@NTNU

Norwegian University of
Science and Technology

Image Processing of 2-D Snow Images for Cross-
Country Skiing

Master Thesis TFY4900 — Applied Physics

Fredrik Rosenberg

June 2020
Supervisors: Astrid S. de Wijn and Antonius Van Helvoort
Norwegian University of Science and Technology

Faculty of Engineering / Faculty of Natural Sciences

Department of Mechanical and Industrial Engineering / Department of Physics

Abstract

Snow is a porous and complex material influencing a great variety of scientific, techno-
logical and societal fields, making snow analysis an important but demanding task. Al-
though three-dimensional snow analysis techniques provide comprehensive and accurate
characterization of the snow’s microstructure, these methods are often time consuming
and require less accessible equipment. To obtain a better impression of the temporal and
spatial variations in the snow’s structure, more facile probing methods are needed. For
cross-country skiing, the snow’s structure has direct impact on friction and thus the final
performance of the skis. Hence, analysing the current and locally varying snow condi-
tions will give valuable information on how to best prepare the skis in order to achieve
better overall results. The presented methods in this study are based on image analysis of
two-dimensional images. These are acquired on an instrument called GelSight, which is a
handheld and portable imaging system enabling fast and effective imaging of the snow’s
surface. The first image processing method involves the use of digitized contours to ap-
proximate the area and perimeter of snow grains. This allows determining the Optical
Equivalent Diameter (OED) and dendricity, two metrics characterizing the size and shape
of the grains. A second processing method involves using the machine learning algorithms
Support Vector Machine (SVM) and Convolutional Neural Network (CNN) to classify
snow images into categories as old and new snow. The contouring method is shown to
successfully separate different snow conditions through the calculated OED and dendric-
ity, and the SVM and CNN algorithms achieve an accuracy on the classification of 95.8%
and 97.9%, respectively. As the structural parameters and classification relate directly to
the observed property of friction, the presented snow analysis is indeed providing valu-
able information regarding snow conditions relevant to the performance of cross-country
skis.

ii

Sammendrag

Sng er et porgst og komplekst materiale med innflytelse pa bade vitenskapelige, teknolo-
giske og sosiale arenaer. Dette gjor analyse av sng til en viktig, men krevende oppgave.
Tredimensjonal sng analyse gir ngyaktig karakterisering av sngens mikrostruktur, men
disse metodene er ofte tidkrevende i tillegg til & avhenge av mindre tilgjengelig utstyr. For
a fa et bedre bilde av hvordan sngens struktur endrer seg i rom og tid, er det derfor behov
for mindre omfattende metoder for karakterisering av sng. For langrennsski vil sngens
struktur ha direkte innflytelse pa friksjonen og dermed ytelsen til skiene. Analyse av de
gjeldende og lokalt varierende sngforholdene vil dermed gi verdifull informasjon om hvor-
dan skiene bgr prepareres for & oppna bedre resultater. I denne rapporten er de presenterte
metodene basert pa analyse av todimensjonale bilder av sng. Bildene er tatt med et instru-
ment ved navn GelSight, et handholdt og bearbart instrument som raskt og effektivt fanger
bilder av sngens overflate. Den f@grste metoden innebaerer a bruke digitale konturer for a ap-
proksimere areal og omkrets av sngkornene. Fra dette kan man bestemme den Optisk Ek-
vivalente Diameteren (OED) og ’dendricity’, to parametere som karakteriserer stgrrelsen
og formen pa sngkornene. Den andre metoden bruker maskinleringsalgoritmene ’Support
Vector Machine’ (SVM) og *Convolutional Neural Network” (CNN) for a klassifisere sng
som ny eller gammel. Kontur-metoden lykkes i & skille forskjellige sngforhold gjennom
OED og ’dendricity’ verdiene, og SVM og CNN algoritmene oppnar en treffsikkerhet pa
henholdsvis 95.8% og 97.9% pé klassifiseringen. De strukturelle parameterne og klassi-
fiseringen relaterer direkte til friksjon, og den presenterte sng analysen gir derfor verdifull
informasjon om sngforholdene relevant for ytelsen til langrennsski.

iii

Preface

This project originates from a cooperation between the Department of Mechanical and In-
dustrial Engineering at NTNU and Olympiatoppen with the underlying goal of analysing
snow to improve performance of cross-country skis. The master thesis is written and pub-
lished for the Department of Physics and marks the end of a five year long study program
in physics and mathematics. It is a mandatory report for master degree study programs in
engineering at NTNU, and for the Department of Physics weighted to a total of 30 ETCS
credits. The study was carried out over the spring semester 2020, and all work presented
in this thesis is done by the author unless stated otherwise.

iv

Acknowledgements

First and foremost, I would like to thank my supervisor Astrid S. de Wijn for letting me
have this project and for the help and guidance throughout the semester. I would also like
to thank Bassma Al-Jubouri at the department of Mechanical and Industrial Engineering
for advice regarding the classification and characterization of images. My thanks to my
formal supervisor, Antonius Van Helvoort, for taking me on and giving tips to the report
structure despite his full schedule.

I would also like to extend my gratitude to Felix Breitschiadel and Olympiatoppen for
providing me with the GelSight images and letting me try the instrument for myself, in
addition to giving me a thorough introduction to the preparation of cross country skis.

Trondheim, 05.06.2020
Fredrik Rosenberg

Table of Contents

Abstract

Sammendrag

Preface

Acknowledgements

Table of Contents

1

2

Introduction

Theory

2.1 Characterizationof Snow oL oo
2.1.1 Parameters in Snow Characterization
2.1.2 Image Analysis and Methods in Snow Characterization

2.2 Ski-Snow Interaction

2.3 Machine Learning for Image Classification
2.3.1 Introduction to Machine Learning
2.3.2 Image Classification
2.3.3 Support Vector Machine
2.3.4 Convolutional Neural Networks

Method

3.1 GelSight oL

3.2 Characterization of Snow Images
3.2.1 Preprocessing of Snow Images
3.2.2 Contouring and Calculation of Parameters

3.3 Classification of Snow Images
3.3.1 Dataset and Preprocessing of Snow Images
3.3.2 Support Vector Machine

ii

iii

iv

vii

O 0 L W W W

vi

333

4 Results

Convolutional Neural Network

4.1 Characterization of Snow Images
Preprocessing of Snow Images

4.1.2 Contouring and Calculation of Parameters
4.2 Classification of Snow Images
Dataset and Preprocessing of Snow Images
422 Support Vector Machine
Convolutional Neural Network

4.1.1

421

423

5 Discussion

5.1 Characterization of Snow Images
Preprocessing of Snow Images

5.1.2 Contouring and Calculation of Parameters
5.2 Classification of Snow Images

5.1.1

6 Conclusion

7 Future Work

Bibliography

Appendix
A

Python Scripts

25
25
25
27
32
32
34
35

38
38
38
39

43

45

46

51

vii

Chapter

Introduction

In the northern parts of the world, snow has interested and affected people for generations.
Whether this interest originates from building the perfect snowman, skiing as fast as possi-
ble, sending radio-frequent signals through glaciers, researching avalanches or calculating
the absorbed solar radiation on the earth’s surface, the properties of snow have an impor-
tant say. Considering its variety of applications, investigation and characterization of snow
is of great interest.

Snow is a sintered material consisting of mono-crystalline ice grains bonded together (Col-
beck, 1998). The ice crystals form in the atmosphere before falling to the ground where
they immediately start sintering together to the foam-like structure known as snow. Here,
the snow is exposed to environmental conditions like temperature, wind and humidity
which continuously induce changes in the snow’s microstructure. These rapid changes
and dependence on multiple parameters makes snow a complex material, and there is a
need for effective and practical methods to analyse the snow’s structure.

Someone with great interest in snow analysis is Olympiatoppen, a Norwegian organization
in charge of development of elite sports in Norway. Among the sports they work with is
cross-country skiing, where having the better skis on a race day can differentiate between
a place on the podium and walking home empty handed. The skis’ performance are de-
pendent on ski preparation that can be adapted to the given snow conditions. This rises
the question of which skis to prepare on which snow conditions. In order to answer this
question, Olympiatoppen have acquired a portable and handheld imaging system called
GelSight (GelSight, 2019), which provides a simple and effective way of imaging snow
grains. These images can be further analysed to extract properties of snow grains and
distinguish between different types of snow.

The motivation of this study is to characterize and classify images of snow to deduce the
snow’s structure in terms relevant to the performance of skis. By creating robust image
processing methods to effectively distinguish between different snow conditions, one can

Chapter 1. Introduction

compare previous performances of ski preparation and snow combinations to find the opti-
mal skis for snow with given structure. In this report two novel image processing methods
are developed and evaluated. The first involves using a contour approach to calculate the
Optical Equivalent Diameter (OED) and dendricity of snow grains, two metrics shown to
impact the friction of skis (Bottcher and Scherge, 2017). The second method involves us-
ing the machine learning algorithms Support Vector Machine (SVM) and Convolutional
Neural Network (CNN) to classify the snow’s structure into categories, here old and new
SNOW.

This report consists of seven chapters. Chapter 2 gives an overview of different parame-
ters and methods used in both snow characterization and image analysis. In addition, the
underlying theory behind the gliding resistance of skis and applied machine learning algo-
rithms is presented. Chapter 3 describes the two applied methods for snow image analysis,
which results are presented in chapter 4 and discussed in chapter 5. The conclusions can be
found in chapter 6, before suggestions for future work are presented in chapter 7.

Chapter

Theory

2.1 Characterization of Snow

Given the variety of scientific fields and practical problems where snow plays an important
role, its microstructure that determines the snow’s macroscopic properties has undergone
extensive research. However, finding the best metrics in establishing a common ground for
snow characterization is not considered an easy task. Snow is a porous material consisting
of continuous ice structures and pore spaces, which together form the microstructure. As
the snow is laying on the ground, it is exposed to many factors affecting this microstruc-
ture. The metamorphism of snow, i.e. the physical change of snow grains due to pressure
and temperature changes, is the main factor. As the temperature of snow is close to its
melting point, liquid water can occupy the pore spaces, essentially leading to liquid, solid
and gaseous phases of water coexisting on the ground (Fierz et al. (2009)). This continu-
ally ongoing metamorphism, along with the wind and intermittent nature of precipitation,
makes each stratigraphic layer of a snowpack different from each other. Snow is there-
fore one of the most complex materials on the Earth’s surface (Pomeroy and Brun (2001))
and the need for dynamic snow characterization is crucial. Fierz et al. (2009) addressed the
problems with inconsistency in snow characterization and deduced a common terminology
from which the following parameters are taken from.

2.1.1 Parameters in Snow Characterization
Snow Grain Size

Grain size is an intuitive way of characterizing snow. It is simply the average size of the
grains for a given snow layer, ranging form very fine (<0.2 mm) to very coarse (2.0 mm-
5.0mm) and also extreme (>5.0mm). However, grain size does not always give the
most relevant description of the electromagnetic and mechanical properties of snow. Also,
traditional measurements of snow grain size using magnified lens and grid cards are biased

Chapter 2. Theory

as the results differ for different observers (Painter et al. (2007)). Some field techniques
therefore use the term Optical Equivalent Diameter (OED), which specifies the diameter
of ice spheres that best approximate the scattering and absorption of the actual grains, i.e.
spheres exhibiting the same surface to volume ratio (section 3.2.2). Thus, OED in many
ways is a objective quantification of grain size, and the gliding resistance at the snow-to-ski
interface is shown to depend on the OED of snow grains (Bartlett et al. (2008)).

Snow Grain Shape

Grain shape is a frequently used term in snow characterization, and like grain size it will
have impact on the microstructure of the snow, affecting its physical properties (including
snow-ski friction). There are many classes of grain shape, as labelled by Fierz et al. (2009),
and one of the most used shape descriptors is sphericity. Sphericity, in snow classification,
is a measure of how close a snow grain is to being a sphere. This descriptor is used to
distinguish between rounded grains which have curvature and faceted grains which have
reduced curvature.

Another shape descriptor frequently used in snow analysis is dendricity. It is defined as
the ratio of the square of the perimeter of a grain to its area (section 3.2.2). Thus, like
sphericity, it says something about the complexity of the grain outline, as seen in Fig.
2.1. Freshly fallen snow tends to have more complex structures compared to old snow,
therefore dendricity can also be used to differ between new and old snow (Bartlett et al.,
2008; Lesaffre et al., 1998).

a) b)

Figure 2.1: Parametric shapes: a) is a complex shape with higher dendricity, while b) is a rounder
shape with lower dendricity.

Snow Density

Even though the density of a porous material is a bulk property, its importance on the
microstructure can be severe. The mechanical, optical and thermal properties of snow
are heavily dependent on the configuration of ice structure and pore spaces, which is em-
bedded in the snows density. The density is also related to other properties of snow, e.g.
temperature, as warmer temperatures will lead to more liquid water replacing air in the
pore spaces, increasing the weight of the snow. Thus, density is an important property of
snow and a frequently used term in snow characterization.

4

2.1 Characterization of Snow

A normal way to determine the snow’s density is weighing snow of a known volume. As
there is a large discrepancy between the density of moist and dry snow, the total snow
density and dry snow density are often measured separately. In addition to weighing snow
of a fixed volume, there are other methods to determine the density of snow, including
X-ray Computed Tomography (micro-CT) (Lundy et al., 2002) and taking advantage of
the dielectric properties (Denoth, 1989).

Snow Hardness

The hardness of snow is a term describing the resistance to an object penetrating the snow.
The hardness is a criteria to establish snow stratigraphy, i.e. the different properties be-
tween different layers in the snowpack, and is therefore an important parameter in snow
characterization. Measurements of snow hardness especially play an important role in
avalanche research, where the strength of the snowpack is directly linked to the formation
of avalanches (Tyagi et al., 2013). Also, when it comes to ski friction, the deformation
of snow when pressure is applied is a relevant factor that depends on the snow’s hardness
(section 2.2).

