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Abstract

Motivated by recent interest in interacting topological insulators, we study the superconductive
properties of an attractive Haldane-Hubbard model. The Haldane-Hubbard model displays a phase
transition between a Chern insulator and a superconductor governed by the second-nearest neigh-
bor hopping parameter t′ and the chemical potential µ. In this thesis, we study the superconductive
phase in both the weak and strong-coupling regimes using BCS and Eliashberg theory of super-
conductivity, respectively. The main difference between these regimes is the fact that the electron
self-energy S is accounted for in the strong-coupling regime through Eliashberg theory. The in-
clusion of S in the gap equation means we get a shift in the quasi-particle spectrum which can
significantly alter the solutions to the gap equation. We show through Eliashberg theory that as
the coupling strength λ is increased, the increase of the energy shift S can become detrimental
to superconductivity in the Haldane-Hubbard model. In this regime, the critical temperature Tc
and superconductive gap W (T = 0) are lower than what is predicted by BCS theory. Although Tc
shows an upward trend as λ is increased, W (T = 0) seems to fall to zero when both S and λ are
large.
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Sammendrag

Med nylig økt interesse for vekselvirkende topologiske isolatorer som bakteppe ser vi på su-
perledende egenskaper til en attraktiv Haldane-Hubbard-modell. Haldane-Hubbard-modellen har
en faseovergang mellom en Chern-isolator og en superleder styrt av nest næremeste nabo hoppepa-
rameteren t′ og det kjemiske potensialet µ. I denne avhandlingen ser vi på den superledende fasen
i både det svake og sterke vekselvirkningregimet ved bruk av henholdsvis BCS- og Eliashberg-teori.
Den største forskjellen mellom disse regimene er at selvenergien S til elektronet er tatt hensyn til
i det sterke vekselvirkningregimet gjennom Eliashberg-teori. Å inkludere S i gapligningen vil gi et
skift i kvasipartikkel-spekteret som kan lede til at løsningene til gapligningen endrer seg betydelig.
Ved bruk av Eliashberg-teori viser vi at når koblingsstyrken λ økes, vil en økning av energiskiftet
S vise seg å være ufordelaktig for superledning i Haldane-Hubbard-modellen. Både den kritiske
temperaturen Tc og det superledende gapet W (T = 0) er lavere enn antatt av BCS-teori i det
sterke vekselvirkningregimet, og selv om Tc viser en oppadgående trend når λ øker, viser det seg
at W (T = 0) faller til null når både S og λ er store.
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Abbreviations

TI Topological insulator
CI Chern insulator
SC Superconductor
NN Nearest neighbor
2NN Second-nearest neighbor
LHS Left hand side
RHS Right hand side
DOS Density of states
1PI One-particle irreducible (diagrams)

Nomenclature

N Number of lattice sites (unit cells)
t Nearest neighbor hopping parameter
t′ Second-nearest neighbor hopping parameter magnitude
σ Spin quantum number
U Hubbard interaction strength
µ Chemical potential (Fermi level)
λ Effective electron-electron coupling constant
kB Boltzmann’s constant
Tc Critical temperature at which superconductivity occurs
∆ Superconducting gap (in BCS theory)
W Superconducting gap (in Eliashberg theory)
S Electron exchange self-energy
D(εF ) Density of states at the Fermi level
ωD Debye frequency
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Chapter 1

Introduction

1.1 Background and motivation

The story of superconductivity dates back to 1908 — three years before its discovery. Scientists at
the time thought that electrons in conductors came to a standstill near absolute zero temperatures.
Thus causing up to infinite metal resistivity. Some scientists, including Dutch physicist H. K.
Onnes, believed otherwise. Onnes was especially interested in liquefaction of helium and conductive
properties of cooled metals. In 1908, Onnes was able to liquefy helium by cooling it to its boiling
point of 4.2 K. Along with this experimental feat came the discovery of superconductivity. Onnes
discovered in 1911 that cooling a solid wire made of mercury to near 4 K by submerging it in liquid
helium, caused the resistance in the wire to plummet [1]. The drop in resistance was so large that
he soon recognized he had discovered a new state of matter. Onnes received recognition for his
ground breaking work in 1913 when he was awarded the Nobel prize in physics.

Since its discovery, superconductivity has been and continues to be of immense interest. Con-
tinued work has revealed new properties of superconductors. A defining magnetic property was
discovered in 1933 by W. Meissner and R. Ochsenfeld now known as the Meissner effect [2]. Meiss-
ner and Ochsenfeld showed that superconductors have the ability to fully screen external magnetic
fields from the inside of the metal. This phenomenon laid the foundation for the thermodynamic
treatment of superconductors.

In the following decades, the number of remarkable properties of superconductors were ever
increasing. However, the underlying mechanism of superconductivity remained a mystery. In
1950, Soviet physicists V. L. Ginzburg and L. D. Landau published a phenomenological theory
for superconductivity, now known as Ginzburg-Landau theory [3]. Though greatly beneficial to
research, it was only a macroscopic theory on its initial form, and failed to explain the details of
superconductivity. In 1957, 46 years after the discovery of superconductivity, the first quantum
theory able to explain both zero electrical resistance and the Meissner effect was published. For
which a Nobel prize was awarded 15 years later in 1972. The theory was developed by the American
physicists J. Bardeen, L. N. Cooper and J. R. Schrieffer, and is now known as the BCS theory of
superconductivity [4].

The BCS theory accelerated research on superconductivity. Already in 1960, the Norwegian
physicist I. Giæver published work on experiments regarding quantum tunneling in superconductors
giving direct evidence of the existence of the so-called energy gap ∆ in superconductors, which
was predicted by the BCS theory [5–7]. Inspired by the experimental work of Giæver, the English
physicist B. D. Josephson analyzed the theoretical description in 1962. Josephson’s work lead to
theoretical predictions of new phenomena in superconductors. One influential effect that bears his
name is the so-called Josephson’s effect [8]. Giæver and Josephson’s work lead to a Nobel prize in
physics in 1973.

1
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Soon after the BCS paper appeared, there was concern among physicists about the universality
of BCS theory, i.e. its ability to describe all superconductors by the same mechanism. The univer-
sality was, at first, the strength of the theory. However, due to this universality, BCS theory did
not seem able to distinguish between superconductors. And as deviations from this universality
became more apparent, the blame was put on our incomplete understanding of the electron-phonon
mechanism. Almost in parallel, L. Gor’kov [9] developed a Green’s function method from which
both the BCS results and the Ginzburg-Landau phenomenology could be derived. Although there
were many other formalisms and methods in use, Gor’kov’s formalism proved to be the most use-
ful. Especially for the purposes of generalizing BCS theory to the case where the electron-phonon
interaction was properly taken into account. This generalization was done by G. Eliashberg in
1961 [10, 11] and was a successful attempt at fixing the universality of BCS theory by including
retardation effects in the electron-phonon interaction. Retardation effects, along with the inclusion
of the electron exchange self-energy, is what makes Eliashberg theory a more complete theory.

A little more than a couple of decades later a new class of superconductors were discovered.
In 1986, the German and Swiss physicists J. G. Bednorz and K. A. Müller opened the door to
high(er) temperature superconductors [12]. They were able to produce superconductivity in ox-
ide materials involving copper (cuprates) at temperatures 12 K higher than the previously known
highest temperature superconductor. This new class of superconductors are today called uncon-
ventional superconductors. Conventional superconductors were originally explained by the BCS
theory as an exchange of phonons between electrons. Unconventional superconductors, however,
do not necessarily exchange phonons but rather e.g. magnons [13]. Another observation was that
this new class of superconductors had stronger effective coupling between the electrons. This dis-
covery was so profound that it took superconductors out of the confinements of physics laboratories
and into the world, making it an almost household word. Bednorz and Müller’s advances towards
high-temperature superconductors lead to a Nobel prize in physics the very next year in 1987 [14].

Room temperature superconductivity is one of the most sought after discoveries in condensed
matter physics. As almost everything in a modern circuit loses energy to heat, substituting regular
conductors with superconductors will eliminate build up of heat in such systems. This implies
better computing power and energy consumption. Even though room temperature superconduc-
tivity is somewhere in the future, low-temperature superconductivity is still widely used in modern
technology. The impact of superconductivity on modern medicine and physics research can not be
downplayed. Two great examples of superconductors used as powerful electromagnets are magnetic
resonance imaging (MRI) and the beam-steering and focusing magnets used in particle accelerators,
e.g. LHC at CERN.

The phase transition between a metal and a superconductor is an example of a second order
phase transition. A paradigm of a second order phase transition was given by the so-called Landau
theory [15]. In Landau theory, one can define an order parameter which is finite and non-zero in
the ordered state (superconductor) and zero in the disordered state (metal). Moreover, Landau
theory laid the foundation for the development of Ginzburg-Landau theory, which in turn played
a major role in the development of BCS theory. Thus, according to Ginzburg-Landau theory,
it is customary to regard the superconducting gap ∆ as the order parameter in BCS theory1.
For a long time it was believed that Landau theory could describe all such phase transitions.
However, in 1980 the German physicist K. v. Klitzing discovered a new state that lead to the
realization of a new type of phase transition, namely topological phase transitions. Klitzing found

1∆ is not really the order parameter of superconductivity. Phase transitions given by Landau theory are described
by spontaneous symmetry breaking. Because superconductivity is a gauge theory, Elitzur’s theorem [16] forbids the
local gauge symmetry of superconductivity to be spontaneously broken. This is why ∆, a local parameter, cannot
be the order parameter of superconductivity. However, Elitzur’s theorem does allow for spontaneous breaking of
a global symmetry within a theory that has a local gauge symmetry. In superconductivity this manifests itself
through the Higgs mechanism which assigns the gauge field (photons) a mass in the superconducting state. In other
words, the true order parameter of superconductivity is the mass of the photon. It is zero in metals and non-zero
in superconductors. This is also the origin of the Meissner effect.
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that confining electrons to a two-dimensional plane and turning on a strong magnetic field resulted
in new, outstanding behavior called the quantum Hall effect (QHE) [17], for which he received a
Nobel prize in 1985. Classically a setup like this gives rise to the classical Hall effect, discovered
by E. Hall in 1879 [18]. The QHE differs from the classical case in that the temperature is low
and the magnetic field strong. Klitzing found that the Hall conductance was quantized, i.e. the
conductance σxy grew in integer steps of e2/h, where e is the elementary charge and h Planck’s
constant. The thought of things being quantized at the microscopic level is not that surprising
today. However, the conductance is not generally thought of as a microscopic quantity. It is a
macroscopic quantity emerging from a large and messy system of many electrons. The fact that a
quantity like that can be quantized is remarkable. The explanation of the QHE required something
new, and it turned out to be topology in quantum many-body systems.

Another property of the QHE is the existence of chiral conduction states along the edges. In
this context, chiral means that the electron transport is one-way. The topology of a quantum Hall
system is the reason these edge states exist. This was shown by D. J. Thouless et al. in 1982
where they showed that the quantum Hall system could be characterized by a topological invariant
integer called the TKNN invariant [19], which is today known as the Chern number.

The QHE requires a strong magnetic field, which is partly why it is a technologically impractical
system. From this came the idea of a similar system exhibiting QHE in the absence of an external
magnetic field. This model, which would be the birth of topological insulators (TIs), was presented
by F. D. M. Haldane in 1988 [20]. Thouless and Haldane’s work on topological phases lead to a
Nobel prize in physics in 2016 [21].

The work on topological insulators is of high interest today, see e.g. review by M. Z. Hasan
and C. L. Kane [22]. And due to the study of topological systems being relatively new, there is
still room for exploration. This is especially true for the case of interacting topological insulators.
Haldane presented a system without interactions, and in recent years there has been an increased
interest in interacting topological insulators [23, 24]. Motivated by this, we aim to learn more about
attractively interacting TIs. In the following, we will include attractive Hubbard interactions in
the spinful Haldane model. From BCS theory we know that attraction between electrons can lead
to superconductivity. Keeping this in mind, we will study the superconductive properties of the
attractive Haldane-Hubbard model2. And because strongly coupled electrons is regarded as one
of the ingredients for high-temperature superconductors, we will study both the weak and strong-
coupling regimes of the Haldane-Hubbard model using BCS and Eliashberg theory, respectively.

2Strictly focused on the bulk and not the edges.



4 CHAPTER 1. INTRODUCTION

1.2 Thesis structure
We begin by giving a brief introduction to some important concepts in Chapter 2. We intro-
duce graphene, tight-binding models, the BCS and Eliashberg theory of superconductivity, and
topological insulators.

Chapter 3 is the main part of this thesis where we study both BCS and Eliashberg theory. In
Section 3.2, we derive the gap equation from BCS theory for the Haldane-Hubbard model. The
gap equation lays the basis for studying the superconductive properties of the Haldane-Hubbard
model in the following sections.

Section 3.3 is where we derive the Eliashberg equations which determine the gap W , Tc and
the electron self-energy S. We proceed to present the solutions to the Eliashberg equations in
Section 3.4 and compare them to the BCS case.

We conclude our findings in Chapter 4 followed by a few appendices. Appendix A includes a
calculation of the Chern number of the Haldane model. In Appendix B, we derive the diagonalized
Hamiltonian followed by a derivation of the density of states at the Fermi level in Appendix C.
Lastly, Appendix D includes a detailed derivation of the Eliashberg equations.



Chapter 2

Preliminaries

2.1 Graphene
Graphene is a one-atom layer thick sheet of carbon atoms arranged as a two dimensional honeycomb
lattice with a single atom at each vertex of the lattice, shown in Fig. 2.1. The three sets of nearest
neighbors of each carbon atom is given by the following vectors

e1 = (0, 1)a δ1 = (
√

3, 0)a b1 = (
√

3, 1)a

e2 = (−
√

3
2 ,−

1
2 )a δ2 = (−

√
3

2 ,
3
2 )a b2 = (−

√
3, 1)a

e3 = (
√

3
2 ,−

1
2 )a δ3 = (−

√
3

2 ,−
3
2 )a b3 = (0,−2)a

(2.1)

where ej , δj and bj are the first, second, and third nearest neighbor vectors, respectively. These
vectors are shown in Fig. 2.2. The distance between each nearest neighbor carbon atom is about
a = 1.42Å. However, we will set a = 1 for brevity of notation. Graphene has been a starting point
for many condense matter models. Some of the most popular models will be presented next.

2.2 Tight-binding model
The goal of the tight-binding model is to simplify the quantum mechanics of crystals. Many models
are built on the tight-binding approximation as it is a simple model of how electrons are arranged
on periodic lattices.

Consider a periodic lattice comprised of atoms, where each atom’s equilibrium position is at the
lattice sites, e.g. the vertices of graphene. The tight-binding model approximates that electrons
are tightly bound to atoms in so-called Wannier orbitals1. These orbitals are localized around
particular atoms with a small amplitude of tunneling (or hopping) to a neighboring atom. We
often restrict ourselves to nearest and second-nearest neighbors (NN and 2NN, respectively). The
process of hopping between nearby atoms can be described using creation (c†) and annihilation
(c) operators for electrons. A Hamiltonian for the kinetic energy associated with hopping in the
tight-binding approximation has the form

H = −t
∑
〈i,j〉
σ

(
c†iσcjσ + c†jσciσ

)
. (2.2)

Above, the sum over 〈i, j〉 is taken over pairs of NN atoms, namely atom i and j. In a one-
dimensional lattice, e.g. evenly spaced beads on a necklace, the NN of atom i would be j = i+ 1.
The sum over σ is a spin sum, where the two possible spin values are σ =↑, ↓. The summand

1See chapter 10 of [25] for more on Wannier orbitals.
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Figure 2.1: Graphene’s honeycomb structure.
The lattice is comprised of two sub-lattices A
and B, with lattice constant a.

�2
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�1
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�3
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�2

Figure 2.2: Honeycomb lattice with the three
nearest neighbor vectors drawn in, namely ej ,
δj , and bj .

describes a two-step process of electron hopping. The annihilation operator cjσ removes an electron
from the orbital around atom j with spin σ. Meanwhile, the creation operator c†iσ adds an electron
to the orbital around atom i with spin σ. In other words, the electron that was removed from one
atom, gets added to the neighboring atom, which is an effective description of electron hopping.
The second term of the summand describes the reverse process: hopping from atom i to j. t is the
small tunneling amplitude that describes the likelihood of hopping. If we add a second sum to H
but with 〈〈i, j〉〉 instead, we would have a Hamiltonian that describes both NN and 2NN hopping.

In order to diagonalize the Hamiltonian, we introduce the Fourier transformed operators

ciσ =
1√
N

∑
k

eik·rickσ, (2.3)

where N is the number of unit cells and ri is the real-space vector to lattice site i, who’s component
in one dimension would be ri = ia, where a is the lattice constant. The annihilation operator ckσ
removes an electron in the momentum-state k in reciprocal space with spin σ. Transforming H to
the k-basis gives (see Appendix B for a thorough derivation)

H =
∑
kσ

εkc
†
kσckσ, (2.4)

where εk is the energy of a given k-state, often referred to as the dispersion relation. For a one-
dimensional lattice, the dispersion relation becomes εk = −2t cos(ka). Going forward, we will
mostly work in the k-basis.

2.3 Hubbard model

The Hubbard model is an extension of the tight-binding model discussed earlier. It was first
proposed by J. Hubbard in 1963 [26] as an oversimplified but useful interacting model of electrons
on periodic lattices. On its on-site form, the Hubbard model reads

H = −t
∑
〈i,j〉
σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

c†i↑ci↑c
†
i↓ci↓, (2.5)

where U is the strength of the interaction. We call the second sum the Hubbard term. The
combination of c†iσciσ in the Hubbard term is called a number operator. If an electron occupies
the state (i, σ), the eigenvalue of the number operator would be 1. If the electron in question is
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in another state, however, the number operator’s eigenvalue is 0. In other words, c†iσciσ counts
whether there is an electron in state (i, σ) or not. The Hubbard term describes electron-electron
interaction between two electrons on the same site with opposite spin. Note that the Hubbard term
only contributes if both spin up and spin down states are filled, in effect counting the cumulative
energy for each filled lattice site.

