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Abstract

CT scans, resulting in electron density maps or mass density
maps, are standard input for radiotherapy planning systems. How-
ever, MRI provides superior soft tissue contrast. In cases where
MRI is required for accurate lesion delineation, both MRI and CT
are performed, creating systematic registration complications in the
planning images and a more time-consuming workflow. Alleviating
these issues, MRI-only techniques are developed where synthetic
CT (sCT) images are synthesised from MRI images. However, MRI
struggles to separate bone from air, creating significant errors in sCT
images. Using dose-volume histogram (DVH) point analysis and a
2 % deviation acceptance criterion, this thesis examines the result-
ing planning target volume (PTV) dose deviation in radiotherapy
planning as a consequence of bone misclassification, relevant in sCT
images for MRI-only radiotherapy planning. This is for the purpose
of finding the limit of acceptable magnitude of error, described by
the bone-area A, dependent on the distance, d, between the centres
of the misclassification volume and the PTV. This study finds the
limits of acceptance for these errors for three different PTV sizes,
S, using several pairs of otherwise equal CT images where a bone
volume is replaced by air. Optimised radiotherapy planning is per-
formed on the image containing air and copied to the bone case.
The resultant decision formulas provide useful tools for evaluating
the radiotherapeutic consequence of misclassification, assuming a
volumetric modulated arch therapy (VMAT) treatment plan and
a misclassified bone of CT value equal to 800 HU. No statistical
significance of the variable S is found.



Sammendrag

CT-skanninger, som resulterer i elektrontetthetskart eller masse-
tetthetskart, er standard inndata for strålebehandlingplanleggings-
systemer. Imidlertid gir MR overlegen bløtvevskontrast. I tilfeller
der MR er nødvendig for nøyaktig avgrensning av lesjoner, utføres
både MR og CT, noe som skaper systematiske registreringskompli-
kasjoner i planleggingsbildene og en mer tidkrevende arbeidsflyt. For
å lindre disse problemene, utvikles bare-MR-teknikker der syntetiske
CT-bilder (sCT) blir syntetisert fra MR-bilder. MR sliter imidlertid
med å skille bein fra luft, noe som skaper betydelige feil i sCT-
bilder. Ved bruk av punktanalyse i dose-volum histogram (DVH) og
et 2 %-avvik akseptkriterium, undersøker denne avhandlingen det
resulterende planleggingsvolumets (PTV) doseavvik i strålebehand-
lingplanlegging som en konsekvens av beinfeilklassifisering, relevant
i sCT-bilder for bare-MR stråleplanlegging. Dette gjøres for å finne
grensen for akseptabel feilstørrelse, beskrevet av beinarealet A, av-
hengig av avstanden, d, mellom sentrene i feilklassifiseringsvolumet
og PTV. Denne studien finner akseptgrensene for disse feilene for
tre forskjellige PTV-størrelser, S, ved bruk av flere par av ellers like
CT-bilder der et beinvolum er erstattet av luft. Optimalisert stråle-
planlegging utføres på bildet som inneholder luft og kopieres til bein-
tilfellet. De resulterende beslutningsformlene er nyttige verktøy for
å evaluere den radioterapeutiske konsekvensen av feilklassifisering,
forutsatt volumetrisk modulert bueterapi (VMAT) behandlingsplan
og et feilklassifisert bein med CT-verdi lik 800 HU. Ingen statistisk
signifikans av variabelen S er funnet.
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1 Introduction
External beam radiotherapy, which involves exposing diseased human tissue

to substantial amounts of deadly, ionising radiation, is a popular form of cancer
treatment [1]. This is a carefully planned process, as one strives towards giving
the planning target volume (PTV) the required dose of radiation while simulta-
neously sparing the healthy tissue and organs at risk (OARs) [2]. Radiotherapy
planning and delivery necessitates one or more sets of medical images.

To accurately calculate the dose of radiation deposited in each location in
the body, using an analytical anisotropic algorithm (AAA), an electron density
map is required. This is best obtained through a computed tomography (CT)
scan [3]. However, CT imaging lacks the soft tissue contrast of nuclear magnetic
resonance (MR) imaging (MRI) [4]. The superior soft tissue contrast is often
necessary in order to accurately delineate a lesion that is surrounded by healthy
soft tissue. The use of MRI in radiotherapy treatment planning increased from
6 % of cases to 24 % between 2006 and 2017 in the USA [5]. This requirement of
two imaging modalities and two separate scans poses certain issues; like achieving
accurate image registration when both internal and external movement might
occur between scans, patient scheduling, and economics. In addition, a dose of
radiation is given to the patient during the CT scan.

In an attempt to alleviate these complications, synthetic CT (sCT) imaging
techniques have been developed, where MR images are used to create approxi-
mate CT images [6]. Some of these techniques have been found to create sCT
images that are clinically acceptable for radiotherapy planning [6][7][8][9]. How-
ever, there is one important obstacle to overcome in such techniques; because of
the low MR signal given from both bone tissue and air, the two are often diffi-
cult to distinguish in MRI [10]. Bone tissue and air have vastly different electron
densities [11], meaning misclassification of the two in sCT images is highly un-
desirable. Solutions to such problems have been proposed and implemented.
One is to elastically fit a bone-atlas created from previous patients’ anatomy [6].
However, this method struggles when it is exposed to atypical patient anatomy,
for example children. Another solution is to utilise ultrashort echo time (UTE)
MRI sequences to obtain bone tissue MR signal [10]. This method struggles with
atypical T2 properties in the bone tissue and is still prone to misclassification.
Once any bone misclassification occurs in a patient sCT image, the radiographer
must be able to evaluate whether there is a need to repeat the scan, possibly
with different settings, or use conventional CT imaging. This thesis aims to
explore the consequences of bone-to-air misclassification and find under which
conditions the misclassification errors are acceptable in volumetric modulated arc
therapy (VMAT) treatment planning.

Similar work has been performed by this author previously in a project thesis
conducted at the Norwegian University of Science and Technology (NTNU) and
University Hospital of North Norway (UNN) in the autumn of 2019 [12]. Using
gamma evaluation [13][14], the project thesis found a maximum acceptable size
of misclassified bone for VMAT treatment planning, though only for a spherical
PTV of constant diameter and at a constant distance from the misclassification
volume. However, it was found that the PTV dose deviation between the air and
bone case was substantial at that misclassification magnitude. This calls into
question the gamma evaluation method’s ability to fail cases of too great PTV
dose deviation, motivating this thesis to apply a different acceptance criterion
using dose-volume histograms (DVHs) [15][16]. Additionally, a linear correlation
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between the PTV dose deviation and the size of the misclassification volume
was observed, motivating the use of linear regression models to find the limits of
acceptance in this study. With the exception of the project thesis, and to the best
of this author’s knowledge, no other study of the radiotherapeutic consequences
of bone misclassification has been conducted.

The primary aim of this thesis is to use the aforementioned DVH acceptance
criterion to derive equations describing the limit of acceptance for bone mis-
classification, given by the maximum two-dimensional size of bone, area A, and
the minimal distance, d, between the centres of the PTV and misclassification
volume. Additionally, the dependency of the PTV size, S, is also tested. Such
equations might provide a useful tool for radiographers, radiologists, and/or
medical physicists in evaluating whether occurrences of bone misclassification in
sCT images are acceptable or if new scans must be made. Gamma evaluation is
performed in order to assess its ability to correctly fail grave PTV dose devia-
tions while simultaneously providing a method for evaluating the dose cohesion
in the entire irradiation volume.

Because of a difference in techniques for generation of sCT images of the
pelvis and head [7], where more effort is put into avoiding bone misclassification
in the latter, the radiotherapeutic consequences of an entire skull misclassifica-
tion are explored.

Finally, the results of these experiments are tested by digitally inducing bone
misclassification errors in real sCT images generated by Siemens’ sCT product
[7].
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2 Theory
As this master’s thesis is inspired by the work done in a similar project

thesis by this author, most of the content in this section is adapted from the
corresponding section in the project thesis, with minor changes [12]. However,
some major changes are: a new section on the topic of cancer (Section 2.1),
two new subsections in Section 2.2 explaining some relevant MRI sequences
(Section 2.2.3 and Section 2.2.4), an addition to Section 2.3 in order to go into
detail on DVHs (Section 2.3.3), a few CT theory additions to Section 2.4 for
the purpose of discussing results, an extension of Section 2.5 to include sCT
generation of the head and neck area, and a section describing the theory behind
the statistical analysis utilised in this thesis (Section 2.8).

2.1 Cancer
A short description of cancer biology is given in this section. The source of

the following is the textbook “Radiobiology for the Radiologist” [1].
Cancer is an abnormal growth of cells caused by changes in the genetic ma-

terial of cells. The mutations result in uncontrolled cell division (proliferation)
and failure of programmed cell death. This creates a Darwinian-like biologi-
cal system where the cancer cells become dominant and create a tumour. Cells
might also spread further, for example through blood streams (metastasis). Pro-
gression from healthy tissue to tumour tissue is stepwise, with steps occurring
randomly through errors in the DNA, or resulting from external factors such as
radiation, chemical mutagens, or viral infection. Tumours originate from cells
that over time have undergone multiple genetic changes, leading to deactiva-
tion of tumour suppressing genes and/or activation of oncogenes. Oncogenes
are gain-of-function mutations, meaning only one copy of the gene needs to be
activated. The tumour suppressor genes are loss-of-function mutations, meaning
both copies must be lost for the suppressor gene to be deactivated.

In normal cells, the telomere caps at the ends of the chromosomes shorten
with each cell division. Once a cell has undergone 40 to 60 cycles, the telomeres
are too short to continue dividing and the cell line eventually dies. During
cellular division, stem cells and cancer cells activate telomerase, which maintains
the telomere length and immortalises the cell. To kill a malignant tumour, the
cells must be neutralised by external forces, for example by carefully planned
radiotherapy, which will be further explored in Section 2.3.

2.2 MRI
A detailed description of MRI is beyond the scope of this paper. The inter-

ested reader is referred to the plethora of literature on the subject. However, a
short description covering the concepts relevant to this thesis will be given here.
Unless otherwise stated, the bulk of the following information is found in the
textbook “MRI in Practice” [4].

2.2.1 Basic MRI

Nuclear magnetic resonance imaging is different from all other medical imag-
ing techniques. MRI is a non-invasive medical imaging technique exploiting
protons’ quantum mechanical properties in strong magnetic fields. Unlike X-
ray imaging, CT, single-photon emission computed tomography (SPECT), and
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positron emission tomography (PET), MRI does not give the patient a dose of
harmful, ionising radiation. Yet its most important attribute is its superior soft
tissue contrast, which is often required to accurately delineate certain tumours.
Since its discovery, MRI has developed and improved profoundly; and today
it has a wide range of diagnostic and therapeutic applications. Understanding
the source of contrast in MRI is important to understand its applications and
limitations.

In most cases, protons are the source of an MR signal. MRI utilises the
characteristic magnetic dipole moment, ~µ, exhibited by atomic nuclei with an
uneven number of nucleons. 1H, consisting of just one proton, is such a nucleus,
abundant in water (H2O), but also in fat and other organic molecules. As human
beings consist mostly of water, this is the nucleus most commonly explored in
MRI. When exposed to an external magnetic flux density, ~B0, the protons’ dipole
moments start to precess about ~B0 with a characteristic frequency, ω0, known
as the Larmor precession frequency. This is proportional to the magnetic field
in the following way:

ω0 = γB0 (2.1)

where γ is the gyromagnetic ratio. Because of differing electron shielding in
differing molecules, the bound protons will experience a slightly different local
magnetic field in fat molecules compared to those in water molecules. This results
in protons bound to the different molecules obtaining different ω0-values. Using
select sequences, this enables differentiation of the signal originating from fat
from the signal originating from water. This is explored further in Section 2.2.2.
The protons’ magnetic dipole moment, causing the precession about the external
magnetic field vector, is due to their spin.

Spin is a quantum mechanical property of all nuclei and is an important part
of understanding the origin of an MR signal. The protons have spin 1

2 , meaning
they can occupy one of two possible energy states: up, being aligned parallel
to the external magnetic field (low-energy state), and down, being aligned anti-
parallel to the magnetic field (high-energy state). The ratio of population of the
two energy states is given by:

Nup

Ndown
= e

γhB0
kT ≈ 1 + γhB0

kT
(2.2)

where h is Planck’s constant, k is Boltzmann’s constant, and T is the temper-
ature. As slightly more protons align with the external magnetic field, a net
magnetisation caused by the protons, ~M0, is created. From eq. (2.2) it is appar-
ent that a stronger external magnetic field, and lower temperatures, lead to a
larger net magnetisation vector.

A useful signal can be obtained by manipulating ~M0. To be able to mea-
sure ~M0, it must be moved away from the direction of the external magnetic
field, which is often referred to as the z-direction. This is done by applying
a radiofrequency (RF) pulse to the precessing protons for a period of time, t.
Only protons that precess within the frequencies of the pulse’s frequencies are
affected. The RF pulse, created by alternating currents in coils, creates an al-
ternating magnetic flux density, ~B1, orthogonal to ~B0. This results in a flip of
the magnetisation vector given by:

α = γB1t (2.3)

4



where α is the flip angle. Now the protons precessing in phase about ~B0 have
a net magnetisation component in the orthogonal (xy) plane, M⊥, which is the
signal that is recorded due to induced voltages in the receiver. This process
is called excitation. Because of the torque of the external magnetic field, the
magnetisation vector will immediately start to realign itself with B0 through
relaxation. Generally, there are two relaxation processes: spin-lattice relaxation
and spin-spin relaxation. Spin-lattice relaxation is unrecoverable and is due to
the protons’ interaction with their surroundings; the result of which is a jump
to a lower energy state and realignment with ~B0. Therefore, this is also called
longitudinal relaxation. T1 is defined as the time it takes for the z-component
of the net magnetisation to regain 1 − 1

e ≈ 63 % of its size. The spin-spin
interactions and other interactions, including spin-lattice interactions, can cause
the protons to dephase, leading to a loss of signal in the xy-plane. A better
name for this is transverse relaxation. T2 is defined as the time it takes for the
xy-component of the net magnetisation to fall to 1

e ≈ 37 % of its original value
following the RF pulse. T1 and T2, measurable because of ~M0, are the tissue
properties that create the contrast in MRI. Different tissues exhibit different T1
and/or T2.

Images in MRI can be weighted towards T1, T2, or both (proton density
weighting). This is done by adjusting two operational parameters: echo time
(TE) and repetition time (TR), which describe the time from excitation of the
slice to the maxima of the following echo and the time between excitations, re-
spectively. These parameters are easiest to understand by discussing the most
common MRI sequence: the spin echo (SE) sequence. This involves a 90° ex-
citation pulse, flipping the magnetisation vector completely into the xy-plane,
repeated every TR. At time TE/2 following the 90° pulse, a 180° pulse is applied.
This rephases the dephased protons that are dephased due to inhomogeneities
in the magnetic field, creating a maximum signal, or an echo, at time TE, which
is recorded. There are many online animations that illustrate this effect nicely
[17]. A mathematical description of an MR signal was given by Bloch in 1946.
He proposed a set of equations used to calculate the magnetisation, ~M0 [18]. The
effect of TE and TR on the MRI signal is clearly shown in the Bloch equations
solved for the spin echo sequence:

M⊥(TR, TE) = M0(1− e−TR/T1)e−TE/T2 (2.4)

From eq. (2.4) it is apparent that at a comparatively long TR (TR > T1), the
T1 effects largely disappear as (1− e−TR/T1) −→ 1. For T2, the same is true for
short TE (TE << T2) as e−TE/T2 −→ 1. Therefore, to get a T1-weighted image,
short TR and short TE are required, while the opposite is true for T2-weighting.
A short TE and long TR give proton density-weighting, whereas the opposite
case gives too little signal to be useful. TE is considered short at about 10 ms
and long at about 100 ms, while TR is considered short at about 500 ms and
long at about 4000 ms; though what is considered long and short also depends
on the strength of the magnetic field and the tissue type.

