
Aleksander G
jersvoll

Sim
ulation m

ethods for granular gas dynam
ics in periodic three-dim

ensional system
s

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

M
as

te
r’s

 th
es

is

Aleksander Gjersvoll

Simulation methods for granular gas
dynamics in periodic three-dimensional
systems

Master’s thesis in Applied Physics and Mathematics

Supervisor: Tor Nordam

June 2020

Aleksander Gjersvoll

Simulation methods for granular gas
dynamics in periodic three-
dimensional systems

Master’s thesis in Applied Physics and Mathematics
Supervisor: Tor Nordam
June 2020

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Physics

i

Preface

This thesis is submitted as the work done for the course TFY4900 - Physics, Master’s Thesis (30
ECTS) at NTNU. The course is my final course of the five year master’s degree program Applied
Physics and Mathematics at NTNU, where I have chosen Applied Physics as my field of study. Upon
completion of this course I will achieve a M.Sc. in Physics and Mathematics. The work done for this
master’s thesis has been carried out through the spring of 2020 in Trondheim. The code written and
used for the simulations in this report can be found on github1, and guidance can be be provided
upon request.

The work presented here is a continuation of the work done during the autumn of 2019 for the
course TFY4510 - Physics, Specialization Project (15 ECTS) [see 1]. The work done throughout
these two courses has been under the guidance of my supervisor, Associate Professor Tor Nordam.
His expertise in the field of computational physics, high performance computing and stochastic
differential equations have contributed greatly to the results in this thesis. I would like to express
my gratitude for all his contributions during the year we have worked together. Our discussions have
inspired many new ideas, given me motivation to continue working and solved many of the problems
I managed to stumble across this past year. Our weekly meetings have been full of humour and I
always felt inspired to work on new ideas afterwards.

This project originates from the exam Tor Nordam created for the course TFY4235 - Compu-
tational Physics in 2016. We then created a project based on the foundation from the exam, by
conducting numerical simulations of many-particle systems of particles colliding in a box. For the
specialization project we focused mainly on results for a molecular gas, while we intend here to study
the more complex case of granular gas dynamics.

I would also like to thank my family and friends for the support I have experienced through my
time at NTNU. Especially, I would like to express my gratitude for my friends and fellow students in
the class of 2015 for the endurance shown during the many hours we have spent learning interesting
topics in the area of physics and mathematics and for all the good memories we have made together.
As a result of the currently ongoing COVID-19 pandemic I have since the middle of March been
working from home. I would also thus like to thank Ida Marie Falnes, who has been in the same
situation as me while writing a master’s thesis in applied mathematics and I have shared a home
office with. Her company and cheerfulness has made working from home possible.

Trondheim, June 2020
Aleksander Gjersvoll

1https://github.com/alekgjer/master_thesis

https://github.com/alekgjer/master_thesis

ii

iii

Abstract

In this thesis we study granular gas dynamics, where it has been assumed that the dynamics of a
granular gas is determined by instantaneous pairwise inelastic particle collisions, and the collisions are
given by a constant coefficient of restitution. A granular gas thus differ from a molecular gas, where
the particle collisions are elastic. In order to study granular gas dynamics two different simulations
methods have been implemented to conduct numerical studies of a system of particles colliding in a
three-dimensional cubic box. To conduct molecular dynamics simulations, with either reflecting or
periodic boundary conditions, an event driven simulation has been implemented. Langevin dynamics
have also been used by solving different Langevin equations modelling the dynamics of different types
of particles.

Molecular dynamics is a numerical method used to study the movement and the dynamics of
particles. Instead of solving Newton’s equation of motion for each particle, we have in this project
utilized the nature of a granular gas to motivate the choice of reducing the molecular dynamics
simulation to an event driven simulation, for which one only has to deal with pairwise particle
collisions. The event driven simulation has been implemented with a priority queue, an efficient
data structure used to easily identify the next collision and store all future collisions.

Langevin dynamics have been used to model the dynamics of different particles as a stochastic
differential equation. Numerically, we can solve such equations by applying a time discretization
method. The Euler-Maruyama method has been implemented with success to solve the underdamped
Langevin equation and underdamped scaled Brownian motion modelling the particles in a molecular
and a granular gas respectively.

In order to verify the implemented simulation methods we have computed numerical results for
both a molecular and a granular gas, and compared the results with theoretical predictions from
kinetic theory and Brownian motion and with published results. The study of Brownian motion
consists of computing the mean squared displacement, and comparing with theory given by the
velocity autocorrelation function of different systems. The event driven simulation has given results
in the areas of system statistics, speed distributions, diffusion and Brownian motion, for which
the results have shown a satisfactory agreement with theoretical predictions and published results,
verifying the implemented simulation. The numerical solution to the Langevin equations exhibits
the same type of behaviour as the event driven simulation, verifying the use of stochastic differential
equations to model the dynamics of a granular system.

iv

v

Samandrag

I denne masteroppgåva studerar me granulær gassdynamikk, der me har antatt at dynamikken til ein
granulær gass er bestemt av momentane parvise uelastiske partikkelkollisjonar, og kollisjonane er gitt
av ein konstant restitusjonskoeffisient. Ein granulær gass skiljer seg derfor frå ein molekylær gass, der
partikkelkollisjonane er elastiske. For å studere granulær gassdynamikk har to simuleringsmetodar
blitt implementert for å gjennomføre numeriske studiar av partiklar som kolliderar i ein tredimen-
sjonal kubisk boks. For å gjennomføre simuleringar av molekylærdynamikk, med enten reflekterande
eller periodiske grensar, har ein hendingbasert simulering blitt implementert. Langevindynamikk
har også blitt brukt for å løyse ulike Langevinlikningar som modellerar dynamikken til ulike typer
partiklar.

Molekylærdynamikk er ein numerisk metode brukt for å studere rørslene og dynamikken til par-
tiklar. I stedet for å løyse Newton sine rørslelikningar for kvar partikkel, har me i dette prosjektet
utnytta eigenskapane til ein granulær gass for å motivere ein reduksjon frå molekylærdynamikk til
ein hendingbasert simulering, der ein berre må håndtere parvise partikkelkollisjonar. Den hendings-
baserte simuleringa har blitt implementert med ei prioritetskø, som er ein effektiv datastruktur som
kan brukast til å identifisere den neste kollisjonen og lagre alle framtidige kollisjonar.

Langevindynamikk har blitt brukt for å modellere dynamikken til ulike partikler som ei stokastisk
differensiallikning. Numerisk kan me løyse sånne likningar med å bruke ein tidsdiskretiseringsme-
tode. Euler-Maruyama metoden har blitt implementert med suksess for å løyse den underdempa
Langevinlikninga og den underdempa skalerte Brownske rørslen som modellerar partiklane i ein
henhaldsvis molekylær og granulær gass.

For å verifisere dei implementerte simuleringsmetodane har me rekna ut numeriske resultat for
både ein molekylær og ein granulær gass, og samanlikna resultata med teoretiske prediksjonar frå
kinetisk teori og Brownske rørsler og med publiserte resultat. Vår studie av Brownske rørsler har
bestått av å rekne ut den gjennomsnittlege kvadratiske distansen frå startposisjon, og samanlikna
med teori gitt av funksjonen for hastigheiten sin autokorrelasjon for ulike system. Den hendig-
baserte simuleringsverktøyet har gitt resultat innenfor systemstatistikk, fartsfordelingar, diffusjon
og Brownske rørsler, der resultata har vist eit tilfredsstillande samsvar med teori og publiserte re-
sultat, og dermed verifisert implementasjonen. Resultata frå å løyse Langevinlikningar har vist den
same åtferda som den hendingbaserte simuleringa, noko som har verifisert bruken av stokastiske
differensiallikningar for å modellere dynamikken til eit granulært system.

vi

Contents

List of Figures ix

List of Tables xi

List of Abbreviations xiii

1 Introduction 1

2 Theory 7
2.1 Collisions . 7

2.1.1 Inelastic collision in one dimension . 8
2.1.2 Inelastic collision in three dimensions . 9
2.1.3 The time until a particle-particle collision . 12
2.1.4 Particle-wall collision . 13

2.2 Coefficient of restitution . 14
2.3 Inelastic collapse . 14
2.4 Maxwell-Boltzmann distribution . 16

2.4.1 Speed distribution in two dimensions . 16
2.4.2 Speed distribution in three dimensions . 17
2.4.3 Expectation values . 18

2.5 Kinetic gas theory . 18
2.6 Haff’s law . 19
2.7 Diffusion . 21
2.8 Brownian motion . 23

2.8.1 Diffusion coefficient . 23
2.8.2 Mean squared displacement . 25
2.8.3 Molecular gas . 27
2.8.4 Granular gas . 28

2.9 Brownian motion as a stochastic differential equation 30
2.9.1 Langevin equation . 30
2.9.2 Stochastic differential equation . 31
2.9.3 Euler-Maruyama scheme . 31
2.9.4 Higher order schemes . 32
2.9.5 Underdamped Langevin equation . 32
2.9.6 Underdamped Scaled Brownian Motion . 35

2.10 Ergodicity . 36
2.11 Central limit theorem . 37

vii

viii CONTENTS

3 Numerical modelling 39
3.1 Overview . 39
3.2 Event driven simulation . 40

3.2.1 Output . 43
3.3 Priority queue . 43
3.4 Boundary conditions . 44

3.4.1 Reflecting boundary conditions . 46
3.4.2 Periodic boundary conditions . 46

3.5 Collisions . 50
3.6 TC model . 51
3.7 Statistics . 52
3.8 Initial values . 53
3.9 Stopping criterion . 54
3.10 Parallelization . 55
3.11 Numerical setup and errors . 56

3.11.1 Event driven simulation . 56
3.11.2 Numerical solution of SDEs . 57

3.12 Specifications . 57

4 Results and discussion 59
4.1 Event driven simulation of many-particle systems . 59

4.1.1 Test cases . 60
4.1.2 Speed distributions . 63
4.1.3 Haff’s law . 65
4.1.4 Brownian motion . 70

4.2 Numerical solutions of SDEs describing Brownian motion 76
4.2.1 Underdamped Langevin equation . 76
4.2.2 UDSBM . 77
4.2.3 Ergodicity . 79

5 Further Work 83

6 Conclusion 85

References 87

Appendices

A Coefficient of restitution for an elastic collision in one dimension 93

B Energy dissipation of an inelastic collision 95

C The velocity autocorrelation function of UDSBM 97

D Computation of the time until a particle-particle collision 99

E Numerical setup 101
E.1 Event driven simulation . 101
E.2 Numerical solution of SDEs . 103

F MSD of event driven simulations on a non-logarithmic scale 105

List of Symbols 107

List of Figures

1.1 Illustration of the different futures for a molecular gas and a granular gas in two
dimensions with reflecting boundaries . 3

2.1 Collision in one dimension . 8
2.2 Collision in three dimensions . 9
2.3 Illustration of the coordinate system used to derive the collision rule 9
2.4 Illustration of the system used for the numerical modelling 11
2.5 Particle colliding with a wall . 13
2.6 Inelastic collapse for three particles in one dimension 15
2.7 Transformation from Cartesian to polar and spherical coordinates 17
2.8 Illustration of the free path for a particle in a three-dimensional system 20
2.9 Illustration of a diffusion process . 22
2.10 Illustration of a large Brownian particle in a sea of smaller particles 24
2.11 Integral trick used due to symmetry of the velocity autocorrelation function in the

mean squared displacement integral . 26
2.12 Change of integration order in the derivation of diffusion coefficient as a function of

the velocity autocorrelation function . 27

3.1 General flow chart of an event driven simulation . 42
3.2 Scaling of the number of elements in the priority queue 44
3.3 The concept of reflecting boundary conditions for particles colliding in a box 46
3.4 The concept of periodic boundary conditions for particles colliding in a box 47
3.5 Illustration of the method used to implement periodic boundary conditions 48
3.6 Special type of collision that occurs due to periodic boundary conditions 49
3.7 Illustration of typical initial system of particles uniformly distributed in the box . . 56

4.1 Illustration of one of the simple tests used to verify the event driven simulation . . . 60
4.2 The average kinetic particle energy of a molecular gas 61
4.3 The average number of collisions per particle for a simulation of a molecular gas . . 62
4.4 The average number of collisions per particle for a simulation of a granular gas . . . 62
4.5 Speed distribution of a two-dimensional molecular gas in equilibrium 64
4.6 Speed distribution of a three-dimensional molecular gas in equilibrium 64
4.7 Initial speed distribution for a granular gas . 65
4.8 Plot of the impact of different boundary conditions on the evolution of the granular

temperature . 66
4.9 Illustration of how the positions of the particles in a granular gas can change in time

for different boundary conditions . 68
4.10 Plot of the evolution of the granular temperature for a set of different coefficients of

restitution . 69
4.11 Plot of the mean squared displacement for a molecular gas 71

ix

x LIST OF FIGURES

4.12 Plot of the mean squared displacement for a granular gas with ξ = 0.8 72
4.13 Plot of the mean squared displacement for a granular gas with ξ = 0.3 73
4.14 Plot of the diffusivity for a molecular gas . 74
4.15 Plot of the diffusivity for a granular gas with ξ = 0.8 75
4.16 Plot of the diffusivity for a granular gas with ξ = 0.3 75
4.17 Plot of the mean squared displacement for the numerical solution to the underdamped

Langevin equation . 77
4.18 Plot of the mean squared displacement for the numerical solution to UDSBM with

parameters corresponding to ξ = 0.8 . 78
4.19 Plot of the mean squared displacement for the numerical solution to UDSBM with

parameters corresponding to ξ = 0.5 . 78
4.20 Plot comparing how the choice of ∆t affects the mean squared displacement for the

numerical solution to UDSBM . 79
4.21 Plot of the ensemble and the time averaged mean squared displacement for the nu-

merical solution to the underdamped Langevin equation 80
4.22 Plot of the ensemble and the time averaged mean squared displacement for the nu-

merical solution to UDSBM . 81
4.23 Plot of the effect of tstop on the time averaged mean squared displacement for the

numerical solution to UDSBM . 81

F.1 Plot of the mean squared displacement for a molecular gas with non-logarithmic axes 106
F.2 Plot of the mean squared displacement for a granular gas with ξ = 0.8 with non-

logarithmic axes . 106

List of Tables

2.1 Table illustrating the inelastic collapse problem by listing how the velocities of three
particles colliding in one dimension evolve in time . 16

2.2 Expectation values for the Maxwell-Boltzmann speed distribution 19

4.1 Mean values and standard deviation of the computed Maxwell-Boltzmann speed dis-
tributions . 65

E.1 Table of all parameters and variables used in an event driven simulation of particles
colliding in a box . 102

E.2 Table of all parameters and variables used to numerically solve SDEs describing Brow-
nian motion . 104

xi

xii LIST OF TABLES

List of Abbreviations

Here we present a list of abbreviations used in the report. In the list we give the abbreviation, the
full form, and the page number where the abbreviation is first introduced.

HPC High Performance Computing. 55

MSD Mean Squared Displacement. 22

ODE Ordinary Differential Equation. 31

PBC Periodic Boundary Conditions. 40

RBC Reflecting Boundary Conditions. 40

SDE Stochastic Differential Equation. 23

UDSBM Underdamped Scaled Brownian Motion. 32

xiii

xiv List of Abbreviations

Chapter 1

Introduction

The field of granular materials has seen an increase in interest during the last thirty years. This
is mainly due to the increase in available computational power, making it possible to do large
scale simulations of granular systems. Earlier, granular materials has been a field where there
have been contributions from major names in physics, e.g. Coulomb, Faraday and Rayleigh [see 2,
preface]. There exists, however no complete acknowledged theory of granular matter to this date.
Granular materials are of interest due to the variety of systems that can be modelled as granular
systems, and some examples of such materials are sand, grains, snow and dust. Being ubiquitous in
nature, granular materials are important in different industrial applications found in e.g. agriculture,
mining, pharmaceutical industry and many more [see 3, pp. 1–2]. One of the known early attempts
of gathering knowledge from a stray of different fields in order to study the transport of granular
material by a fluid was done by Bagnold looking at the physics of blown sand and desert dunes [see
4].

One key property of a granular material is the ability to behave differently under different cir-
cumstances. Take sand for example. Sand in an hourglass flows like a liquid, but standing on a
beach you will not fall through the sand. Instead you will likely, after sinking a few centimeters,
feel like you are standing on solid structure. Behaviour like this is hard to predict based on the
normal convention of looking at matter as either liquid, solid, gas or plasma that can undergo phase
transitions. One can thus argue that granular materials should perhaps be considered as a new state
of matter [see 3, pp. 1–2]. A motivation for study of granular materials is to understand and predict
behaviour of these materials in a satisfactory manner, which would present valid information and
insight for industrial application [see 5, pp. 1–2].

There are several difficulties in addressing such an immense and diverse field as granular materials
with no prior knowledge in the subject for a master’s thesis. First of all it is an impossible task to
provide a detailed introduction to granular matter. We will instead use this introduction to focus
on the topic we will study, while presenting some sources giving a detailed treatment of granular
matter. For a tentative view of granular matter see [6]. For an effort to collect ideas and studies
performed in different fields of science, and introducing different concepts to discuss the collective
behaviour of granular materials see [7]. We will present the concepts and theory needed to fully
understand the results of this thesis, in addition to a detailed introduction to two different ways to
study a granular system numerically. The main characteristics of granular materials are that their
behaviour are determined by their kinetic and or gravitational energy, and the grains of the material
experience dissipative interactions. The latter is what separates the behaviour of granular materials
from usual gases and liquids, laying the foundation for some spectacular effects [see 3, preface].

This master’s thesis aims to study what is known as granular gases. We will use the definition
where one characterizes a granular gas as a many-particle system, where the particle collisions occur
dissipatively and the duration of contact is much smaller that the mean flight time. The latter

1

2 CHAPTER 1. INTRODUCTION

indicates that the particles spend the majority of their time moving with constant velocity between
successive collisions. Due to the dissipation of energy a granular gas behaves differently than a
molecular gas, where collisions are elastic, leading to non-trivial effects such as cluster formation,
anomalous diffusion and many more [2, preface, 3, pp. 4–5]. The energy dissipation leads to a
decrease in temperature, and the gas cools in a non-uniform fashion as a result of the collisions [see
8]. The instability of the clustering phase of dissipative gases is most likely one of the reasons why
the field of granular materials has seen an increase in interest with the increasing possibilities of
computer simulations [see 9].

We will restrict the study of a granular gas to the case where we only consider the dissipative
collisions between the particles to determine the dynamics of the system, with no external forces.
We will then study a system of hard spheres colliding with a coefficient of restitution, where the
coefficient of restitution determine the degree of inelasticity in the system, in order to conduct
studies of systems with a varying degree of energy dissipation. In order to study such a system, we
will need to derive a collision rule, relating the post-collision velocities to the pre-collision velocities
and other particle parameters. Such simple systems have been shown to provide valid results in
the area of kinetic theory where we focus on the dynamics of the particles in the system instead of
modelling the dynamics of the entire system [see 3, pp. 1–5]. In the absence of external forces, or
systems where such forces are negligible compared to the collisions between particles, it is possible to
derive a number of theoretical predictions based on kinetic theory, both for molecular and granular
gases. The treatment of molecular gases arises from the fields of thermal and statistical physics
[see 10, pp. 117–154]. The generalization of such principles used for a system of particles colliding
inelastically, namely a granular gas, has provided some interesting results [see 11].

In order to study many-particle systems, such as gases, we are going to need some verification
tools, in order to verify if we manage to model the correct dynamics for different systems. We can
thus model a molecular gas by letting the collisions be elastic and thus conserving energy. Similarly
we can model a granular gas by letting the collisions be inelastic, where energy is dissipated for each
collision. Hence we can use these two different types of gases to verify the implemented simulation
algorithm. Even though granular gases are of more interest due to the complexity of the system, we
started with the study of a molecular gas for the implementation. Even though we expect that the
same simulation will capture the correct dynamics for both molecular and granular gases, as elastic
collisions are a special case of inelastic collisions, it is always convenient and natural to start with
simpler systems before moving on to more complex ones.

Figure 1.1 illustrates the different dynamic behaviour of a molecular gas and a granular gas in a
two-dimensional system with reflecting boundaries, from the same initial system given in Figure 1.1a.
The two different systems, at the same later time are given in Figure 1.1b and Figure 1.1c. In the
figures two colors have been used to indicate two different subsets of particles. By letting the particles
behave as in a molecular gas, the two subsets will start to mix in the expected manner. However
as one can see, the particles in a granular gas show some of the previously mentioned non-trivial
effects, as clusters have started forming in some regions of the box.

There exist several different simulation methods used to study granular systems, e.g. direct
simulation Monte Carlo, Langevin dynamics, and molecular dynamics simulations [see 5]. The
latter has played the most important role in studying granular systems [see 7, 8, 12, 13, 14, 15].
The general idea of molecular dynamics is to numerically solve equations of motion, e.g. Newton’s,
for all particles simultaneously [see 5, pp. 8–9]. Historically molecular dynamics has been used for
a diverse variety of systems, and was highly relevant even before we used computers to perform it
efficiently. Just imagine the simple case of gravitational forces acing upon the planets in our solar
system. Even for a simple case as looking at the gravitational effects on the Earth from the Sun
and one other planet we encounter a problem for which there are no explicit solution. The problem
is more commonly generalized and known as the N -body problem. For such problems we see the
simplicity and beauty of molecular dynamics, where we can easily add numerous forces in order
to compute the trajectories for our planets [see 16, pp. 1–4]. For an introduction to how we can

3

(a) t0 = 0

(b) t1 > t0 (c) t1 > t0

Figure 1.1: Illustration of the different futures for a molecular gas and a granular gas from the same initial
system with reflecting boundaries. Figure 1.1a shows the initial system where the particles are uniformly
distributed in the box. The particles inside a given radius from the center of the box have been highlighted
in order to better see how the particles move in time. Figure 1.1b shows the system at some later time t1 by
letting the particles collide elastically, which is the case for molecular gases. When energy is conserved, the
red particles will reach the wall given enough time. Figure 1.1c shows the system at the same time t1, but
where the particle collisions have dissipated energy, which is the case for granular gases. The loss of energy
leads to a decrease in temperature. The gas thus cools in the denser regions, where the collision frequency
has been high, and clusters are formed. We also see that for a molecular gas the two different colors will
tend to mix, while for a granular gas the colors are still separated in different areas.

4 CHAPTER 1. INTRODUCTION

use molecular dynamics to study the dynamics of granular materials see [16, pp. 436–445] and [5,
pp. 13–131]. We will in this thesis use two of the mentioned simulation methods, namely Langevin
dynamics and molecular dynamics simulations, to perform simulations of a molecular and a granular
gas.

To better illustrate the needed requirements to solve Newton’s equations for a granular system,
let us look at what we would need to know about the system. For particle i in a system of N
particles, Newton’s equation has the familiar form

mi
d2

dt2
xi(t) = Fi(x1(t),v1(t), . . . ,xN (t),vN (t)), (1.1)

where mi, xi(t) and vi(t) is the mass, position and velocity of particle i respectively, t is time and
Fi is the force acting upon particle i, which in general can be a function of all particle positions
and velocities. Here we can see one of the reasons why computational power sparked a newfound
interest in granular systems. Since one can not analytically solve a total of N equations on the
form of (1.1), it has been difficult to achieve reliable predictions of granular systems without making
assumptions on how one can describe the system on a larger scale. Since granular systems do not
always act as expected, it has been a challenging task to gain insight in the long term behaviour of
such systems. On the other hand, solving Newton’s equations numerically is possible to some extent
by making assumptions on how the particles affect each other. However, often it is a challenging
task to express the force term as a function of the known variables in order to explain the behaviour
of a granular system. One option is to use experimental data to investigate the interactions between
the particles. Even by achieving approximations of the interactions in the system, it could still be a
computationally heavy task to solve (1.1) for each particle [see 5, pp. 135–136]. As we are interested
in systems where the only interactions between the particles are given as collisions, we could use a
force equal to zero when there are no collisions, and a non-zero force to represent different collisions
when the particles come in contact.

A more efficient approach can however be developed by exploiting the nature of a granular gas.
The particles in a granular gas spend most of their time moving with constant velocity between
successive collisions, and they are rarely in contact with multiple particles. Thus one can argue
that the particles in a granular gas only interact though instantaneous pairwise collisions, which
can be treated separately since they occur at different times. With this assumption we can reduce
the computational task of solving Newton’s equations to solving equations for collisions between
two particles. This leads to a force-free description of the interactions between the particles in the
granular gas, where we do not use nor need an analytical expression for the force acting upon the
particles. We can thus create an event driven simulation for the collisions in the system, which is
an effective way of studying how a force-free granular gas evolves in time for some densities [see 5,
pp. 135–136]. The force-free modelling of a granular gas is a common approach used to study the
dynamics of a granular gas, e.g. see [15], reducing the molecular dynamics simulation to a series of
pairwise particle collisions, which can use efficient data structures in order to be less computationally
expensive. The event driven simulation will follow the idea that initially the particles move with
constant velocity, until a particle collides with another. Then the velocity of the colliding particles
are updated from the collision rule, before all particles again move with constant velocity until the
next collision. The procedure can thus be repeated to study the long term behaviour of the system
[see 11, pp. 5–8].

Some experimental data of granular gases show a good agreement with theory and numerical
studies, see e.g. [14] and [17], but generally it is a challenging task to retrieve the data of interest
without affecting the behaviour of the system [see 5, pp. 2–8]. The sparked interest in the field of
granular materials has given some interesting results, but from the difficulty of the systems, one can
imagine that there is still more to come in the next years. Non-trivial effects should not be a surprise
from the a priori knowledge that a granular gas is a non-equilibrium system due the dissipation of
energy. However, by giving the system energy by implementing e.g. vibrating walls, heated walls or

5

random heating one can try to create equilibrium systems. For a study of vibrated granular gases
see [12]. One should note that the area of driven granular materials, e.g. by gravity, vibration or
rotation, is used to model and study some of the most applicable uses of granular materials [see 7,
pp. 643–646]. Even though a driven granular system produces results very different from a force-free
system, it is natural to use this thesis as an introduction to some of the simpler aspects of a granular
system, intended to inspire others to work within the interesting field of granular materials. For
a list of some of the early attempts of experimental investigation of the kinetic theory of granular
gases see [11, pp. 10–12].

The use of event driven simulations to study granular systems does however have its limita-
tions. Some of the more obvious limitations arise from only allowing pairwise interactions, not
justifiable for high densities and for systems where multi-particle interactions dominate. On the
other hand, event driven simulations are common in a variety of different applications. A re-
cent example is the use of a particle collision simulation to illustrate the effects of social distanc-
ing on the spread of disease for the currently ongiong COVID-19 pandemic as seen in https:
//www.washingtonpost.com/graphics/2020/world/corona-simulator/ and https://www.nrk.
no/norge/xl/slik-virker-den-nasjonale-koronadugnaden-1.14947139. For such a case as
looking at how disease spreads through a population, it is possible to provide a qualitative illustra-
tion of how different countermeasures affects the number of people infected with the disease. Event
driven simulations are also commonly used in the fields of Queueing theory and stochastic processes.
More generally one can claim that any situation of discrete events1 occurring in a sequence is a
potential area for which an event driven simulation can be used to gain more insight. With more
insight it is possible to make better decisions, or to make changes in order to be better prepared
for difficult circumstances, such as pandemics. Whereas in this project we will only use collisions as
events, the general idea of an event driven simulation, defined as a simulation where time is incre-
mented between successive events, works for any type of event. It is also possible to study systems
consisting of multiple different events, e.g. the planning of work schedules for a hospital, the number
of different people to hire for a business and many more.

The main objectives are to implement an event driven simulation code for granular gases, and to
reproduce previously published results from the literature using the programming language Python2.
Additionally, we will look at the effects of different boundary conditions, and compare the results
of the event driven simulations to the numerical solutions of stochastic differential equations known
as Langevin equations. These tools will be verified by looking at and comparing the numerical
results with theoretical predictions for molecular and granular gases. The main workload will thus
be to write an efficient code, understanding and creating a method to study granular gases, which
is often not discussed in great detail in relevant papers. The verification process will consist of
a few elementary tests and the reproduction of some known results from statistical physics and
kinetic theory. Finally, the simulation code has been applied to the area of Brownian motion,
where we compute the so-called mean squared displacement that can be used to describe diffusion
processes. The work done for this thesis is thus intended to give a detailed introduction to two
different simulation methods possible to use in the study of granular gas dynamics, implemented
from scratch.

As mentioned in the preface the work done for this thesis is a continuation of the work done for
the specialization project [1]. Achieving reliable results for a molecular gas is not a surprise, as we
have already studied some of the properties of a molecular gas, including speed distribution in two
dimensions and some aspects of Brownian motion for a molecular gas [1]. Motivated by the lack
of agreement between some of the numerical and theoretical predictions in [1] we have made some
changes to the implementation. I.e. we have changed the study of particles in a two-dimensional

1See https://en.wikipedia.org/wiki/Discrete-event_simulation for a variety of applications for discrete-event
simulation.

2See https://www.datacamp.com/community/blog/python-scientific-computing-case for an introduction to
why Python is an effective tool used in scientific computing.

https://www.washingtonpost.com/graphics/2020/world/corona-simulator/
https://www.washingtonpost.com/graphics/2020/world/corona-simulator/
https://www.nrk.no/norge/xl/slik-virker-den-nasjonale-koronadugnaden-1.14947139
https://www.nrk.no/norge/xl/slik-virker-den-nasjonale-koronadugnaden-1.14947139
https://en.wikipedia.org/wiki/Discrete-event_simulation
https://www.datacamp.com/community/blog/python-scientific-computing-case

6 CHAPTER 1. INTRODUCTION

system with reflecting boundaries to a study of particles in a three-dimensional system with periodic
boundaries. A discussion comparing the results for this thesis with the results in [1] is provided in
chapter 4.

This thesis is structured in the following manner. In chapter 2 the theory of collisions and the
theory behind the topics we will study in this project are presented. Then, in chapter 3, the numeri-
cal modelling used in order to achieve an efficient event driven simulation of a many-particle system
is presented in detail. We will also present how we have solved the Langevin equations numerically.
Further, in chapter 4, simulation results for different systems are presented, and compared to the-
ory and previously published results. In addition to using the results to verify the implemented
approaches, we also provide a discussion concerning the possible errors and the agreement between
the numerical results and theory. Chapter 5 provides some thoughts about possible other interesting
topics in the area of granular gas dynamics, possible improvements for the implemented event driven
simulation, and other possible uses for the implemented event driven simulation. Finally, chapter 6
concludes the work done throughout this master’s thesis. In addition, there are also some detailed
derivations provided in the appendices to complement the report. Appendix D provides the code
used for the most time consuming part of the event driven simulation, which is the computation of
which particles a particle will collide with and when for its current trajectory, and illustrates some of
the possible optimizations one can implement in Python. At the end of the report there is included
a list of symbols which can used to look up different symbols used in the report and on what page
you can find their definition.

Chapter 2

Theory

In the following chapter, several important principles and equations are presented. These derivations
are key in understanding some of the results from the simulations which will be presented later in
chapter 4. The theory presented here is general, but some of the topics are related to the numerical
modelling which is discussed in greater detail in chapter 3.

2.1 Collisions
There are two different main types of collisions, elastic and inelastic. The difference between these
collisions is that during elastic collisions kinetic energy is conserved, while kinetic energy is lost
during an inelastic collision. How the velocity of a particle changes due to a collision with another
particle is based on two principles. The first principle is conservation of linear momentum, which
is a vector quantity. The second principle is related to the energy of the system, which is a scalar
quantity. Note that we ignore any effects of rotation. For an inelastic collision one can introduce a
coefficient of restitution, ξ, which is a measure of how much energy is lost during a collision. The
coefficient of restitution is thus a measure of the degree of inelasticity in the system. There exist
several expressions for the coefficient of restitution, e.g. for a one-dimensional collision

ξ = −
v′j − v′i
vj − vi

, (2.1)

where v′i and v′j are the velocities after the collision, while vi and vj are the velocities before the
collision for particle i and particle j. See Appendix A for a derivation of the expression in (2.1) for
an elastic collision. A direct interpretation of (2.1) is a ratio of relative velocities after and before
a collision. One should note that the velocity is a function of time, v(t), but we will drop the time
notation for simplicity and only look at the velocity after and before a collision, distinguishable from
the use of ′. The numerical value of ξ leads to the following different types of collision

• ξ = 1, elastic collision,

• 0 < ξ < 1, inelastic collision,

• ξ = 0, perfectly inelastic collision.

There exist several ways of deriving the equations stating how the velocity of a particle changes as a
result of a collision, often referred to as a collision rule. There are some assumptions needed in order
to make the following derivations valid. When deriving the equations stating the velocity of the
particles after the collision, we assume that the particles collide as two hard spheres, which are not
deformed in the process. In addition, we assume that the particles can not rotate (or equivalently

7

8 CHAPTER 2. THEORY

i) ii)

Figure 2.1: Illustration of a one-dimensional system containing particle i and particle j. The figure shows
the two particles before colliding in i), and right after colliding in ii). The velocities before the collision are
given as vi and vj . After the collision the velocities are given as v′i and v′j .

that they are frictionless), and the collision is instantaneous. These assumptions make the collision
into an event where the change in energy is a result of a new speed in a new direction. Since the
equations for an elastic collision can be achieved by setting ξ = 1, only the inelastic case will be
derived. Even though the derivation in one dimension is trivial, the derivation is given because we
will need it for the three-dimensional case. In the derivation the notation will be similar as in (2.1),
where ′ is used to indicate velocities after the collision.

