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Abstract

Motivated by discoveries of the coexistence of ferromagnetism and superconductivity in uranium-
based structures, the 2D extended single-band Hubbard model is used in the quantum mechan-
ical description of ferromagnetic equal-spin p-wave superconductors, both in the presence and
absence of a magnetic field. The Bogoliubov-de Gennes equations are solved self-consistently
and the free energies of di↵erent quantum phases are compared in order to compute phase
diagrams. The ferromagnetic interaction has been modeled by the on-site Hubbard U -term or
by the introduction of the exchange field h. In the first part of this master’s thesis, a bulk
system without any magnetic flux is considered. In the case of nearest-neighbour supercon-
ducting interaction strength of V/t = �4.0 and with h/t = 0.5, both in units of the hopping
amplitude t, the phase diagram shows that the orbital p-wave symmetry px + ipy has higher
stability than px and px + py. Using the Hubbard U -term with magnetic interaction strength
of U/t = 8.5 instead, there are also smaller regions where the free energy of px or px + py is
the lowest. In addition, the paramagnetic phase appears both in the normal conducting and
the superconducting state. The phase diagrams can be explained in terms of what is most
energetically favourable of having a higher ferromagnetic order in the normal conducting state
and the condensation energy of the superconducting phases. The dominance of px + ipy can be
understood from its k-space gap function without nodal lines.

In the second part, a magnetic field is incorporated into the model utilizing the Peierls
substitution. To include the screening-e↵ect of the supercurrent, the possibility of determining
the vector potential self-consistently through the Maxwell equation is investigated. Despite
testing of di↵erent solution strategies, there are no signs of convergence of the self-consistent
solution. This is possibly caused by the breakdown of the Peierls formalism due to too large
changes of the vector potential between sites in the lattice. By considering extreme type II
superconductors with a large Ginzburg-Landau parameter, the supercurrent can be ignored. In
this case, the spontaneity of the vortex phase comes solely from the magnetic field produced by
the ferromagnetic order. For h/t = 0.1 and V/t = �2.5, the phase diagram shows the presence
of spontaneous vortex phases with significant px and py superconducting order parameters.
Increasing the exchange field to h/t = 3.0, computed phase diagrams become unreliable. Again,
this can be explained by the limited validity of the Peierls substitution. The high magnetization
gives too large changes of the vector potential.
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Sammendrag

Motivert av oppdagelser for sameksistens av ferromagnetisme og superledning i uraniumbaserte
strukturer, er den 2D utvidede enkeltb̊and Hubbard-modellen brukt i den kvantemekaniske
beskrivelsen av ferromagnetiske like-spinn p-bølge superledere, b̊ade med og uten et magnetfelt
til stede. Bogoliubov-de Gennes-ligningene er løst selvkonsistent og den frie energien til ulike
kvantefaser er sammenlignet for å beregne fasediagrammer. Den ferromagnetiske interaksjonen
har blitt modellert med on-site Hubbard-U-ledd eller ved introduksjon av utvekslingsfeltet h.
I første del av denne masteroppgaven er et bulk system uten magnetisk fluks betraktet. I
tilfellet med nærmeste-nabo superledende interaksjon p̊a V/t = �4.0 og med h/t = 0.5, begge i
enheter av hopping-amplituden t, illustrerer fasediagrammet at den orbitale p-bølge-symmetrien
px+ ipy har høyere stabilitet enn px og px+ py. Ved bruk av Hubbard-U-leddet med magnetisk
interaksjonsstyrke U/t = 8.5 i stedet, finnes ogs̊a omr̊ader hvor den frie energien til px eller
px + py er lavest. I tillegg er den paramagnetiske fasen til stede b̊ade i den normalt-ledende
og den superledende tilstanden. Fasediagrammene kan forklares i form av hva som er mest
energetisk gunstig av å ha en høyere ferromagnetisk orden i den normalt-ledende tilstanden og
kodensasjonsenergien til de superledende fasene. Dominansen til px + ipy kan forst̊as fra dets
k-roms gapfunksjon uten nodale linjer.

I andre del er et magnetfelt innlemmet i modellen ved å utnytte Peierls-substitusjonen.
For å inkludere skjermingse↵ekten til superstrømmen, er muligheten for å bestemme vektor-
potensialet selvkonsistent gjennom Maxwell-ligningen, undersøkt. Til tross for testing av ulike
løsningsstrategier, er det ingen tegn til konvergens for den selvkonsistente løsningen. Dette er
muligens for̊arsaket av sammenbrudd for Peierls-formalismen p̊a grunn av for store endringer
i vektorpotensialet mellom gitterpunkter. Ved å betrakte ekstreme type-II-superledere med
en stor Ginzburg-Landau parameter, kan superstrømmen bli ignorert. I dette tilfellet kommer
spontaniteten til vorteksfasen utelukkende fra magnetfeltet produsert av den ferromagnetiske
ordenen. For h/t = 0.1 og V/t = �2.5 viser fasediagrammet at spontane vorteksfaser med sig-
nifikante px og py superledende ordensparametere, er til stede. Ved økning av utvekslingsfeltet
til h/t = 3.0, blir de beregnede fasediagrammene up̊alitelige. Igjen kan dette forklares ut ifra
den begrensede gyldigheten til Peierls-substitusjonen. Den høye magnetiseringen gir for store
endringer i vektorpotensialet.
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Chapter 1

Introduction

1.1 Historical background

Historically, magnetism and superconductivity have attracted much interest in the study of
solid state systems. The presence of a magnetic interaction has been known from ancient times
[1]. In the beginning of the 19th, the physicists Oersted, Ampère and Faraday did pioneering
work for the understanding of magnetism [2]. In 1820, Oersted demonstrated that an electrical
current creates a magnetic field, and shortly after, Ampère derived a mathematical formula for
the magnetic force between two current elements. The full interconnection between electricity
and magnetism was discovered when Faraday realized that a varying magnetic field can induce
an electrical current. This was formally explained classically by Maxwell (1964) when he
published a set of equations relating electric and magnetic fields [3]. The emergence of quantum
mechanics in the 1920s led to new insights in the quantitative description of magnetism. In
1925, the famous Stern-Gerlach experiment indicated that electrons carry an intrinsic angular
momentum, referred to as their spin [4]. After the Pauli exclusions principle was introduced
(1925) [5], Heisenberg (1928) realized that the electron-electron Coulomb repulsion combined
with the Pauli principle is responsible for the high-temperature magnetic order of some materials
[6]. This illustrated that a complete description of magnetism can only be given using quantum
mechanics.

When it comes to superconductivity, Kamerlingh Onnes (1911) discovered the vanishing
direct current electrical resistance of mercury at 4.2 K [7]. In 1933, Meissner and Oschen-
feld demonstrated that superconductors are not only perfect conductors [8]. They also enter
a thermodynamic state of perfect diamagnetism, expelling an external magnetic field from
the bulk. A fully quantum mechanical model of superconductivity was published in 1957 by
Bardeen, Cooper and Schrie↵er, which is known as the BCS theory [9]. This theory applies to
conventional superconductors, that is elements, alloys and simple compounds at temperatures
su�ciently close to 0 K [10]. For instance, the isotope e↵ect of Fröhlich (1950) [11] was con-
firmed by the BCS theory, giving a relation between isotopic mass and critical temperature in
agreement with experiments [12, 13, 14]. The detection of high-temperature superconductivity
in a perovskite-type copper oxide (insulator) at 35 K by Bednorz and Müller (1986), marked
the beginning for the research on a new class of superconductors [15, 16]. The year after a
similar material was measured to have a critical temperature of 93 K [17]. In the following
years, materials with even higher critical temperatures have been confirmed experimentally,
but the ultimate goal of room temperature superconductivity has not yet been reached [18]. It
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1.2. Objectives and motivations

took 50 years to establish a microscopic theory of conventional superconductors (BCS) from
the 1911-discovery of superconductivity. Still, there is no widely accepted theory available for
unconventional high-temperature superconductors, reminiscent of the BCS theory [19].

In recent times, ferromagnetism and superconductivity are found to be coexisting phenom-
ena in materials like UGe2, URhGe and UCoGe [20, 21, 22]. Historically, ferromagnetism and
superconductivity have been considered as incompatible based on the notion of the ferromag-
netic order destroying the superconducting condensate [23]. This is the conventional picture
predicted by the BCS theory with opposite-spin singlet paring. Since the internal field of ferro-
magnets tends to align the spins of electrons, the so-called spin-triplets of equal-spin electrons
are supposed to be more compatible with ferromagnetic order [24, 25]. In 1980, Fay and Appel
theoretically predicted the presence of the equal-spin paring in the ferromagnet ZrZn2 [26]. A
new candidate for uranium-based ferromagnetic superconductors was reported in 2019, that
is UTe2, with spin-triplet pairing [27]. In short, the extended number of ferromagnetic super-
conductors through the last decade, has provided a versatile way of studying unconventional
superconductivity [28]. It is also worth to point out that there is much interest related to the
role spin-triplet superconductivity can have in future spintronic devices [29].

In the mathematical description of magnetic and superconducting phases, di↵erent forms
of the Hubbard model, first published in 1963 [30], have been used to a large extent. The
compatibility of the phases has also been studied using the framework of the Hubbard model
[31]. In particular, the model has successfully predicted features of solid state systems that have
been experimentally verified afterwards [32]. The true glory of the Hubbard model is related to
its simple structure, despite the complex nature of many-particle systems in condensed matter
physics.

1.2 Objectives and motivations

The aim of this thesis has been the exploration of the spontaneous vortex phase of ferromagnetic
p-wave equal-spin triplet superconductors. In particular, the investigation of quantum phases
that emerge in materials where ferromagnetism and superconductivity coexist intrinsically, will
be of importance. Emphasis will be placed on establishing the quantum phases that appear in
such systems, including the possibility of a spontaneous vortex phase due to the simultaneous
presence of a magnetic vector potential and superconducting order. Of special interest will
be the computation of phase diagrams, showing the phase of the highest stability for a set of
physical parameters.

The framework, which will be used in the quantum mechanical treatment of ferromagnetic
superconductors, is the tight-binding formalism with the integration of magnetic and super-
conducting interaction terms. Numerically, we will solve a set of Bogoliubov-de Gennes (BdG)
equations self-consistently until convergence in the magnetic and superconducting order param-
eters is achieved. In the search for the spontaneity of the vortex phase, the e↵ect of a magnetic
field will be included in the model by what is known as the Peierls substitution [33, 34]. This
is a convenient method as the vector potential enters the Hamiltonian only through a complex
phase. In previous literature, the formalism of the Peierls phase has been utilized widely in
the study of the vortex state of unconventional superconductors. However, the validity of this
method is limited [35]. In this thesis, we will test if the magnetic field from the supercur-
rent can be accounted for by solving the Maxwell equation, when the Peierls substitution is
implemented. Alternatively, the supercurrent will be disregarded and the spontaneity of the
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Chapter 1. Introduction

vortex state will solely arise due to the presence of ferromagnetic order. From what we know,
a spontaneous vortex phase diagram of ferromagnetic equal-spin p-wave superconductors using
this formalism, has not been calculated before.

The choice of studying equal-spin triplets is motivated by the behaviour of these type of
superconducting correlations in ferromagnetic structures. First of all, we have the long-range
proximity e↵ect for equal-spin superconducting electron pairs in FM-SC heterostructures [36].
The essence of this phenomenon is that the ferromagnet has a larger pair-breaking e↵ect on
electron pairs of opposite spins than on equal-spin superconducting correlations [37]. Exper-
imentally, by measurements of the penetration depth of the supercurrent in ferromagnetic
materials, the existence of equal-spin superconductivity has been verified [38, 39]. More impor-
tantly for this master’s project, there are, as mentioned in the previous section, experimental
results showing the existence of spin-triplet pairing in ferromagnetic superconductors. More-
over, self-induced vortices, that is a spontaneous vortex phase, have been predicted theoretically
in bulk materials with coexistence of ferromagnetism and superconductivity [40, 41]. In addi-
tion, Jiao et al. have found a spontaneous vortex ground state in an iron-based ferromagnetic
superconductor [42].

1.3 Structure of the thesis

The thesis is organized in three parts. The first part consists of chapters 2, 3 and 4, which are
devoted to the explanation of important concepts discussed in later chapters. In chapter 2, the
second quantization formalism, the tight-binding model and the lattice structure of the system
are introduced. Further, in chapters 3 and 4, magnetism and superconductivity are studied
separately in order to understand the characteristic properties of these quantum mechanical
phenomena. In the second part of the thesis, which is chapter 5, magnetism and superconduc-
tivity will be combined in the form of ferromagnetic equal-spin p-wave superconductors, and in
the absence of a magnetic field. In the third part, there will be a finite magnetic flux through
the system. In chapter 6, di↵erent solution strategies for the self-consistent computation of the
vector potential by solving the Maxwell equation, are outlined. Here the discussion will be lim-
ited to the case of an external magnetic field instead of ferromagnetic order. This means that
the spontaneity of the vortex phase will not be explored in this chapter. To find a convergent
solution for this simpler case, can be considered as a prerequisite for being able to investigate
the spontaneous vortex phase using this method. In chapter 7, the spontaneous vortex phase
will be explored without solving the Maxwell equation. The source of the magnetic field is then
solely the magnetization caused by alignment of electronic spins. Finally, general conclusions
follow, and we will have a short outlook for future research on this topic.

1.4 Units

Throughout this document, the system of natural units (Lorentz-Heaviside) will be used. This
includes setting the reduced Planck constant ~ = 1, the Boltzmann constant kB = 1 and the
permeability µ0 = 1. Also, the 2D lattice will be modeled with nearest-neighbour spacing
a = 1. Numerically, physical parameters are expressed in units of the hopping amplitude t. In
the case of a non-zero flux through the system, the magnetic field will be represented in units
of the elementary superconducting flux quanta �0 = h/2e.
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Chapter 2

Tight-binding model and lattice
structure

In the first section of this chapter, the second quantization formalism is introduced. This
formalism has been utilized throughout this thesis to obtain Hamiltonians on a form suitable
for numerical computations. The next section is devoted to a description of the lattice structure
used in this thesis, and the associated Brillouin zone. We will also have a short look at the
tight-binding Hamiltonian in the grand-canonical ensemble, and how it can be transformed to
k-space. The chapter is concluded by the introduction of the Fermi surfaces of the model.

2.1 The second quantization formalism

The basic concepts of the second quantization formalism outlined here are in accordance with
the book of Fetter and Walecka and the Fjærestad’s lecture notes [43, 44]. In second quantiza-
tion, many-particle states are defined by giving the number of particles in each single-particle
state,

|n1, n2, n3, ...i , (2.1)

where ni (i = 1, 2, 3, ...) is the occupation number for single-particle state i. A particle can
be created in a single-particle state with quantum numbers ↵ using the creation operator
ĉ
†
↵
, and annihilated by the annihilation operator ĉ↵. The antisymmetry of fermionic many-

particle states is reflected in the anticommutation relation of fermionic creation and annihilation
operators,

{ĉ
†
↵
, ĉ↵0} = �↵,↵0 . (2.2)

Analogously, bosons are symmetric under exchange of single-particle coordinates (position and
spin), and for bosonic creation (b̂†

↵
) and annihilation (b̂↵) operators, we have the following

commutator

[b̂†
↵
, b̂↵0 ] = �↵,↵0 . (2.3)

In accordance with the Pauli exclusion principle, the fermionic number operators ĉ
†
↵
ĉ↵ only

have two possible eigenvalues (0 and 1). Bosons can occupy a single-particle state without any
restriction on the maximal number of particles, so that b̂†

↵
b̂↵ can be any non-negative integer.

For a single-particle operator Â, which depends on the coordinates of a single particle, the
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second quantization formalism gives

X

i

Â(xi) !
X

↵,�

h↵| Â |�i ĉ
†
↵
ĉ�, (2.4)

where

h↵| Â |�i =

Z
 

⇤
↵
(x)Â(x) �(x)dx. (2.5)

Here  ↵ is an eigenfunction of the operator Â with set of quantum numbers ↵. A two-particle
operator B̂ is dependent of the coordinates of two particles (x and x

0) as

X

i,j 6=i

B̂(xi, xj) !
X

↵,�,�,�

h↵, �| B̂ |�, �i ĉ
†
↵
ĉ
†
�
ĉ� ĉ�, (2.6)

where

h↵, �| B̂ |�, �i =

ZZ
 

⇤
↵
(x) ⇤

�
(x0)B̂(x, x0) �(x) �(x

0)dxdx0
. (2.7)

2.2 Introduction to the tight-binding model

In condensed matter physics, the tight-binding model can be used to describe electrons moving
in a periodic potential due to a lattice of positive ions. Hence, the starting point of the derivation
of the tight-binding Hamiltonian is

Ĥ =
X

i

p̂
2
i

2m
+
X

i

u(ri), (2.8)

where the index i is used to label each electron in the system. The first term is the total kinetic
energy operator of the electrons. In the second term, u(ri) is the potential energy of an electron
i with respect to the ions. These two terms can here be classified as single-particle operators as
they only involve one particle index. In the tight-binding approximation, the electrons of the
solid are assumed to be localized around the atoms. However, there is still a small overlap of
electron orbitals of neighbouring atoms, leading to a finite probability of tunneling. When the
electrons are tightly bound, we can write the eigenfunctions of the crystal electron system as
a linear combination of atomic orbitals (LCAO) [45]. Accordingly, we choose |ii = �(r �Ri)
as basis functions, where Ri is the position vector of atom i. In the single-band limit, there
is one s-orbital per atom, and therefore, the basis functions have no orbital quantum number.
Equation (2.8) can then be rewritten as [46]

Ĥ =
X

i,j,�

hi|

⇣
p̂
2

2m
+ u(r)

⌘
|ji ĉ

†
i,�
ĉj,�

=
X

i,j,�

ti,j ĉ
†
i,�
ĉj,�,

(2.9)

where

ti,j =

Z
�
⇤(r �Ri)

⇣
�r

2

2m
+ u(r)

⌘
�(r �Rj)dr, (2.10)
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using equations (2.4) and (2.5). The matrix element ti,j is the hopping amplitude and is related
to the probability of having an electron moving from site j to i. In other words, an electron
with spin � is created at site i and annihilated at site j. Therefore, the creation operator has
site index i and the annihilation operator has site index j. As evident from equation (2.8),
the hopping amplitude represents the kinetic energy of the electrons and their interaction with
the periodic potential of the lattice ions. In the next chapters, the analysis will be restricted
to nearest-neighbour hopping with constant amplitude �t < 0. This can be motivated by
consideration of the hopping integral in equation (2.10). Since the integral becomes smaller
when the overlap between the orbitals is reduced, the next-nearest neighbour hopping can be
ignored in a tight-binding treatment. Usually, this is emphasized by replacing i, j by hi, ji in
the sum of equation (2.9).

2.3 Lattice structure and first Brillouin zone

In this thesis, the lattice structure will be a 2D square lattice with nearest-neighbour spacing
a = 1, as shown in figure 2.1a. The corresponding first Brillouin zone is illustrated in figure 2.1b.
In the numerical calculations, the system is treated as translational invariant, that is periodic

(a) The 2D square lattice with nearest-

neighbour spacing a = 1. Hopping between

lattice site i and two of its nearest-neighbours

at i+ x̂ and i+ ŷ is illustrated. The hopping

amplitude will be set to �t as indicated.

(b) The reciprocal representation of the square

lattice. The first Brillouin zone is bounded by

±⇡ in the x- and y-direction. Here �, X and

M denote the reciprocal points (0, 0), (⇡, 0)
and (⇡,⇡), respectively.

Figure 2.1: Lattice structure in real space (a), and the first Brillouin zone in k-space
(b).

boundary conditions are implemented. Translational invariance implies that momentum k is
a good quantum number, and can be used to label the states. With L lattice sites in both
the x- and y-direction, the system consists of N = L

2 sites in total. Using periodic boundary
conditions, there are alsoN primitive unit cells. As the number of distinct momentum vectors in
the first Brillouin zone equals the number of primitive unit cells, we have N di↵erent momenta
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Chapter 2. Tight-binding model and lattice structure

inside the reciprocal space depicted in figure 2.1b. The components of k, kx and ky, have the
values

kx, ky = �⇡
L� 2

L
,�⇡

L� 4

L
, ..., ⇡. (2.11)

This representation gives L distinct kx and ky, which are evenly spread with spacing 2⇡/L.

