated PCC (see section 7.4) between
all DREAM and 3DEGRE intensity images, respectively, the same of which
were constructed and threshold-filtered for the brain mask construction process.
Before the PCC was calculated, the DREAM and 3DEGRE intensity images
were all processed with SPM – the images were re-aligned by a rigid-body
transformation to the same orientation as a reference scan and subsequently
re-sliced to it. The reference scan was chosen as one of the 17 scans which was
deemed (by eye) to have little-to-no artifacts in its two intensity images, and
where the head looked to be nicely centered. After the reorientation, all images
were threshold-filtered once more at a minimum-0.01%-of-maximum-intensity
threshold to reduce artifacts arising from the re-slicing process. The use of the
more sophisticated method of image matching by estimating the relative mutual
information[43] between the images was attempted, but the method was deemed
unable to discern the relatively small differences in the images needed to separate
them properly.

Two images were classified as being of the same volunteer (i.e. a match) if
their PCC was r > r0. We here set the correlation threshold r0 = 95%. The
matches were tracked in matching matrices. To validate the classification, within
the DREAM and 3DEGRE images, respectively, the PCC was first cross-checked
to further validate the classification – for each image, the images being compared
which yielded a match were checked to only yield a match between the other
images matching with said image. This way, each group of matched images
uniquely identified a volunteer. As an example, say we have three images: image
A, image B and image C. If, for instance, image A is matched with image B but
not with image C, then to properly pass this first cross-check, image B should
only match with image A and not image C, while image C should match with
neither image A nor image B.

The matching result after this first cross-check was further validated by a
second cross-check between the DREAM and 3DEGRE matching matrices, to see
if they gave the same volunteer discernment. To pass the second cross-check, both
matching matrices had to be equal. Any failure to pass the second cross-check
was resolved with inspection by eye. The threshold r0 = 95% and the threshold
of the post-re-slicing filter were adjusted to properly pass the first cross-check,
and give reasonable results in the second cross-check – too low thresholds gave
non-unique groupings, too high thresholds were deemed too strict in the grouping
process. See figure 7 for a flow-chart for the discernment process.
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Figure 7: A flow-chart of the within-volunteer grouping of anonymized data
based on intensity image from the DREAM and 3DEGRE data, illustrated
respectively by one of their transversal slices. Starting from the intensity

images, one decides a reference scan to reorient the other images. One performs
a rigid-body rotation (RBT) and re-slicing to the reference images for all

images, and subsequently threshold filter after re-slicing. The re-sliced images
are then compared by calculating their Pearson Correlation Coefficient (PCC),

i.e. r, to the other images within the same data group (i.e. DREAM or
3DEGRE), and setting a matching threshold r0. The two cross-checks (see main
text) are done on the two matching matrices, corresponding to r > r0 for the

DREAM or 3DEGRE data, respectively. The matching matrices shown pass the
first cross-check, but fail the second, as both matching matrices give unique

discernments, but fail to be identical.
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3.3 Regressional MLP Networks for RF-shimming

Two MLP networks were trained for prediction of universal PTx-weights for
RF-shimming, with targets consisting of spherically symmetric 3D Gaussian
shapes of unit intensity centered at an arbitrary position and spatial drop-off.
The workflow of the entire process is summarized in figure 8.

...

Training/validation scans (x5)Generate random 
position and drop-off
(4 parameters) for  

Gaussian target

Tailored-Net 
training/validation 
examples (x5)

Training and validation sets generation
for Tailored-Net

individually
 optimize

Repeat 2,800 times for training examples,
repeat 200 times for validation examples

Trained RF-UP-Net

Trained Tailored-Net

...

...

...

...

...
...

...
...

...

...

...

...

...
...

...
...

Train/validate 
RF-UP-Net

Train/validate 
Tailored-Net

...

Training/validation scans (x5)Generate random 
position and drop-off
(4 parameters) for  

Gaussian target

RF-UP-Net 
training/validation
example (x1)

Training and validation sets generation
for RF-UP-Net

jointly
 optimize

Repeat 14,000 times for training examples,
repeat 1,000 times for validation examples

(a) Training/validation of the networks

Test scans (x3)

...

Jointly optimize RF 
shims over training 
scans (RF-UP shim)

Get all voxel 
coordinates from 

test scans for 
targets' center

Set all targets' drop-off
(here: 0.01) Individually optimize 

RF shims over test 
scans (Tailored shim)

Predict RF shims with 
RF-UP-Net

Predict RF shims with 
Tailored-Net

Phase-only RF shims 
by wCP-mode

Compare mean 
RF-amplitude 

over SVS-cube 
centered at each 
target's center

Compare max 
and mean local 
SAR10g across 

shims

Default-Drive 
 (CP-mode)

(b) Testing and comparing the different RF-shimming methods

Figure 8: Workflow for the RF-shimming by fully-connected MLP neural net-
works. Figure (a) shows how the training- and valdiation sets were generated, and
figure (b) shows how the trained networks were tested and compared. Weighted
CP-mode is denoted wCP-mode.

The intent was to investigate the feasibility of training neural networks to
essentially operate as an ”interpolated look-up table” for universal RF-shimming
settings to move the concentration of B+

1 -amplitude to an arbitrary location
relative to the lab-frame, and to compare their performance to that of their
corresponding pre-calculated RF-UPs and volunteer-tailored RF-pulses. This
kind of concentrated pulses could be beneficial for e.g. Single-Voxel Spectroscopy.
The reasoning behind the choice of Gaussian targets lies in the nature of the
system and its limited degrees of freedom, as the targets qualitatively replicate
the field from CP driving mode, shifted around the ROI, and were able to be
sufficiently mimicked by the B+

1 -amplitude from MLS RF-shimming. For a
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reference comparison, the B+
1 -map from default driving mode (CP-mode, all

PTx weights set to have equal amplitude and no phase shift), and weighted
CP-mode (all PTx weights set to have equal amplitude and phase shift weighted
to give constructive phase-interference at the desired location for the amplitude
concentration) was simulated. Thus, weighted CP-mode corresponds to a phase-
only shim. Note that as with the tailored RF-pulse, weighted CP-mode required
full sensitivity information of each channel, which will become important in later
discussion.

Both networks shared the same architecture and were trained with the same
training parameters – the network architecture is shown in figure 9 and the
applied training parameters were as is detailed in table 1 (both networks were
trained with SGDM). The training parameters were tuned s.t. further extending
the number of epochs yielded no further decrease in the cost function while
indicating little-to-no overfitting relative to the validation set in both networks.
The training set and validation set were generated by randomly selecting the
targets’ center and drop-off, calculating the PTx-weights by solving eq. (18)
with mCGLS and the local variable exchange method presented in section 2.2.2
for said targets, and choosing the weights’ L2-norm trade-off by the L-curve
approach.

...

...

...

...

......

......

Figure 9: A visual representation of the fully-connected network architecture
used for RF-shimming. Horizontal ellipsis indicate more nodes than indicated

by the figure. Weights have been left out in the illustration for the sake of
clarity, however, every single node in the hidden layers is fully connected to all
nodes in its adjacent layers, similar to that in figure 5. The network consisted of
an input layer with 4 input nodes (i.e. the 3 spatial coordinates and the drop-off

of the desired |B+
1 |-hotspot), and a repeated structure of 3 FCLs and ReLU

activation layers was used for the deep part of the networks, with each FCL
consisting of 1024 nodes. As the size of the FCL preceding the output layer
needed to be the same size as the output layer itself, a FCL of size 15 was

added ensuing the 1024-layers. The output layer’s 15 responses constituted the
RF settings, i.e. the predicted weights.
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Table 1: Training parameters for the SGDM-algorithm, shared by both
networks trained for RF-shimming.