Intuitively the change in velocity for particle i colliding with particle j will depend on the
difference in position and velocity. Thus there exist some helpful quantities, here given for the case
of a three-dimensional system

∆xij = xj − xi = [xj − xi, yj − yi, zj − zi], (2.2a)

∆vij = vj − vi = [vxj − vxi, vyj − vyi, vzj − vzi], (2.2b)

R2
ij = |∆xij |2 = (xj − xi)2 + (yj − yi)2 + (zj − zi)2, (2.2c)

where ∆xij is a vector from the center of particle i to the center of particle j, ∆vij is the vector
stating the difference between the velocity of particle j and particle i, also known as the relative
velocity, and Rij is the distance between the centers of the particles.

2.1.1 Inelastic collision in one dimension
Consider the system given in Figure 2.1, with two particles colliding in one dimension. For such a
system there are two unknowns after the collision, v′i and v′j . Conservation of momentum provides
the following relation

mivi +mjvj = miv
′
i +mjv

′
i. (2.3)

From (2.1) one can get the following expression for v′j
v′j = (vi − vj)ξ + v′i. (2.4)

By inserting (2.4) into (2.3) and rearranging terms we get the following velocity for particle i after
the collision

v′i =
mjvj(1 + ξ) + vi(mi −mjξ)

mi +mj
. (2.5)

In order to obtain the velocity of particle j after the collision we insert (2.5) into (2.4), leading to
the following expression

v′j =
mivi(1 + ξ) + vj(mj −miξ)

mi +mj
. (2.6)

A validation of the resulting velocities derived in (2.5) and (2.6) can be achieved by inserting the
expressions into the right hand side of (2.1).

2.1. COLLISIONS 9

i) ii) iii)

Figure 2.2: Illustration of a three-dimensional system containing particle i and particle j. The figure shows
the two particles before colliding in i), right after colliding in ii) and some time after colliding in iii). The
figure uses the same notation as Figure 2.1. We see that during the collision Rij = ri + rj , where r(i/j) is
the radius of particle (i/j).

Figure 2.3: The coordinate system given by n and t is used in the derivation of the velocities after a
collision for two particles in three dimensions. The figure illustrates the collision moment where the normal
vector, n, is the unit vector pointing along ∆xij , and t ⊥ n.

2.1.2 Inelastic collision in three dimensions

Consider the system shown in Figure 2.2, with two particles colliding in three dimensions. For
such a system there are six unknowns, v′i = [v′xi, v

′
yi, v

′
zi] and v′j = [v′xj , v

′
yj , v

′
zj]. The conservation of

momentum gives one equation along each axis. There is also one equation regarding the energy, which
in total gives four equations. However, four equations cannot uniquely determine six unknowns. We
can solve this problem by using a new coordinate system. The new system needs to have a property
reducing the number of unknowns. This can be achieved by creating a coordinate system where
the collision occurs only along one of the axes. An example of a possible new system is shown in
Figure 2.3. The axes is given by the normalized directional vectors

10 CHAPTER 2. THEORY

n =
∆xij
Rij

, (2.7a)

t = [−ny, nx, 0], (2.7b)

where ∆xij and Rij are the quantities presented in (2.2) and t ⊥ n. In three dimensions there exist
an infinite number of different vectors perpendicular to n. As we will see shortly it does not actually
matter which one we choose. Note that in the instant of the collision, we have |∆xij | = Rij = ri+rj ,
where ri and rj is the radius of particle i and particle j. In order to derive the solution, we first have
to decompose the velocity vectors. The velocity vectors before the collision in the new coordinate
system are given as

vi = vnin + vtit, (2.8a)

vj = vnjn + vtjt, (2.8b)

where vn(i/j) = vi/j · n and vt(i/j) = vi/j · t. The velocity vectors after the collision are given as

v′i = v′nin + v′tit, (2.9a)

v′i = v′njn + v′tjt, (2.9b)

with the same notation as in (2.8). A collision in three dimensions is equivalent to a one-dimensional
collision along n, while there are no forces acting along t. We then achieve the simple result for the
components along t, v′t(i/j) = vt(i/j). The collision along n can then be solved by using the derived
result from the one-dimensional case. We insert the result from (2.5) for v′ni into the right hand side
of (2.9a) to get the following

v′i =
mjvnj(1 + ξ) + vni(mi − ξmj)

mi +mj
n + vtit

=
(1 + ξ)mj(vnj − vni)

mi +mj
n + vnin + vtit

= vi +
(1 + ξ)mj(vj − vi) · n

mi +mj
n

= vi +

(
(1 + ξ)

mj

(mi +mj)

∆vij ·∆xij
R2
ij

)
∆xij , (2.10)

where (2.2b) and (2.8a) has been used to simplify the expression and transform the result back into
the regular coordinate system. The derivation for v′j is done similarly by inserting the results from
(2.6) for v′nj into the right hand side of equation (2.9b). The resulting expression is on the form

v′j = vj −
(

(1 + ξ)
mi

(mi +mj)

∆vij ·∆xij
R2
ij

)
∆xij . (2.11)

The expressions for v′i and v′j given in (2.10) and (2.11) show that the velocities after collision
depend on the ratio of one mass over the total mass of the two particles, the difference in velocity,
the difference in position and the coefficient of restitution. As proposed, the quantities in (2.2) are
present in the end result. The expressions in (2.10) and (2.11) are reduced to (2.5) and (2.6) for a
one-dimensional system as given in Figure 2.1, as expected.

Another interesting property to note is that from the equations above we can derive that the
energy dissipated from a collision between two particles with equal mass is equal to the expression

2.1. COLLISIONS 11

Figure 2.4: Illustration of the cubic box with boundaries at x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1,
which is the system we will use to contain N particles colliding with a coefficient of restitution.

1
4m(1 − ξ2)(

∆vij ·∆xij

Rij
)2, which reduces to zero for elastic collisions. The derivation is presented in

Appendix B, and will later be used in the derivation of how the energy of a granular gas decreases
as a function of time due to the inelastic collisions between the particles. The expressions in (2.10)
and (2.11) constitute the collision rule applied in this project, where the post-collision velocities
are given by the particle parameters and the pre-collision velocities. Note that the expressions in
(2.10) and (2.11) are correct in any number of dimensions, where the dimensions are decided by the
dimension of ∆xij and ∆vij and the velocities. This is the collision rule derived for smooth inelastic
hard spheres in [see 3, pp. 5–8], and have been used by many authors, e.g. see [15].

From Eqs. (2.10) and (2.11) we can also get an expression for the coefficient of restitution in
three dimensions1

ξ = −
∆v′ij ·∆xij

∆vij ·∆xij
, (2.12)

which resembles the expression in a one-dimensional system given in (2.1). The coefficient of resti-
tution in multiple dimensions can thus be interpreted as the ratio of the relative velocities along
the normal axis between the particle centers, which is as expected since in multiple dimensions a
collision is reduced to a one-dimensional collision along the normal axis.

In addition to the collision rule we need to know the time until a particle collides with another
particle. When we know the time until a particle-particle collision and how to update the velocities
of the colliding particles we can implement a collision numerically. As we will perform simulations
of particles colliding in a cubic box with boundaries at x = 0, x = 1, y = 0, y = 1, z = 0 and
z = 1, the system in Figure 2.4, we will also look at the situation where a particle interacts with
a wall. The interactions with the walls can be modelled in different ways, either by implementing
hard reflecting walls or periodic boundaries.

In order to provide some short notation of the boundaries we will use the term vertical walls to
represent the boundaries at x = 0 and x = 1, horizontal walls to represent the boundaries at y = 0
and y = 1, and the top/bottom wall to represent the boundaries at z = 0 and z = 1. Even though we
will be using three-dimensional systems to perform numerical studies, we will use two-dimensional
systems for visualization and illustration purposes. The naming scheme for the walls is a result of
the latter as we want a two-dimensional system, which is a slice of the box in Figure 2.4 along the
z-axis, to be confined by the horizontal and vertical walls.

1The expression can be derived in a simple manner by looking at the expression for ∆v′ij = v′j − v′i and inserting
the collision rule in Eqs. (2.10) and (2.11), before finally multiplying the equation with ∆xij .

12 CHAPTER 2. THEORY

2.1.3 The time until a particle-particle collision
In order to compute the time until a particle collides with another particle we have to take into
account the movement of both particles in order to know if there is a future collision on their current
trajectories. To obtain the time of a collision, we need to solve an equation to determine if their
trajectories will bring them into contact. Contact between particle i and j occurs when the distance
between their centers, Rij , is equal to ri + rj as illustrated in Figure 2.2. Let x′i and x′j be the
positions of the particles at the time of collision and let the collision occur at time t+ ∆t∗.

The position at the time of collision is also given by their position and their velocity at time t,
since the velocity is constant until the collision. Thus, we have the following relation

x′i = xi + vi∆t
∗ (2.13a)

x′j = xj + vj∆t∗, (2.13b)

where xi and xj are the positions at time t, and vi and vj are the velocities at time t. We can write
the square distance between the particle centers at the time of the collision as

R2
ij = (ri + rj)

2 = |x′j − x′i|2. (2.14)

We can derive an equation for ∆t∗, which only has a solution if the particles collide, by inserting
(2.13) into (2.14). We then obtain the following expression

R2
ij = |xj + ∆t∗vj − (xi + ∆t∗vi)|2 = |∆xij + ∆t∗∆vij |2, (2.15)

where the same notation as in (2.2) has been used. By expanding the expression in (2.15) we obtain
the following second order equation for ∆t∗,

(∆t∗)2∆v2
ij + 2∆t∗(∆xij ·∆vij) + (∆x2

ij −R2
ij) = 0. (2.16)

Introducing the coefficients a = ∆v2
ij , b = 2(∆xij · ∆vij) and c = (∆x2

ij − R2
ij), the two possible

solutions to (2.16) have the familiar form

∆t∗ =
−b±

√
b2 − 4ac

2a
=
− b

2 ±
√

(b2)2 − ac
a

. (2.17)

By reintroducing the expressions for the coefficients a, b and c we achieve the following expression
by using the solution in (2.17)

∆t∗ =
−(∆xij ·∆vij)±

√
d

∆v2
ij

, (2.18)

where d is given by
d = (∆xij ·∆vij)

2 −∆v2
ij(∆x2

ij −R2
ij). (2.19)

First of all, one should note the characteristics needed for equation (2.18) to have a valid solution.
∆xij is the distance vector at time t, thus ∆x2

ij > R2
ij which implies

√
d ≤ |∆xij · ∆vij |. The

physical interpretation of ∆t∗, as the earliest non-negative collision time, leads to the following end
result of (2.18)

∆t∗ =

∞ if ∆xij ·∆vij ≥ 0,

∞ if d ≤ 0,

−∆xij ·∆vij+
√
d

∆v2
ij

otherwise,
(2.20)

where ∆t∗ = ∞ is used to indicate that particle i and particle j will not collide on their current
trajectory and that collision can be ignored. After determining which and when two particles will
collide, the velocity of the particles after the collision is given by the collision rule in Eqs. (2.10)
and (2.11).

2.1. COLLISIONS 13

Figure 2.5: Illustration of particle i colliding with a wall. The figure uses the same notation as Figure 2.2.

2.1.4 Particle-wall collision

Assume a system as illustrated in Figure 2.5, where particle i moving the velocity vi = [vxi, vyi, vzi]
and radius ri collides with a hard reflecting wall. For particle i, we want to know the time until
the collision occurs. Since the particle is moving in three dimensions, from a starting position
xi = [xi, yi, zi], we can treat the collision with a vertical, horizontal wall and top/bottom wall
separately, but based on the same idea. The time until a collision with a vertical wall, ∆t∗, is
determined by the particle parameters ri, xi and vxi and is simply computed as the distance travelled
in order for the edge of the particle to be in contact with the wall over the speed along that axis.
∆t∗ =∞ will be used to indicate that the particle will not collide with a wall on its current trajectory.
Thus, the time until particle i collides with a vertical wall is given by

∆t∗ =

(1− ri − xi)/vxi if vxi > 0,

(ri − xi)/vxi if vxi < 0,

∞ if vxi = 0.

(2.21)

If a particle has the velocity vi = [vxi, vyi, vzi] before colliding with a vertical wall, the velocity
afterwards, v′i, is given as

v′i = [−ξvxi, ξvyi, ξvzi], (2.22)

which is a simplified version of the collision rule for particle-particle collisions. In order to derive
the expression in (2.22) one can look at the situation where particle i collides with a wall, which
can be approximated as a particle with infinite mass. The expression in (2.10) in the limit mj →∞
reduces to v′i = [−ξvxi, vyi, vzi] when particle j is a vertical wall. To better see how we end up with
this expression let us imagine that the wall in Figure 2.5 is the vertical wall given by x = 12. For
this situation we get mj

mi+mj
→ 1, ∆xij = [ri, 0, 0], ∆vij = −vi, and Rij = ri. By inserting these

quantities into (2.10) the reduction is straightforward. For the limit mj →∞ for a vertical wall we
found an expression similar to (2.22), but we have chosen to multiply the other components with ξ
in order for the particle to maintain the angle relative to the wall after the collision. That is, the
particle obeys the law of reflection. The wall gets momentum from the collision, but the momentum
is assumed to be negligible, which holds for a particle with infinite mass.

The time until a collision with a horizontal wall is determined by the particle parameters ri, yi
2It does not matter which vertical wall we choose as the sign of ∆xij is squared in the end.

14 CHAPTER 2. THEORY

and vyi. The time until collision for particle i is similar to equation (2.21), and given by

∆t∗ =

(1− ri − yi)/vyi if vyi > 0,

(ri − yi)/vyi if vyi < 0,

∞ if vyi = 0.

(2.23)

The velocity after colliding with a horizontal wall is similar to equation (2.22) and is given by

v′i = [ξvxi,−ξvyi, ξvzi]. (2.24)

The expression (2.24) is derived with the same procedure as for (2.22).
The time until a collision with a top/bottom wall is determined by the particle parameters ri, zi

and vzi. The time until collision for particle i is similar to (2.21) and (2.23), and given by

∆t∗ =

(1− ri − zi)/vzi if vzi > 0,

(ri − zi)/vzi if vzi < 0,

∞ if vzi = 0.

(2.25)

The velocity after colliding with a top/bottom wall is similar to (2.22) and (2.24) and is given by

v′i = [ξvxi, ξvyi,−ξvzi]. (2.26)

The expression (2.26) is derived with the same procedure as for (2.22) and (2.24).

2.2 Coefficient of restitution
There exists different ways to model a granular gas, depending on how one decides to model the
coefficient of restitution of the system. A granular gas is a complex system, but the simple introduc-
tion of a coefficient of restitution for the pairwise collisions in a granular gas is an effective way to
model such a system under the assumption that the dynamics of the system is given only by instan-
taneously pairwise collisions [see 11, pp. 19–20]. The simplest approximation is to assume that the
coefficient of restitution is a constant ∈ [0, 1] for all pairwise collisions between the particles in the
system. A more complex case, referred to as viscoelastic particles, is used to study a granular gas
where the coefficient of restitution is a function of the relative velocity of the colliding particles [see
11, pp. 23–26]. The latter is true for realistic particles, and makes intuitive sense from the fact that
the deformation and forces acting upon the particles during a collision should depend on various
particle parameters [see 11, p. 20]. In this project we will however for simplicity use a constant
coefficient of restitution for the simulations. In addition we will throughout this report introduce
some of the main different results for the case of viscoelastic particles compared to a system with
a constant coefficient of restitution. Viscoelastic particles is one of topics that could be explored
further, and are included in chapter 5.

2.3 Inelastic collapse
There are some challenges related to the numerical study of many-particle systems, such as gases.
In the study of a granular gas, we are introduced to some problems not found in a molecular gas
due to the different behaviour of inelastic and elastic collisions. For successive inelastic collisions,
a phenomenon called inelastic collapse can occur, which is the case when the number of collisions
per time goes towards infinity. Inelastic collapse was first discovered in a one-dimensional model,
but have been shown to be present in two dimensions as well [see 18, p. 114]. We will illustrate the

2.3. INELASTIC COLLAPSE 15

Figure 2.6: Illustration of the inelastic collapse problem. The figure shows a one-dimensional system with
three identical particles undergoing inelastic collisions with a coefficient of restitution ξ. The initial system
is given at time t0. The first collision will be between the left particle and the middle particle leading to a
situation as given at t1 > t0. The next collision will be between the middle particle and the right particle.
For certain values of ξ one can end up in a situation as given at t2 > t1. Such a sequence of alternating
collisions between the particle in the middle and the particles on the sides can result in an infinite number of
collisions in a finite amount of time before the kinetic energy is dissipated and the relative motion disappear.

inelastic collapse problem in a simple one-dimensional system with three identical particles given in
Figure 2.6. Inserting mi = mj = m into the collision rule in one dimension presented in Eqs. (2.5)
and (2.6) gives the following collision rule

v′i =
1 + ξ

2
vj +

1− ξ
2

vi, (2.27a)

v′j =
1 + ξ

2
vi +

1− ξ
2

vj . (2.27b)

The initial system in presented at time t0 in Figure 2.6, where the middle particle is at rest and the
two other particles start with the same speed v0. At the two later times, given by t1 and t2 > t1 in
Figure 2.6, the velocity of the particles has been computed as a result of the alternating collisions
between the left and right particle with the middle particle, and are given in Table 2.1. From the
expression of v2 at time t2 in Table 2.1 we can deduce that ξ <

√
5−2 in order to achieve a situation

as illustrated in Figure 2.6. This iterative scheme can be generalized and in order for the alternating
sequence of collision to continue even further and lead to inelastic collapse it has been shown that
ξ ≤ 7− 4

√
3 ≈ 0.0718 for three particles [see 11, pp. 36–40]. Such low values of ξ are not commonly

applied in the study of granular gases. However, for a higher number of particles, inelastic collapse
can occur in a much wider range for ξ [see 5, pp. 177–179]. It is thus possible for inelastic collapse
to occur for values of ξ not far from the elastic limit.

To the authors understanding inelastic collapse is a one-dimensional effect which occurs in higher
dimensions if one gets an approximately one-dimensional chain of particles colliding under the right
circumstances. Such behaviour is impossible to predict, and we thus need to handle the inelastic
collapse in order for the simulations to be correct. It seems natural that the choice of boundary
conditions impacts the probability of an inelastic collapse to occur. For reflecting boundaries it is
possible for particles to get pressed towards and away from a wall simultaneously. As the particles
cannot escape such a situation it is possible for one-dimensional chains to occur. On the other hand,
it seems natural to assume that periodic boundaries reduce the possibility of such chains by letting

16 CHAPTER 2. THEORY

Table 2.1: Table of the velocities of the three particles in Figure 2.6 at the different times t0 < t1 < t2.
The velocities of the particles have been calculated from the collision rule given in (2.27).

Time v0 v1 v2

t0 v0 0 −v0

t1
1−ξ

2 v0
1+ξ

2 v0 −v0

t2
1−ξ

2 v0
v0
4 (−ξ2 − 2ξ − 1) v0

4 (ξ2 + 4ξ − 1)
· · ·

the particles "escape" though the boundaries. The impact of boundary conditions in the simulation
of particles colliding in a box is discussed in more detail in section 3.4.

For the set of particles involved in an inelastic collapse, the energy of the relative motion will be
completely consumed by the dissipative collisions. As a result, the particles will move as a cluster
with a common velocity after the collapse [see 11, p. 36]. Initially this effect does not seem to hold
any distinct problem, but the effect causes several numerical problems since the collapse consists of
an infinite number of collisions in a finite time [see 11, p. 40]. Inelastic collapse has been been shown
to be present in two dimensions for a wide range of values for ξ [see 19]. It is reasonable to assume
that the possibility of inelastic collapse occurring in a three-dimensional system is significantly lower
than for a two-dimensional system due to the increase in possible trajectories. Inelastic collapse
is not present for viscoelastic particles since the coefficient of restitution approaches unity for low
relative velocities between colliding particles [see 11, p. 40].

2.4 Maxwell-Boltzmann distribution
A system of many particles colliding with each other in a defined area while conserving energy will
eventually reach equilibrium, which is the case for a molecular gas. The properties of a system
in equilibrium are given by its temperature T . In equilibrium the particles will have a velocity
distribution given by the Maxwell-Boltzmann distribution. The Maxwell-Boltzmann distribution
states that a velocity component, e.g. vx, of a particle has the following probability density

fv(vx) =

√
m

2πkBT
exp

(
− mv2

x

2kBT

)
, (2.28)

where kB is the Boltzmann constant and m is the mass of the particle [see 10, pp. 117–134]. We
will now in turn derive the Maxwell-Boltzmann speed distribution in both two and three dimensions
before computing some simple expectation values from the speed distributions.

2.4.1 Speed distribution in two dimensions
The integral of the probability density function for the velocity components of a two-dimensional
system is equal to unity and is given by∫ ∞

−∞

∫ ∞
−∞

dvxdvyfv(vx)fv(vy), (2.29)

where fv(vx) is the velocity distribution given in (2.28). The expression in (2.29) can be used to
derive an expression for the speed distribution by introducing polar coordinates and considering
the azimuthal symmetry. The transformation from Cartesian to polar coordinates is illustrated in
Figure 2.7a. By using the following relations

dvxdvy = vdvdφ,

v2
x + v2

y = v2,

2.4. MAXWELL-BOLTZMANN DISTRIBUTION 17

(a) Polar coordinates (b) Spherical coordinates

Figure 2.7: Illustration of the different transformations one can introduce for a two-dimensional and a
three-dimensional system. Due to the spherical symmetry of the Maxwell-Boltzmann velocity distribution
one can apply these transformation to derive an expression for the speed distribution. Polar coordinates
is used for two-dimensional systems where a velocity vector v = [vx, vy] can be described by the polar
coordinates (v, φ). Spherical coordinates is used for three-dimensional systems where a velocity vector
v = [vx, vy, vz] can be described by the spherical coordinates (v, φ, θ).

where v is the speed of the particle and φ is the azimuth angle, in (2.29) we obtain an expression on
the form ∫ ∞

0

P (v)dv,

where P (v) is the probability density function of the speed distribution. As illustrated in Figure 2.7a
we can transform the integral by introducing polar coordinates. From Figure 2.7a we see that the
following limits provide the same contributions

−∞ ≤ vx ≤ ∞
−∞ ≤ vy ≤ ∞

⇒ 0 ≤ v ≤ ∞
0 ≤ φ ≤ 2π.

The integral in (2.29) can thus be written as∫ ∞
0

dv
m

2πkBT
v exp

(
− mv2

2kBT

)∫ 2π

0

dφ,

where the angular part is trivial due to the azimuthal symmetry. In two dimensions the normalized
Maxwell-Boltzmann speed distribution is thus on the form

P2D(v) =
m

kBT
v exp

(
− mv2

2kBT

)
. (2.30)

2.4.2 Speed distribution in three dimensions
The derivation of the speed distribution in three dimensions is done in a similar fashion as in two
dimensions. The difference arises from the transformation to spherical coordinates. We now want
to look at the integral of the probability density function for the velocity components of a three-
dimensional system, which is equal to unity and given by∫ ∞

−∞

∫ ∞
−∞

∫ ∞
−∞

dvxdvydvzfv(vx)fv(vy)fv(vz). (2.31)

18 CHAPTER 2. THEORY

The expression for the speed distribution can be derived by introducing spherical coordinates and
considering the spherical symmetry. The transformation from Cartesian to spherical coordinates is
illustrated in Figure 2.7b. By using the following relations

dvxdvydvz = v2 sin θdvdφdθ,

v2
x + v2

y + v2
z = v2,

where θ is the inclination angle, in (2.31) we get the probability density function of the speed
distribution, P (v). As illustrated in Figure 2.7b we can transform the integral by introducing
spherical coordinates. From Figure 2.7b we see the following limits provide the same contributions

−∞ ≤ vx ≤ ∞
−∞ ≤ vy ≤ ∞
−∞ ≤ vz ≤ ∞

⇒
0 ≤ v ≤ ∞
0 ≤ φ ≤ 2π

0 ≤ θ ≤ π.

The integral in (2.31) can thus be written as∫ ∞
0

dv

(
m

2πkBT

) 3
2

v2 exp

(
− mv2

2kBT

)∫ 2π

0

dφ

∫ π

0

dθ sin θ,

where the angular parts are trivial due to the spherical symmetry. In three dimensions the normalized
Maxwell-Boltzmann speed distribution is thus on the form

P3D(v) =

(
m

2πkBT

) 3
2

4πv2 exp

(
− mv2

2kBT

)
. (2.32)

2.4.3 Expectation values
The expressions for the speed distributions in Eqs. (2.30) and (2.32) can be used to compute
expectation values for the speed and the square speed of the particles in a molecular gas. The
definition of an expectation value given the distribution of the value can be written as

〈vα〉 =

∫ ∞
0

dvvαP (v), (2.33)

where P (v) is the speed distribution and α is a number. Certain parameters of interest for a
distribution is the mean value, µ, and the standard deviation, σ. The mean value can be derived from
(2.33) by inserting α = 1. The standard deviation [see 20, p. 78] is given as

√
V ar(v) =

√
〈v2〉 − 〈v〉2,

which can be derived from (2.33) as a result of the expression for the mean value and the mean square
value. The expressions for the expectation values giving the mean value, the mean square value and
the standard deviation in two and three dimensions based on the speed distribution given in (2.30)
and (2.32) are presented in Table 2.2. We also note that the results for the values of 〈v2〉 in Table 2.2
propose a relation between the average energy and temperature, which can be generalized by the
equipartition theorem, which will be presented in section 2.5.

2.5 Kinetic gas theory
The energy in the many-particle system we will study is uniquely determined by its kinetic energy.
This is the case when one ignores gravitational effects and neglects the possibility of making the
particles rotate as a result of a collision. The energy of the system is given by

E =

N∑
i=1

1

2
miv

2
i , (2.34)

2.6. HAFF’S LAW 19

Table 2.2: Some useful expectation values and the standard deviation, σ, in two and three dimensions of
the Maxwell-Boltzmann speed distribution.

Dimensions 〈v〉 〈v2〉 σ

2
√

π
2
kBT
m 2kBTm

√
4−π

2
kBT
m

3
√

8
π
kBT
m 3kBTm

√
3π−8
π

kBT
m

where mi is the mass of particle i, vi is the speed of particle i and N is the total number of
particles. The equipartition theorem [see 21, pp. 66–67] states that every quadratic term in the
energy function contributes with kBT/2 to the average kinetic energy in thermal equilibrium. An
example of a quadratic term is v2

x for a velocity component in the kinetic energy. The average kinetic
energy is thus proportional to the thermal energy. For a three-dimensional system of particles with
equal mass, an expression for the average kinetic energy per particle in equilibrium can be derived
from the energy function given in equation (2.34). The derivation leads to the following

〈E〉 =
〈E〉
N

=
1

2

m

N
〈
N∑
i=1

v2
i 〉 =

1

2
m〈v2〉 =

1

2
m〈v2

x+v2
y +v2

z〉 =
1

2
m(〈v2

x〉+ 〈v2
y〉+ 〈v2

z〉) =
3

2
kBT, (2.35)

where 〈E〉 is the average kinetic energy of the particles. Using the relation given in (2.35) we can
compute the temperature of a gas of particles in equilibrium from the average kinetic energy of the
particles. In order to achieve an equilibrium state in the system the energy must be constant. This
can be achieved by setting ξ = 1 indicating elastic collisions or by giving the system additional
energy equal to the energy dissipated from the collisions at all times. From now on the quantity
kBT which is a energy, will be referred to as a temperature T , which is equivalent to setting kB
equal to unity. Note that for a two-dimensional system 〈E〉 = T .

A molecular gas, where energy is conserved, will thus evolve with a constant temperature T .
The same relation between the average kinetic energy of the particles and the temperature given in
(2.35) is also commonly used for a granular gas, where the temperature is referred to as the granular
temperature [see 11, p. 51]. Due to the dissipative nature of a granular gas however, the energy and
thus the temperature decays as a function of time. The evolution of temperature for a granular gas
is known as Haff’s law, which is presented in detail in section 2.6.

2.6 Haff’s law

A granular gas is a many-particle system where the particle collisions occur dissipatively. The
average kinetic energy of the particles will thus decay as a function of time. How fast the energy
decays depends on how much energy is dissipated from a collision and the number of collisions, which
depends on various system parameters. The evolution of the energy of a granular gas is commonly
known as Haff’s law, based on different properties of a granular system introduced by Haff in 1983
[see 22]. The average kinetic energy is given as a function of temperature from the relation in (2.35)
and as commonly used for a granular gas we will use the granular temperature T when deriving
Haff’s law. For a granular gas, the dissipated energy per collision on average, ∆T ′, follows the
relation

∆T ′ ∝ (1− ξ2)T, (2.36)

where we have used that 〈E〉 ∝ T . The relation in (2.36) is derived and argued for in Appendix B,
and is equal to the original statement used by Haff [see 22, p. 410]. Another derivation of (2.36) can
be found in [11, p. 52].

20 CHAPTER 2. THEORY

Figure 2.8: Illustration of the free path for a particle moving with the velocity v. In a three-dimensional
system, the particle will collide with other particles if they are inside the volume given by the moving cylinder
inside the two dashed lines which are related to the diameter, ζ, and the speed, |v|, of the particle. The
free path is used to compute the number of collisions in the system. In the figure, the other particles are at
rest. If that is not the case one has to use the relative velocity between the particles in the calculation of
the number of collisions.

In order to estimate the number of collisions in a gas, we have to look at the necessary conditions
for particles to collide. Assume a system as illustrated in Figure 2.8, with a single particle moving,
with the velocity v and diameter ζ = 2r, towards a number of particles with the same diameter at
rest. The particle will collide with another particle if |∆x| < ζ. This results in a collision if the
center of a particle at rest is inside the volume given by the dashed lines in Figure 2.8. The volume
inside the dashed lines in the figure is given by the moving cylinder with a radius equal to the
diameter of the particle. The number of collisions is given by the number of particles in the volume
given by the dashed lines. The dashed lines are separated by a distance 2ζ for a gas of particles with
equal radius. If we introduce the number density, n, given as N/V , where V is the volume, we can
write the average number of collisions in a time ∆t, Nc(∆t), as

Nc(∆t) = πζ2 · n〈v〉∆t, (2.37)

where 〈v〉 is the average speed of the particle. Eq. (2.37) gives the volume of the moving cylinder
in Figure 2.8 with the cross-section πζ2 times the density of particles in that volume. The result
in (2.37) is based on a system where all other particles is at rest. This is not true for a system
of particles colliding in a box. Therefore we have to use the average relative speed, 〈u〉, when
considering the number of collisions for the particle. As shown in [10, pp. 136–137], 〈u〉 =

√
2〈v〉,

which holds for a system having a speed distribution given by the Maxwell-Boltzmann distribution
in any dimension. The speed distribution of a granular gas is not expected to follow the Maxwell-
Boltzmann distribution due to the decay of energy, but the average relative velocity is of the same
order as the average velocity [see 22, p. 410]. From the previous argument, we can thus conclude
that

Nc(∆t) ∝ r2n〈v〉∆t ∝ r2n

√
T

m
∆t, (2.38)

where the last step is based on that the kinetic energy is of the same order as the square average
velocity [see 11, p. 52].

The dissipated energy in a granular gas, ∆T per time ∆t, can thus be estimated as the energy
dissipated per collision on average times the number of collisions in the system per time. We can
thus write the following relation

∆T

∆t
=

∆T ′

∆t
Nc(∆t) = τ ′0T

3/2, (2.39)

2.7. DIFFUSION 21

where τ ′0 ∝ r2n(1 − ξ2) 1√
m

is a constant. In the limit ∆t → 0, (2.39) gives a separable differential
equation for the average kinetic energy of the granular gas. We can solve the introduced differential
equation with an initial energy and thus an initial temperature T (t = 0) = T0, leading to

T (t) =
T0

(1 + t/τ0)2
, (2.40)

where τ−1
0 ∝ r2n(1− ξ2)

√
T0

m is a constant related to system parameters. Note that for viscoelastic
particles Haff’s law gives a different decay of temperature [see 11, p. 53]. For a three-dimensional
granular gas the exact expression for the constant τ−1

0 [see 11, p. 116] is given as

τ−1
0 =

1

6
(1− ξ2)τc(0)−1, (2.41)

where τc(t)−1 ∝
√
T (t)/m is the mean collision time. The mean collision time, τc(t), is given as

τc(t)
−1 = 4

√
πg2(ζ)ζ2n

√
T (t)

m
, (2.42)

where ζ is the diameter of the particles [see 11, p. 139] and g2(ζ) is the contact value of the equilibrium
pair correlation function for hard spheres [see 11, p. 59]. The contact value of the equilibrium
correlation function for hard spheres is given as

g2(ζ) =
2− η

2(1− η)3
, (2.43)

where η is the packing fraction, also known as the particle volume density. The packing fraction for
a system of particles with equal radius, r, is given as

η =
4

3
πr3n =

πζ3

6
, (2.44)

which is simply the total volume of all the particles relative to the volume of the system. Eq. (2.44)
is then a measure of how much of the volume in the system is occupied by the particles. Inserting
the mean collision time in (2.42) at t = 0 into (2.41) we achieve that τ0, which can be interpreted
as a characteristic timescale of the evolution of the granular temperature, can be written as

τ−1
0 =

2

3
(1− ξ2)

√
πg2(ζ)nζ2

√
T0

m
. (2.45)

Haff’s law, given in (2.40), has been shown to be an accurate description for a granular gas in
the homogeneous cooling state in both experimental and numerical studies [see 8, 14, 18]. The
homogeneous cooling state is a term used to describe the state where a force-free granular gas
cools due the inelastic collisions between particles and the particles are still uniformly distributed
in the system [see 11, p. 51]. Due to the dissipative nature of the particle collisions, the uniform
distribution of particles breaks down due to the formation of clusters. The formation of clusters
was one of the effects which initiated the recent scientific interest in granular gases [see 11, p. 223].
For the remaining theory we will assume that the system is at all times in the homogeneous cooling
state, as done in [11]. From the results in chapter 4 we will see that this assumption is justified.

