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Abstract

This Master’s thesis deals with the study of the two-component, synthetically spin-orbit coupled,
weakly interacting Bose gas at ultra cold temperatures on a Bravais lattice. By way of mean-field
theory and the Bose-Hubbard model, the excitation spectrum of the emerging quasiparticles in
reciprocal space is obtained, valid in the superfluid phase. The excitation spectrum is then used
to create a phase diagram, which is compared with the phase diagram for a pure condensate.
Furthermore, the possibility of a superfluid critical velocity is investigated, and expressions for
the chemical potentials and condensate densities are numerically analyzed.



2

Sammendrag

Denne masteroppgaven omhandler studiet av en to-komponent, syntetisk spin-bane koblet, svakt
vekselvirkende Bose gass ved ultra kalde temperaturer bundet til et Bravais gitter. Gjennom
en middelfeltstilnærming og Bose-Hubbard modellen vil eksitasjonsspektra til kvasipartiklene
i det resiproke rom gis, gyldig for superfluid fasen. Disse eksitasjonsspektrene blir brukt til å
generere et fasediagram som inkluderer eksitasjoner, og vil sammenliknes med fasediagrammet
for et rent kondensat. I tillegg vil mulighetene for en superfluid kritisk hastighet studert, og
uttrykkene for de kjemiske potensialene og kondensat-tetthetene analysert numerisk.
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Chapter 1
Introduction

The first theory of a Bose-Einstein condensate dates back to more than 80 years ago, when
Einstein considered a gas of non-interacting, massive bosons. He found that below a certain
temperature Tc, a non-zero fraction of the bosons resided in the single-particle ground state
of the system [15],[16]1. Later, in 1938 Fritz London proposed the connection between the
superfluid phase of liquid 4He, discovered experimentally in [1] and [34], and Bose-Einstein
condensation [41], [42].

Bose-Einstein condensation (BEC) in dilute gases was first experimentally realized in 1995,
sparking an interest in the study of ultra-cold quantum gases [44]. The first experiments used
vapor of rubidium [3], sodium [12], and lithium [9]. In the first experiment, rubidium-87 atoms
was confined by magnetic traps and cooled evaporatively. The vapor had to be cooled to the
ultra-cold temperature of 170 nanokelvin before Bose-Einstein condensation could occur, with a
number density of 2.5×1012 per cubic centimeter and could exist for more than 15 seconds. They
observed a narrow peak in the thermal velocity distribution around zero, and as they lowered the
temperature of the sample, the fraction of atoms in the vecinity of this peak increased abruptly.
Bosons have integer spin [23]. The wave function for a system with identical bosons is symmetric
under the interchange of spin and coordinates of any two particles [17]. Because of this, unlike
fermions which have half-integer spin, bosons are able to occupy the same single-particle state.
A way of estimating the transition temperature for Bose-Einstein condensation to occur, is to
compare the mean particle spacing which is of order n−1/3, where n is the average particle
density, to the thermal deBroglie wavelength λT which is defined by [44]:

λT =
√

2π
mkT

~ (1.1)

One way to invision the thermal deBroglie wavelength is the “extent” of the wavefunction for
each particle. In the classical regime, where the temprature T is large, the thermal deBroglie
wavelength is small and not comparable to the mean particle spacing. Hence, there is negligible

1Einstein followed the work of Bose regarding the statistics of photons [8], for which the total number of
photons is not a fixed quantity. Bose sent his work to Einstein, for which Einstein recoqnized the importance
and translated and submitted it for publication. Consequently, Einstein included the case of massive bosons.

15



16 Chapter 1. Introduction

Figure 1.1: The velocity-distribution for a gas of rubidium atoms for the experiment in 1995,
confirming the first Bose-Einstein condensate. In these three images in time, atoms cooled to
ultra cold temperatures condensed from less dense areas on the left (red, yellow, and green) to
very dense areas at the mid and right image (blue and white). Image credit: NIST/JILA/CU-
Boulder.

overlap between the wavefunctions. For an ideal gas, Bose-Einstein condensation occurs when
the deBroglie wavelength is comparable to the mean particle spacing [14]. Thus, one can in this
limit invision the wavefunctions overlapping to form a coherent wavefunction, experiencing long
rage correlations.

The dilute quantum gas is different from the classical gas, liquid or solid, which will be
illustrated in the following. The typical condensate density in a Bose-Einstein condensed quan-
tum gas is around 1013 cm−3 to 1015 cm−3. In everyday surroundings however, the density of
air molecules at room temperature and atmospheric pressure is around 1019 cm−3. In liquids
and solid the density is around 1022 cm−3, while in atoms the density of the nuclei is as at a
staggering 1038 cm−3. We are therefore dealing with low-density systems. To observe quantum
phenomena in such low-density systems, the temperature of the system must be very low, in
order of 10−5 K or less. In contrast, for quantum phenomena to be observed for electrons in
metals the temperature has to be less than the Fermi temperature, which is around 104 K to
105 K, and for helium liquids the temperature must be around 1 K.

The experiments in 1995, yielding the first BECs, exploited a technique devised in the mid
1970s for cooling alkali metal atoms using lasers. The laser-cooling had to be supported by
an evaporative cooling stage, since the laser alone did not produce high enough densities and
sufficiently low temperatures to create a Bose-Einstein condensate. The evaporative cooling
stage then removed atoms with energies above a certain threshold, in effect cooling the less
energetic atoms.

One can further confine the atoms in an optical lattice. A standing-wave laser [40] sets up a
periodic potential in space, due to the fact that the electric field E is periodic in space. Thus by
superimposing many lasers in one, two or three dimensions one can effectively trap the atoms in
the emerging lattice. This is the physical idea behind optical lattices. The suggestion that light
can be used to confine the motion of atoms is due to Letekhov [52] in 1968. As the features of
the lattice is controlled externally, they offer unique tunability in modelling crystalline lattices.
Lattice constants such as, potential wells and barrier walls strengths, hopping parameters etc.
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may be controlled by adjusting the e.g. laser intensity [40]. Therefore optical lattices with
cold atoms have often been used as a ‘testing ground’ for theories studying strongly correlated
condensed-matter systems. As an example, we may study the Bose-Hubbard model which is the
goal of this thesis.

Studying quantum gases allows us to explore quantum phenomena in great detail. In a BEC,
all the atoms are essentially in the same ground state, and we may use mean-field theory to
describe the system. Even though the gases are dilute, interactions play an important role as a
consequence of the low temperature, causing overlap of atomic wavefunctions.

1.1 Spin-Orbit Coupling
Spin-Orbit Coupling (SOC) is a relativistic effect coupling the momentum of a particle to its
quantum mechanical spin [27]. A particles spin is quantized, taking the values of ±~/2, com-
monly referred to as spin up or spin down. The spin degree of freedom has no classical counter-
part, making it an important feature for a wide variety of quantum materials such as quantum
magnets [5] and topological insulators [25]. This thesis will focus on ultracold atoms with
synthetic SOC.

SOC requires symmetry breaking, since the coupling strength is related to the momentum as
measured in a referance frame [20]. SOC thus originates from relativistic quantum mechanics,
where the spin of the electrons are an essential ingredient in the equations of motion, which
are given by the Dirac equation [24]. Taking the non-relativistic limit of the Dirac equation
yields the Schrödinger equation, with relativistic corrections. One of these corrections couples
the particles orbital angular momentum L to the quantum mechanical spin S via the term
L · S. This can be understood in terms of the usual −µ ·B Zeeman interaction, coupling the
particles magnetic moment µ parallel to the spin S to the effective magnetic field B present
in the referance frame of the electron. SOC is most familiar in atomic physics, where it gives
rise to a fine-structure splitting in the energy levels of hydrogen [39], acquiring its name: an
electrons spin coupled to its orbital angular momentum about the nucleus. The electric field of
the charged nucleus gives rise to an effective magnetic field in the referance frame of the electron,
leading to a momentum-dependent Zeeman interaction.

This momentum dependence is particularly clear in materials. For example, Maxwells equa-
tions says that a static electric field E = E0ẑ in the laboratory frame (x, y, z) gives rise to a
spin-orbit magnetic field

BSO = E0~
mc2

× (kxŷ − kyx̂) (1.2)

present in the referance frame for particles moving with momentum ~k. The resulting Zeeman
interaction is on the form −µ ·B ≈ σxky − σykx, which is known as Rashba SOC [11], the type
we will study in this thesis.2 SOC effects are found everywhere in solids, and have been known
to exist for a long time. The ongoing research and rapid development of spintronics [30], have
advanced the study of these systems. This interest was motivated by a number of proposals for
spintronic devices. SOC systems does not only have practical implications, but also displays
many new and strange quantum mechanical fenomena, for exemple: spin-Hall effects [46],[35],
topological insulators [25], and Majorana [45] and Weyl fermions [10].

2Here, σx and σy are the Pauli matrices. There also exist other types of SOC. See for example Dresselhaus
SOC.
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1.1.1 Synthetic Spin-Orbit Coupling

In an ordinary material, the intrinsic electric field generates an effective magnetic field in the
referance frame of a moving electron, causing SOC. However, to get a significant SOC, this field
must be extremly large. This makes it impractical for the laboratory, and one must turn to other
methods. This is where synthetic SOC comes into play, using two-photon Raman transitions.
The effect of Raman scattering was studied extensively by George Stokes prior to quantum
mechanics, and observed experimentally by Sir Chandrasekhar Vankata Raman in 1928. An
excited atom may not always return to its initial state after the emission of a photon; it may
return to a higher or lower energy state [38],[26]. Raman scattering occurs when the scattering
of incident light is inelastic, as opposed to Rayleigh scattering which is elastic. We consider a
cold gas of atoms with two hyperfine states |↓〉 and |↑〉 with an energy difference of ~w0, and
also an excited state |e〉. Two laserbeams with momentum ~k1 and ~k2, with frequencies w1
and w2, are directed at the gas. The first beam is polarized such that it couples to the first state
|↓〉 and the excited state |e〉, and the second beam is polarized such that it couples to the second
state |↑〉 and the excited state |e〉. Both beams have a detuning ∆ from the excited state |e〉,
to supress transitions to this state. Instead, the beams scatter inelastically to an intermediary
state, causing Raman transitions between the two states |↑〉 and |↓〉. This transition is made
momentum dependent by a small detuning δ = (w1−w2)−w0 from w2 and |↑〉. The momentum
dependence of this detuning is caused by the Doppler effect; the frequencies of the incoming light
are shifted in the rest frame of the atoms. In addition, the momentum dependence is furthered
by the momentum transfer imparted by the photons in the collision. Hence, this experimental
setup can simulate a momentum-dependent transition between two states, exactly as real spin-
orbit coupling, where the states are spin states. See fig. 1.2 for a sketch of the process. We

Figure 1.2: A schematic for the two-photon raman transitions.

will refer to the two hyperfine states as pseudo-spin up for |↑〉 and pseudo-spin down for |↓〉.
Consequently, introducing spin-orbit coupling forces us to include two states in the description
of the system.
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1.2 Goal and Outline of Thesis
The work in this thesis is a continuation of the master’s thesis by A.T.G Janssønn [32]. We
will study the two-component, synthetically spin-orbit coupled, weakly interacting Bose gas on
a Bravais lattice in great detail, utilizing diagonalization procedures and numerical methods. In
Janssønns thesis, only the case of a pure condensate was considered, neglecting influence from
excitations of the condensate. We will in this thesis also include excitations, and derive the
excitation spectra for the emerging quasiparticles of the system. We will also construct a phase
diagram for the emerging phases when going to momentum space, reproducing the case of a
pure condensate which agrees with the literature, especially [21], and additionally including the
case of excitations. In addition, as the Bose gas is weakly interacting, we will employ mean-field
theory, and deduce expressions for the chemical potentials of the two pseudo-spin components,
and the associated condensate densities. We will also investigate the possibility of a superfluid,
which is revealed when studying the excitation spectra in the vicinity of a global minimum.

The thesis is structured as follows. Chapter 2 outlines the theoretical background for the
work required, and also presents the Bose-Hubbard model in both position and momentum
space, including the off-diagonal terms originating from spin-orbit coupling. In chapter 3 we
treat firstly the spin-orbit coupled Bose gas without interactions, then the one-component weakly
interacting Bose gas and finally the combined two-component, synthetically spin-orbit coupled,
weakly interacting, Bose gas on a square lattice, which was the main focus of Janssønns master’s
thesis. In the same chapter, an effective method for diagonalizing bilinear Bose systems is
presented, and a method for calculating the free energy, and numerically minimize its parameters,
is outlined. Furthermore, we will review the case of a pure condensate, and give configurations for
the momentum phases introduced by mean-field theory, namely, the PZ, NZ, PW, SW and LW
phases. In chapters 4-8, we will treat each momentum phase in detail, diagoalizing the associated
Hamiltonian and calculate the corresponding excitation spectrum. The accompanying chemical
potentials and condensate densities will be explored, and the possibility of a superfluid is also
studyied. In chapter 7, a phase diagram including excitations is provided. Lastly, we will discuss
results and suggest future work. In the appendix, various formulas are provided, and a method
for dealing with linear excitation operators is outlined3.

3The term linear excitation operator will be explained later in the thesis.
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Chapter 2
Theoretical framework

2.1 Notations and Conventions

The following list gives the notations and conventions used in this thesis

• Vectors are written in bold e.g k. There will be exceptions to this, and it will be made
clear when this is so.

• Lattice sites and condensate momenta are labeled by Latin lower indices such as i and j.
Pseudo-spin states are labeled by greek letters such as α and β. Exceptions to this rule
will be clear from the context.

• The Pauli spin matrices are σi, i ∈ (x, y, z). With the convential definition

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(2.1)

When labeled σαβi , where α and β are pseudo-spin indices, the elements of the Pauli
matrices are

σi =
(
σ↑↑i σ↑↓i
σ↓↑i σ↓↓i

)
(2.2)

2.2 Bose-Einstein condensation

We consider a gas of non-interacting bosons with Hamiltonian given as a sum over single-particle
states

H =
∑
ν

Hν (2.3)

21
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where ν is a set of quantum numbers specifying the state of the system. Let εν be the energy
of the single-particle state ν1, and let nν be the occupation number for the same state. The
grand-canonical partition function G is given by [2]

G = Πν

(
1− e(εν−µ)/kT

)−1
(2.4)

where k is Boltzmann’s constant, T is the temperature of the system and µ is the chemical
potential, associated with controlling the average number of particles in the system. Further,
the average number of particles is given by

〈N〉 = kT
∂

∂µ
lnG

=
∑
ν

1
e(εν−µ)/kT − 1

(2.5)

such that the mean number of particles for state ν is given by the Bose distribution function

〈nν〉 = f0(εν) = 1
e(εν−µ)/kT − 1

(2.6)

We see that for f0 to be positive, the chemical potential must be less than the ground state
energy of the system, which we denote by ε0. For a free particle in a box with volume V ,
the ground state has energy 0 such that µ < 0 for all T . At high temperatures, we expect
physically that the mean occupation number for state ν is much less than one. This means that,
on average, we expect to find bosons spread out in the energy spectrum. To achive this we must
have e(εν−µ)/kT − 1 � 1, and the distribution function in eq. (2.6) is approximately given by
the Boltzmann distribution,

f0(εν) ≈ e−(εν−µ)/kT (2.7)

The fact that we get the Boltzmann distribution makes physical sense, as we in the high tem-
perature limit expect quantum effects to become negligible. Hence this limit is often reffered to
as the classical limit. However, we see that when T is large, µ must be chosen appropriately to
achieve this. Specifically, we must have µ� ε0 − kT in this limit. Lets for a second imagine a
gas of bosons at a high temperature. The deBroglie wavelength is tiny, such that the bosons are
basically point particles. As the temperature decreases, the chemical potential rises from below
and the mean occupation number for state ν increases. The chemical potential cannot exceed
the value ε0, as f0 in this case is negative, which is unphysical. The mean occupation number
for state ν therefore has a upper limit at the value

1
e(εν−ε0)/kT − 1

(2.8)

This expression blows up if εν → ε0. If the total number of particles in the excited states is
less than N , the rest of the particles must reside in the ground state of the system, where the
occupation number can be arbitrarily large. Thus the system has a Bose-Einstein condensate.

1The above Hamiltonian can include a trapping potential. This makes no difference for the distribution
function in (2.6), where εν is the energy spectrum with the trapping potential - i.e the energies in a harmonic
oscillator. See [44], chapter 2, for details.
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The number of particles N0 in the BEC is the total number of particles N minus the number
of particles in the excited states Nex. The possibly finite temperature at which all the particles
can be accomodated in the excitated states is referred to as the critical temperature Tc. Below
the critical temperature, a large fraction of the total number of particles are found in the ground
state of the system.

2.3 Second quantization
In this thesis we will use the “second quantization” formalism to describe a many-particle system,
rather than the familiar first quantization [17]. This means that instead of using many-particle
wave-functions Ψ(x1, x2...xn), we use the occupation number representation. In this representa-
tion, the essential information lies in the occupation number nν for single-particle state ν and
the symmetry/anti-symmetry after the exchange of two particles. Bosons are symmetric under
exchange of two particles, and the occupation number for state ν can as a consequence take any
value nν = 0, 1...,∞, as apposed to fermions which have nν = 0, 1. We write a state containing
n1 particles in state 1, n2 particles in state 2 and so forth, as

|n〉 = |n1n2 . . . nm〉 (2.9)

The total number of states is m. The bosonic creation and annihilation operators b†ν and bν
respectively creates and destroys a particle in state ν, and are defined as

b†ν |. . . nν . . .〉 =
√
nν + 1 |. . . nν + 1 . . .〉 (2.10)

bν |. . . nν . . .〉 =
√
nν |. . . nν − 1 . . .〉 (2.11)

The symmetry of the state under particle exchange is encoded in the commutation relations for
the creation and annihilation operators

[bµ, bν ] = 0 (2.12)
[b†µ, b†ν ] = 0 (2.13)
[bµ, b†ν ] = δµν (2.14)

The indices µ and ν are sets of quantum numbers. The single particle state ν can for example
be ν = (k, α), where k is a wavevector, and α is a spin component. The recipe for going from
first quantization operators, to second quantization opeartors are as follows

Ĥ0 =
N∑
i=1

ĥ(xi)→
∑
µν

〈µ| ĥ |ν〉 b†µbν (2.15)

ĤI = 1
2
∑
i 6=j

v̂(xi, xj)→
1
2
∑
µνλρ

〈µν| v̂ |λρ〉 b†νb†µbλbρ (2.16)

The coefficients in the sums are defined as

〈µ| ĥ |ν〉 =
∫
φ∗µ(x)ĥ(x)φν(x)dx (2.17)

〈µν| v̂ |λρ〉 =
∫∫

φ∗µ(x)φ∗ν(x′)v̂(x, x′)φλ(x′)φρ(x)dxdx′ (2.18)
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The wavefunctions φα(x) = 〈x|α〉 is the projection from state |α〉 on |x〉. Here H0 and HI are
respectively single and two particle operators. We will also encounter the so called field operators
ψ̂†(x) and ψ̂(x), which are creation and annihilation operators in the space |x〉, where x = (r, σ)
is the set of quantum numbers containing position r and spin component σ. These create or
destroy a particle at position r with spin orientation σ. They also satisfy bosonic commutation
relations

[ψ̂(x), ψ̂(x′)] = [ψ̂†(x), ψ̂†(x′)] = 0 (2.19)
[ψ̂(x), ψ̂†(x′)] = δ(x− x′) (2.20)

The quantum numbers x and x′ are continuous variables, in which the delta function becomes
a continuous function of x and x′. The field operators can further be expanded in another basis
{|ν〉} as

ψ̂†(x) =
∑
ν

〈x|ν〉 b†ν =
∑
ν

φν(x)∗b†ν (2.21)

ψ̂(x) =
∑
ν

〈ν|x〉 bν =
∑
ν

φν(x)bν (2.22)

2.4 The Bose-Hubbard model
The system of interest is an ultra-cold, two-component, weakly interacting Bose gas residing on
an optical Bravais lattice with synthetic SOC. The Bravais-lattice is assumed to have n primitive
lattice vectors vi. We for the moment forget spin-orbit coupling, and present the Hamiltonian
for a two-component gas of bosons including single- and two-particle operators. This means
physically that we only include two-body scattering, neglecting higher order interactions. Hence
we are implicitly assuming that the occupation number for each site is not too large, as this
would necissarily require higher orders of interactions. Thus the gas must be dilute, which
means that the average distance n−1/3 must be much larger than the average scattering length
as, where n is the particle density. Also, it would be an advantage if we could only consider
s-wave scattering, requiring that the momentums of the particles are small. Thus this system
could be a dilute gas of neutral bosonic atoms, confined to an optical lattice, cooled way below
the temperature for which Bose-Einstein condensation occurs.

Without SOC, the Hamiltonian for a collection of bosons with two-components α ∈ (↑, ↓),
subject to two-body scattering is given by

H =
∑
α

∫
ψ̂α†(r)ĥα(r)ψ̂α(r)dr (2.23)

+ 1
2
∑
αβ

∫∫
ψ̂α†(r)ψ̂β†(r′)vαβ(|r − r′|)ψ̂β(r′)ψ̂α(r)drdr′ (2.24)

where vαβ is spherically symmetric potential that is assumed to be symmetric under permutation
of particle species, that is vαβ = vβα. Here, ψ̂† and ψ̂ are field operators; ψ̂α†(r) creates a boson
at position r with pseudo-spin α ∈ (↑, ↓), and ψ̂β(r′) destroys a boson at position r′ with pseudo-
spin β ∈ (↑, ↓). Notice that the above Hamiltonian is the second quantization representation
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of a single particle operator plus a two-particle operator. The single particle operator ĥα(r) is
given by

ĥα(r) = − ∇
2

2mα
− µα + V (r) (2.25)

wheremα is the mass of a boson with pseudo-spin α, µα is a species-dependent chemical potential
and V (r) is a Bravais potential, which in this case is generated by the optical lattice [40]. The
Bravais potential can be assumed to have the generic form2

V (r) = Vx sin2(kxx) + Vy sin2(kyy) + Vz sin2(kzz) (2.26)

where the vectors Ri = (xi, yi, zi) are vectors to a specific lattice site i. The direction j for the
wave-vectors kj is related to the wavelength of laser in the j’th direction by kj = 2π/λj with
j ∈ (x, y, z). We assume that the bosons spends most of their time in the depths located at
each lattice site i, with occational tunneling from site to site, such that we may expand the field
operators in the lowest-lying Wannier function basis. In the harmonic approximation [31], [22],
one assumes that the bosons have a small probability of being localized far from its site i and also
that the higher-energy wavefunctions for each site can be neglected. With this approximation
the exact Wannier functions can be replaced by their harmonic-oscillator approximations, giving

wα(r −Ri) = wα(x− xi)wα(y − yi)wα(z − zi) (2.27)

and the Wannier function wα(x− xi) is given by

wα(x− xi) =
(mαωx,α

π

)1/4
e−mα(x−xi)2/2 (2.28)

ωx,α =
√

2Vxk2
x

mα
(2.29)

with similar expressions for wα(y − yi) and wα(z − zi). Notice that the expressions for the
Wannier functions makes physical sense; at each lattice i the bosons are most probably found
at that site and the probability of being far away decays exponentially. We next expand the
field operators in Wannier functions, attaching to each site i a bosonic creation or annihilation
operator

ψ̂α†(r) =
∑
i

wα∗(r −Ri)bα†i (2.30)

ψ̂(r) =
∑
i

wα(r −Ri)bαi (2.31)

Inserting the expressions for the field operators into the single-particle Hamiltonian gives

H0 = −
∑
i6=j

∑
α

tij
αbα†i b

α
j −

∑
i

∑
α

µαi b
α†
i b

α
i (2.32)

2One could also include a Harmonic potential at each site, which leads to a shift in the frequencies wx,α. See
[40] for details.
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where we have defined

tαij = −
∫
wα∗(r −Ri)ĥα(r)wα(r −Rj)dr (2.33)

µαi = −
∫
wα∗(r −Ri)ĥα(r)wα(r −Ri)dr (2.34)

= −
∫
wα∗(r)ĥα(r)wα(r)dr ≡ µα (2.35)

The number µα is the new effective chemical potential, which is in general different from the
chemical potential introduced in the single particle operator ĥα(r). Notice that µα is indepen-
dent of lattice index i, since ĥα(r +Ri) = ĥα(r). The two-body Hamiltonian becomes

Hint = 1
2
∑
αβ

∑
ijlm

Uαβijlmb
α†
i b

β†

j b
β
l b
α
m (2.36)

with the scattering coefficient U given by

Uαβijlm =
∫
wα∗(r −Ri)wβ∗(r′ −Rj)vαβ(|r − r′|)wβ(r′ −Rl)wα(r −Rm)drdr′ (2.37)

With these definitions, the Hamiltonian is given by

H = −
∑
α

∑
i 6=j

tαijb
α†
i b

α
j −

∑
α

µα
∑
i

bα†i b
α
i (2.38)

+ 1
2
∑
αβ

∑
ijlm

Uαβijlmb
α†
i b

β†

j b
β
l b
α
m (2.39)

The first term gives origin to hopping between lattice sites i 6= j with pseudo-spin α, where
tαij is the energy cost of switching lattice sites and remain the same pseudo-spin. The second
term gives the energy cost of having a total of nα =

∑
i b
α†
i b

α
i particles of pseudo-spin α in the

system. The effective chemical potential µα gives that energy, and can therefore be thought of
as the self-energy for particles of species α. The last term is an interaction term between four
lattice sites i, j, l and m.

We will now make two significant physical assumptions. We will assume nearest neighbour
hopping and on-site interactions. This means that an atom on site i can only jump to its nearest
neighbours, and only interact with other atoms on the same site. This requires deepening the
lattice depths such that the overlap of non-neighbouring Wannier functions are negligable, which
is known as the thight-binding limit. This implies that the two-body scattering potential vαβ
takes the form of a point-like interaction

vαβ(|r − r′|) = γαβδ(r − r′) (2.40)

where the coefficient γαβ is given by [40]

γαβ = γβα = 2π(mα +mβ)aαβ

mαmβ
(2.41)
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Hence the particles are subjected to an on-site two-body scattering potenial dependent on the
respective masses of the species, and the intra and inter scattering lengths aαβ . This gives the
much simpler Hamiltonian

H = −
∑
α

∑
〈i,j〉

tαijb
α†
i b

α
j −

∑
α

µα
∑
i

bα†i b
α
i (2.42)

+ 1
2
∑
αβ

∑
i

Uαβiiiib
α†
i b

β†

i b
β
i b
α
i (2.43)

We sum over 〈i, j〉 nearest neighbour couples, and replace the sum over ijlm by i after the
assumption of on-site interactions. The four-body interaction potential Uαβiiii becomes:

Uαβiiii = γαβ
∫
wα∗(r −Ri)wβ∗(r −Ri)wβ(r −Ri)wα(r −Ri)dr (2.44)

= γαβ
∫
wα∗(r)wβ∗(r)wβ(r)wα(r)dr (2.45)

= γαβ
∫
|wα(r)|2|wβ(r)|2r ≡ Uαβ = Uβα > 0 (2.46)

Consequently, the on-site interaction strength is repulsive and independent of lattice site i. We
will also assume that the hopping parameters tαij are real and independent of lattice sites (i, j).
With these assumptions, the final Hamiltonian with two-body scattering becomes

H = −
∑
α

tα
∑
〈i,j〉

bα†i b
α
j −

∑
α

µα
∑
i

bα†i b
α
i (2.47)

+ 1
2
∑
αβ

Uαβ
∑
i

bα†i b
β†

i b
β
i b
α
i (2.48)

This Hamiltonian is the version of the Bose-Hubbard model [29] that we will use in this thesis.
We assume that the sign of tα is positive, such that hopping is energetically favorable. The sign
of Uαβ is positive, such that interactions are not energetically favorable. The sign of µα is yet
ambigous, and it will be revealed later that the effective chemical potential only needs to be
bounded from below.