2.4 Grand canonical ensemble

In the study of many-particle systems in thermodynamic equilibrium at temperature T , there
are two main possible choices of ensembles: the canonical and the grand canonical ensemble
[47]. In the canonical ensemble, the system has a fixed number of particles, while it can vary in
the grand canonical ensemble. In the following, the Hamiltonians will be defined in the grand
canonical ensemble. Instead of describing the state of the system by the particle number, the
chemical potential will be used. Fixing the chemical potential, the average number of particles
is well-defined in the grand canonical ensemble. In order to obtain a Hamiltonian in this
ensemble, we perform the shift

Ĥ ! Ĥ � µN̂, (2.12)

where µ is the chemical potential, and N̂ is the total number operator. An eigenstate of
Ĥ � µN̂ has a definite number of particles as long as Ĥ conserves the particle number, but in
the grand canonical ensemble this number can be zero or any positive value. In the case of the
tight-binding model, the grand canonical representation of equation (2.9) is therefore given as

Ĥ = �t

X

hi,ji,�

ĉ
†
i,�
ĉj,� � µ

X

i,�

n̂i,�. (2.13)

Here the last sum is the total number operator of the electronic system.

2.5 Fourier transformation

The Hamiltonian in equation (2.13) is not diagonal in the real space indices. Utilizing the
translational invariance of the system, we can perform a Fourier transformation in the x- and
y-direction. This is done by transforming the real space creation and annihilation operators to
k-space operators as [48]

ĉi,� =
1

p
N

X

k

ĉk,�e
ik·ri (2.14)

ĉ
†
i,�

=
1

p
N

X

k

ĉ
†
k,�e

�ik·ri . (2.15)

Inserting these transformations into the tight-binding Hamiltonian, results in

Ĥ = �t

X

i,�

�
ĉ
†
i,�
ĉi+x̂,� + ĉ

†
i,�
ĉi�x̂,� + ĉ

†
i,�
ĉi+ŷ,� + ĉ

†
i,�
ĉi�ŷ,�

�
� µ

X

i

ĉi,� ĉ
†
i,�

=
X

i,�

1

N

X

k,k0

h
� t

�
e
ik

0
x + e

�ik
0
x + e

ik
0
y + e

�ik
0
y
�
� µ

i
e
�i(k�k0)·ri ĉ

†
k,� ĉk0,�

=
X

k,�

h
� 2t

�
cos kx + cos ky

�
� µ

i
ĉ
†
k,� ĉk,�.

(2.16)
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In the last step, we have used the relation

N�k,k0 =
X

i

e
�i(k�k0)·ri . (2.17)

We now observe that Ĥ is diagonal in the quantum numbers k and �. This means that the
energy eigenvalues can be read-o↵ as

Ek,� = �2t
�
cos kx + cos ky

�
� µ, (2.18)

which are spin degenerate. Thus, the ground state, which is the state of lowest free energy at
zero temperature, will contain as many up- as down-spin electrons. It can therefore be classified
as a paramagnetic (PM) phase.

2.6 Fermi surfaces in the tight-binding model

In quantum mechanics, the Fermi surface is defined as the surface separating occupied and
unoccupied electron states in k-space at zero temperature. In the grand canonical ensemble
for a fixed chemical potential µ, the Fermi surface goes through points in k-space where the
energy eigenvalues are zero. This is illustrated in figure 2.2 in the case of the tight-binding

Figure 2.2: Fermi surfaces in the tight-binding model for di↵erent values of the
chemical potential µ in units of t.

model for a couple of di↵erent chemical potentials. Considering equation (2.18), the maximal
value of the first term is 4t, and the minimal value is �4t. From this, we can find the chemical
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Chapter 2. Tight-binding model and lattice structure

potentials corresponding to minimal and maximal degree of filling of the electronic system. At
zero temperature, the electrons will be in the ground state. Accordingly, the range of chemical
potentials from minimal to maximal degree of filling is µ/t = [�4.0, 4.0]. Half-filling is obtained
at µ/t = 0.0. This is also evident from figure 2.2. For chemical potentials near µ/t = �4.0, like
µ/t = �3.9, only a small portion of the Brillouin zone is enclosed by the Fermi surface. This
means that the ground state at a low chemical potential has few electrons in the system. In the
opposite limit at µ/t = 3.9, there are as many unoccupied as occupied states at µ/t = �3.9.
This symmetry about half-filling expresses the so-called particle-hole symmetry, which will be
discussed in later chapters. At µ/t = 0.0, the reciprocal space is divided exactly into two
equally large regions, meaning that there are as many occupied as unoccupied states.

At first sight, non-positive values of the chemical potential seem to be of little relevance for
metals. Experimental results show that the Fermi energy, which is the highest energy of the
occupied states at zero temperature, is typically in the range from 2 to 12 eV [49]. Moreover,
this is usually the completely dominating energy scale of metals. In the tight-binding model,
the relevant energy scale is the hopping amplitude t, which includes both the kinetic energy of
electrons and the potential energy from the interaction with the positive ion lattice. As we have
seen above, the energy eigenvalues are not strictly positive, so negative values of the chemical
potential are also possible. The important part is that higher values of µ relative to t, lead to
more states being occupied.
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Chapter 3

Magnetism

In the previous chapter, it was clear that the energy eigenvalues of the tight-binding model are
spin degenerate, leading to paramagnetic (PM) order. We are in this chapter going to consider
two possible extensions of the tight-binding model giving rise to ferromagnetic (FM) order.
The first method is to include the so-called exchange field in the model. The second method
is represented by the Hubbard model, which includes electron-electron Coulomb interactions
in addition to the hopping term. To get an idea of how the FM and PM phases di↵er, an
analytical phase diagram based on the Stoner criterion is analyzed. In addition, the concept of
the particle-hole symmetry is examined.

3.1 Exchange field

The notion of an exchange field was postulated by Weiss in 1907 in his molecular field theory
about ferromagnetism [50]. In this theory, the force experienced by an atom in a material is
assumed to arise from the fields of the surrounding atoms. However, the physics behind an
exchange field leading to interactions as large as observed experimentally, was not explained.
The breakthrough occurred with the discovery of electronic spins. The exchange interaction
leading to ferromagnetism was explained as an interplay between Coulomb forces and the Pauli
principle [51]. A first extension of the tight-binding model facilitating ferromagnetism, can
be written as a coupling between the local exchange field hi and the second-quantized spin
operator Ŝi at site i, that is [52, 53]

Ĥh = �

X

i

hi · Ŝi

= �

X

i

hi ·

X

�,�0

ĉ
†
i,�
��,�0 ĉi,�0 ,

(3.1)

where ��,�0 is the (�, �0) element of the vector � = �xx̂+�yŷ+�z ẑ, and �x, �y, �z are the three
Pauli matrices. Without dwelling much on the physical origin of the exchange field, it certainly
can be thought of as an internal interaction mechanism favoring alignment of spins parallel to
each other. The physics behind ferromagnetism will become clearer in the next section when
we consider magnetism in the Hubbard model.

The exchange field will be included in the model by making two simplifying assumptions.
First of all, because a homogeneous bulk material is modeled, the exchange field is assumed
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Chapter 3. Magnetism

to be the same at all lattice sites, that is hi ! h. In addition, there will only be a non-zero
z-component (hz = h). With these simplifications, the exchange field term can be written as

Ĥh = �h

X

i

Ŝ
z

i

= �h

X

i

X

�,�0

ĉ
†
i,�
�
z

�,�0 ĉi,�0

= �h

X

i

�
n̂i," � n̂i,#

�
.

(3.2)

In e↵ect, this term leads to higher energy of electrons in spin down states than electrons having
spin up, so that it favours FM order. The energy di↵erence 2h is referred to as the Zeeman
energy [54]. Finally, we notice that by inserting the Fourier transformations in equations (2.14)
and (2.15), we get

Ĥh = �h

X

k

�
n̂k," � n̂k,#

�
. (3.3)

3.2 On-site single-band Hubbard model of magnetism

The single-band Hubbard model can be derived by including repulsive Coulomb electron-
electron interactions in the Hamiltonian given in equation (2.8), that is the term

Ĥv =
1

2

X

i,j 6=i

v(ri � rj). (3.4)

Written in this way, v(ri � rj) is the potential energy due to the Coulomb repulsion between
two electrons located at positions ri and rj. Here the index j is over all electrons so that j 6= i.
The purpose of the 1/2-factor is to compensate for the double counting in the summation over
electron-electron interactions. Using the same basis functions as in section 2.2, equation (3.4)
is in second quantization given by [51]

Ĥv =
1

2

X

i,j,k,l,�,�0

hi, j| v(r � r
0) |k, li ĉ†

i,�
ĉ
†
j,�0 ĉl,�0 ĉk,�

=
1

2

X

i,j,k,l,�,�0

vi,j,k,lĉ
†
i,�
ĉ
†
j,�0 ĉl,�0 ĉk,�,

(3.5)

where

vi,j,k,l =

ZZ
�
⇤(r �Ri)�

⇤(r0
�Rj)v(r � r

0)�(r �Rk)�(r
0
�Rl)drdr

0
. (3.6)

If we now only consider on-site electron-electron interactions, the last sum of equation (3.5) is
non-zero when i = j = k = l, that is vi,j,k,l = U�i,j,k,l. Accordingly, the Hamiltonian term is
reduced to

ĤU =
1

2
U

X

i,�,�0

ĉ
†
i,�
ĉ
†
i,�0 ĉi,�0 ĉi,�. (3.7)

Based on the fact that each fermionic state can not be occupied by more than one electron,
products of creation or annihilation operators with the same quantum numbers are zero, such
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3.2. On-site single-band Hubbard model of magnetism

as ĉi,� ĉi,�. Hence, there are only non-zero terms when � and �0 are opposite. The single-band
Hubbard U -term is then given as [46]

ĤU = U

X

i

n̂i,"n̂i,#, (3.8)

which is rewritten slightly by using the anticommutation property in equation (2.2). At this
stage, we notice that the U -term respects the Pauli exclusion principle by the requirement of
having opposite spins for the on-site electrons. Every lattice site where there are two electrons
with opposite spin directions, increases the energy of the system by U , and in that way it
represents an energy cost. Energetically, this Hamiltonian term by itself prefers FM order.
However, when the tight-binding hopping term is also taken into account, the magnitude of U
in relation to t determines which magnetic phase is present.

In the numerical treatment of the Hubbard term, we perform a Hartree-Fock mean-field
approximation. This is done by writing the number operators as n̂i,� = hn�i + �n̂i,�, that is
the sum of the mean and the fluctuation of the number operator [55]. In the case of translational
invariance in the system, the average number operator has no site dependence. Inserted into
the Hubbard term, we get

ĤU = U

X

i

n̂i,"n̂i,#

= U

X

i

⇥
hn"i+�n̂i,"

⇤⇥
hn#i+�n̂i,#

⇤

= U

X

i

⇥
hn"ihn#i+�n̂i,"hn#i+�n̂i,#hn"i+�n̂i,"�n̂i,#

⇤
.

(3.9)

Assuming small fluctuations �n̂i,� = n̂i,� � hn�i, we neglect the product of such di↵erences,
which leads to

ĤU = U

X

i

⇥
hn"ihn#i+ (n̂i," � hn"i)hn#i+ (n̂i,# � hn#i)hn"i+�n̂i,"�n̂i,#

⇤
.

⇡ U

X

i

⇥
n̂i,"hn#i+ n̂i,#hn"i � hn"ihn#i].

(3.10)

Exploiting the symmetry of the first two terms, gives

Ĥ
MF
U

= U

X

i,�

n̂i,�hn�̄i+ EU , (3.11)

in which
EU = �UNhn"ihn#i, (3.12)

is a constant. The mean-field approximation has e↵ectively reduced the Hubbard term from
being quartic in the fermionic creation and annihilation operators, to a term quadratic in such
operators. The Fourier transform of ĤMF

U
is

Ĥ
MF
U

= U

X

k,�

n̂k,�hn�̄i+ EU . (3.13)
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3.3 Magnetic phases

In contrast to the exchange field term, a non-zero Hubbard U -term will not always give a
splitting of the spin bands. As pointed out in the previous section, depending on how large
the magnetic interaction strength U relative to the hopping amplitude t is, the tight-binding
model will give PM or FM as the most stable phase. In short, when the system acquires lowest
free energy by having equal number of electrons with spin up and down, the phase is PM. The
stability of FM is greatest when it is energetically favourable to orient the spins in the same
direction. In fact, the Hubbard model can also be used to study antiferromagnetic (AFM)
systems, where neighbouring spins are opposite, but this magnetic phase will not be considered
here.

Figure 3.1: Phase diagram showing the PM-FM transition obtained by implementa-
tion of the Stoner criterion. The y-axis is plotted as t/U and the number of electron
per site is on the x-axis. The temperature is T/t = 0.0.

To be more specific about the relation between PM and FM, we should have a look at what
is known as the Stoner criterion. Although we are primarily interested to work in the grand
canonical ensemble, the approach discussed by Hirsch will be followed here [56]. This means
that we will consider the canonical ensemble with the number of electrons per site ne fixed.
The Stoner criterion is a theoretical result that can be used to predict the phase transition from
PM to FM [57]. It follows from the properties of the magnetic susceptibility �(q), which can
be expressed as

�(q) =
�0(q)

1� U�0(q)
. (3.14)

For a PM-FM transition, we have q = (0, 0). In the limit where the susceptibility becomes
infinite, the PM phase is unstable against FM. The Stoner criterion is therefore

U�0(q) = 1, (3.15)
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where
�0(q) = D

can
spin(µ). (3.16)

In equation (3.16), Dcan
spin is the density of states per spin in the canonical ensemble, and it

is computed in the non-interacting case U/t = 0. By implementation of the Stoner criterion
numerically, we get the phase transition shown in figure 3.1. Accordingly, FM has lower free
energy than PM when U is large compared to t, as predicted above. In other words, when
U � t, the Hubbard U -term is most decisive for the free energy of the system. In what

Figure 3.2: Grand canonical energy spectra and DOS in the Hubbard model at
zero temperature. The di↵erent k-points (�, M , X) are shown in figure 2.1b. The
first row of plots (a and b) are for on-site interaction strength U/t = 5.0, resulting
in the PM phase. In the second row (c and d), the magnetic phase is FM with
U/t = 10.0. Energy spectra are in the left column, and the DOS to the right. Each
plot distinguishes between up- and down-spin energies. The dashed line at grand
canonical energy E/t = 0.0 is the Fermi level. All plots are for chemical potential
µ/t = 0.0.

is called the band limit (t/U ! 1), the electrons behave as there are no electron-electron
interactions, so that the magnetic phase is PM. In addition, the phase diagram is symmetric
about half-filling at ne = 1.0 because of the particle-hole symmetry, which is explained in the
last section of this chapter. As we move to half-filling from below, the stability of FM against
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PM becomes higher. We can understand this by considering what happens when the number
of electrons increases in the system. Since it is a higher chance of having doubly occupied
sites, the importance of the U -term is larger. At half-filling, there are as many electrons in the
system as number of sites, so doubly occupied sites are unavoidable in the case of hopping.

In figure 3.2, the grand canonical energy spectra and density of states (DOS) for the PM
and FM phases are shown. Comparing the plots a) and c), we observe that the dispersion
for PM (a) is spin degenerate, while there is a splitting in the up- and down-spin band for
FM (c). The latter is also the case using the exchange field term instead of the U -term. The
associated DOS are illustrated on the right hand side. The shape of the up- and down-spin
DOS is characteristic for the tight-binding model, having a centered peak and energy range of
8.0t.

3.4 Fermi surfaces in the models of magnetism

The inclusion of magnetic interactions by the U - or h-term changes the correspondence between
values of the chemical potential and the Fermi surfaces, with respect to what we found in section
2.6. Still, the Fermi surfaces are identical for a given electron density ne, and the symmetry
about half-filling remains. To see this, we first consider the mean-field Hubbard U -term in
addition to the grand canonical µ-term, which can be written as

Ĥ
MF
U

+ Ĥµ =
X

i,�

⇥
Uhn�̄i � µ

⇤
n̂i,�. (3.17)

Evidently, with regards to the previous discussion about Fermi surfaces, the U -term results in
a shift in the chemical potential. If ne = 0.0, which implies hn�i = 0.0, the U -term is zero
and no shift occurs. Consequently, we have zero degree of filling at µ/t = �4.0 as before. For
the maximal electron density ne = 2.0, hn�i = 1.0. This means that the upper boundary of
the chemical potential is µ/t = U/t + 4.0. In total, the range ne = [0.0, 2.0] corresponds to
µ/t = [�4.0, U/t + 4.0] with half-filling at µ/t = U/(2t), when magnetism is modeled by the
Hubbard U -term. Hence, in the upper row of plots in figure 3.2, half-filling is obtained at
µ/t = 2.5, and in the lower row, this happens at µ/t = 5.0. Likewise, we can write the sum of
the exchange field term and the chemical potential term as

Ĥh + Ĥµ =
X

i

⇥
(�h� µ)n̂i," + (h� µ)n̂i,#

⇤
. (3.18)

The range of interest is then µ/t = [�h/t�4.0, h/t+4.0]. Therefore, as opposed to the U -term,
the exchange field term does not shift the chemical potential value of half-filling.

3.5 Magnetization

The magnetic order parameter, which is a measure of the degree of alignment of electronic
spins in the system, is known as the magnetization. In the case of the Hubbard U -term, the
average number operators for up- and down-spin electrons will be determined self-consistently.
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3.6. The particle-hole symmetry

Knowing hn"i and hn#i, the magnetization along the up/down-direction can be computed as

M =
1

N

X

i

(ni," � ni,#) (3.19)

= hn"i � hn#i. (3.20)

In later chapters, a phase transitions from FM to PM will be defined as having the magnetization
M becoming lower than a tolerance. This happens in figure 3.3 as the temperature is increased
above a critical value. Below this temperature, there exists FM order in the system. The

Figure 3.3: Magnetization M as a function of temperature T in units of t. The plot
is obtained using interaction strength U/t = 8.5 and chemical potential µ/t = 0.0.

transition to PM can be understood physically as a result of increasing thermal fluctuations
in the system. With higher energy in the system, the electrons will start to occupy states at
higher energy. Eventually, when the temperature is high enough, the energy di↵erence due to
spin band splitting will be negligible compared to the thermal energy, and the system enters
the PM phase.

3.6 The particle-hole symmetry

We will now discuss the so-called particle-hole symmetry in terms of the Hubbard model and
the exchange field term. For this, we divide the square lattice in figure 2.1a into two sublattices
A and B. The nearest-neighbours of a site in A are then in B, and the lattice is classified as
bipartite. For a bipartite lattice, the particle-hole transformation is defined as [58]

ĉ
†
i,�

! uiĉi,�, ui =

(
1, if i 2 A

�1, if i 2 B
. (3.21)

Consequently, the number operator transforms as

n̂i,� = ĉ
†
i,�
ĉi,� ! u

2
i
ĉi,� ĉ

†
i,�

= 1� ĉ
†
i,�
ĉi,� = 1� n̂i,�, (3.22)
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Chapter 3. Magnetism

where we have used that u
2
i
= 1. The particle-hole transformation has therefore turned the

number operator for electrons into the one for holes, switching the occupation eigenvalues 0
and 1. Regarding the tight-binding hopping term, the particle-hole transformation of ĉ†

i,�
ĉj,� is

ĉ
†
i,�
ĉj,� ! uiuj ĉi,� ĉ

†
j,�

= ĉ
†
i,�
ĉj,�. (3.23)

Here uiuj = �1 if sites i and j are nearest-neighbours, and we also get a factor �1 from
the anticommutation of the creation and annihilation operator. Hence, the nearest-neighbour
hopping term has the particle-hole symmetry. Next, we consider the interaction term in the
Hubbard model. If the U -term is now written as [59]

ĤU = U

X

i

⇣
n̂i," �

1

2

⌘⇣
n̂i,# �

1

2

⌘
, (3.24)

it clearly has the particle-hole symmetry. Multiplying out, we obtain the extra terms UN/4 and
�U/2

P
i,�

n̂i,�. The former leads to a shift in chemical potential, and the latter is a constant
contribution to the energy. The modified U -term, which is invariant under the particle-hole
transformation, describes the same physics as before. With respect to equation (3.22), the
grand canonical term �µ

P
i,�

n̂i,� is not particle-hole-symmetric, but the transformation only
gives a change in the sign of µ. Thus, for the Hubbard model, the magnetic phase having lowest
free energy at ne = x, will also be the most stable magnetic phase at ne = 2 � x. Indeed, a
phase diagram of magnetic phases will be symmetric about half-filling, as seen in figure 3.1.