2.7 Diffusion
There are several different properties which can be of interest when looking at a collection of particles.
When working with concentrations of particles and particles who can move, to some degree freely,

22 CHAPTER 2. THEORY

Figure 2.9: Illustration of a diffusion process, where the particle concentration is spread out.

one common approach is to study the problem as a diffusion3 process. Diffusion is a process where
a quantity, e.g. concentration or temperature, is driven by a gradient to spread out. The gradient
drives the system to restore balance in the diffusing quantity by driving the quantity from regions
of high concentration to regions of lower concentration as illustrated in Figure 2.9. Diffusion is a
well studied subject in the field of physics, and can be modelled in several ways.

By limiting the focus to the position of a single particle in a box filled with particles, how the
position evolves as a function of time can in addition to diffusion be modelled as a random walk
or as Brownian motion. Random walk can be argued to be a valid approach if the particle moves
around in a random manner. Brownian motion is a model where a particle moves randomly around
due to collisions with other particles, which are discussed in greater detail in later sections. One
typical quantity of interest for all these models is the so-called Mean Squared Displacement (MSD).
It is known that the MSD of a set of particles in a diffusion process in one dimension will show the
following property

〈(x(t)− x0)2〉 = 2Dt, (2.46)

where D is the diffusion coefficient, x0 is the initial position and x(t) is the position at time t.
This result was famously derived by Einstein in 1905 [see 23, pp. 556–559]. The relation given in
(2.46) states that the MSD is linear in time. This is also a known result for random walks [see 10,
pp. 152–153]. Numerical simulations show that the MSD of a molecular gas in two dimensions shows
the linear trend proposed in (2.46) at long times, thus making it possible to achieve an estimation
of the diffusion coefficient from numerical simulations [see 24, pp. 140–145].

Molecular dynamics of particles colliding without any external forces can be though of as a
diffusion process with inertia, since it is not possible for a particle to suddenly change its velocity
without colliding with another particle. Even if it collides with another particle, the velocity after
colliding is related to the velocity prior to the collision, as derived in (2.10) and (2.11). One of the
assumptions in the derivation of (2.46) is based on that one can assume the motion of a particle at
different times to be independent [see 23, p. 556]. Therefore one should not expect the MSD to be
linear in time for all times for a simulation of particles colliding in a box.

Whereas an MSD linear in time is widely regarded as normal diffusion, many systems have been
discovered to exhibit what is now considered to be anomalous diffusion. Anomalous diffusion is often
represented by the following power law of the MSD

〈(x(t)− x0)2〉 ∝ tα, (2.47)

where α is a positive number. The value of α in (2.47) is used to characterize the different regions of
diffusion. Anamalous diffusion is normally split in two different regions, where the term subdiffusion
is used for 0 < α < 1 and superdiffusion is used for α > 1 [see 25, 26, 27, 28].

3For an introduction to the diffusion equation and how diffusion is used to model the development of particle
density see [10, pp. 148–153].

2.8. BROWNIAN MOTION 23

In addition, there also exist a variety of systems which exhibit what is known as ultraslow
diffusion. Ultraslow diffusion is represented by the following logarithmic power law of the MSD

〈(x(t)− x0)2〉 ∝ lnα (t), (2.48)

where different values of α is obtained for different systems. A force-free granular gas with a constant
coefficient of restitution, which is the topic studied in this thesis, is a system for which the dynamics
are given by (2.48) at long times with α = 1 [11, pp. 137–141, 25, pp. 1–2, 28, pp. 1–2]. A granular
gas of viscoelastic particles is an example of a system with subdiffusive properties, where the MSD
∝ t1/6 [11, pp. 142–143, 15, p. 21794, 25, pp. 6–9]. We will thus see that the dynamics of the
system of particles we will study in a box, and thus the dependence of time for the MSD will be
different for a molecular gas and a granular gas. This should not be very surprising, given the fact
that the dissipation of kinetic energy should provide different future dynamics leading to a smaller
displacement. The negative spiral of continuously dissipating energy have an self increasing effect
which makes it reasonable for the MSD to be logarithmic.

An commonly used model for systems exhibiting anomalous diffusion is known as scaled Brownian
motion [see 28, 29, 30]. We will later use underdamped scaled Brownian motion as a model for the
particles in a granular gas [see 15, 25], while we will for a molecular gas use a model known as the
underdamped Langevin equation [see 25, p. 3].

2.8 Brownian motion
Brownian motion was first described by the biologist Robert Brown in 1827, during investigations
of pollen [see 31, p. 47]. These observations were later used by Albert Einstein to provide a physical
explanation for the movement of such particles suspended in fluids as a result of interactions with
the particles in the fluid [see 23]. Brownian motion can thus be modelled as in Figure 2.10, with
a large Brownian particle in a sea of smaller particles. On a microscopic level we know that the
dynamics of the system in Figure 2.10 is given by collisions between particles, which is given by the
collision rule in Eqs. (2.10) and (2.11). The microscopic description is what we aim to study using
the event driven simulation of molecular dynamics. On a macroscopic level it is possible to model
Brownian motion as a Stochastic Differential Equation (SDE), which is the topic of section 2.9.

We will in this project however only look at a simplification of Brownian motion where all
particles are equal. Equal is here used to indicate that the mass and radius of all the particles in the
system will be equal. This is not uncommon practice and exploits the fact that we can get ensemble
averages by using the data of all the particles in a simulation [15]. The ensemble average is used
to get the correct mean behaviour. While each particle gets a unique trajectory which does not
necessarily give the expected result for e.g. diffusion, the ensemble average should converge towards
the theoretical predictions. For a study of diffusion of a larger Brownian particle in a molecular gas
see [24], and in a granular gas of viscoelastic particles see [27].

2.8.1 Diffusion coefficient
As one might expect, the diffusion coefficient is important when deriving the MSD. The self-diffusion
coefficient, D(t), for a granular gas of equal particles with a constant ξ is given as

D(t) =
4D0(t)

(1 + ξ)2
, (2.49)

where D0(t) is the Enskog self-diffusion coefficient, given as

D0(t) =
3

8

1

ng2(ζ)ζ2

√
T (t)

mπ
, (2.50)

24 CHAPTER 2. THEORY

Figure 2.10: Illustration of a large Brownian particle, with mass M and velocity vb, in a sea of smaller
particles, with mass m and velocity vs. On a macroscopic level, the dynamics of the Brownian particle is
decided by friction and interactions with the particles in the fluid. On a microscopic level, the dynamics of
the Brownian particle is determined by the collisions between the Brownian particle and the smaller particles.
The macroscopic description can be modelled as a stochastic differential equation, addressed in section 2.9.
The microscopic description is what we aim to study with the event driven simulation of molecular dynamics.

with the same definitions as in (2.42) [see 11, p. 162]. Self-diffusion is a term used to emphasize that
the diffusion coefficient does only take into account the effects of the collisions between the particles
in the system, since there are no other forces acing upon the particles. We will for simplicity refer
to the self-diffusion coefficient as the diffusion coefficient, which is also called the diffusivity. The
time dependence of (2.49) is given as the square root of the time dependence of the temperature,
which for a granular gas is given by Haff’s law in (2.40). For simplicity, we thus rewrite (2.49) into
the following form

D(t) =
D0

1 + t/τ0
, (2.51)

where D0 is a constant. The expression for D0 is obtained by inserting (2.50) into (2.49) at time
t0 = 0 and is given as

D0 =
3

2

1

ng2(ζ)ζ2(1 + ξ)2

√
T0

mπ
. (2.52)

The diffusion coefficient for a gas of particles can also be written in the following form

D(t) =
T (t)

mγ(t)
, (2.53)

where γ(t) is the friction coefficient, sometimes also referred to as the damping coefficient. γ(t) is
also given as the inverse velocity autocorrelation time, which will appear in the derivations of the
MSD [11, 25], making the relation in (2.53) useful later. The relation in (2.53) is known and used
by many authors, see [11, pp. 137–148, 15, p. 21792, 25, p. 5]. From the relation in (2.53) and the
definition of the diffusivity in (2.51) the friction coefficient can be written as

γ(t) =
γ0

1 + t/τ0
, (2.54)

2.8. BROWNIAN MOTION 25

where γ0 is the initial friction coefficient. Note that the friction coefficient in (2.54) display the same
time dependence as the diffusivity. We can thus relate the initial coefficients in the following way

γ0 =
T0

mD0
, (2.55)

from the two different expressions for the diffusivity in (2.51) and (2.53). The decay of the diffusivity
and the friction coefficient is natural due to the decay of the kinetic energy in a granular gas. The
relation between the temperature, the friction coefficient and the diffusion coefficient is also referred
to as the Einstein4-Smoluchowski-Sutherland relation [see 25, p. 3].

An important note to make here is that for a molecular gas, we recover normal diffusivity with
a constant diffusion coefficient given by (2.52) for ξ = 1 as a result of a constant temperature. In
addition to the physical explanation, this can be seen mathematically as τ−1

0 = 0 for ξ = 1. Thus,
the time dependence in (2.51), (2.54) and in Haff’s law in (2.40) vanish as expected. The dynamics
of such a system is then determined by D(t) = D0, γ(t) = γ0 and T (t) = T0.

2.8.2 Mean squared displacement
The coefficients for the diffusivity and the friction coefficient are given for a three-dimensional
system, due to the fact that we will consider three-dimensional simulations of gases. The derivations
of the MSD will be given for a one-dimensional system for simplicity, and the extension to higher
dimensions is trivial. A system of particles in a force-free system have no reason to behave differently
in any direction. Due to symmetry we should thus observe the following in three dimensions

〈(x(t)− x0)2〉 =〈(x(t)− x0) · (x(t)− x0)〉,
=〈|x(t)− x0||x(t)− x0|〉,

=〈
√

(x(t)− x0)2 + (y(t)− y0)2 + (z(t)− z0)2
2〉,

=〈(x(t)− x0)2 + (y(t)− y0)2 + (z(t)− z0)2〉,
=〈3(x(t)− x0)2〉,
=3〈(x(t)− x0)2〉, (2.56)

where x(t) = [x(t), y(t), z(t)] is the position at time t, x0 = x(t = 0) and 〈(x(t)− x0)2〉 is the MSD
in one dimension. The expressions for the MSD must thus be multiplied with 3 in order to compare
with the simulation results or vice-versa.

In order to derive the MSD of a particle in one dimension we need to know the position of the
particle. The difference between the position at time t, x(t), and the initial position x0 is given by
the following integral

x(t)− x0 =

∫ t

0

dt′v(t′), (2.57)

where v(t) is the velocity as a function of time. The expression in (2.57) can be used to compute
the MSD by the following expression

〈(x(t)− x0)2〉 = 〈
(∫ t

0

dt′v(t′)

)2

〉 = 〈
∫ t

0

dt1v(t1)

∫ t

0

dt2v(t2)〉 =

∫ t

0

dt1

∫ t

0

dt2〈v(t1)v(t2)〉, (2.58)

where 〈v(t1)v(t2)〉 is known as the velocity autocorrelation function. Due to the symmetry of the
velocity autocorrelation function the intregral in (2.58) can be simplified to

〈(x(t)− x0)2〉 = 2

∫ t

0

dt1

∫ t

t1

dt2〈v(t1)v(t2)〉, (2.59)

4The relation was introduced by Einstein as what is now considered to be the Stokes-Einstein result [see 23,
pp. 554–556].

26 CHAPTER 2. THEORY

Figure 2.11: Due to the symmetry in the velocity autocorrelation function we can use the change of
integration limits in the figure to change which area to integrate over. We then reduce the integral over a
square to two times the integral over a triangle where t2 ≥ t1, which turns out to be very convenient.

where it is assumed that t2 ≥ t1 [see 11, p. 125]. The transformation is illustrated in Figure 2.11. The
expression in (2.59) will be convenient later when deriving expressions for the MSD as the velocity
autocorrelation function usually depends on |t2 − t1| and not explicitly on t1 or t2. For a given
expression of the velocity autocorrelation function, we can thus compute an analytical expression
for the MSD [see 11, p. 125].

We can also use the expression for the MSD as a function of the velocity autocorrelation function
to derive an expression for the diffusion coefficient as a function of the velocity autocorrelation
function by combining Einstein’s result in (2.46) and (2.59). For an equilibrium system the velocity
autocorrelation function only depends on t2− t1, which we will denote τ [see 11, p. 125]. As a result
of the previous statement we can rewrite the velocity autocorrelation function in the following way

〈v(t1)v(t2)〉 = 〈v(0)v(τ)〉. (2.60)

If we now use τ as a integration variable instead of t2, in addition to the relation in (2.60), the
expression in (2.59) becomes

〈(x(t)− x0)2〉 = 2

∫ t

0

dt1

∫ t−t1

0

dτ〈v(0)v(τ)〉. (2.61)

The integrand in (2.61) is not a function of t1 anymore, and we can thus change the integration order
to perform the trivial integral over t1. The change of integration order is illustrated in Figure 2.12.
We can thus obtain the following expression for the MSD

〈(x(t)− x0)2〉 = 2t

∫ t

0

dτ〈v(0)v(τ)〉(1− τ

t
). (2.62)

As we want the long term behaviour of the MSD to coincide with Einstein’s result in (2.46) we get
the following expression for the diffusion coefficient

D =

∫ ∞
0

dt〈v(0)v(t)〉, (2.63)

where we have rewritten τ as t. The expression for the diffusion coefficient in (2.63) is known as a
Green-Kubo relation, sometimes referred to as a fluctuation-dissipation relation [11, p. 126, 32].

The derivation above is given for an equilibrium system. A granular gas is not an equilibrium
system as there are dissipative interactions in the system. Due to the dissipative interactions the
diffusion coefficient is no longer constant as discussed earlier. The concept can however be generalized

2.8. BROWNIAN MOTION 27

Figure 2.12: Illustration of the change of integration order in the derivation of the diffusion coefficient as
a function of the velocity autocorrelation function.

for a granular gas, where the long term behaviour of the MSD can be computed from the following
expression

〈(x(t)− x0)2〉 = 2

∫ t

0

dt′D(t′), (2.64)

where the time dependence of the diffusion coefficient, D(t), determines the time dependence of the
MSD [see 11, pp. 125–126]. However due to (2.64) only capturing the long term behaviour the more
general expression in (2.59) will be the main tool used to derive an expression for the MSD. We can
however verify that due to constant diffusivity the MSD of a molecular gas is linear in time from
(2.64) at long times. The time dependence of the diffusivity for a granular gas in (2.51) leads to an
MSD which shows a logarithmic dependence of time for long times. The logarithmic dependence
arises from (2.64) as D(t) ∝ t−1 for t� τ0.

We will now go into more details for the MSD of a molecular gas, before moving on to a granular
gas. We will use an expression for the velocity autocorrelation function exploiting the fact that
a molecular gas is an equilibrium system. For a granular gas, we must perform some rigorous
mathematical treatment in order to achieve the correct velocity autocorrelation function.

2.8.3 Molecular gas

A molecular gas is an equilibrium system and the velocity autocorrelation function can thus be
derived in a simple fashion. The velocity autocorrelation function for a molecular gas [see 11,
pp. 136–137] is given as

〈v(t1)v(t2)〉 = 〈v2〉t1 exp (−γ0|t2 − t1|), (2.65)

where γ0 is the inverse velocity autocorrelation time, given as the initial friction coefficient. The
expression in (2.65) for t2 ≥ t1 and due to the equipartition theorem where 〈v2〉 = T/m = T0/m
can be written as

〈v(t1)v(t2)〉 =
T0

m
exp (−γ0(t2 − t1)). (2.66)

As a verification of the velocity autocorrelation function we can insert (2.66) into the Green-Kubo
relation in (2.63) and compute the diffusion coefficient. From this we obtain D = T0/(mγ0), the
same relation as we introduced for the diffusion coefficient in (2.53).

By inserting the velocity autocorrelation function in (2.66) into (2.59) we achieve the following
double integral expression for the MSD

〈(x(t)− x0)2〉 = 2
T0

m

∫ t

0

dt1

∫ t

t1

dt2 exp (−γ0(t2 − t1)). (2.67)

28 CHAPTER 2. THEORY

Solving the integrals in (2.67) leads to an expression for the MSD given as

〈(x(t)− x0)2〉 = 2D0t+
2D0

γ0
(exp (−γ0t)− 1) , (2.68)

where D0 = T0/(mγ0) as given by (2.53). As we will later see, the result in (2.68) is the same as we
will achieve for the underdamped Langevin equation [see 25, p. 3]. It is often of interest to look at
the expression for the MSD in different time limits. The expression in (2.68) behaves differently at
t � 1/γ0 compared to t � 1/γ0. For the limit t � 1/γ0 =⇒ exp (−γ0t) → 0, we obtain an MSD
linear in time. For low values of t we can use a Taylor expansion for the exponential term, where

exp (−γ0t) ≈ 1− γ0t+
t2γ2

0

2
+O(t3),

leading to an MSD equal to T0

m t
2, which is the ballistic period where all particles initially move with

a constant speed without being affected by other particles [see 25, p. 3]. The asymptotic behaviour
of the MSD can thus be summarized with

〈(x(t)− x0)2〉 ∝
{
t if t� 1/γ0

t2 if t� 1/γ0

(2.69)

where we in the limit t� 1/γ0 get the same time dependence of the MSD as derived by Einstein in
(2.46), which is the result for the MSD at long times for normal diffusion.

2.8.4 Granular gas

Due to the inelastic collisions occurring in a granular gas, the velocity autocorrelation function is
not as straightforward to derive as for a molecular gas. We can map a granular gas to a molecular
gas with the time transformation t→ τ , where τ is a timescale where the granular gas is stationary
and thus the energy is constant. This is achieved with the transformation dτ = dt/τc(t), where τc(t)
is the mean collision time given in (2.42) [see 11, pp. 146–147].

First, we will for simplicity rewrite τc(t) in the following manner,

τc(t) = A
√
T (t) = A

√
T0

1

1 + t/τ0
, (2.70)

where Haff’s law (2.40) has been used in the last step and A = 4
√

π
mg2(ζ)ζ2n, and τ0 is the

characteristic time decay of the granular temperature. The new timescale τ is thus given as

τ(t) = A
√
T0τ0 ln (1 +

t

t0
). (2.71)

Using the definition of τ0 from (2.45) we can rewrite (2.71) into

τ(t) =
6

1− ξ2
ln (1 + t/τ0), (2.72)

which will be convenient later due to the velocity autocorrelation time in the new timescale.
We will also rewrite the velocity autocorrelation function to the following

〈v(t1)v(t2)〉 = vT (t1)vT (t2)〈c(t1)c(t2)〉, (2.73)

where vT (t) =
√

2T (t)/m is the thermal speed and c = v(t)/vT (t) [see 11, p. 146]. The trick used
for the velocity autocorrelation function for a molecular gas can now be utilized in the timescale τ

2.8. BROWNIAN MOTION 29

for 〈c(τ1)c(τ2)〉. Note that 〈c2〉 = 1/2 since v2
T (t) = 2T (t)/m. The velocity autocorrelation function

of the scaled velocities in the new timescale can thus be written as

〈c(τ1)c(τ2)〉 =
1

2
exp (−γ̂0|τ2 − τ1|), (2.74)

where γ̂0 = γ0tc(0) is the inverse velocity autocorrelation time in the new timescale, and τ1 = τ(t1)
and τ2 = τ(t2). We also note that τ(t)τc(0) = τ0 ln (1 + t/τ0), which simplifies the expression in
(2.74). In order to use the expression in (2.59) for the MSD we need an velocity autocorrelation
function given for t2 ≥ t1. From the definition of τ(t) in (2.71) we see the following relation where
t2 ≥ t1 =⇒ τ(t2) ≥ τ(t1), for which |τ2 − τ1| = (τ2 − τ1). Eq. (2.74) can now be written as a
function of normal time as

〈c(t1)c(t2)〉 =
1

2
exp (−γ0τc(0)(τ2(t2)− τ1(t1)))

=
1

2
exp (−γ0τ0(ln (1 + t2/τ0)− ln (1 + t1/τ0)))

=
1

2
exp (−γ0τ0(ln (1 + t2/τ0))) exp (γ0τ0(ln (1 + t2/τ0)))

=
1

2
(1 + t2/τ0)−γ0τ0(1 + t1/τ0)γ0τ0 . (2.75)

Inserting (2.75) into (2.73) gives us the following expression for the velocity autocorrelation function

〈v(t1)v(t2)〉 = vT (t1)vT (t2)
1

2
(1 + t2/τ0)−γ0τ0(1 + t1/τ0)γ0τ0 . (2.76)

Inserting the definition of the thermal velocity and the definition of the granular temperature given
in Haff’s Law in (2.40) leads to the final expression for the velocity autocorrelation function

〈v(t1)v(t2)〉 =
T0

m
(1 + t2/τ0)−γ0τ0−1(1 + t1/τ0)γ0τ0−1, (2.77)

which is the one-dimensional equivalent to the three-dimensional expression used for the correlation
function of a granular gas used in [15]. We will now use the expression in (2.77) to derive an
expression for the MSD of a granular gas. Inserting (2.77) into (2.59) leads to the following integral
expression for the MSD

〈(x(t)− x0)2〉 = 2
T0

m

∫ t

0

dt1

∫ t

t1

dt2(1 + t2/τ0)−γ0τ0−1(1 + t1/τ0)γ0τ0−1. (2.78)

By solving the integrals in (2.78) we achieve the following expression for the MSD of a granular gas

〈(x(t)− x0)2〉 = 2D0τ0

(
ln (1 + t/τ0) +

1

γ0τ0

[
(1 + t/τ0)−γ0τ0 − 1

])
, (2.79)

which turns out to be quite different to the expression for a molecular gas given in (2.68), as expected.
For the expression in (2.79) it is natural to derive the asymptotic behaviour of the MSD in the limits
t � τ0 and t � τ0. For the long time limit we will use that (1 + t/τ0) = (t + τ0)/τ0 → t/τ0.
Under this approximation it is clear that (1 + t/τ0)−γ0τ0 → 0 and the MSD will show an logarithmic
dependence of time. For the low time limit we will again use Taylor expansions. By using the
following approximations

ln(1 + t/τ0) ≈ t

τ0
− t2

2τ2
0

+O(t3),

(1 + t/τ)−γ0τ0 ≈ 1− γ0t+
γ0t

2(γ0τ0 + 1)

2τ0
+O(t3),

30 CHAPTER 2. THEORY

we see that (2.79) reduces to T0

m t
2, which again is known as the ballistic period. The system is in

the ballistic period until collisions has started to occur, thus it is natural that the nature of the
collision does not affect the MSD for such short times. The previous arguments are intuitive since
there is no difference between a molecular and granular gas before any collisions have occurred. The
asymptotic behaviour of the MSD for a granular gas with a constant ξ is thus given as

〈(x(t)− x0)2〉 ∝
{

ln(t) if t� τ0

t2 if t� τ0
(2.80)

where the logarithmic development for the MSD is a result of the decaying energy, and temperature
of a granular gas. We have thus shown that a granular gas exhibits what is known as ultraslow
diffusion for a constant coefficient of restitution [see 11, 15, 25, 28].

2.9 Brownian motion as a stochastic differential equation

The following section will provide detailed derivations starting from a macroscopic description of the
dynamics of a single particle in a gas as illustrated in Figure 2.10. We aim here to see how different
SDEs can be used as a simplified model of both a molecular and granular gas in order to compare
the simulation results with the results obtained for the numerical solution of an SDE. As we will
later see in chapter 4 the use of SDEs to model the dynamics of a single particle equal to the other
particles in the gas provide similar results as the event driven simulation.

2.9.1 Langevin equation

The motion of the single particle can be modelled by a Langevin equation, originally suggested by
Paul Langevin in 1908 [see 33]. A Langevin equation is an SDE stating how the velocity of the
Brownian particle changes in time.

In one dimension, the Langevin equation of motion is given as

dv(t)

dt
= −av(t) + bΓ(t), (2.81)

where a and b are two coefficients used to model the strength of the friction and the random term,
and Γ(t) is a random force due to the effect on the Brownian particle from colliding with the other
particles [see 32, p. 258]. The expression in (2.81) is simply Newton’s equation of motion, where
the movement of the particle is affected by a friction force and a random force. The equipartition
theorem states that in an equilibrium state 〈v2(t)〉 = T0/m for the Brownian particle in a molecular
gas. For this to hold there must exist a relation between a and b resulting from the different nature
of the forces acting upon the particle. The friction term tries to drive the system to a stop, while the
random term keeps the system alive by giving contributions to the velocity. A relation of this type
can be found in several physical systems, where thermal equilibrium at long times is achieved for
systems containing a dissipative term and a noise term. These kinds of relations are known from the
fluctuation-dissipation theorem, where one tries to give explanations of why certain physical systems
behave the way they do in thermal equilibrium [see 32]. Note also that even though a granular gas
is not an equilibrium system, we can still use what is called a time local fluctuation-dissipation
relation. This is a result of using the granular temperature, T , where the following relation is used:
〈v2(t)〉 = T (t)/m = D(t)γ(t) given by the relation in (2.53) [see 25, pp. 3–5].

By comparing simulation results for Brownian motion given by an SDE and the event driven
simulation of particles colliding, it is possible to validate the use of event driven molecular simulations
to investigate properties on a macroscopic scale. The random force is used to describe the effects
of the collisions on a macroscopic scale. We know however that the effects of the collisions are not

2.9. BROWNIAN MOTION AS A STOCHASTIC DIFFERENTIAL EQUATION 31

random at all on a microscopic scale, where they are given by the collision rule of the system. We
are thus in a situation where the collisions must give the same effect on the Brownian particle as the
random force in order to provide similar results for the two different simulation methods. Before we
start a rigorous treatment of different Langevin equations we will provide a introduction to SDEs
and how they are used to model Brownian motion.

2.9.2 Stochastic differential equation
An SDE is an differential equation of a stochastic variable, which contains a stochastic process, or
more commonly known as a random phenomenon [see 31, p. 1]. A model for Brownian motion as
an SDE can be written in the following stochastic differential form

dYt = a(t, Yt)dt+ b(t, Yt)dWt, (2.82)

where Yt is the velocity at time t written as a stochastic variable, Wt is a Wiener process, and a and
b in general can be functions of the velocity and time. The term containing a is often referred to as
the drift, while the term containing b and the Wiener process is often referred to as the diffusion.
The expression in (2.82) is an example of an Itô process, which is a common way of expressing an
SDE [see 34, p. XXI]. Due to the randomness of a Wiener process, it is a known that a Wiener
process is almost surely a nowhere differentiable function of time [see 34, pp. 40–44 and 68–74]. As
a result of the previous statement we often see SDEs written as a stochastic integral equation [see
34, p. 104]. The SDE modelling Brownian motion in (2.82) as a stochastic integral equation is given
by

Yt = Yt0 +

∫ t

t0

a(s, Ys)ds+

∫ t

t0

b(s, Ys)dWs. (2.83)

The position of the Brownian particle is given by the velocity of the particle. Thus the position of
the particle must follow the SDE

dXt = Ytdt, (2.84)

where Xt is the position at time t given as a stochastic variable. In integral form, (2.84) can be
written as

Xt = Xt0 +

∫ t

t0

Ysds. (2.85)

By using the expressions given in (2.83) and (2.85) it is possible to compute the position and the
velocity and thus modelling the dynamics of the Brownian particle. This can be achieved numerically
by applying a time discretization method in order to solve SDEs.

2.9.3 Euler-Maruyama scheme
The simplest time discretization method for SDEs is the Euler-Maruyama approximation. The
Euler-Maruyama method can be considered to be the stochastic version of the Euler method for
an Ordinary Differential Equation (ODE), and they share some similarities. The difference in the
methods originates from the term representing the Wiener process. For simplicity we will use
equidistant discretization times, where ∆t is given as the timestep value, and thus the difference in
time between two computations of the velocity and position. The Euler-Maruyama approximation
gives the following iterative scheme for Xt and Yt

Xn+1 = Xn + Yn∆t, (2.86a)
Yn+1 = Yn + a(tn, Yn)∆t+ b(tn, Yn)∆W, (2.86b)

where ∆W ∼ N (0,∆t) and the subscript n is used to indicate the stochastic variables at time
tn = n∆t [see 34, pp. 305–307]. Here we have used N (µ, σ2) to present a normal distributed

32 CHAPTER 2. THEORY

parameter with mean value µ = 0 and variance σ2 = ∆t. The iterative scheme in (2.86) can be
used to find the position and the velocity of the Brownian particle at different times from an initial
position, X0, and an initial velocity, Y0, with an resolution in time given by ∆t. The dynamics of
a single particle will be decided by a unique Wiener process and each realization of the iterative
scheme in (2.86) will give very different trajectories. In order to compute the MSD we must thus
perform the Euler-Maruyama method for a total of N particles to compute ensemble averages. The
different coefficients deciding the values of a and b is given for a three-dimensional system. We will
thus need to perform the Euler-Maruyama method for a three-dimensional system. This is achieved
by changing X to X = [Xx, Xy, Xz], Y to Y = [Yx, Yy, Yz] and ∆W to ∆W = [∆Wx,∆Wy,∆Wz]
where ∆Wx 6= ∆Wy 6= ∆Wz, but all are ∼ N (0,∆t). With this notation, x, y and z are used as
subscripts to indicate that we have e.g. the position or the velocity along the different Cartesian
coordinate axes.

2.9.4 Higher order schemes
Higher order schemes for solving SDEs have been considered, but compared to the results from the
Euler-Maruyama method in chapter 4 they did not show any significant improvement. The SDEs
which will be considered have a diffusion coefficient, b, not dependent on Yt. Higher order meth-
ods such as the Milstein scheme or Strong Taylor approximations simplifies greatly for a constant
b(t, Yt) = b(t) [see 34, pp. XXVII–XXIX]. It seems for us natural to assume that when some of the
higher order terms in higher order methods disappear we do not see the improvement that one should
see. For such simple SDEs as the model for Brownian motion given in (2.82) the Euler-Maruyama
method provides satisfactory results.

We will now use two different SDEs to model the behavior of the particles in a gas. The first
one can be used to approximate the behaviour of a molecular gas, and is known a underdamped
Langevin equation [25]. The second one can be used to approximate the behaviour of a granular gas
and is known as Underdamped Scaled Brownian Motion (UDSBM) [25].

2.9.5 Underdamped Langevin equation
The underdamped Langevin equation is given as the following second order ODE

d2x(t)

dt2
+ γ0

dx(t)

dt
=
√

2D0γ0Γ(t), (2.87)

which is an example of Newton’s equation of motion with two forces modelling the dynamics of the
particles in a molecular gas. The first one is friction, with a constant friction coefficient, the second
term on the right hand side in (2.87). The second force is given by a random term, Γ(t), used to
describe the effect of the particle collisions, and is assumed to exhibit the following properties

〈Γ(t)〉 = 0, (2.88a)

〈Γ(t)Γ(t′)〉 = δ(t− t′). (2.88b)

For such a system the diffusion coefficient and friction coefficient is assumed to be constant. The
random term is approximated as a Wiener process in the solution of the underdamped Langevin
equation as an SDE. In order to create an iterative scheme for the underdamped Langevin equation
using the Euler-Maruyama method we must first rewrite (2.87) into two first order ODEs, which are
given as

dx(t)

dt
= v(t), (2.89a)

dv(t)

dt
= −γ0v(t) +

√
2D0γ0Γ(t). (2.89b)

2.9. BROWNIAN MOTION AS A STOCHASTIC DIFFERENTIAL EQUATION 33

Then we rewrite the two first order ODEs in (2.89) into two first order SDEs written in integral
form as

Xt = Xt0 +

∫ t

t0

Ysds, (2.90a)

Yt = Yt0 − γ0

∫ t

t0

Ysds+
√

2D0γ0

∫ t

t0

dWs. (2.90b)

Comparing (2.90) with the general SDE used to describe Brownian motion we get the following
values for the coefficients a and b

a(t, Yt) = −γ0Yt, (2.91a)

b(t, Yt) =
√

2D0γ0. (2.91b)

Inserting the values for the coefficients a and b in (2.91) into (2.86) we get the following iterative
scheme for the underdamped Langevin equation with the Euler-Maruyama approximation

Xn+1 = Xn + Yn∆t, (2.92a)

Yn+1 = Yn − γ0Yn∆t+
√

2D0γ0∆W. (2.92b)

It is also possible to derive an expression for the velocity autocorrelation function based on the
solution to the Langevin equation of motion in (2.89b). The velocity autocorrelation function can
as earlier discussed be used to derive an expression for the MSD of particles, whose dynamics follow
the underdamped Langevin equation in (2.87). The value for the coefficient b =

√
2D0γ0 is a result

of the fluctuation-dissipation theorem [32]. In order to show this we will start from a more general
ODE for the velocity

dv(t)

dt
+ γ0v(t) = qΓ(t), (2.93)

where q is the constant to determine. Eq. (2.93) can be handled as a linear ODE. First we want to
use H as a help variable. H is given as

H =

∫ t

0

dt′(−γ0) = −γ0t.

