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Abstract

The ALOMAR tropospheric lidar was not operative as the laser was
damaged and could not be repaired. It got a new laser during the
writing of this thesis. In this thesis I will try to give a backup so-
lution using the RMR-lidar for tropospheric measurements, which is
also located at ALOMAR. The RMR-lidar is equipped with rotational
Raman channels which will be used to calculate the temperature. As
the RMR-lidar is built for upper atmospheric measurements the tele-
scopes have an incomplete optical overlap in the troposphere. The
optical overlap function for the RMR telescopes will be determined
using different methods, such that the RMR-lidar can be used for
other measurements in the troposphere. The overlap function will
then briefly be used to compare data from tropospheric lidar.
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CHAPTER 1

Introduction

Atmospheric lidar technology can be applied in many different stud-
ies. Lidar is an instrument sending laser pulses and measures the
backscattered signal in different altitudes. The backscattered signal
contains information about different parameters of the backscattering
medium. It can be used for particle extinction studies [1], determin-
ing particle size [2], temperature measurements [3] just to name a few.
Atmospheric research is critical to study and understand weather and
climate. The use of remote sensing has become a convenient way to
study the basic variables of state in the atmosphere such as tempera-
ture, pressure, humidity, and aerosols. Lidar systems gives an insight
of the atmospheres properties at high spatial and temporal resolution
for long periods of time.

The tropospheric lidar at the ALOMAR observatory is out of service
because of a laser malfunction, determining an overlap function for
the Rayleigh-Mie-Raman (RMR) can give some data in the period the
tropospheric lidar is out of service. The tropospheric lidar uses elas-
tic backscattering to calculate properties of the troposphere, and the
RMR lidar uses the same wavelength laser and detection channels. But
to use the RMR lidar for the same calculations the overlap function
must be determined. The optical overlap function for the lidar system
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CHAPTER 1. INTRODUCTION

will also be calculated using an approximated analytical solution, a nu-
merical ray tracing simulation and an experimental approach. I will
also attempt to measure the temperature in the troposphere using ro-
tational Raman scattering theory as another solution. The RMR lidar
is equipped with rotational Raman channels which uses the inelastic
scattering of molecules to calculate the temperature.
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CHAPTER 2

Lidar background theory

A lidar system consists of a transmitter and a receiver. The trans-
mitter is a laser that shoots short pulses, typically the pulses are in
the order of ns, and this determines the maximum resolution for the
system. The detectors resolved time interval is ∆t and determines the
spatial resolution. Each resolution step is commonly called a range
bin. The length of each range bin can be calculated by ∆R = c∆t/2,
where c is the speed of light. This is only valid if the laser pulse is
shorter than the detector time. The factor 1/2 is from the fact that
the light has to move both ways in the range bin.

Lidar detection system consist of using photonmultiplier tubes, PMTs,
to detect the backscattered photons in each range bin. The backscat-
tered photons comes from either molecules or aerosols in the atmo-
sphere giving information about the properties of the scattering medium.

3



CHAPTER 2. LIDAR BACKGROUND THEORY

2.1 The lidar equation

The lidar equation in its absolutely simplest form is

P (R) = KG(R)β(R)T (R), (2.1)

where P is the received power, K is a constant which describes the
total efficiency of the system, G(R) describes how the intensity varies
due to the geometry of the system. β(R) and T (R) are atmospheric
variables, the backscatter and transmission coefficients respectively.

All of these terms can further be deconstructed. The total system
factor K can be described as

K = P0
cτ

2
A · η, (2.2)

where P0 is the average power of a single laser shot, and τ is the
temporal pulse length. These multiplied is equal to the energy of a
single shot. A is the area of the receiver, and η the overall efficiency
of only the detector system. The factor 1/2 comes from a folding
of the laser as it travels trough the medium observed. G(R) is the
geometrical decompression of the system, which is explained in the
next subsection.

β(R) is the backscatter coefficient determined by the backscattering
medium. This is highly dependent on the wavelength of the laser,

β(R, λ) =
∑
j

Nj(R)
dσ

dΩ
(π, λ). (2.3)

In eq 2.3 the backscatter is defined as the sum of all different backscat-
ter elements j, with an abundance N , multiplied with the differen-
tial cross section dσ

dΩ
in the backwards direction π. This is called the

backscatter cross section. In the atmosphere there are two different
contributors to backscattering, molecules which the air consists of, and
aerosols (particulate matter). The backscatter can be decomposed into
the two main different scattering mediums, molecular scattering and
aerosol backscatter,

β(R, λ) = βmol(R, λ) + βaer(R, λ). (2.4)

4



CHAPTER 2. LIDAR BACKGROUND THEORY

The molecular backscatter is primarily dependent on the abundance
of O2 and N2. That means for ground based systems the backscatter
decreases with range. The aerosol backscatter is highly variable in
the atmosphere both spatial and temporal. There are many different
particles that contribute to particle backscatter; sea-salt, dust, water
droplets, soot, just to name a few. T is the transmission of the light
in the atmosphere i.e. which percentage of the photons which is in the
path to and from scattering medium. Here T(R) is defined as

T (R, λ) = exp
(
− 2

∫ R

0

α(r, λ)dr
)
, (2.5)

where α is the sum of all the light extinction coefficients in the path.

K and G is determined by the systems specifications, while β and T
are atmospheric variables to be determined [4].

For the transmission to be determined one needs to know the extinc-
tion coefficient. The most common method is called the Klett method,
which was derived by James Klett in 1982 [5]. To solve the lidar equa-
tion one introduce a helping quantity

S(R) = ln[r2P (R)], (2.6)

and using the assumption that the backscatter and extinction is related
in a power law form

β = const · αk, (2.7)

where k is dependent on the lidar wavelength and the scattering medium,
following ref [5] one end up with the far range solution,

α(R, λ) =
exp[S − Sm/k]

α(Rm, λ)−1 + 2
k

∫ rm
r

exp[(S − Sm)/k]dr′
. (2.8)

It is called the far range solution as one choose a far distance Rm as
reference to integrate to from a distance r. Instead of integrating from
a distance to r.
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CHAPTER 2. LIDAR BACKGROUND THEORY

2.2 The lidar profile

The lidar profile is the signal frequency received plotted against the
altitude. The most common way to plot the lidar profile is the alti-
tude on the y-axis and the logarithm of the photon count frequency
on the x-axis. The photons received from scattering in clean air comes
primarily from Rayleigh scattering of the air molecules. The signal
goes down with altitude due to less Rayleigh scattering in a less dense
atmosphere. It is expected by atmospheric conditions to decrease ex-
ponentially, which will affect the lidar profile. This is why the lidar
profiles are often plotted with semi-logarithmic axes. With intensity
on the x-axis and altitude on the y-axis. If we have perfect clean air,
neglect extinction and geometrical compression the signal should only
decrease due to lower pressure. The result would be a straight line in
the semi-log plot.