2.4.1 Fourier transform
We next assume periodic boundary conditions, which means that bi+Ns = bi where Ns is the
number of lattice sites. We also define the set of displacement vectors to the nearest neigbour
pair 〈i, j〉 as

δ〈i,j〉 = {±a1,±a2 . . .± am} (2.49)

where the ai’s are of equal lengths. We next expand the creation and annihilation bα†i and bαi
in momentum space operators {Aαk}, in the following manner [19]

bα†i = 1√
Ns

∑
k

e−ik·RiAα†k (2.50)

bαi = 1√
Ns

∑
k

eik·RiAαk (2.51)
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with the particularly simple inverse relation

Aα†k = 1√
Ns

∑
i

eik·Ribα†i (2.52)

Aαk = 1√
Ns

∑
i

e−ik·Ribαi (2.53)

The Fourier transformed operators Ak are bosonic, as seen by

[Aαk , A
β†
k′ ] = 1

Ns

∑
i,j

ei(k
′·rj−k·ri)[bαi , b

β†
j ] (2.54)

= δαβ

Ns

∑
i,j

ei(k
′·rj−k·ri)δij (2.55)

= δαβ
1
Ns

∑
i

ei(k
′−k)·ri (2.56)

= δαβδkk′ (2.57)

with the relations [Aαk , A
β
k′ ] = [Aα†k , A

β†
k′ ] = 0 proved similarly. The sum over 〈i, j〉 may be

simplified by utilizing the vectors in δ〈i,j〉, where we write
∑
〈i,j〉 =

∑
i

∑
δ, for δ ∈ δ〈i,j〉. The

nearest neighbour lattice vectors for site i is given by Rj = Ri + δ. We insert the expressions
for bαi and bα†i into the Bose-Hubbard Hamiltonian in eq. (2.48), giving the hopping term

−
∑
α

tα
∑
〈i,j〉

bα†i b
α
i = −

∑
α

tα
∑
kk′

∑
〈i,j〉

1
Ns

ei(k
′·Rj−k·Ri)

Aα†k A
α
k′ (2.58)

= −
∑
α

tα
∑
kk′

∑
i

∑
δ

eik
′·δ 1
Ns

ei(k
′−k)·RiAα†k A

α
k′ (2.59)

= −
∑
α

tα
∑
kk′

∑
δ

eik
′·δδkk′A

α†
k A

α
k′ (2.60)

= −
∑
α

tα
∑
k

∑
δ

eik·δAα†k A
α
k (2.61)

= −
∑
k

∑
α

εαkA
α†
k A

α
k (2.62)

where we have used the important relation∑
i

1
Ns

ei(k
′−k)·Ri = δk,k′ (2.63)

and defined the single-particle energies in k-space

εαk = tα
∑
δ

eik·δ (2.64)
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By a similar analysis, the chemical potential term contributes,

−
∑
α

µα
∑
i

bα†i b
α
i = −

∑
k

∑
α

µαAα†k A
α
k (2.65)

and the interaction term becomes:
1
2
∑
αβ

Uαβ
∑
i

bα†i b
β†

i b
β
i b
α
i = 1

2Ns

∑
αβ

Uαβ
∑
kk′pp′

∑
i

1
Ns

eiRi·(p+p′−(k+k′)) (2.66)

×Aα†k A
β†

k′A
β
pA

α
p′ (2.67)

where the sum over i gives conservation of momentum, leading to

Hint = 1
2Ns

∑
αβ

∑
kk′pp′

UαβAα†k A
β†

k′A
β
pA

α
p′δk+k′,p+p′ (2.68)

Finally, we have the Hamiltonian in momentum space

H = −
∑
k

∑
α

(εαk + µα)Aα†k A
α
k (2.69)

+ 1
2Ns

∑
αβ

∑
kk′pp′

UαβAα†k A
β†

k′A
β
pA

α
p′δk+k′,p+p′ (2.70)

We can also simplify the single-particle energies εαk , by using that the displacement vectors ai
come in pairs on the form (an,−an), giving

εαk = tα
∑
δ

eik·δ (2.71)

= tα
∑
n

(
eik·an + e−ik·an

)
(2.72)

= 2tα
∑
n

cos(k · an) (2.73)

The Hamiltonian in eq. (2.70) is the version which will be used for the weakly interacting
Bose gas. In the next section, a heuristic derivation of synthetic spin-orbit coupling is deduced,
leading to new terms in the Hamiltonian.

2.5 Synthetic SOC
For a system of electrons moving in a static electric field E = E0z in two dimensions, the
spin-orbit coupling is of the Rashba type [20],[48], giving the Hamiltonian

HSOC = λR (σxky − σykx) (2.74)

where the coupling strength is given by λR = e~2E0/4m2
ec

2 [48], which we will assume is positive.
The following work is based on the derivation from Jansønn in [32], where he derives his work
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from Sjømark [47]. The component kn ≡ k·ân along the non-parallel unit vectors ân = an/‖an‖
of the nearest neighbor lattice displacement vectors contained in δ〈i,j〉 is discretized as follows

kn = −i
∑
i

(
b†i bi+n − b

†
i+nbi

)
(2.75)

where the index i+ n refers to the lattice site displaced by +an from ri, and

bi =
(
b↑i
b↓i

)
(2.76)

Next we decompose k in the euclidean unit vectors, and in the non-parallell unit vectors

k =
∑
i

kixi =
∑
n

knân (2.77)

Consequently, the component ki can be expressed by kn in the following way

ki =
∑
n

kn(ân · xi) (2.78)

This gives that the Rasbha SOC Hamiltonian can be expressed as

HSOC = iλR
∑
αβ

∑
n

∑
i

bα†i
(
−σαβx (ân · y) + σαβy (ân · x)

)
bβi+n −H.c (2.79)

where we have explicitly moved the Pauli matrices between the products of b†i and bi+n, to form
a matrix product on the form x†Ax =

∑
αβ x

α†Aαβx
β . This makes the derivation heuristic,

not rigorous. It is however a variation of the Kane-Mele model [33]. The Hamiltonian contains
a term on the form

∑
αβ b

α†
i σ

αβ
x bβi+n, which written out becomes

∑
αβ

bα†i σ
αβ
x bβi+n =

(
b↑†i b↓†i

)(0 1
1 0

)(
b↑i+n
b↓i+n

)
(2.80)

=
(
b↑†i b↓†i

)(b↓i+n
b↑i+n

)
(2.81)

= b↑†i b
↓
i+n + b↓†i b

↑
i+n (2.82)

The first term b↑†i b
↓
i+n annihilates a boson at lattice site i + n with pseudo-spin ↓, and creates

a boson at lattice site i with psedo-spin ↑, while the second term is similar only with opposite
spin-orientation. Thus this process consist of hopping from site i+n to i, and flipping the spins.
The H.c term in the Hamiltonian then consist of hopping from site i to i+ n, with a spin-flip.

We next go to momentum space, and expand the bosonic operators bαi in the momentum
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basis {Aαk} as in the previous section

HSOC = iλR
∑
αβ

∑
n

∑
i

bα†i Σαβn bβi+n −H.c (2.83)

= iλR
∑
αβ

∑
n

∑
i

1
Ns

∑
kk′

Aα†k Σαβn Aβk′e
i(k′−k)·Rieik

′·an −H.c (2.84)

= iλR
∑
αβ

∑
n

∑
kk′

Aα†k Σαβn Aβk′δkk′e
ik′·an (2.85)

= iλR
∑
k

∑
n

∑
αβ

Aα†k Σαβn eik·anAβk −H.c (2.86)

where we have defined
Σαβn = σαβy (ân · x)− σαβx (ân · y) (2.87)

Next, explicitly writing out the sum over pseudo-spin indices, one obtains

HSOC =
∑
k

skA
↑†
k A
↓
k + H.c (2.88)

The spin-orbit coupling sk is given by

sk = ±2λR
∑
n

((ân · y) + i(ân · x)) sin(k · an) (2.89)

where the sign ± relies on the definition of the transformation from bαi to Aαk . If the exponential
has a +k sign in the transformation of bαi , see eq. (2.51), as in this thesis, then one must choose
a plus sign above. If however one has a −k in the exponential, as was done in Janssøns thesis,
then one must choose a minus sign. To be consistent with Jansønns master thesis, we will choose
a minus sign. This should not affect the physics, as the choice is only a matter of definition.

The full Hamiltonian with synthetic SOC and weak interactions, residing on a Bravais lattice
now becomes

H =
∑
k

skA
↑†
k A
↓
k + H.c (2.90)

−
∑
k

∑
α

(εαk + µα)Aα†k A
α
k (2.91)

+ 1
2Ns

∑
αβ

∑
kk′pp′

UαβAα†k A
β†

k′A
β
pA

α
p′δk+k′,p+p′ (2.92)

=
∑
k

∑
αβ

ηαβk Aα†k A
β
k (2.93)

+ 1
2Ns

∑
αβ

∑
kk′pp′

UαβAα†k A
β†

k′A
β
pA

α
p′δk+k′,p+p′ (2.94)

The matrix ηk is defined as

ηk =
(
η↑↑k η↑↓k
η↓↑k η↓↓k

)
=
(
−(ε↑k + µ↑) s(k)
s∗(k) −(ε↓k + µ↓)

)
(2.95)
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We next construct the Feynman diagrams [18] for the single-particle Hamiltonian and the inter-
acting Hamiltoninan. The single-particle Hamiltonian is given by

Hnon-int =
∑
k

∑
αβ

ηαβk Aα†k A
β
k (2.96)

where the diagonal terms of ηk is simply the single-particle energies, see fig. 2.1a for the
corresponding Feynman diagram. The off-diagonal terms however, corresponds to a spin-flip,
which is precisely what the Raman transitions describe. See Feynman diagram in fig. 2.1b for
the case where α =↑ and β =↓. In the off-diagonal, a boson with momentum k and pseudo-spin
β =↓ is destroyed and a boson with momentum k and pseudo-spin α =↑ is created. Hence, the
spin-orbit coupling flips the spin in momentum space.

(a) Feynman diagram along diagonal of ηαβk
(b) Feynman diagram for the case of α =↑, β =↓ in
the single-particle Hamiltonian

Figure 2.1: Feynman diagrams for the single-particle Hamiltonian

The interacting Hamiltonian is given by

Hint = 1
2Ns

∑
αβ

∑
kk′pp′

UαβAα†k A
β†

k′A
β
pA

α
p′δk+k′,p+p′ (2.97)

where conservation of momentum fixes k = p+p′−k′. We introduce the wavevector q = k′−p,
such that

k = p′ − q (2.98)
k′ = p+ q (2.99)

Consequently, we can write the interacting Hamiltonian in the generic way

Hint =
∑
q

∑
αβ

vαβ(q)
∑
p,p′

Aα†p′−qA
β†
p+qA

β
pA

α
p′ (2.100)
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Figure 2.2: Feynman diagram for the interacting Hamiltonian

The potential vαβ(q) is independent of q and is given by

vαβ(q) = Uαβ

2Ns
(2.101)

The interacting Hamiltonian has the Feynman diagram as shown in fig. 2.2. The process
thus describes scattering: two bosons with momentum and pseudo-spin |p′, α〉 and |p, β〉 are
annihilated, where the total momentum is p + p′. The creation operators then creates two
bosons with momentum and spin |p′ − q, α〉 and |p+ q, β〉. The interaction is mediated by the
therm vαβ(q). Note that the two-body scattering does not change the initial configuration of
spins, as spin-orbit coupling does. Also, the total momentum before and after the collosion is
of course conserved, since p+ q + p′ − q = p+ p′.
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Chapter 3
Preliminaries

3.1 Synthetically Spin-Orbit Coupled, Non-Interacting Bose
Gas

In this section we will analytically derive the excitation spectrum for a spin-orbit coupled, non-
interacting Bose gas. This example will aid our intuition in the main part of the thesis. It
is a simplification of the Hamiltonian given in eq. (2.94). We will also review the process of
diagonalizing a matrix, where we bring corrections to Janssønns master thesis which produces
the wrong basis-transformation. The Hamiltonian in question is given by, where we simply set
U = 0 in eq. (2.94)

H =
∑
k

∑
αβ

ηαβk Aα†k A
β
k (3.1)

A square matrix A is said to be diagonizable if there exists an invertible matrix T such that
T−1AT is diagonal [4]. In this case the matrix T is said to diagonalize A. An important result
from linear algebra is that a square n×n matrix A is diagonizable if and only if A has n linearly
independent eigenvectors. The advantage of diagonalizing a Hamiltonian is that it is rewritten
as a sum over Harmonic oscillators [23] on the form

∑
ν eνnν , where nν = B†νBν is the number

operator and eν is a single-particle energy. Thus the diagonalized Hamiltonian simply sums
the energy of each single- particle state ν, multiplied by the number of particles in that state.
We call the new set of operators Bν quasiparticles. The list of quasiparticles is long, with a
few examples: anyons [54], skyrmions [37], excitons [36] and the familiar phonons [13]. The
quasiparticles of a system effectively describe the dynamics.

The above Hamiltonian is not diagonal, but can be brought on diagonal form by changing
particle basis from S =

{
A↑k, A

↓
k

}
to S′ =

{
B+
k , B

−
k

}
where the new operators Bαk must satisfy

bosonic commutation relations:
[Bαk , B

β†
k′ ] = δkk′δ

αβ (3.2)

For all k and k′ and α, β ∈ (+,−). The diagonalized Hamiltonian can then be written on the

35
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form
H =

∑
k

∑
α

λααk Bα†k Bαk (3.3)

where λααk are elements of the diagonal matrix

λk =
(
λ++
k λ+−

k

λ−+
k λ−−k

)
=
(
λ+
k 0
0 λ−k

)
(3.4)

To find the new basis, and the corresponding eigenvalues, we observe that the Hamiltonian in
(3.1) can be written in the form:

H =
∑
k

ψ†kηkψk (3.5)

Where ψk =
(
A↑k A↓k

)T and ψ†k =
(
A↑†k A↓†k

)
. Linear algebra states that a Hermitian matrix

M can be diagonalized on the form M = PDP †, where D is the diagonal matrix with the
eigenvalues ofM along the diagonal, and P is the matrix with the corresponding orthonormalized
eigenvectors as columns (such that PP † = P †P = I). Writing ηk = PkλkP

†
k, we get

H =
∑
k

ψ†kPkλkP
†
kψk ≡

∑
k

φ†kλkφk (3.6)

where we have made a change of basis from ψk to φk by the following relation

φk = P †kψk (3.7)

Or, equivalently, by an inversion
ψk = Pkφk (3.8)

Note that this is opposite of the results by Janssønn, where he uses the same Pk. There it was
claimed that PηP † was a diagonal matrix, when it is fact P †ηP which gives the diagonal matrix.
The elements of φk are given by

φk =
(
B+
k

B−k

)
(3.9)

and the transformation matrix Pk has the form

Pk =
(
x+ x−

)
(3.10)

where the columns are the eigenvectors of the eigenvalue problem ηkx
± = λ±kx

±. The eigenval-
ues are determined by the condition det(ηk − I2λk), and are given by

λ±k = −ε̄k − µ̄±
√
|sk|2 + (δεk + δµ)2

4 (3.11)

with the definitions

ε̄k =
ε↑k + ε↓k

2 , δεk = ε↑k − ε
↓
k (3.12)

µ̄ = µ↑ + µ↓

2 , δµ = µ↑ − µ↓ (3.13)
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As noted by Janssønn, we get a Zeeman splitting at k = 0, given by the difference in energies
at k = 0

λ+
0 − λ

−
0 = |δεk + δµ| (3.14)

which is non-zero if the pseduo-spin parameters µα and tα are spin-dependent. For the moment,
we treat pseudo-spin parameters equally, which gives no Zeeman splitting

µ↑ = µ↓ ≡ µ (3.15)
t↑ = t↓ ≡ t (3.16)

ε↑k = ε↓k ≡ εk (3.17)

We also restrict our analysis to the case of a square lattice with displacement vectors given as
an ∈ (ax, ay), where a is the lattice spacing constant. Using the expressions for sk and εk given
in eqs. (2.73) and (2.89), we get

sk = −2λR (sin(kya) + i sin(kxa)) (3.18)
εk = 2t (cos(kxa) + cos(kya)) (3.19)

which gives the eigenvalues λ±k as

λ±k = −(εk + µ)± |sk| (3.20)

with the corresponding orthonormalized eigenvectors

x± =


1√
2

(
1
0

)
, 1√

2

(
0
1

)
sk = 0

1√
2

(
±e−iγk

1

)
sk 6= 0

(3.21)

where the spin-orbit coupling is written as

e−iγk ≡ sk
|sk|

, sk 6= 0 ∧ γk ∈ [0, 2π) (3.22)

and γk is the helicity angle. If sk = 0, there is no change in basis. This can be seen from the
fact that the original Hamiltonian then becomes diagonal. If sk 6= 0, the matrix Pk takes the
form

Pk = 1√
2

(
e−iγk −e−iγk

1 1

)
(3.23)

giving the new basis as (
B+
k

B−k

)
(3.7)= 1√

2

(
A↓k + eiγkA↑k
A↓k − eiγkA

↑
k

)
(3.24)

which differs from the eigenvectors given by Janssønn, since there the new basis was defined as
φk = Pkφk with the same matrix Pk. The eigenvectors can compactly be written as

Bαk = 1√
2

(
A↓k + αeiγkA↑k

)
, α ∈ (+,−) (3.25)
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We must further verify that the new basis of operators satisfy bosonic commutation relations[
Bαk , B

β†
k′

]
= 1

2

[
A↓k + αeiγkA↑k, A

↓†
k′ + βe−iγk′A↑†k′

]
(3.26)

= 1
2

([
A↓k, A

↓†
k′

]
+ αβ

[
A↑k, A

↑†
k′

])
(3.27)

= δkk′

2 (1 + αβ) (3.28)

The 1 + αβ term is 2 if α = β = ± or 0 if α 6= β = ±, so we can conclude that indeed[
Bαk , B

β†
k′

]
= δkk′δ

αβ (3.29)

The old basis ψk is connected with the new basis φk by an inversion(
A↑k
A↓k

)
(3.8)= 1√

2

(
e−iγk

(
B+
k −B

−
k

)
B+
k +B−k

)
(3.30)

One can confirm that the new basis gives a diagonal Hamiltonian by inserting the expressions
in (3.30) in the original Hamiltonian, obtaining

H =
∑
k

B+†
k B+

k

(
ξ

2 + ξ

2 + |sk|2 + |sk|2

)
+B+†

k B−k

(
−ξ2 + ξ

2 + |sk|2 − |sk|2

)
+B−†k B+

k

(
−ξ2 + ξ

2 −
|sk|
2 + |sk|2

)
+B−†k B−k

(
ξ

2 + ξ

2 −
|sk|
2 − |sk|2

)
where ξ ≡ −(εk + µ). The off-diagonal terms cancel, leaving

H =
∑
k

B+†
k B+

k (−(εk + µ) + |sk|) +B−†k B−k (−(εk + µ)− |sk|) (3.31)

which is excactly on the diagonal form outlined in equation (3.3) with the correct eigenvalues
λ±. Let us further investigate the excitation spectrum given in eq. (3.11). It is evident that λ−k
has the lowest energy. The minima of λ−k is found to be at

kx, ky = ± arcsin λR/t√
2 + (λR/t)2

(3.32)

where we treat kx and ky as continious variables, even though they are discrete as shown later
in this section. Ergo, a finite SOC always leads to minima displaced from k = 0, which is the
usual minimum. This is the usual effect of Rashba SOC [20]. There are in total four minima,
where the value of the excitation spectrum evaluated at one of these points is given by

λ−min = −4t

√
1
2

(
λR
t

)2
+ 1− µ (3.33)
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which is negative. This is problematic, as then we get a term −|λmin|B−†k B−k in the Hamiltonian,
which is minimized by maximizing the number of quasiparticles n−k = B−†k B−k , in effect flooding
the system. We can avoid this by adding and subtracting a constant term to the Hamiltonian,
and consider it as a contribution to the chemical potential. We write

λ±k = λ±k − λ
−
min + λ−min (3.34)

= Λ±k + λ−min (3.35)

Λ−k is the new lowest branch, and is bounded from below by 0. The Hamiltonian thus becomes

H =
∑
k

∑
α

λαkB
α†
k Bαk (3.36)

=
∑
k

∑
α

ΛαkB
α†
k Bαk + λ−min

∑
k

∑
α

Bα†k Bαk (3.37)

= λ−minNb +
∑
k

∑
α

ΛαkB
α†
k Bαk (3.38)

where Nb is the total number of quasi-particles in the system. Note that this is generally different
from the total number of sites Ns, as pointed out by Janssønn. In fig. 3.1 a plot of the excitation
spectrums are shown. Notice the advertised displacement of the minima from k = 0, and also
that the two branches meet linearly at k = 0.

Quantization of k

The periodic boundary conditions discretizes k = (kx, ky) in the following way [17]. Since
eikxL = 1 and eikyL = 1, where L = a

√
Ns, we get that kx = 2πmx/L and ky = 2πmy/L where

m is an integer. Since bαi has Ns independent operators for each value of α, Ak also has Ns
independent operators for Ns inequivalent values of (kx, ky). We choose these Ns inequivalent
values for (mx,my) to be

mx = my = −N/2,−N/2 + 1, . . . , N/2− 1 (3.39)
kx = ky = −π/a,−π/a+ 2π/L, . . . , π/a− 2π/L (3.40)

The total size of the system is N2 = Ns. In the limit N → ∞, this is known as the 1st
Brillouin zone [−π/a, π/a) [38]. In the next section we shall ignore SOC, and focus on a weakly
interacting, one-component, bose gas. We shall also give physical constraints on the intra-
scattering potentials.

3.2 Weakly interacting Bose gas
This section will serve as a warm-up for the case of a two-component weakly interacting Bose
gas with synthetic SOC. This will also aid our intuition in the main section of the thesis. The
Hamiltonian for a weakly interacting, single-component, Bose gas is given by eq. (2.70) when
setting all components equal and turning off SOC λR = 0

H = −
∑
k

(εk + µ)A†kAk + U

2Ns

∑
kk′pp′

A†kA
†
k′ApAp′δk+k′,p+p′ (3.41)
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(a) A plot of the excitation spectrum Λ±k
for the SOC, non-interacting Bose gas.

(b) A plot of the excitation spectrum of the lowest
branch Λ−k

Figure 3.1: The plots of the excitation spectrum for the bosons subjected to synthetic SOC.
The physical parameters are λR = 3.0 and t = a = 1.

The temperature of the system is assumed to be way below the critical temperature Tc for
Bose-Einstein condensation to occur. Thus we can assume that the particles are in the lowest
energy state, which is at k = 0. With this simplification we can utilize mean field theory. This
requires a transformation on the condensate operators A0 and A†0, where we write

A0 = a0 + δA0 (3.42)

The fluctuation δA0 is an operator representing small fluctuations from the ground state at
k = 0. a0 is a complex number, and is given by

a0 =
√
N0e

−iθ (3.43)

N0 and θ are mean-field parameters which may be solved by minimizing the free energy of the
system. The parameter θ is normally set to zero, as was done in [51]. However, as Janssønns the-
sis reveals, there are certain phases in k space which cannot exist without a non-zero mean-field
parameter θ. Note that the condensate particle number N0 is given by the modulos squared
of a0. We further assume that terms bilinear in excitation operators multiplied with a fluc-
tuation operator vanishes, which is reasonable since the excitation operators are small in this
approximation. Furthermore, we also assume that the interaction terms are at most bilinear in
excitation operators. The table in 3.1 shows the possible configurations in the sum over kk′pp′
with these approximations. There are no terms linear in excitation operators, since momentum
conservation gives the momentum k = 0. Using the mentioned approximations, and writing
out all terms in the interaction at most bilinear in excitation operators, we get the following
Hamiltonian

H ≈ H0 +H(1) +H2 (3.44)
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k k′ p p′

0 0 0 0
0 0 p p′

0 k′ 0 p′

0 k′ p 0
k 0 p 0
k k′ 0 0
k 0 0 p′

Table 3.1: Possible momentum configurations for the weakly interacting Bose-Gas

where,

H0 = −(ε0 + µ)N0 + U

2Ns
N2

0 (3.45)

H(1) =
√
N0

(
UN0

Ns
− (ε0 + µ)

)[
eiθδA0 + e−iθδA†0

]
(3.46)

H2 =
∑
k

(
2UN0

Ns
− (εk + µ)

)
A†kAk

+ UN0

2Ns

∑
k

e2iθAkA−k + e−2iθA†kA
†
−k (3.47)

Notice that we have reduced the two-body scattering problem, to an effective single-body prob-
lem. Further, the k = 0 term in H2 means that we replace Ak by the fluctuation δA0. Since the
free energy of the system is supposed to be minimized with respect to the mean-field parameters,
the terms proportional to a fluctuation must be zero. Consequently, H(1) must be zero, which
is achieved by adjusting the chemical potential

µ = UN0

Ns
− ε0 (3.48)

giving equivalently an equation for the condensate density in the presense of interactions

N0

Ns
= ε0 + µ

U
(3.49)

Inserting the equation for µ in H0 and H2, we get

H0 = −UN
2
0

2Ns
(3.50)

H2 =
∑
k

(
ε0 − εk + UN0

Ns

)
A†kAk

+ UN0

2Ns

∑
k

e2iθAkA−k + e−2iθA†kA
†
−k (3.51)



42 Chapter 3. Preliminaries

Because the sum over k is symmetric in the 1st Brillouin zone, we can make the symmetrization∑
k f(k) = 1

2
∑
k f(k) + f(−k). We also introduce the new operators ak and bk

ak = eiθAk (3.52)
bk = a−k = eiθA−k (3.53)

Next, explicitly summing over −k, and inserting the expressions for ak and bk, we obtain the
Hamiltonian

H = −UN
2
0

2Ns
+
∑
k

ε0(k)(a†kak + b†kbk) + ε1(a†kb
†
k + akbk) (3.54)

where,

ε0(k) = 1
2

(
ε0 − εk + UN0

Ns

)
(3.55)

ε1 = UN0

2Ns
(3.56)

3.2.1 The Bogoliubov transformation
From the previous section, we see that the Hamiltonian is a sum over independent terms on the
form

ĥ = ε0(â†â+ b̂†b̂) + ε1(â†b̂† + âb̂) (3.57)

where ε0 and ε1 are real. The operators are bosonic, and satisfy the commutation relations

[â, â†] = [b̂, b̂†] = 1 (3.58)

with the additional bosonic commutation relations

[â, b̂†] = [b̂, â†] = [â, b̂] = [â†, b̂†] = 0 (3.59)

Our goal is to obtain the eigenvalues of this Hamiltonian. This can be achieved by performing a
transformation in the operators such that the Hamiltonian becomes diagonal, as was done with
the spin-orbit coupled bose gas in section 3.1. This was achieved by Bogoliubov when treating
liquid Helium [7], where he performed a canonical transformation to new bosonic operators α̂
and β̂ such that the Hamiltonian describes free bosons. We make the transformations

α̂ = uâ+ vb̂† (3.60)
β̂ = ub̂+ vâ† (3.61)

The coefficients u and v are chosen to be real. The old operators are given by the inverse
transformation

â = uα̂− vβ̂† (3.62)
b̂ = uβ̂ − vα̂† (3.63)
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To assure that the new operators α̂ and β̂ are bosonic, we must require

[α̂, α̂†] = [β̂, β̂†] = 1 (3.64)

and also,
[α̂, β̂†] = [β̂, α̂†] = [α̂, β̂] = [α̂†, β̂†] = 0 (3.65)

Using the expressions for α̂ and β̂ into one of the equations in (3.64), we get the requirement
on u and v

u2 − v2 = 1 (3.66)

We now insert the expressions for â and b̂ in (3.62) and (3.63) into the Hamiltonian given in
(3.57), obtaining

ĥ = 2v2ε0 − 2uvε1 + [ε0(u2 + v2)− 2uvε1](α̂†α̂+ β̂†β̂)
+ [ε1(u2 + v2)− 2uvε0](α̂β̂ + β̂†α̂†) (3.67)

By the requirement that the Hamiltoian should be diagonal in the operators α̂ and β̂, we must
require that the term proportional to α̂β̂ + β̂†α̂† vanish. This leads to a condition on u and v

ε1(u2 + v2) = 2uvε0 (3.68)

But this have no simple solution for u and v. However, we can make the transformation

u = cosh(t), v = sinh(t) (3.69)

where t is real. This transformation satisfies condition (3.66), since we have the identity

cosh2(t)− sinh2(t) = 1 (3.70)

which makes life a bit simpler. We will now make use of the following relations

u2 + v2 = cosh2(t) + sinh2(t) = cosh(2t) (3.71)

uv = cosh(t) sinh(t) = 1
2 sinh(2t) (3.72)

Using the above relations in equation (3.68) thus leads to

ε1
ε0

= tanh(2t) (3.73)

such that
2t = tanh−1

(
ε1
ε0

)
(3.74)

where tanh−1 is the inverse tanh function. The solution for 2t makes the off-diagonal term in the
Hamiltonian vanish. The energy of the bosons are given by the term proportional to α̂†α̂+ β̂†β̂,
which gives the energy ε

ε = ε0(u2 + v2)− 2uvε1 (3.75)
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Using the relations given in (3.71) and (3.72), we get

ε = ε0 cosh(2t)− ε1 sinh(2t) (3.76)

Further, using the solution for 2t and the following relations

cosh(tanh−1(x)) = 1√
1− x2

, sinh(tanh−1(x)) = x√
1− x2

(3.77)

we finally obtain the Bogoliubov spectrum

ε = sign(ε0)
√
ε20 − ε21 (3.78)

where sign(x) = |x|/x. In addition, we get the expressions for u and v

u2 = cosh2(t) = 1
2 (cosh(2t) + 1) = 1

2

(ε0
ε

+ 1
)

(3.79)

v2 = sinh2(t) = 1
2 (cosh(2t)− 1) = 1

2

(ε0
ε
− 1
)

(3.80)

For the constant term, which is given by 2v2ε0 − 2uvε1, we get ε − ε0. Thus we obtain the
Hamiltonian on diagonal form

ĥ = ε(α̂†α̂+ β̂†β̂) + ε− ε0 (3.81)

Furthermore, we must have that ε is a positive quantity. Otherwise, we would have a term
in the expectation value of the energy 〈ĥ〉 on the form −|ε|(nα + nβ), where nα and nβ are
the expectation values of n̂α = α̂†α̂ and n̂β = β̂†β̂. The system will minimize this term by
maximizing nα and nβ , which both can be infinite for bosons, thus flooding the system. The
quantity determining the sign of ε is ε0, which must be positive. Consequently, we get the energy
ε as

ε =
√
ε20 − ε21 (3.82)

We must also have real eigenvalues, which requires that |ε0| > |ε1|. If this constraint is not met,
we will get instabilities in the system [44].

