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Abstract

In this thesis, the entanglement entropy and its generalization, the Rényi entropy, of the
magnetically ordered ground state of two-dimensional finite-size antiferromagnets is stud-
ied by means of modified linear spin wave theory. An extension of the framework devel-
oped in Ref. 1 to an XXZ-model was attempted. In the easy plane-case, the first sublead-
ing term was for a particular choice of subsystem analytically demonstrated to be universal
with a prefactor NG/2 in accordance with the prediction of Ref. 2, where NG is the num-
ber of Goldstone modes. Furthermore, a scaling function was found showing how the
system crosses over from effectively having two or three Goldstone modes near the pure
Heisenberg model, to having only one as the anisotropy parameter is increased. In the easy
axis-case, the modification of the spin wave theory fails for collinear types of order as they
will have no broken continuous symmetries. For non-collinear order the procedure may
still work, but its description will no longer fit into the framework developed here.
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Sammendrag
I denne oppgaven ble entanglement-entropien, og dens generalisering Rényi-entropien, til
den magnetisk ordnede grunntilstanden i to-dimensjonale endelige antiferromagneter stud-
ert ved hjelp av modifisert lineær spin-bølge-teori. En utvidelse av rammeverket utviklet
i Ref. 1 til en XXZ-model ble forsøkt. I easy plane-tilfellet ble det demonstrert analytisk
for et gitt subsystem at det første subdominante leddet var universelt med en prefaktor
NG/2 i samsvar med predikasjonen i Ref. 2, hvor NG er antallet Goldstone-moder. En
scaleringsfunskjon som viser hvordan systemet effektivt går fra å ha tre Goldstone-moder
i Heisenberg-modellen til å ha kun én når anisotropien økte ble også funnet. I easy axis-
tilfellet mislyktes modifiseringen av spin-bølge-teorien for modeller med kollineær or-
den ettersom de ikke ville bryte noen kontinuerlige symmetrier. For ikke-kollineær orden
kan prosedyren fortsatt fungere, men dens beskrivelse vil ikke bli dekket av rammeverket
utviklet her.
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Chapter 1
Introduction

Several of the most studied problems in condensed matter physics, both present and past,
involve interacting magnetic moments, or spins. These systems are of great importance
in fundamental research giving rise to novel physics and mathematics, as well as for tech-
nological advancements with the electron being a strongly correlated spinful particle. If
we concern ourselves only with spins at some fixed locations in space as is often done
in statistical mechanics with the Ising model and the Heisenberg model being prominent
examples, there are a number of questions one could seek to answer. For instance: What
is the ground state, and is it ordered? Are there phase transitions, and if so, how can they
be quantified? How well does the model describe real physical systems, and what does the
description lose when assumptions are made? One could also ask more general questions
about the equations themselves, not worrying about the numerical value of any parameter,
but trying instead to make comparisons between different models.

In this thesis, a rather general Heisenberg type model will serve as the starting point of
the discussion. This is of course a highly complex many-body system, and even at the
classical level, questions of solubility quickly arise. [3] However, with the free energy as a
generating functional for thermodynamic properties, it is still possible to say a lot about
a system without having to solve it exactly. In particular, the discussion here will revolve
around a quantity called the entanglement entropy.

1.1 Entanglement entropy
Entanglement as described in quantum information theory is in a sense a measure of con-
nectedness between the quantum states on different subspaces of a total state on their
parent space. It means that some information about one region can be encoded in a dif-
ferent region, and entanglement is thus an alternative way to describe correlations. The
prime example of an entangled state is the spin singlet; if you know the polarity of one
spin, you also know the polarity of the other spin without having to measure it, regardless
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of the physical distance between the two. If we split our Hilbert space into two, it seems
plausible that one might learn something about the total state by looking at the entropy in
either of the partitions. This has turned out particularly useful when characterizing states
of strongly correlated many-body systems. [4;5]

For a system divided into two subsystems A and B, one defines the reduced density oper-
ator in one region by ”tracing out” the degrees of freedom in the other:

ρA = trB ρ, (1.1)

where trB denotes a partial trace over the degrees of freedom in B. A few useful facts
about density operators and the partial trace is provided in appendix A. The density op-
erator of the ground state, which is what we wish to study, is |ΨGs〉 〈ΨGs|. Finally, the
entanglement entropy is defined as the von Neumann entropy of the reduced density oper-
ator:

SvN = − tr(ρA ln ρA). (1.2)

The more general Rényi entropy is defined as:

Sn = − 1

n− 1
ln trA(ρnA), (1.3)

which in the limit n→ 1 reduces to the von Neumann entropy, as is proven in A.3. We will
parameterize ρA as eHE/ tr

(
eHE

)
, where HE is the so called entanglement Hamiltonian.

The entanglement entropy can then be found in terms of the spectrum of the entanglement
Hamiltonian.

It is known that for many types of systems, the entanglement entropy obeys a so called
area law. [6;7] The leading term will usually be proportional to the size of the boundary
between the subsystems, so if it has a characteristic linear dimension `, the leading term
in d dimension would be ∝ an`

d−1, where an is a strictly non-universal prefactor. The
area law can naively be attributed to short range interactions across the boundary, like for
instance singlets and triplets.

There are however also corrections to this leading term, and the presence of a surprisingly
large first correction was first observed numerically for a Heisenberg antiferromagnet. [8;9]

It was hypothesised that this subleading term arose as a consequence of the broken sym-
metry ground state of the model, and the so called Tower of States (ToS) present in a finite
geometry. [10] Ref. 2 then demonstrated analytically for certain models on certain subsys-
tems that this subleading term in fact was universal. It is this universal property we are
interested in. To study it, we will use spin wave theory that has been modified to describe
finite-size lattices. To get a better grasp on how the central questions of the thesis are posed
and to give a bit more motivation, an introduction to a few concepts is beneficial.
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1.2 Broken symmetries, Phase transitions and Renormal-
ization

We will in this section go on to introduce a number of concepts by merely scratching their
surface. For a more comprehensive view into these subject matters see Refs. 11 and 12.

As we know, symmetry holds a special place in physics, and the theory of phase transitions
is no different. Many types of phases can be described in terms of broken symmetries. [11]

A spontaneous symmetry breaking occurs whenever the Hamiltonian has a higher degree
of symmetry than the state the system is in. To exemplify, let us use the ferromagnet:
In a ferromagnet, the lowest energy configurations are found when aligning all the spins
along a given axis. At high temperatures, thermal fluctuations will make the system appear
disordered with all spins pointing equally much in every direction. When decreasing the
temperature and the fluctuations become small however, the spins will predominantly align
in one direction and the system acquires a net magnetization. In the absence of an external
field, no particular direction of the magnetization is energetically favorable over any other
direction, that is to say the Hamiltonian is invariant w.r.t. global spin rotations, but in the
ordered phase, the magnetization will necessarily have to point in some direction. Thus,
the state is less symmetric than its Hamiltonian, and the order is said to have spontaneously
broken the symmetry. A natural choice for an order parameter is then often the quantity
that spontaneously broke the symmetry. This is a local observable that is zero in the
symmetric phase and finite in the symmetry-broken phase.

Upon some further thought, there is no apparent reason as to why spontaneous symmetry
breaking should occur. How can the order parameter ”decide” on a direction to point in?
This is a rather fine point mathematically speaking, and can be traced back to the break-
down of the ergodic hypothesis on which the taking of any average value in statistical
mechanics relies. Again, see Ref. 12 for details on this. Importantly, the symmetries do
break, and whenever a continuous symmetry is spontaneously broken, Goldtsones theo-
rem states that there will come into existence a massless boson in the theory. [11] These
Goldstone modes will be of great importance in this thesis.

The transition just described was an example of a thermal phase transition. In this thesis
however, we will look at systems in the ground state, i.e. at zero temperature. At zero
temperature, there are no thermal fluctuations. However, it is still possible to get phase
transitions through quantum fluctuations. It is then termed a quantum phase transition. [3]

It is not always obvious what to choose as the order parameter, so a perhaps more useful
insight might be that phase transitions only occur at points of non-analyticity in the free
energy. [12]

Sticking with the example of the ferromagnet, the natural order parameter can be obtained
through differentiation of the free energy w.r.t. external magnetic field. Since the order
parameter changes continuously from being zero to being finite, the non-analyticity in the
free energy cannot be fully understood by looking solely at the first derivative. Higher
order derivatives, like specific heat and magnetic susceptibility will also have to play an
important role.

A different way to measure order that we already touched upon is through correlation
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functions. One could naively expect that in a disordered phase, correlations at distances
greater than the range of interactions should be small, while the presence of long range
order could imply that the correlations could be large even at a great distance. Thus, the
behaviour of correlations may also change during a phase transition.

The combined behaviour of the different derivatives of the free energy and the correlation
functions in the vicinity of and at the critical points determine the nature of the phase tran-
sition. It turns out in the case of the ferromagnet that six so called critical exponents, of
which only two are really independent, fully describes the critical behaviour. Moreover,
the values of the critical exponents turn out to only depend on the dimensionality, the sym-
metries of the problem, and whether or not the interactions are long ranged. [12] All models
that have the same critical behaviour is said to be in the same universality class. This can
all best be appreciated in the framework of the Renormalization Group (RG), which also
serves as an underpinning of both field theory and statistical mechanics, strengthening the
bridge between the two.

The basic idea of the RG is to iteratively probe the system at larger and larger scales. In
doing so one will often converge upon a fixed point of the iteration where the resulting
model only depends on a few so called relevant variables. The number of relevant vari-
ables can be though of as the number of parameters that must be tuned in order to place the
system at criticality. The resulting model will also be scale invariant, which leads to the
different scaling laws between the critical exponents. [12] This is also the reason for why
many apparently different physical systems are in the same universality class. There are
simply not that many ways for a theory to be scale invariant when constrained by dimen-
sionality and symmetry. It is by virtue of this that universal properties can be said to be
more important than microscopic details.

As stated previously, we wish to study finite-size systems, and an important corollary of
saying that a phase transition only occurs at points of non-analyticity in the free energy,
is that they cannot really occur in a finite system. The free energy being a sum of some
finite terms cannot be non-analytic unless the number of terms is infinite. This can be
understood in the context of the renormalization group as length being a relevant variable,
and criticality only occurring at L → ∞, or 1/L → 0. [12] As a consequence, the order
parameter at zero field cannot in a finite system be anything other than zero. This restora-
tion of symmetry will give rise to a Tower of States structure, [10] which is of paramount
importance for the universal property we are studying.

Two final concepts that will appear in this context when we are looking at the XXZ-model
are the phenomena of data collapse and crossovers. It was realized that if an order param-
eter was a function of two relevant variables, it could near criticality be described by one
function of a single argument combining the the two. [12] This phenomenon of data collapse
is a direct consequence of the scaling laws obtained in the RG, and the single function de-
scribing the combined behaviour of the two arguments is called the scaling function. In
this thesis, the relevant variables will be the size of the system, and the anisotropy parame-
ter determining how far away from a pure Heisenberg-model we are. The order parameter
will be the mode occupation number of a particular mode in the entanglement Hamilto-
nian. These choices are unconventional and have to our knowledge never been studied
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before. Since the RG is so general, it is still somehow analogous to what is seen in a ferro-
magnet with magnetization as the order parameter and temperature and external magnetic
field as the variables.

Lastly, a crossover is something that occurs in a scaling function when it has two different
asymptotic regimes in the limits of its argument approaching 0 and ∞. At some inter-
mediate values then, the function must necessarily cross over from the one regime to the
other.

1.3 The universal term
Let us proceed by taking a look at the origins of the universal terms and some of the
methods that have been used in discovering it.

When describing quantum many-body systems, it is often useful to go to the second quan-
tization formalism. For a spin-system on a lattice, this usually means going to spin wave
theory. In spin wave theory, the idea is that if the system is ordered, the order can be taken
to be the same as it would have been in the classical model with the spin waves as some
relatively small bosonic excitations on top. When only going to linear order in the spin
wave theory the bosons are free, which is often a sufficiently good approximation.

The free boson theory was well understood to give an area law term, as well as a loga-
rithmic correction connected to any corner in the partitioning of the subsystems. [2] It was
therefore a bit surprising to see a rather large logarithmic correction even in corner-free
subsystems. Not only was it a bit surprising, but it appeared that in 2D, the subleading
term scaled like bn ln `, with bn ' 1 more or less independent of model parameters and
the Rényi-index. [8] This points in the direction of universality, and in 2015, Metlitski &
Grover [2] used a non-linear sigma model (NLSM) to predict bn = NG(d− 1)/2, with NG
being the number of Goldstone modes, i.e. the number of broken continuous symmetries,
and d being the dimensionality of the lattice. The models studied up to that point in time
were models with collinear order on a 2d lattice which breaks two continuous global spin
rotation symmetries, and thus bn should be exactly 1.

Ref. 2 gave an explanation as to why the subleading term could be universal for models
that broke an O(N) symmetry down to a O(N-1) subgroup, so there was an interest in
expanding upon their work applying several different methods. Common to all of these
methods is that they try to find the spectrum of HE . This can for instance be done numeri-
cally via the rather computationally demanding method of exact diagonalization. Another
option is Quantum Monte Carlo methods [9;13;14;15;16] which currently are rendered useless
for models with non-collinear order by the so called sign problem, [17] thus making other
methods all the more important. A third numerical option is Density Matrix Renormal-
ization Group. [18] For some particularly nice choices of subsystems it is possible to work
analytically as well. The analytical methods being modified linear spin wave theory (ML-
SWT) [1;7;16;19] and non-linear sigma model (NLSM) [2;20]. The NLSM has the advantage of
being more general than MLSWT and it does not rely on the same underlying assumptions,
but it is for the same reason also more complicated. Most of these references have studied
classical orders where the spins align in opposing directions on two sublattices. This is the
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standard picture of the antiferromagnet, and it breaks the spin rotation symmetries in the
two other directions than the ordering direction. For the Heisenberg-model, the O(3) sym-
metry can be fully broken if the order occurs on more than two sublattices. Rademaker [20]

expanded the NLSM-prediction to a triangular lattice nearest neighbour model, where the
order exists on three sublattices giving bn = 3/2. Bauer & Fjærestad [1] later obtained the
same prediction for orders that occurs on any number of sublattices through using a more
general Fourier transform of the interactions in the MLSWT. It is their framework that will
be further generalized in this thesis.