In the sequences most relevant for this thesis, gradient echo imaging is used
instead of spin echo imaging. In these sequences, the gradient coils, whose pur-
pose is be explained later, create the echos that are recorded. No 180° degree
pulse is applied to create the echo, meaning the dephasing due to field inhomo-
geneities is not reversed. The T2 is therefore not observed; instead the observed
signal will be dependent on T2∗ = 1/T2+1/T2′, where T2′ is attributable to the
magnetic field inhomogeneities. Gradient echo sequences also often utilise flip
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angles smaller than 90°, which create a steady state resulting in the following
equation for the perpendicular magnetisation:

M⊥(TR, TE, α) = M0
(1− e−TR/T1)e−TE/T2∗

(1− cos (α) · e−TR/T1)
(2.5)

It is apparent that the same weighting rules apply here as for eq. (2.4), though
with T2∗ substituted for T2.

A problem in most MR images is that bone tissue in the patient gives very
low MR signal intensity. This is because of bone’s ultrashort T2-properties
(TE >> T2) [10]. From eq. (2.4), it is then found that e−TE/T2 −→ 0, resulting
in approximately no signal arriving from tissue with such T2-properties. Bone
can be divided into two different tissue types [19]. Cancellous bone, or trabecular
bone, is the softer tissue that is found within the core of mature adult vertebral
bones. Such tissue, containing some water, will yield more MR signal than
cortical bone. Cortical bone is very dense bone tissue containing very little
water, yielding close to no signal in normal MR imaging. Air, too, yields a very
low MR signal as it contains very few hydrogen atoms, making it difficult to
differentiate between bone and air by comparing signal intensity values in MRI,
as shown in Figure 2.1. This problem in identifying and separating bone and air
is a prominent issue for developers trying to assign a specific tissue-dependent
value to a specific voxel, for example in the case of creating sCT images. This
is the underlying problem motivating this thesis.

Figure 2.1: MR image [20] illustrating the lack of difference between air and
bone. This image has been edited by this author.

Spatial encoding is required to create MR images. The signal’s origin must
be placed in a coordinate system. In MRI, this is done using gradient coils,
which create a magnetic field which strength is a linear function of the position
along that direction. Assuming a gradient in the z-direction, Gz, the Larmor
precession frequency is affected as follows:

ω = γ(B0 + zGz) (2.6)

As mentioned previously, only protons precessing with frequencies that are con-
tained in the RF pulse are excited by it. Slice selection is made by choosing fre-
quencies that correspond to a certain range of z-values, meaning spatial encoding
has been performed in the z-direction. The gradient in this direction is often
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called the slice selection gradient, GSS . Two other gradients are applied to spa-
tially encode in the two other directions. These are the phase-encoding gradient,
GPE , often in the y-direction/phase-encoding direction, and the readout gradi-
ent, GRO, often in the x-direction/frequency-encoding direction. The readout
gradient is on while the echo is recorded, while the phase-encoding gradient often
changes between each repetition to record only one line in the phase-direction at a
time. Over a certain amount of time, the signal, also known as the free induction
decay (FID), is recorded and fills one line of k-space; which is a spatial frequency
domain. The final image is created by performing a two-dimensional Fourier
transform of the k-space. In the frequency-encoding direction of k-space, the
protons have different Larmor precession frequency dependent on their position.
In the phase-encoding direction, the protons are encoded a phase at various spa-
tial locations. However, a change in phase over distance is just another spatial
frequency, making the phase-encoding direction more appropriately called the
indirect frequency direction. Three-dimensional acquisition of k-space is possible
(Section 2.5). This is done by using the gradient in the z-direction as a sec-
ond indirect frequency direction. To summarise; spatial encoding is performed
by storing the measured signal in a spatial frequency domain, the position in
which is determined by gradient coils applying different magnetic field strengths
in different locations.

2.2.2 Dixon method

The ability to quantify the amount of fat and water in each voxel is de-
sirable in MRI for many applications. Fat-protons experience a different local
magnetic field than water-protons, resulting in a slightly different Larmor fre-
quency (Section 2.2.1). At 1.5 T, this difference is about 225 Hz [21]. The differ-
ence is proportional to the external magnetic field strength, meaning it doubles
to about 450 Hz at 3 T. In 1984, wanting to separate the fat-signal, F , from
the water-signal, W , W. Thomas Dixon proposed a method to obtain fat-only
and water-only images [22]. At the time, implementation was not successful,
as perfect B0-homogeneity was required. But with modern magnet design and
shimming techniques (using metals and/or coil currents to create a homogeneous
field), working methods were finally implemented in the early 2000’s. Dixon’s
proposed solution was to record the signal using two different echo times: one
where the signal from water and fat are in-phase, and another where they are
out-of-phase. As a 180° pulse will rewind these phase shifts, this method can
only be utilised in gradient echo sequences. At 1.5 T, this method gives echo
times of TE = 4.4 ms for the in-phase image, IP , and TE = 2.2 ms for the
out-of-phase image, OP [23]. This is illustrated in Figure 2.2. By simple ad-
dition, subtraction, and averaging, water-only and fat-only images are found in
the following way:

IP = W + F

OP = W − F

1
2(IP +OP ) = 1

2(W + F +W − F ) = W

1
2(IP −OP ) = 1

2(W + F −W + F ) = F
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This creates four sets of images: in-phase, out-of-phase, water-only, and fat-
only. The fat-only and water-only images yield the potential of fat/water-
quantification, which is useful in many cases, including the generation of voxel-
based sCT, further explored in Section 2.5.

Figure 2.2: Signal of fat (blue) and water (red), at slightly different frequencies
(fwater − ffat = 225 Hz), being in-phase at 1/225 Hz = 4.4 ms and out-of-phase
at 1/(2 · 225 Hz) = 2.2 ms. Illustration created by this author.

2.2.3 Ultrashort/zero echo time imaging

Differentiating bone tissue from air is difficult using the most common types
of MRI imaging (Section 2.2.1). The ultrashort relaxation times place high
demands upon the MRI hardware. Specifically, the dead time between excitation
and signal acquisition must be short enough to be able to detect the signal
originating in such tissue. The dead time is necessary in order to ring down the
coil with stored RF energy after excitation, before retuning the receive coil for
signal acquisition. In an article from 2012, Grodzki et al. [24] wrote that most
clinical scanners at the time had a dead time of 40 to 100 µs, but that with some
hardware changes some clinical scanners had reported dead times of only 8 µs.
Grodzki et al. go on to explain how these improvements made ultrashort echo
time (UTE) sequences possible. A short summary follows in the remainder of
this subsection.

When dead times have been made short enough to measure a signal coming
from tissues such as cortical bone, a couple of popular methods of filling k-space
have been developed. Cartesian single point acquisition is one of them. Here,
only a single point in k-space is filled up at a time instead of a whole row.
Naturally, this yields very long scan times when resolution is high. Another,
faster, way of filling k-space, with reasonable resolution, is by filling it radially
from the centre, as visualised in this online learning resource [25]. In this UTE
sequence, gradients and acquisition start simultaneously once the dead time has
passed. However, to avoid image distortions, a zero echo time (ZTE) sequence
can be used to fill k-space radially by applying the gradients before the excitation
and starting acquisition after the dead time has passed. This leads to a gap in
the centre of k-space. The article goes on to propose a solution to filling the
centre part of this k-space by using Cartesian single point acquisition. The
specific sequence described is the PETRA (pointwise encoding time reduction
with radial acquisition) sequence. Using such a sequence, even cortical bone
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will yield a strong MR signal, which is useful in the generation of sCT images
(Section 2.5).

These types of sequences have been used to approximate CT data previously.
In combined PET/MR imaging, such sequences help approximate the location
of bone (and soft tissue) in the patient. This data is called a µ-map and is
important for correcting for the γ-photon attenuation within the patient in the
PET part of the imaging process. Attenuation and the attenuation coefficient,
µ, will be explored further in Section 2.3.1 and Section 2.4, respectively.

2.2.4 Vessel imaging

Because of the flowing blood in blood vessels, the protons in the blood may
change slices in the time it takes for the signal to be acquired. This results in
a loss of signal within the blood vessel, as illustrated in Figure 2.3. As pre-
viously discussed, a loss of signal in a voxel without air may cause problems
when trying to differentiate between air, bone, and now blood. Many methods
of imaging blood vessels (angiography) in MRI, magnetic resonance angiography
(MRA), have been created. In this subsection, a time-of-flight MRA gradient
echo sequence will be presented, illustrated in Figure 2.4.

Figure 2.3: Illustration of the problem of flow in a spin echo MRI sequence
[26].

Time-of-flight MRA uses the flow of the blood to its advantage. One of the
ways to do this is to magnetically, partially saturate the stationary protons in
the slice [27]. That means lowering the signal of everything in the slice that is
not flowing through. This can be done by inducing a magnetisation steady state,
MSS , that is significantly lower thanM0 in a slice. This can be achieved in many
ways, but a fast way to do it is to use the FLASH (fast low angle shot) gradient
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echo sequence [28]. This sequence utilises low flip angles, α, and short repetition
times, TR. This gives blood time to both enter the slice and its MR signal to
be recorded while not letting the longitudinal magnetisation in the stationary
protons relax back to M0. Thus, the blood will give off a comparatively high
signal in the image (Figure 2.5) and the blood vessels can be accurately located.

Figure 2.4: Illustration of how a fast gradient echo, time-of-flight MRA se-
quence provides a relative strong signal from flowing protons [26].

Figure 2.5: Example of MRA showing blood vessels (white) in the brain [29].
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2.3 External photon beam radiotherapy
Radiation therapy is widely used to treat cancer (Section 2.1), often in com-

bination with surgery and/or chemotherapy, both curatively and palliatively.
The most common radiotherapy method is external beam radiotherapy, which
most commonly exposes the patient to ionising photons (X-rays). This external
photon beam radiotherapy method will be described in this section.

2.3.1 Ionising photon interaction with biological matter

Ionising radiation is used for cancer treatment because of its interaction with
biological tissue, specifically a cell’s genetic material, DNA. This interaction is
explained thoroughly by Hall and Giaccia [1]. Briefly summarising; the energy
of ionising radiation is absorbed by tissue through different interactions. When
a photon has interacted with a material, it is said to have been attenuated.
The interaction may cause damage to the DNA of a cell, either directly, or
indirectly through the production of free radicals in the DNA’s environment.
If the damage is great enough, the cell is unable to repair the damage and
consequently dies. These interactions are exploited to kill unwanted, living cells
(cancer, Section 2.1) in a patient. This is often done by creating a beam of X-
rays with a linear accelerator (LINAC). It is named as such because it accelerates
electrons at a metal material by applying a certain radiofrequency AC voltage.
The interactions of the incoming electrons in the material cause emission of X-
rays (bremsstrahlung), with a spectrum of energies. The X-ray energy is given
by the voltages in the accelerator. The common range of voltages are from 6 MV
to 15 MV [2]. For the purposes of this thesis, the most important takeaway is
that ionising radiation is harmful, both for cancer cells and healthy tissue. The
harmfulness of the radiation is dependent on the dose delivered to the cell, as
well as the type of tissue.

The term dose, in this case, describes the amount of radiation energy ab-
sorbed in matter. The ionising radiation deposits its energy in matter by ionis-
ing atoms and molecules in its path, releasing ions and electrons, which in turn
transfer their energy to other atoms, molecules, or electrons. In most medical
contexts, Gray [Gy] is the unit utilised; it is defined as the absorbed energy (in
Joule, [J]) per mass [kg]. In radiotherapy, the radiation delivered by a LINAC
is given in monitor units (MU), one of which is equal to a specific dose (often
1 cGy), at a specific depth in water (often 10 cm), at a specific distance to the
radiation source (often 100 cm), with a specific beam field size (often 10 x 10 cm),
at the particular beam energy. The monitor units are measured in the LINAC
head, monitoring the radiation output. The reference conditions, which differ
between departments and machines, gives information on how the measurement
is performed, and is used to adjust the LINAC to give the correct dose.

2.3.2 Radiation treatment planning

The LINAC has several abilities designed to provide optimal dose to the
tumour volume while simultaneously giving minimal dose to the surrounding
healthy tissue and OARs. The LINAC is equipped with a beam-shaping com-
ponent called a multileaf collimator (MLC), illustrated in Figure 2.6. The MLC
consists of multiple movable rods of a material with a high atomic number that
stop the X-rays that are applied, letting only the X-rays headed for the PTV
go through [2]. Another way of sparing healthy tissue and OARs is to irradiate
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the patient from different angles. The LINAC head is on a gantry that can ro-
tate around the patient on the table, realising the possibility of multiple-angle
radiotherapy. One can, for example, rotate the head 90° about the tumour vol-
ume between each irradiation, thereby drastically decreasing the dose given to
the healthy tissue in front of the tumour, though giving this lessened dose to a
larger part of the patient’s body. Combining these two abilities by irradiating
from several angles and shaping the beam to fit the tumour volume from each
angle often gives the best results.

Figure 2.6: MLC shaping beam to PTV [30].

A popular radiation method is the volumetric modulated arc therapy (VMAT)
technique. This is a technique where the LINAC continuously delivers radiation
while rotating around the patient and shaping the beam, effectively giving the
patient a fitted beam of radiation from every angle [3]. According to medical
physicist and supervisor, Veronika Tømmerås, this is the most common method
of radiotherapy treatment at UNN, Tromsø, and is therefore the one used in this
thesis.

Independently of the technique used for radiotherapy, every treatment plan
requires a calculation of the dose given to every part of the patient. Using a plan-
ning CT image, containing essential electron density/mass density information
further explored in Section 2.4, and the beam data (angles, energy, duration),
an algorithm in the treatment planning system (TPS) computes the doses of
radiation within every voxel in the image [3]. Dependent on the calculation al-
gorithm, either electron density or mass density is required. The electron density
information is utilised in the TPS relevant for this thesis, and will therefore be
the focus in Section 2.4. The result of the calculation is a dose image, or dose
matrix, a spatial map of the dose within the patient (Figure 2.7). These cal-
culations, and their resultant dose matrices, are essential for quality assurance
(QA) in radiotherapy, for example by gamma evaluation, further explored in
Section 2.6. These matrices are also used to calculate dose-volume histograms
(Section 2.3.3).
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(a) Dose matrix overlaid planning CT im-
age in Varian’s Eclipse (TPS).

(b) Dose matrix only. Zoomed in.

Figure 2.7: Treatment planning images from VMAT treatment plan on a water
sphere with a cylindrical bone volume in the axial direction.

2.3.3 Dose-volume histograms

A dose-volume histogram (DVH) simplifies the three-dimensional dose dis-
tribution data (3D dose matrix) into a two-dimensional graph. This is done
in order to analyse the three-dimensional dose distribution within a specified
volume (often PTVs or OARs). In this subsection, the calculation and uses of
the DVH will be described. The following information is found in the textbook
“Handbook of Radiotherapy Physics” [2].

The most commonly used type of DVH is the cumulative DVH. The voxels
within the volume of interest are placed into bins dependent on their dose. The
voxel is placed in a specific bin if the dose in the voxel is higher than a specified
threshold dose for the specific bin. For the cumulative DVH, a voxel can be
placed in multiple bins. The number of voxels within each bin, often given
relative to the total volume, is plotted for the dose, as seen in Figure 2.8.

Figure 2.8: Cumulative DVH example, plotting relative volumes for absolute
dose [31].
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It is desirable for the cumulative DVH of the PTV to resemble a step function,
like the red line at the right side of Figure 2.8. This indicates that a large
percentage of the volume has a similar dose. The step should occur at the
prescription dose. For OARs, a concave appearance is preferred, like the light
blue lines in Figure 2.8. In addition to providing a tool for analysis, DVHs are
also used in treatment planning by setting DVH goals in the dose optimisation
process to shape the curve into a step function (Section 3.2).

The shapes of DVHs are useful for comparing treatment plans, but, in order
to have a uniform method of reporting dose in a structure, singular measured
values are needed. Such values can be derived from the DVH. The mean dose,
Dmean, can simply be calculated by dividing the sum of every voxel dose in the
volume by the total number of voxels in the volume. Similarly, the median dose,
Dmedian, is found by sorting every voxel in the volume. Other measurements
are more complex and utilise the DVH directly; a popular choice for such a
measurement is the dose, DV ref , which is given by the dose such that the volume
receiving a dose higher than DV ref is equal to Vref , where Vref is the relative
volume. Here, Vref can be any percentage that is wanted; using the red line
example in Figure 2.8, D98 % is approximately 55 Gy, whileD2 % is approximately
67 Gy.

In Figure 2.8, the size of the dose axis (70 Gy) indicates that this DVH
describes a full multi-fractional treatment regime. A singular fraction of dose
given to a PTV is typically close to 2 Gy. As is the case in this experiment,
DVHs can also be calculated for a singular fraction (Section 3.2).