For the exchange field term, the particle-hole transformation is

Ĥh !� h

X

i

⇥
(1� n̂i,")� (1� n̂i,#)

⇤

= h

X

i

(n̂i," � n̂i,#).
(3.25)

This demonstrates that the h-term is not particle-hole symmetric. It has an overall sign change
because of the transformation. E↵ectively, this means that if the direction of the exchange
field is switched simultaneously, the symmetry is respected. Fixing h, the down-spin becomes
energetically preferable under the particle-hole transformation. Therefore, we can predict that
the most stable states at symmetric points about half-filling ne = 1.0, will have opposite spin
configurations.
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Superconductivity

In the beginning of this chapter, the basic principles in the BCS theory of conventional super-
conductivity are introduced. Then we move on to the extended single-band Hubbard model,
which is used to model unconventional equal-spin p-wave superconductivity in the following
chapters. This Hamiltonian interaction term will be mean-field approximated and transformed
to Fourier space. In the remaining part of the chapter, properties of equal-spin triplets are
discussed. This includes symmetry characteristics of their order parameters in addition to the
k-space gap functions and DOS.

4.1 Introduction to the BCS theory

This introduction to the BCS theory gives important concepts discussed by Fossheim and
Sudbø [60]. The basis of the theory is the net attraction of two electrons in the proximity of
the Fermi level, as proposed by Cooper in 1956 [61]. The interaction can be pictured as an
electron creating lattice distortions when it moves through a crystal. Displacements of positive
ions produce dipole moments, a↵ecting another electron. In quantum mechanics, this is a
phonon-mediated scattering process. The Hamiltonian of the BCS model accounts for both the
repulsive Coulomb interaction between electrons and the electron-phonon coupling, which in
second quantization are respectively given as

Ĥint =
1

4⇡✏0

X

k,k0,q,�,�0

2⇡e2

q2
ĉ
†
k+q,� ĉ

†
k0�q,�0 ĉk,� ĉk0,�0 +

X

k,q,�

Mq(â
†
�q + âq)ĉ

†
k+q,� ĉk,�. (4.1)

Here the c-operators are fermionic (electrons), and the a-operators are bosonic (phonons). In
equation (4.1), the strength of the electron-phonon interaction is given by Mq, which decreases
with the ion mass and is proportional with the momentum transfer q. Assuming that the
phonons are free particles with well-defined energies !q, it can be shown that

Ĥint =
X

k,k0,q,�,�0

⇣ 1

4⇡✏0

2⇡e2

q2
+

2|Mq|
2
!q

!2 � !2
q

⌘
ĉ
†
k+q,� ĉ

†
k0�q,�0 ĉk,� ĉk0,�0 , (4.2)

where ! is the energy transferred between two electrons. By considering the fermionic creation
and annihilation operators, we see that the Hamiltonian describes a two-step process where
an electron in the state |k, �i is scattered into the state |k + q, �i, followed by the scattering
of another electron in |k

0
, �

0
i to |k

0
� q, �

0
i. Both scatterings are caused by the same phonon
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Chapter 4. Superconductivity

with momentum q, propagating from the latter to the former electron. It is also clear that
the attractive electron-electron interaction is predicted by the BCS theory. The second term of
equation (4.2) is negative whenever |!| < !q, and it diverges in the limit where all the phonon
energy is transferred between the electrons. At this stage, the Hamiltonian in equation (4.2)
can be simplified by assuming that the sum of the two terms in the parenthesis is a negative
constant for a thin shell about the Fermi surface, that is when |!| ⌧ !D (!D is the Debye
frequency), and zero otherwise. This is in accordance with the BCS theory introduced in 1957
[9].

Figure 4.1 illustrates another important concept of the BCS theory. We observe that when
the initial momenta of the two electrons are opposite (k1 = �k2), both electrons are guaranteed
to stay inside the thin shell after the phonon scattering events whenever one of them does. In
general, this is not the case when k1 6= �k2, so the phonon-mediated electron-electron attraction
is dominated by electrons having opposite momenta.

Figure 4.1: The figure illustrates two cases of phonon-mediated attraction between
electrons. The two electrons have initial momenta k1 and k2. These momentum
vectors have endpoints between the two dashed surfaces, representing the range
where there is a non-zero attraction. The red arrows indicate phonon scattering
events. The electron with momentum k1 is scattered by an incoming phonon with
momentum q. This electron then acquires a momentum of k1 + q. The electron
having momentum k2 is scattered by the same outgoing phonon, that is an incoming
phonon with momentum of �q. This figure is adapted from reference [60].

In context of the Pauli exclusion principle, these electrons will also preferably have opposite
spins. The reason is that the attractive interaction is expected to be of short range, as it is
mediated by phonons. By requiring opposite spins, we allow the electrons to approach each
other in space without violating the Pauli principle. Two electrons interacting attractively and
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4.2. Extended single-band Hubbard model of equal-spin superconductivity

having opposite spins and momenta, are a referred to as a Cooper pair in the BCS theory. The
electron-electron interaction part of the Hamiltonian can now be written as

Ĥint =
1

2
Ve↵

X

k,k0,�

ĉ
†
k,� ĉ

†
�k,�̄ ĉ�k0,�̄ ĉk0,�, (4.3)

where Ve↵ < 0, (k + q, k) is set to (k, k0), and the Cooper pair relations k0 = �k and �0 = �̄

are used. Performing a mean-field approximation, we finally get [52]

Ĥ
MF
BCS =

X

k,�

(✏k � µ)ĉ†k,� ĉk,� + Ve↵

X

k,k0

hc
†
k,"c

†
�k,#iĉ�k0,#ĉk0," + h.c., (4.4)

where ✏k is the energy of an electron with momentum k in the absence of electron-electron
interactions, and µ is the chemical potential of the system. The average in the interaction term
is of special importance in the study of superconductors as we have

�0 = Ve↵

X

k

hc�k,#ck,"i. (4.5)

Here �0 is the order parameter for the conventional s-wave superconductor, and it is a measure
for the degree of Cooper pair ordering in the superconductor. Additionally, the BCS theory
shows that there is a gap in the DOS of the superconductor, with magnitude Eg = 2|�0| and
centered about the normal-state Fermi level. Hence, in a superconductor, the Cooper pairs of
electrons will create a superconducting condensate, occupying states below the energy gap. To
break a Cooper pair, that is to excite an electron to the conduction band, an energy E � Eg is
required.

4.2 Extended single-band Hubbard model of equal-spin
superconductivity

The BCS theory considered so far, gives a superconducting gap structure that is isotropic in
k-space. In the tight-binding model, the conventional s-wave superconducting order parameter
is obtained if an on-site opposite-spin interaction term is used. Order parameters obeying other
orbital symmetries, which are not predicted by the standard BCS theory, have been observed
experimentally. For instance, experimental results indicate that cuprates have a d-wave super-
conducting gap structure [62]. Moreover, Sr2RuO4, which is a perovskite, has several properties
reminiscent of a spin-triplet p-wave superconductor [63, 64]. In general, superconducting order
is accepted to be related to an e↵ective electron-electron attraction [65]. At the same time,
the physical processes leading to the attraction is not fully understood for unconventional su-
perconductors [66]. A complete justification for how a net attraction can arise physically for
unconventional superconductors is beyond the scope of this thesis. Hence, there will not be any
special assumptions about the form of Cooper paring mechanism. We are only seeking a Hamil-
tonian interaction term leading to the condensation of electron pairs into the superconducting
state in more general terms than the standard BCS theory.

To model unconventional superconductivity, that is to allow for more complex gap struc-
tures, we should consider an extended form of the Hubbard model [65]. It turns out that if we
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use an nearest-neighbour Hubbard interaction term given by

ĤV =
1

2
V

X

hi,ji,�

n̂i,�n̂j,�, (4.6)

we will be able to construct superconducting order parameters with p-wave symmetry prop-
erties. Indeed, this will become clear in the remainder of the chapter where we examine the
superconducting p-wave order parameters, similar to what is done in the PhD-thesis of Terrade
[52]. In addition, the superconducting interactions expressed by equation (4.6) are between
electrons having the same spin direction as we are interested in equal-spin triplets. We will also
use negative values of V in the following, reflecting the e↵ective attraction between electrons
forming a Cooper pair.

4.2.1 Mean-field approximation

In the mean-field approximation scheme used here, we approximate the product of operators
Â and B̂ as [6]

ÂB̂ ⇡ hAiB̂ + ÂhBi � hAihBi, (4.7)

like we did for the magnetic Hubbard term. The di↵erence is that we choose other operators
Â and B̂. Analogous to the BCS mean-field Hamiltonian in equation (4.4), Â = ĉi,� ĉj,� and
B̂ = ĉ

†
j,�
ĉ
†
i,�

= Â
†. The resulting mean-field approximation of equation (4.6) is

Ĥ
MF
V

=
1

2
V

X

hi,ji,�

⇥
F

�,�

i,j
ĉ
†
j,�
ĉ
†
i,�

+ h.c.
⇤
+ EV , (4.8)

where the constant is given as

EV = �
1

2
V

X

hi,ji,�

|F
�,�

i,j
|
2
, (4.9)

In equation (4.8), the so-called equal-spin pairing amplitudes are generally defined as

F
�,�

i,j
= hci,�cj,�i. (4.10)

which is the correlation between the two electrons of an equal-spin Cooper pair at lattice sites
i and j.

4.2.2 Fourier transformation

As before, in the treatment of a bulk superconductor, it is convenient to transform the Hamil-
tonian term to k-space. The Fourier transformations of the creation and annihilation operators
are given in equations (2.14) and (2.15). Inserting these into the mean-field superconducting
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term, excluding the constant EV , gives

Ĥ
MF
V

=
1

2
V

X

hi,ji,�

⇥
F

�,�

i,j
ĉ
†
j,�
ĉ
†
i,�

+ h.c.
⇤

=
1

2
V

X

i,�

⇥
F

x+
i,�,�

ĉ
†
i+x̂,� ĉ

†
i,�

+ F
x�
i,�,�

ĉ
†
i�x̂,� ĉ

†
i,�

+ F
y+
i,�,�

ĉ
†
i+ŷ,� ĉ

†
i,�

+ F
y�
i,�,�

ĉ
†
i�ŷ,� ĉ

†
i,�

+ h.c.
⇤

=
1

2
V

X

k,�

h�
F

x+
�,�

e
�ikx + F

x�
�,�

e
ikx + F

y+
�,�

e
�iky + F

y�
�,�

e
iky
�
ĉ
†
k,� ĉ

†
�k,� + h.c.].

(4.11)

In the last line, the relation in equation (2.17) has been used leading to k
0
! �k. Furthermore,

the notation F
x(y)±
i,�,�

= F
�,�

i,i±x̂(ŷ) is introduced for brevity. In addition, the site index i has been
removed from the paring amplitudes, reflecting that they are the same on each lattice site. The
latter is because of the translational invariance in the x- and y-direction. Simplifying further,
we get

Ĥ
MF
V

=
1

2
V

X

k,�

h�
F

x+
�,�

e
�ikx + F

x�
�,�

e
ikx + F

y+
�,�

e
�iky + F

y�
�,�

e
iky
�
ĉ
†
k,� ĉ

†
�k,� + h.c.

i

=
1

2
V

X

k,�

h
� 2i

�
F

x+
�,�

sin kx + F
y+
�,�

sin ky
�
ĉ
†
k,� ĉ

†
�k,� + h.c.

i

=
1

2
V

X

k,�

⇥
Fk,� ĉ

†
k,� ĉ

†
�k,� + h.c.

⇤
,

(4.12)

where
Fk,� = �2i(F x+

�,�
sin kx + F

y+
�,�

sin ky). (4.13)

In the derivation of equation (4.12), the fact that F x(y)+
�,� = �F

x(y)�
�,� has been used. To see this,

we consider the general definition of the paring amplitudes, that is

F
x(y)+
i,�,�

= hci,�ci+x̂(ŷ),�i

= �hci+x̂(ŷ),�ci,�i.
(4.14)

The point is now that in the particular case of a homogeneous system, we can write

hci+x̂(ŷ),�ci,�i = hci,�ci�x̂(ŷ),�i

= F
x(y)�
i,�,�

.
(4.15)

4.3 Equal-spin p-wave triplets

In the following chapters, di↵erent combinations of p-wave equal-spin triplets are investigated.
The paring amplitudes for these superconducting phases are defined as [52]

F
�,�

px(y)
=

F
x(y)+
�,� � F

x(y)�
�,�

2
= F

x(y)+
�,�

. (4.16)

Here we again have used the property in equation (4.15). These p-wave paring amplitudes are
related to the px and py superconducting order parameters ��,�

px
and ��,�

py
simply by

��,�

px(y)
= V F

�,�

px(y)
. (4.17)
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4.3.1 Symmetries of the superconducting order parameters

The di↵erent symmetries of Cooper pair correlation functions can be reviewed in terms of the
two-fermion anomalous Green function, which is given as [67]

��,�0(r, t) = V

D
Tt

�
c�(r, t)c�0(0, 0)

�E
. (4.18)

Here Tt is the time-ordering operator ensuring that operators appear in a chronological order,
with the time of the leftmost operator being the largest, that is [47]

Tt

�
c�(r, t)c�0(0, 0)

�
=

(
c�(r, t)c�0(0, 0) if t > 0

�c�0(0, 0)c�(r, t) if t < 0
, (4.19)

in the fermionic case. In equation (4.18), the possibility of an additional band degree of freedom
for the operators is ignored as we use a single-band model of superconductivity. Further, we
stress that the the position vector r and the time coordinate t are both relative quantities.
Accordingly, under a permutation of the time or spatial coordinates, we will have a sign change
of r and t, respectively. Nevertheless, this is not the same as the inversion of the spatial or time
coordinates of the two particles forming the Cooper pair, only the relative coordinate is inverted.
In context of the antisymmetry of fermionic wave functions, we require an overall parity of �1
for the superconducting correlation function, under a permutation of spin (S), spatial (P) and
time (T) coordinates. This leads to the di↵erent combinations of parities summarized in table
4.1. With regards to the BCS correlation function in equation (4.5), a permutation of spins

Table 4.1: Parities for the permutation of spins (S), positions (P) and time coordi-
nates (T). The rightmost column represents the total parity of all the permutations
combined (SPT). A similar table can be found in the references [67, 68].

S P T SPT
+1 +1 �1 �1
+1 �1 +1 �1
�1 +1 +1 �1
�1 �1 �1 �1

results in a sign change. This means that the S-parity is odd. The permutation of positions can
equivalently be considered as a k-space inversion, that is k ! �k, as the Fourier transform of
the relative spatial coordinate r is the momentum. Since we are summing over all momenta k,
the P-parity is even. Hence, the permutation of time coordinates should be even in order to
have a total parity of �1. This is fulfilled if the time coordinates of the electrons are equal, so
that the time degree of freedom can be neglected. In fact, the symmetry properties of the BCS
order parameter are in accordance with the third instance of table 4.1.

When it comes to the equal-spin p-wave correlations, the exchange of spins is trivially
determined to be symmetric, that is a parity of +1. To inspect the parity for a momentum
inversion, we should write the p-wave paring amplitudes in equation (6.18) on a similar form as
equation (4.5) for the BCS case. This can easily be done by using the k-space transformation
in equation (2.14) and the relation in equation (2.17). The result is

F
�,�

px(y)
=

1

N

X

k

hck,�c�k,�ie
ikx(y) . (4.20)

page 23



4.3. Equal-spin p-wave triplets

In comparison with the BCS case, the extra factor e
ikx(y) causes the P-parity be odd. This

is in agreement with p-orbitals having orbital quantum number l = 1 and spatial parity of
(�1)l = �1. Again, the SP-product is antisymmetric, and the T-parity is then even. For
this reason, we can ignore the time coordinates of the equal-spin p-wave superconducting order
parameters in the following.

4.3.2 The Fourier space superconducting gap function

The group of p-wave correlations under study will have three di↵erent orbital symmetries. First
of all, the pure px-wave symmetry will be analyzed. In the case of translational invariance in
the x- and y-direction, the py-phase will not be considered explicitly. Additionally, we include
the combined phases px + ipy and px + py in the analysis. For a bulk superconductor, px + ipy

will have the same free energy as px � ipy, and the same holds for px + py and px � py [69].
Regarding the spin part of the p-wave phases, we distinguish between three distinct equal-spin
configurations, that is | ", "i, | #, #i and | ", "i+ | #, #i.

In the comparison of the k-space properties of px, px + ipy and py + py, it is interesting
to examine the k-space superconducting gap function �k. To obtain the expression of this
function, we first calculate the Fourier transformation of F �,�

i,j
as

F
�,�

k =
1

N

X

hi,ji

F
�,�

i,j
e
ik·(ri�rj)

= F
x+
�,�

e
�ikx + F

x�
�,�

e
ikx + F

y+
�,�

e
�iky + F

y�
�,�

e
iky

= �2i(F �,�

px
sin kx + F

�,�

py
sin ky).

(4.21)

By summing over spins and multiplying with the interaction strength V , the k-space gap
function for equal-spin p-wave superconductivity is [52]

�k = �2iV
X

�

(F �,�

px
sin kx + F

�,�

py
sin ky). (4.22)

The px-phase is characterized by having non-zero real part of F �,�

px
, px + ipy has finite real

part of F �,�

px
and imaginary part of F �,�

py
, and px + py has significant real part of both F

�,�

px
and

F
�,�

py
. All the other p-wave components are zero for the respective phases. To illuminate the

di↵erences between the gap functions of the p-wave states, the absolute value of the momentum
dependencies are plotted in figure 4.2. In addition, figure 4.3 shows the k-space gaps when the
chemical potential is set to µ/t = �2.5. The extended curves go through points in Fourier space
where the energy of the superconducting phase equals the absolute value of �k in equation
(4.22). The Fermi surface is the same as for the normal conducting state, like the ones in figure
2.2. According to plot a) in figure 4.2, the px-phase has nodal lines at kx = 0,±⇡. The nodal
line at kx = 0 is also apparent from plot a) in figure 4.3, where the k-space gap becomes zero.
There are no nodal lines for the px + ipy superconducting phase. At low chemical potentials,
the gap function is approximately isotropic, as in plot b) in figure 4.3. According to figure 4.2,
the px+py-phase has a nodal line along the diagonal kx = �ky. Thus, its gap function overlaps
with the Fermi surface along this diagonal in figure 4.3.

The associated DOS are plotted in figure 4.4. We observe that px + ipy has a fully gapped
DOS centered at grand canonical energy value E/t = 0.0, which corresponds to the Fermi
surface. This means that there are only forbidden electron states inside the gap, while there
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Figure 4.2: Momentum dependencies of the order parameters of the p-wave phases
px (a), px + ipy (b) and px + py (c). The plots are normalized with respect to the
maximum k-space value. The colorbar of the plots is included.

Figure 4.3: k-space gap functions (blue) for px (a), px + ipy (b) and px + py (c).
The normal-state Fermi surface at chemical potential µ/t = �2.5 is also plotted
(red). The superconducting interaction strength is V/t = �4.0 and the temperature
is T/t = 0.0.

are allowed states below and above the gap. The situation is di↵erent in the case of px- and
px + py-wave superconductivity. For these phases, we see that the DOS are not fully gapped
as there exist electron states inside the gap. In fact, the DOS decrease as the centers are
approached, and the DOS are zero at E/t = 0.0. The V -shape of the DOS is characteristic
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4.3. Equal-spin p-wave triplets

Figure 4.4: DOS of the phases px (a), px + ipy (b) and px + py (c). Parameters are
µ/t = �2.5, T/t = 0.0 and V/t = �4.0. The axis values are in units of t.

for orbital symmetries having k-space gap functions with nodal lines intersecting the Fermi
surface. As we have seen, this is the case for both px and px + py.
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Chapter 5

FM equal-spin p-wave superconductors
in zero magnetic field

In this chapter, the theory and models from the previous chapters will be used to study FM
equal-spin p-wave superconductors in zero magnetic field. We start by deriving the BdG equa-
tions of the total Hamiltonian including magnetism and superconductivity. Thereafter, the
self-consistent algorithm is explained, including the strategy for obtaining phase diagrams. In
the last part, the results are discussed, before some concluding remarks are given.

5.1 Total Hamiltonian and BdG equations

In order to study FM superconductors in the absence of a magnetic field, we add the second-
quantized Hamiltonian terms introduced in the previous chapters. The total Hamiltonian of
the FM spin-triplet system is then

Ĥ = �t

X

hi,ji,�

ĉ
†
i,�
ĉj,� � µ

X

i,�

n̂i,� +
1

2
V

X

hi,ji,�

n̂i,�n̂j,� � h

X

i

(n̂i," � n̂i,#)

+ U

X

i

n̂i,"n̂i,#.