The sign of U determines whether it is favorable to fill the orbital with both spin up and spin
down. If U > 0, as originally proposed by Hubbard, the energy of the system will increase as
more orbitals are filled with electrons, hence making filling unfavorable. However, if U < 0, filling
becomes favorable because the energy decreases for every filled orbital. Due to the Pauli principle
and the repulsive Coulomb interaction, it makes sense to consider U > 0: the electrons want to
stay far away from each other. However, we will consider the case of U < 0, called the attractive
Hubbard model. The attractive Hubbard model is a simplified model that describes an effective
attraction between electrons. An example where attraction between electrons is important is the
BCS theory of superconductivity, where electrons form so-called Cooper pairs.

2.4 Superconductivity

Two main features define a superconductor: zero electrical DC resistance and the Meissner effect.
We will explain the former after a primer on the BCS theory. While we make due with a heuristic
explanation of the latter.

The Meissner effect is the ability of a superconductor to fully expel an external magnetic
field from the inside of the metal. A regular conductor placed in an external magnetic field has
practically the same magnetic flux both inside and outside the metal. A superconductor, on the
other hand, expels it completely due to induced currents on the surface of the metal. The surface
current induces a magnetic field exactly opposite of the external field canceling it completely, i.e.
a perfect diamagnetic response. Though, there exists two types of superconductors, namely type I
and type II. Type I is characterized by the fact that the internal magnetic flux of the superconductor
can jump to a finite value if the external field strength surpasses a critical value. While type II
superconductors see a continuous increase in internal magnetic flux if the external field is strong
enough. Although the Meissner effect is a remarkable effect on its own, we will not spend more
time discussing it. See chapter 1.3 of [27] for more on the Meissner effect.

These properties, zero electrical resistance and the Meissner effect, were for a long time only
understood empirically. A quantum theory able to explain both effects was not developed until
1957 by Bardeen, Cooper and Schrieffer, namely the BCS theory of superconductivity.

2.4.1 Introduction to BCS theory

Electrons in a crystal are subject to two main interactions, namely electron-electron interactions
and electron-ion interactions. The Coulomb interaction between electrons, along with the Pauli
principle, make electrons repel each other. However, the story of superconductivity is of attraction
between electrons. We will discuss how effective attraction between electrons arises to form Cooper
pairs. But first, we will look at a toy model Cooper thought of in 1956 [28] (referred to as the
Cooper problem) leading up to the full BCS theory in 1957.

The Cooper problem

The Cooper problem uses a simplified model to show how electrons can form bound states just
by introducing a weak attractive interaction in the Hamiltonian, without considering the source
of this attraction. As told in chapter 3 of [27], the story goes as follows: Imagine a system with
a sea of electrons where all states up to the Fermi level are occupied, i.e. a Fermi sea. Consider
also that the electrons in the Fermi sea are non-interacting. If we now add two electrons near the
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surface of the Fermi sea, we claim these two electrons only interact with each other and not with
the Fermi sea. However, their interaction is not repulsive, like the Coulomb interaction. Instead
they interact attractively, given that the electrons are within a small energy ω0 from the Fermi
surface and on opposite sides of the Fermi surface. Otherwise they do not interact at all. Being on
the opposite sides of the Fermi surface means that if one electron is in the free state |k〉, the other
must be in a free state |−k〉. In the absence of this attractive interaction, the two-particle state is
denoted |k,−k〉. Meanwhile, in the presence of the interaction, we denote it |1, 2〉. We write the
Hamiltonian of this system as

H = H0 + Veff , (2.6)

where H0 is the free Hamiltonian and Veff describes the attractive interaction. The energy eigen-
value of |k,−k〉 can be found from the Schrödinger equation2

H0|k,−k〉 = 2εk|k,−k〉, (2.7)

where εk is the energy of a single non-interacting electron. Note that the energy eigenvalue of the
two non-interacting electrons in state |k,−k〉 is 2εk, and that for free electrons 2εk > 2εF, where
εF is the Fermi energy. If we include the attractive interaction, the Schrödinger equation becomes

H|1, 2〉 = (H0 + Veff)|1, 2〉 = E|1, 2〉, (2.8)

where E is the two-particle energy of the attractively interacting electrons above the Fermi sea.
We want to find out if E < 2εk. If it is, then it means that the electrons have lower energy when
interacting than when free. Which means that the two electrons have formed a bound state. The
problem at hand is to find E. The first step towards goal is to assume the states |k,−k〉 form a
complete basis such that we can expand |1, 2〉 in this basis,

|1, 2〉 =
∑
k

ak|k,−k〉, (2.9)

where ak are the expansion coefficients. Determining ak involves using that the interaction between
the electrons is negative and constant −V , where V > 0, only when they are within an energy ω0

from the Fermi surface, and zero otherwise. Then, one introduces the density of states D(ε) =∑
k δ(ε− εk) to find the form of ak. The actual calculation is not that informative for our purposes

but can be found in chapter 3 of [27]. Hence, we jump to the equation which determines E,

1

λ
= ln

[
1 +

2ω0

∆

]
. (2.10)

Above, λ ≡ V D(εF) and ∆ ≡ 2εF − E. Because both V > 0 and D(εF) > 0, it means that λ > 0.
The only way Eq. (2.10) can have a solution is if ∆ > 0, which means E < 2εF. Recall, we wanted
to know if E < 2εk because then the interacting electrons would have formed a bound state. We
just found that E not only is smaller than 2εk but also 2εF. The electrons have formed a Cooper
pair. This result was surprising at the time. Mostly because there were no known mechanisms that
caused attraction between electrons, but Cooper did the calculations anyway. What makes the
result even more odd, is that the collective two-particle energy is less than 2εF. This result can be
thought of as a slight violation of the Pauli principle. The short explanation is that by forming a
Cooper pair, the emerging “particle” has a slightly different statistic than their individual fermion
statistics. Each electron in a Cooper pair has opposite spin relative to each other, which means
their total spin is 0. Thus, Cooper pairs can be thought of as boson-like particles. And as we
know, only fermions are subject to the Pauli principle.

2We set Veff = 0 when considering the non-interacting case.



2.4. SUPERCONDUCTIVITY 9

Figure 2.3: Feynman diagram describing electrons in states (k, σ) and (k′, σ′) being scattered into states
(k + q, σ) and (k′ − q, σ′) with a momentum transfer q. Figure is inspired from [27].

The BCS mechanism

We will now introduce a mechanism that realizes Cooper pairs by including two known interactions:
electron-electron and electron-ion interactions. We know already that electrons interact repulsively
through the Coulomb interaction. If we include electron-ion interactions, the emerging effective
interaction between electrons turns out to be attractive. Electrons interact with ions by exchange
of phonons. Phonons are quasi-particles and defined as the quantization of energy modes of ions
in a lattice. The Hamiltonian for this system reads [27]

H =
∑
kσ

εkc
†
kσckσ +

∑
kk′qσσ′

1

4πε0

2πe2

q2
c†k+q,σc

†
k′−q,σ′ckσck′σ′

+
∑
kqσ

Mq(a†−q + aq)c†k+q,σckσ,
(2.11)

where the second term (Coulomb term) describes Coulomb repulsion between electrons and the
last term (phonon term) is the electron-phonon interaction with interaction coupling Mq. The
q-momentum in both sums describes a momentum transfer in a scattering process between two
electrons and between an electron and a phonon, respectively. Moreover, a† and a are the bosonic
creation and annihilation operators describing the phonons. We can understand the Coulomb and
phonon sums in terms of a simple Feynman diagram. Figure 2.3 shows a scattering process of
two electrons mediated by a virtual particle with momentum q. The Coulomb term describes two
electrons in state (k, σ) and (k′, σ′) approaching their vertex (black dot). The electron in state
(k′, σ′) loses a momentum q and enters a state (k′− q, σ′). Meanwhile, the electron in state (k, σ)
acquires a momentum q and enters state (k + q, σ). In the Coulomb case, the carrier of q is a
photon. This diagram can also be used to describe the phonon term. If we cut the dashed line
into two pieces, we are left with two vertices. Each half corresponds to their term in the phonon
summand, i.e. the a†−q- and aq-term. This time, the carrier of q is a phonon instead of a photon,
and the two vertices describe electron-phonon scattering. Next, we will see Fig. 2.3 describing
the entire Hamiltonian instead of only describing pieces of it. Chapter 3 in [27] shows that we
can rewrite the phonon term such that we obtain a single effective interaction term describing
electron-electron scattering. The Hamiltonian becomes

H =
∑
kσ

εkc
†
kσckσ +

∑
kk′qσσ′

Ṽeff(q, ω)c†k+q,σc
†
k′−q,σ′ckσck′σ′ , (2.12)

where
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Ṽeff(q, ω) =
2|Mq|2ωq

ω2 − ω2
q

+
1

4πε0

2πe2

q2
. (2.13)

In Ṽeff , ωq is the eigenvalue of a phonon in a plane-wave state |q〉 and ω is the energy transfer
in the electron-electron scattering. Recall that Eq. (2.11) includes both Coulomb and phonon
interactions as two separate effects, while in Eq. (2.12) we have combined the two interactions into
one effective interaction. This effective interaction is on a similar form as the original Coulomb
interaction. Which means it describes an electron-electron scattering exactly like the one shown
in Fig. 2.3. As we suggested earlier, this effective interaction can be attractive, i.e. Ṽeff < 0.
We see that Ṽeff < 0 if ω2 approaches ω2

q from below, regardless of the strength of the repulsive
Coulomb interaction. In other words, it does not matter how small the electron-phonon coupling
is, or how strong the Coulomb repulsion is, there will be a range of ω that will almost guarantee
effective attraction between electrons. And considering what we learned from the Cooper problem,
this means electrons can form bound states such as Cooper pairs. Recall that we did not specify
the source of attraction between electrons in the Cooper problem. And in all honesty, it did not
seem like any known interactions could give us the attraction. However, we have just seen that
combining two quite reasonable interactions leads us to an effective attractive interaction between
electrons. This is the motivation behind the BCS theory.

The results we have achieved so far are mathematically appealing. However, we are yet to gain
a physical understanding of attraction between electrons. This is what we will try to do next.
Imagine an electron whizzing past a heavier ion in a lattice. The massive ion, like the electron, will
feel an attraction and get displaced from its equilibrium position. Because the ion is so massive,
it will relax back to its equilibrium relatively slowly. Simultaneously giving the electron time to
get far away. Because the ion is still displaced from equilibrium, and in the vicinity of a second
approaching electron, the second electron interacts with the ion just like the first one. Effectively,
this describes an attractive interaction between electrons mediated by a phonon, because the second
electron interacted with the ion only because the ion was displaced from its equilibrium. Note,
however, for the electrons to be able to interact like this, the second electron has to interact with
the ion before the ion has had time to relax. Moreover, the second electron must also wait an
appropriate amount of time before approaching to give the first electron the opportunity to get as
far away as possible to minimize Coulomb repulsion. We see from this that an effective interaction
is only realized under certain conditions. These conditions are analogous to being on opposite
sides and an energy ω0 from the Fermi surface in the Cooper problem, and ω2 approaching ω2

q

from below in Eq. (2.13).
Although this is the physical picture of the interaction, BCS theory only implicitly includes

these details. The interaction, as described above, is local in space and retarded in time. And
as described in the introduction, BCS theory does not account for retardation effects explicitly.
These effects are only treated in detail by theories such as Eliashberg theory.

How does the BCS theory explain zero electrical resistance?

So far, we have developed an understanding of what the BCS theory is built on. In short, electrons
go together to form Cooper pairs with a bound energy less than the Fermi energy. The fact
that their bound energy is less than the Fermi energy tells us that their fermion statistics has
been altered. To be clear, Cooper pairs are not bosons. However, they do have some boson-like
properties. The main property we will focus on is called Cooper pair condensation, comparable
to Bose-Einstein condensation [29, 30]. A Bose-Einstein condensate (BEC) is a state of matter
at near zero temperatures where bosons condense into the ground state of the system. Bosons,
unlike fermions, can occupy the same quantum state, and in a BEC they all get trapped in the
ground state. Similarly, Cooper pairs get trapped in a condensate below the Fermi surface. In this
context, trapped means that many Cooper pairs are in energy states 2∆ below the Fermi surface.
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∆ is called the superconducting order parameter, or the superconducting gap. The explanation
of zero electrical resistance relies on this condensate and goes as follows [27, 31]: The electrons of
the condensate have highly correlated momenta, i.e. the entire condensate moves like a unit. If we
apply an electric field, generating a current in a direction, in practice all electrons in the condensate
will move opposite of that field. Which means there is an increase of momenta in the direction of
the flow. In regular conductors, resistance comes from electrons being scattered in the opposite
direction of the current due to e.g. imperfections in the metal. In superconductors, however, this
nearly never happens. For electrons to be scattered opposite of the flow, the scattering energy
must be enough to break a Cooper pair and excite the electrons to the opposite side of the Fermi
surface. There are no scattering mechanisms in the superconducting state that have enough energy
∆ to do this. Hence, superconductors have zero resistance.

Bardeen used a football field invaded by a crowd as an analogy for the electron pairs in a
superconductor. We can use a slightly different analogy communicating the same point. The
electron pairs can be thought of as leafcutter ants carrying leaves back to their nest. Such ants
move in large numbers, all in the same direction. The colony as a whole manages to supply their
nest with leaves at a steady rate without interruption in spite of their path being imperfect. The
flow of leaves can be compared to current in the superconductor unimpaired by relatively small
obstacles, such as twigs and rocks.

We will derive an equation which determines the superconducting gap ∆ in Chapter 3, called
the gap equation. As we will see, the gap equation can be used to determine both ∆ and the
critical temperature Tc.

2.4.2 Eliashberg theory

The BCS theory works well for many elemental superconductors. One example is aluminium, which
has a critical temperature of Tc ≈ 1.2 K [32]. Common for these elemental superconductors is the
fact that the interaction strength, or coupling, between the electrons and the phonons is relatively
weak. A common number describing coupling strength is the positive coupling constant λ, which is
defined as λ ≡ V D(εF) in BCS theory. Here V is the effective interaction strength and D(εF) is the
density of states at the Fermi level. BCS theory is based on the simple approximation that V can
be taken to be small and constant close to the Fermi level, and zero otherwise. Generally, however,
this approximation is inadequate. This was made clear in the 1960s when the first discrepancies
between experimental results and theoretical predictions surfaced. The reason for the discrepancy
was that many superconductors have quite strong electron-phonon coupling. Such superconductors
are not well suited for BCS theory. In fact, it has been shown that one has to limit λ � 1 if the
BCS theory is to have decent predictive power. Aluminium, for instance, has a coupling constant
of λ ≈ 0.4 [32], and is thus well described by BCS theory. Mercury, on the other hand, being the
first superconductor ever discovered is ironically not suited to be described by the BCS theory due
to its large coupling constant of λ ≈ 1.6 [32]. Any superconductor with a larger coupling constant
would be inaccurately described by BCS theory. Hence the need for a more general theory.

A theory better equipped to describe superconductors like mercury and lead is called Eliashberg
theory named after G. Eliashberg [10, 11]. The goal of Eliashberg theory is to more accurately
describe the electron-phonon interaction. The BCS theory assumes weak, constant coupling which
is instantaneous, with little to no regard for the inertial difference between electrons and ions.
Therefore, to get the whole picture of the interaction, one must consider the different time scales
of the electron-phonon interaction and the Coulomb interaction. The photon mediated Coulomb
interaction is practically instant. Meanwhile, the phonon mediated attractive electron-electron
interaction is very much frequency dependent. Which means that the electron-phonon interaction
term must be fully retarded. The intuition for this is the fact that ions are much more massive than
electrons and thus have more inertia. And by inspecting the periodic table of elements, one can
easily see that mercury and lead ions are much heavier than an aluminium ion. Another difference



12 CHAPTER 2. PRELIMINARIES

Figure 2.4: Diagram of fermionic propagators in Eliashberg theory defined in Eq. (2.14).

between BCS and Eliashberg theory is the self-energy functions of the electron. BCS neglects these
with the assumption that their contribution is negligible, which in fairness is a good approximation
if the coupling is weak. However, now that the coupling between electrons and phonons is strong,
the electron self-energy should not be ignored.

The difference in approach between the theories is that in Eliashberg theory, it is much more
expedient to work in the imaginary-time (Matsubara) Green’s function formalism [33]. In this
formalism, one defines a few Green’s functions with imaginary-time τ

G(k, τ) ≡ −〈Tτ ckσ(τ)c†kσ(0)〉
F (k, τ) ≡ −〈Tτ ck↑(τ)c−k↓(0)〉

F †(k, τ) ≡ −〈Tτ c†−k↓(τ)c†k↑(0)〉
(2.14)

where Tτ is a time-ordering operator defined as

TτA(τ)B(τ ′) = Θ(τ − τ ′)A(τ)B(τ ′)−Θ(τ ′ − τ)B(τ ′)A(τ), (2.15)

and Θ(τ) is the Heaviside step function and A,B are fermion operators. The time-ordering oper-
ator keeps track of the order of the operators with regards to present and past. The three Green’s
functions are all single-particle Green’s functions. However, the first function, G, is a normal
Green’s function which diagrammatically describes an electron line pointing in one direction, i.e.
an electron with momentum and spin (k, σ) created at one point in time and destroyed at another,
see Fig. 2.4a. The last two functions, F and F †, are called anomalous Green’s functions. Diagram-
matically, they describe electron lines pointing in towards center (F †) or out from center (F ). In
the case of F †, an electron is created at each end of the line resulting in two electron lines pointing
inward, see Fig. 2.4c. While for F , an electron is destroyed at each end resulting in two electron
lines pointing outward, see Fig. 2.4b. We call these functions anomalous because, unlike G, they
do not conserve particle number.