2.4 CT
Spatial electron density information is essential for certain TPS dose calcu-

lation algorithms. This information is commonly obtained through CT imaging.
In this section, a brief explanation of the basics of CT will be given.

As mentioned, CT provides electron density information on the patient in
question [7]. The value in each voxel in the CT image, its CT value, is a mea-
sure of its linear attenuation coefficient, µx, relative to that of water, µw, at
specific energies [3]. The linear attenuation coefficient describes the probability
of a photon, in this case X-ray, interacting with the material in question. The
intensity, I, of a mono-energetic beam that has travelled a distance, L, through
a material of attenuation coefficient, µ, at the specific beam energy, is given by:

I = I0e
−µL (2.7)

where I0 is the initial beam intensity [32]. The linear attenuation coefficient
information is essential to accurately calculate the dose delivered to the patient
by external photon beam radiation from a LINAC.

CT scans obtain this information because they utilise X-rays. A fan beam of
X-rays passes through the patient, and the transmitted radiation, of intensity I,
is detected. Multiple projection views are acquired as the X-ray source rotates
around the patient. From these projections, image reconstruction algorithms
generate a matrix, where each element is assigned its Hounsfield unit (HU),
defined as:

HU = 1000 · µx − µw
µw

(2.8)
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This defines the CT value of water as 0 HU, while it gives air, with the an assumed
zero attenuation, a CT value of -1000 HU. Fat, having lower attenuation than
water, has CT values of about -100 HU, while bone, with significantly higher
attenuation than water, can have CT values higher than 1000 HU [11], dependent
on the bone tissue type. Both of these are dependent on the X-ray energy used
in the scan. Hounsfield units at given energies are approximately extrapolated to
yield the electron density information that is required to perform accurate dose
calculations. This is illustrated in Figure 2.9, where the electron density relative
to that in water, RED, is plotted for the measured CT values at three different
energies. In summary; using Hounsfield units, CT scans utilise X-rays to obtain
electron density information. The need for this electron density information
complicates a radiotherapy workflow that needs MR images. The use of sCT
may provide a solution to these problems.

Figure 2.9: Examples of CT calibration curves that provide electron density
relative to water, RED, as a function of CT value for energies 100 kV, 120 kV,
and 140 kV. This plot is from measurements performed at a CT scanner at UNN
in 2016.

2.5 Synthetic CT
Because of the aforementioned requirement of electron density information

for radiotherapy planning and increasing use of MRI in said planning (increased
from 6 % to 24 % of radiotherapy cases in the USA from 2006 to 2017 [5]),
sCT has emerged as a possible solution. Obtaining electron density information
from MRI would help alleviate many problems related to patient internal and
external movement between scans, while also being more cost-efficient. There
is an added benefit of lessening the dose to the patient’s non-tumour tissue,
though this is small compared to the dose delivered by the LINAC. This section
will describe the general idea of sCT and delve deeper into clinically approved
methods of generating sCT images of the pelvis and brain developed by Siemens
Healthineers and their clinical partners [7].

The general idea of sCT is to assign CT values to voxels using data from
MRI only. Many different ways have been used to do this, often in combination.
The following descriptions of these approaches are from Uh et al. [6]. The
bulk density approach uses segmentation of different structures and assigns CT
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values dependent on what structure it is believed to be (air, bones, soft tissue).
This gives an unrealistic sCT image segmented into a low number of HU classes.
The atlas-based approach often uses images of several patients whom previously
have undergone both MRI and CT scans to elastically deform an atlas to fit the
patient in question. This method does not require any extra MR sequences to be
performed, but it does struggle with any atypical shapes, where the patient in
question’s anatomy deviates too much from the patients that were used to create
the atlas. The voxel-based approach uses the signal intensity in each voxel in one
or several MR images to assign a CT value to the voxel. This requires specialised
MR sequences, increasing the scan time. Differentiation of bone tissue and air
is difficult due to bone’s ultrashort T2 (Section 2.2.1). This will be a problem
for all of these approaches. To provide physicians and medical physicists with
sCT images of the pelvic region, Siemens Healthineers and their clinical partners
have developed a method using a voxel-based and atlas-based approach.

This sCT method is described in their white paper from 2019 [7]. It uses
an MR sequence called T1 VIBE DIXON to classify the soft tissue voxels. This
sequence uses the technique described in Section 2.2.2 to obtain water-only and
fat-only images, which classify each voxel as either fat or water. Voxels that
contain mostly water are given a CT value of 0 HU, while voxels containing
mostly fat are given CT value of -75 HU. The air is classified by thresholding.
This thresholding may at first classify the bone as air because of the difficulty
in distinguishing the two. Therefore, a bone-multi-atlas is used to assign CT
values of cortical bone (1170 HU) and cancellous bone (204 HU) to these volumes
(Section 3.5). The tissues can be distinguished from each other because of the
liquid within the cancellous tissue.

Siemens’ method for generating sCT images of the head and neck is more
complicated. It is purely a voxel-based method and requires three additional
MRI sequences. These are the: T2-SPACE, PETRA, and FLASH Gradient
Echo sequences. The T1 VIBE DIXON sequence is run to get the fat and water
images.

The T2-SPACE sequence is a three-dimensional T2-weighted sequence [33]
that is used to visualise the brain anatomy and define the resolution of the sCT.
The FLASH gradient echo sequence (Section 2.2.4) is used to ensure blood vessels
are not classified as bone, while the PETRA sequence (Section 2.2.3) is used to
ensure that bone is not misclassified as air. All images are combined to find the
approximate CT value in each voxel.

These approaches have been proved, by using the gamma evaluation tech-
nique further explored in Section 2.6, to provide clinically acceptable dose cal-
culations in radiotherapy planning [7].

2.6 Gamma evaluation technique
Gamma evaluation is a method developed in order to compare dose images.

It was first proposed by Low et al. [13] as a method of determining whether
the measured dose distributions were acceptable compared to calculated dose
distributions using certain acceptance criteria. The method is still in clinical
use today, both as a QA tool and in research, as it, in addition to assuring
quality in treatment, quantifies the effect of propagating errors in radiotherapy
treatment planning. This section will look into the gamma evaluation method
and its criteria.

The principle of gamma evaluation is straightforward; the dose distribution
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in two dose matrices, one reference (Dr(r)) and one target (Dc(r)), are compared,
and the tested points/voxels are given a numerical quality index dependent on
their differences. In clinical QA settings, when performing dose measurements
in phantoms and comparing with calculated values, the measured dose (the real
case) is referred to as the reference matrix, while the calculated matrix is the
target matrix. Therefore, in this paper, the real case (bone case) dose matrices
are considered as reference, whereas the dose matrices calculated on CT images
where bone has been replaced by air (air case) are considered as target matri-
ces. The aforementioned quality index is called the gamma value, γ, and is a
measure of disagreement in regions that fail the criteria, while indicating the
calculation quality in the regions that pass [34]. The aforementioned criteria are
the dose difference, ∆DM , and distance to agreement (DTA), ∆dM . These are
often denoted as ∆DM [%]/∆dM [mm] in literature. To provide accurate gamma
calculations, ∆dM must be sufficiently large in comparison to the voxel/pixel
spacing. According to Low et al. [35], ∆dM should be at least three times larger
than the resolution, meaning a dose matrix with 0.3906 mm resolution, as is the
case in this study (Section 3.2), requires a minimal ∆dM of 1.1718 mm. As is
illustrated in Figure 2.10, assuming equal significance of the two criteria, these
are represented by an elliptical surface with a reference point, rr, receiving dose,
Dr, in its centre. With rc being the compared point, this ellipsoid is defined by:

1 =
√
|rr − rc|2

∆d2
M

+ (Dc(rc)−Dr(rr))2

∆D2
M

(2.9)

For the target distribution, Dc(r), to pass the evaluation, it needs to contain at
least one point (rc, Dc) within this ellipsoid, meaning it must have at least one
point for which:

Γr(rc, Dc) ≡
√
|rr − rc|2

∆d2
M

+ (Dc(rc)−Dr(rr))2

∆D2
M

≤ 1 (2.10)

The point within Dc(r) with minimal deviation from the reference point is used
to define the gamma value, γ(rr), which is simply defined as the aforementioned
minimal deviation. This creates the following pass-fail criterion: when γ(rr) ≤ 1,
the point passes, while failing when γ(rr) > 1. A complete gamma evaluation is
performed by repeating this process for every reference point in the reference ma-
trix. This results in a gamma evaluation image providing important information
concerning the level of coherence between two dose distributions (Section 3.3.2).
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Figure 2.10: The theoretical concept of the gamma evaluation method. Refer-
ence and target dose distributions are denoted as (rr, Dr) and (rc, Dc), respec-
tively. Figure used with permission [34].

Situationally dependent, two main gamma evaluation methods are utilised
clinically and in research. These are local gamma evaluation and global gamma
evaluation. In local gamma evaluation, the relative dose difference is calculated
relative to the dose in each point, while in global gamma evaluation, the rela-
tive dose difference is calculated relative to the maximum dose in the reference
matrix. In both cases, it is common to disregard points where the dose is below
a certain threshold, often a given percentage of the maximum dose in the dose
matrix. This is done because small, inconsequential differences in dose will likely
exceed common gamma criteria (1 %/1 mm, 2 %/2 mm, 3 %/3 mm), causing the
point to fail without notable ramifications. Using one of these gamma evaluation
techniques, with a fitting dose cutoff, one can quantify the coherence of the two
dose matrices by comparing passed versus failed points.

Quantification of the coherence of the two matrices is done by performing
gamma evaluation and obtaining the gamma pass rate. The pass rate is defined
as the number of points/voxels in the reference matrix that passed the evaluation
divided by the total number of points/voxels that were evaluated. The gamma
pass percentage found from this computation is often used in clinics and in
research, though differing gamma criteria and clinically acceptable pass rates
are employed (Section 2.7).

2.7 Criteria for clinical acceptance
In this section, the theoretical background and previous work considered

for the choice of the different acceptance criteria will be explained. The main
measurement of interest in this thesis is the DVH measurement Dmean. This is
because it has been used in similar research previously [15], but also because the
project thesis [12] found that the two-dimensional dose through the centre of the
PTV deviated profoundly. In the specific scenarios posed in this thesis, where
the planning images show air volumes when it is supposed to be volumes of bone,
the doses within the PTVs decrease from what is expected, lowering the chances
of killing the cancerous tissue because of the unexpected increase in attenuating
tissue. However, the gamma evaluation method, which is able to test the entire
irradiation volume for discrepancies, will still be used as a secondary test.
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In this thesis, the acceptance criterion that is used when measuring Dmean

deviations is 2 %. In 2016, Sjölin et al. [15] used the 2 % Dmean-deviation cri-
terion to test whether the gamma evaluation method could detect errors that
they considered unacceptable. Others have used different DVH point measure-
ments to compare dose distributions; Korsholm et al. [16] used the DVH points:
Dmedian, D98 %, and D2 %, also utilising 2 % as acceptance criterion.

Different gamma criteria and clinically acceptable pass rates are used, both
in clinics and in research (Section 2.6). Johnstone et al. [36] point out that the
inconsistencies in choice of gamma criteria must be addressed in order to aid
method comparisons. Though many use different gamma criteria, most utilise
95 % as the acceptance criterion for the gamma pass rate [14][15], likely because
confidence intervals of 95 % are widely used in medical research. At UNN, for
radiotherapy QA, 95 % gamma pass rate for a global gamma evaluation, using
2 %/2 mm criteria, and with a 20 % dose cutoff, is considered acceptable. There-
fore, these are the values that will be used when performing gamma evaluation
in this thesis.

2.8 Statistical analysis
In this section, some of the relevant theory behind the statistical analy-

sis utilised in this thesis is presented. Mostly, this entails the uncertainty of
linear regression (Section 2.8.1) and the comparison of linear regression lines
(Section 2.8.2).

2.8.1 Linear regression uncertainty

Regression models use data points to estimate a function that describes the
dependency of the variables. In a linear regression model, a linear function is
created: y = ax + b. Here, a is the slope of the line and b is the intersect of
the line with the y-axis. However, regression models are imperfect. Uncertainty
calculations of regression models are much used and easy to compute. However,
this uncertainty calculation assumes error-free measurement of the data points
for which the regression was performed. Below follows an explanation of how the
uncertainty in the measurement of the data is combined with the uncertainty of
the model itself [37].

A common way to calculate the uncertainty of a regression model is through
the standard error of the estimate:

σest =
√∑(y − yest)2

n− np
(2.11)

where y is the measured value at a given point, yest is the value in the same
point as estimated by the regression model, n is the number of data points, and
np is the number of parameters. For a linear model, np = 2.

This does not describe the uncertainty in the model itself, but estimates the
uncertainty in yest. To completely describe the uncertainty in the model, the
uncertainty in the slope, a, must be included. The slope is dependent upon the
uncertainty of yest, resulting in an uncertainty in a given by:

σa =
√√√√√ σ2

est
n∑
i=1

(x2
i − x̄2)

(2.12)
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where xi is the ith value of x and x̄ is the mean value of all x.
The resulting function of the linear regression can be expressed as:

yest = ȳ + a(x− x̄) (2.13)

where ȳ is the average of the measured values of y.
Since the uncertainty of yest is estimated by σest, the uncertainty in ȳ, fol-

lowing normal rules for error propagation [38], is estimated by:

σȳ = σest√
n

(2.14)

The equation for combining uncertainties is given by:

σ2
C = σ2

A + σ2
B (2.15)

where σA and σB are independent sources of error. As σa and σȳ are independent
sources of error, equation (2.15) can be applied to find the uncertainty in the
regression model:

σm = σest

√√√√√ 1
n

+ (x− x̄)2( n∑
i=1

(x2
i − x̄2)

)2 (2.16)

Now, other, unrelated uncertainties can be considered. This is simply done
by applying equation (2.15) again, resulting in:

σ =
√
σ2
m + σ2

e (2.17)

where σe is the mentioned unrelated uncertainty.
One such uncertainty might be the instrument precision. If the measurement

equipment is very accurate, providing measurements with an accuracy of several
decimal points, this uncertainty might be negligible. However, if that is not the
case or the data is made up of indirect measurements where error propagation
decreases the accuracy in the final measurement, this uncertainty should be
included.

Once all relevant uncertainties have been combined, confidence bands can be
found. Confidence bands create a confidence interval surrounding the regression
curve, representing the area within which one is X% confident of finding the
regression line. A confidence level of 95 % is widely used. When limited on the
number of data points, n, the Student’s t-distribution is used to find this band,
through the critical value, tα,ν . By simply multiplying each uncertainty with
the critical t-value corresponding to the required confidence level and degrees of
freedom (ν = n− np), the confidence band, CB, is approximated:

CB = yest ± tα,νσ (2.18)

An example of a linear regression line and surrounding confidence band is shown
in Figure 3.5 (Section 3.3.1). Because of the dependence of x in σa (equation
(2.12)), confidence bands of linear functions take an hourglass shape. However,
sometimes this is barely visible, as is the case in Figure 3.5. The expected shape
can be seen in Figure 4.5 (Section 4.2).
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2.8.2 Chow test

When working with multiple different linear regression lines, one might re-
quire to calculate whether or not the lines significantly (p < 0.05) differ from
one another. This can be tested using the Chow test [39].

This method compares two separate regression lines (y1 and y2) where a
structural difference is known (for example differing PTV sizes, Section 3.1) to a
regression line created by combining the data of the two (yc). The null hypothesis
is that the two lines are the same and can be described by the same, combined
line.

The Chow test creates a test statistic, C, that follows the Fisher-Snedecor
distribution (F -distribution). The critical values in the F -distribution is found
through the desired significance level (α) and two separate values of degrees of
freedom (ν1 and ν2). If the test statistic is not larger than the relevant critical
value in the F-distribution, the null hypothesis cannot be rejected. The Chow
test provides both the test statistic, C, and the two values of degree of freedom:

C = (Sc − (S1 + S2))/k
((S1 + S2)/(N1 +N2 − 2k)) (2.19)

Here, k is the number of parameters and N1 and N2 are the number of data
points in the respective data sets. SC , S1, and S2, are the sum of squared
residuals from the data, given by:

Sz =
Nz∑
i=1

(yi − yz)2 (2.20)

where yz is the estimated value at the value of x corresponding to yi. The two
values of degrees of freedom are found by: ν1 = k and ν2 = N1 +N2 − 2k.