(5.1)

The parameters of this equation have been defined previously. Since the two last terms in this
Hamiltonian can be used to model the FM state as explained in chapter 3, we will distinguish
between the two cases h 6= 0, U = 0 and h = 0, U 6= 0. Furthermore, the total mean-field
Hamiltonian is

Ĥ = �t

X

hi,ji,�

ĉ
†
i,�
ĉj,� � µ

X

i,�

n̂i,� +
1

2
V

X

hi,ji,�

⇥
F

��

i,j
ĉ
†
j,�
ĉ
†
i,�

+ h.c.
⇤

� h

X

i

(n̂i," � n̂i,#) + U

X

i,�

hn�̄in̂i,�,

(5.2)

where we have neglected the constant terms EU (equation (3.12)) and EV (equation (4.9)).
This can be done in the search for the BdG equations as constants do not contribute in the
determination of eigenvalues and eigenvectors. The definition of the equal-spin paring amplitude
F

�,�

i,j
is given in equation (4.10). Using the Fourier transforms derived earlier in this thesis, the
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k-space form of Ĥ is

Ĥ =
X

k,�

✏kĉ
†
k,� ĉk,� +

1

2
V

X

k,�

⇥
Fk,� ĉ

†
k,� ĉ

†
�k,� + h.c.

⇤

�h

X

k

(ĉ†k,"ĉk," � ĉ
†
k,#ĉk,#) + U

X

k,�

ĉ
†
k,� ĉk,�hn�̄i,

(5.3)

where ✏k is the tight-binding energy in equation (2.18), and the definition of Fk,� is given in
equation (4.13). In this Hamiltonian, the up- and down-spin creation and annihilation operators
are not coupled. Therefore, we define the spinor

D̂k,� =

✓
ĉk,�

ĉ
†
�k,�

◆
, (5.4)

and express equation (5.3) on matrix form as

Ĥ =
1

2

X

k,�

D̂
†
k,�Hk,�D̂k,�, (5.5)

where

Hk,� =

✓
✏k � �h+ Uhn�̄i V Fk,�

V F
⇤
k,� �✏k + �h� Uhn�̄i

◆
. (5.6)

In equation (5.6), � = 1 and � = �1 in the up- and down-spin case, respectively. The analytical
eigenvalues of this matrix can easily be derived, which is done in appendix A.1. Yet, in the self-
consistent algorithm, we will diagonalize Hk,� by a Bogoliubov transformation of the creation
and annihilation c-operators to a new set of operators, the so-called Bogoliubov quasiparticle
↵-operators. The transformations are given as [52]

ĉk,� =
X

n

un,k,�↵̂n,k,� (5.7)

ĉ
†
�k,� =

X

n

vn,k,�↵̂n,k,�. (5.8)

Moreover, we have
↵̂n,k,� = un,k,� ĉk,� + vn,k,� ĉ

†
�k,�. (5.9)

In the Bogoliubov transformations, un,k,�, vn,k,� are referred to as coherence factors. Accord-
ing to equation (5.9), the Bogoliubov annihilation operator ↵n,k,� is a linear combination of
electronic creation and annihilation operators. Equivalently, this can be considered as a linear
combination of annihilation operators for electrons and holes. Thus, the coherence factors are
amplitudes determining the electron- and hole-like nature of the Bogoliubov quasiparticles. The
resulting eigenvalue problem, that is the BdG equations, can be expressed

Hk,�An,k,� = En,k,�An,k,�, (5.10)

where

An,k,� =

✓
un,k,�

vn,k,�

◆
, (5.11)

are eigenvectors and En,k,� are eigenvalues of Hk,� (n = 1, 2).
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Chapter 5. FM equal-spin p-wave superconductors in zero magnetic field

5.2 Numerical procedure

In this section, the numerical procedures for the computation of phase diagrams are outlined.
Additionally, it is demonstrated how the DOS in the grand canonical ensemble can be computed
by deriving the spectral function.

5.2.1 Self-consistent solution

Considering the matrices Hk,�, the electron densities hn�i are not known from the outset. This
is also the case for the paring amplitudes F x+

�,�
and F

y+
�,�

, which are included in Fk,�. However,
the eigenvalue problem can be solved self-consistently. The procedure is shown as a flowchart
diagram in figure 5.1. First of all, initial conditions of all the average number operators and

Figure 5.1: Schematic illustration of the steps in the self-consistent procedure. The
order of the di↵erent steps is demonstrated by the arrows.

the paring amplitudes are set. In the case of the exchange field term instead of the Hubbard U -
term, the electron densities are of course not included in the algorithm. Since we are interested
in FM superconductors, we initialize the U -term with hn"i > hn#i, that is a higher number
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5.2. Numerical procedure

of up- than down-spin electrons and a net magnetization (equation (3.19)) in the system. As
outlined in section 4.3, we will be interested in the p-wave orbital symmetries px, px + ipy

and px + py. The equal-spin triplets under study will be the single spin configurations | ", "i

and | #, #i in addition to the combined configuration | ", "i + | #, #i. The initial conditions of
the paring amplitudes are then chosen in accordance with table 5.1. For instance, the phase

Table 5.1: Start values of the pairing amplitudes F x(y)+
�,� in the self-consistent algo-

rithm.

Equal-spin p-wave phase F
x+
"," F

y+
"," F

x+
#,# F

y+
#,#

px| ", "i 1 0 0 0
(px + ipy)| ", "i 1 i 0 0
(px + py)| ", "i 1 1 0 0
px| #, #i 0 0 1 0
(px + ipy)| #, #i 0 0 1 i

(px + py)| #, #i 0 0 1 1
px(| ", "i+ | #, #i) 1 0 1 0
(px + ipy)(| ", "i+ | #, #i) 1 i 1 i

(px + py)(| ", "i+ | #, #i) 1 1 1 1

(px + ipy)(| ", "i + | #, #i) is initialized so that Re[F ","
px

], Re[F #,#
px

], Im[F ","
py

] and Im[F ","
py

] are
non-zero, and the other real and imaginary parts are zero. This gives finite real part of the up-
and down-spin �px and finite imaginary part of the up- and down-spin �py , as required.

After the initialization of the unknowns in Hk,�, the matrices are diagonalized in order
to obtain eigenvalues and eigenvectors. For a lattice containing N sites, there are N distinct
momenta k in the first Brillouin zone. This means that 2N 2⇥2 matrices have to diagonalized,
leading to 2N eigenvalues and eigenvectors.

The next step in the self-consistent procedure is to compute new values of the average
number operators and the paring amplitudes. We first look at how the average number operators
can be calculated. Starting from the definition of the number operator hni,�i, we get

hni,�i =hc
†
i,�
ci,�i

=
1

N

X

k,k0

hc
†
k,�ck0,�ie

�i(k�k0)·ri .
(5.12)

Averaging over all sites i and inserting the Bogoliubov transformation in equation (5.7), give

hn�i =
1

N

X

i

1

N

X

k,k0

hc
†
k,�ck0,�ie

�i(k�k0)·ri

=
1

N

X

k
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†
k,�ck,�i

=
1

N

X

k

X

n,n0

u
⇤
n,k,�un0,k,�h↵

†
n,k,�↵n0,k,�i

=
1

N

X

n,k

|un,k,�|
2
f(En,k,�),

(5.13)
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where f is the Fermi function. In the last step, we have used that the ↵-operators are fermionic,
so that

h↵
†
n,k,�↵n0,k,�i = f(En,k,�)�n,n0 . (5.14)

In a similar way, it can be shown that the expression for the pairing amplitudes is

F
x(y)±
�,�

=
1

N

X

n,k

un,k,�v
⇤
n,k,�

�
1� f(En,k,�)

�
e
⌥ikx(y) . (5.15)

Finally, the new values of the magnetic and superconducting order parameters are compared
to the previous ones. If the relative error in one of the number densities or paring amplitudes
are greater than the tolerance, the self-consistent iteration continues. Otherwise, the eigenvalue
problem has been solved numerically.

5.2.2 Free energy

The computation of phase diagrams is based on the minimization of the free energy. For
a given set of input parameters, the phase present in the diagram will be the one having
lowest free energy. We therefore seek an expression relating the free energy to the calculated
eigenvalues and eigenvectors. Bearing in mind that the Hamiltonian is given in the grand
canonical ensemble, we use the thermodynamical relation between the grand canonical partition
function Z and the free energy F , that is

F = �T lnZ, (5.16)

where the Boltzmann constant is not included (kB = 1). The partition function can be related
to the Hamiltonian as [47]

Z = Tr
n
e
�Ĥ/T

o
. (5.17)

It is now convenient to write the Hamiltonian in terms of the Bogoliubov quasiparticle operators.
Transforming the spinors to this representation, gives

Ĥ = EV + EU +
1

2

X

k,�

D̂
†
k,�Hk,�D̂k,�

= EV + EU +
1

2

X

k,�

(Pk,�D̂k,�)
†(Pk,�Hk,�P

†
k,�)(Pk,�D̂k,�)

= EV + EU +
1

2

X

n,k,�

En,k,�↵̂
†
n,k,�↵̂n,k,�,

(5.18)

page 31



5.2. Numerical procedure

where Pk,� is the transformation matrix. Inserting this into equation (5.17), the expression of
Z is

Z = Tr

(
e
�(EV +EU )/T

Y

n,k,�

e
�En,k,�n̂n,k,�/2T

)

= e
�(EV +EU )/T

Y

n,k,�

Tr
�
e
�En,k,�n̂n,k,�/2T

 

= e
�(EV +EU )/T
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e
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= e
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Y

n,k,�

�
1 + e

�En,k,�/2T
�
.

(5.19)

Thus, the free energy can be expressed as

F = EV + EU � T

X

n,k,�

ln
�
1 + e

�En,k,�/2T
�
. (5.20)

Here the critical limit is T/t ! 0 as the exponential becomes infinite for negative eigenvalues.
For such energies, the logarithm can be approximated as

ln
�
1 + e

�En,k,�/2T
�
⇡ �En,k,�/2T . (5.21)

In particular, the free energy at T/t = 0.0, which is the ground state energy, is half the sum of
all the negative energy eigenvalues and the constant terms EV and EU .

5.2.3 Phase diagrams

Taking into account the two magnetic states (PM and FM) and the 9 possible superconducting
p-phases in addition to the normal conducting state, there are in total 20 di↵erent phases to
compare in the free energy minimization procedure. In general, a transition from one phase to
another will be found as the intersection of the free energy curves of the two phases having the
lowest free energy of all states on opposite sides of the intersection point. However, there are
exceptions to this method if the free energy of one phase converges to, but do not intersect the
free energy of another phase. This can for instance happen in a transition from a superconduct-
ing phase to the normal conducting state, in which the paring amplitudes become very small.
To find the transition point, the absolute value of superconducting order parameters, that is
|V F |, is compared to the hopping amplitude t, which is the relevant energy scale of the system.
When each of the paring amplitudes satisfies |V F | < 1.0E-4t, we define a transition to the
non-superconducting state. Similarly, the criterion for a FM-PM transition is U |M | < 1.0E-4t.
This means that the magnetic order parameter M multiplied with the magnetic interaction
strength U , is required to be smaller than 1.0E-4t. Using the exchange field to model the FM
state, the transition to PM does not occur.

Because of the high number of possible states, the free energy curves of all the phases will
be compared simultaneously as in figure 5.2. Such plots show where we have critical regions,
like intersections and convergences. To increase the resolution in the determination of phase
transitions, the bisection method has been used with a tolerance in temperature of 1.0E-3t.
For instance, in the zoomed window of figure 5.2, we observe that there is a transition from
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Chapter 5. FM equal-spin p-wave superconductors in zero magnetic field

(px+ ipy)(| ", "i+ | #, #i) (blue) to (px+ ipy)| ", "i (red), as the temperature has increased from
T/t = 0.27 to T/t = 0.29. Thus, the bisection method on that interval can be used to find
the phase transition point. Another possibility could have been to apply the bisection method
throughout the minimization procedure. On the other hand, the problem is that the method
only compares two phases at a time, which makes it cumbersome to use in the comparison of
a large number of phases.

Figure 5.2: Free energy per site in units of t ((F/N)/t) on a limited temperature
interval in the case of h/t = 0.5, U/t = 0, V/t = �4.0 and µ/t = �2.0. All possible
phases are in the FM state because of the exchange field. In this figure, the normal
conducting state is labeled as n.

5.2.4 Density of states

The DOS can be computed knowing the eigenvalues and eigenvectors of the Hamiltonian. In
this thesis, we are interested in the DOS of up- and down-spin electrons as they will be useful in
the discussion of the phase diagrams. The spectral function A(k, �, E), which can be interpreted
as a probability density function for quasiparticles having quantum numbers k, �, E, is related
to the DOS as

D(E) =
1

N

X

k,�

A(k, �, E), (5.22)
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and

A(k, �, E) = �
1

⇡
Im

⇥
G

R(k, �, E)
⇤
. (5.23)

The objective is then to find an expression of the retarded Green function G
R(k, �, E). This

function is defined as
G

R(k, �, t) = �i✓(t)h{ck,�(t), c
†
k,�(0)}i, (5.24)

where ✓(t) is the step function, which leads to zero contribution when t < 0. We now transform
the creation and annihilation operators to the Bogoliubov basis. This gives

h{ck,�(t), c
†
k,�(0)}i =

X

n,n0

�
un,k,�u

⇤
n0,k,�h↵n,k,�(t)↵

†
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+ u
⇤
n,k,�un0,k,�h↵

†
n,k,�(0)↵n0,k,�(t)i

�
.

(5.25)

Because it can be shown that ↵n,k,�(t) = ↵n,k,�(0)e�iEn,k,�t [47], the quantum mechanical ther-
mal average is

h{ck,�(t), c
†
k,�(0)}i =

X

n

|un,k,�|
2
e
�iEn,k,�t. (5.26)

Here we have also used the property in equation (5.14). The next step is to transform the time
coordinate of GR(k, �, t) to energy space by calculating the integral

G
R(k, �, E) =

Z 1

�1
G

R(k, �, t)eiEt
dt. (5.27)

This gives

G
R(k, �, E) =

X

n

|un,k,�|
2

E � En,k,� + i⌘
. (5.28)

Finally, applying the relation Im 1
x+i⌘

= �⇡�(x), leads to

A(k, �, E) =
X

n

|un,k,�|
2
�(E � En,k,�), (5.29)

and

D�(E) =
1

N

X

n,k

|un,k,�|
2
�(E � En,k,�). (5.30)

In the numerical calculation of the DOS, the �-functions are approximated as normalized Gaus-
sian functions with a small standard deviation equal to 0.06t.

5.2.5 Hubbard U-term

Owing to the symmetry of the Hubbard U -term for a fixed U , the free energy of phases in
the spin state | ", "i with magnetization M = |M0| is the same as in the spin state | #, #i

with M = �|M0|. Indeed, if we initialize | ", "i-states with hn"i > hn#i and | #, #i-states with
hn"i < hn#i, the phases will be degenerate in free energy. The point is that even if we start
with hn"i > hn#i, the self-consistent algorithm for down-spin phases converges to solutions
with negative magnetization. Therefore, the case of finite U will be treated using M > 0 as
initial condition, and only the spin configurations | ", "i and | ", "i+ | #, #i are included in
the analysis. This is not a concern when having a non-zero exchange field as the sign of the
magnetization is determined by h.
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5.3 Results and discussion

The phase diagrams are obtained for a 100 ⇥ 100 square lattice, and the relative iteration
tolerance is 1.0E-5 for the average number operators and the paring amplitudes.

Figure 5.3: µ-T phase diagram for h/t = 0.5 and V/t = �4.0. The phases in the
diagram are named with respect to the superconducting properties as FM order is
present for all the states. The interval µ/t = [�4.5, 4.5] corresponds to all electron
densities from minimal to maximal degree of filling.

The computed phase diagram with non-zero exchange field h is shown in figure 5.3. Accord-
ing to this figure, the most stable superconducting phase has the px+ipy momentum symmetry.
At the phase transitions to the normal conducting phase, the free energies of all the supercon-
ducting states become higher. This is not found to be a result of the superconductivity being
completely destroyed. For instance, the self-consistent solution of (px + ipy)(| ", "i+ | #, #i) at
µ/t = 0.0 gives significant superconducting order parameters up to the temperature T/t = 0.77.
As a matter of fact, it is energetically favourable for the system to enter the FM state without
superconductivity when the temperature is higher than a certain level. At which temperatures
this happens, is expressed by the phase diagram. To explain this, we have to consider the e↵ect
of both the magnetic and the superconducting interactions on the stability of the system. In
the case of the exchange field term, the contribution of magnetism to the free energy is de-
termined by the magnetization. The magnitudes of the superconducting order parameters are
decisive for the influence of superconductivity on the free energy. Intuitively, one might think
that having both the magnetic and superconducting order present in the system, will give the
state of lowest free energy. Yet, this is not always the case. For a given chemical potential, the
self-consistent solution gives higher degree of FM order in the normal conducting state than
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in the superconducting state. The point is that with higher thermal energy in the system,
both the magnetization and the superconductivity decay. As the temperature is increased, the
lowering of the free energy because of superconductivity eventually becomes smaller than the
reduction caused be the higher magnetization in the normal conducting state.

Figure 5.4: Up- (D") and down-spin DOS (D#) of (px + ipy)| ", "i (a and c) and
(px + ipy)| #, #i (b and d). Chemical potentials are µ/t = �2.0 (a and b) and
µ/t = 2.0 (c and d), and the temperature is T/t = 0.2.

As predicted in chapter 3, the phase diagram is not symmetric about half-filling at µ/t = 0.0,
as the exchange field term does not obey the particle-hole symmetry. However, if we shift the
sign of the exchange field for a symmetric point about half-filling, the most stable phase will
be the same. In figure 5.3, the result is that the down-spin state has lowest free energy at high
degree of filling and the up-spin state is the most stable at low electron densities. Between these
regions, both spin directions are present in the superconducting state. Figure 5.4 illuminates
the relation between (px + ipy)| ", "i and (px + ipy)| #, #i. First of all, we observe that the
up-spin DOS (D") is located at lower energy values than the down-spin DOS (D#). Thus,
the positive exchange field splits the spin bands, favoring the occupation of up-spin states.
The e↵ect is that a higher number of electrons have spin up than down, causing FM order in
the system. Furthermore, due to the fact that the spin configurations | ", "i and | #, #i do
not couple the up- and down-spin, they only have a superconducting gap in one of the spin
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bands, respectively the up- and down-spin band. Comparing plots a) and b) in figure 5.4 at
µ/t = �2.0, we see that the superconducting gap in D" is larger for (px + ipy)| ", "i than the
gap in D# for (px + ipy)| #, #i. Hence, the free energy of the up-spin phase is lower than the
down-spin phase, so that (px + ipy)| ", "i is the preferred state.

It is now interesting to look at what happens with the DOS of (px + ipy)| ", "i at the
symmetric chemical potential value µ/t = 2.0. As evident from plot c), the up-spin DOS
is the same as the down-spin DOS of (px + ipy)| #, #i at µ/t = �2.0 in plot b), as long
as it is reflected about the chemical potential level at E/t = 0.0. The same is true for D#
of (px + ipy)| ", "i with respect to D" of (px + ipy)| #, #i. Considering plots a) and d), this
symmetry also holds for (px+ipy)| ", "i at µ/t = �2.0 compared to (px+ipy)| #, #i at µ/t = 2.0.
Accordingly, the most stable state has opposite spin configuration at µ/t = 2.0, T/t = 0.2
relative to µ/t = �2.0, T/t = 0.2.

Figure 5.5: D" andD# of (px+ipy)(| ", "i+| #, #i) for chemical potentials µ/t = �2.0
(a) and µ/t = 2.0 (b). The value of the temperature is T/t = 0.0.

The phase diagram indicates that by reducing the temperature from about T/t = 0.2 at
µ/t = ±2.0, (px + ipy)(| ", "i + | #, #i) becomes the state of highest stability. When it comes
to the stability of this phase relative to (px + ipy)| ", "i and (px + ipy)| #, #i, we must again
find out whether it is the magnetism or superconductivity that dominates the free energy. As
evident from figure 5.5, superconducting phases with spin configuration | ", "i + | #, #i have
gaps in both spin bands. Arguably, this is energetically preferable instead of having a gap in
just one of them. Nonetheless, it turns out that the free energy can be reduced even more by
the FM order in the system. This is what happens in figure 5.3. For instance, at µ/t = �2.0,
the magnetization of (px+ipy)| ", "i is greater than (px+ipy)(| ", "i+ | #, #i) for both T/t = 0.0
and T/t = 0.2. As the temperature is increased, the paring amplitudes become progressively
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smaller, and the e↵ect of having a gap also in the down-spin band of (px + ipy)(| ", "i+ | #, #i)
is eventually surpassed by the higher magnetization of (px + ipy)| ", "i.

Figure 5.6: µ-T phase diagram for U/t = 8.5 and V/t = �4.0. For brevity, the
phases are named in a slightly di↵erent manner. Here px + ipy+PM is the phase
(px + ipy)(| ", "i + | #, #i) without FM order. The other superconducting phases
having FM order is in the | ", "i-state.