We then multiply (2.93) with the integration factor exp (−H) = exp(γ0t), leading to

dv(t)

dt
exp (γ0t) + γ0v(t) exp (γ0t) = qΓ(t) exp (γ0t), (2.94)

where we now see that the left hand side of (2.94) is equal to d
dt (v(t) exp (γ0t)). We then rewrite

(2.94) into the following form

d

dt
[v(t) exp (γ0t)] = qΓ(t) exp (γ0t). (2.95)

Integrating both sides of (2.95) using v(t = 0) = v0 as an initial condition leads to the following
expression

v(t) exp (γ0t)− v0 = q

∫ t

0

dt′Γ(t′) exp (γ0t
′). (2.96)

The expression in (2.96) can be rewritten as a solution for the velocity given as

v(t) = v0 exp (−γ0t) + q

∫ t

0

dt′Γ(t′) exp (−γ0(t− t′)). (2.97)

34 CHAPTER 2. THEORY

Due to a non-analytical random term Γ(t) is it not possible to derive a further expression for the
velocity than what has been attempted in (2.97). Using the moments of Γ(t) from (2.88) it is however
possible to derive an expression for the velocity autocorrelation function from (2.97). The velocity
autocorrelation function 〈v(t1)v(t2)〉 is found by inserting the velocity in (2.97) at the times t1 and
t2 giving the following expression

〈v(t1)v(t2)〉 =〈
[
v0 exp (−γ0t1) + q

∫ t1

0

dt′Γ(t′) exp (−γ0(t1 − t′))
][
v0 exp (−γ0t2)+

q

∫ t2

0

dt′′Γ(t′′) exp (−γ0(t2 − t′′))
]
〉.

(2.98)

As a result of the properties of the random term (2.98) reduces to

〈v(t1)v(t2)〉 =〈v2
0〉 exp (−γ0(t1 + t2))+

q2

∫ t1

0

dt′
∫ t2

0

dt′′〈Γ(t′)Γ(t′′)〉 exp (−γ0(t2 + t1 − t′ − t′′)),
(2.99)

as the cross terms are equal to zero as a result of (2.88a). Inserting (2.88b) into (2.99) and using
the definition of the Dirac delta function in one of the integrals simplifies the expression further. We
then obtain the following

〈v(t1)v(t2)〉 = 〈v2
0〉 exp (−γ0(t1 + t2)) + q2

∫ t1

0

dt′ exp (−γ0(t2 + t1 − 2t′)), (2.100)

where we have chosen to use the Dirac delta for the integral over dt′′. From the integral in (2.100)
we obtain an expression given as

〈v(t1)v(t2)〉 = 〈v2
0〉 exp (−γ0(t1 + t2)) +

q2

2γ0
exp (−γ0(t2 − t1))− q2

2γ0
exp (−γ0(t2 + t1)). (2.101)

If we had chosen to use the Dirac delta for the integral of dt′ we would have obtained a middle term
with exp (−γ0(t1 − t2)). This leads to the conclusion that the correct physics would need to use the
absolute difference between the times. In equilibrium we also assume that t1 + t2 � 1/γ0 leading to
the following expression for the velocity autocorrelation function

〈v(t1)v(t2)〉 =
q2

2γ0
exp (−γ0|t2 − t1|). (2.102)

The expression in (2.102) for t2 = t1 = t leads to 〈v2(t)〉 = q2/(2γ0), which can also be expressed as
T/m = T0/m due to the conservation of energy and the equipartition theorem. We then obtain

〈v(t1)v(t2)〉 =
T0

m
exp (−γ0|t2 − t1|), (2.103)

as the expression for the velocity autocorrelation function based on the underdamped Langevin
equation in (2.89b). The result in (2.103) is equivalent to the expression used for a molecular gas
in (2.66). We can also determine the expression for q due to the equipartition theorem. Earlier we
used the following relation

q2

2γ0
=
T0

m
. (2.104)

From the expression in (2.104) we achieve the following expression for q,

q =

√
2γ0T0

m
,

q =
√

2γ2
0D0,

q =
√

2D0γ0, (2.105)

2.9. BROWNIAN MOTION AS A STOCHASTIC DIFFERENTIAL EQUATION 35

where the last step was done by using T0/m = D0γ0, given from the relation in (2.53). For the
expression for q in (2.105) we achieve that (2.93) is equal to (2.89b) as expected. Since the velocity
autocorrelation function for the underdamped Langevin equation is equal to the velocity autocor-
relation function for a molecular gas, we should obtain similar results for the MSD by solving the
underdamped Langevin equation with the Euler-Maruyama method in (2.92) as for event driven
simulations of a molecular gas.

2.9.6 Underdamped Scaled Brownian Motion
UDSBM is given by the following second order ODE

d2x(t)

dt2
+ γ(t)

dx(t)

dt
=
√

2D(t)γ(t)Γ(t), (2.106)

where Γ(t) is again assumed to follow the properties in (2.88). We also see that UDSBM is another
example of Newton’s equation of motion, where we now have forces with coefficients that depend on
time. Comparing UDSBM with the underdamped Langevin equation we see that they are similar,
but the diffusivity and the friction is a function of time for UDSBM. This difference is expected
since for UDSBM energy is not conserved and thus expected to decrease as a function of time. This
link between UDSBM and the underdamped Langevin equation provides the same connection as a
granular and a molecular gas, where the former is a system with a time dependent diffusivity and
friction coefficient and the latter is a system with a constant diffusivity and friction coefficient. From
this one can argue that the case of UDSBM is naturally used as a possible way to model a granular
gas. We will use the expression for the diffusivity and the friction coefficient for a granular gas given
in (2.51) and (2.54), where the time dependency is a result of the inelastic collisions. Similar as for
the underdamped Langevin equation, (2.106) can be written as two first order ODEs as

dx(t)

dt
= v(t), (2.107a)

dv(t)

dt
= −γ(t)v(t) +

√
2D(t)γ(t)Γ(t). (2.107b)

We then rewrite (2.107) into two first order SDEs in integral form as

Xt = Xt0 +

∫ t

t0

Ysds, (2.108a)

Yt = Yt0 −
∫ t

t0

γ(s)Ysds+

∫ t

t0

√
2D(s)γ(s)dWs. (2.108b)

Comparing (2.108) with the general SDE used to describe Brownian motion we get the following
values for the coefficients a and b

a(t, Yt) = −γ(t)Yt (2.109a)

b(t, Yt) =
√

2D(t)γ(t) (2.109b)

Inserting the values for the coefficients a and b in (2.109) into (2.86) we get the following iterative
scheme for UDSBM with the Euler-Maruyama approximation

Xn+1 = Xn + Yn∆t, (2.110a)

Yn+1 = Yn − γnYn∆t+
√

2Dnγn∆W, (2.110b)

where γn = γ(tn), Dn = D(tn) and tn = n∆t. The iterative scheme in (2.110) is equivalent to the
iterative scheme used in [25, pp. 8–9].

36 CHAPTER 2. THEORY

A similar procedure as the one introduced for the underdamped Langevin equation can be utilized
to compute the velocity autocorrelation function for UDSBM from the ODE given in (2.107b). We
will here use the result, and refer to Appendix C for the derivation. The velocity autocorrelation
function derived from (2.107b) is given as [see 25, p. 7]

〈v(t1)v(t2)〉 =
T0γ0τ0

m(γ0τ0 − 1)
(1 + t1/τ0)γ0τ0−2(1 + t2/τ0)−γ0τ0 . (2.111)

In the limit γ0τ0 � 1, the expression for the velocity autocorrelation function for UDSBM in (2.111)
can be compared with the velocity autocorrelation function for a granular gas in (2.77). We also note
that in the same limit, for t1 = t2 = t, (2.111) gives us a similar dependence on time as Haff’s law
in (2.40). However since the expressions for the velocity autocorrelation functions are not equal the
results obtained for the MSD with the Euler-Maruyama approximation for UDSBM can differ from
the MSD achieved from event driven simulations of a granular gas. Thus we will derive the MSD
expression obtained from the velocity autocorrelation function for UDSBM presented in (2.111).
Inserting (2.111) into (2.59) we obtain the following expression for the MSD

〈(x(t)− x0)2〉 = 2
T0γ0τ0

m(γ0τ0 − 1)

∫ t

0

dt1(1 + t1/τ0)γ0τ0−2

∫ t

t1

dt2(1 + t2/τ0)−γ0τ0 . (2.112)

By solving the integrals in (2.112) we obtain the following expression for the MSD

〈(x(t)− x0)2〉 =
2D0γ

2
0τ

2
0

(γ0τ0 − 1)2
[τ0 ln (1 + t/τ0) +

τ0
γ0τ0 − 1

(
(1 + t/τ0)−γ0τ0+1 − 1

)
], (2.113)

which again, as expected, is similar to the result for a granular gas in (2.79) in the limit γ0τ0 �
1. The expression for the MSD in (2.113) shows the same asymptotic behaviour in the limits as
proposed for a granular gas in (2.80), which makes it understandable that UDSBM can be used as an
approximation of a granular gas for an appropriate choice of parameters. From these expressions it
seems that we do not expect identical results for the MSD from the Euler-Maruyama approximation
of UDSBM and the simulation results of the event driven simulation of a granular gas, but similar
types of results exhibiting the same asymptotic behaviour for the timescales t� τ0 and t� τ0.

By capturing the dynamics of a granular gas, UDSBM serve as a practical and a simple way of
achieving theoretical results for a granular gas. Even though a force-free description of a granular
gas can be simulated with an event driven simulation, the addition of forces, which can be necessary
in order to achieve realistic systems, is not straightforward. For some forces, the idea of an event
driven simulation seem almost impossible, leaving us with the choice of solving Newton’s equations
of motion, which has proven to be difficult for many-particle systems. The addition of forces to
UDSBM is however possible and does not effect the Euler-Maruyama scheme more than by adding
an appropriate term. For a study of ultraslow scaled Brownian motion in a confined area see [28].

2.10 Ergodicity
Ergodicity is a theorem in statistical physics which states that the long term time average of a
physical quantity is equal to the ensemble average [see 15, 25, 26], as originally stated by Boltzmann
as the ergodic hypothesis [see 35]. For a system of particles to be ergodic, the following property of
the MSD must hold

〈δ2(∆)〉 = 〈(x(∆)− x0)2〉, (2.114)
where 〈δ2(∆)〉 is the time averaged MSD, and ∆ is the lag time. The MSD presented in this report
so far, is the ensemble MSD, and we will continue to only use MSD when discussing the ensemble
MSD only. The time averaged MSD of a time series is often given as a function of the lag time as

〈δ2(∆)〉 =
1

t−∆

∫ t−∆

0

dt′〈[(x(t′ + ∆)− x0)− (x(t′)− x0)]2〉, (2.115)

2.11. CENTRAL LIMIT THEOREM 37

where t is the total length of the time series. The expression in (2.115) is often used for experiments
and computer simulations, where the time average is achieved as a sum of square differences of the
positions at different times [see 26, pp. 24130–24131]. Note that compared to others, we have added
the position relative to the starting position to easier see the connection to the ensemble MSD, while
the two terms of x0 will cancel in order to get the more commonly used expression for the time
averaged MSD in [15, 25, 26]. As shown in [15, 25] the expression in (2.115) can be used to show
the non-ergodic behaviour of a granular gas, and the ergodic behaviour of a molecular gas.

In order to make it clear how it is possible to use (2.115) to show whether or not a system is
ergodic from the MSD, we must expand the integrand. The integrand in (2.115) can be rewritten
as

〈[(x(t′ + ∆)− x0)− (x(t′)− x0)]2〉 =〈(x(t′ + ∆)− x0)2〉+ 〈(x(t′)− x0)2〉
− 2〈(x(t′)− x0)(x(t′ + ∆)− x0)〉, (2.116)

where we recognize the first and second term as the MSD at the time t′ + ∆ and t′ respectively.
The last term can be derived in a similar fashion as the MSD in (2.58). We can thus write the third
term in (2.116) as

〈(x(t′ + ∆)− x0)(x(t′)− x0)〉 =

∫ t′

0

dt1

∫ t′+∆

0

dt2〈v(t1)v(t2)〉, (2.117)

which differs from (2.58) due to the limits of the integral over t2. By splitting the integral over t2
into two parts we can get the MSD at time t′ in addition to an additional term A. The expression
in (2.117) can thus be written as

〈(x(t′ + ∆)− x0)(x(t′)− x0)〉 = 〈(x(t′)− x0)2〉+

∫ t′

0

dt1

∫ t′+∆

t′
dt2〈v(t1)v(t2)〉, (2.118)

where we will call the second term of the right hand side of (2.118) A. We now achieve the following
expression for the time averaged MSD by inserting (2.118) into the integrand in (2.116) of the
expression in (2.115)

〈δ2(∆)〉 =
1

t−∆

∫ t−∆

0

dt′(〈(x(t′ + ∆)− x0)2〉 − 〈(x(t′)− x0)2〉 − 2A). (2.119)

In order to compute an analytical expression for the time averaged MSD from (2.119) we must
first compute A from an expression for the velocity autocorrelation function, before using analytical
expressions for the MSD at the times t′ + ∆ and t′.

2.11 Central limit theorem

In order to compute certain quantities, such as the MSD we need to compute averages over multiple
runs in order to achieve estimates for the mean behaviour of the particles in a gas. The average
value should approach the theoretical expectation value by taking the average value over enough
runs. This can be formalized by the Lindeberg-Lévy central limit theorem. Suppose that the average
is taken over a sequence of M random variables, Ai where i ∈ [1, . . . ,M]. These random variables
are drawn from the same distribution where µ is the mean and σ2 <∞ is the variance. Let µM be
given as the computed average value, also known as the sample average, given as

µM =
1

M

M∑
i=1

Ai. (2.120)

38 CHAPTER 2. THEORY

The Lindeberg-Lévy central limit theorem states that
√
M

σ
(µM − µ) ∼ N (0, 1), (2.121)

where σ is the generally unknown standard deviation of the true distribution [see 20, p. 357]. The
error, which is the difference between the computed mean value and the true mean, is thus given as

eM = µM − µ ∼ N (0,
σ2

M
), (2.122)

where eM is the error for the average value computed from M values. The expression in (2.122)
states that the standard deviation of the error is equal to σ/

√
M . By assuming that the standard

deviation of the true distribution is equal to the estimated standard deviation calculated from a set
of measured data points, we can use the result in (2.122) to compute an estimation of the error in
the computed average value.

Chapter 3

Numerical modelling

In the following section the numerical modelling used in this project in order to study particles
colliding in a three-dimensional box is presented in detail. Some of the numerical modelling have
already been introduced in chapter 2, but here we will present a detailed introduction. We will
use the majority of this chapter to discuss how the event driven simulation has been implemented
and what kind of setup is needed to conduct studies of many-particle systems. We will also include
how we have solved the SDEs modelling particles in a molecular and a granular gas using the
Euler-Maruyama method.

3.1 Overview

Most of the results in chapter 4 are based on an event driven simulation1 of molecular dynamics,
consisting of particles colliding in a cubic box with boundaries at x = 0, x = 1, y = 0, y = 1, z = 0
and z = 1, illustrated in Figure 2.4. An event driven simulation is a simulation method where the
idea is to increment time between successive events, which for the case of particles colliding in a
box are valid collisions. As we simplify the dynamics of a many-particle system of particles in a box
to instantaneous pairwise particle collisions we have a system suited for an event driven simulation
as we know how to handle the collisions based on a collision rule and how to update the system
between collisions as the particles have a constant velocity between collisions. The box is therefore
an L×L×L box, where L is the length of the system and the volume is equal to unity. By setting
L = 1 we make all other length parameters dimensionless, since they can be seen as a ratio of the
length relative to the length of the box. The particles are modelled as hard spheres in a three-
dimensional system. Each particle is thus described by eight parameters, a position xi = [xi, yi, zi],
a velocity vi = [vxi, vyi, vzi], a mass mi and a radius ri. The box of particles will contain a total of
N particles, colliding with a coefficient of restitution ξ, which is assumed to be constant for a given
system. Setting ξ = 1 will simulate a molecular gas, where the particle collisions are elastic. In
order to simulate a granular gas, we have to use 0 < ξ < 1, indicating that the particle collisions are
inelastic. The position of the particles will change as time is incremented by moving with constant
speed until the next collision in the system. When two particles collide, their velocity is updated
from the collision rule in Eqs. (2.10) and (2.11).

Due to the amount of constant parameters and the need to easily have access to the parameters of
all particles, this numerical project is a good area for object-oriented programming. The written code
contains three main classes, ParticleBox, Simulation and SDESolver. ParticleBox and Simulation is
used together to conduct the event driven simulation, while SDESolver is used to numerically solve

1see https://algs4.cs.princeton.edu/61event/ for an introduction on how to use event driven simulation to
study particle collisions.

39

https://algs4.cs.princeton.edu/61event/

40 CHAPTER 3. NUMERICAL MODELLING

the underdamped Langevin equation and UDSBM with the Euler-Maruyama method. ParticleBox
has the variables, arrays and functionality for the system of particles, and Simulation is used to
perform the event driven simulation. As mentioned in the preface, all the code used to achieve the
results in this thesis can be found on github2. From an initial setup for positions, velocities, mass
and radius for all particles, the system is incremented in time by moving from event to event. The
parameters of the particles are saved as arrays where the index can be used to identify particles. In
that manner one can easily identify and update e.g. the velocity or the position of a given particle.
The indexing of particles is not explicitly important, but we have to use it to update the velocity
of the correct particles during a collision and extract the correct particles when computing different
quantities. Working in the high-level programming language Python, one should whenever possible
avoid for-loops by doing operations on the entire array, known as vector operations. In Python this
can be achieved by using wrappers to compiled languages provided by third party modules such as
NumPy and SciPy.

In the setup we have used there are four different types of objects that a particle can collide with.
These four consist of another particle, a horizontal wall and a vertical wall and a top/bottom wall.
Remember that we use vertical walls to represent the boundaries at x = 0 and x = 1, horizontal
walls to represent the boundaries at y = 0 and y = 1, and the top/bottom wall to represent the
boundaries at z = 0 and z = 1. The common result of all types of collisions is that the particle(s)
involved get a new velocity based on the difference in velocity and mass. In order to model a system
of particles colliding in a confined area we need to implement boundary conditions, determining how
the particles behave when they interact with the walls. For this thesis we have chosen to implement
Reflecting Boundary Conditions (RBC) and Periodic Boundary Conditions (PBC), where the former
is a way to implement hard walls and the latter is used to neglect boundary effects. With two
different boundary conditions we can choose the most suitable one for different applications. For
RBC the particles will collide with the walls. For the case of PBC, we will utilize the wall collisions
as a measure to implement a periodic system where particles leaving on one side reappear on the
opposite side. The area of boundary conditions will be discussed in greater detail later in section 3.4.
The implementation and use of force-free collisions gives the project a similar structure as as the
simple algorithm presented in [5, pp. 135–189] and in [11, pp. 269–282].

It is possible to conduct simulation of particles in a two-dimensional square box by setting all
zi equal to each other and all vzi equal to zero. A particle will never get a vzi 6= 0 as a result
of the collision rule in Eqs. (2.10) and (2.11). Thus the particles will be confined to a area with
only vertical and horizontal walls as they never gain a velocity towards the top/bottom walls. In
this case the particles are represented as hard disks. Two-dimensional simulations will be used
for visualization and verification, while the main results are achieved through simulations in three
dimensions. The two-dimensional simulations will be referred to as pseudo two-dimensional since
they use the code for the three-dimensional simulation, but due to certain simplifications they are
correct for two-dimensional systems as well. Three-dimensional systems have been preferred since
the derivation of some of the principles given in the theory are known to cause some problems in two
dimensions, such as the convergence of the integral of the velocity autocorrelation function [see 11,
p. 162]. The use of three-dimensional systems have also been preferred in order to compare results
with earlier studies of the MSD in both granular and molecular gases [see 15, 25, 28].

3.2 Event driven simulation

An event driven simulation is a systematic approach of letting time move forward until the next
event multiple times until a given stopping criterion. A flow chart representation of an event driven
simulation is given in Figure 3.1, where an event queue is used to store all future events in the
system. We will conduct an event driven simulation of a force-free many-particle system where

2https://github.com/alekgjer/master_thesis

https://github.com/alekgjer/master_thesis

3.2. EVENT DRIVEN SIMULATION 41

the particles interact through instantaneous pairwise collisions. We will thus need to create some
efficient procedures to perform the different steps in the flow chart in Figure 3.1. The main steps of
the simulation can thus be described by the following steps

• Initialization

– Give each particle parameter values for mass, radius, initial position and initial velocity.
– Iterate through each particle, calculate if and when it will collide with another object

(wall or particle) and store all the collision times.
– Identify the earliest collision and start the simulation loop.

• Loop

– Move all particles forward in time with constant velocity until the earliest collision.
– For the particle(s) involved in the collision, calculate new velocities from the collision

rule.
– For the particle(s) involved in the collision, calculate if and when they will collide with

another object and store all the collision times.
– Identify the new earliest collision.
– Check if the collision is still valid. A valid collision is a collision which will occur since

the involved particles have not been involved in other collisions since the collision was
computed. As soon as a particle collides with an object, all of the previously computed
collisions for that particle become invalid since the particle will not follow the same
trajectory as before the collision. There will at all times exist a high number of invalid
collisions since a collision is not removed before the simulation has checked if the collision
is valid in this step.

– If the collision is rejected, discard it and identify the new earliest. Repeat until a valid
collision has been found.

– Repeat the loop until the stopping criterion is reached.

The alternative to an event driven simulation is a time driven simulation. A time driven simulation
follows the same main procedure as an event driven simulation, but time is incremented by a fixed
timestep value instead of moving time forward between events. In a time driven simulation one must
identify the events occurring before the next timestep and handle the events in the correct order. One
of the reasons why the event driven simulation has been chosen above the time driven simulation,
is the possibility of many collisions in a small amount of time which can make it computationally
expensive to reach the end of the timestep3. Other situations where a time driven simulation can be
disadvantageous are cases where the time until the next collision are much higher than the timestep
value, which often is the case for long time scales of inelastic systems. The systematic approach for
an event driven simulation is a better fit for the way we have chosen to implement the collisions.
By only updating the positions at the time where something has occurred, we reduce the amount of
times we have to compute new positions and update the simulation time.

An important thing to note is that by choosing an event driven simulation, one has to add
functionality to compute quantities, e.g. the MSD, at times where there are no collisions and with
a given resolution in time. There should ideally be no difference between an event driven and a
time driven simulation. An additional remark which needs to be made is that the time scale of the
simulation will depend on the speed of particles. For an event driven simulation it is thus possible
to change the speed of the particles without adjusting some of the other parameters.

3Here we mean a time driven simulation where one for instance has decided to simulate for M timesteps. If an
inelatic collapse for instance occurs during the last timestep the simulation will not be completed. Whereas for an
event driven simulation where we want to simulate until the average number of collisions per particle is equal to a
given threshold, that criterion can be reached even if inelastic collapse occurs, as long as the simulation do not break
down.

42 CHAPTER 3. NUMERICAL MODELLING

Initialize parameters

Create event queue

Simulation loop

Increment time to
next event time

Initialize system

 Handle event

 Update event queue

Identify the next valid
event from the event
queue

if stopping
criterion not
reached

if stopping
criterion
reached

End loop

Figure 3.1: Simplified illustration of the flow chart used in an event driven simulation where an event
queue has been used to store future events.

3.3. PRIORITY QUEUE 43

3.2.1 Output

In order to verify the implementation of the simulation we need to compute data from the simulations.
We have two possible options depending on the quantity of interest. E.g. if we are interested in the
speeds of an equilibrium state to see if we get the Maxwell-Boltzmann distribution from section 2.4,
we can compute the speed of the particles after the simulation is done. If we are interested in
a quantity as a function of time, e.g. the MSD, we must perform and save an output from the
simulation where the quantity of interest is computed. It is also convenient to update certain
parameters at each output in order to have a set of simulation statistics which can be helpful to
verify that the implemented simulation works in the intended manner. The choice of the output
timestep, ∆t, depends on what and how often we want to compute a quantity. We will now focus on
the computation of the MSD of a granular gas, and how we inspired by the very different behaviour
of the MSD on short and long times have created an alternative to compute a quantity with a
constant resolution in time.

We expect to see an MSD scaling logarithmically with time for a granular gas as derived in
chapter 2, but we do not want to compute the MSD with a unnecessary high rate as we need to
capture the ballistic period. As a natural result of the dissipative collisions the number of collisions
per time will decrease as a function of time, for which a high output rate can be more time consuming
than the actual event driven simulation for long times. In order to achieve the right asymptotic
behaviour of the MSD for a granular gas in (2.80) for both t � τ0 and t � τ0 we would need to
choose a relatively small value for the output timestep which are used to compute quantities with
a given resolution in time. The following procedure has thus been implemented in order to achieve
the correct asymptotic behaviour without computing similar values for the MSD many times. We
create a set of values for when we want to compute the MSD, on a logarithmic scale in time. A set
of logarithmically spaced times will produce a set of points where the time difference between two
times increases as time increases, leading to many points with a high resolution for low times and
fewer points for long time scales. This procedure exploits the strength of the event driven simulation
where for long times the number of collisions per time decreases, and we would thus get a high
number of values for the MSD which would be similar. The choice of logarithmically spaced times
makes it possible to present the results with evenly distributed points on a logarithmic plot, which
is preferred to display both the short and the long asymptotic behaviour of the MSD in chapter 4.

3.3 Priority queue

The approach described for the event driven simulation in section 3.2 is used to calculate all possible
collisions and store the collision times. To efficiently make use of all collision times a data structure
called a priority queue has been utilized to store the collision information. A priority queue is a
structure which can efficiently add elements and return the element with the highest priority in the
structure. We can thus store all collisions in a priority queue, where their priority is given by their
collision time. For an event driven simulation, we use what is called a min-priority queue, where
lower times are given higher priorities. The earliest collision will thus obtain the highest priority,
which can easily be retrieved by performing the operation called extract-min. Extract-min consists of
extracting and returning the earliest element in the min-priority queue. In the process, extract-min
also removes the element from the queue and maintains the min-priority structure in the updated
queue. The time scaling of the operations of adding an element to the queue and extract-min are
given by the upper limit O(log nq), where nq is the number of elements in the queue. The main
steps of the simulation in an event driven simulation is thus performed by calling extract-min to
identify the next valid collision and then adding the new possible collisions to the queue [see 36,
pp. 162–164]. For this project, the library heapq4 in Python has been used as a priority queue.

4see https://docs.python.org/2/library/heapq for the documentation.

https://docs.python.org/2/library/heapq

44 CHAPTER 3. NUMERICAL MODELLING

0 2 4 6 8 10

t

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5
lo

g
(n

q
)

Molecular gas PBC

Molecular gas RBC

Granular gas PBC

Granular gas RBC

Figure 3.2: Plot of the natural logarithm of the number of elements in the priority queue, nq, as a function
of time, t, for simulations of a molecular gas and a granular gas with ξ = 0.8 for the same system of
N = 1000 particles with a radius r = 0.025L. The plot is used as an example to illustrate the scaling of
nq for a molecular gas with PBC (blue line), a molecular gas with RBC (red line), a granular gas with
PBC (purple dashed line) and a granular gas with RBC (green dashed line), and the results for the different
simulations are given as the average of 4 different runs.

The number of future collisions in the priority queue quickly grows as a function of time as
illustrated for a molecular gas and a granular in Figure 3.2. In addition, the number of collisions in
the priority queue is naturally a function of the packing fraction of the system. The time scaling of
the operations in a priority queue is essential to keep the simulation possible in a reasonable amount
of time. This is illustrated for both a molecular gas and a granular gas in Figure 3.2, where the
number of possible collisions nq � N at all times and nq increases as a function of time. In this
project all possible collisions are added to the priority queue, even though only the early ones are
likely to occur. The later ones are added to account for the situations where the early collisions are
not valid due to interference by neighbouring particles. In this manner, the priority queue is often
used to discard collisions, but due to the time scaling of extract-min, the priority queue can handle
a high number of collisions without becoming too slow.

There are several modifications that can be implemented in order to keep nq under some control.
The most obvious is that if we know how long we want to do a simulation, it is possible to neglect
collisions occurring after the maximum time limit, as can be seen as the small drop at the end in
Figure 3.2. For a stopping criterion based on a maximum time limit this is a simple and natural
improvement. The use of a maximum time limit is especially helpful for simulations of granular
gases where particles with low energy use a long time to move across the box and collide with the
particles furthest away. We have used a cutoff time given as 1.01 times the maximum time limit.
How quickly the number of elements in the queue scale will in addition depend on the implemented
boundary conditions, which will be made clear in section 3.4. We also note that from comparing
a molecular gas and a granular gas in Figure 3.2 it is clear that the dissipation of energy leads to
fewer possible future collisions before the cutoff time.

3.4 Boundary conditions

An important topic in the area of numerical simulations, which we have not yet discussed in great
detail, is boundary conditions. In order to conduct a simulation of particles colliding in a finite
region, given as a three dimensional cubic box, we need to implement a type of boundary conditions

3.4. BOUNDARY CONDITIONS 45

to keep the particles from escaping the box. The choice of boundary conditions will also determine
and impact the dynamics of the particles. Boundary conditions often sound like a small detail, but
in general it has a huge impact in different applications, e.g. computational fluid dynamics [see 37].
Kinetic theory is often derived without considering boundary conditions, i.e. for large systems [see
11, p. 10]. In order for the simulations to thus capture the correct dynamics we must be certain
that the particle data we use coincide with the previous statement. This issue is addressed in more
detail in section 3.7. One should however note that this is often the idealization used for theoretical
predictions, which numerical simulations cannot match as a result of restrictions occurring in the
modelling.

For particles colliding in a three-dimensional box without any external forces we have two nat-
ural possible options, RBC and PBC. Both of these options provide some advantages and disad-
vantages. The illustration of the boundary conditions and the method of applying them is given
for a two-dimensional system, whereas they are implemented for a three-dimensional system. They
will however work for the pseudo two-dimensional simulation as well, but are not implemented in
the most efficient manner. The non-optimized implementation is a result of, as we will later see,
the needed number of copies of the system in order to correctly use PBC, which depends on the
dimension of the system. In short RBC is implemented as hard walls which the particles will collide
with, while for PBC a particle leaving the system of one side will re-enter on the opposite side. The
collisions with the walls are added to the priority queue together with the particle-particle collisions
in order to get the next valid collision at all times. Resulting from this implementation we add all
future collisions for the particle(s) involved in a collision after each valid collision.

Before we go into RBC and PBC with further details we would like to present some of the
quantities which will depend greatly on the boundary conditions. These quantities have in common
that they are related to the movement of the particles, which will depend on the boundary conditions.
An example of such a quantity is the MSD, which we want to use to verify that the numerically
obtained MSD of a system of particles follow the theory for both molecular and granular gases as
given in chapter 2. Periodic boundaries can give an increasing MSD for all times, while reflecting
boundaries will limit the time scale of the computations. The latter is a result of the situations
where the red particles in Figure 1.1a start to approach the edges of the system. For such situations
the displacement of the particles will not continue to show the same trend as earlier, due to particles
bouncing off the walls. The time estimate for these situations to occur is based on the speed of
the particles and the particle density, and can not be estimated in a reliable manner for a general
system. In practice, we could achieve a time estimate by plotting the MSD and identifying when
the displacement stops increasing. One should however note that the real time estimate is earlier.
Due to the limiting area, the particles can not escape, making it plausible that reflecting boundaries
affect the behaviour of the system even before the particles in the middle have reached the walls.

Another topic which was briefly introduced in the section about Haff’s law in section 2.6 is
that in a granular system for long time scales clusters will form, for which the system is no longer
in the homogeneous cooling state. On these time scales the time evolution of the MSD is not
valid due to the granular temperature not following Haff’s law. However is it important to note that
during this project we have seen that the change from two-dimensional to three-dimensional systems
has greatly increased the possible time scale of the simulations. This is again a manifestation of
the increase of possible trajectories in three dimensions compared to two dimensions. For similar
densities the amount of collisions will be much higher in two dimensions, making it plausible that
a two-dimensional system leaves the homogeneous cooling state earlier than a three-dimensional
system. The increased collision frequency near the wall from RBC will additionally make clusters
appear close to the walls, earlier than what would be most likely the case for PBC [see 5, pp. 169–
173]. For the time scale of the simulations in chapter 4 we have observed cluster formation in two
dimensions, both for RBC and PBC while for three-dimensional systems with PBC, which is needed
for correct computation of the MSD, we have not seen an strong indication that clusters have formed.
Cluster formation is one of the topics included as possible further topics for a numerical study of

46 CHAPTER 3. NUMERICAL MODELLING

Figure 3.3: Illustration of a particle i in a system at two times t1 > t0 with reflecting boundaries. The
figure uses the same notation as Figure 2.2.

granular gas dynamics in chapter 5.

3.4.1 Reflecting boundary conditions

The idea of RBC is illustrated in Figure 3.3. For the system of particles in a box RBC can physically
be interpreted as hard walls, for which the particles will bounce off. This might be a reasonable
approach for simulations where the spread of the particles are limited to a finite region, e.g. looking
at air particles in a room. In regards of diffusion properties, the MSD has been shown to vary with
system size for PBC in two dimensions [see 24, pp. 141–142]. As a result of such an investigation
of the MSD and for simplicity, RBC was originally considered for this project. RBC was utilized
for the simulations of a two-dimensional system used in the Specialization Project [1], and was
originally utilized for the three-dimensional systems as well. However since we are in this project
more interested in the long term behaviour of the MSD the choice of RBC did not provide satisfactory
results. This is a natural result given how RBC limits the computations of MSD. The collision rule
for a particle colliding with a wall was derived earlier in section 2.1, where as shown in Figure 3.3
the particle obtains a new velocity following the interaction with the boundary.

3.4.2 Periodic boundary conditions

As an effort to reduce how RBC affected the computations of the MSD, PBC was implemented. The
idea of PBC is illustrated in Figure 3.4, where a particle will re-enter the system on the opposite side
of the box when the center of the particle reaches a "wall". Here we have used "wall" to emphasize
there does not exist a hard wall, but we still use the walls as a collision partner in order to change
the position in the correct manner. Thus the wall collisions are still used in the priority queue as
earlier, but the collision is now only used to update the position and does not change the velocity
of the particle as indicated in Figure 3.4.

