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Abstract

Background: The outcomes of chemoradiotherapy (CRT) in rectal cancer patients

are highly variable depending on the tumor aggressiveness. The tumor is usually

irradiated with a uniform dose distribution, even though most tumors have a spatial

variation in radiation sensitivity due to factors such as hypoxia. R∗2-AUC derived

from dynamic susceptibility contrast (DSC)-MRI is shown to be significantly asso-

ciated with the CRT response, and may be used to detect aggressive tumor regions

that could benefit from a dose escalation. The aim of this thesis was to individually

adapt the radiation dose by creating three-dimensional dose painting by contours

(DPBC) prescriptions based on R∗2-AUC tumor maps.

Materials and methods: 35 rectal cancer patients who underwent DSC-MRI prior

to CRT and surgery were analyzed. First, noise filtration and spatial smoothing were

performed on the R∗2-AUC tumor maps. A threshold value, R∗2-AUCCUT was used

to divide the tumor into a radioresistant region, R, and a radiosensitive region, S.

DPBC dose prescription maps were then created by assigning a standard dose to

S, and an escalated dose to R. R-regions smaller than 1 cm3 were neglected and

considered as a part of S. The relationship between the volume of R and tumor

regression grade (TRG) was statistically analyzed by using the Mann-Whitney U-

test. A Poisson-based linear quadratic (LQ) tumor control probability (TCP) model

was applied to assess the potential advantage of the DPBC prescriptions compared

to a uniform dose boost to the whole tumor. The TCP modelling was done both

with α and β values found in the literature, and with α values fitted to the TCP

for the patient cohort. The tumor cell density was estimated based on apparent

diffusion coefficient (ADC) maps calculated from diffusion weighted MRI (DWI),

and included in the TCP modelling. Finally, an attempt was made to incorporate the

DPBC prescriptions into RayStation to generate dose volume histograms (DVHs).

Results: Three-dimensional DPBC maps were successfully generated based on R∗2-

AUC tumor maps. 16 of the patients had subvolumes larger than 1 cm3. Patients

with TRG3 had significantly larger resistant volumes compared to patients with

TRG1 and TRG2. TCP modelling predicted a higher TCP for DPBC than for a

uniform dose boost. Overall, the TCP values ended up very low when using the sug-
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gested α values from the literature. More realistic TCP values were observed when

α was fitted to the cohort TCP. The cell densities estimated from ADC maps were

higher than the constant cell density first assumed. When adjusting the constant

cell density to 107 cells/cm3, the TCP for the ADC-based cell densities ended up

being very similar to the TCP for a constant cell density. Because of issues related

to the import of the MR images and subvolume structures into RayStation, DVHs

could not be generated.

Conclusion: DPBC based on R∗2-AUC tumor maps has the potential to escalate

the dose to radioresistant regions, and increase the probability of a good radiother-

apy treatment outcome. However, further work on including the DPBC plans in

RayStation is crucial to investigate the impact on organs at risks (OAR), and the

clinical potential of this method. The TCP modelling predicted similar outcomes

when using non-uniform, patient-specific cell densities and a constant cell density of

107 cells/cm3. It may therefore be sufficient to assume a constant cell density across

the tumor.
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Sammendrag

Bakgrunn: Effekten av kjemoradiasjonsterapi (CRT) hos pasienter med endetarm-

skreft er svært varierende, og er avhengig av aggressiviteten til tumoren. Tumoren

bestr̊ales vanligvis med en uniform dosefordeling, selv om de fleste tumorer har vari-

erende str̊alingsfølsomhet p̊a grunn av faktorer som hypoksi. R∗2-AUC fra dynamisk

susceptibilitetskontrast (DSC) MR har vist seg å være assosiert med tumorrespons

ved CRT, og kan potensielt brukes til å oppdage aggressive tumorregioner som kunne

dratt nytte av en høyere dose. Målet med dette arbeidet var å individuelt tilpasse

str̊aledosen ved å lage tredimensjonale “dose painting by contours” (DPBC)-planer

basert p̊a tumorkart av R∗2-AUC.

Materialer og metode: 35 pasienter med endetarmskreft som gjennomgikk DSC

MR-avbildning før CRT og kirurgi ble analysert. Først ble støyfiltrering og Gaussisk

utjevning brukt p̊a R∗2-AUC tumorkartene. Terskelverdien R∗2-AUCCUT ble brukt for

å dele tumoren inn i et str̊alingsresistent omr̊ade, R, og et str̊alingsfølsomt omr̊ade,

S. DPBC-planer ble deretter lagd ved å tilordne en standard dose til S, og en es-

kalert dose til R. R-regioner mindre enn 1 cm3 ble neglisjert og betraktet som en

del av S. Korrelasjonen mellom volumet av R og tumorregresjonsgrad (TRG) ble

statistisk analysert ved bruk av Mann-Whitney U-testen. En Poisson-basert lineær

kvadratisk (LQ) modell for tumorkontroll (TCP) ble anvendt for å vurdere den

potensielle fordelen med DPBC-planene sammenlignet med en uniform doseøkning

til hele tumoren. TCP-modelleringen ble gjort b̊ade med α- og β-verdier funnet i

litteraturen, og med α-verdier tilpasset TCP for pasientkohorten. Celletettheten i

tumoren ble estimert basert p̊a ADC-kart beregnet fra diffusjonsvektet MR (DWI),

og inkludert i TCP-modelleringen. Til slutt ble det gjort et forsøk p̊a å inkludere

DPBC-planene i RayStation for å generere dosevolumhistogrammer.

Resultater: Tredimensjonale DPBC-planer ble generert basert p̊a R∗2-AUC tu-

morkart. 16 av pasientene hadde subvolumer større enn 1 cm3. Pasienter med

TRG3 hadde signifikant større resistente volum sammenlignet med pasienter med

TRG1 og TRG2. TCP-modellering predikerte en høyere TCP for DPBC enn for

uniform doseøkning. Alt i alt var TCP-verdiene veldig lave n̊ar α-verdiene som var

forsl̊att i litteraturen ble brukt. Mer realistiske TCP-verdier ble observert n̊ar α
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ble tilpasset TCP for pasientkohorten. Celletetthetene estimert fra ADC-kart var

høyere enn den konstante celletettheten først antatt. N̊ar den konstante celletet-

theten ble justert til 107 celler/cm3, endte TCP for ADC-basert celletetthet opp

med å være veldig lik som TCP for konstant celletetthet. P̊a grunn av problemer

med importering av MR-bildene og subvolum-strukturene i RayStation, kunne ikke

dosevolumhistogrammer bli generert.

Konklusjon: DPBC basert p̊a R∗2-AUC tumorkart har potensial til å øke str̊aledosen

til str̊alingsresistente regioner, og til å forbedre sannsynligheten for et godt utfall

av str̊alebehandling. Videre arbeid med å inkludere DPBC planene i RayStation er

derimot avgjørende for å undersøke effekten p̊a risikoorganer (OAR), og det kliniske

potensialet til denne metoden. TCP-modelleringen foruts̊a lignende utfall ved bruk

av ikke-uniforme, pasientspesifikke celletettheter og en konstant celletetthet p̊a 107

celler/cm3. Det kan derfor være tilstrekkelig å anta en konstant celletetthet over

tumoren.

v



Contents

Preface i

Abstract ii

Sammendrag iv

Abbrevations viii

1 Introduction 1

2 Theory 3

2.1 Magnetic resonance imaging . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Basic principles . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Pulse sequences and spatial encoding . . . . . . . . . . . . . . 5

2.1.3 Functional MRI . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Tumor vasculature . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Tumor hypoxia . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Rectal cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Radiobiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Tumor response modelling . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Tumor control probability . . . . . . . . . . . . . . . . . . . . 21

2.5 Radiotherapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Definitions of volumes . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 Dose painting . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Methods and materials 26

3.1 Patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 MRI acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Preparatory analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Dose painting by contours . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



3.4.2 Generation of DPBC maps . . . . . . . . . . . . . . . . . . . . 32

3.5 TCP modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Estimation of cell densities from ADC maps . . . . . . . . . . . . . . 35

3.7 Clinical implementation of DPBC . . . . . . . . . . . . . . . . . . . . 37

4 Results 39

4.1 DPBC maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 TCP modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Estimation of cell densities from ADC maps . . . . . . . . . . . . . . 43

4.3.1 TCP modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Clinical implementation of DPBC . . . . . . . . . . . . . . . . . . . . 44

5 Discussion 46

5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1 Preparatory analysis . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.2 Generation of DPBC maps . . . . . . . . . . . . . . . . . . . . 46

5.1.3 TCP modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.4 Estimation of cell densities from ADC maps . . . . . . . . . . 48

5.1.5 Clinical implementation of DPBC . . . . . . . . . . . . . . . . 48

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 DPBC maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.2 TCP modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.3 ADC-based cell densities . . . . . . . . . . . . . . . . . . . . . 52

5.3 Clinical implications . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Conclusion 56

References 57

A Code 67

B Comparison of TRG and R 93

vii



Abbreviations

ADC Apparent diffusion coefficient

AUC Area under the curve

CRT Chemoradiotherapy

CT Computed tomography

CTV Clinical target volume

DPBC Dose painting by contours

DPBN Dose painting by numbers

DSC-MRI Dynamic susceptibility contrast MRI

DVH Dose volume histograms

DWI Diffusion weighted MRI

EPI Echo planar imaging

fMRI Functional MRI

FSE Fast spin echo

Gd Gadolinium

GTV Gross tumor volume

HIF Hypoxia-inducible factor

IMRT Intensity-modulated radiation therapy

LARC Locally advanced rectal cancer

LET Linear energy transfer

LQ Linear-quadratic

MRI Magnetic resonance imaging

NTCP Normal tissue complication probability

OAR Organs at risk

viii



OER Oxygen enhancement ratio

PTV Planning target volume

RF Radio frequency

ROI Region of interest

TCP Tumor control probability

TE Echo time

TME Total mesorectal excision

TNM Tumor node metastasis

TR Repetition time

TRG Tumor regression grade

ix



1 Introduction

Modern surgical approaches, as well as preoperative chemoradiotherapy (CRT), have

improved the outcomes for rectal cancer patients the last decades [1]. However, rectal

cancer is still one of the most frequently diagnosed cancers, and the second most

common cause of cancer deaths worldwide [2].

Solid tumors are characterized by a hostile microenvironment containing regions of

hypoxia, various blood flow, and uncontrolled cell proliferation [3]. These factors are

primarily caused by disorganized tumor vascular networks, and give rise to variable

efficiency of radiation and chemotherapy. It has therefore been suggested to irradiate

the radioresistant regions of the tumor with an escalated dose, so-called biologically

adapted radiotherapy or dose painting [4]. The goal is to increase local control by

individually adapting the radiation dose to biological factors of the tumor.

Recent advances in functional imaging and radiotherapy techniques have made it

possible to identify radioresistant regions of the tumor, and to deliver a non-uniform

dose distribution. Functional MRI (fMRI) is considered a promising tool in dose

painting, as it enables visualization of radiobiologically relevant tumor parameters,

such as vasculature and oxygenation levels [5, 6]. These characteristics are related

to the radioresistance of the tumor, and can hence serve as guidance maps for

dose painting. The delivery of a heterogeneous dose distribution is done by using

one of two approaches; dose painting by contours (DPBC) or dose painting by

numbers (DPBN) [7]. DPBN assigns a specific dose for each tumor voxel according

to the voxel value in the corresponding biological image. DPBC, on the other hand,

segments radioresistant regions based on a threshold value, and prescribes a uniform

dose escalation to these.

Reliable biological tumor maps are essential in dose painting. The OxyTarget study

investigated detection of tumor hypoxia by the use of fMRI techniques, including

dynamic susceptibility contrast (DSC)-MRI [8]. Moreover, the DSC-MRI-derived

parameter R∗2-AUC was found to be significantly associated with the CRT response

in rectal cancer patients, and thus has the potential to be used as a biomarker in

hypoxia-targeted dose painting [9].
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The main objectives of this thesis were:

1. To create three-dimensional DPBC prescriptions based on pre-CRT R∗2-AUC

tumor maps, and assess the potential advantage of these prescriptions with

tumor control probability (TCP) modelling.

2. To estimate the tumor cell density based on apparent diffusion coefficient

(ADC) maps, and evaluate the implication on the TCP model.

3. To incorporate the DPBC plans into RayStation, the radiotherapy treatment

planning system used at St. Olavs hospital, to create dose volume histograms

(DVHs) in order to investigate if the dose delivered to organs at risk (OAR)

are changed with the DPBC strategy.

2



2 Theory

2.1 Magnetic resonance imaging

This section gives a brief introduction to the fundamental principles of magnetic

resonance imaging (MRI) relevant for the analyses in this thesis. Subsections 2.1.1

and 2.1.2 are based on similar sections in the author’s project thesis [10], which in

turn were based on Westbrook et al. [11].

2.1.1 Basic principles

MRI is the observation of nuclear spins. A nucleus has a net spin or angular mo-

mentum if it consists of an odd number of protons or neutrons. Hydrogen (1H) has

spin 1
2
, and is the nucleus most commonly used in medical imaging. This is because

it is abundant in the human body, and because it has a relatively large magnetic

moment, µ, due to its solitary proton. When looking at an ensemble of hydrogen

nuclei, 1H is classically described as a spinning charged sphere, illustrated in figure

2.1a. The spins are usually randomly orientated, but when an external magnetic

field, B0, is applied, they align to be either parallel or anti-parallel with the magnetic

field. This represents the two possible energy states of hydrogen, and is shown in

figure 2.1b. Low-energy nuclei align their magnetic moments parallel with B0 and

are termed spin-up nuclei, while high-energy nuclei align their magnetic moments

in the anti-parallel direction and are termed spin-down nuclei. There is a slight

preference of low-energy nuclei, which results in a small net magnetization vector,

M , illustrated in figure 2.1c. It is the interaction of M with B0 that creates the

basis of MRI.

When B0 is applied, the magnetic moments of hydrogen get an additional spin that

makes them follow a circular path around B0. This is called precession, and the

precessional frequency is known as the Larmor frequency, ω0. ω0 is determined by

the Larmor equation

ω0 = B0γ, (2.1)
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Figure 2.1: a) The hydrogen nucleus can be thought of as a small spinning sphere,

inducing a magnetic moment, µ. b) When B0 is applied, the spins starts precessing

around the axis of the external magnetic field with the Larmor frequency, ω0, and

align either parallel or anti-parallel with B0. c) There is a slight preference of spins

aligned parallel to B0, which results in a small net magnetization vector, M .

where γ is the gyromagnetic ratio. The gyromagnetic ratio describes the relationship

between the magnetic moment and the angular momentum, and is characteristic for

every MR active nucleus. For a given B0, each nucleus will therefore precess at a

specific ω0, which makes it possible to only image the substance of interest (often

1H). In order to produce a detectable MR signal, the net magnetization vector

needs to move out of alignment with B0. This is done by applying a second external

field, B1, also called a radio frequency (RF) pulse, with energy equal to the Larmor

frequency of hydrogen. The RF pulse is usually described by the flip angle, α,

which is the angle between M and B0. The plane perpendicular to B0 is called the

transverse plane, and the amount of magnetization present in this plane affects the

magnitude of the signal.

When the RF pulse is turned off, M tries to realign with B0, and relaxation occurs.

There are two types of relaxation: T1 recovery and T2 decay. The relaxation pro-

cesses happen at the same time, but are independent of each other. T1 relaxation

is the recovery of longitudinal magnetization, and is caused by loss of energy to

the surrounding lattice. This relaxation is characterized by the time constant T1.

T2 relaxation occurs due to interaction between the magnetic fields of neighbouring
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nuclei. This makes individual spins experience small magnetic field differences, and

gradually start to dephase in the transverse plane. T2 decay is characterized by

the transverse relaxation time T2, or by the relaxation rate R2, which is inversely

proportional to T2. In practice, transverse magnetization decays much faster than

predicted due to inhomogeneities in the magnetic field. This relaxation rate is de-

noted R∗2, and described by:

R∗2 = R2 +R′2, (2.2)

where R′2 is the relaxation rate contribution from magnetic field inhomogeneities.

2.1.2 Pulse sequences and spatial encoding

The MRI signal is recorded by receiving coils that induce a current when exposed

to an area of a moving magnetic field. To create an image, the signal needs to

be spatially localized in three dimensions. This is done by applying magnetic field

gradients, one for each direction x, y and z. The gradients alter B0 in a linear way

by adding or subtracting magnetic field strength to B0 relative to the isocentre to

generate a specific resonance frequency for every point along the axis of the gradient.

A new effective magnetic field, Beff , is then created as illustrated in figure 2.2. The

gradients make it possible to only excite spins in selected areas by matching the

frequency of the excitation pulse with the Larmor frequency at the desired position.

Figure 2.2: The gradient alters B0 in a linear way, and creates a new effective

magnetic field, Beff , that is dependent on the position along the gradient axis.
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The spatial frequencies of the signals are stored as an array of numbers in a 2D

matrix called k-space. The k-space is filled during the scan, usually one line per

acquisition. Each point in k-space contains information about every pixel in the final

MR image. The center of the k-space contains low spatial frequency information, and

provide information on the general shape, contrast and brightness of the image. The

outer parts of the k-space contain high spatial frequency information, and provide

information on details, edges and contours. By applying inverse Fourier transform

on the k-space, an MR image of the object can be obtained.

Pulse sequences are combinations of RF pulses and gradients that make it possible

to record an MR signal with the desired information. A pulse sequence is classified

as T2 weighted if it acquires MR images with a contrast depending on the tissues’ T2

relaxation. T2 weighted MRI is fundamental for visualising anatomy and detecting

abnormalities, and is often acquired with a spin echo sequence. To regenerate the

signal loss created by the T∗2 decay, the spin echo sequence utilizes a 180° refocusing

pulse to rephase the spins, as illustrated in figure 2.3. The rephasing is called a spin

echo, and the time it occurs at is defined as the echo time (TE).

Figure 2.3: Illustration of a spin echo. a) Immediately after the excitation pulse is

applied, the spins are in the same phase. b) The spins starts to dephase due to T∗2
decay. c) The dephasing gets reversed by applying a 180° pulse that flips the spins.

d) When all the spins are in the same phase again, at t=TE, a spin echo occurs.

A spin echo sequence along with the timing of the different gradients are shown in

figure 2.4. First, a slice selection gradient, Gslice, is applied simultaneously as the

90° excitation pulse. The slice thickness is determined by the frequency range of the

exciting RF pulse, called the transmit bandwidth. When the image slice has been

selected, the signal needs to be located along both axes of the slice. This is done

by using frequency and phase encoding gradients. The frequency encoding gradient
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produces a frequency shift along one axis of the image, and is applied when the

signal is received. It is therefore often called the readout gradient, Gro. The phase

encoding gradient, Gphase, is applied after the excitation pulse, and produces a phase

shift along the remaining axis. Multiple phase-encoding steps must be used, one for

each acquisition, in order to sort out spatial information in this direction. The time

between each 90° excitation pulse is called the repetition time (TR).

Figure 2.4: Schematic illustration of a spin echo pulse sequence. Gslice and the 90°
excitation pulse are applied simultaneously, followed by Gphase and Gro. A 180° pulse

is applied at t=TE/2, and creates a spin echo at t=TE.

T2 weighting is achieved when both the TR and TE are long (typically 2000 ms

and 90 ms, respectively). Fast spin echo (FSE) sequences are often used to shorten

the acquisition times. FSE sequences use multiple 180°-refocusing pulses after the

excitation pulse to generate a train of echoes. This makes it possible to sample

several k-space lines per excitation.