Parameter Value

Momentum coefficient (αm) 0.90

L2-regularization factor (Λ) 10−4

Maximum number of epochs 100

Shuffle mini-batch Every epoch

Mini-batch size 500

Initial learning rate (η0) 0.3

Learning rate schedule Piece-wise

Learning rate drop period 25 epochs

Learning rate drop factor 0.5

Validation frequency 50 epochs

The main difference between the two networks was their training and val-
idation data sets. The first network, denoted as the RF-UP-Net, was trained
and validated with the targets’ position and drop-off as input and corresponding
RF-UP PTx weights, with each RF-UP jointly optimized over 5 volunteers which
discerned by the volunteer discernment process as presented in 3.2, i.e. with the
data from scan numbers 4, 9, 10, 12, 14 in figure 15. Thus, the RF-UP-Net was
trained on a training set with a guaranteed 1-to-1 correspondence between input
and output and was taught universal pulse settings directly from the training
set. The latter network, denoted as the Tailored-Net, was trained and validated
with the targets’ position and drop-off as input and corresponding tailored PTx
weights as output, individually optimized to each of the same 5 volunteer as
for the RF-UP-net. In other words, there were at least 5 training examples
in the training and validation sets, respectively, sharing the same input value
(i.e. target hot-spot center and drop-off), but with their own unique output (i.e.
tailored PTx-weight coefficients). Thus, Tailored-Net was trained on a training
set with an (at least) 1-to-5 correspondence between input and output, and
found universal pulse settings by finding the best compromise (i.e. the network
parameters which minimized the network’ objective function) over the training
set during training. This is the reason behind the choice of the relatively large
mini-batch size of 500 used for training the networks, as many training examples
was deemed necessary to properly find a decent compromise at each gradient
calculation.

The networks’ input consisted of 4 parameters, i.e. 3 spatial coordinates for
the center of the hot-spot and 1 for its spatial drop-off. The inputs’ scalar values
for the spatial coordinates used for training (but before normalization) were in
the range of ±0.72 · FOVd/2, where FOVd is the FOV in the d = HF,AP,RL
directions of the DREAM sequence (see section 3.1) in units of meter. The factor
of 0.72 was chosen as the coordinates made all targets sufficiently cover the
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heads of the volunteers used for generation of the training and validations sets,
while sufficiently minimizing the amount of Gaussian targets which were centered
outside any of said heads (moving the center of the target outside a head is not
desired). See figure 10 for an illustration. The spatial drop-off values were in the
range of [0.01, 0.04], lower values giving a more rapid drop-off. The range for the
drop-off was chosen as the targets with these drop-offs were deemed large enough
to be sufficiently replicable by RF-shimming, without getting targets which
were homogeneous throughout the ROI (which would correspond to whole-brain
homogenization of the B+

1 -field instead of concentrating it). See figure 11.

(a) Scan 5 (b) Scan 9

(c) Scan 10 (d) Scan 12

(e) Scan 14 (f) Scan 15

(g) Scan 16 (h) Scan 17

Figure 10: Magnitude images from the 8 scans (from different volunteers as
decided by the discernment process) used for generating tailored pulses and UPs
for training, validation and testing of Tailored-Net and RF-UP-Net, respectively,

shown for three perpendicular slices which intersect at the origin of the
lab-coordinates. Scans 4, 9, 10, 12, 14 were used for generation for the training
and validation sets, scans 15, 16, 17 were used for generation of the test sets.

These scan numbers are as indicated in figure 15. The lab-origin is indicated by
the inner, smaller green circles. The green boxes indicate the volume within all

the target hot-spots were generated for the training and validation sets, i.e.
±0.72 · FOVd/2 relative to the lab-origin, where FOVd is the FOV in the

d = HF,AP,RL directions of the DREAM sequence (see section 3.1) in units of
meter. Note that all positions for the Gaussian targets’ center for the test set
were chosen to be within the brain according to the SPM brain masks, instead
of random positions within the green box – the boxes are included for the scans
used for generation of the test sets to show what volume was considered during

training and validation.
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Figure 11: Two Gaussian hot-spot targets shown with their fastest and slowest
drop-offs, 0.01 and 0.04, respectively, for targets centered at a calculated

center-of-mass (CoM) position. The drop-off values corresponds to the distance
(in meters) from mask center for which the target has an intensity of

exp
(
−12

)
≈ 37% of its maximum. Here, the brain mask of scan 1 (see figure 15)

was used for illustration.

The networks’ output consisted of 15 responses, corresponding to the real and
imaginary part of all the 8 individual channels’ weight10, respectively, neglecting
the first channel’s imaginary part (which was always subsequently set to zero)
due to its outset zero-phasing. Under the STA approximation, the channels’
amplitude can be scaled arbitrarily by the RF-pulses’ waveform, and therefore
all network outputs were all in the range [−1, 1] during training, such that
the weights’ amplitude were the relative scaling of their associated channel’s
amplitude.

The training set for both networks consisted for 14k training examples. The
training performance was evaluated during training by the root of the mean
square error (RMSE) between the true and network-estimated responses in each
iteration, and further validated by a separately, randomly generated validation
set during training of 1k examples, optimized over the same volunteers and
with target center positions and drop-off generated in the same manner as the
training set. A similar procedure was performed for generating the test set, but
the positions were chosen to cover all of the voxel’s center coordinates within the
SPM brain mask, and the drop-off was set to 0.01 for all targets. In this way, the
different shim methods were tested on all voxel positions within the brain mask,
without attempting to shim to a target whose center lied outside the brain and
with a very concentrated target. The main evaluation of the shim performance
of the different methods consisted of comparing three different metrics across
the shim methods for a given target (position and drop-off):

10Training on the standard form of the weights instead of polar form was done to avoid the
problem of discontinuities due to phase-wrapping.
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1) The mean RF-amplitude (i.e.
∣∣B+

1

∣∣) over a collection of voxels forming a
cube with volume of (approximately) 2x2x2cm3, with the cube’s center
voxel coinciding with the Gaussian target’s center voxel. As the desire for
e.g. SVS is to achieve the highest RF-amplitude within a small volume
such as that cube, it will be referred to as an SVS-cube for brevity.

2) The estimated maximum local SAR10g over all voxels for which the Q-
matrices are calculated.

3) The estimated mean SAR of the head, i.e. the SAR10g averaged over all
voxels for which the Q-matrices are calculated.

We assumed a square (block) RF-pulse is used11, i.e. setting the waveform
as in eq. (21), with the normalized waveform set to unity during RF-pulsing,
zero otherwise. The pulse length can be inferred after setting the repetition time
for a given sequence and thus deciding the desired RF duty-cycle. The reasoning
behind this choice lies in the fact we can now compare the estimated efficiency of
each shim method prior to setting Vmax – from eqs. (14) and (23), respectively,
we see with the given choice of waveform,∣∣B+

1

∣∣ ∝ Vmax and SARpulse(r) ∝ V 2
max. (28)

Thus, the results for the RF-amplitudes and SAR-levels can be adapted to
be investigated prior to choosing Vmax.

11The argument presented here can be adapted to calculate the SAR for any pulse shape
(e.g. sinc) by scaling the results by the square of the sampled waveform, see [29].
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3.4 Regressional CNN for kT-point FA homogenization

A regressional CNN was trained for the prediction of PTx-weights for an 8-kT-
point trajectory, with the goal of investigating how the predictions from a network
trained and verified with a very small number of volunteer data (13 and 2 scans,
respectively) compared with volunteer-tailored pulses (i.e. time-varying PTX-
weights found by eq. (20)) and a kT-UP optimized over 5 discerned volunteers
(data from the same 13 examples used for network training, but only one scan for
each discerned volunteer), with the goal of achieving the highest FA homogeneity
across the brain for. All pulse methods were tested on data from 2 discerned
volunteers previously neither seen by the network during training nor during the
kT-UP optimizations. The workflow is summarized in 12.

Training scans (x13)

...

Validation scans (x2)

...

Individually optimize (tailored)

Individually optimize (tailored)
Training/
validation

 data

Train/validate CNN
Trained CNN

...
...

...
...

Compare FA-
inhomogeneity

(CoV of resulting 
FA-maps) 

Compare max 
and mean local 
SAR10g across 

shims

kT-UP

Test scans (x2)

...

Individually optimize (tailored)

predict pulse by CNN

apply kT-UP

Jointly optimize 
over 5 scans 
(each scans is 
one discerned 
volunteer)

Figure 12: The workflow for the prediction of the PTx-weights for the
8-kT-point trajectory using a convolution neural network (CNN). The data from

the training-, validation- and test scans consisted of their associated
(shim-corrected) off-resonance B0-maps and complex B1-maps during

optimization. The network training and predictions only used the |B+
1 |-map

from default drive (CP-mode) with Vmax set to unity. The performance of the
pulse settings predicted by the CNN on the test scans (whose data was not seen
during training) was compared to the performance of the pulse tailored to the
test scans, as well the performance of the universal pulse (kT-UP) which was
jointly optimized using the data from the training scans. The comparison was
made based on the FA-inhomogeneity, measured as the coefficient of variance

(CoV) of the FA-map resulting from all the pulse settings, respectively, as well
as their assoicated SAR-efficiency, measured by each pulse settings estimated

maximum local SAR10g and local SAR10g, meaned over all voxel for which the
Q-matrices were calculated.