In order to understand why spin wave theory can be expected to give good results for
this problem, we will have to discuss the origins of the prediction in the NLSM a little
bit more. The argument is complicated, but it can be shortly summarized like this: The
non-linear sigma model used is a scalar field theory where the fields live on a sphere,
like classical spins of fixed length. If one were to rewrite the fields in terms of a mean
field and some fluctuations, the effective Hamiltonian of the system would decouple into
a slow-moving part describing the mean field, and one part describing the motion of the
fluctuations. Importantly, in a finite system, this introduces two energy scales in the prob-
lem, and the Rényi entropy being dimensionless could then only depend on the ratios
between these energy-scales. The slow-moving part describes a ToS with an energy gap
∼ 1/Ld, while the fluctuations behave like spin waves and will have a gap ∼ 1/L if they
are linearly dispersing. Ref. 2 then go on to show for a particular subsystem that the form
of the entanglement Hamiltonian mirrors the form of the effective Hamiltonian which in
turn is used to show that there is one contribution to the Rényi entropy which scales like
ln
(
Ld−1

)
, eventually leading to the prediction for the subleading term bn = NG(d−1)/2,

while the remaining part gives a contribution like the free boson theory.

The components necessary to get the universal logarithmic correction is thus the presence
of a ToS and its interplay with the lowest energy spin waves, the Goldstone modes. As
explained previously, spin wave theory is essentially a mean field theory where the clas-
sical ground state is the mean field, and the spin waves constitute the fluctuations. To
make it seem plausible that it can capture some of the same behaviour as the NLSM,
we will demonstrate the presence of a ToS in a finite lattice. A brief introduction to the
Lieb-Mattis model as described in for instance Ref. 21 is given.

A 2d-square lattice has the property that it can be divided into two sublattices consisting
of every other site in the lattice. In a nearest neighbour (nn)-model then, all spins only
interact with spins on the other sublattice. We can denote these by A and B, and use this
fact to write the Hamiltonian in terms of the total spins on each sublattice. This will be
sufficient to demonstrate the presence of a ToS.

H =
1

2

∑
i,j

JijSi · Sj (1.4)

Starting from a standard Heisenberg Hamiltonian and introducing Fourier transforms

6



Jij =
1

N

∑
k

Jke
ik·(ri−rj) (1.5)

and

Si =
1√
N

∑
k

Ske
ik·ri , (1.6)

where k takes on the values in the first Brillouin zone (BZ): kx, ky = 2πn/L n =
[−L/2 + 1,−L/2 + 2, ...L/2− 1, L/2], we can write the Hamiltonian in k-space as:

H =
1

2

∑
k

J(k)Sk · S−k, (1.7)

where J(k) for a nn-model is 2J(cos kx + cos ky). In the Lieb-Mattis model only the
modes at k = 0 and k = (π, π) ≡ Q are included. Transforming back to real-space, the
model is:

H =
2J

N

∑
i,j

Si · Sj
(
e−i0·(ri−rj) − e−iQ·(ri−rj)

)
. (1.8)

The exponent in the last term is 1 whenever the difference between ri and rj is an even
number, i.e. when they are on the same sublattice. It is −1 whenever they are on different
sublattices. The Hamiltonian can then be written on the form:

H =
4J

N

∑
i,j

Si · Sj −
∑

i∈A,j∈A
Si · Sj −

∑
i∈B,j∈B

Si · Sj


=

4J

N

(
S2
tot − S2

A − S2
B

)
,

(1.9)

where the new spin operators are the total spins on the whole lattice and sublattice A
and B respectively. These operators all commute with each other, so the eigenstates of
H can be labeled by their quantum numbers. From elementary spin algebra we can see
that SA and SB can take on the values [0, 1, ..., NS/2], and Stot can be in the range
[|SA − SB |, |SA − SB |+ 1, ..., SA + SB ].

The eigenstates labeled by these quantum numbers will then have the eigenvalues:

E(Stot, SA, SB) =
4J

N
[Stot(Stot + 1)− SA(SA + 1)− SB(SB + 1)] . (1.10)

It is clear then that the ground state occurs when SA and SB are NS/2 and Stot = 0. This
state is thus a spin singlet, and the restoration of symmetry in a finite system is apparent.
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The energy of the first excited state would be obtained if Stot = 1. The difference between
these two states are then ∼ 1/N = 1/Ld which is the ToS-gap.

The spin wave gap for a linearly dispersing mode will be ∼ 1/L, since that is the spacing
between the points in k-space.

Although this is not a proof of the existence of a ToS for a general number of sublattices,
this example in combination with the results of previous works is enough reason to believe
that MLSWT holds the potential for obtaining good results.

As most previous work has either been done on a Heisenberg-model or an XY-model, the
main effort of this thesis will be to expand the framework laid out by Ref. 1 to an XXZ-
model which we will introduce shortly. This will allow for looking at both the Heisenberg-
model, XY-model, and Ising-model by taking the anisotropy parameter to some limiting
values. The rest of the thesis is structured as follows: There will first be a section on
solving the classical problem, as its solution forms the basis on which the spin wave theory
is built. Then there is a section on the procedure of spin wave theory, and the meaning of
the staggered field h in the context of modified spin wave theory. Lastly, the results which
now depend on both the system size and the anisotropy parameter will be presented.

A

J

x

y

J4
L

Figure 1.1: Square lattice with N = L × L sites (black dots). The black lines show the nearest
neighbour interactions, J , on the square lattice. The interactions in the triangular lattice nearest
neighbour model, J4, are also included on the dashed blue lines showing how the triangular lattice
can be mapped onto the sqaure lattice. Periodic boundary conditions are assumed in both directions,
giving the system the topology of a torus. The subsystem A consists of all sites inside the shaded
region that wraps around the torus along the y-direction at some fixed x.

1.4 The XXZ-model
When looking at a system consisting only of interacting spins at some fixed locations, the
Hamiltonian could in general be some sort of multinomial in the vector components of
each spin, each term with its own coupling constant. Most of these terms would not be
consistent with the symmetry of the Hamiltonian and thus have be zero. Here, we wish
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to consider only Hamiltonians with second order couplings between the spins. This also
implies that the external field, coupling to spins to first order, is zero. This leaves us with:

H =
1

2

∑
i,j,d

JdijS
d
i · Sdj (1.11)

in a d-dimensional spin-space, or

H =
1

2

∑
i,j

[
JxijS

x
i S

x
j + JyijS

y
i S

y
j + JzijS

z
i S

z
j

]
(1.12)

in 3 dimensions. Where Jij is the magnitude of the interaction between the spins at site i
and j respectively. This is what is called the Heisenberg XYZ-model, and is in a sense the
most general Heisenberg model.

A very natural assumption to make next is to let all spins have the same fixed length S.

So far no restrictions have been placed on the sites of the spins, so in order to make the
model more mathematically tractable we would like to organize our spins on a periodic
structure like a lattice since we would also like to impose translational invariance after-
wards. The lattice of choice is the 2D square lattice with N = L × L sites. It has
the advantage of being rather simple, and the possibility of having other lattices mapped
onto it in a simple fashion. The labeling of the sites can conveniently be chosen as
ri = (xi, yi) x, y ∈ N setting the lattice constant to 1, which in combination with
setting ~ = c = 1 makes everything dimensionless. Imposing also periodic boundary
conditions, i.e. (xi + nL, yi + mL) = (xi, yi) for any integer n,m, will give the system
a torus topology and it allows even a finite-size lattice to be fully translationally invariant.

Translational invariance in the interactions means that J(ri−rj) ≡ Jij = Jji. This makes
J in matrix form real and symmetric, and so hermiticity of the Hamiltonian becomes
apparent. Note also that translational invariance is less strict than rotational invariance,
i.e. J(|ri − rj |) ≡ Jij , which leaves an opportunity for mapping for instance a triangular
lattice onto the square lattice. This can be seen in figure 1.1

In this thesis the special case called the XXZ-model will be studied. This means Jxij =

Jyij ≡ J⊥ij 6= Jzij . Assuming that J⊥ij and Jzij have the same functional dependence on ri
and rj , the Hamiltonian can be written as:

H =
1

2

∑
i,j

Jij [S
x
i S

x
j + Syi S

y
j + ∆Szi S

z
j ], (1.13)

where Jij is the same as J⊥ij having simply omitted the superscript, and ∆ ≡ Jzij/J
⊥
ij

which under the previous assumption is just a constant which we will assume to be non-
negative in the following. This Hamiltonian is of particular interest to due to the three
limiting cases ∆ → 1, ∆ → 0 and ∆ → ∞ being equivalent to the Heisenberg-, XY-
and Ising- models respectively, or n-vector models of rank 3,2 and 1. These are three of
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the most important models for spin systems, and a lot is known about each of them both
classically and quantum mechanically. Crucially for the treatment here, the Heisenberg-
model has an O(3) or SU(2) symmetry, i.e. continuous spin rotation symmetry about all
axes, while the XY- and Ising- models have continuous spin rotation symmetry about the
z-axis giving an O(2) or U(1) symmetry. The way to check this is to take commutator of
the generators of the spin rotation groups with the Hamiltonian, as is done in appendix B.

For the purposes of this thesis, the description will often be split up into the three different
cases: ∆ = 1, ∆ < 1 and ∆ > 1. These will be referred to as the xxx-, easy plane- and
easy axis-cases respectively. The two latter will sometimes be referred to under the um-
brella term xxz-case which is distinguished from the XXZ-model at the pure Heisenberg
point being referred to as the xxx-case or XXX-model. Furthermore, the parameter ∆ will
be split up into 1−ε and 1+ε in the easy plane- and easy axis-cases respectively. This will
allow for an easier understanding of which contributions come from the pure Heisenberg
model, and which come from the anisotropy parameter ε.

10



Chapter 2
The classical problem

Since we have conceded that we will not attempt to solve the model exactly and instead
use linear spin wave theory, we will first need to find the classical ground state. To find the
ground state of the classical models means optimizing a configuration of N spins with 3
components each. This is not an easy task. One could think to start by pulling out a factor
S2 and writing the rest of the Hamiltonian in terms of the 2N angles (θi, φi). This is then
a minimization problem w.r.t. 2N numbers, which for a macroscopically large N still is
far too much. However, there are simplifying assumptions to be made, at least in some
cases.

2.1 xxx-case - the Lagrange multiplier method
Showing some results first for the Heisenberg model will allow for easier arguments in
what follows. An initial constraint is obtained by demanding that the length of the spin at
every site is S or Si · Si = S2. A somewhat weaker, but sufficient, constraint is obtained
by summing the previous constraints over all N sites:

∑
i

Si · Si = NS2. (2.1)

The Hamiltonian with a single Lagrange multiplier then becomes:

H =
1

2

∑
i,j

JijSi · Sj − λ(
∑
i

Si · Si −NS2). (2.2)

Going to k-space using the Fourier transforms (1.5) and (1.6), we get:
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H =
1

2

∑
k

JkSk · S−k − λ(
∑
k

Sk · S−k −NS2). (2.3)

The extrema are found where the gradient w.r.t. all Sm and λ vanishes. Noting that
∂Sk

∂Sm
= δk,m, we get the N + 1 equations:

∂H
∂Sm

=
1

2
(J−m + Jm)S−m − 2λS−m = 0

∂H
∂λ

=
∑
k

Sk · S−k −NS2 = 0.
(2.4)

An important fact about these equations is that Jm = J−m due to the translational in-
variance, so setting λ = Jm/2 for any m would leave a non-zero contribution for all the
equations where Jk 6= Jm unless these S−k are zero. The constraint then implies that the
sum of the remaining spins where Jk = Jm is equal to NS2, so the value of the Hamil-
tonian becomes 1

2JmNS
2. The global minimum is then at the value 1

2JQNS
2 if JQ is a

global minimum of J . This vector Q is called the ordering vector of the model. Another
consequence of the translational invariance is that the global minimum exists at both ±Q,
and unless Q = (0 ∨ π, 0 ∨ π), these two vectors are inequivalent in the BZ. It is also
possible that there are multiple such pairs of global minima, but we will restrict ourselves
to look at models with only one pair of minima at ±Q and simply write Q = (qx, qy)
throughout keeping in mind that there is also a minimum at −Q.

We will also only consider models that are antiferromagnetic. What this means is that the
nearest neighbour interaction has a positive sign, and the further away the points i and
j are from each other, the smaller the interaction will get. This is not really a necessary
assumption for the arguments that follow; all we really need is that the dispersion is linear.
In principle, we could allow almost arbitrary interactions. However, in the real world,
the interactions will depend on some microscopic physics, so not all possible models are
physically sane. Usually, the interactions will decay with the distance, so we will just
assume that to be the case here as well.

As a side note, we can also show that J(Q) is less than zero. This can be seen by realizing
that due to the translational invariance of Jij , J(k) will just be a sum of cosines. This
means that the integral over the first BZ of J(k) is zero, and it will thus have to have both
positive and negative values unless it is identically zero. Therefore, J(Q) being the global
minimum, is negative. This quantity will appear with a negative sign under a square root
multiple times, but we now know that we need not worry about that.

Under the restriction of having only one minimum (or one pair of minima), we can show
that the order in real-space will be confined to a plane:

Let SQ be on the most general possible form: n̂1 Re{SQ}+ in̂2 Im{SQ}, where n̂1,2 are
two arbitrary unit vectors. The reality condition is that S−Q = S∗Q, and all other Sk are
zero, so transforming to real-space yields:
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Si =
1√
N

[
eiQ·ri(n̂1 Re{SQ}+ in̂2 Im{SQ}) + e−iQ·ri(n̂1 Re{SQ} − in̂2 Im{SQ})

]
=

2√
N

[
n̂1 cos(θi) Re{SQ}+ n̂2 sin(θi) Im{SQ}

]
,

(2.5)

where θi ≡ Q · ri. Squaring this relation, and demanding that it holds true for all i will be
sufficient.

NS2

4
= cos2 θi Re{SQ}2 + sin2(θi) Im{SQ}2

+ 2n̂1 · n̂2 cos θi sin θi Re{SQ} Im{SQ}.
(2.6)

The only way to satisfy this for all i is to have n̂1 · n̂2 = 0, i.e. being orthogonal to each
other, and Re{SQ}2 = Im{SQ}2 = NS2/4. The order in real-space then becomes:

S[n̂1 cos(θi) + n̂2 sin(θi)], (2.7)

where n̂1,2 are now two arbitrary orthonormal unit vectors. The fact that we can choose
these vectors arbitrarily is a manifestation of the symmetry of the problem. We can also
note that the special case of collinear order occurs at exactly the vectors which had the
property that the positive and the negative Q were equivalent in the Brillouin zone. These
models will only have two Goldstone modes: One at 0 and the other at Q. In the non-
collinear case, there will be Goldstone modes at 0, Q and −Q. This set of vectors will be
denoted as G, and the number of vectors in this set as NG.