Geometrically the signal decreases due to the telescopes overlap func-
tion and that the solid angle which spans the telescope area seen from
the scattering medium decreases. Due to the solid angle decreasing
the received signal is expected to decrease by a factor ∼ 1/R2 with
altitude.

G(R) = O(R)/R2 (2.9)

Figure 2.1: The geometrical impact on the lidar signal. The blue line
is due too the solid angle which spans the telescope area decreases
with 1/r2, and the red line is due to an incomplete overlap of the laser
beam and telescope FOV.

6



CHAPTER 2. LIDAR BACKGROUND THEORY

Here is a typical range-corrected lidar signal profile with an unknown
overlap.

Figure 2.2: Range corrected lidar profile. One can see an incomplete
overlap up too one kilometre, at five kilometres the signal starts to
become noisy due to low counts at these altitudes. One can also note
a cirrus cloud at 8-10 kms. Data: ALOMAR, 08.11.2018.

The geometrical parts of the received lidar signal are often taken care
of by data processing, if the overlap function is determined. The nec-
essary data processing of the raw signal will be described in the next
chapter.

7



CHAPTER 3

Method

In this chapter I will go trough the equipment used for the RMR-lidar
at ALOMAR, and the necessary raw data processing needed to make
the lidar return usable for remote sensing.

3.1 Equipment

The Arctic Lidar Observatory for Middle Atmospheric Research, ALO-
MAR, on Andøya is situated 69°N and 16°E. The observatory is equipped
with an RMR twin lidar capable of temperature measurements, wind
measurements, and measuring shape and size of particles in the atmo-
sphere [6]. In the cited article there is an extensive description of the
system, in this thesis I will only go through the most necessary parts.
A general illustration of an atmospheric lidar in figure 3.1.

8
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Laser Beam expander

RMR Optical box Data Acquisition

Optical box Data Acqusition

Transmitter

Recievers

Figure 3.1: A lidar setup consisting of a transmitter part, a laser a
beam-expander and a beam-guiding mirror, and a reciving part, a
Cassegrain telescope with an optical box and data acquisition hard-
ware. In addition to this there is a small lens telescope which is further
mentioned in appendix A.

3.1.1 Setup

The RMR lidar consist of:

• Nd:YAG: Laser

• Cassegrain telescope

• Detector system

NdYag: Laser

The Nd:YAG emits an electromagnetic wave with the wavelength 1064
nm. By generation of optical harmonics in a crystalline quartz, we
double and triple the frequency such that we receive two additional
wavelengths, 532nm and 355nm [7]. The laser has a bandwith < 70
Mhz.The laser pulses have an energy of 360mJ and a frequency of 100
Hz. The laser is also externally seeded to make sure that the laser
wavelength is stable. To keep the laser divergence low the laser goes
through a beam expander such that the exit diameter of the laser is
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CHAPTER 3. METHOD

20cm. The laser divergence δ is measured to be 35µrads after the
beam expander. The actively stabilised to fit the optical axis at all
time with an offset less than ±20µ rads.

Cassegrain telescope

The RMR receiver is a Cassegrain telescope with a diameter of 1.8
meters. The telescopes specifics are explained in more detail in chapter
5.2. A picture of the telescope at ALOMAR is given in figure 3.2.

Figure 3.2: The cassegrain telescope for IAPs RMR-Lidar situated at
ALOMAR.
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CHAPTER 3. METHOD

Detector system

To analyse the received signal we need as previously mentioned several
channels of wavelengths counted. For the RMR system the received
light signal goes from the telescope to the optical table via fiber.
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I
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Figure 3.3: The optical table for the RMR lidar. Here the received
light is filtered into wavelengths using dichroic filters and etalons.
Courtesy of dr. Gerd Baumgarten.

The rotational Raman spectrum is challenging to filter out due to its
closeness to the 532 nm Cabannes line received from elastic scattering
which usually is a magnitude of order 3 or higher than the Raman
spectrum.

The rotational Raman channels were verified to be in this spectrum.
Using Perkin Elmer Lambda 900 spectrometer a high resolution scan
over the optical system for the RR channels was performed. Guiding
the light from the spectrometer through the optical bench to the RMR
data acquisition system one can measure the spectral efficiency of the
system. The scan went from 534 to 527 nm. The data interval was
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0.01 nm with 10 seconds detector time for each data interval. This
gives a scan time of 0.06 nm per minute which is used to convert
the time axis of the data acquisition to wavelength. The slit of the
spectrometer was 0.1 nm which is sufficient to measure the spectre of
the r Raman channels. The results are plotted into the spectrum of
O2 and N2 in figure 3.4.

Figure 3.4: The efficiency of the detector channels was normalised to
the peak of the VRR1 channel. The spectrum was normalised to the
maximum intensity of the anti-stokes branch for N2.

3.2 Data processing

The received raw lidar data has to be processed before use. When a
laser pulse is shot into the atmosphere there is also a photo detector,
also called a trigger, for the photon counter such that we can know
where the laser pulse is. When light is scattered from the air or aerosols
in the atmosphere some of it is then received by the LIDAR telescope.

At ALOMAR we use Licel transient recorders. The raw data is pro-
cessed in 6 steps before we can further analyse it.