3.2.2 Completing the diagonalization procedure
Let us define the Bogoliubov operators (where bk = a−k):

αk = ukak − vka†−k (3.83)

βk = α−k = uka−k − vka†k (3.84)

Such that we may immedeatly obtain, following the process of the previous section, the diago-
nalized Hamiltonian given in eq (3.54)

H = −UN
2
0

2Ns
+
∑
k

ζk − εk +
∑
k

~ω(k)α†kαk (3.85)
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where we have defined,

ζk =
√
ε20(k)− ε21 (3.86)

Further, ε0(k) and ε1 are given in eqs.(3.55) and (3.56), and the energy ~ω(k) for the free bosons
αk are given by,

~ω(k) = 2ζk =

√
(ε0 − εk)

(
(ε0 − εk) + 2UN0

Ns

)
(3.87)

Which agrees with [32]. Notice here that we have chosen the positive branch, relying on the
sign of ε0(k), which is given by the interaction proportional to U plus the term ε0 − εk. It
can be shown that for a square lattice, εk has its maximum in k = 0 within the 1st Brilloin
zone. This means that ε0 − εk is never zero, which means that ζk indeed has the correct sign.
Further, this also enshures that ~ω(k) is always real. Thus the energy spectrum of the weakly
interacting, single-component, Bose gas is stable for all values in parameter space. It is stated in
[44] that when terms cubic and quartic in excitation operators are included in the Hamiltonian,
the “excitations are damped and their energies shifted relative to the Bogoliubov spectrum”.

Also note that for small k, the excitation spectrum becomes linear in the presense of inter-
actions U 6= 0, resembling the dispersion relation for phonons. See fig. 3.2 for a plot of the
excitation spectrum. This is characteristic for a superfluid, and the slope of the dispersion rela-
tion in this limit gives the superfluid critical velocity. Also note that the excitation spectrum is
quadratic near the end of the 1st Brillouin zone, behaving as free bosons with dispersion relation
p2/2m∗, where m∗ is an effective mass.

(a) A plot of the excitation spectrum for kx = ky
(b) A plot of the excitation spectrum for all (kx, ky)
in the 1st Brillouin zone

Figure 3.2: The plots of the excitation spectrum for weakly interacting bosons. The physical
parameters are t = a = 1, U = 0.1 and N0 = Ns, which means one boson per lattice site.

It is shown in Janssønns master thesis that to avoid severe ground state depletion, which
means that a significant fraction of condesate particles escape the ground state due to inter-
actions, we must be in the superfluid phase. This physically means that U/t � 1, which is a
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constraint we must apply to our mean-field method. The reason for this is due to only consid-
ering two-body scattering. In contrast, to investigate the insulating Mott phase, which requires
considering higher order interactions, one can use pertubation theory.

3.3 Spin-Orbit Coupled, Weakly Interacting Bose Gas
The work in this section is largely based on Janssønns master thesis [32] in chapter 3. The
goal of this section is to give the reader a qualitative summmary and intuition for the case of
a two-component, weakly interacting Bose gas, which is quite complicated. The short reason
for why this is mathematically complicated originates from the fact that with a finite SOC, the
condensate can have multiple minima in k-space, as opposed to the weakly interacting bose gas,
in which the minima was found to be only at k = 0.

We have the following Hamiltonian for a weakly interacting, two-component, SOC bose gas

H =
∑
k

∑
αβ

ηαβk Aα†k A
β
k + 1

2Ns

∑
kk′pp′

∑
αβ

UαβAα†k A
β†
k′A

β
pA

α
p′δk+k′,p+p′ (3.88)

We make the same assumptions as in the previous section, namely that the temperature T is
way below Tc and that ground state depletion is negligible. This assures that the bosons are
mainly occupied in the condensate minima k0i in k-space (this means that the energy-spectrum
is minimized for these values of k). These assumptions requires that we are in the superfluid
phase, in which the hopping parameters are much stronger than the interation terms. Here k0i
will be referred to as a condensate momenta, where i runs from 1 to n. If n = 1, this will be
referred to as a one-fold case, and if n > 1 it will be referred to as a many-fold case. Further,
if a k-dependent operator, e.g Ak, has k equal to any of the condensate momenta, we call this
operator a condensate operator, and if not, an excitation operator.

We do as in the previous section, and neglect all terms cubic or quartic in excitation operators.
The table in Tab. 3.2 shows the possible momentum configurations kk′pp′ in the interaction
terms. See [32] for a detailed analysis of the number of possible configurations, and also the

Constant Linear Bilinear
k0i,k0j ,k0i′ ,k0j′ k0i,k0j ,k0i′ ,p

′ k0i,k0j ,p,p
′

k0i,k0j ,p,k0j′ k0i,k
′,k0i,p

′

k0i,k
′,k0i′ ,k0j′ k0i,k

′,p,k0j′

k,k0j ,k0i′ ,k0j′ k,k′,k0i′ ,k0j′

k,k0j ,p,k0j′

k,k0j ,k0i′ ,p
′

Table 3.2: Possible configurations for the momenta in the interaction term for the two-
component, spin-orbit coupled, weakly interacting Bose gas.

types of combinations allowed by momentum conservation on a Bravais-lattice. Notice also that
we get terms linear in excitation operators, which the author, nor Janssønn, has found explored
in the literature. The Hamiltonian may now be written as

H ≈ H0 +H1 +H2 (3.89)



3.3 Spin-Orbit Coupled, Weakly Interacting Bose Gas 47

where,

H0 =
∑
i

∑
αβ

ηαβk0i
Aα†k0i

Aβk0i

+ 1
2Ns

∑
iji′j′

∑
αβ

UαβAα†k0i
Aβ†k0j

Aβk0i′
Aαk′0j

δk0i+k0j ,k0i′+k0j′ (3.90)

H1 = 1
Ns

∑
k

′∑
iji′

∑
αβ

Uαβ
(
Aα†k0i

Aβ†k0j
Aβk0i′

Aαk

+ Aα†k A
β†
k0i′

Aβk0j
Aαk0i

)
δk+k′0i,k0j+k0i (3.91)

And,

H2 =
∑
k

′∑
αβ

ηαβk Aα†k A
β
k

1
2Ns

∑
kk′

′′∑
ij

∑
αβ

Uαβ
(

(Aα†k0i
Aβ†k0j

AβkA
α
k′ +Aα†k A

β†
k′A

β
k0i
Aαk0j

)δk+k′,k0i+k0j

+ 2(Aα†k0i
Aβ†k A

β
k0j
Aαk′ +Aα†k0i

Aβ†k A
β
k′A

α
k0j

)δk0i+k,k′+k0j

)
(3.92)

Where we have followed the derivation from Janssønn [32], utilizing commutation relations and
permuting momentum indices. Here, the sum

∑
k
′ excludes all condensate momenta k = k0i,

∀i, and the sum
∑
kk′
′′ exludes all pairs (k,k′) with at least one condensate momentum; if k is

equal to an arbitrary non-condensate momenta, and k′ is equal to a condensate momenta, then
this pair is excluded. This can happen due to conservation of momentum. The Hamiltonian is
now ready for mean-field theory.

3.3.1 Mean field theory
Similarly to the weakly-interacting, one-component, Bose gas, we introduce the mean field con-
densate operators for each condensate momentum k0i and pseudo-spin α

Aαk0i
= aαk0i

+ δAαk0i
(3.93)

The expectation value aαk0i
is a complex number proportional to the root of the condensate

number for pseudo-spin α, and δAkα0i is a small fluctuation with zero expectation value. The
subscripts k0i are condensate momenta, and are distinct points in k space where one expects
to find a minima. In the literature, it is customary to choose aαk0i

to be real and equal to the
square root of the condensate particle number

√
Nα
k0i

. It is however necessary for this thesis to
parametrise aαk0i

by the mean-field parameter θαk0i
, in the following way

aαk0i
=
√
Nα
k0i
e−iθ

α
k0i (3.94)

such that the modulus of aαk0i
gives the root of the condensate number for pseudo-spin α. It will

become apparent in the ensuing calculations that the mean-field parameters θαk0i
cannot all be
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zero. We now insert the expression for the condensate operators in the Hamiltonian. We only
keep terms that are constant or linear in fluctuations, and also terms that are a product of a
fluctuation and an excitation operator. The rest of the terms are neglected. This is the same as
done in the previous section, and also in D. van Oosten et al [51].

In the mean field approach, we introduce a number of mean-field parameters, namely aαk0i
.

There are two ways of determining these, either by solving a set of self-consistent equations, or
by minimizing the free energy F . In this thesis, as was done in Janssønn [32], we will minimize
the free-energy F . This implies that the terms linear in condensate fluctuations must vanish,
as was done in the previous section with the weakly interacting Bose gas. We will see that the
linear terms must be cancelled by tuning the chemical potentials for each pseudo-spin. Let us for
the rest of the chapter make the shortcut k0i → i, for mathematical simplicity. The only place
we have this dependence is in the condensate operators and condensate mean field parameters.
It will be made clear when this is no longer the case.

3.3.2 Terms linear in condensate fluctuation operators
The terms that are linear in condensate fluctuations operators are shown in to be

∑
i

∑
αβ

δAβi

ηαβi aα∗i + Uαβ

Ns

∑
ji′j′

aαj a
α∗
i′ a

β∗
j′ δi+j,i′+j′

+ H.c (3.95)

where H.c denotes the complex conjugate. Please note that the arguments in the delta function
are not numbers, but indices refering to a specific condensate k-vector, the indices are not sup-
posed to be added together. The goal is to cancel this term, by adjusting the chemical potential
µα which is located along the diagonal of the matrix ηk of the non-interacting Hamiltonian.
We assume that the fluctuations for the respective pseudo-spin indices are independent, so that
we may set the individual terms in front of these fluctuations zero respectively. Setting each
individual term in front of a fluctuation equal to zero, we get the equation for each pseudo-spin
index β ∑

α

ηαβi aα∗i +
∑
ji′j′

∑
α

Uαβ

Ns
aαj a

α∗
i′ a

β∗
j′ δi+j,i′+j′ = 0 (3.96)

and the corresponding conjugate term. We first find an equation for µ↑, which is given by

(ε↑i + µ↑)a↑∗i = s∗i a
↓∗
i +

∑
ji′j′

∑
α

Uα↑

Ns
aαj a

α∗
i′ a
↑∗
j′ δi+j,i′+j′ (3.97)

Let us assume that a↑i 6= 0. This gives the solution for µ↑

µ↑ = −ε↑i + s∗i
a↓∗i

a↑∗i
+
∑
ji′j′

∑
α

Uα↑

Ns

(
a↑j′

a↑i

)∗
aαj a

α∗
i′ δi+j,i′+j′ (3.98)

If a↑i = 0, then we must insist that the fluctuation δA↑i is also zero. In this case, there will be no
equation for µ↑ which in principle can be chosen at will. This also applies to µ↓. In addition,
we have the complex conjugate version of this equation, which gives an equation for µ↑∗. If we
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insist that µ↑ is a real number, we get the equation µ↑ = µ↑∗. This leads to two conditions,
where the first is caused by a non-zero SOC

=

(
s∗i
a↓∗i

a↑∗i

)
= 0 (3.99)

Using the paramatrized versions of si, a↑i and a↓i , we get

=

(
|si|

√
N↓i

N↑i
ei(γi−δθi)

)
= 0 (3.100)

where we have defined the quantity
δθi = θ↑i − θ

↓
i (3.101)

Consequently, we must require

sin(γi − δθi) = 0→ γi − δθi = lπ, l ∈ {0, 1} (3.102)

giving for the SOC term the expression

s∗i
a↓∗i

a↑∗i
= |si|

√
N↓i

N↑i
eilπ (3.103)

Where we must choose l = 1 to get consistent results with literature [32]. Thus we get the very
important relation

δθi = γi − π
(3.104)

This equation makes it possible to express all pseudo-spin ↑ mean-field parameters in terms of
all pseudo-spin ↓ mean-field parameters, halfing the number of mean-field parameters in the
system. Notice that this condition is only valid when the SOC is of finite length, as it is only
then that the helicity angle γi is well defined.

The second condition for µ↑ to be real requires that the imaginary part of the interaction
term for µ↑ is zero

=

∑
ji′j′

∑
α

Uα↑

Ns

(
a↑j′

a↑i

)∗
aαj a

α∗
i′ δi+j,i′+j′

 = 0 (3.105)

which, writing again out the expressions for the variational parameters, becomes

∑
ji′j′

∑
α
Uα↑

Ns

√
N↑
j′
Nα
j
Nα
i′

N↑
i

sin
(
θ↑j′ − θ

↑
i − θαj + θαi′

)
δi+j,i′+j′ = 0

(3.106)

To summarize, these two conditions makes shure that the chemical potential for pseudo-spin ↑
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is real. The expression for µ↑ finally becomes

µ↑ = −ε↑i − |si|

√
N↓i

N↑i

+
∑
ji′j′

∑
α

Uα↑

Ns

√√√√N↑j′N
α
j N

α
i′

N↑i
cos
(
θ↑j′ − θ

↑
i − θ

α
j + θαi′

)
δi+j,i′+j′ (3.107)

For the chemical potential in pseudo-spin ↓ we get, doing the excact same calulcations

µ↓ = −ε↓i − |si|

√
N↑i

N↓i

+
∑
ji′j′

∑
α

Uα↓

Ns

√√√√N↓j′N
α
j N

α
i′

N↓i
cos
(
θ↓j′ − θ

↓
i − θ

α
j + θαi′

)
δi+j,i′+j′ (3.108)

The equation for δθi is the same, as it should be. To enshure that the imaginary part of the
interaction term for µ↓ is zero, we get the constraint

∑
ji′j′

∑
α
Uα↓

Ns

√
N↓
j′
Nα
j
Nα
i′

N↓
i

sin
(
θ↓j′ − θ

↓
i − θαj + θαi′

)
δi+j,i′+j′ = 0

(3.109)

To summarize, for µ↑ and µ↓ to be real, we have in total three conditions:

1. Equation (3.104) expressing θ↑i in terms of θ↓i , connected with spin-orbit coupling.

2. Equation (3.105) making the imaginary part of the interaction term for µ↑ zero.

3. Equation (3.109) making the imaginary part of the interaction term for µ↓ zero.

Janssønn shows that the two constraints in eq. (3.105) and eq. (3.109) only needs to be met
for n ≥ 4-fold cases, e.g it is automatically true for n = 1 and n = 2 fold cases. The interaction
terms can further be simplified, by explicitely writing out the delta function. However, this
leads to hairy expressions and will only be mentioned when needed.

The story is not over, however. We must require that the chemical potentials are independent
of momentum index i. Bravais symmetry for the square lattice dictates that εαi and |si| are
independent of momentum index i, see [32] for details. However, we must require that the
interaction terms in the respective expressions for the chemical potentials are independent of
momentum index i. This is done in Jansønns master thesis [32], with the main result: if the
condensate consists of particles with different condensate momentum, then the fraction of these
particles carrying the specific pseudo-spin with a specific condensate momentum, must be equal

N↑k0l
= N↑k0l′

, N↓k0l
= N↓k0l′

(3.110)
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for all combinations of l and l′ 6= l for which the respective condensate occupation numbers
are non-zero. Since the number of up or down pseudo-spin particle numbers is independent of
condensate momentum, one may write

N↑0 /f ≡ N
↑
k0l

(3.111)

N↓0 /f ≡ N
↓
k0l

(3.112)

where f is the number of distinct condensate momentum, Nα
0 is the total number of particles

carrying pseudo-spin α and l is any of the f condensate momentum indices for which Nα
k0l
6= 0.

Thus, when the particle numbers satisifies the above constraints, the chemical potentials are
independent of momentum index.

3.3.3 Exceptions to the condensate particle number solution
The solution in (3.110) does not necessarily hold if either [32]

(U↑↓)2

U↑↑U↓↓
= 1 (3.113)

in general, or (
U↑↓ cos (γl′ − γl)

)2
U↑↑U↓↓

= 1 (3.114)

if k0l′ and k0l are non-parallel, and either Nα
−k0l

= 0 or Nα
−k0l′

= 0, or

(
U↑↓ cos (γl′ − γl)

)2
U↑↑U↓↓(1−A)(1−B) = 1, A,B 6= 1 (3.115)

if Nα
−k0l

, Nα
−k0l′

6= 0, where A and B are defined by:

A = 2 cos
(
θ↑−k0l′

− θ↑k0l
− θ↑−k0l

+ θ↑k0l′

)
(3.116)

B = 2 cos
(
θ↑−k0l′

− θ↑k0l
− θ↓−k0l

+ θ↓k0l′

)
(3.117)

3.3.4 Complete Mean-Field Hamiltonian
If the solution in (3.110) holds, then the expressions for µ↑ and µ↓ can be simplified even further

µ↑ = −ε↑i − |si|

√
N↓0

N↑0
Ω(|k0i|, N↑i )

+

∑
ji′j′

∑
α

′′′ Uα↑Nα
0

Nsf
cos
(
θ↑j′ − θ

↑
i − θ

α
j + θαi′

)
δi+j,i′+j′Ω(N↑i ) (3.118)
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µ↓ = −ε↓i − |si|

√
N↑0

N↓0
Ω(|k0i|, N↓i )

+

∑
ji′j′

∑
α

′′′ Uα↓Nα
0

Nsf
cos
(
θ↓j′ − θ

↓
i − θ

α
j + θαi′

)
δi+j,i′+j′Ω(N↓i ) (3.119)

The function Ω(x1, x2, ..., xn), defined as

Ω(x1, x2, ..., xn) =
{

1 x1 > 0, x2 > 0...xn > 0
0 otherwise

(3.120)

enshures that we dont divide by zero, and forces us to choose a condensate momentum i for
which the condensate number is non-zero. The primed sum

(∑
ji′j′

∑
α

)′′′
means that we should

sum over the subset of values (j, i′, j′, α) such that Nα
j 6= 0, Nα

i′ 6= 0 and Nα
j′ 6= 0. The complete

Hamiltonian after applying mean-field theory is derived in detail in Jansønns master thesis [32],
with the result

H ≈ H0 +H1 +H2 (3.121)

where the linear terms in condensate fluctuations have been cancelled by tuning µ↑ and µ↓, or
equivalently N↑0 and N↓0 . This means that the condensate numbers are no longer variational
parameters, as they already have been chosen to minimize F through cancelling terms linear in
condensate fluctuations. The constant Hamiltonian H0 is given by

H0 = − 1
2Nsf2

∑
iji′j′

∑
αβ

′′′ UαβNα
0 N

β
0 cos

(
θαj′ − θαi − θ

β
j + θβi′

)
δi+j,i′+j′ (3.122)

where the primed sum runs over the subset of values (i, j, i′, j′, α, β) for which Nα
i 6= 0, Nβ

j 6= 0,
Nβ
i′ 6= 0 and Nα

j′ 6= 0. The next term, H1, comprises all terms linear in excitation operators

H1 = 1
Nsf3/2

∑
k

′

∑
iji′

∑
αβ

′′′ UαβN0

√
Nβ

0

×
(
e−i(θ

β

i′
−θαi −θ

β
j )Aαk + H.c

)
δk+k0i′ ,k0j+k0i (3.123)

The first primed sum over k avoids condensate momenta, and the second primed sum runs over
the subset of values (i, j, i′, α, β) such that Nα

i 6= 0, Nβ
j 6= 0 and Nβ

i′ 6= 0. The next term, H2,
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comprises all terms quadratic in excitation operators

H2 =
∑
k

∑
αβ

ηαβk Aα†k A
β
k

+ 1
2Nsf

∑
kk′

∑
ij

∑
αβ

′′′
1

Uαβ
√
Nα

0 N
β
0

×
((
e−i(−θ

α
i −θ

β
j )AβkA

α
k′ + H.c

)
δk+k′,k0i+k0j

+
(
e−i(−θ

α
i +θβ

j )Aβ†k A
α
k′ + H.c

)
δk0i+k,k′+k0j

)
+ 1

2Nsf
∑
kk′

∑
ij

∑
αβ

′′′
2

UαβNα
0

×
(
e−i(−θ

α
i +θαj )Aβ†k A

β
k′ + H.c

)
δk0i+k,k′+k0j (3.124)

where the first primed sum runs over the subset of values (i, j, α, β) such that Nα
i 6= 0 and

Nβ
j 6= 0, and the second goes over the subset of values such that Nα

i 6= 0 and Nα
j 6= 0. Note

that the second constrained sum gives no restriction on β ∈ (↑, ↓). We have also relabeled the
condensate fluctuations

δAαi ≡ Aαi (3.125)
Which is why the sums over k and k′ in H2 are unconstrained. We further recast H2 into a
more pleasing form

H2 = Hnon-int +Hint =
∑
k

∑
αβ

ηαβk Aα†k A
β
k

+
∑
kk′

∑
ij

∑
αβ

′′′
1

gαβij (k,k′)δk+k′,k0i+k0j + rαβij (k,k′)δk0i+k,k′+k0j

+
∑
kk′

∑
ij

∑
αβ

′′′
2

lαβij (k,k′)δk0i+k,k′+k0j (3.126)

The subscipt non-int refers to the single-particle Hamiltonian, with SOC. The first primed sum(∑
ij

∑
αβ

)′′′
1

goes over the subset of values (i, j, α, β) such that Nα
i 6= 0 and Nβ

j 6= 0, and the

second primed sum
(∑

ij

∑
αβ

)′′′
2

goes over the subset of values such that Nα
i 6= 0 and Nα

j 6= 0.
Here, we have defined

gαβij (k,k′) = 1
2a

αβeiσ
αβ
ij

(
AβkA

α
k′ +Aαk′A

β
k

)
+ H.c (3.127)

rαβij (k,k′) = 1
2a

αβeiδ
αβ
ij

(
Aβ†k A

α
k′ +Aαk′A

β†
k − δk,k′δ

αβ
)

+ H.c (3.128)

lαβij (k,k′) = 1
2b
αβeiδ

αα
ij

(
Aβ†k A

β
k′ +Aβk′A

β†
k − δk,k′

)
+ H.c (3.129)



54 Chapter 3. Preliminaries

The operators gαβij (k,k′), rαβij (k,k′) and lαβij (k,k′) have already have utilized the bosonic com-
mutation relations

Aα†k A
β
k′ = 1

2

(
Aα†k A

β
k′ +Aβk′A

α†
k − δk,k′δ

αβ
)

(3.130)

AαkAk′ = 1
2

(
AαkA

β
k′ +Ak′βA

α
k

)
(3.131)

which will be helpful for calculating matrix elements in later chapters. The lower indices (i, j)
refer to the mean-field parameters, caused by SOC, the upper indices (α, β) refer to a specific
pseudo-spin configuration, and the arguments (k,k′) gives the operator dependence. In addition,
the coeffecients are given by

aαβ =
√
Nα

0 N
β
0
Uαβ

2Nsf
, σαβij ≡ θ

α
i + θβj (3.132)

bαβ = Nα
0
Uαβ

2Nsf
, δαβij ≡ θ

α
i − θ

β
j (3.133)

Let us also for later, define the quantities G, R and L which are independent of pseudo-spin

Gij(k,k′) =
∑
αβ

gαβij (k,k′) (3.134)

Rij(k,k′) =
∑
αβ

rαβij (k,k′) (3.135)

Lij(k,k′) =
∑
αβ

lαβij (k,k′) (3.136)

which explicitly written out becomes

Gij(k,k′) = 1
2a
↑↑eiσ

↑↑
ij

(
A↑kA

↑
k′ +A↑k′A

↑
k

)
+ H.c (3.137)

+ 1
2a
↑↓eiσ

↑↓
ij

(
A↓kA

↑
k′ +A↑k′A

↓
k

)
+ H.c (3.138)

+ 1
2a
↓↑eiσ

↓↑
ij

(
A↑kA

↓
k′ +A↓k′A

↑
k

)
+ H.c (3.139)

+ 1
2a
↓↓eiσ

↓↓
ij

(
A↓kA

↓
k′ +A↓k′A

↓
k

)
+ H.c (3.140)

Rij(k,k′) = 1
2a
↑↑eiδ

↑↑
ij

(
A↑†k A

↑
k′ +A↑k′A

↑†
k − δk,k′

)
+ H.c (3.141)

+ 1
2a
↑↓eiδ

↑↓
ij

(
A↓†k A

↑
k′ +A↑k′A

↓†
k

)
+ H.c (3.142)

+ 1
2a
↓↑eiδ

↓↑
ij

(
A↑†k A

↓
k′ +A↓k′A

↑†
k

)
+ H.c (3.143)