Figure 5.6 shows a µ-T phase diagram when the Hubbard U -term is included in the Hamil-
tonian. The entire interval of chemical potentials from minimal to maximal filling degree is
µ/t = [�4.0, 12.5] when U/t = 8.5. The choice of limiting the phase diagram up to µ/t = 2.0
is justified by the fact that the non-superconducting phases FM and PM dominate at higher
electron densities. In fact, when both superconductivity and magnetism are combined in terms
of the Hubbard model, the particle-hole symmetry is broken. This is somewhat unexpected
since this symmetry is present when these phenomena are not combined. Examining the im-
pact of the Hubbard U -term, it is clear that it breaks the symmetry when superconductivity is
included. Contrary to the exchange field term, which is only a↵ected by the magnetization, the
magnitude of the Hubbard U -term depends on the number of electrons per lattice site. More
specifically, the free energy of a magnetic phase is lower at ne = 2.0 � x relative to ne = x,
despite the magnetization being the same. This does not break the particle-hole symmetry if
the free energy of di↵erent magnetic phases are compared, but it does when phases also can be
superconducting. This explains why the influence of the magnetic interaction is more prominent
at higher electron densities when the Hubbard U -term is included in the Hamiltonian.

The phase diagram in figure 5.6 suggests that the FM and PM states are present, both in
the form of superconducting phases and the normal conducting state. Of the superconducting
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Figure 5.7: DOS of (px + ipy)(| ", "i+ | #, #i) at T/t = 0.12 (a), and (px + ipy)| ", "i
at T/t = 0.14 (b). The chemical potential is set to µ/t = �2.0, and the other
parameters are the same as in figure 5.6.

phases, the px + ipy-state dominates. This is in accordance with the exchange field phase
diagram. To discuss which orbital p-wave symmetry is most likely to be present at di↵erent
chemical potentials, we consider the k-space gap function introduced in chapter 4. At very low
chemical potentials, the superconducting gaps are negligible for all the momentum symmetries
considered in this thesis. Thus, it is reasonable that the normal conducting state is present
here in the two phase diagrams. As the filling degree is increased, the gap function of px+ ipy is
nearly isotropic, while the other p-phases have nodal lines. Since the gap vanishes along these
lines, the free energy due to superconductivity is lowest for px+ipy. Still, both px and px+py are
present for chemical potentials near µ/t = 0.0 in figure 5.6. Considering the region of px+FM,
the free energy of (px+ ipy)| ", "i is very close to px| ", "i. For instance, at µ/t = 0.0, T/t = 0.4,
the magnetization and the electron density are somewhat higher for px than for px + ipy+FM,
but the di↵erence is large enough to cancel the e↵ect of having a slightly lower superconducting
condensation energy in px + ipy+FM. For higher temperatures, the di↵erence in free energy
relative to (px + py)| ", "i becomes smaller, and it is lowest for px + py+FM in a tiny region
between px+FM and FM. (px + py)| ", "i is also the most stable phase at low temperature,
up to around µ/t = 0.5 for T/t = 0.0. Here the presence of px + py order is caused by a
higher FM order than in px and px + ipy. This makes sense as we are about to enter the region
where the magnetic interaction has the greatest influence on the free energy. In this part of the
phase diagram, the appearance of FM is not a consequence of the superconductivity becoming
insignificant. The reason is that the magnetic Hubbard U -term, which gives highest stability
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for the normal conducting state, is here most decisive for the free energy of the system.
There is also a transition from (px + ipy)(| ", "i + | #, #i) to (px + ipy)| ", "i in figure 5.6.

As opposed to figure 5.3, the (px + ipy)(| ", "i+ | #, #i)-phase has no significant magnetization,
so it is in the PM state. What happens here is evident from figure 5.7, which presents the
DOS of the most stable phase at both sides of the transition curve. In the PM state of
(px + ipy)(| ", "i + | #, #i) (a), the up- and down-spin bands overlap. This means that energy
of the system is not lowered by spin alignment, which is characteristic for the PM state. When
the temperature is increased to around T/t = 0.14, the self-consistent solution converges to
the px + ipy-phase with a superconducting gap in the up-spin band, that is the | ", "i spin
configuration with FM order. Moreover, we observe that the gap in the particular band is
about two times larger. The latter is in accordance with the phases having equal free energy at
the transition. We also note that when magnetism is included in the model with the possibility
of FM order of electrons, the superconducting gap in the up-spin band is more stable than in the
down-spin band. As we have seen, the gap in the down-spin band becomes zero at significantly
lower temperatures than what is the case for the superconductivity in the up-spin band. At
chemical potential µ/t = �2.0, the gap in the up-spin band vanishes first in the transition to
PM.

5.4 Concluding remarks

In this chapter, we have analyzed µ-T phase diagrams for FM equal-spin p-wave superconduc-
tors in the absence of a magnetic field. We have seen that px + ipy is the dominating orbital
symmetry, and that the combined spin-triplet configuration | ", "i + | #, #i as well as | ", "i or
| #, #i can appear as the most stable. It has become clear that the superconducting spin-triplets
| ", "i and | #, #i have a superconducting gap in only one of the spin bands, while the combined
spin configuration has a gap in both. Modeling the FM state by the exchange field, resulted
in a shift of the spins of the most stable state about half-filling, which was predicted from
the particle-hole transformation of the exchange field term (see equation (3.25)). Interestingly,
combining superconductivity and magnetism, the particle-hole symmetry has not been found
when magnetism is modeled by the on-site U -term. Our conclusion is that it is due to the
U -term increasing in magnitude for higher electron densities and for a fixed magnetization.
Examining the phase diagrams, we have found that the FM order is generally greatest in the
normal conducting state. The presence of the superconducting states at su�ciently low tem-
peratures is due to the superconducting gaps being large. For increasing temperatures, the
gaps become smaller and eventually, it is energetically favourable to have a higher FM order
in the non-superconducting state. In this respect, we can understand the phase diagrams in
terms of a competition between having a condensate of Cooper pairs in the superconducting
state and a higher FM order in the normal conducting state.
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Chapter 6

Vortex phase of equal-spin p-wave
superconductors with self-consistent
vector potential

The objective of this chapter is to give a detailed explanation about how we have tried to obtain
self-consistency in the magnetic vector potential for an equal-spin p-wave superconductor. For
simplicity, an external magnetic field will be applied to check whether it is possible to obtain
a convergent solution, and the magnetic interaction will be set to zero in the testing. In this
respect, the spontaneity of the vortex phase arising from the magnetization and the supercurrent
in the absence of an external magnetic field, will not be explored in this chapter. We also present
the theoretical foundation of the Peierls phase, which is utilized to include a magnetic field in the
Hamiltonian. Then the BdG equations in real space are given in addition to the self-consistent
equations of the magnetic and superconducting order parameters. We will also show how the
supercurrent is calculated in the tight-binding treatment, and how the Maxwell equation can be
solved numerically in the finite-di↵erence scheme. When it comes to the formation of vortices,
a way to detect them by their complex phase is outlined. Additionally, we will have a look at
how di↵erent gauges can result in distinct vortex configurations, pointing to the importance
of initial conditions chosen for the order parameter. The chapter ends by some concluding
remarks.

6.1 Peierls phase

The derivation of the Peierls phase given here, follows the main steps in the book of Zhu [70],
which refers to the original article of Luttinger (1951) [71]. Considering electrons a↵ected by a
periodic potential u(r) due to the positive ion lattice, and a magnetic vector potential A, the
first quantized Hamiltonian in the grand canonical ensemble is

Ĥ =

�
p̂+ eA(r)

�2

2m
+ u(r)� µ, (6.1)

where e is the charge of an electron. The vector potential is related to the magnetic field by

B = r⇥A. (6.2)
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To go to second quantization, we again use a linear combination of atomic orbitals (LCAO). In
addition, complex phases ⇤i are added to the atomic orbitals, that is

|ii = �(r � ri) ! �(r � ri)e
�ie⇤i , (6.3)

where

⇤i =

Z r

ri

A(l)dl =

Z 1

0

(r � ri) ·A
�
ri + �(r � ri)

�
d�. (6.4)

In equation (6.4), the path integral is along the straight line connecting the points ri and r,
parameterized as l = ri + �(r � ri). The next step in second quantization is to compute
Hi,j = hi|Ĥ|ji. Acting with p̂ in the first term of equation (6.1) on an atomic orbital (equation
(6.3)), gives r⇤i from the exponential. It can be shown that with ⇤i given by equation (6.4),
we have

r⇤i = A(r) +

Z 1

0

�(r � ri)⇥B
�
ri + �(r � ri)

�
d�. (6.5)

Moreover, acting with the first term of Ĥ on an atomic orbital, leads to

�
p̂+ eA(r)

�2
�(r � ri)e

�ie⇤i = e
�ie⇤i

⇥
p̂� er⇤i + eA(r)

⇤2

= e
�ie⇤i

⇥
p̂� e

Z 1

0

�(r � ri)⇥B
�
ri + �(r � ri)

�
d�]2.

(6.6)

Hence, the second-quantized Hamiltonian is

Ĥ =
X

i,j,�

Hi,j ĉ
†
i,�
ĉj,�, (6.7)

where

Hi,j =

Z
�
⇤(r � ri)e

ie(⇤i�⇤j)


1

2m

⇣
p̂� e

Z 1

0

�(r � ri)⇥B
�
ri + �(r � ri)

�
d�

⌘2

+ u(r)� µ

�
�(r � rj)dr.

(6.8)

Assuming that the vector potential does not vary significantly, we can neglect the �-integral as
r ⇡ ri, since the orbitals are localized. Thus, Hi,j = �ti,je

i�i,j �µ, and the usual hopping term
has now acquired a complex phase �i,j, the so-called Peierls phase, which is given by

�i,j = �
e

~

Z ri

rj

A(r) · dr

= �
⇡

�0

Z ri

rj

A(r) · dr.
(6.9)

Here ~, which was set equal to 1 in the derivation, is included to write the prefactor in terms
of the superconducting flux quanta �0 = h/2e.
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6.2 BdG equations and self-consistent order parameters

Adding the Peierls phase �i,j to the hopping term in the Hamiltonian of equation (5.1), a
magnetic field can be included in the system. Analogous to the previous chapter, the mean-
field approximation is given by

Ĥ = �t

X

hi,ji,�

e
i�i,j ĉ

†
i,�
ĉj,� � µ

X

i,�

n̂i,� +
1

2
V

X

hi,ji,�

⇥
F

��

i,j
ĉ
†
j,�
ĉ
†
i,�

+ h.c.
⇤

� h

X

i

(n̂i," � n̂i,#) + U

X

i,�

hni,�̄in̂i,�,

(6.10)

where �i,j is defined by equation (6.9), in which ri and rj are the position vectors for the lattice
sites i and j, respectively. The inclusion of the Peierls phase breaks the translational symmetry
of the system in the x- and y-direction as the vector potential A(r) is position dependent. In
addition, the average number operator is now site dependent as the system is inhomogeneous.
Therefore, we will not consider a k-space transformation of the Hamiltonian. Defining the
spinor

D̂i,� =

✓
ĉi,�

ĉ
†
i,�

◆
, (6.11)

equation (6.10) can be written on matrix form as

Ĥ =
1

2

X

hi,ji,�

D̂
†
i,�
Hi,j,�D̂j,�, (6.12)

where

Hi,j,� =

✓
�te

i�i,j � (µ+ �h� Uhn�̄i)�i,j �V F
�,�

i,j

V F
�,�⇤
i,j

te
�i�i,j + (µ+ �h� Uhn�̄i)�i,j

◆
. (6.13)

Because of the site dependence, it is worth to emphasize that the site index i has two compo-
nents, that is i = (ix, iy). As used so far in this thesis, i+ x̂ means the nearest-neighbour of i in
the positive x-direction. In the corresponding eigenvalue problem, the index j is over all the N
sites of the lattice when i is fixed. Since Hi,j,� is a 2⇥2 sub-matrix, we then have to diagonalize
a 2N ⇥ 2N matrix for each of the two spin directions. The Bogoliubov transformations used
in this respect are defined by

ĉi,� =
X

n

un,i,�↵̂n,� (6.14)

ĉ
†
i,�

=
X

n

vn,i,�↵̂n,�, (6.15)

where n = 1, 2, ..., 2N . For each spin, the solution of the eigenvalue problem consists of 2N
eigenvalues En,� and 2N eigenvectors on the form

An,� =

0

BBB@

an,1,�

an,2,�
...

an,N,�

1

CCCA
, an,i,� =

✓
un,i,�

vn,i,�

◆
. (6.16)
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According to the operator basis defined by equations (6.14) and (6.15), the paring ampli-
tudes are given by

F
x(y)±
i,�,�

=
X

n

un,i,�v
⇤
n,i±x̂(ŷ),�

�
1� f(En,�)

�
. (6.17)

Due to the site dependence of the paring amplitudes, the simplification shown in equation (4.15)
is not valid any longer. Hence, the general equal-spin p-wave superconducting correlations on
the form

F
�,�

i,px(y)
=

F
x(y)+
i,�,�

� F
x(y)�
i,�,�

2
, (6.18)

will be considered. The number densities are determined self-consistently from the expression

hni,�i =
X

n

|un,i,�|
2
f(En,�). (6.19)

Furthermore, the average magnetization of the system is obtained by summing over the local
magnetization Mi at each site and dividing by the total number of sites, that is

M =
1

N

X

i

Mi =
1

N

X

i

�
hni,"i � hni,#i

�
. (6.20)

In the rest of this chapter, the magnetic interaction strengths U and h are set to zero, and
there will be no magnetization in the system. The magnetic field due to ferromagnetic order
will be considered in the next chapter, where the global finite-size system magnetization M in
equation (6.20) is used.

6.3 Peierls phase on a square lattice

In order to compute the Peierls phase of the hopping term, we consider the lattice drawn in
figure 6.1, and discussed by Aidelsburger [72]. On a square lattice, it is convenient to distinguish
between the phases

�
x(y)
mx,my

= �
⇡

�0

Z
mx(y)+1

mx(y)

A(r) · dr = �
⇡

�0

Z
mx(y)+1

mx(y)

Ax(y)(r)dx(y). (6.21)

Here (mx,my) denotes the indices of a given site, and �x

mx,my
and �y

mx,my
are the Peierls phases

picked up by an electron tunneling to sites (mx + 1,my) and (mx,my + 1), respectively. With
respect to equation (6.9), we have i = (mx +1,my) and j = (mx,my) in the x-case of equation
(6.21), and i = (mx,my + 1) and j = (mx,my) in the y-case. In addition, the total phase
acquired by an electron in the closed counterclockwise path in figure 6.1, can be related to the
magnetic flux �mx,my through unit cell (mx,my) as

�
x

mx,my
+ �

y

mx+1,my
� �

x

mx,my+1 � �
y

mx,my
= �

⇡

�0

I
A(r) · dr = �

⇡

�0

ZZ
B · dS

= �⇡
�mx,my

�0
.

(6.22)
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Figure 6.1: Peierls phase of electrons on a square lattice. In the presence of a
magnetic field, �x

mx,my
is the phase acquired by an electron tunneling from site

(mx,my) to (mx+1,my), that is an electron creation at (mx+1,my) and annihilation
at (mx,my). The blue arrows indicate the direction of the path integral of the
respective Peierls phase. An electron tunneling in the opposite direction, gets a
phase with opposite sign. �mx,my is the magnetic flux through unit cell (mx,my),
and it is related to the total phase of an electron moving along the boundaries of
the cell in the direction of the red arrow. The figure is analogous to figure in the
reference [72].

In the case of a homogeneous magnetic field, the flux through each of the unit cells will be the
same, that is �mx,my = �. Denoting the total magnetic flux through the system as �tot and
using open boundary conditions, the flux through a cell is

� =
�tot

(Lx � 1)(Ly � 1)
, (6.23)

where Lx and Ly are the number of lattice sites in the x- and y-direction. Having open boundary
conditions, there are in total (Lx � 1)(Ly � 1) unit cells.

6.4 The vortex phase

In the theory of superconductors, it is usual to distinguish between two general classes of
superconductors, that is superconductors of type I and type II. The classification is based on
how the superconductors behave in an increasing external magnetic field [60, 73]. According
to the Meissner e↵ect, the field is expelled from the interior of a superconductor as long as the
field is not too strong. If the field exceeds a critical value for the particular superconductor, the
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induced supercurrent, which sets up a magnetic field counteracting the external field, can not
increase further without destroying the superconducting state. For a type I superconductor,
there will be a phase transition to the normal conducting phase. On the other hand, a type-
II superconductor enters the vortex phase with partial penetration of magnetic field lines,
corresponding to one superconducting flux quanta �0 through each vortex core. Eventually,
with increasing field strength, the density of vortices will become so high that the vortex phase
breaks down, transitioning to the normal state.

In order to make a more quantitative distinction between superconductors of type I and II,
two characteristic length scales can be compared, the superconducting coherence length ⇠ and
the penetration depth �. The coherence length is a parameter of the Ginzburg-Landau (GL)
theory of superconductivity, and it gives a measure for the length over which the supercon-
ducting order parameter varies [74]. The penetration depth determines how fast the magnetic
field decays moving into the superconducting region, and it is included in the London equation
[73]. In fact, the ratio  = �/⇠, the so-called GL parameter, determines if the superconductor
is of type I or II. The critical value of  in the GL theory is 1/

p
2, and it is found to be higher

for type II superconductors than for superconductors of type I [75]. In the conventional BCS
theory, the coherence length is given as [76]

⇠BCS =
vF

⇡|�|
. (6.24)

In this equation, ~ in the numerator is set to 1, and vF is the Fermi velocity. Accordingly,
the coherence length decreases with increasing magnitude of the electron-electron attraction
strength V . Defining the width of the vortex as 2⇠BCS, broader vortices are expected for
smaller |V |.

6.5 Self-consistent vector potential

The magnetic field produced by the supercurrent can be accounted for by the integration of
the Maxwell equation in the self-consistent procedure. In this chapter, the external magnetic
field Bext is uniform, pointing in the positive z-direction. With Bext = Bextẑ, a possible gauge
is

Aext(r) = Bext(�y, 0), (6.25)

since A and B are related by equation (6.2). If we only consider the external field, the x- and
y-component of the Peierls phase are

�
x

mx,my
=

⇡

�0
Bextmy (6.26)

�
y

mx,my
= 0. (6.27)

Generally, the vector potential varies among sites in the lattice, and the Peierls phase in the x-
and y-direction will therefore be computed as

�
x

mx,my
= �

⇡

2�0

⇥
Ax(mx,my) + Ax(mx + 1,my)

⇤
(6.28)

�
y

mx,my
= �

⇡

2�0

⇥
Ay(mx,my) + Ay(mx,my + 1)

⇤
. (6.29)

page 46



Chapter 6. Vortex phase of equal-spin p-wave superconductors with
self-consistent vector potential

The magnetic field is related to the supercurrent density by the Maxwell equation known as
the Ampere’s law. On di↵erential form, it is given by

r⇥B = J , (6.30)

where J is here the supercurrent density, and the permeability µ0 is 1 in the chosen system of
units. The gauge freedom of A can now be used to set r ·A = 0, which is referred to as the
Coulomb gauge. In this gauge, equation (6.30) can in terms of A be written as

r
2
A = �J , (6.31)

which is referred to as the Poisson equation of A.

6.5.1 Finite-di↵erence method (FDM)

Equation (6.31) will be solved numerically with the finite-di↵erence method (FDM). In this
method, the Laplace operator r2 = @

2
x
+ @

2
y
can be discretized by second-order central di↵er-

ences, defined as [77]

@
2
x
f(x, y) =

f(x+�x, y)� 2f(x, y) + f(x��x, y)

�x2
+O(�x

2) (6.32)

@
2
y
f(x, y) =

f(x, y +�y)� 2f(x, y) + f(x, y ��y)

�y2
+O(�y

2), (6.33)

where �x and �y denote the lattice spacings, which are set to 1 in our model. If the Laplace
operator act on the x-component of the vector potential, the finite-di↵erence representation is

r
2
Ax(mx,my) ⇡Ax(mx + 1,my) + Ax(mx � 1,my) + Ax(mx,my + 1)

+Ax(mx,my � 1)� 4Ax(mx,my).
(6.34)

The Poisson equation of Ax is therefore

Jx(mx,my) = 4Ax(mx,my)� Ax(mx + 1,my)� Ax(mx � 1,my)

�Ax(mx,my + 1)� Ax(mx,my � 1).
(6.35)

With the x-component of the supercurrent known, Ax(mx,my) can be determined by solving
the coupled set of equations, that is the matrix equation Wx = b. The matrix W is given by

W =

0

BBBBB@

D �1 0 · · · 0
�1 D �1 · · · 0
...