PBC is commonly used to neglect boundary effects by copying the system in all directions and
thus making an pseudo-infinite system. Then the dynamics of the system is also copied in all
directions, but with different and new positions. We can then find out how a system of particles
behaves surrounded by identical systems. If such periodicity is reasonable to assume, PBC often
successfully models a system for which boundary effects can be neglected. In reality we still only
have a system with boundaries as introduced in the overview. To illustrate PBC we copy the entire
system in each direction. Then we have a pseudo-infinite system where the position of particle i, x′i,
is given by

x′i = xi + exkL+ eylL+ ezmL (3.1)

3.4. BOUNDARY CONDITIONS 47

Figure 3.4: Illustration of a particle i in a system at two times t1 > t0 with periodic boundary conditions.
When the center of the particle crosses a wall, the particle exits the system and re-enters on the opposite
side. For the implementation this counts as a collision, but the velocity of the particle does not change.

where ex, ey and ez are the unit vectors along the Cartesian coordinate axes, xi is the position
of the particle in the original system, k, l,m ∈ Z and L is the length of the box, equal to unity in
the implementation. From a unique set of values for k, l,m we get the offset of the positions of the
particles in the copied system. Note that all copies of the particles will have the same velocity as
the actual particle. While PBC usually are conceptually easy to understand, it is not always trivial
how we can implement them efficiently. The difficulty for us is that we have the original system with
boundaries and we do not want to store the data of the copied systems. The latter is a reasonable
desire as we can often implement PBC without explicitly using the copied systems for anything other
than to explain the idea of PBC.

In order for us to implement PBC we need to remember that we add all future collisions for the
particle(s) involved in a collision to the priority queue, which are the next collision with a horizontal,
vertical and top/bottom wall and the future collisions with all other particles. Note that after a
collision with a "wall", the position of the particle gets updated before we compute future collision.
As it turns out we only need to care about the closest neighbouring systems where k, l,m ∈ [−1, 0, 1]
as long as the length of the system is larger than the diameter of the particles. The latter is true
as we update the priority queue each time a particle crosses a boundary [see 5, pp. 170–173]. To
illustrate why only the closest neighbouring systems are enough let us look at an example. Suppose a
three-dimensional equivalent system as given in Figure 3.5, where it turns out that the next particle
particle i collides with will be located in the copied system with k, l,m = [2, 0, 0] at the time of
the collision and vxi > 0. The collision sequence for particle i will then be two collisions with the
"wall" given by x = 1 before colliding with the other particle. Even though particle i is in the
original system, the actual position of particle i is in the correct system. The particle collision are
not of interest before they are in the same or neighbouring system as we update the priority queue
during the collisions with the "wall". For this simple example we did not actually need to use the
copied system for anything. There exists however a type of collisions that occurs due to the periodic
boundaries and needs to use the data of the copied systems, that we will discuss after we elaborate
how the addition of the system copies affects the numerical implementation.

For a two-dimensional system we will then need 9 copies5 of the original system as illustrated in
Figure 3.5. Even though we only have data for the original system given in bold in Figure 3.5, we
need the idea of 8 neighbouring systems to implement PBC correctly. For three-dimensional systems
this idea gives 27 copies of the original box, which have been numbered from top left to bottom right
as box 0, 1, . . . , 25, 26. The box number is then later used to get the correct offset given by unique
values for k, l,m. Note that from the numbering scheme the original system is then given as box 13.

5we will include the original system as a copy since it is included in the implementation with k, l,m = 0, 0, 0 due
to simplicity

48 CHAPTER 3. NUMERICAL MODELLING

Figure 3.5: Method of applying PBC in two dimensions. We take copies of the actual system, presented
in bold, and place one copy in each direction. The copies of the particles have different positions, but the
same velocities.

3.4. BOUNDARY CONDITIONS 49

Figure 3.6: Illustration of two particles in a system with the copied system to the right. Before the center
of particle i crosses the wall the particle i will collide with the copy of particle j.

We have modelled that all particles are at all times in the original system with boundaries given
by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1. Even though it might seem that when a particle
exits the system on one side, it re-enters on the other side, it is actually a copy of the particle in
a neighbouring system that enters the original system. The particle leaving the system will not
actually be confined to the original system any longer. By saving the number of times a particle
crosses over to neighbouring systems we will be able to use the actual positions of all particles at later
times, and not the positions in the original system. This is essential in getting correct computations
of e.g. the MSD, which then can increase for all times. Note that this is a direct result of that
the actual positions of the particles are given for the pseudo-infinite system. Another explanation
of why we only care about the nearest neighbouring systems can be deduced from the following.
When we use the wall collisions as events, we update the priority queue when a particle position is
updated. For the new position it is not possible to collide with other neighbouring systems further
away before crossing a wall again, which again updates the position and then add new entries to the
priority queue. As long as we use the "wall" collision in this manner we only have to use the nearest
neighbouring systems.

As illustrated in Figure 3.6, where particle i will collide with the copy of particle j in the
neighbouring system to the right, we see a collision between a particle in the original system and a
particle in one of the copied systems. If a particle collides with a particle from another box before
the center of the particle crosses a "wall", we have to use the offset of the copied system to pretend
like the particle in the original system is located in the neighbouring system for ∆xij to be correct.
This is needed to correctly update the particle velocities, but we do not want to move the particle
since it is not necessary. The copies of the original system are only used to compute if the particles
in box 13 will collide with a copy before reaching the "walls". Their data are not stored since we
are only simulating N particles and not 27N particles6. The collision in Figure 3.6 must then be
correctly computed based on the data of particle i and particle j. We must then use the offset of
the copied system to the right to create a temporary position for the copy of particle j. We then
resolve the collision and update the velocity of both particles. Thus the particles will get the correct
new velocities without changing the position of any of them. With this implementation we can keep
all particles within the boundaries of the original system at all times, while using the number of
crossings to get the correct actual positions of all particles.

6This concept would be self-increasing and impossible to implement. If we wanted to look at 27N particles we
would need to include the copies of each of those systems that would give even more particles and so on. One option
is that we could use the 27 copies to simulate and only use the results of the particles in the original system, which
is equivalent to the idea proposed for RBC by only using the data of the red particles in Figure 1.1a.

50 CHAPTER 3. NUMERICAL MODELLING

An important note to make is that the number of times we achieve a collision between particles
in different boxes depends on the packing fraction. For low packing fractions we have noticed in
the simulations that PBC are mostly used with the addition of collisions with "walls". For higher
densities the case of collisions between particles in different boxes occur more frequently, especially
in a granular gas where we can get clusters colliding from two separate sides of the system.

The main difference of PBC compared to RBC can be summarized with the following points.

• The use of "walls" to update the position by adding or subtracting the length of the box along
the correct axis instead of bouncing off them.

• We need to know when the center of the particle cross the "walls" and not when the edge of
the particles is in contact with the walls in order to compute the time of the interaction.

• We need to take 27 copies of the system and add possible collisions with particles from the
neighbouring systems for the original particles in addition to the collisions between original
particles. As a result we will get several more entries in the priority queue, and we must handle
the collision between particles in different boxes as illustrated in Figure 3.6.

• A collision with a "wall" does not lead to a new velocity. Thus the particles can only get a
new velocity and a new speed from a collision with another particle.

• We must save the number of crossings to get correct particle positions in the pseudo-infinite
system.

3.5 Collisions
In order to simulate particles colliding in a three-dimensional box, some assumptions have been
made. The possibility of simultaneous collisions between more than two objects has been ignored
and collisions are assumed to happen instantaneously. As a result of these assumptions one can
study a many-particle system of particles colliding in a box using the event driven simulation in
section 3.2. In order to do that we need to choose a way to represent a collision numerically, as there
are many properties to consider for a collision.

Intuitively a collision requires two properties, the time until the collision and how the velocities
of the colliding objects change as a result of the collision. The equations stating how the velocities
of colliding particles are updated are given in the collision rule in Eqs. (2.10) and (2.11). The time
until a particle collides with another particle is given in (2.20), and the time until a particle collides
with a vertical, horizontal and top/bottom wall is given in (2.21), (2.23) and (2.25) respectively. As
we have modelled the walls as particles with infinite mass the collision rule for the collisions between
the walls and particles are a simplified version of the general collision rule given in Eqs. (2.22),
(2.24) and (2.26). From these equations we can compute the information needed in order to add the
collisions to the priority queue.

In this thesis the following way to represent a collision numerically as a tuple has been used

(collision time, colliding objects, collision count colliding objects,box colliding objects), (3.2)

where colliding objects ∈ [particle number, ’hw’, ’vw’, ’tbw’], where hw, vw and tbw is short for
horizontal wall, vertical wall and top/bottom wall respectively, and the collision count is the number
of collisions each particle has been involved in. By implementing a collision as a tuple one can utilize
the properties of a priority queue based on the collision time, while using the additional information
to compute new velocities for the involved particles and to validate the collision. The box of the
colliding objects are used to handle PBC in situations as illustrated in Figure 3.6 as discussed earlier.
The collision is validated by comparing the collision count at the event time with the collision count
at the event computation. If either particle has collided with something else since the collision was

3.6. TC MODEL 51

computed, the collision is non-valid, which is easily identified from the collision count. For this
project we have chosen the validation process to discard non-valid collisions instead of deleting them
from the queue at the moment when they are not valid due to the particle being part of a valid
collision. Even though one easily can access the element with the highest priority, deleting random
elements from a priority queue is not possible to do in an equally elegant manner. The slow increase
in run time for larger input to logarithmic operations can for some cases be preferred over adding
non-trivial functionality. One should note however that there exist other data structures which
could efficiently remove objects, which should be considered for such an approach. This topic is also
discussed as one possible improvement to the implemented event driven simulation in chapter 5.

Now we want to discuss how the collision rules and the time until the collisions differ from RBC to
PBC for the interactions with the wall, and how we have implemented the particle-particle collisions
efficiently, as the time until a particle collides with another particle is the most time consuming
part of the event driven simulation. We emphasize that the simplified use of the computation of the
collision times and the collision rule is possible as the objects are not deformed during a collision,
and objects bounce off each other instantaneously at the moment of impact.

For simulations using PBC we will use the boundaries as "walls", but they are still counted as
collisions in the simulations, even though the velocity of the particle crossing a boundary does not
change as illustrated in Figure 3.4. This is necessary in the implementation in order to validate
future collisions. For PBC we need to know when the center crosses a "wall" and not when the edge
of the particle is in contact with a wall. This can however simply be computed from the already
known results in Eqs. (2.21), (2.23) and (2.25) by inserting ri = 0. When the particle center crosses
the wall the position along the correct axis is adjusted by adding or subtracting the L = 1 along the
correct axis. Here have used the correct axis to denote the axis of the boundary that the particle
interacts with. E.g., when the center of the particle crosses the vertical wall given by x = 1 we
subtract L = 1 from the x-position of the particle. In addition, as we do not update the velocities
of the particle, and update the number of crossings we can use PBC to simulate pseudo-infinite
systems.

As discussed in section 3.4, during this project we deemed that PBC is better suited for this
project than RBC in the study of the MSD. We have however used RBC for some visualization
purposes and to compute speed distributions. For the boundaries to affect the system as little as
possible we have used elastic walls in the implementation of RBC, where ξ = 1 in the collision rule
with the wall regardless of the ξ used in the system. This is the same treatment of walls as used in
[5, pp. 151–152]. The effect of different boundary conditions and why we have chosen elastic walls is
clear from the results for the verification of Haff’s law in chapter 4. However the expressions for the
collision rule between a particle and a wall have been used to experiment with both inelastic walls,
elastic walls and even heated walls which was modelled by ξ > 1.

Determining which particles will collide and when they will collide is the most time consuming
process in the event driven simulation. This is a result of the many possible collision partners of
each particle, and the fact that we must compute when and with whom the particles involved in a
collision will collide with again whenever a collision has occurred between two particles. Numerically
this is done by computing (2.20). See Appendix D for the code used and an explanation of how this
have been solved by using a variety of elegant optimizations possible to use in Python.

3.6 TC model

Inelastic collapse can be avoided by introducing the so-called TC model, where one introduces a
"duration of contact" for a collision, tc. The model changes the system, such that if a particle is
involved in another collision during the duration of contact from the previous collision, the new
collision occurs as if ξ = 1 [see 18]. Setting the duration of contact tc = 0 is equivalent to not
using the TC model. The value of tc must be set by looking the average time between collisions

52 CHAPTER 3. NUMERICAL MODELLING

and choosing a lower value to give a system where we rarely have the situation where two collisions
almost occur at the same time. The TC model can be necessary in a inelastic system due to fact
that particles trapped in a small region will be part of many collisions in a small amount of time
while dissipating energy. For RBC, the TC model is even more relevant than for PBC due to
situations where particles are pushed towards and away from the wall at the same time. These
situations occur naturally as for hard reflecting walls the particles will bounce off the wall. If there
are particles moving towards the same wall behind the particles that should move away from the wall
one-dimensional chains of particles can start forming, giving us a similar situation as in Figure 2.6,
but with a wall as the particle to the right. Applying the TC model offers no change for a molecular
gas since in that case ξ = 1 to begin with.

For two-dimensional simulations with RBC we found that values for tc ≤ 10−3 seemed to stop
inelastic collapse from occurring. In a three-dimensional system with either boundary conditions
we have not experienced any problems which could indicate that inelastic collapse occurs for all
tested values for ξ ∈ [0.3, 1]. Due to no inelastic collapse, the TC model has not been used for the
results. But due to originally simulating two-dimensional systems and the pseudo two-dimensional
simulations we have chosen to include it in the report.

One interesting thing to note is how inelastic collapse manifests itself in a simulation. As intro-
duced in chapter 2 inelastic collapse consist of an infinite number of collisions in a finite time. The
inelastic collapse breaks down the simulation due to the priority queue, where there are collisions
so close together that the < operation breaks down and it is not possible to identify the earliest
collision. Here we experience some of the disadvantages of using the tuple in (3.2) to represent a
collision. The default behaviour of heapq in Python is to push new collisions to the priority queue.
When the collision occur almost at the same time7, the behaviour of heapq is to assign a priority
for the new collision based on the next quantity in the tuple. I.e. we assign a priority for the new
element based on the particle index, the collision count or the box of the colliding objects, which
sometimes gives us a complete breakdown when e.g. comparing a particle index with ’hw’, ’vw’ or
’tbw’. At this point we cannot guarantee that the simulation performs correctly as it is random
which collision is considered to be the earliest. Another issue is that we update the particle data by
using that the particle have a constant velocity between collisions. When the time difference between
updates is very small we most likely do not update the particle data correctly and the simulation
cannot be used to compute quantities in a reliable manner.

3.7 Statistics

In order to best achieve general trends for the results in chapter 4, the results have been averaged
over multiple realizations of a system whenever possible. A realization is here used as a unique
simulation of a system. A given system will develop differently for different initial conditions and we
will thus use different initial conditions to create unique systems. The number of realizations will
thus also be referred to as the number of runs used in the simulations. The use of averaged values
is essential in trying to get an accurate image of how different quantities, e.g. speeds, energies and
MSD evolve in time for a given system. This is also the case for equilibrium systems since they
do not always give the exact equilibrium properties, but the perturbations disappear when we take
the average over multiple different runs. Mean results, which are given as the development of an
ensemble of particles, denoted by 〈. . . 〉, can in general need multiple runs in order to show the trends
proposed by theory.

For the case of a Brownian particle, we need to simulate the system and compute the MSD for
the Brownian particle several times in order to achieve the results proposed by theory. This can be a

7Almost at the same time is used here for the situations where the difference in time for two collisions is less or
equal to the machine epsilon. Machine epsilon for float64, the default number representation used by NumPy arrays,
is ∼ 10−16.

3.8. INITIAL VALUES 53

computationally heavy task, knowing that one often could need a high number of realizations before
the mean behaviour converges towards the theoretical predictions. However, as we have only studied
Brownian motion in systems of identical particles, we have exploited that the desired behaviour are
present for several particles8. We can thus compute the mean value over a set of particles, also known
as an ensemble average, which reduces the amount of runs needed for the results to converge. We
can compute the average of different ensemble averages in order to see if the results have converged
based on the central limit theorem given in section 2.11, where we assume that each ensemble average
are given from the same distribution. As PBC are used to simulate a pseudo-infinte system we can
use the data of all the particles, whereas if we used RBC for the MSD we could not use the data
of the particles starting close to the boundaries. For the results in chapter 4 we have used RBC to
compute speed distributions, as the speed of the particles are not affected by the size of the system,
where we can use the data of all the particles as well. As a result we have in the results used the
ensemble average of all the particles in the system.

To better illustrate the need to use multiple runs let us look at the case when we compute the
MSD. The idea described above is needed due the very different trajectories obtained for the different
particles in a systems. All particles in the system will obtain a unique trajectory, giving a unique
square displacement based on their initial position. We then compute the MSD as the ensemble
average of the square displacements of all the particles. The MSD computed here should ideally be
equal to the theoretical predictions, as would likely be the case for a system of infinite particles. As
a result of the finite number of particles used in a simulation a perfect match with the theory is
unlikely. We thus have two options. The first one is to use a high number of particles, restricted only
by memory and the time available for the simulation. The second option, which we have utilized
for this thesis, is to take the average of several simulations where we have used a reasonable number
of particles. For the latter option how many runs and the number of particles are usually linked
strongly in order to obtain satisfactory results, and is a result of trial and error. We thus, instead of
computing the MSD of one system of particles, compute the average MSD from different runs. The
results can then be presented as the mean MSD with an error estimate based on the central limit
theorem (presented in section 2.11), where we assume that all computed MSD in the same point in
time are drawn from the same distribution.

For the results in [1] we performed numerical studies of the MSD for molecular gas for both a
Brownian particle equal to and different from the other particles. For the case of equal particles we
used the average of 50 runs, whereas we used the average of 300−400 runs for the case of a Brownian
particle different from the other particles, modelled by a bigger radius and/or mass. Even though
we used many runs for the case of a different Brownian particle, the MSD for long times had not
converged completely. Note that as we used two-dimensional simulations with RBC we could only
use the data of the particles starting close to the center of the box for the case of equal particles. For
the results presented in this thesis we have used the data of all the particles in the system, reducing
the number of runs needed for the average value to converge based on the standard deviation of the
central limit theorem.

3.8 Initial values
In order to achieve reliable results we have to choose suitable initial conditions. The mass and speed
of the particles can be chosen freely, but will determine the energy and the time scale of the system.
The initial positions have been chosen to be uniformly distributed in the box, while upholding the
criterion that no particle can be overlapping with another particle or with any of the boundaries.
The initial velocity vector for particle i has been chosen to be

vi = [v0 sin θ cosφ, v0 sin θ sinφ, v0 cos θ], (3.3)
8As all particles are equal we imagine that all particles are a Brownian particle of interest, and we thus use the

data of all the particles when looking at the behaviour of e.g. the MSD.

54 CHAPTER 3. NUMERICAL MODELLING

where v0 is the initial speed, φ is a random uniformly distributed angle ∈ [0, 2π] and θ is another
random uniformly distributed angle ∈ [0, π]. The procedure in (3.3) generates a Cartesian velocity
vector from spherical coordinates with a given length and random angles. For generating initial
values for a two-dimensional system we have θ = π/2, which generates Cartesian vectors from polar
coordinates. The statistics have been achieved by using the same initial positions and the same
initial speed, but new velocities during each realization of a system, i.e. new values of φ and θ for
each particle. We have used v0 =

√
2 such that a system of particles with masses equal to unity gets

the convenient initial average particle energy equal to unity. Note that an initial average particle
energy equal to unity gives an initial temperature T0 = 2/3 from the relation in (2.35).

Another approach commonly used in numerical studies of a granular gas is to start from an
equilibrium state of a molecular gas where the speed distribution follows the Maxwell-Boltzmann
speed distribution given in section 2.4 [see 8, 13, 19]. In order to achieve such an equilibrium state
we have simulated a molecular gas, starting with uniformly distributed positions and where the
initial velocity vectors are given by (3.3), until the system has reached an equilibrium state. We
have then saved the velocity of all the particles in order to use these as the initial velocity vectors
when studying the properties of a granular gas. The velocity vectors in the equilibrium state are
then shuffled between different runs in order for each realization to be different, where each particle
gets a new velocity vector for a new run. The equilibrium state was achieved by simulating a system
with RBC until the average number of collisions per particle was equal to 0.2N , where N is the
number of particles in the system, from a set of initial velocity vectors given by (3.3) with v0 =

√
2.

The use of different stopping criteria are discussed in more detail in section 3.9.
The radius of the particles will determine how many particles can fit inside the box without

giving overlapping positions. Together with the number of particles, N , the radius will determine
the packing fraction of the system. For the simulations in this project, η ≈ 0.065 has been used to
compare the results with the results in [15]. An important note to make is that for a two-dimensional
system the packing fraction is not given by (2.44), but by η = N

A πr
2, where A = L2 is the area of

the system. The same packing fraction for a two-dimensional and a three-dimensional system gives
very different dynamics due to the increase in possible trajectories for three-dimensional systems,
leading to fewer collisions. I.e. the same packing fraction is not comparable for systems of different
dimensionality.

Another important thing to note is that for PBC, if we are not careful, we can get dynamics which
are dominated by the fact the the whole system moves with a speed in a certain direction. When
the whole systems moves we get a contribution to the MSD which are dominating the logarithmic
dependence of time for the MSD of a granular gas9. This can immediately be noticed by doing
simulations in order to compute the MSD. In order for the simulations to be correct, we need to
use a reference frame where the displacement is only a result of the interactions between particles.
To achieve said reference frame we adjust all particle velocities by subtracting the mean velocity
along each axis. This subtle change plays a major role for computations of certain quantities such
as the average particle energy and the MSD. The change is actually so small that we still have the
case where the initial average particle energy is approximately equal to unity. For the equilibrium
state we have used for the results of a granular gas in chapter 4 the difference between unity and
the initial average particle energy is ≈ 0.0004.

3.9 Stopping criterion
There are several stopping criteria which are suitable for an event driven simulation. We have
already explained one used to create an equilibrium state by doing the event driven simulation

9This was a real cause of headache during the initial simulations after the change to PBC. We were not sure
whether the PBC was not implemented correctly or if something else was affecting the results. The correction of this
behaviour by subtracting the mean velocity along each axis was the idea of Tor Nordam. I can only imagine and be
terrified of how much time I could have spent wondering about this problem without his help.

3.10. PARALLELIZATION 55

until the average number of collisions per particle is equal to some given limit. A simpler stopping
criterion is a limit based on the simulation time, t. For a given problem we can thus do the simulation
loop as long as the simulation time t < tstop. For some types of simulation, for instance looking
at equilibrium properties, a better criterion should be implemented in order to make sure that the
system has reached equilibrium. One of the strongest arguments for such an implementation is that
one often needs a reasonable amount of collisions before the system reaches an equilibrium state. The
time, t, for this to occur will vary depending on the packing fraction and the speed of the particles.
Letting the system evolve until a given number of collisions has occurred is independent of the
time scale of the system. Even though only particle-particle collisions help the system approach an
equilibrium system, we have not differentiated between particle-particle and particle-wall collisions
when counting the number of collisions for simplicity. For studies of such problems the proposed
solution has been implemented, which is to let the system evolve in time until the average number
of collisions per particle is above a given threshold. The average number of collisions per particle,
c̄, can be defined as

c̄ =
1

N

N∑
i=1

ci, (3.4)

where ci is the number of collisions particle i has been involved in. Since we are already tracking
ci is order to validate collisions, we can easily use the collision count to stop the simulation. Thus,
the simulation is run as long as c̄ < c̄stop, where c̄stop have been chosen from trial and error. For
this project, c̄stop has been computed as a function of N with success for some problems. For other
problems, like computing statistics, the simulation has been run until t = tstop. For cases where
one is looking at a system with ξ < 1, we could also run a simulation until the average kinetic
energy of the particles in the system is below a given threshold, 〈E〉stop. The stopping criterion
used in this project has usually been a result of trial and error, or how long we wanted to run the
simulations. For most results we have used a stopping criterion given by tstop in order to neglect
collisions occurring after the time limit in the priority queue, which makes a huge difference when
looking at the MSD at long time scales. In order to compute speed distributions we have used a
stopping criterion based on the average number of collisions per particle.

3.10 Parallelization

An important topic for application of numerical techniques on modern computers is parallelization.
For this project the library Joblib10 has been utilized with success to do realizations in parallel.
It is also possible to do each realization in parallel by splitting the system into more boxes and
only considering neighbouring boxes when adding new collisions to the priority queue [see 38]. The
idea of doing a realization in parallel has not been explored in detail, but are listed as one topic of
possible further work in chapter 5. Due to the possibility of using High Performance Computing
(HPC), doing realizations in parallel is an implementation where we use one of the strengths of
HPC and modern computers in general, namely the number of available cores. Using Joblib we have
implemented a parallelization scheme where we run each realization with a unique run number. The
run number is used when saving the results such that the different cores do not overwrite each other.
Since each realization is unique there is no shared memory, which must be argued to be the simplest
form of parallel computing. In the beginning of each run we shuffle the velocity vectors from an
equilibrium state in order for each realization to be unique. With this implementation it is possible
to use all the cores on a processor to do their own realization, which comes in handy both when
running local simulations and especially when using HPC. In the implementation we specify the
number of runs, nr, and the number of cores, nc, to use when running an event driven simulation.
Then nc realizations are done in parallel until nr realizations have been simulated.

10see https://joblib.readthedocs.io/en/latest/ for the documentation

https://joblib.readthedocs.io/en/latest/

56 CHAPTER 3. NUMERICAL MODELLING

Figure 3.7: System consisting of N = 2000 particles with equal radius r = 0.005L. This is an illustration of
an initial condition for the pseudo two-dimensional simulations used in this project where the two-dimensional
packing fraction nπr2 ≈ 0.16. The mass of the particles does not need to be equal, making it possible to
look at mixtures of different gases, or if the masses are equal, look at how properties of a single gas evolve
in time.

3.11 Numerical setup and errors
The main objective of this thesis is to use two different simulation methods to study granular
gases. With this in mind we should discuss some of the numerical properties of the implementation,
namely the setup and the possible errors. As one might expect there is a high number of variables
and parameters which are used for both methods. In order to understand the results in chapter 4 an
elaborate introduction to the setup is not needed, as the results should in principle be independent
of how we implemented the model. For some purposes it is however useful to be introduced to
the implementation if some of the work is relevant for the reader, either as inspiration or simply
to provide more details of the numerical modelling. For the interested reader we suggest to read
Appendix E, where we present all the variables and parameters used both for the event driven
simulation and to solve SDEs describing Brownian motion numerially using the Euler-Maruyama
method.

We will now start by looking at the numerical setup and errors of the event driven simulation
before moving on to the numerical solution of SDEs.

3.11.1 Event driven simulation
In order to simulate a system of particles with an event driven simulation we study a particle setup as
given in Figure 3.7. Particles act in a collision as expressed by the collisions rule in (2.10) and (2.11).
The time until a collision with another object is computed from (2.21), (2.23) (2.25), or (2.20). Thus
a simulation is performed by computing and updating quantities given by the equations listed above
while using the priority queue to make sure that we only perform valid collisions, and in the correct
order. Figure 3.7 illustrates a typical initial system where the positions are uniformly distributed
in the box. Since we have looked at the special case of Brownian motion in three dimensions where
all particles are equal we have used three-dimensional equivalent systems to the two-dimensional
system illustrated in Figure 3.7.

The model considered for the event driven simulation in this project is very simple, and all the
equations can in principle be solved exactly. The errors in this thesis will mainly be due to number
representation. This can be a factor for the priority queue, especially during inelastic collapse. Since
there can be an arbitrary small time between collisions one can end up in situations where round-

3.12. SPECIFICATIONS 57

off error decides which collision is considered to be the earliest. In addition, the energy will not
disappear completely, as even for perfectly inelastic collisions the particles end up with a non-zero
speed, which gives future collisions after a long time.

In addition to purely numerical errors, the model is of course only an approximation of reality, as
it considers binary, instantaneous collisions and only a finite number of particles. For many particles
we can end up in situations where memory can become a problem, both because of the size of the
arrays and the number of elements in the priority queue together with a low value for the output
timestep when computing quantities, such as the MSD. This may give some limitations of using the
introduced parallelization scheme if each of the cores we want to use need to use a lot of memory.

3.11.2 Numerical solution of SDEs
For the numerical solution to SDEs describing Brownian motion one should ideally discuss the error
and the convergence of the numerical solution to the exact solution. This is however considered
to be outside the scope of this thesis, as we are more interested in the application of the Euler-
Maruyama method instead of giving justification of why it works. We will only briefly mention that
the numerical solutions of the SDEs converge to the true solutions as ∆t→ 0, and that the ensemble
average converges to the true average, almost surely, as N → ∞. For the interested reader, we
suggest to see e.g. [31] and [34] for a introduction to various topics of SDEs and the properties of
numerical solutions to SDEs.

As for the event driven simulations, there is a tradeoff between computational effort and sta-
tistically sound results also when modelling Brownian motion by an SDE. As we want to solve the
iterative schemes for a system for N particles at the same time using vector operations, for a three-
dimensional system with a constant resolution in time given by timestep ∆t, one can end up in a
situation where memory becomes an issue. Memory issues are most prominent by combining a high
N with a low timestep value. The results provided in this thesis are at the limit of what we were able
to compute locally with 16 GB of RAM. One workaround for this issue is to lower N and compute
the average over more runs. One should also note that one does need to save the particle positions
at all times in order to compute the MSD, as we have done. The reason for such an implementation
is that we also want to show whether or not the particles we try to model with an SDE is an ergodic
system, as discussed in section 2.10.

3.12 Specifications
The results have been computed in Python with the following specifications. The computer used to
run the program has a Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz. The software used was Python
3.7.5, NumPy 1.17.4, SciPy 1.3.2 and Joblib 0.14.1. The code has also been tested on one of the
HPC clusters available at NTNU, called Idun, with the newest available software. The results from
running on HPC matched, as expected, the results achieved from running on a local computer. With
the higher number of cores available on Idun, we did achieve to run more realizations in parallel at
the same time. When running locally we have used 4 cores, but this is only limited by the number
of available cores.

58 CHAPTER 3. NUMERICAL MODELLING

Chapter 4

Results and discussion

The computed results in this thesis have been used to verify the implementation of two different
simulation methods used to study many-particle systems, namely an event driven simulation of
particles colliding in a box and solving different Langevin equations. As introduced in chapter 3 and
Appendix E, there are many variables and parameters for a system of particles needed to perform
an event driven simulation, given in Table E.1. Thus, for each system only the essential variables
will be stated, such as the number of particles and radius, giving the packing fraction of the system.
If not specified otherwise all particles in the system have the same mass m = 1, the same radius r,
the initial positions are uniformly distributed in the box, all initial velocities have the same speed
v0 and tc = 0, indicating that the TC model has not been used for the results. For a granular gas
an equilibrium state of a molecular gas has been used as the initial values for the velocities of the
particles, while for a molecular gas initial velocity vectors given by (3.3) have been used. In order to
apply the Euler-Maruyama method to solve SDEs numerically, the variables and parameters given
in Table E.2 have been used. As one does not need to take into account the other particles when
solving an SDE for N particles simultaneously, all particles will start with the same initial position
and the velocities of the particles have been given by (3.3) as for a molecular gas. All results are
computed for a three-dimensional system, while some visualizations for a two-dimensional system
are provided additionally. The computed results are given as the average of a number of different
unique runs, achieved by either computing new initial velocity vectors from (3.3) for a molecular
gas, or by shuffling the set of initial velocity vectors for the simulations of a granular gas for each run
as discussed in section 3.8. All plots given for a quantity as a function of time has used a stopping
criterion given as the maximum time provided in the plot.

During the comparison of the numerical results with the theoretical predictions in chapter 2 the
given theoretical expression for τ0 in (2.45), D0 in (2.52), and γ0 in (2.55) will be used. In order
to identify some of the reasons why the results differ from theory we have also tried to estimate
said parameters from the simulation results by fitting a curve to the datapoints for a given function
with unknown parameters. As many of the expressions for the MSD depend in a number of ways on
different constants it can be quite challenging to identify possible explanations as to why the results
differ from theory.

4.1 Event driven simulation of many-particle systems
We will first look at the results for the event driven simulation. The results will start with some
simple test cases, before moving on to speed distributions, the evolution of granular temperature
and computation of the MSD for both a molecular and a granular gas. We intend to compare
the computed speed distribution with the Maxwell-Boltzmann speed distribution in section 2.4, the
evolution of granular temperature with Haff’s law in section 2.6 and the MSD with the theoretical

59

60 CHAPTER 4. RESULTS AND DISCUSSION

(a) t0 = 0 (b) t1 > t0 (c) t2 > t1

Figure 4.1: Illustration of one of the simple tests used to verify the event driven simulation. Here one can
see two particles starting at time t0 = 0, colliding at t1 > t0 and moving away from each other at t2 > t1.
The illustrated behaviour is as expected, thus making it a useful verification tool. As time is evolved further,
the particles will collide again after bouncing off the two vertical walls for RBC.

predictions derived in section 2.8. We have mainly used PBC for all simulations, but we will state
which boundary conditions has been used for some of the topics in order to see how the boundary
conditions influence the results.

4.1.1 Test cases

Visual inspection

One of the first verifications of the event driven simulation can be done by looking at how the
positions of the particles evolve in time. If they behave as expected, the correct logic has most likely
been implemented when computing collision times and using the priority queue to identify the next
valid collision. We implemented a few different test cases, e.g. looking at how a particle bounces
off each wall before returning to its original position for RBC, how two particles collide with each
other when starting on the same line with velocities leading to a head on collision, illustrated in
Figure 4.1, and making sure that energy is conserved for ξ = 1. Note that when particles obey
the law of reflection, a single particle in a rectangular box needs at most four collisions in order
to return to its original trajectory in two dimensions. The collision in Figure 4.1 illustrates a few
properties which have been introduced earlier. At the moment of collision, illustrated in Figure 4.1b,
R12 = r1 + r2. The change in velocities for the particles are only along ∆x12, which in Figure 4.1 is
along the x-axis, in agreement with the collision rule in Eqs. (2.10) and (2.11).