+ 1
2a
↓↓eiδ

↓↓
ij

(
A↓†k A

↓
k′ +A↓k′A

↓†
k − δk,k′

)
+ H.c (3.144)
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Lij(k,k′) = 1
2

(
b↑↑eiδ

↑↑
ij + b↓↑eiδ

↓↓
ij

)(
A↑†k A

↑
k′ +A↑k′A

↑†
k − δk,k′

)
+ H.c (3.145)

+ 1
2

(
b↓↓eiδ

↓↓
ij + b↑↓eiδ

↑↑
ij

)(
A↓†k A

↓
k′ +A↓k′A

↓†
k − δk,k′

)
+ H.c (3.146)

3.4 Dynamic matrix method
After mean-field theory, the Hamiltonian is written as a product of bilinear creation and an-
nihilation operators. The hope is now to diagonalize the two-component, spin-orbit coupled,
weakly interacting Bose gas, in effect describing the system as an effective free particle problem.
Naturally, one would look for a unitary transformation. But, reality is often disappointing, and
it will become apparant that a unitary transformation will rarely preserve the physics of the
system. We must therefore turn to other diagonalization methods, namely the dynamic matrix
method. The following work is based heavily on Xiao [53], Hemmen [50] and Tsallis [49]. Let us
consider the quadratic Hamiltonian, comprising all types of bilinear terms

H =
n∑
i,j

αijc
†
i cj + 1

2γijc
†
i c
†
j + 1

2γ
∗
ijcicj (3.147)

The operators ci and c†i are bosonic annihilation and creation operators, satisfying bosonic
commutation relations

[ci, c†j ] = δij , [ci, cj ] = [c†i , c
†
j ] = 0 (3.148)

Since the Hamiltonian is hermitian, H = H†, the coefficients αij ∈ C, γij ∈ C have the following
properties

αij = α∗ji, γij = γji (3.149)

Introducing the field operators ψ and ψ† in 2n dimensions as

ψ =
(
c
c†T

)
, ψ† =

(
c† cT

)
(3.150)

where c and c† are vectors of operators in n dimensions

c =

c1...
cn

 , c† =
(
c†1 . . . c†n

)
(3.151)

We can write the Hamiltonian in eq. (3.147) on the form

H = 1
2ψ
†Mψ − 1

2tr(α) (3.152)

The coefficient matrix M is given by

M =
(
α γ
γ∗ α∗

)
(3.153)
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where α and γ are the submatrices with αij and γij as entries. We also have,

α = α†, γ = γT , M = M† (3.154)

such that α and M are hermitian matrices, and γ is a symmetric matrix. We next define the
matrix J :

[ψµ, ψ†ν ] = Jµν , 1 ≤ µ, ν ≤ 2n (3.155)

The form of J is decided upon using the commutation relations for ci and c†i , giving

J =
(

1n 0
0 −1n

)
(3.156)

with 1n as the identity matrix in n-dimensions. To diagonalize the Hamiltonian, Bogoliubov
and Valking proposed the following linear transformation

c = Ad+Bd†
T

(3.157)

with A and B as square matrices of size n, and d and d† are vectors of operators in n dimensions

d =

d1
...
dn

 , d† =
(
d†1 . . . d†n

)
(3.158)

The operators di and d†i are new bosonic annihilation and creation operators satisfying the
standard commutation relations,

[φµ, φ†ν ] = Jµν (3.159)
with d and d† as elements in the new basis φ in 2n dimensions

φ =
(
d

d†
T

)
, φ† =

(
d† dT

)
(3.160)

Using that c = c†, we use the proposed linear transformation in the old field operators in
eq. (3.150), leading to the transformation rule

ψ =
(
c
c†T

)
=
(

Ad+Bd†T(
d†A† + dTB†

)T) =
(

Ad+Bd†T

B†T d+A†T d†T

)
(3.161)

=
(
A B
B∗ A∗

)(
d
d†T

)
(3.162)

= Tφ (3.163)

The transformation matrix T is defined as(
A B
B∗ A∗

)
(3.164)

Inserting ψ = Tφ into the Hamiltonian in (3.152), one obtains:

H = 1
2φ
†T †MTφ− 1

2tr(α) (3.165)
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The matrix T †MT is the new coefficient matrix. The first requirement on the transformation
matrix T is that T †MT is diagonal, which means

T †MT = diag(w1, . . . , w2n) (3.166)

with the constraint that the diagonal entries wµ’s must be real for µ = 1, . . . , 2n1. If this is the
case, then the Hamiltonian will be written as a sum over independent harmonic oscillators in
the new basis φ. We further have another constraint on T , namely that the new quasi-particles
are bosonic

Jµν = [ψµ, ψ†ν ] =
2n∑
αβ

TµαT
∗
νβ [φα, φ†β ] (3.167)

=
2n∑
αβ

TµαJαβT
∗
νβ (3.168)

= (TJT †)µν (3.169)

which is equivalent to,
J = TJT † (3.170)

In summary, the tranformation matrix T must satisfy equations (3.166) and (3.170). The first
enshures that T diagonalizes M , which is a mathematical argument, and the second enshures
that the system is still bosonic after the transformation, which is a physical argument.

Since H is hermitian, it can always be diagonalized by a unitary transformation. One would
therefore think that the same unitary transformation could be used to diagonalize the bosonic
system. However, a unitary transformation cannot in general be brought on the form in (3.164),
or meet the bosonic requirements in (3.170). It is stated in [53] that this is due to the field
operators ψ and φ being vectors of operators, not complex numbers. The diagonalization of a
bosonic system is therefore much more complicated. It is emphasized in [53], that a very efficient
way for diagonalizing a quadratic hamiltonian, is to use the Heisenberg equations of motions
for the system. It can be shown that for the bosonic system described by equation (3.147), the
Heisenberg equations of motion becomes (with ~ = c = 1)

i
d
dtψ = Dψ (3.171)

Where D is different from M , and is given by

D = JM (3.172)

please note that D is in general not hermitian. We say that a dynamic matrix is physically
diagonizable if it is diagonizable and all its eigenvalues are real. If we can find a T that has
the right shape according to (3.164) and satisfies requirements (3.170) and (3.166), then we
call the quadratic Hamiltonian BV diagonizable. The relationship between a BV diagonizable
Hamiltonian and the associated dynamic matrix is as follows
A quadratic Hamiltonian of bosons is BV diagonizable if and only if its dynamic matrix is

1Please note that the wµ’s are not the eigenvalues of M
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physically diagonizable.
This is an important result. It means that we should not find the eigenvectors and eigenvalues
of M , but rather of D = JM . We must also require that the eigenvalues of D are real, which
becomes a stability requirement.

3.4.1 Investigating the eigenvalues and eigenvectors of the dynamic
matrix

To bring the Hamiltonian on diagonal form, we should look for a T that diagonalizes D

T−1DT = Ω (3.173)

where Ω is a diagonal 2n× 2n matrix. We must also meet requirement (3.170), which gives us
an equation for T−1

J = TJT † (3.174)
T−1 = JT †J (3.175)

using that J2 = 1. Expressing D = JM as D = TΩT−1, we get an equation for the original
coefficient matrix M

M = JTΩT−1 (3.176)

which gives for the quadratic part of the Hamiltonian ψ†Mψ

ψ†Mψ = ψ†JTΩT−1ψ (3.177)
= ψ†JTJJΩT−1ψ (3.178)
= ψ†(T−1)†JΩT−1ψ (3.179)
= φ†JΩφ (3.180)

The new basis is defined by the transfomration matrix φ = T−1ψ. Further, the matrix JΩ is
diagonal. Thus, if T diagonalizes D and preserves bosonic commutation relations by eq. (3.170),
then the Hamiltonian can be brought on diagonal form. Next we investigate the shape of T and
the physical diagonalizability of the dynamic matrix. Following the steps in Hemmen [50], we
define the operator K acting on a general vector

(
uT vT

)T in C2n, where u and v are in Cn

K

(
u
v

)
=
(
v∗

u∗

)
(3.181)

It can be shown that K satisfies the relations {J,K} = 0 and [M,K] = 0 2. If xi is an eigenvector
of D with corresponding eigenvalue wi, then Kxi is also an eigenvector with corresponding
eigenvalue −wi

D(Kxi) = JMKxi = JKMxi = −K(JMxi) = −wiKxi (3.182)

2The last relation comes from the fact that M has the shape as in eq.(3.153)
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thus we only need to find half of the eigenvalues. It is shown in Xiao [53] that the pairs of
eigenvectors corresponding to the eigenvalues (w,−w) are linearly independent. One may then
construct the diagonal matrix

Ω = diag(w1, . . . , wn,−w1, . . . ,−wn) (3.183)

leading to the diagonal matrix associated with M

JΩ = diag(w1, . . . , wn, w1, . . . , wn) (3.184)

We cannot however, determine whether the wi’s are real or not, which depends on the entries
in D. The diagonal matrix Ω requires that we construct T as

T =
(
x1 . . . xn K(x1) . . . K(xn)

)
(3.185)

The form of T is consequently given by

T =
(
T1 T2
T ∗2 T ∗1

)
(3.186)

which satisfies the form as outlined in eq. (3.164). Now, equation (3.170) leads to the following
constraint on the eigenvectors uµ

(uµ, Juν) = Jµν 0 ≤ µ, ν ≤ 2n (3.187)

where (x,y) =
∑
µ x
∗
µyµ is the conventional inner product in C2n. Here uµ is an eigenvector of

D, either xi or Kxi. We also define the norm of a vector uµ as

(uµ, Juµ) = Jµµ (3.188)

which can be either positive or negative. If µ ≤ n, the eigenvectors uµ must be scaled to have
norm 1, and if µ > n the eigenvectors uµ must be scaled to have norm −1. Here comes an
important point. The norm requirement demands that we must construct the eigenvectors with
positive norm on the left in T , and the eigenvectors with negative norm on the right in T . In
addition, if M is positive-definite3, we have

wµ(uµ, Juµ) = (uµ, Jwµuµ) = (uµ,Muµ) > 0 (3.189)

such that
wµ(uµ, Juµ) > 0 (3.190)

which means that if µ ≤ n, the eigenvalues wµ must be positive, since the norm of eigenvector
uµ is positive by construction. This makes physical sense, as then the diagonalized Hamiltonian
is bounded from below. If however M is indeterminate, which means that M both as positive
and negative eigenvalues λµ, then we cannot with certainty place the eigenvectors with wµ > 0
to the left in T . This observation will turn out to be important for later in the thesis. It will
for example be the case that an eigenvector with positive eigenvalue wµ will have a negative

3This means that M has strictly positive eigenvalues λµ > 0, and that (xµ,Mxµ) > 0 for an arbitrary vector
xµ 6= 0
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norm, while the associated eigenvector with eigenvalue −wi will have a positive norm. Thus the
diagonal matrix associated with the quadratic, intederminate, Hamiltonian becomes

JΩ = diag(w1, . . . ,−wi, . . . , wn, w1, . . . ,−wi, . . . , wn) (3.191)

Which is not bounded from below by zero (assuming wi > 0). One can however lift the energy-
spectrum, absorbing the difference in the chemical potentials, as was done in section 3.1.

When the eigenvalues of the dynamic matrix are zero, it is shown in [53] that the corre-
sponding eigenvectors are linearly independent, and the norm of the eigenvectors come in pairs
as (1,−1). Also, the number of zero-eigenvalues should be an even number, as even the zero-
eigenvalues comes in pairs (0,−0).

3.5 Free energy and the Metropolis-Hastings algorithm
Depending on the phase, the mean field approach introduces a number of mean-field variational
parameters to be determined. These must be decided by minimizing the free energy of the
system. The parameters will be shown to be {θi} with i = 1 . . .m, where m is the number
of independent θ parameters, and k0 which is the finite length of the non-zero SOC-induced
minima in k-space. We express this dependence by

F = F ({θi}, k0) (3.192)

The mean-field parameters {θi} and k0 can in principle be functions of the physical parameters
of the system, e.g the SOC strength λR and the intra and inter scattering strengths Uαβ . The
Hamiltonian is assumed to be on the diagonal form

H = C + 1
2
∑
k

∑
σ

~ωσ(k)
(
dσ†k d

σ
k + 1

2

)
(3.193)

where C is an operator independent term, σ labels the branch, ~ωσ(k) is the excitation spectrum
for branch σ, and the dσk’s constitutate a basis for the diagonal Hamiltonian. We next introduce
the state |Nm〉 in Fock space

|Nm〉 = |n1〉 |n2〉 . . . |nm〉 (3.194)

which is a product of single-particle number states n̂i = d†idi, where i is a set of quantum
numbers. To obtain F , where we follow the derivation from Solli [48], we must first find the
partition function Z

Z = tr
(
e−βH

)
(3.195)

=
∑
m

〈Nm| e−βH |Nm〉 (3.196)

= e−βCe
−β/4

∑
k,σ

~ωσ(k)∑
m

〈Nm| e
−β/2

∑
k,σ

~ωσn̂k,σ |Nm〉 (3.197)
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where β = 1/kT is the inverse temperature. The average 〈Nm| . . . |Nm〉 becomes∑
m

〈Nm| e
−β/2

∑
k,σ

~ωσn̂k,σ |Nm〉 = (3.198)∏
k,σ

∑
m

〈Nm| e−β/2~ωσn̂k,σ |Nm〉 = (3.199)

∏
k,σ

∑
m

〈Nm| eβ/2~ωσnk,σ |Nm〉 = (3.200)

∏
k,σ

∑
nk,σ

eβ/2~ωσnk,σ = (3.201)

∏
k,σ

1
1− exp

(
−β2 ~ωσ(k)

) (3.202)

where we recognized the last sum as a geometric series, since the occupation number for any
single-particle boson state can be infinite. This gives the free energy F = − 1

β ln(Z) as

F = C + 1
4
∑
k,σ

~ωσ(k) + 1
β

∑
k,σ

ln
(

1− exp
(
−β
2 ~ωσ(k)

))
(3.203)

For zero temperature T → 0 (β →∞) the expression becomes

F = C + 1
4
∑
k,σ

~ωσ(k) (3.204)

In order for this limit to be valid it is important that all the branches are positive. We see that
the effect of interactions has a finite contribution at T = 0, since the excitation spectrum is
non-zero. We must now minimize F w.r.t the mean-field parameters {θi} and k0. This can be
done by taking a first derivative of F w.r.t all mean-field parameters, and setting this to zero.
One must also take a second derivative to check that the values of {θi} and k0 gives a minimum.
This is the preferred method if one has an analytic expression for C and ~ωσ(k), as was the case
in Janssønn [32] where the pure condensate was considered. However, this is rarely the case for
more complex phases, and we turn to Monte Carlo methods for determining these parameters

3.5.1 Metropolis-Hastings algorithm
A Monte Carlo method is a numerical method which rely on repeated random samplings to
obtain numerical results [43]. They are popular methods in physics and mathematics when
it is hard or even impossible to obtain analytical results. We will here present the Metropolis-
Hastings algorithm which is a Monte Carlo method [28]. The main idea is to try to minimize the
free energy F ({θi}, k0) by randomly exploring the phase space ({θi}, k0) available, computing
and comparing the free energy at random points hopefully converging to the global minima of
F . The following algorithm is based on sec. 3.1.4 in [28], and also from [43]. The transition
probabilities P(Ψi → Ψj), which is the probability of going to state Ψj given that you are in state
Ψi, are in the Metropolis-Hastings algorithm chosen to satisfy the detailed balance constraint

p(Ψi)P(Ψi → Ψj) = p(Ψj)P(Ψj → Ψi) (3.205)
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The state Ψi is particular configuration {{θi}mi=1, k0} of mean-field variatonal parameters at
step i. The transition probability is given as P(Ψi → Ψj) = Psel(Ψi → Ψj)Pacc(Ψi → Ψj),
where Psel(Ψi → Ψj) is the probability of selecting state Ψj from Ψi, and Pacc(Ψi → Ψj) is the
probability of accepting the new state Ψj from Ψi. In the Metropolis-Hastings algorithm, the
selectance probability is symmetric Psel(Ψi → Ψj) = Psel(Ψj → Ψi). Further, the acceptance
probability of the Metropolis-Hastings algorithm is chosen to be

Pacc(Ψi → Ψj) = min
{

1, p(Ψj)
p(Ψi)

}
(3.206)

where,
p(Ψj)
p(Ψi)

= e−β(F [Ψj ]−F [Ψi]) (3.207)

The free energy of state Ψi is given by F [Ψi]. The acceptance probability is thus unity if
F [Ψj ]− F [Ψi] < 0, which means that the new state has lower free energy than the old state. If
the new state has higher free energy than the old state, we maybe accept it. The algorithm is
as follows

1. Generate an initial state Ψi

2. Generate a new state Ψj

3. Calculate ∆F = F [Ψj ]− F [Ψi]

4. If ∆F < 0, the acceptance probability is unity, accept the new state Ψj

5. If ∆F > 0, calculate w = p(Ψj)/p(Ψi) = e−β(F [Ψj ]−F [Ψi]) < 1

6. Generate a random number r ∈ [0, 1). If r < w, accept the new state and assign Ψi = Ψj .
If not, keep the old state Ψi = Ψi

7. Change Ψi by altering its configuration

8. Repeat 1.→ 7. until the state converges

Step 2. requires generating a new state Ψj . For this thesis, this will be done by choosing
new parameters θi ∈ [0, 2π) and k0 ∈ [0, π) with a random number generator (RNG). Step 6.
requires generating a random number r ∈ [0, 1) which makes shure that there is some probability
of hopping out of a local minima. In addition, we make a sweep when all parameters have been
traversed randomly a selected number of times. Therefore it is customary to repeat steps 1.→ 6.
an integer number of sweeps. We also include a cooling temperature. The algorithm starts out
with high temperature, such that β is small. When the number of iterations increases, we cool
the temperature of the system, increasing β. This will hopefully speed up convergence to a
minimum. Note that the free energy is still evaluated at zero temperature. The method for
cooling temperature will depend on the problem, but for this thesis the cooling temperature was
chosen to be

kTcooling = kT0

1 + 10× i (3.208)

where i is the number of sweeps and kT0 is the starting temperature. Thus after a certain
number of sweeps (where each sweep contains many iterations) one expects the system to reach
equilibrium. For more information about cooling schemes, see ’Simulated Annealing’ in e.g [6].
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3.6 Determination of phases

Janssønn [32] considered in his thesis a pure condensate, in which all terms proportional to
an operator was neglected. This means that free energy is simply the constant Hamiltonian,
F = H0. We define the mean-field parameter k0 which is simply a re-scaling of |k0i|, and gives
the length of the x and y components of a non-zero condensate momentum k0i

√
2k0 = |k0i| (3.209)

The diagonal and off-diagonal terms εk0i and |sk0i | are given by

εk0i = 4t cos(k0a) (3.210)
|sk0i | = 2

√
2λR| sin(k0a)| (3.211)

The intra- and inter component scattering strengths are treated equally

U↑↑ = U↓↓ ≡ U (3.212)
U↑↓ = U↓↑ ≡ αU (3.213)

Finally, we also assume that eq. (3.110) is valid, which by eq. (3.113) prohibits α = 1. This
makes it possible to identify certain configurations in k-space for which to place the Nα

k0i
bosons,

as proposed by mean-field theory. The configurations which are allowed in k-space are illustrated
in fig 3.3. See chapter 4. in Janssønn for details.
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(a) PZ (b) NZ (c) PW

(d) SW (e) LW

Figure 3.3: Overview of the allowed phases in k-space using mean field theory on the two
component, spin-orbit coupled, weakly interacting Bose gas. The phases are: (a) Polarized
(PZ) phase (b) Non-Polarized (NZ) phase (c) Plane Wave (PW) phase (d) Stripe Wave (SW)
phase (e) Lattice Wave (LW) phase. The red points shows a non-zero condensate number, and
the arrows imply wich pseudo-spin component it is filled by. The points are labeled counter-
clockwise as 1, 2, 3,4 and so forth

Notice that for the zero-momentum phases (PZ and NZ) the condensate spin-orbit coupling
|sk0i | is zero. This means that we can have N↑0 6= 0 and N↓0 = 0, as the expressions for the
chemical potentials in eqs. (3.118) and (3.119) does not have the problematic SOC term with
one of the condensate numbers in the denominator. For all non-zero momentum phases, the
condenasate numbers N↑0 and N↓0 for each point must both be non-zero, since the condensate
spin-orbit coupling is finite. Janssønn treated all of these phases, but neglected the LW-phase
(for reasons which will become appearant later). For the PZ and NZ phases, for which k0 = 0,
the free energy was found to be independent of the mean-field parameters θ↑ and θ↓. For the
PW and SW phases, the free energy was found to be dependent on k0. Via minimization of the
free energy, both PW and SW must have k0 fixed to

k0 = 1
a

arctan
(√

2λR
2t

)
(3.214)

for the pure condensate. Both PW and SW was found to be independent of the varatinal
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parameters θαi , which are therefore only constrained by eq.(3.104). The free energies are found
to be, where we assume µ↑ = µ↓, t↑ = t↓ and N↑0 = N↓0 = N0/2 (except the PZ phase which has
N↑0 = N0 and µ↑ = µ with µ↓ chosen for the moment at will)

FPZ = −Ns2U (4t+ µ)2 (3.215)

FNZ = −Ns
U(1 + α) (4t+ µ)2 (3.216)

FPW = −Ns
U(1 + α)

(
4t
√
λ2
R

2t2 + 1 + µ

)2

(3.217)

FSW = −2Ns
U(3 + α)

(
4t
√
λ2
R

2t2 + 1 + µ

)2

(3.218)

These expressions produces the phase-diagram shown in fig. 3.4, where the author has used the
Python programming language. The phase-diagram is produced in (α, λR) space by comparing

Figure 3.4: Phase diagram for the pure condensate. The NZ region is very small. The physical
parameters are µ = 1, U = 0.1, t = 1, and Ns = 10002

the free energies (FPZ, FNZ, FPW, FLW) and choosing the smallest value for every combination
of (α, λR). Notice the bondary at α = 1 which separates the PW and SW phase. As mentioned,
this value for α is actually problematic, as it violates eq. (3.113). This phase-diagram coincides
with the results from [21].
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3.6.1 Investigation of condensate densities for the pure condensate
In fig. 3.5 a the phase diagram for two different values for µ are shown, including plots of the
condensate densities N0/Ns. For µ = −3.9, the PZ phase has a constant condensate density
which is close to unity. This physically means on average one boson per lattice site. However,
for the other phases, the condensate density quickly rises, with maximum value at as high as
60. This would mean on average 60 bosons per lattice site, which makes it unreasonable to only
consider two-body scattering. Notice that the condensate densities increases with increasing
SOC strength λR. For µ = 1, the PZ phase has a constant condensate density at about 50,
while the other phases here also increases quicly, with a maximum value at about 150. In this
case also, it would seem unreasonable to only consider two-body scattering. The remaining

Figure 3.5: Two phase-diagrams (left) with µ = −3.9 (top) and µ = 1 (bottom). On the right
the condensate density N0/Ns is shown for the two-phase diagrams. The physical parameters
are U = 0.1, t = 1 and Ns = 1002

chapters of this thesis will therefore be devoted to consider the operator-dependent terms for
each phase, and calculate the associated excitation spectrum. We shall also investigate the
solutions to N↑0 and N↓0 for each phase in detail, and investigate stability criteria. We will
also, when possible, investigate the excitation spectrums near k-minima, in order to calculate a
superfluid critical velocity.



Chapter 4
The PZ-phase

This is the first, and mathematically simplest phase we will encounter. The condensate
momenta are k01 = 0. The first thing to notice is the imbalance in the condensate particle
numbers N↑0 6= 0 and N↓0 = 0, leading to a strong zeeman field. In addition, the fluctuation
pertaining to A↓k01

is considered to be 0. This gives in principle that the chemical potential
for the down component µ↓ can be chosen arbitrarily. However, we shall see that the chemical
potential difference δ ≡ µ↑−µ↓ will be bounded from below from physical arguments. Secondly,
since k01 = 0, we have no condensate spin-orbit coupling.

4.1 Chemical potentials and condensate densities

The fluctuation of the condensate operator A↑k01
is not zero1 and the expression for µ↑ is given

by eq. (3.118) from the previous chapter. Here we note that |sk01 | = 0. The primed sum gives
the allowed values as α =↑ and (j, i′, j′) = (1, 1, 1). This gives (with f = 1) the expression for

1Notice that we cannot use the converse equation for µ↓ in this case, as that equation assumed that a↓
k00

6=
0,which clearly is violated here

67
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µ↑ ≡ µ
µ = −4t+ UN0

Ns
(4.1)

Notice that µ is negative in most cases. With weak interactions in the superfluid case, and with
t normalized to 1, U must be much smaller than one. In addition, the fraction of bosons to
lattice sites Ns cannot exceed any value, as then one would probabably have to include more
orders of interactions. If for example N0/Ns = 10 then it would mean on average four bosons
per lattice site, which would make it unreasonable to only consider two-body scattering. The
expression for µ also gives an equation for the condensate density N0/Ns

N0

Ns
= µ+ 4t

U
(4.2)

which clearly must be positive, giving the lower bound µ > −4t. Note that there is a clear
correspondence between having particles in the system and having a finite µ, even with a negative
µ. It is also evident that µ actually can be zero, if t is nonzero. One can ask, does a negative
µ imply an unstable condensate? For the pure condensate, the free energies for all the phases
are negative independent of the sign of µ. This implies that the system is stable since there
is no energy-cost of placing bosons at their respective minima in k-space. For the non-pure
condensate, the stability of the system will be connected with the energy costs of exciting a
particle from the condensate. If the energy of exciting a state is negative then the system
will quickly move particles to finite k, since this leads towards a new minimum. However, if
the energy of exciting a state is positive, the system would rather stay in the condensed state
and excitations would then be a result of interactions. We shall investigate the energy costs of
exciting a boson in the pseudo-spin up and pseudo-spin down states in section 4.3.1. We also
define the difference in chemical potentials δ

µ− µ↓ = δ (4.3)

giving the expression for µ↓
µ↓ = µ− δ (4.4)

It is a reasonable assumption that since N↑0 > N↓0 , µ↑ > µ↓, and so δ > 0.