This calculation does not directly provide a specific p-value; it only tells
whether or not the test statistic reached its required level of significance. How-
ever, software for calculating the p-value, using the test statistic and the two
values of ν, does exist (Section 3.3.1).
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3 Method
In this section, the steps taken in order to calculate the limit of acceptable

magnitude of bone misclassification, in relation to misclassification volume size,
distance to the tumour centre, and planning target volume size, will be detailed.
To simulate cases of bone misclassification, several sets of two conventional CT
images were created by editing one original image (Section 3.1). Each set of
CT images consisted of one CT image with a bone cylinder volume and another
where the bone volume had been replaced by air. For each image containing an
air volume, an optimised VMAT treatment plan was created, for differing PTV
sizes, and copied to its corresponding CT image containing a bone volume (Sec-
tion 3.2). The doses were calculated for both and the relevant data were retrieved
for analysis. Another similar experiment was performed to test the consequences
of misclassifying an entire skull (Section 3.4). Finally, the experimental results
were tested in realistic scenarios using authentic sCT images (Section 3.5).

3.1 Acquiring planning CT images
Providing the basis for the treatment planning CT images, a CT scan was

performed on a water sphere phantom. The scanner used was the Siemens Bi-
ograph Vision, made for PET/CT imaging. The scan was performed at 100 kV
maximum energy and 119 mA s exposure time product (important point on maxi-
mum energy in Section 5). The slice thickness was 1 mm and the plane resolution
was 512x512 pixels with a spacing of 0.5859 mm in both directions. This CT scan
was the basis for all following CT images in this thesis, with the exception of the
sCT images (Section 3.5), ensuring that the CT images were all identical with
the exception of the differences of interest.

The base CT image was digitally edited multiple times. Using another
Siemens product, MM RT Image Suite in syngo.via [7], the water sphere phan-
tom was digitally replaced by a slightly larger (20.0 cm diameter) water sphere
(0 HU) with its origin in the beam isocentre. The same HU overwriting tool was
used to create the cylindrical bone and air volumes within the water sphere, in
the axial direction. The value 800 HU was suggested for bone by syngo.via, and
was therefore chosen. This CT value might represent a realistic misclassification
of bone consisting of a larger part cortical bone and a smaller part cancellous
bone (Section 2.5). Air is -1000 HU by definition (Section 2.4) and was there-
fore chosen for the cylindrical volumes in the CT images that represented the
misclassification. The cylindrical volume’s length was chosen to be long enough
to ensure it always fully covered the PTVs in the direction orthogonal to the
axial plane. The PTVs were created later, and irradiated with a 0.5 cm margin
(Section 3.2). As the largest PTV in this thesis was a sphere of diameter 2.5 cm,
a cylindrical length > 3.5 cm was sufficient. Each CT image with a certain sized
cylindrical bone volume had a corresponding CT image with an equal sized air
volume, as shown in Figure 3.1. 29 such sets were created, with six different
misclassification volume sizes, given in two-dimensional area A, and five differ-
ent distances between the tumour and misclassification volume centres d. The
experimental set-up is illustrated in Figure 3.2.
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(a) Centre axial slice of water sphere with
air cylinder. Representing the bone mis-
classification case.

(b) Centre axial slice of water sphere with
bone cylinder. Representing the real case.

Figure 3.1: A set of otherwise equal CT images with equal sized air/bone
volumes. This shows the set at which A = 12.5 cm2 and d = 5.0 cm.

Figure 3.2: Two-dimensional geometric illustration of experimental set-up,
with variables S (length of horizontal line and diameter of the PTV), A (area
within the grey circle, base area of cylinder), and d (length of vertical line and
distance between misclassification volume centre and PTV centre).

The specific values used for A were 2.5 cm2, 5.0 cm2, 7.5 cm2, 10.0 cm2,
12.5 cm2, and 15.0 cm2. The values chosen for d were 3.0 cm, 4.0 cm, 5.0 cm,
6.0 cm, and 7.0 cm. The treatment planning volumes were chosen to be spheres
with diameters, S, of 1.5 cm, 2.0 cm, and 2.5 cm, and were to be located in the
centre of the water sphere. In clinics, the sizes of PTVs differ greatly. A 2.0 cm
diameter PTV was suggested by supervisor and medical physicist Veronika Tøm-
merås, as it represents a typical, clinical PTV size. The two other values of S
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(1.5 cm and 2.5 cm) were chosen as they fit the experimental set-up while ap-
proximately resulting in a doubling in volume for each step up in size. More sets
of CT images containing more combinations of the variables A and d could have
been created. However, the treatment planning and dose calculation processes
(Section 3.2) were time consuming. Going through the treatment planning and
dose calculation processes once, for a single value of S, took an entire working
day. As several repetitions of this process for each combination of S, A, and d,
were desired, this number of values for S, A, and d were deemed fitting.

As a cylinder with base area 15.0 cm2, equalling a radius of 2.19 cm, would
leave only 0.6 mm between the edges of the PTV and cylinder at d = 3.0 cm, a
set of CT images with these values of A and d was not created. This was done
in order to create as equal conditions for each experiment as possible, disregard-
ing the variables of interest. At d = 7.0 cm there will always be a significant
amount of water between the misclassification volume and PTV, meaning the
photon path would never go directly from bone/air and into the PTV. For the
experiments to be equal, every experiment must have a set-up where the photon
path to the PTV through the misclassification volume is, in order: water (0 HU),
misclassification volume (-1000 HU or 800 HU), water (0 HU), and PTV (0 HU).
The effect of deviating from this by going directly from misclassification volume
to PTV was seen in the project thesis experiment [12], where the linear relation-
ship of dose deviation within the PTV with the area A was compromised. For
S = 2.0 cm, this was also an issue for the 12.5 cm2 cylinder case at d = 3.0 cm
(0.1 mm between edges). Additionally, for S = 2.5 cm, the 10.0 cm2 cylinder and
12.5 cm2 cylinder would overlap the PTV at d = 3.0 cm. These experiments were
therefore not conducted.

3.2 Creating treatment plan
The 29 sets of planning CT images were imported into a TPS; the Varian

external beam planning v 15.6, using the calculation algorithm AAA v 15.6.06.
Being the most common treatment plan for external beam radiotherapy, VMAT
was chosen (Section 2.3.2). As lower X-ray energies are more prone to attenu-
ation than higher ones, the lowest possible LINAC energy (6 MV) was chosen,
providing maximum differences in doses due to the attenuation difference of bone
and air.

First; the three different PTVs were created in the contouring tool using a
three-dimensional sphere brush to create default accuracy, high risk PTVs, which
were placed in the centre of the water sphere and copied to every planning CT.
In order to simulate a real bone misclassification case, the original planning and
optimisation processes were done using the planning CT images containing air
before being copied over to its corresponding bone planning image. In the exter-
nal beam planning tool, a new plan was created, giving the PTV of choice a dose
of 2 Gy, with the patient positioned head first-supine. The arc geometry tool was
used to create an optimised VMAT plan with a target margin of 0.50 cm, a fixed
collimator angle of 0°, and the recommended, isocentric, full, clockwise rotation.
The upper and lower dose boundaries in the optimisation tool, the DVH goals
mentioned in Section 2.3.3, were set to 2.03 Gy and 1.97 Gy, respectively, both
with 100 % priority. Normal structure resolution (2.5 mm) was chosen before
running the optimisation tool in automatic optimisation mode.

After optimisation, the doses were calculated, resulting in dose matrices, as
shown in Figure 3.3, and DVH point (Dmean) measurements (Appendix A.2).
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Plan normalisation was set so 100 % of the dose covers 50 % of the target volume
and the MU value was documented (Appendix A.5). The reference condition
for the LINAC was 130 MU (Section 2.3.1). Each combination of variables (S,
A, and d) was tested three times (E = {1,2,3}). Most often, the optimisation
process resulted in three different MU values, indicating three different plans had
been created. When MU values were repeated, meaning the automatic optimi-
sation had created the same plan twice, the optimisation process was repeated
until a distinct MU value was found. In some cases, many tries were needed
in order to create three different plans. A fourth repetition through the entire
experiment would likely have been very time consuming. Some combinations
may not have provided a fourth distinct plan at all. Therefore, three distinct
plans were deemed enough. When a distinct plan was created, it was copied
onto the coinciding planning CT image containing a bone volume, where the
treatment beam was perfectly replicated by performing a dose calculation using
the identical MU value found in the air case.

(a) Centre axial slice of dose matrix cal-
culated with air volume.

(b) Centre axial slice of dose matrix cal-
culated with bone volume.

Figure 3.3: Calculated dose matrices for the case at which S = 2.0 cm, A =
12.5 cm2, and d = 5.0 cm.

Two-dimensional dose matrices were exported for gamma analysis (Section 3.3.2).
The dose matrices were exported showing absolute, planar plan dose through
the isocentre of the PTV, and aligned to show the axial slice, equivalent to what
is shown in the planning CT images (Figure 3.1). The dose matrices were 10 x
10 cm and 256 x 256 pixels, resulting in a resolution of approximately 0.3906 mm.

The Dmean DVH point measurements (Appendix A.2) were recorded into
Microsoft Office Excel (MS Excel) for further analysis (Section 3.3). The values
were obtained using the cumulative DVH with absolute doses [Gy] and relative
volumes [%].
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3.3 Data analysis
As Sjölin et al. [15] used the DVH parameter, Dmean, as their gold standard

measurement in their correlation analysis to test the gamma evaluation’s ability
to correctly fail cases of too high dose deviation (>2 %), Dmean deviation was
utilised as the main measurement of interest in this thesis. This is because a
bone misclassification error leading to bone (800 HU) being replaced by air (-1000
HU) in the planning sCT will lead to a volume of significantly lower attenuation,
which in turn leads to an underestimate of the amount of radiation required to
sufficiently irradiate the PTV. Gamma evaluation, which, unlike PTV-specific
DVH measurements, takes all areas of significant dose into consideration, was
performed to evaluate the general dose distribution, while also testing whether
the pass rate of two-dimensional gamma evaluation accurately highlights cases
of significant PTV dose deviations.

3.3.1 DVH

The data analysis was done in MS Excel. For each combination of variables
S, A, and d, the relative Dmean deviation, ∆mean, was calculated for the three
different treatment plans using:

∆mean = |Dm,air −Dm,bone|
Dm,air

· 100 % (3.1)

where Dm,air and Dm,bone are the measured values of Dmean for the air and bone
cases, respectively. The instrument precision in the TPS, σp, of the Dmean mea-
surement is 0.0005 Gy. Through propagation of uncertainty [38], the uncertainty
of the indirect measurement of ∆mean was approximated using:

σ∆ ≈
∣∣∣∣∣Dm,air −Dm,bone

Dm,air

∣∣∣∣∣
(

2σp
|Dm,air −Dm,bone|

+ σp
Dm,air

)
100 %
Dm,air

(3.2)

As Dm,air and Dm,bone vary with ∆mean, σ∆ varies as well. However, this varia-
tion is very small. The uncertainty of the ∆mean measurement is approximately
0.025 % for low values of ∆mean and 0.026 % for high values of ∆mean.

As shown in Figure 3.4, ∆mean was plotted for A. This was done for every
combination of S and d. As a linear relationship between ∆mean and A was
expected [12], the data points were fitted to a linear function (y = ax+ b) using
MS Excel’s linear regression model. Here y = ∆mean and x = A. The purpose
of this was to find the point I = (d,A) where the linear function intersects the
∆mean limit of 2 %. This was simply done by using the SLOPE and INTERSECT
functions in MS Excel to find a and b, respectively, before solving y = 0.02 =
ax + b for x. The fit of the data to the model, measured by R2, was obtained
(Appendix A.8.1). Values of R2 close to 1 indicate good fits.
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Figure 3.4: ∆mean plotted as a function of A for the case where S = 2.0 cm
and d = 5.0 cm. The red line at ∆mean = 2 % shows the border for acceptable
mean dose deviation. The black line, resulting from linear regression of the 18
data points, is given by the linear equation in the top right corner (y = ax+ b).
R2 indicates the fit of the equation to the measurements of ∆mean.

However, as regression is imperfect (Section 2.8.1), there is uncertainty as-
sociated with these lines. These uncertainties, σL, were calculated through the
equations shown in Section 2.8.1, ending with equation (2.17), where σe = σ̄∆.
Here, σ̄∆ is the mean of all σ∆ relevant for the regression line. The uncertainties,
σL, provide the uncertainties of the measurements of I, σI . These uncertain-
ties were computed by adjusting equation (2.18) to find the two intersections,
I(d,Aleft) and I(d,Aright), with the 2 % line by solving the following equation
for x = A:

0.02 = ax+ b±
√
σ2
m + σ̄2

∆ (3.3)

The uncertainties in I could now be calculated:

σI = Aright −Aleft
2 (3.4)

By applying the relevant values of tα,ν , the 95 % confidence bands of the re-
gression lines (equation (2.18)) were also approximated (Section 2.8.1), as shown
in Figure 3.5. Similarly, the 95 % confidence intervals of I were calculated, illus-
trated by the left-most and right-most intersections of the confidence band with
the 2 % line in Figure 3.5.
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Figure 3.5: The 95 % confidence band (dotted lines) surrounding the regression
line at S = 1.5 cm and d = 5.0 cm. The relatively bad fit of the data (R2 =
0.8528) creates a relatively wide confidence band.

For each S, the points I(d,A) were plotted. Once again, linear regression was
performed, resulting in new regression lines (Section 4.1). The same procedure
as described above was performed again in order to create approximate 95 %
confidence bands. In this case, the mean uncertainty connected to I(d,A), σ̄I ,
replaced σe in equation (2.18).

To investigate the importance of the variable S, all three final regression
lines, plotted in Figure 4.4, were compared, two at a time, using the Chow test
(Section 2.8.2). All three resulting test statistics were then fed into the MS Excel
function F.DIST.RT in order to calculate the p-values (Section 4.1).
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3.3.2 Gamma evaluation

All gamma analysis was done using MATLAB® version R2018b (9.5.0.944444).
The code for performing 2D gamma evaluation was used with permission from
its author [40]. This code provides a matrix of gamma values, describing the
coherence of dose distribution in each point. An example is given in Figure 3.6
along with a matrix adjusted to show whether a pixel has passed or failed. All
code that was created and used is given in Appendix A.9.

(a) Gamma value matrix. Border at γ = 1. (b) Binary gamma matrix.

Figure 3.6: Gamma matrices found by performing global gamma evaluation on
the dose matrices in the case of A = 12.5 cm2 and d = 5.0 cm. Gamma criteria:
2 %/2 mm. Dose cutoff: 20 %.

The code given in Appendix A.9 used the above-mentioned gamma evaluation
code to find the gamma pass rates given a global gamma evaluation and with a
dose cutoff value of 20 %, illustrated in Figure 3.7. All pixels that were cut did
not contribute to the final pass rate. Global gamma evaluation and this cutoff
were chosen to match what is used in the radiotherapy clinic at UNN, Tromsø.

(a) Edited dose matrix, air volume case. (b) Edited dose matrix, bone volume
case.

Figure 3.7: Dose matrices where S = 2.0 cm, A = 12.5 cm2, and d = 5.0 cm,
edited to illustrate the 20 % cutoff by setting all dose values below 20 % of max-
imal dose to 0 Gy.

After documentation of the gamma pass rates (Appendix A.2), the results
were analysed in a similar fashion to that of the DVH experiment, as described
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in Section 3.3.1. Here, σp = 0 and the line ∆mean = 2 % was replaced with
the gamma pass rate at 95 %. However, as it is not possible to obtain gamma
pass rates above 100 %, a linear fit is difficult to achieve when including all data
points, as illustrated in Figure 3.8.

Figure 3.8: A bad linear fit of the data is worsened by multiple data points
at maximum value (100 %). The 95 % confidence band surrounds the regression
line.

Therefore, for all A where every single gamma pass rate measurement was 100 %,
the data points were excluded, as shown in Figure 3.9.

Figure 3.9: A slightly improved version of the fit to the linear data in Figure 3.8.
For all A where every data point was 100 %, the data points have been excluded.
The 95 % confidence band surrounds the regression line.