. . . . . . . . .
...

0 · · · �1 D �1
0 · · · 0 �1 D

1

CCCCCA
, (6.36)

in which 1 is the identity matrix, and the matrix D is

D =

0

BBBBB@

4 �1 0 · · · 0
�1 4 �1 · · · 0
...

. . . . . . . . .
...

0 · · · �1 4 �1
0 · · · 0 �1 4

1

CCCCCA
. (6.37)
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Fixing the components of the vector potential A on the boundary of the lattice, W is a matrix
of size (Lx� 2)(Ly � 2)⇥ (Lx� 2)(Ly � 2) when there are N = LxLy lattice sites in total. Here
D and 1 have (Lx � 2)⇥ (Lx � 2) entries. The column vectors x and b are given by

x =

0

BBBBBBB@

Ax(2, 2)
Ax(3, 2)

...
Ax(Lx � 1, 2)

...
Ax(Lx � 1, Ly � 1)

1

CCCCCCCA

, (6.38)

and

b =

0

BBBBBBB@

Jx(2, 2) + Ax(2, 1) + Ax(1, 2)
Jx(3, 2) + Ax(3, 1)

...
Jx(Lx � 1, 2) + Ax(Lx � 1, 1) + Ax(Lx, 2)

...
Jx(Lx � 1, Ly � 1) + Ax(Lx � 1, Ly) + Ax(Lx, Ly � 1)

1

CCCCCCCA

. (6.39)

Similarly, the Poisson equation of Ay can be solved.

6.5.2 Supercurrents in the tight-binding model

In the self-consistent algorithm of the vector potential, there is a need for an expression relating
the supercurrent to the solution of the eigenvalue problem. A way to express the supercurrent
in terms of eigenvalues and eigenvectors will be explained in the following [78].

The continuity equation at site i is

@⇢̂i

@t
= �r · Ĵi, (6.40)

where ⇢̂i is the positive charge density operator, and Ĵi is the supercurrent density operator at
site i. The positive charge density is considered because of the electric current direction being
the direction of movement for positive charges. Integrating over the 2D volume ⌦ centered at
site i and with faces at i± x̂/2, i± ŷ/2, we obtain

@Q̂i

@t
= �Îi. (6.41)

This follows from the Gauss divergence theorem where
Z

⌦

r · Ĵid⌦ =

Z

@⌦

Ĵi · dS = Îi. (6.42)

Îi is the operator for the net supercurrent at site i out of ⌦, and Qi = en̂i. The quantum
mechanical time derivative of n̂i is

@n̂i

@t
= i[Ĥ, n̂i]

= it

X

j,�

�
e
i�i,j ĉ

†
i,�
ĉj,� � h.c.

�
.

(6.43)
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The derivation can be found in appendix A.2. Here Ĥ is not the mean-field approximated
Hamiltonian as it should conserve the particle number. Taking the average, the time derivative
is (see appendix A.3)

⌧
@ni

@t

�
= it

X

n,j,�

�
e
i�i,ju

⇤
n,i,�

un,j,� � h.c.
�
f(En,�), (6.44)

and equation (6.41) gives

hIii = �e

⌧
@n̂i

@t

�
. (6.45)

As the Maxwell equation is given in terms of the supercurrent density, we define the supercurrent
densities in the x- and y-direction at site i as

hJ
x

i
i = hJ

x+
i

i � hJ
x�
i

i (6.46)

hJ
y

i
i = hJ

y+
i

i � hJ
y�
i

i. (6.47)

In equation (6.46), hJx+
i

i is the net current density out of the face at i+ x̂/2, and hJ
x�
i

i is out
of the face at i� x̂/2. Since the lattice spacing is equal to unity, there is no di↵erence between
the supercurrent and the supercurrent density in this model. Therefore, we have

hJ
x±
i

i = �iet

X

n,�

�
e
i�i,i±x̂u

⇤
n,i,�

un,i±x̂,� � h.c.
�
f(En,�), (6.48)

and analogously for the y-direction.

6.5.3 Self-consistent procedure

The self-consistent algorithm of the vector potential starts by the initialization of A = (Ax, Ay)
on each site of the lattice. In the testing, we have generally used the initial condition of having
no supercurrent or magnetization in the system, that is A = Aext. In each iteration, A is
updated. The computed vector potential from the preceding iteration enters the Hamiltonian
through the Peierls phase. Diagonalization of the Hamiltonian up- and down-spin matrices gives
us new eigenvalues and eigenvectors. Using the method described in the previous subsection,
the tight-binding supercurrent is calculated from the eigenvalues, eigenvectors and the Peierls
phase. The next step is to solve the Maxwell equation with respect to A by the finite-di↵erence
method. In this way, the vector potential and new values of the Peierls phase are determined
on all non-boundary sites. This procedure is repeated until the relative di↵erence in A on all
sites of lattice between an iteration and the next, is below a tolerance.

6.6 Gauge invariance of the theory

In this section the gauge invariance of the theory will be discussed. Because of B being the
physical observable quantity and not A, we are free to choose the vector potential as long as
equation (6.2) is fulfilled. According to this equation, the non-uniqness of A can be expressed
as

A ! A+r�, (6.49)
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since r⇥r� = 0, irrespective of what � is. Under a gauge transformation, the creation and
annihilation operators are also transformed. The transformation is given by [79]

ĉi,� ! e
�ie�(ri)ĉi,�. (6.50)

We can now check whether the Hamiltonian in equation (6.10) is gauge-invariant. Since the
Peierls phase transforms as

�i,j ! �
⇡

�0

Z ri

rj

⇥
A(r) +r�(r)

⇤
· dr (6.51)

= �i,j +
⇡

�0

⇥
�(rj)� �(ri)

⇤
, (6.52)

and ⇡/�0 = e, the hopping term is gauge-invariant. The extra term in the Peierls phase is
canceled by the exponential factors acquired by the creation and annihilation operators. Moving
on to the superconducting interaction term, the phase of the product of two creation or two
annihilation operators is canceled by the respective paring amplitudes. Therefore, also this
term of the Hamiltonian is gauge-invariant. Finally, it is trivial to see that the on-site U- and
µ-term are invariant under a gauge transformation. The supercurrent is an observable quantity.
Thus, it should also be independent of what gauge is used. Regarding equations (6.14) and
(6.15), the coherence factors transform as

un,i,� = e
�ie�(ri)un,i,� (6.53)

vn,i,� = e
ie�(ri)vn,i,�. (6.54)

Combined with the transformation property of the Peierls phase in equation (6.51), hJx±
i

i in
equation (6.48) respects the gauge invariance. This is also the case for hJy±

i
i, so that hJx

i
i and

hJ
y

i
i obey this symmetry.
In total, the theory is therefore gauge-invariant. However, depending on the choice of gauge,

the self-consistent solution can converge to di↵erent metastable states when superconductiv-
ity is included in the model. The gauge invariance of the theory is respected if we for two
di↵erent gauges, choose the initial conditions of the superconducting order parameters in an
appropriate manner. This observation has also been pointed out by Uranga [80]. To give an
explanation of how this can be done, let us consider a opposite-spin s-wave superconductor
without self-consistent vector potential for simplicity. The explanation for equal-spin p-wave
will be analogous. The superconducting interaction term for conventional s-wave is

Ĥ
s

V
=
X

i

[�iĉ
†
i,#ĉ

†
i," + h.c.], (6.55)

where
�i = Vshci,"ci,#i. (6.56)

Figures 6.2 and 6.3 show the absolute value of the order parameter. The former has gauge
A = B(�y, 0) and the latter is forA = 1/2B(�y, x). Additionally, the respective supercurrents
are plotted in figure 6.4. The figures clearly give distinct vortex configurations in these gauges.
In fact, the number of isolated vortices are 5 and 4, respectively. The explanation for this is a
bit subtle. In accordance with equation (6.49), two di↵erent gauges A1 and A2 are related by

A1 = A2 +r�, (6.57)
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Figure 6.2: Surface plot (a) and colormap (b) of |�i| for the conventional s-wave
superconductor for the gauge A = B(�y, 0). Input parameters are Vs/t = �3.0,
T/t = 0.25, µ/t = 0.0 and �tot = 6�0.

Figure 6.3: Similar plots as in figure 6.2, but for the gauge A = 1/2B(�y, x).

for a suitable choice of �. The point is now that unless the order parameters in the two cases
are related by

�1
i
= e

�i2e�(ri)�2
i
, (6.58)

the self-consistent solution will be di↵erent. For instance, if we consider gauges A1 = B(�y, 0)
and A2 = 1/2B(�y, x), �(r) can be set to

�(r) =
1

2
Bxy. (6.59)
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Figure 6.4: The associated supercurrents of figure 6.2 (a) and figure 6.3 (b). The
vectors are in units of t�0.

The self-consistent solution respects the gauge invariance of the theory if the initial conditions
of �1

i
and �2

i
are in accordance with equation (6.58). For equal-spin p-wave superconductivity,

this is the case when the start values of the nearest-neighbour paring amplitudes are related by

�
F

�,�

i,j

�1
= e

�ie[�(ri)+�(rj)]
�
F

�,�

i,j

�2
, (6.60)

in the two gauges of equation (6.57). We also note that in the presence of a magnetic field, it is
common to define the superconducting correlations in a gauge-invariant way. This means that
the nearest-neighbour paring amplitudes should be defined as [81]

F
�,�

i,j
= e

i�i,jhci,�cj,�i. (6.61)

The fact that di↵erent initial conditions of the superconducting order parameters, or equiv-
alently di↵erent gauges for a fixed set of initial conditions, can result in distinct metastable
vortex configurations, should be taken into account in the comparison of free energies. For
instance, using the same gauge and the physical parameters as in figure 6.2, only varying the
start values of �i, another convergent solution consists of 6 vortices. Given that the free en-
ergy of a superconducting phase depends on the magnitude of the order parameter, distinct
vortex configurations do not have the same free energy in general. In principle, we should
therefore apply a vast number of gauges to compare the free energy of di↵erent metastable
states corresponding to a particular phase and the same physical parameters.

6.7 Phase of the superconducting order parameter

The figures presented in the last section, indicate the presence of vortices. The plots of |�i|

show there are regions where the order parameter becomes considerable smaller in magnitude
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than in the superconducting bulk. If the system size (Lx, Ly) is increased further, the minima
become even smaller. In fact, superconducting electron-electron correlations are expected to
vanish su�ciently close to the vortex centers. In figure 6.4, we observe that the supercurrent is
circulating in the proximity of the vortex cores, and it becomes more prominent as we move to
the centers. This means that the induced magnetic field, which counteract the external field,
are greatest where the order parameter drops to zero. The direction is clockwise, so that the
magnetic field caused by the supercurrent is opposite to the external field, which points in the
positive z-direction.

Figure 6.5: Colormaps of ↵i for the two gauge choices discussed in the previous
section. The connectivity of the phases at ±⇡ is illustrated by the colorbar where
these phases have the same color.

Despite these characteristics of vortices, we will look at the behaviour of the phase of
the order parameter to decide if the vortex state really is present. In this section, the order
parameter of the conventional s-wave superconductor will be considered for brevity. Based on
the fact that the order parameter is a complex number, it can be written as

�i = |�i|e
i↵i , (6.62)

where ↵i is its phase at site i. A discussion about how a vortex can be identified by the
calculation of the phase change along the path enclosing the vortex, is given by Taylor [82]. In
general, the phase change around a vortex is found to be �↵ = 2⇡m, m 2 Z. However, if the
phase change between all points along the path

�↵1,2 = ↵2 � ↵1, (6.63)

is required to lie in the principal interval �⇡ < �↵1,2  ⇡, the total change about one vortex
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will be ±2⇡. The rule to follow in order to achieve this, is

�↵1,2 < �⇡ !�↵1,2 + 2⇡

�↵1,2 > ⇡ !�↵1,2 � 2⇡.
(6.64)

This means that 2⇡ is added whenever the phase change between two points is less than
�⇡, and 2⇡ is subtracted if it is greater than ⇡. Here the fact that a phase change �↵ is
equivalent to �↵ ± 2⇡, is exploited. To ensure that all occurring vortices are detected, the
closed path will be along the system boundary. Additionally, the variations between all the
nearest-neighbour sites on this path are taken into account, and they are added to the total,
following the rule in equation (6.64). In figure 6.5, the phases of the cases treated previously,
are shown. Computation of the total phase change gives 5 · 2⇡ in a) and 4 · 2⇡ in b), meaning
that there are respectively 5 and 4 vortices present, as expected regarding the plots of |�i| and
the supercurrents. In the following, we will refer to the integer multiple of 2⇡ as the winding
number.

6.8 Di�culties in obtaining a self-consistent vector po-
tential

Following the numerical procedure described so far in this chapter, we have not been successful
in determining the vector potential self-consistently. First of all, we have tried to use a set of
Dirichlet boundary conditions where Ax and Ay are fixed at boundary of the lattice, as depicted
in figure 6.6. At each of the faces, A has been set equal to the vector potential only due to

Figure 6.6: A possible choice of boundary conditions for the vector potential in the
gauge Aext = Bext(�y, 0) for the external field. The red line marks the boundary of
the system.

the external field, that is A = Aext. Running the self-consistent algorithm described in section
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6.5.3, there are no signs of convergence forA. The vector potential takes on a new configuration
in each iteration, in which both the magnitude and direction of A vary. This behaviour does
not only occur when superconductivity is included in the system. Testing shows that the
convergence is not improved significantly for the normal conducting state. Decomposing the
di↵erent parts of the algorithm and testing each part individually, no sources of error are
found. Comparison with analytical solutions of the Poisson equation indicate that the method
of finite-di↵erences is implemented properly. As well, the expression for the supercurrent should
be correct.

This has forced us to look at alternative strategies for the implementation of self-consistent
A. These will be outlined in the following.

6.8.1 Alternative system configurations

A concern for the determination of a self-consistent vector potential is the uniqueness of A. It
could be that the changes in A from an iteration to the next appear as a consequence of the
vector potential not being determined in a unique way. However, when A is fixed at each of
the boundaries, this should not be the problem.

Figure 6.7: Alternative strategy of boundary conditions for self-consistency in A.
The boundary of the system (red line) is separated from the superconductor by a
region of vacuum.

On the other hand, plotting the vector potential after a number of iterations, A tends
to be too large out to the edges of the system, relative to its boundary values. The reason
seems to be that the supercurrent is significant here. When the nearest-neighbour change
in the vector potential between a non-boundary site and a boundary site is large, it could
be that the self-consistent solution becomes unstable. If the supercurrent is too large in the
proximity of the boundary, the influence of A being fixed at the boundary, is reduced. This is
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a problem as it is the boundary values of the vector potential, and not the supercurrent that
is known from the outset. To cope with this, we should find a way to enforce the supercurrent
to decrease in magnitude as we move to the boundary. A first attempt is to add a region of
vacuum from the superconductor and out to the boundary of the system. This is illustrated
in figure 6.7. Here we keep the condition of A = Aext at the boundary of the system. At the
interface between the superconductor and vacuum, we require that there is no supercurrent
leaking into vacuum, that is having both the normal component of the supercurrent density
(J · n̂) and the vector potential (A · n̂) equal to zero. In the tight-binding formalism used
here, the vacuum will be modeled by having no hopping between nearest-neighbours. This
means that the hopping amplitude is set to zero in this region of the system. To be more

Figure 6.8: Vector potentials for the cases illustrated in figure 6.6 and 6.7. The
number of iterations of the self-consistent algorithm is 100 in both plots. Input
parameters are V/t = �2.5, T/t = 0.0, µ/t = 0.0 and �tot = 6�0. A is plotted in
units of 3�0 in a) and 2�0 in b), whereas the prefactors come from the scaling.

specific, setting the system size to Lx = 30, Ly = 30, there will be 5 vacuum sites on each side
of the superconductor, including the boundary of the system. The vacuum-superconductor
interfaces are then located between the vacuum and superconducting sites. The condition J · n̂

is implemented by having ti,j = 0 when one of the sites is located in the vacuum and the other
in the superconductor. Furthermore, the superconducting interaction strength is only non-zero
inside the superconductor. The restriction of having only a non-vanishing parallel component
of the vector potential at the vacuum-superconductor interfaces, is ensured by manipulating
the finite-di↵erence matrix in the Poisson equation. All matrix elements corresponding to the
normal component of A at these interfaces are set to zero. Since the solution of Maxwell
equation gives new values of A at all non-boundary sites, the normal component of the vector
potential at sites of the interface is also manually set to zero.

Using this method, we do not find any significant improvements in the convergence of A.
Yet, the behaviour of the vector potential is somewhat improved in the sense that there are
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smaller variations in A from non-boundary to boundary sites. This is exemplified by figure
6.8, which shows the vector potentials obtained after the same number of iterations using the
two solution strategies discussed so far. In both cases, the system is initialized with non-zero
paring amplitudes of the (px + ipy)(| ", "i+ | #, #i)-phase.

Figure 6.9: The corresponding supercurrents of figure 6.8. The vectors are plotted
in units of 1.5t�0 in a) and t�0 in b).

Figure 6.10: Vector potential (a) and supercurrent (b) when the hopping amplitude
is successively reduced as elaborated in the main text. The parameters of the model
are the same as before. The units are 3�0 for A and 1.5t�0 for the supercurrent.

A possible drawback of this solution strategy is that it still can be an abrupt drop in
supercurrent from sites in the superconductor to sites in the vacuum. A better method can be
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to reduce the conductivity in steps in the proximity of the edges of the system. In the search
for a stable solution, the vacuum is replaced by a region of successively decreased magnitude of
the supercurrent. On the basis of the supercurrent being proportional to t, we stepwise adjust
the hopping amplitude. Numbering sites on the system boundary as 1, sites just inside these
as 2, and continuing this counting up to 6, ti,j between 6 and 5, 5 and 4, 4 and 3, 3 and 2,
and 2 and 1, is multiplied by factors of 0.8, 0.6, 0.4, 0.2 and 0.0, respectively. The probability
of electron tunneling between sites of the same type will also be a↵ected. The factor is 0.0 for
tunneling 1 $ 1, 0.2 for 2 $ 2, 0.4 for 3 $ 3, 0.6 for 4 $ 4, and 0.8 for 5 $ 5. To maintain the
same relative magnitude of superconducting interaction strength and the hopping amplitude,
Vi,j is also made smaller at these sites by multiplication of the same factors as ti,j.

Testing with a system size of Lx = 30, Ly = 30 as before, the self-consistent algorithm
gives the vector potential and the supercurrent in figure 6.10. Of the cases discussed so far,
the obtained vector potential is to some extent smoother than in figure 6.8. The changes
of the vector potential are more gradual taking all lattice sites into consideration. Still, the
self-consistent solution of A does not converge.

6.8.2 General form of the Maxwell equation

Another possibility is to solve the Maxwell equation directly, that is without the gauge condition
r ·A = 0. Equation (6.31) then takes the form

r
2
A�r(r ·A) = �J . (6.65)

The second term in A, which is set to zero in the Coulomb gauge, couples Ax and Ay. Written
out on component form, we have

@
2
y
Ax � @x@yAy = �Jx (6.66)

@
2
x
Ay � @x@yAx = �Jy. (6.67)

Using finite-di↵erences, a representation of the mixed partial derivative in equations (6.66) and
(6.67) is [77]

@x@yf(x, y) =
f(x+�x, y +�y) + f(x��x, y ��y)� f(x+�x, y ��y)

4�x�y

�f(x��x, y +�y)
+O(�x,�y).

(6.68)

Defining the column vectors

x =

0

BBBBB@

Ax(2, 2)
Ay(2, 2)

...
Ax(Lx � 1, Ly � 1)
Ay(Lx � 1, Ly � 1)

1

CCCCCA
, (6.69)

and

b =

0

BBBBB@

Jx(2, 2) +Ax(2, 1)�
1
4

⇥
Ay(1, 1)�Ay(1, 3)�Ay(3, 1)

⇤

Jy(2, 2) +Ay(2, 1)�
1
4

⇥
Ax(1, 1)�Ax(1, 3)�Ax(3, 1)

⇤

.

.

.