Eliashberg theory is built on these Green’s functions. And from these Green’s functions emerges
two vital quantities called self-energy functions. The self-energy functions of this theory are S and
W , called the exchange self-energy and the superconducting gap, respectively. In BCS theory, ∆
is equivalent to W while S is unique to Eliashberg theory. We can define S and W in Eliashberg
theory as [34]

S(p, iωn) = − 1

β

∑
q,m

Veff(q, iωm)G(p+ q, iωn + iωm) (2.16)

Figure 2.5: Diagram of self-energies in Eliashberg theory. The solid lines are fermionic propagators while
the dashed lines are bosonic propagators represented as Veff in Eqs. (2.16) and (2.17).
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Figure 2.6: Diagram of the full propagator taking an electron from state x to y. The thick electron line
on the LHS represents the full propagator G. The RHS is a sum of the constituents of the full propagator:
the bare propagator G(0) and an infinite sum of G(0) with self-interactions.

W (p, iωn) = − 1

β

∑
q,m

Veff(q, iωm)F (p+ q, iωn + iωm), (2.17)

where Veff is the effective attractive interaction strength. A diagrammatic interpretation of S and
W is shown in Fig. 2.5.

A note on self-energy

The concept of self-energy can be tricky to understand, which is why we will spend a little time on
it here. We will use Richard Feynman’s diagrammatic approach as our main tool. In fact, we have
already used Feynman diagrams in Figs. 2.3 to 2.5 to explain interactions, propagators and, lastly,
self-energies. In short, self-energies are defined as corrections to bare propagators. Because bare
propagators are only valid in an interaction-free theory, we need to correct these propagators when
moving to a theory with interactions. The quantum theory of superconductivity is an example of
an exclusively interacting theory, which is why it is important to understand self-energy.

Imagine an electron completely alone in the universe where nothing is able to affect its state.
Without interactions, this electron is described by a so-called bare electron propagator. We denote
bare propagators as G(0). For an electron, the bare propagator is often written as [35]

G(0)(p) =
i(/p+m0)

p2 −m2
0 + iε

. (2.18)

In reality, however, electrons are never alone in the universe, and thus they are always subject to
interactions. Thus, the bare propagator is only an approximation of reality. To improve our ap-
proximation we have to correct the bare propagator by including the possibility of self-interactions.
Remember that in any interaction, we can only observe the initial state and the final state. The
intermediate states are virtual and cannot be observed. This is captured by Feynman diagrams by
drawing internal lines, like the boson line in Fig. 2.3. One can then imagine a range of possible
ways an electron can go from state x to y by interacting with itself. Fig. 2.6 shows some of the
possibilities. We can be more succinct when defining the possible self-interactions by considering
irreducible diagrams. We define a one-particle irreducible (1PI) diagram to be any diagram that

Figure 2.7: Diagram of some of the one-particle
irreducible (1PI) diagrams. Note that the definition
of 1PI diagrams is without external lines, i.e.
only the gray circle on the LHS represents all 1PI
diagrams.

Figure 2.8: Diagram of the full propagator and
its constituents. The thick line represents the full
propagator. A sum of infinite combinations of all
1PI diagrams with the bare propagator defines the
full propagator. This is a diagrammatic represen-
tation of Eq. (2.19).



14 CHAPTER 2. PRELIMINARIES

Figure 2.9: Diagrammatic representation of Eq. (2.21). An important step when constructing these
diagrams is to always conserve particle number at each vertex. Note that only one self-energy diagram is
used for both S and W .

cannot be split in two by cutting a single internal line [35], see Fig. 2.7 for examples of such di-
agrams. The important part is that the sum of all infinite 1PI diagrams defines the self-energy
Σ, i.e. the sum of all diagrams on the right hand side in Fig. 2.7. To fix the problem of the bare
propagator we need to account for all infinite 1PI diagrams and their combinations. The full prop-
agator G is a sum of the bare propagator and all infinite combinations of 1PI diagrams as shown
in Fig. 2.8. We can write this as

G(p) = G(0)(p) +G(0)(p)Σ(p)G(0)(p) +G(0)(p)Σ(p)G(0)(p)Σ(p)G(0)(p) + . . .

= G(0)(p) +G(0)(p)Σ(p)
[
G(0)(p) +G(0)(p)Σ(p)G(0)(p) + . . .

]
= G(0)(p) +G(0)(p)Σ(p)G(p).

(2.19)

The expression inside the square brackets is just the full propagatorG itself. The emerging equation
determines the full propagator and is famously known as the Dyson equation

G(p) = G(0)(p)[1 + Σ(p)G(p)]. (2.20)

In Eliashberg theory, S corresponds to Σ while W does not have any direct equivalent in our
discussion so far. This is due to the anomalous Green’s functions F and F † and the fact that
F (0) = F †(0) = 0 [34], i.e. superconductivity cannot occur in a non-interacting theory. However, if
we were to do a similar analysis of S and W , we would end up with something analogous to the
Dyson equation [34]

G(p) = G(0)(p)[1 + S(p)G(p)−W †(p)F (p)]

F (p) = G(0)(−p)[W (p)G(p) + S(−p)F (p)].
(2.21)

These equations are depicted diagrammatically in Fig. 2.9. The construction of Eq. (2.21) from
Eq. (2.20) can, to begin with, be done only by inspection. Equation (2.20) does not have any
contribution from the anomalous functions F and F †. When including W (or W †) in Eq. (2.20),
the trick is to remember the conservation of particle number at each vertex. This rule will determine
the allowed vertices. Constructing a similar equation for F (or F †) is done by first realizing F (0) = 0
and then determining which propagators need to be paired with S andW (while conserving particle
number at each vertex). This method of constructing Eq. (2.21) is only meant as a sketch. A more
rigorous method is to derive the corresponding Dyson equations by e.g. the equations of motion
approach. We will derive Dyson equations similar to Eq. (2.21) that are specific to our model in
Section 3.3.

In principle one is required to sum all infinite self-energy diagrams to get the proper full
propagator. Because this is not possible, one has to make due with only a few diagrams and argue
why higher order diagrams do not contribute significantly. From Fig. 2.9 we see that the only 1PI
diagram included in S and W is the first diagram on the right hand side in Fig. 2.7. The second
diagram in Fig. 2.7 is a vertex correction and is ignored in Eliashberg theory (along with higher
order diagrams). The reason for ignoring vertex corrections is due to a “theorem” by Migdal [36]
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stating that all vertex corrections are O(
√
m∗/M), where m∗ is the effective electron mass and

M the ion mass. As long as
√
m∗/M ' λωD/εF � 1, Migdal argues that all vertex diagrams

can be neglected. However, Mahan [34] and Ummarino [32] discuss that ignoring higher order
diagrams does put a limit on Eliashberg theory’s validity. Mahan poses the following difficulty
with Migdal’s argument: since superconductivity itself occurs due to a vertex diagram (scattering
between electrons by exchange of e.g. phonons), relying on a “theorem” which neglects all vertex
corrections is unreliable. Additionally, due to the limitation λωD/εF � 1 introduced by Migdal, one
can even argue that Eliashberg theory is a weak-coupling theory in the sense that the Fermi energy
εF is still the dominant energy scale. Despite the controversy of Migdal’s “theorem”, neglecting all
vertex corrections is customary in Eliashberg theory.

2.5 Topological insulators

Topological insulators (TIs) share some of their properties with regular insulators. The obvious
property being that such materials can not conduct electricity due to the energy gap between
valence and conduction bands being too large. However, the main practical difference between a
TI and a topologically trivial one is that TIs have exotic metallic states on their surfaces [37], much
like in the QHE. In practice this means that, unlike a regular insulator, a TI can conduct electricity
along the surface or edges of the material. An incomplete but practical description of such edge
states is that a TI behaves like a regular insulator coated with a metal – insulating in the bulk and
conducting on the surface. The reason the above description is incomplete is because these edge
states are protected by abstract symmetries of the TI, unlike conducting states in regular metals
which are prone to perturbations. This is where the topology of TIs come into play.

Edge states are robust because of topological invariants. A topological invariant is a quantity,
usually an integer, that remains the same (invariant) under a continuous change of the system. We
can understand such invariants by comparing a doughnut to a football. In topology, one can define
a quantity called the genus g. It describes the number of holes in a closed shape. A doughnut, for
instance, has exactly one hole g = 1. Meanwhile, a football, taken to be sphere, has no holes g = 0.
Topologically speaking, these shapes cannot by unified, because we cannot deform a doughnut into
a sphere without having to cut the doughnut into a cylinder or punch a hole through the sphere. In
other words, there is no continuous transformation that can transform a doughnut to a sphere, or
vice versa. Another popular example of topology is the comparison of a coffee cup to a doughnut.
Since both shapes have exactly one hole g = 1, they are topologically equivalent. We can transform
a coffee cup into a doughnut without needing to cut the object, i.e. a continuous transformation.

We have seen how topological invariants can be defined for physical objects. One such topolog-
ical invariant in the context of topologically non-trivial insulators is called the Chern number. The
genus was invariant under continuous physical deformations of the shape. Meanwhile the Chern
number is invariant under smooth variations of the Hamiltonian. As explained by Hasan and Kane
[22], the Chern number can be understood in terms of the Berry phase [38]. The Berry phase is
a phase the Bloch functions |u(k)〉 of the Hamiltonian acquire around a closed loop3. This phase
is given through the line integral of the Berry connection A = −i〈u(k)|∂k|u(k)〉. And the Chern
number is proportional to the closed Brillouin zone integral of the Berry curvature Ω ≡ ∇×A

C =
1

2π

‹
BZ

dk ·Ω. (2.22)

The Chern number can be a positive or negative integer. If C = 0, we say the system is topologically
trivial, e.g. a regular insulator. If C 6= 0, however, we have a topologically non-trivial system. We
call insulators characterized by Chern numbers Chern insulators (CI).

3See [39] for more on the Berry phase.
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2.5.1 Haldane model
A CI of considerable importance was presented by F. D. M. Haldane in 1988 [20]. The Haldane
model is an interaction-free tight-binding model on a honeycomb lattice where we allow electrons
to hop to NN and 2NN sites. Figure 2.2 shows the arrangement of NN and 2NN lattice sites. The
spinful version of the model is described by the following Hamiltonian

H =− t
∑
〈i,j〉σ

(
c†iσdjσ + d†jσciσ

)

− t′
∑
〈〈i,j〉〉σ

(
c†iσcjσeiφ + c†jσciσe−iφ + d†iσdjσe−iφ + d†jσdiσeiφ

)
,

(2.23)

where the first term describes hopping to NN sites with t the NN hopping parameter, and the
second term describes 2NN hopping with the complex hopping parameter t′e±iφ. φ is a phase the
electron wavefunctions acquire when hopping between 2NNs and (c†, c) and (d†, d) are creation and
annihilation operators for sub-lattices A and B respectively, see Fig. 2.1. The sign of the phase
is based on the conventions of Haldane. The sign is positive (negative) when hopping j → i in
sublattice A (B), and changes sign when hopping i → j. The Chern number of this Hamiltonian
is C = ±1 and has been calculated in Appendix A. Because the Chern number is non-zero, we
know that the Haldane model is indeed topologically non-trivial. And a study of its edges reveals
topologically protected conduction states.



Chapter 3

Superconductivity in the
Haldane-Hubbard model

One of the most interesting fields in modern condensed matter physics is the study of topological
states of matter. Topological insulators are well-described by band theory and typically regarded
as a system of non-interacting fermions, e.g. the Haldane model in Eq. (2.23). However, many fas-
cinating phenomena in condensed matter physics exist simply due to electron-electron interactions,
e.g. superconductivity. This fact has caused a natural increase in focus on interacting topological
insulators in recent years [23], with hopes of finding novel topological states.

The Haldane model describes a non-interacting Chern insulator (CI) with nearest and second-
nearest neighbor hopping. The goal of this chapter is to study topological phase transitions of this
CI induced by attractive electron-electron interactions. More specifically, the transition between a
CI and a superconductor in the weak and strong coupling regimes. One of the simplest examples
of electron interactions on a lattice is the on-site Hubbard interaction. By adding a Hubbard term
for each sub-lattice A and B of graphene to the spinful Haldane model in Eq. (2.23), we get the
following Hamiltonian

H =− t
∑
〈i,j〉
σ

(
c†iσdjσ + d†jσciσ

)
− t′

∑
〈〈i,j〉〉
σ

(
c†iσcjσeiφ + c†jσciσe−iφ + d†iσdjσe−iφ + d†jσdiσeiφ

)
+ U

∑
i∈A

c†i↑ci↑c
†
i↓ci↓ + U

∑
j∈B

d†j↑dj↑d
†
j↓dj↓,

(3.1)

called the attractive Haldane-Hubbard model. The diagonalization of H, outlined in Appendix B,
results in

H =
∑
kσ

(εk − µ)c†kσckσ +
U

4N

∑
kk′q,σ

c†k+qσc
†
k′−q,−σck′,−σckσ, (3.2)

where µ is defined as the chemical potential (Fermi level), N is the number of unit cells, and εk is
the lower band of the dispersion relation defined as

εk = −2t′ cosφ
∑
j

cos(k · δj)−
[
t2|S(k)|2 + 4t′

2
sin2 φ

(∑
j

sin(k · δj)
)2
]1/2

, (3.3)

where S(k) ≡
∑
j exp(ik · ej). Both NN and 2NN vectors ej and δj , respectively, are defined in

Eq. (2.1). Going forward we will measure energy in units of t, thus setting t = 1. Moreover, the

17
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Figure 3.1: Plot of the upper and lower band of the dispersion relation εk for varying values of v ≡ t′/t.
The lower band is given in Eq. (3.3). The Fermi level µ is drawn in as a dashed line to show how the
system can transition between insulating and superconducting states depending on t′.

phase φ will be set to φ = π/2. This is motivated by the common choice of 2NN hopping parameter
±it′. Note that the creation and annihilation operators in Eq. (3.2) are pseudo-particle fermion
operators unlike the ones in Eq. (3.1).

3.1 Superconducting in the bulk

The CI described by the Haldane model is insulating in the bulk. However, by introducing attrac-
tive electron coupling, correlated electron states like Cooper pairs emerge. Which in turn makes
the CI superconductive in the bulk. This phase transition has a critical point determined by t′
and µ. For a given Fermi level µ, we can tune the 2NN hopping parameter t′ such that the shape
and size of the gap in the dispersion relation εk changes, shown in Fig. 3.1. As long as µ resides
inside the energy gap, the bulk remains insulating. At a critical value t′c, however, µ will intersect
with an energy band resulting in a transition to the superconductive state. The critical t′c can
be calculated in terms of µ by setting the dispersion relation εk equal to µ at the Dirac point
k = K ≡ (4π/3

√
3, 0)

t′c =
µ

3(cosφ−
√

3|sinφ|)
=
|µ|

3
√

3
, (3.4)

where we have chosen the lower band µ < 0 and set φ = π/2, like in Fig. 3.1.

3.2 BCS theory

The Bardeen-Cooper-Schrieffer (BCS) theory is the first and a highly successful quantum theory
for describing superconductors with weak electron correlation. Which is why BCS is a natural
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starting point for studying superconductivity in our interacting Haldane model. We quantify weak
coupling by λ� 1, where λ ≡ V D(εF) is called the coupling constant. λ is an appropriate measure
of coupling strength with V defined as an effective interaction strength and D(εF) the density of
states at the Fermi level. The next step is to derive the BCS gap equation with Eq. (3.2) as our
Hamiltonian.

The interaction term in Eq. (3.2) describes a scattering process between two electrons with
momenta (k,k′) scattered to momenta (k + q,k′ − q). Generally we allow all k′ in the sum.
However, one of the important assumptions of BCS theory is that only electrons close to the Fermi
surface with opposite momenta and spin can interact attractively. If we say that k is within a
thin shell around the Fermi surface, then only a handful of k′ and q momenta are relevant to the
attraction. Thus, we need to limit k′ such that if k + q is close to the Fermi surface, k′ − q also
stays close to the Fermi surface. The choice of k′ that satisfies this constraint for all q is k′ = −k
[27]. Only including k′ = −k and rewriting k+ q → k and k→ k′ in the interaction term, we get

H =
∑
kσ

(εk − µ)c†kσckσ +
U

2N

∑
kk′

c†k↑c
†
−k↓c−k′↓ck′↑. (3.5)

3.2.1 Mean-field theory

The BCS theory is a mean-field theory, which is why we will simplify the interaction term in
Eq. (3.5), denoted HU , by rewriting it using

c−k↓ck↑ = bk + c−k↓ck↑ − bk︸ ︷︷ ︸
=δbk

, (3.6)

where bk = 〈c−k↓ck↑〉 is a statistical mean [27]. The mean-field approximation is that the difference
δbk is small. Thus, we insert Eq. (3.6) back into HU and neglect all terms O(δ2

bk
)

HU =
U

2N

∑
kk′

(
bk′c

†
k↑c
†
−k↓ + b†kc−k′↓ck′↑ − b

†
kbk′

)
. (3.7)

HU can be simplified further by introducing the superconducting order parameter

∆ ≡ − U

2N

∑
k

bk. (3.8)

This is the superconducting gap and the solution to the gap equation. Inserting ∆ and ∆† in HU

gives

HU = −
∑
k

(
∆c†k↑c

†
−k↓ + ∆†c−k↓ck↑

)
+ ∆

∑
k

bk. (3.9)

This is the final form of the mean-field approximated HU . All that remains now is to diagonalize
the full Hamiltonian and find an equation for ∆ self-consistently.