The results of this process are presented in Section 4.2, where they are vi-
sually compared to the results of Section 3.3.1. The Chow test was once more
utilised in order to test for significant difference between the final lines using the
gamma evaluation data compared to the DVH data.
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3.4 Skull experiment
Because of the differing technique in generating sCT images of the head

compared to the pelvis (Section 2.5), with the head technique focusing more on
preventing misclassification of bone, interest arose in the consequences of misclas-
sification of an entire skull. Why is more effort put into avoiding misclassification
of bone tissue in the head? In order to investigate the radiotherapeutic conse-
quences of bone misclassification of the skull, the experiment described below
was set up.

The initial 20 cm diameter water sphere planning CT image (Section 3.1)
was edited again to create an experiment simulating a bone misclassification
error where an entire skull volume is replaced by air, shown in Figure 3.10.
The water sphere is approximately the size of an average human head when
measured from back to front [41]. The average human skull thickness is 6.5 mm
for men and 7.1 mm for women [42]. Therefore, a 7.0 mm thickness was chosen
for the misclassification volume. The misclassification volume was placed inside
the water sphere, leaving a 5.0 mm thick layer of water representing the layer of
soft tissue on the outside of the skull. The two-dimensional area of bone that
has been misclassified is given by A = π(R2 − r2), where R = 9.5 cm is the
outer radius of the spherical shell and r = 8.8 cm is the inner radius. This gives
A = 40.2 cm2.

(a) Centre axial slice of water sphere with
air skull. Representing the bone misclassi-
fication case.

(b) Centre axial slice of water sphere with
bone skull. Representing the real case.

Figure 3.10: A set of otherwise equal CT images with equal sized air/bone
volumes in the shape of spherical shells of thickness 7.0 mm. The outside water
shell is 5.0 mm thick.

In this experiment, the size of the PTV was kept constant (S = 2.0 cm) and
the variable tested was the distance, x, between the inner edge of the misclassi-
fication volume and the centre of the PTV, as is illustrated in Figure 3.11. Six
different distances were tested, ranging from x = 2.3 cm to x = 8.8 cm, where
the latter is in the origin of the water sphere. The distance between all neigh-
bouring PTV centres was 1.3 cm. The method for creating dose matrices was
identical to that described in Section 3.2, with one exception; the two plans for
the PTVs closest to the skull were optimised with two half rotations instead of
the one full rotation, as recommended by the TPS. The MU values are given in
Appendix A.6.
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Figure 3.11: Two-dimensional geometric illustration of experimental set-up,
showing the PTV closest to, and farthest from, the inner edge of the spherical
shell misclassification volume. PTV1 has its centre at x = 2.3 cm from the skull,
while PTV6 (x = 8.8 cm) is in the origin of the water sphere.

The gamma pass rate and ∆mean (equation (3.1)) were recorded (Appendix A.3)
and averaged for each x (Section 4.3). Because of clarity of results, no statistical
analysis was performed.

3.5 Synthetic CT scenarios
To test whether the results of the experiments above were realistic, real sCT

images were created, featuring this author. This author was at the time a 25
year old, healthy male of approximately average height and weight (178 cm and
75 kg). A Siemens Biograph mMR 3T PET/MRI scanner was used to scan the
author’s pelvis and head, using the techniques described in Section 2.5, before
the sCT images were created in MM RT Image Suite. The resultant sCT of the
pelvis was a 224 x 224 pixel image of 0.2 cm resolution. The slice distance was
also 0.2 cm. The head sCT image was 199 x 296 pixels with a resolution and
slice distance of 0.1 cm. Both sCT images simulated the CT values at 120 kV
maximum energy (Section 2.4). Using MM RT Image Suite, some of the bones in
the images were replaced with air before all images were exported into the TPS.
The contouring tool in the TPS was used to calculate the mean CT values of the
bone in the sCT images. Both the pelvis and head case showed a mean value
of bone (cortical and cancellous bone combined) of approximately 400 HU. This
discrepancy in CT value from the other experiments performed in this paper
is further discussed in Section 5 as it, naturally, influences the results of the
experiments described in this section.

In the TPS, spherical PTVs of 2.0 cm diameter were placed at certain dis-
tances from bone misclassification volumes. S = 2.0 cm was chosen, as the results
in Section 4.1 showed least uncertainty for this PTV size. Only one value of S
was tested, as no significant statistical difference was found for the PTV size
(Section 4.1). Only two PTVs at different distances, d or x, were needed to ob-
serve the dependency of the distance between PTV and misclassification volume.
More PTVs could have been created, but because of the difference in bone CT
value between the primary and skull experiments and the sCT experiments, the
only valuable results that could be observed here was that ∆mean decreased for
increased d or x, while simultaneously being below 2 % if, but not only if, A and
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d indicated that this magnitude of error was acceptable (Table 4.4). Because
of the time constraints mentioned in Section 3.2, the method described there
was repeated three times for each PTV (E = {1,2,3}). The resultant ∆mean

(equation (3.1)) and pass rates were recorded and averaged (Section 4.4.1 and
Section 4.4.2). These results were compared to that of the main experiment
and skull experiment (Section 3.3.1 and Section 3.4). The MU values were also
documented (Appendix A.7).

3.5.1 Pelvis sCT

Prostate cancer is the most common type of cancer in men and is often
treated with radiotherapy. To simulate cases of prostate cancer, the prostate
in the sCT was approximately located by comparing with images in an online
source showing the prostate in CT [43]. Once the prostate had been located,
one of the bones close by, the right-sided pubis [44], was replaced by air, as
shown in Figure 3.12. The average two-dimensional size of this bone, spanning
the slices covering the PTV and the margins, was A ≈ 7.5 cm2. Two PTVs were
placed at distances d ≈ 4.0 cm and d ≈ 7.0 cm between the PTV centres and the
misclassification volume centre. The dark grey voxels were avoided when placing
the PTVs as the CT value in these pixels are that of fat (-75 HU).

Figure 3.12: The pelvis sCT image showing two PTVs (red circles) in the
prostate area, the centres of which are at approximate distances 4.0 cm and
7.0 cm from the approximated centre of a misclassified pubic bone. Screenshot
from syngo.via.

To the left in Figure 3.12, an arm is visible. This is because the arms were
lying down the side of the body during the scan. During radiotherapy of the
pelvis, patients lie with their arms in the opposite direction in order to avoid
giving radiation to the arms and improving the beams coming in from the sides.
To avoid the arms being a part of the dose calculation, the arms were removed
from the body volume that automatically generates in the contouring tool in the
TPS.
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3.5.2 Head sCT

The sCT image of the head was edited twice. First; replacing a segment of the
skull of two-dimensional size A ≈ 4.4 cm2 with air. This is interesting because of
the shape of the misclassification volume. In the pelvic sCT, the misclassification
volume had a cylindrical-like shape, like in the primary experiment. In this
experiment, the misclassification volume had a much flatter shape, meaning
the misclassification volume occluded the PTV to a greater extent in relation
to its size. Here, the length of the photon path through the misclassification
volume was shortened. In this way, comparisons with the pelvic sCT experiments
could be made in order to observe the effect of the misclassification volume’s
shape. Upon the second iteration of editing, in order to emulate the experiment
performed in Section 3.4, the entire skull was replaced with air. The experiment
in Section 3.4 showed no clinically acceptable results for the DVH measurements
(Section 4.3). However, as the CT values of bone are significantly lower in the
sCT images, a new experiment with a fully misclassified skull was performed. In
both the partial and full skull misclassification, the automatic body segmenting
of the edited images in the TPS failed to accurately delineate the body, as shown
by the green line in Figure 3.13. This was easy to correct by copying the body
volume from the sCT image with no induced misclassification. However, it is
important to note that this would not be as easy with no such error-free image.
For bone misclassifications close to the skin, this presents a reoccurring problem
in the TPS.

Figure 3.13: Contour of the body (green line) error at misclassified volume
close to the surface of the skin. Screenshot from TPS.

For the first simulated misclassification, two PTVs were placed, with their
centres at distances approximately 3.0 cm and 4.0 cm away from the approxi-
mated centre of the bone misclassification volume, as shown in Figure 3.14.
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Figure 3.14: The head sCT image showing two PTVs (red circles) in the brain,
the centres of which are at approximate distances 3.0 cm and 4.0 cm from the
approximated centre of the misclassified piece of the skull. Screenshot from
syngo.via.

To emulate the experiment in Section 3.4, using the sCT image with the
entire skull replaced by air, two PTVs were placed in the skull at distances
2.3 cm and 8.8 cm from the inner edge of the back of the skull, as shown in
Figure 3.15.

Figure 3.15: The head sCT image showing two PTVs (red circles) in the brain,
the centres of which are at approximate distances 2.3 cm and 8.8 cm from the
inner edge of the back of the misclassified skull. The back-to-front length of the
skull and the length of 0.7 cm is also shown. Screenshot from syngo.via.

From Figure 3.15, it is apparent that the approximations of skull size and
thickness made in Section 3.4 were fitting. However, the CT values making up
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the brain tissue are slightly higher than that of water. Therefore, the PTVs and
surrounding area in these tests have CT values of approximately 30 HU, with
some exceptions. The cerebrospinal fluid (large dark grey areas in Figure 3.15)
has CT values close to 0 HU.
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4 Results
Here, the results of the experimental method described in Section 3 are given,

featuring the variables S, A, and d, illustrated in Figure 3.2. First and foremost,
this embroils the lines of acceptance created by statistical analysis of the DVH
data. One such line is presented for each PTV size, S, that was tested, along with
an approximate 95 % confidence band. Similar results for the gamma evaluation
data are presented later. Thereafter, the results of the smaller experiments
conducted are given.

4.1 DVH - lines of acceptance
In this section, the results of the data analysis, described in Section 3.3.1, on

the DVH data (Appendix A.2) are presented.
Figure 4.1 shows the final line of acceptance; the line for which points above

represent an 800 HU bone misclassification error too great to be acceptable
(∆mean > 2 %, red zone) and the line’s approximate 95 % confidence band, for
the case where S = 1.5 cm. The error bars represent the 95 % confidence interval
of the points I(d,A) (α = 0.0025). Figure 4.2 and Figure 4.3 presents the same
data, though for S = 2.0 cm and S = 2.5 cm, respectively.

Figure 4.1: The line resulting from linear regression of the points I(d,A) and
surrounding 95 % confidence band (dotted lines) for S = 1.5 cm. The error bars
connected to I(d,A) represent the 95 % confidence intervals of I(d,A). The red
zone represents combinations of A and d that results in a ∆mean above 2 % and
the green zone represents the combinations that give values of ∆mean below 2 %.

Table 4.1 shows the numerical data in Figure 4.1.
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Table 4.1: The values of A and d making up the points I(d,A) in Figure 4.1,
where S = 1.5 cm. The 95 % confidence intervals of A are also given.

d [cm] A± tα,νσI[cm2]

3.0 4.73 ± 0.60

4.0 5.85 ± 0.26

5.0 8.38 ± 0.97

6.0 9.39 ± 0.48

7.0 11.59 ± 0.50

Figure 4.2: Same as Figure 4.1, except for S = 2.0 cm.

Table 4.2 shows the numerical data in Figure 4.2.
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Table 4.2: The values of A and d making up the points I(d,A) in Figure 4.2,
where S = 2.0 cm. The 95 % confidence intervals of A are also given.

d [cm] A± tα,νσI[cm2]

3.0 5.06 ± 0.27

4.0 6.25 ± 0.26

5.0 8.32 ± 0.30

6.0 9.81 ± 0.58

7.0 11.79 ± 0.42

Figure 4.3: Same as Figure 4.1, except for S = 2.5 cm.

Table 4.3 shows the numerical data in Figure 4.3.
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Table 4.3: The values of A and d making up the points I(d,A) in Figure 4.3,
where S = 2.5 cm. The 95 % confidence intervals of A are also given.

d [cm] A± tα,νσI[cm2]

3.0 5.17 ± 0.25

4.0 6.59 ± 0.22

5.0 7.90 ± 0.28

6.0 10.23 ± 0.73

7.0 12.14 ± 0.55

The resultant equations and values of R2 for each S is given in Table 4.4.

Table 4.4: The equations describing the linear relationship of A and d for each
S. R2, indicating the fit of the linear model to the data, is also given.

S [cm] Equation R2

1.5 A = 1.73d− 0.64 0.9838

2.0 A = 1.70d− 0.26 0.9940

2.5 A = 1.76d− 0.38 0.9875

With an average R2 of approximately 0.9884 all lines of acceptance in this
section indicate a good fit of the points I(d,A) to the linear model.

Figure 4.4 shows all of the acceptance lines above in the same diagram. The
background colour matches that of Figure 4.2.
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Figure 4.4: Comparison of regression lines where S = 1.5 cm (red squares,
staggered line), S = 2.0 cm (blue squares, unbroken line), and S = 2.5 cm (green
circles, dotted line). The coloured background is identical to that in Figure 4.2.
The red zone represents combinations of A and d that results in a ∆mean above
2 % and the green zone represents the combinations that give values of ∆mean

below 2 %, for the case where S = 2.0 cm.

As described in Section 3.3.1, the Chow test was performed in order to test
for statistically significance of the change in the regression lines for differing S.
Table 4.5 shows the result of these tests. None of the regression lines significantly
(p < 0.05) differ from one another. The null hypothesis that all lines are equal
cannot be rejected, meaning this thesis has found no significance of the volume
changes, with the spherical PTVs’ diameters ranging from 1.5 cm to 2.5 cm.

Table 4.5: p-values for the different combinations of S. There is no statistically
significant difference between the lines.

Combination p

S = 1.5 cm + S = 2.5 cm 0.29

S = 1.5 cm + S = 2.0 cm 0.50

S = 2.0 cm + S = 2.5 cm 0.67
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4.2 Gamma evaluation - lines of acceptance
Similarly to Section 4.1, the results of the data analysis, described in Sec-

tion 3.3.2, on the gamma pass rate data (Appendix A.2) are presented. The
difference in this section is that the coloured backgrounds of the plots do not
correspond to the data in the plot, but to the results in Section 4.1. This is for
the purpose of visually comparing the DVH and gamma evaluation results.

Figure 4.5 shows the final line of acceptance; the line for which points above
represent a 800 HU bone misclassification error too great to be acceptable
(gamma pass rate < 95 %) and the line’s 95 % confidence band, for the case
where S = 1.5 cm. The error bars represent the 95 % confidence interval of the
points I(d,A) (α = 0.0025). Figure 4.6 and Figure 4.7 presents the same data,
though for S = 2.0 cm and S = 2.5 cm, respectively.

Figure 4.5: The line resulting from linear regression of the points I(d,A) and
surrounding 95 % confidence band (dotted lines) for S = 1.5 cm. The error bars
connected to I(d,A) represent the 95 % confidence intervals of I(d,A).

Table 4.6 shows the numerical data in Figure 4.5.
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Table 4.6: The values of A and d making up the points I(d,A) in Figure 4.5,
where S = 1.5 cm. The 95 % confidence intervals of A are also given.

d [cm] A± tα,νσI[cm2]

3.0 9.88 ± 0.57

4.0 13.59 ± 1.00

5.0 19.20 ± 2.22

6.0 12.52 ± 0.62

7.0 14.16 ± 2.63

Figure 4.6: Same as Figure 4.5, except for S = 2.0 cm.

Table 4.7 shows the numerical data in Figure 4.6.
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Table 4.7: The values of A and d making up the points I(d,A) in Figure 4.6,
where S = 2.0 cm. The 95 % confidence intervals of A are also given.

d [cm] A± tα,νσI[cm2]

3.0 8.34 ± 0.77

4.0 10.43 ± 0.54

5.0 12.21 ± 0.65

6.0 11.95 ± 1.03

7.0 13.67 ± 0.69

Figure 4.7: Same as Figure 4.5, except for S = 2.5 cm.

Table 4.8 shows the numerical data in Figure 4.7.
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Table 4.8: The values of A and d making up the points I(d,A) in Figure 4.7,
where S = 2.5 cm. The 95 % confidence intervals of A are also given.

d [cm] A± tα,νσI[cm2]

3.0 6.36 ± 0.10

4.0 9.48 ± 0.54

5.0 10.99 ± 0.69

6.0 13.83 ± 4.84

7.0 12.83 ± 1.21

The resultant equations and values of R2 for each S is given in Table 4.9.

Table 4.9: The equations describing the linear relationship of A and d for each
S. R2, indicating the fit of the linear model to the data, is also given.