Measuring hardness by hand has been, and still is, a common method for scientific mea-
surements of snow hardness. By applying a force and using either the fist, four fingers or
one finger to penetrate the snow layer, the observer measures the hardness. Knife blades
and pencils can also be used. However, as this method relies on the force used by the
observer, the method is subjective. The Swiss ramsonde (Bader et al., 1939), where a
ramsonde is driven into the snow by a mechanical hammer blowing on a probe, has also
been frequently used. Here, the hardness resolution is limited by the probe itself and the
weight of the hammer. Nowadays, the SnowMicroPen is shown to give quasi-continuous
hardness readings with better resolution and accuracy (Pielmeier and Schneebeli, 2002),
making this the favourable choice for hardness measurements.

2.1.2 Image Analysis and Methods in Snow Characterization
3-D

The most present methods in snow characterization today involves using imaging tech-
nologies like micro-CT and X-ray. These are techniques that give an accurate 3-D analysis
of the microstructure. However, these techniques require instruments that are not always
easy to access and may reside in a laboratory far away. As mentioned, snow is fragile and
changes fast due to its metamorphism, making it necessary to preserve the microstructure
of the snow sample during transfer. This can be achieved by casting the snow samples
with solidifying liquid, as described by Heggli et al. (2011).

After obtaining the images, there are several approaches to further analysis. Krol and
Lowe (2016) use the two point correlation function and chord length distribution in or-
der to describe the microstructure of snow from micro-CT images. As the OED alone is
not sufficient in describing the complex physical properties of snow, they investigate ad-
ditional size and shape metrics. The chord length distribution is defined as the lengths of
intersection of random rays through the sample with the ice phase (Fig. 2.2), while the

5

Chapter 2. Theory

two-point correlation function is a statistical distribution containing relevant sizes in the
microstructure. In the end, the authors were able to define grain shape via size dispersity.
Although size dispersity is not exhaustive in characterizing the influence of grain shape,
this intersection provides a quantitative starting point for further analysis.

Figure 2.2: The mean chord length is defined as the mean length of lines between the red points in
the snow grains.

2-D

Despite the detailed and accurate analysis techniques from 3-D instruments, there is a need
for simpler and less elaborate methods in snow characterization. 2-D analysis provides
such methods, where one can use digitized images of snow grains to investigate the 2-D
surface properties of snow. This is especially useful when the main interest lies in the
snow’s surface, as for the glide of skis, where the interactions at the snow-ski interface
play the major part (section 2.2).

For 2-D analysis to compete with the well established 3-D analysis methods, the used in-
struments must be easier accessible and provide faster and more effective imaging of the
snow. As the metamorphism give rise to rapid changes in the snow’s structure, portable
instruments providing on-site imaging of snow conditions are favorable. An instrument
possessing all these qualities is the GelSight (section 3.1), which is a portable and hand-
held imaging system using an elastomeric sensor and silicone gel to conform the surface
topography of the snow. This results in fast and effective imaging of the snow’s sur-
face.

After obtaining the images, they are often preprocessed by noise-removal and segmenta-
tion, i.e. turned into black-and-white by using a threshold value on the grayscale images. It
is worth mentioning that this is the same process as for 3-D methods like micro-CT. Here
one takes a stack of 2-D images, applies noise removal and segmentation, before using
multiple images from different angles to reconstruct a 3-D image. For pure 2-D analysis,
on the other hand, the image characterization process continues in two dimensions. Af-
ter the noise removal and segmentation, one can find the contours (outlines) of the snow

6

2.1 Characterization of Snow

grains, and therefore a way of interpreting the microstructure. Bartlett et al. (2008) uses
both a parabola and a cubic spline approach in curvature measurements of the grain out-
lines. The goal is to estimate the dendricity and sphericity of the grains using these two
methods.

The cubic spline method is a form of piecewise polynomial interpolation. After the pre-
processing of the images, the cubic spline method can be applied as a smoothing interpo-
lator of the discrete points in the grain outlines, producing smooth grain shapes. Using
the arc length s, a discrete grain outline can be parameterized in Cartesian coordinates
as C(sp) = (x(sn),y(sn)), where n is the vector index. Further, the smoothing spline
function f(s) then minimizes the expression

pZICsn — f(sn)|+ (1 A/|) 2.1)

Here p is the so-called smoothing parameter, [V is the number of points in the outline and
A is a weight factor to eliminate scale-induced changes between different grains. Equation
(2.1) consists of two terms, where the first term is a standard measure of squared distances
and the second term is a roughness measurement of the spline. Note that p = 0 will make
the first term vanish, only restricting the spline to minimize the roughness measure. If
p = 1 the second term will vanish, and the spline is now only constrained to minimize the
squared error term. Bartlett et al. (2008) uses the No-gradient method to find the optimal
smoothing coefficient p for each grain.

The parabola approach is the standard for curvature calculation of snow grain outlines.
The method consists of evaluating the curvature of every pixel in the grain outline. First,
one selects a chosen amount of neighbouring pixels. Thereafter, one rotates this section
of pixels into the most horizontal direction before fitting the parabola. The easiest way to
ensure the most horizontal orientation of the outline section is found, is simply applying
angular increments and measuring the distance in x-direction. For parametric equations
x = z(t) and y = y(¢), the curvature of a plane curve is defined as k = ‘ff’, where s is
the aforementioned arc length and ¢ is the angle between the tangent curve and the x-axis.
From this it can be derived that

K(t) = 4 %Y

The parabola fitting of the rotated outline section can then be found by evaluating the cur-
vature at the origin for (¢) = ¢ and y(t) = at? + bt. From equation (2.2) one gets

2a

= T 2.3)

Using the parabola approach and the spline method, Bartlett et al. estimate the sphericity
and dendricity of the contours. Although both methods showed considerable error in cur-
vature measurement depending on the complexity of the grain shapes, they still enabled a
broad characterization of different snow grains.

Chapter 2. Theory

2.2 Ski-Snow Interaction

When considering the interaction on the snow-to-ski interface, there are two main ques-
tions to consider. The first is the deformation mode of snow, i.e. how the microstructure
of snow changes when a force is applied. Theile et al. (2009) use a special linear friction
tester and measure four types of deformations; brittle fracture of grain bonds, plastic de-
formation of ice at the ski-snow contact spots and elastic and delayed elastic deformation
of the snow. The term elastic indicates that the snow’s structure goes back to its previous
state after the applied force is removed, while for plastic deformation the changes in the
structure are permanent. They found that delayed elastic deformation of snow is the most
dominant.

The second question is finding the real contact area between the snow and the skis. This
is the area where friction takes place and is therefore of great importance (Kragelsky and
Demkin, 1960). By neglecting shear force from snow grains rubbing against the skis and
frictional melting at the top of the snow, one can estimate the real contact area to be the
ratio between the normal force and the strength of ice (penetration hardness). Theile et al.
measure the real contact area to be 0.4 % and the average contact spot size to be 110 um
using this approach.

The gliding resistance, i.e. friction of the ski-snow interface, is a complex process diffi-
cult to understand. Now that the adhesion theory is mostly related to very low velocities
(Maeno and Arakawa, 2004), the melt-water lubrication theory (e.g. Liithi et al. (2018))
describes the current idea of ski-snow friction in the terms mentioned above. As the ski
glides over the snow surface, there will be a deformation of the snow surface and ski base
both, before a (real) contact area between the two is formed. Assuming initial dry snow,
the dry friction will lead to dissipation of heat into the snow’s surface. The dissipation rate
of heat into the snow’s surface, Q, is given as

Q = pvN, (2.4)

where p is the friction coefficient, v is the velocity of the skis and N is the normal force on
the snow. The friction coefficient y is directly linked to the surface roughness of snow, as
higher surface roughness will increase the friction coefficient (e.g. Kietzig et al. (2009)).
Further, the dissipated heat will again lead to melt-water being formed, lubricating the
contact area and lowering the friction. However, if too much water is melted, capillary
bridges between the snow and the ski base can be formed, increasing the friction. Thus,
the friction is evidently minimal when the contact area between ski and snow is minimal
and there is just enough water to have lubricated friction. This highly depends on en-
vironmental factors and ski preparation both, although Budde and Himes (2017) found
the environmental conditions (snow conditions) to affect friction more. Especially around
the melting point of snow, Bottcher and Scherge (2017) found that parameters like grain
size and grain shape have larger impact on the friction, encouraging investigation of these
parameters.

2.3 Machine Learning for Image Classification

2.3 Machine Learning for Image Classification

2.3.1 Introduction to Machine Learning

Artificial intelligence (Al) is an umbrella term containing systems where a machine is
capable of imitating intelligent human behaviour. Tasks normally requiring human intel-
ligence, like speech recognition, visual perception, decision making and language trans-
lation are all examples of Al. Machine learning is an approach of Al concerned with ma-
chines’ ability to learn from data on their own. Mitchell (1997) defines machine learning to
include any computer program that improves its performance at some tasks through experi-
ence. More precisely, “a computer program is said to learn from experience E with respect
to some class of tasks 7" and performance measure P, if its performance at tasks in 7', as
measured by P, improves with experience E.” In other words, machine learning describes
systems with the ability to automatically learn and improve from experience without being
explicitly programmed, but relying on patterns and inference instead.

Supervised and Unsupervised Learning

There are two main categories of machine learning algorithms, namely supervised and
unsupervised learners. Which category to choose algorithms from is dependent on the
problem at hand and the data available.

In supervised learning, the data consists of both input X and output y. The goal is to use
an algorithm to learn the mapping function f(X) = y. The dataset the algorithm learns
from is called training data. By iteratively predicting the output values of the training data
and comparing with the true output, one can calculate the error and adjust the internal
parameters of the learning algorithm to minimize it. Hence, the training makes the learn-
ing algorithm approximate the mapping function. In order to investigate the validity of
the approximated mapping function, test data is used to measure its accuracy. The only
difference between training data and test data is that where training data is used to fit and
optimize the learning algorithm, the test data is unseen to the model. Therefore, the test
data can be used to make predictions and calculate the accuracy of the model by comparing
the predicted labels to the actual labels (Fig. 2.3). High accuracy for the test data indicates
that the model is able to generalize well and can be used in prediction of new, unlabeled
(unknown output y) data. Supervised learners are often used in classification (for which
the output variable is a category) and regression problems (for which the output variable is
areal value). An example of a supervised learning problem can be to distinguish between
handwritten digits (Kaensar, 2013).

For unsupervised learners, the available data consists of input X without corresponding
output variables. Since the training data only consists of inputs, the goal here is to learn
a function to find hidden structures, like groups and clusters in the data (Fig. 2.4). This
comes in handy when it is difficult to label the data or the variations in data are large, as the
unsupervised learning models can be trained to make its own separation by extracting the
underlying patterns. Applications of unsupervised learning is target marketing and spam
email filtering among others. (Diale et al., 2019).

Chapter 2. Theory

Error

ah

Predicted Qutput (y)

Output (y)

Output (y)| Predicted Output (y)

Figure 2.3: A schematic flow of training and testing in supervised learning. First, both the training
and test set are acquired from the same pool of data. The algorithm is then trained by comparing
the predicted output to the actual output. Calculating the error function and adjusting the inter-
nal parameters of the learning algorithm to minimize this function will lead to the learned model.
Further, the test data is used to validate the learned model by predicting the output from the input
data. Comparing the predicted output to the actual output, the accuracy of the learning algorithm is
assessed.

Figure 2.4: A schematic flow showing the differences between supervised and unsupervised learn-
ing. Supervised learning develop predictive models based on input and output data, while unsuper-
vised learning find similarities in the input of the data.

10

2.3 Machine Learning for Image Classification

2.3.2 Image Classification

Image recognition is the ability of Al to detect, classify and recognize objects in images.
This technology is for example used when unblocking a smartphone by facial recognition.
The Al system detects the face, classifies it as a human face and recognizes it as the owner
of the smartphone. The classification part of this process is a machine learning problem,
more specifically a supervised learning problem.

Image classification uses labelled images as training data, in order to classify new, unla-
belled images. The inputs, often called features, consist of arrays of pixel values which
together form a representation of the image. The process of choosing the optimal features
plays a key part in image classification as it largely determines the performance of the
classification system. However, this is by no means a trivial task, as Dollar et al. (2007)
point out when describing the characteristics of a good feature. The authors state that a
good feature should be (1) informative, (2) invariant to noise or a given set of transforma-
tions, and (3) fast to compute. Using all the pixels in an image will lead to informative
features, but given that images might contain thousands of pixels in several color channels,
this will lead to unreasonable running times. Hence, finding the optimal set of features is
challenging.

For image classification, a good learner should be insensitive to irrelevant variations of the
input such as position, illumination and orientation, while being sensitive to other minute
variations. Images of dogs and cats with the same color, background and orientation could
give rise to similar pixel values, while two images of dogs with different colors, back-
grounds and orientations would look different at pixel level. A classifier operating on raw
pixel values cannot distinguish between the former two images while correctly classify-
ing the latter two, making feature extraction techniques necessary. Common techniques
include using mean, variance, color features, gradients etc. However, as these feature ex-
traction techniques need to be pre-selected, it can be hard to choose which techniques to
use, especially for complex images. Some learning algorithms therefore have the ability
to extract features themselves, as described in section 2.3.4.

2.3.3 Support Vector Machine

Support Vector Machine (SVM) is a supervised learning algorithm. Although it can be
used in classification and regression both, it is most frequently used in classification as
introduced by Cortes and Vapnik (1995). Especially in classification of images, SVM
is commonly used, achieving good accuracy on benchmark image datasets compared to
other state of the art learning algorithms (Kaensar, 2013; Le et al., 2012). While initially
designed for binary classification, SVM can be extended to be used for multi-class prob-
lems as well, as described by Weston and Watkins (1999). Here, however, the focus will
be on the binary version of the algorithm.

In binary classification, SVM is designed to find the best classification function distin-
guishing between two different classes. The algorithm uses geometrical optimization to
find the hyperplane in a high-dimensional feature space that maximizes the margin, i.e. the
distance between the hyperplane and the closest datapoints of the two classes. These data-

11

Chapter 2. Theory

points are called the support vectors, and the support vectors fully determine the placement
of the hyperplane. The hyperplane is used as a decision boundary where all datapoints,
of which the feature vector lies on one side of the hyperplane, are separated into their
respective classes, as demonstrated in Fig. 2.5.

x2 A

O Class 1

O Class -1

%
%y

W

Figure 2.5: A graphical representation of the SVM algortihm for a two-dimensional feature vector
Z = (x1,22) and linear separable data. The algorithm maximizes the margin to find the optimal
hyperplane for classification of the two classes.