7



2.1.3 Functional MRI

Unlike conventional anatomical imaging, functional MRI (fMRI) enables assessment

of tissue structures that can be used to characterize physiological processes of a

tumor, such as oxygenation levels and perfusion related parameters [12, 13].

2.1.3.1 Dynamic susceptibility contrast MRI

Dynamic susceptibility contrast MRI (DSC-MRI) is a dynamic contrast based imag-

ing method, which is useful to describe vascular characteristic of a tumor [14, 15].

The signal change in each image voxel is measured as a function of time by acquiring

MR images before, during, and after injecting an MR contrast agent [16]. Gadolin-

ium (Gd)-based contrast agents are most commonly used, and normally given as a

single bolus intravenous injection [14]. The Gd-component is paramagnetic, and pos-

sesses a large magnetic moment which alters the local magnetic susceptibility [13].

As the Gd flushes through the blood vessels, it creates microscopic disturbances of

the magnetic field causing the spins to precess at different rates and rapidly dephase

[14]. The relaxation for nearby protons is hence enhanced, and R∗2 increased. This

can be seen as a signal loss in tissues where the contrast agent is distributed, as

shown in Figure 2.5. DSC-MRI will also enhance T1 relaxation, but this effect can

be neglected if the contrast agent does not leak out of the intravascular area.

Figure 2.5: Signal intensity and contrast agent concentration as a function of time

after the contrast agent has been injected. In tissues where the contrast agent is

distributed, a signal loss is seen due to enhanced T∗2 effects. The signal intensity

increases again as the contrast agent concentration decreases.

DSC-MRI data can be acquired by using an echo planar imaging (EPI) sequence
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[13]. The EPI technique is rapid and provides high temporal resolution as it collects

data from multiple k-space lines following a single RF excitation pulse. The number

of k-space lines (echoes) acquired per excitation is called the EPI-factor [17]. In

tumors, the contrast agent can easily leak out of the vessels, and T1 effects can not

be neglected. To avoid contamination from T1 relaxation, it can be beneficial to

use a 3D T1-weighted multi-echo EPI sequence [18]. The dynamic change in R∗2

can then be estimated by assuming a mono-exponential signal intensity decay as a

function of TE [14]:

S(t, TEn) = SPD(t)e−TEn·R
∗
2(t), (2.3)

where n labels the echo number, and SPD(t) is the peak signal intensity in the

absence of T∗2-effects (TE=0). The resulting R∗2-information can be used to derive

parameters from each voxel, and to assess characteristics about the tumor, such as

the vasculature and hypoxia [9].

2.1.3.2 Diffusion weighted MRI

Diffusion weighted MRI (DWI) is a functional MRI technique that generates signal

contrast based on differences in Brownian motion of water molecules [19]. Different

tissues of the human body have characteristic diffusion properties, due to differences

in the cellular architecture such as cell size, organization and packing density. The

diffusion is also affected by the water exchange between intracellular and extracel-

lular compartments [20].

DWI is used to evaluate the molecular function and micro-architecture, and provides

both qualitative and quantitative information about the diffusion properties without

using intravenous contrast media [19]. DWI data is commonly acquired with an

EPI sequence, based on a spin echo sequence where symmetric diffusion-sensitizing

gradients are applied on either side of the 180°-pulse. Stationary spins are unaffected

by the gradients, while diffusing spins dephase and cause signal loss. Areas with a

large amount of diffusion along the gradient axis, such as blood vessels, will therefore

appear dark in a diffusion-weighted image, and areas with limited diffusion will

appear bright. The DWI parameter b decides the diffusion weighting and is expressed
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as:

b = γ2G2δ2
(
∆− δ/3

)
, (2.4)

where γ is the gyromagnetic ratio, G is the diffusion gradient strength, δ is the

duration of the diffusion gradient, and ∆ is the time between the start of the first and

second gradient [13]. b = 0 corresponds to no diffusion-weighting, while increasing

b-values lead to increased diffusion-weightings. Figure 2.6a shows an example of a

diffusion weighted image with b = 1000 s/mm2.

Figure 2.6: Pre-CRT images of a patient with rectal cancer. a) Diffusion weighted

image where the tumor is seen as a bright mass. b) The corresponding ADC map,

where the signal intensity of the tumor is lower compared to the surrounding tissue.

The images are from [21].

In order to get quantitative information about the diffusion, apparent diffusion co-

efficient (ADC) maps can be calculated. The ADC value in one voxel is defined

as:

ADC =
ln[S2(x, y, z)/S1(x, y, z)]

b1 − b2
, (2.5)

and can in theory be estimated from measuring the signal intensity for two b values.

However, generally more than two b values are applied in order to get more accurate

ADC values. Tumors have lower ADC compared to surrounding normal tissue,

as seen in figure 2.6b. The low diffusivity in tumors is not fully understood, but
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is probably related to the higher cellularity in addition to a more chaotic tissue

structure in the tumor [20].

2.2 Cancer

Normal tissues have a net production of new cells that balances the loss of cells

from the tissue. Cancer arises when the production of new cells exceeds cell loss,

which happens because of uncontrolled cell division and failure for self-elimination

[22]. The development of normal cells to tumor cells involves a stepwise progression

of molecular and morphologic changes, where oncogenes are activated and tumor

suppressor genes are inactivated. Hanahan and Weinberg suggested to organize

these traits into ten essential alterations in cell physiology [23, 24]:

1. Self-sufficiency in growth signals

2. Insensitivity to anti-growth signals

3. Evading apoptosis

4. Limitless replicative potential

5. Sustained angiogenesis

6. Tissue invasion and metastasis

7. Genome instability and mutation

8. Tumor-promoting inflammation

9. Reprogramming energy metabolism

10. Evading immune destruction

These capabilities are called the hallmarks of cancer, and are according to Hanahan

and Weinberg shared in common by the majority and perhaps all types of cancer.

2.2.1 Tumor vasculature

The vasculature in tumors develops very differently than in normal tissue, and is as-

sociated with an abnormal microenvironment including limited oxygen and nutrient

supply, increased interstitial fluid pressure and disorganized blood flow, as seen in

figure 2.7 [3, 25]. Hostile tumor microenvironmental parameters, such as hypoxia,
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can directly or indirectly influence the resistance to irradiation and chemotherapy

[26].

Figure 2.7: Normal tissues have a well-organized vessel network that ensures suffi-

cient oxygen and nutrient supply. The blood vessels in tumor tissues, on the other

hand, are irregular and chaotic, resulting in a disorganized blood flow that make

oxygen and nutrient supply inefficient. Figure based on [27].

The vasculature is essential for tumor growth and metastatic spread [25, 28]. Tumor

cells must be close to a nutritive blood vessel to survive and proliferate, which

requires the tumor to develop its own blood supply from adjacent tissues. This

process is known as angiogenesis, and is triggered by signalling molecules released by

the tumor cells. Normal cells restrain angiogenesis by releasing a balanced amount

of inhibitors and activators. Tumors, however, have an increased production of

activators as well as a downregulation of inhibitors that causes an uncontrolled

growth of new blood vessels [29]. The newly formed blood vessels are irregular and

have branching patterns that tend to make the them leaky [26]. The chaotic vessel

organization along with the leakiness causes a variable blood flow that make the

delivery of oxygen and nutrients to the tumor inefficient [28].

2.2.2 Tumor hypoxia

Tumor cells may become hypoxic due to the irregular vasculature that frequently

reduces the oxygen delivery to the expanding tumor. Healthy tissues normally

have a median oxygen pressure in the range 40–60 mmHg (pO2), while half of all

solid tumors have pO2 values lower than 10 mmHg [30]. Tissues that are completely

depleted of oxygen are called anoxic. Hypoxia in tumors can result from two different
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mechanisms, shown in figure 2.8 [31]. Chronic hypoxia results from limited diffusion

of oxygen to the tumor cells because of increasing distance to a nutritive blood vessel.

If the cells get farther away than a distance of about 70 µm from the capillaries,

they will receive less oxygen than needed [3, 31]. The oxygen delivery may also be

perfusion-limited due to temporary closing or blockage of a tumor blood vessel. This

condition is often transient, and is called acute hypoxia.

Figure 2.8: Chronic hypoxia occurs when cells are too far away from a blood vessel

to get sufficient oxygen supply, while acute hypoxia results from temporary closing

or blockage of a tumor blood vessel. Figure adapted from [32].

It is shown that up to 50–60% of locally advanced solid tumors can have hypoxic

or anoxic areas that are heterogeneously distributed within the tumor mass [33]. In

order to adapt to the hypoxic environment, the tumor cells activate the hypoxia-

inducible factor 1 (HIF-1). This is a transcription factor that facilitates oxygen

delivery and adaptation to oxygen deprivation by regulating the expression of certain

genes [31]. In normal cells, HIF-1α is kept at a low level because it is degraded, but

under hypoxic conditions, HIF-1α becomes stabilized and promote transcription of

target genes that for instance can lead to upregulation of angiogenic factors [34].

HIF-1 activation also correlates with promotion of metastasis and promotion of

further metabolic imbalances, which are key steps in tumor progression.

Tumor hypoxia plays an important role in cancer treatment. Well-oxygenated cells

are more sensitive to ionizing radiation than hypoxic cells, as the oxygen makes

the DNA damage produced by free radicals permanent. However, in the absence of
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oxygen, the damage can be repaired. This is known as the oxygen effect [31]. The

enhancement of biological effect of ionizing radiation due to the presence of oxygen

is defined by the oxygen enhancement ratio (OER):

OER =
dose to produce a given effect without oxygen

dose to produce the same effect with oxygen
. (2.6)

Hypoxia can also influence tumor cell sensitivity to chemotherapy [26, 30]. There

will be a decreased drug delivery to the hypoxic cells, as they lie far away from

nutritive blood vessels. Also, the majority of anticancer drugs are only effective

against rapidly proliferating cells, and hypoxic cells tend to grow more slowly.

2.2.3 Rectal cancer

Tumors located in the lower 15 centimetres of the rectum are classified as rectal

tumors [35, 36]. An anatomical illustration of the intestines is shown in figure 2.9.

Rectal cancer usually begins as a polyp on the inner lining of the rectum, and then

grows slowly over a period of several years [37]. Once cancer forms, it can grow into

the rectum wall and invade nearby lymph nodes. The cancer cells can also penetrate

blood vessels and spread to other organs and tissues. The risk of developing rectal

cancer increases with age, and the median age at diagnosis in Norway is 69 years

[38]. There are no clear reasons why people develop rectal cancer, but lifestyle

factors including smoking, physical activity and diet, seem to play a role [39]. This

may explain why the incidence of rectal cancer is highest in Western countries.

Typical symptoms of rectal cancer are change in stool habits, bowel pain, rectal

bleeding, and findings of polyps by endoscopy. According to the guidelines provided

by The Norwegian Directorate of Health, a patient that presents with any of these

symptoms is referred to further examinations commonly including endoscopy with

biopsy [35]. If the patient is diagnosed with rectal cancer, radiological imaging is

performed for preoperative investigation of the tumor. This is crucial for choosing

the right treatment strategy and making an accurate prognosis. The staging of rectal

cancer is done according to the tumor node metastasis (TNM) system presented

in table 2.1 [41]. T2 weighted and diffusion weighted MRI are recommended for

localizing and staging of the primary tumor (T), and for assessing the involvement
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Figure 2.9: An anatomical illustration of the intestines, showing the location of the

rectum and the colon. Figure adapted from [40].

of regional lymph nodes (N). Figure 2.10 shows an axial T2 weighted MR image

with the delineated rectal tumor. Distant metastasis (M) is most commonly found

in the lungs and liver, and is preferably evaluated with CT scans of the chest and

abdomen.

The main treatment of rectal cancer is surgical removal of the primary tumor and

nearby lymph nodes [35, 36]. Total mesorectal excision (TME) surgery is considered

the gold standard rectal cancer surgery, as it largely reduces the local recurrence rate

compared to conventional techniques [42]. TME surgery involves complete removal

of the mesorectum, which is the perirectal fat that surrounds the rectum. This

ensures a larger circumferential resection margin, which has been shown to have a

significant impact on local recurrence and survival rates [43]. However, the surgery

has some potential side effects. If the cancer infiltrates the anal sphincter or the

pelvic floor, the patient might need a permanent colostomy [1]. Patients can also

experience difficulties related to defecation, urination and sexual function.

For patients with locally advanced rectal cancer (LARC), defined as stage T3-4 or

N+ according to the TNM system, it can be beneficial to perform preoperative CRT,

which is a combination of chemotherapy and radiation therapy. About 30-40% of the

patients with rectal cancer receive CRT [35]. The purpose is to reduce the the risk of
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Table 2.1: Explanation of the different stages in rectal cancer according to the

American Joint Committee on Cancer (AJCC) [41].

Primary Tumor (T) Regional Lymph Nodes (N) Distant Metastasis (M)

TX Primary tumor
cannot be assessed

NX Regional lymph nodes can-
not be assessed

M0 No distant metastasis

T0 No evidence of
primary tumor

N0 No regional lymph node
metastasis

M1 Distant metastasis

T1 Tumor invades
submucosa

N1 Metastasis in 1-3 regional
lymph nodes

T2 Tumor invades
muscularis propria

N2 Metastasis in 4 or more re-
gional lymph nodes

T3 Tumor invades
through the
muscularis propria
into pericolorectal
tissues

T4a Tumor penetrates
to the surface of
the visceral
peritoneum

T4b Tumor directly
invades or is
adherent to other
organs or
structures

local recurrence by shrinking the tumor before surgery, and make it easier to remove.

The radiation field includes the tumor and mesorectum, and also regional lymph

node regions that are not removed by surgery. A conventional radiotherapy regime

(2 Gy×25 fractions) with chemotherapy is usually used, but a short-course regimen

(5 Gy×5 fractions) is an option for elderly patients and patients with reduced general

condition. MRI is used after the CRT to evaluate how the tumor has responded,

and TME surgery is normally scheduled 6-8 weeks after completion of CRT. After

surgery, the TN stage is reevaluated based on a pathological examination of the

resected tumor specimen, and a histologic treatment response is assessed by using

the tumor regression grade (TRG) system presented in table 2.2 [44]. If the tumor

responds very well to CRT, the patient may not need surgery, and a watch-and-wait

approach is considered.
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Figure 2.10: Visualization of rectal cancer in an axial T2 weighted MR image. The

tumor delineation, rectum, mesorectum and mesorectal fascia are denoted.

Table 2.2: Tumor regression grading according to the College of American Pathol-

ogists (CAP) [44].

Tumor regression grade

TRG0 No viable cancer cells (complete regression)

TRG1 Single cells or small groups of cancer cells (moderate response)

TRG2 Residual cancer outgrown by fibrosis (minimal response)

TRG3 Minimal or no tumor killed or extensive residual cancer (poor response)

The response to CRT in LARC differs among individual tumors. However, if one

could assess the aggressiveness of the tumor before starting the treatment, it would

be possible to predict the response to CRT, and make a more individualised treat-

ment approach by for instance escalating the dose for aggressive tumors [45, 46].

DSC-MRI can be a valuable tool for this purpose, as it provides information about

hypoxia and abnormal vasculature, which are characteristics related to tumor ag-
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gressiveness. Syversen used DSC-MRI data from the OxyTarget study to investigate

if R∗2 measurements could predict CRT outcome [8, 9]. She found that the tumoral

median area under the curve (AUC) of the normalized R∗2 time course (R∗2-AUC)

obtained from DSC-MRI was significantly associated with CRT response in rectal

cancer patients, where a high R∗2-AUC value was related to poor response. These

findings indicate that tumor regions of high R∗2-AUC values may benefit from a

radiation dose escalation.

2.3 Radiobiology

Radiobiology is the study of the effects of ionizing radiation on biologic systems

[22, 31]. Ionizing radiation has sufficient energy to eject one or more orbital electrons

from the atom or molecule, and is characterized by the localized release of large

amounts of energy. DNA is the most critical target for radiation-induced cell killing,

as it is central to all cellular functions and is only present in two copies [47]. The

DNA can be damaged by direct or indirect action of the radiation. In direct action

the radiation interacts directly with the critical target in the cell. This process is

dominant for radiations with high linear energy transfer (LET), such as neutrons or

protons. The radiation may also interact with other atoms or molecules in the cell

(mainly water) to produce free radicals that are able to damage the DNA through

diffusion. This is called indirect action of radiation, and is the most common process

of DNA damage by low LET radiations, such as x-rays.

Radiation-induced cell damage can be divided into lethal, sublethal and potentially

lethal damage [31, 48]. Lethal damage is irreparable and leads to cell death, while

sublethal damage can be repaired under normal circumstances. Potentially lethal

damage causes cell death under ordinary circumstances, but can be repaired if post-

irradiation conditions are suboptimal for growth. The aim of radiotherapy is to

deliver a sufficient dose of radiation to the tumor, while limiting the biological

consequences for normal tissues. The relationship between the probability of tumor

control and the likelihood of normal tissue damage is expressed by the therapeutic

ratio, defined as the percentage of tumor control that can be achieved for a given

level of normal tissue complications. This concept can be illustrated by comparing

the dose-response relationships, as seen in figure 2.11.
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Figure 2.11: Dose–response relationships for both TCP and normal tissue complica-

tion probability (NTCP). The upper green area represents the desirable probability

of tumor control, while the lower green area represents the acceptable risk of normal

tissue complication. The dashed arrow indicates the therapeutic ratio. Well sepa-

rated curves improves the therapeutic ratio, and lead to a more favorable trade-off

between tumor control and toxicity.

The difference between normal tissue and tumor response is enhanced by dose frac-

tionation, which is common practice in modern radiotherapy. It is particularly five

mechanisms that influence the outcome of fractionated radiotherapy, and account

for the greater sparing of normal tissues compared to tumors. These are known

as the five R’s of radiobiology, and include repair, reoxygenation, redistribution,

repopulation and intrinsic radiosensitivity [31, 49]. Normal tissue is spared when

dividing a dose into several fractions due to repair of sublethal damage between the

doses, and repopulation of cells. Dose fractionation will simultaneously increase the

damage to the tumor, because of reoxygenation of hypoxic cells and redistribution

of cells into the radiosensitive phases of the cell cycle.

2.4 Tumor response modelling

A cell survival curve describes the relationship between the radiation dose and the

fraction of irradiated cells that survive [31, 48]. Several models have been proposed

to define the shape of cell survival curves, but today it is most common to use the

linear-quadratic (LQ) model, illustrated in figure 2.12. The LQ model is based on
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the fact that chromosome aberrations, or lethal damage, result from the interaction

of two separate breaks. According to this model, the breaks can be produced either

by a single ionizing event or by two separate events. The cell survival is therefore

assumed to be dependent on two factors, one linear component proportional to the

dose, and one quadratic component proportional to the square of the dose. Using

the LQ model, the expression for the survival fraction of cells irradiated with n

fractions of dose d is given by:

Sn = e−αnd−βnd
2

= e−αnd(1+
β
α
d), (2.7)

where α and β are the probabilities of inducing chromosomal aberrations by a single

ionizing particle and by two separate ionizing particles, respectively. The α/β-ratio

gives the dose at which the two contributions to cell killing are equal.