1. Dead-time correction.
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2. Background subtraction.

3. Correction for zero-bin.

4. Range corrected signal(RCS).

5. Time correction between discrete photon-counting and analog
signal.

6. Gluing of PC and analog signal.

1: The Licel photon counter have certain limitations when it comes to
photon counting. Dead-time is the time where two separate photons
can hit the photon counter and be counted as individual photons.
This must be taken into account for low height measurement since the
amount of photons scattered from the laser is high, which increases the
likelihood of missing photons. This is a statistical problem which can
be described as a non-paralyzable system [8]. In a non-paralyzable
detector, an event happening during the dead time is simply lost.
This means with increasing amount of events the detector will reach
a saturation equal to the inverse of the dead time .Then the observed
count rate can be given as:

N =
S

1 + S · τd
(3.1)

Where N is the observed count rate, S is the true count rate and τd is
the dead-time of the system. This can be inverted as:

S =
N

1−N · τd
(3.2)

This is a theoretical statistical model and can only be used if N < τd.
This means that this will be a good correction is good if the observed
amount of photons per dead time is less than one on average.

2: There is also background scattered in the atmosphere, with the
earth and sun as light sources. This background radiation have to be
taken into account before we can further process the raw data. This is
subtracted from the counted amount of photons. When the raw data
is received, the observed counting rate becomes close to constant for

13
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great heights or in between shots, the average of this is subtracted
from all bins.

3: Then we need to correct for the zero-bin, this is a correction done
to make sure that the first bin is the first altitude measured.

4: Now the signal can be range corrected. We approximate the scat-
tering from air to be on average isotropic. This means that the solid
angle of scattered light from a molecule which hits the telescope is
decreasing with height. In fact it is decreasing to the factor 1

R2 .

5: Photomultipliers used often have a possibility to measure a wide
range of light intensities using two different modes, discrete photon
counting and analog mode. For high intensity light the analog signal
from the photonmultiplier is used, and the signal is the mean of the
current observed. For low intensity light the current pulses can be
counted individually for discrete counting. These two modes can be
used at the same time and needs to be time corrected such that we
ensure they are measuring at the same altitudes.

6: The two modes can then be glued together for a complete lidar
profile.

During all these steps the measurement uncertainty are considered and
combined using the standard Gaussian error propagation.

14



CHAPTER 4

Lidar temperature calculations using rotational

Raman scattering

In this chapter i will briefly go through the history of Raman scat-
tering and when it started to be used for remote sensing. Then go
through the Raman theory needed to use it for temperature measure-
ments and how it is implemented in lidar systems. I will introduce
two techniques, one involving a reference measurement to calibrate to,
and direct calculation using only the systems specifics.

4.1 Raman scattering

Raman scattering is inelastic scattering of light on molecules. This
causes an energy interaction that changes the energy i.e. the fre-
quency of the light. Raman scattering was first proposed by Adolf
Smekal in 1923 [9]. In 1928 the Raman effect was discovered by C.V.
Raman and his coworker K.S Krishnan by looking at a strong beam
sunlight scattered through quartz [10]. Later Krishnan showed that
the Raman spectrum was dependent on the current states of the scat-
tering molecules i.e. the temperature of the medium [11]. The use
of rotational Raman spectrum of backscattered light from the air was
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first proposed by Cooney in 1971 [12]. He used the Raman rotational
spectrum of N2 to calculate the temperature in the atmosphere. Since
then we have gotten more sophisticated laser and telescope setups for
the lidar measurements.

4.1.1 Raman theory

Raman lidars use the weak inelastic scattering of light from atmo-
spheric molecules. Inelastic scattering exchanges energy between the
photon and the molecule. This changes the quantum state of the
molecule and the frequency of the photon. If the molecule absorbs
energy from the photon the photons frequency ν̃ decreases by ∆ν̃. If
the photon is red-shifted, the process is called Stokes Raman scatter-
ing [13]. If the molecule transfer energy to the photon the photon
is blue-shifted, and is called anti-Stokes Raman scattering. The fre-
quency shift

∆ν̃ = ν̃1 − ν̃s =
∆E

c0 · h
(4.1)

is determined by the scattering molecule. ∆E is the energy difference
between the molecular energy levels involved, and h and c0 are the
physical constants Planck’s constant and the speed of light in vacuum
respectively. In spectroscopy the common way to denote frequency is
the wave number ν̃ = 1/λ.

For homonuclear diatomic molecules such as O2 and N2 the energy lev-
els can be well approximated by a freely rotating harmonic oscillator.
The vibrational energy levels are given by:

Evib,ν = hc0ν̃(v + 1/2), v = 0, 1, 2... (4.2)

where v is the vibrational quantum number and ν̃ is the specific oscil-
lator frequency.

The rotational energy levels are given to a good approximation

Erot,J,ν = hc0[BνJ(J+1)−DνJ
2(J+1)2], J = 0, 1, 2... (4.3)

where J is the rotational quantum number. Bν is a rotational constant
and Dν is the centrifugal distortion of the molecule. These constants
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depend on the vibrational state ν of the molecule. For atmospheric
conditions most of the molecules are in the ground vibrational state.

To receive the frequency shift we use the sum of the equations 4.2 and
4.3 to find a certain vibration-rotation energy level, and then apply
this to equation 4.1. We consider the energy transition allowed by the
quantum mechanical selection rules described in ref [13],

∆v =0,±1

∆J =0,±2.
(4.4)

One can in short term say that the intensity of a rotational Raman
scattering line is

IJ→J ′ = PNLFJ · dσJ→J ′/dω, (4.5)

where P is the power of the incident beam, N is the number density
of molecules, L is the length sample,FJ is the fraction of molecules in
the state J . Last dσJ→J ′/dΩ is the differential cross section.

The received Raman signal for a lidar setup depends on the differen-
tial cross section dσ(π)/dΩ. This is also called the backscatter cross
section. This cross section can be calculated from Placzek’s poleriz-
ability [14] theory under the following assumptions:

1. The frequency of the incoming light is much larger than the
possible vibration-rotation transition of the scattering molecule.

2. The frequency is much smaller than any electron transition fre-
quency of the scattering molecule.

3. The ground state of the molecule is not degenerate.

For atmospheric conditions these assumptions have been shown to
hold [4].