Linear SVM

The training data consists of n points on the form (41, y1), ..., (n, yn), Where &; rep-
resents the feature vector, and y; the label taking values y; = 1 and y; = —1 for the
respective classes. Assuming a two-dimensional feature space and linearly separable data,
there exists a line x5 = ax; + b separating the classes. This gives ax; + b — x5 = 0.
Rewriting to vector form the equation for a hyperplane can be written as

G- F+b=0, 2.5)

where @ = (a, —1) is a normal vector to the hyperplane and & = (z1,) is the already
stated feature vector of the training data. Although derived here from two-dimensional
vectors, equation (2.5) holds for any number of dimensions. The goal in SVM is as men-
tioned to maximize the margin, and this can be achieved by constructing two parallel
hyperplanes that separate the two classes of data, namely

w-z;+b=—-1 fory; =—1and (2.6)
w-a;+b=1 fory;, = 1. 2.7

The hyperplane represented by equation (2.6) classifies all points on or below this bound-
ary to the class represented by y; = —1, while equation (2.7) classifies all points on or

12

2.3 Machine Learning for Image Classification

above this boundary to the class represented by y; = 1. This can be summarized as

w-z;+b< -1 fory; =—1and (2.8)
w-z;+b>1 fory; =1. 2.9)

Combining equation (2.8) and equation (2.9) gives the constraint
yi(wW-z;+b) >1, fory; ={-1,1}and 1 <i < n. (2.10)

The distance between the two hyperplanes can be shown to be ﬁ (Adankon and Cheriet,

2009). The maximum margin hyperplane (equation (2.5)) is the hyperplane that lies
halfway between these two hyperplanes, with a margin of M = HT}”)H Maximizing this
margin equals minimizing ||@J||. Therefore, the optimization problem becomes minimiz-

ing ||w|| subjected to the constraints of equation (2.10).

Non-Linear SVM

The complexity of real world problems give rise to datasets that are characterized by their
non-linearity. For SVM to classify non-linear data, one applies a technique called the
kernel trick (Scholkopf, 2000). The idea is mapping the non-linear dataset into a high-
dimensional feature space where one can find a hyperplane that can separate the datapoints
(Fig. 2.6).

= m
2 @
O
o o =) i) = I®) =
oo Mapping o a0 ©Soe
©e —> — SR
O B Kerneltrick | © © = m m
O - o m _
Input space high-dimensional space Input space

Figure 2.6: Schematic representation of the kernel trick. Data cannot be separated by linear SVM
in input space. By applying the kernel trick, the data is mapped to a high-dimensional feature space
where a hyperplane can be used as a decision border for the now linearly separable data. Thus, the
SVM algorithm is able to classify the non-linear data.

Let @ be the mapping of R — R™, that maps the vectors in R™ to some feature space
R™. A kernel is defined as a function K (23, z;) = ®(z}) - (), corresponding to the
the inner product of & and 7 in the feature space. The inner products of feature vectors
are calculated when solving the optimization problem presented in the previous subsection
(Asraf et al., 2012). In many cases, the computation of inner products of feature vectors
in high-dimensional spaces can be complex and computational demanding tasks (Huang
et al., 2018). Hence, the kernels are useful as they give a way to compute inner prod-
ucts in some feature space without knowing the characteristics of the space or explicitly
calculating the mapping ®.

13

Chapter 2. Theory

2.3.4 Convolutional Neural Networks

Convolutional Neural Networks are a class of deep learning, which is a subset of machine
learning that imitates the working of the human brain in order to be used in decision mak-
ing. As previously mentioned in section 2.3.2, conventional machine learning requires
feature extracting as a prerequisite (Lecun et al., 1998), which can be challenging in cases
where prerequisite knowledge of the data is limited. Deep learning overcomes this prob-
lem by not requiring pre-selected features, but extracting significant features from raw
input automatically. This is achieved by using a collection of processing layers that learns
features through multiple levels of abstraction, as described by Lecun et al. (2015). Given
their advantages, deep learning has emerged as the leading architecture in many problems,
including speech recognition, image classification and language translation among others
(Indolia et al., 2018).

To mimic the behaviour of the human brain, deep learning uses artificial neural networks
consisting of neurons connected in a web (Fig. 2.7). A neuron contains a set of inputs,
weights and an activation function. The inputs can either be raw features coming directly
from the input values or be the output of neurons from the previous layer. As seen from
Fig. 2.7, a neuron have many connections (arrows) to other units in the network. The
neuron processes this information as a weighted sum of all inputs. That is, for a set of
inputs X = [x1, 9,23, ..., z,] and weights W = [w1, wa, w3, ..., w,] one calculates the
sum E(z1, 22,23, ..., Tp) = W1T1 + Wako + W33 + ... + Wy Ty. This value is then fed to
the activation function of the neuron. The purpose of the activation function is to add non-
linearity to the neural network. As the weighted sum of the inputs only consists of linear
operations, the activation function is needed to perform non-linear mappings from input
to output. An example of an activation function is the sigmoid function, o(z) = H%
As the sigmoid function is restrained to take values on the interval < 0,1 >, it can be
viewed as a probability measure and is especially useful for models where the output takes
probabilistic form, e.g. in classification of images. The output from the activation function
is used as input for neurons in the next layer, where the same operations are repeated. This
process, called forward propagation, continues until the output layer of the neural network
is reached. Here, for classification, the output values are normalized into a probability
distribution. The input is then mapped to the output with the highest probability value.

Training of the neural network is achieved by predicting the output, comparing it to the de-
sired (labeled) output and adjusting the weights to minimize the error. To adjust the weight
vector, the learning algorithm computes a gradient vector that, for each weight, calculates
what the increase or decrease in the error would be if the weight were slightly increased.
The direction of the negative gradient vector indicates the steepest descent, where the error
gets smaller and eventually converges to a minimum. The weight vector is then adjusted
in the opposite direction to the gradient vector, decreasing the loss of the neural network.
The process of training the network is called back-propagation as the calculation of the
gradient proceeds backwards through the network, starting at the final layer of weights
and ending at the first layer. Back-propagation is thus a way of propagating the total loss
back into the neural network to find out how much of the loss each neuron is responsible
for, adjusting the weights in such a way that it minimizes the error by giving neurons with

14

2.3 Machine Learning for Image Classification

Input values Hidden layer 1 Hiddenlayer? Output layer Output values

3

o
—)
M

Qutput 1

w

Input

Input 4 Output 2

i

Input !

Figure 2.7: A simplistic overview of a neural network with two hidden layers of neurons. The
arrows show how all neurons are connected and how data travels from the input to the output layer.

higher error rates lower weights and vice versa. Since partial computations of the gradi-
ent are reused from one layer to the next, it allows for more efficient computation of the
gradient at each layer compared to calculating the gradient at each layer separately. The
training process increases the accuracy of the learning algorithm, enabling prediction of
new data.

Ordinary neural networks consist of fully connected layers where all neurons are in contact
with each other (Fig. 2.7). Convolutional Neural Networks (CNN), however, are charac-
terized by convolutional layers where each neuron is only connected to a few neurons in
the previous layer, giving convolution of the signal. The convolution leads to a reduction
of parameters and re-usability of weights, making the network better at capturing spatial
and temporal dependencies. This has made CNN the leading image classification method,
outperforming other methods in both accuracy and computational cost (Diale et al., 2019;
Sharma et al., 2018). A typical CNN architecture consists of the following layers:

 Input layer: The input layer is the first layer of the CNN, which passes the images onto
further layers for feature extraction. All preprocessing of images (resizing, removing
colors etc.) must have taken place beforehand.

* Convolutional layer: The next few layers are convolutional layers that act like feature
extractors with the objective of extracting high-level features (edges, lines, curves etc.)
from the input images at a low computational cost. In a convolutional layer, a filter
sweeps over the input features, enclosing a local region. This local region, often called
receptive field, is then convoluted (dot product) with the filter, resulting in a single scalar
(Fig. 2.8). By iteratively moving the filter, the convolution process is repeated for all
input features. The number of features (pixels) the filter moves in each iteration is deter-
mined by the stride. A larger stride will decrease the overlapping of receptive fields, that
is decrease the number of times each feature participates in convolutions. This can help

15

Chapter 2. Theory

prevent overfitting of the training images, i.e. help the CNN generalize beyond train-
ing data. Another important technique when performing convolution of the images, is
padding. Padding consists of adding zeroes to the input matrix symmetrically. Without
padding, the spatial resolution of the output of the convolutional layers is reduced com-
pared to the input. By applying padding, however, the spatial resolution of the images
stays the same. This is helpful, as preserving the dimension makes the design of the
network easier and also allows for deeper networks without the reduction in resolution
happening too quickly. Also, as the input matrix is extended, the pixels on the edges
will appear in more convolutions, making the CNN benefit more from the information
located in the outer regions of the images.

3*2+0*1+2=_¢3+
a) 3/0[2[3 35 s
13[1]o] . 23 _ 53
1 ‘O 2[3 X Convoluted
Input Filter features
features
0%2+0%1+0%3+
b) olo/o]ololo REIP P
0/310|12|3|o 4
213
013100 %« [2]0/2] = 23)
0/2/1|/0|10 3 -
0/1/0/23)p 1)1
0/l0oj0o[0j0 /0O Filter Convoluted
Input features
features

Figure 2.8: An example of a convolutional layer in a CNN. Input features are convoluted with a
filter to create a single convoluted feature. This process is repeated by moving the filter (red square
in figure) until all input features take part in at least one convolution. a) represents a convolution with
stride one and no padding. The spatial resolution of the convoluted features is reduced compared to
the input features. b) represents a convolution with stride one and padding. In this case, the spatial
resolution is conserved in the convolution process. Note how the outer edges of the input features
in a) will appear in more convolutions with the use of padding in b). Also, the convoluted feature
values of a) will all be present in the convoluted feature values of b).

* Pooling layer: The pooling layer takes the extracted features from the convolutional
layer, sweeps over them with a window (filter) of a given size, and chooses the most
dominant one for each window (Fig. 2.9). As for the convolutional layer, this filter
is moved by a given stride before the process is repeated for the whole set of input
features. In determining the most dominant feature, max pooling is often used, where
only the feature with the maximum value is extracted for each window. The function of
the pooling layer is reducing the spatial size of the convoluted features while preserving
the most valuable information.

16

2.3 Machine Learning for Image Classification

B max (2,6,5,2)

" [216]3]0
524 4‘ Max pooling). 4
012113 Fiter- 222 3|7
31 7 0 Stride - (2,2)

X

Figure 2.9: An example of max pooling in a CNN. A filter of size 2 X 2 sweeps over the features
with a stride of 2 in both = and y direction. The max feature values are extracted and preserved for
further processing.

* Fully connected layer: The fully connected layer is the same as the hidden layers for
the ordinary neural network seen in Fig. 2.7. The objective of the fully connected layer
is, as described above, to take the high-level filtered images and translate them into la-
beled categories by adjusting the weights of the neurons to minimize the training error.
The fully connected layer are often followed by a technique called dropout. Dropout is a
regularization technique that consists of dropping a neuron, i.e. temporarily removing it
from the network along with all incoming and outgoing connections. By randomly drop-
ping neurons with a given probability, the training process becomes noisy by effectively
creating a slightly different configuration for the network. The idea is that dropout will
break up situations where layers co-adapt to correct mistakes from prior layers. This
will prevent overfitting the model to the training data, and hence lead to a more robust
model.

e Output layer: The final layer of the CNN is the output layer. The output layer follows
the last fully connected layer, with the objective of transforming the output of the fully
connected layer to a probability distribution of the input belonging to a specific class.

An example of a complete Convolutional Neural Network can bee seen in Fig. 2.10.
Convolutional layers and pooling layers represent the feature extraction in the CNN, while
fully connected layers and the output layer represent the classification part of the model.

17

Chapter 2. Theory

Input image Convolutional layer Pooling layer Convolutional layer Pooling layer Fully connected layers Output layer

Output 1

Output 2

ut

| O
(=4
=
Sl e
) e

Output

Convolution Pooling Convolution Pooling

Feature extraction Classification

Figure 2.10: An example of a complete Convolutional Neural Network. An input image is fed
into a sequence of convolutional layers and pooling layers to extract features from the image. Both
convolution and pooling create a single feature from multiple feature values in the prior layer. The
spatial resolution shrinks in the pooling process, while the use of padding preserves the spatial
resolution for the convolution process. The extracted features are passed onto fully connected layers
where they are translated into categorical labels. Finally, the output layer gives the probabilities that
an input image belongs to the respective categories.

18

Chapter

Method

As seen in chapter 2, there are many ways to both characterize and classify snow. The
focus of this report is characterizing and classifying 2-D images of snow in terms relevant
to the performance of skis. The following presents a way of characterizing snow in terms
of grain shape and grain size through the calculation of OED and dendricity of snow grains.
This is achieved using an image analysis method involving contours. Additionally, the
machine learning algorithms SVM and CNN are used to classify snow images as old or
new snow, providing a separation between the two classes.

3.1 GelSight

The snow analysis in this report is based on the images from the GelSight Mobile™ equip-
ment (GelSight, 2019). The GelSight is a handheld and portable instrument giving detailed
surface analysis of any material. Such an instrument has been acquired by Olympiatop-
pen to be used in analysing both snow and ski surfaces. The instrument can bee seen in
Fig. 3.1. The setup consists of a handheld GelSight instrument connected to a tablet/PC.
An elastomeric sensor combined with a silicone gel conforms the surface topography, re-
vealing small changes in the microstructure which are further captured in high-resolution
images. These images are instantly captured and uploaded to the computational device.
The images taken with the GelSight have an image size of 2464 x 2056 pixels, correspond-
ing to 16.9 x 14.1 mm.

19

Chapter 3. Method

GELSTGHT

Figure 3.1: The GelSight Mobile acquired by Olympiatoppen. It consists of the GelSight instrument
connected to a tablet/PC (GelSight, 2019)

3.2 Characterization of Snow Images

The GelSight instrument produce clear high-resolution images as seen in Fig. 3.2. In or-
der to characterize these images, grain shape and grain size were chosen as the describing
characteristics through the calculation of dendricity and OED, respectively. These param-
eters were calculated by finding the contours of snow grains in the images. Contours can
be thought of as a curve joining all continuous points along a boundary having the same
intensity (section 2.1.2), and the following preprocessing of the images plays an important
role in the contour finding process.