3.2.2 Diagonalizing the Hamiltonian

The full Hamiltonian H up to this point is

H =
∑
kσ

(εk − µ)c†kσckσ −
∑
k

(
∆c†k↑c

†
−k↓ + ∆†c−k↓ck↑

)
+ ∆

∑
k

b†k. (3.10)

Before proceeding with diagonalizing H, we should carry out the σ-sum in the first term
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∑
kσ

(εk − µ)c†kσckσ =
∑
k

(εk − µ)

(
c†k↑ck↑ − c−k↓c

†
−k↓ + 1

)
, (3.11)

here we have used the anti-commutation relation and the fact that εk = ε−k.
A transformation that diagonalizes the Hamiltonian for given uk and vk is1

ηk = ukck↑ + vkc
†
−k↓

γk = ukc
†
−k↓ − vkck↑.

(3.12)

We wish to diagonalize H such that it can be written on a form similar to a free electron gas, i.e.
using only η†kηk and γ†kγk. The anti-commutation relation for ηk (and similarly for γk) is{

ηk, η
†
k′

}
= ukuk′

{
ck↑, c

†
k′↑

}
+ vkvk′

{
c†−k↓, c−k′↓

}
= δkk′ . (3.13)

For the above anti-commutation relation to be satisfied, the pre-factors uk and vk have to satisfy

u2
k + v2

k = 1. (3.14)

We can write the transformation on matrix form(
ηk
γk

)
=

(
uk vk
−vk uk

)
︸ ︷︷ ︸

≡M

(
ck↑
c†−k↓

)
. (3.15)

The determinant of the above matrix is det(M) = u2
k + v2

k = 1. Which means the transformation
is unitary. This is why we need the minus sign in front of vk in γk. Because M is unitary, its
inverse is equal to its transpose M−1 = MT . Using this we can easily invert Eq. (3.15)(

ck↑
c†−k↓

)
=

(
uk −vk
vk uk

)(
ηk
γk

)
(3.16)

and similarly for the conjugate (
c†k↑
c−k↓

)
=

(
uk −vk
vk uk

)(
η†k
γ†k

)
. (3.17)

Using these inverse expressions we can express the Hamiltonian with the new fermion operators
ηk and γk

H =
∑
k

{
(ξk + ∆b†k) +

[
ξk(u2

k − v2
k)− ukvk(∆ + ∆†)

]
(η†kηk − γ

†
kγk)

+
[
−2ξkukvk + ∆v2

k −∆†u2
k

]
γ†kηk +

[
−2ξkukvk + ∆†v2

k −∆u2
k

]
η†kγk

}
.

(3.18)

Above, we have set εk−µ ≡ ξk and collected all combinations of ηk and γk. For the transformation
to be diagonal, i.e. only η†kηk and γ†kγk terms in H, the pre-factors in front of γ†kηk and η†kγk have
to be zero. This means we need to find expressions for uk and vk that satisfies

− 4ξkukvk = (u2
k − v2

k)(∆† + ∆). (3.19)

The above equation is simply the sum of the two pre-factors set equal to zero. Considering the
relation from Eq. (3.14), we are free to set uk = sin θ and vk = cos θ. Additionally, we can assume
∆ to be real without any loss of generality. These changes give us

1The minus sign in front of vk in γk makes the transformation unitary.
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− 2ξk sin θ cos θ = (sin2 θ − cos2 θ)∆. (3.20)

Using the trigonometric identities sin 2θ = 2 sin θ cos θ and cos 2θ = sin2 θ− cos2 θ, we arrive at the
equation which determines θ, and thus also uk and vk,

tan 2θ = −∆

ξk
. (3.21)

This equation sets the pre-factors of η†kγk and γ†kηk to zero. If we assume ∆ ≥ 0, we know
tan 2θ > 0 if ξk < 0 and tan 2θ < 0 if ξk > 0. Moreover, if sin 2θ > 0, i.e. 2θ ∈ [0, π), we can use

tan2 2θ =
sin2 2θ

cos2 2θ
= b2 (3.22)

to write

cos 2θ = − sgn(ξk)√
1 + b2

, (3.23)

where b ≡ ∆/ξk. Our next step is to use this result to determine the expression inside the square
brackets in front of η†kηk in Eq. (3.18). The expression inside the square brackets reads

ξk(u2
k − v2

k)− ukvk(∆ + ∆†) = ξk(sin2 θ − cos2 θ)− 2∆ sin θ cos θ

= ξk cos 2θ −∆ sin 2θ

= ξk cos 2θ −∆|b||cos 2θ|

= − 1√
1 + b2

(
ξksgn(ξk) +

∆2

|ξk|

)
= − 1√

ξ2
k + ∆2

(
ξ2
k + ∆2

)
= −

√
ξ2
k + ∆2

(3.24)

Inserting this result back into H, we get the following diagonal Hamiltonian

H = H0 +
∑
k

Ek

(
−η†kηk + γ†kγk

)
(3.25)

where H0 ≡
∑

k(ξk + ∆b†k) and Ek ≡
√
ξ2
k + ∆2. This Hamiltonian has the same form as a free

electron gas with energies ±Ek.

3.2.3 The BCS gap equation

Our goal now is to derive the BCS gap equation using H from Eq. (3.25) and bk ≡ 〈c−k↓ck↑〉. We
re-write bk using ηk and γk

bk = 〈(vkη†k + ukγ
†
k)(ukηk − vkγk)〉. (3.26)

The only terms which contribute are 〈η†
k
η
k
〉 and 〈γ†

k
γ

k
〉

bk = ukvk
(
〈η†

k
η
k
〉 − 〈γ†

k
γ

k
〉
)
. (3.27)

The mean values in the above equation are simply Fermi-Dirac distributions with energy −Ek and
+Ek, respectively, given by H
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bk = ukvk

(
1

e−Ekβ + 1
− 1

eEkβ + 1

)
= ukvk tanh (βEk/2)

=
∆

2Ek
tanh (βEk/2) ,

(3.28)

where we have used that 2ukvk = sin 2θ = b/
√

1 + b2. Using the fact that ∆ ≡ − U
2N

∑
k bk, we

arrive at the general form of the gap equation

1 = − U

2N

∑
k

tanh(βEk/2)

2Ek
. (3.29)

Equation (3.29), as it stands, is not possible to solve for ∆ analytically. However, we can study
the gap equation at temperature limits that simplifies it. We will consider two such limits: T → 0
and T → Tc.

3.2.4 The gap equation at T → 0

The gap equation near T = 0 simplifies considerably,

1 = − U

2N︸ ︷︷ ︸
≡V

∑
k

tanh (βEk/2)

2Ek

∣∣∣∣
T→0

=
V

2

∑
k

1√
(εk − µ)2 + ∆2

. (3.30)

Next, if we let

∑
k

→
ˆ
D(ε)dε ≈ D(εF)

ˆ
dε, (3.31)

where D(εF) is the density of states (DOS) at the Fermi level2, the gap equation simplifies further

1 =

≡λ︷ ︸︸ ︷
V D(εF)

2

ωDˆ

−ωD

dε√
ε2 + ∆2

= λ

ωDˆ

0

dε√
ε2 + ∆2

, (3.32)

where ωD is a cut-off energy called the Debye frequency [40]. We introduce this cut-off energy
because we wish to only consider energies close to the Fermi level. If we now make the substitution
x = ε/∆, the integral becomes easily solvable

1

λ
=

ωD/∆ˆ

0

dx√
1 + x2

= sinh−1
(ωD

∆

)
. (3.33)

An important assumption of BCS theory is that λ ≡ V D(εF) � 1. Using this, the expression for
∆ simplifies

∆ ≈ 2ωDe−1/λ. (3.34)

We have now found an approximate solution to the gap equation at T = 0.

2The energy regime we are working in is within a thin shell around the Fermi level. Therefore, if we assume that
the DOS varies slowly near the Fermi level, we may approximate D(ε) with D(εF).
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3.2.5 The gap equation at T → Tc

As we heat up a superconductor past its critical temperature Tc, the superconducting gap ∆
vanishes because the superconductor transitions to a normal metal, i.e. the Cooper pairs break.
Thus, at Tc the energy eigenvalue changes to Ek = |εk − µ|.

We will now find an expression for Tc by evaluating the gap equation at T = Tc. The calculations
will follow [27]. At Tc, the gap equation has the form

1 = V
∑
k

tanh(β|εk − µ|/2)

2|εk − µ|
, (3.35)

where β = kBTc. Converting the sum to an integral, as in Eq. (3.31), gives

1 = V D(εF)

ωDˆ

0

dε
tanh(βε/2)

ε
. (3.36)

Substituting x = βε/2 and setting λ = V D(εF), we solve the integral by parts

1

λ
=

βωD/2ˆ

0

dx
tanhx

x
= tanhx lnx

∣∣∣∣βωD/2
0

−
βωD/2ˆ

0

dx
lnx

cosh2 x
. (3.37)

The first term is easily evaluated because the tanhx goes to 0 faster than the lnx goes to −∞
at x = 0. The integral is a little trickier. Luckily though, the integrand converges quite fast and
because typically kBTc � ωD, we can safely set the upper limit of the integral to ∞ and still get
a well approximated result. The resulting integral can be looked up, and we denote it lnC where
C = πe−γ/4 and γ ≈ 0.5772... is Euler’s constant. We are left with

1

λ
= tanh(βωD/2) ln(βωD/2)− lnC ≈ ln(βωD/2C), (3.38)

where we have approximated tanh(βωD/2) ≈ 1 because kBTc � ωD. The resulting expression for
the critical temperature is

kBTc ≈
ωD
2C

e−1/λ. (3.39)

This is the temperature at which superconductivity occurs in BCS theory.

3.2.6 A universal number
Something worth noting is that both Eqs. (3.34) and (3.39) have the same dependency on λ. A
consequence of this is the emergence of a surprising constant

∆(T = 0)

kBTc
= 4C ≈ 1.76. (3.40)

The ratio is a dimensionless, universal number completely independent of the physical properties
of the system. In other words, this number should be constant for all superconductors. However,
as one would expect, this only applies to weakly coupled superconductors. In fact, this ratio is
often used as reference when comparing model accuracy between coupling regimes. Aluminium,
for instance, has a ratio of approximately 1.77 with mercury at 2.30 [32]. Because λHg > 1 > λAl,
this discrepancy shows that BCS is inadequate for large λ.
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3.3 Eliashberg theory

So far we have studied the Haldane-Hubbard model in the weak-coupling regime using the BCS
theory of superconductivity. Aware of the limitations of this theory, we have still managed to
show that superconductivity is theoretically possible in the graphene model. However, the strong-
coupling regime is still of high interest. We stated earlier that many interesting phenomena in
condensed matter theory exist due to electron correlation. The same is true for strongly correlated
electrons. For example, it has been suggested that strongly interacting TIs could lose their edge
states while still remaining insulating in the bulk [24]. Normally a TI has gapped states in the
bulk with conducting edge states. However, if we introduce strongly coupled electrons, the system
could lose the edge states while still being in a topologically non-trivial state. Even though the
topic of this thesis is strictly focused on the bulk, studies like the one above is great motivation
for studying behavior of topological states of matter at strong-coupling. This is what we will do
next using the Eliashberg theory of superconductivity.

The diagonalized Hamiltonian is the same as Eq. (3.2)

H =
∑
kσ

(εk − µ)c†kσckσ +
U

4N

∑
kk′q,σ

c†k+qσc
†
k′−q,−σck′,−σckσ. (3.41)

One could argue that our choice of interaction, on-site Hubbard, does not do Eliashberg theory
justice in some sense because it is constant and frequency independent like Coulomb. Given that
Eliashberg theory focuses on the frequency dependence of phonons, this is a reasonable state-
ment. It seems plausible that simplifying the interaction to this extent could prove unproductive.
However, our goal is not to study the frequency dependency of the Haldane-Hubbard model, but
rather the consequences of including the electron self-energy S at strong-coupling. The Hubbard
interaction is simply phenomenological, as it generalizes the combined effects of the Coulomb and
electron-phonon forces. Usually one uses an effective description such as the Hubbard interaction
to represent weakly coupled electron-phonon effects. The natural question is then: why can we do
the same for strong-coupling? It has been shown that electrons hopping in the vicinity of phonons
on a honeycomb lattice can exhibit coupling strengths λ of up to 0.6 [41]. Hence, studying the effect
of S on the gap equation at strong-coupling using the Haldane-Hubbard model is an interesting
topic of discussion.

3.3.1 Green’s functions and the equation of motion

Traditionally, the formalism of BCS theory has taken a more straight forward approach combining
statistical and quantum mechanics. Eliashberg theory, on the other hand, was presented using
a Green’s function [33] formalism. More specifically the Matsubara or imaginary-time Green’s
function formalism. Not only is this formalism handy but also somewhat necessary. The big
difference between BCS and Eliashberg is that Eliashberg theory takes retardation effects and the
electron self-energy into account. Since both retardation effects and self-energies are more easily
captured in the Green’s function formalism, it is the natural choice3.

In Eliashberg theory, we define three single-particle Green’s functions

G(k, τ) ≡ −〈Tτ ckσ(τ)c†kσ(0)〉 (3.42)

F (k, τ) ≡ −〈Tτ ck↑(τ)c−k↓(0)〉 (3.43)

F †(k, τ) ≡ −〈Tτ c†−k↓(τ)c†k↑(0)〉. (3.44)

3BCS theory was later described by the same formalism.
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G is a normal Green’s function while F and F † are anomalous Green’s functions4, see Fig. 2.4 for
their diagrammatic interpretation. The imaginary-time dependent operators above are defined in
the Heisenberg picture

cν(τ) ≡ eτHcνe−τH

c†ν(τ) ≡ eτHc†νe−τH .
(3.45)

Our goal is similar to what we did in the previous section: we want to find the equations whose
solution is the superconducting gap and a way to find the critical temperature of the system. The
information needed to achieve this goal is all encoded in the following self-energies [34]

S(p, iωn) = − 1

β

∑
q,m

Veff(q, iωm)G(p+ q, iωn + iωm) (3.46)

W (p, iωn) = − 1

β

∑
q,m

Veff(q, iωm)F (p+ q, iωn + iωm), (3.47)

where ωn ≡ (2n+ 1)π/β are called the Matsubara frequencies. We call S the electron self-energy
(neglected in BCS theory) and W the superconducting gap (∆ in BCS theory). See Fig. 2.5 for a
diagram of S and W . To be able to use these self-energies we first need to find expressions for G,
F and F † self-consistently. One way to do this is to use the equation of motion approach where
we evaluate the time-derivative of the Green’s functions to find a self-consistent expression [42].
The detailed derivation of the Eliashberg equations is present in Appendix D. However, we will
summarize the results in the following starting by finding the equation of motion for G

∂

∂τ
Gσ(k, τ) = −δ(τ)−

〈
Tτ [H, ckσ(τ)] c†kσ(0)

〉
. (3.48)

Note that we can keep the spin index σ above to differentiate between the two spin states in case
of spin-dependent forces. However, going forward we will assume no spin-dependent forces and
thus drop the index. The commutator [H, ckσ(τ)] is straight forward and gives(

∂

∂τ
+ ξk

)
G(k, τ) = −δ(τ) +

U

2N

∑
pq

〈Tτ c†p+q↓(τ)cp↓(τ)ck+q↑(τ)c†k↑(0)〉 (3.49)

for spin up, where ξk ≡ εk − µ. To make sense of this equation we have to simplify the sum on
the RHS. The summand is a statistical mean of a time-ordered product of four fermion operators,
i.e. like a two-particle Green’s function. However, because we would like to express our theory by
only single-particle Green’s functions like the ones in Eqs. (3.42) to (3.44), we need to decouple
the time-ordered product of four operators into two time-ordered products of two operators. This
is of course only an approximation, much like the mean-field approximation in BCS theory of
Section 3.2.1. When decoupling our time-ordered mean, we have a few choices: we can decouple
into 〈cc〉, 〈c†c†〉, and 〈cc†〉. These choices are highlighted because each corresponds to F , F †,
and G respectively5. Hence, we decouple the summand in Eq. (3.49) into single-particle Green’s
functions by a method analogous to Wick’s theorem6

〈Tτ c†p+q↓(τ)cp↓(τ)ck+q↑(τ)c†k↑(0)〉 → −δq0G(p, 0)G(k, τ)− δp,−k−qF (k + q, 0)F †(k, τ). (3.50)

This allows us to rewrite Eq. (3.49) as
4They are anomalous because they do not conserve particle number.
5Keeping the correct spin and momentum combinations in mind.
6Normal order the fermion operators and change sign for each permutation of the operators. For more details

on this method see Appendix D and chapter 51 of [33] or 10.1.1 of [34].
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(
∂

∂τ
+ ξk

)
G(k, τ) = −δ(τ)− U

2N

∑
q

[
G(q, 0)G(k, τ) + F (q, 0)F †(k, τ)

]
, (3.51)

where we have changed the summation momentum q → q − k in the F–term. This kind of
decoupling is analogous to the mean-field approximation we did for BCS theory. Unlike the BCS
theory, however, the G–term in Eq. (3.51) is present. This term describes the exchange self-energy
of the electron due to the phonon-induced electron interaction. In weakly coupled superconductors,
this term causes only a weak change in the electron’s effective mass, resulting in it being ignored.
The F–term is present in both theories because this term is what makes the superconducting state
special.