The absolute Raman scattering cross section under these conditions
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has been shown to be for incident light with frequency ν0, [15]( dσ
dΩ

)RR,i
π

=
112π4

15
· gi(J)hcB0,i(ν0 + ∆νi(J))4γ2

i

(2Ii + 1)2kT
·X(J)·

exp(
−Erot,i(J)

kT
).

(4.6)

Here the Placzek-Teller coefficients are in X(J) term and found in
ref [16]. For the Stokes branch

X(J) =
(J + 1)(J + 2)

2J + 3
, for J = 0, 1, 2, ... (4.7)

and for the anti-Stokes branch

X(J) =
J(J − 1)

2J − 1
. for J = 2, 3, 4, ... (4.8)

gi(J) is the statistical weight factor dependent on the nuclear spin Ii. k
is Boltzmann constant, T is the temperature, and γi is the anisotropy
of the polerizability tensor of the molecule i. The statistical weight
factors are

gi(J)
J odd J even

N2 3 6
O2 0 1

Table 4.1: The statistical weight factors for N2 and O2

From this one can calculated the number of photons received by the
system with

SRR(z) =S0ε
AO(z)

z − z0

∆zN(z)

[ ∑
i=O2,N2

∑
Ji

τRR(Ji)ηi

( dσ
dΩ

)RR,i
π

(Ji)

]
·

τatm(z0, z)
2

(4.9)

Where τRR is the systems efficiency at the frequency of the RR line
Ji. ηi is the relative volume abundance of the molecule.
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The constants have been experimentally determined and are found in
table 4.2.

Molecular constants
B0,i D0,i γ2

i

cm−1 cm−1 cm6

N2 1.98959 [17] 5.76 · 10−6 [17] 0.51· 10−48 [18]
O2 1.43768 [19] 4.85· 10−6 [19] 1.27· 10−48 [18]

Table 4.2: The ground state rotational B0,i and centrifugal distortion
constant D0,i, and the squared anisotropy of the polarizability tensor.

Using this one can find the RR spectrum for N2 and O2. One have
to take into account the abundance of N2 and O2 which is 0.7808 and
0.2095 respectively.

The pure RR spectrum without Doppler and pressure broadening is
plotted in figure 4.1 and 4.2.

Figure 4.1: The nitrogen RR spectrum, the intensity has been nor-
malised to 1 for the strongest Anti-Stokes line at 280K. The incoming
wavelength is 532 nm.
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Figure 4.2: The oxygen RR spectrum, the intensity has been nor-
malised to 1 for the strongest Anti-Stokes line at 280K for nitrogen.
The incoming wavelength is 532 nm.

One can from figure 4.1 and 4.2 see that the spectrum is stronger
near the incident wavelength for lower temperatures. While at higher
rotational quantum numbers the signal is strongest for higher tem-
peratures, as expected. Choosing two different RR-lines as channels
in the detection, one decreasing with temperature and one increasing
with temperature to calculate temperatures.
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(a) The signal for two theoretical RR-
channels with temperature.

(b) The signal ratio between two the-
oretical RR-lines.

Figure 4.3: Theoretical pure RR-lines.

This can in theory be used exactly if one knew the exact properties of
the lidar system. One can also use models and fitting the signal ratios
to temperatures measured by a radiosonde, which will be introduced
in the next chapter.

4.1.2 Doppler broadening

Until now we have considered pure RR lines. As the molecules are
moving there will be a Doppler broadening of the lines. This will have
an impact on the signal ratios received by the lidar. The frequency
shift can be written as:

f = f0(1 +
v

c
) (4.10)

The speed of the molecules is evenly distributed in a direction to and
from the observer which will result in a broadning of the spectral line.

Pf (f)df = Pv(vf )
dv

df
df (4.11)
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Inserting vf = c( f
f0
− 1):

Pf (f)df =
c

f0

Pv(c(
f

f0

− 1))df (4.12)

For thermal Doppler broadning the velocity distribution is given by
the Maxvell distribution.

Pv(v)dv =

√
m

2πkT
exp
(
− −mv

2

2kT

)
dv (4.13)

Comparing these will give a Gaussian distribution with standard de-
viation:

σf =

√
kT

mc2
f0 (4.14)

4.1.3 Temperature models using radiosonde data

One knows that the quantum states of the molecules in the air is
dependent on the temperature following the Boltzmann distribution.
The ratio between the different states and therefor the Raman signals
can then be used to calculate the temperature of the air. The RMR-
setup at the ALOMAR uses the rotational Raman spectrum at 530.4
nm and 529.1 nm. Both of these are Stokes lines and the reason this
is used is to avoid the fluorescence effect from N2 [20]. The probability
of backscatter at 291.1 nm is increasing with increasing temperature
while at 530.4 it is decreasing.

The temperature at an altitude z can be calculated using [20]

T (z) =
B

A+ log(R(z))
, (4.15)

where R(z) is the signal ratio between the two different rotational
Raman signals

R(z) =
SRR1(z)

SRR2(z)
. (4.16)
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The two constants A and B has to be determined using radiosonde
data. The temperature should be measured as close to the lidar setup
as possible. These constants will fluctuate as the system is calibrated
and should therefore be recalculated every once in a while to ensure a
certain stability in the temperature measurements. The model above
is exact for two pure Raman lines, using detector systems covering
multiple Raman lines an even better approximation given by

T (z) =
−2a′

b′ ±
√
b′2 − 4a′(c′ − ln(R(z)))

. (4.17)

This model have three calibration constants, a′, b′ and c′ which needs
to be determined.

4.2 Raman temperature results

The ALOAMR RMR lidar collects data from the rotational Raman
spectrum of N2 and O2 centred at 530.4 nm and 529.1 nm [21]. These
channels will be refereed to as RR1 and RR2. The 08.02.19 the weather
conditions were good and air was quite clean except at 5km. These
conditions are good to calibrate the model constants in eq 4.15 to the
radiosonde data, this will also check if the Mie scattering processes is
sufficiently suppressed in the Raman channels.
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Figure 4.4: Signal at 532 channel with 1 hour of integration. Data:
08.02.19

Figure 4.5: Rotational Raman signals with one hour of integration.
2019-02-08 23:00:00 UT, ALOMAR

One can see that the signal above 30km is too uncertain to be used as
one can see the grey error area, especially for high temporal resolution
temperature measurements. Which is fine because the area of interest
is the troposphere.