The 8-kT-point trajectory used is shown in figure 13. The trajectory was
designed to visit k-space locations at ±6.33m−1 in the d = x̂, ŷ, ẑ directions in
Cartesian coordinates, with its first and final point at k = 0. ±6.33m−1 is a
rough underestimate of the wavelength of RF in tissue at 7T12.The total pulse
duration was Tp = 1.12ms, with each of the 8 rectangular sub-pulses lasting
80µs, interleaved by 60µs gradient blips (i.e. trajectory traversals).

12The choice of k-space distances was chosen according to a rough estimate of the wavelength
of RF in tissue at 9.4T, but was kept as changing it had little effect on the results.
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Figure 13: The 8-kT-point used in the whole-brain FA homogenization for all
designed pulses, and its projections onto the xy-, xz- and yz-planes. The

trajectory was designed to visit k-space locations at ±6.33m−1 in the d = x̂, ŷ, ẑ
directions in Cartesian coordinates, with its first and final point at k = 0. The

k-space velocity is not indicated here, however the trajectory stops while
transmitting RF at its corners or at the origin (similar to that presented in

figure 3.)

The network’s input data was the 3-D RF-amplitude map (i.e. |B+
1 (rn)|)

of 56× 64× 21 voxels resulting from driving the PTx-system in default drive
and Vmax set to unity, with the network’s output being the (time-varying) PTx-
weights settings for each of the 8 sub-pulses across all 8 transmit channels,
constituted by the network’s 127 outputs (real and imaginary part of all weights,
with the first weight’s imaginary part being set to zero from outset). The network
architecture is shown in figure 14. The network was trained with the training
algorithm Adam, see the solver-specific parameters applied as listed in table
2. Adam was chosen as it showed to be more robust to overfitting while the
network hyper-parameters were adjusted. As the 3-D RF-amplitude maps were
constructed from a number of stacked transversal slices, varying between 17 and
21 slices for each scan, the 3-D maps were augmented by stacking additional slices
at the top and bottom slices until 21 slices were reached. The main assumption
behind the choice of network input was that the information contained in said
RF-amplitude maps was sufficient for the network to adequately predict time-
varying weights. The justification for this assumption was that information of
the transmit channels’ sensitivity and their interference patterns was implicitly
contained in the RF-amplitude maps, inspired by the method of which each
channel’s sensitivity map were measured (i.e. the method presented in section
2.2.7). The targets used for all optimizations of the pulse settings contained
in the training-, validation- and test set for the network, as well as for the
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kT-UP and tailored pulses, was a binary brain mask calculated by SPM, i.e. a
target which was zero outside the brain and homogeneous inside. The L2-norm
trade-off on the weights was decided using the L-curve approach. All scans of
the same (discerned) volunteer was included in the training- and validation sets
to exhaust the amount of data available, i.e. including as many examples in
the sets as possible by including the data from all scans 1-15 (scans 16-17 were
reserved for the test set). However, the sets were attempted to remain separated
within volunteers during training, validation and testing by ensuring that a
discerned volunteer was not included across the sets. The scans included in
the optimization of the training- and validation sets were scans 1-13 and 14-15,
respectively, see figure 15.

(x3)

4x4x4 
Convolution

2x2x2 
Avg. 

Pooling

(x2)

2x2x2 
Max 

Pooling

(x2)

2x2x2 
Convolution

(x3)

56x64x21 
Image 
Input

...

FCL (127)

...

...
...

FCL (127)

Regression
Output 
Layer
(127)

(8-kT-point
PTx weights)

=ReLU

from Default-
Drive

(all PTx weights 
set to unity)

Figure 14: The architecture of the CNN used for the prediction of the
time-varying weights used for whole-brain FA homogenization in the 8-kT-point

trajectory. The choice of architecture was based on the idea to have a small
fully-connected structure learning on a down-sampled version of the

RF-amplitude map.

Table 2: Training parameters used in the training of the regressional CNN by
the Adam-solver[38].

Parameter Value

Gradient decay factor (β1) 0.90

Squared gradient decay factor (β2) 0.99

Offset factor (ε) 10−8

L2-regularization factor (Λ) 10−4

Maximum number of epochs 50

Shuffle mini-batch N/A

Mini-batch size 13 (all)

Learning rate (η) 0.3

Learning rate schedule None

Validation frequency 1 epoch
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The main evaluation of the three different pulse designs methods, i.e. kT-
UPs, tailored pulses and network-predicted pulses, consisted of comparing three
different metrics across the methods:

1) The coefficient of variance (CoV) of the FA-map for a given pulse setting
– this is a scale-invariant measure of the inhomogeneity of the FAs. The
CoV was calculated by dividing the standard deviation of the FAs over the
voxels contained in the SPM brain mask by their mean.

2) The estimated maximum (local) SAR10g over all voxels for which the
Q-matrices were calculated.

3) The estimated mean SAR of the head, i.e. the SAR10g averaged over all
voxels for which the Q-matrices were calculated.

Here, we made the same assumption on the applied RF-pulse as for RF-
shimming, i.e. we set its waveform as in eq. (21). We also note that the
normalized waveform was a train of 8 block sub-pulses with unity amplitude –
the sub-pulse of each channel was therefore modulated by its respective complex
weight, each of which were normalized to an amplitude between zero and unity.
The weights’ amplitudes were thus the relative scaling of Vmax across all sub-
pulses and channels.
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4 Results

4.1 Volunteer Discernment

The volunteer discernment process presented in 3.2 yielded N = 8 unique
volunteers. The matching matrices for the DREAM and 3DEGRE data are
shown in figure 15 for the correlation threshold r0 = 95%, where scan number
10 was used as reference for the rigid-body transformation (RBT) and re-slicing.

(a) (b)

(c) (d)

Figure 15: Pearson Correlation Coefficient (PCC) matrices in (a) and (b), and
matching matrices in (c) and (d) at threshold r0 = 95% with white tiles

indicating matches. Scan number 10 was chosen as reference for the rigid-body
transformation (RBT) and re-slicing. Note that both matching matrices pass

the first cross-check, but fail the second due to their discrepancy in scan number
1. The discrepancy was solved by inspection by eye, and (c) shows the final

discernment used for this thesis, i.e. N = 8 unique volunteers.

The discrepancy in scan number 1 between the two data sets is attributed to
artifacts from the re-slicing process after the RBTs. The 3DEGRE intensity
image did not contain the entire head within its FOV, which lead to cut-offs in
the re-sliced image after filtering. See figure 16. The discrepancy was solved with
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inspection by eye, and scan number 1 was deemed to be of the same volunteer as
in scan number 2, i.e. figure 15c shows the final discernment used for this thesis.

(a) (b)

Figure 16: Scan number 1 (see figure 15) before and after the re-slicing and
filtering in (a) and (b), respectively, for (approximately) the same slices in the
transversal, coronal and sagittal plane. The blue cross-hairs indicate where the
slices intersect. Note how the far posterior position is not within the FOV in

(a), which yields a zig-zagged cut-off at the corresponding area in (b).
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4.2 RF-shimming and MLP Performance

An example of the SVS-cube-means for an arbitrary location of the target is
shown in figure 17. The same procedure repeated for all voxel locations over
scans 15, 16 and 17 (scan numbers relative to figure 15) is shown in figure 18.
The calculated distributions are shown for slices in the HF-, AP- and RL-planes
which intersect at a calculated center-of-mass position. For the SAR-calculations,
a 1% RF duty-cycle was assumed (changing the RF duty-cycle does not change
the relative scaling of the achievable SVS-cube-means). The training/validation
progress of RF-UP-Net and Tailored-Net is shown in figure 19.