Now that we have decoupled the equation of motion for G, we do the same for F and F †(
∂

∂τ
+ ξk

)
F (k, τ) =

U

2N

∑
q

[
−G(q, 0)F (k, τ) + F (q, 0)G(−k,−τ)

]
(3.52)

(
∂

∂τ
− ξk

)
F †(k, τ) =

U

2N

∑
q

[
G(q, 0)F †(k, τ)− F †(q, 0)G(k, τ)

]
. (3.53)

The next step is to Fourier transform Eqs. (3.51) to (3.53) to the frequency domain iωn. Using
the definition of the transform

G(k, τ) =
1

β

∑
n∈Z

e−iωnτG(k, iωn) (3.54)

G(k, iωn) =

ˆ β

0

dτ eiωnτG(k, τ), (3.55)

we get

(−iωn + ξk)G(k, iωn) = −1− 1

β

U

2N

∑
q,m

[
G(q, iωm)G(k, iωn) + F (q, iωm)F †(k, iωn)

]
(3.56)

(−iωn + ξk)F (k, iωn) =
1

β

U

2N

∑
q,m

[
−G(q, iωm)F (k, iωn) + F (q, iωm)G(−k,−iωn)

]
(3.57)

(−iωn − ξk)F †(k, iωn) =
1

β

U

2N

∑
q,m

[
G(q, iωm)F †(k, iωn)− F †(q, iωm)G(k, iωn)

]
. (3.58)

Looking at the sums of the above equations, we notice the self-energies from Eqs. (3.46) and (3.47)

S = − 1

β

U

2N

∑
q,m

G(q, iωm) (3.59)

W = − 1

β

U

2N

∑
q,m

F (q, iωm) (3.60)

W † = − 1

β

U

2N

∑
q,m

F †(q, iωm) (3.61)
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with the distinct difference from Eqs. (3.46) and (3.47) being that Veff = U/2N and that our self-
energy expressions are independent of both momentum and frequency. The latter remark is not
surprising given that our Hubbard interaction strength is constant. We can re-write Eqs. (3.56)
to (3.58) using S and W

(iωn − ξk)G(k, iωn) = 1− SG(k, iωn)−WF †(k, iωn) (3.62)

(iωn − ξk)F (k, iωn) = WG(−k,−iωn)− SF (k, iωn) (3.63)

(−iωn − ξk)F †(k, iωn) = W †G(k, iωn)− SF †(k, iωn). (3.64)

Typically one writes the bare propagator as G(0)(k, iωn) = [iωn− ξk]−1. Using this we can see the
resemblance between Eqs. (3.62) to (3.64) and the Dyson equations in Eq. (2.21).

Solving for G and F gives

G(k, iωn) =
iωn + ξk − S

(iωn)2 − (ξk − S)2 − |W |2
(3.65)

F (k, iωn) =
−W

(iωn)2 − (ξk − S)2 − |W |2
. (3.66)

We have now found expressions for G and F self-consistently and can insert them back into the
self-energy equations to get the so-called Eliashberg equations

S = − 1

β

U

2N

∑
k,n

iωn + ξk − S
(iωn)2 − (ξk − S)2 − |W |2

(3.67)

W = − 1

β

U

2N

∑
k,n

−W
(iωn)2 − (ξk − S)2 − |W |2

. (3.68)

This set of equations can be solved for S and W , and even for Tc (W → 0 in this limit). The only
thing stopping us is the sums over frequency and momentum. We can simplify both equations by
first carrying out the sum over frequency using a known method for evaluating so-called Matsubara
sums, followed by evaluating the momentum sum by transforming it to an energy integral for two
temperature limits.

3.3.2 Frequency and momentum sums
The method used to evaluate the frequency sum is described in detail in Appendix D.2 and we
only state the results here

S = −U
4

+
U

2N

∑
k

(ξk − S)

tanh

(
β
2

√
(ξk − S)2 + |W |2

)
2

√
(ξk − S)2 + |W |2

(3.69)

1 = − U

2N

∑
k

tanh

(
β
2

√
(ξk − S)2 + |W |2

)
2

√
(ξk − S)2 + |W |2

. (3.70)

Equation (3.69) does not have a counterpart in BCS theory. The existence of this equation means
that we are accounting for the electron’s self-energy. A physical consequence of this is that the
electron’s effective mass is no longer the same as in BCS theory. Equation (3.70), on the other
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hand, does have a counterpart, namely the gap equation from Eq. (3.29). There are only two
differences between Eqs. (3.29) and (3.70): the existence of S and that the gap is called ∆ in
BCS and W in Eliashberg. In other words, if we set S = 0, Eqs. (3.29) and (3.70) are completely
equivalent. Like in BCS theory, the momentum sum in Eq. (3.70) can not be analytically evaluated
for all temperatures. Which is why we would need to study this equation in the two temperature
limits T → 0 and T → Tc like in BCS theory. To do so, we will convert the momentum sum to an
energy integral: ∑

k

→
ˆ

dε D(ε) ≈ D(εF)

ˆ ωD

−ωD
dε, (3.71)

where ωD is the Debye frequency (a cut-off energy) and D(εF) is the density of states at the Fermi
level εF. This is all similar to the steps in BCS theory. The density of states near the Dirac point
is derived in Appendix C and given as

D(εF) =
2πN

ABZ

|εF|√
b2 − 4a(m2 − ε2F)

Θ(|εF| −m), (3.72)

see Appendix C for definition of symbols.
The sum in Eq. (3.69) can actually be evaluated analytically for all T by converting it to an

energy integral. Converting both Eqs. (3.69) and (3.70) to energy integrals gives

S = −U
4
− λ

β
ln

cosh

(
β
2

√
(ωD − S)2 + |W |2

)
cosh

(
β
2

√
(ωD + S)2 + |W |2

)
 (3.73)

1 = λ

ˆ ωD

−ωD
dε

tanh

(
β
2

√
(ε− S)2 + |W |2

)
2

√
(ε− S)2 + |W |2

, (3.74)

where λ ≡ −UD(εF)/2N . Note how similar Eq. (3.74) is to the BCS gap equation at Eq. (3.29).
The only real difference is of course the existence of S and the additional equation which determines
S. Its this shift in the electron energy which makes the Eliashberg treatment of the Haldane-
Hubbard model interesting. We will study these equations in the two temperature limits T → 0
and T → Tc.

3.3.3 T → 0

When T → 0, the hyperbolic functions in Eqs. (3.73) and (3.74) go as cosh(βx)→ exp(βx)/2 and
tanh(βx)→ 1. With this in mind these equations become

S =
Nλ

2D(εF)
− λ

2

(√
(ωD − S)2 + |W |2 −

√
(ωD + S)2 + |W |2

)
(3.75)

and

1 =
λ

2

[
sinh−1

(
ωD − S
|W |

)
+ sinh−1

(
ωD + S

|W |

)]
. (3.76)

These equations form a set of equations with S and W as the unknowns. They can be solved
numerically as a function of e.g. λ.

Unsurprisingly, we see a likeness between the BCS gap from Eq. (3.34) and Eq. (3.76) above.
The only difference is that S = 0 and λ� 1 in BCS theory, which is why ∆ ∼ e−1/λ.
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3.3.4 T → Tc

When we approach the critical temperature of a superconductor from below, the superconducting
gap approaches zero. This is because when we heat up a superconductor it stops being supercon-
ducting after surpassing Tc. Thus, W → 0 in this limit. Setting W = 0 in Eqs. (3.73) and (3.74)
and performing the energy integral gives

S =
Nλ

2D(εF)
− λ

β
ln

cosh
(
β
2 |ωD − S|

)
cosh

(
β
2 |ωD + S|

)
 (3.77)

and

2

λ
= sgn(ωD − S) tanh

(
β

2
|ωD − S|

)
ln

(
β

2
|ωD − S|

)
+

tanh

(
β

2
|ωD + S|

)
ln

(
β

2
|ωD + S|

)
−

[sgn(ωD − S) + 1] lnC,

(3.78)

where C ≈ 0.44 and sgn(x) is the sign function. With S and β ≡ 1/kBTc as the unknowns, the
above two equations form a set of equations numerically solvable as a function of e.g. λ.

Equation (3.78) is the Eliashberg counterpart to Eq. (3.38). Due to the inclusion of S, we need
to consider the sign function. Like before, if we set S = 0 we get Eq. (3.38) because ωD > 0. Note
that we have let tanh(βωD/2) → 1 due to βωD � 1 to arrive at the kBTc ∼ e−1/λ expression in
Eq. (3.39). In Eq. (3.78), however, we keep the factor to ensure numerical accuracy in cases where
S is large enough to have an impact on the approximation.

3.4 Solving the Eliashberg equations
It is obvious that Eqs. (3.75) and (3.76), and Eqs. (3.77) and (3.78) are difficult to solve analytically
for (S,W ) and (S, Tc), respectively. Which is why we need to implement a numerical method of
solving the non-linear sets of equations.

3.4.1 Numerical method
The method is straight-forward: starting with an initial guess for all unknowns, work iteratively
toward a convergent solution approaching f(x) = g(x) = 0 by adjusting x for each iteration. Here,
f and g are the two equations that make up the set either for T = 0 or T = Tc, and x are the guesses.
The numerical tools we can use to achieve this is Python’s root solver scipy.optimize.root()7.
The function root() takes the following arguments (among others): the function to evaluate8,
an initial guess for each unknown, known parameters needed in the equations, and a specific
root solving method. The default root solving method is MINPACK’s hybrd and hybrj routines
(modified Powell method), which is the one we will be using. The root solver returns an array of
solutions (one element for each unknown), a success boolean and more.

We have used the following known parameters: ωD = 1.7, µ = −1 and t′ = 0.9t′c, see Eq. (3.4)
for the definition of t′c, in addition to an array of λ–values ranging from 0 to 1.5. The motivation
for this choice is simply trial and error. Depending on the equations we want to solve, we have
also supplied the solver with initial guesses of S, W and Tc. In short, for each λ, we have solved
the equation(s) given the list of known parameters and initial guesses, in the end producing S(λ)

7See documentation at docs.scipy.org
8If the equation set has multiple equations, the user must create a wrapper function that returns the output of

e.g. both f(x) and g(x).

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html
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Figure 3.2: Plot of Tc (left panel) and W (right panel) using BCS and Eliashberg (S = 0) solutions.
The left panel is the solution to Eqs. (3.39) and (3.78), while the right panel is the solution to Eqs. (3.34)
and (3.76). We expect the two solutions to be the same. However, due to approximations made in the
BCS case the two solutions deviate.

and W (λ) or Tc(λ). To get a decent resolution and range in λ, we depend on the set of equations
to behave for our choice of parameter values.

3.4.2 Decoupled equations (fixed S)

The first step is to do some sanity checks to see if the method is able to solve a single equation at
a time for a fixed S. We will thus solve Eqs. (3.76) and (3.78) (completely separately) for W and
Tc, respectively, as a function of λ. Ignoring for the moment Eqs. (3.75) and (3.77) as they do not
make sense when S is constant. One way of knowing if our solution is sensible is to compare it to
the BCS results of Eqs. (3.34) and (3.39). This should be a decent test especially if we set S = 0
because then the equations obtained using Eliashberg and BCS theory should be exactly the same.
Figure 3.2 shows the solution to Eqs. (3.76) and (3.78) for S = 0 plotted with the BCS solutions.
We see clearly that the Eliashberg and BCS solutions are practically the same up until λ ∼ 0.6.
For λ > 0.6, however, the solutions start to grow further apart. At first glance this behavior is odd
considering that both theories should produce the same results in the case of S = 0. However, the
difference in solutions is due to an approximation we made in the BCS case. Recall that for T = 0,
we assumed λ� 1 and thus approximated sinh(1/λ)→ exp(1/λ)/2, see Eq. (3.34). Moreover, for
T = Tc, we assumed βωD � 1 and let tanh(βωD/2) → 1, see Eq. (3.38). If we had not made
these approximations the solutions to the Eliashberg equations would be identical to BCS. Going
forward we will not use the approximated BCS solutions when comparing results but rather treat
the Eliashberg solutions for S = 0 as the BCS solutions.

Next we solve the Eliashberg equations for fixed but non-zero S to study how the solutions
change compared to the BCS case (S = 0). Figure 3.3 shows a plot of both Tc andW for increasing
values of S as a function of λ. We see Tc for S > 0 start off lower than S = 0 but always end up
surpassing S = 0 for larger λ. Moreover, the larger S is, the sooner it surpasses S = 0 growing more
rapidly. W on the other hand, does not grow more rapidly for larger S. In fact, as S increases, W
grows slower than S = 0.

We see that as S approaches ωD = 1.7 in Fig. 3.3, Tc grows far more rapidly as a function of
λ than when S � ωD. This increase can be understood by studying each term of Eq. (3.78)
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Figure 3.3: Plot of Tc (left panel) andW (right panel) for multiple values of fixed S. The left panel is the
solution to Eq. (3.78) and the right panel is the solution to Eq. (3.76). The figure shows the S dependence
of these equations.
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= sgn(ωD − S) tanh

(
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2
|ωD − S|

)
ln

(
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2
|ωD − S|

)
+

tanh

(
β

2
|ωD + S|

)
ln

(
β

2
|ωD + S|

)
−

[sgn(ωD − S) + 1] lnC.

When S → ωD for large λ, the first term on the RHS falls to zero due to the tanh(β|ωD − S|/2)
factor. Meanwhile, the second term keeps growing due to the logarithm. With the LHS decreasing
due to large λ and the RHS growing because of the logarithm, the only way the equation can have
a solution is if the RHS’s growth is decreased. This is achieved by decreasing β in the argument
of the logarithm, i.e. increasing Tc.

3.4.3 Coupled equations

Now that we have studied the effect of fixed S on the BCS equations, we should try to solve the
actual Eliashberg equations. Recall that a major difference between BCS and Eliashberg is the
presence of an equation for S in the latter theory. Which is why we will solve the set of non-linear
equations that determines S and W , or S and Tc, simultaneously instead of keeping S fixed like
in the previous subsection. We will solve the coupled equations by finding the values of S and W
(or Tc) that satisfy the equations for a given λ keeping all other parameters constant. Repeating
this process for varying λ gives us the solutions for Tc and W as a function of λ shown in Fig. 3.4,
denoted Tc(λ, S(λ)) and W (λ, S(λ)) respectively. We have also plotted the solution of S and the
BCS equations (S = 0) in Fig. 3.4. The right hand panel is produced from solving Eqs. (3.75)
and (3.76). While the left hand panel is produced from solving Eqs. (3.77) and (3.78).

In Fig. 3.4, the left hand panel is for T = Tc and the right hand panel is for T = 0. The BCS
curve (blue solid) for both T = 0 and T = Tc is meant as a reference with S = 0. The S(λ) curve
(green dashed) in both panels has its y-axis on the right side and is one of the solutions of the
coupled equations. The other solutions are Tc(λ) and W (λ) for T = Tc and T = 0, respectively
(orange solid). Their y-axis is on the left in both panels. We note that, compared to Fig. 3.3,
Fig. 3.4 does not show solutions for a wide range of λ-values. For T = Tc, the solutions for both
S and Tc exist in the interval 0.13 . λ < 0.65. While for T = 0, solutions for S and W exist in
0 . λ < 0.65. The reason for this is the difficulty of solving the coupled pair of equations for all λ
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Figure 3.4: Plot of Tc (left panel) and W (right panel). The left panel shows the solutions S (green
dashed) and Tc (orange solid) of Eqs. (3.77) and (3.78), while the right panel shows the solutions S (green
dashed) and W (orange solid) of Eqs. (3.75) and (3.76). In both panels, the BCS solution (blue solid), i.e.
for S = 0, is also drawn for comparison. Note that the Tc and W y-axes are on the left side of each panel,
while the y-axis of S is on the right side of each panel.

for the given parameter values.
Even though we are unable to solve the equations for small λ, we can still see the trend of each

curve. Both Tc and W decay to 0 as λ approaches 0 just like the BCS solutions. And by studying
Eqs. (3.75) and (3.77), we can clearly see that S(λ) should approach 0 linearly for small λ. This
behavior is apparent in both panels of Fig. 3.4.

The upper limit of λ . 0.65 in Fig. 3.4 is caused by the fact that S(λ ≈ 0.65) ≈ ωD = 1.7. It
turns out that S cannot be larger than ωD because of Eq. (3.74)

1 = λ

ˆ ωD

−ωD
dε

tanh

(
β
2

√
(ε− S)2 + |W |2

)
2

√
(ε− S)2 + |W |2

.

To understand this we first have to realize that the shape of the integrand as a function of ε, for
a given β and W , looks like a Gaussian about S. In fact, if we increase β or decrease W , the
Gaussian-like shape looks more like a Dirac delta distribution. For the integral to be sizable, the
integral limits should include the peak of the integrand. However, if S > ωD, the peak will not be
included and thus the integral might not be large enough to satisfy the LHS of Eq. (3.74). This
behavior limits S < ωD, and because S(λ) only seems to increase with λ, we do not find any
solutions for S, Tc or W for λ > 0.65 in Fig. 3.4.