Figure 2.12: Typical cell survival curves for high LET and low LET radiation,

showing the LQ relationship between cell survival and radiation dose. At low doses,

chromosomal aberrations most likely result from a single electron, and the survival

curve appear linear. At higher doses, the two chromosome breaks may also result

from two separate electrons. If the quadratic component dominates, the survival

curve becomes more curved. This is typical for low LET radiation. Figure adapted

from [47].

The radiation effects on tissues are commonly divided into acute and late effects

[31, 48]. Acute effects occur within a few hours or days after irradiation in rapidly
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proliferating tissues, such as the skin and most tumors. Late effects first appear

after a delay of months or years, and are usually more severe as they mainly occur

in slowly proliferating tissues, such as the kidney, heart, lung and central nervous

system. Early responding tissues typically have a high α/β-ratio of about 10 Gy,

making them sensitive to total radiation dose. Late responding tissues tend to have

a smaller α/β-ratio of about 2 Gy, and a curvier survival curve. They have increased

survival at low doses, and benefit a lot more from fractionation than early responding

tissues.

2.4.1 Tumor control probability

Tumor response modelling is commonly based on the LQ model [28, 47, 50]. The

expected number of surviving clonogenic cells can be expressed by using equation

(2.7):

Ns = N0S
n = N0e

−αnd(1+ β
α
d), (2.8)

where N0 is the initial number of clonogenic cells. The number of surviving clono-

gens, X, is then approximately Poisson distributed:

P (X = x;Ns) =
e−NsNx

s

x!
. (2.9)

The TCP corresponds to the probability that no clonogenic cells survive, given that

the average number of clonogens per tumor after irradiation is Ns, and is found by

setting x = 0 in equation (2.9):

TCP = P (X = 0;Ns) = e−Ns . (2.10)

By combining equation (2.8) and (2.10), and using that N0 = ρ0V , the TCP can be

expressed as:

TCP = e−ρ0V S
n

= e−ρ0V e
−αnd(1+ β

αd) , (2.11)
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where ρ0 is the initial tumor cell density and V is the tumor volume. It has been

shown that most tumors have non-uniform clonogenic cell density, but conventionally

ρ0 is assumed to be homogeneous [5, 50]. For a non-uniform dose distribution, the

tumor can be divided into a number of independent subvolumes. Within each of

these volumes, the dose di can be considered locally uniform. The TCP for an

individual subvolume is given by:

TCPi = e−ρ0,iVie
−αindi(1+

βi
αi
di)

, (2.12)

where Vi is the volume, ρ0,i is the initial cell density, and αi and βi is the radiobiologic

factors of the i-th subvolume. Finally, the TCP for the whole tumor is the product

of each subvolume’s TCP:

TCP =
N∏
i=1

TCPi, (2.13)

where N is the number of subvolumes. TCP modelling gives a good description

of the main characteristics of radiation response, but should be used with caution

[51, 52]. The TCP value should primarily be used as a relative measure to compare

different treatment techniques, such as fractionation schemes or dose escalation.

2.5 Radiotherapy

2.5.1 Definitions of volumes

It is important to use clear definitions for volumes related to both tumor and normal

tissues in radiotherapy treatment planning to ensure comparable and reproducible

clinical results. The International Commission on Radiation Units and Measure-

ments has defined the following volumes [53]:

• Gross tumor volume (GTV)

• Clinical target volume (CTV)

• Planning target volume (PTV)

• Organs at risk (OAR)
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The GTV is an anatomical volume, which can be described as the visible extent

of malignant growth. The CTV is a volume containing GTV and/or areas with a

certain probability of subclinical disease relevant to treatment. Delineations of CTV

are mainly based on clinical experience and guidelines. The PTV includes the CTV

plus an additional margin to compensate for uncertainties related to organ motions,

patient positioning and intra-treatment variations. The PTV is defined to ensure

that the prescribed dose is delivered to the CTV with an acceptable probability,

when taking into account all possible geometrical uncertainties. OARs are organs

or other normal structures that need to be spared because of possible side effects,

and will therefore influence the treatment planning if located near the tumor.

Computed tomography (CT) is considered the primary modality for volume def-

inition and dose calculation in radiotherapy treatment planning [54, 55]. MRI is

commonly performed for staging, and is therefore available as a visual aid when

delineating target volumes. Due to its superior soft tissue contrast, MR-based treat-

ment planning is of increasing interest [56].

2.5.2 Dose painting

Tumors have traditionally been irradiated with a uniform dose distribution [57].

However, most tumors have a spatial variation in radiation sensitivity due to vary-

ing levels of oxygen supply, cell proliferation and density within the tumor mass.

Dose painting is a radiotherapy technique where a non-uniform dose distribution

is prescribed and delivered to the tumor [58, 59]. The idea is to increase the dose

in regions recognized as more radioresistant, in order to improve local control for

each individual tumor. Subvolumes that may benefit from a dose escalation can be

identified by assessing radiobiological information obtained from functional imag-

ing. The concept of delivering a heterogeneous dose distribution to the tumor was

first studied soon after the development of intensity-modulated radiation therapy

(IMRT) [60]. Recent advances in functional imaging, such as MRI and PET, allow

a more precise targeting of subvolumes in the tumor, and make dose painting more

feasible [61].

The first step in dose painting is to find a reliable imaging biomarker that provide

information about tumor biology and radiosensitivity [7, 62, 63]. The prescribed
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dose distribution is then based on maps that geographically represent the imaging

biomarker across the tumor volume by using one of two approaches, as seen in figure

2.13. In DPBN, a specific dose is assigned for each voxel inside the tumor based

on the voxel intensity of the corresponding functional image of the tumor. Voxel-

based dose prescription will, in theory, provide a highly individualized treatment.

However, it requires high precision in imaging and dose delivery.

Figure 2.13: A biomarker is measured and geographically mapped across the tumor.

For DPBN, the dose is assigned voxel by voxel according to the biological tumor

map. DPBC uses a threshold value to segment tumor subvolumes with high risk,

and prescribes an escalated dose level to these areas.

In DPBC, which is the main focus of this thesis, the tumor is divided into radiore-

sistant and radiosensitive regions based on a threshold value. The radioresistant

subvolumes are then assigned an additional uniformly distributed dose escalation,

while the radiation dose to the sensitive parts of the tumor is kept at the stan-

dard level. For selective boosting of subvolumes, a potential increase in TCP will

partly be due to an increased integral tumor dose, making it difficult to compare

the approach to conventional treatment planning [57]. It may, however, be useful to

compare dose painting with a uniform dose boost to the whole tumor.

In the following, it is assumed that for DPBC, the radiosensitive regions of the tumor

are irradiated with a conventional fractionation dose ds, and resistant subvolumes

are irradiated with a fractionation dose dr = bds, where b ≥ 1 is the dose boost

factor. A uniformly escalated dose that would produce an equal integral tumor dose

as used in DPBC, can be calculated as [64]:

du = ds

(
VS + bVR
VS + VR

)
(2.14)
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where VS and VR are the volumes of the sensitive and resistant areas of the tumor,

respectively. The TCP can then be found by setting di = du in equation (2.12) for

all subvolumes. Figure 2.14 illustrates how du, ds and dr are related.

Figure 2.14: Schematic illustration of the conventional tumor dose ds, the escalated

dose dr, and the uniformly escalated dose du. Inspired by [64].
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3 Methods and materials

All patient data and images analyzed in this thesis were obtained from the OxyTar-

get study, which aimed to develop new fMRI protocols for assessing tumor aggres-

siveness in rectal cancer patients [8].

This thesis builds on a previous thesis by Karina Lund Rød, which also used clinical

data from the OxyTarget study. She investigated how to create two-dimensional

DPBC prescriptions based on pre-CRT R∗2-AUC tumor maps, and found by TCP

modelling that these prescriptions enhanced the TCP compared to conventional

radiotherapy, regardless of tumor response to CRT [65].

3.1 Patients

35 patients diagnosed with LARC were included in this thesis. All patients under-

went diagnostic MRI and CT before treatment to stage the tumors according to

the TNM system, and were then treated with preoperative CRT. A radiotherapy

treatment of 2×25 Gy was given to most patients (n = 30), but other fractionation

regimens were also used on a few patients. The chemotherapeutic drug Xeloda® was

used in most cases (n = 24), although some patients received FLOX and FLV. 6-8

weeks after completion of the CRT schedule, the patients underwent surgery. The

TN stage was assessed again by pathological examination of the resected specimen,

and the tumor response was determined by using the TRG system. Patient and

tumor characteristics are shown in table 3.1.

3.2 MRI acquisition

The MR images were acquired on a 1.5T Philips Achieva system (Philips Healthcare,

Best, The Netherlands) using NOVA Dual HP gradients (33 mT/m maximum gra-

dient amplitude, 180 T/m/s slew rate) and a five-channel cardiac coil with parallel

imaging capabilities. The patients were given glucagon (1 mg/mL, 1 mL intramus-

cularly) and Buscopan® (20 mg/mL, 1 mL intravenously) prior to and during the

examination to reduce bowel movement.

High-resolution T2-weighted images were acquired by a FSE sequence, and DSC
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Table 3.1: Information about patients and tumor classification. The data is given

in number of patients (percentage), except for age which is given in years (range).

Number of patients 35

Male 26

Female 9

Median age (years) 63 (41-79)

Male 63 (41-78)

Female 57 (49-79)

Tumor regression grade

TRG0 4 (11.4%)

TRG1 9 (25.7%)

TRG2 14 (40.0%)

TRG3 8 (22.9%)

TNM

T2 2 (5.70%)

T3 16 (45.7%)

T4a 5 (14.3%)

T4b 12 (34.3%)

N0 11 (31.4%)

N1 13 (37.1%)

N2 11 (31.4%)

M0 29 (82.9%)

M1 6 (17.1%)

imaging data was obtained by using a 3D T1-weighted EPI sequence with three

echoes. DWI images were also acquired by a EPI sequence, with b-values 0, 25,

50, 100, 500, 1000 and 1300 s/mm2. The imaging parameters for the sequences are

included in table 3.2. The T2-weighted images were used for tumor staging in all

patients, in addition to delineation of regions of interest (ROI). The delineation was

done by an experienced radiologist. The DSC images were used to calculate R∗2

voxelwise by using equation (2.3), and store them as R∗2 maps. The DWI images

were used to calculate ADC maps.
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Table 3.2: Imaging parameters used for the acquired MR sequences.

T2-weighted MRI DWI DSC-MRI

Slice thickness (mm) 2.5 4 10

Number of slices 21 - 37 14 12 - 22

TR (ms) 2386 - 4122 3125 37 - 45

TE (ms) 80 75 4.6

Field of view (mm2) 180×180 160×160 180×180

Acquisition matrix 224×220 - 256×254 128×128 92×90

Flip angle 90° 90° 28°

Number of excitations 3 - 6 6 -

Echo train length 20 57 -

EPI factor - - 9

Echo spacing (ms) - - 9.2

Temporal resolution - - 2 s/imaging volume

Time points/slice - - 60

3.3 Preparatory analysis

All subsequent analyses were performed by using Python, except for some statistical

analyses done in the programming language “R”. All scripts are attached in appendix

A. The preparatory analysis carried out in order to investigate DPBC for rectal

cancer patients was based on MATLAB scripts written by Karina Lund Rød (A.1 -

A.6) [65].

First, the T2-weighted images and the R∗2 maps were sorted according to slice po-

sition in 3D and 4D matrices, respectively (A.1 - A.2). The x-, y-, and z-direction

represented the first three dimensions, and time was the fourth dimension for the

DSC images. The tumor ROIs were delineated on the T2-weighted images, and

received in the NifTI format. The ROIs therefore needed to be adapted to fit the

resolution format of the DSC data (A.3). R∗2-AUC tumor maps were then generated

from the R∗2 maps (A.4). This was done by storing the R∗2-values for each time point

in voxelwise arrays. The arrays were normalized by subtracting the mean value of

the baseline images, so that the array values represented change in R∗2 from baseline,
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∆R∗2. R∗2-AUC was then found for each voxel inside the ROI by plotting the arrays

as a function of time, and calculating the integral. The average of all ∆R∗2 curves

for one of the tumors is shown in figure 3.1. The integral was calculated from 0 to

525±25 s, depending on the time points used for the image acquisition.

Figure 3.1: ∆R∗2 plotted as a function of time for the dynamic sequence. R∗2-AUC,

the area under the curve marked in blue, was found by integrating the function from

0 to 525±25 s.

Before using the R∗2-AUC maps for DPBC, noise filtration and spatial smoothing

were performed (A.5 - A.6). Noise filtration was done by discarding the lowest

and highest 2.5% of the values for each tumor, which was found by calculating the

2.5th and 97.5th percentiles of the R∗2-AUC distribution. Spatial smoothing was

done to simulate the effect of inter-fractional tumor movement, and performed by

using a Gaussian filter from the scikit image processing tool in Python. Figure 3.2

visualizes the effect of pre-processing the R∗2-AUC maps. It can be seen that the

noise filtration led to a removal of probable outliers, and that the tumor volume was

slightly increased due to the spatial smoothing.

In total 4 patients were excluded during the preparatory analysis. Two of the

patients were excluded when calculating the R∗2-AUC tumor maps, as their number
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of baseline images could not be found. One patient was excluded due to their

outlying median R∗2-AUC, and one patient was excluded since the resistant volume

covered more than 2/3 of the tumor.

Figure 3.2: R∗2-AUC tumor maps for DPBC. a) Before pre-processing. b) After noise

filtration and spatial smoothing. The original ROI contour is added to visualize the

difference between the tumor volumes.

3.3.1 Statistical analysis

Statistical analyses often assume that the data is normally distributed. Consider-

ing the relatively small sample size of this project, the data was not expected to

pass this requirement. The non-parametric Mann-Whitney U-test does not require

large normally distributed samples, and was therefore used in this thesis for statis-

tical analysis. The null hypothesis (H0) is that the two independent samples being

compared come from the same distribution, while the alternative hypothesis (H1)

is that their distributions differ [66]. The p-value is the probability of observing a

test statistic that is as extreme as or more extreme than the one observed, assuming

H0 is true. The null hypothesis is rejected when the p-value is smaller than the

significance level. For this thesis, the significance level was set to 0.05.

A boxplot can be useful to compare data from several groups, and to visualize the

result of an statistical analysis. The box extends from the first quartile to the third

quartile of the data, with a line showing the median. The whiskers show the range

of the data, and represent values that are found a certain distance away from the

box edge. Values outside these are classified as outliers.
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3.4 Dose painting by contours

3.4.1 Problem setup

The creation of R∗2-AUC-based DPBC dose prescription maps was based on the setup

illustrated in figure 3.3. The approach was to divide the tumor into radioresistant

and radiosensitive regions based on a threshold value derived from the R∗2-AUC

maps, termed R∗2-AUCCUT. Subvolumes consisting of voxels with R∗2-AUC above

R∗2-AUCCUT formed the radioresistant compartment, R, as high R∗2-AUC has been

related to limited radiocurability. The remaining radiosensitive compartment of the

tumor, S, consisting of voxels with R∗2-AUC below R∗2-AUCCUT, was assumed to

respond well to standard radiation doses.

Figure 3.3: Illustration of how the DPBC planning was carried out. The radiore-

sistant subvolume, R, was found by segmenting tumor voxels with R∗2-AUC above

R∗2-AUCCUT. The remaining tumor voxels formed the radiosensitive compartment,

S. S is assumed to obtain good tumor control with standard radiation dose, while

R is assumed to require a dose escalation to obtain the same tumor control.

An R∗2-AUCCUT value of 2574 is used in further analyses, and was derived by Rød

[65]. She applied a percentile screening technique to find out if any percentiles of the

R∗2-AUC distribution were more strongly associated with the TRG than the median.

This was done by using the Mann-Whitney U-test to assess the relationship of each
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percentile to the TRG.

3.4.2 Generation of DPBC maps

DPBC maps were generated by using R∗2-AUCCUT to divide the tumor volume into

R and S (A.7). First, a 3D matrix with the same shape as the R∗2-AUC map was

made for each patient to store the corresponding DPBC map. All values in the

R∗2-AUC map were then evaluated voxel by voxel, to determine which values were

above and below R∗2-AUCCUT. This information was used to group the voxels into

R and S, and DPBC maps were created by assigning two different total radiation

dose levels to these. Figure 3.4a shows a slice from one of the preliminary DPBC

maps, which were stored for each patient.

Figure 3.4: Visualization of the methodology used for generation of R∗2-AUC-based

DPBC maps. a) Preliminary DPBC map where all voxel values above R∗2-AUCCUT

add to R. b) All subvolumes smaller than a certain size are neglected and incorpo-

rated into S. c) Final DPBC map where small clusters are included in the dominant

volume.

Further analyses aimed to make the model more realistic. To be able to implement

the DPBC maps in radiotherapy treatment planning, there are some physical lim-

itations that must be taken into account. The minimum volume that can be used

in dose painting was estimated by a medical physicist to be a sphere with diameter

of 1 cm, depending on the dose level difference in S and R. All subvolumes smaller

than 1 cm3 were therefore neglected and considered as a part of S, as seen in figure

3.4b. This was done by calculating the amount of voxels that corresponded to 1
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cm3, and then using an image processing tool in python, called skimage, to remove

the small regions. 29 of the patients had subvolumes larger than 0.5 cm3, and 16 of

the patients had subvolumes larger than 1 cm3.

Some of the subvolumes had clusters of voxels with R∗2-AUC below R∗2-AUCCUT. A

cluster size limit was therefore defined so that clusters consisting of fewer than a

certain number of voxels were included in R. Furthermore, some of the tumors had

small “holes”. These were considered a part of the tumor if they were smaller than

the cluster size limit. The final compartmentalization of R and S were then set, as

shown in figure 3.4c, and the number of voxels in each region could be found.

Statistical analysis was performed to assess the relationship between the volume of

R and TRG by using the Mann-Whitney U-test (A.10-A.11). An array was made

for each level of TRG, containing the volume of R for each patient in this group.

The difference between these arrays could then be assessed by using the Mann-

Whitney U-test. The specific statistical tests were done in programming language

“R”, because of its extensive tool set for this purpose. The tests were performed

using a cluster size limit of 50, and a subvolume limit of 0, 0.5 and 1 cm3. Boxplots

were made for visualization of the result.

3.5 TCP modelling

The potential advantage of the DPBC plans were assessed by using TCP modelling

(A.8). All computations were based on the LQ model, as discussed in section 2.4.

First, the individual TCP for R and S were calculated by using equation (2.12).

To perform these calculations, model parameters including the α/β-ratio, tumor

cell density, volumes of R and S, as well as radiation dose information for the two

respective compartments, were needed. These parameters are summarized in figure

3.5.

The α and β values used for oxygenated conditions were first chosen based on

previous studies, and are included in table 3.3. Suwinski et al. estimated in total two

α/β values for rectal cancer, one with and one without accounting for repopulation

[67]. A third α/β, found by Chvetsov et al., was also tested to account for completely

oxygenated conditions [64]. This value was, however, not specific for rectal cancer
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Figure 3.5: Illustration of the model parameters used to calculate TCP. a) Standard

plan with a uniform dose distribution. b) DPBC plan with escalated dose to R. c)

Uniform dose boost with total dose equal to the DPBC plan.

due to a lack of relevant literature. αR/βR, the radiobiological ratio used for hypoxic

conditions, was calculated by relating it to αS/βS via typical OER values:

αR =
αS

OER
, (3.1)

βR =
βS

OER2 . (3.2)

Similar formulas have been used in TCP modelling studies that include hypoxic

subvolumes [5, 59, 64]. The TCP calculations were performed using an OER of 1.75

and 2.7, also in agreement with previous studies [5, 64].