Furthermore, for a given value of Q = (2πsx/tx, 2πsy/ty), with sx,y and tx,y coprime,
the lattice will be split up into t sublattices in which all spins have the same alignment if
t is the greatest common divisor of tx and ty (if qx,y = 0, we take tx,y = 1). We will
assume that L is divisible by t such that the order is commensurate, i.e. that the sites
(xi +nL, yi +mL) are in the same sublattice for all integers m,n. This hinders the order
from being geometrically frustrated by the lattice itself.

2.2 xxz-case
If we try to use the Lagrange multiplier method for a general XYZ-model, the Hamiltonian
would have to be split up into its vector components, so in the XXZ-model:

H =
1

2

∑
k

Jk
[
SxkS

x
−k + SykS

y
−k + ∆SzkS

z
−k
]
− λ(

∑
k

Sk · S−k −NS2). (2.8)

If ∆ < 1, one could try to set all Szk = 0. This gives the same solution as in the xxx-
case, but with the order confined to the xy-plane. There is still a rotational symmetry in
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choosing the ordering direction within this plane, implying that there is only spin rotation
symmetry about the z-axis.

If ∆ > 1, the minimum occurs where all Sxk, S
y
k = 0 and λ = JQ∆/2. When trans-

forming back to real-space, this state does not necessarily satisfy the stronger constraint
that all spins must be of length S. What we have really done is optimized for only the
z-component, and for an order that occurs in a plane, some of the total spin will be in e.g.
the x-direction, so the length of the spin is no longer S. The exception to this of course
being collinear order in which no spins have any other components than the z-component.

This leaves us with the problem of trying to find the minimum of a state that orders non-
collinearly in the easy axis-case. One could try to impose the stronger constraint directly.
In k-space this constraint is a double sum over the wavevectors: Si·Si = 1/N

∑
kk′ S(k)·

S(k′)eik·rieik
′·ri , so trying to impose all of these with Lagrange multipliers will not be

any easier than direct minimization of H in terms of the angles (θi, φi).

This is a daunting task, so instead let us start by looking at the nearest neighbour model on
a triangular lattice which is the simplest model that orders non-collinearly. It seems likely
that any model that orders coplanarly in the XXX-model also will do so in an XYZ-model,
in the plane between the two largest components. This is consistent with ordering in the
xy-plane in the easy plane-case, and any plane containing the z-direction in the easy axis-
case. Keep in mind that this is all done in zero external field. If there was an external field,
we could easily get order that was not coplanar. We take the ordering plane here to be the
xz-plane, and let the polar angles instead run from 0 to 2π in this plane.

The model then has the solution Q = (2π/3, 2π/3) in the XXX-model splitting the lattice
up into three sublattices on which all spins have the same alignment. We can denote the
angles on each sublattice as θA,B,C . One possible choice is then θA = 0 and θB = −θC =
2π/3. In the pure Ising case, the order will again be divided into three sublattices where
θA = 0 and θB = −θC = π. It may be reasonable then to assume that for any XXZ-model
in between we will also have some sort of coplanar order on three sublattices that changes
continuously between the two orders just described. Attempting to find a solution on the
form θA = 0 and θB = −θC = q and minimizing w.r.t. q allows us to quickly find a
solution:

H ∝ ∆(2 cos q + cos2 q − sin2 q) =⇒
∂H

∂q
= −∆ sin q(2 + 2 cos q)− 2 cos q sin q = 0

=⇒ cos q = − ∆

1 + ∆
.

(2.9)

In principle this does not have to be the global minimum, since if we assume that the model
will split up into three sublattices in a plane we will really need to minimize w.r.t. three
angles. In the XXX-case, there is then a solution for any choice of θA with θB = θA+2π/3
and θC = θA − 2π/3. This is what rotational symmetry means. There is also such a
continuous degeneracy of the ground state in the XXZ-model. [23] To show this let us start
from the Hamiltonian in terms of the polar angles:
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H =
S2

2

∑
i,j

Ji,j
[

sin θi sin θj + ∆ cos θi cos θj
]

=⇒

H
′

=
(

sin θA sin θB + ∆ cos θA cos θB
)

+
(

sin θB sin θC + ∆ cos θB cos θC
)

+
(

sin θC sin θA + ∆ cos θC cos θA
)
,

(2.10)

where H ′ now is H/JS2N . Differentiating now w.r.t. the angles and setting equal to zero
we get the three equations:

cos θA(sin θB + sin θC)−∆ sin θA(cos θC + cos θB) = 0 (2.11a)
cos θB(sin θC + sin θA)−∆ sin θB(cos θA + cos θC) = 0 (2.11b)

cos θC(sin θA + sin θB)−∆ sin θC(cos θB + cos θA) = 0. (2.11c)

A high symmetry solution to these equations can be found by letting θA = 0. Then, from
the first equation, sin θB = − sin θ. Then, cos θB = ± cos θC . Inserting into the second
equation gives: − cos θB sin θB − ∆ sin θB(1 ± cos θB) =⇒ cos θB = −∆/(1 ± ∆).
From the third equation we can deduce that we must choose the positive sign. Defining q
as cos−1(−∆/(1 + ∆)), we recover the solution already found. The value of H ′ in this
solution is ∆(2 cos q+ cos2 q)− sin2 q = (−2∆2(1 + ∆) + (1 + ∆)∆2− (1 + ∆)2)/(1 +
∆)2 = −(∆2 + ∆ + 1)/(∆ + 1).

The symmetry of the problem will also allow us to only need to check for angles θA ∈
[0, π− q], where π− q = cos−1(∆/(1 + ∆)). This can be done because all other possible
angles can be reached through either a relabeling of the sublattices, a spin flip about the
x-axis, or a combination of the two.

To proceed in finding the other solutions, let us follow Ref. 24 in letting θB = ε − δ and
θC = ε+ δ. Inserting into equation 2.11a gives:

cos θA(sin ε cos δ − cos ε sin δ + sin ε cos δ + cos ε sin δ)

= ∆ sin θA(cos ε cos δ + sin ε sin δ + cos ε cos δ − sin ε sin δ)

=⇒ cos θA2 sin ε cos δ = ∆ sin θA2 cos ε cos δ

=⇒ tan ε = ∆ tan θA.

(2.12)

Knowing that cos2(a) + sin2(a) = 1 =⇒ cos2(a) = 1/(1 + tan2(a)), we can also find
cos ε:

15



cos ε =
1√

1 + tan2 ε
=

1√
1 + ∆2 tan2 θA

=
1√

1 + ∆2( 1
cos2 θA

− 1)
=

cos θA√
cos2 θA(1−∆2) + ∆2

.
(2.13)

To find an expression for δ in terms of θA we must instead add together (2.11b) and (2.11c)
and use some substitutions:

cos θB(sin θC + sin θA) + cos θC(sin θA + sin θB)

= ∆
[

sin θA(cos θC + cos θB) + sin θC(cos θB + cos θA)
]

=⇒
sin θA(cos θB + cos θC) + cos θB sin θC + sin θB cos θC

= ∆
[

cos θA(sin θB + sin θC) + cos θB sin θC + sin θB cos θC
]
. (2.14)

We know that cos θB sin θC + sin θB cos θC = sin(θB + θC) = sin(2ε) = 2 sin ε cos ε,
and from (2.11a), we can substitute sin θA(cos θB + cos θC) = 1/∆ cos θA(sin θB +
sin θC). Lastly, we know that sin θB + sin θC = 2 sin ε cos δ, so inserting yields:

1

∆
cos θA(2 sin ε cos δ) + 2 sin ε cos ε = ∆ cos θA(2 sin ε cos δ) + ∆2 sin ε cos ε

=⇒ (∆− 1

∆
) cos θA cos δ = (∆− 1) cos ε

=⇒ cos δ =
1−∆

∆− 1
∆

cos ε

cos θA
=

−∆

(∆ + 1)
√

cos2 θA(1−∆2) + ∆2
. (2.15)

The differences in the expressions from here to [24] can be traced back to differences in the
definition of the problem. They are looking at solutions in the region corresponding to
∆ ∈ [−1,−∞]. As a sanity check, we can see whether this gives the expected results in
a couple of limiting cases. Letting ∆ → 1 gives cos ε = cos θA, and cos δ = −1/2. This
angle is 2π/3, so the order is thus identified by the angles θA, θA − 2π/3, θA + 2π/3 as it
should be when reverting to XXX-model.

The other sanity check would be to let ∆→∞ instead, effectively taking us to the Ising-
case. Then: cos ε = 1, corresponding to an angle 0, while cos δ = −1, corresponding to
an angle π. The order is then identified by the angles 0,−π, π which is again what we
would have expected in the Ising model.

To check that these solutions all give back the same value for H ′ we should differenti-
ate it w.r.t. θA. H ′ contains terms that are products of either two cosines or two sines.
Differentiating one of them, we see that:
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∂

∂θA
cos θi cos θj =

∂ cos θi
∂θi

∂θi
∂θA

cos θj +
∂ cos θj
∂θj

∂θj
∂θA

cos θi. (2.16)

Thus ∂H ′/∂θA will become the sum of each equation in (2.11a) multiplied with ∂θi/∂θA,
where θi was the coordinate one would have differentiated w.r.t. to obtain the equation in
the first place. Since all these equations separately are zero, ∂H ′/∂θA is as well, and the
states are degenerate.

A degeneracy of this type usually reflects some underlying symmetry of the problem, like
spin rotational symmetry in the XXX-model. This degeneracy however, does not stem
from any obvious symmetry, but it may be possible still to uncover a ”hidden” symmetry.
The first step in this direction would be to realize that in the limit ∆→ 1, we get back the
regular spin rotation symmetry. Perhaps the argument can be made that there could be a
sort of ”elliptic” spin rotation symmetry in the XXZ-model, since the contribution to the
energy from two coupled spins will lie on an ellipse. This idea is appealing, since it may
allow for continuously mapping solutions of the XXX-model onto the XXZ-model.

However, when going to the quantum case, the degeneracy is lifted by the spin wave
correction to the ground state energy [24]. This means that if generators of ”elliptical” spin
rotations are found, they do not commute with the QM-model even though their classical
counterparts might do so in the Poisson Bracket sense. No more effort will be put into
this as the ground state indeed is the one found through the simplest argument in this
subsection.
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Chapter 3
Spin wave theory

3.1 Diagonalization of H

H =
1

2

∑
i,j

Ji,j [S
x
i S

x
j + Syi S

y
j + ∆Szi S

z
j ] (3.1)

Starting from this Hamiltonian we will try to develop the procedure from Ref. 1 to be valid
for ∆ 6= 1. Knowing that the classical ordering will be different for the different cases,
they will be treated separately with the Heisenberg-case treated first to serve as a reference
case. That will allow for an easier calculation in the two other cases.

3.1.1 xxx-case

Given a classical ordering vector and choosing the ordering to be in the xz-plane we can
first go to a rotated coordinate system such that the spins point in the local z-direction:

Szi = S z̃i cos(θi)− Sx̃i sin(θi)

Sxi = S z̃i sin(θi) + Sx̃i cos(θi)

Syi = Sỹi . (3.2)

This now constitutes a particular choice for the ground state, and thus the symmetry is
spontaneously broken by construction. Inserting the rotated coordinates we get:
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H =
1

2

∑
i,j

Ji,j

[(
S z̃i cos(θi)− Sx̃i sin(θi)

)(
S z̃j cos(θj)− Sx̃j sin(θj)

)
+ Sỹi S

ỹ
j

+
(
S z̃i sin(θi) + Sx̃i cos(θi)

)(
S z̃j sin(θj) + Sx̃j cos(θj)

)]
. (3.3)

Multiplying parenthesis and using the trigonometric identities
cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b) and
sin(a± b) = sin(a) cos(b)± cos(a) sin(b), we arrive at:

H =
1

2

∑
i,j

Ji,j
[

cos(θi − θj)(S z̃i S z̃j + Sx̃i S
x̃
j ) + sin(θi − θj)(S z̃i Sx̃j − Sx̃i S z̃j )

+ Sỹi S
ỹ
j

]
− h

∑
i

S z̃i , (3.4)

where we have introduced a fictitious local magnetic field in the ordering direction for
later use when looking at modified spin wave theory. This step will be discussed at length
in section 3.3.

From here we switch to the Holstein-Primakoff (HP)-representation for spins ordered
along the z-axis:

S z̃i = S − ni
S+
i =

√
2S − nibi

S−i = b†i
√

2S − ni,

(3.5)

also keeping in mind that we have S± = Sx̃ ± iSỹ , so:

Sx̃i =
1

2
(S+
i + S−i ) =

1

2
(
√

2S − nibi + b†i
√

2S − ni)

Sỹi =
1

2i
(S+
i − S

−
i ) =

1

2i
(
√

2S − nibi − b†i
√

2S − ni).
(3.6)

The bosonization of the spin-operators is in itself an interesting procedure, and it is really
the crucial step in spin wave theory. What it does is define the classical ground state as a
vacuum for its bosons, and then the ladder operators raise and lower the spin projection
along the z̃-direction. A quick check that they reproduce the correct commutation relations
are provided in appendix B.2. For the system to be ordered, we would naively want it to
largely coincide with the mean field, keeping fluctuations small. This is the assumption
one makes when justifying only going to linear order in the spin wave theory. Formally
however, we make a semi-classical expansion in 1/S and let S → ∞. This does then in
general become an asymptotic series, and it may seem a bit hard to justify using it when
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looking at systems where S = 1/2. It does indeed occur that one gets inconsistencies when
lowering S, and one has to conclude that the spin wave theory does not give a stable order.
If we on the other hand get consistent results, i.e. that the correction to the magnetization
in the thermodynamic limit is small, we will use that as a justification without thinking
anymore of it.

Before inserting this into the Hamiltonian, we will rid ourselves of some terms that are
either constants, of too high order in HP-bosons, or disappear under the summation.

The square root can be expanded as
√

2S − ni '
√

2S(1 − ni/4S), and since we only
care about terms of order less than 2 in HP-bosons, we can immediately replace Sx̃i →√

2S
2 (bi + b†i ) and Sỹi →

√
2S
2i (bi − b†i ). Then, the terms with only Sx̃’s and Sỹ’s become

quadratic.