The radiosonde data was interpolated to the same altitude axis as
the lidar data. Then a least square fit was performed between the
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measured radiosonde temperature and the signal ratio through the
model in equation 4.15.

4.2.1 Model fit 1

The signal data was fitted to the temperature measurements from a
radiosonde released within the hours of the lidar measurements. These
were then fitted through the model in equation 4.15.

Figure 4.6: Model fit to determine the model constants, using data
from fig 4.5. The datapoints are constructed using temperature from
radiosonde data and signal ratio from the lidar at the same altitudes.

The constants were then used to calculate the temperature the fol-
lowing balloon release, 24 hours after the calibration measurements,
to have a reference to check if the model is within error calculation
ranges.
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Figure 4.7: Temperature from interpolated radiosonde data and lidar
RR calculations with one hour integration. Radiosonde data: 2019-
02-08 23:05:00, ALOMAR. Lidar data in figure C.5.

Error calculations were performed as explained in appendix B, taking
measurement uncertainty and model fit errors into account.

Figure 4.8: Errorbars of 1 σ plotted into the relative errors.

One can see that the relative error is within the measurement errors
expect at roughly 5 km. The 09.02.19 had a thin cloud layer one can
see from the data set used in figure C.5. This gives an indication
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that the Cabannes line is not sufficiently suppressed for high accuracy
temperature measurements.

4.2.2 Model fit 2

Performing the same routine as previously described with the second
model equation 4.17.

Figure 4.9: Model fit to determine the model constants, using data
from figure 4.5. The datapoints are constructed using temperature
from radiosonde data and signal ratio from the lidar at the same alti-
tudes. 2019-02-08 23:05:00, ALOMAR
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Figure 4.10: Temperature from interpolated radiosonde data and lidar
RR calculations with one hour integration.

Figure 4.11: Errorbars of 1 σ plotted into the relative errors.

Here the uncertainty is well below 1K, but the correlation is very high
between the calibration constants. One can also see that the error is
higher than the uncertainty especially at 5 km confirming the before
mentioned suspicions of influence from the Cabannes line.
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4.2.3 Errors

Since the correlation of the constants are so high for the second model,
the focus was changed to improving the first model with two calibra-
tion constants. The idea is to find a condition such that if there is too
much elastic backscatter it subtracts a small percentage of the Ca-
bannes signal from the Raman channels. This will give a new signal
ratio:

R(z) =
SRR1(z)− c · SV L(z)

SRR2(z)− d · SV L(z)
(4.18)

the constant c and d can then be fitted to a day with high elastic
backscatter.

Figure 4.12: Error subtracting a small percentage of the Cabannes
signal.

4.2.4 Stability of the calibration constants

To ensure that the model can be used in between the radiosondes
we have to ensure that the calibration constants of the systems do
not vary or drift dramatically. The constants can be calculated each
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radiosonde release to evaluate if they are stable enough. Looking at
the results from data from 2018 and 2019 the constants fluctuates a
lot from month to month, although they seem stable enough to keep
the measured data within the uncertainty from day to day. One can
in figure 4.13 see some of the signal ratio to radiosonde temperature
fits performed from the data in 2018 and 2019.

Figure 4.13: Different signal ratio fits to radiosonde temperature data.
Here one can see that the data from 2019 are more stable than 2018.

4.2.5 Temporal resolution

The longer the measurement series the more data. The more data the
lower uncertainty. Assuming a perfect model and knowing the calibra-
tion constants for model 1 exactly the error has been calculated using
standard gaussian error propagation between the raman channels.

U(T ) =
( b

SRR1(a− log(Q)2

)2

· U(SRR1)2+( b

SRR2(a− log(Q)2

2)
· U(SRR2)2

(4.19)

The uncertainty is calculated at 5km altitude and plotted against time
integrated for an ideal condition in figure 4.14.
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Figure 4.14: Theoretical minimum error, given a perfect model using
only signal uncertainties. Data used is plotted in figure C.1

4.2.6 Direct temperature calculations

One can use the information of the exact shape of the filters to calcu-
late the signal ratio directly from the spectrum. This is done by first
measuring the shapes of the filters, then multiplying the efficiency with
the Doppler broadened spectrum explained in chapter 4.1.1 and 4.1.2.
This can then be integrated for both channels to calculate the relative
intensities received from each channel. The brevity of this explanation
does not comprehend the computational challenges.
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Figure 4.15: The signal ratio is theoretically computed from theory
and measured filter shapes. Radiosonde data, fig C.10. Lidar data
used from 22.08.19, 02:00:00 LT, ALOMAR, fig C.9

The data used is the closest to the measurements of the filters. Unfor-
tunately the radiosonde release is 13 hours before the data was taken,
which is an unknown uncertainty. One can from figure C.10 see that
there is an unusual temperature inversion at 4 km which explains the
abnormality at signal ratio 6,4 in figure 4.15.
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Overlap problem

In this chapter I will first briefly describe the impact of the overlap
function. Then I will describe the method of which I calculate the
overlap function and the result of the method before moving on to the
next method.

To be able to solve the lidar equation 2.1, one needs to know the
total geometrical compression G(R) of the system in equation 2.9.
The range dependence is taken care of by data processing, but the
compression due to incomplete optical overlap between the beam and
the telescopes FOV is not always known. The equation given by

O(R) =
Edet

Etelescope
, (5.1)

computes the ratio of the light that hits the telescope that reach the
detector. Assuming that the radiation hitting the telescope is isotropic
we can write:

Aeff = O(R) · Ai, (5.2)

where Aeff is the effective area of the aperture, and Ai is the image
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of the scattered laser light.

5.1 Stelmaszczyk, Overlap function

Stelmaszczyk found a geometrical expression for the overlap of biaxial
systems [22].

O=1

0 < O < 1

O=0

Figure 5.1: Illustration of the overlap area for biaxial lidar systems.