S [cm] Equation R2

1.5 A = 0.75d + 10.13 0.1209

2.0 A = 1.22d + 5.22 0.9057

2.5 A = 1.73d + 2.05 0.8600

For S = 1.5 cm, it is apparent that this data does not fit well with the
linear model, nor with the corresponding DVH data case (Figure 4.1). For
S = 2.0 cm, the data fits better with the linear model than for S = 1.5 cm.
However, for d < 7.5 cm, the line of acceptance is higher (less strict) than that
of the corresponding DVH data case (Figure 4.2). For S = 2.5 cm, the line of
acceptance fits better with the corresponding DVH data case (Figure 4.3).

Figure 4.8 shows all of the lines above in the same diagram. The background
matches that of Figure 4.6.
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Figure 4.8: Comparison of regression lines where S = 1.5 cm (red squares,
staggered line), S = 2.0 cm (blue squares, unbroken line), and S = 2.5 cm (green
circles, dotted line). The coloured background is identical to that in Figure 4.6.

The Chow test was performed to test for statistically significant difference of
the regression lines. Table 4.10 shows the result of the Chow tests (Section 2.8.2).
None of the regression lines significantly (p < 0.05) differ from one another. The
null hypothesis that all lines are equal cannot be rejected, meaning this thesis
has found no significance of the volume changes in the gamma evaluation data.

Table 4.10: p-values for the different combinations of S. There is no statistically
significant difference between the lines.

Combination p

S = 1.5 cm + S = 2.5 cm 0.22

S = 1.5 cm + S = 2.0 cm 0.36

S = 2.0 cm + S = 2.5 cm 0.40

Using the Chow test, the lines of acceptance in the gamma evaluation case
were compared to the corresponding lines in the DVH case. Table 4.11 shows the
resultant p-values. For all three S, statistically significant differences between
lines were observed.
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Table 4.11: p-values from the Chow test, testing for difference in the accep-
tance lines between the gamma evaluation and DVH data for all S. Statistically
significant differences were observed for all lines.

S [cm] p

1.5 0.03

2.0 0.0003

2.5 0.02

For spherical PTVs with diameters smaller or equal to 2.5 cm, the gamma
evaluation method, with gamma criteria of 2 %/2 mm and a dose cutoff of 20 %,
does not perform well enough in signalling mean PTV dose deviations larger
than 2 %.

4.3 Skull experiment
In this section, the results of the skull experiment (Section 3.4) are presented.

Table 4.12 shows the average ∆mean and gamma pass rates for the six different
PTV distances, x. Because of the instrument precision in the TPS (Section 3.3.1)
the measurements of ∆mean have an uncertainty of approximately 0.03 %.

Table 4.12: Mean measured values of ∆mean and gamma pass rates for each of
the six PTVs at distance x.

x [cm] Mean ∆mean [%] Mean pass rate [%]

2.3 5.18 83.53

3.6 5.06 88.08

4.9 4.97 94.81

6.2 4.84 94.97

7.5 4.76 95.03

8.8 4.72 94.97

None of the values in Table 4.12 are clinically acceptable, with the excep-
tion of the gamma pass rate at x = 7.5 cm. However, a larger average ∆mean

is observed for PTVs closer to the inner edge of the simulated skull, indicating
a worsening of ∆mean for decreased distance to areas of misclassification. This
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behaviour fits well with previous results (Section 4.1). Nonetheless, misclassifi-
cation of an entire skull with a CT value of 800 HU is not clinically acceptable.

4.4 Synthetic CT scenarios
In this section, the results of the experiments described in Section 3.5 are

given. The values given here were found through averaging the measured val-
ues listed in Appendix A.4. Here, two 2.0 cm diameter PTVs were placed in a
pelvic sCT image of the author to simulate prostate cancer treatment with bone
misclassification. Similar experiments were conducted to simulate brain tumour
treatment with partial and entire skull misclassification.

4.4.1 Pelvis sCT

The table in this subsection provides the results of the experiment in Sec-
tion 3.5.1 for the two distances, d. The two-dimensional size of the misclassified
bone was A ≈ 7.5 cm2.

Table 4.13: Mean measured values of ∆mean and gamma pass rates for the two
distances, d. Here, A ≈ 7.5 cm2.

d [cm] Mean ∆mean [%] Mean pass rate [%]

4.0 1.64 99.63

7.0 0.72 100

For d = 4.0 cm, one expects a mean ∆mean above 2.0 %, using the equation
in Table 4.4 for S = 2.0 cm and assuming bone CT value of 800 HU. As the mean
CT value is lower than 800 HU in this experiment, a smaller ∆mean is expected
and observed. However, an increase in ∆mean is still observed for a decrease in
d, as one would expect.
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4.4.2 Head sCT

The two tables in this subsection provide the results of the two experiments
in Section 3.5.2. Table 4.14 shows the result of the experiment with the partial
skull bone misclassification (A ≈ 4.4 cm2), while Table 4.15 shows the results of
the entire skull misclassification experiment.

Table 4.14: Mean measured values of ∆mean and gamma pass rates for the two
distances, d, with partial skull bone misclassification. Here, A ≈ 4.4 cm2.

d [cm] Mean ∆mean [%] Mean pass rate [%]

3.0 1.52 97.22

4.0 1.21 96.81

Once more, an increase in ∆mean is observed for a decrease in d, as one would
expect. However, an increase in gamma pass rate for a decrease in d is observed
as well.

As was the case in the results of the first skull experiment (Table 4.12),
an increase in mean ∆mean was observed in Table 4.15 for a decrease in x.
As the mean CT value of the misclassified bone is lower than 800 HU in this
experiment, lower values of ∆mean compared to that of the experiment described
in Section 3.4 were expected.

Table 4.15: Mean measured values of ∆mean and gamma pass rates for the two
distances, x, with entire skull bone misclassification.

x [cm] Mean ∆mean [%] Mean pass rate [%]

2.3 4.10 87.39

8.8 3.54 95.82
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5 Discussion
As expected from the results of the project thesis [12], the DVH measure-

ments show a lower Dmean when bone misclassifications occur (Appendix A.2,
Appendix A.3, Appendix A.4). The drastically lowered electron density of the
misclassification volumes in the planning CT/sCT images causes less attenua-
tion to be planned for in these areas. Thus, during radiotherapy, the radiation
beams have lower intensities after traversing the misclassification volumes than
what is expected from the planning process, resulting in the observed decrease in
Dmean. Naturally, a decrease in dose to the PTV is very undesirable, as it might
affect chances of patient survival. This effect will be observed if and only if the
treatment plan consists of beams that traverse a misclassification volume. The
VMAT method is certain to be affected, assuming the misclassification volume
is in the same sCT slice as the PTV. However, other methods might be affected
differently by such errors dependent on the relative amounts of the treatment
beams that traverse the misclassification volumes. Therefore, the results in this
thesis only hold for the specific VMAT method described in Section 3.2.

The primary goal of this thesis was to find equations describing the limit
of acceptable misclassification errors dependent on PTV size S, bone area A,
and distance d (Figure 3.2), using the PTV dose deviation criterion of 2 %.
Three such equations (for the three different S) are listed and plotted along
with their approximate 95 % confidence bands, in Section 4.1, on the form:
A = ad + b. These equations provide an easy-to-use tool for radiographers,
radiologists, and/or medical physicists in evaluating whether a misclassification
error of approximate two-dimensional size, A, and which centre is at a distance,
d, to the centre of the PTV, is acceptable. For all A < ad+b, the misclassification
error is acceptable, assuming the described VMAT plan, bone-to-air misclassi-
fication, and average CT value of the misclassified bone ≤ 800 HU. This thesis
does not take bone-atlas misplacement into consideration [10]. As mentioned in
Section 4.4.2, misclassifications of bone close to skin might create problems with
the automatic body contouring in the TPS, meaning a new scan might be the
more efficient choice in these cases.

The project thesis [12] showed slightly less strict results for S = 2.0 cm
and d = 5.0 cm when approximating ∆mean in two-dimensional dose matrices.
In the project thesis, the 2 % PTV dose deviation line was crossed at A ≈
8.9 cm2. The corresponding result in this thesis is A ≈ 8.2 cm2 (Table 4.4).
However, in addition to not utilising real DVH points, the project thesis had
some key differences in the experimental set-up. Most importantly; it did not use
separately optimised treatment plans for each A. The same treatment plan was
used, with the same MU value, for all experiments. This thesis, more realistically,
went through the optimisation process for each combination of S, A, and d
(Section 3.2). This might explain the 0.7 cm2 difference in results.

The values of R2 for the lines in Section 4.1 show good fits to linear models.
The same is indicated for the lines created to find the data points, I(d,A), for
the final lines. The average value of R2 shown in Table A.13 (Appendix A.8.1)
is 0.9650. However, the best fitted lines are found for S = 2.0 cm, where the
average R2 is 0.9824. This has resulted in a lower σ̄I than the other PTV
sizes. Thus, the thinnest 95 % confidence band is observed for S = 2.0 cm.
Considering the widths of the confidence bands and the observed proximity of
the lines of acceptance in Figure 4.4, it is no surprise that the Chow test found no
significant difference between the lines for PTV size variables S = 1.5 cm through
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S = 2.5 cm. However, an even larger difference in S and/or more data creating
smaller uncertainties might have resulted in a statistically significant difference.
It is logical to assume that a larger PTV, which would have a smaller percentage
of volume that is occluded by the misclassification volume, would be less affected
by the misclassification. In theory (Section 2.8.2), as there is no statistically
significant difference between the regression lines, one combined regression line
found from linear regression of all values in Table 4.1, Table 4.2, and Table 4.3
(A = 1.73d − 0.43) could have been given as the main result in this thesis.
However, because of the known structural difference in the data (varying S)
and assumed significance of S at larger differences, this author found it fitting to
provide the results for each PTV size. In hindsight, values of S larger than 2.5 cm
and smaller than 1.5 cm should have been tested. A maximum of S = 2.5 cm was
chosen because of the number of obtainable data points; with the experimental
set-up shown in Figure 3.2, an even larger S would have resulted in fewer possible
data points because of the PTV overlapping the closest misclassification volumes
(Section 3.1). This problem is seen when comparing Table A.1 and Table A.3
(or from Table A.8), where it is apparent that the statistical analysis of the
S = 1.5 cm case utilised a total of 87 ∆mean data points, while the analysis of
the S = 2.5 cm case utilised a total of 81 ∆mean data points.

The shape of the misclassification volume, logically, influences ∆mean. The
length, L, of traversed matter with attenuation coefficient, µ, for a beam of
photons is important for the intensity of the beam, as seen in equation (2.7).
Thus, in the skull experiment (Section 3.4), where L = 0.7 cm and A = 40.2 cm2,
one would expect a higher beam intensity on the inner side of the skull than on
the inner side of a cylindrical bone misclassification of the same size, as L would
have a maximum of 7.15 cm. This might explain why the skull experiment only
showed values of ∆mean close to 5 % despite a very large A and full occlusion of
the PTV (Section 4.3). The choice of a cylindrical misclassification volume in the
primary experiment therefore represents a worst case scenario, as flatter bone
misclassifications have reduced effects on the beam intensity with respect to their
sizes, A. The pelvic sCT experiment and partial skull sCT experiment contained
two differently shaped misclassification volumes. The pelvic sCT experiment had
a cylinder-like misclassification volume, while the partial skull sCT experiment
had a curved plate-like misclassification volume. Using the results of the primary
experiments for S = 2.0 cm (Table 4.4), one expects a slightly larger ∆mean at
d = 4.0 cm in the sCT pelvis experiment, illustrated in Figure 5.1, than for
d = 3.0 cm in the sCT partial skull experiment, illustrated in Figure 5.2. One
also expects a larger difference in ∆mean between the two points in Figure 5.1
than between the two points in Figure 5.2. The observed results in Table 4.13
and Table 4.14 meet both of these expectations, indicating that the shape of
the misclassification volume has not had a substantial effect. However, this
comparison of four averaged measurements is not satisfactory to fully explore the
effects of misclassification volume shape. This should be explored in a separate
study. It is also important to note that the misclassification volume is much
closer to the external surrounding air in the sCT partial skull experiment than
in the primary experiment, meaning there is less dose build-up and attenuation
before the beam reaches the misclassification volume. The effects of this in
relation to the results of this thesis are unknown.
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Figure 5.1: The points (4.0, 7.5) and (7.0, 7.5) in the sCT pelvis experiment
(Section 3.5.1) plotted with the line in Figure 4.2.

Figure 5.2: The points (3.0, 4.4) and (4.0, 4.4) in the sCT partial skull exper-
iment (Section 3.5.2) plotted with the line in Figure 4.2.

Another important choice made in these experiments, as observed in Sec-
tion 4.4, is the CT value (HU) of the misclassified bone. From the line of
acceptance in Figure 5.1 and Figure 5.2, one expects larger values of ∆mean

in Table 4.13 and Table 4.14, respectively. The point (4.0, 7.5) in Figure 5.1
should have an average ∆mean above 2 % in Table 4.13. The same behaviour
of mean ∆mean is observed when comparing the clinically unacceptable results
of the skull experiment (Table 4.12) to the corresponding sCT experiment (Ta-
ble 4.15). However, this can be attributed to the relatively low CT value of
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bone in the sCT images (∼ 400 HU). Chronologically, the primary experiment
was performed long before the sCT images were created; thus the average CT
values of bone in the sCT images were not known when choosing 800 HU for
the bone tissue. Due to the coronavirus pandemic, the sCT images were not
created until the beginning of May 2020, at which point there was too little time
to make changes to the CT values of bone in the other experiments. However,
the average CT values of real cases of sCT bone misclassification is not known.
Choosing 400 HU for the experiments could have been proven to be too low if
bone misclassifications generally consist of larger parts cortical bone and smaller
parts cancellous bone. If only cortical bone is subject to misclassification in real
sCT images, 800 HU is too low instead of too high, meaning this thesis has not
taken the worst case scenario into consideration when choosing the CT value.
More data on the expected CT values in real misclassification cases should be
gathered before these experiments are repeated for another CT value of bone.
It is also not known whether real misclassifications always put air in place of
bone. Cortical and cancellous bone might be misclassified as water instead (0
HU), meaning larger and closer misclassifications would be acceptable. Again,
these experiments have considered the worst case scenario by using air (-1000
HU) instead of water (0 HU, Section 2.4). Using the worst case scenarios in
these experiments is natural, as one must avoid mistakenly accepting sCT im-
ages featuring too large errors. One logical conclusion that can be drawn from
the comparisons of the results of the primary experiment and sCT experiments
is that the equations in Table 4.4 should provide the limits for acceptable bone
misclassification for misclassified bones of CT value ≤ 800 HU.

One point of interest, in regards to the CT values in the images, is that the
original CT scan in the primary experiment was performed at 100 kV maximum
energy (Section 3.1). For high density tissue, such as bone, the CT value varies
dependent on the energy and the scanner [45]. The CT value of bone tissue
of known electron density relative to water, RED, will be higher in a 100 kV
CT image compared to in a 120 kV image, as seen in Figure 2.9. Using this
figure, one would estimate RED ≈ 1.4 for 800 HU at 100 kV, and RED ≈ 1.5
at 120 kV. This is an approximate 6.67 % RED error. Energy-dependent HU-
to-RED conversion is required to accurately obtain electron density from a CT
image. According to Constantinou et al. [46], a 5 % error in RED in a voxel
leads to approximately 1 % error in dose. However, in order to avoid these hassles
at UNN, all CT scans for the purpose of radiotherapy planning are performed
at 120 kV, and only this curve is utilised in the TPS. Therefore, even though
the original scan in the primary experiment and skull experiment was performed
at 100 kV, the TPS has treated the CT values in the images as though they
were taken at 120 kV. Thus, the difference in CT energy between the primary
experiment (100 kV) and the sCT experiments (120 kV) was inconsequential for
the dose calculation in this thesis. However, for the purpose of reproducibility,
the original CT scan should be performed at 120 kV when using a TPS that
utilises different conversion curves for different energies.