The first term in H is: (S z̃i S
z̃
j ) = S2−S(ni+nj) +ninj , so here we only keep−S(ni+

nj). In the term with the staggered field, we obviously only keep the part proportional to
ni since S is constant.

The mixed terms between Sx̃ and S z̃ are the remaining problem. They will have contri-
butions proportional to one and three bosons. Removing the higher order terms leaves us
with this sum of first order terms:

H1 =
S

2

∑
i,j

Ji,j sin(θi − θj)(bj + b†j − bi − b
†
i ). (3.7)

Looking at the sum with bi, we can show that it cancels, and the three remaining sums
necessarily also cancel via the same argument. Letting j = i+ δ in the sum, where δ runs
over the whole lattice, we get:

∑
i,δ

Ji,i+δ sin(θi − θi+δ)bi =
∑
i

bi
∑
δ

J(rδ) sin(−Q · rδ) = 0, (3.8)

where we in the second step have used the definitions of J and θi to explicitly see that we
sum over an odd function multiplied with an even function, so the inner sum is zero for all
i, and the entire first order term disappears. If the first order term had not disappeared, it
would have been a good indication that we were not in the ground state to begin with.

After all of this we can now get back to the original Hamiltonian:

H =
S

2

∑
i,j

Ji,j

[
1

2
cos(θi − θj)(bibj + bib

†
j + b†i bj + b†i b

†
j)

+
1

2
(bibj − bib†j − b

†
i bj + b†i b

†
j)− cos(θi − θj)(ni + nj)

]
+ h

∑
i

ni (3.9)
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which after some reorganization becomes:

H =
S

2

∑
i,j

Ji,j

[
1

2
[cos(θi − θj) + 1](bib

†
j + b†i bj) +

1

2
[cos(θi − θj)− 1](bibj + b†i b

†
j)

− cos(θi − θj)(b†i bi + b†jbj)

]
+ h

∑
i

b†i bi. (3.10)

Having it on this form, we are ready to perform the Fourier transform. We will use the
transforms:

bi =
1√
N

∑
k

bke
ik·ri =⇒ b†i =

1√
N

∑
k

b†ke
−ik·ri (3.11)

for the HP-bosons as well as the ones introduced in equations (1.5) and (1.6). A quick
check that the Fourier transformed operators still satisfy the correct commutation relations
is provided in B.3. Inserting this into H and writing the cosines in exponential form will
give a whole lot of terms, but several of them have a similar form, so we need only evaluate
a few of them.

H =
S

2

∑
i,j

1

N

∑
k′′

J(k′′)eik
′′·(ri−rj) 1

N

∑
k,k′{

1

2

[
eiQ·(ri−rj)

2
+
e−iQ·(ri−rj)

2
+ 1

][
bkb
†
k′e

i(k·ri−k′·rj) + b†kbk′e
i(−k·ri+k′·rj)

]
+

1

2

[
eiQ·(ri−rj)

2
+
e−iQ·(ri−rj)

2
− 1

][
bkbk′e

i(k·ri+k′·rj) + b†kb
†
k′e

i(−k·ri−k′·rj)
]

−
[
eiQ·(ri−rj)

2
+
e−iQ·(ri−rj)

2

][
b†kbk′e

i(k·ri−k′·ri)+i(k·rj−k′·rj)
]}

+ h
∑
i

1

N

∑
k,k′

[
b†kbk′e

i(k·ri−k′·ri)
]
.

(3.12)

After reorganizing terms and letting the sum run over negative wavevectors in the appro-
priate places this can be rewritten:
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H =
S

2

∑
i,j

1

N2

∑
k′′,k′,k

J(k′′)eik
′′·(ri−rj)e−i(k·ri−k

′·rj)

{
1

2

[
eiQ·(ri−rj)

2
+
e−iQ·(ri−rj)

2
+ 1

](
b†kbk′ + b−kb

†
−k′
)

+
1

2

[
eiQ·(ri−rj)

2
+
e−iQ·(ri−rj)

2
− 1

](
b−kbk′ + b†kb

†
−k′
)}

−S
2

∑
i,j

1

N2

∑
k′′,k′,k

J(k′′)eik
′′·(ri−rj)

[
eiQ·(ri−rj)

2
+
e−iQ·(ri−rj)

2

]
[
b†kbk′e

i(k·ri−k′·ri) + b†−kb−k′e
−i(k·rj−k′·rj)

]
+
h

2

∑
i

1

N

∑
k,k′

[
b†kbk′e

i(k·ri−k′·ri) + b†−kb−k′e
−i(k·ri−k′·ri)

]
.

(3.13)

Switching the order of the sums, we can see that we are probably going to end up with a
lot of deltafunctions.

The first type of sum is:

1

N2

∑
i,j

eik
′′·(ri−rj)e−i(k·ri−k

′·rj)eiC·(ri−rj)

=
1

N

∑
i

e−iri·(k−(k′′+C)) 1

N

∑
j

eirj ·(k
′−(k′′+C))

= δk,k′′+Cδk′,k′′+C = δk,k′δk′−C,k′′ ,

(3.14)

where C is now either ±Q or 0. The other type of sum is:

1

N2

∑
i,j

eik
′′·(ri−rj)e−i(k·ri−k

′·ri)eiC·(ri−rj)

=
1

N

∑
i

e−iri·(k−(k′+k′′+C)) 1

N

∑
j

eirj ·(k
′′−(−C))

= δk,k′+k′′+Cδk′′,−C = δk,k′δk′′,−C .

(3.15)

The last sum in H is already on deltafunction-form, and will simply give δk,k′ , so finally
inserting all of this back into H will give:
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H =
S

4

∑
k′′,k′,k

J(k′′)δk,k′

{[
δk′−Q,k′′

2
+
δk′+Q,k′′

2
+ δk′,k′′

](
b†kbk′ + b−kb

†
−k′
)

[
δk′−Q,k′′

2
+
δk′+Q,k′′

2
− δk′,k′′

](
b−kbk′ + b†kb

†
−k′
)

[
δk′−Q,k′′ + δk′+Q,k′′

](
b†kbk′ + b†−kb−k′

)}

+
h

2

∑
k,k′

δk,k′
(
b†kbk′ + b†−kb−k′

)
.

(3.16)

Since the operators are bosonic, their commutator is simply a constant and since we neglect
all constants in H , we can safely switch the order of the last term in the last bracket in the
two bottom lines to make them on the same form as the bracket on the first line. Summing
over k′ and k′′ we get:

H =
∑
k

{[
S

4

(
1

2
[J(k −Q) + J(k + Q)] + J(k)− 2J(Q)

)
+
h

2

](
b†kbk + b−kb

†
−k
)

+

[
S

4

(1

2
[J(k −Q) + J(k + Q)]− J(k)

)](
b†kbk′ + b−kb

†
−k′
)}

(3.17)

since J(Q) = J(−Q). Naming the square bracket in the first term Ak, and in the second
term Bk, we can write Hamiltonian in this form:

H =
∑
k

Ψk

(
Ak Bk

Bk Ak

)
Ψ†k, (3.18)

with Ψk =
(
b−k b†k

)
. This is readily diagonalized by a Bogoliubov transform, and the

matrix that works can be parameterized like this:

Pk =

(
cosh ζk − sinh ζk
− sinh ζk cosh ζk

)
. (3.19)

Then, the we can rewrite H and find the conditions that diagonalizes it:

H =
∑
k

ΨkP
−1
k Pk

(
Ak Bk

Bk Ak

)
P †k(P †k)−1Ψ†k =

∑
k

Ψ′kDΨ′†k , (3.20)

where we have defined some new bosons in Ψ′k:

24



αk = cosh ζkbk + sinh ζkb
†
−k =⇒ bk = cosh ζkαk − sinh ζkα

†
−k. (3.21)

These also satisfy the correct commutation relations, as is seen in B.4. The matrix D is:

(
cosh 2ζkAk − sinh 2ζkBk cosh 2ζkBk − sinh 2ζkAk

cosh 2ζkBk − sinh 2ζkAk cosh 2ζkAk − sinh 2ζkBk

)
, (3.22)

where the hyperbolic trigonometric identities:
cosh(a± b) = cosh(a) cosh(b)± sinh(a) sinh(b) and
sinh(a± b) = sinh(a) cosh(b) ± cosh(a) sinh(b) have been used. Demanding the off-
diagonals to be zero gives the condition:

tanh 2ζk =
Bk

Ak
, (3.23)

where ζk is real and even in k since both Ak and Bk are as well. Using the identity
cosh2(a)− sinh2(a) = 1, we can obtain an expression for the diagonal terms:

=⇒ 1− tanh2(a) =
1

cosh2(a)
=⇒ cosh(a) =

√
1

1− tanh2(a)
(3.24a)

=⇒ 1

tanh2(a)
− 1 =

1

sinh2(a)
=⇒ sinh(a) =

√
1

1
tanh2(a)

− 1
. (3.24b)

Since we know what tanh 2ζk is in terms of Ak and Bk, we now express cosh 2ζk and
sinh 2ζk in these terms as well:

cosh 2ζk =

√√√√ 1

1− B2
k

A2
k

=
Ak√

A2
k −B2

k

sinh 2ζk =

√√√√ 1
A2

k

B2
k
− 1

=
Bk√

A2
k −B2

k

,

(3.25)

and finally, the diagonal terms become:

Ak
Ak√

A2
k −B2

k

−Bk
Bk√

A2
k −B2

k

=
√
A2

k −B2
k =

√
[Ak +Bk][Ak −Bk]. (3.26)

Inserting this back into H and writing it all out leaves:
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H =
∑
k

√
A2

k −B2
k(α†kαk + α−kα

†
−k). (3.27)

After commuting the last term, generating only a constant we can neglect, and switching
it to be summed over positive k we arrive at the penultimate form of the Hamiltonian:

H =
∑
k

ωkα
†
kαk, (3.28)

with ωk = 2
√

(A2
k −B2

k). This now has the form of a harmonic oscillator, and the ground
state is simply defined as the state with no excitations. Its eigenvalue will be the classical
eigenvalue plus some quantum correction that came from terms which we dropped along
the way. An important fact about the quantum correction is that it is negative, so quantum
fluctuations lower the ground state energy compared to the classical value.

3.1.2 easy plane-case
As explained previously, the classical ordering vector is the same here as in the xxx-case,
but the ordering now occurs in the xy-plane. Therefore we must make a few minor changes
in our treatment. Starting off with the rotated coordinates where spins align along the local
x-axis:

Sxi = Sx̃i cos(θi)− Sỹi sin(θi)

Sỹi = Sx̃i sin(θi) + Sỹi cos(θi).
(3.29)

Inserting into (3.1) yields the new Hamiltonian:

H =
1

2

∑
i,j

Ji,j [cos(θi − θj)(Sx̃i Sx̃j + Sỹi S
ỹ
j )

+ sin(θi − θj)(Sx̃i S
ỹ
j − S

ỹ
i S

x̃
j ) + ∆S z̃i S

z̃
j ]− h

∑
i

Sx̃i .
(3.30)

Going to the the HP-representation for spins ordered along the x-axis:

Sx̃i = S − ni
S+
i =

√
2S − nibi

S−i = b†i
√

2S − ni

(3.31)

and inserting again into the previous Hamiltonian, neglecting constants, keeping only
terms to quadratic order one arrives at:
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H =
S

2

∑
i,j

Ji,j

{1

2
[cos(θi − θj) + ∆](bib

†
j + b†i bj)

+
1

2
[cos(θi − θj)−∆](bibj + b†i b

†
j)

− cos(θi − θj)(ni + nj)
}

+ h
∑
i

ni.

(3.32)

From this point onward, it is clear that the description in terms of HP-bosons of the xxx-
case is retrieved by taking the limit ∆ → 1, or as we defined: The limit ε → 0, where
∆ = 1− ε.

Retracing the steps one will finally arrive at equation (3.28) with only slight alterations to
Ak and Bk:

Ak =
S

4

[1

2
[J(k −Q) + J(k + Q)] + ∆J(k)− 2J(Q)

]
+
h

2
(3.33)

and

Bk =
S

4

[1

2
[J(k −Q) + J(k + Q)]−∆J(k)

]
. (3.34)

3.1.3 easy axis-case

In this case one expects ordering along the z-direction if the order is collinear, and in a
plane taken to be the xz-plane when the order is coplanar. Therefore we will use the same
rotated coordinates as in the xxx-case.

Inserting into equation (3.1) yields:

H =
1

2

∑
i,j

Ji,j

[(
S z̃i sin(θi) + Sx̃i cos(θi)

)(
S z̃j sin(θj) + Sx̃j cos(θj)

)
∆
(
S z̃i cos(θi)− Sx̃i sin(θi)

)(
S z̃j cos(θj)− Sx̃j sin(θj)

)
+ Sỹi S

ỹ
j

]
.

(3.35)

Writing it out gives:
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H =
1

2

∑
i,j

Ji,j
[
S z̃i S

z̃
j (sin θi sin θj + ∆ cos θi cos θj)

+ Sx̃i S
x̃
j (cos θi cos θj + ∆ sin θi sin θj)

+ S z̃i S
x̃
j (sin θi cos θj −∆ cos θi sin θj)

+ Sx̃i S
z̃
j (cos θi sin θj −∆ sin θi cos θj)

+ Sỹi S
ỹ
j

]
− h

∑
i

S z̃i . (3.36)

The two terms that are mixed in Sx̃ and S z̃ do then in general not cancel under the sum-
mation, leaving some contribution linear in bosonic creation and annihilation operators
signifying that there is a difference in the ground state of this model and the XXX-model.
However, if the ordering vector is (0∨π, 0∨π), i.e. the order is collinear, all sines cancel,
and one is left with a quadratic Hamiltonian:

H =
1

2

∑
i,j

Ji,j [cos(θi − θj)(∆S z̃i S z̃j + Sx̃i S
x̃
j ) + Sỹi S

ỹ
j ]− h

∑
i

S z̃i . (3.37)

From this point onward, the treatment is the same as in the xxx-case, and we of course
retrieve it in the limit ε → 0, with ∆ = 1 + ε in this case. Finally, we arrive at the same
form as equation (3.28), with:

Ak =
S

4

[1

2
[J(k −Q) + J(k + Q)] + J(k)− 2∆J(Q)

]
+
h

2
(3.38)

and

Bk =
S

4

[1

2
[J(k −Q) + J(k + Q)]− J(k)

]
. (3.39)

In the non-collinear case, the treatment becomes different as we saw that the classical
ground state was no longer the same as in the xxx-case. There was also a degeneracy
present classically which broke down at the level of spin wave theory. Ref. 24 argues that
the spin wave correction is maximal when the magnetization Mz , or equivalently Sz is
extremized. This will simply be taken as a given here.