Tc and W for S 6= 0 in Fig. 3.4 have a somewhat surprising λ dependency. Still, we can make
sense of it if we compare it to Fig. 3.3. Lets begin with Tc in the left panel of Fig. 3.4 and its change
of curvature before and after λ ≈ 0.5. We can convince ourselves that the two stationary points
at λ ≈ 0.5 and λ ≈ 0.55 make sense by comparing Tc(λ) and S(λ) from Fig. 3.4 with Fig. 3.3.
From Fig. 3.4 we see that S(λ ≈ 0.5) ≈ 1.25 and that S(λ ≈ 0.55) ≈ 1.5. Comparing these two
points to the left panel of Fig. 3.3, we see that Tc(λ ≈ 0.5) for S = 1.2 (green curve) is larger than
Tc(λ ≈ 0.55) for S = 1.5 (red curve). This is why Tc in Fig. 3.4 decreases slightly. We can explain
the rapid increase of Tc in Fig. 3.4 at λ ≈ 0.6 similarly. We see that S(λ ≈ 0.6) ≈ 1.7 in the left
panel of Fig. 3.4. And in Fig. 3.3, Tc(λ ≈ 0.6) for S = 1.7 (purple curve) is larger than the two
previous points we just discussed, and almost as large as the BCS case (blue curve).

A similar analysis for W in Fig. 3.4 can be made to explain its shape. As S increases in the
right panel of Fig. 3.3, W (λ) gets flatter. This results in W (λ) in Fig. 3.4 to keep decreasing when



3.4. SOLVING THE ELIASHBERG EQUATIONS 33

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

λ

[l
n
(ω
D
/k

B
T
c
)]
−

1

Tc(λ, S = 0)

Tc(λ, S(λ))

Figure 3.5: Plot comparing the pre-factor of Tc in BCS and Eliashberg theory (based on the same data
as left panel of Fig. 3.4). The figure is meant to be compared to Fig. 1 in [44].

S(λ) gets large enough.
The presupposition has been that BCS and Eliashberg theory converge in the weak-coupling

limit. This is at least true in our case as both solutions for Tc and W in Fig. 3.4 coincide for
λ < 0.3. We can then argue that the strong-coupling regime begins when the BCS and Eliashberg
solutions start to deviate, e.g. λ > 0.3 or even as high as λ > 0.5. The most striking difference
between the BCS and Eliashberg solutions for large λ is the aggressive decline ofW to almost zero.
We can interpret this as the upper limit of S ≈ ωD being detrimental to superconductivity, because
recall thatW � 1 means that almost zero energy is required to break Cooper pairs. To summarize,
this means that including a shift S in the quasi-particle spectrum can affect the superconductive
properties of the Haldane-Hubbard model significantly.

Although it is common to think that BCS and Eliashberg theory converge in the weak-coupling
limit, Karakozov et al. [43] showed that the BCS pre-factor of Tc gets a correction from Eliashberg
theory for small λ as well. Marsiglio [44] has re-derived this result for Tc and investigated the
weak-coupling limit further. The correction is a reduction of the pre-factor in Eq. (3.39) arising
within Eliashberg theory. We can compare our result of Tc with Marsiglio’s by recreating Fig. 1
in [44]. Our recreated figure of Fig. 1 in [44] is shown in Fig. 3.5. Figure 1 in [44] shows a larger
difference between the BCS and Eliashberg curves than Fig. 3.5. As λ→ 0, the BCS and Eliashberg
solution converge almost exactly in Fig. 3.5. This result is not surprising because S goes to zero
linearly as a function of λ. And as we know, when S = 0 our Eliashberg equations are equivalent
to the BCS equations. Thus, the differences in the two figures are probably caused by the fact
that Marsiglio’s Hamiltonian includes a more explicit electron-phonon coupling term as well, i.e.
accounting for retardation effects. The consequence of this is that the gap and self-energy become
frequency dependent. Our model, on the other hand, has a constant interaction term which only
gives us an equation to determine S independent of frequency. However, the inclusion of S seems
to have an effect in the correct direction: the Eliashberg curve in Fig. 3.5 stays beneath the BCS
curve like in Fig. 1 in [44].

We have learned that the gap equation can change its behavior dramatically by simply account-
ing for the electron self-energy S. The most dramatic behavior can be observed near λ ∼ 0.6 which
also seems to be a break point for the validity of the theory. Recall that Migdal’s “theorem” states
that λωD/εF � 1 for Eliashberg theory to be valid. In our case, with ωD = 1.7, |µ| = εF = 1,
and λ < 0.65, the ratio becomes λωD/εF . 1.1. If we hope to abide by Migdal’s “theorem” for
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λ > 0.65, we must satisfy ωD � εF. However, attempting this results in the solver failing to find
any solutions. There can be multiple reasons for this. First, as we increase |µ|, the density of
states D(εF) also increases, see Fig. C.1. This causes imbalance in the equations for S, W , and Tc
resulting in convergence issues. Second, if we simply lower ωD, S will approach ωD for even lower
λ than before. Which is the opposite of what we want to study, but it does keep the Migdal ratio
under 1. Regardless, we are not free to set ωD arbitrarily low as the solver is unable to converge
for ωD � 1. The point to make is that with the limit of λ < 0.65 in Fig. 3.4, we are also reaching
a limit where we can be confident in the validity of the results with the current parameter values9.
In other words, if we want to study the current model for larger λ, the parameters need to be
tuned and a better scheme for numerical solving needs to be implemented.

9The parameter values used are summarized in Section 3.4.1.



Chapter 4

Summary and outlook

In this thesis, we have studied the superconductive properties of an attractive Haldane-Hubbard
model. Our goal has been to study the Haldane-Hubbard model in both a weak and strong-coupling
regime using BCS and Eliashberg theory, respectively. With interacting TIs becoming a hotter
topic in recent years, and research on attractively interacting Haldane-like models being scarce,
makes this an interesting model to study. We began by introducing some key concepts like useful
lattice models, BCS and Eliashberg theory and a primer on topological insulators. After which,
we derived the gap equation for the attractive Haldane-Hubbard model from BCS theory in the
weak-coupling limit, and evaluated it for two temperature limits: T → 0 and T → Tc. The limits
gave us an expression for the BCS gap ∆ and critical temperature Tc, respectively.

We followed up by focusing on Eliashberg theory which allows for considering the strong cou-
pling limit. The main difference between the BCS and Eliashberg approach was the use of the
Green’s function formalism. Additionally, in Eliashberg theory, we included the electron self-energy
S. In principle, the self-energy S exists in BCS theory but is always neglected. The inclusion of
S in Eliashberg theory means that we are accounting for a shift in the quasi-particle spectrum,
which usually has an impact on superconductivity. In practice, however, this means we have to
solve another equation in addition to the gap equation to determine S.

The task at hand was to solve the Eliashberg equations for S,W and Tc in the usual temperature
limits T → 0 and T → Tc. We did this using a root solver in Python and obtained interesting
results. The Eliashberg solutions for Tc and W showed that they were consistently lower than the
BCS solutions. In fact, as λ increased towards 1, W kept decreasing almost to 0. From this, we
learned that as λ increases so does S, which means that S reaches a maximum value ωD at some
point which turns out to be detrimental to superconductivity at T = 0.

The upper limit of S < ωD is introduced when we set the integration limits of the energy integral
in Eq. (3.71) close to the Fermi level. This approximation is made because of the assumption that
almost all of the interesting physics happens near the Fermi level. An alternative approach to this
approximation is to do the momentum sum (lattice sum) directly instead of converting it to an
energy integral. This way, we might be able to solve the coupled equations for larger λ and thus
expand our strong-coupling regime.

If we wish to increase λ using the root solving method in this thesis, we have to pay attention to
our choice of parameter values. Especially the parameters that make up the Migdal ratio λωD/εF.
Since this ratio should be lower than 1 for the Eliashberg theory to remain valid, we have to ensure
that ωD < εF when increasing λ beyond e.g. 1. However, trying this with the current numerical
method results in unstable solutions. It is therefore advised to implement a better numerical
scheme to solve the coupled equations or, better yet, do the lattice sum directly.
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Appendix A

Chern number of the Haldane model

The goal of this appendix is to show that the Haldane model is topologically non-trivial by calcu-
lating a topological index called the Chern number. The Chern number C is proportional to the
total Berry curvature

C =
1

2π

‹
BZ

dk ·Ω (A.1)

where Ω ≡ ∇ × A is the Berry curvature and A ≡ −i〈u(k)|∂k|u(k)〉 is the Berry connection.
|u(k)〉 is one of the eigenvectors of the Hamiltonian in Eq. (2.23) in reciprocal space. BZ denotes
that we have to integrate over the Brillouin zone, see Fig. A.1.

The Chern number is an integer, and if C 6= 0, we will have shown that the model is topologically
non-trivial. To understand why C 6= 0 is significant, we should try to interpret the Chern number
as the number of singularities/poles inside the BZ. If there are no singularities inside the BZ, then
the system is topologically trivial, i.e. there is nothing special about the system topologically
speaking. However, if there are singularities, then the system is non-trivial. Which means that a
property of the system is protected by its topology.

A.1 Calculating the Chern number
To show that the Haldane model given by Eq. (2.23) is topologically non-trivial, we first have to
Fourier transform it. Using the results of Appendices B.1.1 and B.1.2, i.e. Eqs. (B.5) and (B.7),
we rewrite H

H = h0(k)I + h(k) · σ. (A.2)

We use this notation because we will follow [45] in calculating the Chern number. Above, σ =
(σx, σy, σz) are the Pauli matrices, I is the 2× 2 identity matrix, and h = (hx, hy, hz) where

h0 = −2t′ cosφ
∑
j

cos(k · δj), hx = −t
∑
j

cos(k · ej)

hy = t
∑
j

sin(k · ej), hz = 2t′ sinφ
∑
j

sin(k · δj).
(A.3)

Now that H is expressed in reciprocal space, we can calculate the Berry connection A. The
eigenvectors of H in a specific gauge are

|u(1)
± (k)〉 =

1

N (1)(k)

(
hz ± |h|
hx + ihy

)
, (A.4)
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Γ

�
′

�

Figure A.1: Brillouin zone (enclosed by dashed lines) of the honeycomb lattice with symmetry points Γ,
K and K′.

where N (1)(k) is the normalization constant in this gauge. We will get a Chern number C± for
each of the eigenvectors. However, we will focus on the lower band because we assume the upper
band to be unoccupied.

There are two points in the BZ where the eigenvector |u(1)
− (k)〉 can be singular, i.e. both

elements are zero. These points are the Dirac points K = (4π/3
√

3, 0) and K ′ = −K. However,
whether or not |u(1)

− 〉 is singular in any of these points depends on whether 0 < φ < π or π < φ < 2π.
Thus, we will consider these two cases separately.

A.1.1 Case 1: 0 < φ < π

In this case we see that |u(1)
− (k)〉 is singular at k = K ′. At K ′ both hx = hy = 0 and hz =

3
√

3t′ sinφ > 0. Which means we cannot use |u(1)
− (k)〉 in Eq. (A.1) when integrating over the area

which containsK ′. Thus, we gauge transform |u(1)
− 〉 → |u

(2)
− 〉 where |u

(2)
− (k)〉 = |u(1)

− (k)〉 exp(iϕ(k))
such that it is well-defined at k = K ′

|u(2)
− (k)〉 = |u(1)

− (k)〉
(
hz + |h|
hx + ihy

·
∣∣∣∣ hz + |h|
hx + ihy

∣∣∣∣−1)
=

1

N (2)(k)

(
−hx + ihy
hz + |h|

)
.

(A.5)

This transformation transforms the Berry connection as A(2)
− (k) = A

(1)
− (k) +∇kϕ(k). |u(2)

− (k)〉 is
not singular at K ′ but rather at K. Thus, we can cut the BZ into two parts and use |u(1)

− 〉 in the
part that includes K and |u(2)

− 〉 in the part with K ′.
Lets draw a circle around K ′ and call the enclosed area D(1). We call the rest of the BZ D(2),

see Fig. A.2. The Chern number can be rewritten using Stokes theorem such that we only need to
consider the boundaries of the two areas, denoted ∂D(1) and ∂D(2)

C− =
1

2π

(˛
∂D(1)

dk ·A(1)
− +

˛
∂D(2)

dk ·A(2)
−

)
. (A.6)

Next we point out that because D(1) is enclosed by D(2), a consequence of Stokes theorem is that
integrating along the boundary ∂D(1) is the same as integrating along ∂D(2) with a minus sign,
see Fig. A.3. Using this fact, Eq. (A.6) simplifies
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(1)


(2)

Figure A.2: The two areas of integration inside
the BZ, namely D(1) and D(2). The radius of the
circle enclosing D(1) can be arbitrarily small.

∂
(1)

∂
(2)

Figure A.3: We can draw small loops inside
the BZ to visualize Stokes theorem. The direc-
tion of ∂D(1) is opposite the inner loops of D(2).

C− =
1

2π

˛
∂D(1)

dk ·
(
A

(1)
− −A

(2)
−

)
= − 1

2π

˛
∂D(1)

dk · ∇kϕ(k)

= − 1

2π

ˆ 2π

0

dθ ∂θϕ(k)

= − 1

2π

[
ϕ(θ = 2π)− ϕ(θ = 0)

]
.

(A.7)

All that remains now is to derive an expression for the phase ϕ(k). The transformation exp(iϕ(k))
is defined as

eiϕ(k) =
hz + |h|
hx + ihy

·
∣∣∣∣ hz + |h|
hx + ihy

∣∣∣∣−1

(A.8)

The right hand side (RHS) of Eq. (A.8) is too difficult to solve as is. To simplify, we decrease the
radius of ∂D(1) and Taylor expand the RHS about k = K ′ + q where |q| � 1. Writing out the
elements of h(K ′ + q)

hx(K ′ + q) = −t
∑
j

[
cos
(
K ′ · ej

)
cos(q · ej)− sin

(
K ′ · ej

)
sin(q · ej)

]

hy(K ′ + q) = t
∑
j

[
sin
(
K ′ · ej

)
cos(q · ej) + cos

(
K ′ · ej

)
sin(q · ej)

]

hz(K
′ + q) = 2t′ sinφ

∑
j

[
sin
(
K ′ · δj

)
cos(q · δj) + cos

(
K ′ · δj

)
sin(q · δj)

]
.

(A.9)

Now we Taylor expand each function to first order in q, and perform the sums using the definition
of the NN and 2NN vectors ej and δj from Eq. (2.1).
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hx(K ′ + q) = −t
∑
j

[
cos
(
K ′ · ej

)
− (q · ej) sin

(
K ′ · ej

)]
= −3

2
tqx

hy(K ′ + q) = t
∑
j

[
sin
(
K ′ · ej

)
+ (q · ej) cos

(
K ′ · ej

)]
=

3

2
tqy

hz(K
′ + q) = 2t′ sinφ

∑
j

[
sin
(
K ′ · δj

)
+ (q · δj) cos

(
K ′ · δj

)]
= 3
√

3t′ sinφ.

(A.10)

The RHS of Eq. (A.8) can now be evaluated with ease

eiϕ(k) =
hz + |h|
hx + ihy

·
∣∣∣∣ hz + |h|
hx + ihy

∣∣∣∣−1

=
|hx + ihy|
hx + ihy

. (A.11)

The last transition is allowed because hz(K ′) > 0 in the current case. If we insert the simplified
hx and hy into Eq. (A.11), we get

eiϕ(q) = −|qx − iqy|
qx − iqy

= −
∣∣qe−iθ∣∣
qe−iθ

= ei(θ+π/2), (A.12)

where q = |qx + iqy| = |q|. From Eq. (A.12) we see that ϕ(θ) = θ + π/2, and inserting this result
into Eq. (A.7) gives us the final Chern number

C− =
1

2π
(π/2− 2π − π/2) = −1. (A.13)

The Chern number of the lower band for 0 < φ < π is C− = −1. We have thus shown that because
C− 6= 0, the Haldane model is indeed topologically non-trivial. Furthermore, because the sum of
Chern numbers over all bands must be zero, we know C+ = 1.

A.1.2 Case 2: π < φ < 2π

In this case we have to focus on K rather than K ′ because hz(K) = −3
√

3t′ sinφ > 0 when
π < φ < 2π. The method of finding C± in this case is similar to the first case, and the equivalent
of Eq. (A.10) is

hx(q +K) =
3

2
tqx

hy(q +K) =
3

2
tqy

hz(q +K) = −3
√

3t′ sinφ.

(A.14)

Which gives ϕ(θ) = −θ, and in turn C− = +1 and C+ = −1.



Appendix B

Diagonalizing the Hamiltonian

The total tight-binding Hamiltonian of electrons on a honeycomb lattice with an attractive Hubbard
potential has the form

H = HK +HU , (B.1)

where HK represents the kinetic term and HU the Hubbard potential term. The kinetic term could
include nearest and second-nearest neighbor hopping, in which case

HK = Ht +Ht′ . (B.2)

Above, the first term represents nearest neighbor and the last second-nearest neighbor hopping. In
the following, we will first diagonalize Eq. (B.1) to the k-basis and then diagonalize the emerging
k-space Hamiltonian such that there is no mixing of fermion operators.

B.1 Fourier transforms

B.1.1 Nearest neighbor hopping term

The nearest neighbor (NN) hopping term Ht from the tight-binding model is defined as

Ht = −t
∑
〈i,j〉σ

(c†iσdjσ + d†jσciσ), (B.3)

where t is the NN hopping parameter, ciσ and c†iσ are the fermionic annihilation and creation
operators at lattice site i with spin σ on sublattice A, and the d-operators are equivalent to the
c-operators but for sublattice B. The sum is taken over all NN lattice sites 〈i, j〉. The neighbor
vectors in the honeycomb lattice are shown in Fig. 2.2.

Equation (B.3) can be Fourier transformed to reciprocal space using the definition

ciσ =
1√
N

∑
i

ckσeik·ri , (B.4)

where N is the number of unit cells, k is the reciprocal lattice vector, and ri is the real-space posi-
tion of lattice site i. Using this definition in Eq. (B.3) gives the Fourier transformed Hamiltonian
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Ht = −t
∑
kk′σ

c†kσdk′σ

(
1

N

∑
i

e−i(k−k
′)·ri

)
︸ ︷︷ ︸

≡δkk′

3∑
j=1

eik
′·ej + h.c.