Table 3.3: αS and βS values estimated by Suwinski et al. and Chvetsov et al.

[64, 67]. The two first estimates are specific to rectal cancer, and the last is typical

for lung cancer.

Estimate type αS (Gy−1) βS (Gy−2) αS/βS (Gy)

No repopulation 0.339 0.067 5.06

Repopulation 0.335 0.030 11.2

Complete oxygenation 0.450 0.039 11.5

A literature search revealed that several TCP studies varied the value of α to fit

the observed results [5, 68]. A second approach based on this method was therefore
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investigated. The α value was fitted to an estimate of the TCP for the patient cohort

when using a standard dose and an OER of 1.75. The cohort TCP was predicted

based on the percentage of patients with TRG0-1, as they were assumed to obtain

tumor control.

The clonogenic density was first assumed to be a constant value of 106 cells/cm3

across the tumor, based on previous findings [50, 69]. The volumes of R and S were

found by calculating the volume of a single voxel, and then multiplying this volume

with the number of voxels in each region. The fraction dose ds was set to 2 Gy,

and the number of fractions to 25, similar to conventional radiotherapy for rectal

cancer. The fraction dose applied to R was determined by the dose boost factor,

b, described in section 2.5.2. A literature search was performed to find out which

values of b that may be relevant for clinical application. The review by Van Wickle

et al. addressed methods of delivering escalated radiotherapy boost in rectal cancer,

and provided a summary of the studies covered [70]. Most of these studies used a

total dose escalation of 60 Gy to the entire GTV, which corresponds to b = 1.2.

However, the total dose will be smaller when only the most aggressive subvolumes

are boosted compared to a uniform GTV boost, thus it may be feasible with larger

values of b. Simulations were run using b-values ranging from 1 to 3.

The individual TCP calculated for R and S were finally combined in an overall

TCP for the DPBC plans using equation (2.13). Only the patients with subvolumes

larger than 1 cm3 were considered. The TCP was also computed for a uniform dose

boost for comparison. The uniform dose boosts corresponding to the total dose

of the DPBC plans were calculated by using equation (2.14). The TCP for each

patient in addition to the average TCP was then plotted against various b-values for

both treatment strategies. A 95% confidence interval for the average TCP was also

plotted.

3.6 Estimation of cell densities from ADC maps

Previous studies have showed correlation between the ADC and the cell density

in tissues [5, 71]. Based on this research, ADC maps were used to estimate the

average tumor cell density for all patients with subvolumes larger than 1 cm3 (A.9).

Casares-Magaz et al. translated ADC maps into cell densities, and investigated how
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these ADC map-based cell densities affected the TCP [5]. They considered three

different approaches to relate the ADC values with cell densities voxel-by-voxel: a

linear, a binary and a sigmoid relation. The sigmoid relation was most relevant for

this thesis, and can be written as:

ρ =

(
9.9

(
1− 1

1 + e
1.3−ADC

0.1

)
+ 0.1

)
106 cells/cm3, (3.3)

where the ADC value is given in 10−3 mm2/s. ADC maps were calculated based on

DWI with b-values 100, 500, 1000 s/mm2, and had to be adapted to fit the resolution

of the DPBC plans.

First, new DPBC maps were generated based on more accurate tumor ROIs that

were resampled from the T2 weighted images to the R∗2 image grid. One of the

patients was excluded from further analyses since the new DPBC map no longer

revealed any subvolumes larger than 1 cm3. The contours defining the tumor and

the resistant subvolumes were saved as a NifTI file for each patient, and resampled

back to the T2 weighted image. To calculate the ADC values in the regions defined

from the DPBC maps, the contours were resampled to the DWI grid. The contours

could also have been resampled directly from the R∗2 maps to the DWI, however,

the original ROIs on the T2 weighted images were used as a reference to check

that everything seemed as expected. The resampling was done by using Insight

Toolkit (ITK), which is an open-source library that provides software tools for image

analysis [72]. Nearest neighbor interpolation was chosen as interpolator to preserve

the integer values of the contour labels. Figure 3.6 shows one of the calculated ADC

maps, adapted to the corresponding DPBC map.

Average ADC values were found for the tumor, the resistant and the sensitive re-

gions, and the corresponding cell densities were estimated by applying equation

(3.3). Boxplots were used to show the difference in cell density for the different

regions for patients with TRG0-3. The ADC-based cell densities were also included

in the TCP modelling, and compared with the TCP for a constant cell density of

106 and 107 cells/cm3. The comparisons were done using the same DPBC maps.
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Figure 3.6: One slice of the calculated ADC maps is shown together with red con-

tours that represents the radioresistant regions. ADC values were only calculated

inside the tumor.

3.7 Clinical implementation of DPBC

To evaluate the DPBC plans further, it was of interest to incorporate the plans into

RayStation to generate dose volume histograms (DVHs). DVHs are valuable tools

in radiotherapy treatment planning, as they show the dose coverage to both the

tumor and OARs. Since the TCP modelling does not consider normal tissues, it

is especially interesting to look at the DVH for OARs, and if it changes with the

DPBC strategy.

In order to incorporate the plans into RayStation, the DPBC plans first had to be

saved as NifTI files. Then the contours were adapted to fit the resolution format of

the T2 weighted images that were going to be used in the radiotherapy planning.

This was done by using the same approach as for the ADC maps. The adapted

NifTI files were then converted to radiotherapy structures to be able to recognize

the contours in RayStation. Figure 3.7 shows an example of a T2 weighted image

together with the DPBC plan. Furthermore, pseudo-CTs have to be generated from

the MR images in order to obtain electron density information for dose calculations.
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Figure 3.7: One slice of a DPBC plan is shown together with the corresponding

T2 weighted image. The black contour represents the tumor, and the red contour

represents the radioresistant region.
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4 Results

4.1 DPBC maps

Figure 4.1 shows the R∗2-AUC tumor map, along with the corresponding DPBC map

for one slice of a tumor. The contour of the boost subvolume is added to both maps.

Figure 4.2 shows all slices of the DPBC map for the same tumor.

Figure 4.1: R∗2-AUC tumor map and the corresponding DPBC map for one slice of

a tumor. The total radiation dose to R and S are 60 Gy and 50 Gy, respectively.

Figure 4.2: The DPBC map for one of the patients, showing the dose distribution

for the tumor slice by slice. The two first and last slices did not contain any tumor

volume, and were therefore not included in the figure.
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4.1.1 Statistical analysis

Statistical analysis using the Mann-Whitney U-test was performed to assess the rela-

tionship between TRG and the volume of R before removing any of the subvolumes,

when subvolumes smaller than 0.5 cm3 have been removed, and when subvolumes

smaller than 1 cm3 have been removed. Boxplots visualizing the results are shown

in figure 4.3. The same trend is seen for each subvolume limit, indicating larger

subvolumes for the poor responders (TRG2-3) compared to the good responders

(TRG0-1). The specific median values and p-values can be found in appendix B.

Figure 4.3: Boxplots showing the volume of R for patients with TRG0-3, using a

subvolume limit of 0, 0.5 and 1 cm3. *: Difference significant at significance level

0.05. **: Difference significant at significance level 0.01.

4.2 TCP modelling

The TCP modelling was first done with the α and β values found in the literature.

Figure 4.4 shows the average TCP for all patients with subvolumes larger than 1

cm3, using the three alternatives of α/β and an OER of 1.75 and 2.7. The TCP

modelling was then done for α values fitted to the cohort TCP. 5 of 16 patients with

subvolumes larger than 1 cm3 had TRG0-1, thus the mean TCP for a standard dose

was predicted to be 31.25%. Figure 4.5 shows the average TCP for the fitted α,

using the three alternatives of α/β-ratio and an OER of 1.75 and 2.7.
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Figure 4.4: The average TCP for the DPBC plans as a function of b for the three

alternatives of α/β. The solid lines represent an OER of 1.75, and the dashed lines

represent an OER of 2.7.

Figure 4.5: The average TCP for the DPBC plans as a function of b for the three

alternatives of α/β, when α is fitted to the cohort TCP. The solid lines represent an

OER of 1.75, and the dashed lines represent an OER of 2.7. The orange and green

lines are overlapping.

The TCP was also computed for a uniform dose boost, and compared with the

DPBC plans, using an OER of 1.75 and α/β = 11.5. Figure 4.6a) and b) shows
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the individual and average TCP, respectively, for both treatment planning strategies

before the value of α was fitted. It is seen that the TCP is very low even at high dose

boost factors. Figure 4.7 shows the same as figure 4.6, except with a fitted α value.

Here, more realistic TCP values are predicted for lower doses. Table 4.1 presents

the TCP for each patient, in addition to the individual TCP for the sensitive and

resistant regions for both treatment planning strategies when using a b-value of 1.2,

and a fitted α value.

Figure 4.6: a) The individual TCP for each patient as a function of b, for both the

DPBC plans and the corresponding uniform dose boost. b) The average TCP as a

function of b together with a 95% confidence interval.

Figure 4.7: a) The individual TCP for each patient as a function of b, for both

the DPBC plans and the corresponding uniform dose boost when α is fitted to the

cohort TCP. b) The average TCP as a function of b together with a 95% confidence

interval.
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Table 4.1: The TCP(%) for each patient, in addition to the individual TCP for the

sensitive and resistant regions for DPBC and a uniform dose boost. The modelling

was done with an OER of 1.75, α/β = 11.5 and b=1.2.

DPBC Uniform dose boost

Patient TRG Tumor S R Tumor S R

1 1 97.61 100.0 97.61 34.5 100.0 34.5

2 2 97.66 100.0 97.66 37.46 100.0 37.46

3 2 98.25 100.0 98.25 56.9 100.0 56.9

4 3 98.31 100.0 98.31 59.89 100.0 59.89

5 1 98.18 100.0 98.18 42.23 100.0 42.23

6 0 97.81 100.0 97.81 39.93 100.0 39.93

7 3 98.28 100.0 98.28 50.5 100.0 50.5

8 3 98.23 100.0 98.23 59.83 100.0 59.83

9 2 97.65 100.0 97.65 33.79 100.0 33.79

10 2 97.31 100.0 97.31 33.82 100.0 33.83

11 1 97.21 100.0 97.22 34.55 100.0 34.55

12 2 97.17 100.0 97.17 35.24 100.0 35.24

13 3 97.63 100.0 97.63 43.72 100.0 43.72

14 0 98.05 100.0 98.05 42.88 100.0 42.88

15 3 97.16 100.0 97.16 32.95 100.0 32.95

16 2 98.02 100.0 98.02 60.2 100.0 60.2

4.3 Estimation of cell densities from ADC maps

The average ADC values and the estimated cell densities for all of the patients are

presented in table 4.2. Figure 4.8 shows the average cell density for the tumor, the

sensitive region and the resistant region for patients with different scores of TRG.

4.3.1 TCP modelling

The TCP for the DPBC plans were modelled with the ADC-based cell densities

for S and R, and compared with the TCP based on the constant cell density first

assumed. As the estimated cell densities were close to 107 cells/cm3, the TCP was
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Table 4.2: The average ADC values for the tumor, the resistant and the sensitive

regions, together with the estimated cell densities for all of the patients.

ADC value (10−3 mm2/s) Cell density (107 cells/cm3)

Patient TRG Tumor S R Tumor S R

1 1 0.785 0.783 0.878 1.083 1.083 1.075

2 2 0.865 0.863 0.886 1.076 1.077 1.074

3 2 0.662 0.659 0.686 1.087 1.087 1.087

4 3 0.555 0.552 0.562 1.088 1.088 1.088

5 1 1.186 1.192 1.113 0.849 0.838 0.957

6 0 0.737 0.741 0.651 1.085 1.085 1.088

7 3 1.382 1.387 1.352 0.402 0.391 0.468

8 3 0.888 0.92 0.828 1.073 1.067 1.08

9 2 1.17 1.175 0.914 0.877 0.869 1.069

10 2 0.83 0.822 0.996 1.08 1.081 1.044

11 1 1.243 1.25 1.133 0.731 0.715 0.932

12 2 0.963 0.968 0.757 1.056 1.054 1.085

13 3 1.154 1.166 1.055 0.902 0.884 1.01

14 0 1.046 1.068 0.834 1.017 1.0 1.08

15 2 1.187 1.247 0.993 0.847 0.722 1.045

also modelled for a constant cell density with this value. The comparisons were done

using a fitted α, an OER of 1.75 and α/β = 11.5. Figure 4.9a) and b) show the

individual and average TCP, respectively, for constant cell densities of 106 and 107

cells/cm3 and for the cell densities estimated from ADC maps.

4.4 Clinical implementation of DPBC

RayStation was not able to import the radiotherapy structures converted from the

NifTI files that contained the DPBC plans. The problem was related to the DICOM

header of the radiotherapy structure files, where some of the tags not were correctly

linked to the T2 weighted MR images. The details of the problem were forwarded

to RaySearch, but no solution was reached during the course of this thesis.
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Figure 4.8: Boxplots showing the average cell density for the tumor, the sensitive

region and the resistant region for patients with TRG0-3.

Figure 4.9: a) The individual TCP for each patient for constant cell densities of 106

and 107 cells/cm3, in addition to the TCP for cell densities estimated from ADC

maps, plotted as a function of b. b) The average TCP as a function of b together

with a 95% confidence interval.
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5 Discussion

5.1 Methods

5.1.1 Preparatory analysis

The preparatory analysis carried out in order to investigate DPBC was based on

the methods implemented by Rød [65]. The tumor ROIs were adapted to fit the

resolution format of the DSC images by finding the T2 weighed MR slices that were

closest in position to the DSC slices, and then downscaling these. This approach

is simple and sufficient for the analyses done in this thesis, but resampling should

be considered for future work for higher accuracy. Uncertainties related to the

generation and filtration of the R∗2-AUC maps are outside the scope of this work,

and discussed in detail by Rød [65].

5.1.2 Generation of DPBC maps

DPBC is sensitive to the threshold value used to divide the tumor into a resistant

and a sensitive part, and it is difficult to find an optimal threshold that neither over-

estimates or underestimates the boost volume. The threshold value, R∗2-AUCCUT,

used in this thesis was derived by Rød [65]. She used a percentile screening method

to find out which parts of the R∗2-AUC distribution that were significantly associ-

ated with TRG. R∗2-AUCCUT was then set as the global percentile of the R∗2-AUC

distribution corresponding to a percentile showing strong association with TRG.

Three-dimensional DPBC maps were generated based on this threshold, and further

work consisted of making the DPBC plans clinically feasible. The minimum volume

of the resistant regions that can be boosted in dose painting depends on the ability

to produce steep enough dose gradients [28]. Too small target volumes can either

cause the resistant volume to receive a lower dose, or cause the surrounding sensitive

volume to be irradiated with a higher dose than prescribed [73, 74]. As external

photon beams have finite dose gradients, the desired steepness may be problem-

atic to achieve with photon irradiation. This has motivated the investigation of

dose painting with particle therapy, as irradiation of heavy charged particles allows

steeper dose gradients [75, 76, 77].
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The minimal subvolume that can be accurately boosted in dose painting was esti-

mated by a medical physicist at St. Olavs hospital to be a sphere with diameter

of 1 cm. All resistant volumes smaller than 1 cm3 were therefore neglected and

considered as a part of S. Small clusters of voxels belonging to the sensitive com-

partment within the boost subvolume, or small holes in the tumor, were included in

the dominant region for the same reasons. The approach used for removing the small

subvolumes did not consider the size of each direction of the region. Some of the

subvolumes may therefore be too narrow for DPBC. However, only 16 of the patients

ended up with resistant regions after this approach, and if stricter requirements were

set there would be even fewer patients to analyse.

5.1.3 TCP modelling

There were several uncertainties related to the TCP calculations, mainly due to

model simplifications and uncertainties regarding the model parameters. Important

factors in a fractionated treatment course, such as tumor cell repopulation, repair,

redistribution and reoxygenation were not incorporated into the LQ-based Poisson

TCP model. Repopulation and repair of clonogenic cells between the fractions may

lead to a lower TCP. The damage to the tumor will, however, at the same time

increase due to reoxygenation of hypoxic cells, and redistribution of cells into the

radiosensitive phases of the cell cycle.

The α/β ratios used for the sensitive compartment was chosen based on previous

studies [64, 67]. However, only one of the studies was specific for rectal cancer. The

limited literature about the α/β ratio in rectal cancer may indicate that precise

knowledge about is lacking. The α/β ratio in the resistant region was found by

directly relating it to the α/β ratio in the sensitive region via the OER. This is a

common method for finding the α/β ratio in hypoxic regions, that assumes fully

oxygenated conditions for the sensitive region. This assumption may not hold, as

the α/β values were based on a population average. The TCP modelling was first

done with the suggested literature values for α. However, previous TCP studies

tend to adjust the α value to match the observed results [5, 68]. This method was

therefore also investigated by fitting the α value to the TCP for the patient cohort

used in this thesis. The cohort TCP was predicted based on TRG, assuming that
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patients with TRG0-1 would obtain tumor control.

The TCP was calculated for various dose levels to the resistant subvolumes to make it

possible to observe how the TCP depended on the boost factor. Literature suggested

a uniform dose escalation of 60 Gy, which corresponds to a boost factor of 1.2 [70]. It

may, however, be feasible to use higher doses when only the subvolumes are boosted.

The DPBC plans have a higher integral tumor dose than conventional treatment

planning. This can make it difficult to compare them, since a potential increase in

the TCP for DPBC will partly be due to the higher total dose. The DPBC plans

were therefore compared to a uniform dose boost with equal total dose. It could

have been interesting to examine whether the TCP is dependent on the location of

the resistant subvolumes. However, the current TCP model only accounts for the

volume of the different regions, not their position.

5.1.4 Estimation of cell densities from ADC maps

A uniform cell density has been the typical approach in TCP modelling, even though

it has been shown that most tumors have non-uniform clonogenic cell density [5, 50].

The TCP was therefore first calculated using a constant cell density across the tumor,

with a value in agreement with previous TCP modelling studies [50, 69]. However,

it may be more accurate to estimate the cell density based on functional imaging.

Casares-Magaz et al. used ADC maps to calculate the cell density of the tumor, and

investigated how the ADC-based cell densities affected the TCP [5]. Based on this

research, ADC maps were used to estimate the average tumor cell density in addition

to the average cell density in the resistant and in the sensitive region for all patients

included in the TCP modelling. There are, however, some uncertainties related to

this approach. The model used to relate the ADC values to cell densities was mainly

based on TCP studies of prostate cancer [5]. The conversion may therefore not be

very representative for the rectal cancer data used in this thesis, as the density of

clonogenic cells vary for different cancer types.

5.1.5 Clinical implementation of DPBC

The TCP value should primarily be used as a relative measure to compare different

treatment techniques, as it does not for instance take OARs into consideration. To
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evaluate the DPBC plans further, it was therefore of interest to incorporate them

into a treatment planning system. Generation of DVHs would be useful to ensure

that the desired dose is given to the target volumes, and that the dose boosts do

not increase the risks of normal tissue toxicity.

Implementation of the DPBC plans into RayStation involved several processing steps

with associated uncertainties. First, the contours from the DPBC plans had to be

saved as NifTI files, and adapted to the resolution format of the T2 weighted MR

images used in the treatment planning. Then these files needed to be converted

to radiotherapy structures for Raystation to be able to recognize them as contours.

RayStation was, however, not able to import these structures, as some of the tags in

the DICOM header were not correctly linked to the planning MR images. RaySearch

is currently trying to fix this problem.