4.2 Constant and linear Hamiltonian
The linear Hamiltonian is given by eq. (3.123), and vanishes in the PZ phase. This is due to
the delta-function, giving k = 0, which is a condensate momentum and is therefore excluded by
the sum. The expression for the constant Hamiltonian is given in eq. (3.122), where the primed
sum gives the possible values as (α, β) = (↑, ↑) and (i, j, i′, j′) = (1, 1, 1, 1). Thus we get the
expression for the constant Hamiltonian

H0 = −UN
2
0

2Ns
(4.5)

which by inserting the expression for N0/Ns in eq. 4.2 becomes

H0 = −Ns(µ+ 4t)2

2U (4.6)
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The expression for H0 coincides with the expression for the free energy of the PZ phase in eq.
(3.215)

4.3 Quadratic Hamiltonian
The quadratic Hamiltonian for the PZ-phase, and indeed all the following phases also, is on the
quadratic form outlined in eq. (3.147) in the Dynamic Matrix section. This will become clear
in a moment. The non-interacting part of H2 is given by

Hnon-int =
∑
k

∑
αβ

ηαβk Aα†k A
β
k (4.7)

The sum over (α, β) can be rewritten by using the commutation relations for the bosonic oper-
ators Aαk and Aα†k

η↑↑k
2

(
A↑†k A

↑
k +A↑kA

↑†
k − 1

)
+
η↑↓k
2

(
A↑†k A

↓
k +A↓kA

↑†
k

)
(4.8)

η↓↑k
2

(
A↓†k A

↑
k +A↑kA

↓†
k

)
+
η↓↓k
2

(
A↓†k A

↓
k +A↓kA

↓†
k − 1

)
(4.9)

The above expression is the same for all the ensuing phases as well. The interaction Hamiltonian
is given by

Hint =
∑
k

g↑↑11(k,−k) + r↑↑11(k,k) + l↑↑11(k,k) + l↑↓11(k,k) (4.10)

The expressions for g, r and l are given by eqs. (3.127), (3.128) and (3.129). Note that we
get interactions from pseudo-spin ↓ from l, as the condensate can interact with excited down
bosons. The the first primed sum gives the possible values for the indices as (α, β) ∈ (↑, ↑) and
(i, j, i′, j′) = (1, 1, 1, 1), and the second primed sum gives α =↑, β ∈ (↑, ↓) and (i, j, i′, j′) =
(1, 1, 1, 1). The goal is to write H2 as a matrix product, as in the Dynamic Matrix section

H2 = ψ†kMψk + C2 (4.11)

where C2 is an operator independent term. Let us introduce the vectors of operators ψk and ψ†k
with 8 entries each as

ψk =



A↑k
A↑−k
A↓k
A↓−k
A↑†k
A↑†−k
A↓†k
A↓†−k


, ψ†k =

(
A↑†k A↑†−k A↓†k A↓†−k A↑k A↑−k A↓k A↓−k

)
(4.12)

These vectors satisfy bosonic commutation relations

[ψµk , ψ
ν†
k ] = Jµν , 1 ≤ µ, ν ≤ 8 (4.13)
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with J is defined in eq. (3.156). Notice the order of the operators, if Bk is an operator, then
the operator B−k is placed to the right of it. This will also apply to the case where we have the
operator Bp, where p is a linear function of k. The order will then be Bp and to the right Bp′ ,
where p′ = p(−k). The reason for this will become apparent in the ensuing calculations. Let
Vk be a 8× 8 matrix. The quadratic Hamiltonian can then be written as a matrix product

H2 =
∑
k

ψ†kVkψk + C2 (4.14)

The matrix Vk is given by

Vk =
(
V1(k) V2
V ∗2 V ∗1 (k)

)
(4.15)

The four-by-four submatrices V1(k) and V2 are given by

V1(k) =


η↑↑
k

2 + 2as 0 η↑↓
k

2 0
0 0 0 0
η↓↑
k

2 0 η↓↓
k

2 + αas 0
0 0 0 0

 (4.16)

V2 =


0 1

2ase
−2iθ 0 0

1
2ase

−2iθ 0 0 0
0 0 0 0
0 0 0 0

 (4.17)

We have defined θ = θ↑1 as the mean-field parameter. In addition, the frequent number as is
given by

as = UN0

2Ns
(4.18)

We would also like to explicitly sum over −k, in order to symmetrize the Hamiltonian, and give
equal importance for the k and −k terms. This is allowed since the

∑
k is symmetric in the

first Brilluoin zone, such that we may write
∑
k f(k) = 1

2
∑
k(f(k) + f(−k)), where f(k) is an

arbitrary function of k. Consequently, H2 becomes

H2 = C2 + 1
2
∑
k

ψ†kVkψk + ψ†−kV−kψ−k (4.19)

The constant term C2 becomes

C2 = Ns
2 (2µ− δ)− UN0

(
1 + α

2

)
(4.20)

where we have used that
∑
k η

αα
k = −Nsµα for α = (↑, ↓), as given in the appendix. The

troubling term is now ψ†−kV−kψ−k. However, since ψ−k is only different from ψk by a pairwise
exchange of the operators, hope is not lost. The vector of operators ψk is constructed such
that all k operators fall on a odd number, and all −k operators fall on an even number. The
shifted vector of operators ψ−k will therefore have the opposite pattern, with k operators falling
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on a odd number and −k operators falling on an even number. This means that we can write
ψ†−kV−kψ−k on the form

ψ†−kV−kψ−k = ψ†kV
′
kψk (4.21)

where V ′k is the shifted matrix defined as

V ′ij(k) =


V (−k)i+1,j+1 (i, j) = odd
V (−k)i+1,j−1 (i, j) = odd, even
V (−k)i−1,j+1 (i, j) = even, odd
V (−k)i−1,j−1 (i, j) = even

(4.22)

The matrix V ′k is on the form:

V ′k =
(
V ′1(k) V ′2
V ′∗2 V ′∗1 (k)

)
(4.23)

The shifted submatrices V ′1(k) and V ′2 are given by

V ′1(k) =


0 0 0 0
0 η↑↑

k

2 + 2as 0 −η
↑↓
k

2
0 0 0 0
0 −η

↓↑
k

2 0 η↓↓
k

2 + αas

 (4.24)

V ′2 =


0 1

2ase
−2iθ 0 0

1
2ase

−2iθ 0 0 0
0 0 0 0
0 0 0 0

 (4.25)

we have used that s(−k) = −s(k) and ε(−k) = ε(k). The symmetrized expression for the
quadratic Hamiltonian becomes

H2 = C2 + 1
2
∑
k

ψ†kMkψk (4.26)

where Mk = Vk + V ′k, and is on the form

Mk =
(
M1(k) M2
M∗2 M∗1 (k)

)
(4.27)

The entries of submatrix M1(k) are given by

M1(k) =


η↑↑
k

2 + 2as 0 η↑↓
k

2 0
0 η↑↑

k

2 + 2as 0 −η
↑↓
k

2
η↓↑
k

2 0 η↓↓
k

2 + αas 0
0 −η

↓↑
k

2 0 η↓↓
k

2 + αas

 (4.28)
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and the entries of sumatrix M2 are given by

M2 =


0 ase

−2iθ 0 0
ase
−2iθ 0 0 0
0 0 0 0
0 0 0 0

 (4.29)

The procedure with shifting the sum with −k, introducing a shifted matrix, is the one which
will be used throughout this thesis. This is allowed since all the k dependence on the operators
turns out to come in explicit pairs (p(k),p(−k)) with linear dependence of k for all the phases.
The exception is the PW phase, which requires symmetrization with another vector.

4.3.1 Physical constraints on the chemical potential difference
Let us invesigate the signs of M1,1 and M3,3, as they give the energy cost/gain of exciting a par-
ticle from the condensate to a finite k wavevector in the pseudo-spins up and down respectively.
The reason for this is because the matrix product becomes M1,1A

↑†
k A
↑
k = M1,1n

↑
k when written

out, and likewise for M3,3. Thus to increase the number of particles in either state, one must
pay with the energies M1,1 and M3,3. The matrix-element for excitation to pseudo-spin up is
given by

M1,1 =
η↑↑k
2 + 2as (4.30)

= (4t− εk) + 3UN0

2Ns
> 0, ∀k (4.31)

where we have used that εk has a maximum at 4t, such that 4t− εk ≥ 0 for all k, and we have
used the definitions η↑k and as as given in equations (2.95) and (4.18). We have also inserted
the explicit expression for µ, as given by eq. (4.1). Thus the energy cost of exciting a boson
with pseudo-spin up is positive, which means that it is energetically unfavorable. The same is
true for M3,3, by a similar analysis.

The matrix element M1,1 gives the energy cost of increasing the number of bosons with
pseudo-spin up in the excited state with wavevector k. Similarly, the matrix element M3,3 gives
the energy cost of increasing the number of bosons with pseudo-spin down in the excited state
with wavevector k. It makes physical sense that since there are only bosons with pseudo-spin
up in the condensed state and no bosons in the pseudo-spin down state, it should be easier to
increase the number of bosons with pseudo-spin up in the excited state. Therefore we must have
the constraint

M1,1 < M3,3 (4.32)

η↑↑k
2 + 2as <

η↓↓k
2 + αas (4.33)

−(εk + µ↑)
2 + 2as <

−(εk + µ↓)
2 + αas (4.34)

δ >
UN0

Ns
(2− α) = (µ+ 4t)(2− α) (4.35)
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where we have used the expression for the condensate density N0/Ns in eq. (4.2). Thus the
chemical potential difference is bounded from below by physical arguments. With U = 0.1,
α = 0.5 and one boson per lattice site N0/Ns = 1 this lower bound becomes δ > 0.15.

4.4 Explicit expression for the excitation spectrum for the
PZ-phase

Maple2 is able to find eight eigenvalues, with two independent positive branches for the dynamic
matrix D = JMk, labeled by w+ and w−. The eigenvalues are given by, as advertised in the
Dynamic Matrix section:

w1 =w+, w5 = −w+ (4.36)
w2 =w+, w6 = −w+ (4.37)
w3 =w−, w7 = −w− (4.38)
w4 =w−, w8 = −w− (4.39)

Confirming the fact that the eigenvalues comes in pairs (w,−w). Maple is however not able to
find the eigenvectors. The explicit expression for the branches are given by

w+(k) =1
2

√
Ak + 2

√
Bk (4.40)

w−(k) =1
2

√
Ak − 2

√
Bk (4.41)

where Ak and Bk are given by

Ak = 2E1(k)2 + 2E2(k)2 + |s(k)|2 − 2a2
s (4.42)

Bk =
(
E2(k)2 − E1(k)2 + a2

s

)2 (4.43)
− |s(k)|2 (as + E1(k) + E2(k)) (as − E1(k)− E2(k)) (4.44)

We see that the spin-orbit coupling can cause imaginary eigenvalues from Bk. The energies
E1(k) and E2(k) are given by

E1(k) =
η↑↑k
2 + 2as (4.45)

E2(k) =
η↓↓k
2 + αas (4.46)

and comprises the expressions for the chemical potentials. We note that the branches are
independent of the variational parameter θ, which may thefore be set to zero. In fig. 4.1 the
plot of the excitation spectrum for the PZ-phase is shown. Note that we get two branches,
versus the case of a weakly interacting bose gas, which only had one. This will be explained in
the next chapter, when comparing this phase to the NZ phase. We see that w1(k) is quadratic

2Maple is a symbolic math software. See https://www.maplesoft.com/ for more information.

https://www.maplesoft.com/
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(a) A plot of the excitation spectrum for the
PZ phase when kx = ky

(b) Plot of the lowest energy branch w− in the first
Brilloin zone

Figure 4.1: Plot of the excitation spectrum for the PZ phase. The physical parameters are
U = 0.1, Ns = 1002, N0/Ns = 1, t = 1, λR = 1, α = 0.1 and δ = 2

near k = 0, while w2(k) is reminiscent of the Bogoliubov spectrum given in fig. 3.2. We also
include a plot of the maximum absolute value of the imaginary part of (w+, w−) for all (kx, ky)
in the 1st Brillouin zone and for different values of δ, see fig. 4.2. The imaginary part is mainly
concetrated around k = 0, which is true for the other phases as well, the imaginary part appears
around a minima in k space. Note that the imaginary part in fig. 4.2 quickly vanishes below a
certain line in (α, λR) space. Above this line, the eigenvalues are imaginary, and the dynamic
matrix JM is not physically diagonizable. This means that the Hamiltonian H can not be
BV-diagonalized.

4.5 Dispersion relation
From the excitation spectrum, we see that the minimum is at k = 0. At this value, Ak becomes

A0 = ((α− 1)(µ+ 4t) + δ)2

2 (4.47)

and
√
B0 becomes √

B0 = ((α− 1)(µ+ 4t) + δ)2

4 (4.48)

where we have inserted the explicit expression for the condensate density in eq. (4.2). Conse-
quently, the two branches each take the values

w+(0) = |(α− 1)(µ+ 4t) + δ| (4.49)
w−(0) = 0 (4.50)
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Figure 4.2: The plot of the maximum absolute value of the imaginary part of the branches in
the PZ phase, with constant condensate density N0/Ns = 1, and varying µ.

This means that we get a Zeeman splitting at k = 0, given by

∆w(0) = |(α− 1)(µ+ 4t) + δ| (4.51)

We can remove the absolute sign, since δ > (2−α)(µ+ 4t) by eq. (4.35). The Zeeman splitting
can be made arbitrarily large by tuning the difference in chemical potentials δ, which is only
bounded from below by eq. (4.35). Numerical analysis shows that increasing δ increases the
parameter space for which the branches are real, see fig. 4.2. Further, we calculate the gradient
in k space for each branch

∂wσ
∂k
|k=0 ≡ ∇kwσ(k)|k=0 (4.52)

If the gradient is linear on the form vgk̂, then vg gives the superfluid critical velocity. Calculating
the gradient we obtain

∂w±
∂k

= 1
2w±(k)

(
∂Ak
∂k
± 1√

Bk

∂Bk
∂k

)
(4.53)

The derivative is well defined for the (+) branch, since w+(0) 6= 0 because of the Zeeman
shift. The derivative must be handled more carefully for the (−) branch, as we get 0 in the
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denominator. The partial derivatives are given by

∂Ak
∂k

= ∂

∂k

(
2E1(k)2 + 2E2(k)2 + |s(k)|2 − 2a2

s

)
(4.54)

k→ 0 = 4
(
E1(k)∂E1

∂k
+ E2(k)∂E2

∂k

)
(4.55)

where we have used that
∂

∂k
|s(k)|2 = 2|s(k)|∂|s(k)|

∂k
→ 0 (4.56)

in the limit k→ 0, as s(0) = 0. For Bk, we get, were we also remove any terms proportional to
|s(k)|2

∂Bk
∂k

= ∂

∂k

(
E2(k)2 − E1(k)2 + a2

s

)2 (4.57)

= 22 (E2
2(k)− E2

1(k) + a2
s

)(
E2(k)∂E2

∂k
− E1(k)∂E1

∂k

)
(4.58)

We see that the prefactor is proportional to B0 6= 0 in the limit k→ 0. Using the definitions of
E1 and E2 given in eqs. (4.45) and (4.46), and that ηβk = −(ε(k)β + µβ) for β = (↑, ↓), we get

∂E1

∂k
= −1

2
∂ε↑k
∂k

= at↑
(
sin(kxa), sin(kya)

)
k

(4.59)

∂E2

∂k
= −1

2
∂ε↓k
∂k

= at↓
(
sin(kxa), sin(ky, a)

)
k

(4.60)

Consequently, the derivatives of Ak and Bk goes to 0 as k → 0. For ∂/∂k(w+) we get 0 in
this limit, as w+(0) 6= 0 making the denominator well defined. We therefore get no superfluid for
the + branch. For w− however, we get a indeterminate “0/0” expression, which requires more
care. Taking the limit will be cumbersome, and one must most likely make a Taylor expansion
of both the numerator and the denominator. To avoid unnecessary work, we can rather make a
multi-variate Taylor expansion of w−(k) around k = 0, and investigate the slope in that domain.
We neglect terms that are higher than bilinear, for example terms like k2

xk
2
y. Using Maple, we

Taylor expand w−(k) in the variables kx and ky, obtaining

w2
−(k) = a0

(
p(t)− λ2

R

)
k2 (4.61)

where a0 and p(t) are given by

a0 = 2a2(µ+ 4t)
(α− 1)(µ+ 4t) + δ

(4.62)

p(t) =(α− 1)t2 + 1
4 ((α− 1)µ+ δ) t (4.63)

= t

4∆w(0) (4.64)

where ∆w(0) is the Zeeman splitting. Thus w−(k) is linear around k→ 0

w−(k) = vg|k| (4.65)
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The gradient is therefore

∂w−
∂k

= vg
∂|k|
∂k

(4.66)

= vg
∂

∂k

(√
k2
)

(4.67)

= vg
1

2
√
k2

∂

∂k

(
k2) (4.68)

= vg
2k

2|k| = vgk̂ (4.69)

giving the superfluid critical velocity as

vg =
√
a0 (p(t)− λ2

R) (4.70)

The superfluid velocity is a decreasing function of the SOC-strength λR, as long as p(t)−λ2
R > 0.

The number a0 is always positive, since δ > (2−α)(µ+4t). The superfluid velocity as a function
of λR is shown in fig. 4.3, which verifies that the superfluid velocity is indeed a decreasing

Figure 4.3: The superfluid velocity vg as a function of λR. The physical parameters are α = 0.5,
N0 = Ns = 1002, t = 1, U = 0.1 and δ = 2t

function of λR. The reason for this is that the SOC tries to bring the minima of the excitation
spectrum out on finite k. When this happens, the PZ phase is no longer defined, and the velocity
becomes ill-defined. The critical value λR,crit for when this happens is given by

λR ≥ λR,crit =
√
t

2
√

∆w(0) (4.71)

When λR is greater than λR,crit, the lowest lying branch w− becomes imaginary. If we have on
average one boson per lattice site N0/Ns = 1, α = 0.5 and δ = 2, the critical value for λR is
given by λR,crit ≈ 0.7. The Zeeman field, generated in part by δ, is fully responsible for keeping
a well-defined superfluid critical velocity, as λR,crit 6= 0 when ∆w(0) 6= 0, and by extension
keeping the eigenvalues of the PZ phase real. We note that ∆w(0) is always positive when δ
satisfies eq. (4.35). Ergo, we always have real eigenvalues for the PZ phase when δ is tuned
appropriately, and λR < λR,crit 6= 0.
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4.6 Free energy for the PZ-phase
The PZ containts no variational parameters, as θ could be set to zero. There is therefore no
need to minimize the free energy with respect to the variational parameters. It will however be
calculated and then compared to the other phases, creating a phase diagram.

Since the coefficient matrix M is positive-definite, we can choose the positive branches w+
and w− along the first diagonal of Ω, giving

Ω = (w1, w2, w3, w4,−w1,−w2,−w3,−w4) (4.72)
JΩ = (w1, w2, w3, w4, w1, w2, w3, w4) (4.73)

With w1 = w2 = w+ and w3 = w4 = w−. The vector of operators in the new basis is given by

φk =



d1
k

d2
k

d3
k

d4
k

d1†
k

d2†
k

d3†
k

d4†
k


, φ†k =

(
d1†
k d2†

k d3†
k d4†

k d1
k d2

k d3
k d4

k

)
(4.74)

Note that even though w1 = w2 = w+, we cannot say that d1
k = d2

k = d+
k . The dik operators are

linearly independent, and they must satisfy [φµk, φ
ν†
k ] = Jµν , which could not be possible if two

or more operators were linearly dependent. The diagonalized Hamiltonian is given by

H2 = C2 +
∑
k

′ 4∑
i=1

wi(k)
(
di†k d

i
k + 1

2

)
(4.75)

where the primed sum avoids k in which wi(k) = 0. The Hamiltonian is on the form as outlined
in section 3.5, and the free energy is thus given by

F =H0 + C2 +
∑
k

′
w+(k) + w−(k) (4.76)

+ 2
β

∑
k

′
ln
(
1− e−βw+

)
+ ln

(
1− e−βw−

)
(4.77)

The operator-independent terms H0 and C2 are given by eqs. (4.5) and (4.20) respectively.



Chapter 5
The NZ-phase

The NZ phase is different from the PZ phase by a finite N↓0 condensate number. This will
not lead to the same Zeeman field, as the chemical potential in pseudo-spin down are no longer
independent of system parameters. We will be general, and assume that N↑0 and N↓0 can be
different. This is in contrast with the treatment in [32], where it was assumed that N↑0 = N↓0 .
Also, the mean-field parameters θ↑1 and θ↓1 are independent, due to zero condensate SOC.

5.1 Chemical potentials and condensate densities for the
NZ-phase

The chemical potential for the pseudo-spin ↑ component is given by eq. (3.118), where the
primed sum gives the allowed configurations as (j, i′, j′) = (1, 1, 1) and α = (↑, ↓). Writing out
the primed sum, we get the expression for µ↑

µ↑ = −4t+ UN↑0
Nsf

+ α
UN↓0
Nsf

(5.1)
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and conversely for µ↓

µ↓ = −4t+ UN↓0
Nsf

+ α
UN↑0
Nsf

(5.2)

Introducing the quantities x ∝ N↑0 and y ∝ N↓0 as

x = UN↑0
Nsf

, y = UN↓0
Nsf

(5.3)

we get the linear set of equations in x and y

µ↑ =− 4t+ x+ αy (5.4)
µ↓ =− 4t+ y + αx (5.5)

This allows us to obtain expressions for N↑0 and N↓0 in terms of the given parameters µ↑ and
µ↓. We can write the above equation on matrix form, obtaining(

1 α
α 1

)(
x
y

)
=
(
µ↑ + 4t
µ↓ + 4t

)
(5.6)

which has the unique solutions

x = µ↑ − αµ↓ + 4t(1− α)
1− α2 , y = µ↓ − αµ↑ + 4t(1− α)

1− α2 (5.7)

Notice that one can obtain the solution for y ∝ N↓0 simply by flipping the spins from ↑ to ↓ and
visa versa in the expression for x ∝ N↑0 . For a given α and t, one must be careful to choose µ↑
and µ↓ such that x and y becomes positive.

5.2 Constant, linear and quadratic Hamiltonian
Again, as in the PZ phase, the linear Hamiltonian vanishes. The constant Hamiltonian, for
any phase, is given by eq. (3.122), where the primed sum gives the possible configurations as
(i, j, i′, j′) = (1, 1, 1, 1), α = (↑, ↓) and β = (↑, ↓). Thus, we simply get

H0 =− 1
2Nsf2

∑
αβ

UαβNα
0 N

β
0 (5.8)

=− U

2Nsf2

(
N↑20 + 2αN↑0N

↓
0 +N↓20

)
(5.9)

The interacting part of the Hamiltonian is given by

Hint =
∑
k

G11(k,−k) +R11(k,k) + L11(k,k) (5.10)

The quantities G, R and L are defined in eqs. (3.134), (3.135) and (3.136). The first and second
primed sum both give the possible configurations as (i, j) = (1, 1), α ∈ (↑, ↓) and β ∈ (↑, ↓). We
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also define the vector of operators ψ†k and ψk exactly as in the PZ-phase. We also explicitly
sum over −k, in order to symmetrize the Hamiltonian. The quadratic Hamiltonian can then be
written

H2 = C2 + 1
2
∑
k

ψ†kMkψk (5.11)

The constant term is given by,

C2 = µ↑ + µ↓

2 Ns −
U(N↑0 +N↓0 )

f

(
1 + α

2

)
(5.12)

and the coefficient matrix Mk has the form

Mk =
(
M1(k) M2
M∗2 M∗1 (k)

)
(5.13)

where the four-by-four, Hermitian submatrix M1(k) is given by

M1(k) =


E1(k) 0 b(k) 0

0 E1(k) 0 b(−k)
b∗(k) 0 E2(k) 0

0 b∗(−k) 0 E2(k)

 (5.14)

The matrix-elements has the values

E1(k) =
η↑↑k
2 + UN↑0

Nsf
+ αUN↓0

2Nsf
(5.15)

b(k) =
η↑↓k
2 +

αU

√
N↑0N

↓
0

2Nsf
e−i(θ

↑
1−θ

↓
1 ) (5.16)

E2(k) =
η↓↓k
2 + UN↓0

Nsf
+ αUN↑0

2Nsf
(5.17)

and the symmetric four-by-four submatrix M2 is given by

M2 =


0 c↑ 0 d
c↑ 0 d 0
0 d 0 c↓

d 0 c↓ 0

 (5.18)

with matrix-elements defined as

c↑ =UN↑0
2Nsf

e−2iθ↑1 (5.19)

d =
αU

√
N↑0N

↓
0

2Nsf
e−i(θ

↑
1 +θ↓1 ) (5.20)

c↓ =UN↓0
2Nsf

e−2iθ↓1 (5.21)
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The author is not able to find explicit expressions for the excitation spectrum, and the eigenvalues
found numerically are imaginary. For the case of equal condensate particle numbers N↑0 = N↓0 ,
this is due to a zero Zeeman field. The spin-orbit coupling therefore forces the minima out on
finite k, making the NZ phase ill-defined. We next compare the PZ and NZ phases, and explore
the effect of an imbalance in condensate numbers for the NZ phase, as this intuitively could
make the NZ phase stable.

5.3 Comparison of the PZ and NZ phases
The PZ phase has an extreme imbalance in condensate numbers, N↑0 6= 0 and N↓0 = 0. We
found in the PZ chapter that to obtain real eigenvalues, one had to include a Zeeman shift
which was proportional to δ = µ↑ − µ↓. The advantage of the PZ phase was that since N↓0 = 0,
one could in principle choose µ↓ to any value. Thus the difference δ could be tuned to give
real eigenvalues. We can understand the PZ phase better by analyzing the spin-orbit coupled,
single-particle problem in section 3.1 including a finite Zeeman shift. The eigenvalues are given
by

λ±k = −εk − µ̄±
√
|sk|2 + δ2/4 (5.22)

µ̄ = µ↑ + µ↓

2 (5.23)

δ = µ↑ − µ↓ (5.24)

The minima of the λ−k branch is found at the values

kx, ky = ± 1
2a arccos(z) (5.25)

z = t2/λ2
R − 1/2 + t2δ2/16λ4

R

t2/λ2
R + 1/2 (5.26)

The value of λ−k evaluated at any one of these points is given by

λ−min = −2
√

2t
√
z + 1− µ̄−

√
4λ2

R(1− z) + δ2/4 (5.27)

which is negative. Following the same logic as in the zero Zeeman field case, we must shift the
branches up and absorb the difference in the chemical potentials. In fig. 5.1 the plot of the
excitation spectrum for intreasing values of δ is shown. At δ = 0 the two branches meet linearly
at k = 0, with minima at finite k. When δ is increased, the two branches are seperated at
k = 0 by the Zeeman field, and the behaviour at k = 0 is not longer linear. Also, the minima at
finite k moves closer to the origin. When the minima meet at the origin, the Zeeman field has
effectively overtaken the influence from SOC. This happens when z = 1, since arccos(1) = 0,
which gives the critial value for δ

δm = 4λ2
R

t
(5.28)

For δ ≥ δm the minima of Λ−k will be at k = 0, even with SOC. This is reminiscent of the PZ
phase. The PZ phase has a Zeeman field, and has real eigenvalues with a finite λR. Also note
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Figure 5.1: Plot of the single-particle excitation spectrum with spin-orbit coupling. The black
lines are the excitation spectrum with δ = 0, the dotted lines are with increasing δ, and the red
lines are with δ = δm.

that the excitation spectrum for the PZ phase is similar to fig. 5.1, only with the Bogoliubov
spectrum in the lowest branch, which makes the behaviour around k = 0 linear. We can try to
understand the spin-orbit coupled, weakly interacting, two-component Bose gas, by superimpos-
ing the single-particle excitation spectrum with SOC, and the one-component weakly interacting
Bogoliubov spectrum. Thus we can understand why the NZ phase is unstable for N↑0 = N↓0 ;
there is no Zeeman field which can overtake the influence from SOC. We can however try to
create a Zeeman field for the NZ phase by introducing an inbalance in the condensate numbers
∆N0 = N↑0 −N

↓
0 . Using the equations for µ↑ and µ↓ given in eqs. (5.5), we get

∆N0 = δ

U(1− α)Ns (5.29)

We can, as a zeroth order approximation, expect that the eigenvalues of the NZ phase becomes
real when δ = δm, which gives

∆N0 = 4λ2
R

Ut(1− α)Ns (5.30)

However, the numerical results reveal that the eigenvalues of NZ are still imaginary, even with
the ∆N0 as defined above. The reason for this is that the expressions for the chemical potentials
are linked in a way that gives no Zeeman splitting, as opposed to the PZ phase where µ↓ can
be chosen appropriately. The author was able to introduce a Zeeman shift if an independent
fluctuation µ∗ was added to either of the chemical potentials, but this does not follow the
equations of the mean-field approach, and is simply an illustration that the equations for the
chemical potentials leads to zero Zeeman field.
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Chapter 6
The PW-phase

This phase looks similar to the NZ-phase, it is simply a shift in coordinate systems. One
would think that this phase should be equivalent, because of galilean invariance. However, SOC
breaks galilean invariance, and we must treat this phase seperately. We will see that a finite
k01 leads to complications when solving for the condensate densities N↑0 and N↓0 in terms of
the chemical potentials µ↑ and µ↓. Also, spin-orbit coupling makes the mean-field parameters
θ↑1 and θ↓1 dependent. Lastly, we must choose a different symmetrization of H to obtain real
eigenvalues.
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6.1 Finding condensate densities

We will assume that N↑0 and N↓0 in general can be different. The expression for µ↑ is given by
eq. (3.118)

µ↑ = −ε↑i − |si|

√
N↓0

N↑0
Ω(|k0i|, N↑i )

+

∑
ji′j′

∑
α

′′′ Uα↑Nα
0

Nsf
cos
(
θ↑j′ − θ

↑
i − θ

α
j + θαi′

)
δi+j,i′+j′Ω(N↑i ) (6.1)

Because of finite k01, we must include the SOC term. The possible configurations from the
primed sum is given by (j, i′, j′) = (1, 1, 1) and α = (↑, ↓), and we must choose i = 1. The
primed sum gives the same contribution as the NZ-phase, and the final expression for µ↑ is
given by

µ↑ = −εk01 − |sk01 |

√
N↓0

N↑0
+ UN↑0
Nsf

+ αUN↓0
Nsf

(6.2)

and conversely for µ↓

µ↓ = −εk01 − |sk01 |

√
N↑0

N↓0
+ UN↓0
Nsf

+ αUN↑0
Nsf

(6.3)

We see that the SOC-term introduces the condensate densities Nα
0 in the denominator of the

expression for µα. This makes the equations non-linear in the condensate densities. Let us
treat, for the moment, the chemical potentials as known parameters. The unknowns are then
the condensate densities N↑0 and N↓0 . We introduce the quantities x and y

x =

√
U

Nsf

√
N↑0 , y =

√
U

Nsf

√
N↓0 (6.4)

for which we get the coupled set of third-degree equations in x and y

x3 + αy2x− sy − u1x = 0 (6.5)
y3 + αx2y − sx− u2y = 0 (6.6)

where the coefficients are given by

s = |sk01 | = 2
√

2λR| sin(k0a)| (6.7)
u1 = µ↑ + εk01 = µ↑ + 4t cos(k0a) (6.8)
u2 = µ↓ + εk01 = µ↓ + 4t cos(k0a) (6.9)

Using Maple, the author tried to find an analytic solution for the condensate densities, but was
unsuccessful.
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6.1.1 Numerical solution to condensate densities

We choose k0 as k0 = 1/a arctan(
√

2λR/2t), which is the k0 found by minimizing the pure
condensate for the PZ phase. One may find an numerical approximation for the condensate
densities by finding the roots (x, y) of the above equations. This is done using Python, using
Numpys solve function. In figure 6.1 the simultaneous solution for x and y is shown for SOC
strength λR varying from 0.2 to 2.5. The plot also includes the difference in chemical potentials,
defined as δ = µ↑ − µ↓. The choice µ↑ = 1 has also been made. We see that for δ = 0, y
behaves as a linear function of x. This simply implies that if the chemical potentials are equal,
the number of particles in the condensate for both pseudo-spins are also equal N↑0 = N↓0 . This
makes physical sense, as the chemical potential for a specific pseudo-spin regulates the average
number of particles for the specific pseudo-spin. Also, δ < 0 shows that y > x. Thus µ↓ > µ↑

leads to N↓0 > N↑0 , which is what we expect. From figure 6.2, which shows x as a function of
λR, we see that x is an increasing function of δ for all λR. This is opposite for the solution for
y, which is a decreasing function of δ for all λR. This makes physical sense; when δ ranges from
−1 to 1, µ↓ decreases from 2 to 0 respectively. We expect that a high value for µ↓ leads to a
high value for y, as the numerical solutions show.