Jx(Lx � 1, Ly � 1) +Ax(Lx � 1, Ly)�
1
4

⇥
Ay(Lx, Ly)�Ay(Lx � 2, Ly)�Ay(Lx, Ly � 2)

⇤

Jy(Lx � 1, Ly � 1) +Ay(Lx � 1, Ly)�
1
4

⇥
Ax(Lx, Ly)�Ax(Lx � 2, Ly)�Ax(Lx, Ly � 2)

⇤

1

CCCCCA
, (6.70)
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the matrix of the linear system of equations Wx = b is

W =

0

BBBBBBBBBB@

2 0 0 0 �1 0 0 1
4

0 2 0 �1 0 0 1
4 0

0 0 2 0 0 �
1
4 �1 0

0 �1 0 2 �
1
4 0 0 0

�1 0 0 �
1
4 2 0 0 0

0 0 �
1
4 0 0 2 0 �1

0 1
4 �1 0 0 0 2 0

1
4 0 0 0 0 �1 0 2

1

CCCCCCCCCCA

, (6.71)

in the special case of Lx = 4, Ly = 4. Numerically, for larger systems the entries of the matrix

Figure 6.11: A in the three system configurations for the general form of the Maxwell
equation. The parameters of the model are the same as in the previous subsection,
and the plots are obtained after 100 iterations. The naming of the plots corresponds
to the order of which these concepts were introduced. All plots are heavily scaled,
that is units of 200�0 for a), 150�0 for b), and 200�0 for c).

are determined by exploiting the 8-point stencil structure of this system of equations. The
matrix size is 2(Lx � 2)(Ly � 2) ⇥ 2(Lx � 2)(Ly � 2), and Ax and Ay are fixed at the system
boundary as we are considering Dirichlet boundary conditions.

Figure 6.8 demonstrates the e↵ect of solving the general form of the Maxwell equation.
According to these plots, the divergence of the vector potential, that is r ·A, now completely
dominates. Anyhow, this part of A can be gauged away, so it is not of physical importance.
What matters is that solving equation (6.65) instead of equation (6.31), has not led to any
improvements in the convergence of the vector potential.

6.9 Concluding remarks

Regarding all the testing done to find any sources of error, it is quite unlikely that the methods
outlined in this chapter are implemented in a wrong way. Probably, something inherent to
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Figure 6.12: Supercurrents in units of t�0 for the three cases in figure 6.11.

the model is invalid, causing the instability of the self-consistent solution of A. Paying special
attention to the modeling of the vector potential in terms of the Peierls formalism, it can only
be justified as long as the vector potential is slowly varying at the scale of the lattice spacing.
Numerical values of the maximal changes in Ax and Ay among nearest-neighbour sites, indicate
that this can be a problem. It certainly is when the Maxwell is solved without setting r·A = 0.
As evident from figure 6.11, the variations are in this case not small relative to the interatomic
distance (a = 1). Solving the Poisson equation instead, the maximum change in A (in units
of �0) is typically between 0.5 and 1.0, but it can be significantly higher too. Based on these
observations, we can not conclude whether the approximation expressed by the Peierls phase
is the source for the instability of the self-consistent solution. At least, we have pointed out a
possible source of error.
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Chapter 7

Spontaneous vortex phase without
self-consistently solving the Maxwell
equation

In this chapter, the spontaneous vortex phase will explored. This will be done without solving
the Maxwell equation, which has turned out to be problematic. Nevertheless, solution strategies
where the spontaneity of the vortex phase arises from the magnetization alone will be presented.
The is considered to be a good approximation for extreme type II superconductors with a large
GL parameter. The magnetization of the system will be determined using two methods. Firstly,
it will be fixed to the bulk system magnetization by the requirement of having a significantly
higher magnetization than superconductivity in the system. Secondly, the vector potential will
be computed iteratively from the global finite-size system magnetization, and there will be no
criterion for the magnitude of the magnetization relative to the superconductivity. We start by
the introduction of the so-called magnetic translation operators. Exploiting the symmetries of
these operators, a possibility is to use quasiperiodic instead of open boundary conditions. In
the last part of the chapter, the phase diagrams are discussed, and some final remarks are also
given.

7.1 Magnetic translation symmetry

The concept of the magnetic translation symmetry outlined here is examined by Zhu, Aidels-
burger and Bernevig [70, 72, 83]. As emphasized in the previous chapter, the Peierls phase
breaks the translational symmetry of the Hamiltonian of a bulk superconductor. Accordingly,
it will in this section only be necessary to study the hopping part of the Hamiltonian, that is

Ĥ = T̂x + T̂y + h.c., (7.1)

where

T̂x =
X

mx,my

ĉ
†
mx+1,my

ĉmx,mye
i�

x
mx,my (7.2)

T̂y =
X

mx,my

ĉ
†
mx,my+1ĉmx,mye

i�
y
mx,my . (7.3)
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Because of [T̂x, T̂y] 6= 0, the translation operators T̂x and T̂y do not commute with the Hamilto-
nian in equation (7.1). We therefore construct the magnetic translation operators M̂x and M̂y

as

M̂x =
X

mx,my

ĉ
†
mx+1,my

ĉmx,mye
i✓

x
mx,my (7.4)

M̂y =
X

mx,my

ĉ
†
mx,my+1ĉmx,mye

i✓
y
mx,my , (7.5)

The phases in equations (7.4) and (7.5), ✓x
mx,my

and ✓
y

mx,my
, should be determined so that

[M̂x(y), Ĥ] = 0 holds. In appendix A.4, it is motivated that this is fulfilled for

✓
x

mx,my
= �

x

mx,my
� ⇡

�mx,my

�0
my (7.6)

✓
y

mx,my
= �

y

mx,my
+ ⇡

�mx,my

�0
mx. (7.7)

In the particular case of a homogeneous magnetic field (�mx,my = �), it can be shown that

M̂xM̂y = e
�i⇡�/�0M̂yM̂x. As a result, [M̂x, M̂y] = 0 if �/�0 = 2l, l 2 Z. Even so, this

is physically equivalent to having no magnetic flux. On the other hand, we can consider the
magnetic translation operators along the edges of a supercell of size Lx⇥Ly, called the magnetic
unit cell (MUC) . These translations are products of M̂x and M̂y, satisfying

M̂
Lx
x

M̂
Ly
y

= e
�i⇡LxLy�/�0M̂

Ly
y

M̂
Lx
x

, (7.8)

where M̂
Lx
x

and M̂
Ly
y are the magnetic translation operators of the MUC. These commute if

�/�0 = 2p/LxLy, p 2 Z. Thus, the MUC has a total flux of �tot = 2p�0. Using that �/�0 = B,
equations (6.26) and (6.27) inserted in equations (7.6) and (7.7) result in

✓
x

mx,my
= 0 (7.9)

✓
y

mx,my
= ⇡

�

�0
mx. (7.10)

Since the magnetic translation operators of the MUC commute both with each other and with
the Hamiltonian, it is possible to find simultaneous eigenstates of these operators. Such states
are magnetic Bloch states with k as a good quantum number. In the generalized Bloch theorem,

Bogoliubov states on the form
⇣

uk(r)
vk(r)

⌘
, have the property [81]

✓
uk(r +Rn)
vk(r +Rn)

◆
= e

ik·Rn

✓
e
�i�(r,Rn)/2uk(r)
e
i�(r,Rn)/2vk(r)

◆
, (7.11)

where Rn = nxLxx̂ + nyLyŷ, that is a translation vector consisting of nx and ny MUC trans-
lations in the x- and y-direction. Here the components of k are

k�=x,y =
2⇡

L�N�

l�, l� = 0, 1, ..., N� � 1, (7.12)
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where Nx and Ny are the number of MUCs in the x- and y-direction. According to equation
(7.11), the coherence factors have a Bloch-like symmetry under a MUC translation. The di↵er-
ence is that an additional complex phase is acquired due to the presence of the magnetic field.
This phase is given by [70]

�(r,Rn) =
2⇡

�0
A(Rn) · r

= �
2⇡

�0
BnyLymx = �2⇡

�

�0
nyLymx.

(7.13)

The last line is valid for the gauge A = B(�y, 0), and the position vector can be written as
r = mxx̂+myŷ. Implementing the quasiperiodic boundary conditions illustrated in figure 7.1,
a system of size LxLyNxNy can be divided into NxNy MUCs of size LxLy. The e↵ect is that
the eigenvalue problem is transformed into the diagonalization of NxNy matrices of dimension
2LxLy instead of having to diagonalize a matrix of dimension 2LxLyNxNy.

Figure 7.1: MUC of size Lx = 4, Ly = 4 (grey region). A nearest-neighbour hopping
or superconducting correlation to a site outside of the MUC (dashed circles) is
accompanied by the magnetic translation represented by Rn, whereas a complex
phase is added to the coherence factors as in equation (7.11). This figure is inspired
by figure in the reference [81].

7.2 Vortex state for open and quasiperiodic boundary
conditions

To check that the quasiperiodic boundary conditions are implemented correctly, the Hoftstadter
butterfly is plotted in figure 7.2 [34]. This is the band structure of electrons exposed to an uni-
form magnetic field and moving in a periodic potential. Comparing the spectra obtained using
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quasiperiodic and open boundary conditions, there are states in plot b) inside the forbidden
regions in plot a). As discussed by Analytis et al. [84], the band structure for open boundary
conditions will approach the one for quasiperiodic boundary conditions as the number of lattice
sites is increased.

Figure 7.2: Hofstadter butterfly, that is the energy spectrum of electrons in a con-
stant magnetic field, in the case of quasiperiodic (a) and open boundary conditions
(b). The energy values are given as a function of the magnetic flux through each
unit cell, and the system size is Lx = 20, Ly = 20 in both plots.

With regards to di↵erences between the two sets of boundary conditions, it is interesting
to analyze what happens with the equal-spin p-wave vortex phase in a constant magnetic
field. Open boundary conditions are used in figure 7.3. Interestingly, |�","

px,i
+�#,#

px,i
| is heavily

suppressed along the system boundaries with normal vectors n̂ = ±x̂. This can be understood
by the concept of zero-energy states (ZES). As the name suggests, these are mid-gap states
leading to a finite DOS at the Fermi level. If such states appear, the superconducting order
parameter can have a phase shift of ⇡. For px-superconductors ZES occur in the proximity
of a vacuum-superconductor interface. Using open boundary conditions, we are essentially
modeling a superconductor in conjunction with vacuum, as the hopping amplitude ti,j and the
superconducting interaction Vi,j are zero when i or j is outside the superconductor. Therefore,
the px order parameter in figure 7.3 is significantly smaller close to x = 1 and x = Lx than
in the superconducting bulk. The opposite happens at the boundaries y = 1 and y = Ly,
where the order parameter is enlarged. For more details about ZES, we refer to appendix B
showing additional results. Studying the py order parameters, there are suppressions at y = 1
and y = Ly and enlargements at x = 1 and x = Lx.

As seen from figure 7.4, the situation is di↵erent in the case of quasiperiodic boundary con-
ditions. Since lattice sites on opposite edges of the MUC are connected by magnetic translation
operators, the suppression of �px due to ZES vanishes. As opposed to figure 7.3, the behaviour
of the order parameter indicates the presence of two vortices. Controlling this observation by
calculation of the total phase change along the system boundary, confirms that there really
are two vortices in figure 7.4, and no vortex state is obtained for open boundary conditions.
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Figure 7.3: |�","
px,i

+ �#,#
px,i

| for the self-consistent solution initialized with non-zero
order parameters of px + ipy and open boundary conditions. The equal-spin su-
perconductor is exposed to a homogeneous magnetic field corresponding to a total
magnetic flux of 2�0. The physical parameters are V/t = �4.0, µ/t = �1.5 and
T/t = 0.2, and the dimensions of the system is Lx = 40, Ly = 20. For simplicity,
the magnetic interactions are here set to zero.

Figure 7.4: Similar plots as in figure 7.3 with quasiperiodic boundary conditions
implemented.

The interpretation is that the p-wave vortices are more easily formed when the influence of
boundary e↵ects is small. Increasing the magnetic field, the p-wave vortex state is also created
in the case of open boundary conditions.

We also observe that the vortices in figure 7.4 are anisotropic. Relative to the vortex core,
the px order parameter decays more rapidly in the y-direction than in the x-direction. Going
back to chapter 4 and figure 4.2, the gap function of px at µ/t = �1.5 is elongated in the
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x-direction, while it has a nodal line along the y-direction. This symmetry is reflected in the
structure of its vortices, being more extensive in the direction of the x-axis.

7.3 Methods for investigation of the spontaneous vortex
phase of extreme type II superconductors

As it stands, the e↵ect of the supercurrent will be ignored by the assumption of having a large
GL parameter . As mentioned in section 6.4, type II superconductors satisfy  > 1/

p
2. In

this respect, extreme type II superconductors do have a GL parameter  � 1 in general. For
high-temperature cuprates, we can have  ⇡ 100 [85]. In the GL theory of superconductivity,
one finds that the magnetic field set up by the supercurrent is proportional to 1/2 [86]. This
means that the screening e↵ect of the supercurrent will be small when  is large. In the case of
extreme type II superconductors, it is therefore expected that the exclusion of the supercurrent
in the model, is a good approximation.

7.3.1 Spontaneity due to magnetization

In this chapter, the spontaneity of the vortex phase is caused by the presence of FM order in
the system. The magnetic field B produced by alignment of electronic spins is simply related
to the magnetization M by

B = M, (7.14)

in the chosen system of units. Since the electrons are modeled as having spins pointing along the
z-axis, we have used scalar quantities in equation (7.14). This means that the vector potential
and the Peierls phase can be computed directly from the magnetization using equation (6.2). In
the following, the magnetization M will be assumed to be the same for all sites in the lattice. As
mentioned in the beginning of this chapter, we will consider two methods for the computation
of M . In the first method, which will be referred to as Method 1, we will require that the
magnetization is large in comparison with the maximal value of the p-wave superconducting
order parameters. Quantitatively, the criterion is

M > 4maxi|V Fi|, (7.15)

where Fi denotes the di↵erent p-wave paring amplitudes at site i, and the meaning of maxi is the
maximal value when all lattice sites i are accounted for. In this way, the magnetic energy scale
will be large relative to the superconducting condensation energy. Fixing M to the bulk system
magnetization for the normal conducting state, is then expected to be a good approximation.
More specifically, for a given set of physical parameters, M will be set to the magnetization
obtained from the self-consistent solution of the k-space BdG equations in chapter 5.

In the second method, that is Method 2, M is computed in each iteration through the
global finite-size system magnetization (see equation (6.20)). Hence, the vector potential and
the Peierls phase will also be updated iteratively. Yet, as the vector potential is here directly
related to the magnetization, which is determined self-consistently through the average number
operators, there is no need for a specific self-consistency criterion for A, like we had in the
previous chapter. Using this method, the magnitude of the magnetization will not be restricted
in relation to the superconductivity. We also note that the start value of M for Method 2 will
be the bulk system magnetization, which is fixed in Method 1.
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7.3.2 System size

In the case of open boundary conditions, the system size Lx, Ly will be fixed regardless of
what the magnetic flux is. The same strategy is not appropriate using magnetic translation
operators, which will be considered as part of Method 1. Then the system size should be chosen
so that �tot = 2n�0, where n is a positive integer. Given an uniform magnetization M , the
total magnetic flux is

�tot = MLxLy�0. (7.16)

Numerically, there are other restrictions on the dimensions of the system. Lx and Ly should
not be too small as this would lead to unreliable results. Moreover, the run-time of the self-
consistent algorithm is obviously an issue. In real space with the Peierls phase included in the
model, the convergence becomes much slower. Accordingly, there is also an upper limit for the
size of the system. Setting Lx = Ly = L, a compromise between these contradictions is to
search for L in the interval [10, 18]. Thus, the procedure is to calculate n from

n =
ML

2

2
, (7.17)

for L 2 [10, 18], and then to choose the value of L where n is closest to being an integer. In
the strictest sense, the commutation of the magnetic translation operators will in general be
violated due to the bounds of L.

7.3.3 Superconducting phases in a finite-size system

In comparison with the bulk k-space Hamiltonian, the self-consistent solution of equation (6.10)
behaves di↵erently in the sense that both the real and imaginary part of the p-wave order
parameters can be significantly di↵erent from zero. Indeed, the real and imaginary part are
often on the same order of magnitude. In the case of a finite-size system, this happens regardless
of the paring amplitudes being initialized with only non-zero real or imaginary part. Previously,
when there was no magnetic flux through the system, a superconducting state initialized with
the momentum symmetry of px + ipy, converged to a solution having only significant real
part of Fpx and imaginary part of Fpy . As a consequence, we can not distinguish between
superconducting states like px ± ipy and px ± py, as we could in chapter 5. We can only decide
whether both the px and py correlation functions are present, or one of them. In addition,
the distinction between up- and down-spin remains. For a convergent solution of the self-
consistent algorithm, we explicitly check if the superconducting px and py order parameters
are significantly large. For instance, this means that initial conditions with only the px paring
amplitudes non-zero, can result in a solution where both px and py are significant, that is the
phase px+ py. Of all the solutions giving for example (px+ py)| ", "i, we choose the one having
lowest free energy. Further, the free energy of the di↵erent phases are compared to find the
most stable state for a set of input parameters.

7.3.4 Gauges of the magnetic vector potential

Referring to the discussion about the gauge freedom in section 6.6, we can obtain distinct
metastable states using di↵erent gauges for fixed initial conditions of the paring amplitudes. In
principle, the number of possible gauges for a constant magnetic field is infinite. As di↵erent
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vortex configurations can have di↵erent free energies, a large number of gauges should basically
be considered. Numerically, this solution strategy is extremely time-consuming. We therefore
have to restrict ourselves to a minimum of possible gauges. First of all, testing indicates that
adding a constant to the vector potential does not result in di↵erent vortex configurations. In
addition, we expect that the di↵erence between gauges like A = B(�y, 0) and A = B(0, x),
will be small. Accounting for these considerations, the possible gauges will be limited to the
Landau gauge A = B(�y, 0) and the symmetric gauge A = 1/2B(�y, x).

7.4 Results and discussion

The relative iteration tolerance for the electron densities and the superconducting order pa-
rameters used here is 1.0E-3. This means that the relative change of all the local self-consistent
parameters should be lower than the tolerance in order to obtain a convergent solution. As
previously, the tolerance in T/t for the bisection method is 1.0E-3.

This section is divided into two parts. Firstly, phase diagrams computed using Method 1
are presented and discussed. Secondly, we will examine the results obtained from Method 2.
In both cases, we follow the procedure outlined in section 6.7, where vortices are detected by
the phase change of the p-wave superconducting order parameter of interest. Put di↵erently,
we define the vortex state as having a non-zero winding number for the system. If the self-
consistent algorithm converges to a solution with significant up- and down-spin px and py order
parameters, the phase change of �","

px
+ �","

py
+ �#,#

px
+ �#,#

py
is computed. Analogously, if the

solution for instance only has non-vanishing �","
px
, we consider the winding number of this order

parameter.

7.4.1 Method 1: Fixed bulk system magnetization

Figure 7.5 shows a phase diagram of an equal-spin p-wave superconductor when the FM state
is modeled by the exchange field h. Accordingly, the naming of the phases is with respect
to superconducting properties, as all phases have FM order. Regarding subsection 7.3.3, the
meaning of (px + py)| ", "i is that the up-spin components of Fpx and Fpy are finite, and
we avoid going into details about the significance of the real and imaginary parts of these
paring amplitudes. In order to satisfy the criterion of having a much higher magnetization
than superconductivity, quantitatively expressed by equation (7.15), the parameters of the
model are chosen carefully. As we have seen, making the exchange field stronger, leads to a
higher degree of splitting between up- and down-spin electrons, and consequently, a greater
magnetization. However, choosing a too large value of h, results in a magnetic field destroying
the superconducting state. Moreover, the magnitude of the FM order varies with the chemical
potential. Moving away from half-filling, M is gradually reduced. Taking these aspects into
account, a possible choice of interaction strengths are h/t = 3.0 and V/t = �2.0 on the interval
µ/t = [�1.5, 0.0], which is a relatively small portion of the range from zero degree of filling to
half-filling (µ/t = [�7.0, 0.0]).

In the parts of the phase diagram having finite superconductivity, the system is found to
be in the vortex state. Since the magnetic flux through the system originates solely from
the magnetization, the vortex phase can be classified as spontaneous. With regards to figure
5.3 showing the exchange field phase diagram of a bulk superconductor, there are several
similarities. As before, both the px and py superconducting order parameters are non-zero. The
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Figure 7.5: Phase diagram of an equal-spin p-wave superconductor in the case of
open boundary conditions and fixed magnetization (Method 1). Parameters are
h/t = 3.0 and V/t = �2.0. The system size is Lx = 15, Ly = 15.

di↵erence is, as emphasized, that both the real and imaginary part of �px and �py contribute.
As well, the combined spin configuration | ", "i + | #, #i does not appear. The self-consistent
algorithm converges to a solution having purely up-spin superconducting correlations below
half-filling at µ/t = 0.0. In fact, we could have extended the range of the chemical potential to
include the symmetric region µ/t = [0.0, 1.5] about half-filling. Also here, the magnetization
is adequately large with respect to the superconductivity. Examining this region, the same
happens as for a bulk superconductor without magnetic flux. We have particle-hole symmetry
if the spin direction is simultaneously switched. Formulated in another way, the vortex phase
of (px + py)| #, #i is the most stable phase above half-filling. The fact that the single spin
configurations are preferable is due to the high value of h. As a result, the up-spin band is
located at much lower energies than the down-spin band below half-filling, and the opposite is
the case for µ/t > 0.0. The strong exchange field also gives a high number of flux quanta through
the system. As long as the superconductivity is not completely destroyed, it is reasonable that
the vortex state exists. The behaviour of the superconducting FM phase with respect to the
normal state of FM for increasing temperatures is also similar to the non-flux case. For higher
temperatures than at the transition, the FM phase without superconductivity has lowest free
energy, despite the superconductivity still being significant. Again, a higher degree of FM order
in the normal conducting state can be beneficial as the superconducting condensation energy
becomes lower for increasing thermal fluctuations.