= −t
∑
kσ

[
S(k)c†kσdkσ + S∗(k)d†kσckσ

]
.

(B.5)

Above, ej are the NN lattice vectors shown in Fig. 2.2. We have further defined the neighbor
vector rj = ri + ej and S(k) =

∑
j exp(ik · ej).

Equation (B.5) gives us the final form of the Fourier transformed NN term of the Hamiltonian.

B.1.2 Second-nearest neighbor hopping term

We can transform the second-nearest neighbor (2NN) term Ht′ the same way as in Appendix B.1.1.
The 2NN term is defined as

Ht′ = −t′
∑
〈〈i,j〉〉σ

(
c†iσcjσeiφ + c†jσciσe−iφ + d†iσdjσe−iφ + d†jσdiσeiφ

)
. (B.6)

Here, the sum is taken over 2NN lattice sites 〈〈i, j〉〉. Moreover, the 2NN hopping parameter is
complex with absolute value t′ and phase ±φ. Equation (B.6) can be Fourier transformed like
Eq. (B.3), which gives

Ht′ = −t′
∑
kσ

[
Q+(k)c†kσckσ +Q−(k)d†kσdkσ

]
, (B.7)

where we have defined Q±(k) = 2
∑
j cos(k · δj ± φ) with δj as the three 2NN vectors shown in

Fig. 2.2. Equation (B.7) is the final form of the Fourier transform of Eq. (B.6).

B.1.3 Hubbard interaction term

The on-site Hubbard interaction term is defined as [26]

HU = U
∑
i∈A

c†i↑ci↑c
†
i↓ci↓ + U

∑
j∈B

d†j↑dj↑d
†
j↓dj↓, (B.8)

where U < 0. Equation (B.8) adds up the total potential energy of electrons on each fully occupied
lattice site. The two terms account for the two sublattices. However, because there is exactly one
site from each sublattice in a unit cell, they both Fourier transform the same way

HU =
U

N

∑
k1k2k3k4

c†k1↑ck2↑c
†
k3↓ck4↓

(
1

N

∑
i∈A

e−i(k1−k2+k3−k4)·ri
)

︸ ︷︷ ︸
=δk1,k2−k3+k4

+(c→ d)

=
U

N

∑
k2k3k4

c†k2−k3+k4,↑ck2↑c
†
k3↓ck4↓ + (c→ d).

(B.9)

For simplicity, we rename k2 = k, k4 = k′ and k3 = k′ − q. Which gives us the final form of the
transformed HU expressed by a momentum transfer q

HU =
U

N

∑
kk′q

(
c†k+q↑ck↑c

†
k′−q↓ck′↓ + d†k+q↑dk↑d

†
k′−q↓dk′↓

)
. (B.10)
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B.2 Diagonalizing
We will now diagonalize the Hamiltonian H = Ht + HU to a fermion basis without mixing of
operators. Although we restrict ourselves to NN hopping here, the following derivation can be
done with 2NN as well. Note that the contribution from the 2NN term has no mixing of (c, d)
operators, which means the matrix representation of H would have non-zero diagonal elements.

B.2.1 Hopping term
The Fourier transformed NN hopping term is derived in Appendix B.1.1 and given as

Ht = −t
∑
kσ

[
S(k)c†kσdkσ + S∗(k)d†kσckσ

]
. (B.11)

Above, S(k) =
∑
j exp(ik · ej) where ej are the NN vectors shown in Fig. 2.2. Moreover, t is the

NN hopping parameter and (c†, c) and (d†, d) are the fermionic creation and annihilation operators
for sub-lattice A and B, respectively.

Equation (B.11) is non-diagonal due to the mixing of c and d operators. Writing it out on
matrix form makes it clearer

Ht =
∑
kσ

(
c†kσ d†kσ

)( 0 −tS(k)
−tS∗(k) 0

)(
ckσ
dkσ

)
. (B.12)

We wish to diagonalize the Hamiltonian such that we can easily read off the dispersion relation.
Lets rewrite Eq. (B.12) from the current basis φ†kσ =

(
c†kσ d†kσ

)
to the new, diagonal basis

φ̃†kσ =
(
α†kσ β†kσ

)
Ht =

∑
kσ

(
φ†kσM

−1

)[
M

(
0 −tS(k)

−tS∗(k) 0

)
M−1

](
Mφkσ

)
=
∑
kσ

φ̃†kσ

(
λ+ 0
0 λ−

)
φ̃kσ,

(B.13)

where λ± = ±t|S(k)| are the eigenvalues of the Hamiltonian, i.e. upper and lower band of the
dispersion relation. A matrix M that can diagonalize Eq. (B.12) is

M =
1√
2

(√
S(k)
S∗(k) −

√
S(k)
S∗(k)

1 1

)
, (B.14)

from which we see how the new fermionic operators α, β relate to the old c, d

αkσ =
1√
2

(ukckσ − ukdkσ)

βkσ =
1√
2

(ckσ + dkσ),

(B.15)

where we have rewritten uk ≡
√
S(k)/S∗(k).

To summarize, we have now expressed the NN term in the Hamiltonian using a new basis

Ht =
∑
kσ

(
λ+α

†
kσαkσ + λ−β

†
kσβkσ

)
. (B.16)

Ht is diagonal and we can easily read off the eigenvalues λ±. A plot of the eigenvalues is shown in
Fig. B.1 near the so called Dirac point K = (4π/3

√
3, 0). This is the famous Dirac cone.

We can invert Eq. (B.15) and express the Hubbard interaction term in terms of these new
operators. That will be our next task.
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Figure B.1: The dispersion relation of the NN tight-binding Hamiltonian near the K-point. The bands
form a cone in two dimensions called a Dirac Cone. An arbitrary Fermi level µ in units of t is drawn
together with the energy bands.

B.2.2 Hubbard interaction term

We want to re-express the interaction term HU in terms of the new operators. We begin with the
Fourier transform of HU derived in Appendix B.1.3

HU =
U

N

∑
kk′q

(
c†k+q↑c

†
k′−q↓ck′↓ck↑ + d†k+q↑d

†
k′−q↓dk′↓dk↑

)
. (B.17)

Here, U < 0 is the attractive interaction strength, N is the number of unit cells, and q can be
interpreted as a momentum transfer in a scattering process.

We will now express Eq. (B.17) in terms of α and β operators, see Eq. (B.15). Inserting
Eq. (B.15) in Eq. (B.17) gives

HU =
U

N

∑
kk′q

(α̃†k+q↑ + β̃†k+q↑)(α̃
†
k′−q↓ + β̃†k′−q↓)(α̃k′↓ + β̃k′↓)(α̃k↑ + β̃k↑) + (α̃→ −α̃), (B.18)

where we have defined α̃kσ ≡ αkσ/
√

2uk and β̃kσ ≡ βkσ/
√

2. At first glance this expression looks
worse. However, by introducing a Fermi energy µ and choosing it such that e.g. only the lower
band λ− is occupied (with zero states in the upper band λ+), we can disregard all terms with α
in Eq. (B.18)1. We can do this because all terms including an α-operator will give exactly zero
contribution when the Fermi energy lies inside the lower band. This simplification leaves us with

HU =
U

2N

∑
kk′q

β†k+q↑β
†
k′−q↓βk′↓βk↑. (B.19)

In doing this, we have introduced a somewhat fixed Fermi level, which means we will include
another term Hµ in the Hamiltonian H

Hµ = −µ
∑
kσ

(
c†kσckσ + d†kσdkσ

)
. (B.20)

1The Fermi level µ is drawn as a horizontal line in Fig. B.1.
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The total Hamiltonian H to this point is

H = Ht +Hµ +HU

=
∑
kσ

(εk − µ)c†kσckσ +
U

4N

∑
kk′q,σ

c†k+qσc
†
k′−q,−σck′,−σckσ,

(B.21)

where εk ≡ −t|S(k)| is the lower band of the dispersion relation. We have renamed all β-operators
to c-operators for familiarity’s sake. The last term has also been made slightly more general by
introducing a spin-sum. H would look the same had we included 2NN hopping. The only visible
difference would have been in εk which for 2NN is defined as

εk = −2t′ cosφ
∑
j

cos(k · δj)±
[
t2|S(k)|2 + 4t′

2
sin2 φ

(∑
j

sin(k · δj)
)2
]1/2

, (B.22)

where δj are the 2NN vectors and the 2NN hopping parameter is defined as t′e±iφ.





Appendix C

Density of states

In this appendix we will derive the density of states (DOS) at the Fermi level near the Dirac point.
The DOS at the Fermi level εF = µ < 0 is defined as

D(εF) =
∑
k

δ(εF − εk), (C.1)

where δ(x) is the Dirac delta distribution. Equation (C.1) is too difficult to solve because the
dispersion relation εk is too complicated. We begin simplifying εk from Eq. (3.3) by setting
φ = π/2 and introducing v ≡ t′/t

εk = −
[
|S(k)|2 + 4v2

(∑
j

sin(k · δj)
)2
]1/2

. (C.2)

Recall the definition S(k) ≡
∑
j exp(ik · ej). From this, we can easily derive its absolute square

|S(k)|2 = 3 + 2
∑
j

cos(k · δj). (C.3)

The dispersion relation is still too complicated. One way to simplify it is to write it as a power
series about the Dirac pointK = (4π/3

√
3, 0). This choice is reasonable because we are really only

interested in the DOS near the Dirac point, where the gap is smallest. We begin by expanding
Eq. (C.3) letting k→ k +K where |k| � 1

|S(k +K)|2 = 3 + 2
∑
j

[
cos(K · δj) cos(k · δj)− sin(K · δj) sin(k · δj)

]
. (C.4)

Taylor expanding the terms with k to O(k4) and performing the sums leaves us with

|S(k)|2 =
9

4
k2 − 27

64
k4. (C.5)

If we expand
∑
j sin(k · δj) in Eq. (C.2) similarly, we end up with a less complicated dispersion

relation

εk = −

√
9

4
k2 − 27

64
k4 + 4v2

(
− 3
√

3

2
+

9
√

3

8
k2
)2

= −
√
ak4 + bk2 +m2, (C.6)
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where
a =

243

16
v2 − 27

64

b = −81

2
v2 +

9

4

m2 = 27v2.

(C.7)

The DOS is now much easier to derive

D(εF) =
∑
k

δ
(
− |εF|+

√
ak4 + bk2 +m2

)
. (C.8)

If we let

1

N

∑
k

→ 1

ABZ

ˆ
d2k, (C.9)

where ABZ = 8π2

3
√

3a2
is the Brillouin zone area and N is the number of unit cells, we can write

Eq. (C.8) as an integral

D(εF) =
N

ABZ

ˆ 2π

0

dθ

ˆ ∞
0

dk kδ
(
|εF| −

√
ak4 + bk2 +m2

)
. (C.10)

Next, we substitute u =
√
ak4 + bk2 +m2. Differentiating it gives

du =
2ak2 + b

u
kdk. (C.11)

We find k2 expressed by u by solving ak4 + bk2 +m2 − u2 = 0, whose solutions are

k2 =
−b±

√
b2 − 4a(m2 − u2)

2a
. (C.12)

We choose the positive solution because the negative solution would cause the DOS to be negative.
Furthermore, as a function of v the positive solution is positive up until vc = t′c/t. The DOS
integral becomes

D(εF) =
2πN

ABZ

ˆ ∞
m

du
u√

b2 − 4a(m2 − u2)
δ(|εF| − u). (C.13)

The delta function and integral limits put a constraint on the integral, which is why we introduce
the Heaviside step function Θ(x), and arrive at the final expression for D(εF)

D(εF) =
2πN

ABZ

|εF|√
b2 − 4a(m2 − ε2F)

Θ(|εF| −m). (C.14)

A plot of the DOS in Eq. (C.14) as a function of µ and v is shown in Fig. C.1. The DOS as a
function of µ is almost linear for v = 0. And increasing v shows that the DOS becomes non-zero
only after passing a critical µc =

√
27vc, after which the DOS grows approximately linearly. This

behavior is what we would expect. The DOS jumps at µc for a given v because that is the moment
the Fermi level moves inside the band.

The DOS as a function of v is slightly trickier to understand. We see that the DOS increases as
a function of v until it collapses to 0 at vc. Which means that the DOS is at its highest when the
Fermi level is on the brink of moving inside the gap due to the gap growing larger. To understand
this effect, we should study the dispersion relation for increasing v, see Fig. 3.1. The figure shows
that increasing v not only increases the gap between the bands but also alters the shape of the



49

−1 −0.8 −0.6 −0.4 −0.2 0

0

0.1

0.2

0.3

µ

D
(ε
F

)
v = 0.00
v = 0.05
v = 0.10
v = 0.15
v = 0.20

0 5 · 10−2 0.1 0.15 0.2

0

0.2

0.4

v

µ = 0.00
µ = −0.25
µ = −0.50
µ = −0.75
µ = −1.00

Figure C.1: Density of states at Fermi level near the Dirac point as a function of µ and v ≡ t′/t.

bands. Changes significant to the DOS are (1) the Fermi surface for v . vc is smaller than for
v = 0 and (2) the slope of the band at the Fermi surface is smaller, i.e. the band flattens. Of the
two effects, (1) contributes towards a decrease in the DOS, while (2) increases it. It is easier to see
why (2) increases the DOS if we rewrite it as [40]

D(εF) =
Ω

(2π)2

ˆ

ε=εF

dS

|∇kεk|
, (C.15)

where we integrate over the constant Fermi surface. Equation (C.15) is inversely “proportional” to
the gradient of the dispersion relation at the Fermi surface. Hence, a decrease of the gradient, or
flattening of the band, should increase the DOS.

In summary, we observe that effect (2) dominates. Resulting in an increase of D(εF) as a
function of v up until vc.





Appendix D

Eliashberg equations

In the following appendix we will derive the Eliashberg equations using the equations of motion
approach shown in the appendix of [42] together with chapter 10 of [34].

The diagonalized Hamiltonian is given by Eq. (B.21)

H =
∑
kσ

(εk − µ)c†kσckσ +
U

4N

∑
kk′q,σ

c†k+qσc
†
k′−q,−σck′,−σckσ, (D.1)

where c (c†) is the pseudo-particle fermionic annihilation (creation) operator. The single-particle
k-state energy εk (for NN and 2NN) is given by

εk = −2t′ cosφ
∑
j

cos(k · δj)±
[
t2|S(k)|2 + 4t′

2
sin2 φ

(∑
j

sin(k · δj)
)2
]1/2

. (D.2)

D.1 Imaginary-time Green’s functions
The definition of the single-particle Green’s function, defined in momentum space, as a function
of imaginary-time τ is

G(k, τ) ≡ −〈Tτ ckσ(τ)c†kσ(0)〉. (D.3)
Recall that, in the Heisenberg picture, the imaginary-time dependency of operators is defined by

cν(τ) ≡ eτHcνe−τH

c†ν(τ) ≡ eτHc†νe−τH .
(D.4)

Note that both the equation for cν(τ) and c†ν(τ) is needed because eτH is not a unitary operator.
We use the equation of motion approach to derive the Eliashberg equations for our system given

by Eq. (D.1). We start by taking the imaginary-time derivative of G

∂

∂τ
G(k, τ) = −δ(τ)

〈{
ckσ(τ = 0), c†kσ(0)

}〉
−
〈
Tτ

[
∂

∂τ
ckσ(τ)

]
c†kσ(0)

〉
= −δ(τ)−

〈
Tτ [H, ckσ(τ)] c†kσ(0)

〉
.

(D.5)

To proceed, we need to derive an expression for the commutator [H, ckσ(τ)]. From the definition
of the operators in Eq. (D.4), we see that [H, ckσ(τ)] = eτH [H, ckσ] e−τH because H commutes
with e±τH 1. This leaves us with the task of finding the time-independent commutator

1Recall that e±τH is simply the series expansion of the exponential function, i.e. integer powers of H.
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[H, ckσ] =
∑
νσ′

ξν

[
c†νσ′cνσ′ , ckσ

]
+

U

4N

∑
νν′q,s

[
c†ν+q,sc

†
ν′−q,−scν′,−scν,s, ckσ

]
. (D.6)

The first commutator is easily evaluated by using the relation

[AB,C] = A [B,C] + [A,C]B = A {B,C} − {A,C}B. (D.7)

This gives [
c†νσ′cνσ′ , ckσ

]
= c†νσ′

{
cνσ′ , ckσ

}
−
{
c†νσ′ , ckσ

}
cνσ′

= 0− δνkδσσ′cνσ′ .
(D.8)

The second commutator in Eq. (D.6) can be evaluated similarly by using Eq. (D.7) twice

[
c†ν+q,sc

†
ν′−q,−scν′,−scν,s, ckσ

]
= c†ν+q,sc

†
ν′−q,−s

[
cν′,−scν,s, ckσ

]
+
[
c†ν+q,sc

†
ν′−q,−s, ckσ

]
cν′,−scν,s

= 0 +
(
c†ν+q,s

{
c†ν′−q,−s, ckσ

}
−
{
c†ν+q,s, ckσ

}
c†ν′−q,−s

)
cν′,−scν,s

=
(
δν′,k+qδσ,−sc

†
ν+q,s − δν,k−qδσ,sc

†
ν′−q,−s

)
cν′,−scν,s.