The changes in Dmean indicate the bone misclassification consequences for
the PTVs. In order to quantify the consequences in the entire irradiation vol-
ume, including possible OARs, the gamma evaluation is utilised. However, this
thesis observed less strict limits of acceptance using the gamma evaluation data
(Section 4.2), as was predicted from the results of the project thesis [12] (Sec-
tion 1). The gamma evaluation and criteria used in this thesis are not sufficient
to highlight unacceptable PTV dose deviations. The gamma evaluation data also

53



have much worse fits to the linear models, even with the steps taken in order to
improve the fits in Section 3.3.2. The average value of R2 in Table A.14 is 0.7730,
with one value as low as 0.1470 (Appendix A.8.2). As a larger PTV will cover a
greater number of pixels in the dose matrices, a change in the gamma evaluation
data dependent on S was expected. However, no statistically significant differ-
ence was observed (Section 4.2). This might be due to the large uncertainties
in the gamma evaluation regression lines. The gamma evaluation data might
have been worsened by one particular issue that can be seen in Figure 3.7b. For
some dose matrices, the exported 10 x 10 cm plane matrices were too small to
include the entirety of the pixels that were above the 20 % cutoff. This affects
the number of pixels that should have been tested and, by extension, the gamma
pass rates (Section 4.2).

To ensure accurate error detection by the DVH measurements and gamma
evaluation, it is important that the dose matrices are correctly calculated. At
UNN, calculation is done using an analytical anisotropic algorithm (AAA). This
algorithm is considered better than pencil beam models, but inferior to Monte
Carlo simulations [47]. Monte Carlo simulations, however, have long computa-
tion times, making them impractical for clinical use. Using Monte Carlo simu-
lation models to calculate the dose matrices would have given a better represen-
tation of the physical consequences of misclassification, but it would not have
given an accurate representation of the errors that would have been detected by
the gamma evaluation in a clinic that uses an AAA.

It is important to note that there is no misregistration in this experiment;
the anatomy of the water sphere in the sets of CT images lines up perfectly,
ensuring that the differences that are detected in the experiment are solely due
to the misclassification error of interest. This is not clinically realistic, as both
external and internal movement will occur when the patient is moved from the
MRI scanner to the LINAC, despite many efforts to keep everything in the same
position. When investigating the misregistration of the prostate, which is an area
often in need of superior soft tissue contrast (MRI) for delineation, Roberson et
al. [48] concluded that the minimum axial MR to axial CT registration error is
approximately 2 mm. Such an error would worsen the ∆mean and gamma pass
rates, meaning a smaller magnitude of misclassification error would be accept-
able. To quantify the effects of such a misregistration error, one could perform
a similar experiment with an induced misregistration in addition to a bone mis-
classification. Such an experiment would provide more clinically relevant data
for acceptable misclassification. MRI is also prone to geometric distortions, pro-
viding another possible source of error. These errors are considered beyond the
scope of of this study.

As mentioned above, additional future work should encompass a number of
things, either before or during the repetition of a similar experiment. Some of
these are: 1) Obtaining the real sCT values that are prone to misclassification,
before repeating this experiment for these Hounsfield units; or slightly higher to
ensure a worst case scenario. 2) Increasing the range of PTV sizes, S, in order
to fully understand the effects of PTV size in bone misclassification. 3) Making
changes in the optimised VMAT treatment plan (Section 3.2), for example by
changing the upper and lower DVH goals or treatment beam energy. 4) For
partial misclassification of the skull specifically, repeating the experiment with a
different, flatter shape of the misclassification volume, closer to the surrounding
external air, and a CT value of 30 HU for the brain and PTV. Alternatively,
real sCT images of the head, with realistic bone misclassification errors, could be
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utilised directly. 5) Accounting for common misregistration errors by inducing a
slight shift between the air and bone CT/sCT images. 6) Exploring the added
effects of other possible MRI artefacts, like geometric distortion.

55



6 Conclusion
Using the deviation, ∆mean, in the DVH point measurements, Dmean, and a

2 % acceptance criterion, this study found three linear equations describing the
maximum acceptable sizes of misclassified bone given by the two-dimensional
size, A, dependent on the distance from the centre of the spherical PTV to the
centre of the misclassification volume, d. The three equations each describe the
line of acceptance for a differently sized PTV. For a PTV of diameter S = 1.5 cm,
the equation is given by: A = 1.73d− 0.64. For a PTV of diameter S = 2.0 cm,
the equation is given by: A = 1.70d − 0.26. And for a PTV of diameter S =
2.5 cm, the equation is given by: A = 1.76d − 0.38. This assumes a specific,
clinically relevant VMAT treatment plan, perfect image registration, a CT value
of bone of 800 HU, a PTV CT value of 0 HU, and a cylindrical misclassification
error orthogonal to the treatment beam that replaces the bone with air (-1000
HU). These equations might provide a useful tool for radiographers, radiologists,
and/or medical physicists in evaluating whether a misclassification error in sCT
is too great to be acceptable for radiotherapy treatment planning. If the error
is too great, inclusion of bone in the sCT must be pursued, e.g. by bone-atlas
techniques [6] and/or UTEMR sequences [10], if possible. The gamma evaluation
method utilised at UNN did not adequately identify cases of too large PTV dose
deviation. Both simulated misclassifications of an entire skull volume showed
clinically unacceptable results for all PTV distances, x, from the inner edge of
the skull. As expected for bone of CT value < 800 HU, the sCT experiments
of partial bone misclassifications in the pelvis and the skull showed increase of
∆mean for a decrease in d, and clinically acceptable results.
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A Appendix
A.1 Guide to appendix

This appendix contains all measured and recorded values that are relevant
to this thesis. These are the measurements of Dmean and gamma pass rates in
the experiments (Appendix A.2, Appendix A.3, Appendix A.4) and the recorded
MU values for each experiment (Appendix A.5, Appendix A.6, Appendix A.7).
The values of R2 from the statistical analysis of the data in Appendix A.2 and
Appendix A.3 are given in Appendix A.8.1 and Appendix A.8.2, respectively.
The appendix also contains the MATLAB code that was created in order to
obtain the gamma pass rates (Appendix A.9).
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A.2 Measurements
In this section, all measurements used for data analysis in this paper are

listed. The tables show the measurements of Dm,air, Dm,bone, and the gamma
pass rates (PR) for each time the experiment was performed, E = {1,2,3}. The
difference between tables is the value of the PTV size, S.

Table A.1: The measured values of Dm,air, Dm,bone, and gamma pass rates
(PR), in each E, for each combination of A and d. Here, S = 1.5 cm.

E 1 1 1 2 2 2 3 3 3

d/A Dm,air Dm,bone PR Dm,air Dm,bone PR Dm,air Dm,bone PR

[cm]/[cm2] [Gy] [Gy] [%] [Gy] [Gy] [%] [Gy] [Gy] [%]

3.0/2.5 1.993 1.974 99.95 1.992 1.969 100.00 1.992 1.971 99.99

3.0/5.0 1.990 1.947 98.34 1.992 1.948 98.47 1.992 1.949 98.57

3.0/7.5 1.995 1.932 97.11 1.993 1.925 95.19 1.993 1.927 94.94

3.0/10.0 1.990 1.934 95.36 1.991 1.912 94.56 1.991 1.912 95.37

3.0/12.5 1.991 1.899 93.60 1.990 1.900 93.59 1.991 1.900 93.56

4.0/2.5 1.991 1.974 99.98 1.993 1.976 100.00 1.994 1.976 99.92

4.0/5.0 1.991 1.960 100.00 1.992 1.957 99.78 1.995 1.962 99.98

4.0/7.5 1.992 1.941 98.03 1.992 1.944 96.17 1.991 1.938 96.97

4.0/10.0 1.990 1.918 96.03 1.991 1.919 95.23 1.992 1.921 95.15

4.0/12.5 1.991 1.910 95.40 1.991 1.909 95.72 1.991 1.908 95.40

4.0/15.0 1.993 1.893 95.26 1.991 1.895 94.63 1.992 1.893 95.40

5.0/2.5 1.992 1.979 100.00 1.992 1.979 100.00 1.991 1.979 100.00

5.0/5.0 1.992 1.963 100.00 1.990 1.960 100.00 1.994 1.967 100.00

5.0/7.5 1.990 1.947 99.97 1.991 1.948 98.07 1.993 1.969 100.00

5.0/10.0 1.992 1.941 97.35 1.991 1.940 97.15 1.990 1.942 97.28

5.0/12.5 1.991 1.954 99.75 1.991 1.947 97.94 1.996 1.933 96.29

5.0/15.0 1.990 1.918 96.25 1.990 1.917 96.25 1.992 1.920 96.28

6.0/2.5 1.991 1.983 100.00 1.991 1.980 100.00 1.991 1.981 100.00

6.0/5.0 1.991 1.970 100.00 1.990 1.970 100.00 1.990 1.967 100.00

6.0/7.5 1.990 1.957 100.00 1.990 1.957 99.99 1.994 1.963 100.00

6.0/10.0 1.993 1.958 99.25 1.994 1.961 99.53 1.993 1.954 99.55

6.0/12.5 1.991 1.936 95.64 1.992 1.937 93.39 1.990 1.936 95.53

6.0/15.0 1.992 1.921 91.28 1.991 1.924 91.78 1.990 1.924 92.01

7.0/2.5 1.994 1.984 100.00 1.994 1.985 100.00 1.994 1.984 100.00

7.0/5.0 1.994 1.980 94.92 1.994 1.978 100.00 1.992 1.977 100.00

7.0/7.5 1.993 1.967 96.03 1.995 1.970 100.00 1.991 1.966 100.00

7.0/10.0 1.993 1.962 99.96 1.994 1.962 99.97 1.994 1.961 100.00

7.0/12.5 1.992 1.944 93.03 1.994 1.946 95.90 1.992 1.945 94.40

7.0/15.0 1.995 1.944 93.18 1.995 1.944 93.27 1.994 1.946 95.88
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Table A.2: The measured values of Dm,air, Dm,bone, and gamma pass rates
(PR), in each E, for each combination of A and d. Here, S = 2.0 cm.

E 1 1 1 2 2 2 3 3 3

d/A Dm,air Dm,bone PR Dm,air Dm,bone PR Dm,air Dm,bone PR

[cm]/[cm2] [Gy] [Gy] [%] [Gy] [Gy] [%] [Gy] [Gy] [%]

3.0/2.5 1.993 1.971 100.00 1.993 1.970 100.00 1.995 1.972 100.00

3.0/5.0 1.990 1.955 99.32 1.991 1.955 99.50 1.991 1.950 97.45

3.0/7.5 1.995 1.936 94.65 1.996 1.938 94.79 1.995 1.941 95.37

3.0/10.0 1.990 1.912 93.71 1.990 1.913 93.81 1.991 1.913 93.85

4.0/2.5 1.995 1.980 100.00 1.996 1.981 100.00 1.994 1.981 100.00

4.0/5.0 1.992 1.957 99.43 1.992 1.958 99.45 1.992 1.957 99.32

4.0/7.5 1.993 1.944 96.76 1.994 1.944 96.81 1.991 1.941 96.24

4.0/10.0 1.991 1.930 94.70 1.990 1.931 95.07 1.992 1.931 93.99

4.0/12.5 1.991 1.911 93.45 1.989 1.910 93.33 1.991 1.913 93.44

4.0/15.0 1.991 1.896 91.98 1.991 1.899 92.62 1.992 1.900 92.77

5.0/2.5 1.991 1.980 100.00 1.991 1.980 100.00 1.995 1.985 100.00

5.0/5.0 1.993 1.971 99.99 1.992 1.971 100.00 1.990 1.970 100.00

5.0/7.5 1.994 1.960 99.89 1.990 1.952 99.25 1.992 1.955 99.34

5.0/10.0 1.994 1.947 95.86 1.995 1.947 95.71 1.993 1.945 95.74

5.0/12.5 1.991 1.929 94.40 1.989 1.928 94.65 1.990 1.930 94.62

5.0/15.0 1.990 1.920 94.68 1.990 1.912 92.66 1.991 1.912 92.51

6.0/2.5 1.993 1.982 100.00 1.992 1.982 100.00 1.993 1.983 100.00

6.0/5.0 1.994 1.973 100.00 1.994 1.972 100.00 1.992 1.970 100.00

6.0/7.5 1.991 1.971 100.00 1.991 1.963 100.00 1.991 1.966 100.00

6.0/10.0 1.990 1.948 95.96 1.991 1.962 100.00 1.991 1.950 96.45

6.0/12.5 1.990 1.938 94.34 1.991 1.937 93.25 1.991 1.938 93.28

6.0/15.0 1.990 1.925 92.35 1.990 1.925 92.26 1.991 1.927 91.86

7.0/2.5 1.991 1.982 100.00 1.991 1.983 100.00 1.991 1.983 100.00

7.0/5.0 1.990 1.973 100.00 1.992 1.972 100.00 1.990 1.975 100.00

7.0/7.5 1.997 1.974 100.00 1.995 1.973 100.00 1.997 1.974 100.00

7.0/10.0 1.991 1.960 99.89 1.991 1.959 99.93 1.991 1.960 99.92

7.0/12.5 1.992 1.947 96.32 1.990 1.948 98.27 1.991 1.947 94.23

7.0/15.0 1.992 1.941 93.62 1.991 1.938 92.71 1.993 1.941 93.81

63



Table A.3: The measured values of Dm,air, Dm,bone, and gamma pass rates
(PR), in each E, for each combination of A and d. Here, S = 2.5 cm.

E 1 1 1 2 2 2 3 3 3

d/A Dm,air Dm,bone PR Dm,air Dm,bone PR Dm,air Dm,bone PR

[cm]/[cm2] [Gy] [Gy] [%] [Gy] [Gy] [%] [Gy] [Gy] [%]

3.0/2.5 1.992 1.972 99.99 1.993 1.973 99.97 1.992 1.973 99.97

3.0/5.0 1.991 1.953 97.12 1.990 1.950 96.91 1.993 1.951 96.66

3.0/7.5 1.991 1.936 93.58 1.992 1.935 93.41 1.990 1.934 93.34

4.0/2.5 1.990 1.976 100.00 1.990 1.977 100.00 1.992 1.977 99.99

4.0/5.0 1.992 1.961 99.57 1.991 1.960 99.64 1.991 1.962 99.71

4.0/7.5 1.990 1.946 96.20 1.990 1.945 95.54 1.989 1.944 95.53

4.0/10.0 1.989 1.931 94.08 1.995 1.937 93.84 1.989 1.928 93.85

4.0/12.5 1.991 1.911 92.80 1.991 1.913 92.88 1.992 1.911 91.88

4.0/15.0 1.990 1.894 91.13 1.990 1.894 92.03 1.991 1.895 91.19

5.0/2.5 1.993 1.979 100.00 1.990 1.978 99.99 1.993 1.981 100.00

5.0/5.0 1.991 1.969 99.85 1.990 1.965 99.95 1.989 1.965 99.75

5.0/7.5 1.994 1.955 97.49 1.992 1.953 96.95 1.992 1.953 97.22

5.0/10.0 1.992 1.946 95.96 1.992 1.942 94.98 1.991 1.940 94.91

5.0/12.5 1.992 1.927 92.70 1.993 1.927 92.81 1.991 1.925 92.91

5.0/15.0 1.989 1.914 93.63 1.990 1.916 93.38 1.990 1.914 93.29

6.0/2.5 1.991 1.980 100.00 1.992 1.981 100.00 1.991 1.979 100.00

6.0/5.0 1.993 1.976 100.00 1.991 1.970 100.00 1.989 1.971 100.00

6.0/7.5 1.992 1.961 99.03 1.992 1.959 98.14 1.994 1.962 98.92

6.0/10.0 1.992 1.950 94.67 1.993 1.946 92.87 1.992 1.945 92.20

6.0/12.5 1.989 1.936 93.56 1.995 1.954 96.81 1.994 1.956 98.76

6.0/15.0 1.992 1.935 95.10 1.991 1.935 95.00 1.991 1.936 94.86

7.0/2.5 1.992 1.986 100.00 1.991 1.985 100.00 1.991 1.985 100.00

7.0/5.0 1.992 1.979 100.00 1.990 1.977 100.00 1.992 1.980 100.00

7.0/7.5 1.992 1.968 99.74 1.993 1.965 98.71 1.993 1.966 98.77

7.0/10.0 1.994 1.961 100.00 1.992 1.963 100.00 1.991 1.963 100.00

7.0/12.5 1.994 1.950 93.82 1.994 1.951 94.25 1.992 1.960 98.83

7.0/15.0 1.992 1.940 91.59 1.992 1.940 91.97 1.992 1.941 92.02
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A.3 Measurements - skull
In this section, all measurements obtained from the experiments described in

Section 3.4 are listed, for each time the experiment was performed, E = {1,2,3}.

Table A.4: The measured values of Dm,air, Dm,bone, and gamma pass rates
(PR), in each E, for each combination of A and d.