Sz = cos θA + cos θB + cos θC = cos θA + 2 cos ε cos δ.

Substituting cos θA = x will give ∂Sz/∂x ∂x/∂θA. The second factor is − sin θA, so we
immediately see that there is an extremum at θA = 0. (There also is one at π, but as we
argued before, we only need to consider θA in the range [0, cos−1 ∆/(1 + ∆)].

There might of course also be another minimum where the remaining part is zero. Inserting
the expressions from (2.13) and (2.15) and writing in terms of x, we get:
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∂

∂x
x

(
1 + C

1

ax2 + b

)
= 0, (3.40)

where a = (1−∆2), b = ∆2 and C = 2(∆−∆2)
1−∆2 = 2∆

1+∆ , so:

0 = 1 + C
1

ax2 + b
+ x

(
C
−2ax

(ax2 + b)2

)
. (3.41)

Defining z = 1
ax2+b =⇒ x =

√
(1/Z − b)/a, we get:

1 + Cz − 2CZ2(Z−1− b) = 0

=⇒ 2bCZ2 − CZ + 1 = 0

=⇒ Z =
C ±

√
C2 + 8bC

4bC

=⇒ x =

√
4b

1±
√

1+8 bC
− b

a
. (3.42)

This will reduce nicely when inserting the expressions for a, b and C. Let us start with the
inner square root: 1 + 8∆2(1 + ∆)/2∆ = 1 + 4∆ + 4∆2 = (1 + 2∆)2. Choosing the
positive branch, we get:

cos θA =

√
4∆2

2(1+∆) −∆2

(1−∆)(1 + ∆)
=

√
2∆2 −∆2(1 + ∆))

(1−∆)(1 + ∆)2

=
∆

1 + ∆

√
2− (1−∆)

1−∆
=

∆

1 + ∆
. (3.43)

This solution is exactly at the boundary of the regime in which we considered θA, so these
two states are spin flips of each other.

An attempt at building a spin wave theory in the same fashion as previously is bound to
fail when one realizes that the expression for θi no longer is the simple Q · ri. Instead
it can be identified as 2q/

√
3 sin(Q · ri) which gives 0, q,−q on the three sublattices. It

is then clear that when doing Fourier transforms, there will not be a nice reduction to
deltafunctions giving simple expressions in the end. This case will therefore be exempt
from the remainder of the treatment here, and an alternative approach will be discussed
briefly in section 4.1.
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3.2 Entanglement Hamiltonian

Having all the Hamiltonians on the same form except for when the order is non-collinear
in the easy axis-case, we are ready to investigate the entanglement properties. To do so we
must first choose a subsystem and then try to find the reduced density operator. Since we
know that the reduced density operator is a proper density operator we can try to param-
eterize it on this form: ρA = e−HE/Tr

(
e−HE

)
. Where HE is the entanglement Hamil-

tonian. Finding its spectrum will be exactly what is needed to calculate the entropies. To
find it, we will make use of Wick’s theorem. [22] Wick’s theorem states that any correlation
function in a Gaussian theory can be expressed in terms of two-point correlators. Gaus-
sian here meaning that H is quadratic giving ρ the form of a Gaussian. Our expression
was indeed quadratic, so Wick’s theorem applies. In particular then, all correlators inside
A can also be expressed in terms of two-point correlators. Knowing this, we can infer that
ρA, being the density operator on A must be Gaussian as well, and HE quadratic. To find
its explicit form, we must simply demand that it reproduces the correct correlations inside
A. This can for a general subsystem not be done analytically, but for some particularly
nice choices, obtaining analytic expressions is possible. The subsystem chosen here is that
of a ring on the torus as seen in figure 1.1. This system is translationally invariant in the
y-direction, and we therefore expect ky to be a good quantum number. Remembering that
our sites consist of both an x- and a y-component, we can Fourier transform them in only
the y-component giving:

bx,ky =
1√
L

∑
y

e−ikyybx,y. (3.44)

The two point correlators of these operators can be found by completing the transformation
to the operators in which the original Hamiltonian is diagonal:

〈b†x,kybx,k′y 〉 =
〈 1√

L

∑
kx

eikxxb†k
1√
L

∑
k′x

e−ik
′
xxbk′

〉
=

1

L

∑
kx,k′x

eix(kx−k′x) cosh ζk cosh ζk′〈α†kαk′〉+ sinh ζk sinh ζk′〈α−kα†−k′〉

− cosh ζk sinh ζk′〈α†kα
†
−k′〉 − sinh ζk cosh ζk′〈α−kαk′〉.

(3.45)

Since we are in the ground state, what we are really looking at when evaluating expectation
values is 〈ΨGs| Ô |ΨGs〉. The ground state is identified as the state with no bosons, so
acting on it to the right with an annihilation operator or to the left with a creation operator
will kill it and give 0. Thus, only the second bracket can have a non-zero contribution.
Moreover, having the states orthonormal, the expectation value will be one when k = k′

and zero elsewhere which is precisely what a deltafunction is used to describe. We get:
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〈b†x,kybx,k′y 〉 =
1

L

∑
kx,k′x

eix(kx−k′x) sinh ζk sinh ζk′δk,k′ = δky,k′y
1

L

∑
kx

1

2
(cosh(2ζk)−1)

(3.46)

since sinh2(a) = 1/2 sinh2(a) + 1/2(cosh2(a)− 1) = 1/2(cosh(2a)− 1). Defining now
f(ky) ≡ 1

L

∑
kx
f(kx, ky), we finally obtain:

〈b†x,kybx,k′y 〉 =
1

2
δky,k′y (cosh 2ζ(ky)− 1) ≡ 1

2
δky,k′y (C(ky)− 1). (3.47)

The anomalous correlations become:

〈bx,kybx,k′y 〉 =
〈 1√

L

∑
kx

e−ikxxbk
1√
L

∑
k′x

e−ik
′
xxbk′

〉
=

1

L

∑
kx,k′x

e−ix(kx+k′x) cosh ζk cosh ζk′〈αkαk′〉+ sinh ζk sinh ζk′〈α†−kα
†
−k′〉

− cosh ζk sinh ζk′〈αkα
†
−k′〉 − sinh ζk cosh ζk′〈α†−kαk′〉.

(3.48)

Here, we will only have a contribution from the third term giving a deltafunction:

〈bx,kybx,k′y 〉 =
1

L

∑
kx,k′x

e−ix(kx+k′x) − cosh ζk sinh ζk′δk,−k′

= δky,−k′y
1

L

∑
kx

−1

2
sinh(2ζk) ≡ −1

2
S(ky) (3.49)

since ζk is even in k.

The delta-functions imply that almost all correlations are already zero. Organizing the
rest of them in a correlation matrix we can hope to diagonalize the entanglement Hamilto-
nian, since if the correlation matrix is diagonal in terms of some bosons, the entanglement
Hamiltonian is necessarily diagonal in those bosons as well. The correlation matrix is
defined as:

Mx,ky =

〈(
bx,ky
b†x,−ky

)(
b†x,ky bx,−ky

)〉
=

1

2

(
C(ky) + 1 −S(ky)
−S(ky) C(ky)− 1

)
(3.50)

To diagonalize, we try a secondary Bogoliubov transformation:
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Pky =

(
cosh ηky − sinh ηky
− sinh ηky cosh ηky

)
. (3.51)

The new correlation matrix in terms of the Bogoliubov bosons is then:

M
′

x,ky = (P †ky )−1Mx,kyP
−1
ky

=

(
〈βx,kyβ

†
x,ky
〉 〈βx,kyβx,−ky 〉

〈β†x,−kyβ
†
x,ky
〉 〈β†x,−kyβx,−ky 〉

)
. (3.52)

Having taken the factor 1/2 to the outside, the off-diagonal terms of the matrix are:

cosh ηky sinh ηky (C(ky) + 1)− cosh2 ηkyS(ky)

− sinh2 ηkyS(ky) + cosh ηky sinh ηky (C(ky)− 1)
(3.53)

The +1 in the first term and the −1 in the last term cancel, so what is left is completely
similar to equation (3.22). Then the condition that diagonalizes becomes:

tanh 2ηky =
S(ky)

C(ky)
. (3.54)

The diagonal terms are:

cosh2 ηky (C(ky)± 1) + sinh2 ηky (C(ky)∓ 1)− 2 cosh ηky sinh ηkyS(ky)

= cosh 2ηkyC(ky)− sinh 2ηkyS(ky)± 1,
(3.55)

where the upper and lower sign refers to the first and second term on the diagonal re-
spectively. This is again really similar to (3.22), so we can see that the diagonal terms
are:

√
C(ky)2 − S(ky)2 ± 1. Defining now 〈β†x,kyβx,ky 〉 ≡ λky , the correlation matrix

becomes:

(
λky + 1 0

0 λ−ky

)
, (3.56)

and since it is diagonal, we can deduce that the form of the entanglement Hamiltonian is:

HE =
∑
ky

εkyβ
†
ky
βky . (3.57)

where εky is related to λky , the mode occupation number, via the standard Bose-Einstein
statistics:

λky =
1

eεky − 1
. (3.58)

32



Let us express λky in terms of known quantities:

λky =
1

2

[√
C(ky)2 − S(ky)2 − 1

]
=

√√√√( 1

L

∑
kx

Ak

ωk

)2

−

(
1

L

∑
kx

Bk

ωk

)2

− 1

2
(3.59)

since cosh 2ζk = 2Ak/ωk and sinh 2ζk = 2Bk/ωk.

The Rényi entropy in terms of the occupation modes of He are in appendix A.4 found to
be:

Sn =
1

n− 1

∑
ky

ln
[
(1 + λky )n − λnky

]
. (3.60)

As one might notice, the entanglement Hamiltonian is on a harmonic oscillator form, but
we previously emphasized the importance of both the spin wave gap and the ToS-gap to
get the scaling properties we want to demonstrate. A pressing question is then where have
we ”hidden” our tower of states. This is exactly the point at which the staggered field h
enters the stage.

3.3 Modified Spin Wave Theory - the role of h
The one thing we have not touched on so far is the role of h, the staggered magnetization
we added previously. This was a parameter that was seemingly added completely ad hoc,
but the determination of its value will define a modified linear spin wave theory which can
be used on finite-size lattices. [25] As explained previously, the order parameter should be
zero on the finite-size lattice due to the restoration of symmetry. The order parameter we
use, the staggered magnetization, is defined as follows:

m(N,h) ≡ 1

N

∑
i

〈S z̃i 〉 =
1

N

∑
i

〈S − ni〉 = S − 1

N

∑
i

〈b†i bi〉. (3.61)

To figure out what this expectation value is, we rewrite it in terms of the bosons that
diagonalized H:

1

N

∑
i

〈b†i bi〉 =
1

N

∑
k

〈b†kbk〉

=
1

N

∑
k

〈(cosh ζkα
†
k − sinh ζkα−k)(cosh ζkαk − sinh ζkα

†
−k)〉

=
1

N

∑
k

cosh2 ζk〈α†kαk〉+ sinh2 ζk〈α−kα†−k〉

− cosh ζk sinh ζk(〈α−kαk〉+ 〈α†kα
†
−k〉).

(3.62)
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Again, only the second term can contribute leaving us with:

1

N

∑
k

cosh 2ζk
2

− 1

2
= −1

2
+

1

N

∑
k

Ak

ωk

=⇒ m(N,h) = S +
1

2
− 1

N

∑
k

Ak

ωk
.

(3.63)

This is essentially a Riemann sum with finite-size integration element ∆kx = ∆ky =
2π/L, and so in the limit L→∞, we obtain an integral. The proper thermodynamic limit
is in fact:

mAF ≡ lim
h→0

lim
N→∞

m(N,h) = S +
1

2
− 1

(2π)2

∫
k

d2k
Ak(h = 0)

ωk(h = 0)
. (3.64)

Let us analyze the dispersion a bit, and see what happens at h = 0. Due to Goldstone’s
theorem, and the spontaneous symmetry breaking that happened upon choosing a classical
ground state, we know that there should be a massless boson in the theory. In this con-
text that means a spin wave mode with zero dispersion. With the dispersion being in the
denominator, that could be a problem.

3.3.1 xxx-case
In the xxx-case, we have:

ωk = S

√[1

2
[J(k −Q) + J(k + Q)]− J(Q) +

h

S

][
J(k)− J(Q) +

h

S

]
. (3.65)

At zero field, the first bracket vanishes at k = 0, and the other at k = ±Q. This means that
we have Goldstone modes at these special vectors. If the order is collinear, then the positive
and negative Q are equivalent, and the number of Goldstone modes is two. Considering
that a rotation about the ordering axis leaves the state unchanged, while rotations about the
two other axis does not, this makes sense. When the order is not collinear, the number of
Goldstone modes is three.

An important fact about the dispersion is that it is vanishes linearly as we approach these
special vectors. Since the minima occurred at single points ±Q 6= 0, the model will
have a Taylor expansion around those points that is J(Q) plus something quadratic in the
deviation, δ. Thus, at k = ±Q+δ, the second bracket in ωk is∝ δ2 while the other bracket
isO(1) implying ω±Q+δ ∝ δ. We also know that since the model in k-space only consists
of cosines, the Taylor expansion around zero will be J(0) plus something quadratic in the
deviation. Thus, at k = 0 + δ, the first bracket is ∝ δ2 while the other one is O(1) again
implying ω0+δ ∝ δ. In the special case that Q = 0 and the order is ferromagnetic. Both
brackets become O(δ) simultaneously implying a quadratic dispersion. This is why the
Ferromagnetic case is not included in the treatment here.
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Since the dispersion vanishes linearly, the integral will converge uniformly due to the
integration element ddk ∝ k(d−1)dk leaving a finite contribution in all dimensions greater
than 1. When looking back at the finite sum, it is clear to see that the divergence is
more severe and so we get an infinite magnetization on the finite-size lattice. This is a
consequence of the spin wave theory itself and it needs to be remedied somehow. The
answer lies in h. A nonzero field will open up a gap in the dispersion that can be used to
regularize the sum. The divergent terms in the sum are: ∝ ∆dk/ωk∈G. The finite-size
integration element, ∆, in d dimensions is (2π/L)d, so in order for these terms to be finite,
we could demand that the gap introduced by h is ∼ L−d. This is exactly the form of the
ToS-gap, and is thus the reason we might get the desired result.