Example comparison before V
max

 is set
H

A P

F

H

R L

F

A

R L

P
H

A P

F

H

R L

F

A

R L

P
H

A P

F

H

R L

F

A

R L

P
H

A P

F

H

R L

F

A

R L

P
H

A P

F

H

R L

F

A

R L

P
H

A P

F

H

R L

F

A

R L

P
H

A P

F

H

R L

F

A

R L

P

R
F

-U
P

T
ai

lo
re

d
T

ai
lo

re
d-

N
et

R
F

-U
P

-N
et

w
C

P
-m

od
e

C
P

-m
od

e
T

ar
ge

t

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 17: An example comparison of the different method for a given Gaussian
target’s location and drop-off (drop-off set to 0.01, target shown in the

bottom-most row), with the resulting SVS-cube-mean (µSVS), and mean and
maximum SAR10g for the different configurations prior to setting Vmax (see eq.
28). Here, data from scan 15 (see figure 15) was used. After Vmax has been set,
these maps correspond become physical. The maximum (physically achievable
within regulatory SAR-limits) SVS-cube-means for each shim configuration is
restricted by the estimated associated low maximum- and mean SAR10g of each

shim configuration. The results from RF-UP, tailored, Tailored-Net,
RF-UP-Net, weighted CP-mode (wCP-mode) and CP-mode are shown. The

black cube within the brain-mask and its central dot represents the SVS-cube
and its center, respectively.
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Best-case SVS-cube-means
within IEC SAR-limits of scan 15
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Best-case SVS-cube-means

within IEC SAR-limits of scan 16
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Figure 18: Continued, see the next page for figure details.
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Best-case SVS-cube-means
within IEC SAR-limits of scan 17
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Figure 18: The distribution of the best-case SVS-cube-means from the
RF-shimming methods applied to the data from scan 15, 16 and 17 in (a), (b)

and (c) respectively – the scan numbers are as indicated in figure 15. An
important remark is that the maps and histograms shown are not physical.

Each voxel value indicates the mean RF-amplitude over the SVS-cube centered
at said voxel, with Vmax set to reach either the max or head-averaged local
SAR10g limits (10W/(kg) and 3.2W/(kg), respectively), whichever Vmax is

lowest (the SAR-limits used here are those recommended by the International
Electrotechnical Commission (IEC)[44]). That is, each voxel represents a unique
shim configuration targeted at maximizing the RF-amplitude over the SVS-cube

centered at that voxel. The results from RF-UP, tailored, Tailored-Net
(Tailored-N.), RF-UP-Net (RF-UP-N.), weighted CP-mode (wCP) and

CP-mode (CP) are shown here. The histograms indicate the calculated mean
RF-amplitude (µ) of the distribution (i.e. a mean of SVS-cube-means) by the
black, stapled line, and its associated standard deviation (σ) from the mean is
indicated by the red, stapled lines. The 90th percentile ranges are also shown to

further indicate the spread, shown by the green stapled lines.
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Training

Validation

(a) RF-UP-Net

Training

Validation

(b) Tailored-Net

Figure 19: The training/validation progress of the MLP networks used for
RF-shimming.
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4.3 8-kT-point Weight Predictions and CNN Performance

The results from the 8-kT-point weight predictions are shown in figure 20, where
the results from tailored, kT-UP and the CNN-predicted time-varying weights
are shown for comparison for scans 16 and 17 (with scan numbers as indicated
in figure 15). The training progress of the CNN used for prediction is shown in
figure 21, along with the raw output from the networks compared to its tailored
counterpart for both said scans. The raw output is compared to give a qualitative
impression of the network’s performance in its predictions.
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Figure 20: Continued, see the next page for figure details.
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FA-maps for scan 17
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Figure 20: The FA distribution from the 8-kT-point trajectory applied to the
data from scan 16 and 17 in (a) and (b), respectively – the scan numbers are as

indicated in figure 15. The results from tailored, kT-UP and CNN-predicted
time-varying weights are shown here. The calculated distribution is shown for a

slices in the HF-, AP- and RL-planes which intersect at a calculated
center-of-mass position, with the applied Vmax which yields a mean FA of 30°

under the STA approximation. The maximum and mean SAR10g are also

reported in units of mW(kg)
−1

. For the SAR-calculation, we have assumed a
repetition time of 1s. As the total pulse duration is Tp = 1.12ms, this

corresponds to a 0.11% RF duty-cycle. The histograms indicate the mean flip
angle, the calculated standard deviation, and the coefficient of variance (CoV).
The CoV was calculated by dividing the mean by the standard deviation. The

90th percentile range is also shown to further indicate the spread.
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Comparison of predicted vs. tailored time-varying weights of scan 17
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Figure 21: In (a), the training/validation progress of the CNN used for the
8-kT-point weight predictions. In (b) and (c), the network output (i.e. its
predictions) and its tailored counterpart (i.e. its test set) of the test scans,

shown to qualitatively assess the network’s performance, i.e. the accuracy of the
predicted weights. Each group of bars is the relative amplitude/phase of the

indicated channel during the 8 sub-pulses, with the first-to-last sub-pulse
ordered left-to-right in each group. Note the visualization is affected by

phase-wrapping.
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5 Discussion

5.1 Volunteer Discernment

5.1.1 Evaluation and Sensitivity to Head Shape and Size

The volunteer discernment as shown in figure 15 seems to indicate a clean
separation in the discernment of volunteers, in spite of the artefact in scan 1
which was attributed to the rigid-body transformation (RBT) process of the
3DEGRE-data. As the PCC is purely a (scale-invariant) pixel-by-pixel-based
metric, it can be very sensitive to differences in head shapes and head sizes
– after the RBT and re-slicing process, any differences in either shape or size
will cause big difference in image intensity along the boundary of the heads,
as the ”overlap” of two intensity images of heads from separate volunteers will
have big discrepancies in regions where only one image has high signal, e.g. at
the extremities of the largest13 head. Another way to understand this is to
realize that the PCC can be regarded as a metric which measures the amount of
”jointness” in two images on a pixel-by-pixel-basis. This could be the underlying
reason why the cut-off artifact of scan 1, which is shown in figure 16, caused the
PCC to differ so significantly between the DREAM-data and 3DEGRE-data.

5.1.2 Effects of PCC- and Masking Thresholds

The effect of changing the masking thresholds (minimum-of-maximum-intensity)
should be discussed in light of the previous paragraph. The masking threshold
reduces noise in the images, but can remove regions of the head with little-to-no
signal (i.e. dark areas). A consequence of choosing masking threshold which is
too high is removing signal along the head boundary. It is important to ensure
that the choice does not remove the regions which constitute a head’s shape
– if these regions’ signal is removed/diminished, the true head shape can be
lost/weakened in the images and can cause the accuracy of the discernment
process to become lower, as the images’ ”overlap” contains less information of
the differences in the head shape/size.

An important feature (and issue) with this process is the freedom in choosing
the PCC-threshold (r0) and the masking thresholds (minimum-of-maximum-
intensity). As stated earlier, these thresholds were chosen to properly pass the
first cross-check, and give reasonable results in the second cross-check – too
low thresholds gave non-unique groupings, too high threshold was too strict in
the grouping process. This means that the choice of thresholds was made on
the grounds of the data itself, which in turn can lead to inaccurate volunteer
discernment if one is not careful. During the process of choosing the thresholds,
the PCC matrices themselves need to be taken into account, and not only the
matching matrices (after setting the thresholds) to pass the first and second
cross-checks. An example of this is to consider values in a PCC matrix which
are very close to r0 – a small adjustment to r0 can give big differences in the
discernment for these values, and extra consideration needs to be made on
whether the chosen r0 is a good choice or not. For the case in figure 15, the
choice r0 = 95% was chosen partly to compensate for this issue (i.e not being
too close the the calculated PCC values).

13In volume.
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5.1.3 Checking for Validity

A validating factor of the process is found in the similarities between figure
15a and 15b. The PCC matrices are nearly identical, in spite of the matching
associated with scan 1 (i.e. the left-most columns and bottom-most rows), which
implies that the process can give similar results for discernment made on the
basis of data collected from two different sequences. See the supporting figure
23, where the discrepancy is shown explicitly.