5.2 Results

5.2.1 DPBC maps

DPBC, or subvolume boosting seems to be the most common approach related to

dose painting in previous studies [78, 79, 80, 81]. There may be several reasons for

this. First, it is easier to make dose plans in DPBC compared to DPBN, where more

advanced methods is needed to compute and prescribe heterogeneous doses across

the tumor. DPBC plans are also easier to integrate into conventional treatment

planning systems and clinical workflows. Additionally, DPBC is more robust to

spatial errors. This factor is especially important for rectal cancer patients, where

the risk of bowel movement is high. The downside to DPBC is that it only assumes

two sets of characteristics, one that represents the aggressive regions of the tumor,

and one that represents the rest of the tumor. In reality, tumor biology charac-

teristics such as the OER, the cell density and the α/β ratio, changes continuously

across the tumor. Also, a large contrast in dose levels between the two regions would

make it hard to produce steep enough dose gradients. However, this is related to

the concept of DPBC. DPBN should be used if more parameter levels are desired.

Statistical testing was done to assess the relationship between the patients’ TRG

and their volume of R. The aim was to obtain information about whether the tumor
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volume adding to the radiation resistant region was larger for the poor responders

compared to the good responders. The statistical test was performed before any of

the R subvolumes were incorporated into S, when subvolumes smaller than 0.5 cm3

were removed, and finally, after all subvolumes smaller than 1 cm3 were disregarded.

The volume of R decreased noticeably with increasing subvolume limit, but the same

trend was seen for each limit. Patients with TRG3 had significantly larger R volume

compared to patients with TRG2 and TRG1 for all subvolume limits. A significant

difference was also seen between TRG3 and TRG0 before removing any of the R

volumes. Patients with TRG0 were expected to have the lowest volume of R, but

this was not the case. This may be related to the small number of patients in each

TRG group. Only two patients were in the TRG0 group, which means that outliers

have greater impact and can cause unexpected results.

5.2.2 TCP modelling

The TCP was first calculated using the suggested α and β values from the litera-

ture. The most favorable results were then seen for an α/β ratio of 11.5 Gy. This

was expected, since the ratio represented completely oxygenated conditions in the

sensitive region. The least favorable results were seen for the α/β ratio of 11.2 Gy,

despite the similar value. However, the results are consistent with the assumption

that this α/β ratio accounts for repopulation, which introduces a loss in the effi-

ciency of fractionated radiotherapy. Intermediate results were obtained for the other

α/β specific to rectal cancer, which did not account for repopulation. This was also

expected.

The gain in TCP was found for different dose boost levels to get an idea of how

much the dose had to be escalated to obtain sufficient tumor control. When using

an OER of 1.75, the TCP reached a maximum close to 100% approximately at

b=1.5 for α/β=11.5 Gy. For α/β=5.1 Gy, the maximum TCP was slightly lower,

and for α/β=11.2, the TCP did not get any higher than about 10%. When using an

OER of 2.7, a noticeably higher dose boost was needed to reach the maximum TCP.

Overall, the TCPs seemed to be quite low, particularly for high dose boost factors.

This indicated that the TCP model was incorrect, or that one or more parameters

needed to be adjusted.
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The TCP modelling was therefore also done by fitting the α value to the cohort

TCP for a standard dose (b=1). Figure 4.5 shows that with this approach, the

model predicted tumor control for all the α/β ratios at b=1.2 and 1.8 for an OER

of 1.75 and 2.7, respectively. A b-value of 1.2 is suitable for clinical application,

and is consistent with the dose boosts used in other studies [70]. When different

α/β values were used, the model predicted very similar TCPs compared to the first

approach, where the choice of α/β had a large impact on the results, and was a

major source of uncertainty.

The TCP was also calculated for a uniform dose boost to the whole tumor with

equal total dose as the corresponding DPBC plan. Before fitting the α value to the

cohort TCP, the TCPs for a uniform dose boost were remarkably low compared to

the TCPs for DPBC. Twice as high dose as used in conventional radiotherapy was

needed to get TCP values larger than 0. By fitting the α value, the TCP modelling

predicted more reliable values, and it was therefore decided to use this approach in

further analyses.

The TCPs for the uniform dose boost strategy were still noticeably lower compared

to the corresponding DPBC plans. This is mainly because the resistant subvolumes

were assigned a too low dose to obtain tumor control in these regions. Since the total

TCP was found by multiplying the individual TCP for the different regions, a low

TCP for the resistant region will affect the total result even if it only accounts for a

small part of the tumor. The dose to the sensitive region was slightly increased for

a uniform dose boost compared to DPBC, but as seen in table 4.1, the TCP for the

sensitive region was already 100% for each patient, thus escalating the dose would

not influence the total TCP. These findings are consistent with previous research,

and indicate that hypoxia targeted dose painting may be more favorable than to

uniformly increase the total dose to the whole tumor [57].

From figure 4.7 it is seen that the patients obtained larger individual differences for

a uniform dose boost than for DPBC. This is mainly related to the varying volume

of the resistant regions. According to equation (2.12), patients with larger resistant

regions will obtain a lower TCP compared to patients that have smaller subvolumes.

However, for DPBC, all patients quickly reached a maximum TCP as the dose to the
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resistant region was high enough to obtain tumor control regardless of the volume.

5.2.3 ADC-based cell densities

Cell densities were estimated based on average ADC values for the tumor, the resis-

tant and the sensitive regions. The model used to relate them was based on ADC

values ranging from 0.5 to 2.5 ·10−3 mm2/s and corresponding cell densities ranging

from 105 to 107 cells/cm3. However, the average ADC values found in the present

work ranged from 0.555 to 1.382 ·10−3 mm2/s. The conversion was therefore not

so sensitive for the data used in this thesis, and the estimated cell densities ended

up being shifted towards higher values of the scale. Prostate cancer is known to

be highly heterogeneous, with a lower density of clonogenic cells across the prostate

compared to other forms of cancer [82]. Therefore, it may still be reasonable to

assume that rectal tumors have higher cell densities.

Figure 4.8 revealed some difference in the cell density between the sensitive and the

resistant part of the tumor. The average cell density in the resistant regions seemed

to be slightly higher than for the rest of the tumor, and may further confirm that

these regions are more aggressive. Moreover, it was of interest to investigate whether

the cell density was higher for the poor responders compared to the good responders.

However, no clear trend was observed between the cell densities for different TRG

groups. This might be related to the small number of patients in each group, as

previously mentioned.

The ADC-based cell densities were included in the TCP modelling, and compared to

the TCPs based on a constant cell density of 106 cells/cm3. The TCPs based on the

cell densities from ADC maps were lower for all patients, which was expected since

the cell densities were close to 107 cells/cm3. The difference was largest when using

low dose boost factors, and evened out with increasing boost. The overall implication

is that a cell density of 106 cells/cm3 may be too low and hence overestimate the

TCP. It was also of interest to model the TCP for a constant cell density of 107

cells/cm3 to investigate if there were any differences compared to the TCP for ADC-

based cell densities.

The average TCP with a constant cell density of 107 cells/cm3 was almost identical
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to the average TCP with ADC-based cell densities. However, the variation in TCP

between patients was larger for ADC-based cell densities than for both of the con-

stant cell densities. This may imply that patient-specific cell densities can predict

the outcome more accurately for each patient, and may be helpful to further indi-

vidualize the treatment. On the other hand, the average TCP values indicate that

setting a constant cell density of 107 cells/cm3 across the tumor may be sufficient.

It would have been interesting to adapt the model to fit data from rectal cancer,

but the lack of literature on rectal cancer makes this difficult.

5.3 Clinical implications

The presence of hypoxic regions is known to influence the effect of radiation, and

can be difficult to treat with conventional radiotherapy [83]. Dose painting has the

potential to overcome regions with increased radiation resistance, and improve the

local tumor control. A major advantage of dose painting compared to a uniform

escalation to the whole tumor, is that the small boost volumes make it possible

to prescribe high dose levels to these without increasing the risks of normal tissue

toxicity [4]. Another benefit with dose painting is that the resistant regions are

found based on quantitative values, and therefore the variability related to manual

contouring is reduced. As the DPBC plans only consist of two dose levels, they

also have the potential to easily be integrated into conventional treatment planning

systems and clinical workflows [84].

There are, however, some challenges related to the clinical realization of dose paint-

ing. The first step is to find a reliable imaging biomarker that provides information

about tumor biology and radiosensitivity. R∗2-AUC has been found to be signifi-

cantly associated with the CRT outcome in rectal cancer patients, but has not yet

been shown to be directly related to a relevant biological mechanism. Furthermore,

it is important to image the patient in exact treatment position, so that the R∗2-

AUC maps are representative for the tumor biology at the time of radiotherapy.

The boost volume may change during the treatment course due to reoxygenation or

organ motion. Replanning during the treatment should therefore be considered if

repeated MR images during the course of radiotherapy are available.

Radiotherapy treatment planning generally requires a planning CT to obtain elec-
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tron density information for dose calculations [7]. Dose painting based on MRI may

therefore be more compatible with MR-only radiotherapy to reduce errors related

to image fusion. Clinical implementation of dose painting plans still requires robust

and accurate image registration tools, including resampling of the R∗2-AUC maps to

the dose planning grid [4].

Dose painting is a relatively new radiotherapy approach that has shown promising

results. However, the variety of different and potentially relevant imaging techniques

and biomarkers makes it possible to investigate a number of different dose painting

strategies. The majority of studies regarding hypoxia targeted dose painting have

based the visualization of hypoxia on PET tracers [78, 80, 81]. When it comes to

rectal cancer, there are several dose boost trials, but few includes a dose painting

approach [70]. This makes it challenging to compare the results.

5.4 Future work

DPBC based on R∗2-AUC maps is an experimental methodology with room for im-

provement in several areas. Before dose painting can be clinically implemented, the

radiobiological targets that most likely will benefit from a dose escalation have to

be identified. First, it should therefore be investigated whether R∗2-AUC is directly

associated with hypoxia, and how to optimally define the hypoxic subvolumes.

The modelling parameters used in the TCP modelling should also be looked into

more closely, as should the correlation between ADC values and cell densities for

rectal cancer. The image processing that was done in order to match the original

tumor ROIs from the T2 weighted images to the R∗2 image grid, should be performed

for each patient to get more accurate DPBC maps. Currently, the resampling was

only done for the analyses involving ADC maps. Also, different software tools were

used for the resampling than for the rest of the analyses. If possible, the resampling

should be integrated into the DPBC model to simplify the workflow and save time.

The primary area for future work is to continue the incorporation of the DPBC

plans into RayStation. If the dose plans were to be used in the clinic, they have

to be compatible with the treatment planning system. Also, the ability to generate

DVHs is useful to evaluate if the desired dose is given to the target volumes, and if
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the doses to OARs are kept low. It also makes it possible to further compare the

DPBC plans with the corresponding conventional and uniform dose boost plans.
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6 Conclusion

This thesis investigated the potential advantage of DPBC prescriptions based on R∗2-

AUC tumor maps in rectal cancer. TCP modelling showed enhanced tumor control

for the DPBC maps compared to a uniform boost to the whole tumor. Clinically,

this suggests that DPBC has the potential to overcome radioresistant regions, and

increase the probability of a good radiotherapy treatment outcome. It is, however,

crucial to continue the work on including the DPBC plans into a treatment planning

system to investigate the impact on OARs.

ADC maps were used to calculate non-uniform, patient-specific cell densities in an

attempt to individualise the TCP modelling further. TCP modelling showed similar

results when using a constant cell density of 107 cells/cm3 compared to using ADC-

based cell densities. This indicates that it may be sufficient to assume a constant

cell density across the tumor, which makes future clinical implementation simpler.

The conversion used to translate ADC values to cell densities should, however, be

adapted more closely to rectal cancer to further examine this.
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[6] E. Malinen, Å. Søvik, D. Hristov, Ø. S. Bruland, and D. R. Olsen, “Adapting

radiotherapy to hypoxic tumours,” Phys. Med. Biol., vol. 51, p. 4903–4921,

2006.

[7] R. Alonzi, “Functional radiotherapy targeting using focused dose escalation,”

Clinical Oncology, vol. 27, no. 10, p. 601–617, 2015.

[8] Functional MRI of Hypoxia-mediated Rectal Cancer Aggressiveness (Oxy-

Target). 2013, retrieved 21.02.2020. [Online]. Available at https://

clinicaltrials.gov/ct2/show/NCT01816607.

[9] I. F. Syversen, “Prediction of chemoradiotherapy response in rectal cancer using

static and dynamic R2∗ MRI measurements.” Project thesis, NTNU, 2017.

[10] F. Julbø, “Phantom MR imaging for MR-only radiotherapy: identifying optimal

sequences and acquisition parameters.” Project thesis, NTNU, 2019.

57

https://clinicaltrials.gov/ct2/show/NCT01816607
https://clinicaltrials.gov/ct2/show/NCT01816607


[11] C. Westbrook, C. K. Roth, and J. Talbot, MRI in practice. Wiley-Blackwell,

4th ed., 2011.

[12] M. D. Guimaraes, A. Schuch, B. Hochhegger, J. L. Gross, R. Chojniak, and

E. Marchior, “Functional magnetic resonance imaging in oncology: State of the

art,” Radiologia Brasileira, vol. 47, no. 2, p. 101–111, 2014.

[13] R. B. Buxton, Introduction to Functional Magnetic Resonance Imaging: Prin-

ciples and Techniques. Cambridge University Press, 2002.

[14] E. Grøvik, Multimodal Dynamic MRI for Structural and Functional Assessment

of Cancer. PhD thesis, University of Oslo, 2017.

[15] M. A. Schmidt and G. S. Payne, “Radio therapy planning using MRI,” Physics

in Medicine and Biology, vol. 60, no. 22, p. R323–R361, 2015.

[16] G.-H. Jahng, K.-L. Li, L. Ostergaard, and F. Calamante, “Perfusion magnetic

resonance imaging: A comprehensive update on principles and techniques,”

Korean Journal of Radiology, vol. 15, no. 5, p. 554–577, 2014.

[17] Questions and answers in MRI. Echo-Planar Imaging (EPI). Re-

trieved 12.02.2020. [Online]. Available at http://mriquestions.com/

echo-planar-imaging.html.

[18] M. A. Schmidt and G. S. Payne, “Dynamic multi-echo DCE- and DSC-MRI in

rectal cancer: Low primary tumor Ktrans and ∆R2
∗ peak are significantly asso-

ciated with lymph node metastasis,” Journal of Magnetic Resonance Imaging,

vol. 46, no. 1, p. 194–206, 2017.

[19] V. Baliyan, C. J. Das, R. Sharma, and A. K. Gupta, “Diffusion weighted imag-

ing: Technique and applications,” World journal of radiology, vol. 8, no. 9,

p. 785–798, 2016.

[20] A. R. Padhani, G. Liu, D. Mu-Koh, T. L. Chenevert, H. C. Thoeny, T. Taka-

hara, A. Dzik-Jurasz, B. D. Ross, M. V. Cauteren, D. Collins, D. A. Ham-

moud, G. J. S. Rustin, B. Taouli, and P. Choyke, “Diffusion-weighted magnetic

resonance imaging as a cancer biomarker: Consensus and recommendations,”

Neoplasia, vol. 11, no. 2, pp. 102–125, 2009.

58

http://mriquestions.com/echo-planar-imaging.html
http://mriquestions.com/echo-planar-imaging.html


[21] L. Monguzzia, D. Ippolitoa, D. P. Bernasconic, C. Tratteneroa, S. Galimber-

tica, and S. Sironia, “Locally advanced rectal cancer: Value of ADC mapping

in prediction of tumor response to radiochemotherapy,” European Journal of

Radiology, vol. 82, no. 2, p. 234–240, 2013.

[22] L. L. Gunderson and J. E. Tepper, Clinical Radiation Oncology. Elsevier, 2011.

[23] D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100,

no. 1, p. 57–70, 2000.

[24] D. Hanahan and R. A. Weinberg, “The hallmarks of cancer: The next genera-

tion,” Cell, vol. 144, no. 5, pp. 646–674, 2011.

[25] J. C. Forster, W. M. Harriss-Phillips, M. J. J. Douglass, and E. Bezak, “A

review of the development of tumor vasculature and its effects on the tumor

microenvironment,” Hypoxia, vol. 5, pp. 21–32, 2017.

[26] O. Trédan, C. M. Galmarini, K. Patel, and I. F. Tannock, “Drug resistance and

the solid tumor microenvironment,” Journal of the National Cancer Institute,

vol. 99, no. 19, p. 1441–1454, 2007.

[27] M. B. Schaaf, A. D. Garg, and P. Agostinis, “Defining the role of the tumor

vasculature in antitumor immunity and immunotherapy,” Cell Death & Disease,

vol. 9, no. 115, 2018.

[28] J. Rødal, On Functional Imaging and Treatment Planning for Biologically

Adapted Radiotherapy. PhD thesis, NTNU and Oslo University Hospital, 2012.

[29] K. A. Miles, “Tumour angiogenesis and its relation to contrast enhancement

on computed tomography: a review,” European Journal of Radiology, vol. 30,

no. 3, pp. 198–205, 1999.

[30] J. M. Brown, “Exploiting the hypoxic cancer cell: mechanisms and therapeutic

strategies,” Molecular Medicine Today, vol. 6, no. 4, pp. 157–162, 2000.

[31] E. J. Hall and A. J. Giaccia, Radiobiology for the radiologist. Lippincott

Williams & Wilkins, 2011.

59



[32] Oncohema Key. Dose-Response Modifiers in Radiation Therapy. Re-

trieved 06.03.2020. [Online]. Available at https://oncohemakey.com/

dose-response-modifiers-in-radiation-therapy/.

[33] P. Vaupel and A. Mayer, “Hypoxia and anemia: effects on tumor biology and

treatment resistancet,” Transfusion Clinique et Biologique, vol. 12, no. 1, pp. 5–

10, 2005.

[34] S. A. Hendry, R. H. Farnsworth, B. Solomon, M. G. Achen, S. A. Stacker, and

S. B. Fox, “The role of the tumor vasculature in the host immune response:

Implications for therapeutic strategies targeting the tumor microenvironment,”

Front. Immunol., vol. 7, p. 621, 2016.

[35] The Norwegian Directorate of Health, “Nasjonalt handlingsprogram med ret-

ningslinjer for diagnostikk, behandling og oppfølging av kreft i tykktarm og

endetarm,” 2019.