In this treatment we assume uniform laser intensity cross section and
that the aperture is placed in the focal plane of the telescope.One can
then calculate the area of the image of the laser as

e(R) = f
(
δ +

g0 + T

R

)
, (5.3)

where f is the focal length, δ is the divergence of the laser, g0 is the
initial size of the beam, T is the telescope size, and R is the height.
If one have a biaxial system the image will also get shifted, and one
could also tilt the telescope towards the laser beam. To help us we
introduce the new variable ν,

ν(R) = f · d0 − θ ·R
R

. (5.4)
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Then we can calculate the overlap of these which is the area of the
intersection of these circles. To calculate this we introduce the angles
as in ref [22],

ψ1(R) =
(

2 · arccos
[s2 + 4ν(R)2 − e(R)2

4 · ν(R) · s
])

(5.5)

ψ2(R) =
(

2 · arccos
[e(R)2 + 4ν(R)2 − s2

4 · ν(R) · s
])
. (5.6)

Then the overlap is

ξ(R) =
[ψ1(R)− sin(ψ1(R)]s2 + [ψ2(R)− sin(ψ2(R)]e(R)2

2πe(R)2
] (5.7)

This is used for calculating an approximate overlap function for the
experimental telescope in appendix A.

Coaxial system

For the coaxial system a much simpler method is used, with the same
assumptions as earlier. Note that for the coaxial system the aperture
is not in the focal plane.
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Figure 5.2: Illustration of the overlap area for coaxial lidar systems.

The vertical displacement of the image as the object moves towards
the lens or mirror causes the image size to increase where the fiber
is placed. Depending on where the fiber is placed one can achieve
different and better overlap functions. This computation can simply
be done by using equation 5.2. The only thing we now need is a term
for the size of the laser image at the point where we put the fiber. We
know that the distance to the image plane is

i =
o · f
f − o

, (5.8)

where o is the distance to the object and f is the focal length. We
also know that the image size is

hi =
−ho · i
o

, (5.9)

where ho is the size of the object, which in our case is the laser beam.
The laser beam diverges ie. the object changes size and the image
plane moves as the object plane moves. Since we for lidar system do
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not care about the clarity of the image, we only care about the amount
of the objects light which hits the fiber. This can be computed using
trigonometry to be

y =
T · (i+ x− f0)

i+ x
, (5.10)

where x is

x =
hi · i
T − hi

, (5.11)

where f0 is the placement of the fiber and T is the radius of the
telescope. Using this method the image obviously can be smaller than
the fiber and therefore all values of the overlap function larger than
one has to be discarded.

Aperture size : 0.0008 m
Focal Length : 8.345m

Laser divergence : 50 µ rads
Initial laser diameter : 0.2 m

Mirror diameter : 1,8 m

Table 5.1: Parameters for the big telescope

If the fiber was placed in the image plane one would quickly achieve
full overlap. But this is not technically possible as the image plane
changes with height. Another possibility is to place the fiber in the
focal point of the telescope, the results of these hypothetical solutions
are found in figure 5.3.
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Figure 5.3: Overlap functions if the fiber is at the focal plane and if it
could be in the image plane for all altitudes.

As we can observe this does not give overlap at an acceptable height.
Therefore the fiber has been moved 2.7mm behind the focal point.
The movement of aperture has a great impact on the overlap function
as seen in figure 5.4.

Figure 5.4: The overlap functions with different fiber positions.
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5.2 Ray tracing simulations

The geometrical approach assumes geometrical optics, hence it omits
spherical aberrations. In a spherical mirror with diameter 1.8 meters
this is a huge error and need to be taken into account. The secondary
mirror of the telescope has an aspherical shape to try and reduce the
amount of spherical aberrations. Another assumption made is that
the laser intensity is constant in the cross-section of the illuminated
volume, while it’s known that the laser beam has a Gaussian distribu-
tion.

The RMR telescopes are Cassegrain setups of one spherical primary
mirror and one aspherical secondary mirror, as seen in figure 3.2.

Primary mirror
Specifics

Shape Spherical
Curvature radius 5988 ± 1 mm
Diameter 1813.6 mm
Central hole 299.65 mm

The the shape of the secondary mirror is given by:

z =
cr2

1 +
√

1− c2r2
+ a4r

4 + a6r
6 + a8r

8 + a10r
10 (5.12)

where c = 1
R

.
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Secondary mirror
Specifics

Shape Aspherical
R -2878.088mm
c -3.47453·10−4 mm−1

Diameter 580 mm
a4 -4.388·10−11 mm−3

a6 1.32·10−17 mm−5

a8 -2.0 ·10−23 mm−7

a10 -2.0 ·10−27 mm−9

Mirror distance 2070 mm

Fiber
Specifics

R 0.75mm
Numerical aperture 0.11

Laser
Specifics

Initial radius 100 mm
Laser divergence ¡100 µrads

To compute the overlap function a Monte Carlo approach is used,
follwing the steps:

• Calculate the size of the laser cross section given a laser diver-
gence.

• Choosing a random initial position in the cross section, which is
Gaussian distributed.

• Choose a random angle which hits the primary mirror.
• Run the ray tracing calculating intersections and mirroring an-

gles to check if it hits the aperture fiber at a appropriate incident
angle.
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An appropriate angle is dependent on the numerical aperture of the
fiber, NA which is a dimensionless number defined as

NA = n sin(θ), (5.13)

where n is the refractive index of the fiber and θ is the incident angle.

To simplify the ray tracing we project the ray tracing to two dimen-
sions. To compensate for this the angles are distributed circular such
that more rays are hitting the edges of the telescope than the centre,
as if it was a circle and not a line. Another big assumption made
is that the intensity of the laser is constant with altitude, neglecting
Rayleigh and Mie extinction.

Figure 5.5: An illustration of the ray tracing performed with normal
incident beams equally spaced.

All the Monte Carlo simulations were run with 100.000 randomly gen-
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erated rays at each altitude. The altitude range was from 0.5-20km
calculated at 60 steps.

First we run the simulation with and without the block of the sec-
ondary mirror to check if it gives an intuitive result.

Figure 5.6: Overlap function with and without block.