To add a field may seem paradoxical considering that we assumed to be at zero field at
the start, but paraphrasing Song et. al., [8] we will treat it as a variation on the zero-field
Hamiltonian.

Rewriting the dispersion at the Goldstone modes and introducing:

Υ0 =
√
J(0)− J(Q), (3.66a)

ΥQ =

√
1

2
(J(0) + J(2Q))− J(Q), (3.66b)

we get:

ω0 = S

√[
h

S

] [
Υ2

0 +
h

S

]
(3.67a)

ωQ = S

√[
Υ2

Q +
h

S

] [
h

S

]
, (3.67b)

and we can deduce that h ∼ L−2d. This is the scaling property that will give us the desired
result, but the determination of the precise relationship between h and L will define for
us the modified spin wave theory. The contributions to m(N,h) from the ”problematic”
terms are now finite, but varying the ratio of h andL−2d will give us different values form.
As stated before, we should have no magnetization on the finite-size lattice, so we choose
our h by demanding this, and solving a set of self consistent equations numerically.

We follow Ref 19 and define the sum excluding the regularized terms as:

m∗(N,h) = S +
1

2
− 1

N

∑
k/∈G

Ak

ωk
. (3.68)

Demanding m(N,h) = 0 gives:
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m∗(N,h) =
1

N

∑
k∈G

Ak

ωk
. (3.69)

This relation can be inverted to find h in terms of m∗ and N , but note that m∗ is still a
function of h, so we must iterate the equations numerically to converge to some value for
h. We have:

m∗ =
1

N

1
4Υ2

0 + h
2S√

[ hS ][Υ2
0 + h

S ]
+ (NG − 1)

1

N

1
4Υ2

Q + h
2S√

[ hS ][Υ2
Q + h

S ]
. (3.70)

In the collinear case, Υ0 = ΥQ and NG = 2, so we can get an exact expression for
h(N,m∗):

m∗ =
1

N

1
2Υ2

0 + h
S√

[ hS ][Υ2
0 + h

S ]

=⇒ (Nm∗)
2 h

S

(
Υ2

0 +
h

S

)
=

(
1

2
Υ2

0 +
h

S

)2

=⇒ h

S

2 (
(Nm∗)

2 − 1
)

+
h

S

(
(Nm∗)

2 − 1
)

Υ2
0 =

1

4
Υ4

0

+
(
(Nm∗)2 − 1

) (
1
4 Υ4

0

)︷ ︸︸ ︷
=⇒

(
(Nm∗)

2 − 1
)(h

S
+

Υ2
0

2

)2

= (Nm∗)
2 1

4
Υ4

0

=⇒
(
h

S
+

Υ2
0

2

)
=

1
2Υ2

0√
1− 1

(Nm∗)2

=⇒ h =
SΥ2

0

2

 1√
1− 1

(Nm∗)2

− 1

 . (3.71)

To illustrate why doing this is a good idea, figure 3.1 has been included. The dependence
of m on h is only strong near where the dispersion vanishes, so what we have done is
to separate m into a part that carries almost all the h-dependence and one that is almost
constant in the region around L−4. Choosing then an initial guess for h in this region, we
can use equation (3.68) to get an m∗ which we can then put into equation (3.71) to get
a new value for h. A fixed point of this iteration is obviously at exactly the h that gives
zero magnetization. Furthermore, we expect the method to converge within only a few
iterations since the value of m∗ at the initial guess is close to the value at the fixed point
when using equation (3.68). However, each iteration contains a sum over almost the whole
BZ, so the numerical cost scales quadratically with the size L
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Figure 3.1: Plot of different terms in the magnetization of an nn-model on square lattice as a function
of the numerical value of h/L−4 showing how most of the dependence on h in m stems from the
problematic terms. Note also that the magnetization crosses zero at the same point as the problematic
terms crosses the unproblematic terms.

For a general non-collinear case, we can only get an approximate expression:

m∗ =
1

N

1
4 + h

2SΥ2
0√

[ h
SΥ2

0
][1 + h

SΥ2
0
]

+ (NG − 1)
1

N

1
4 + h

2SΥ2
Q√

[ h
SΥ2

Q
][1 + h

SΥ2
Q

]
. (3.72)

Renaming h
SΥ2

0
≡ X and h

SΥ2
Q
≡ Y and expanding the square roots using these as

smallness-parameters keeping also the first correction to see the relative error, we get:
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Nm∗ =

(
1

4
+

1

2
X

)(
X−

1
2 (1 +X)

− 1
2

)
+ (NG − 1)

(
1

4
+

1

2
Y

)(
Y −

1
2 (1 + Y )

− 1
2

)
'
(

1

4
+

1

2
X

)(
X−

1
2

(
1− 1

2
X

))
+ (NG − 1)

(
1

4
+

1

2
Y

)(
Y −

1
2

(
1− 1

2
Y

))
=⇒ (Nm∗)

2 '
(

1

4
X−

1
2

(
1 +

3

2
X

)
+ (NG − 1)

1

4
Y −

1
2

(
1 +

3

2
Y

))2

' 1

16

[
X−1 + 3 + (NG − 1)

2 (
Y −1 + 3

)
+ 2 (NG − 1)

(
X−

1
2Y −

1
2

)
+ 2 (NG − 1)

3

2

(
X

1
2Y −

1
2 +X−

1
2Y

1
2

)]

=⇒ ' 1

16


(

h

SΥ2
0

− 1
2

+ (NG − 1)
h

SΥ2
Q

− 1
2

)2

+

C︷ ︸︸ ︷
6 + 3 (NG − 1)

(
Υ0

ΥQ
+

ΥQ

Υ0

)
=⇒ (Nm∗)

2

(
1 +

C

(Nm∗)
2

)
' S

16h
(Υ0 + (NG − 1) ΥQ)

2

=⇒ h ' S

16 (Nm∗)
2 (Υ0 + (NG − 1) ΥQ)

2

(
1 +

C

(Nm∗)
2

)−1

' S

16 (Nm∗)
2 (Υ0 + (NG − 1) ΥQ)

2

(
1− C

(Nm∗)
2

)
.

(3.73)

So h ∼ N−2 as expected, and the first correction ∼ N−4, which is rather small.

3.3.2 easy plane-case
In the easy plane case, the dispersion is:

ωk = S

√[1

2
[J(k −Q) + J(k + Q)]− J(Q) +

h

S

][
∆J(k)− J(Q) +

h

S

]
, (3.74)

and so at the special vectors, we can express it as:

ω0 = S

√[
h

S

] [
Υ′20 +

h

S

]
(3.75a)

ωQ = S

√[
Υ2

Q +
h

S

] [
−εJ(Q) +

h

S

]
, (3.75b)
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where Υ′0 =
√

∆J(0)− J(Q). At zero field, we see that only the zero mode vanishes
completely, while the other mode is proportional to the anisotropy parameter ε. This
naively means that there is only one Goldstone mode at 0, which in the xxz-case seems
reasonable.

Defining m∗ as the sum with the one Goldstone mode removed, the exact equation for h
is then found:

m∗ =
1

N

1
4 (∆J (0)− J (Q)) + h

2S√
[ hS ][∆J (0)− J (Q) + h

S ]
=

1

N

1
4Υ
′

0
2 + h

2S√
h
S

(
Υ
′
0

2 + h
S

)
=⇒ (Nm∗)

2 h

S

(
Υ
′

0
2 +

h

S

)
=

(
1

4
Υ
′

0
2 +

h

2S

)2

=⇒ h

S

2(
(Nm∗)

2 − 1

4

)
+
h

S

(
(Nm∗)

2 − 1

4

)(
Υ
′

0
2
)

=
1

16
Υ
′

0
4

+
(
(Nm∗)2 − 1

4

) (
1
4 Υ
′
0
2
)︷ ︸︸ ︷

=⇒

=⇒
(

(Nm∗)
2 − 1

4

)(
h

S
+

1

2
Υ
′

0
2

)2

= (Nm∗)
2 1

4
Υ
′

0
2

=⇒ h

S
+

1

2
Υ
′

0
2 =

1

2
Υ
′

0
2

 1√
1− 1

4(Nm∗)2


=⇒ h =

S

2
Υ
′

0
2

 1√
1− 1

4(Nm∗)2

− 1

 . (3.76)

However, when the limit ε → 0 is taken, we should end up in the xxx-case again. As we
can see from equation (3.74), the Goldstone modes at Q are retrieved in this limit, so at
some point we must cross over from having only one Goldstone mode to having two or
three. The smaller ε gets, the stronger the dependence of m on these ”almost” Goldstone
modes will be. We therefore try to remove the ”almost” Goldstone modes from the sum in
the definition of m∗ as well. This gives:

m∗ =
1

N

1
4Υ2

0 + h
2S −

ε
4J(0)√

[ hS ][Υ2
0 + h

S − εJ(0)]
+ (NG − 1)

1

N

1
4Υ2

Q + h
2S −

ε
4J(Q)√

[ hS − εJ(Q)][Υ2
Q + h

S ]
. (3.77)

Defining some new quantities:
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a0 =
h

S
+

1

2
(Υ2

0 − εJ(0))

b0 =
1

2
(Υ2

0 − εJ(0))

aQ =
h

S
+

1

2
(Υ2

Q − εJ(Q))

bQ =
1

2
(Υ2

Q + εJ(Q)) (3.78)

we can rewrite (3.77) as:

m∗ =
1

N

a0
2√

(a0 + b0)(a0 − b0)
+ (NG − 1)

1

N

aQ
2√

(aQ + bQ)(aQ − bQ)

=⇒ 2Nm∗ =
1√

1−
(
b0
a0

)2
+ (NG − 1)

1√
1−

(
bQ
aQ

)2
. (3.79)

To proceed, we use that:

b0
a0

=
1
2 (Υ2

0 − εJ(0))
h
S + 1

2 (Υ2
0 − εJ(0))

=
1

1 +
2h
S

Υ2
0−εJ(0)

(3.80)

bQ
aQ

=
1
2 (Υ2

Q + εJ(Q))
h
S + 1

2 (Υ2
Q − εJ(Q))

=
1

1 +
2( hS−εJ(Q))

Υ2
Q−εJ(Q)

(3.81)

and expand like a geometric series in the small quantities:

(
1−

(
1

1 + x

)2
)− 1

2

'
(

1− (1− x))
2
)− 1

2 ' (2x)−
1
2 . (3.82)

This leaves us with:

40



2Nm∗ '

(
4 hS

Υ2
0 − εJ(0))

)− 1
2

+ (NG − 1)

(
4( hS − εJ(Q)

Υ2
Q − εJ(Q))

)− 1
2

·( hS )
1
2︷ ︸︸ ︷

=⇒ 2Nm∗(
h

S
)

1
2 ' 1

2

√
Υ2

0 − εJ(0) + (NG − 1)

√
Υ2

Q − εJ(Q)
√

1 + κ

=⇒ h ' S

16(Nm∗)2

√Υ2
0 − εJ(0) + (NG − 1)

√
Υ2

Q − εJ(Q)
√

1 + κ

2

,(3.83)

where κ ≡ −SεJ(Q)/h. This quantity now also depends on h and must be iterated over
in the same fashion as m∗. It is also from this equation seen that the ”almost” Goldstone
modes become more important the smaller ε is compared to h, and in the limit ε → 0
the expression reduces nicely to the leading term of equation (3.73). The first correction
in this case would be different than in the previous case, but the magnitude of the order
would similarly have been ∼ N−4.

3.3.3 easy axis-case

Here, the dispersion is

ωk = S

√[1

2
[J(k −Q) + J(k + Q)]−∆J(Q) +

h

S

][
J(k)−∆J(Q) +

h

S

]
. (3.84)

Only considering collinear order and labeling Υ
′2
0 =

√
J(0)−∆J(Q), (recall that ∆ =

1 + ε here), we get:

ω0,Q = S

√[
Υ
′2
0 +

h

S

] [
−εJ(Q) +

h

S

]
. (3.85)

This is non-zero at both special vectors and it means that we have no broken continuous
symmetries. The only possible symmetry to break in the XXZ-model was the spin rota-
tional symmetry about the z-axis, and when all spins point along it, a rotation will not
change the state. Thus, the symmetry is unbroken.

Taking the limit ε we will again retrieve all the Goldstone modes of the xxx-case. Follow-
ing then immediately the same convention of definingm∗ as the sum excluded the possibly
problematic terms, we get the relations:
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m∗ =
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Υ2

0 = Υ
′2
0 + εJ (Q)︷ ︸︸ ︷
=⇒

h =
SΥ2

0

2

 1√
1− 1

(Nm∗)2

+ SεJ (Q) . (3.86)

This is now the same as in the xxx-case plus some finite part proportional to the anisotropy.
This is a result that will be discussed in the next section.
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Chapter 4
Results

4.1 easy axis-case
Let us first take a look at the Ising case, where we saw that h approached some finite value
rather than zero. In the collinear case, it did in fact approach the rather specific value
SεJ(Q).

As explained previously, there will only be a strong dependence on h inm if the dispersion
is close to being zero. Since both the brackets in equation (3.84) were finite in the absence
of a field, it makes sense that in order to manipulate the value of m by varying h, it will
have to take on a finite value that cancels the bracket plus something that is small. This
is however inconsistent with the assumption that h should vanish in the thermodynamic
limit, so we could have just as well added a finite staggered field from the very start. Since
h couples to Sz the same way Sz couples to them itself, there will be an exact cancellation.
The part of Ak stemming from Szi S

z
j is −S∆J(Q)/2 while the part stemming from hSzi

is now SεJ(Q)/2 + O(1/N2). Recalling that ∆ = 1 + ε, we see that the finite part
of h cancels the part coming from the anisotropy parameter ε. This leaves us with the
expression for the no field xxx-case plus something small that incidentally also was the
xxx-value for h. We have by this choice of modification to our spin wave theory effectively
forced ourselves back to the XXX-model, and thus the results of this procedure must be
said to be nonsensical. The procedure of modified spin wave theory does not work when
there are no Goldstone modes due to the dispersion not really being close to zero. This
raises further questions on the validity of the approach.