GelSight image

[mm]

0 2 4 6 8 10 12 14 16
[mm]

Figure 3.2: Example recording of snow by the GelSight instrument.

20

3.2 Characterization of Snow Images

3.2.1 Preprocessing of Snow Images

First, the images are segmented by choosing an appropriate threshold value. That is turning
all pixels below the threshold white and all pixels above the threshold black, giving a
binary image. From Fig. 3.2 one can see that the brightness of the image is uneven. There
are more lighting at the top middle of the image and it gets darker when moving toward
the other edges. A global threshold value for the whole image is therefore inadequate, as
it would have to be chosen to either perform well on the bright or dark parts of the image.
However, using an adaptive threshold method where one uses separate threshold values
for separate parts of the image will account for the difference in brightness. The adaptive
threshold algorithm was carried out by creating a window of a chosen area and calculating
the average pixel value of the enclosed pixels. This value was then used as the threshold
value of the specific window, separating the pixels into black and white. Repeating this
process over the whole image will give the segmented image.

3.2.2 Contouring and Calculation of Parameters

The contouring is done in Python, using the OpenCV-library (Bradski, 2000) of Python-
bindings, frequently used to solve computer vision problems. Finding the contours is
achieved by using the findContours() function, which is based on the topological structural
analysis by Suzuki and Abe (1985).

When the contours are found, one can calculate the enclosed area using Green’s theorem.
The theorem states that for a positively oriented, piecewise smooth and simple closed
curve C' enclosing a region D, one has the relation

]{(Ada:—&—de // 8—3—%) dz dy 3.1)

where A and B are functions of (x,y) having continuous partial derivatives on D. By
choosing A and B such that ‘93 — %—‘2 = 1, the right side of equation (3.1) will simply
give the area of the enclosed reglon. Thus, the contour area (grain area) can be calcu-
lated from the line integral, as implemented in contourArea() function from the OpenCV-
library.

As mentioned in section 2.1.1, OED of a non-spherical snow grain is equal to the diam-
eter of a spherical snow grain exhibiting the same properties, and is a term often used
for characterization of grain size. Hence, in two dimensions, the calculation of OED be-

comes
ix A
OED =/ =22, (3.2)
s

where A is the area of a single contour. The calculation is then repeated for all contours
in the image. For characterizing the shape of the images, the perimeter of the grains were
found by counting the number of pixels making up the contour. Having the contour area,
A, and the perimeter, p, the dendricity of a single snow grain can be calculated as (section
2.1.1)

TArx A (3-3)

21

Chapter 3. Method

3.3 Classification of Snow Images

To classify the snow images, SVM and CNN are used as learning algorithms. As the
feature extraction process differs for the two models, it is convenient to apply each method
to investigate if one is better at capturing the characteristics of the images, as this will lead
to a better performance for the classification. Also, where the SVM is shown to perform
well on relatively small datasets, neural networks like CNN have shown to scale better on
larger, more complex datasets with respect to accuracy and computational time (Kaensar,
2013). Hence, there lies interest in applying SVM on the relatively small dataset presented
in this report, but also to build and apply a CNN to form a foundation for larger datasets
and more complex snow image classification tasks in future work.

3.3.1 Dataset and Preprocessing of Snow Images

The snow images used for image classification are acquired from different ski arenas
around Europe by Olympiatoppen. In addition to the images, Olympiatoppen also col-
lects data of the snow conditions, including labeling the snow as new/old. The time it
takes before new snow lying on the ground is characterized as old snow varies, as this is
dependent on the metamorphism of snow, which again is highly dependent on environ-
mental factors like temperature, wind etc. Hence, there exists no absolute limit where the
snow goes from new to old, and the process can be seen as a smooth transition. However,
the waxing team at Olympiatoppen have years of experience working with different snow
conditions, making them qualified to make a distinction between new and old snow for ski
purposes, which again is the aim of this report.

The used training data consists of a total of 276 images, where 140 of them are labeled
as new snow and 136 are labeled as old snow. To improve the performance of the classi-
fiers, this dataset has been expanded by increasing the number of images. The reasons for
this is (1) to give the learning model more images to learn from, and (2) to even out the
number of images in the two categories. Both will help the learning algorithms prevent
overfitting, i.e. help the models capabilities of generalizing beyond training data. Increas-
ing the number of images has been done by including images with different illuminations.
The GelSight instrument creates a total of six versions of the captured image, where the
difference lies in where the illumination takes place. There are four images with illumi-
nations in corners, while there are two images with illumination at the top and bottom of
the images. As there were fewer original (illumination at the top) images of new snow, the
number of images with different illumination is higher for this category, although images
with different illuminations have also been included for the category of old snow in order
to minimize the discrepancies between the two classes. In addition to the use of images
with different illuminations, the dataset is expanded by rotating images as well. For ev-
ery image in the dataset, a duplicate image rotated 90 degrees is included. As the snow
conditions on the ground should be found independent of the rotations and illuminations
of the images, the two data augmentation methods will test the classification algorithms’
abilities to concentrate on the relevant information in the images, creating more robust
classification models.

The test data consists of 96 images, where 48 of them are labeled as new snow and 48

22

3.3 Classification of Snow Images

are labeled as old snow. This makes the amount of images being for testing and training
roughly 25% and 75%, respectively. As for the training set, the number of images in the
test set have been expanded by including the same image with different illumination and
creating rotated images. Here, however, the number of images with different illuminations
is the same for both categories. The test and training data are distinct from each other in
the way that the same images, no matter rotation or illumination, do not appear in both the
training set and the test set.

3.3.2 Support Vector Machine

Before being fed into the learning algorithm, the grayscale images in the dataset (Fig. 3.2)
are loaded into feature vectors where each pixel represent a feature. To reduce the compu-
tational cost of the SVM, original images of size 2464 x 2056 are reduced to 492 x 410
pixels, that is reduced to 20% of their original size. Further, the features are standard-
ized to have unit variance and zero mean, as this is shown to benefit both accuracy and
computational cost (Juszczak et al., 2002).

The SVM algorithm is implemented in Python using the machine learning library scikit-
learn (Pedregosa et al., 2011) and the Support Vector Classifier function. The kernel used
in the SVM algorithm is a radial basis function (RBF). The RBF kernel is given as

2
_ N =51l

K(z;,25) =e . (3.4)

Hence, the RBF is a monotonically decreasing function of ||#; — #73||?, the Euclidean
distance between feature vectors. The interpretation of the RBF kernel is therefore as
a similarity measure, where similar feature vectors will give rise to higher values of the
kernel function. The Python code for the implementation of the SVM algorithm can be
seen in appendix A.

3.3.3 Convolutional Neural Network

As for the SVM case, the images are reduced to 20% of their original size before stan-
dardized to have unit variance and zero mean. Further, the CNN is implemented in Python
via the deep learning library Tensorflow (Abadi et al., 2015) and the application program
interface (API) Keras (Chollet et al., 2015).

The architecture of the CNN model can be seen in Fig. 3.3. Here, both the convolutional
layers and pooling layers use a stride of (1, 1). The convolutional layers utilizes padding,
and the pooling layers apply max pooling. Further, the first and second fully connected
layer consist of 30 and 15 neurons, respectively, with the second fully connected layer
followed by the dropout technique. For more details on the specific parameters of the
CNN model, see appendix A.

The model is trained with a batch size of ten. This means that the model will take the
first ten images in the training data, process them, before updating the internal weights of
the model. For the 276 training images this gives a total of 28 batches, 27 of them with
ten images and one with six images. When all the training images are processed once (all

23

Chapter 3. Method

Input layer

Pooling layer
Convolutional layer

Pooling layer

Fully connected layer
Fully connected layer

Qutput layer

Figure 3.3: The architecture of the CNN model used for the image classification of snow. All
convolutional layers and pooling layers use a stride of (1, 1). The convolutional layers use padding
and the pooling layers apply max pooling. The first and second fully connected layer consist of 15
and 30 neurons, respectively. The second fully connected layer is followed by the dropout technique.

28 batches), the model has trained one epoch. For this classification problem, 75 epochs
are used in training. The chosen optimization algorithm for updating the weights in the
network is a gradient descent procedure called ”Adam” (Kingma and Ba, 2014).

The loss function used for the CNN model is categorical cross entropy, which is defined
as

E(ye, yp) = — Y 1 log(yp)- (3.5)

Here y; and y,, are the true and predicted labels, respectively. The summation is over
all images, and the minus sign is included to get positive loss values. For the two-class
classification problem in this report, the image is either old snow, y; = [0, 1], or new snow,
yy = [1,0]. The predicted probabilities of an image belonging to either old or new snow
can for example take values like y, = [0.2,0.8] or y, = [0.8,0.2]. The accuracy of the
model is calculated by comparing the index of the maximum value in y; with the index of
the maximum value in y,. If they are similar, the labels are correctly predicted, if not, they
are wrongly predicted. Hence, dividing the number of correctly predicted samples on the
total number of images gives the accuracy of the CNN model.

24

Chapter

Results

4.1 Characterization of Snow Images

4.1.1 Preprocessing of Snow Images

For snow characterization the images are preprocessed by applying the adaptive threshold
method, giving results as seen in Fig. 4.1.

a) Original image

14

12

10

[mm]

0 2 4 [} 8 10 12 14 16 O 2 4 [} 8 10 12 14 16
[mm] [mm]

Figure 4.1: The figure shows a) the original image and b) the binary image after the adaptive thresh-
old method is applied.

The white and black pixel values represent the grains and grain outlines, respectively.
Since the thresholding algorithm uses the mean pixel value among a chosen amount of

25

Chapter 4. Results

neighbouring pixels as threshold, the grains in the original images must have higher inten-
sity compared to the grain outlines for the algorithm to work properly, as seems to be the
case in the figure. However, images with different illuminations will cast different shadows
that will alter the pixel values in the original images, which will in turn lead to changes in
the binary images as well. Fig. 4.2 shows the same image as in Fig. 4.1 but with different
illumination. From the figures it is seen that lighting conditions affects which parts of the
original images that are highlighted and which parts that are not. These differences create
distortions in the binary images.

a) Original image b) Binary image

[mm]

o 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
[mm] [mm]

Figure 4.2: The figure shows a) the original image and b) the binary image after the adaptive thresh-
old method is applied. The original image used is the same as in Fig. 4.1 but with different illumi-
nation.

As the binary images lay the foundation for further contouring and calculation of parame-
ters, the segmentation of images is crucial for the accuracy of the characterization. Since
the size and shape of snow grains is independent of lighting conditions, so should the
calculated OED and dendricity. Thus, the aforementioned distortions for binary images
preprocessed from original images with different illuminations should be as small as pos-
sible. Fig. 4.3 shows the average dendricity and OED for the two different illuminated
snow images presented above. The calculated parameters for the two images are similar,
with a relative difference below 3 % for both the dendricity and OED.

26

[mm]

4.1 Characterization of Snow Images

a) Dendricity=10.01 and OED=0.35

b) Dendricity=10.08 and OED=0.36

P Ny

14

12

10

[mm]

0 2 4 6 8 10 12 14 16 O 2 4 [} 8 10 12 14 16
[mm] [mm]

Figure 4.3: The two original images in Fig. 4.1 (a)) and Fig. 4.2 (b)) with the average OED and
dendricity shown. The two images show the same snow grains with different illumination. Both the
dendricity values and OED values are similar for the images.

4.1.2 Contouring and Calculation of Parameters

Following the image segmentation is the contouring of the binary images, where curves
joining all continuous points having the same intensity are found and drawn. Fig. 4.4
shows the whole contouring process from the original image to the contoured image. From
the figure one can observe the complexity of the images in form of the dense distribution
of grains, resulting in the dense distribution of drawn contours.

a) Original image b) Binary image c) Contour image

ST

14

= =

12

10

0 2 4 6 8 10 12 14 16 O 2 4 6 8 10 12 14 16 O 2 4 6 8 10 12 14 16
[mm] [mm] [mm]

Figure 4.4: The contouring process of a snow image. The figure shows a) the original image, b) the
binary/segmented image and c) the original image with drawn contours.

27

Chapter 4. Results

From the contours one can approximate the area of the snow grains and calculate the
OED and dendricity of snow images, as described in section 3.2.2. Fig. 4.5 shows the
average OED and dendricity of two different snow images. Image a) has sharper, more
dendritic grains compared to the more rounded grains of image b). This leads to a higher
calculated dendricity for image a). For the OED, the rounder grains of image b) appear
larger compared to the dendritic grains of a), giving a larger OED for image b).

a) Dendricity=12.17 and OED=0.3 b) Dendricity=9.27 and OED=0.38

i

14

12

10

[mm]

o 2 4 & 8 10 12 14 16 0 2 4 & 8 10 12 14 16
[mm] [mm]

Figure 4.5: Two snow images of different snow conditions. The sharper grains of a) have a higher
average dendricity compared to the more rounded grains of b), while the larger grains in b) have a
higher OED compared to a).

From the figure one can also observe that the snow grains in the respective images are
not uniform, but vary in both shape and size. These local changes are due to factors like
weather, terrain, physical disturbances etc. The average value of the calculated parameters
do therefore not give a complete overview on the distribution of the shape and size of snow
grains as different distributions can give similar averages, and also images with different
averages can share more or less similarities in their distributions. Hence, beside the av-
erage values of the OED and dendricity it is also interesting to look at their distributions.
Fig. 4.6 shows the images in Fig. 4.5 and their distribution of OED and dendricity. For
the OED, the distributions look pretty similar with most of the grains being in the range of
0.10 — 0.20 mm for both images. The difference between the two comes from image b)
having a higher percentage of larger grains compared to a), leading to the higher average
OED of b). Looking at the dendricity distributions of the grains, there are larger differ-
ences between the images. Image a) has a more flat distribution indicating that the the
number of grains in each dendricity range is more similar compared to image b) where the
major part of grains have lower dendricity values. This leads to the lower average dendric-
ity value of image b). From the distributions one can also observe that the largest fractions
of grains for the two images have both lower OED and dendricity than the average values,
leveled out with a fewer number of larger and more dendritic grains.