One can see that the block has a greater impact on the overlap at
lower altitudes as expected. The overlap only reaches approximatly
0.9 with the block because the block covers 10% of the primary mirror
area.

The simulation was also run for different fiber positions and laser di-
vergences which can be optimized after the results have been used
to compare the data from the old tropspheric lidar and the corrected
RMR-lidar.
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Figure 5.7: Overlap function with different laser divergences, focus is
set at 507mm behind primary mirror.

One can see that the overlap is worse as the divergence of the laser
increases as expected.

Figure 5.8: Overlap function with different focuses, laser divergence
set to 35µrad
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5.3 Experimental approach

The overlap can also be determined using the data received and using
models for comparison [23]. For Raman signals the scattering medium
is molecules only and therefore the backscatter coefficient βR is only
dependent on oxygen and nitrogen backscatter. The power received
can be written as

PR(z) = CROR(z)z−2βR(z)T0(z)TR(z), (5.14)

where CR is a system constant, O is the overlap function, T0 is the
transmission of the initial wavelength, and TR of the Raman scattered
wavelength. This can be re-written to

OR(z) =
PR(z)z2

CRβR(z)T0(z)TR(z)
. (5.15)

We know that the Raman backscatter cross section is range indepen-
dent, this means that the backscatter from equation 2.4 is only depen-
dent on Nj(R) i.e. the density. Correcting for the transmission of the
initial wavelength for the path to the scattering medium and for the
Raman scattered light for the path back to the receiver, one can find
a CR such that the O(R) is 1 for full overlap range.

The transmission is found using Modtran [24]. Modtran is a moderate
solution model for Lowtran 7 [25]. The software uses the 1976 U.S.
Standard model to calculate the transmission of different wavelength
light, prefect for this calculation. One can also set the path to be at
an angle, and since the RMR-lidar often is tilted at 30 degrees this is
necessary. The pressure is also simply calculated with models using
the initial pressure at sea level.

Using data from the 20.01.02 the overlap was calculated and compared
to one of the ray tracing simulations. The ray tracing overlap was
redefined such that the maximum overlap is at 1 and not 0.9. They are
then comparable as the experimental overlap naturally has maximum
overlap including the block.
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Figure 5.9: Experimentally determined overlap function, using 355 nm
transmitted light and the received stokes vibrational Raman line of N2

at 387nm.

5.4 Comments on the overlap function

Due to time restriction the results presented in this section will be
brief. The overlap functions should be tested against the tropospheric
lidar data available. The RMR lidar is often tilted to measure wind
speeds at high altitudes using Doppler shift, and to be able to compare
the two systems both should be measuring in zenith. Due to different
formats of the data files finding data was tedious work, but should be
continued.

The results presented is from one single measurement series and is used
to give an idea of the overlap functions calculated. The geometrical
overlap presented in figure 5.4 with the fiber placed at +2.7 nm was
introduced to the RMR signal in figure C.12, the result is presented
in figure 5.10.
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Figure 5.10: Comparison of the tropospheric lidar using the geomet-
rical overlap function

From figure 5.10 one can see that the geometrical overlap approach was
a bit naive and over corrects the signal. The geometrical approach does
not give a good representation of the system. The same comparison
is done using the overlap from the ray tracing simulation.

Figure 5.11: Comparison of the tropospheric lidar using the ray tracing
simulated overlap function with laser divergence of 80 µ rads and a
focus +1.75mm behind the optimal focus given by IAP.
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From figure 5.11 one can see that the simulated overlap function is
a much better method than the geometrical overlap. This is because
this method gives a more accurate representation of the system. The
slight errors might come from laser beam axis divergence and that the
laser beam divergence itself is not constant.
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Conclusion and further work

Rotational Raman temperature measurements were done by using a
model and direct calculations. It was found that the efficiency of
the Raman channels was not sufficient for high temporal resolution
measurements, but they are suitable for average temperatures in the
upper troposphere. They may be used for seasonal temperature stud-
ies around the tropopause. The filter shapes can be used to directly
measure the temperature, but are not needed as long as the model con-
stants are calibrated each radiosonde release, and fortunately there is a
NILU station close to ALOMAR which is scheduled to release balloons
every 12th hour. It was also found that the RR channels are influenced
by the Cabannes band and could be improved using more narrow fil-
ters. Further work includes fully automating the calibrations with
suitable conditions for recalibrations, I would also recommend looking
into possibilities of further suppressing the Cabannes band.

The overlap function is determined with three different approaches.
The analytical geometrical approach does not give an accurate solu-
tion for the function. The ray tracing simulations neglect beam axis
divergence and possible movements of the telescope due to tempera-
ture differences. The direct experimental approach has a resemblance
to the ray tracing simulation but should be improved by using the it-
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erative approach in ref. [23], instead of using models. The ray tracing
overlap was unfortunately only tested using one single dataset, from
figure 5.11 it seems to be quite accurate. The system is made for
upper atmospheric atmospheric measurements, the beamguiding sys-
tem that ensures stability of the measurements have a reference point
above the atmosphere. Because of this the overlap function might not
be stable and the solution given in figure 5.11 must be tested using
more measurements. One could also test the solution for the extinction
coefficient in equation 2.8
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My little lidar

One of the methods explored to determine the overlap function was the
use of a secondary smaller telescope to measure at the same time as the
RMR lidar. Multiple problems were encountered, making this project
just worthy of a mentioning in the appendix. First I can mention the
advantages of this approach. This approach uses the same trigger and
transmitter as from the RMR lidar, making the backscatter received
from the scattering comparable. The secondary telescope had a much
shorter focal length and approximately the same aperture size, this re-
sults in a much bigger field of view. The secondary telescope therefore
gets a full overlap at significantly lower altitudes. The problems with
the setup will be described next. Because of the large field of view
the lens telescope was better suited for night time measurements. The
setup was bi-axial making the setup extremely sensitive to any slight
disturbances in the angle of the telescopes optical axis.
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Figure A.1: The secondary telescope mounted to the side of the pri-
mary telescope.

The lenses tested were plano-convex lenses from Thorlabs, LA1238 and
LA1353. Both with a diameter of 75 mm and with focal lengths 100mm
and 200mm respectively. The overlap functions were calculated using
equation 5.7, with the parameters in table A.1.