5.1.4 Reliability and True Discernment

All results presented in this thesis rely on the discerned volunteers actually
being separate volunteers, such that the sample group in fact consists different
volunteers, and that the testing-, validation- and test scans are separated in a
well-controlled manner. As the ground truth was not known for the data used in
this thesis, all results presented in this thesis should be further verified with data
which is guaranteed to be from different volunteers. The discernment method
applied here should also be verified by testing the accuracy of the process on a
set of scans for which the true volunteer discernment is already known.
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5.2 RF-shimming by MLP Networks

5.2.1 Feasibility of the MLP Networks for Prediction of Full RF-
Shims

The shim configurations found by RF-UP-Net and Tailored-Net mimic those
calculated by the RF-UPs and the tailored pulses, respectively, as evident from
figures 17 and 18. For RF-UP-Net, this is as expected, as the network was
trained to remember and interpolate between between the RF-UP configurations
shown during training. For Tailored-Net, this is a verification of the assumption
that a network can find its own universal pulse setting when forced to do so
solely through its (tailored) training data. However, all shimming by either
the networks or means of optimization, is outperformed by the weighted CP-
mode. The weighted CP-mode will, by definition, construct phase-only shimming
configurations which give a constructive interference of the sensitivity maps at the
targets’ center voxel. Its SAR-efficiency (on average) is higher than for even the
tailored configuration, which corresponds to a full shim. Full shims, in contrast
to phase-only shims, include modifications to the transmit channels’ amplitude
to e.g. reduce the global RF-power by repressing channels whose sensitivites have
low amplitudes in the desired target location. However, one needs to consider
the impact of setting the Vmax for a given shim configuration. The full shims
required, on average, higher Vmax to reach the IEC SAR-limits indicated in
the caption of figure 18, compared to the phase-only shim. As a consequence
of the relations in eq. (28), their SAR-efficiency will also necessarily be lower
compared to the phase-only shim. Another effect from the shim configurations to
be considered is interference patterns in the electric fields, not only constructive,
but also destructive. Reducing the relative amplitude of a transmit channel can
potentially increase the estimated maximum local SAR for a given shimming
configuration if e.g. said channel’s electric field interferes destructively with the
combined electric field of the other transmit channels near a potential point of
focal heating. For an insight into the estimated maximum and local SAR-levels
for each configuration, as well as the SVS-cube-means, prior to setting Vmax, see
the supporting figure 22 in the appendix.

5.2.2 Comparing Data Requirements and Time-Efficacy

A substantial difference in the different shimming methods applied here lies in
their data requirements, which could be used to argue for the feasibility of use
of a network similar to e.g. Tailored-Net for RF-shimming:

• The tailored pulse requires full B+
1 -data (amplitude and relative phase),

and at least NC = 8 individual DREAM-measurements is needed. Gath-
ering this data in situ can be very time-consuming, as well as the pulse
optimization itself (∼ 15s).

• The weighted CP-mode requires the relative phase-data of the channels’
sensitivites, and thus the data gathering is identical to that of the tailored
pulse. However, shimming by weighted CP-mode requires no optimization
procedure.

• Both RF-UP and Tailored-Net operate similar to UPs, and thus require
no volunteer-specific data. That is, any pulse can be predicted within
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milliseconds after the center location of the target is given to the network.

• The RF-UP requires no volunteer-specific data, as it is by definition
universal.

As evident from figure 18, the Tailored-Net outperforms RF-UP-Net. Tailored-
Net also yields a similar performance to the tailored shims, in spite of having no
data requirements – this is a big benefit of networks, as the user can decide the
desired trade-off between the achievable RF-amplitude at a given location and
the time required to produce the shimming configuration.

5.2.3 MLP Network Training Efficacy

As for the two MLP networks’ training efficacy shown in figure 8a, it is apparent
that both networks show signs of underfitting – After ∼ 400 epochs, both the
training and validation curves flatten out, and no more learning occurs. It is
important, however, to keep in mind the goal of the networks – as mentioned in
section 3.3, the intention was to train the networks to remember and interpolate
between the solutions on which the networks were trained. Increasing the network
sizes (and increasing the number of training examples) would more than likely
not counteract this tendency to underfit, as it is apparent that the networks
successfully learned the intended behavior.

The cause of the difference in the final RMSE of figure reached by the networks,
as indicated in figure 8a, lies in their respective training sets. RF-UP-Net always
had a 1-to-1 correspondence between its input and output, while Tailored-Net
always had at least a 1-to-5 correspondence (see section 3.3). Therefore, after
both networks had trained past the ∼ 400th epoch, the RMSE would naturally
be larger for Tailored-Net than RF-UP-Net, as there were no unique input-to-
output correspondences within Tailored-Net’s training set. However, the RMSE
calculated during training is just a metric of how well each network manages to
predict the PTx-weights constituted by their respective training- and validation
sets, and is not a measure of their performance during RF-shimming, as indicated
by the results in 17 and 18.

5.2.4 Proposing a universal weighted CP-mode method

The results shown in figure 18 indicate that weighted CP-mode is the most
desirable method to use when performing the RF-shimming for the purpose
presented here (i.e. shifting the concentration of RF-amplitude around the head).
Further work should be done to investigate and expand upon two obvious areas
for improvement:

1) Calculating and comparing RF-UPs with the configuration of weighted
CP-mode, i.e. calculating universal phase-only RF-shims which yield
constructive interference at a desired location, over a set of volunteers.
This could be achieved by averaging the phases of all volunteers’ B+

1 -maps,
and calculating the weighted CP-mode for the given voxel’s coordinate in
the resulting phase-averaged B+

1 -map.

2) Calculating the weighted CP-mode individually in a similar manner to that
discussed in 1), and instead of calculating an average, use the individual
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shims to create the training set of a network. This would be identical to
the training procedure of Tailored-Net, except the training set would here
consist of phase-only shims.
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5.3 8-kT-Point Whole-Brain FA Homogenization by CNN

5.3.1 Feasibility of the CNN for Weight Prediction

Applying CNN-predicted time-varying weights of an 8-kT-point excitation trajec-
tory for whole-brain FA homogenization may or may not be a feasible approach,
as indicated by the results in figure 20 for scans 16 and 17, depending on what
criteria is set for the desired maximum SAR-levels. The performance of the
CNN for FA-shimming is almost equal to that of the kT-UP, while both methods
are outperformed by the tailored pulse, when only taking the resulting CoV
from the two different methods into account – however, there is an increase
in SAR-efficiency of about 25% in both the estimated maximum and average
local SAR in the CNN-predictions and tailored pulses compared to their UP
counterpart. If there is a desire to trade FA-homogeneity for SAR-efficiency, the
CNN-method could be a feasible approach if there are time-constraints in the
scanning procedures, see the next subsection.

5.3.2 Comparing Data Requirements and Time-Efficacy

A very important difference between the three applied methods lies in the amount
of volunteer-specific data they respectively require:

• A fully14 tailored pulse requires full B+
1 -data (amplitude and relative phase)

and B0-data for the volunteer. Gathering this data in situ can be very
time-consuming, as at least NC = 8 individual DREAM-measurements
and a 3DEGRE-measurement are needed. Also, the pulse optimization
itself can be quite time-consuming (∼ 30s).

• The CNN requires only the RF-amplitude data (i.e. |B+
1 |(rn)) from a

single DREAM-measurement with the PTx-system in default-drive (all
PTx-weight set to unity). The pulse prediction time after the data has
been gathered is negligible (∼ 10ms).

• The kT-UP requires no volunteer-specific data, as it is by definition uni-
versal.

In light of the previous discussion in this section, each method has its own
advantage, and the most feasible method is decided by the user-decided trade-
off between FA-homogeneity, SAR-levels and time-constraints. Note that all
methods assume that B0-shimming is perform prior to pulse application (but
after pulse design). Therefore, the gathering of an off-resonance map using
e.g the 3DEGRE-sequence is inevitable regardless of the choice of pulse design
method, unless e.g. a universal B0-shim configuration is applied.

5.3.3 CNN Training Efficacy and Prediction Performance

The results in figure 21 seems to indicate that the network properly learned the
necessary features of the |B+

1 |-maps during training to properly predict the pulse
settings to perform efficient FA-shimming with the given excitation trajectory.
From 21a, the network does not show any sign of underfitting, but a slight

14”Fully” is here to indicate that all possible data is included, as in eq. 20. A tailored pulse
could be tailored assuming e.g. no B0-inhomogeneities.
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overfit on the training set seemed to have occurred from around the 10th epoch.
However, a important remark is that the number of examples present in the
validation set of was extremely low, and a bigger validation set might have been
able capture the statistical characteristics relative to the training set, bringing
the two lines closer together. Also note that although the RMSE was lower over
the training set than over the validation set after the 10th epoch, the validation
RMSE was still decreasing at about the same rate as the training RMSE, which
indicates efficient learning.