28

4.1 Characterization of Snow Images

a) Dendricity=12.17 and OED=0.3 a) OED a) Dendricity
25% 35%

30% -
20% -

25% -
15% - 20% -
10% - 15% 7

10% -
5% -
5% A

0% - 0% -
0 2 4 © 8 10 12 14 16 0.00 0.25 0.50 0.75 1.00 0 10 20 30
[mm] [mm]

b) Dendricity=9.27 and OED=0.38 b) OED b) Dendricity
- 7 25% 35%

30% 4

25% A
20% A
15% A
10% ~

5% 4

0% -

0 2 4 6 8 10 12 14 16 0.00 0.25 0.50 0.75 1.00
[mm] [mm]

30

Figure 4.6: The two different snow images in Fig. 4.5 with the distribution of OED and dendricity
for the snow grains. The OED distributions are quite similar except b) having some higher fraction
of larger grains compared to a). For the dendricity, a) has a flatter distribution compared to b) where
most of the snow grains have smaller dendricity values.

For the presented characterization method to work properly, one should expect similar
looking snow conditions to have similar calculated values of grain size and grain shape.
Fig. 4.7 show two images exhibiting similar average values of OED and dendricity. Com-
paring the two images one can observe that the snow grains look similar as well, with
pointy, sharp grains appearing in both of the images. Further, their distribution of the OED
and dendricity can be seen in Fig. 4.8. These distributions also look much alike, but image
b) has a higher fraction of grains with both smaller dendricity and OED compared to image
a). As for the two previously shown images in Fig. 4.6, one can observe that the largest
fractions of the dendricity and OED are in the lower part of the scale, and that the average
values are increased by a smaller amount of larger and more dendritic grains.

29

[mm]

[mm]

Chapter 4. Results

a) Dendricity=11.15 and OED=0.39

= el

b) Dendricity=11.19 and OED=0.38
14 e

12

10

[mm]

0 2 4 5] 8 10 12 14 16 0 2 4 5] 8 10 12 14 16
[mm] [mm]

Figure 4.7: Two snow images of similar snow conditions. The snow grains in the two images look
similar and also have similar values for OED and dendricity.

A _ a) OED a) Dendricit
a) Dendricity=11.15 and OED=0.39 25% 35% y
12.5 30% A
20% -
10.0 25% -
15% -
7.5
5.0 10% 4
2.5 sﬂfﬁ -
0.0
0% -
0 2 4 6 8 10121416 000 025 050 075 100
[mm] [mm]
b) Dendricity=11.19 and OED=0.38 s, b) OED 59 b) Dendricity
125 30% -
20% -
10.0 25% A
15% - o |
75 20%
15% -
50 10% -
10% -
2.5 5% -
5% 1
0.0
0% - 0%
0 2 4 6 8 1012 14 16 000 025 050 075 100 0 10 20 30
[mm] [mm]

Figure 4.8: The two similar snow images in Fig. 4.7 with the distribution of OED and dendricity
for the snow grains. The distributions are quite similar but with image b) having a larger fraction of
grains with both smaller dendricity and OED compared to a).

30

4.1 Characterization of Snow Images

Thus far, the presented results investigate the abilities of the contouring method to distin-
guish between different snow conditions through the calculation of OED and dendricity,
which is indeed one aim of this report. However, as these parameters represent actual
physical values, it is interesting to look at their accuracy as well. This will indicate the
validity of using calculated parameters from the contouring as stand-alone results, or if
there are shortages in the contouring making the accuracy of these values inadequate. In
order to validate the accuracy of the contouring, sandpaper is used as reference. The Fed-
eration of European Producers of Abrasives (FEPA) has compiled a standard for the grit
sizes of different types of sandpaper. By sieving the grits they have estimated the mean
diameter, which can be compared with the calculated OED from the contouring. Here,
three sandpapers with different sized grits are used, as seen in Fig. 4.9.

a) P40 b) P60 c) P100

Figure 4.9: The three different types of sandpaper used to validate the contouring method. The
lower the P-number, the larger the size of the grits.

The sandpapers are named P40, P60 and P100, and from the figure one can see that the
grit size decreases as P-number increases. The same can be said for the density of grits,
where the image of P100 clearly inhabits more grits compared to the other two images.
The calculated OED along with estimated diameter from FEPA can be seen in Table. 4.1.
The trend for both the OED and the FEPA diameter is the same, where moving up in P-
number gives smaller grits, as expected from the figure. However, the FEPA values shrink
considerably more compared to the calculated OED. For P40 the results are similar, but
when moving to P60 and P100 there are large discrepancies between the values. This
overestimation indicates that the contouring algorithm have trouble separating grits when
the grits are small and the density of grits is high, as discussed in section 5.1.2.

Table 4.1: The calculated OED and estimated diameter from FEPA for different types of sandpaper.
The decreasing trend of OED and FEPA diameter for increased P-number is the same, but much
larger for the FEPA diameter.

Type | OED [mm] | Diameter (FEPA) [mm]

P40 0.424 0.426
P60 0.357 0.269
P100 0.30 0.162

31

Chapter 4. Results

4.2 Classification of Snow Images

4.2.1 Dataset and Preprocessing of Snow Images

The object of the image classification is to classify snow images into categories of new
and old snow. The dataset used to train this classifier is labelled by Olympiatoppen, and
some images with their respective labels can be seen in Fig. 4.10. As can be observed
from the images, there are differences within each category, where images with the same
label differ in appearance of both the size and shape of grains. Between the categories, the
main difference is the more rounded grains of old snow compared to the more elongated
grains of new snow.

Old snow Old snow Old snow

New show New snow New snhow

Figure 4.10: The figure shows images labelled as both new and old snow. The two categories are
represented by a variety of images, where both the size and shape of grains differ for the same cate-
gory. The main difference between the categories is the more rounded grains of old snow compared
to the more elongated grains of new snow.

The dataset containing the images is first resized to lower the computational cost of the
learning algorithms, as described in section 3.3.1. Secondly, the images are augmented
by including images with different illuminations and creating rotated images. The results
of the data augmentation and the preprocessing can be seen in Fig. 4.11. The original
images of size 2464 x 2056 are resized to 492 x 410 pixels, that is reduced to 20% of their

32

4.2 Classification of Snow Images

original size. From the figure one can see that the perceived changes between the original
image and resized image are small and hard to detect. Hence, the loss of information when
downscaling the images should not have any large impact on the performance of the clas-
sification algorithms. The figure also shows the same image with a different illumination
and a rotation of 90 degrees, which are the used techniques to expand the dataset.

iginal image

Or Resized image

250 50

500 100

750 150

1000 200

1250 250

1500 300

1750 350

2000 400

0 500 1000 1500 2000 0 100 200

300 400

llluminated image Rotated image

50
100
100
150
200
200
250 300
300
4
350 00
400

0 100 200 300 400 0 100 200 300 400

Figure 4.11: The figure shows the results of preprocessing and augmentation of an image in the
dataset. The rescaling of the original image consisting of 2464 x 2056 pixels to 492 x 410 pixels
leads only to tiny changes between the images. Further, the same image is included with different
illumination and a 90 degree rotation, which techniques are used to expand the dataset.

33

Chapter 4. Results

4.2.2 Support Vector Machine

The performance of the SVM algorithm is assessed by using the trained learning algorithm
to predict the labels of the images in the test set. The calculated accuracy, computation
time and confusion matrix as retrieved from the Python-script can be seen in Fig. 4.12.
The accuracy of the SVM algorithm is 95.8%. Hence, of all the 96 images in the test
set, 92 of them are predicted correctly and 4 of them are predicted wrongly. The same
conclusion can be drawn from the confusion matrix, where the first row indicates that out
of the 48 images labelled as new snow, 44 of them are classified as new snow and 4 of
them are classified as old snow. The second row indicates that all 48 images labelled as
old snow are indeed classified as old snow. Thus, the four misclassified images are all
images of new snow falsely predicted to be old snow.

Zccuracy: 0.938
Elapsed Times: 2 minutes
Confusion Matrix:

[[44 4]

[O 48]]

Figure 4.12: The accuracy, computation time and confusion matrix for the SVM algorithm. The
accuracy is 95.8%, corresponding to 92 out of 96 images correctly classified. The confusion matrix
shows that all misclassifications come from images of new snow predicted to be old, while all images
of old snow are predicted correctly.

The wrongly classified images can be seen in Fig. 4.13. The four images consist of two
non-rotated and two rotated images. The non-rotated images can be seen to picture the
same snow but with slightly different quality and lighting, and the other two images are
their respective rotations. Hence, the four misclassified images originates from the same
snow conditions.

34

4.2 Classification of Snow Images

Prediction: Old / True value: New Prediction: Old / True value: New
<.z ee 0

50

100

150

200

250

300

350

400
0 100 200 300 400 0 100 200 300 400

Prediction: Old / True value: New Prediction: Old / True value: New
- — — 0

50 2
100
100
150
200

200
250 300
300
400
350

400

0 100 200 300 400 0 100 200 300 400

Figure 4.13: The figure shows the four images misclassified by the SVM algorithm. The two non-
rotated images differ only in lighting and quality, and the two rotated images are their respective
rotations.

4.2.3 Convolutional Neural Network

As for the SVM algorithm, the performance of the CNN is assessed by using the trained
learning algorithm to predict the labels of the images in the test set. The calculated ac-
curacy, computation time and confusion matrix as retrieved from the Python-script can
be seen in Fig. 4.14. The accuracy of the CNN algorithm is 97.9%. Hence, of all the
96 images in the test set, 94 of them are predicted correctly and 2 of them are predicted
wrongly. The confusion matrix shows that the two misclassified images are images of new
snow falsely predicted to be old snow.

35

Chapter 4. Results

Zccuracy: 0.979
Elapsed Time: &6 minutes
Confusion Matrix:
[[4e 2]
[O 48]]

Figure 4.14: The accuracy, computation time and confusion matrix for the CNN algorithm. The
accuracy is 97.9%, corresponding to 94 out of 96 images correctly classified. The confusion matrix
shows that all misclassifications come from images of new snow predicted to be old, while all images
of old snow are predicted correctly.

The wrongly classified images can be seen in Fig. 4.15. These images are the same images
misclassified by the SVM algorithm as well, and are identical but for a 90 degree rotation.
Hence, the two misclassified images originate from the same snow conditions.

Prediction: Old / True value: New o Prediction: Old / True value: New

50
100

100

150
200

200
250 300

300
400

350

400

0 100 200 300 400 0 100 200 300 400

Figure 4.15: The figure shows the two images misclassified by the CNN algorithm. The images are
identical but for a 90 degree rotation.

The CNN model trains by adjusting its weights to minimize the loss function and hence
increase the accuracy of the classification. This training process can be seen in Fig. 4.16,
where the loss and accuracy are plotted for each trained epoch. The figure also shows
how the accuracy and loss on the test set evolves during the training process. It is worth
repeating that the test and training set are independent of each other, and that the test
set has nothing to do with the tuning and optimization of the CNN model, but is merely
included to give insights to the model’s performance. From plot a) one can see that the
training accuracy rapidly increases after just a few epochs, while the accuracy of the test
set is above 90% after just one trained epoch. Further, the accuracy of the training and test
set increases before stabilizing above 95% with a slightly higher accuracy on the training
set. From the model loss in plot b), one can observe a rapid decrease for both the training

36

Accuracy

4.2 Classification of Snow Images

and test set after just a few number of trained epochs, followed by a slightly decrease
before the curves eventually flatten out. As for the model accuracy, the loss on the training
and test set behave similarly during the training process.

a) Model accuracy

1.00 A WWW
o AW
0.95 A W

0.90 4
0.85 4
0.80 4
0.75 1
0.70 - — Train
Test
T T T T
0 20 40 80
Epoch

Loss

b) Model loss

0.6

0.5 4

0.4 4

0.3 4

0.2 4

0.1+

— Train
Test

WA A0

20

T T
40 80
Epoch

Figure 4.16: The figure shows a) the model accuracy and b) the model loss for the training and test

set as a function of trained epochs.

37

Chapter

Discussion

5.1 Characterization of Snow Images

5.1.1 Preprocessing of Snow Images

The preprocessing of digitized images forms the basis for further analysis, and good results
in this initial step are therefore crucial to achieving good results on the characterization
process as a whole. However, the preprocessing of images is no straightforward task,
and from Fig. 4.1 one can see the complexity of the snow images in form of the dense
distribution of grains. As a consequence of this, some grains can be seen to overlap with
others. Hence, locating where a grain starts and stops is not trivial, not for the human
eye nor the threshold algorithm. As described in section 3.2.1, the adaptive threshold
algorithm creates local thresholds based on the intensity of surrounding pixel values. Thus,
the number of neighbouring pixels used to calculate the average thresholds will impact the
results of segmentation. If too many pixels are chosen, the algorithm will be unable to
detect small grains and capture small details in the images. On the other hand, if too few
pixels are chosen, the algorithm will be overly sensitive to tiny changes in pixel values and
also noise, making it unable to capture larger grains. The optimal number of neighbouring
pixels will vary for different regions in an single image, and also between different snow
images, due to the difference in size, density and complexity of the snow grains. Hence,
the optimal number of neighbouring pixels to best capture the grains and grain boundaries
for all images is difficult to find.

As the threshold algorithm operates on raw pixel values, it is sensitive to the lighting of
the images. The lighting will affect which parts of the images become highlighted and
appear brighter, and which parts become shaded and appear darker. A global threshold
for the whole image will not be able to separate the grains and grain boundaries for both
the darker and brighter parts of the image. However, as the shape and size of snow grains
stay indifferent to the lighting, so should the calculated OED and dendricity. Here the

38

5.1 Characterization of Snow Images

adaptive threshold method comes in handy, as this method should capture nuances in local
regions and thus work for both the brighter and darker parts of the images. Fig. 4.3 shows
two images of the same grains but with different illuminations. Both the dendricity and
OED are similar for the two images with a relative difference below 3%. This indicates
that the adaptive threshold method indeed provides a segmentation of images enabling
characterization of grains independent of illumination.