As the number of particles increases it becomes difficult to rely only on visual inspection since
there are many collisions. In order to verify the event driven simulation for many-particle systems
one must thus include different simulation statistics in order to get a more systematic approach of
studying the dynamics of the system. We would like to note that even though visual inspection
quickly becomes redundant in order to make sure the simulation are correct, one can quickly notice
incorrect behaviour. The visual inspection was key in the implementation of e.g. PBC.

Simulation statistics

The conservation of energy is a useful verification tool for the case of many particles in a molecular
gas. The deviation from unity for the average particle energy of a molecular gas (ξ = 1) for a
simulation of a system of N = 1000 particles with radius r = 0.025L, giving a packing fraction of
η ≈ 0.065, is given in Figure 4.2. The particles in the simulation started from an equilibrium state of
a molecular gas. As we can see in Figure 4.2, energy is conserved almost down to machine precision,
constituting one of the many necessary verifications of the implementation. The development of the
energy for a granular gas will be addressed later in the section about the verification of Haff’s law.

4.1. EVENT DRIVEN SIMULATION OF MANY-PARTICLE SYSTEMS 61

0 2 4 6 8 10

t

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
〈E
〉/
〈E
〉 0
−

1

×10−14

PBC

RBC

Figure 4.2: Plot of the average kinetic particle energy for a simulation of a molecular gas, where ξ = 1, as a
function of time. The simulation has been done for a system of N = 1000 particles with a radius r = 0.025L,
giving a packing fraction of η ≈ 0.065, starting from a equilibrium state for a molecular gas for both PBC
(blue line), and RBC (red line). At all times, we can see from the plot that energy is conserved almost down
to machine precision for as the deviation from unity in the plot is ∼ 10−14. The plot is given as the average
of 4 runs with tstop = 10 as the stopping criterion. The output timestep ∆t = 0.1 has been used to have a
constant resolution in the output of the statistics.

The collision rule is however only correct if there are collisions occurring in the system. The
average number of collisions per particle as a function of time for a similar system as in Figure 4.2
is given for a molecular gas in Figure 4.3 and for a granular gas with ξ = 0.8 in Figure 4.4. From
the statistics of the average number of collisions per particle we can see some interesting differences
between a molecular and a granular gas and between the different boundary conditions. As discussed
earlier we have suggested based on the experience of others that RBC leads to a higher collision
frequency than PBC, which was also the case for the simulations in Figure 4.3 and Figure 4.4. Note
that for both boundary conditions we include the pairwise particle collisions and the interactions
with the walls, where for RBC we have collisions with the walls, while for PBC we use "walls" to
get a periodic system copied in all directions (see section 3.4).

As energy is dissipated for a granular gas, the increase in the average number of collisions per
particle slows down as a function of time as we can see in Figure 4.4. Due to a constant coefficient
of restitution the system loses energy at every collision, and it is thus natural to see a decrease in
the number of collisions per time compared to the case of a molecular gas where energy is not lost.
As a result of the decrease in the number of collisions, where the time between two valid collision
increases as a function of time, simulations of a granular gas for long times are efficiently performed
by the event driven simulation. We can also see from the average number of collisions per particle for
a molecular gas in Figure 4.3 that the dynamics of the system seem to be similar for all times, which
is expected as energy is conserved and we expect the system to converge towards an equilibrium
state given from the Maxwell-Boltzmann speed distribution.

The simple test cases have provided some simple verifications of the event driven simulation, and
now we want to see if we can reproduce some known results for both a molecular and a granular
gas presented in chapter 2. We will start by looking at the speed distribution of a molecular gas,
before studying the evolution of granular temperature for different coefficients of restitution, and
then finally studying Brownian motion and the development of the MSD as a function of time for
both molecular and granular gases.

62 CHAPTER 4. RESULTS AND DISCUSSION

0 2 4 6 8 10

t

0

50

100

150

200

c̄

PBC

RBC

Figure 4.3: Plot of the average number of collisions per particle as a function of time for a similar system
and parameters as in Figure 4.2. As seen in the plot, the average number of collisions per particle increases
in a similar fashion for all times, and is higher for RBC, resulting from a higher collision frequency.

0 2 4 6 8 10

t

0

10

20

30

40

c̄

PBC

RBC

Figure 4.4: Similar plot as in Figure 4.3, but for a granular gas, here with ξ = 0.8. The dissipation of
energy compared to a molecular gas makes the increase in the average number of collisions per particle slow
down as a function of time. We still see the same comparison between PBC and RBC as for a molecular
gas, where RBC gives a higher collision frequency.

4.1. EVENT DRIVEN SIMULATION OF MANY-PARTICLE SYSTEMS 63

4.1.2 Speed distributions

We want to see if we can reproduce the Maxwell-Boltzmann speed distribution in two and three
dimensions, which is one of the most well-known results for a molecular gas, familiar to many from
introduction courses to thermal and statistical physics. These results are provided for two reasons.
The first reason, similar as for all results in this section, is to use known results in order to verify the
implemented event driven simulation. The second reason is based on the study of granular gases,
where we want to use an equilibrium state for a molecular gas as the initial velocities for a granular
gas. In order to compute an equilibrium state we start with a system where the initial velocities are
given by (3.3) with the initial speed v0 =

√
2. For these simulations we have used RBC, as the speed

of the particles are a quantity unaffected by the boundary conditions. Additionally we also exploit
the fact the RBC gives a higher collision frequency and the simulations are faster as we do not need
to copy the system of particles to enforce a periodic system. One should note that only the pairwise
particle collisions make the system converge towards an equilibrium state, whereas the interactions
with the walls do not. Note that for the purpose of counting the number of collision, we count both
types for simplicity, however the majority of the collisions are particle-particle collisions.

Two dimensions

In two dimensions we have used a pseudo two-dimensional system by enforcing that all vzi = 0 and
zi = 0.5. I.e. that all particles have zero velocity along the z-axis and all particles are confined
to a square region limited by the vertical and horizontal walls for which we simulate a set of hard
disks instead of hard spheres. The computed speed distribution in two dimensions is plotted as a
histogram in Figure 4.5. The results in Figure 4.5 are given as the average of 20 runs for a system of
N = 2000 with a radius r = 0.005L giving a two-dimensional packing fraction ≈ 0.16, starting from
the initial system illustrated in Figure 3.7. For these simulations we used a stopping criterion given as
c̄stop = 0.2N . By comparing the results with the theoretical prediction for the Maxwell-Boltzmann
speed distribution in two dimensions in (2.30) one can see that we have successfully managed to
reproduce the speed distribution. The agreement is also a reliable measure of expressing that is
it possible to conduct two-dimensional simulations with the implemented three-dimensional event
driven simulation as discussed in chapter 3.

Three dimensions

While in order to do simulations of a two-dimensional system we have to adjust the implemented
simulation, performing simulations of a three-dimensional system is more straightforward. The
computed speed distribution in three dimensions is plotted as a histogram in Figure 4.6 together
with the three-dimensional Maxwell-Boltzmann distribution given in (2.32). For the simulations we
have used a system of N = 1000 particles with a radius r = 0.025L, giving η ≈ 0.065, which is the
standard system we will be using for the study of a granular gas later. As for the simulations of a
two-dimensional system we have used the same stopping criterion c̄stop = 0.2N and the results are
given as the average of 20 different runs. Figure 4.6 shows a good agreement between the computed
values and the theoretical predictions, which we see as a verification that the implemented event
driven simulation can be used to study many-particle systems of particles colliding in a box.

Expectation values

As we have seen for the computed speed distribution in equilibrium, the results have shown good
agreement with the Maxwell-Boltzmann speed distribution. In addition to the clear visual agreement,
we have also computed the values of the expectation values given in Table 2.2. The computed values
are presented in Table 4.1 in addition to the relative error compared to the theoretical expressions.

64 CHAPTER 4. RESULTS AND DISCUSSION

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

v

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
(v

)

MB distribution

Numerical values

Figure 4.5: The computed speed distribution of a two-dimensional molecular gas in equilibrium. The result
has been achieved for a system of N = 2000 particles with a radius r = 0.005L, giving a two-dimensional
packing fraction ≈ 0.16, with a stopping criterion given as c̄stop = 0.2N with RBC. The initial velocities
of the particles were given by (3.3) with θ = π/2 and v0 =

√
2 for a pseudo two-dimensional system. The

results have been computed as the average of 20 different runs. The two-dimensional Maxwell-Boltzmann
speed distribution (black dashed line) is given by (2.30), and the computed results are given as a histogram
in blue.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

v

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
(v

)

MB distribution

Numerical values

Figure 4.6: Similar plot as in Figure 4.5, but for a three-dimensional system of N = 1000 particles with
a radius r = 0.025L, giving η ≈ 0.065. We have used RBC with c̄stop = 0.2N as the stopping criterion,
and the results are computed as the average of 20 different runs, where each particle starts with an initial
velocity given by (3.3) for v0 =

√
2. The three-dimensional Maxwell-Boltzmann speed distribution is given

by (2.32).

4.1. EVENT DRIVEN SIMULATION OF MANY-PARTICLE SYSTEMS 65

Table 4.1: The computed mean values and standard deviation, σ, of Maxwell-Boltzmann speed distribution
in two and three dimensions. The relative error compared to the theoretical expressions in Table 2.2 are
given in the table as [. . .] in %.

Dimensions 〈v〉 〈v2〉 σ
2 1.25 [0.08] 2 [0] 0.65 [0.31]
3 1.31 [0.17] 2 [0] 0.54 [0.98]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

v

0.0

0.2

0.4

0.6

0.8

P
(v

)

MB distribution

Numerical values

Figure 4.7: The initial speed distribution used as the initial velocities of a granular gas. The velocities of
the particles are one of the end states of a unique run used to compute the average values in Figure 4.6. The
three-dimensional Maxwell-Boltzmann speed distribution is given in black from (2.32). One should note that
the average of many states such as illustrated here gives the proper prediction by theory (see Figure 4.6),
whereas a unique run for such a low number of particles does not provide an accurate equilibrium state.

Note that the relative error for 〈v2〉 in Table 4.1 is default zero because we use the average particle
energy, 〈E〉, to compute the temperature from the relation in (2.35) and energy is conserved.

Equilibrium state

As previously mentioned we want to use an equilibrium state for a molecular gas as the initial
velocities for the particles in a granular gas. The results for the speed distribution in Figure 4.6 are
given as the average of 20 runs. Since we can not use the average as an initial condition we have
used the result of a single run as an initial condition. The speed distribution of the equilibrium state
we have used as the initial set of velocities for simulations of a granular gas in given in Figure 4.7,
together with the Maxwell-Boltzmann distribution in (2.32). Figure 4.7 does not show the same
agreement as the average value, giving an example of why we use average values to get the correct
behaviour predicted by theory. Using the initial state in Figure 4.7 we will now look at the evolution
of granular temperature, and see if the numerical results follow the prediction by Haff’s law in
section 2.6.

4.1.3 Haff’s law

Due to the dissipative interactions, modelled as inelastic collisions, the energy or equivalently the
temperature of a granular gas will decay as a function of time. The evolution of granular temperature
is known as Haff’s law and depends on two main characteristics, the number of collisions and the
amount of dissipated energy per collision. Before moving on to the use of PBC, necessary for the

66 CHAPTER 4. RESULTS AND DISCUSSION

10−1 100 101 102

t

10−4

10−3

10−2

10−1

100
T

(t
)

T
0

PBC

RBC

Inelastic RBC

Theoretical values

Figure 4.8: Plot of the impact on the evolution of the granular temperature from different boundary
conditions for a granular gas, PBC (blue line), RBC (red line) and RBC with inelastic walls (purple line).
The system is given by N = 1000 particles with a radius r = 0.025L, giving η ≈ 0.065, colliding with a
coefficient of restitution ξ = 0.8. The simulation has used tstop = 100 as its stopping criterion with an
output timestep of ∆t = 0.1, starting from an equilibrium state of a molecular gas. The results in the plot
are the average of 4 different runs. The theoretical values (black dashed line) are given from Haff’s law in
(2.40).

study of the MSD, we will first look at how different boundary conditions affect the dissipation of
energy in the simulations. Then we will present some visualizations of two-dimensional systems in
order to illustrate some of the impacts from the boundary conditions. In the end, we will see how the
numerical results compare to Haff’s law in (2.40) for a variety of different coefficients of restitution
for simulations with PBC.

Effect of Boundary conditions

In the presentation of simulation statistics, we saw an increase in the collision frequency for RBC
compared to PBC. In light of this discovery we want to explore in detail how the different boundary
conditions affect the decay of temperature for a granular gas with ξ = 0.8. The system used in the
simulations consists of N = 1000 particles with a radius r = 0.025L giving η ≈ 0.065 starting from
an equilibrium state of a molecular gas. In Figure 4.8 we have plotted the evolution of the granular
temperature for three different boundary conditions together with the prediction of Haff’s law from
(2.40). The boundary conditions used have been PBC, RBC and RBC with inelastic walls. Inelastic
walls are modelled by the collision rules in Eqs. (2.22), (2.24) and (2.26), while RBC refers to the
simulation with reflecting elastic walls. This terminology is motivated by the clear disagreement
between Haff’s law and the numerical result for inelastic RBC in Figure 4.8. The disagreement
clearly makes the use of inelastic walls a case where the boundaries are too dominating to achieve
valid results compared to theory. From the plot in Figure 4.8 one could argue that both PBC and
RBC seem to give a good agreement with theory. This seems to be the case, but we can see how
the increased collision frequency manifests itself to some degree by providing lower values for RBC
compared to PBC.

Two-dimensional visualizations

In order to complement the plot in Figure 4.8 we provide some visualizations of a two-dimensional
system colliding with ξ = 0.8. The initial system is given in Figure 3.7 with N = 2000 particles with

4.1. EVENT DRIVEN SIMULATION OF MANY-PARTICLE SYSTEMS 67

a radius r = 0.005L giving a two-dimensional packing fraction ≈ 0.16. The same initial system has
been evolved in time for both PBC and RBC and snapshots of the particle positions at t = 2.5 and
t = 10 are given in Figure 4.9. In the figure we can see some explanation as to why the decay of
temperature, and the dynamics in general, differ from PBC to RBC. For RBC clusters start to form
close to the walls at an earlier stage than what seems to be case for PBC. For PBC we do eventually
see the formation of clusters as well, but on a different size scale than for RBC. An important note
to make is that the timescale of Figure 4.9 and Figure 4.8 can not be compared due to different
packing fractions and dimensionality. For the simulation results for a three-dimensional system we
have seen no indication that the system has left the homogeneous cooling state, while that is clearly
the case for the two-dimensional system at long times in Figure 4.9.

The evolution of granular temperature

The evolution of granular temperature for a granular gas is given in Figure 4.10 for a set of coefficients
of restitution ξ ∈ [0.99, 0.5, 0.3]. The simulations are performed for a system of N = 1000 particles,
with a radius r = 0.025L, giving η ≈ 0.065 with PBC, the same system as we used to compute speed
distributions in three dimensions. From the plot in Figure 4.10 we can see an excellent agreement
between the numerical values and the theoretical values given by Haff’s law in (2.40). The computed
values in Figure 4.10 are given as the average of 4 different runs, where we have for each run computed
the average kinetic particle energy. Additionally, we have used the central limit theorem presented
in section 2.11 to see that the standard deviation of the mean value given in Figure 4.10 is small
enough that we infer that the computed values have converged, i.e. we would not get better results
by taking the average of more runs.

In order to better illustrate how the central limit theorem has been used let us look at the
example of the granular gas with ξ = 0.5 in Figure 4.10. Note that we have run a total of 4 different
runs for each coefficient of restitution. For each of those runs we have computed the evolution of
the granular temperature as a function of time. I.e. at each point in time for each of the plots in
Figure 4.10 we have 4 different computed values of the same quantity. In the plot only the average
of these values are given, as discussed earlier. Let us pick the convenient time t = 1 where the
dimensionless granular temperature for ξ = 0.5 is ≈ 0.1 as illustrated in Figure 4.10. The essence of
how we use the central limit theorem (see section 2.11) is that we assume that all computed granular
temperatures in each point in time are drawn from the same distribution. The standard deviation
of the 4 different granular temperatures at time t = 1 is ≈ 10−3 (not shown here). As one assumes
that the unknown true standard deviation of the distribution of the granular temperature, σ, at that
point in time is equal to the standard deviation of the computed values we get that the standard
deviation, and thus an error estimate, of the average value is given by (2.122). We thus compute
the error to be σ/

√
4 ≈ 0.0005 for the granular temperature at the time t = 1. We see however that

this error becomes smaller as we take the average of more runs as the error estimate is ∝ n−1/2
r . To

realize why the average of more runs does not give better results we need to remember that the true
error of the computed values is found by comparing with the theoretical expression of Haff’s law in
(2.40). For the time t = 1 for the system with ξ = 0.5, the absolute difference between the average
numerical value and theoretical value is ≈ 10−2 (not shown here), giving a relative error of ≈ 0.5%.
As the true error is higher than the estimation based on the average value, we would get a better
estimate of the average value from the computed values by taking the average of more runs, but that
average would not result in a better agreement with theory. By using the central limit theorem in
the following manner we can be certain that the agreement between the numerical and theoretical
values cannot improve without changing and improving the implementation. The exact values of
the errors change from one point in time to another as the value for σ is different. However, for the
plot in Figure 4.10 there is a trend where the true error is larger than the error estimate from the
central limit theorem (also not shown here), for which one can infer that the average of more runs
would not improve the correspondence between the numerical results and theory.

68 CHAPTER 4. RESULTS AND DISCUSSION

(a) t = 2.5 with PBC. (b) t = 2.5 with RBC.

(c) t = 10 with PBC. (d) t = 10 with RBC.

Figure 4.9: An illustration of how the positions of the particles in a granular gas with ξ = 0.8 can change
in time for PBC and RBC. The initial system for both simulation are given in Figure 3.7. The simulation
with PBC are given at t = 2.5 and t = 10 in Figure 4.9a and Figure 4.9c, while the simulation with RBC
are given at the same times in Figure 4.9b and Figure 4.9d. The different figures show that we achieve very
different systems for the different boundary conditions, where the clustering occurs near the walls for RBC
somewhat earlier than we see clusters forming for PBC. The size of the formed clusters are also on different
scales.

4.1. EVENT DRIVEN SIMULATION OF MANY-PARTICLE SYSTEMS 69

10−1

100

T
(t

)
T

0

ξ = 0.99

Numerical values

Theoretical values

10−4

10−3

10−2

10−1

100

T
(t

)
T

0

ξ = 0.5

Numerical values

Theoretical values

10−1 100 101 102

t

10−5

10−4

10−3

10−2

10−1

100

T
(t

)
T

0

ξ = 0.3

Numerical values

Theoretical values

Figure 4.10: Plot of the evolution of granular temperature for a granular gas in systems with ξ ∈
[0.99, 0.5, 0.3]. For all the simulations we have used a system of N = 1000 particles, with a radius r = 0.025L,
providing η ≈ 0.065 with PBC. The computed results (blue line) have been achieved with a stopping crite-
rion of tstop = 100 with an output timestep ∆t = 0.1, and are given as the average of 4 runs starting from
an equilibrium state of a molecular gas. The theoretical prediction (black dashed line) is given by Haff’s law
in (2.40).

70 CHAPTER 4. RESULTS AND DISCUSSION

We do however see that the computed results and Haff’s law becomes more distinguishable for
lower values of the coefficient of restitution, where the computed values are somewhat higher than
theory. At an early phase for the work done for this thesis we tried to compare Haff’s law with the
simulation results for two-dimensional systems with RBC. While this also gave good agreement, the
numerical values diverged from the theoretical values for long times, which most likely was a result
of the formation of clusters. These simulations results are not shown here, but the disagreement
between the numerical and theoretical values were somewhat consistent with the time scale of the
clusters forming in Figure 4.9. I.e., when we compared plots of the granular temperature and the
particle positions we saw that that clusters had formed or were beginning to form when the numerical
and theoretical values diverged. For the time scale used in the simulations, it seems from the plot in
Figure 4.10 that in three dimensions we are still in the homogeneous cooling state, for which Haff’s
law is valid and the derivations of the MSD expressions in section 2.8 are valid. As a result of the
previous argument we can expect valid results for the simulations for the MSD, the essential topic
of Brownian motion.

4.1.4 Brownian motion

In the study of Brownian motion, we have used the same system of N = 1000 particles with a radius
of r = 0.025L, giving a packing fraction of approximately 0.065, equal to the system used in [15],
to conduct studies of the MSD as a function of time. By using different values of the coefficient of
restitution we can conduct studies of a molecular gas (ξ = 1) or a granular gas (ξ < 1). The event
driven simulation is performed by starting from an equilibrium state, with the speed distribution
given in Figure 4.7. The theoretical predictions of the MSD in section 2.8 are derived for a one-
dimensional system, and in order to compare with the three-dimensional event driven simulation we
have multiplied the theoretical values with 3 due to the symmetry properties of the MSD presented
in (2.56). The described system is used in order to compare results for the MSD of a granular gas
with the results in Fig. 2 in [15], which uses the same packing fraction1.

Molecular gas

The computed value for the MSD as a function of time for a molecular gas is given, together with
the theoretical prediction from (2.68), in Figure 4.11. The numerical values in Figure 4.11 are given
as the average of 4 different runs, where the MSD has been computed for all the particles in each
run. In addition, in Figure 4.11 we provide an error estimate presented as error bars given by the
central limit theorem in (2.122), where we compute the standard deviation of the mean computed
value. The error bars are computed from the central limit theorem (see section 2.11) by computing
the standard deviation of the computed values at each point in time, σi, and assuming that the
computation of the MSD at each point in time is drawn from the same distribution with a standard
deviation equal to the computed values. Thus, the error estimate in each point in time have been
computed as σi/

√
4, and the error estimate of the mean MSD is thus a function of time. From

the plot in Figure 4.11 we can discuss the validity of the theoretical expression in (2.68). The
first thing we should note is that Figure 4.11 exhibits the asymptotic behaviour predicted for a
molecular gas in (2.69), where we can see a ballistic periodic where the MSD ∝ t2 for t < 10−1, and
a linear dependence on time for t > 1. The second thing to emphasize is that on a logarithmic scale
the computed MSD seems to be inseparable from the theoretical predictions. If we had chosen to
plot the values on a non-logarithmic scale we would see a slight disagreement between the slope of
the computed values and the theoretical values, which would make the values more distinguishable

1The results in [15] are based on a system where L = 40. Hence we cannot directly compare the results due to
the explicit dependence of n = N/L3 in the parameters τ0, D0 and γ0. Even though we have used the same relation
between the particle size and wall size, they will for the same initial average energy get a much longer ballistic period.
We have however compared to see that the theoretical predictions for the expression with L = 40 matches the plot in
Fig. 2 in [15] to be certain that we use an equivalent foundation to compare the numerical values with theory.

4.1. EVENT DRIVEN SIMULATION OF MANY-PARTICLE SYSTEMS 71

10−2 10−1 100 101 102

t

10−3

10−2

10−1

100

101

〈(x
(t

)
−
x

0
)2
〉

Theoretical values

Numerical values

Figure 4.11: Plot of the MSD as a function of time, t, for a molecular gas of a system of N = 1000
particles with a radius of r = 0.025L. For the plot we have used a stopping criterion of tstop = 100 and
used logarithmically spaced times to compute the MSD on suitable times. The computed values (blue line
with error bars) are given as the average of 4 different runs, and the error is given as the standard deviation
computed from the central limit theorem in section 2.11. From the errorbars we can see that the average
value have converged. The theoretical predictions (black dashed line) for the MSD of a molecular gas are
given by (2.68). On a small timescale the plot indicates an MSD ∝ t2, before changing to ∝ t, which is
regarded as normal diffusion.

for long times due to the linear dependence. Logarithmic scales are preferred to easily see the
asymptotic behaviour, especially for short time scales. We refer to Appendix F for some additional
elaboration and treatment of this issue, where we also provide the same plot as in Figure 4.11 using
non-logarithmic axes. Regardless of the scale used for the plots, we do see the good agreement
between theory and the computer simulations making it plausible that the event driven simulation
of many-particle systems seems to exhibit the correct dynamics for a molecular gas.

Comparison with earlier results

The agreement for the MSD as a function of time found for a system with PBC here is better
than what we achieved for the two-dimensional systems with RBC used in the specialization project
[1]. The inspiration of the use of RBC was based on work in [24] and due to simplicity. Another
explanation as to why the agreement have improved can be the trouble of the convergence of the
integral of the velocity autocorrelation function for two-dimensional systems [see 11, p. 162]. As
discussed in [11, p. 162] the decay of temperature for a granular gas seems to help the convergence in
two dimensions, but that is not the case for a molecular gas. Hence the change to three dimensions,
and the change to PBC, have improved the simulations results to an extent where we achieve
satisfactory agreement with theory. In light of the better agreement found between the numerical
results and theory achieved for this thesis, it seems natural to assume that the choice of boundary
conditions affected the system more than we realized at first.

Granular gas

For the study of a granular gas, we expect a different behaviour of the MSD due to the dissipation
of energy. Due to the general collision rule in Eqs. (2.10) and (2.11) all we need to study a granular
gas compared to a molecular gas is to change the value of ξ in the implementation. For a system of
a granular gas we have achieved the results for the MSD with ξ = 0.8 given in Figure 4.12, and with

72 CHAPTER 4. RESULTS AND DISCUSSION

10−2 10−1 100 101 102 103

t

10−3

10−2

10−1

100

〈(x
(t

)
−
x

0
)2
〉

Theoretical values

Numerical values

Figure 4.12: Similar plot, parameters and system as in Figure 4.11, but for a granular gas with ξ = 0.8.
In the plot we can see a ballistic period where the MSD ∝ t2, before changing a logarithmic dependence on
time, one of the properties of ultraslow diffusion. The theoretical values (black dashed line) are given by
(2.79).

ξ = 0.3 given in Figure 4.13. The computed results are given for the same system and parameters
as for a molecular gas in Figure 4.11. The theoretical prediction of the MSD of a granular gas is
given in (2.79), where the asymptotic behaviour is presented in (2.80). By comparing the computed
average values and the theoretical predictions in Figure 4.12 and Figure 4.13 we see that the plots
show a good agreement with theory, and the standard deviation is small enough that we consider
the results to be converged based on a similar argument as presented for the results of the MSD
of a molecular gas and the evolution of the granular temperature. I.e. that the agreement for the
MSD would not improve compared to the theoretical values by taking the average of more runs.
The latter is clear from Figure 4.13 where the error bars are smaller than the difference between the
numerical and the theoretical values. We can also clearly see that we achieve the correct asymptotic
behaviour, which gives us a ballistic period before the MSD changes to a logarithmic dependence
on time, one of properties of ultraslow diffusion as described in section 2.8. We would like to again
emphasize as earlier that the agreement seems better on a logarithmic scale than on a linear scale,
as discussed in Appendix F. We do however as earlier see that we achieve a valid agreement between
theory and the simulations. The plots of the MSD show the same behaviour as achieved in [15].
Due to the high degree of agreement between the computed values of the MSD and the theoretical
predictions for a granular gas it seems that an event driven simulation of pairwise collisions captures
the dynamics of a granular gas at the particle volume density we have studied. Hence we can argue
that the implemented simulation method is correct.

As we saw in the results for the evolution of granular temperature in Figure 4.10, there was
a increasing disagreement between the computed values and the theoretical predictions for lower
values of the coefficient of restitution. The same was observed from the results of the MSD of a
granular gas in Figure 4.12 and Figure 4.13. Through numerical experimentation (not shown) during
the work done for this thesis we have run simulations for a number of different ξ ∈ [0.1, 0.99] and
for us it seems like a clear trend where the disagreement is higher for lower values of ξ. In order
to explain why we see this trend we have looked into a few properties of the expressions for the
MSD, a function of the constants τ0, D0 and γ0. As one can see in the comparison to Haff’s law in
Figure 4.10, the simulation results gives an accurate approximation of the characteristic decay time
of the granular temperature. The long term behaviour of the results of the MSD are given by the
diffusivity of the system, and we have thus decided to see how the model for the diffusivity in (2.51)

4.1. EVENT DRIVEN SIMULATION OF MANY-PARTICLE SYSTEMS 73

10−2 10−1 100 101 102 103

t

10−3

10−2

10−1

100

〈(x
(t

)
−
x

0
)2
〉

Theoretical values

Numerical values

Figure 4.13: Similar plot as in Figure 4.12, for the same system with a coefficient of restitution ξ = 0.3.

corresponds to the simulation results.

Diffusivity

The use of diffusion properties to study the case of particles colliding in a box, either elastically or
inelastically, has given some important verification tools. As mentioned in section 2.8 it is possible
to explain the long term behaviour of the MSD as the integral of the diffusion coefficient, given as
a three-dimensional expression of the relation in (2.64). We have used said relation to go the other
way, where we from simulation results of the MSD have computed the diffusivity as a function of
time. The derivative of the MSD has been computed from the following first order finite difference
approach. First we define the forward difference, where the derivative of the quantity u at a time
ti, denoted by ui, is approximately given by

du

dt

∣∣∣∣
ti

≈ ui+1 − ui
ti+1 − ti

, (4.1)

where ti+1 is the next point in time and we have ignored terms of the order O((ti+1 − ti)2) and
higher. The backward difference is given in a similar fashion by

du

dt

∣∣∣∣
ti

≈ ui − ui−1

ti − ti−1
, (4.2)

where ti−1 is the previous point in time and we have ignored terms of the order O((ti − ti−1)2)
and higher. For a constant resolution in time, where the difference in time between two values are
given by ∆t, the expression for the forward and backward finite difference in (4.1) and (4.2) are
simplified and we could compute a central difference scheme in a straightforward manner [see 37,
pp. 45–52]. For the computation of the MSD on logarithmically spaced times we have a non-uniform
resolution in time, and we have computed the derivative of the MSD as the average of the forward
and backward finite difference in (4.1) and (4.2). At the end points where the forward (backward)
difference is not defined we have used the backward (forward) difference to compute the values.

For a molecular gas we expect to see a constant diffusion coefficient as we see a linear trend
for the long term behaviour of the MSD. The diffusivity for the system in Figure 4.11 is given as
a function of time together with a unity reference in Figure 4.14. As expected we do see a fairly
constant diffusion coefficient after the time t ≈ 0.3, which is the point where we start to see the linear

74 CHAPTER 4. RESULTS AND DISCUSSION

10−2 10−1 100 101 102

t

100
D

(t
)

D
0

Numerical values

Unity reference

Figure 4.14: Plot of the diffusivity of a molecular gas for the system in Figure 4.11. We have computed
the diffusivity from a three-dimensional expression of the relation in (2.64), where we have used the mean of
the forward and backward difference in (4.1) and (4.2) to compute the diffusivity. From the plot we can see
that the diffusivity becomes to some extent constant when the MSD display the linear trend in Figure 4.11.
The behaviour is as expected as the expression for the MSD as the integral of the diffusivity is only valid
for long term behaviour.

trend of the MSD in Figure 4.11. The plot of the diffusivity for a molecular gas in Figure 4.14 offers
an explanation as to why the numerical values of the MSD are slightly higher than the theoretical
expression, discussed in Appendix F. If the simulation results are consistent with a higher diffusion
coefficient compared to theory for the used set of particle parameters, it seems to give a natural
explanation as to why the results for the MSD are somewhat higher. The reason being that the
MSD at long times is given as the integral of the diffusivity.

For a granular gas, where the collisions are inelastic, we expect to see a diffusion coefficient with
a time dependence given by (2.51). The time dependence of the diffusivity is consistent with the
long term dependence of time for the MSD of a granular gas, with a logaritmic dependence on time.
The diffusivity of a granular gas with ξ = 0.8 for the system in Figure 4.12 is given as a function of
time in Figure 4.15. An equivalent plot for a granular gas with ξ = 0.3, the system in Figure 4.13,
is presented in Figure 4.16. For the plots we infer that the model used for the diffusivity in this
thesis is in agreement with the simulation results for the MSD. We do however, as earlier, see that
the agreement is lower for lower values of the coefficient of restitution. In addition, the trend of a
higher diffusivity than we should expect as we saw for a molecular gas, is also present here. For us it
seems clear that the trend for a granular gas can be a manifestation that the model for the dynamics
of a granular gas based on kinetic theory [11] is a better fit for higher values of the coefficient
of restitution. The previous argument is hard to use for anything other than to collect thoughts
concerning the results for the MSD. We have not been able to locate any published results for the
MSD of a granular gas with a constant and low coefficient of restitution to see if they experienced
some of the same behaviour.

To explain why we achieve a higher diffusivity than expected is a complex and difficult topic. It
can be as simple as a result of numerical errors resulting from number representation, but that seems
very unlikely. There is also a possibility that the reduction of the molecular dynamics to only pairwise
particle collision results in an overestimation of some of the diffusion properties. Even though we
have done simulations for packing fractions where there should be few multi-particle interactions, it
is difficult to be certain that we capture the complete correct dynamics of a gas with this assumption,
as mentioned in [11, pp. 5–7]. It should also be mentioned again that the use of a finite number of

4.1. EVENT DRIVEN SIMULATION OF MANY-PARTICLE SYSTEMS 75

10−2 10−1 100 101 102 103

t

10−3

10−2

10−1

100
D

(t
)

D
0

Numerical values
1

1+t/τ0

Figure 4.15: Similar plot as Figure 4.14 for the system of a granular gas with ξ = 0.8 addressed in
Figure 4.12. From the plot we can see that the diffusivity of a granular gas follows the prediction in (2.51)
when the MSD in Figure 4.12 has entered the region with a logarithmic dependence on time.