There is also other interesting features from figures 6.2 and 6.3. We see in fig. 6.2 that x
behaves linearly when λR is increasing. Also, this seems to be independent of the value of δ.
This behaviour is also similar in fig. 6.3, where y behaves linearly for increasing λR, but here the
intersection with the y-axis is seen dependent on the value of δ. This is due to keeping µ↑ = 1
(which regulates x), and varying µ↓ from 0 to 2 (which regulates y).

Figure 6.1: Plot over the simultaneous solutions for the condensate densities (x, y). The SOC
strength is increasing from λR = 0.2 to λR = 2.5. The plot includes differences in the chemical
potentials, ranging from 1 to −1, and is defined as δµ = µ↑−µ↓. The upper-most curve is δ > 0.
Other physical variables are given the values t = 1, µ↑ = 1 and α = 0.5



88 Chapter 6. The PW-phase

Figure 6.2: Plot over the solution for x in terms of λR. The plot includes differences in the
chemical potentials, ranging from 1 to −1, and is defined as δ = µ↑ − µ↓. Other physical
variables are given the values t = 1, µ↑ = 1 and α = 0.5

Figure 6.3: Plot over the solution for y in terms of λR. The plot includes differences in the
chemical potentials, ranging from 1 to −1, and is defined as δ = µ↑−µ↓. The upper-most curve
is δ > 0. Other physical variables are given the values t = 1, µ↑ = 1 and α = 0.5

6.2 Constant and linear Hamiltonian
We now have the constraint on the variational parameters θ↑1 and θ↓1 , from equation (3.104):

δθ1 = γ1 − π (6.10)

Where γ1 is given by −π−π/4, due to finite SOC. We will in the following assume that N↑0 can
be different from N↓0 . Using the expression for H0 in (3.122), and that the possible values for
(i, j, i′, j′, α, β) are given by (i, j, i′, j′) = (1, 1, 1, 1), α ∈ (↑, ↓) and β ∈ (↑, ↓), we get

H0 = − U

2Nsf2

(
N↑20 + 2αN↑0N

↓
0 +N↓20

)
(6.11)
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From the expression for the linear Hamiltonian H1, in eq. (3.123), we get that the possible
configurations for the momentum indices are (i, j, i′) = (1, 1, 1). Conservation of momentum
constraints k to the value k = k01, which is excluded from the sum since it is a condensate
momentum.

6.3 Quadratic Hamiltonian
The expression for H2 is given in eq. (3.126). The contribution from the interaction Hamiltonian
is given by

Hint =
∑
k

G11(k,p) +R11(k,k) + L11(k,k) (6.12)

The quantities G, R and L are defined in eqs. (3.134), (3.135) and (3.136). The vector p
is given by p = 2k01 − k. Notice that this is very similar to the NZ-phase, which gives
the same expressions when k01 = 0. This suggests that instead of symmetrizing H2 with∑
k f(k) = 1/2

∑
k(f(k)+f(−k)), we should rather symmetrize with

∑
k f(k) = 1/2

∑
k(f(k)+

f(p)). This is allowed since the 1st Brilloin zone is periodic, and shifting the sum by a
finite p only moves the Brilloin zone. The interaction Hamiltonian with k → p becomes
G11(p,k) + R11(p,p) + L11(p,p), leading to no new operators. The author tried at first,
and naively, to symmetrize with −k. This led to imaginary eigenvalues. It may be a trou-
bling thought that different symmetrizations leads to different answers. However, the choice
of symmetrization actually defines the coefficient matrix, as well as the vector of operators.
Consequently, different symmetrizations leads to different particle basises. In addition, the PW
phase is not inversion symmetric around k = 0. We define the vectors of operators

ψk =



A↑k
A↑p
A↓k
A↓p
A↑†k
A↑†p
A↓†k
A↓†p


, ψ†k =

(
A↑†k A↑†p A↓†k A↓†p A↑k A↑p A↓k A↓p

)
(6.13)

which has the same structure as in the PZ and NZ phases, only with −k → p. Forming H2 as
a matrix product, and symmetrizing over p, we get

H2 = C2 + 1
2
∑
k

ψ†kMkψk (6.14)

C2 = µ↑ + µ↓

2 Ns −
U(N↑0 +N↓0 )

f

(
1 + α

2

)
(6.15)

with the coefficient matrix Mk given by

Mk =
(
M1(k) M2
M∗2 M∗1 (k)

)
(6.16)
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The submatrices M1(k) and M2 are almost exactly the same as in the NZ phase, only with the
replacement −k → p, which is due to the symmetrization with p. Thus M1(k) and M2 are
given by

M1(k) =


E1(k) 0 b(k) 0

0 E1(p) 0 b(p)
b∗(k) 0 E2(k) 0

0 b∗(p) 0 E2(p)

 M2 =


0 c↑ 0 d
c↑ 0 d 0
0 d 0 c↓

d 0 c↓ 0

 (6.17)

The definition of the matrix elements are excactly the same as in the NZ phase. The author
is not able to find explicit expressions for the excitation spectrum, but is able to find them
numerically as long as α < 1. The spectrum is shown in fig. 6.4. There is no unbalance in

Figure 6.4: The excitation spectrum for the PW phase with N↑0 = N↓0 . The black dotted line is
the value for k0 as given in the pure condensate phase.

condensate numbers, still leading to real eigenvalues, which is a clear difference from the NZ
phase. This is due to the fact that we need no Zeeman splitting to overcome the influence from
SOC, since the condensate already lies on a finite k vector. We get in total four branches.
The lowest branch is Bogoliubov-like with a superfluid critical velocity around k0. This makes
physical sense. The condensate lies on a finite k vector, where the interacting Bogoliubov
spectrum kicks in, similar with the lowest branch of the PZ phase. We also have two parabolas
shifted due to SOC, lying above the lowest branch, similar to fig. 3.1.
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The excitation spectrum resembles the overlap between the spin-orbit coupled, non-interacting
excitation spectrum, and the single-component, interacting excitation spectrum. Also, the spec-
trum is periodic in the shifted Brilloin zone [−π/a + k0, π/a + k0), which originates from the
symmetrization with p. This demonstrates that the PW phase is not inversion symmetric around
k = 0.
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Chapter 7
The SW-Phase

In this phase there are two condensate momenta, k01 and k03. Our intuition would suggest
that we get Bogoliubov spectra around these points. However, numerical analysis will later
reveal that this is not the case. We note that Jansønns assumption that the helicity angle
γi is in general equal with the angle of k0i with the kx-axis, is wrong. This can be seen by
investigating the expression for sk

sk = −2λR (sin(kya) + i sin(kxa)) = |sk|e−iγk (7.1)

By using that k01 = (k0, k0) and k03 = −k01, we get

sk01 ∝ −(1 + i) (7.2)
sk03 ∝ (1 + i) (7.3)

which gives the angles γk
γk03 = −π4 , γk01 = −π + γk03 (7.4)

Note that the difference between the two angles is γk03 − γk01 = −π, which is opposite of
Janssønns master thesis. However, since this difference often appears as an argument in a
cosine function, the sign does not matter. Also, we can presume that the γ’s are the angle with
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some direction in k space. In addition, we have the SOC induced constraints on the variational
parameters

δθ1 = γ1 − π, δθ3 = γ3 − π (7.5)

7.1 Finding condensate densities for the SW phase
Similarly as for the PW phase, we assume that N↑0 6= N↓0 in general. The chemical potential
for pseudo-spin ↑ is again given by eq. (3.118). We choose k0i = k01. The primed sum gives
the possible momentum configurations as (j, i′, j′) = (1, 1, 1), (3, 1, 3), (3, 3, 1) and α ∈ (↑, ↓).
Writing out the sum gives∑

α

Uα↑Nα
0

Nsf

(
2 + cos

(
θ↑3 − θ

↑
1 − θα3 + θα1

))
(7.6)

= 3UN↑0
Nsf

+ αUN↓0
Nsf

(2 + cos(δθ3 − δθ1)) (7.7)

= 3UN↑0
Nsf

+ αUN↓0
Nsf

(2 + cos(γ3 − γ1)) (7.8)

= 3UN↑0
Nsf

+ αUN↓0
Nsf

(7.9)

where we have used that γ1 = γ3 + π. This gives the expression for µ↑

µ↑ = −εk01 − |sk01 |

√
N↓0

N↑0
+ 3UN↑0

Nsf
+ αUN↓0

Nsf
(7.10)

and conversely for µ↓

µ↓ = −εk01 − |sk01 |

√
N↑0

N↓0
+ 3UN↓0

Nsf
+ αUN↑0

Nsf
(7.11)

which is very similar to the expressions for the chemical potentials in the PW-phase, only
different by a factor of 3. Let us again introduce the quantities x and y as in the PW phase

x =

√
U

Nsf

√
N↑0 , y =

√
U

Nsf

√
N↓0 (7.12)

leading to the coupled set of third-degree equations in x and y

3x3 + αy2x− sy − u1x = 0 (7.13)
3y3 + αx2y − sx− u2y = 0 (7.14)

where the coefficients are given by

s = |sk01 | = 2
√

2λR| sin(k0a)| (7.15)
u1 = µ↑ + εk01 = µ↑ + 4t cos(k0a) (7.16)
u2 = µ↓ + εk01 = µ↓ + 4t cos(k0a) (7.17)
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We remind ourselves that k0 is still a variational parameter. Notice that this system of third-
degree equations is very similar to the system of third-degree equations in the PW phase. The
plots of the solutions will therefore not be included.

7.2 Constant and quadratic Hamiltonian
H0 is again given by eq. (3.122). The primed sum together with the delta-function gives the
possible configurations for the momentum indices (i, j, i′, j′) = (1, 1, 1, 1), (1, 3, 1, 3), (1, 3, 3, 1),
(3, 1, 1, 3), (3, 1, 3, 1), (3, 3, 3, 3), α ∈ (↑, ↓), and β ∈ (↑, ↓). The constant Hamiltonian is thus
given by

H0 = − 1
2Nsf2

∑
αβ

Nα
0 N

β
0 U

αβ
(

4 + 2 cos
(
θα3 − θα1 − θ

β
3 + θβ1

))
(7.18)

= − U

2Nsf2

(
6N↑20 + 6N↓20 + 2αN↑0N

↓
0 (4 + 2 cos (δθ3 − δθ1))

)
(7.19)

= − U

2Nsf2

(
6N↑20 + 4αN↑0N

↓
0 + 6N↓20

)
(7.20)

= − U

Nsf2

(
3N↑20 + 2αN↑0N

↓
0 + 3N↓20

)
(7.21)

The linear Hamiltonian is finite, and treated in the appendix. The author has outlined a
method for dealing with these terms, but will not use them for the rest of the thesis, due to the
uncertainty of the method. The interaction Hamiltonian is given by1

Hint =
∑
k

G11(k,p) +G13(k,−k) +G31(k,−k) +G33(k, q) (7.22)

+R11(k,k) +R13(k,p′) +R31(k, q′) +R33(k,k) (7.23)
+ L11(k,k) + L13(k,p′) + L31(k, q′) + L33(k,k) (7.24)

The vectors q, q′, p and p′ comes from momentum conservation and are given by

p = 2k01 − k, q = −2k01 − k (7.25)
p′ = 2k01 + k, q′ = −2k01 + k (7.26)

such that p′ = p(−k) and q′ = q(−k). We see that the SW is symmetric around k = 0, in
contrast with the PW phase, which only had the vector p. We introduce the vector of operators
Ψ†k and Ψk with 24 elements each

Ψ†k =
(
A↑†k A

↑†
−kA

↑†
p A
↑†
p′A
↑†
q A
↑†
q′A
↓†
k A
↓†
−kA

↓†
p A
↓†
p′A
↓†
q A
↓†
q′ (7.27)

A↑kA
↑
−kA

↑
pA
↑
p′A
↑
qA
↑
q′A
↓
kA
↓
−kA

↓
pA
↓
p′A
↓
qA
↓
q′

)T
(7.28)

1The quantities G, R and L are defined in eqs. (3.134), (3.135) and (3.136).
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Figure 7.1: The entries of the matrix Mk in the SW-phase. The red entries show the matrix
elements of the sum over k, and the blue entries show the shifted entries of the sum over −k

and,

Ψk =
(
A↑kA

↑
−kA

↑
pA
↑
p′A
↑
qA
↑
q′A
↓
kA
↓
−kA

↓
pA
↓
p′A
↓
qA
↓
q′ (7.29)

A↑†k A
↑†
−kA

↑†
p A
↑†
p′A
↑†
q A
↑†
q′A
↓†
k A
↓†
−kA

↓†
p A
↓†
p′A
↓†
q A
↓†
q′

)
(7.30)

Forming the quadratic Hamiltonian H2 as a matrix product H2 = 1
2
∑
k Ψ†kMΨk, we get the

pattern outlined in fig. 7.1 for the 24 × 24 matrix M . The elements on the upper diagonal of
the Hermitian submatrix A(k) are given by the entries
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A11 = A22 =
η↑↑k
2 + 2a↑↑ + 2b↑↑ + 2b↓↑ (7.31)

A14 = A23 =a↑↑

2 eiδ
↑↑
13 + 1

2

(
b↑↑eiδ

↑↑
13 + b↓↑eiδ

↓↓
13

)
(7.32)

A16 = A25 =a↑↑

2 eiδ
↑↑
31 + 1

2

(
b↑↑eiδ

↑↑
31 + b↓↑eiδ

↓↓
31

)
(7.33)

A17 =
η↑↓k
2 + a↓↑

2

(
eiδ
↓↑
11 + eiδ

↓↑
33

)
(7.34)

A28 =−
η↑↓k
2 + a↓↑

2

(
eiδ
↓↑
11 + eiδ

↓↑
33

)
(7.35)

A1,10 = A29 =a↓↑

2 eiδ
↓↑
13 (7.36)

A1,12 = A2,11 =a↓↑

2 eiδ
↓↑
31 (7.37)

A47 = A38 =a↑↓

2 e−iδ
↑↓
13 (7.38)

A67 = A58 =a↑↓

2 e−iδ
↑↓
31 (7.39)

A77 = A88 =
η↓↓k
2 + 2a↓↓ + 2b↓↓ + 2b↑↓ (7.40)

A7,10 = A89 =a↓↓

2 eiδ
↑↑
13 + 1

2

(
b↓↓eiδ

↓↓
13 + b↑↓eiδ

↑↑
13

)
(7.41)

A7,12 = A8,11 =a↓↓

2 eiδ
↓↓
31 + 1

2

(
b↓↓eiδ

↓↓
31 + b↑↓eiδ

↑↑
31

)
(7.42)



98 Chapter 7. The SW-Phase

and the elements on the upper diagonal of the symmetric submatrix B is given by

B1,2 =a↑↑e−iσ
↑↑
13 + a↑↑e−iσ

↑↑
31 (7.43)

B1,3 = B2,4 =a↑↑

2 e−iσ
↑↑
11 (7.44)

B1,5 = B2,6 =a↑↑

2 e−iσ
↑↑
33 (7.45)

B1,8 = B2,7 =a↓↑

2

(
e−iσ

↓↑
13 + e−iσ

↓↑
31

)
+ a↑↓

2

(
e−iσ

↑↓
13 + e−iσ

↑↓
31

)
(7.46)

B1,9 = B2,10 =a↓↑

2 e−iσ
↓
11↑ (7.47)

B1,11 = B2,12 =a↓↑

2 e−iσ
↓
33↑ (7.48)

B3,7 = B4,8 =a↑↓

2 e−iσ
↑
11↓ (7.49)

B5,7 = B6,8 =a↑↓

2 e−iσ
↑
33↓ (7.50)

B7,8 =a↓↓e−iσ
↓↓
13 + a↓↓e−iσ

↓↓
31 (7.51)

B7,9 = B8,10 =a↓↓

2 e−iσ
↓↑
11 (7.52)

B7,11 = B8,12 =a↓↓

2 e−iσ
↓↓
33 (7.53)

Again, the author is unable to find an analytic expression for the eigenvalues of the dynamic
matrix D. In addition, the constant terms originating from the delta-function δk,k′ are given by

C2 =
Ns
(
µ↑ + µ↓

)
2 − U

(
N↑0 +N↓0

)(
1 + α

2

)
(7.54)

7.3 Numerical determination of the eigenvalues
We assume as in Jansønns master thesis that N↑0 = N↓0 = N0/2, as we get real eigenvalues for
the dynamic matrix JM with this choice. The expressions for µ↑ and µ↓ thus reduce to (with
f = 2)

µ↑ = µ↓ ≡ µ = −εk01 − |sk01 |+
UN0

4Ns
(3 + α) (7.55)

Giving the expression for the condensate density

N0

Ns
= 4
U

εk01 + |sk01 |+ µ

3 + α
(7.56)

and the constant Hamiltonian reduces to

H0 = −UN
2
0

8Ns
(3 + α) (7.57)
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Inserting the epxression for the condensate density, and choosing k0 = 1
a arctan(

√
2λR/2t), H0

becomes

H0 = −2Ns
U(3 + α)

(
4t
√
λ2
R

2t2 + 1 + µ

)2

(7.58)

which agrees with the free energy FSW for the pure condensate given in eq. (3.218). The constant
C2 is given by

C2 = Nsµ− UN0

(
1 + α

2

)
(7.59)

In figure 7.3 the eigenvalues λi of M is shown. This plot reveals that the coefficient matrix M
is indeterminate, since it has λi < 0, λi = 0 and λi > 0. This means that we cannot simply
choose the positive eigenvalues of JM as the first n = 12 entries of the diagonal matrix Ω. We
refer the reader to the Dynamic Matrix section. The rule according to eq. (3.170) is to choose
the first n eigenvalues in Ω according to the positivity of the norm of the eigenvectors. We must
therefore:

1. Calculate the 24 eigenvalues wµ for each kx and ky.

2. Check the norm of the 24 corresponding eigenvectors for each kx and ky, note that this
norm is defined as (xµ, Jxµ) where (x, y) =

∑
i x
∗
i yi is the inner product in C2n. This

norm must be finite.

3. Find the 12 eigenvectors positive norm for all kx and ky. The most important quantity is
the sign of the norm, since the eigenvectors can be scaled arbitrarily.

4. Place the eigenvalues corresponding to these eigenvectors along the first 12 entries in the
diagonal matrix Ω.

We must also check that the norms of the eigenvectors are finite, and that all the eigenvectors
are linearly independent. In fig. 7.4 the plot of the smallest norm of all the eigenvalues for
each pair (kx, ky) is shown, with minimum norm taken over all points equal to ≈ 1.9 × 10−8.
The distribution of points appears to be random, and most importantly, we have no vanishing
norms. In fig. 7.5 the plot over the absolute value of the determinant |det(JMk)| over all the
eigenvalues for each pair (kx, ky) is shown, with minimum determinant over all points equal
to ≈ 4.7 × 10−10. If the determinant vanishes, then the eigenvectors of JM are not linearly
independent, which they must be. Notice the marked ring with radius r = k0, originating from
spin-orbit coupling.

In fig. 7.2 the excitation spectrum for kx = ky is shown, with real eigenvalues, or at least
with a maximum eigenvalue of ≈ 2.4×10−15. Numerical analysis show that 8 of the eigenvalues
are approximately zero, 8 of the eigenvalues are positive with 4 independent branches, and 8
of the eigenvalues are negative with 4 independent branches. The stapled eigenvalues are the
ones where the corresponding eigenvectors has a negative norm, and the hard-color lines are the
ones with positive +1 norm. We can clearly see that if wi is an eigenvalue, then −wi is also
an eigenvalue. The zoomed in picture shows the excitation spectrum that is not 0, is negative,
and has a positive +1 norm. This means that we must include these negative eigenvalues in
the first entries of Ω. The negative eigenvalues are in fact small, and or of order 10−3 in fig.
7.2. The vertical lines are placed at kx = ky = ±k0. Notice that the minima of the excitation
spectrum is in fact at kx = ky = ±k0, which is what we expect physically. Incidentally, if we had
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chosen only positive eigenvalues for the first 12 entries of Ω we would have obtained a minima
at k = 0. We also see from the zoomed in picture that the minima-branch is not linear around
±k0, which means no superfluid critical velocity. This is not what we would expect intuitively,
as we anticipated the Bogoliubov spectrum at these points. However, we to get two shifted
parabolas, which is the effect of spin-orbit coupling, similar to the SOC spectrum in fig. 3.1.

Figure 7.2: The eigenvalues of JM in the SW phase. The physical parameters are Nx = Ny =
200, N0/Ns = 1, λR = 0.5, α = 1.5 and U = 0.1.

From the section on the dynamic matrix method, we expect that we should have 12 eigen-
vectors with norm +1, and 12 eigenvectors with norm −1. For the eigenvalues that are non-zero,
we get 8 eigenvectors with norm +1 and 8 eigenvectors with norm −1, as expected. We expect
then for the zero eigenvalues to get 4 eigenvectors with norm 1 and 4 eigenvectors with norm
−1. However, for the approximately zero eigenvalues, we get either. The number of +1 norms
fluctuates between 0 and 8, and similarly for −1 norms. The reason for this is most probably
numerical errors. In reality, no eigenvalue is exactly zero. For example, consider the eigenvalue
1.13× 10−18, it is highly unlikely that we should also get the eigenvalue −1.13× 10−18.

7.4 Free energy for the SW-phase
After making a change of basis from Ψk to φk, the quadratic Hamiltonian is given by

H2 =
∑
k

12∑
i=1

wi(k)
(
di†k d

i
k + 1

2

)
(7.60)
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Figure 7.3: The eigenvalues of M in the SW phase. The physical parameters are Nx = Ny = 200,
N0/Ns = 1, λR = 0.5, α = 1.5 and U = 0.1.

Figure 7.4: The diagram for the smallest norms in the SW phase. Notice the seemingly random
distribution of points.

where we have cancelled the 1/2 factor in front of the sum. Here φk is given as in eq. (3.160),
with components di and d†i , with i = 1, ..., 12. The eigenvalues wi(k) are given as follows

w1(k) = w2(k) =− E1(k), E1(k) ≥ 0 (7.61)
w3(k) = w4(k) =− E2(k), E2(k) ≥ E1(k) (7.62)
w5(k) = w6(k) =E3(k), E3(k) ≥ 0 (7.63)
w7(k) = w8(k) =E4(k), E4(k) ≥ 0 (7.64)

And the last 4 eigenvalues are approximately equal to zero. Let us neglect these from our
calculation, as they give zero contribtution to the Hamiltonian. Consequently, the sum over i
goes from 1 to 8. The problem with a quadratic Hamiltonian with negative w’s is that we get
terms proportional to −|w|ni, where ni is a number operator. Nature will thus try to maximize
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Figure 7.5: The diagram for the smallest determinants in the SW phase. The ring has radius
r = k0, which suggest that it is caused by spin-orbit coupling.

ni, flooding the system. We can however bypass this issue by adding a constant to the quadratic
Hamiltonian, considering it as a contribution to the chemical potentials. We shift the branches
in the following way

wi(k) = wi(k) + λ− λ (7.65)
where λ is given by

λ = |min
i,k

wi(k)| (7.66)

λ is the absolute value of the smallest value in the excitation spectrum for all k in the 1st
Brillouin zone and i = 1, ..., 12, which is in our case given by |w1(k0, k0)|. Thus the quadratic
Hamiltonian becomes

H2 =
∑
k

′ 8∑
i=1

Λi(k)
(
di†k d

i
k + 1

2

)
− λ

8∑
i=1

(
Ni + 1

2

)
(7.67)

We have defined Λi(k) = wi(k) + λ, and the primed sum over k means that we avoid all k for
which λk = 0. The number Ni =

∑
k d

i†
k d

i
k is the total number of pseudo-particles with number

i in the system. This will be assumed to be small, as ground state depletion is assumed to be
negligible. In addition, λ is in this case also small. The free energy is thus given by

F = H ′0 − λ
8∑
i=1

(
Ni + 1

2

)
+ 1

2
∑
k

′ 8∑
i=1

Λi(k) + 1
β

∑
k

′ 8∑
i=1

ln
(

1− e−2βΛi(k)
)

(7.68)

where β is the inverse temperature, and H ′0 = H0 + C2.