5.1.2 Contouring and Calculation of Parameters

Finding the contours is equivalent with finding a curve along a boundary joining points
with the same intensity, and is completely dependent on the quality of both the original
images and the segmentation process. Thus, noise in the original images or inaccurate
segmentation of the binary images will have negative effects on the contouring as well.
One effect can be clustering multiple grains into a larger grain. As there is a high density
of grains in the images, separating them from each other can be hard, and clustering of
grains can therefore occur. In addition, one can have the other way around, where larger
grains are divided into smaller grains. In both cases, there are small inaccuracies in the
pixel values that can be decisive, leading to detection of a smaller or larger grain area. In
order to account for that, the contour areas are filtered based on their size, setting a lower
and a higher limit. This filters out the largest and smallest grains, which greatly benefited
the consistency of the contouring and calculated parameter values.

For the contouring method to be a useful tool in ski preparation it should be able to dis-
tinguish between different and similar snow conditions. The two different snow images
in Fig. 4.5 show different values of OED and dendricity, where the sharper and smaller
grains of image a) give both a higher average dendrictiy and lower OED compared to the
more rounded and larger grains of image b). As for the similar snow conditions in Fig. 4.7,
one has similar values of OED and dendricity. This indicates that the contouring method
indeed provides a separation of snow conditions. Looking at their respective grain dis-
tributions in Fig. 4.6 and Fig. 4.8 one can observe that the snow grains in an image are
not uniform, but vary in terms of size and shape, adding to the complexity of the charac-
terization. From the same figures one can also observe that the largest fractions of grains
inhabit smaller OED and dendricity compared to the average values, evened out by a fewer
number of larger and more dendritic grains. Hence, the average values do not necessary
give the best representation of the snow conditions. For the friction of skis, it is not cer-
tainly correct that all grains in the images should be given equal weight. Colbeck (1996)
among others have found smaller grains to give a higher friction coefficient x leading to
higher overall friction (section 2.2) compared to larger grains. As most of the grains in the
presented images have a smaller OED than the average values, it could be that the smaller
grains should be weighted more to give an OED value in compliance with the actual fric-
tion of the snow. However, the friction between snow and skis is determined by the real
contact area of the ski-snow interface and is a complex process depending on factors like
shearing of meltwater film, deformation and fractures, plowing of snow in front of skis
and so on. Hence, further processing of the OED and dendricity values accounting for all
these factors is a complex task beyond the aim of this report. Thus, the values of OED and
dendricity presented here are unprocessed and weighted equally. The range of sizes and

39

Chapter 5. Discussion

shapes in each snow image indicates that both the average value and distributions should
be used to thoroughly characterize the properties of the snow.

As previously mentioned, it is interesting to validate the accuracy of the calculated OED
and dendricity values. This will indicate the validity of using calculated parameters from
contouring as stand-alone results, or if there are shortages in the contouring making the
accuracy of these values inadequate. The calculated OED and estimated diameter of dif-
ferent types of sandpaper in Table. 4.1 show clear differences between the values. For P40
the values are similar, but as the grits becomes smaller the FEPA values shrink much more
compared to the calculated OED. From Fig. 4.9 one can observe how the density of grits
increases when moving up in P-number, making it harder to distinguish between where
different grits starts and stops. This can lead to clustering of multiple grits into larger grits,
effectively overestimating the size of the grits. One can see from the table that this effect
is more prominent for P100 where the density of grits is largest, making the separation
of grits more difficult. As discussed for the preprocessing, the adaptive threshold algo-
rithm can be made more or less sensitive by adjusting the number of neighbouring pixels
used to create the local threshold. Making this number smaller makes the algorithm more
sensitive to smaller changes and thus better at capturing smaller grains, but at the cost of
underestimating the larger grains. As the size of snow grains in the images are more like
the grits for P40 rather than P100, the contouring algorithm has been tuned to better fit the
relatively larger grains of P40, as seen in the table.

The presented results show that the contouring method has flaws. The complexity of the
snow images in terms of the density of grains and variations in shape and size makes it
hard to accurately capture all grains, as seen from the comparison of the OED and FEDA
diameter. Hence, as the contouring algorithm fails to capture the complexity of the Gel-
Sight images, the values of dendricity and OED should not be used as stand-alone results.
For this purpose, more elaborate image analysis techniques like the previously mentioned
micro-CT would be a better choice. However, the aim here is not to outperform such imag-
ing techniques, but rather to investigate if a simple and fast analysis using the captured im-
ages from the GelSight instrument can say something about the current snow conditions
and thus help the ski-technicians prepare better skis. As previously discussed, the image
analysis is consistent as both similar snow conditions give similar values of dendricity and
OED and different snow conditions give different values. Also, for the sandpaper, the con-
touring still correctly separates the images based on the size of the grains, even though
the values are not accurate. This consistency of the contouring algorithm makes it useful
for comparing different snow conditions. Finding snow conditions similar to previously
analysed snow conditions will give the ski-technicians the opportunity to use their pre-
vious experience on these conditions to prepare the optimal skis. Hence, the presented
contouring can be used as a tool in ski preparation.

40

5.2 Classification of Snow Images

5.2 Classification of Snow Images

Since the metamorphism of snow is a continuous process, one will have a continuous
transformation of snow grains as well. This leads to the variety of snow conditions seen in
Fig. 4.10. As seen from the figure, there is a wide range of images both within and between
the two categories. Within each category there will also be an age difference between the
images, ranging from more old to less old (old snow) and more new to less new (new
snow). Hence, images between categories will be more similar if they are images of less
old snow and less new snow, compared to if they are images of very new and very old
snow. As there is no absolute limit to where new snow transforms into old snow, images
from each category can end up quite similar, adding to the complexity of the classification.
Another factor contributing to the complexity of the classification is, as seen from the
contouring, the lack of uniformity in terms of the size and shape of snow grains. This
could be due to differences in temperature, terrain, pressure etc. However, as one should
expect neighbouring snow grains to experience similar impact from the surroundings, a
more likely explanation is that new snow falling from the sky blends in with the older
snow on the ground. This creates a mixed composition of older and newer snow. Hence,
the age of different snow grains within each image is not necessarily the same, and some
images can contain grains that have the characteristics of both old and new snow.

In order to reduce the computational cost of the learning algorithms, the images are rescaled
from 2464 x 2056 to 492 x 410 pixels, transferring to a 80% reduction in image size. From
Fig. 4.11 one can see that this relatively large reduction does not impact the characteristics
of the image, and as the snow conditions stay the same, the resizing should not have signif-
icant effect on the performance of the classification other than reducing its computational
cost. Further, the same figure also shows the two augmentation techniques of including
illuminated and rotated images. Again, the snow conditions do not change upon either one
of these techniques, and they still represent the class label of the original image. An image
classification model should be able to make classifications based on prominent character-
istics and at the same time ignore insignificant changes. Hence, since the rotation and
illumination of images do not alter the snow conditions, this should not negatively affect
the performance of the classifiers, but rather lead to more robust models.

An accuracy of the SVM algorithm of 95.8%, corresponding to correct predictions of 92
out of 96 images, shows that the learning algorithm indeed has been able to learn the classi-
fication problem. The four misclassified images are shown in Fig. 4.13, and as previously
mentioned they all originate from the same snow conditions. Although they are labeled
as new snow, a comparison with the snow images in Fig. 4.10 does not make it clear that
these images belong to this category. The wrongly classified images contain both rounder
grains characterized by old snow and more elongated grains characterized by new snow.
Hence, the four images may place themselves near the previously discussed borderline of
what is considered new and old snow, making them harder to classify correctly.

The CNN algorithm achieves an accuracy of 97.9%, corresponding to correct predictions
of 94 out of 96 images. The two wrongly classified images seen in Fig. 4.15 are also
wrongly classified by the SVM algorithm. These two images have poorer quality, as seen
in the top left corner of the non-rotated image, and may thus be more difficult to clas-

41

Chapter 5. Discussion

sify compared to the other two images misclassified by SVM, which the CNN classifies
correctly. The training process of the CNN algorithm seen in Fig. 4.16 shows only small
differences for the model accuracy and loss between the test and training set. This indicates
the the CNN model is able to generalize beyond training and is therefore a good fit for the
data. From the plot of the model loss one can also see that the curves flatten out, indicating
convergence of the loss function and thus sufficient training of the model.

Comparing the two learning algorithms it is clear that both of them enable separation of
images into categories of new and old snow. The wrongly predicted images do all have
characteristics of both old and new snow, making them hard to classify. The CNN achieves
a slightly higher accuracy compared to the SVM, but the difference in computational time
is huge. Where the SVM algorithm only need two minutes to train and predict the images,
the CNN algorithm uses a total of 66 minutes. From the training process of the CNN
algorithm in Fig. 4.16 one can see that the accuracy on the test set does not increase sig-
nificantly after the first few epochs. In other words, the model trains a large number of
epochs without improving its accuracy. The reason so many epochs are included is to find
where the loss function converges to the minimum. Although it does not manifest in the
accuracy, this will optimize the model and make the CNN more confident in its classifi-
cations. Yet, the complexity of the problem is not large enough for the CNN to unleash
its full potential. As mentioned in section 3.3, the CNN model have shown to scale better
on larger, more complex datasets with respect to both accuracy and computational time.
However, for the binary classification problem as presented here, the small improvement
in the accuracy for the CNN does not make up for the much longer computation time com-
pared to the SVM. As the metamorphism of snow leads to rapid transformation of snow
grains, one wants to minimize the time between the capture and classification of images,
making the SVM more suited on the presented classification problem.

42

Chapter

Conclusion

This report investigates how images of snow can be analysed to provide useful informa-
tion in relevance to the performance of cross-country skis. The analysis is based on images
from the GelSight imaging system, which provides an easy and effective way of capturing
real-time snow conditions. Two independent methods for characterization and classifica-
tion of snow images have been developed.

The presented characterization method involves using contours to calculate the OED and
dendricty of snow grains. The validity of these results were tested by comparing the calcu-
lated OED of sandpaper to the estimated diameter from the FEPA standard. The calculated
OED values of sandpaper do not fit with the given diameter values from the standard. As
the density of grains becomes larger and grain size becomes smaller, the algorithm fails
to separate one grain from another, leading to an systematic overestimation of the grain
size. Hence, the parameter values from the contouring method should not be used as stand-
alone results. However, the contouring method is consistent in its characterization as larger
snow grains indeed give rise to higher OED compared to smaller grains. In addition, more
dendritic grains give rise to higher values of dendricity compared to less dendritic grains.
This consistency enables separation of different snow conditions through the OED and
dendricity values.

The presented classification method involves using the learning algorithms SVM and CNN
to classify snow images into categories of new and old snow. With an accuracy of 95.8%
for the SVM algorithm and 97.9% for the CNN algorithm, they both enable separation of
snow images based on the age of snow grains. The main source of error for the classifica-
tion is new snow falling from the sky blending in with older snow on the ground, creating
a mixed composition of new and old snow. This makes the images both harder to label and
classify, resulting in false predictions by the two models. The shorter computation time of
the SVM algorithm compared to the CNN algorithm, 2 versus 66 minutes for a training
set of 276 images, makes the SVM algorithm better suited on the small dataset presented
here.

43

Chapter 6. Conclusion

The results of both the characterization and classification of snow images provide tools for
separating different snow conditions. The contouring method is consistent as similar snow
conditions give rise to similar values of OED and dendricity, and the learning algorithms
achieve high accuracy on the classification of snow images. Thus, comparing snow images
through their OED, dendricity and class label will give ski-technicians the opportunity to
use previous experiences on similar snow conditions to prepare more optimal skis. Hence,
the presented snow analysis can be used to provide useful information in relevance to the
performance of cross-country skis.

44

Chapter

Future Work

The work presented in this report gives a way of separating different snow conditions using
the OED, dendricity and age of the snow. This enables a broad separation of different
snow conditions. However, as snow is a complex material with dependencies on many
different factors, there is room for more narrow and accurate characterization of the snow’s
structure. For cross-country, the glide of skis is directly related to the deformation of both
the snow surface and ski base at the contact spots. Evaluation of the hardness and density
of snow could therefore benefit the characterization. These parameters can be measured
directly as described in section 2.1.1 of this report. However, as the snow’s structure can
change rapidly, the measurements should be carried out in the field and just before the
preparation of skis. Hence, there might be easier to include these parameters indirectly
through measurements of air temperature, humidity, snow temperature etc. Combining
the extracted parameters from the GelSight images with measured weather parameters can
give a more thorough characterization of the present snow conditions.

In this report the classification problem was to distinguish between old and new snow. As
seen from the snow images, there can be large variations within the two categories as well.
This makes room for further separation of the snow conditions, and Fierz et al. (2009) op-
erate with many different classes of snow grains. Here, the CNN algorithm should thrive
as more classes makes the classification more complex, which better utilises the capabil-
ities of the CNN. However, as there are different types snow grains existing within each
snow image, it can be difficult give a single label for the whole image. Thus, instead of
supervised learning algorithms like the CNN and SVM, unsupervised learning can prove
beneficial. Here one can apply clustering to find similarities in the data, as showed in Fig.
7.1. The figure shows a connector graph representation on how a database of snow images
can be created and exploited to find similar snow conditions. First, the GelSight instrument
is used to acquire the snow images. Secondly, one deduces the snow parameters from the
images and measures the weather parameters. After gathering a set of all these parame-
ters, one can apply an unsupervised learning algorithm to cluster similar snow conditions

45

based on the parameter values. In the end, one can use previous knowledge regarding ski
preparation on similar conditions to prepare more optimal skis.

Images acquired by
the GelSight
Measure the Calculate snow
weather parameters parameters from
image analysis

Y ¥

Apply unsupervised learning
to cluster the data

Y

Find similar results
and use previous
knowledge

Figure 7.1: A connector graph representation on how a database of snow images can be created and
exploited to find similar snow conditions.

46

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, 1., Harp, A., Irving, G., Isard, M.,
Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I,
Talwar, K., Tucker, P.,, Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden,
P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale
machine learning on heterogeneous systems. URL: http://tensorflow.org/.
(Accessed 14.05.2020).

Adankon, M.M., Cheriet, M., 2009. Support Vector Machine. Springer US, Boston, MA.
pp- 1303-1308. doi:10.1007/978-0-387-73003-5_299.

Asraf, H.M., Nooritawati, M., Rizam, M.S., 2012. A comparative study in kernel-based
support vector machine of oil palm leaves nutrient disease. Procedia Engineering 41,
1353 = 1359. doi:https://doi.org/10.1016/j.proeng.2012.07.321.