Implementing quasiperiodic boundary conditions as described in section 7.3.2, the µ-T phase
diagram is slightly changed (see figure 7.6). Even so, the phase diagram has the same features as
before. On the other hand, further analysis of the two phase diagrams computed for h/t = 3.0,
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Figure 7.6: Similar plot as in figure 7.6 (Method 1) for variable system size and
quasiperiodic boundary conditions.

signals a serious unreliability in the results. Studying the behaviour of the superconducting
order parameters in the absence of a magnetic field for this value of h, the superconductivity
is largest approximately at ne = 0.5, that is around µ/t = �3.0. Away from this electron
density, the superconductivity becomes progressively weaker. It is negligible from about µ/t =
�1.0 and up to µ/t = 0.0, and likewise above half-filling. Turning on the magnetic field,
the phase diagrams suggest that the superconductivity can be finite in this region, which has
no physical meaning. Actually, the development of the superconducting order parameters is
meaningful at lower chemical potentials than shown in the phase diagrams. The problem is
that here the criterion in equation (7.15) is violated by a too low magnetization relative to the
superconductivity. The maximal superconductivity in the case of updated M , is obtained close
to µ/t = �3.4. Since the magnetic field becomes smaller for decreasing electron densities, it
makes sense that the maximum is located at a slightly lower chemical potential than in the
absence of a magnetic field. For increasing electron densities, the superconductivity disappears
in the proximity of µ/t = �2.2. This is also reasonable considering that a su�ciently strong
magnetic field can destroy the superconducting condensate.

7.4.2 Method 2: Updated global finite-size system magnetization

To control that the unreliability is not caused by the implementation of Method 1, a similar
phase diagram is computed using Method 2. Comparing figure 7.7 to figures 7.5 and 7.6, the
problem is not solved by updating M through the computation of the global finite-size system
magnetization. We observe that the spontaneous vortex region of figure 7.7 is shifted to the
right on the interval µ/t = [�1.5, 0.0]. This seems to be a result of having a smaller global
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Figure 7.7: µ-T phase diagram for the same input parameters as in figures 7.5 and
7.6. The boundary conditions are open, and the magnetic field is determined using
Method 2.

finite-system than bulk system magnetization at the same values of the chemical potential.
Thus, a higher filling degree is needed using Method 2 instead of Method 1, for the magnetic
field to be equally strong. Indeed, the onset of the vortex region occurs when the magnetization
reaches a certain value, and this happens closer to half-filling in figure 7.7. This indicate that
the Peierls substitution becomes invalid, which is caused by too large changes in the vector
potential.

Using Method 2, the phase diagrams do not have to be restricted to a particular range of
input parameters. Based on the discussion so far, the magnetic field due to the magnetization
should be weakened. Hopefully, this will give us more reliable results. In figure 7.8, a phase
diagram for a much lower exchange field strength is given. Here the spontaneous vortex phase
of px+ py with the single and combined spin configurations appear. The low degree of splitting
between the up- and down-spin band causes the | ", "i + | #, #i spin configuration to be the
most stable in a large part of the phase diagram. Far from half-filling, in a small region between
µ/t = �3.0 and µ/t = �2.5, the gap in the down-spin band becomes negligible, so that | ", "i
appears. For higher exchange field strengths, we find that the self-consistent solution converges
to | ", "i below and | #, #i above half-filling in a larger region than in figure 7.8. Looking at the
development of the superconducting order parameters for h/t = 0.1 in the absence of a magnetic
field, the superconductivity is greatest around half-filling, and it steadily decreases away from
µ/t = 0.0. Therefore, it makes sense that the vortex phase is present as the most stable phase at
higher temperatures closer to half-filling. In other words, a greater thermal energy is required
here to make the higher FM order in the normal conducting state energetically favourable. In
fact, there are apparently no physically unrealistic regions in this phase diagram.
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Figure 7.8: Spontaneous vortex phase diagram computed using Method 2. The
input parameters are V/t = �2.5, h/t = 0.1, Lx = 15 and Ly = 15.

It would also have been interesting if we could find a phase diagram showing the relation
between the vortex phase and the purely superconducting phase, that is the state having zero
winding number and no vortices. By reducing the value of h even more, we have discovered
another type of shortcoming of the numerical procedure outlined in this thesis. When the
magnetic field is weak, the self-consistent solution can converge to the vortex or non-vortex
state depending on the initial conditions of the paring amplitudes and the gauge used. We here
note that in the case of h/t = 0.1, it does happen that a particular set of initial conditions
give the non-vortex state at some points in the phase diagram of figure 7.8. Nevertheless, other
initial conditions result in the vortex state for the same physical parameters. The important
observation is that the purely superconducting state generally appear at isolated points, and the
free energy of this state is not found to be lower than for the vortex state. Therefore, we do not
find any consistent region where the purely superconducting state is the most stable. For even
weaker exchange fields, at least one of the di↵erent initial conditions give the non-vortex state
persistently. The free energy curves are then connected also for the purely superconducting
state. By itself, this is by no means a problem. Following the usual free energy minimization
procedure, we should be able to determine the state of highest stability. However, the problem
is that the free energy curves do not behave in a consistent way. In large regions, there
are no significant di↵erence in the free energies of the purely superconducting state and the
vortex state. Intuitively, the free energy of the non-vortex state should be lower because of the
vanishing superconductivity in the vortex cores. Analyzing how the magnitude of the p-wave
superconducting order parameters varies in the purely superconducting state, we find that the
superconductivity is considerably smaller in some parts of the system. This explains why we
can have that the free energy curves overlap.
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As we see it, there can be two reasons for the suppression of the purely superconducting
state. First of all, it can be a consequence of finite-size system boundary e↵ects in p-wave
superconductors, like the ZES. Due to the slow convergence of the self-consistent algorithm in
the presence of a magnetic field, we have been enforced to use a quite small system size. Thus,
boundary e↵ects certainly have some influence. It is now worth to point out why the magnetic
periodic boundary conditions are here not of interest in order to minimize the boundary e↵ects.
The reason is that we are searching for the transition between the vortex state and the purely
superconducting state, which is expected to occur in the range from having no magnetic flux
up to only a few superconducting flux quanta, possibly only a single flux quantum. When we
are using the magnetic translation operators, the flux through the system should be discretized
in even numbers of superconducting quanta, meaning that we would have a discontinuous jump
from 0 to 2 and 2 to 4 quanta. Secondly, we can also imagine that the procedure where vortices
are detected by the phase change of the order parameter gives a false negative. In other words,
it can be that we get a vanishing winding number for the system due to the canceling of positive
and negative winding numbers of di↵erent vortices. In this situation, vortices are present, but
the system size is too small to avoid di↵erent vortices to interfere. On the other hand, this
should be of little concern when the flux is low, but it can explain the isolated points with zero
winding number at higher magnetic fields.

7.5 Concluding remarks

In the light of the discussion of the phase diagrams, it seems again to be an issue related to the
modeling of the magnetic field through the Peierls substitution. As we have seen, the results
becomes unreliable when the magnetic field is too strong. This means that the change in the
vector potential between neighbouring sites can be large, which probably invalidates the use of
the Peierls formalism. As an additional remark, there is a periodicity in the Peierls phase. If
we add a multiple of 2⇡ to the Peierls phase, the Hamiltonian remains the same. Consequently,
changing the magnetic field in steps of 2�0, the Peierls phase will e↵ectively be the same.
For instance, when the Peierls substitution is utilized, a magnetic field strength equal to 2�0

gives the same results as what we get in the absence of a magnetic field. Still, because of the
magnetization not being higher than �0, this is not the cause of the unexpected behaviour.

A phase diagram that is in agreement with physical predictions, has been computed for
h/t = 0.1, in which the spontaneous vortex state is present in both the single up-spin and
the combined spin configuration of px + py. We have also pointed out the limitations of our
solution strategy in the comparison of the purely superconducting and the vortex state of p-
wave superconductors. Here we are in the lack of having a consistent way to decide if the
vortex or non-vortex state is the most stable, when the free energy curves corresponding to
zero and non-zero winding numbers overlap. When it comes to FM order modeled by the
Hubbard U -term, it has been even more di�cult to find a parameter set giving a reliable phase
diagram. For too high values of U , the self-consistent solution becomes unreliable. However,
for a lower interaction strength the free energy curves of the purely superconducting and the
vortex state start to overlap. Therefore, the results and discussion have been limited to the
case of h 6= 0, U = 0.
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General conclusions and outlook

In this master’s thesis, we have studied the properties of FM equal-spin p-wave superconductors
to a great extent, using the 2D extended single-band Hubbard model. In the bulk case without
a magnetic field, we have compared the free energies of px, px + ipy and px + py with equal-
spin configurations | ", "i, | #, #i and | ", "i + | #, #i. Using the Hubbard U -term, also the
normal conducting and superconducting paramagnetic phases have been considered in addition
to the ferromagnetic phases. In comparison with the case of a finite-size system, the method
for separation of di↵erent p-wave orbital symmetries has been better suited for a system with
translational invariance. In fact, we have not been able to distinguish between phases like px+py

and px + ipy or px + py and px � py for the finite-size system. In the absence of a magnetic field
for the bulk system, the phase diagrams show that px + ipy generally is the most stable p-wave
symmetry. As opposed to px and px+py, this orbital symmetry has a fully gapped DOS due to
no nodal lines in the k-space gap function. Consequently, the superconducting contribution to
the free energy is found to be lower for this symmetry in general. Additionally, none of the phase
diagrams are particle-hole symmetric. This was predicted for the exchange field term, but it was
a bit surprising in the case of the Hubbard U -term since phase diagrams for purely magnetic
phases obey this symmetry. Yet, when superconductivity and magnetism are combined, the
particle-hole symmetry is broken as the free energy caused by the U -term is higher for increasing
electron densities at a fixed magnetization. The computation of phase diagrams have also made
it clear that phase transitions from FM superconducting phases to the FM normal conducting
state occur at points where the superconducting p-wave order parameters are finite. This can
be explained from the higher FM order in the normal conducting state.

An important part of this master’s project has been the testing of whether it is possible
to determine a self-consistent vector potential when the supercurrent is accounted for through
the Maxwell equation. Using the methods presented in this thesis, including the introduction
of a vacuum region and successively reduced nearest-neighbour hopping amplitudes, it has not
been possible to obtain a convergent solution. In addition, the Maxwell equation has both
been solved in its general form and by the implementation of the Coulomb gauge r ·A. Some
improvements in the behaviour of the vector potential have been observed using alternative
system setups. After all, the self-consistent solution is unstable as the vector potential and the
supercurrent acquire new configurations in each iteration. The reason why the method fails,
is possibly because of the Peierls substitution only being valid for su�ciently small changes of
A. The breakdown of the Peierls formalism is certainly the case when we solve the Maxwell
equation without the Coulomb gauge, as the divergence of A then becomes substantial. In
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this part of the thesis, we have also discussed how the self-consistent solution can give distinct
metastable states for di↵erent gauges when superconductivity is included in the model. Indeed,
using di↵erent gauges and fixed initial conditions of the paring amplitudes, distinct vortex
configurations are possible. The gauge invariance of the theory is found to be respected if
we initialize the superconducting order parameters in a proper way. This insight is of special
importance in the computation of phase diagrams as we are interested in the most stable state.

Disregarding the e↵ect of the supercurrent by consideration of extreme type II supercon-
ductors, we have explored the spontaneous vortex phase arising from the magnetization alone.
Here two di↵erent solutions strategies have been used. First of all, the magnetization has been
fixed to the bulk system value for the normal conducting state. For this, we have required
that the magnetization is at least 4 times higher than the maximal p-wave superconducting
order parameter. The computed phase diagrams indicate that this method is incompatible
with the use of the Peierls formalism. The reason is that the high magnetization leads to a
strong magnetic field. This is a problem as the changes in the vector potential are too large
for the Peierls substitution to be valid. The second method has been to update the vector
potential through the computation of the global finite-system magnetization. In this way, we
have avoided too high magnetic fields. A physically reliable phase diagram has been calculated
for h/t = 0.1, V/t = �2.5, showing the presence of spontaneous vortex phases. Analogous to
the bulk case, we have finite px and py parameters. Moreover, the combined spin configuration
| ", "i+ | #, #i becomes progressively more dominating as the exchange field is lowered, since the
energy splitting between the up- and down-spin band decreases. In the search for the transition
between the purely superconducting and the vortex state, the free energy curves of these states
have been found to overlap. According to the system winding numbers, the phases are distinct.
We have pointed out two reasons for this. Firstly, it can be caused by the cancellation of pos-
itive and negative winding numbers of di↵erent vortices, leading to zero phase change despite
there being vortices present. Secondly, the insignificant di↵erences in the free energies can be
due to boundary e↵ects, resulting in the observed suppression of the purely superconducting
state.

Regarding future studies on FM p-wave superconductors, this thesis suggests that the frame-
work of the Peierls phase must be applied with caution. In the limit of a high magnetic field
and a rapidly changing vector potential, the Peierls substitution leads to physically unreliable
results. In such cases, another way of implementing the magnetic field should be considered. It
is also worth to stress that solving the BdG equations self-consistently for a finite-size system, is
a very computational demanding task. The size of the Hamiltonian matrix scales by the square
of the number of lattice sites, and in the presence of a magnetic field, a much higher number
of iterations is required to reach convergence. In the computation of phase diagrams, a vast
number of di↵erent gauges should in principle also be considered. Especially, performing the
self-consistency procedure on larger systems, will certainly be valuable in the study of p-wave
superconductors as they can be influenced by boundary e↵ects due to presence of ZES. A higher
system size can possibly also reduce the suppression observed for the purely superconducting
state, and it is required to avoid the interference of di↵erent vortices.

In this thesis, we have been focused on FM superconductors in the form of equal-spin triplets
due to the fact that this type of superconductivity has been found to be more compatible with
FM order [36, 38, 39]. Since the free energy is lowered by the presence of FM order, new
research projects on FM superconductors should also concentrate on this type of spin-triplets.
Expanding the model to include the time degree of freedom of the Cooper pair correlation func-
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tion, would allow for superconducting order parameters with odd parity under a permutation of
time coordinates. It would have been instructive to compare the free energies of s- and d-wave
spin-triplet superconductors with the p-wave superconductors treated in this thesis, both in the
presence and the absence of a magnetic field.
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Appendix A

Additional derivations

In this appendix, additional calculations, which have not been part of the main text, are given.
For completeness, the analytical eigenvalues of the bulk system Hamiltonian in chapter 5 are
computed. In context of the tight-binding supercurrent given in chapter 6, we also derive the
time derivative of the number operator and its average. Finally, the phase of the magnetic
translation operators in chapter 7 is considered.

A.1 Analytical eigenvalues of the Fourier space Hamil-
tonian matrix

The eigenvalues of the matrix Hk,�, which is given in equation (5.6), can be found using the
usual procedure of solving det(Hk,� � Ek,�1) = 0. This leads to

det

✓
✏k � �h+ Uhn�̄i � Ek,� V Fk,�

V F
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2 = 0
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2
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(A.1)

Hence, the analytical eigenvalues of the 2⇥ 2 k-space matrix are

Ek,� = ±

q�
✏k � �h+ Uhn�̄i

�2
+ V 2|Fk,�|

2. (A.2)

A.2 Time derivative of the number operator

Here the main steps in the calculation of the time derivative of the number operator at site i,
are outlined. In quantum mechanics, we have that the time derivative is given as

@n̂i

@t
= i[Ĥ, n̂i], (A.3)

where

Ĥ = �t
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(A.4)
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A.3. Average of the time derivative of the number operator

This Hamiltonian conserves the particle number and can therefore be used in the calculation
of the time derivative of the n̂i. For the µ- and h-term, we have

X
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ĉl,� ĉ
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(A.5)

In the last line, the fact that the fermionic creation operators anticommute, and the same for
the annihilation operators, is used. Similarly, it can be shown that the commutator with the
U - and V -term vanishes. In fact, there is only a contribution from the hopping term given as

[Ĥt, n̂i] = �t

X

k,l,�,�0

e
i�k,l [ĉ†
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ĉl,�

�

= �t

X

k,l,�,�0

e
i�k,l

⇥
ĉ
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(A.6)

Analogous to the commutator in equation (A.5), the second and fourth term above cancel each
other, so that

[Ĥt, n̂i] = �t
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Renaming the indices k and l as k, l = j, the time derivative is
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†
i,�
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A.3 Average of the time derivative of the number oper-
ator

To derive the average of equation (A.8), the Bogoliubov transformations in equations (6.14)
and (6.15) are inserted, leading to
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Taking the average and using that h↵†
n,�
↵n0,�i = f(En,�)�n,n0 , result in
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A.4 Determination of the phases of the magnetic trans-
lation operators

In this section, the phases (✓x
mx,my

, ✓y
mx,my

) of the magnetic translation operators (M̂x, M̂y)
will be motivated using the same methods as Aidelsburger and Bernevig [72, 83]. In total, we
require that [M̂x(y), Ĥ] = 0. In other words, the four commutators [M̂x(y), T̂x(y)] are set to zero.

First of all, we have that [M̂x, T̂x] is zero if
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that is
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Moreover, the commutator of M̂x and T̂y vanishes if
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so that
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where equation (6.22) is used. Similarly, we get
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from [M̂y, T̂y] = 0, and
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from [M̂y, T̂x] = 0. These equations can be solved with respect to ✓x
mx,my

and ✓y
mx,my

, yielding
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Appendix B

Zero-energy states (ZES)

To illustrate the concept of zero-energy states (ZES), we will consider relevant results obtained
by Terrade [52], which were reproduced and discussed in the specialization project. In fact,

Figure B.1: Opposite-spin superconducting paring amplitudes of extended (uncon-
ventional) s-wave (Fs), dx2�y2 (Fd), and the px- (Fpx) and py-component (Fpy) of
px+ ipy. In addition to a superconducting region (SC) , the heterostructure consists
of vacuum in plot a) and a normal conductor (NC) in plot b). The interface is
located between sites i = 0 and i = 1 in the x-direction. The hopping amplitude t

is zero in the vacuum, and it is 1 otherwise. The temperature is equal to T = 0.0
and the superconducting interaction strength is V = �2.5. The chemical potentials
are µ = �3.5 for s, µ = �0.5 for d and µ = �1.5 for px + ipy.

plot a) in figure B.1, which is for a vacuum-superconductor heterostructure, shows the same
dependence of the px and py superconducting order parameters as observed in section 7.2. In the
proximity of the boundary to vacuum, Fpx is suppressed, while Fpy is enlarged. Since px has a
sin kx momentum dependence, the ⇡-shift due to ZES at the boundary, leads to suppression. As
discussed by Terrade, the enlargement of the py paring amplitude can arise because of bounded
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states and a higher density of Cooper pairs close to the boundary [52]. With an interface normal
to the y-direction instead of the x-direction, the opposite happens.

As a reference, the behaviour of order parameters of the extended s-wave and dx2�y2 are
included. These paring amplitudes acquire the bulk magnitude of a shorter range than Fpx

and Fpy . Considering figure B.2, ZES are clearly present for px + ipy and absent for extended
s-wave. We also not that ZES can also be introduced into the DOS of a dx2�y2-superconductor
when the interface is oriented in the [110]-direction [87]. However, this is not fulfilled here, so
that we do not observe the same suppression of the d-wave paring amplitude. It is also worth to
point out that another proximity e↵ect known as Andreev reflections [88], occur in the vacuum
is replaced by a metal. In plot b) of figure B.1, there are leakages of Cooper pairs into the
non-superconducting region.

Figure B.2: Local energy spectra in the grand canonical ensemble of px+ ipy (a) and
s (b) for a vacuum-SC heterostructure. The plots are obtained for the first line of
sites inside (i = 1) the superconducting region, and the physical parameters are as
in figure B.1. The y-component of the momentum (on the x-axis) is a good quantum
number as the heterostructure has translational symmetry in this direction.
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