A remark needs to be made on the sparsity of examples available for training,
validation and testing of the network. The data from all 17 available scans were
used to exhaust the amount of data for setting up and testing the network – the
results presented here seem to indicate that only a sparse amount of training
examples is required to capture the variability of the desired time-varying weights.
The networks should, however, be trained, validated and tested with sets bigger
than those presented here to further validate the results – 2 test examples is an
insufficient amount of examples to draw any firm conclusions on the results, and
increasing the number of training examples past the 13 examples applied here
might prove an increase in the prediction performance of the network.

The comparisons shown in figure 21b and 21c seem to indicate that the
network has picked up on the most essential traits needed to predict the com-
ponents of the time-varying weights, compared to their tailored counterparts.
The predicted amplitudes and phases manage to trace their tailored counterpart
remarkably well, which indicates that the assumption discussed in the previous
paragraph regarding the sufficiency of information contained in the |B+

1 |-maps
might be a reasonable assumption. The bar-overlaps look to be greater for
scan 17 than 16, especially for the amplitudes, which could be due to the data
associated with scan 17 being more resemblant of the data associated with the
scans used for training (scans 1− 13).

Training a network similar to the CNN presented here, but for a kT − point
trajectory of fewer than 8-kT-points should be explored – with a sparse amount
of training data, there is a drive to minimize the amount of trainable parameters
in a network to increase its performance over its test set. Naturally, decreasing
the amount of kT-points will decrease the amount of spatial-modulation made to
the magnetization, yielding a lower FA homogeneity across the brain. However, a
CNN trained to predict the time-varying weights for e.g. a 4-kT-point trajectory
could show an increase in prediction performance due to the decrease in number
of trainable networks parameters (as the network could potentially become less
prone to overfitting).

5.3.4 Proposing Including More Input Data for the CNN

The assumption made when the network was constructed was that using only
volunteer-specific RF-amplitude data was sufficient for the network to learn the
variability of the output across different volunteers – the |B+

1 |-map from PTx
default-drive constituting the network’s input implicitly contains information
about all channel’s sensitivity amplitude, as it is simply the amplitude of their
unity-weighted superposition. The network should be attempted to be retrained
to include more data in the network input, e.g. the phase-data of the B+

1 -map
or the off-resonance map, which can be achieved by increasing the number of
input channels to the network. However, this comes at the cost of increasing
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the network size (i.e. the number of trainable parameters), and will more than
likely require even more training data to properly cover the variability of data
for the network to be properly able to generalize for use in general volunteer
applications. This will also cause the requirement of gathering more data –
including phase-data would bring the required amount of data gathering to
the same level as the tailored pulses and weighted CP-mode for RF-shimming,
and including an off-resonance map would require a 3DEGRE-sequence to be
performed.
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6 Conclusion and Further Work

6.1 Regressional MLP Networks for RF-shimming

The results indicate that predicting universal PTx-weights for RF-amplitude
shimming using MLP networks is a feasible approach for time-saving pulse
design, although the approach naturally lacks the finesse of its volunteer-tailored
counterpart. Both the RF-UP-Net and Tailored-Net successfully performed
the shimming for which it was trained (i.e. properly mimicking the RF-UPs
and tailored pulses, respectively). The network finding its own compromise
for universality was found to be the better option (i.e Tailored-Net) when
constructing the training data of a network for RF-amplitude shimming. However,
the phase-only shimming found by weighting each channel’s phase (i.e. phase-only
shimming) by the phase necessary to create constructive phase-interference at
the desired shimming location outperformed all other full shims (i.e. amplitude-
and phase-shimming) without requiring on-line optimization (although requiring
full B+

1 -data). Therefore, a network similiar to Tailored-Net should be further
investigated with the same goal in mind, but with its training data consisting of
training data constructed from the weighted CP-mode shims (i.e. constructing a
network for predicting phase-only shims).

6.2 Regressional CNN network for kT-point FA homoge-
nization

The results from training a CNN for the prediction of time-varying PTx-weights
of an 8-kT-point trajectory for whole-brain FA-homogenization are indicatively
positive. Using only the RF-amplitude data from PTx default-drive (i.e. CP-
mode) as the network input, the resulting pulses share traits from both the kT-UP
and tailored pulses – the CNN-predicted pulse settings share approximately equal
SAR-levels (maximum and head-average SAR10g) as its tailored counterpart, but
with approximately equal FA-inhomogeneity as the kT-UPs. The CNN-approach
presented here should be further investigated to include more MRI data (e.g.
relative RF-phase data and off-resonances) in its input to improve its predictions.

6.3 Validity of Results and the Volunteer Discernment
Process

The results outlined above should be further verified for larger test sets, and for
volunteer data which is guaranteed to have derived from separate volunteers –
the results RF-shimming and whole-brain FA-homogenization were only verified
over N = 3 and N = 2 discerned volunteers, respectively, as discerned by
the PCC-method proposed as the secondary objective of this thesis. Although
the results from the discernment process indicates a clean volunteer separation
(despite some complications due to image artifacts), the discernment process
itself should be further validated over a set of volunteer data for which the
ground truth of separation is known.
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7 Appendix

7.1 Supporting Figures
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Figure 22: Continued, see the next page for figure details.
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Figure 22: The distribution of the best-case SVS-cube-means and mean and
maximum estimated SAR-levels from the RF-shimming methods applied to the
data from scan 15, 16 and 17 in (a), (b) and (c), respectively – the scan numbers
are as indicated in figure 15. An important remark is that the maps shown are

not physical. Each voxel position’s value is derived from a configuration for
which the SVS-cube is centered at said voxel, prior to setting Vmax. That is, each
voxel position represents a unique shim configuration targeted at maximizing the

RF-amplitude over the SVS-cube centered at that voxel. The results from
RF-UP, tailored, Tailored-Net (Tailored-N.), RF-UP-Net (RF-UP-N.), weighted

CP-mode (wCP) and CP-mode (CP) are shown here. The calculated
distribution is shown for a slices in the HF-, AP- and RL-planes which intersect

at a calculated center-of-mass position. For the SAR-calculations, a 1% RF
duty-cycle was assumed (changing the RF duty-cycle does not change the

relative scaling of the achievable SVS-cube-means).
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Figure 23: The difference in the calculated PCCs from the 3DEGRE- and
DREAM-data. This map corresponds to element-wise subtraction of the values

in figure 15b from those in figure 15a.
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7.2 Derivations

7.2.1 Details of the Small-Tip-Angle (STA) Approximation

In this section, we will show the details omitted in the main text of section 2.1.2
when solving the decoupled Bloch equations.

The differential equation for Mx′y′ reads, after inserting (5) into (4) and
calculating out its matrix multiplication,

d

dt
Mx′y′(r, t) = −iγG · rMx′y′(r, t) + iγM0B

+
1 (r, t) (29)

.
Multiplying by the integrating factor exp

(∫ t
0
iγG(τ) · r dτ

)
and applying the

initial condition of zero transverse magnetization yields, after integration over
the RF duration t ∈ [0, T ],

Mx′y′(r, T ) exp

(∫ T

0

iγG(τ) · r dτ

)

= iγM0

∫ T

0

B+
1 (r, t) exp

(∫ t

0

iγG(τ) · r dτ

)
dt

⇐⇒
Mx′y′(r, t)

= iγM0

∫ T

0

B+
1 (r, t) exp

(∫ t

0

iγG(τ) · r dτ −
∫ T

0

iγG(τ) · r dτ

)
dt

= iγM0

∫ T

0

B+
1 (r, t) exp

(
ir ·

[
−γ
∫ T

t

G(τ)dτ

])
dt

= iγM0

∫ T

0

B+
1 (r, t)eir·k(t)dt, where k(t) ≡ −γ

∫ T

t

G(τ)dτ.