E 1 1 1 2 2 2 3 3 3

x Dm,air Dm,bone PR Dm,air Dm,bone PR Dm,air Dm,bone PR

[cm] [Gy] [Gy] [%] [Gy] [Gy] [%] [Gy] [Gy] [%]

2.3 1.996 1.891 83.58 1.994 1.894 83.73 1.996 1.891 83.28

3.6 1.995 1.894 88.93 1.995 1.894 87.22 1.998 1.897 88.09

4.9 1.991 1.891 94.90 1.991 1.893 94.75 1.991 1.892 94.79

6.2 1.991 1.895 94.86 1.991 1.894 95.00 1.990 1.894 95.06

7.5 1.994 1.899 95.02 1.994 1.899 95.02 1.995 1.900 95.05

8.8 1.992 1.898 94.89 1.994 1.900 95.03 1.994 1.900 94.99
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A.4 Measurements - sCT
In this section, all measurements obtained from the experiments described

in Section 3.5 are listed, for each time the experiment was performed, E =
{1,2,3}. Table A.5 shows the measurements of the pelvic sCT experiment in
Section 3.5.1. Table A.6 and Table A.7 show the measurements of the first and
second experiments described in Section 3.5.2, respectively.

Table A.5: The measured values of Dm,air, Dm,bone, and gamma pass rates
(PR), in each E, for each d in the experiment described in Section 3.5.1.

E 1 1 1 2 2 2 3 3 3

d Dm,air Dm,bone PR Dm,air Dm,bone PR Dm,air Dm,bone PR

[cm] [Gy] [Gy] [%] [Gy] [Gy] [%] [Gy] [Gy] [%]

4.0 1.993 1.960 99.77 1.995 1.962 99.27 1.995 1.963 99.84

7.0 1.993 1.980 100.00 1.996 1.981 100.00 1.994 1.979 100.00

Table A.6: The measured values of Dm,air, Dm,bone, and gamma pass rates
(PR), in each E, for each d in the first experiment described in Section 3.5.2.

E 1 1 1 2 2 2 3 3 3

d Dm,air Dm,bone PR Dm,air Dm,bone PR Dm,air Dm,bone PR

[cm] [Gy] [Gy] [%] [Gy] [Gy] [%] [Gy] [Gy] [%]

3.0 1.991 1.960 98.08 1.992 1.960 99.27 1.993 1.965 99.84

4.0 1.992 1.968 96.79 1.992 1.968 96.69 1.991 1.967 96.81

Table A.7: The measured values of Dm,air, Dm,bone, and gamma pass rates
(PR), in each E, for each d in the second experiment described in Section 3.5.2.

E 1 1 1 2 2 2 3 3 3

d Dm,air Dm,bone PR Dm,air Dm,bone PR Dm,air Dm,bone PR

[cm] [Gy] [Gy] [%] [Gy] [Gy] [%] [Gy] [Gy] [%]

2.3 1.992 1.910 86.58 1.991 1.909 88.70 1.991 1.910 86.91

8.8 1.990 1.920 95.82 1.989 1.919 95.79 1.989 1.918 95.85
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A.5 MU
In this section, all MU values that were found in the optimisation process

and used in the specific plans for the experiment described in Section 3.2 are
listed. The values 1, 2, and 3, in the top of each table, each represent one of the
experiments, E = {1,2,3}, that were performed for each S.

Table A.8: The MU values resultant of optimisation, in each E, for each com-
bination of S, A, and d.

A/d S = 1.5 cm S = 2.0 cm S = 2.5 cm

[cm2]/[cm] 1 2 3 1 2 3 1 2 3

2.5/3.0 495.824 491.436 486.964 459.168 465.032 466.639 486.092 493.200 480.679

2.5/4.0 501.285 509.980 509.137 448.846 447.205 440.685 458.925 459.05 459.895

2.5/5.0 467.428 466.830 466.765 447.869 448.620 448.563 471.192 417.466 463.323

2.5/6.0 490.541 504.735 483.689 430.226 419.292 429.445 459.661 464.017 458.546

2.5/7.0 517.111 460.405 522.685 418.392 390.495 411.372 438.070 458.521 431.152

5.0/3.0 503.980 513.032 508.477 405.918 402.825 402.337 456.179 455.333 461.372

5.0/4.0 496.301 500.513 512.353 433.521 435.552 432.478 454.527 466.727 447.751

5.0/5.0 522.481 518.969 520.410 427.769 426.633 401.481 452.613 461.138 454.891

5.0/6.0 469.063 476.604 465.508 452.672 455.443 460.700 458.026 444.241 451.171

5.0/7.0 470.189 508.835 495.379 396.544 430.555 394.542 475.189 467.374 466.201

7.5/3.0 488.122 497.228 488.480 464.123 474.713 434.096 450.322 451.785 452.911

7.5/4.0 461.360 457.100 463.087 461.048 458.816 452.595 405.018 403.639 402.661

7.5/5.0 474.090 473.797 478.236 467.035 460.187 459.283 466.136 449.946 461.917

7.5/6.0 462.709 464.751 509.731 405.174 402.334 398.815 459.932 465.936 461.058

7.5/7.0 497.975 492.382 497.911 495.629 503.960 544.064 437.671 437.718 438.809

10.0/3.0 484.260 491.524 485.659 406.898 402.457 403.181 - - -

10.0/4.0 505.155 505.083 510.752 396.582 397.900 395.187 449.067 463.372 448.562

10.0/5.0 473.400 472.995 469.109 412.237 413.618 413.026 434.690 440.017 442.268

10.0/6.0 505.757 501.187 489.319 407.162 397.003 403.046 443.841 458.507 468.850

10.0/7.0 513.007 508.305 519.097 399.546 410.121 396.453 451.343 463.717 435.183

12.5/3.0 509.417 498.267 507.150 - - - - - -

12.5/4.0 467.750 462.464 478.198 390.488 394.734 404.072 459.111 454.990 452.704

12.5/5.0 492.598 492.454 498.741 387.608 392.528 391.679 444.584 447.419 446.686

12.5/6.0 441.498 439.895 440.317 387.991 401.962 406.629 449.272 476.355 468.533

12.5/7.0 498.717 510.948 500.853 438.189 448.754 396.099 469.533 465.802 449.935

15.0/4.0 473.467 466.734 467.131 390.354 385.150 387.126 459.678 451.855 455.807

15.0/5.0 466.030 475.934 474.444 396.582 391.879 392.525 438.225 441.751 441.499

15.0/6.0 469.798 447.948 447.397 402.915 394.205 403.009 442.895 446.252 442.801

15.0/7.0 508.187 506.388 497.140 401.019 406.548 403.639 438.387 456.797 458.974
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A.6 MU - skull experiment
In this section, the resultant MU values of the optimisation process in the

experiment descried in Section 3.4 are listed, for each time the experiment was
performed, E = {1,2,3}. Table A.9 shows the MU values for the plans created
at each PTV distance, x.

Table A.9: The MU values resultant of optimisation, for each distance, x, and
E in the skull experiment, described in Section 3.4. Two fields were applied for
x = 2.3 cm and x = 3.6 cm.

x [cm] 1 2 3

2.3 209.699 + 206.619 207.960 + 206.728 203.873 + 213.027

3.6 199.501 + 214.084 193.060 + 216.816 206.951 + 215.954

4.9 366.679 380.507 370.621

6.2 395.514 387.804 395.636

7.5 417.318 413.696 423.498

8.8 430.294 423.590 420.952
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A.7 MU - sCT experiments
In this section, the resultant MU values of the optimisation process in the

experiments described in Section 3.5 are listed. For the experiment described
in Section 3.5.1, Table A.10 shows the MU values for the plans created for the
PTVs at distance d for each time the experiment was performed, E = {1,2,3}.
Similarly, Table A.11 and Table A.12 show the same data for the two experiments
described in Section 3.5.2.

Table A.10: The MU values resultant of optimisation, for both distances, d,
and E in the experiment described in Section 3.5.1.

d [cm] 1 2 3

4.0 520.039 516.543 521.071

7.0 531.570 534.760 533.767

Table A.11: The MU values resultant of optimisation, for both distances, d,
and E in the first experiment described in Section 3.5.2.

d [cm] 1 2 3

3.0 385.172 367.110 386.232

4.0 410.333 408.064 395.483

Table A.12: The MU values resultant of optimisation, for both distances, x,
and E in the second experiment described in Section 3.5.2.

x [cm] 1 2 3

2.3 349.113 335.355 347.723

8.8 380.216 383.736 382.960
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A.8 R2

A.8.1 DVH experiment

In this section, all R2 values from the linear regression of the DVH data is
listed, with the exceptions of those that are given in Section 4.1.

Table A.13: The values of R2 for all S and d.

S [cm] 1.5 2.0 2.5

d [cm] R2 R2 R2

3.0 0.9211 0.9873 0.9901

4.0 0.9919 0.9930 0.9956

5.0 0.8528 0.9978 0.9930

6.0 0.9671 0.9500 0.9212

7.0 0.9710 0.9837 0.9592

A.8.2 Gamma evaluation experiment

In this section, all values of R2 from the linear regression of the gamma pass
rate data are listed, with the exceptions of those that are given in Section 4.2.

Table A.14: The values of R2 for all S and d.

S [cm] 1.5 2.0 2.5

d [cm] R2 R2 R2

3.0 0.9214 0.8515 0.9968

4.0 0.8362 0.9392 0.9455

5.0 0.4621 0.9154 0.9147

6.0 0.9087 0.7590 0.1470

7.0 0.3952 0.8750 0.7278
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A.9 Gamma pass rate code
The code that was created in order to obtain the gamma pass rates from

comparing the dose matrices is given below. The function CalcGamma was used
with permission from its author [40]. MATLAB® version R2018b (9.5.0.944444)
was used in this thesis.

1 c l e a r ; c l c ;
2

3 % Scr i p t f o r running 2D gamma eva lua t i on
4 % Using the func t i on CalcGamma
5

6

7 % Gamma eva lua t i on c r i t e r i a
8 percent = 2 ;
9 dta = 2 ; % re s ∗3 = min dta . (0 .3906 r e s . −> 1.1718 min

dta )
10 l o c a l = 0 ; % Local gamma (1) , g l oba l gamma (0)
11

12 % Cut−o f f va lue ( low−dose gamma eva lua t i on not u s e f u l )
13 c u t o f f = 0 . 2 0 ; % 20% cut−o f f
14

15 % Choosing r e f e r e n c e and ta r g e t dose matr i ce s .
16 % Bone case = r e f /measured = actua l CT case ( ground truth

)
17 % Air case = ta rg e t / c a l c u l a t ed = syn the t i c CT ( t e s t )
18

19 r e f d i c om f i l e = ’RD.7 , 5 Bone5 . dcm ’ ;
20 t a r g e t d i c om f i l e = ’RD.7 , 5 Air5 . dcm ’ ;
21

22 % Retr i ev ing dicom f i l e s and adding data to f i t the input
o f CalcGamma

23 % width = vecto r conta in ing p ixe lw idth and he ight
24 % s t a r t = vecto r d e s c r i b i n g s t a r t o f eva lua t i on ( negat ive

h a l f o f FOV in
25 % both d i r e c t i o n s used here ( s t a r t lower l e f t corner ) ) .
26

27 r e f = dicominfo ( r e f d i c om f i l e ) ;
28 r e f . data = double ( dicomread ( r e f d i c om f i l e ) ) ; % r e l a t i v e

matrix va lue s
29 r e f . data ( r e f . data > 10^9) = r e f . data (1 , 2 ) ;
30 % rep l a c i n g burn po in t s i n c o rn e r s
31 r e f . width = [ r e f . P ixe lSpac ing (1 , 1 ) r e f . P ixe lSpac ing (2 , 1 )

] ;
32 r e f . s t a r t = [−( r e f . width (1 ) ∗double ( r e f . Rows) ) /2 −( r e f .

width (2 ) ∗ . . .
33 double ( r e f . Columns ) ) / 2 ] ;
34 r e f . data = r e f . DoseGridScal ing ∗ r e f . data ; % matrix va lue s

in Gy
35

36

37 t a r g e t = dicominfo ( t a r g e t d i c om f i l e ) ;
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38 t a r g e t . data = double ( dicomread ( t a r g e t d i c om f i l e ) ) ; %
r e l a t i v e matrix va lue s

39 t a r g e t . data ( t a r g e t . data > 10^9) = ta rg e t . data (1 , 2 ) ;
40 % rep l a c i n g burn po in t s in co rne r s
41 t a r g e t . width = [ t a r g e t . P ixe lSpac ing (1 , 1 ) t a r g e t .

P ixe lSpac ing (2 , 1 ) ] ;
42 t a r g e t . s t a r t = [−( t a r g e t . width (1 ) ∗double ( t a r g e t . Rows) ) /2

− . . .
43 ( t a r g e t . width (2 ) ∗double ( t a r g e t . Columns ) ) / 2 ] ;
44 t a r g e t . data = ta rg e t . DoseGridScal ing ∗ t a r g e t . data ; %

matrix va lue s in Gy
45

46 % Performing Gamma eva lua t i on
47 gamma = CalcGamma( re f , target , percent , dta , ’ l o c a l ’ ,

l o c a l ) ; %Function
48

49

50 % Set t ing to e i t h e r f a i l ( 1 ) or pass (0 )
51 gammaPass = gamma > 1 ;
52

53 % Finding p i x e l s to cut because o f dose th r e sho ld
54 targetMask = ( ta r g e t . data < max(max( t a r g e t . data ) ) ∗ c u t o f f )

;
55 refMask = ( r e f . data < max(max( r e f . data ) ) ∗ c u t o f f ) ;
56 mask = targetMask | refMask ;
57

58 % Number o f p i x e l s cut
59 numCut = length ( f i nd (mask == 1) ) ;
60

61 % Set t ing cut va lue s to pass
62 gammaPass ( l o g i c a l (mask ) ) = 0 ;
63 gamma( l o g i c a l (mask ) ) = 0 ;
64

65

66 % Finding pass ra t e
67 [ row , c o l ] = s i z e (gammaPass ) ; % Using gammaPass to to

f i nd rows and columns
68 numTot = row∗ co l − numCut ; % Total number o f p i x e l s −

number cut
69 numPass = length ( f i nd (gammaPass == 0) ) − numCut ; % Number

o f p i x e l s that
70 %

passed
−

number

cut

71

72 % Finding mean gamma value

72



73 meanGamma = sum(sum(gamma) ) /(numTot) ;
74

75 % Finding max gamma value
76 maxGamma = max(max(gamma) ) ;
77

78

79 passRate = numPass/numTot ; % Pass rate , f i n a l r e s u l t o f
s c r i p t

80 di sp ( passRate ) ;
81

82 % Set t ing f i g u r e axes
83 RI = imref2d ( s i z e ( r e f . data ) ) ;
84 RI . XWorldLimits = [− c o l ∗ r e f . width (1 , 1 ) /20 co l ∗ r e f . width

(1 , 1 ) / 2 0 ] ;
85 % Image width in cm
86 RI . YWorldLimits = [−row∗ r e f . width (1 , 2 ) /20 row∗ r e f . width

(1 , 2 ) / 2 0 ] ;
87 % Image he ight in cm
88

89

90 % Figure showing gamma eva lua t i on image pass or f a i l
91 f i g 1 = f i g u r e (1 ) ;
92 hold on
93 im1 = imshow(gammaPass , RI , [ 0 1 ] ) ;
94 %t i t l e ( ’ Global Gamma Pass Rate : 50 Degree Case ’ ) ;
95 x l ab e l ( ’cm ’ ) ;
96 y l ab e l ( ’cm ’ ) ;
97 c1 = co l o rba r ;
98 c1 . Ticks = [0 1 ] ;
99 c1 . TickLabels = { ’ Pass ’ , ’ Fa i l ’ } ;

100 hold o f f
101

102 % Figure showing gamma eva lua t i on image
103 f i g 2 = f i g u r e (2 ) ;
104 hold on
105 im2 = imshow(gamma, RI , [ 0 2 ] ) ;
106 %t i t l e ( ’ Global Gamma Evaluat ion : 50 Degree Case ’ ) ;
107 x l ab e l ( ’cm ’ ) ;
108 y l ab e l ( ’cm ’ ) ;
109 c2 = co l o rba r ;
110 c2 . Ticks = [0 1 2 ] ;
111 c2 . TickLabels = { ’ Pass ’ , ’ Border ’ , ’ Fa i l ’ } ;
112 hold o f f
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