[36] R. Glynne-Jones, L. Wyrwicz, E. Tiret, G. Brown, C. Rödel, A. Cervantes, and
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A Code

A.1 sortT2.py

1

2 #This script sorts the T2-weighted images (received in DICOM format) for each patient in
3 #the z-direction. These are the MR images used for TN staging and delineation of
4 #tumor ROIs. The script is based on MATLAB scripts written by Karina Rød.
5

6 import numpy as np
7 import os
8 import pydicom
9 import matplotlib . pyplot as plt

10

11 #path towards the OxyTarget data folder
12 filePath = '/Users/ frida/Documents/Fysmat 5. klasse/Masteroppgave/MR data/'
13

14 #patients that will be analysed (patient 126 have been excluded)
15 patientList = [24, 27, 32, 41, 43, 44, 47, 49, 50, 51, 52, 55, 56, 67, 74, 79, 80, 87,

89, 90, 96, 107, 116, 120, 121, 125, 128, 131, 138, 146, 150, 153, 154, 170]
16

17 nPatients = len( patientList )
18

19 #Loop that goes over all patients that are going to be analysed
20 for patient in patientList :
21 i = 0
22 #Make a list over all the image files and count them
23 imList = []
24 for file in os. listdir ( filePath + ”OxyTarget ” + str(patient) + ”/T2”):
25 if file .endswith(”.dcm”):
26 imList .append(os.path. join ( filePath + ”OxyTarget ” + str(patient) + ”/T2”

,file))
27 i+=1
28

29 nImT2 = len(imList)
30

31 #Ref file
32 RefDs = pydicom.dcmread(imList[0])
33

34 #Load dimensions
35 ConstPixelDims = (int(RefDs.Rows), int(RefDs.Columns), nImT2)
36

37 #Load spacing values (in mm)
38 ConstPixelSpacing = (float (RefDs.PixelSpacing [0]) , float (RefDs.PixelSpacing [1]) ,

float (RefDs.SliceThickness ))
39

40 #Array to store all T2 images
41 imT2 = np.zeros(ConstPixelDims, dtype=RefDs.pixel array.dtype)
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42

43 #List to store z values
44 zValueT2 = np.zeros(nImT2)
45

46 i = 0
47 #Loop through all the DICOM files to get z-values
48 for file in imList :
49 #Read the file
50 ds = pydicom.dcmread(file)
51 #Puts slice position into a list
52 zValueT2[i ] = ds.ImagePositionPatient [2]
53 i+=1
54

55 #Sorts the slices
56 sort zindex = np.argsort(zValueT2)
57 sort zvalues = np.sort(zValueT2)
58

59 i = 0
60 #Loop through all the DICOM files:
61 for file in imList :
62 #Read the file
63 ds = pydicom.dcmread(file)
64 #Store the raw image data in sorted order
65 imT2[:, :, np.where( sort zindex ==i) [0][0]] = ds. pixel array
66 i+=1
67

68 #Saving variables to a .npz-file in the patient’s T2 folder
69 np.savez( filePath + ”OxyTarget ” + str(patient) + ”/T2/3Dmatrix”, imT2=imT2,

zValueT2=sort zvalues, nSlicesT2=nImT2, nImT2=nImT2)

A.2 sortDynamic.py

1

2 #This script sorts the dynamic images obtained with the DSC sequence (received
3 #in DICOM format). These are the maps of the R2* values. Since the data set is
4 #4D, the images are sorted with respect to position and acquisition time. The
5 #script is based on MATLAB scripts written by Karina Rød.
6

7 import numpy as np
8 import os
9 import pydicom

10 import matplotlib . pyplot as plt
11

12 #path towards the OxyTarget data folder
13 filePath = '/Users/ frida/Documents/Fysmat 5. klasse/Masteroppgave/MR data/'
14

15 #patients that will be analysed
16 patientList = [24, 27, 32, 41, 43, 44, 47, 49, 50, 51, 52, 55, 56, 67, 74, 79, 80, 87,

89, 90, 96, 107, 116, 120, 121, 125, 128, 131, 138, 146, 150, 153, 154, 170]
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17

18 nPatients = len( patientList )
19

20 #Loop that goes over all patients that are going to be analysed
21 for patient in patientList :
22 i = 0
23 #Make a list over all the image files
24 imList = []
25 for file in os. listdir ( filePath + ”OxyTarget ” + str(patient) + ”/R2Star”):
26 if file .endswith(”.dcm”):
27 imList .append(os.path. join ( filePath + ”OxyTarget ”
28 + str( patient ) + ”/R2Star”,file ))
29 i+=1
30

31 #Number of image files
32 nIm = len(imList)
33

34 #Ref file
35 RefDs = pydicom.dcmread(imList[80])
36

37 #Load dimensions
38 ConstPixelDims = (int(RefDs.Rows), int(RefDs.Columns), nIm)
39

40 #Load spacing values (in mm)
41 ConstPixelSpacing = (float (RefDs.PixelSpacing [0]) , float (RefDs.PixelSpacing [1]) ,

float (RefDs.SliceThickness ))
42

43 #Array to store acquisition time values
44 acqTimeValue = np.zeros(nIm)
45

46 #Array to store z values
47 zValue = np.zeros(nIm)
48

49 #Array to store image data from all files
50 im = np.zeros(ConstPixelDims, dtype=RefDs.pixel array .dtype)
51

52 i = 0
53 #Loop through all the DICOM files
54 for file in imList :
55 #Read the file
56 ds = pydicom.dcmread(file)
57 #Image needs to be multiplied with a scaling factor to get
58 #the correct R2* value
59 scalingFactor = ds[0x00771001].value
60 #Puts slice position and acquisition times into arrays
61 zValue[ i ] = ds.ImagePositionPatient [2]
62 acqTimeValue[i] = ds.AcquisitionTime
63 #Puts image data into 3D array
64 im [:, :, i ] = ds. pixel array ∗ scalingFactor
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65 i+=1
66

67 #make 2D array with z-values in 1. row and time-values in 2.
68 #row to sort the files
69 zAndTime = np.zeros((2,nIm))
70 zAndTime[0,:]=zValue
71 zAndTime[1,:]=acqTimeValue
72

73 #Find the indices that sorts the images in the order where all
74 #images with the lowest z value come first, and these are
75 #sorted by acqusition time internally, and so on
76 sortIndex = np. lexsort ((zAndTime[1,:],zAndTime[0,:]))
77

78 #number of acquisition time values
79 nAt = len(set(acqTimeValue))
80

81 #number of slices
82 nSlices = round(nIm/nAt)
83

84 #sort the image files
85 sortedIm = im [:,:, sortIndex ]
86

87 #reshape the array to 4D; the first two dimensions are image
88 #data, the 3. is z-values and the 4. is acquisition times
89 im4D = np.reshape(sortedIm,(ConstPixelDims[0],ConstPixelDims[1], nSlices ,nAt))
90

91 #sort zValue
92 zValue set = set(zValue)
93 zValue new = np.sort( list ( zValue set ))
94

95 #sort acqTimeValue
96 acqTimeValue set = set(acqTimeValue)
97 acqTimeValue new = np.sort(list(acqTimeValue set))
98

99 #Saving variables to a .npz-file in the patient’s R2* folder
100 np.savez( filePath + ”OxyTarget ” + str(patient) + ”/R2Star/4Dmatrix”, im=im4D,

nAt=nAt, nSlices=nSlices, nIm=nIm, zValue = zValue new, acqTimeValue =
acqTimeValue new)

A.3 dynamicROIs.py

1

2 #This script uploads the tumor ROIs and adapt them to fit the DSC data format.
3 #The script is based on MATLAB scripts written by Karina Rød.
4

5 import numpy as np
6 import pydicom
7 import matplotlib . pyplot as plt
8 import nibabel as nib
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9

10 #path towards the OxyTarget data folder
11 filePath = '/Users/ frida/Documents/Fysmat 5. klasse/Masteroppgave/MR data/'
12

13 #patients that will be analysed
14 patientList = [24, 27, 32, 41, 43, 44, 47, 49, 50, 51, 52, 55, 56, 67, 74, 79, 80, 87,

89, 90, 96, 107, 116, 120, 121, 125, 128, 131, 138, 146, 150, 153, 154, 170]
15

16 #Patients that have subvolumes larger than 1cm3
17 patientList2 = [41, 44, 47, 49, 55, 56, 80, 89, 96, 116, 121, 125, 128, 131, 138, 170]
18

19 nPatients = len( patientList )
20

21 #Loop that goes over all patients that are going to be analysed
22 for patient in patientList :
23 i=0
24 #Load the sorted DSC images (R2*maps) and T2 images
25 loadFileT2 = np.load( filePath +”OxyTarget ”+str(patient)+”/T2/3Dmatrix.npz”)
26 loadFileR2 = np.load( filePath +”OxyTarget ”+str(patient)+”/R2Star/4Dmatrix.npz”)
27 imT2 = loadFileT2[”imT2”]
28 nImT2 = loadFileT2[”nImT2”]
29 im = loadFileR2[”im”]
30 nSlices = loadFileR2[” nSlices ”]
31 zValueT2 = loadFileT2[”zValueT2”]
32 zValue = loadFileR2[”zValue”]
33

34 #Load the ROI from the NIfTI file in the binary folder; Prefix ”an”
35 #denotes the initials of the radiologist that delineated the ROIs
36 nii = nib.load( filePath +”OxyTarget ”+str(patient)+'/binary/an/tumour.nii')
37 #get image data
38 ROI = nii. get fdata ()
39 #get the right dimensions and scaling
40 ROI = ROI/1000
41 ROI = np.swapaxes( ROI, 0, 1)
42 xPixels = ROI.shape[0]
43 yPixels = ROI.shape[1]
44 nSlicesT2 = ROI.shape[2]
45

46 #For these patients the ROI slices are in the opposite order,
47 #so they have to be reversed
48 if ( patient == 32) or (patient == 74) or (patient == 79) or (patient == 96):
49 copy = np.copy(ROI)
50 i = 0
51 for s in range(nSlicesT2−1,−1,−1):
52 ROI [:,:, i ] = copy [:,:, s ]
53 i += 1
54

55 #Adapting the ROI to fit the DSC format
56 dynamicROI = np.zeros((256, 256, nSlices ))
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57 z vals = [] #The 12 z-values from T2W used for DSC
58

59 for z in range( nSlices ) :
60 s = 0
61 minimum = 10
62 for i in range(nSlicesT2) :
63 #find T2 slice that is closest in position to DSC slice
64 if (np.abs(zValue[z] − zValueT2[i]) < minimum):
65 minimum = abs(zValue[z] − zValueT2[i])
66 s = i #choose ROI for T2 image i
67 z vals .append(s)
68

69 if (minimum < 4):
70 for x in range(256):
71 for y in range(256):
72 if ((ROI[2∗x+1,2∗y+1,s] == 1) or (ROI[2∗x,2∗y+1,s] == 1) or
73 (ROI[2∗x+1,2∗y,s] == 1) or (ROI[2∗x,2∗y,s] == 1)):
74 dynamicROI[x,y,z] = 1
75

76 #Dynamic ROI made by resampling (Only done for patients in patientList2)
77 nii = nib.load( filePath + ”OxyTarget ” + str(patient) + '/gtv1 onR2star. nii ' )
78 adaptedROI = nii.get fdata ()
79 #Must swap to get right dimentions
80 adaptedROI swaped = np.swapaxes(adaptedROI, 0, 1)
81

82 #Saving variables to a .npz-file in the patients’ folder
83 np.savez( filePath + ”OxyTarget ” + str(patient) + ”/dynamicROI”, dynamicROI=

dynamicROI, xPixels=xPixels, yPixels=yPixels, z vals=z vals, adaptedROI swaped=
adaptedROI swaped)

A.4 dynamicR2star.py

1

2 #This script is used to plot normalised voxel-by-voxel R2* timecourses using
3 #the DSC-derived images(R2*-maps), for all voxels inside ROIs. Then, R2*-AUC
4 #is calculated voxel-by-voxel, and a map is generated for each dynamic slice.
5 #The script is based on MATLAB scripts written by Karina Rød.
6

7 import numpy as np
8 import matplotlib . pyplot as plt
9

10 #path towards the OxyTarget data folder
11 filePath = '/Users/ frida/Documents/Fysmat 5. klasse/Masteroppgave/MR data/'
12

13 #patients that will be analysed (126 and 154 have been excluded as
14 #the number of baseline images could not be found)
15 patientList = [24, 27, 32, 41, 43, 44, 47, 49, 50, 51, 52, 55, 56, 67, 74, 79, 80, 87,

89, 90, 96, 107, 116, 120, 121, 125, 128, 131, 138, 146, 150, 153, 170]
16
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17 #Patients that have subvolumes larger than 1cm3
18 patientList2 = [41, 44, 47, 49, 55, 56, 80, 89, 96, 116, 121, 125, 128, 131, 138, 170]
19

20 nPatients = len( patientList )
21

22 #the number of baseline images for each patient (found by counting manually)
23 nBaselineImages=[12, 13, 12, 12, 10, 16, 10, 10, 6, 7, 11, 10, 14, 13, 9, 15, 15, 15,

15, 15, 14, 15, 15, 18, 14, 16, 14, 12, 18, 16, 12, 15, 17];
24 nBaselineImages2=[16, 10, 10, 14, 15, 14, 15, 16, 14, 12, 17]
25

26 #Loop that goes over all patients that are going to be analysed
27 patientNr = 0
28 for patient in patientList :
29 #load R2* and ROI data
30 loadFileR2 = np.load( filePath +”OxyTarget ”+str(patient)+”/R2Star/4Dmatrix.npz”)
31 loadFileROI = np.load( filePath +”OxyTarget ”+str(patient)+”/dynamicROI.npz”)
32 im = loadFileR2[”im”]
33 nSlices = loadFileR2[” nSlices ”]
34 nAt = loadFileR2[”nAt”]
35 acqTimeValue = loadFileR2[”acqTimeValue”]
36 dynamicROI = loadFileROI[”dynamicROI”]
37 adaptedROI = loadFileROI[”adaptedROI swaped”]
38

39 #Make a 3D matrix that holds the peak R2* values
40 R2StarPeakEnhancedMap = np.zeros((256,256,nSlices))
41

42 #Make a 3D matrix that holds voxel-vise R2*-AUC values
43 AUCmap = np.zeros((256,256,nSlices))
44 R2StarPeakEnhancedValues = []
45 AUCvalues = []
46 curveAverage = np.zeros((256∗256,nAt))
47 index = 0
48 negativeValuesDynamic = 0
49

50 #change from acquisition time to seconds
51 t = np.zeros(60)
52 for i in range(60):
53 h = np.floor (acqTimeValue[i] ∗ 0.0001)
54 m = np.floor((acqTimeValue[i] − (h∗10000)) ∗ 0.01)
55 s = np.floor (acqTimeValue[i]−h ∗ 10000−m ∗ 100)
56 t [ i ] = h∗60∗60 + m∗60 + s +(acqTimeValue[i]−np.floor(acqTimeValue[i]))
57 t = t − t[0]
58

59 for s in range( nSlices ) :
60 tAUC = []
61 tVal = t[0]
62 tIndex = 0
63

64 #Finding AUC in this interval
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65 AUCinterval = 525;
66 if (np.amax(t) < AUCinterval):
67 tAUC = t
68 else :
69 while (tVal < AUCinterval):
70 tAUC.append(t[tIndex])
71 tIndex += 1
72 tVal = t[tIndex ]
73

74 for x in range(256):
75 for y in range(256):
76 #only perform calculations inside ROI
77 if (dynamicROI[x,y,s] == 1): #use adaptedROI for patientList2
78 Sum = 0
79 #use nBaselineImages2 for patientList2
80 for i in range(nBaselineImages[patientNr ]) :
81 #Sum R2* for all baseline images
82 Sum = Sum + im[x,y,s,i]
83 baseline = Sum/nBaselineImages[patientNr]
84

85 #Normalization of curves by substracting baseline
86 pixelArray = np.squeeze(im[x,y, s ,:]) − baseline
87

88 #Finding the maximum value of Delta-R2*
89 maximum = np.amax(pixelArray)
90

91 #only interested in positive R2*-peak
92 if (maximum > 0):
93 R2StarPeakEnhancedMap[x,y,s] = maximum
94 R2StarPeakEnhancedValues.append(maximum)
95 pixelArrayAUC = np.zeros(len(tAUC))
96

97 for it in range(len(pixelArrayAUC)):
98 pixelArrayAUC[it ] = pixelArray [ it ]
99 #finding R2*-AUC using composite trapezoidal rule

100 AUCvalues.append(np.trapz(pixelArrayAUC,
101 x=tAUC))
102

103 AUCmap[x,y,s] = AUCvalues[index]
104 curveAverage[index ,:] = pixelArray
105 index += 1
106

107 elif (maximum < 0):
108 negativeValuesDynamic =
109 negativeValuesDynamic + 1
110

111 #Plot the average of all delta-R2* curves for the patient
112

113 #Saving variables to a .npz-file in the patient’s R2* folder
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114 np.savez( filePath + ”OxyTarget ” + str(patient) + ”/R2Star/R2StarAUCMap”,
AUCvalues=AUCvalues, AUCmap=AUCmap, negativeValuesDynamic=
negativeValuesDynamic, t=t, tAUC=tAUC )

115

116 patientNr += 1

A.5 filterR2StarAUCmaps.py

1

2 #This script is used to filter unphysiological high and low values (noise)
3 #from the parametric R2*-AUC maps generated in dynamicR2Star.py. R2*-AUC
4 #values lying below the 2.5 percentile or above the 97.5 percentile are
5 #assumed to fall within this category and are discarded for each patient.
6 #The script is based on MATLAB scripts written by Karina Rød.
7

8 import numpy as np
9 import matplotlib . pyplot as plt

10 import cv2
11

12 #path towards the OxyTarget data folder
13 filePath = '/Users/ frida/Documents/Fysmat 5. klasse/Masteroppgave/MR data/'
14

15 patientList = [24, 27, 32, 41, 43, 44, 47, 49, 50, 51, 52, 55, 56, 67, 74, 79, 80, 87,
89, 90, 96, 107, 116, 120, 121, 125, 128, 131, 138, 146, 150, 153, 170]

16

17 #Patients that have subvolumes larger than 1cm3
18 patientList2 = [41, 44, 47, 49, 55, 56, 80, 89, 96, 116, 121, 125, 128, 131, 138, 170]
19

20 nPatients = len( patientList )
21

22 #Loop that goes over all patients that are going to be analysed
23 for patient in patientList :
24 #load R2* AUC maps
25 loadFileR2map = np.load(filePath + ”OxyTarget ” + str(patient) + ”/R2Star/

R2StarAUCMap.npz”)
26 #load values
27 AUCvalues = loadFileR2map[”AUCvalues”]
28 AUCmap = loadFileR2map[”AUCmap”]
29 t = loadFileR2map[”t”]
30 tAUC = loadFileR2map[”tAUC”]
31 xRes = AUCmap.shape[0]
32 yRes = AUCmap.shape[1]
33 nSlices = AUCmap.shape[2]
34

35 #find 2.5 and 97.5 percentile of the R2*-AUC map by using numpy build-in function
36 pc = 2.5;
37 L = np. percentile (AUCvalues,pc)
38 H = np.percentile (AUCvalues,100−pc)
39
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40 #matrix for storing filtered maps
41 AUCmap corr = np.zeros((xRes,yRes,nSlices))
42

43 #Loop through all R2*-AUC maps
44 for s in range( nSlices ) :
45 for x in range(256):
46 for y in range(256):
47 AUCmap corr[x,y,s] = AUCmap[x,y,s]
48 #Remove low and high values
49 if (AUCmap corr[x,y,s]<L or AUCmap corr[x,y,s]>H):
50 AUCmap corr[x,y,s] = 0;
51

52 #Reshape the 3D matrix into a 1D array with the filtered
53 #R2*-AUC spectrum
54 fAUCvalues = np.reshape(AUCmap corr, xRes∗yRes∗nSlices, order='F')
55

56 #Remove pixels with no R2*-AUC information
57 fAUCvalues = fAUCvalues[fAUCvalues != 0]
58

59 #check that total fAUC values is 95 % of original AUC array
60 if ( ( len(fAUCvalues) < 0.949∗(len(AUCvalues))) or
61 ( len(fAUCvalues) > 0.951∗(len(AUCvalues)))):
62 print ( ' Filtration not in concordance with requirements ' )
63

64 #saving variables to a .npz-file in the patients’ DPBC folder
65 np.savez( filePath + ”OxyTarget ” + str(patient) + ”/DPBC/AUCmap filtered”,