7.2.2 Details of the Spatial Domain Pulse Design of Spokes Pulses

We refer to the nomenclature introduced in 2.2.3, and apply the spatial and
timely discretization given there. Furthermore, the remaining time (t− Tp) in
the inhomogeneity contribution ∆B0(r) of the integrand in (16) can be written
for an arbitrary discretized time step m ∈ [1, . . . , Nt] into a sub-pulse at a given
kT-point k ∈ [1, 2, . . . , NkT ] as (see figure 24)

(t− Tp)→ t′k + (Nt −m)∆t. (30)

The k-space trajectory k(t) is constant for a given kT-point, and can be evaluated
at t′k for the entire duration of the kth kT-point . This approximation, along
with eq. (30), yields for eq. (16) its discretiztion
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Mx′y′(rn, Tp)

≈ iγM0∆t

NC∑
j=1

Sj(rn)

NkT∑
k=1

wjk

Nt∑
m=1

ρme
irn·k(tm)+iγ∆B0(r)(t′k+(Nt−m)∆t

≈
NC∑
j=1

NkT∑
k=1

wjk

[
iγM0∆tSj(rn)eirn·k̃(t′k)

Nt∑
m=1

ρme
iγ∆B0(r)(t′k+(Nt−m)∆t

]

=

NC∑
j=1

NkT∑
k=1

wjkaknj .

Defining the system matrix A and vectors p,m as in section 2.2.3, the above
equation is equivalent to the approximation of the transverse magnetization as
given by eq. (19).

Figure 24: An illustration used to visualize the timely discretization of (t− Tp)
in eq. (16).

7.2.3 Derivation of the Backpropagation Equations in MLP Nets

We refer to the nomenclature presented in section 2.3. We compute each element
through the chain rule:

δ
(L)
j,n =

∂Cn

∂a
(L)
j

=
yj − a(L)

j

Nout
,

δ
(l−1)
k,n =

∑
j′,j′′

∂Cn

∂a
(l)
j′

∂a
(l)
j′

∂z
(l)
j′′

∂z
(l)
j′′

∂a
(l−1)
k

=
∑
j′

δ
(l)
j′,nσ

′
(
z

(l)
j′

)
w

(l)
j′k,

∂Cn

∂w
(l)
jk

=
∑
j′,j′′

∂Cn

∂a
(l)
j′

∂a
(l)
j′

∂z
(l)
j′′

∂z
(l)
j′′

∂w
(l)
jk

= δ
(l)
j,nσ

′
(
z

(l)
j′

)
a

(l−1)
k ,

∂Cn

∂b
(l)
j

=
∑
j′,j′′

∂Cn

∂a
(l)
j′

∂a
(l)
j′

∂z
(l)
j′′

∂z
(l)
j′′

∂b
(l)
j

= δ
(l)
j,nσ

′
(
z

(l)
j′

)
.
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7.2.4 Derivation of the Intensity Equations for B+
1 -mapping

We refer to figure 2. We will track the longitudinal magnetizations MFID and
MSTE which will eventually be the source of the signal of the FID and STE,
respectively. For MFID, the prepared magnetization is comprised of the spins
which are not flipped into the transverse plane by either α-pulse, i.e. the twice
repeated projection of the tipped magnetization onto the ẑ-direction,

MFID = cos(α)[cos(α)M0] = cos2(α)M0.

For MSTE, we flip the transverse magnetization, i.e. the projection of the tipped
magnetization onto the x′y′-plane, created by the first α-pulse back into the
longitudinal direction after a time Ts by a second α-pulse. During the duration
Ts, we assume we have completely de-phased all transverse magnetization created
by the first pulse with gradient Gm. Application of the second α-pulse returns,
on average, half of the transverse magnetization back along the longitudinal
direction, i.e.

MSTE = sin(α)

[
1

2
sin(α)M0

]
=

1

2
sin2(α)M0

(a superb illustration of the evolution of the STEAM prepared magnetization
is shown in [45, Fig. 2]). Both the signal of the FID and STE are then the
transversal component of the MFID and MSTE magnetizations, respectively,
tipped by the β-pulse, which gives the intensities as provided in the main text.

7.2.5 Details of the Sensitivity Encoding Calculations

Denote the entry of E at (m, j) as

Em,j ≡ exp

(
2πi(m− 1)j

M

)
.

The entry at (j, j′) of EHE can then be written as the dot product (by writing
out the matrix multiplication explicitly)

M∑
l=1

E∗l,jEl,j′ =

M∑
l=1

exp

(
2πi(l − 1)(j′ − j)

M

)
=

1− exp (2πi(j′ − j))

1− exp
(

2πi(j′−j)
M

)
In the last step we recognize the sum as a geometric series if j 6= j′, and note
that it is zero. If j = j′, then the sum is simply equal to M .
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7.3 Deep Learning in Convolutional Neural Networks

We here refer to the nomenclature introduced in section 2.3.9.

7.3.1 The Forward Pass in Convolutional Layer

For the convolutional layer l, we denote each activation (i.e. output feature map
pixel value) as

a
(l)
jx′y′ , at pixel (x′, y′) ∈ [0, . . . ,H2 − 1]×[0, . . . ,W2 − 1],

for output channel j ∈[0, . . . , C2].

For the preceding layer l − 1, each activation is denoted as

a
(l−1)
jxy , at pixel (x, y) ∈ [0, . . . ,H1 − 1]×[0, . . . ,W1 − 1],

for output channel k ∈[0, . . . , C1].

The instances where the pixel indices are omitted we are referring to a specific

map, i.e. a
(l)
j or a

(l−1)
k . The kernel used in the convolution of map k contributing

to a
(l)
j is denoted w

(l)
jk , which is further indexed pixel-wise as w

(l)
jkab, where

(a, b) ∈ [0, . . . , k1 − 1]× [0, . . . , k2 − 1]. With this notation, we can now define

the output maps a
(l)
j in terms of the input maps a

(l−1)
k :

a
(l)
jxy ≡ σ

(
z

(l)
jxy

)
≡ σ

(
b
(l)
j′ +

[
rot180°

(
w

(l)
jk

)
∗ a

(l−1)
k

]
xy

)
≡ σ

(
b
(l)
j′ +

c−1∑
k′=0

k1−1∑
a′=0

k2−1∑
b′=0

w
(l)
j′k′a′b′a

(l−1)
k′,s1x+a′−p1,s2y+b′−p2

)
. (31)

Here, σ(·) is the activation function of layer l (applied to each element of

its argument separately), z
(l)
j is the convolved input of channel j (with same

dimensions as a
(l)
j ), and b

(l)
j is the bias of layer l, shared between all input

channels for a given output channel j. The function rot180° (·) takes a 2-D
tensor a flips it horizontally and vertically. Furthermore, the ∗-operation denotes
convolution, parameterized by the padding p1, p2 and stride s1, s2 in the x, y-
directions, respectively. We only allow indices which are not out of bounds in
(31), which may be adjusted by padding. For an arbitrary choice of padding and
stride, the resulting output map is of size(⌊

H1 − k1 + 2p1

s1

⌋
+ 1

)
×
(⌊

W1 − k2 + 2p2

s2

⌋
+ 1

)
.

To get nice-looking formulas, we’re only going to do valid convolution (i.e. no
padding, p1, p2 = 0) and use unity strides (s1, s2 = 1). The matrix results
which will be presented here can be extended to general padding and strides by
stretching of the kernels included in the computations[46].
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7.3.2 Backpropagation in Convolutional Layers

In order to perform backpropagation, we need to compute gradients

∂C

∂w
(l)
jkab

,
∂C

∂b
(l)
j

,

to update layer l, and gradient
∂C

∂a
(l−1)
kxy

to pass down to layer l − 1, all in terms of variables we can compute explicitly.
Starting with the chain rule for ∂C

∂w
(l)
jkab

, we get

∂C

∂w
(l)
jkab

=
∑

j′,x′,y′

∂C

∂a
(l)
j′x′y′

∂a
(l)
j′x′y′

∂z
(l)
j′x′y′

∂z
(l)
j′x′y′

∂w
(l)
jkab

. (32)

Here, j′ runs over all output maps, j′ = 0, . . . , C2 − 1, and x′, y′ runs over all
pixels (neurons) in a given output map (same dimensions for all maps in same
layer). To compute (32) we note that:

1) The first factor on the RHS of (32) is given (assumed this was passed down
when we computed backwards function in previous layer).

2) The second factor on the RHS of (32) is just σ′(z
(l)
j′x′y′).

3) The third factor filters out all terms except those which
k′ = k, a′ = a, b′ = b. That is,

∂z
(l)
j′x′y′

∂w
(l)
jkab

=

{
a

(l−1)
k,x′+a,y′+b if j′ = j,

0 otherwise.

Note that we also filter on j′ = j, so only the j-terms survive and the
j′-summation in (32) vanishes.