When it comes to the triangular model in the easy axis-case, the ground state was correctly
identified, but when trying to build a spin wave theory on top of it the description would
no longer fit into the framework developed here. Even though this case was not explored
for other models than the nn-model on the triangular lattice, there is reason to expect that
one would run into trouble with the Fourier transforms for any other model that would
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order non-collinearly. The way to proceed however, would be to split the sum up into
contributions from the three sublattices inserting the appropriate value of Jij and θi,j by
hand. This would in turn result in three sets of spin waves defined in a magnetic Brillouin
zone a third of the size of the original Brillouin zone such that the number of spin waves is
the same. Considering that a non-collinear state would break the spin rotation symmetry,
there should be one Goldstone mode in one of these sets. Then it is clear that these three
sets of spin waves will have their own dispersions connected with them even though they
exist on the same place in k-space.

Lastly, since there is a Goldstone mode present, the modification of the spin wave theory
may still not be inconsistent in the same way as in the collinear case. However, since the
field coupled to Sz the same way Sz coupled to itself, the converse is also true: The XXZ-
Hamiltonian in the easy plane-case can be viewed as an XXX-Hamiltonian in an effective
external field given by the anisotropy. It is then not clear that we could even demand zero
magnetization to begin with, as that only needed to be the case in no external field. One
could attempt to make the magnetization zero and relieve the need of having several sets
of spin waves by averaging over each sublattice being at each site. This however, would
imply choosing a different state on which to build the spin wave theory and the procedure
of spin wave theory is contingent upon choosing a single ground state thus breaking the
symmetry by construction.

4.2 easy plane-case

Let us now take a look at the more meaningful results. First off: In all numerical calcu-
lations the models looked at were nn-models on either the square lattice or the triangular
lattice. Having mapped the triangular lattice onto the square lattice, these models are in
k-space: 2J(cos kx + cos ky) and 2J(cos kx + cos ky + cos(kx + ky). They will have
Q = (π, π) and (2π/3, 2π/3) respectively. The values for J and S were set to 1 and 1/2.
We will also denote q ≡ qy since kx is always summed over.

Having found a way to calculate h, we are ready calculate the mode occupation numbers
which we consequently will put into equation 3.60 to get the Rényi entropy. The figures
4.1 and 4.2 show λky plotted as a function of ky for a few choices of ε. There are quite a
few things to note here. Looking first only on the graph for ε = 0, the occupation numbers
at the special vectors are large. This we could have already guessed from the fact that it is
at these vectors the dispersion is small. There is also a difference between the collinear and
the non-collinear case in that they have different height on the peaks at Q compared to the
peak at 0. This relates to the fact that for collinear order ΥQ = Υ0 while for non-collinear
order ΥQ 6= Υ0. As we will see shortly, it is the modes of large occupation that give us
the scaling of the subleading term, while the other modes being roughly constant will give
us the area law term. The slight dependence on ky around the special vectors is shown in
Ref. 1 to fit rather well with an even smaller subleading term ∝ lnlnL, but this will not
be investigate that any further here.

Let us take a look at the asymptotic form of λky :
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Figure 4.1: Mode occupation numbers of nn-model on a square lattice of size L = 60 as a function
of ky for three different values of the anisotropy parameter ε.
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Figure 4.2: Mode occupation numbers of nn-model on a triangular lattice of size L = 60 as a
function of ky for three different values of the anisotropy parameter ε.
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2
,

(4.1)

where we define Θkx,ky ≡
√

Ak−Bk

Ak+Bk

Now we can see that everything is O(1) as long as Ak − Bk and Ak + Bk do not tend
to zero. However, as we have discussed already, they will tend to zero at the Goldstone
modes. The manner in which they approach zero will thus give us the asymptotic be-
haviour of our mode occupancy.

At k = 0, we have:

Θ0 =

√
S
4 (2∆J(0)− 2J(Q)) + h

2
h
2

' Υ′0

√
S

h
, (4.2)

and at k = ±Q, we have:

Θ−1
Q =

√
S
4

(
(J(0) + J(2Q))− 2J(Q)

)
+ h

2
S
4 (−2εJ(Q)) + h

2

' ΥQ

√
1

1 + κ

√
S

h
. (4.3)

In the limit of no anisotropy, this reduces to Υ0

√
S/h and ΥQ

√
S/h.

Let us proceed by inserting our approximations for h and check how the contributions
from the Goldstone modes scales with L:

In the limit of large N , we have m∗(N,h)→ mAF. This is true since G is a set of single
points in which the integrand is finite, and so having them removed from the integral does
not change its value.

Equation 3.83 simplifies to

h =
S

16(NmAF )2
C(κ)2, (4.4)

where C(κ) ≡
√

Υ2
0 − εJ(0) + (NG − 1)

√
Υ2

Q−εJ(Q)
√

1+κ
.
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Inserting this into our expressions for λq and λ0, we get:

λ0 ∼ 1

2L

√
Θ0

∑
kx

Θ−1
kx,ky

− 1

2
'

√√√√ 1

4L
Υ′0

√
16(NmAF )2

C(κ)2
α0 −

1

2

∼

√
Υ′0LmAFα0

C(κ)
(4.5a)

λq ∼ 1

2L

√
Θ−1
q

∑
kx

Θkx,ky −
1

2
'

√√√√ 1

4L
ΥQ

1√
1 + κ

√
16(NmAF )2

C(κ)2
αq −

1

2

∼

√
ΥQLmAFαq

C(κ)
√

1 + κ
, (4.5b)

where

α0 =
1

2π

∫ π

−π
dkxΘ−1

kx,0
(4.6a)

αq =
1

2π

∫ π

−π
dkxΘkx,q. (4.6b)

In the Goldstone modes then, to leading order, we have in the argument of the logarithm
(1+λG)n−λnG ' λ

n−1
G in (3.60). Because of log-properties the exponent exactly cancels

the factor in front, and we can forget about all the factors in λ0,q except L1/2. The contri-
bution to Sn from each of these terms will now be∼ ln(L)/2, giving a universal prefactor
then bn = NG/2.

The remaining L−NG values of ky will each give some constant contribution, and since
there are ∼ L of them, these accumulate to give the area law term.

One question that remains now is what do we do with the ”almost” Goldstone modes in
equation 4.5b? We know that we should only have one Goldstone mode in the XXZ-model,
but the form of the equation suggests that there will be a contribution to the subleading
term from each of the ”almost” Goldstone modes as well. It is important then to remember
how we defined κ: κ ≡ −SεJ(Q)/h. In the thermodynamic limit where h → 0, κ will
be infinite for all nonzero values of ε, and zero at the Heisenberg point. Using λq/

√
L as

an order parameter, we then get a sharp phase transition between the XXX-model and the
XXZ-model. On the finite-size lattice, the crossover will occur over some range of ε for a
given L. It will therefore, for sufficiently small ε appear as if the system has two or three
broken symmetries even though strictly speaking, for non-zero ε, there will only be one
broken symmetry.

Let us now look a bit more at the dependence on ε in figures 4.1 and 4.2. We can see
that at the peak in the modes at Q become smaller as ε is increased almost disappearing
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Figure 4.3: Mode occupation number of the nn-model on the square lattice at ky = q as a function
of system size L and anisotropy parameter ε

totally at large enough values. This is precisely the behaviour we would have predicted
in going from two or three Goldstone modes to one. There is also a similar effect on the
zero mode, but its value increases instead. This seems a bit harder to explain, but at least it
remains a clear peak consistent with having one Goldstone mode. Another question now
is how this behaviour depends on L when it is finite. How big does the system have to be
to appreciably notice a given change in ε? To try to understand this crossover better, let us
plot only these modes as functions of L and ε. In fact, they will be plotted as a function
of ε and L−4 as it initially was in the region where ε ∼ h we expected the contribution of
the ”almost” Goldstone modes to become important when finding h. To make for easier
comparisons between different models these have also been normalized with their value at
ε = 0 for any given L.

The results of doing so is shown in figures 4.3, 4.4, 4.5 and 4.6, and the crossover is clear
as day in all of them. The first thing to note is that the plots for the different models
have many similarities again perhaps pointing to some connection at a deeper level in this
scaling phenomenon. The modes at q move away from 1 to some small value, and the way
in which they do so seems to be similar for all L, only starting at a different value of ε. In
the mode at 0, there appears to be two separate crossovers: One when moving from pure
Heisenberg to XXZ-model and one in the region around ε = 1. At ε = 1, we are really in
the XY-model, so this may be interpreted as a crossover from XY-model to XXZ-model.
The plot is on ”loglog” format, so the details of the second crossover are impossible to
make out from it. The first crossover however, appears to be linear in this representation.
A view of figure 4.5 from a different angle, as shown in figure 4.7, demonstrates the data
collapse that occurs. By the right choice of argument, the crossover could be described
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Figure 4.4: Mode occupation number of the nn-model on the triangular lattice at ky = q as a
function of system size L and anisotropy parameter ε
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Figure 4.5: Mode occupation number of the nn-model on the square lattice at ky = 0 as a function
of system size L and anisotropy parameter ε
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Figure 4.6: Mode occupation number of the nn-model on the triangular lattice at ky = 0 as a
function of system size L and anisotropy parameter ε

by a function of a single argument. Adopting the notation of equation 8.7 in Ref. 12, we
have:

λ0,q ∼ Lβf0,q(ε/L
∆), (4.7)

where β and ∆ are some critical exponents, and f denotes the scaling functions. This is
then somehow analogous to the crossover seen in ferromagnets with λ0,q taking the place
of the order parameter, and L and ε taking the places of the relevant variables, but has
never before been seen in this context.

We already saw that the limiting behaviour of the modes were to approach
√
L, so β =

1/2. Figure 4.8 shows λq/
√
L as a function of L so we can try and see how quickly it

approaches its asymptotic form. Note also that the different models approaches different
values which was why we gave them the same normalization when looking at the crossover
in the first place.

Since the crossover appeared linear in a ”loglog”-plot, finding its slope is enough to de-
termine the exponent ∆. Some arbitrary linear regressions gave the slope 1 to within 5%,
so It will be taken to be 1 from here on out. This gives ∆ = −4, and the argument of the
scaling function should then be ε/L−4. The data collapse is not perfect, so there might be
some differences in the scaling depending on the actual values of both parameters.

In figure 4.9 a comparison is made for the same values of the argument but keeping either
L or ε fixed. As we can see, they do not entirely match, but the discrepancies can be
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Figure 4.7: Mode occupation number of the nn-model on the square lattice at ky = q as a function
of system size L and anisotropy parameter ε as viewed from a different angle. The axes are a bit
unclear, but they are the same as in 4.5. The main point of this figure is to showcase the phenomenon
of data collapse.
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Figure 4.8: Plot showing how the mode occupation number approaches its asymptotic behaviour at
L→∞ as a function of L in both nn-model on the triangular- and the square- lattice.
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explained by realizing that the values of L in the constant ε curve are rather small. They
will therefore not have attained their asymptotic

√
L form yet. Another way to look at it

without being very precise is that the scaling function is only well defined when both the
denominator and the numerator in its argument are really small. Their ratio however could
still be arbitrary.

As a matter of fact, we already have the basis for finding the scaling function in equation
3.83. This is expressed in terms of κ, which relates ε to h ∼ L−4. Let us also normalize it
with its value at κ = 0, i.e. the xxx-value, since we already did that previously.

Since we really are in the asymptotic limit L � 1, it means that both h and ε will tend to
zero, but κ could still be any finite number. In the chosen normalization a lot will cancel,
and we will be left with:

f0 =

√√√√ Υ0 + (NG − 1)ΥQ(
Υ0 + (NG − 1)

ΥQ√
1+κ

) (4.8a)

fq =

√
Υ0 + (NG − 1)ΥQ(

Υ0

√
1 + κ+ (NG − 1)ΥQ

) . (4.8b)

These are the scaling functions in terms of κ. However, we want them to be in terms of
ε/L−4, and since h and L−4 are different, the x-axis needs to be modified.
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Figure 4.10: Comparison of analytic scaling function and λq in the nn-model on the square lattice
at some fixed values of L as a function of the argument ε/L−4

We have, for a given κ, the relation (4.4) between h and L, so

ε

L−4
' κ

16m2
AF (−J(Q)

(
Υ0 +

(NG − 1)ΥQ√
1 + κ

)2

(4.9)

mAF must be computed numerically, and J(Q) and ΥQ,0 are model dependent, so the
scaling function is not completely universal.

Using this we get the final results in figures 4.10, 4.11, 4.12 and 4.13. These show the
scaling function found analytically compared to the numerically calculated values of λ0,q

for some given L’s. The match is mostly good for both modes on both types of lattice. We
get closer to the analytic scaling function the larger L is and the smaller ε is. In the zero
modes for the smallest values of L where the largest values of ε occur, we can actually
see the beginnings of the second crossover. So perhaps there is some vaguely noticeable
second crossover in the modes at q as well explaining why the values do not match that
well in that region. Either way, we should only really look at scaling close to the XXX-
model.
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Figure 4.11: Comparison of analytic scaling function and λq in the nn-model on the triangular
lattice at some fixed values of L as a function of the argument ε/L−4
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Figure 4.12: Comparison of analytic scaling function and λ0 in the nn-model on the square lattice
at some fixed values of L as a function of the argument ε/L−4
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Chapter 5
Conclusion

To conclude we could say that the framework was successfully expanded to apply in the
easy plane sector of the XXZ-model, and although the only models studied numerically
here were the nearest neighbour models on triangular and square lattice, we stress that the
framework is valid for any model that has only one global minimum in J(k) and linearly
dispersing spin waves. We are thus able to explain analytically the scaling of both the
leading term and the first subleading term in the Rényi entropy, and we demonstrated that
the subleading term indeed was universal with a prefactor only dependent upon the number
of broken symmetries in the system. Furthermore, a crossover was seen when going into
the xxz-case from the xxx-case, and scaling functions determining its behaviour was found
in both the mode at 0 and at q. To my knowledge, no work has been done on scaling
functions as seen in the Rényi entropy of antiferromagnetic systems. A natural next step
here would be to place this in the context of the renormalization group, and try to make
sense of the critical exponents found in the scaling function.

In the easy axis sector, quite a few difficulties were encountered leaving more questions
than answers. First off, we saw that the types of classical order were not necessarily the
same as in the xxx-case, and thus did not immediately fit into the framework developed.
The problem of solving classically for most models still remains open, but a continuous
degeneracy not related to any obvious symmetry was observed in the nn-model on a tri-
angular lattice, and so there is hope of connecting the types of order occurring in the
XXX-model to the XXZ-model by uncovering the ”hidden” symmetry, if present. For a
model that orders collinearly, the order will be the same in both cases, but there will be
no broken continuous symmetries in the easy axis-case, and as a consequence, the method
of MLSWT broke down. The pressing question is then what would have happened if we
had not tried to modify our spin wave theory by demanding the magnetization to be zero?
There are not any problematic divergences in this case, and thus we need not introduce
h to regularize, but we would like the same theory to describe this case as the other, so
is there a way to include h as to give consistent results for all XXZ-models? As Ref. 7
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argues, the only thing needed to get the correct scaling is that the regularizing field h is
∼ L−2d, and so we could in principle choose any value of m as a requirement to modify
the theory. The only other option that appears naturally would be mAF , so what would
happen if that was chosen? However, a check of the assumption that there should be zero
magnetization on the finite lattice in the easy axis-case should be done first.