10−2 10−1 100 101 102 103

t

10−3

10−2

10−1

100

D
(t

)
D

0

Numerical values
1

1+t/τ0

Figure 4.16: Similar plot as Figure 4.14 for the system of a granular gas with ξ = 0.3 addressed in
Figure 4.13. Compared to the result for the granular gas with ξ = 0.8 in Figure 4.15, we do see the same
behaviour for the diffusivity, but the numerical values do not show the same agreement with the theory in
(2.51).

particles for numerical simulations makes it impossible to simulate an infinite system, which is often
the idealization used for theory. Additionally, we have only subtracted the mean velocity along each
axis at the beginning of each simulation. As time is incremented it is possible that the system at
some point starts to move with a velocity in a direction. The last case would however probably give
contributions to the MSD in a manner that would make the agreement between the numerical and
theoretical values worse that we have seen. Due to the limited applications of such a simple model
as used in this thesis, with a constant coefficient of restitution, it should maybe be left as an open
topic.

76 CHAPTER 4. RESULTS AND DISCUSSION

4.2 Numerical solutions of SDEs describing Brownian motion

In addition to the results from the event driven simulation we want to see what kind of results we
can achieve by solving SDEs describing Brownian motion numerically. By solving such equations,
with similar results as the event driven simulation, we can verify the use of Langevin dynamics to
model the dynamics of a granular system. We will start with the underdamped Langevin equation,
where the solution as derived in section 2.9 exhibits the same velocity autocorrelation function as a
molecular gas. Systems with the same velocity autocorrelation function should provide equivalent
results for the MSD. We will continue by looking at UDSBM, a model used to approximate a
granular gas. The solution to UDSBM does not provide the same velocity autocorrelation function
as a granular gas, but a granular gas and the solution to UDSBM produce expressions for the
MSD which converge to the same expression in the limit γ0τ0 � 1. They do regardless exhibit the
same asymptotic behaviour in (2.80). We have solved the SDEs numerically by applying the Euler-
Maruyama approximation, introduced in section 2.9. In the end we will look at the time averaged
MSD in order to see if we manage to capture the ergodic property, i.e. to see if the time averaged
MSD is equal to the ensemble MSD, of the different particles we try to model using SDEs. Hence
we expect a non-ergodic system for the solution to UDSBM, and an ergodic system for the solution
to the underdamped Langevin equation. The non-ergodic system given by UDSBM is a result of
UDSBM modelling a granular gas, which is a non-ergodic system [see 15].

In the implemented iterative scheme for the Euler-Maruyama method we solve the SDE for
N = 1000 equal particles at the same time by using vector operations. We have then taken the
average of several runs, as we did for the results from the event driven simulations. As we solve
an SDE for a single particle without considering the other particles we can compute the MSD for
a system of a varying degree of number of particles by using the correct values for the diffusion
and friction coefficients. In that regard we pretend to have a system of N = 1000 equal particles
and compute the coefficients corresponding to this system while we in the iterative scheme solve the
SDE for each particle without considering the others. We have however used the same parameters
and systems as for the results of the event driven simulation to produce comparable results. The
diffusivity and friction coefficients, together with the velocity, determine the drift and diffusion (a
and b) coefficients which separate the different SDEs describing Brownian motion. The chosen value
for mass, radius, number of particles and the coefficient of restitution determines the constants τ0, γ0

and D0, but are not used explicitly in the iterative schemes.

4.2.1 Underdamped Langevin equation

In order to solve the Underdamped Langevin equation we have used the iterative scheme given in
(2.92). For the initial values of the positions and the velocities we have used that all N = 1000
particles start with the same position X = [0.5, 0.5, 0.5] and the velocity of each particle is given
by (3.3) for v0 =

√
2. The random force is approximated as a Wiener process, and each particle

thus gets a unique trajectory. We start by using the iterative scheme to compute the velocity and
position at each timestep, before computing the MSD as a function of time at each timestep. As
discussed earlier in section 2.9, the velocities of the particles are updated at each timestep, making
it necessary to use a low value for the timestep to get the correct short time dependence of the
MSD. For the solution to the underdamped Langevin equation we achieved an MSD as a function
of time given in Figure 4.17, computed with the timestep ∆t = 0.01 and given as the average of 4
runs. If we compare the results for the underdamped Langevin equation with the results from the
event driven simulation (see Figure 4.11) we see a similar excellent agreement between theory and
numerical values in Figure 4.17. Actually, we will see that the results for the numerical solution to
the SDEs exhibit a trend where the agreement between theory and numerical results are somewhat
better than what was the case for the event driven simulations.

For a molecular gas we assume a constant friction coefficient, γ0, and diffusivity, D0, computed

4.2. NUMERICAL SOLUTIONS OF SDES DESCRIBING BROWNIAN MOTION 77

10−2 10−1 100 101 102

t

10−3

10−2

10−1

100

101
〈(x

(t
)
−
x

0
)2
〉

Numerical values

Theoretical values

Figure 4.17: Plot of the MSD for the solution of the underdamped Langevin equation by applying the
Euler-Maruyama method as a function of time. The computed results (blue line) are given for a set of
N = 1000 particles with radius r = 0.025L, and are presented as the average of 4 different runs, computed
with ∆t = 0.01. The theoretical values (black dashed line) are given by the expression for a molecular gas
given in (2.79). The plot gives similar results as the event driven simulation of molecular gas in Figure 4.11,
with a ballistic period before changing to a linear dependence of time for the MSD.

from (2.55) and (2.52). We can thus see from the coefficients of the drift and diffusion in (2.91) that
the only time dependence is given by the velocity. That is not the case for UDSBM, but we can use
the same implementation by adding a time dependent friction coefficient and diffusivity.

4.2.2 UDSBM
We now turn to the case of UDSBM, used to model the dynamics of the particles in a granular gas.
In order to solve UDSBM as an SDE we have used the iterative scheme given in (2.110). For the case
of UDSBM we used the same initial conditions as for the solution to the underdamped Langevin
equation. The dependence of time for the friction coefficient and the diffusivity in (2.54) and (2.51)
are used to compute the correct coefficients a and b given by (2.109) at each timestep. The results
for the MSD computed from the numerical solution to UDSBM are given for a system with ξ = 0.8
in Figure 4.18 and a system with ξ = 0.5 in Figure 4.19. For the computation we have used the
timestep ∆t = 0.01 and the results are given as the average of 4 runs, and we compare the results
with the theoretical prediction from (2.113). As expected, we can see in Figure 4.18 and Figure 4.19
that we achieve the same asymptotic behaviour of the MSD as we saw for a granular gas, with an
initial ballistic period before a logarithmic dependence on time, associated with systems exhibiting
ultraslow diffusion properties. For higher values of the coefficient of restitution, e.g. ξ = 0.8, the
MSD of the solution to UDSBM is a good match with the equivalent event driven simulation for a
granular gas. This is clear by comparing the plots in Figure 4.12 and Figure 4.18. In addition to the
simulations presented here we have also gotten similar results for the one-dimensional system (not
shown here) of UDSBM given in [see 25, pp. 8–9]. By comparing the obtained results with others,
we can be certain that we have implemented the Euler-Maruyama approximation correctly.

One thing to note is mismatch between theory and computed values for the MSD of the numerical
solution to UDSBM with parameters corresponding to ξ = 0.5. This is not a result of an increasing
error for lower values of the coefficient of restitution, but is a result of the difference between using
the correct initial condition for the speed as used in the derivation of the velocity autocorrelation
function for UDSBM given in Appendix C. For the simulation we have used v0 =

√
2, in agreement

with the event driven simulations of a granular gas. As it turns out the mismatch is a result of

78 CHAPTER 4. RESULTS AND DISCUSSION

10−2 10−1 100 101 102

t

10−3

10−2

10−1

100
〈(x

(t
)
−
x

0
)2
〉

Numerical values

Theoretical values

Figure 4.18: Plot of the MSD for the solution to UDSBM by applying the Euler-Maruyama method in
(2.110) as a function of time. The constants τ0, γ0 and D0 have been computed for a system of 1000 particles
with a radius r = 0.025L and a coefficient of restitution ξ = 0.8. The computed values (blue line) are given
as the average of 4 different runs, computed with ∆t = 0.01. The theoretical values (black dashed line) are
given by (2.113), which are similar to the expression for a granular gas for γ0τ0 � 1. From the plot we can
see the same asymptotic behaviour for UDSBM as we saw for a granular gas in Figure 4.12, with a ballistic
period before the MSD scales logarithmically with time, as expected for a system with ultraslow diffusion
properties.

10−2 10−1 100 101 102

t

10−3

10−2

10−1

100

〈(x
(t

)
−
x

0
)2
〉

Numerical values

Theoretical values

Figure 4.19: Similar plot as Figure 4.18, but for a system with ξ = 0.5.

the fact that the limit γ0τ0 � 1 is not true for low values of the coefficient of restitution. In
fact, based on the expression for τ0 in (2.45), γ0 from (2.55) and D0 from (2.52)2 we can see that
γ0τ0 ∝ (1 + ξ)2/(1− ξ2), and is thus an increasing function of ξ. For high values of the coefficient of
restitution we will thus experience a better agreement with theory by using v0 =

√
2, as seen in the

results, compared to the correct value from theory v0 =
√

(D0γ2
0τ0)/(γ0τ0 − 1) (see Appendix C).

From the plot in Figure 4.19 we can also see that the long term behaviour of the MSD converges to
the correct behaviour regardless of the correct initial conditions from the theory.

2It might seem strange at first to refer to D0 when talking about τ0γ0, but remember that we use D0 to compute
γ0 due to the relation between the diffusion coefficient and the friction coefficient in (2.53).

4.2. NUMERICAL SOLUTIONS OF SDES DESCRIBING BROWNIAN MOTION 79

10−2 10−1 100 101 102 103

t

10−4

10−3

10−2

10−1

100

101

102

103
〈(x

(t
)
−
x

0
)2
〉

dt = 0.01

dt = 0.1

dt = 1.0

Figure 4.20: Similar plot as Figure 4.18, but the computed values are given for three different solutions
with a different timestep. In the plot we can see the solution for ∆t = 0.01 (blue line), the solution computed
with ∆t = 0.1 (red line) and the solution with ∆t = 1 (purple line). In the plot we can see that all solutions
converges towards the same results, but in order to get the correct short term behaviour we need a low value
for the timestep. The results are given as the average of 4 runs.

For the plots in Figure 4.18 and Figure 4.19 we have used ∆t = 0.01 in the results. The choice
of the timestep is crucial in more than one way. First of all we do need a low value to capture the
short term behaviour of the MSD. Additionally, due to only updating the velocity at each timestep
we need to update a given number of times in order to capture the correct dynamics. We could
never expect to see the logarithmic dependence from the correct time for the MSD by choosing a
∆t � 1 simply because the velocities of the particles need a number of updates before starting to
display the ulstraslow diffusion properties. In order to display the effect of the choice of ∆t we have
in Figure 4.20 plotted the MSD of the solution to UDSBM for the parameters matching ξ = 0.8 for
different choices of ∆t ∈ [0.01, 0.1, 1]. As we can see from Figure 4.20 all the different simulations
manage to capture the long term behaviour of the MSD eventually, whereas the computed values
provide a better agreement with theory for smaller values of the timestep as expected.

There is some interesting behaviour regarding the solution with ∆t = 1 we would like to address.
Remember that we approximate the random term, modelling the particle collisions, as a Wiener
process, and the difference in a Wiener process is ∼ N (0,∆t). For high values of the timestep, we
can thus get changes in the velocity of a high magnitude, that will vary greatly from simulation
to simulation. Additionally, when we do not update the position and velocities that often we will
thus get values for the MSD not corresponding with any theoretical predictions. We are actually
a bit surprised that the MSD converges to the theoretical predictions for the long term behaviour.
As a matter of fact we did also try higher values for the timestep (not shown here). The results
showed even stranger behavior, before converging to a logarithmic dependence not consistent with
the values proposed by theory.

4.2.3 Ergodicity
As a result of using the iterative Euler-Maruyama method to solve the SDEs describing Brownian
motion for a total of N particles at the same time, we have access to all particle positions at all
times. This is actually an easy way to get memory problems by combining a high N and tstop with
a low ∆t. We have used the solutions to the SDEs to display the ergodicity found for the solution
to underdamped Langevin equation, whereas due to the non-ergodic behaviour of a granular gas we
expect to find non-ergodic behaviour for the solution to UDSBM. Hence we want to compare the

80 CHAPTER 4. RESULTS AND DISCUSSION

10−2 10−1 100 101 102

t,∆

10−3

10−2

10−1

100

101
〈(x

(t
)
−
x

0
)2
〉,
〈δ

2
(∆

)〉
Ensemble MSD

Time averaged MSD

Figure 4.21: Plot of the ensemble (blue line) and time averaged MSD (red line) for the numerical solution
to the underdamped Langevin equation as a function of time, t, and lag time, ∆, respectively. The computed
values have been obtained for a system of N = 1000 particles with a radius r = 0.025L giving the constants
τ0, γ0 and D0, which are used in the computation of the a and b coefficients each timestep. The values
presented have been computed with ∆t = 0.01, simulated until tstop = 100, and are given as the average of
4 different runs. The time averaged MSD has been computed from (2.115) with Simpson’s rule by using all
particle positions at each timestep. From the plot we can see that the ensemble and the time averaged MSD
are identical, as expected for an ergodic system.

ensemble MSD with the time averaged MSD given from (2.115).
A molecular gas, and thus the solution to the underdamped Langevin equation, is a system for

which we expect to find the ergodic property, given in (2.114), where the time averaged MSD as a
function of the lag time, ∆, is equal to the ensemble MSD, which we for most of this report have
only referred to as the MSD. In order to compute the time averaged MSD we have computed the
three-dimensional equivalent of the expression in (2.115), where the t is equal to the tstop used in the
numerical solution to the SDE. We have computed the time averaged MSD with the same resolution
for ∆ as we have for the positions, namely ∆t, using Simpson’s rule from SciPy3. The ensemble and
the time averaged MSD of the solution to the underdamped Langevin equation as a function of ∆
and t respectively is given in Figure 4.21 for the same system as we used to provide the simulation
results for the solution to the underdamped Langevin equation. As we can see in Figure 4.21 the
ensemble and the time averaged MSD are identical, as expected for an ergodic system. The topic of
ergodicity for the underdamped Langevin equation is also discussed briefly in [25, p. 3].

A granular gas, and thus the solution to UDSBM, is a system which we expect not to exhibit
the ergodic property in (2.114). The non-ergodic behaviour of granular gases is known, and is the
main topic of [15]. For parameters similar to a granular gas with ξ = 0.8, the ensemble and the
time averaged MSD of the solution to UDSBM are given in Figure 4.22. As we can see clearly
from Figure 4.22, UDSBM is a non-ergodic system where the ensemble and the time averaged MSD
are different. We also observe that the time averaged MSD depends on tstop, as illustrated by
comparing two different simulations in Figure 4.23. In addition from the results we can see the same
behaviour as achieved in the study performed in [15] and [25] for higher values of tstop in regards of
the development of the time averaged MSD as a function of the lag time.

3See https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simps.html for the documen-
tation.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simps.html

4.2. NUMERICAL SOLUTIONS OF SDES DESCRIBING BROWNIAN MOTION 81

10−2 10−1 100 101 102

t,∆

10−5

10−4

10−3

10−2

10−1

100

〈(x
(t

)
−
x

0
)2
〉,
〈δ

2
(∆

)〉

Ensemble MSD

Time averaged MSD

Figure 4.22: Similar plot as Figure 4.21, but for the solution to UDSBM with the constants τ0, γ0 and
D0 corresponding to a coefficient of restitution ξ = 0.8. From the plot we can see that the ensemble and
the time averaged MSD are different. Even though the time averaged MSD start with the same quadratic
dependence on time as the ensemble MSD, the time averaged MSD does not become logarithmic.

10−2 10−1 100 101 102

∆

10−5

10−4

10−3

10−2

10−1

100

〈δ
2
(∆

)〉

tstop =10

tstop =100

Figure 4.23: Plot of the effect of tstop on the time averaged MSD for numerical solution to UDSBM. In the
plot we have given the simulation results for tstop = 10 (blue line) and the simulation results for tstop = 100
(red line). From the plot we can see that they are different, but do scale somewhat similarly in the region
where we can compare the two. The difference for larger values of tstop is similar as the results given in Fig.
2 in [15].

82 CHAPTER 4. RESULTS AND DISCUSSION

Chapter 5

Further Work

There exist a variety of different topics suitable for further work based on this thesis both in the area
of granular gas dynamics, and in other fields. These topics can roughly be sorted in three different
categories. We will start by mentioning other aspects of granular gas dynamics, which already have
been briefly mentioned throughout the theory in chapter 2 and the numerical modelling in chapter 3.
We will then present some possible improvements to the implemented event driven simulation, before
moving to the more open category of different uses for a similar type of event driven simulation.

There are some different topics in the area of granular gas dynamics which could be interesting
to explore more in detail. One of these is the case of viscoelastic particles, where the coefficient of
restitution is a function of the relative velocity. Due to the dependence of the relative velocity we
get a different dependence of time for the decay of granular temperature, given by Haff’s law [see 11,
pp. 51–54]. As the temperature evolves differently, we also achieve a different dependence of time for
the MSD of a granular gas, where a granular gas of viscoelastic particles exhibits a propertiy known
as subdiffusion where the MSD ∝ t1/6 [see 11, pp. 142–143]. For such a system we see a clustering
phase as for a constant coefficient of restitution, before we get a cluster dissolution as the coefficient
of restitution approaches unity for low values of the relative velocity [see 5, pp. 181–184].

The topic of clustering and how a granular gas behaves when it is not longer in the homogeneous
cooling state is another topic which can, and should, be studied further in order to gain more
insight into the dynamics of a granular gas. In addition to the molecular dynamics simulation of
a granular gas, it is possible to use Monte Carlo simulations to study a granular gas by looking
at a hydrodynamic description used to solve the Boltzmann equation [see 5, pp. 191–210]. As it
turns out, the use of hydrodynamic description may be necessary to fully describe a system of many
particles, commonly applied in computational fluid dynamics [see 37]. The Boltzmann equation,
hydrodynamic descriptions and the use of transport phenomenon for granular gases are presented in
[3, 11], which is a natural place to start if one wants to study structure formation or use Monte Carlo
simulations to study the hydrodynamics description of a granular gas. It is also possible to study
a granular gas with a force description, where one can implement a molecular dynamics simulation
and solve Newton’s equation of motion. For such a simulation one could use different potentials
to model the interactions between the particles. For an introduction to theory for more complex
granular systems, such as driven systems, see [3]. Molecular dynamics simulations are, in spite of a
simple conceptual idea, a very diverse topic and there exists a lot of literature which can serve both
as an introduction and as a recipe for efficient algorithms, see e.g. [16].

From the way we have used SDEs to model similar dynamics as we have seen in the event driven
simulation, it seems natural to assume that by adding additional forces or terms to the Langevin
equations one can study both the interacting forces between the particles in a granular gas as well
as the addition of external forces. The use of a general Langevin equation to model some granular
systems is discussed in [5, pp. 293–301].

83

84 CHAPTER 5. FURTHER WORK

In order to improve the implemented event driven simulation one must first have a good un-
derstanding of the basis of the event driven simulation. We have implemented the event driven
simulation with a priority queue for all future collisions, and the essence of the simulation is using
the priority queue with the collisions rule in order to perform the correct sequence of collisions. By
splitting the system into a set of boxes we can use the boxes to only store the future collisions for
particles in the same or the neighbouring box. As long as the box is larger than the particle diameter
we only need to consider the particles in the same box and the neighbouring boxes. This is the same
principle as we used in the implementation of the PBC. The same procedure can be used for smaller
boxes inside the system in order to not compute when particles far away will collide. We can then
implement PBC by knowing which are the correct neighbouring boxes for the edge boxes. Note that
we would have to compute all future collisions every time a particle cross into another box. The use
of many boxes is discussed in the improved algorithm in [see 5, pp. 160–168], together with a few
other possible improvements. This scheme can also be used to perform an event driven simulation in
parallel as discussed in [38]. Such a modification can be necessary for simulations of many particles
as the number of collisions in the priority queue can cause memory problems if we add all collisions
as we have done in the implementation.

One additional improvement is to use a priority queue based on a more complex heap than what
is the case for heapq in Python. It is also possible to explore other data structures to save the
collisions, where it is possible to delete invalid entries, such as the collisions we have to discard
when comparing the collision count. As such structures quickly become non-trivial we are somewhat
uncertain that it is possible to use a better one for the implementation. It might still be worth to
explore, but one will most likely get a much better improvement by exploring options to get fewer
entries in the priority queue as discussed above. For a possible way to use an approach where we
delete invalid entries see [16, pp. 391–417]. The use of several boxes in a system can also make
use of different times in order to minimize the number of times we update the e.g. position of all
the particles in order to minimize the error resulting from number representation. For simple speed
enhancement, it is possible to write an equivalent program using a compiled programming language
such as C or Fortran1.

As we saw in the introduction in chapter 1, there are numerous fields where one can use an
event driven simulation. Here we will focus on the different areas where the same event driven
simulation as we have used in the study of granular gases can be used. The first we would like to
discuss is the area of studying the spread of disease in a population. As a matter of fact, we have
used the implemented event driven simulation to do some basic studies of how many people need to
be at rest2 in a two-dimensional system before a disease does not reach the entire population, and
keep the immediately need for medical help at a given time under some control. This simulation
was performed by infecting a random particle with a disease, and let future collision partners be
infected if they are healthy. All particles could spread the disease a time after being infected before
recovering and becoming immune. Even for such a simplified simulation we did see great effect for
social distancing as a mean to flatten the curve. It could be interesting to use such an event driven
simulation to see how different social changes can affect the spread of disease. Whereas it is hard
to see other uses for the exact same event driven simulation, the use of time driven simulations are
used both in the area of active matter and molecular dynamics in general. The area of solving SDEs
numerically, and creating simulation tools have many different applications, and we would be glad
if the work in this thesis inspired others to use similar approaches to study other problems.

1It should here be mentioned that in Python one can often use somewhat simple tricks of e.g. using a list of
both integers and floats, which does not make the code directly translatable, but there should exist similar equivalent
libraries to get the same straightforward implementation. One can implement the same parallelization scheme as we
have done with Joblib by using OpenMP for instance.

2We modelled these people using social distancing by not allowing them them to move. This was achieved by
giving them a large mass such that particles bounced off them almost like a wall interaction. We also used a collision
rule where we never let the people at rest achieve a non-zero velocity.

Chapter 6

Conclusion

To conclude, the work done in this master’s thesis has been mainly to implement and verify two
simulation methods to study many-particle systems, with a set of particles colliding in a cubic box.
The main objective was to create an event driven simulation in order to perform molecular dynamics
simulations. In addition, we have used Langevin equations to approximate the dynamics of different
types of particles in order to see if we can get the same type of results for Langevin dynamics as we did
for the event driven simulation. The results presented in chapter 4 show an excellent agreement with
theoretical predictions, both for the case of speed distributions, the evolution of granular temperature
and how the MSD evolves in time for both a molecular and a granular gas. The Langevin equations
of interest to model a molecular and a granular gas were the underdamped Langevin equation and
UDSBM respectivly. We solved these SDEs describing Brownian motion by implementing the simple,
yet powerful, Euler-Maruyama method. By comparing the use of an event driven simulation and
the numerical solution to SDEs we see that both methods seem to capture the correct dynamics for
both a molecular and a granular gas. One of the major accomplishments has been to verify that a
granular gas exhibits what is known as anomalous diffusion, while a molecular gas exhibits normal
diffusion as predicted by Einstein in [23]. As a result of the agreement between numerical values
and theory we infer that the reduction of a molecular dynamics simulation to a series of successive
pairwise particle collision is very useful tool to study many-particle systems for the packing fractions
studied in this project based on predictions from kinetic theory. The implementation of both RBC
and PBC makes it possible to choose the most appropriate for different applications. Based on the
results achieved throughout this thesis we are aware that one should prefer PBC to RBC, in order to
achieve results representing kinetic theory for granular gases, which is derived without considering
boundary conditions.

In comparison with the code used for the specialization project [1], the code used for the master’s
thesis is a vast improvement. The choice of studying three-dimensional systems with PBC instead of
two-dimensional systems with RBC has made a great impact for the agreement between simulation
results and theoretical predictions. By making it possible to do simulations in parallel we also
explore some of the strengths of modern computers, namely the number of available cores. The use
of HPC has also been an educational experience, as it is natural to use HPC to conduct simulations
of systems with a higher number of particles than we have used for this thesis. In general this
experience has introduced a number of different interesting topics, which was unknown prior to this
project, such as granular gases, the use of SDEs and the need for general structured code which can
be utilized by others if desirable. It is easy to implement a new and different event driven simulation
using the same structure as we have done, inspired by the flow chart in Figure 3.1.

As we did not study the MSD of a granular gas in [1] it is difficult to know if it was possible to
obtain good results for a granular gas with the implemented simulation at that time. Compared to
the work in [1] the work done in this thesis is more complete, both in terms of the implementation

85

86 CHAPTER 6. CONCLUSION

and the theoretical predictions used to compare with the numerical results. However, it must also
be noted that the work done in [1] was a foundation which the current implementation and thesis
greatly benefited from.

While we have only looked at a few topics for a granular gas, some of which who have been
studied in detail by many authors, we do acknowledge that in order to study some of the more
complex topics, such as cluster formation and long term behaviour of granular gases, one needs to
have a great understanding of some of the more basic concepts. As per the intention of this thesis,
we wanted to build from scratch simulation tools which are used by several, but not discussed in
great detail. Considering this, we have succeeded both in creating a reliable and varied simulation
tool, and in understanding and learning about new interesting topics. In that regard, we hope that
this thesis can inspire others to work in the interesting field of granular materials, or to use event
driven simulations to study different topics, may it be granular gases or other such as the spread of
disease. The work done for this thesis can also be used as a basis for a further study in the area
of granular gas dynamics by looking at the suggested improvements and further topics discussed in
chapter 5.

References

[1] Aleksander Gjersvoll. “Granular gas dynamics”. Specialization project, Department of Physics,
NTNU. Unpublished, but can be provided upon request. Dec. 2019.

[2] Stefan Luding and Thorsten Pöschel. Granular Gases. Springer, 2001.
[3] Vicente Garzó. Granular Gaseous Flows : A Kinetic Theory Approach to Granular Gaseous

Flows. 1st ed. Cham: Springer International Publishing : Imprint: Springer, 2019.
[4] R. A Bagnold. The Physics of Blown Sand and Desert Dunes. Dordrecht: Springer Netherlands,

1974.
[5] Thorsten Pöschel and Thomas Schwager. Computational granular dynamics: Models and algo-

rithms. Springer, 2005.
[6] P. G. de Gennes. “Granular matter: a tentative view”. In: Rev. Mod. Phys. 71 (2 Mar. 1999),

S374–S382. doi: 10.1103/RevModPhys.71.S374.
[7] Igor S. Aranson and Lev S. Tsimring. “Patterns and collective behavior in granular media:

Theoretical concepts”. In: Rev. Mod. Phys. 78 (2 June 2006), pp. 641–692. doi: 10.1103/
RevModPhys.78.641.

[8] Xiaobo Nie, Eli Ben-Naim, and Shiyi Chen. “Dynamics of Freely Cooling Granular Gases”. In:
Phys. Rev. Lett. 89 (20 Oct. 2002), p. 204301. doi: 10.1103/PhysRevLett.89.204301.

[9] I. Goldhirsch and G. Zanetti. “Clustering instability in dissipative gases”. In: Phys. Rev. Lett.
70 (11 Mar. 1993), pp. 1619–1622. doi: 10.1103/PhysRevLett.70.1619.

[10] PC Hemmer. Termisk fysikk. 2nd ed. Fagbokforlaget Vigmostand & Bjørke AS, 2002.
[11] Nikolai V. Brilliantov and Thorsten Pöschel. Kinetic Theory of Granular Gases. Oxford Uni-

versity Press, 2004.
[12] Alain Barrat and Emmanuel Trizac. “Molecular dynamics simulations of vibrated granular

gases”. In: Phys. Rev. E 66 (5 Nov. 2002), p. 051303. doi: 10.1103/PhysRevE.66.051303.
[13] Prasenjit Das, Sanjay Puri, and Moshe Schwartz. “Clustering and velocity distributions in

granular gases cooling by solid friction”. In: Phys. Rev. E 94 (3 Sept. 2016), p. 032907. doi:
10.1103/PhysRevE.94.032907.

[14] Wen-Guang Wang et al. “Experimental and numerical study on energy dissipation in freely
cooling granular gases under microgravity”. In: Chinese Physics B 27.8 (Aug. 2018), p. 084501.
doi: 10.1088/1674-1056/27/8/084501.

[15] Anna Bodrova et al. “Quantifying non-ergodic dynamics of force-free granular gases”. In: Phys.
Chem. Chem. Phys. 17 (34 2015), pp. 21791–21798. doi: 10.1039/C5CP02824H.

[16] D. C Rapaport. The Art of Molecular Dynamics Simulation. 2nd ed. Cambridge University
Press, 2004.

[17] Christian Scholz and Thorsten Pöschel. “Velocity Distribution of a Homogeneously Driven
Two-Dimensional Granular Gas”. In: Phys. Rev. Lett. 118 (19 May 2017), p. 198003. doi:
10.1103/PhysRevLett.118.198003.

87

https://doi.org/10.1103/RevModPhys.71.S374
https://doi.org/10.1103/RevModPhys.78.641
https://doi.org/10.1103/RevModPhys.78.641
https://doi.org/10.1103/PhysRevLett.89.204301
https://doi.org/10.1103/PhysRevLett.70.1619
https://doi.org/10.1103/PhysRevE.66.051303
https://doi.org/10.1103/PhysRevE.94.032907
https://doi.org/10.1088/1674-1056/27/8/084501
https://doi.org/10.1039/C5CP02824H
https://doi.org/10.1103/PhysRevLett.118.198003

88 REFERENCES

[18] Stefan Luding and Sean McNamara. “How to handle the inelastic collapse of a dissipative
hard-sphere gas with the TC model”. In: Granular Matter. Vol. 1. Springer, 1998, pp. 113–128.

[19] Sean McNamara and W. R. Young. “Inelastic collapse in two dimensions”. In: Phys. Rev. E
50 (1 July 1994). doi: 10.1103/PhysRevE.50.R28.

[20] Patrick Billingsley. Probability and Measure. 3rd ed. Wiley, 1995.

[21] Jens O. Andersen. Introduction to Statistical Mechanics. Fagbokforlaget Vigmostand & Bjørke
AS, 2012.

[22] P. K. Haff. “Grain flow as a fluid-mechanical phenomenon”. In: Journal of Fluid Mechanics
134 (1983), pp. 401–430. doi: 10.1017/S0022112083003419.

[23] Albert Einstein. “Über die von der molekularkinetischen Theorie der Wärme geforderte Be-
wegung von in ruhenden Flüssigkeiten suspendierten Teilchen. (German) [On the Motion of
Small Particles Suspended in Liquids at Rest Required by the Molecular-Kinetic Theory of
Heat]”. In: Annalen der Physik 322.8 (1905), pp. 549–560. doi: https://doi.org/10.1002/
andp.19053220806.

[24] Christian Henrique, George Batrouni, and Daniel Bideau. “Diffusion process in Two-Dimensional
Granular Gases”. In: Granular Gases. Springer, 2001. Chap. I, pp. 140–149.

[25] Anna S Bodrova et al. “Underdamped scaled Brownian motion:(non-) existence of the over-
damped limit in anomalous diffusion”. In: Scientific reports 6 (2016), p. 30520. doi: https:
//doi.org/10.1038/srep30520.

[26] Ralf Metzler et al. “Anomalous diffusion models and their properties: non-stationarity, non-
ergodicity, and ageing at the centenary of single particle tracking”. In: Phys. Chem. Chem.
Phys. 16 (44 2014), pp. 24128–24164. doi: 10.1039/C4CP03465A.

[27] Anna Bodrova et al. “Intermediate Regimes in Granular Brownian Motion: Superdiffusion and
Subdiffusion”. In: Phys. Rev. Lett. 109 (17 Oct. 2012), p. 178001. doi: 10.1103/PhysRevLett.
109.178001.

[28] Anna S Bodrova et al. “Ultraslow scaled Brownian motion”. In: New Journal of Physics 17.6
(June 2015), p. 063038. doi: 10.1088/1367-2630/17/6/063038.

[29] S. C. Lim and S. V. Muniandy. “Self-similar Gaussian processes for modeling anomalous dif-
fusion”. In: Phys. Rev. E 66 (2 Aug. 2002), p. 021114. doi: 10.1103/PhysRevE.66.021114.

[30] Hadiseh Safdari et al. “Aging underdamped scaled Brownian motion: Ensemble- and time-
averaged particle displacements, nonergodicity, and the failure of the overdamping approxima-
tion”. In: Phys. Rev. E 95 (1 Jan. 2017), p. 012120. doi: 10.1103/PhysRevE.95.012120.

[31] Ioannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus. 2nd ed.
Springer, 1998.

[32] R Kubo. “The fluctuation-dissipation theorem”. In: Reports on Progress in Physics 29.1 (Jan.
1966), pp. 255–284. doi: 10.1088/0034-4885/29/1/306.

[33] Don S. Lemons and Anthony Gythiel. “Paul Langevin’s 1908 paper “On the Theory of Brownian
Motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533
(1908)]”. In: American Journal of Physics 65.11 (1997), pp. 1079–1081. doi: 10.1119/1.18725.

[34] Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differential Equations.
Springer, 1999.

[35] Domokos Szász. “Boltzmann’s ergodic hypothesis, a conjecture for centuries?” In: Studia Sci-
entiarum Mathematicarum Hungarica 31.1 (1996), pp. 299–322.