AUCmap corr=AUCmap corr, nSlices=nSlices, xRes=xRes, yRes=yRes, fAUCvalues=
fAUCvalues)

A.6 gaussian2d.py

1

2 #This script is used to perform a Gaussian 2D smoothing of the R2*-AUC maps,
3 #whose upper and lower 2.5 th percentiles are already filtered
4 #(filterR2StarAUCmaps.py). Smoothing with a Gaussian kernel is done to
5 #account for interfractional tumor motion (uncertainty). The script is based
6 #on MATLAB scripts written by Karina Rød.
7

8 import numpy as np
9 import matplotlib . pyplot as plt

10 import skimage
11

12 #path towards the OxyTarget data folder
13 filePath = '/Users/ frida/Documents/Fysmat 5. klasse/Masteroppgave/MR data/'
14

15 patientList = [24, 27, 32, 41, 43, 44, 47, 49, 50, 51, 52, 55, 56, 67, 74, 79, 80, 87,
89, 90, 96, 107, 116, 120, 121, 125, 128, 131, 138, 146, 150, 153, 170]

16 nPatients = len( patientList )
17
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18 #Patients that have subvolumes larger than 1cm3
19 patientList2 = [41, 44, 47, 49, 55, 56, 80, 89, 96, 116, 121, 125, 128, 131, 138, 170]
20

21 #Loop that goes over all patients that are going to be analysed
22 for patient in patientList :
23 #load R2* AUC maps
24 loadFileR2map = np.load(filePath + ”OxyTarget ” + str(patient) + ”/R2Star/

R2StarAUCMap.npz”)
25 loadFileR2map filtered = np.load( filePath + ”OxyTarget ” + str(patient) + ”/

DPBC/AUCmap filtered.npz”)
26

27 #load values
28 AUCvalues = loadFileR2map[”AUCvalues”]
29 AUCmap = loadFileR2map[”AUCmap”]
30 t = loadFileR2map[”t”]
31 tAUC = loadFileR2map[”tAUC”]
32 AUCmap corr = loadFileR2map filtered [”AUCmap corr”]
33 nSlices = loadFileR2map filtered [” nSlices ”]
34 xRes = loadFileR2map filtered [”xRes”]
35 yRes = loadFileR2map filtered [”yRes”]
36 fAUCvalues = loadFileR2map filtered [”fAUCvalues”]
37

38 #Resolution info
39 FOV = 180∗180
40 FOVx = 180
41 FOVy = 180
42 acqMatrix = 92∗90
43 wx = FOVx/92 #in-plane resolution in x direction
44 wy = FOVy/90 #in-plane y resolution in y direction
45

46 #PTV margin as estimated by Kleijnen et al. for GTV motion within
47 #five weeks of CRT:
48 LR=6.8 # PTV margin in left/right direction in mm
49 AP=10.8 # PTV margin in anterior/posterior direction in mm
50

51 #specifies the full-width at half maximum (FWHM) of the Gaussian
52 #smoothing kernel in mm as the mean of the PTV margins, so an
53 #isotropic kernel can be used
54

55 FWHM = np.round(np.mean([LR,AP]),0) #round to nearest integer
56

57 sigma y = FWHM/(2.3548∗wy) #2 mm
58 sigma x = FWHM/(2.3548∗wx) #1.96mm
59

60 #sigma in x and y direction differ only by hundreds: round to 2mm
61 sigma = sigma y
62 filterSize = 2∗np.ceil(2∗sigma)+1
63

64 #create 3D matrix for the R2*-AUC maps smoothed with a Gaussian kernel
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65 GFAUCmap = np.zeros((xRes,yRes,nSlices))
66

67 #Loop through all slices and apply the 2D Gaussian filter to the R2*-AUC maps
68 for s in range( nSlices ) :
69 GFAUCmap[:,:,s] = skimage. filters . gaussian(AUCmap corr[:,:,s ], sigma=sigma,
70 truncate=2.0)
71

72 #Reshape the 3D matrix into a 1D array with whole tumor R2*-AUC values
73 gsAUCvalues = np.reshape(GFAUCmap, xRes∗yRes∗nSlices, order='F')
74

75 #Remove pixels with no R2*-AUC information
76 gsAUCvalues= gsAUCvalues[gsAUCvalues != 0]
77

78 #Saving variables to a .npz-file in the patient’s DPBC folder
79 np.savez( filePath + ”OxyTarget ” + str(patient) + ”/DPBC/AUCmap Gfiltered”,

GFAUCmap = GFAUCmap, gsAUCvalues = gsAUCvalues)

A.7 DPBCmaps.py

1

2 #This script generates DPBC dose maps by using the threshold R2*-AUC value
3 #found by Karina Rød to assign a dose escalation to the resistant subvolumes.
4

5 import numpy as np
6 import matplotlib . pyplot as plt
7 from matplotlib import rcParams
8 import cv2
9 import skimage.morphology

10 import nibabel as nib
11

12 #threshold values found by Karina
13 GlobalCUT R2StarAUC A = 1.9028e+03
14 GlobalCUT R2StarAUC B = 2.1655e+03
15 GlobalCUT R2StarAUC C = 2574
16

17 #path towards the OxyTarget data folder
18 filePath = '/Users/ frida/Documents/Fysmat 5. klasse/Masteroppgave/MR data/'
19

20 #patients that will be analysed (Patient 27 and 74 have been excluded due to
21 #extremal R2*-AUC values)
22 patientList = [24, 32, 41, 43, 44, 47, 49, 50, 51, 52, 55, 56, 67, 79, 80, 87, 89, 90,

96, 107, 116, 120, 121, 125, 128, 131, 138, 146, 150, 153, 170]
23 #Patients that have subvolumes larger than 1cm3
24 patientList2 = [41, 44, 47, 49, 55, 56, 80, 89, 96, 116, 121, 125, 128, 131, 138, 170]
25

26 nPatients = len( patientList )
27

28 #Calculate the volume of each voxel
29 FOV = 180∗180 #mm2
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30 AcqMatrix = 92∗90
31 sliceThck = 10 #mm
32 pixelSize = (FOV/AcqMatrix)/100 #cm2
33 voxelVolum = (sliceThck ∗(FOV/AcqMatrix))/1000 #cm3
34

35 #minimum achievable region size in diameter (cm)
36 min diameter = 1
37

38 #minimum achievable region size (number of pixels in a circle with min diameter cm)
39 threshold = (min diameter/pixelSize)∗∗2∗(np.pi/4)
40

41 #make small clusters belong to the dominant subvolume if smaller than this threshold
42 threshold clusters = 50
43 ind = 0
44

45 #Loop that goes over all patients that are going to be analysed
46 for patient in patientList :
47 #load variables from files
48 loadFileR2map filtered = np.load( filePath + ”OxyTarget ” + str(patient) + ”/

DPBC/AUCmap filtered.npz”)
49 nSlices = loadFileR2map filtered [” nSlices ”]
50

51 loadFileR2map Gfiltered = np.load( filePath + ”OxyTarget ” + str(patient) + ”/
DPBC/AUCmap Gfiltered.npz”)

52 GFAUCmap = loadFileR2map Gfiltered[”GFAUCmap”]
53

54 #Only needed for visualization of dose maps on T2 images
55 loadT2im = np.load(filePath + ”OxyTarget ” + str(patient) + ”/T2/3Dmatrix.npz”)
56 T2im = loadT2im[”imT2”]
57 loadDynamicROI = np.load(filePath+”OxyTarget ”+str(patient)+”/dynamicROI.npz”)
58 z vals = loadDynamicROI[”z vals”]
59

60 #Define that ROI voxels with R2*-AUC above threshold form the resistant
61 #compartment, R, and voxels below form the sensitive compartment, S.
62

63 #Set two different dose levels for S and R
64 D S = 50 #Total dose to S
65 b = 1.2 #Dose boost factor
66 D R = 50∗b #Total dose to R
67

68 #3D matrix that holds preliminary dose prescription maps
69 doseMap a = np.zeros((256,256,nSlices))
70 #Store dose maps when removing small subvolumes
71 doseMap b = np.zeros((256,256,nSlices))
72 #Store dose maps when removing small subvolumes and fill small clusters
73 doseMap c = np.zeros((256,256,nSlices))
74 #Store the region of the whole tumor (ROI)
75 ROI = np.zeros((256,256, nSlices ))
76 #Store the regions with R2*-AUC below threshold
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77 S regs = np.zeros((256,256, nSlices ))
78 #Store the regions with R2*-AUC above threshold
79 R regs = np.zeros((256,256, nSlices ))
80 #Arrays to help contouring the dose maps
81 contouring a = np.zeros((256,256, nSlices ))
82 contouring c = np.zeros((256,256, nSlices ))
83

84 no S a = 0 #number of all pixels with value below threshold in tumor
85 no R a = 0 #number of all pixels with value above threshold in tumor
86 no ROI = 0 #number of pixels inside ROI
87

88 #Loop through every pixel-value (R2* AUC) to check if it is above or
89 #below the threshold
90 for s in range( nSlices ) :
91 for x in range(256):
92 for y in range(256):
93 if ((GFAUCmap[x,y,s]) != 0): #check only inside ROI
94 if (GFAUCmap[x,y,s] > GlobalCUT R2StarAUC C):
95 doseMap a[x,y,s ] = D R
96 R regs[x,y, s ] = 1
97 S regs [x,y, s ] = 0
98 contouring a [x,y, s ] = 0
99 no R a += 1

100 else :
101 doseMap a[x,y,s ] = D S
102 R regs[x,y, s ] = 0
103 S regs [x,y, s ] = 1
104 contouring a [x,y, s ] = 1
105 no S a += 1
106 ROI[x,y, s ] = 1
107 no ROI += 1
108 else :
109 #useful for nice plotting
110 GFAUCmap[x,y,s] = np.nan
111 doseMap a[x,y,s ] = np.nan
112

113 #Want to cut hypoxic regions smaller than a threshold and fill small clusters inside the
114 #dominant subvolume to make the dose plans clinically feasible
115

116 #no voxels contributing to R when small regions removed
117 no R b = 0
118 #no voxels contributing to S when small regions removed and clusters are filled (temp)
119 no S c temp = 0
120 #no voxels contributing to R when small regions removed and clusters are filled
121 no R c = 0
122

123 for s in range( nSlices ) :
124 #Cut hypoxic regions smaller than a threshold
125 img = np.array(R regs [:,:, s ], dtype=np.uint8)
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126 , binary = cv2.threshold(img, 0, 1, cv2.THRESH BINARY)
127 binary = np.array(binary , dtype=np.bool)
128 remove small R = skimage.morphology.remove small objects
129 (binary , min size = threshold, connectivity =3)
130

131 #Make small S clusters inside R with volume less than
132 #threshold clusters a part of R
133 filled R = ˜ skimage.morphology.remove small objects
134 (˜remove small R, min size = threshold clusters )
135

136 #Make small holes in S with volume less than threshold clusters a part of S
137 img = np.array(S regs [:,:, s ], dtype=np.uint8)
138 , binary = cv2.threshold(img, 0, 1, cv2.THRESH BINARY)
139 binary = np.array(binary , dtype=np.bool)
140 filled S = ˜ skimage.morphology.remove small objects
141 (˜binary , min size = threshold clusters )
142

143 #Make dose maps
144 for x in range(256):
145 for y in range(256):
146 #make dose map b
147 if (ROI[x,y, s ] == 1):
148 doseMap b[x,y,s] = D S
149 else :
150 doseMap b[x,y,s] = np.nan
151 if (remove small R[x,y] == 1):
152 doseMap b[x,y,s] = D R
153 #counting all voxels contributing to R for dose map b
154 no R b += 1
155

156 #make final dose map c
157 if (ROI[x,y, s ] == 1 or filled S [x,y] == 1):
158 doseMap c[x,y,s ] = D S
159 #temporary voxels contributing to S for dose map c
160 no S c temp += 1
161 contouring c [x,y, s ] = 1
162 else :
163 doseMap c[x,y,s ] = np.nan
164

165 if ( filled R [x,y] == 1):
166 doseMap c[x,y,s ] = D R
167 #counting all voxels contributing to R for dose map c
168 no R c += 1
169 no S b = no ROI − no R b
170 no S c = no S c temp − no R c
171

172 #Save variables
173 #different sizes of min diameter need to be run and saved separately
174 np.savez( filePath + ”OxyTarget ” + str(patient) + ”/DPBC/DPBC 3d”, ROI = ROI,
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doseMap a = doseMap a, doseMap = doseMap c, no S a = no S a, no R a = no R a,
no R b = no R b, no S b = no S b, no R c = no R c, no S c = no S c)

175

176 #Must make dosemap ”binary” to save it as a nifti file for planning in Raystation.
177 #Value 1 represent the tumor and value 2 represent the subvolumes.
178 binary dosemap = np.zeros((256,256, nSlices ))
179 for s in range( nSlices ) :
180 for x in range(256):
181 for y in range(256):
182 if (doseMap c[x,y,s]==D S):
183 binary dosemap[x,y, s]=1
184 if (doseMap c[x,y,s]==D R):
185 binary dosemap[x,y, s]=2
186

187 #Must swap back to original
188 binary dosemap swaped = np.swapaxes(binary dosemap, 0, 1)
189 #Get the right header information from a reference nifti file
190 nii ref = nib.load( filePath + ”OxyTarget ” + str(patient) + '/gtv1 onR2star. nii ' )
191 header ref = nii ref .header.copy()
192 #Save binary dosemap as nifti file along with reference header
193 doseMap nifti = nib.Nifti1Image(binary dosemap swaped, None, header=header ref)
194 doseMap nifti . to filename (”Contours ”+str(patient))
195

196 #Plot dose maps

A.8 TCP.py

1

2 #This script calculates the TCP for DPBC plans and uniform dose boost
3

4 import numpy as np
5 import matplotlib . pyplot as plt
6 import scipy . optimize
7 from scipy . stats import sem, t
8

9 filePath = '/Users/ frida/Documents/Fysmat 5. klasse/Masteroppgave/MR data/'
10

11 patientList = [24, 32, 41, 43, 44, 47, 49, 50, 51, 52, 55, 56, 67, 79, 80, 87, 89, 90,
96, 107, 116, 120, 121, 125, 128, 131, 138, 146, 150, 153, 170]

12

13 #Patients that still have regions with hypoxia when min diameter = 1 cm (16)
14 patientList2 = [41, 44, 47, 49, 55, 56, 80, 89, 96, 116, 121, 125, 128, 131, 138, 170]
15

16 #Patients that still have regions with hypoxia when min diameter = 0.5 cm (29)
17 patientList3 = [24, 32, 41, 43, 44, 47, 49, 50, 51, 55, 56, 79, 80, 87, 89, 90, 96,

107, 116, 120, 121, 125, 128, 131, 138, 146, 150, 153, 170]
18

19 nPatients = len( patientList2 )
20
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21 b values = np.around(np.arange(1,2,0.01) , decimals=3)
22

23 #The volume of each voxel
24 FOV = 180∗180 #mm2
25 AcqMatrix = 92∗90
26 sliceThck = 10 #mm
27 voxelVolmm = sliceThck ∗ (FOV/AcqMatrix) #mm3
28 voxelVolcm = voxelVolmm/1000 #cmˆ3
29

30 #3 different alpha/beta ratio in S found from literature
31 aS list = [0.339, 0.335, 0.450]
32 bS list = [0.067, 0.030, 0.039]
33 ab list = [0.339/0.067, 0.335/0.030, 0.450/0.039]
34

35 #Matrices used to plot b−value vs TCP
36 TCP DPBC matrix = np.zeros((len(b values), nPatients))
37 TCP uniform matrix = np.zeros((len(b values ) , nPatients))
38

39 plt . figure ()
40 i=0
41 for patient in patientList2 :
42 StandardTCPList = []
43 DPBC TCPList = []
44 TCP uniform = []
45

46 loadFile = np.load( filePath +”OxyTarget ”+str(patient)+”/DPBC/DPBC 3d.npz”)
47 S = loadFile [”no S c”] #no pixels contributing to S when small regions removed
48 R = loadFile [”no R c”] #no pixels contributing to R when small regions removed
49

50 #Define parameters for TCP modelling
51 dS = 2 #fractional doses to S
52 n = 25 #total fractions
53

54 #Assumed cell densities in R and S ( cells /cmˆ3)
55 rhoS = 10∗∗6
56 rhoR = 10∗∗6
57

58 OER = 1.75
59

60 #Alpha/beta ratio in S found from literature
61 aS = aS list [2]
62 bS = bS list [2]
63 ab = ab list [2]
64

65 #Define alpha/beta ratio in R via OER
66 aR = aS/OER
67 bR = bS/(OER∗∗2)
68 abR = aR/bR
69
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70 Vs = S ∗ voxelVolcm #volume of S
71 Vr = R ∗ voxelVolcm #volume of R
72

73 #find alpha value that fits the cohort TCP for standard dose
74 TCP cohort = 5/16
75

76 def F(alpha):
77 return TCP cohort − np.exp(−rhoS ∗ Vs ∗ np.exp(−n ∗ alpha ∗ dS ∗(1 + dS/ab))

) ∗ np.exp(−rhoR ∗ Vr ∗ np.exp(−n ∗ alpha/OER ∗ dS ∗(1 + dS/abR)))
78

79 alpha = scipy. optimize .broyden1(F, 0.5)
80 aS = alpha
81

82 for b in b values :
83

84 OER = 1.75
85 aR = aS/OER
86 dR = dS∗b #fractional doses to R
87

88 #Calculate the TCP for the DPBC plan
89 #TCP for S (equation 2.12)
90 constS = n ∗ aS ∗ dS ∗(1 + dS/ab)
91 SFs = np.exp(−constS) #Surviving fraction
92 TCPs = np.exp(−rhoS ∗ Vs ∗ SFs)
93 #TCP for R (equation 2.12)
94 constR = n ∗ aR ∗ dR ∗(1 + dR/abR)
95 SFr = np.exp(−constR);
96 TCPr = np.exp(−rhoR ∗ Vr ∗ SFr)
97 #Total TCP for the DPBC plan (equation 2.13)
98 TCP DPBC = TCPs ∗ TCPr
99 DPBC TCPList.append(TCP DPBC ∗ 100)

100

101 #Calculate TCP for R for the standard plan
102 #gives standard dose to R
103 constR std = n ∗ aR ∗ dS ∗(1 + dS/abR)
104 SF r std= np.exp(−constR std)
105 TCP r STD = np.exp(−rhoR ∗ Vr ∗ SF r std)
106 #TCP for standard RT scheduling (equation 2.13)
107 TCP STD = TCPs ∗ TCP r STD
108 StandardTCPList.append(TCP STD ∗ 100)
109

110 #Calculate TCP for S and R uniform dose boost
111 #Uniformly escalated dose (equation 2.14)
112 d u = dS ∗ ((Vs + b ∗ Vr)/(Vs + Vr))
113 #Survival fraction
114 SF s uniform = np.exp(−n ∗ aS ∗ d u ∗(1 + d u/ab))
115 SF r uniform = np.exp(−n ∗ aR ∗ d u ∗(1 + d u/abR))
116 #Calculate TCP for R and S
117 TCP s uniform = np.exp(−rhoS ∗ Vs ∗ SF s uniform)
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118 TCP r uniform = np.exp(−rhoR ∗ Vr ∗ SF r uniform)
119

120 #TCP for uniform dose boost
121 TCP u = TCP s uniform ∗ TCP r uniform
122 TCP uniform.append(TCP u ∗ 100)
123