7.4.1 Metroplis Hastings results for the SW phase
We use the Metropolis Hastings algorithm described in sec. 3.5.1 to determine the variational
parameters k0, θ↓1 and θ↓3 . The parameters θ↑1 and θ↑3 are functions of θ↓1 and θ↓3 , given by eq.
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(3.104). The starting configuration was Ψ0 = [θ↓1 , θ
↓
3 , k0] = [0, 0, π].

Figure 7.6: The Metropolis algorithm results applied on the SW-phase. The physical parameters
are U = 0.1, λR = 0.5 and α = 1.5. The x-axis labels the number of iterations. The blue line
(top) shows the value for θ↓1 , the orange line (middle) shows the value for θ↓3 and the bottom
line shows the value for k0. The stapled black line shows the value for k0 as given in the pure
condensate by eq. (3.214). Note that the configuration of (θ↓1 , θ

↓
3) seems to be random, while k0

seems to converge to the pure k0. The axis gives the value for the mean-field parameters, for
every 10th iteration.

The algorithm used 2500 iterations for each of the 10 sweeps. Also, if the excitation spectrum
was imaginary, the free energy was automatically set to a NaN value, which limited the phase
space available. The θ-parameters were allowed to explore values in [0, 2π), while k0 was allowed
to explore to the end of the positive 1st Brillouin zone [0, π). In fig. 7.6 we see that the estimated
k0 value is close to the pure k0 value, as given in eq. (3.214), even with the starting value at
π. It would be an advantage if we could use the explicit expression for k0, as then we could
use the explicit expressions for the condensate density N0/Ns for the pure phases, to later
construct a phase diagram where the free energy is a function of (α, λR). If not, we would
have to do the metropolis algorithm on every point in (α, λR) space, to find k0 as a function of
(α, λR). This would take a lot of time, as for each point in (α, λR) we would have to calculate
the excitation spectrum for the entire 1st Brilloiun zone, and sum them together to find the
free energy. The Metropolis algorithm for one point in (α, λR) space is in addition very time-
consuming, as one should enshure that the algorithm is ergodic, that is, one should be able to
find the global minimum from any point in phase space. The final configuration was found to be
Ψ ≈ [3.85, 6.12, 0.34]. We see from fig. 7.7 that the free energy reaches a minima as the number
of iterations increases. The effect of the random number r2 can also be observed, as the free
energy increases at a given number of iterations. Also, comparing fig. 7.6 with fig. 7.7, we see

2For an explanation of the r-value, see section 3.5.1
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Figure 7.7: The free energy as a function number of iterations for the Metroplis algorithm. The
y-axis is the free energy, while the x-axis is the number of iterations. The physical parameters
are the same as in fig. 7.6. Notice the jumps in the free energy, this is caused by the r factor in
the Metropolis algorithm, to avoid getting stuck in a local minima.

that the free energy is maybe independent of the mean-field angles. Furthermore, the values of
these angles seem to be somewhat random, as seen in fig. 7.6, where they do not converge to
a specific value. Note that even though the free energy changes as the angles change, this does
not imply that they are dependent, as the r value can in principle accept any configuration of
(θ↑, θ↓). We for the rest of the thesis assume that k0 take the value as in the pure condensate.
In addition, k0 as given by the pure condensate was shown to be the minimum of the excitation
spectrum for at least one value of (α, λR) = (1.5, 0.5), see fig. 7.2, strengthening the claim that
this is in fact the correct value which minimizes the free energy.

7.5 Phase diagram for the PZ, PW and SW phases
The phases which have shown to have real eigenvalues for many parameters of (α, λR) are the
PZ, PW and SW phases. We have neglected the term λ

∑
i(Ni + 1/2), as λ is of order 10−3

and the number of excited bosons Ni cannot be to big, in order to avoid severe ground state
depletion. Also, the free energy was set to NaN if the imaginary part of the eigenvalues was
larger than 10−9. In fig. 7.8 the phase diagram is shown. We have used the value for k0 which
minimizes the free energy in the pure condensate PW and SW phases. The phase diagram is
generated by varying N0, and keeping µ constant. The expressions for the condensate densities
for the PZ, PW and SW phases are given in eqs. This is in order to see the effect of spin-
orbit coupling on the system. One could accordingly keep N0 constant, and vary µ instead.
This would create a different phase diagram, especially for the pure condensate, as the constant
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Figure 7.8: Phase diagram for the PZ, PW and SW phases with excitations. The physical
parameters are U = 0.1, t = 1 and µ = 1

terms for all the phases are only dependent on N0, α and U . Keeping N0 constant would then
create a phase diagram dependent on α and U . Let us also compare this phase diagram with

Figure 7.9: A sketch of the process of turning on interactions. Based on the pure phase diagram
in fig. 3.4 and the interacting phase diagram in fig. 7.8.

the one obtained from the pure condensate given in fig. 3.4, which has the same values for the
physical parameters. It is reassuring that all phases are at the same location in (α, λR) space.
Also, it would appear that the line seperating the SW and PZ phase has moved to the left. See
the sketch in fig. 7.9. The line at α = 1 seperating the PW from the SW phase is still there,
and one could imagine the curve seperating the SW and PZ phases to intersect at a new point
α∗ on the α-axis. In terms of the interaction strength Uαβ , the condition seperating the SW
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and phases is U↑↓ > U , which agrees with the literature.
Thus, introducing interactions seems to give the PZ phase more room in phase space. This

may be due to the fact that including excitations causes more energetic scattering at a finite
k-vector, in stead of scattering with the zero momentum vector.



Chapter 8
The LW-phase

This is the final phase we will encounter, and was previously abandoned by Jansønn. For this
phase we have four condensate momenta k01, k02, k03 and k04. We will derive the equations
for the condensate densities, and find the peculiar result that when N↑0 = N↓0 the chemical
potentials are unequal, µ↑ 6= µ↓. We shall also calculate the free energy for the pure LW phase,
where we find that it has no impact on the phase diagram shown in fig. 3.5.

8.1 Constraints on variational parameters

We now have in principle 8+1 = 9 variational parameters. There is the length of the condensate
momentum k0i, given by k0, and there’s the order parameters θαi , where i ∈ (1, 2, 3, 4) and
α ∈ (↑, ↓). For the imaginary part of the chemical potential for µ↑ and µ↓ to be zero, we have in
total three equations, given by eqs. (3.104), (3.105) and (3.109). The first constraint is caused
by the SOC-term, and halves the number of order parameters to be determined. This leads to

107
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j Momentum conservation Allowed configurations (j, i′, j′)
j = 1 k01 + k01 = k0i′ + k0j′ (1, 1, 1)
j = 2 k01 + k02 = k0i′ + k0j′ (2, 1, 2), (2, 2, 1)
j = 3 k01 + k03 = k0i′ + k0j′ (3, 1, 3), (3, 3, 1), (3, 2, 4), (3, 4, 2)
j = 4 k01 + k04 = k0i′ + k0j′ (4, 1, 4), (4, 4, 1)

Table 8.1: Allowed configurations in the sum for the chemical potentials

four constraints

δθ1 =γ1 − π (8.1)
δθ2 =γ2 − π (8.2)
δθ3 =γ3 − π (8.3)
δθ4 =γ4 − π (8.4)

These constraints makes it possible to express all mean-field ↑ parameters in terms of the mean-
field ↓ parameters. The γ’s are given by

sk01 ∝ −(1 + i), γ1 = −5π
4 (8.5)

sk02 ∝ −(1 + i), γ2 = −3π
4 (8.6)

sk03 ∝ −(1 + i), γ3 = −π4 (8.7)

sk04 ∝ −(1 + i), γ4 = −7π
4 (8.8)

The two next constraints pertains to each pseudo-spin induvidually, and assures that the imag-
inary part of the interaction term for the associated chemical potential is zero. For µ↑, the
constraint is given by eq. (3.105), and can be simplified to

∑
ji′j′

∑
α

Uα↑Nα
0

Nsf
sin
(
θ↑j′ − θ

↑
1 − θαj + θαi′

)
δi+j,i′+j′ = 0 (8.9)

where we have used that N↑l = N↑0 /f and N↓l = N↓0 /f , and chosen i = 1. The permissable mo-
mentum indices are thus (j, i′, j′) ∈ (1, 2, 3, 4), and pseudo-spin indices α ∈ (↑, ↓). IN addition,
momentum conservation restricts the momentum indices further to the values given in table 8.1.
Thus the expression in eq. (8.9) can be simplified to

∑
α

Uα↑Nα
0

Nsf
Sα = 0 (8.10)
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with Sα defined as

Sα = sin
(
θ↑2 − θα2 −

(
θ↑1 − θα1

))
(8.11)

+ sin
(
θ↑3 − θα3 −

(
θ↑1 − θα1

))
(8.12)

+ sin
(
θ↑4 − θα4 −

(
θ↑1 − θα1

))
(8.13)

+ sin
(
θ↑4 − θ

↑
1 − θα3 + θα2

)
(8.14)

+ sin
(
θ↑2 − θ

↑
1 − θα3 + θα4

)
(8.15)

The possible values for Sα are

S↑ =2 sin
(
θ↑4 − θ

↑
1 − θ

↑
3 + θ↑2

)
(8.16)

S↓ = sin (γ2 − γ1) (8.17)
+ sin (γ3 − γ1) (8.18)
+ sin (γ4 − γ1) (8.19)

+ sin
(
θ↑4 − θ

↑
1 − θ

↓
3 + θ↓2

)
(8.20)

+ sin
(
θ↑2 − θ

↑
1 − θ

↓
3 + θ↓4

)
(8.21)

where we have used that δθi − δθj = γi − γj . In addition,

sin(γ2 − γ1) =1 (8.22)
sin(γ3 − γ1) =0 (8.23)
sin(γ4 − γ1) =− 1 (8.24)

such that

S↓ = sin
(
θ↑4 − θ

↑
1 − θ

↓
3 + θ↓2

)
(8.25)

+ sin
(
θ↑2 − θ

↑
1 − θ

↓
3 + θ↓4

)
(8.26)

Next, we express the pseudo-spin up order parameters in terms of the pseudo-spin down order
parameters, using θ↑i = θ↓i + γi − π. This gives us the simplifications

θ↑4 − θ
↑
1 − θ

↓
3 + θ↓2 =θ↓4 − θ

↓
1 − θ

↓
3 + θ↓2 + (γ4 − γ1) = Σ↓ + (γ4 − γ1) (8.27)

θ↑2 − θ
↑
1 − θ

↓
3 + θ↓4 =θ↓2 − θ

↓
1 − θ

↓
3 + θ↓4 + (γ2 − γ1) = Σ↓ + (γ2 − γ1) (8.28)

The value for S↓ therefore becomes

S↓ = sin
(
Σ↓ + (γ4 − γ1)

)
+ sin

(
Σ↓ + (γ2 − γ1)

)
(8.29)

= cos
(
Σ↓
)

sin(γ4 − γ1) + sin
(
Σ↓
)

cos(γ4 − γ1) (8.30)
+ cos

(
Σ↓
)

sin(γ2 − γ1) + sin
(
Σ↓
)

cos(γ2 − γ1) (8.31)
= cos

(
Σ↓
)
− cos

(
Σ↓
)

= 0 (8.32)
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So, in fact, S↓ = 0. Thus, for the imaginary part of the chemical potential for the pseudo-spin
up component to be zero, we get the additional constraint

S↑ = 2 sin
(
θ↑4 − θ

↑
1 − θ

↑
3 + θ↑2

)
=0 (8.33)

→ θ↑4 − θ
↑
1 − θ

↑
3 + θ↑2 =m↑π, m↑ ∈ (0, 1) (8.34)

This is an important relation, reducing the number of independent pseudo-spin up mean-field
parameters from four to three

θ↑4 − θ
↑
1 − θ

↑
3 + θ↑2 = m↑π, m↑ ∈ (0, 1) (8.35)

Now we turn to the pseudo-spin down chemical potential. For the imaginary part of the inter-
action term for µ↓ to be zero, we have the analogous equation given in eq. (3.109). Following
the exact same procedure as for µ↑, we obtain the constraint on the pseudo-spin down order
parameters

θ↓4 − θ
↓
1 − θ

↓
3 + θ↓2 = m↓π, m↓ ∈ (0, 1) (8.36)

Next we derive the relationship between m↑ and m↓, originating from a finite spin-orbit coupling
in the condensate momentum

m↑π = θ↑4 − θ
↑
1 − θ

↑
3 + θ↑2 (8.37)

= θ↓4 − θ
↓
1 − θ

↓
3 + θ↓2 + (γ4 − γ1)− (γ3 − γ2) (8.38)

= m↓π − π

2 −
π

2 (8.39)

= m↓π − π (8.40)
= (m↓ − 1)π (8.41)

Such that we get the peculiar relation between m↑ and m↓:

m↑ = m↓ − 1 mod 2
(8.42)

In summary, to keep the chemical potentials real, we get the following constraints:

• The equations in eq. (8.1)-(8.4), halving the number of order parameters to be determined.
This is a finite spin-orbit coupling effect.

• Equation (8.35) determining one pseudo-spin up order parameter

• Equation (8.36) determining one pseudo-spin down order parameter

• Equation (8.42) relating the binary numbers m↑ and m↓.

Exceptions to the condensate solutions

As mentioned in the preliminaries, the solution N↑l = N↑0 /f and N↓l′ = N↓0 /f is not unique if
α = 1 in general, or for our purpose if

α2 cos(γl′ − γl)2

U2(1−A)(1−B) = 1 (8.43)
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where k0l and k0l′ are non-parallel condensate momentum. Let us choose l = 1 and l′ = 2.
We then get cos(γ2 − γ1) = 0, which is not unity. We must also check that the denominator is
non-zero

A = 2 cos(θ↑4 − θ
↑
1 − θ

↑
3 + θ↑2) = 2 cos(m↑π) = ±2 (8.44)

so 1−A is non-zero. B is given by

B = 2 cos
(
θ↑4 − θ

↑
1 − θ

↓
3 + θ↓2

)
(8.45)

= 2 cos
(
θ↓4 − θ

↓
1 − θ

↓
3 + θ↓2 + (γ4 − γ1)

)
(8.46)

= 2
(
cos(m↓π) cos(γ4 − γ1)− sin(m↓π) sin(γ4 − γ1)

)
= 0 (8.47)

where we have used that cos(γ4 − γ1) = 0 and sin(m↓π) = 0. Consequently, the denominator is
well defined, and the uniqueness of N↑l = N↑0 /f and N↓l′ = N↓0 /f is consistent.

8.2 Chemical potentials and condensate densities for the
LW phase

The chemical potential for the pseudo-spin up component is given by eq. (3.118), where the
primed sum in the interaction term permits the indices α ∈ (↑, ↓) and (j, i′, j′) ∈ (1, 2, 3, 4). The
interaction term is given by (where we choose k0i = k01)

µ↑int =
∑
ji′j′

∑
α

Uα↑Nα
0

Nsf
cos
(
θ↑j′ − θ

↑
1 − θαj + θαi′

)
δi+j,i′+j′ (8.48)

Conservation of momentum gives the same indices (j, i′, j′) as in table 8.1. Thus we can write

µ↑int =
∑
α

Uα↑Nα
0

Nsf
Cα (8.49)

where Cα is given by

Cα = 4 + cos
(
θ↑2 − θα2 −

(
θ↑1 − θα1

))
(8.50)

+ cos
(
θ↑3 − θα3 −

(
θ↑1 − θα1

))
(8.51)

+ cos
(
θ↑4 − θα4 −

(
θ↑1 − θα1

))
(8.52)

+ cos
(
θ↑4 − θ

↑
1 − θα3 + θα2

)
(8.53)

+ cos
(
θ↑2 − θ

↑
1 − θα3 + θα4

)
(8.54)

The possible values for Cα are

C↑ = 7 + 2 cos
(
θ↑4 − θ

↑
1 − θ

↑
3 + θ↑2

)
(8.55)

= 7 + 2 cos(m↑π) (8.56)
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and,

C↓ = 4 + cos(γ2 − γ1) (8.57)
+ cos(γ3 − γ1) (8.58)
+ cos(γ4 − γ1) (8.59)
+ cos

(
m↓π + (γ4 − γ1)

)
(8.60)

+ cos
(
m↓π + (γ2 − γ1)

)
(8.61)

Next we use that cos(γ2 − γ1) = cos(γ4 − γ1) = sin(m↓π) = 0 and cos(γ3 − γ1) = −1 to obtain

C↓ = 3 (8.62)

which is a cute result. Thus the interaction term in µ↑ becomes

µ↑int =
∑
α

Uα↑

Nsf
Cα (8.63)

= UN↑0
Nsf

(
7 + 2 cos(m↑π)

)
+ 3αUN↓0

Nsf
(8.64)

Hence, the expression for µ↑ is

µ↑ = −4t cos(k0a)− |s1|

√
N↓0

N↑0
(8.65)

+ UN↑0
Nsf

(7 + 2 cos(mπ)) + 3αUN↓0
Nsf

(8.66)

where we have defined m↑ ≡ m ∈ (0, 1). Doing the excact same calculations for µ↓ yields the
analogous result

µ↓ = −4t cos(k0a)− |s1|

√
N↑0

N↓0
(8.67)

+ UN↓0
Nsf

(7− 2 cos(mπ)) + 3αUN↑0
Nsf

(8.68)

We have used eq. (8.42) to express m↓ in terms of m, where the term proportional to N↓0 in µ↓
originally was 7 + 2 cos(m↓π). Now, Janssønns [32] reason for abandoning the LW phase was
due to the fact that if you insist µ↑ = µ↓ and N↑0 = N↓0 (which makes physical sense), you get
an inconsistensy

7 + 2 cos(mπ) = 7− 2 cos(mπ) (8.69)
giving 2 = −2, which is impossible. Now, one has two options. One can either assume that
N↑0 = N↓0 , and find an equation for the difference in the chemical potentials, or one can find
a general expression for N↑0 and N↓0 as a function of µ↑ and µ↓. We will start with the first.
Defining N↑0 = N↓0 = N0/2, and taking the difference δµ ≡ µ↑ − µ↓, we get (with f = 4)

δµ = UN0

2Ns
cos(mπ) (8.70)
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This shows that even if you insist that the condensate particle numbers are equal, you get a
difference in chemical potentials, proportional to the condensate density and the intra-potential
scattering strength. The physical interpretation of this is that the diagonalized Hamiltonian,
where the helicity angle γi are well defined for the condensate bosons, can have a ... (this is
still difficult to interpret). Notice that the value of m ∈ (0, 1) chooses a “direction” for µ↑ and
µ↓. If m = 0, we get µ↑ > µ↓, and if m = 1, we get µ↓ > µ↑. We next insist that N↑0 and
N↓0 in principle can be different. We, as in the PW and SW phases, introduce the quantities
x ∝

√
N↑0 > 0 and y ∝

√
N↓0 > 0, as follows

x =

√
U

Nsf

√
N↑0 , y =

√
U

Nsf

√
N↓0 (8.71)

leading to the coupled set of third-degree equations for x and y

(7 + 2 cos(mπ))x3 + 3αy2x− |s1|y − (µ↑ + 4t cos(k0a))x = 0 (8.72)
(7− 2 cos(mπ))y3 + 3αx2y − |s1|x− (µ↓ + 4t cos(k0a))y = 0 (8.73)

Which is the same type of system of equations as in the PW and SW phases as well. The
difference is that the prefactor in front of x3 and y3 are different, either 9 or 5. The solution to
the above system of equations for N↑0 and N↓0 was found numerically with m = 0, and is given
in fig. 8.1. Note that µ↑ and µ↓ are input parameters, with µ↑ = 1. We see that for δ = 0, x
and y are not linearly dependent, as was the case for the other phases. However, we see that
x is still an increasing function of δ, and y is a decreasing function of δ. Thus the chemical
potentials can still be thought of as regulating the average number of particles in the system.

8.3 Constant Hamiltonian
The constant Hamiltonian is given by eq. (3.122), where (i, j, i′, j′) ∈ (1, 2, 3, 4) and
(α, β) ∈ (↑, ↓). Momentum conservation further gives the possible configurations (i, j, i′, j′) as

(1, 1, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1) (8.74)
(1, 3, 1, 3), (1, 3, 3, 1), (1, 3, 2, 4) (8.75)
(1, 3, 4, 2), (1, 4, 1, 4), (1, 4, 4, 1) (8.76)

+(1↔ 2, 3↔ 4) (8.77)
+(1↔ 3, 2↔ 4) (8.78)
+(1↔ 4, 2↔ 3) (8.79)

The notation (i↔ j, l↔ m) means add the previous calculation, with the indices interchanged.
The constant Hamiltonian is given by

H0 = − 1
2Nsf2

∑
αβ

UαβNα
0 N

β
0 C

αβ (8.80)
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Figure 8.1: Plots of the solutions for x ∝
√
N↑0 and y ∝

√
N↓0 for the LW phase. From left to

right: plot of x(λR), plot of y(λR). The bottom plot is the simultaneous solutions for x and y.

where Cαβ is defined as

Cαβ = 4 + cos
(
δαβ22 − δ

αβ
11

)
+ cos

(
δαβ33 − δ

αβ
11

)
+ cos

(
δαβ44 − δ

αβ
11

)
(8.81)

+ cos
(
θα4 − θα1 − θ

β
3 + θβ2

)
+ cos

(
θα2 − θα1 − θ

β
3 + θβ4

)
(8.82)

+ (1↔ 2, 3↔ 4) + (1↔ 3, 2↔ 4) + (1↔ 4, 2↔ 3) (8.83)

and takes the values

C↑↑ = 4× (7 + 2 cos(mπ)) (8.84)
C↑↓ = 4× 3 (8.85)
C↓↑ = 4× 3 (8.86)
C↓↓ = 4× (7− 2 cos(mπ)) (8.87)

giving the expression for the constant Hamiltonian

H0 = − 2U
Nsf2

(
(7 + 2 cos(mπ))N↑20 + 6αN↑0N

↓
0 + (7− 2 cos(mπ))N↓20

)
(8.88)

It is interesting that when N↑0 = N↓0 , the term with m ∈ (0, 1) disappears.
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8.4 Quadratic Hamiltonian

The first and second primed sum in the interaction Hamiltonian are no longer constrained,
giving the expression

Hint =
∑
k

Gk +Rk + Lk (8.89)

where Gk is a sum over all Gij

Gk = G11(k, q1) +G12(k,p1) +G13(k,−k) +G14(k,p4) (8.90)
+G21(k,p1) +G22(k, q2) +G23(k,p2) +G24(k,−k) (8.91)
+G31(k,−k) +G32(k,p2) +G33(k, q3) +G34(k,p3) (8.92)
+G41(k,p4) +G42(k,−k) +G43(k,p3) +G44(k, q4) (8.93)

and Rk and Lk take the values

Rk = R11(k,k) +R12(k,p′4) +R13(k, q′1) +R14(k,p′1) (8.94)
+R21(k,p′2) +R22(k,k) +R23(k,p′1) +R24(k, q′2) (8.95)
+R31(k, q′3) +R32(k,p′3) +R33(k,k) +R34(k,p′2) (8.96)
+R41(k,p′3) +R42(k, q′4) +R43(k,p′4) +R44(k,k) (8.97)

Lk = L11(k,k) + L12(k,p′4) + L13(k, q′1) + L14(k,p′1) (8.98)
+ L21(k,p′2) + L22(k,k) + L23(k,p′1) + L24(k, q′2) (8.99)
+ L31(k, q′3) + L32(k,p′3) + L33(k,k) + L34(k,p′2) (8.100)
+ L41(k,p′3) + L42(k, q′4) + L43(k,p′4) + L44(k,k) (8.101)

Conservation of momentum gives the following wavevectors which must be included in the
particle basis, see fig. 8.3 for an overview of these when k = 0

q1 = 2k01 − k, q2 = 2k02 − k, q3 = 2k03 − k, q4 = 2k04 − k (8.102)
q′1 = 2k01 + k, q′2 = 2k02 + k, q′3 = 2k03 + k, q′4 = 2k04 + k (8.103)
p1 = 2k0ŷ − k, p2 = −2k0x̂− k, p3 = −2k0ŷ − k, p4 = 2k0x̂− k (8.104)
p′1 = 2k0ŷ + k, p′2 = −2k0x̂+ k, p′3 = −2k0ŷ + k, p′4 = 2k0x̂+ k (8.105)

(8.106)

We next introduce the vectors of operators ψk and ψ†k as

ψk =
(
A↑k A↓k A↑†k A↓†k

)T (8.107)

ψ†k =
(
A↑†k A↓†k A↑k A↓k

)
(8.108)
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Figure 8.2: Overview of the vectors allowed by conservation of momentum when k = 0

where the vectors of operators Aα
k and Aα†

k are defined as

Aα
k =

(
AαkA

α
−kA

α
q1
Aαq′1A

α
q2
Aαq′2A

α
q3
Aαq′3A

α
q4
Aαq′4A

α
p1
Aαp′1 (8.109)

Aαp2
Aαp′2A

α
p3
Aαp′3A

α
p4
Aαp′4

)
(8.110)

Aα†
k =

(
Aα†k A

α†
−kA

α†
q1
Aα†q′1

Aα†q2
Aα†q′2

Aα†q3
Aα†q′3

Aα†q4
Aα†q′4

Aα†p1
Aα†p′1

(8.111)

Aα†p2
Aα†p′2

Aα†p3
Aα†p′3

Aα†p4
Aα†p′4

)
(8.112)

(8.113)

We follow the standard routine and write the quadratic Hamiltonian as a matrix product

H2 = C2 + 1
2
∑
k

ψ†kMψk (8.114)

The 72× 72 coefficient matrix M has the familiar form

M =
(
A B
B∗ A∗

)
(8.115)

Where A is Hermitian, and B is symmetric. The elements for the coefficient matrix M are
shown in fig. 8.3 The matrix elements on the upper diagonal of sub-matrix B is given by

B1,2 = a↑
(
e−iσ

↑↑
13 + e−iσ

↑↑
24

)
(8.116)

B1,3 = B2,4 = a↑

2 e
−2iθ↑1 (8.117)

B1,5 = B2,6 = a↑

2 e
−2iθ↑2 (8.118)

B1,7 = B2,8 = a↑

2 e
−2iθ↑3 (8.119)

B1,9 = B2,10 = a↑

2 e
−2iθ↑4 (8.120)
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Figure 8.3: Overview of the matrix elements of the coefficient matrix M in the LW-phase. The
red entries marks elements of the k sum, and the blue entries show the shifted elements in the
−k sum

B1,11 = B2,12 = a↑e−2iσ↑↑12 (8.121)

B1,13 = B2,14 = a↑e−2iσ↑↑23 (8.122)

B1,15 = B2,16 = a↑e−2iσ↑↑34 (8.123)

B1,17 = B2,18 = a↑e−2iσ↑↑41 (8.124)

B1,20 = B2,19 = α
√
a↑a↓

(
e−iσ

↑↓
31 + e−iσ

↑↓
42 + e−iσ

↑↓
13 + e−iσ

↑↓
24

)
(8.125)

B1,21 = B2,22 = α

2
√
a↑a↓e−iσ

↑↓
11 (8.126)

B1,23 = B2,24 = α

2
√
a↑a↓e−iσ

↑↓
22 (8.127)

B1,25 = B2,26 = α

2
√
a↑a↓e−iσ

↑↓
33 (8.128)

B1,27 = B2,28 = α

2
√
a↑a↓e−iσ

↑↓
44 (8.129)

B1,29 = B2,30 = α

2
√
a↑a↓

(
e−iσ

↑↓
21 + e−iσ

↑↓
12

)
(8.130)

B1,31 = B2,32 = α

2
√
a↑a↓

(
e−iσ

↑↓
32 + e−iσ

↑↓
23

)
(8.131)