[36] Thomas H. Cormen et al. Introduction to algorithms. 3rd ed. The MIT Press, 2009.

https://doi.org/10.1103/PhysRevE.50.R28
https://doi.org/10.1017/S0022112083003419
https://doi.org/https://doi.org/10.1002/andp.19053220806
https://doi.org/https://doi.org/10.1002/andp.19053220806
https://doi.org/https://doi.org/10.1038/srep30520
https://doi.org/https://doi.org/10.1038/srep30520
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1103/PhysRevLett.109.178001
https://doi.org/10.1103/PhysRevLett.109.178001
https://doi.org/10.1088/1367-2630/17/6/063038
https://doi.org/10.1103/PhysRevE.66.021114
https://doi.org/10.1103/PhysRevE.95.012120
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1119/1.18725

REFERENCES 89

[37] John C. Tannehill, Dale A. Anderson, and Richard H. Pletcher. Computational Fluid Dynamics
and Heat Transfer. 2nd ed. Taylor & Francis, 1997.

[38] S. Miller and S. Luding. “Event-driven molecular dynamics in parallel”. In: Journal of Com-
putational Physics 193.1 (2004), pp. 306–316. issn: 0021-9991. doi: https://doi.org/10.
1016/j.jcp.2003.08.009.

https://doi.org/https://doi.org/10.1016/j.jcp.2003.08.009
https://doi.org/https://doi.org/10.1016/j.jcp.2003.08.009

90 REFERENCES

Appendices

91

Appendix A

Coefficient of restitution for an elastic
collision in one dimension

One possible way of deriving the expression for the coefficient of restitution is to look at the equa-
tions for an elastic one-dimensional collision, the system illustrated in Figure 2.1. Conservation of
momentum and kinetic energy gives the following relations

mivi +mjvj = miv
′
i +mjv

′
j , (A.1a)

1

2
miv

2
i +

1

2
mjv

2
j =

1

2
miv

′2
i +

1

2
mjv

′2
j , (A.1b)

where we, as in the report, have used ′ to denote the velocities after the collision. By rearranging
terms in the conservation laws we get

mi(vi − v′i) = mj(v
′
j − vj), (A.2a)

mi(v
2
i − v′2i) = mj(v

′2
j − v2

j). (A.2b)

The expression in equation (A.2b) can also be written in the following way

mi(vi + v′i)(vi − v′i) = mj(v
′
j − vj)(v′j + vj). (A.3)

By dividing the expression in (A.3) with the expression in (A.2a) we achieve the following relation
for the velocities

vi + v′i = v′j + vj . (A.4)

The expression in (A.4) can be rearranged to be given by the relative velocities in the following
expression

v′j − v′i = −(vj − vi). (A.5)

For an elastic collision, ξ = 1, and the expression for the coefficient of restitution can therefore be
retrieved as the ratio of the relative velocities

ξ = 1 = −
v′j − v′i
vj − vi

. (A.6)

93

94APPENDIX A. COEFFICIENT OF RESTITUTION FOR AN ELASTIC COLLISION IN ONE DIMENSION

Appendix B

Energy dissipation of an inelastic
collision

An important characteristic of an inelastic collision is the amount of dissipated energy from a single
collision between two particles. A priori we know that the dissipated energy should follow a few
intuitive properties. We know that the expression for the energy dissipated is dependent on the
coefficient of restitution, and the expression reduces to zero for a elastic collision, given by ξ = 1. In
addition, we should expect to see that the energy dissipated is a result of the energy of the particles
before the collision. The latter is simply a result of that we can only lose part of what we already
have. The energy dissipated from a single particle-particle collision can be derived from the the
post-collision velocities given in (2.10) and (2.11). If the particles have equal mass, we end up with
the following collision rule

v′i = vi +

(
(1 + ξ)

∆vij ·∆xij
2R2

ij

)
∆xij , (B.1a)

v′j = vj −
(

(1 + ξ)
∆vij ·∆xij

2R2
ij

)
∆xij . (B.1b)

The kinetic energy of the particles before the collision is given as

E =
1

2
m(v2

i + v2
j), (B.2)

while the kinetic energy after the collision is given as

E′ =
1

2
m(v′2i + v′2j). (B.3)

The difference in the energy prior to and after the collision is equal to the dissipated energy ∆E′.
Hence we can give the following expression for the dissipated energy

∆E′ = E′ − E =
1

2
m(v′2i + v′2j − v2

i − v2
j). (B.4)

In order to simplify the expression in (B.4) we will need the expression for the square speed of
the particles after the collision, v′2i and v′2j . Starting from (B.1a) and (B.1b) we get the following
expressions

v′2i = v2
i + ∆x2

ij

(
(1 + ξ)

∆vij ·∆xij
2R2

ij

)2

+ (1 + ξ)
∆vij ·∆xij

R2
ij

(vi ·∆xij), (B.5a)

95

96 APPENDIX B. ENERGY DISSIPATION OF AN INELASTIC COLLISION

v′2j = v2
j + ∆x2

ij

(
(1 + ξ)

∆vij ·∆xij
2R2

ij

)2

− (1 + ξ)
∆vij ·∆xij

R2
ij

(vj ·∆xij). (B.5b)

By inserting the square speeds in (B.5a) and (B.5b) into (B.4) we get the following result for the
dissipated energy

∆E′ =
1

2
m

2∆x2
ij

(
(1 + ξ)

∆vij ·∆xij
2R2

ij

)2

+ (1 + ξ)
∆vij ·∆xij

R2
ij

(vi ·∆xij − vj ·∆xij)

=

1

2
m

2∆x2
ij

(
(1 + ξ)

∆vij ·∆xij
2R2

ij

)2

− (1 + ξ)
(∆vij ·∆xij)

2

R2
ij

=

1

2
m

(
(1 + ξ)

(
∆vij ·∆xij

Rij

)2(
1

2
(1 + ξ)− 1

))

= −1

4
m

(
(1− ξ2)

(
∆vij ·∆xij

Rij

)2
)
, (B.6)

where the expressions in (2.2) has been used to simplify the end result.
As a verification of the expression for the dissipated energy in (B.6) we must see if the expected

properties are present in the result. The first property which stands out is that for an elastic collision,
with ξ = 1, we get ∆E′ = 0. We can also see that for an inelastic collision, where ξ < 1, we obtain
∆E′ < 0, indicating that energy has dissipated. The last term gives the square component of the
relative velocity, ∆vij along n, where we refer to Figure 2.3 for an illustration. The relative velocity
is of the same order as the average velocity [see 22, p. 410]. The previous argument for a system of
particles with equal mass makes it possible to state that

∆E′ ∝ (1− ξ2)E. (B.7)

The statement in (B.7) is used in the derivation of the evolution of energy for a granular gas,
commonly known as Haff’s law (see section 2.6), where we use that the average dissipated energy
for a collision is proportional to the average particle energy, and thus the granular temperature.

Appendix C

The velocity autocorrelation function
of UDSBM

Here we will derive the velocity autocorrelation function of UDBSM, which is used to derive an
expression for the MSD of particles where the dynamics is determined by the second order ODE in
(2.106). The derivation presented here is similar as the one given for the underdamped Langevin
equation presented in the chapter 2, but is more complex due to the time-dependent coefficients
present in UDSBM compared to the underdamped Langevin equation. UDSBM is given by the
following ODE for the velocity

dv(t)

dt
= −γ(t)v(t) +

√
2D(t)γ(t)Γ(t) (C.1)

Eq. (C.1) can be handled as a linear ODE, where the help variable H is given as

H =

∫ t

0

dt′(−γ(t)) = −γ0

∫ t

0

dt′

1 + t′/τ0
= −γ0τ0 ln (1 + t/τ0).

Multiplying (C.1) with the integration factor exp (−H) = (1 + t/τ0)γ0τ0 gives us

dv(t)

dt
(1 + t/τ0)γ0τ0 + γ0v(t)(1 + t/τ0)γ0τ0−1 =

√
2D(t)γ(t)Γ(t)(1 + t/τ0)γ0τ0 , (C.2)

where we now see that the left hand side of (C.2) is equal to d
dt (v(t)(1 + t/τ0)γ0τ0). We can trus

rewrite (C.2) into the following form

d

dt
[v(t)(1 + t/τ0)γ0τ0] =

√
2D(t)γ(t)Γ(t)(1 + t/τ0)γ0τ0 . (C.3)

Integrating (C.3) with v(t = 0) = v0 as an initial condition leads to the following expression

v(t)(1 + t/τ0)γ0τ0 − v0 =

∫ t

0

dt′
√

2D(t′)γ(t′)Γ(t′)(1 + t′/τ0)γ0τ0 . (C.4)

The expression in (C.4) can be rewritten as a solution for the velocity given as

v(t) = v0(1 + t/τ0)−γ0τ0 + (1 + t/τ0)−γ0τ0
∫ t

0

dt′
√

2D(t′)γ(t′)Γ(t′)(1 + t′/τ0)γ0τ0 . (C.5)

Again, due to the random term we can not give an analytical expression for v(t). Using the moments
of Γ(t) in (2.88) we can still derive, as for the underdamped Langevin euqation, an expression for the

97

98 APPENDIX C. THE VELOCITY AUTOCORRELATION FUNCTION OF UDSBM

velocity autocorrelation function. The velocity autocorrelation function 〈v(t1)v(t2)〉 is then found
by using the expression in (C.5) giving

〈v(t1)v(t2)〉 =〈
[
v0(1 + t1/τ0)−γ0τ0 + (1 + t1/τ0)−γ0τ0

∫ t1

0

dt′
√

2D(t′)γ(t′)Γ(t′)(1 + t′/τ0)γ0τ0
]

·
[
v0(1 + t2/τ0)−γ0τ0 + (1 + t2/τ0)−γ0τ0

∫ t2

0

dt′′
√

2D(t′′)γ(t′′)Γ(t′′)(1 + t′′/τ0)γ0τ0
]
〉.

(C.6)

Due to the first moment of Γ(t) in (2.88a) the cross terms are equal to zero, reducing (C.6) to

〈v(t1)v(t2)〉 =〈v2
0〉(1 + t1/τ0)−γ0τ0(1 + t2/τ0)−γ0τ0 + (1 + t1/τ0)−γ0τ0(1 + t2/τ0)−γ0τ0

·
∫ t1

0

dt′
∫ t2

0

dt′′〈Γ(t′)Γ(t′′)〉
√

2D(t′)γ(t′)(1 + t′/τ0)γ0τ0
√

2D(t′′)γ(t′′)(1 + t′′/τ0)γ0τ0 .

(C.7)

Inserting the second moment of Γ(t) in (2.88b) into (2.99) and using the definition of the Dirac delta
function in a integral simplifies the expression for the velocity autocorrelation function further. We
obtain the following

〈v(t1)v(t2)〉 =〈v2
0〉(1 + t1/τ0)−γ0τ0(1 + t2/τ0)−γ0τ0

+ (1 + t1/τ0)−γ0τ0(1 + t2/τ0)−γ0τ0
∫ t1

0

dt′2D(t′)γ2(t′)(1 + t′/τ0)2γ0τ0 ,
(C.8)

where we have chosen to use the Dirac delta for the integral of dt′′ in order to ensure an expression
for which t2 ≥ t1 as needed for (2.59). Inserting the definition of γ(t) from (2.54) and D(t) from
(2.51) we get the following integral

〈v(t1)v(t2)〉 =〈v2
0〉(1 + t1/τ0)−γ0τ0(1 + t2/τ0)−γ0τ0

+ 2D0γ
2
0(1 + t1/τ0)−γ0τ0(1 + t2/τ0)−γ0τ0

∫ t1

0

dt′(1 + t′/τ0)2γ0τ0−3.
(C.9)

By performing the integral in (C.9) we get an expression for the velocity autocorrelation function
given as

〈v(t1)v(t2)〉 = (1 + t1/τ0)−γ0τ0(1 + t2/τ0)−γ0τ0
(
〈v2

0〉+
D0γ

2
0τ0

γ0τ0 − 1

(
(1 + t1/τ0)2γ0τ0−2 − 1

))
. (C.10)

If we choose the very convenient initial conditions where 〈v2
0〉 =

D0γ
2
0τ0

γ0τ0−1 , the expression in (C.10)
simplifies to

〈v(t1)v(t2)〉 =
D0γ

2
0τ0

γ0τ0 − 1
(1 + t1/τ0)γ0τ0−2(1 + t2/τ0)−γ0τ0 , (C.11)

which is the expression used in (2.111) for the velocity autocorrelation function for UDSBM. The
initial conditions coincide with the equipartition theorem for γ0τ0 � 1. If we call the constant in
(C.11) T0/m and insert t1 = t2 = t we achieve a similar dependence on time as Haff’s law in (2.40).
Note that for the expression in (2.111) we have used that D0γ0 = T0/m compared to the expression
in (C.11).

Appendix D

Computation of the time until a
particle-particle collision

Computing if and when a particle will collide with the other particles is the most time consuming
part of the implemented event driven simulation. A naive approach would for a given particle,
iterate through all possible collisions partners and compute if and when the particles will collide.
This would require a for-loop which would be done two times for each collision between two particles,
which is a process occurring numerous times when one tries to study the case of particles colliding
in a box. A more efficient approach can be computed by using vector operations, where we do
operations on an entire array using third-party packages in Python made for scientific computing in
Python, namely SciPy and NumPy. These packages provide wrappers to compiled and thus much
faster programming languages which reduce run time and provide the opportunity to avoid certain
for-loops, for instance the one presented in the naive approach.

The code utilized to compute the time until a particle collide with all other particles is given in
Listing 1, and illustrates some of the elegant optimizations one can achieve by using Python. The
function time_at_collision_particles is efficiently used to compute the quantity given in (2.20) by
using NumPy arrays and using the SciPy package to compute the norm of a vector. The function
belongs to the ParticleBox class, giving it access to the object parameters, which includes the
position, velocity, mass and radius of all particles with the shape given in Table E.1. The function
takes two input parameters, the particle number and the simulation time. The particle number is
used to identify the parameters of the particle in focus and the simulation time is used to scale the
time until collisions to the correct time in the simulation, for usage in the event driven simulation.
The implementation is based on the following steps

• Compute ∆xij , ∆vij , R2
ij , ∆v2

ij , ∆xij · ∆vij and d between the particle given by the input
parameter and all other particles in the system.

• Assume that the particle does not collide with any other particle by creating an array where
all elements are equal to ∞. This array is used to store the time until all collisions.

• Compute a boolean array which are true for the particles that the particle will collide with,
i.e. to identify the particles where d > 0 and ∆xij ·∆vij < 0.

• For all particles that the particle will collide with, identifiable from the boolean array, compute
the earliest non-negative collision given in the last case of (2.20).

• Compute the time of collision in the simulation by adding the simulation time, provided as an
input.

99

100APPENDIX D. COMPUTATION OF THE TIME UNTIL A PARTICLE-PARTICLE COLLISION

import numpy as np
from scipy.linalg import norm

def time_at_collision_particles(self, particle_number, simulation_time):
"""

Function that computes the time until a particle collides with all other particles
:param particle_number: the index of a particle in order to retrieve and/or update the particle data
:param simulation_time: is a float of the simulation time, used to get time for collisions in the simulation
:return: the time when particle particle_number will collide with all of the other particles
"""
difference from particle particle_number to all other particles
delta_x = self.positions - np.tile(self.positions[particle_number, :], reps=(len(self.positions), 1))
difference in velocity from particle particle_number to all other particles
delta_v = self.velocities - np.tile(self.velocities[particle_number, :], reps=(len(self.velocities), 1))
r_squared = (self.radii[particle_number] + self.radii) ** 2 # array of center to center distances
dvdx = np.sum(delta_v*delta_x, axis=1) # dot product between delta_v and delta_x
dvdv = np.sum(delta_v*delta_v, axis=1) # dot product between delta_v and delta_v
d = dvdx ** 2 - dvdv * (norm(delta_x, axis=1) ** 2 - r_squared) # help array quantity
time_until_collisions = np.ones(self.N)*np.inf # assume no particles is going to collide
boolean = np.logical_and(dvdx < 0, d > 0) # both these conditions must be valid particle-particle collision
check if there exist some valid particle-particle collisions for particle particle_number
if np.sum(boolean) > 0:

compute time until collision
time_until_collisions[boolean] = -1 * ((dvdx[boolean] + np.sqrt(d[boolean])) / (dvdv[boolean]))

return time_until_collisions + simulation_time

Listing 1: Implementation of how to compute the time until a particle collides with all other particles in
the system in Python.

Using the packages the computation of the quantities in the first step become very efficient. As
seen in Listing 1, there is no need for any direct for-loop in Python. This computation is still the
bottleneck of the simulation, but it is much more efficient than the introduced naive approach.

The approach used in Listing 1 can not directly be used for PBC as we need 27 copies of the
system for different values of k, l,m as discussed in section 3.4. The code for this procedure is similar
as the one given in Listing 1, but with a few modifications. First we need to create an array of all the
positions for all the particles in the 27 copies. This have been done with a simple for-loop through a
set of offsets, given by unique values for k, l,m ∈ [−1, 0, 1] and using the following expression for the
position in the infinite system from (3.1). We then use the same procedure as described in Listing
1, but use the new set of positions instead of the original positions saved in the class. We must
also take 27 copies of the ∆vij and R2

ij since they are the same for all copied systems compared to
particle i. By getting the correct shape and size of the arrays, the rest of the computation in Listing
1 is as before.

In the implementation we have a function that uses the computation functions before adding
the collisions to the priority queue, and based on a simple boolean value it can use the version for
either PBC or RBC for the computation of the time until future particle collisions. Note that even
though there are more copies for a three-dimensional system than a two-dimensional system, the
use of PBC can be considerably faster since there are fewer collision occurring due to the increased
number of possible trajectories. For fewer collision, we have to compute if and when a particle
collides with all other particles fewer times, which is the most time consuming part, thus making
some simulations faster. This is naturally a function of the packing fraction of the system as well, but
for some occasions we have experienced faster three-dimensional simulations than we experienced in
two dimensions.

Appendix E

Numerical setup

In this appendix we present a detailed introduction to the numerical setup used for the event driven
simulations and the numerical solution of SDEs describing Brownian motion. The appendix is a
complement to chapter 3 and is most relevant for the interested reader. We will present all the
parameters and variables used in the implementation of the two simulation methods, starting with
the event driven simulation before moving on to the numerical solution of SDEs.

E.1 Event driven simulation
The set of all parameters used in an event driven simulation is presented in Table E.1. We will now
go through all parameters in detail and explain how they are used in the implementation in order
to perform the event driven simulation presented in section 3.2. The problem indicator is used to
choose which problem to study, e.g. system statistics, speed distributions or the MSD. The number
of particles, the coefficient of restitution and the initial speed can be chosen freely. The radii of all
the particles have been set to be equal for all the particles, the same procedure used as for the mass.
The mass is automatically set equal to unity, while we must choose the radius of the particles. A set
of initial positions and velocities are loaded from created initial values. For the simulation to work,
is is important that the number of particles and the radius match some of the created initial values.
If we want to look at a new system with a different number of particles or packing fraction, we must
create a new set of initial values first. As initial values we use an equilibrium state of velocities or
initial velocity vectors given by (3.3) and uniformly distributed positions in the box. The stopping
criterion, output timestep, tc, the number of cores and the number of runs are given as simulation
parameters. The average number of collisions are updated during each collision in order for it to be
used as a stopping criterion if desirable, while the average particle energy is only updated during
each output. The collisions count, simulation time, the number of crossings, the positions of all the
particles and the velocity of the involved particle(s) are updated at each valid collision. Note that the
number of crossings are only updated for collisions with "walls", where the velocity of the particle
is not updated for PBC, whereas it is never updated for RBC. Each element in the priority queue is
given as the tuple presented in equation (3.2). Note that we have not given the choice of boundary
conditions as a parameter. We have instead specified which boundary conditions to use for different
applications. E.g. if you want to run simulations to compute the MSD, you will thus automatically
use PBC. The choice of boundary conditions can however quickly be altered if desirable. Note that
in the implementation we use elastic walls by default, where ξ = 1 is the collision rule with the wall
regardless of the collision rule in the system.

The initial priority queue and the initial average particle energy is based on initial positions and
velocities. When the simulation lets time evolve the queue is expanded with new possible collisions
after each valid collision. One should note that the number of elements in the queue, nq, is not

101

102 APPENDIX E. NUMERICAL SETUP

Table E.1: Table containing all the parameters and variables in an event driven simulation. The collision
count, priority queue, the number of crossings, average number of collisions, and simulation time are not
given by an initial value, but updated during each valid collision. In the implementation we have used an
output timestep, ∆t, to decide the time between outputs from the simulation. The average particle energy
is updated for each output. During a collision all positions and the velocity of the involved particle(s) are
updated. In the table, T is used to indicate that we use the transpose of the given matrices in order to have
the indicated shape. Only one stopping criterion is used for a given simulation, but it can be based on time,
the average number of collisions or the average particle energy in the system. The problem indicator, p, is
a help variable used to decide which problem to study, e.g. system statistics, MSD or speed distribution.

Parameter Symbol Shape
Problem indicator p 1
Number of particles N 1
Coefficient of restitution ξ 1
Initial speed v0 1
Radii [r1, . . . , rN] (N)
Masses [m1, . . . ,mN] (N)
Stopping criterion c̄stop, tstop or 〈E〉stop 1
Output timestep ∆t 1
Duration of contact tc 1
Number of cores nc 1
Number of runs nr 1
Simulation time t 1
Average number of collisions c̄ 1
Average particle energy 〈E〉 1
Collision count [c1, . . . , cN] (N)

Positions

x1 . . . xN
y1 . . . yN
z1 . . . zN

T

(N, 3)

Velocities

vx1 . . . vxN
vy1 . . . vyN
vz1 . . . vzN

T

(N, 3)

Number of crossings - (N, 3)
Priority queue - (nq)

E.2. NUMERICAL SOLUTION OF SDES 103

an indication one can use to say something about the system other than that as time evolves there
exist a lot of possible collisions. The parameters describing all particles have a shape where we
easily can update and extract the desired particle parameters by using the particle number as the
index. This is necessary to update the correct particle velocities during collisions and to update
the collision count. Note that in order to make sure that the system evolves as expected we have
implemented a feature such that the simulation provides output with a resolution in time given by
the output timestep ∆t. The output consist of the simulation time, the number of elements in the
priority queue, the average particle energy and the average number of collisions. This feature is
also used to compute quantities such as MSD with a constant time resolution. Choosing an output
timestep equal to zero will make the MSD study use the logarithmically spaced times output version
discussed in section 3.2.

E.2 Numerical solution of SDEs
The set of all parameters used in order to solve SDEs describing Brownian motion with the Euler-
Maruyama method is given in Table E.2. As discussed in section 2.9 the dynamics of a molecular and
a granular gas can be given as two different Langevin equations, the underdamped Langevin equation
in (2.87) and UDSBM in (2.106) respectively. Both these SDEs can be solved numerically with the
same iterative scheme given in (2.86), where the two schemes differ from the time dependence of the
diffusivity and the friction coefficient for UDSBM.

As before, we will go through the parameters in Table E.2 in order to explain how they are used
in the implementation. Similarly as for the event driven simulation we use the problem indicator to
choose which problem to solve1. We want to solve the SDE for a number of particles with a given
mass, radius, initial speed, in a system with a given coefficient of restitution. In the implementation
we have assumed that all particles are equal. When solving an SDE describing the dynamics of
a particle, we are only looking at one particle. That particle can not see any other particles, and
the dynamics is determined by a friction and a random term. We can thus use the same initial
positions for all the particles, which have been chosen to be X0 = [0.5, 0.5, 0.5]. The power of vector
operations let us do the iterative scheme for all particles at the same time in order to save time.
Note that for the SDE we do not have to worry about any of the other particles or the boundaries
of the system since we want to use PBC. The random force at each timestep is given as a Wiener
process along each axis for each particle. We then update the position and the velocity from the
general iterative Euler-Maruyama scheme for Brownian motion in (2.86) at each timestep. For a
given initial speed we have chosen an initial velocity vector for each particle as given in (3.3). After
we have reached the stopping criterion, given as a maximum time limit we can then compute the
ensemble MSD in a similar fashion as for the event driven simulation.

Note that whereas the position and the velocities in the event driven simulation got updated
during each collision, the position and the velocities in the numerical solution to an SDE is only
updated each timestep and not between timesteps. In order to achieve result which show the
theoretical predictions it is thus necessary to use such a low value for ∆t that the short time
behaviour of the MSD becomes correct. For the results in chapter 4 we have used ∆t = 10−2.

1In the implementation solving SDEs is actually only one problem. The correct SDE is solved based on the choice
of ξ.

104 APPENDIX E. NUMERICAL SETUP

Table E.2: Table containing all the parameters and variables used in order to solve SDEs describing
Brownian motion with the Euler-Maruyama method. The positions and velocities at each timestep are
updated as given in (2.86) for a three-dimensional system, while the simulation time is updated by adding
∆t at each timestep. The random force each timestep is approximated as a Wiener process. The information
about the particles are only used to compute the diffusivity and the friction coefficient as a function of time.
In the table, T is used to indicate that one uses the transpose of the given matrices in order to have the
indicated shape. The stopping criterion is given as a maximum time limit. Compared to earlier for the event
driven simulation the position and velocities are only updated at each timestep and not between timesteps
as well.

Parameter Symbol Shape
Problem indicator p 1
Number of particles N 1
Coefficient of restitution ξ 1
Initial speed v0 1
Radius of the particles r 1
Mass of the particles m 1
Stopping criterion tstop 1
Timestep value ∆t 1
Number of runs nr 1
Time t 1

Positions

Xx1 . . . XxN

Xy1 . . . XyN

Xz1 . . . XzN

T

(N, 3)

Velocities

Yx1 . . . YxN
Yy1 . . . YyN
Yz1 . . . YzN

T

(N, 3)

Random force each timestep

∆Wx1 . . . ∆WxN

∆Wy1 . . . ∆WyN

∆Wz1 . . . ∆WzN

T

(N, 3)

Appendix F

MSD of event driven simulations on a
non-logarithmic scale

In order to illustrate the asymptotic behaviour of the MSD in the study of Brownian motion for both
a molecular and a granular gas in chapter 4 we used a logarithmic scale. Logarithmic scales have
both advantages and disadvantages we would like to discuss. The most common use of logarithmic
scales is to look at quantities evolving over different order of magnitudes. For which we can use to
capture both short and long term behaviour of the MSD as a function of time. On the other hand
we get a different impression of the results by looking at the plots in Figure F.1 and Figure F.2
compared to the equivalent plots on a logarithmic scale in Figure 4.11 and Figure 4.12. Although
the correct long term behaviour can be seen from the plots in Figure F.1 and Figure F.2, it is not
possible to see whether the short term behaviour of the MSD as a function of time is correct or
not. In order to explain the difference between theoretical predictions and the numerical values we
note that the MSD is plotted for a relatively long time, meaning that small errors in the measured
quantities can increase as a function of time.

Let us first look at the results for a molecular gas. The long term behaviour of the MSD should
be given as 6D0t for a three dimensional system as seen from (2.68). We then get a linear trend
with the slope 6D0. From Figure F.1 we see that the disagreement is a result of that the slope of
the numerical values are slightly higher than 6D0, which makes the difference increase as a function
of time. For the simulation results we achieved a slope of ≈ 0.364 compared to the theoretical value
≈ 0.350, giving a relative error of 4%. Thus we argue that we manage quite reasonable results for
such a complex procedure as studying a many-particle system.

Finally, we want to give the same treatment to the results for a granular gas. We see from the
Figure F.2 that we achieve similar behaviour as for a molecular gas. There is a disagreement arising
in the region where we see the transition from the ballistic period to the logarithmic dependence.
Then we see a slight increasing difference where the MSD is logarithmic. The logarithmic growth
is given with the slope 6D0τ0 as seen from (2.79). For the simulation results for ξ = 0.8 we get
a slope of ≈ 0.420 compared to the theoretical value ≈ 0.451, giving a relative error of 7%. Even
for a higher relative error we do not see the same growing difference due to the logarithmic growth
of the values. The higher error could be a result of more constants in the theoretical expression,
making the expression more prone to possible errors in the estimation of such parameters from the
simulation results.

105

106APPENDIX F. MSD OF EVENT DRIVEN SIMULATIONS ON A NON-LOGARITHMIC SCALE

0 20 40 60 80 100

t

0

5

10

15

20

25

30

35

〈(x
(t

)
−
x

0
)2
〉

Theoretical values

Numerical values

Figure F.1: Same plot as Figure 4.11, but with non-logarithmic axes.

0 200 400 600 800 1000

t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

〈(x
(t

)
−
x

0
)2
〉

Theoretical values

Numerical values

Figure F.2: Same plot as Figure 4.12, but with non-logarithmic axes.

List of Symbols

Here we present a list of the most important symbols used in the report. In the list we give the
symbol, what is represents and the page number where the symbol is first introduced.

〈E〉 Average kinetic particle energy. 19

φ Azimuth angle used for polar and spherical coordinates. 17

kB Boltzmann constant. 16

τ0 Characteristic time decay of the granular temperature. 21

ξ Coefficient of restitution. 7

a Coefficient modelling the strength of the friction term in stochastic differential equations modelling
Brownian motion. 30

b Coefficient modelling the strength of the random term in stochastic differential equations modelling
Brownian motion. 30

α Constant value used to illustrate general behaviour of expectation values and diffusion properties.
18

g2(ζ) Contact value of the equilibrium correlation function for hard spheres. 21

d Help quantity used in the computation of the time until a particle-particle collision. 12

ζ Diameter of the particles. 20

∆xij Vector from the center of particle i to the center of particle j. 8

∆vij Relative velocity for particle i and j. 8

D(t) Self-diffusion coefficient, referred to as diffusion coefficient, or the diffusivity. 23

Rij Distance between the centers of the particles. 8

tc Duration of contact used in the TC model. 51

Fi Force acting upon particle i. 4

γ(t) Friction coefficient, and the inverse velocity autocorrelation time, sometimes also referred to as
the damping coefficient. 24

H Help quantity used in the derivation of the velocity autocorrelation function for stochastic differ-
ential equations. 33

107

108 List of Symbols

θ Inclination angle used for spherical coordinates. 18

∆ Lag time used in the computation of the time averaged mean squared displacement. 36

L Length of the system. 39

mi Mass of particle i. 4

τc(t) Mean collision time. 21

µ Mean value of a distribution. 18

N (µ, σ2) Normal distributed parameter with mean value µ and variance σ2. 31

N Number of particles. 4

n Number density. 20

ci Number of collisions for particle i. 55

nr The number of runs used in the simulations. 55

k, l,m Set of unique integers giving the offset of one of the copies of the system used to implemented
periodic boundary conditions. 47

η Packing fraction of the system, also referred to as the particle volume density. 21

x(t) Position in one dimension. 22

xi(t) Position in multiple dimensions for particle i. 4

Xt Position at time t as a stochastic variable. 31

P (v) Probability density function for the speed distribution. 17

ri Radius of particle i. 10

Γ(t) Random term used to model the interactions with the Brownian particle from colliding with
other particles. 30

σ Standard deviation of a distribution. 18

T Temperature. 16

t Time. 4

∆t Timestep value. Used to give the resolution in time for the output timestep of the event driven
simulation and the timestep in the iterative schemes used to solve stochastic differential equa-
tion numerically. 31

∆t∗ Time until a collision for a particle with another object. 13

v(t) Velocity in one dimension. Is also used to give the speed, denoted by dropping the time notation.
7

vi(t) Velocity in multiple dimensions for particle i. 4

List of Symbols 109

fv(vx) Velocity distribution of the Maxwell-Boltzmann distribution. 16

Yt Velocity at time t as a stochastic variable. 31

V Volume of the system. 20

Wt Wiener process. 31

Aleksander G
jersvoll

Sim
ulation m

ethods for granular gas dynam
ics in periodic three-dim

ensional system
s

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

M
as

te
r’s

 th
es

is

Aleksander Gjersvoll

Simulation methods for granular gas
dynamics in periodic three-dimensional
systems

Master’s thesis in Applied Physics and Mathematics

Supervisor: Tor Nordam

June 2020

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Theory
	Collisions
	Inelastic collision in one dimension
	Inelastic collision in three dimensions
	The time until a particle-particle collision
	Particle-wall collision

	Coefficient of restitution
	Inelastic collapse
	Maxwell-Boltzmann distribution
	Speed distribution in two dimensions
	Speed distribution in three dimensions
	Expectation values

	Kinetic gas theory
	Haff's law
	Diffusion
	Brownian motion
	Diffusion coefficient
	Mean squared displacement
	Molecular gas
	Granular gas

	Brownian motion as a stochastic differential equation
	Langevin equation
	Stochastic differential equation
	Euler-Maruyama scheme
	Higher order schemes
	Underdamped Langevin equation
	Underdamped Scaled Brownian Motion

	Ergodicity
	Central limit theorem

	Numerical modelling
	Overview
	Event driven simulation
	Output

	Priority queue
	Boundary conditions
	Reflecting boundary conditions
	Periodic boundary conditions

	Collisions
	TC model
	Statistics
	Initial values
	Stopping criterion
	Parallelization
	Numerical setup and errors
	Event driven simulation
	Numerical solution of SDEs

	Specifications

	Results and discussion
	Event driven simulation of many-particle systems
	Test cases
	Speed distributions
	Haff's law
	Brownian motion

	Numerical solutions of SDEs describing Brownian motion
	Underdamped Langevin equation
	UDSBM
	Ergodicity

	Further Work
	Conclusion
	References
	Coefficient of restitution for an elastic collision in one dimension
	Energy dissipation of an inelastic collision
	The velocity autocorrelation function of UDSBM
	Computation of the time until a particle-particle collision
	Numerical setup
	Event driven simulation
	Numerical solution of SDEs

	MSD of event driven simulations on a non-logarithmic scale
	List of Symbols