Now, plugging in what we found above into (32), gives

∂C

∂w
(l)
jkab

=
∑
x′,y′

[
∂C

∂a
(l)
jx′y′

σ′(z
(l)
jx′y′)

]
a

(l−1)
k,x′+a,y′+b. (33)

This looks very much like convolution – in fact, this is just a valid, unity-strided
convolution with a rotated kernel (the bracketed factor). That is, we can write
the gradient of our weights for the kernel from input map k to output map j as
a 2-D matrix, whose entries (a, b) indicate the weight gradient for kernel-weight
(a, b):

∂C

∂w
(l)
jk

= rot180°

(
∂C

∂a
(l)
j

� σ′vec(z
(l)
j )

)
∗ a

(l−1)
k .

The latter factor of the convolution in the equation is the element-wise product
of the two matrices with entries (x′, y′) as indicated by the two products, respec-
tively, in the bracket of equation (33). Point is, we can now update the weights

65



in this layer. We can do the same for the bias using the same angle of attack as

before. For each output bias b
(l)
j , we compute

∂C

∂b
(l)
j

=
∑

j′,x′,y′

∂C

∂a
(l)
j′x′y′

∂a
(l)
j′x′y′

∂z
(l)
j′x′y′

∂z
(l)
j′x′y′

∂b
(l)
j

.

We note from equation (31) that we filter on j′ = j, and that the derivative is
just 1, i.e.

∂z
(l)
j′x′y′

∂b
(l)
j

=
∂(b

(l)
j + convolution stuff)

∂b
(l)
j

= 1.

Using the same notation as before, we quickly get the resulting bias gradient

∂C

∂b
(l)
j

=
∑
x′,y′

∂C

∂a
(l)
j′x′y′

∂a
(l)
jx′y′

∂z
(l)
j x′y′

≡ sum

(
∂C

∂a
(l)
j

� σ′vec(z
(l)
j )

)
,

where sum (·) indicates the sum over all columns and rows. Note how the RHS
of this equation is independent of k. This makes sense if one convinces oneself
that the bias is just a constant term added to the convoluted input, and its
contribution is the same regardless of the input signal. Note that the bias gradient

is still implicitly dependent on the input signals due to their contribution to z
(l)
j

and therefore a
(l)
j .

We also need a gradient to pass down to the next layer in the next backward
pass, i.e. how the cost function changes w.r.t. the activations in the previous layer.
We start with the chain rule, but this time, we need to express our weighted input

z
′(l)
j , in terms of the activations a

(l−1)
k . Here’s the key argument: the activation

a
(l)
j′x′y′ is only dependent on a

(l−1)
kxy iff it was included in the weighted sum z

(l)
j′x′y′ .

More specifically, a
(l)
j′x′y′ is dependent on a

(l−1)
kxy iff15 (x′, y′) = (x− a, y − b) for

at least one (a, b) ∈ [0, . . . , k1 − 1]× [0, . . . , k2 − 1]. For the chain rule, these are
the only terms which are not guaranteed to zero out, so we must include them:

∂C

∂a
(l−1)
kxy

=
∑
j′

k1−1∑
a=0

k2−1∑
a=0

∂C

∂a
(l)
j′,x−a,y−b

∂a
(l)
j′,x−a,y−b

∂z
(l)
j′,x−a,y−b

∂z
(l)
j′,x−a,y−b

∂a
(l−1)
kxy

. (34)

We here assume any term in the sum above which have out-of-bounds indices
are set to zero to keep the equation well-defined for all x, y. Now, by inspection
of equation (31), we see that only one term survives for the last factor in (31),
filtering a = a′, b = b′. This yields

15If this doesn’t seem apparent, draw the convolution process for an arbitrarily sized input
map and kernel, and convince yourself that pixel (x′, y′) in the input map contributes only to
the pixels in the output map which are covered by the overlap of the kernel placed with its
bottom-right pixel on output pixel (x′, y′).
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∂C

∂a
(l−1)
kxy

=
∑
j′

k1−1∑
a=0

k2−1∑
a=0

∂C

∂a
(l)
j′,x−a,y−b

∂a
(l)
j′,x−a,y−b

∂z
(l)
j′,x−a,y−b

w
(l)
j′kab.

Note that the two latter sums yield a convolution of the product of the two first
factors with the last16. More precisely,

∂C

∂a
(l−1)
kxy

=
∑
j′

(
∂C

∂a
(l)
j′

� σ′vec(z
(l)
j′ )

)
∗w(l)

j′k. (35)

7.3.3 Max Pooling Layers

A max-pooling layer is similar to the convolutional layer, except it has no
optimizeable parameters, and its kernel only passes forward the maximum value
for a given input-with-kernel ”overlap”, where the input channel size matches
the output channel size (each output channel is the max-sampled version of its

input channel). Thus, the activation a
(l)
jx′y′ in (31) is here replaced by

a
(l)
jxy ≡ max

0≤a≤k1−1
0≤b≤k2−1

a
(l−1)
j,s1x+a−p1,s2y+b−p2 . (36)

As for backpropagation through a max pooling layer, the layer has no
parameters to update, as its only purpose is to map the max value from an input
map with respect to a maxing filter/kernel to an output feature map. Thus, we
only need to calculate how we propagate the error backwards to the next layer
down the line:

∂C

∂a
(l−1)
kxy

=
∑
x′,y′

∂C

∂a
(l)
kx′y′

∂a
(l)
kx′y′

∂a
(l−1)
kxy

. (37)

Note that x, y run over the input map, x′, y′ run over the output map, and the
maps are generally of different sizes. However, each output map takes only one
input map, and they can therefore be indexed equally in the first index (as with
k show in (37)).

The last factor in (37) can be written

∂a
(l)
kx′y′

∂a
(l−1)
kxy

=

{
1 if a

(l)
kx′y′ ≡ a

(l−1)
kxy ,

0 otherwise,

that is, if a
(l−1)
kxy was passed as max to pixel (x′, y′) in feature map j′ during

the forward pass, then its activation is a
(l−1)
kxy . As a result, only instances

where a
(l−1)
kxy was passed contributes to the sum in (37). Näıvely, this can be

16By the commutation property of convolution in (31).
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tracked programmatically during the forward pass and be later retrieved for
backpropagation in a 5-D binary tensor, M (l), whose entries are hot (i.e. 1) if

a
(l)
kx′y′ ≡ a

(l−1)
kxy , and cold (i.e. 0) otherwise:

M
(l)
k,(x,y),(x′,y′) =

{
1 if a

(l)
kx′y′ ≡ a

(l−1)
kxy ,

0 otherwise.

Regardless of implementation, this must be tracked, and not only compared
by value, as several input values can be equal by comparison to the activation.
Summarized, we get an equation we can compute:

∂C

∂a
(l−1)
kxy

=
∑
x′,y′

∂C

∂a
(l)
kx′y′

M
(l)
k,(x,y),(x′,y′). (38)

7.3.4 Average Pooling Layers

An average pooling layer is identical to that a convolutional layer, except its
kernels’ entries are all fixed and equal to the inverse of the kernel volume, i.e.

w
(l)
jkab ≡

1

k1k2
∀ j, k, a, b. (39)

Thus, its forward and backward pass are described by eq. (31) and (35), respec-
tively, with the weights as in eq. (39).

7.4 Image Matching

Let X,Y be two 3-D images of equal sizes containing i = 1, . . . , Nvox real and
positive intensities xi, yi, respectively. Let x̄, ȳ be the average intensity of each
respective image. Then a pixel-by-pixel matching metric of X and Y is the
Pearson Correlation Coefficient (PCC) 0 ≤ r ≤ 1, where

r ≡
∑
i(xi − x̄)(yi − x̄)√

(
∑
i(xi − x̄)2

√∑
i(yi − x̄)2

7.5 Q-matrices for SAR-calculations

The Q-matrices for the Nova head coil were calculated using data from numer-
ical simulations which was distributed by Nova. The technical details of the
numerical simulations is proprietary information reserved by Nova. However,
the simulations were conducted using

• the human model Hugo[47] as the subject, representing a 38–year-old male,
who is 187cm tall with an approximate weight of 114kg[48].

• Remcom[49] simulation software.

• the finite-difference time-domain method (FDTD)[50].

The SAR averaging volume was for m = 10g of tissue, i.e. the calculated local
SAR was SAR10g, with the averaging technique applied as in [29].
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