B1,33 = B2,34 = α

2
√
a↑a↓

(
e−iσ

↑↓
43 + e−iσ

↑↓
34

)
(8.132)

B1,35 = B2,36 = α

2
√
a↑a↓

(
e−iσ

↑↓
14 + e−iσ

↑↓
41

)
(8.133)

B3,19 = B4,20 = α

2
√
a↑a↓e−iσ

↑↓
11 (8.134)

B5,19 = B6,20 = α

2
√
aa↓e−iσ

↑↓
22 (8.135)
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B7,19 = B8,20 = α

2
√
a↑a↓e−iσ

↑↓
33 (8.136)

B9,19 = B10,20 = α

2
√
a↑a↓e−iσ

↑↓
44 (8.137)

B11,19 = B12,20 = α

2
√
a↑a↓

(
e−iσ

↑↓
21 + e−iσ

↑↓
12

)
(8.138)

B13,19 = B14,20 = α

2
√
a↑a↓

(
e−iσ

↑↓
32 + e−iσ

↑↓
23

)
(8.139)

B15,19 = B16,20 = α

2
√
a↑a↓

(
e−iσ

↑↓
43 + e−iσ

↑↓
34

)
(8.140)

B17,19 = B18,20 = α

2
√
a↑a↓

(
e−iσ

↑↓
14 + e−iσ

↑↓
41

)
(8.141)

B19,20 = a↓
(
e−iσ

↓↓
13 + e−iσ

↓↓
24

)
(8.142)

B19,21 = B20,22 = a↑

2 e
−2iθ↑1 (8.143)

B19,23 = B20,24 = a↑

2 e
−2iθ↑2 (8.144)

B19,25 = B20,26 = a↑

2 e
−2iθ↑3 (8.145)

B19,27 = B20,28 = a↑

2 e
−2iθ↑4 (8.146)

B19,29 = B20,30 = a↑e−2iσ↑↑12 (8.147)

B19,31 = B20,32 = a↑e−2iσ↑↑23 (8.148)

B19,33 = B20,34 = a↑e−2iσ↑↑34 (8.149)

B19,35 = B20,36 = a↑e−2iσ↑↑41 (8.150)

and the matrix elements on the upper diagonal of submatrix A is given by

A1,1 = A2,2 =
η↑↑k
2 + 4(2a↑ + αa↓) (8.151)

A1,4 = A2,3 = 2a↑eiδ
↑↑
13 + αa↓eiδ

↓↓
13

2 (8.152)

A1,6 = A2,5 = 2a↑eiδ
↑↑
24 + αa↓eiδ

↓↓
24

2 (8.153)

A1,8 = A2,7 = 2a↑eiδ
↑↑
31 + αa↓eiδ

↓↓
31

2 (8.154)

A1,10 = A2,9 = 2a↑eiδ
↑↑
42 + αa↓eiδ

↓↓
42

2 (8.155)

A1,12 = A2,11 =
2a↑

(
eiδ
↑↑
14 + eiδ

↑↑
23

)
+ αa↓

(
eiδ
↓↓
14 + eiδ

↓↓
23

)
2 (8.156)

A1,14 = A2,13 =
2a↑

(
eiδ
↑↑
21 + eiδ

↑↑
34

)
+ αa↓

(
eiδ
↓↓
21 + eiδ

↓↓
34

)
2 (8.157)
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A1,16 = A2,15 =
2a↑

(
eiδ
↑↑
32 + eiδ

↑↑
41

)
+ αa↓

(
eiδ
↓↓
32 + eiδ

↓↓
41

)
2 (8.158)

A1,18 = A2,17 =
2a↑

(
eiδ
↑↑
43 + eiδ

↑↑
12

)
+ αa↓

(
eiδ
↓↓
43 + eiδ

↓↓
12

)
2 (8.159)

A1,19 = s(k)
2 (8.160)

A2,20 = −s(k)
2 (8.161)

A1,22 = A2,21 = α
√
a↑a↓

2 e−iδ
↑↓
31 (8.162)

A1,24 = A2,23 = α
√
a↑a↓

2 e−iδ
↑↓
42 (8.163)

A1,26 = A2,25 = α
√
a↑a↓

2 e−iδ
↑↓
13 (8.164)

A1,28 = A2,27 = α
√
a↑a↓

2 e−iδ
↑↓
24 (8.165)

A1,30 = A2,29 = α
√
a↑a↓

2

(
e−iδ

↑↓
41 + e−iδ

↑↓
32

)
(8.166)

A1,32 = A2,31 = α
√
a↑a↓

2

(
e−iδ

↑↓
12 + e−iδ

↑↓
43

)
(8.167)

A1,34 = A2,33 = α
√
a↑a↓

2

(
e−iδ

↑↓
23 + e−iδ

↑↓
14

)
(8.168)

A1,36 = A2,35 = α
√
a↑a↓

2

(
e−iδ

↑↓
34 + e−iδ

↑↓
21

)
(8.169)

A4,19 = A3,20 = α
√
a↑a↓

2 e−iδ
↑↓
13 (8.170)

A6,19 = A5,20 = α
√
a↑a↓

2 e−iδ
↑↓
24 (8.171)

A8,19 = A7,20 = α
√
a↑a↓

2 e−iδ
↑↓
31 (8.172)

A10,19 = A9,20 = α
√
a↑a↓

2 e−iδ
↑↓
42 (8.173)

A12,19 = A11,20 = α
√
a↑a↓

2

(
e−iδ

↑↓
14 + e−iδ

↑↓
23

)
(8.174)

A14,19 = A13,20 = α
√
a↑a↓

2

(
e−iδ

↑↓
21 + e−iδ

↑↓
34

)
(8.175)

A16,19 = A15,20 = α
√
a↑a↓

2

(
e−iδ

↑↓
32 + e−iδ

↑↓
41

)
(8.176)

A18,19 = A17,20 = α
√
a↑a↓

2

(
e−iδ

↑↓
43 + e−iδ

↑↓
12

)
(8.177)
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A19,19 = A20,20 =
η↓↓k
2 + 4(2a↓ + αa↑) (8.178)

A19,22 = A20,21 = 2a↓eiδ
↓↓
13 + αa↑eiδ

↑↑
13

2 (8.179)

A19,24 = A20,23 = 2a↓eiδ
↓↓
24 + αa↑eiδ

↑↑
24

2 (8.180)

A19,26 = A20,25 = 2a↓eiδ
↓↓
31 + αa↑eiδ

↑↑
31

2 (8.181)

A19,28 = A20,27 = 2a↓eiδ
↓↓
42 + αa↑eiδ

↑↑
42

2 (8.182)

A19,30 = A20,29 =
2a↓

(
eiδ
↓↓
14 + eiδ

↓↓
23

)
+ αa↑

(
eiδ
↑↑
14 + eiδ

↑↑
23

)
2 (8.183)

A19,32 = A20,31 =
2a↓

(
eiδ
↓↓
21 + eiδ

↓↓
34

)
+ αa↑

(
eiδ
↑↑
21 + eiδ

↑↑
34

)
2 (8.184)

A19,34 = A20,33 =
2a↓

(
eiδ
↓↓
32 + eiδ

↓↓
41

)
+ αa↑

(
eiδ
↑↑
32 + eiδ

↑↑
41

)
2 (8.185)

A19,36 = A20,35 =
2a↓

(
eiδ
↓↓
43 + eiδ

↓↓
12

)
+ αa↑

(
eiδ
↑↑
43 + eiδ

↑↑
12

)
2 (8.186)

Where a↑ ≡ a↑↑ and a↓ = a↓↓. The author is able to find real eigenvalues for some values of
(α, λR), see fig. 8.4 for the excitation spectrum. The plot reveals that there is no stable minima,
except for the zero eigenvalue. Thus for this choice of physical parameters, the LW phase will
not be stable. This is also reflected in the next section, where we find that the pure LW-phase
does not appear in the phase-diagram in (α, λR) space.

8.4.1 Pure LW phase
In this section we provide the expression for the free energy of the pure LW phase. This
means that we neglect any terms proportional to an excitation operator. We assume that
N↑0 = N↓0 = N0/2. Using the expression for µ↑ in eq. (8.66), and that s1 = 2

√
2λR| sin(k0a)|,

we get an expression for N0/Ns

N0

Ns
= 2f

3U(3 + α)

(
µ↑ + 4t cos(k0a) + 2

√
2λR| sin(k0a)|

)
(8.187)

which inserted into the expression for the constant Hamiltonian gives

H0 = −4Ns(7 + 3α)
9U(3 + α)2

(
µ↑ + 4t cos(k0a) + 2

√
2λR| sin(k0a)|

)2
(8.188)

giving the free energy as F = H0. The free energy is on the form

C
(
µ↑ + 4t cos(k0a) + 2

√
2λR| sin(k0a)|

)2
(8.189)
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Figure 8.4: Excitation spectrum for the LW phase. The physical parameters are U = 0.1,
δ = 0.9, N = 502, λR = 0.02 and α = 3.43. The value for k0 is given in eq. 3.214.

which has a minima for k0 equal to

k0 = 1
a

arctan
(√

2λR
2t

)
(8.190)

which is the same k0 as in the PW and SW phases. Thus the free energy is given by

FLW = −4Ns(7 + 3α)
9U(3 + α)2

(
µ↑ + 4t

√
λ2
R

2t + 1
)2

(8.191)

when µ↑ = µ, as in the other phases, the free energy for the LW phase is actually larger than
any of the free energies for the other phases. Consequently, it does not show up in the phase
diagram in (α, λR) space. The reason for this will be discussed in the Miscellaneous Discussion
chapter.
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Chapter 9
Miscellaneous Discussion, Summary and
Outlook

In this chapter we shall discuss some results from the previous chapters.

9.1 Free energy for the pure LW phase
As noted in at the end of the LW chapter, the free energy for the pure LW phase was higher
than any of the other phases. As a first guess to why, we may guess that it has something to do
with kinetic energy. This cannot be the case however, as we assume for each phase that there
are N0 bosons, which will distribute themselves equally at the condensate momentum points. It
was in addition shown that the length of the k0i vector in the LW phase was minimized for the
same value as for the SW and PW phases. Thus the kinetic energy is the same for the non-zero
momentum phases. Thus there must be another explination. The constant Hamiltonian, which
gives the free energy, is before simplifying anything given by [32]

H0 =
∑
i

∑
αβ

ηαβi (aαi )∗aβi (9.1)

+ 1
2Ns

∑
iji′j′

∑
αβ

Uαβ(aαi )∗(aβj )∗aβi′a
α
j′δi+j,i′+j′ (9.2)

where the ai’s are the mean-field parameters. The above equation can be written on the form

H0 = −Λ + condensate interactions, Λ > 0 (9.3)

This means that the free energy has a negative “baseline” at Λ, and the interactions, which are
mathematically described as two-body scattering between two incoming wavevectors with indices
(i, j), and two outgoing wavevectors with indices (i′, j′), causes the energy to rise. Thus we can
understand that the pure LW phase has higher free energy than the other phases because it has
a higher number of condensate momenta k0i in k-space. This interpration cannot be exactly
correct, as the sign of the interaction is dependent on the phase differences θαi + θβj − θ

β
i′ − θαj′ .
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9.1.1 Chemical potential difference for the LW phase
It was shown in the LW chapter that an equal number of particles in the condensate N↑0 = N↓0 ,
led to an imbalance in the chemical potentials δ, which sign relied on the value for m ∈ (0, 1).
Similarly, if µ↑ = µ↓, this led to an imbalance in condensate numbers ∆N0. This is strange,
and is a direct result of spin-orbit coupling. We can try to understand this by looking at the
characteristics of spin-orbit coupling. For a simple quadratic dispersion relation w(k) = k2/2m,
Rashba SOC will move the minima at k = 0 to finite k, creating to two bands with definite
helicity. Now, it may be the case for the LW phase that to achieve definite helicity bands, one
must have an imbalance in the condensate parameters, either N0 or µ, or both at the same time.

Mathematically, the difference in chemical potentials comes from the fact that at N↑0 = N↓0 ,
µ↑ has a term proportional to 7 + 2 cos(mπ), and µ↓ has a term proportional to 7− 2 cos(mπ).
The m terms originate from θα4 − θα1 − θα3 + θα2 = mαπ, α ∈ (↑, ↓) which is due to keeping µα
real. Further, to reduce the expressions for the imaginary part of the chemical potentials to only
sin (θα4 − θα1 − θα3 + θα2 ), one had to use the explicit values for the spin-orbit coupling γ’s, and
also that δθi = γi − π, which is caused by spin-orbit coupling. So in fact, the reason for why
the m’s appear, and also that m↑ 6= m↓ is completely due to a finite SOC. Thus the finite δµ at
N↑0 = N↓0 is because of SOC.

9.2 Finite temperature phase diagram
In fig. 7.8 the phase diagram for the PZ, PW and SW phases are shown, at T = 0, with
excitations. There is in principle little trouble of calculating the phase diagram at finite T , as
the excitation spectra are not explicitly dependent on temperature. Thus to create the phase-
diagram at finite T , one would simply add the finite temperature term from the free energy in
eq. (3.203). However, it may be that the mean-field parameters θαi and k0 are in fact dependent
on the temperature of the system. To investigate this one could use the Metropolis Algorithm
outlined in sec 3.5.1 on a finite temperature system, and look for temperature dependencies in
the mean-field parameters.

Further, one could maybe get an intuition for the finite temperature phase diagram by
studying the phase diagram in fig. 7.8, which is at T = 0, but includes excitations. Here we
see that the zero-momentum PZ phase moves into the SW phase, reducing the phase space
available for the SW phase. When turning on increasing the temperature, one could therefore
expect that the PZ phase moves further into the SW phase, decreasing the phase space available.
The fact that the PZ phase becomes more energetically favorable when including interactions
may originate from the fact that there is less energetic scattering around k = 0.

9.3 Higher order interactions and other lattice geometries
We saw in the case of a pure condensate in fig. 3.5 that the condensate densities for the phases
was, even at µ = −3.9, significantly larger than 1. This means that on average, there are many
bosons per lattice sites. This could implicitly break the assumption that two-body scattering
is the only non-negligible contribution, and one may have to include higher order interactions.
This also begs the question if mean-field theory is the correct approach if one must include
higher-order interactions, and one may consider pertubation theory instead.



One could also develop a mean-field approach for other lattice geometries, for example the
honey-comb lattice (which is not a Bravais lattice). This could be interesting to study, but it
would lead to more complex expressions, as we considered the simplest square lattice case.

9.4 Summary and Outlook
In this master’s thesis, the theory outlined in Janssønns master’s thesis [32] has been used
exstensively on different phases in k space, namely the PZ, NZ, PW, SW and LW phases. The
expressions for the chemical potentials for pseudo-spin up an down have been derived for each
phase, and the associated equations for the condensate densities N↑0 and N↓0 have been analyzed,
both analytically and numerically.

For the PZ phase, we found that the extreme imbalance in the condensate numbers led to
a Zeeman field which made the eigenvalues real, and by extension keeping the PZ phase stable.
The analytical excitation spectrum resembled the spin-orbit coupled, non-interacting, Bose gas
with a Zeeman field, with the lowest branch being Bogoliubov-like with linear dispersion relation
around k = 0, as an effect of the weak interactions. The associated superfluid critical velocity
was analytically derived, kept finite by the Zeeman field.

For the NZ phase, the zero-momentum minima was incompatible with a finite spin-orbit
coupling, as the numerical results revaled that there was no Zeeman field, even with an imbalance
in condensate numbers.

For the PW phase, we found that the Hamiltonian had to be appropriately symmetrized to
obtain physically meaningful, and real, excitation spectra. The numerically found excitation
spectrum was shown to be Bogoliubov-like with a finite superfluid critical velocity for the lowest
branch, with two parabolas shifted by SOC lying above.

The SW phase was the first phase containing linear excitation operators, whereby a method
for dealing with these terms is given in the appendix. Also, as the coefficient matrix of the
SW phase was indeterminate, choosing the correct eigenvalues was non-trivial. The excitation
spectrum was not Bogoliubov-like around minima in k-space, which led to no superfluid critical
velocity. However, the excitation spectrum resembled the case of a spin-orbit coupled, non-
interacting, Bose gas, demonstrating the influence of a finite SOC. Also, a Monte Carlo method
was demonstrated and used to determine the mean-field parameters, which coincided with the
mean-field parameters determined for the pure SW phase.

The LW phase showed some strange behaviour, namely the finite difference in chemical
potentials when assuming that there are an equal amount of condensed bosons for each pseudo-
spin. The excitation spectrum was found to have no stable minima. In addition, the free energy
for the pure LW phase was derived, and shown to be larger than any of the other free energies
for the other phases.

Lastly, a phase diagram for T = 0 with excitations was created from the PZ, PW and SW
phases, resembling the case of a pure condensate, which agrees with results from the literature.
The effect of excitations seemed to give the PZ phase more available phase-space, and decreased
the available phase-space for the SW phase.

For future work, it may be interesting to study the phase diagram for the PZ, PW and SW
phases at finite T, discussed in section 9.2. It could also be interesting to consider a different
lattice geometry, for example the honeycomb-lattice.
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Appendix

We will frequently encounter the sum

Sβ =
∑
k

ηββk (9.4)

for β = (↑, ↓) and k ∈1BZ. The energy ηββk is given by

ηββk = −(µβ + εβ(k)) (9.5)

where the energy εβ(k) is given by

εβ(k) = 2tβ (cos(kxal) + cos(kyal)) (9.6)

thus, Sβ becomes
Sβ = −

∑
k

µβ −
∑
k

εβk (9.7)

The first sum is simply −µβNs, as
∑
k = Ns. The second sum requires more care

∑
k

εβk = 2tβ
(∑

k

cos(kxal) +
∑
k

cos(kyal)
)

(9.8)

= 2tβ
√Ns∑

kx

cos(kxal) +
√
Ns
∑
ky

cos(kyal)

 (9.9)

= 4tβ
√
Ns
∑
kx

cos(kxal) (9.10)

Where we have used that kx and ky runs over the same values, so that the two sums are
equal. Also, we have used that

∑
kx

=
∑
ky

=
√
Ns. We further focus on the sum

∑
kx

cos(kxal).
The kx and ky are in the 1BZ, and we choose kx on the form [17]

kx = 2πm
Lx

(9.11)

where Lx =
√
Nsal ≡ Nxal, and m = −Nx/2,−Nx/2 + 1, ..., Nx/2 − 1 (where we assume that

Nx is an even number). This gives kx = −π/al,−π/al + 2π/Lx, ..., π/al − 2π/Lx. We thus get

∑
kx

cos(kxal) =

Nx
2 −1∑

m=−Nx2

cos
(

2π
Nx

m

)
(9.12)
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Now we turn to a more general form of the sum above, given by:
b∑

m=a
cos(cm) = 1

2− 2 cos(c) [cos(ac) + cos(bc)− cos(c(a− 1))− cos(c(b+ 1))] (9.13)

Which can be derived by writing cos(cm) on exponential form, and realising that you get a
geometric series. Using this formula, we get

Nx
2 −1∑

m=−Nx2

cos
(

2π
Nx

m

)
= 0 (9.14)

Such that Sβ = −µβNs.

9.5 Hamiltonian linear in excitation operators for the SW
phase

The linear Hamiltonian H1 for the SW phase is given by the equation [32]

H1 = 1
Nsf3/2

∑
k

′

∑
iji′

∑
αβ

′′′ UαβNβ
0
√
Nα

0

×
(
e
−i(θβ

k0i′
−θαk0i

−θk0j )β
Aαk + H.c

)
δk+k0i′ ,k0i+k0j

where the constrained sum
∑′
k excludes all condensate momenta, and the primed sum

(∑
iji′
∑
αβ

)′′′
goes over the values in the subset (i, j, i′, α, β) such that Nα

k0i
6= 0, Nβ

k0j
6= 0 and Nα

k0i′
6= 0. The

dirac-delta function limits the possible values for k, by the equation

k = k0j + k0i − k0i′ (9.15)

In addition, we have that i = (1, 3), j = (1, 3) and i′ = (1, 3). We have two configurations for
(i, j, i′) which gives a non-condensate k. These are given by

(i, j, i′) = (1, 1, 3)→ k = 2k01 − k03 = 3k01 (9.16)
(i, j, i′) = (3, 3, 1)→ k = 2k03 − k01 = −3k01 (9.17)

Hence, the non-condensate momenta are given by

k1 ≡ 3k01 (9.18)
k2 ≡ −3k01 (9.19)

We assume that N↑0 = N↓0 = N0/2. The linear Hamiltonian thus becomes

H1 = N
3/2
0

2
√

2f3/2Ns
(S1(↑↑) + S2(↑↓) + S3(↓↑) + S4(↓↓)) (9.20)
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where the S terms are given by

S1(↑↑) = U
(
e−i(θ

↑
3−2θ↑1 )A↑k1

+ e−i(θ
↑
1−2θ↑3 )A↑k2

+ H.c
)

(9.21)

S2(↑↓) = αU
(
e−i(θ

↓
3−θ

↑
1−θ

↓
1 )A↑k1

+ e−i(θ
↓
1−θ

↑
3−θ

↓
3 )A↑k2

+ H.c
)

(9.22)

S3(↓↑) = αU
(
e−i(θ

↑
3−θ

↓
1−θ

↑
1 )A↓k1

+ e−i(θ
↑
1−θ

↓
3−θ

↑
3 )A↓k2

+ H.c
)

(9.23)

S4(↓↓) = U
(
e−i(θ

↓
3−2θ↓1 )A↓k1

+ e−i(θ
↓
1−2θ↓3 )A↓k2

+ H.c
)

(9.24)

The linear Hamiltonian can be written on the form

H1 = c↑1A
↑
k1

+ H.c

+ c↓1A
↓
k1

+ H.c

+ c↑2A
↑
k2

+ H.c

+ c↓2A
↓
k2

+ H.c

The coefficients are complex, and are given by

c↑1 = UN
3/2
0

2
√

2f3/2Ns

(
e−i(θ

↑
3−2θ↑1 ) + αe−i(θ

↓
3−θ

↑
1−θ

↓
1 )
)

(9.25)

c↓1 = UN
3/2
0

2
√

2f3/2Ns

(
e−i(θ

↓
3−2θ↓1 ) + αe−i(θ

↑
3−θ

↓
1−θ

↑
1 )
)

(9.26)

c↑2 = UN
3/2
0

2
√

2f3/2Ns

(
e−i(θ

↑
1−2θ↑3 ) + αe−i(θ

↓
1−θ

↑
3−θ

↓
3 )
)

(9.27)

c↓2 = UN
3/2
0

2
√

2f3/2Ns

(
e−i(θ

↓
1−2θ↓3 ) + αe−i(θ

↑
1−θ

↓
3−θ

↑
3 )
)

(9.28)

9.5.1 Dealing with linear terms
We want to remove the linear terms from the diagonalisation problem. Consider having a
quadratic Hamiltonian H2 = A†0M0A0, where A0 is a vector of operators. Consider also a
linear Hamiltonian given by H1 above. Define the matrix M on block diagonal form:

M =
(
M0 0
0 Mn

)
(9.29)

where the label n stands for “new”. The matrix Mn can be chosen to be a diagonal matrix, as
we will see. Also define a vector of operators

A =
(
A0 An

)T (9.30)

where An is a new vector of operators, given by the non-condensate momenta in H1. The
product A†MA is then

A†MA = A†0M0A0 +A†nMnAn (9.31)
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Define also a vector of complex numbers χ. Consider the product

(A† + χ†)M(A+ χ) = A†0M0A0 +A†nMnAn (9.32)
+ χ†MA+A†Mχ+ χ†Mχ (9.33)

and define χ as
χ =

(
0 χn

)T (9.34)

such that we get the products

χ†MA = χ†nMnAn (9.35)
A†Mχ = A†nMnχn (9.36)

Identifying H2 as A†0M0A0 and H1 as χ†nMnAn + A†nMnχn (this assumes that the linear
excitation operators contained in H1 are not in A0), we get

(A† + χ†)M(A+ χ)−A†nMnAn − χ†nMnχn = H1 +H2 (9.37)

The left hand side of this equation consists of no linear terms. Now is the question, how do we
choose Mn and χn? Let us look at the conrecte example of the SW-phase. Define

An =
(
A↑k1

A↓k1
A↑k2

A↓k2
A↑†k1

A↓†k1
A↑†k2

A↓†k2

)T
(9.38)

H1 is again given by

H1 = c↑1A
↑
k1

+ c↑∗1 A
↑†
k1

+ c↓1A
↓
k1

+ c↓∗1 A
↓†
k1

(9.39)

+ c↑2A
↑
k2

+ c↑∗2 A
↑†
k2

+ c↓2A
↓
k2

+ c↓∗2 A
↓†
k2

(9.40)

Let χn be given by
χn =

(
eiη
↑
1 eiη

↓
1 eiη

↑
2 eiη

↓
2 0 0 0 0

)T
(9.41)

and Mn defined as
Mn = diag(w↑1 , w

↓
1 , w

↑
2 , w

↓
2 , w

↑
1 , w

↓
1 , w

↑
2 , w

↓
2) (9.42)

then we get

χ†nMnAn = w↑1e
−iη↑1A↑k1

+ w↓1e
−iη↓1A↓k1

(9.43)

+ w↑2e
−iη↑2A↑k2

+ w↓2e
−iη↓2A↓k2

(9.44)

and,

A†nMnχn = w↑1e
iη↑1A↑†k1

+ w↓1e
iη↓1A↓†k1

(9.45)

+ w↑2e
iη↑2A↑†k2

+ w↓2e
iη↓2A↓†k2

(9.46)

If we define

w↑1e
−iη↑1 ≡ c↑1 (9.47)
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w↓1e
−iη↓1 ≡ c↓1 (9.48)

w↑2e
−iη↑2 ≡ c↑2 (9.49)

w↓2e
−iη↓2 ≡ c↓2 (9.50)

we are able to construct H1 on the form χ†nMnAn +A†nMnχn. Furthermore, the w’s are real
and given by the lenghts of the respective c’s. In addition, we have

χ†nMnχn = w↑1 + w↓1 + w↑2 + w↓2 (9.51)

We have therefore removed the linear terms, by introducing a shift to the operators and sub-
tracting A†nMnAn +χ†nMnχn. The term A†nMnAn is not problematic, as Mn is diagonal. The
contribution to the free energy from this term is therefore easily obtained. The term χ†nMnχ is
operator independent, and can be absorbed into H0. However, the diagonalisation problem has
changed to finding the eigenvalues of the matrix JM , not JM0. The problem with this method
is that the matrix J will be changed. This is due to the relation

Jij = [Ai,A
†
j ] (9.52)

which will lead to a J on the block diagonal form

J =
(
J0 0
0 Jn

)
(9.53)

where J0 is the matrix of 1’s and −1’s along the diagonal pertaining to the operators in A0, and
J1 = diag(1, 1, 1, 1,−1,−1,−1,−1) pertaining to the operators in An. Thus this method is not
in accordance with the Dynamic Matrix section, since the new matrix J is block-diagonal with
1’s and −1’s. However, it may be possible to generalize the work done in the Dynamic Matrix
section to J ’s on block-diagonal form

J =


J1 0 0 0
0 J2 0 0

0 0
. . . 0

0 0 0 Jn

 (9.54)

where Ji is a matix of evenly many 1’s and −1’s

Ji =
(

1m 0
0 −1m

)
(9.55)

The author has not found any papers outlining a method for dealing with linear excitation
operators. In addition, since the matrix M is block-diagonal, the eigenvalues of JM are the
eigenvalues of J0M0, which gives the excitation spectrum, and the eigenvalues of JnMn, which
are only the diagonal entries of JnMn. Thus the author suspects that the linear terms only
contributes with a constant term Clin to the total Hamiltonian.
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