Aperture size : 0.0006 m
Focal Length : 100mm

Laser divergence : 70 µ rads
Initial laser diameter : 0.2 m

Lens diameter : 0.075 m
Initial distance : 1m

Table A.1: Parameters for the small telescope
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Figure A.2: Overlap function for different angles between the telescope
optical axis and the lasers optical axis in radians.

One can see in figure A.2 that the sensitivity of where full overlap is
achieved due to inclination differences. The telescope was mounted
to the side of the RMR telescope, and had to be manually adjusted
using an inclinometer. The inclinometer had an accuracy of 0.0005
degrees. The focus of telescope was also found manually using a cam-
era pointing and pointing the telescope at distant mountains, which
one in optics can call approximately infinity.

For a long time the data received didn’t make sense, so I decided to
mount a camera to the telescope to see what the field of view of the
telescope looked like.
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Figure A.3: Picture of the
beam through the small tele-
scope using a Thorlabs camera
and green pass filter with no
iris.

Figure A.4: Picture of the
beam through the small tele-
scope using a Thorlabs camera
and green pass filter with 36mm
diameter iris.

One can see that the spherical aberrations from the lens smeared the
beam out over the camera chip. This means that light that should
never hit the fiber does. The solution was to put on an iris to reduce
the field of view and also the spherical aberrations is less close to the
centre of the lens. This was at cost of the signal but the signal had to
be suppressed using filters to not saturate the PMTs.

I could only receive one of the three wavelengths from the transmitter
at once. The three channels were tested before I decided that the best
signal was received at the 532 nm.

After this work the signal still got unexpected noise at random times.
This error were never corrected and some measurement series were
useless. To protect the equipment the measurements can only be done
with wind under 12 m/s, no rain or snowfall and humidity below 90%.
During my trip to Andøya in November I got the setup working, but
during my stay in February I did not get an opportunity to measure
due to weather conditions and laser maintenance work.

The few measurement series I got was also really inconsistent due to
my work could not interfere with the RMR lidar measurements. The
RMR lidar does wind measurements after 1 hour, which means that
the telescopes tilts 30°of zenith. Because of the measurement range
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of the inclinometer, and for safety reasons, I could not measure if the
lens telescopes optical axis still was parallel to the laser beam making
the measurements invalid.

One of the good measurements taken is given in figure 2.2. One can see
that the estimation for where full overlap is achieved is roughly correct,
but one receives signal where there should not be any. Therefore I will
conclude that the overlap in equation 5.7 is not suitable for overlap
calculations of this system. This means that if my little lidar can only
be used for measurements above 1km.
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Error calculations

Error propagation calculations were performed. After the calibration
constants were fitted to the model using scipy optimizing packages the
variance-covariance matrix was retireved defined as:

Kx1,x2,x3 =

 σ2
x1

σx1σx2 σx1σx3
σx1σx2 σ2

x2
σx2σx3

σx1σx3 σx2σx3 σ2
x3

 . (B.1)

Using Pearsons correlation coefficent,

ρxm,xn =
cov(xm, xn)

σxmσxn
. (B.2)

One can calculate the propagation of uncertainty U for a function f
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with correlated variables x1,x2,x3 using

U(f)2 =
( ∂f
∂x1

)2

U(x1)2 +
( ∂f
∂x2

)2

U(x2)2 +
( ∂f
∂x3

)2

U(x3)2

+ 2ρx1,x2

( ∂f
∂x1

)( ∂f
∂x2

)
U(x1)U(x2)

+ 2ρx1,x3

( ∂f
∂x1

)( ∂f
∂x3

)
U(x1)U(x3)

+ 2ρx2,x3

( ∂f
∂x2

)( ∂f
∂x3

)
U(x2)U(x3)

(B.3)
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APPENDIX C

Data

In this appendix I will add data I’ve used for the different calculations.
This is to ensure a natural flow of the results. If nothing else is specified
the data is from system 0 of the RMR-lidar. The radiosonde data is
gathered from a Norwegian institute for air research, NILU, station
just a couple of hundred meters from the ALOMAR observatory.

(a) 532 nm channel (b) Rotational raman channels

Figure C.1: 2018-01-20 23:00:00 UT, ALOMAR, integrated 1 hour.
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APPENDIX C. DATA

Figure C.2: Interpolated radiosonde data, 2018-01-20 23:04:03 UT,
ALOMAR

(a) 532 nm channel (b) Rotational raman channels

Figure C.3: 2018-08-14 22:59:35 UT, ALOMAR, integrated 1 hour.
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APPENDIX C. DATA

Figure C.4: Interpolated radiosonde data, 2018-08-14 17:03:00 UT,
ALOMAR

(a) 532 nm channel (b) Rotational raman channels

Figure C.5: 2019-02-09 23:00:00 UT, ALOMAR, integrated 1 hour.
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Figure C.6: Interpolated radiosonde data, 2019-02-09 23:06:00 UT,
ALOMAR

(a) 532 nm channel (b) Rotational raman channels

Figure C.7: 2019-04-25 23:00:00 UT, ALOMAR, integrated 1 hour.
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APPENDIX C. DATA

Figure C.8: Interpolated radiosonde data, 2019-04-25 23:06:00 UT,
ALOMAR

(a) 532 nm channel (b) Rotational raman channels

Figure C.9: 2019-08-23 00:00:00 UT, ALOMAR, integrated 1 hour.
Data closest to the filter scan, one hour of integration.
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APPENDIX C. DATA

Figure C.10: Interpolated radiosonde data, 2019-08-22 11:11:00 UT,
ALOMAR

Data for the tropospheric lidar comparison in figure C.11 and C.12.

Figure C.11: 532 nm channel 2019-09-27 10:00:19-12:07:37 UT
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Figure C.12: 532 nm channel 2019-09-27 09:00:00-10:00:00
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Particle properties and water content of noctilucent clouds and
their interannual variation. Journal of Geophysical Research:
Atmospheres, 113(D6), 2008.

[3] S. M. Khaykin, A. Hauchecorne, N. Mzé, and P. Keckhut.
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