We assumed here that we were looking at antiferromagnets, but the only mathematical
requirement really was that the spin waves were linearly dispersing. This means that other
models than strictly antiferromagnetic are within range. Away from the pure Heisenberg-,
XY- and Ising-models, even the ferromagnet disperses linearly.

It would also be interesting to check for negative values of ∆. For values up until −1,
the ordering should still be the same as in the XY-model. At ∆ = −1, the interactions
in the z-direction being ferromagnetic now will mean that ferromagnetic ordering along
the z-direction will have the same energy as antiferromagnetic ordering in the xy-plane.
Decreasing ∆ further will open up a whole new range of possible classical ground states.
However, it should be possible to use this framework to explore the easy plane sector for
both positive and negative ∆.

Other directions to take following this work may be to try and expand to orders where there
are several minima in J(k). Will the order still be coplanar? Averaging over several pos-
sible ground states should not be expected to give the desired results. Is it then necessary
to choose one of the minima and discard the other? If one were to add some infinitesi-
mal interaction that would pick out one minimum over the others, we would essentially
be back in the framework we have laid out here. Another option would be to increase the
dimensionality of the lattice going to a hypercubic lattice in d dimensions. We expect that
it should be relatively straight forward for models that order collinearly, but already at the
nn-model on a 3-dimensional triangular lattice, the order is no longer coplanar. It would
also be possible to try and extend the framework to other lattices that cannot be mapped
onto the square lattice.

After all, there are many possible ways to continue developing the theory from this paper
and the thought of someone, someday picking it up is exciting
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Appendix A
Density operators, the partial trace,
and Rényi entropy

A.1 Density matrices

The definition of a density matrix in quantum statistical mechanics is ρ =
∑
i pi |ψi〉 〈ψi|,

where 〈ψi| is some normalized basis for its Hilbert space, and pi has the interpretation of
the probability of being in state 〈ψi|. If the basis states are taken to be orthonormal, ρ in
matrix form becomes diagonal, and the eigenvalues of ρ are the set of pi. ρ is therefore
positive semi-definite, and its eigenvalues sum to one. It is also Hermitian, which can be
seen from its definition. Because of this it is possible to parameterize it as e−H/ tr

(
e−H

)
where H is another Hermitian operator on the same Hilbert space. The prime example of
this being the Boltzmann distribution, where ρ = e−βH/ tr

(
e−βH

)
.

A.2 The partial trace and reduced density operators

We wish to look at the ground state, so we take the density operator to be |Ψ〉Gs 〈Ψ|Gs.
This also corresponds to the Boltzmann distribution at zero temperature if the ground state
is non-degenerate, since it means that we are in the ground state with probability 1.

A state defined on a composite Hilbert space H = HA ⊗ HB can be expressed via the
Schmidt decomposition as: |Ψ〉 =

∑
i ci |ψi〉A ⊗ |ψi〉B, where |ψi〉A,B constitute or-

thonormal bases for their respective Hilbert spaces. Then,
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ρ =
∑
i

ci |ψi〉A ⊗ |ψi〉B
∑
j

c∗j 〈ψj |B ⊗ 〈ψj |A =⇒

ρA = trB

∑
i,j

cic
∗
j |ψi〉A 〈ψj |A ⊗ |ψi〉B 〈ψj |B

 .

The trace acts only on |ψi〉B, and it will evaluate to 〈ψi|B |ψj〉B = δi,j . Thus, ρA =∑
i |ci|2 |ψi〉A 〈ψi|A, which is precisely the form we expect a density operator to have.

Furthermore, we have tr(ρ) = trA(trB(ρ)) = trA(ρA), so the eigenvalues are indeed
non-negative and sum to one.

The same could be said for ρB, and thus the total density operator can be expressed in
terms of one density operator on each subspace of the initial Hilbert space.

A.3 Reduction of Rényi entropy to von Neumann entropy
trA(ρnA) is simply the trace of region A on the density operator in A.

We also know that we can diagonalize ρ as D = UρU† where D now consists of the
eigenvalues of ρ, that is: D = diag(p1, p2, ..., pN ) Then, because of trace-properties we
have:

tr(ρ) = tr
(
U†Uρ

)
= tr

(
UρU†

)
= tr(D) =

N∑
i=1

pi

and for an exponent in the natural numbers,

tr(ρq) = tr
(
(U†Uρ)q

)
= tr


q times︷ ︸︸ ︷

(UρU†)(UρU†)...(UρU†

 = tr(Dq) =

N∑
i=1

pqi

Since the trace operation also is linear, any polynomial expansion of an operator will under
the trace be the polynomial expansion of the sum of its eigenvalues. That is:

tr

( ∞∑
q=0

aqρ
q

)
=

∞∑
q=0

aq tr(ρq) =

∞∑
q=0

aq(

N∑
i=1

pqi )

assuming the infinite sum is well behaved. This is sufficient to prove that limq→1 Sq =
SvN . We have:
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Sq =
1

1− q
ln trA(ρqA).

We can see that in the limit, both the numerator and the denominator approaches 0, so we
attempt to find the limit via L’Hôpitals rule. d/dq(1− q) = −1 and:

d

dq
ln tr(ρq) =

d

dq
ln

N∑
i=1

pqi =
1∑N
i=1 p

q
i

d

dq

N∑
i=1

pqi =

N∑
i=1

pqi ln pi∑N
i=1 p

q
i

which in the limit reduces to
∑N
i=1 pi ln pi since the denominator becomes 1, and so:

lim
q→1

Sq = −
N∑
i=1

pi ln pi = − tr(ρ ln ρ) = SvN

A.4 Expressing the Rényi entropy in terms of the mode
energies of He

Given an entanglement Hamiltonian on harmonic oscillator form He =
∑
ν εν n̂ν . With

the number operator n̂ν = β†νβν , and eigenvalues nν , the eigenvalues of ρ = e−H/Z are

(1/Z) exp

(
−
∑
ν

ενnν

)

where the set {nν} are non-negative integers. Each eigenvalue of ρ is thus labeled by one
such unique collection of boson occupation numbers, one number for each ν. The trace is
equivalent to the sum over the eigenvalues, but now the sum

∑
i over eigenvalues of ρA

becomes
∏
ν

(∑∞
nν=0

)
=
∑
nν1

∑
nν2

. . ..

∑
i

pqi =
∏
ν

( ∞∑
nν=0

)[
(1/Z) exp

(
−
∑
ν

ενnν

)]q

= Z−q
∏
ν

(∑
nν

[exp(−qεν)]
nν

)

= Z−q
∏
ν

1

1− exp(−qεν)
.

With q = 1, we see that

Z =
∏
ν

1

1− exp(−εν)
.
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Thus the Rényi entropy is

Sq =
1

1− q
ln

(
Z−q

∏
ν

1

1− exp(−qεν)

)

=
1

1− q

(
−q lnZ −

∑
ν

ln [1− exp(−qεν)]

)

=
1

1− q
∑
ν

(q ln [1− exp(−εν)]− ln [1− exp(−qεν)]) .

The relationship between the mode occupancy and the eigenvalues of such a Hamiltonian
is given by the Bose-Einstein distribution function:

〈n̂ν〉 =
1

exp(εν)− 1
.

denoting 〈n̂ν〉 ≡ λν we get

λν =
1

exp(εν)− 1
⇔ exp(εν) = 1+

1

λν
⇔ exp(−εν) = (1+

1

λν
)−1 =

λν
1 + λν

This can be used to express the Rényi entropy in terms of λν :

Sq =
1

1− q
∑
ν

(
q ln

[
1− λν

1 + λν

]
− ln

[
1−

(
λν

1 + λν

)q])
=

1

1− q
∑
ν

(
q ln

[
1

1 + λν

]
− ln

[
(1 + λν)q − λqν

(1 + λν)q

])
=

1

q − 1

∑
ν

ln [(1 + λν)q − λqν ] .
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Appendix B
Commutators

B.1 Commutators between generators of global spin ro-
tations and H

The spin operator commutation relations can succinctly be written as:

[
Sαi , S

β
j

]
= δi,ji

∑
γ

εαβγS
γ
i , (α, β, γ = x, y, z).

The generators of spin rotations are the total spin operators in each of the three directions.
Sα =

∑
i S

α
i . Let us first remind ourselves of the form of H , and then check the com-

mutator of one such operator with the terms stemming from one of the components in
H .

H =
1

2

∑
i,j

Jij [S
x
i S

x
j + Syi S

y
j + ∆Szi S

z
j ]

∑
l

Sαl ,
∑
i,j

Sβi S
β
j


Assuming i 6= j, l can only be equal to one of them at a time. The deltafunction will then
give one contribution when l = i and one when l = j that both still need to be summed
over all i, j:

∑
i,j

[
Sαi , S

β
i

]
Sβj + Sβi

[
Sαj , S

β
j

]
=
∑
i,j,γ

εαβγ(Sγi S
β
j + Sβi S

γ
j )
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The Levi-Civita symbol makes the term where α = β equal to zero. The terms coming
from the two other choices of β will come with the opposite signs of each other.

In our XXZ-Hamiltonian, the prefactor ∆ in the z-terms will make it so that the cancella-
tion between these two parts does not occur unless ∆ = 1. Thus, the XXZ-Hamiltonian
only has global spin-rotation symmetry about all axes when it is equal to the Heisenberg-
model. Otherwise, it will only have global spin-rotation symmetry about the z-axis

B.2 Commutation relations in the Holstein-Primakoff rep-
resentation

We will here show that the HP-representation of spin operators satisfy the correct commu-
tation relations. The representation for spins ordered along the z-axis is:

Szi = S − ni
S+
i =

√
2S − nibi

S−i = b†i
√

2S − ni

where

S± = Sx ± iSy

And thus we have:

[
Sz, S±

]
= [Sz, Sx]± i [Sz, Sy] = iSy ± i(−iSx) = ±S±

[
S+, S−

]
= [Sx, Sx]+i [Sy, Sx]−i [Sx, sy]+i(−i) [Sy, Sy] = i(−iSz)−i(iSz) = 2Sz

Having bosonic commutation relations on the HP-bosons:[
b, b†

]
= 1

remembering that n = b†b, we also have:

[
n, b†

]
= b† bb†︸︷︷︸

1 + b†b

−b†b†b = b†

and
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[n, b] = b†bb− bb†︸︷︷︸
1 + b†b

b = −b

Then, the commutation relations are:

[
Sz, S+

]
= (S − n)

√
(2S − n)b−

√
(2S − n)b(S − n)

bn = b+ nb︷︸︸︷
=

(S − n)
√

(2S − n)b−
(
(S − n)

√
(2S − n)b−

√
(2S − n)b

)
= S+

[
Sz, S−

]
= (S − n)b†

√
(2S − n)− b†

√
(2S − n)(S − n)

nb† = b†n+ b†︷︸︸︷
=(

b
√

(2S − n)(S − n)− b†
√

(2S − n)
)
− b
√

(2S − n)(S − n) = −S−

Where we have used that the commutator of an operator of and a polynomial expansion in
that same operator is zero, i.e. n

√
2S − n =

√
2S − nn.

lastly we have:

[
S+, S−

]
=
√

(2S − n)bb†
√

(2S − n)− b†
√

(2S − n)
√

(2S − n)b

bb† = n+ 1︷︸︸︷
=√

(2S − n)(n+ 1)
√

(2S − n)− b†(2S − n)b

nb = bn− b︷︸︸︷
=

(n+ 1)(2S − n)− n(2S − n)− (2S + n) = 2(S − n) = 2Sz

B.3 Commutation relations for Fourier transformed HP-
bosons

With Fourier transformed operators as follows:

bk =
1√
N

∑
j

bje
−ik·rj

=⇒ b†k =
1√
N

∑
j

b†je
ik·rj

We can immediately see that
[
bk, bk′

]
=
[
b†k, b

†
k′

]
= 0 as they should be.

[
bk, b

†
k′

]
=

1

N

∑
i,j

e−ik·ri+ik
′·rj

δi,j︷ ︸︸ ︷[
bi, b

†
j

]
=

1

N

∑
i

e−iri·(k−k
′
) = δk,k′
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B.4 Commutation relations of Bogoliubov bosons
Here we give a short proof that Bogoliubov bosons satisfy the correct commutation rela-
tions:

[
bk, bk′

]
=
[
b†k, b

†
k′

]
= 0[

bk, b
†
k′

]
= δk,k′

Starting from their definition:

αk = cosh ζkbk + sinh ζkb
†
−k

α†k = cosh ζkb
†
k + sinh ζkb−k

=⇒

[
αk, αk′

]
= cosh ζk cosh ζk′

[
bk, bk′

]
+ sinh ζk sinh ζk′

[
b†−k, b

†
−k′
]

+ cosh ζk sinh ζk′
[
bk, b

†
−k′
]

+ sinh ζk cosh ζk′
[
b†−k, bk′

]
= − cosh ζk sinh ζk′δk,−k′ + sinh ζk cosh ζk′δ−k,k′ = 0

Since ζk is even in k.

[
α†k, α

†
k′

]
= cosh ζk cosh ζk′

[
b†k, b

†
k′

]
+ sinh ζk sinh ζk′

[
b−k, b−k′

]
+ cosh ζk sinh ζk′

[
b†k, b−k′

]
+ sinh ζk cosh ζk′

[
b−k, b

†
k′

]
= + cosh ζk sinh ζk′δk,−k′ − sinh ζk cosh ζk′δ−k,k′ = 0

and lastly:

[
α†k, αk′

]
= cosh ζk cosh ζk′

[
b†k, bk′

]
+ sinh ζk sinh ζk′

[
b−k, b

†
−k′
]

+ cosh ζk sinh ζk′
[
b†k, b

†
−k′
]

+ sinh ζk cosh ζk′
[
b−k, bk′

]
= cosh ζk cosh ζk′δk,k′ − sinh ζk sinh ζk′δ−k,−k′ = (cosh2 ζk − sinh2 ζk)δk,k′ = δk,k′
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