(D.9)
Performing the sums over ν, ν′ and s in Eq. (D.6) gives

[H, ckσ] = −ξkckσ +
U

4N

∑
pq

(
c†p+q,−σck+q,σcp,−σ − c†p−q,−σcp,−σck−q,σ

)
= −ξkckσ −

U

2N

∑
pq

c†p+q,−σcp,−σck+q,σ,

(D.10)

where we have let q → −q in the second term and anti-commuted the annihilation operators in
the first term. Inserting this result back into Eq. (D.5) gives

(
∂

∂τ
+ ξk

)
Gσ(k, τ) = −δ(τ) +

U

2N

∑
pq

〈Tτ c†p+q,−σ(τ)cp,−σ(τ)ck+q,σ(τ)c†k,σ(0)〉. (D.11)

The summand on the RHS can be approximated by decoupling it into two 〈cc†〉 terms to give two
Green’s functions G, analogous to Wick’s theorem. However, these are not the only significant
combinations of fermion operators. We may also allow 〈cc〉 and 〈c†c†〉 when decoupling our time-
ordered product. Such combinations give rise to so-called Gor’kov anomalous amplitudes F and
F †, which are defined as

F (k, τ) ≡ −〈Tτ ck↑(τ)c−k↓(0)〉 (D.12)

and

F †(k, τ) ≡ −〈Tτ c†−k↓(τ)c†k↑(0)〉. (D.13)

Thus, we get two contributions instead of one

〈Tτ c†p+q,−σ(τ)cp,−σ(τ)ck+q,σ(τ)c†k,σ(0)〉 → −〈Tτ cp,−σ(τ)c†p+q,−σ(τ)〉〈Tτ ck+q,σ(τ)c†k,σ(0)〉
→ −δq0G−σ(p, 0)Gσ(k, τ)

(D.14)

and
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〈Tτ c†p+q,−σ(τ)cp,−σ(τ)ck+q,σ(τ)c†k,σ(0)〉 → −〈Tτ ck+q,σ(τ)cp,−σ(τ)〉〈Tτ c†p+q,−σ(τ)c†k,σ(0)〉

→ −δp,−k−qF (σ[k + q], 0)F †(σk, στ).
(D.15)

Combining both contributions to Eq. (D.5) we get

(
∂

∂τ
+ ξk

)
Gσ(k, τ) = −δ(τ)− U

2N

∑
q

[
G−σ(q, 0)Gσ(k, τ) + F (q, 0)F †(σk, στ)

]
, (D.16)

where we have let p → q in the G-term and let q → q − k in the F -term. Moreover, because we
can let q → −q, we are free to drop the σ inside F .

Next we derive equations of motion for F and F †. Differentiating them w.r.t. imaginary-time
gives

∂

∂τ
F (k, τ) = −〈Tτ [H, ck↑(τ)] c−k↓(0)〉 (D.17)

and

∂

∂τ
F †(k, τ) = −〈Tτ

[
H, c†−k↓(τ)

]
c†k↑(0)〉. (D.18)

The commutators can be evaluated same as before by using Eq. (D.7). Skipping the intermediate
steps gives (

∂

∂τ
+ ξk

)
F (k, τ) =

U

2N

∑
pq

〈Tτ c†p+q↓(τ)cp↓(τ)ck+q↑(τ)c−k↓(0)〉 (D.19)

and (
∂

∂τ
− ξk

)
F †(k, τ) =

U

2N

∑
pq

〈Tτ c†p+q↑(τ)c†−k−q↓(τ)cp↑(τ)c†k↑(0)〉. (D.20)

We can decouple the summand in the same way as before. For F we get

〈Tτ c†p+q↓(τ)cp↓(τ)ck+q↑(τ)c−k↓(0)〉 → −〈Tτ cp↓(τ)c†p+q↓(τ)〉〈Tτ ck+q↑(τ)c−k↓(0)〉
→ −δq0G↓(p, 0)F (k, τ)

(D.21)

and

〈Tτ c†p+q↓(τ)cp↓(τ)ck+q↑(τ)c−k↓(0)〉 → 〈Tτ ck+q↑(τ)cp↓(τ)〉〈Tτ c−k↓(0)c†p+q↓(τ)〉
→ δp,−k−qF (k + q, 0)G↓(−k,−τ),

(D.22)

and the following for F †

〈Tτ c†p+q↑(τ)c†−k−q↓(τ)cp↑(τ)c†k↑(0)〉 → −〈Tτ c†−k−q↓(τ)c†p+q↑(τ)〉〈Tτ cp↑(τ)c†k↑(0)〉

→ −δpkF †(k + q, 0)G↑(k, τ)
(D.23)

and



54 APPENDIX D. ELIASHBERG EQUATIONS

〈Tτ c†p+q↑(τ)c†−k−q↓(τ)cp↑(τ)c†k↑(0)〉 → 〈Tτ cp↑(τ)c†p+q↑(τ)〉〈Tτ c†−k−q↓(τ)c†k↑(0)〉

→ δq0G↑(p, 0)F †(k, τ).
(D.24)

Combining these contributions into Eqs. (D.19) and (D.20) gives(
∂

∂τ
+ ξk

)
F (k, τ) =

U

2N

∑
q

[
−G↓(q, 0)F (k, τ) + F (q, 0)G↓(−k,−τ)

]
(D.25)

and (
∂

∂τ
− ξk

)
F †(k, τ) =

U

2N

∑
q

[
G↑(q, 0)F †(k, τ)− F †(q, 0)G↑(k, τ)

]
, (D.26)

where we have let q → q − k in the last term in both equations.
Next we Fourier transform Eqs. (D.16), (D.25) and (D.26). The transform is defined by the

following equations

G(k, τ) =
1

β

∑
m∈Z

e−iωmτG(k, iωm) (D.27)

G(k, iωm) =

ˆ β

0

dτG(k, τ)eiωmτ , (D.28)

and similarly for F and F †. The Matsubara frequency ωn is defined as ωn = (2n + 1)π/β for
fermions. Fourier transforming Eqs. (D.16), (D.25) and (D.26) gives the following equations

(−iωn + ξk)Gσ(k, iωn) = −1− 1

β

U

2N

∑
q,m

[
G−σ(q, iωm)Gσ(k, iωn) + F (q, iωm)F †(σk, σiωn)

]
,

(D.29)

(−iωn + ξk)F (k, iωn) =
1

β

U

2N

∑
q,m

[
−G↓(q, iωm)F (k, iωn) + F (q, iωm)G↓(−k,−iωn)

]
, (D.30)

and

(−iωn − ξk)F †(k, iωn) =
1

β

U

2N

∑
q,m

[
G↑(q, iωm)F †(k, iωn)− F †(q, iωm)G↑(k, iωn)

]
. (D.31)

Looking at the above equations we see a few reoccurring sums

Sσ ≡ −
1

β

U

2N

∑
q,m

Gσ(q, iωm) (D.32)

W ≡ − 1

β

U

2N

∑
q,m

F (q, iωm) (D.33)

W † ≡ − 1

β

U

2N

∑
q,m

F †(q, iωm). (D.34)
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We can thus re-express Eqs. (D.29) to (D.31) using S, W and W †

(iωn − ξk + S−σ)Gσ(k, iωn) +WF †(σk, σiωn) = 1, (D.35)

(iωn − ξk + S↓)F (k, iωn)−WG↓(−k,−iωn) = 0, (D.36)

and

(−iωn − ξk + S↑)F
†(k, iωn)−W †G↑(k, iωn) = 0. (D.37)

We can find expressions for G and F † by solving Eqs. (D.35) and (D.37). Doing so gives

G↑(k, iωn) =
iωn + ξk − S↑

(iωn)2 − iωn(S↑ − S↓)− ξ2
k + ξk(S↑ + S↓)− S↑S↓ − |W |2

(D.38)

and

F †(k, iωn) =
−W †

(iωn)2 − iωn(S↑ − S↓)− ξ2
k + ξk(S↑ + S↓)− S↑S↓ − |W |2

. (D.39)

If we assume no spin dependent forces, we can set Gσ = G and Sσ = S

G(k, iωn) =
iωn + ξk − S

(iωn)2 − (ξk − S)2 − |W |2
(D.40)

F †(k, iωn) =
−W †

(iωn)2 − (ξk − S)2 − |W |2
. (D.41)

With these equations for G and F †, and with F † the complex conjugate of F , we are in a position
to set up equations for the self-energies S and W

S = − 1

β

U

2N

∑
k,n

iωn + ξk − S
(iωn)2 − (ξk − S)2 − |W |2

(D.42)

W = − 1

β

U

2N

∑
k,n

−W
(iωn)2 − (ξk − S)2 − |W |2

. (D.43)

D.2 Matsubara sum

The next step is to carry out the sums over the Matsubara frequencies ωn = (2n + 1)π/β. A
method of evaluating Matsubara sums can be found in section 25 of [33] and in section 4.2 of [46].
Let us identify two kinds of sums in Eqs. (D.42) and (D.43)

S1 ≡
∑
n

iωn

(iωn)2 − (ξq − S)2 − |W |2
(D.44)

and

S2 ≡
∑
n

1

(iωn)2 − (ξq − S)2 − |W |2
. (D.45)

We will evaluate S1 in detail2, which we rewrite as
2Evaluation of S2 is similar to S1.
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Figure D.1: Contour C enclosing all poles zn (de-
noted by crosses) of the counting function −β(eβz+
1)−1 along the imaginary axis. z = ±a are the poles
of the original summand.
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Figure D.2: C inflated to Γ and C′. This contour
encloses the same poles as C when blown up to in-
finity. In the limit |z| → ∞, the integral over Γ
decays and only a clock-wise integration along C′
contributes.

S1 =
∑
n

iωn
(iωn)2 − a2

(D.46)

where a ≡
√

(ξq − S)2 + |W |2. The method involves rewriting the sum as a contour integral of
a product between the summand and a “counting function” which has poles zn = iωn along the
entire imaginary axis. One such function, for fermions, is g(z) = −β(eβz + 1)−1. This function is
essentially the Fermi-Dirac distribution function and has unit residue at each pole. Thus, we can
write S1 as

S1 =
∑
n

iωn
(iωn)2 − a2

=
−β
2πi

˛
C

dz

eβz + 1

z

z2 − a2
(D.47)

where z = iωn. The contour C is illustrated in Fig. D.1. Since the contour encloses the poles of
g, the integral reduces to a sum over residues. g is constructed to have unit residue at each pole,
which means the sum over residues becomes a sum over ωn, and thus we get S1. We note that
S1 is on the edge of convergence. To push it over, we introduce a convergence factor eiωnη where
η = 0+. With this factor, S1 takes the form

S1 = lim
η→0+

∑
n

iωneiωnη

(iωn)2 − a2
= lim
η→0+

−β
2πi

˛
C

dz

eβz + 1

zezη

z2 − a2
. (D.48)

Next we inflate C to Γ and C′ as shown in Fig. D.2. This contour encloses the same poles as C.
We note that in the limit |z| → ∞, the contribution from Γ vanishes. We see this by studying the
order of the integrand for both cases Re(z) > 0 and Re(z) < 03. For Re(z) > 0 the integrand is
of order |z|−1

exp[−Re(z)(β − η)], and for Re(z) < 0 it is of the order |z|−1
exp[Re(z)η]. In both

cases, the integrand decays as |z| → ∞, i.e. we are left with an integral along only C′

3The sign of Im(z) is not of interest because the imaginary part only contributes to oscillations.
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S1 = lim
η→0+

−β
2πi

˛
C′

dz

eβz + 1

zezη

z2 − a2
. (D.49)

This has reduced the problem from a sum over infinite poles to a sum over only two simple poles
enclosed by C′, namely z = ±a. By use of the residue theorem, S1 becomes4

S1 = lim
η→0+

∑
zk=±a

Res

[
β

eβzk + 1

zkezkη

(zk − a)(zk + a)

]
=
β

2
. (D.50)

A similar derivation for S2 yields

S2 = lim
η→0+

∑
zk=±a

Res

[
β

eβzk + 1

ezkη

(zk − a)(zk + a)

]
= −β tanh (βa/2)

2a
. (D.51)

Using these results for S1 and S2, we can rewrite Eqs. (D.42) and (D.43)

S = −U
4

+
U

2N

∑
k

(ξk − S)

tanh

(
β
2

√
(ξk − S)2 + |W |2

)
2

√
(ξk − S)2 + |W |2

(D.52)

1 = − U

2N

∑
k

tanh

(
β
2

√
(ξk − S)2 + |W |2

)
2

√
(ξk − S)2 + |W |2

. (D.53)

These are the equations we need to solve for S and W as a function of T and U . However, they
need to be simplified by evaluating the k-sums first.

D.3 Energy integral

The sum in Eq. (D.52) can be evaluated analytically if converted to an energy integral. We will
assume an isotropic Fermi surface and rewrite the sum as∑

k

→
ˆ

dεD(ε) ≈ D(εF)

ˆ ωD

−ωD
dε, (D.54)

where ωD is the Debye frequency and D(ε) is the density of states. The last approximation is valid
if we stay close to the Fermi surface εF. Using Eq. (D.54), Eq. (D.52) becomes

S = −U
4

+
UD(εF)

2N

ˆ ωD

−ωD
dε (ε− S)

tanh

(
β
2

√
(ε− S)2 + |W |2

)
2

√
(ε− S)2 + |W |2

. (D.55)

A change of variables x(ε) ≡ β
2

√
(ε− S)2 + |W |2 gives

S = −U
4
− λ

β

ˆ x(ωD)

x(−ωD)

dx tanh(x), (D.56)

where we have defined the positive coupling constant λ ≡ −UD(εF)/2N . Performing the integral
gives us the final form of Eq. (D.52)

4Change of sign due to the negative nature of C′.
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S = −U
4
− λ

β
ln

cosh

(
β
2

√
(ωD − S)2 + |W |2

)
cosh

(
β
2

√
(ωD + S)2 + |W |2

)
 . (D.57)

Looking back on Eq. (D.53) we see its resemblance to the BCS gap equation. In fact, if we set
S = 0 the BCS gap ∆ and W are equivalent. Just like in BCS, the sum in Eq. (D.53) cannot be
evaluated analytically for all β. Hence, we need to consider two temperature limits, namely T → 0
and T → Tc.

D.3.1 T → 0

In the limit T → 0, β grows to infinity. For βx � 1, cosh(βx) → exp(βx)/2 and tanh(βx) → 1.
With this in mind Eqs. (D.53) and (D.57) become

1 =
λ

2

ˆ ωD

−ωD
dε

1√
(ε− S)2 + |W |2

, (D.58)

and

S = −U
4
− λ

2

(√
(ωD − S)2 + |W |2 −

√
(ωD + S)2 + |W |2

)
(D.59)

respectively. The integral in Eq. (D.58) can be performed analytically by defining the variable
x(ε) ≡ (ε− S)/|W |

1 =
λ

2

ˆ x(ωD)

x(−ωD)

dx
1√

1 + x2

=
λ

2

[
sinh−1

(
ωD − S
|W |

)
+ sinh−1

(
ωD + S

|W |

)]
.

(D.60)

Summarizing both equations for completeness gives

S = −U
4
− λ

2

(√
(ωD − S)2 + |W |2 −

√
(ωD + S)2 + |W |2

)
(D.61)

and

1 =
λ

2

[
sinh−1

(
ωD − S
|W |

)
+ sinh−1

(
ωD + S

|W |

)]
. (D.62)

These equations can be solved numerically to find both S and W at T = 0 as a function of e.g. U .

D.3.2 T → Tc

A superconductor transitions to a metal when T > Tc. Which means that at the limit T = Tc, the
superconducting gap W must go to zero. We can thus rewrite Eqs. (D.53) and (D.57) to

1 =
λ

2

ˆ ωD

−ωD
dε

tanh
(
β
2 |ε− S|

)
|ε− S|

, (D.63)

and
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S = −U
4
− λ

β
ln

cosh
(
β
2 |ωD − S|

)
cosh

(
β
2 |ωD + S|

)
 . (D.64)

where β = 1/kBTc. The strategy to solve Eq. (D.63) is to first do a change of variables, then
split up the integral limits, and finally integrate by parts. We begin by defining the new variable
x(ε) ≡ β

2 |ε− S| with dx/dε = β
2 sgn(ε−S), where sgn(a) gives the sign of a. Splitting the integration

limits gives

1 =
λ

2

[
sgn(−ωD − S)

ˆ 0

β
2 |−ωD−S|

dx
tanh(x)

x
+ sgn(ωD − S)

ˆ β
2 |ωD−S|

0

dx
tanh(x)

x

]
. (D.65)

Both integrals can be evaluated in the same manner. Let us focus on the last integral. We continue
by first integrating it by parts

ˆ β
2 |ωD−S|

0

dx
tanh(x)

x
= tanh(x) ln(x)

∣∣∣∣
β
2 |ωD−S|

0

−
ˆ β

2 |ωD−S|

0

ln(x)

cosh2(x)

= tanh

(
β

2
|ωD − S|

)
ln

(
β

2
|ωD − S|

)
− lnC.

(D.66)

In the last integral we have assumed that β2 |ωD − S| � 1 and thus set the upper limit of integration
to infinity. This is a reasonable decision because the integrand lnx/ cosh2 x is rapidly convergent.
With ∞ as the upper limit, the last integral is well known with C = πe−γ/4.5 Note that we have
not let β

2 |ωD − S| → ∞ in the first term as it is logarithmically divergent. Using this result, we
arrive at the final form of Eq. (D.63)

2

λ
= sgn(ωD − S) tanh

(
β

2
|ωD − S|

)
ln

(
β

2
|ωD − S|

)
+

tanh

(
β

2
|ωD + S|

)
ln

(
β

2
|ωD + S|

)
−

[sgn(ωD − S) + 1] lnC.

(D.67)

Equation (D.67) and

S = −U
4
− λ

β
ln

cosh
(
β
2 |ωD − S|

)
cosh

(
β
2 |ωD + S|

)
 (D.68)

makes up the set of equations to solve for S and Tc as a function of e.g. U .

5γ is called Euler’s constant and is γ ≈ 0.577215.
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