124 #Store data in matrix
125 TCP DPBC matrix[:,i] = DPBC TCPList
126 TCP uniform matrix[:, i ] = TCP uniform
127 i+=1
128

129 #Plot TCP for each patient
130

131 #Find average values for TCP for each b−value
132 average TCP DPBC = np.mean(TCP DPBC matrix, axis=1)
133 average TCP uniform= np.mean(TCP uniform matrix, axis=1)
134

135 #Plot average TCP + confidence interval

A.9 CellDensityFromADC.py

1

2 #This script calculates the cell density from average ADC values based on a model
3 #created by Casares−Magaz et al. The TCP for the DPBC plans are calculated with
4 #ADC−based cell densities and compared with the TCP based on constant densities.
5

6 import numpy as np
7 import matplotlib . pyplot as plt
8 from matplotlib import rcParams
9 import nibabel as nib

10

11 filePath = '/Users/ frida/Documents/Fysmat 5. klasse/Masteroppgave/MR data/'
12

13 #Need to exclude 138 as this patient no longer has subvolume larger than 1 cmˆ3
14 #due to adapted ROI
15 patientList = [41, 44, 47, 49, 55, 56, 80, 89, 96, 116, 121, 125, 128, 131, 170]
16 TRG = [1, 2, 2, 3, 1, 0, 3, 3, 2, 2, 1, 2, 3, 0, 2]
17

18 nPatients = len( patientList )
19

20 #Alpha and beta values found in the litterature
21 aS list = [0.339, 0.335, 0.450]
22 bS list = [0.067, 0.030, 0.039]
23

24 #Alpha/beta ratio in S
25 aS = aS list [2]
26 bS = bS list [2]
27 ab = aS/bS
28
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29 #boost factor values
30 b values = np.around(np.arange(1,1.51,0.01) ,3)
31

32 #Average ADC in whole tumor
33 ADC tumor list = [7.849e−04, 8.649e−04, 6.624e−04, 5.548e−04, 1.186e−03,
34 7.375e−04, 1.382e−03, 8.885e−04, 1.170e−03, 8.302e−04,
35 1.243e−03, 9.630e−04, 1.154e−03, 1.046e−03, 1.187e−03]
36 #Average ADC in R
37 ADC R list = [8.778e−04, 8.857e−04, 6.863e−04, 5.624e−04, 1.113e−03,
38 6.505e−04, 1.352e−03, 8.277e−04, 9.139e−04, 9.964e−04,
39 1.133e−03, 7.567e−04, 1.055e−03, 8.344e−04, 9.933e−04]
40 #Average ADC in S
41 ADC S list = [7.826e−04, 8.628e−04, 6.587e−04, 5.525e−04, 1.192e−03,
42 7.411e−04, 1.387e−03, 9.199e−04, 1.175e−03, 8.219e−04,
43 1.250e−03, 9.680e−04, 1.166e−03, 1.068e−03, 1.247e−03]
44

45 #Lists for storing the cell densities for each patient
46 rhoR list = []
47 rhoS list = []
48 rho list = []
49

50 #Calculate the cell density based on equation 3.3
51 for i in range(nPatients) :
52 rho S = (9.9∗(1 − 1/(1+np.exp((1.3−ADC S list[i]∗10∗∗3)/0.1)) + 0.1))∗10∗∗6
53 rho R = 9.9∗(1 − 1/(1+np.exp((1.3−ADC R list[i]∗10∗∗3)/0.1)) + 0.1)∗10∗∗6
54 rho = 9.9∗(1 − 1/(1+np.exp((1.3−ADC tumor list[i]∗10∗∗3)/0.1)) + 0.1)∗10∗∗6
55

56 rhoS list .append(rho S)
57 rhoR list .append(rho R)
58 rho list .append(rho)
59

60 #Matrices used for plotting and to find average TCP
61 TCP ADCbased matrix = np.zeros((len(b values), nPatients))
62 TCP assumed matrix = np.zeros((len(b values), nPatients))
63 TCP assumed2 matrix = np.zeros((len(b values), nPatients))
64

65 i=0
66 plt . figure ()
67 for patient in patientList :
68

69 #Save cell densities for making box plot
70 rho tumor = np.round( rho list [ i ]/10∗∗7, 3)
71 rho S = np.round( rhoS list [ i ]/10∗∗7, 3)
72 rho R = np.round(rhoR list [ i ]/10∗∗7, 3)
73 np.savez( filePath + ”OxyTarget ” + str(patient) + ”/ celldensities ”, rho R=rho R,

rho S=rho S, rho tumor=rho tumor)
74

75 #Store the TCP for each b−value when cell density is assumed to be a constant
value of 10ˆ6
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76 TCP assumed = []
77 #Store the TCP for each b−value when cell density is assumed to be a constant

value of 10ˆ7
78 TCP assumed2 = []
79 #Store the TCP for each b−value when cell density is based on ADC values
80 TCP ADCbased = []
81

82 loadFile = np.load( filePath +”OxyTarget ”+str(patient)+”/DPBC/DPBC 3d.npz”)
83 S = loadFile [”no S c”] #number of pixels contributing to S when small regions

removed
84 R = loadFile [”no R c”] #number of pixels contributing to R when small regions

removed
85

86 OER = 1.75
87

88 #Alpha/beta ratio in R
89 aR = aS/OER
90 bR = bS/(OER∗∗2)
91 abR = aR/bR
92

93 #Fractional doses to S
94 dS = 2
95 n = 25
96

97 #Assumed cell density in R and S ( cells /cmˆ3)
98 rhoS = 10∗∗6
99 rhoR = 10∗∗6

100

101 #Calculate the volume of each voxel
102 FOV = 180∗180 #mm2
103 AcqMatrix = 92∗90
104 sliceThck = 10 #mm
105 voxelVolmm = sliceThck ∗ (FOV/AcqMatrix) #mm3
106 voxelVolcm = voxelVolmm/1000 #cmˆ3
107

108 Vs = S ∗ voxelVolcm #volume of S
109 Vr = R ∗ voxelVolcm #volume of R
110

111 #find alpha value that fits the cohort TCP for standard dose
112 TCP cohort = 5/16
113

114 def F(alpha):
115 return TCP cohort − np.exp(−rhoS ∗ Vs ∗ np.exp(−n ∗ alpha ∗ dS ∗(1 + dS/ab))
116 ) ∗ np.exp(−rhoR ∗ Vr ∗ np.exp(−n ∗ alpha/OER ∗ dS ∗(1 + dS/abR)))
117

118 alpha = scipy. optimize .broyden1(F, 0.5)
119 aS = alpha
120

121 #Assumed cell density in R and S ( cells /cmˆ3)
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122 rhoS 2 = 10∗∗7
123 rhoR 2 = 10∗∗7
124

125 #Calculated cell density in R and S from ADC maps
126 rhoR ADCbased = rhoR list[i]
127 rhoS ADCbased = rhoS list[i ]
128 #Average cell density in tumor
129 rho ADCbased = rho list[ i ]
130

131 for b in b values :
132

133 OER = 1.75
134 aR = aS/OER
135 dR = dS∗b
136

137 #Surviving fraction for S
138 constS = n ∗ aS ∗ dS ∗(1 + dS/(ab))
139 SFs = np.exp(−constS)
140

141 #Surviving fraction for R
142 constR = n ∗ aR ∗ dR ∗(1 + dR/(abR))
143 SFr = np.exp(−constR)
144

145 #TCP for S with assumed cell density of 10ˆ6
146 TCPs = np.exp(−rhoS ∗ Vs ∗ SFs)
147

148 #TCP for R with assumed cell density of 10ˆ6
149 TCPr = np.exp(−rhoR ∗ Vr ∗ SFr)
150

151 #TCP for S with ADC−based cell density
152 TCP ADCbased S = np.exp(−rhoS ADCbased ∗ Vs ∗ SFs)
153

154 #TCP for R with ADC−based cell density
155 TCP ADCbased R = np.exp(−rhoR ADCbased ∗ Vr ∗ SFr)
156

157 #TCP for S with assumed cell density of 10ˆ7
158 TCP assumed2 S = np.exp(−rhoS 2 ∗ Vs ∗ SFs)
159

160 #TCP for R with assumed cell density of 10ˆ7
161 TCP assumed2 R = np.exp(−rhoR 2 ∗ Vr ∗ SFr)
162

163 #TCP for the tumor with assumed cell density of 10ˆ6
164 TCP 1 = TCPs ∗ TCPr
165 TCP assumed.append(TCP 1∗100)
166

167 #TCP for the tumor with ADC−based cell density
168 TCP 2 = TCP ADCbased R ∗ TCP ADCbased S
169 TCP ADCbased.append(TCP 2∗100)
170
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171 #TCP for the tumor with assumed cell density of 10ˆ67
172 TCP 3 = TCP assumed2 R ∗ TCP assumed2 S
173 TCP assumed2.append(TCP 3∗100)
174

175 #Store data in matrix to find average TCP
176 TCP ADCbased matrix[:,i] = TCP ADCbased
177 TCP assumed matrix[:,i] = TCP assumed
178 TCP assumed2 matrix[:,i] = TCP assumed2
179 i+=1
180

181 #Plot TCP for each patient
182

183 #Find average values for TCP for each b−value
184 average TCP ADCbased = np.mean(TCP ADCbased matrix, axis=1)
185 average TCP assumed = np.mean(TCP assumed matrix, axis=1)
186 average TCP assumed2= np.mean(TCP assumed2 matrix, axis=1)
187

188 #Plot average TCP + confidence interval

A.10 Boxplot.py

1 ”””
2 This script make box plots to visualize the relationship
3 between the volume of R and TRG, and the relationship between
4 cell density and TRG. Statistical testing was done for TRG
5 vs R done in programming language ”R”.
6 ”””
7

8 import numpy as np
9 import matplotlib . pyplot as plt

10

11 filePath = '/Users/ frida/Documents/Fysmat 5. klasse/Masteroppgave/MR data/'
12

13 patientList = [24, 32, 41, 43, 44, 47, 49, 50, 51, 52, 55, 56, 67, 79, 80, 87, 89, 90,
96, 107, 116, 120, 121, 125, 128, 131, 138, 146, 150, 153, 170]

14 TRG list = [2, 2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 0, 1, 3, 3, 0, 3, 2, 2, 1, 2, 1, 1, 2, 3,
0, 3, 2, 0, 2, 2]

15

16 patientList2 = [41, 44, 47, 49, 55, 56, 80, 89, 96, 116, 121, 125, 128, 131, 170]
17 TRG list2 = [1, 2, 2, 3, 1, 0, 3, 3, 2, 2, 1, 2, 3, 0, 2]
18

19 #Found by setting min diameter=0.5 in DPBCmaps.py
20 R threshold 05 = [1728, 1458, 6109, 603, 3779, 6877, 8128, 3450, 982, 0, 7604, 4499,

0, 1385, 8794, 1534, 6493, 5337, 7615, 317, 5186, 133, 1596, 1646, 3510, 5564,
2757, 142, 485, 515, 3844]

21

22 #Array for each level of TRG to store no. R−voxels for each patient in this group
23 #No threshold
24 R TRG0 = []
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25 R TRG1 = []
26 R TRG2 = []
27 R TRG3 = []
28

29 #Threshold = 0.5 cmˆ3
30 R05 TRG0 = []
31 R05 TRG1 = []
32 R05 TRG2 = []
33 R05 TRG3 = []
34

35 #Threshold = 1 cmˆ3
36 R1 TRG0 = []
37 R1 TRG1 = []
38 R1 TRG2 = []
39 R1 TRG3 = []
40

41 #Array for each level of TRG to store the cell density for each patient in this group
42 #Cell densities for the tumor
43 tumor TRG0 = []
44 tumor TRG1 = []
45 tumor TRG2 = []
46 tumor TRG3 = []
47

48 #Cell densities for R
49 RTRG0 = []
50 RTRG1 = []
51 RTRG2 = []
52 RTRG3 = []
53

54 #Cell densities for S
55 S TRG0 = []
56 S TRG1 = []
57 S TRG2 = []
58 S TRG3 = []
59

60 #The volume of each voxel
61 FOV = 180∗180 #mmˆ2
62 AcqMatrix = 92∗90
63 sliceThck = 10 #mm
64 pixelSize = (FOV/AcqMatrix)/100 #cmˆ2
65 voxelVolum = (sliceThck ∗(FOV/AcqMatrix))/1000 #cmˆ3
66

67 for i in range(3) :
68 #TRG vs R
69 index = 0
70 for patient in patientList :
71 loadFile = np.load( filePath + ”OxyTarget ” + str(patient)
72 + ”/DPBC/DPBC 3d.npz”)
73 #no pixels contributing to R
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74 R = loadFile [”no R a”]
75 #no pixels contributing to R for subvolume limit = 0.5 cmˆ2
76 R 05 = R threshold 05[index]
77 #no pixels contributing to R for subvolume limit = 1 cmˆ2
78 R 1 = loadFile [”no R c”]
79

80 #Convert to volume (cmˆ3)
81 vol R = R ∗ voxelVolum
82 vol R 05 = R 05 ∗voxelVolum
83 vol R 1 = R 1 ∗voxelVolum
84

85 if (TRG list[ index]==0):
86 R TRG0.append(vol R)
87 R1 TRG0.append(vol R 1)
88 R05 TRG0.append(vol R 05)
89

90 elif (TRG list[ index]==1):
91 R TRG1.append(vol R)
92 R1 TRG1.append(vol R 1)
93 R05 TRG1.append(vol R 05)
94

95 elif (TRG list[ index]==2):
96 R TRG2.append(vol R)
97 R1 TRG2.append(vol R 1)
98 R05 TRG2.append(vol R 05)
99

100 elif (TRG list[ index]==3):
101 R TRG3.append(vol R)
102 R1 TRG3.append(vol R 1)
103 R05 TRG3.append(vol R 05)
104

105 index += 1
106

107 #TRG vs cell density
108 index2=0
109 for patient in patientList2 :
110 loadCelldensities = np.load( filePath + ”OxyTarget ” + str(patient)
111 + ”/ celldensities .npz”)
112 rhoR = loadCelldensities [”rho R”] #Cell density in R
113 rhoS = loadCelldensities [”rho S”] #Cell density in S
114 rho = loadCelldensities [”rho tumor”] #Cell density in tumor
115

116 if (TRG list2[index2]==0):
117 tumor TRG0.append(rho)
118 RTRG0.append(rhoR)
119 S TRG0.append(rhoS)
120

121 elif (TRG list2[index2]==1):
122 tumor TRG1.append(rho)
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123 RTRG1.append(rhoR)
124 S TRG1.append(rhoS)
125

126 elif (TRG list2[index2]==2):
127 tumor TRG2.append(rho)
128 RTRG2.append(rhoR)
129 S TRG2.append(rhoS)
130

131 elif (TRG list2[index2]==3):
132 tumor TRG3.append(rho)
133 RTRG3.append(rhoR)
134 S TRG3.append(rhoS)
135

136 index2 += 1
137

138 #Plot TRG vs R
139 #Plot TRG vs cell density
140

141 #Save the info for TRG vs R for statistical analysis in programming language ”R”.
142 with open(”TRGvsR.txt”, 'w') as f :
143 lists = [R TRG0, R TRG1, R TRG2, R TRG3, R05 TRG0, R05 TRG1, R05 TRG2,

R05 TRG3, R1 TRG0, R1 TRG1, R1 TRG2, R1 TRG3]
144 names = ['R TRG0', 'R TRG1', 'R TRG2', 'R TRG3', 'R05 TRG0', 'R05 TRG1', '

R05 TRG2', 'R05 TRG3', 'R1 TRG0', 'R1 TRG1', 'R1 TRG2', 'R1 TRG3']
145 for i in range(len( lists )) :
146 f . write (names[i ])
147 for s in lists [ i ]:
148 f . write (” %.4f”%s)
149 f . write (”\n”)

A.11 MannWhitneyTest.r

1 #This script loads the lists from TRGvsR.py containing R−volumes
2 #for each TRG, and use Mann Whitney U−test to test if they differ .
3 #p−values for each comparison is written to a text file .
4

5 # Each line is the name of the list , and then its content
6 file = readLines(”/Users/ fredrine /Desktop/TRGvsR.txt”)
7 names = c()
8 for ( i in 1:12){
9 names = c(names,as. list ( strsplit ( file [ i ], ” ”)) [[1]][1])

10 }
11 firstlist = as.numeric(as. list ( strsplit ( file [1], ” ”)) [[1]][−1])
12 # The list values are gathered as a list of lists
13 data = list ( firstlist )
14 for ( i in 2:12){
15 otherlist = as.numeric(as. list ( strsplit ( file [ i ], ” ”)) [[1]][−1])
16 data = append(data, list ( otherlist ))
17 }
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18 names(data) = names
19

20 #wilcox.test is equivalent to the Mann Whitney U−test for this data
21 pvals1 = c()
22 for ( i in 1:3){
23 for ( j in ( i+1):4){
24 p = wilcox. test (data [[ i ]], data [[ j ]]) $p.value
25 pvals1 = c(pvals1,paste(names[i ], ” vs ”,names[j ], ”: ”,p,sep=””))
26 }
27 }
28

29 pvals2 = c()
30 for ( i in 5:7){
31 for ( j in ( i+1):8){
32 p = wilcox. test (data [[ i ]], data [[ j ]]) $p.value
33 pvals2 = c(pvals2,paste(names[i ], ” vs ”,names[j ], ”: ”,p,sep=””))
34 }
35 }
36

37 pvals3 = c()
38 for ( i in 9:11){
39 for ( j in ( i+1):12){
40 p = wilcox. test (data [[ i ]], data [[ j ]]) $p.value
41 pvals3 = c(pvals3,paste(names[i ], ” vs ”,names[j ], ”: ”,p,sep=””))
42 }
43 }

B Comparison of TRG and R

Table B.1: The median R volumes in addition to the results of the Mann-Whitney

U-test for the comparison of TRG and the volume of R before removing any of the

subvolumes.

Median R volumes (cm3)

Comparison Group 1 Group 2 p-value

TRG0 vs TRG1 142 86.0 0.795

TRG0 vs TRG2 142 137 1

TRG0 vs TRG3 142 227 0.023

TRG1 vs TRG2 86.0 137 0.263

TRG1 vs TRG3 86.0 227 0.007

TRG2 vs TRG3 137 227 0.013

93



Table B.2: The median R volumes in addition to the results of the Mann-Whitney

U-test for the comparison of TRG and the volume of R when subvolumes smaller

than 0.5 cm3 have been removed.

Median R volumes (cm3)

Comparison Group 1 Group 2 p-value

TRG0 vs TRG1 118 38.4 0.279

TRG0 vs TRG2 118 108 1

TRG0 vs TRG3 118 196 0.058

TRG1 vs TRG2 38.4 108 0.092

TRG1 vs TRG3 38.4 196 0.000

TRG2 vs TRG3 108 196 0.032

Table B.3: The median R volumes in addition to the results of the Mann-Whitney

U-test for the comparison of TRG and the volume of R when subvolumes smaller

than 1 cm3 have been removed.

Median R volumes (cm3)

Comparison Group 1 Group 2 p-value

TRG0 vs TRG1 33.8 0.0 0.217

TRG0 vs TRG2 33.8 10.4 0.829

TRG0 vs TRG3 33.8 112 0.055

TRG1 vs TRG2 0.0 10.4 0.168

TRG1 vs TRG3 0.0 112 0.000

TRG2 vs TRG3 10.4 112 0.006
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