Bader, H., Haefeli, R., Bucher, E., Neher, J., Eckel, ., Tharns, C., 1939. Der schnee und
seine metamorphose. beitrage zur geologie der schweiz. schweizerische schnee- und
lawinenforschungskomrnission. translation: 1954. snow and its metamorphism. SIPRE
Translation 14 .

Bartlett, S.J., Riiedi, J.D., Craig, A., Fierz, C., 2008. Assessment of techniques for
analyzing snow crystals in two dimensions. Annals of Glaciology 48, 103-112.
doi:10.3189/172756408784700752.

Bradski, G., 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools URL:
http://docs.opencv.org/. (Accessed 14.05.20).

Budde, R., Himes, A., 2017. High-resolution friction measurements of cross-
country ski bases on snow. Sports Engineering 20, 299-311. doi:10.1007/
s12283-017-0230-5.

Bottcher, R., Scherge, M., 2017. Ski preparation as a three-dimensional problem. Snow-
storm Publishing - Gliding 1, 19-23.

47

http://tensorflow.org/
http://dx.doi.org/10.1007/978-0-387-73003-5_299
http://dx.doi.org/https://doi.org/10.1016/j.proeng.2012.07.321
http://dx.doi.org/10.3189/172756408784700752
http://docs.opencv.org/
http://dx.doi.org/10.1007/s12283-017-0230-5
http://dx.doi.org/10.1007/s12283-017-0230-5

Chollet, F,, et al., 2015. Keras. URL: https://keras.io. (Accessed 14.05.2020).

Colbeck, S.C., 1996. A review of the friction of snow. Springer Netherlands, Dordrecht.
pp- 275-291. d0i:10.1007/978-94-015-8705-1_18.

Colbeck, S.C., 1998. Sintering in a dry snow cover. Journal of Applied Physics 84, 4585—
4589. doi:10.1063/1.368684.

Cortes, C., Vapnik, V., 1995. Support-vector networks. Mach. Learn. 20, 273-297.
doi:10.1023/A:1022627411411.

Denoth, A., 1989. Snow dielectric measurements. Advances in Space Research 9, 233 —
243. doi:thttps://doi.org/10.1016/0273-1177(89)90491-2.

Diale, M., Celik, T., Walt, C.V.D., 2019. Unsupervised feature learning for spam email
filtering. Computers & Electrical Engineering 74, 89 — 104. doi:https://doi.org/
10.1016/7j.compeleceng.2019.01.004.

Dollar, P., Tu, Z., Tao, H., Belongie, S., 2007. Feature mining for image classification, pp.
1-8. doi:10.1109/CVPR.2007.383046.

Fierz, C., Armstrong, R., Durand, Y., Etchevers, P., Greene, E., Mcclung, D., Nishimura,
K., Satyawali, P., Sokratov, S., 2009. The international classification for seasonal snow
on the ground (UNESCO, IHP (International Hydrological Programme)-VII, Techni-
cal Documents in Hydrology, No 83; IACS (International Association of Cryospheric
Sciences) contribution No 1).

GelSight, 2019. Gelsight. URL: https://gelsight.com/. (Accessed 14.05.2020).

Heggli, M., Kochle, B., Matzl, M., Pinzer, B., Riche, F., Steiner, S., Steinfeld, D.,
Schneebeli, M., 2011. Measuring snow in 3-d using x-ray tomography: assessment
of visualization techniques. Annals of Glaciology 52, 231-236. do0i:10.3189/
172756411797252202.

Huang, S., Cai, N., Pacheco, P.P.,, Narrandes, S., Wang, Y., Xu, W., 2018. Applications
of Support Vector Machine (SVM) learning in cancer genomics. Cancer genomics &
proteomics 15, 41—51. doi:10.21873/cgp.20063.

Indolia, S., Goswami, A.K., Mishra, S., Asopa, P., 2018. Conceptual understanding of
convolutional neural network- a deep learning approach. Procedia Computer Science
132,679 — 688. doi:https://doi.org/10.1016/j.procs.2018.05.0609.

Juszczak, P., Tax, D., Duin, R., 2002. Feature scaling in support vector data description .

Kaensar, C., 2013. A comparative study on handwriting digit recognition classifier using
neural network, support vector machine and k-nearest neighbor, in: Meesad, P., Unger,
H., Boonkrong, S. (Eds.), The 9th International Conference on Computing and Infor-
mation Technology (IC21T2013), Springer Berlin Heidelberg. pp. 155-163.

48

https://keras.io
http://dx.doi.org/10.1007/978-94-015-8705-1_18
http://dx.doi.org/10.1063/1.368684
http://dx.doi.org/10.1023/A:1022627411411
http://dx.doi.org/https://doi.org/10.1016/0273-1177(89)90491-2
http://dx.doi.org/https://doi.org/10.1016/j.compeleceng.2019.01.004
http://dx.doi.org/https://doi.org/10.1016/j.compeleceng.2019.01.004
http://dx.doi.org/10.1109/CVPR.2007.383046
https://gelsight.com/
http://dx.doi.org/10.3189/172756411797252202
http://dx.doi.org/10.3189/172756411797252202
http://dx.doi.org/10.21873/cgp.20063
http://dx.doi.org/https://doi.org/10.1016/j.procs.2018.05.069

Kietzig, A.M., Hatzikiriakos, S., Englezos, P., 2009. Ice friction: The effects of surface
roughness, structure, and hydrophobicity. Journal of Applied Physics 106, 024303 —
024303. doi:10.1063/1.3173346.

Kingma, D., Ba, J., 2014. Adam: A method for stochastic optimization. International
Conference on Learning Representations .

Kragelsky, 1., Demkin, N., 1960. Contact area of rough surfaces. Wear 3, 170 — 187.
doi:https://doi.org/10.1016/0043-1648(60)90136-8.

Krol, Q., Lowe, H., 2016. Relating optical and microwave grain metrics of snow:
The relevance of grain shape. The Cryosphere 10, 2847-2863. doi:10.5194/
tc-10-2847-2016.

Le, H, Le, T, Tran, S., Tran, H., Thuy, N., 2012. Image classification using support vector
machine and artificial neural network. International Journal of Information Technology
and Computer Science 4. doi:10.5815/13itcs.2012.05.05.

Lecun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436-44. doi:10.
1038/naturel4539.

Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86, 2278 — 2324. do0i:10.1109/5.
726791.

Lesaffre, B., Pougatch, E., Martin, E., 1998. Objective determination of snow-grain
characteristics from images. Annals of Glaciology 26, 112-118. d0i:10.3189/
1998RA0G26—-1-112-118.

Lundy, C.C., Edens, M.Q., Brown, R.L., 2002. Measurement of snow density and
microstructure using computed tomography. Journal of Glaciology 48, 312-316.
doi:10.3189/172756502781831485.

Liithi, A., Fauve, M., Rhyner, H., Miiller, E., 2018. Investigations of fundamental pro-
cesses in ski-snow friction. Science and Skiing VII, 376-385.

Maeno, N., Arakawa, M., 2004. Adhesion shear theory of ice friction at low sliding
velocities, combined with ice sintering. Journal of Applied Physics 95. doi:10.1063/
1.1633654.

Mitchell, T.M., 1997. Machine Learning. McGraw-Hill, New York.

Painter, T., Molotch, N., Cassidy, M., Flanner, M., Steffen, K., 2007. Instruments and
methods - contact spectroscopy for determination of stratigraphy of snow optical grain
size. Journal of Glaciology 53, 121-127. doi:10.3189/172756507781833947.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research 12, 2825-2830.

49

http://dx.doi.org/10.1063/1.3173346
http://dx.doi.org/https://doi.org/10.1016/0043-1648(60)90136-8
http://dx.doi.org/10.5194/tc-10-2847-2016
http://dx.doi.org/10.5194/tc-10-2847-2016
http://dx.doi.org/10.5815/ijitcs.2012.05.05
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.3189/1998AoG26-1-112-118
http://dx.doi.org/10.3189/1998AoG26-1-112-118
http://dx.doi.org/10.3189/172756502781831485
http://dx.doi.org/10.1063/1.1633654
http://dx.doi.org/10.1063/1.1633654
http://dx.doi.org/10.3189/172756507781833947

Pielmeier, C., Schneebeli, M., 2002. Snow stratigraphy measured by snow hardness and
compared to surface section images.

Pomeroy, J.W., Brun, E., 2001. Physical properties of snow.

Scholkopf, B., 2000. The kernel trick for distances. Advances in Neural Information
Processing Systems 13, 301-307.

Sharma, N., Jain, V., Mishra, A., 2018. An analysis of convolutional neural networks
for image classification. Procedia Computer Science 132, 377 — 384. doi:https:
//doi.org/10.1016/j.procs.2018.05.198.

Suzuki, S., Abe, K., 1985. Topological structural analysis of digitized binary images
by border following. Computer Vision, Graphics, and Image Processing 30, 32 — 46.
doi:https://doi.org/10.1016/0734-189X(85)90016-7.

Theile, T., Szabo, D., Luthi, A., Rhyner, H., Schneebeli, M., 2009. Mechan-
ics of the ski—snow contact. Tribology Letters 36, 223-231. do0i:10.1007/
$11249-009-9476-9.

Tyagi, K.D., Bahl, R., Kumar, A., 2013. An overview of methods for snow stratigraphy
studies, in: 2013 International Conference On Signal Processing And Communication
(ICSC), pp. 230-235. doi:10.1109/ICSPCom.2013.6719788.

Weston, J., Watkins, C., 1999. Support Vector Machines for multi-class pattern recog-
nition. Proceedings of the 7th European Symposium On Artificial Neural Networks ,
219-224.

50

http://dx.doi.org/https://doi.org/10.1016/j.procs.2018.05.198
http://dx.doi.org/https://doi.org/10.1016/j.procs.2018.05.198
http://dx.doi.org/https://doi.org/10.1016/0734-189X(85)90016-7
http://dx.doi.org/10.1007/s11249-009-9476-9
http://dx.doi.org/10.1007/s11249-009-9476-9
http://dx.doi.org/10.1109/ICSPCom.2013.6719788

Appendix

A Python Scripts

The Python code used in this report is shown here. The code is also available in the *Python
scripts.zip’ file submitted with this report.

Contouring and Calculation of Parameters

#Importing libraries

import numpy as np

import cv2

from matplotlib import pyplot as plt
from skimage import io, transform as tf
import os

from scipy.ndimage import rotate

import matplotlib.ticker as mtick

#Specifying locations

DIRECTORY=r’D:\Master images\Real snow’

FILENAME=r’D:\Master images\Real snow\Training\Falling snow\191121
Beitostoelen -1 snowing 1900 sk - 002
.png’

FILENAME_2=r’D:\Master images\Real snow\Testing\New Snow\191112
NatrudstilenNew Scans scan009 image02
-png’

#Choice lets the user choose whether to 1: plot original GelSight image
together with binary image and
contours,

#2: Calculate the OED and dendricity of all images in a database and #3
plot two different snow images with
calculations of OED and dendricity
displayed

CHOICE=" 3’

#Image dimensions
IMAGEAREA=16.9%14.1
PIXELAREA=2464%2056

Loads image and performs adaptive threshold
def loading_image (filename) :
image = cv2.imread(filename)
#Preparing image by making it gray and setting threshold for black
white
imgray = cv2.cvtColor (image, cv2.COLOR_BGR2GRAY)

51

thresh=cv2.adaptiveThreshold (imgray, 255, cv2.ADAPTIVE_THRESH MEAN_C, cv2
.THRESH_BINARY, 101, -3)
return thresh, image

Finds and draw contours and calculates area and perimeter of grains
def drawing_contours (thresh, image) :
contours, hierarchy = cv2.findContours (thresh.copy (), cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
area_list=1[]
perimeter_ list=[]
count_contours=0
for i in range(len(contours)) :
area = cv2.contourArea (contours[i]) # area
if area > 150 and area < 250000: # Try to remove all small
contours and large contours (
remove errors)
area_list.append(area)
contour_image=cv2.drawContours (image, contours|[i], -1, (255,0,0),
3)
perimeter_list.append(cv2.arcLength (contours([i], True))
count_contours+=1
area_list=np.asarray (area_list)»IMAGEAREA/PIXELAREA
perimeter_list=np.asarray (perimeter_list)«15.5/2260

return contour_image, area_list, perimeter_list

#Plots GelSight image and contour/binary image or all three.
def plot__contour_image (raw_image,thresh_image, contour_image) :

plt.subplot (131),io.imshow(raw_image, extent=(0,16.9,0,14.1))

plt.title(’a) Original image’)

plt.xlabel (/ [mm]’)

plt.ylabel (! [mm]’)

plt.xticks (np.arange (0, 17 + 1, 2))

plt.yticks (np.arange(0, 14 + 1, 2))

plt.subplot (132), io.imshow(thresh_image,extent=(0,16.9,0,14.1)) #Go
back to Thresh

plt.title(’b) Binary image’)

plt.xticks (np.arange (0, 17 + 1, 2))

plt.yticks ([])

plt.xlabel (/ [mm]”’)

#Use the below code for calculating original, binary and contours side
-by-side

plt.subplot (133), io.imshow(contour_image, extent=(0, 16.9, 0, 14.1)

plt.title(’c) Contour image’)

plt.xticks (np.arange (0, 17 + 1, 2))

plt.yticks([])

plt.xlabel (/ [mm]”’)

plt.subplots_adjust (wspace=0.05) #0.05

#plt.savefig(r’C:\Users\Fredrik\Documents\Skole\Master\Data\Figures\
Gelsight \whole_contouring _process
’,bbox_inches=’tight”’)

plt.show()

#Plots different original images with either OED or dendricity displayed
def plot_raw_images() :

threshl, raw_imagel=loading_image (FILENAME)

thresh2, raw_image2=1loading_image (FILENAME_2)

52

contour_imagel, areal, perimeterl=drawing contours (threshl,raw_imagel.

copy ())
contour_image2, area2, perimeter2 = drawing_contours (thresh2,
raw_image2.copy ())
equi_diameterl = np.sqgrt(4 % areal / np.pi)
equi_diameter2 = np.sqgrt (4 % area2 / np.pi)
dendricityl = perimeterl +x 2 / (areal+4+np.pi)
dendricity2 = perimeter2 xx 2 / (area2+4+np.pi)

#HISTOGRAM
fig = plt.figure ()
ax0=fig.add_subplot (232)

plt.hist (equi_diameterl,bins=20,range=(0,1),rwidth=0.9, weights=np.

ones (len(equi_diameterl)) / len(
equi_diameterl)

plt.title(’a) OED’)

plt.ylim(ymin=0, ymax=0.25)

ax0.yaxis.set_major_ formatter (mtick.FuncFormatter (lambda vy, r{:.0%}
" .format (y)))

plt.xlabel (/ [mm]’)

axl = fig.add_subplot (233)

plt.title(’a) Dendricity’)

plt.ylim(ymin=0, ymax=0.35)

axl.yaxis.set_major_formatter (mtick.FuncFormatter (lambda vy, "{:.0%}
" .format (y)))

plt.hist (dendricityl, bins=20, range=(0, 30), rwidth=0.9,weights=np.
ones (len(dendricityl)) / len(
dendricityl))

ax2 = fig.add_subplot (235)
ax2.yaxis.set_major_formatter (mtick.FuncFormatter (lambda vy,
" .format (y)))

"{:.0%}

plt.hist (equi_diameter2, bins=20, range=(0, 1), rwidth=0.9,weights=np.

ones (len(equi_diameter2)) / len(
equi_diameter2))

plt.xlabel (’ [mm]’)

plt.title('b) OED’)

plt.ylim(ymin=0, ymax=0.25)

ax3 = fig.add_subplot (236)

plt.title(’b) Dendricity’)

plt.ylim(ymin=0, ymax=0.35)

ax3.yaxis.set_major_formatter (mtick.FuncFormatter (lambda y, _: ’{:.0%}
" .format (y)))

plt.hist (dendricity2, bins=20, range=(0,30), rwidth=0.9,weights=np.
ones (len(dendricity2)) / len(
dendricity2))

#plt.show ()

plt.subplot (231),io.imshow(raw_imagel, extent=(0,16.9,0,14.1))
plt.xlabel (’/ [mm]’)

plt.ylabel (/ [mm]”)

plt.xticks (np.arange (0, 17 + 1, 2))

plt.title(’a) Dendricity=’+str (round(np.average (dendricityl),2))+’
and OED='+str (round (np.average (
equi_diameterl),2)), fontsize=10)

plt.subplot (234), io.imshow(raw_image2,extent=(0,16.9,0,14.1))

plt.title(’b) Dendricity=’ + str(round(np.average (dendricity2),2))+’
and OED='+str (round(np.average (
equi_diameter2),2)),fontsize=10)

53

plt.xlabel (/ [mm]’)

plt.xticks (np.arange (0, 17 + 1, 2))

plt.ylabel (/ [mm]”)

plt.subplots_adjust (wspace=0.05)

plt.tight_layout ()

#plt.savefig(r’C:\Users\Fredrik\Documents\Skole\Master\Data\Figures\
Gelsight\Similar._parameters’,
bbox_inches=’tight’)

plt.show ()

#Loads image, finds and draws contours, and calculates dendricity and OED
for single GelSight image
def plot_single_image (FILENAME) :
thresh, image=loading_image (FILENAME)
raw_image=image.copy ()
contour_image,area,perimeter=drawing_contours (thresh, image)
dendricity=perimeter*+2/ (areax4+np.pi)
equi_diameter = np.sqgrt (4 * area/ np.pi)
print (Equivalent diameter: ’,np.average (equi_diameter))
print ('Dendricity: ’,np.average (dendricity))
print (np.average (np.sqrt (4d~area/np.pi)))
plot__contour_image (raw_image, thresh, contour_image)

def calculate_parameters(): #Calculates the OED and dendricity for images
in the directory.
f=open (r’D:\Master images\Sandpapir\test_lek.csv’,’'w’,)
f.write (' image; \t’’OED; \t’’Dendricity\n’)
for subdir, dirs, files in os.walk (DIRECTORY) :
for filename in files:
if filename.endswith (".png") :
path=os.path.join(subdir, filename)

print (path)
thresh, image = loading_image (path)
contour_image, area, perimeter = drawing_contours (thresh,

image)

dendricity = perimeter +x 2 / (area*4+np.pi)

equi_diameter = np.sqrt(4 » area / np.pi)

f.write (str(path)+’;’ +str(np.average (equi_diameter))+’;’+
str (np.average (
dendricity))+’\n’)

else:
print (ERROR: filename does not end with .png’)
f.close()

def main() :
if CHOICE=='1":
plot_single_image (FILENAME)

elif CHOICE=='2':
calculate_parameters ()

elif CHOICE=='3':
plot_raw_images ()

main ()

54

Preprocessing Data for Machine Learning

#Importing libraries

import numpy as np

import os

import cv2

from scipy.ndimage import rotate
WIDTH=492

HEIGHT=410

DATAPATH=r’D:\Master images\Real snow’

def preprocess_images(): #Function returns thresholded images and labels
to the images
X_train=[]
X_test=[]
original_images=]]
y_train=[]
y_test=1[]
for subdir, dirs, files in os.walk (DATAPATH) :
for filename in files:
path = os.path.Jjoin(subdir, filename)
if ’.png’ in path:
image = cv2.imread (path)
original_images.append(image.reshape (2464 % 2056 = 3))
imgray = cv2.cvtColor (image, cv2.COLOR_BGR2GRAY)
dim = (WIDTH, HEIGHT)
imgray = cv2.resize(imgray, dim, interpolation=cv2.
INTER_AREA)
random_degree=90
if "01d’ in path:
if 'Training’ in path:
y_train.append (1)
X_train.append(imgray.reshape (WIDTH % HEIGHT))
y_train.append(1l)
r_image=rotate (imgray, random_degree)
X_train.append(r_image.reshape (WIDTH+HEIGHT))
else:
y_test.append (1)
X_test.append(imgray.reshape (WIDTH » HEIGHT))
y_test.append (1)
r_image=rotate (imgray, random_degree)
X_test.append(r_image.reshape (WIDTH % HEIGHT))
else:

if 'Training’ in path:
y_train.append(0)
X_train.append(imgray.reshape (WIDTH * HEIGHT))
y_train.append(0)
r_image=rotate (imgray, random_degree)
X_train.append(r_image.reshape (WIDTH * HEIGHT))
else:
y_test.append(0)
X_test.append(imgray.reshape (WIDTH » HEIGHT))
y_test.append((0))
r_image=rotate (imgray, random_degree)
X_test.append(r_image.reshape (WIDTH * HEIGHT))

55

return X_train,X_test, y_train, y_test, original_images

def prepare_dataset () :
X_train, X_test, y_train, y_test, original_images=preprocess_images ()
X_test_unscaled=X_test
Feature Scaling
X_train = (X_train - np.mean(X_train)) / np.std(X_train)
X_test = (X_test - np.mean(X_test)) / np.std(X_test)
return X_train ,X_test,y_train,y_test, original_images,
X_test_unscaled

Support Vector Machine

#Importing libraries

from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.svm import SVC

import Preprocess_and_prepare as prepare

from matplotlib import pyplot as plt

from skimage import io

import numpy as np

def SVM(X_train, X _test, y_train, y_test):
clf = SVC(kernel=’rbf’) # RBF
clf = clf.fit(X_train, y_train)
predictions = clf.predict (X_test)
accuracy = accuracy_score (y_test, predictions)
print (' SVM: ’, accuracy)
print (y_test)
print (/ ####d4EEEE")
print (predictions)
return accuracy, predictions

def main () :

accuracy_list=[]

X_train, X_test, y_train, y_test, original_images_test,
X_test_unscaled = prepare.
prepare_dataset ()

accuracy, predictions = SVM(X_train, X_test, y_train, y_test)

accuracy_list.append(accuracy)

#print (accuracy_list)

print (confusion_matrix(y_test,predictions))

print ("Accuracy: ",np.round(np.average (accuracy_list),3))

print ("Confusion Matrix:")

print (confusion_matrix(y_test, predictions))

fig=plt.figure ()

counter=0

for i in range(len(y_test)):

if y_test[i] !=predictions[i]:
print (i)
fig.add_subplot (221+counter)
if counter%2==0:
io.imshow (X_test_unscaled[i].reshape (410,492))
plt.title(’Prediction: 0ld ’'+’/ True value: New’,fontsize=
12)

56

else:
io.imshow (X_test_unscaled[i].reshape (492, 410))
plt.title(’Prediction: 0l1d ’ + '’/ True value: New’,
fontsize=12)
counter+=1

plt.show ()

Convolutional Neural Network

#Importing libraries

from keras.models import Sequential

from keras.layers import Dense, Conv2D, Flatten, MaxPooling2D, Dropout
from keras.optimizers import Adam

from sklearn.metrics import confusion_matrix
import Preprocess_and_prepare as prepare
from keras.utils import to_categorical
import numpy as np

from matplotlib import pyplot as plt

from timeit import default_timer as timer
from skimage import io

def

def

def

ConvNeuralNetwork (inputShape, n_classes, lerning_rate, filter_value,
depth_value) :

model = Sequential (name=’'CNN’)

model.add (Conv2D (filters=filter_value, kernel_size=(3,3), input_shape
= (prepare.HEIGHT, prepare.WIDTH, 1)
, activation=’elu’,padding=’same’
))

model.add (MaxPooling2D (pool_size=(2, 2)))

model.add (Conv2D (filters=filter_valuex2, kernel_size=(3,3),
activation=’elu’, padding='same’)
)

model.add (MaxPooling2D (pool_size=(2,2)))

model.add (Flatten())

model.add (Dense (depth_valuex2, activation=’relu’))

model.add (Dense (depth_value, activation='relu’))

model.add (Dropout (0.5))

model.add (Dense (n_classes, activation = ’"softmax’))

model.compile (loss='categorical_crossentropy’,metrics=["'
categorical_accuracy’], optimizer
=Adam (lr=lerning_rate))

return model

trainModel (model, X _train,y_train,X test,y_test,batchsize):

result = model.fit (X_train, y_train, batch_size=batchsize, epochs=75,
verbose=2,validation_data= (X_test
;y_test))

return result

calcAccuracy (predictions, targets):
print (' CalcAccuracy’)

57

def

correct=0
actual=0
predictions_winner=[]
targets_winner=[]
for i in range (0, len(predictions)):
if np.argmax (predictions[i])==np.argmax(targets[i]):
correct+=1
else:
print (i)
if np.argmax(predictions|[i])==
predictions_winner.append (0)
else:
predictions_winner.append (1)
if np.argmax (targets[i])==0:
targets_winner.append(0)
else:
targets_winner.append(1l)
print (np.around (predictions, 3))
return correct/len (predictions),predictions_winner,targets_winner

main () :

start=timer ()

learning_rate=[0.000001]

batchsize=[10]

counter=0

£f=10 #Filters

d=15 # Depth

for 1lr in learning_rate:
for b in batchsize:

X_train, X_test, y_train, y_test, original_images,
X_test_unscaled=
prepare.
prepare_dataset ()

X_train=X_train.reshape (-1,prepare.HEIGHT, prepare.WIDTH, 1)

X_test =X_test.reshape (-1, prepare.HEIGHT, prepare.WIDTH, 1
)

y_train = to_categorical (y_train)

y_test = to_categorical (y_test)

learning_model = ConvNeuralNetwork ((X_train.shape),2,1lr,f,
d)

history = trainModel (learning _model, X_train, y_train,
X_test,y_test,b)

preds = learning_model.predict (X_test)

accuracy,prediction_winner, targets_winner = calcAccuracy (
preds, y_test)

print (' Accuracy:’,np.round (accuracy, 3))

print (' Confusion Matrix:’)

print (confusion_matrix (targets_winner, prediction_winner))

#Accuracy

counter+=1

plt.subplot (1,2, counter)

plt.plot (history.history[’categorical_accuracy’])

plt.plot (history.history([’val_categorical_accuracy’])

plt.title(’a) Model accuracy’)

plt.ylabel (" Accuracy’)

plt.xlabel ('Epoch’)

58

plt.legend([’Train’, ’'Test’], loc=’lower right’)
#Loss
plt.subplot (1,2, counter)
plt.plot (history.history[’loss’])
plt.plot (history.history[’val_loss’])
plt.title('b) Model loss’)
plt.ylabel (' Loss’)
plt.xlabel ('Epoch’)
plt.legend([’Train’, ’'Test’], loc="upper right’)
plt.show()
end=timer ()

print ('Elapsed time of program is: ', (end-start)/3600,’ hours’)

counter=1
fig=plt.figure()
for i in range (len(preds)):
if prediction_winner[i] !=targets_winner[i]:
ax=fig.add_subplot (220+counter)
if counter in [1,3]:
io.imshow (X_test_unscaled[i].reshape (410,492))
else:
io.imshow (X_test_unscaled[i].reshape (492, 410))

counter+=1

ax.title.set_text ('Prediction: 0ld ' + '/ True value:
fig.tight_layout ()
plt.show()

if _ name__=='__main__':
main ()

New’)

59

	Abstract
	Sammendrag
	Preface
	Acknowledgements
	Table of Contents
	Introduction
	Theory
	Characterization of Snow
	Parameters in Snow Characterization
	Image Analysis and Methods in Snow Characterization

	Ski-Snow Interaction
	Machine Learning for Image Classification
	Introduction to Machine Learning
	Image Classification
	Support Vector Machine
	Convolutional Neural Networks

	Method
	GelSight
	Characterization of Snow Images
	Preprocessing of Snow Images
	Contouring and Calculation of Parameters

	Classification of Snow Images
	Dataset and Preprocessing of Snow Images
	Support Vector Machine
	Convolutional Neural Network

	Results
	Characterization of Snow Images
	Preprocessing of Snow Images
	Contouring and Calculation of Parameters

	Classification of Snow Images
	Dataset and Preprocessing of Snow Images
	Support Vector Machine
	Convolutional Neural Network

	Discussion
	Characterization of Snow Images
	Preprocessing of Snow Images
	Contouring and Calculation of Parameters

	Classification of Snow Images

	Conclusion
	Future Work
	Bibliography
	Appendix
	Python Scripts

