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Abstract

Overexpression of the colony-stimulating factor 1 receptor, CSF-1R has
been implicated in many pathological conditions such as cancer develop-
ment and bone disorders. CSF-1R has therefore been a target of great
interest for the treatment of these disease states. The aim of this masters
thesis was to synthesize new CSF-1R inhibitors based on the pyrrolopy-
rimidine scaffold, as well as evaluate their inhibition activity towards

CSF-1R in enzymatic studies.

The pyrrolopyrimidines were prepared by a thermal amination at C-4 of
4-chloro-6-iodo-7-((2-(trimethylsilyl)ethoxy)methyl)-7 H-pyrrolo[2,3-d|pyrimidine.
This was followed by selective Suzuki cross-coupling reactions with var-
ious aryl boronic acids with functional groups in either para or meta
position at the C-6 carbon resulting in high yields. The target inhibitors
were synthesized by removal of the protective SEM-group on the pyrrole
in addition to a couple of post modification reactions on selected com-
pounds. The target inhibitors were isolated in varying yields and high

purities.

1 SEM
N

SEM SEM i
3 { { N
ZrN\{’ N Amination r =N Suzuki r = W =R Deprotection r e =R
ﬂJ//ﬂ'—" NI//I—' J,-/ N T I\J// 4
i D\, OO\’ Post modification CO\/
—_—
1 N N_ N
1 3

Deprotection of both a SEM-group and a Boc group to synthesize an
aniline product turned out to be problematic and resulted in incomplete
conversion and observation of several byproducts in the isolated product.
An alternative synthesis route was carried out to synthesize the depro-
tected aniline product by reduction of a deprotected nitro compound,

which resulted in high purity and yields.

iii
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During this masters thesis a total of 12 target molecules were tested for
their CSF-1R inhibition activity. The compounds proved to be highly
potent with low ICs5q values in the range of 0.4-1.9 nM. The CSF-1R
inhibitors were also tested for their inhibition activity against various
kinases without showing any relevant off-target effect on six other tyro-

sine kinases.

iv
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Sammendrag

Overekspresjon av den kolonistimulerende faktor 1-reseptoren, CSF-1R
har blitt implisert i mange sykdomsforlgp som for eksempel kreftdan-
nelse og beinlidelser. CSF-1R kinasen har derfor veert et viktig mal for
behandling av disse sykdommene. Malet med denne masteroppgaven var
& syntetisere nye CSF-1R-hemmere basert pa strukturen til pyrrolopy-
rimidiner, samt & teste deres enzyamtiske aktivitet som hemmere mot

CSF-1R.

Pyrrolopyrimidinene i denne oppgaven ble fremstilt ved en termisk aminer-
ingsreaksjon ved C-4 av forbindelsen 4-kloro-6-iodo-7-((2-(trimetylsilyl)etoksy)metyl)-
7H-pyrrolo [2,3-d|pyrimidin. Dette ble etterfulgt av selektive Suzuki-
krysskoblinger med ulike borsyrer med funksjonelle grupper i bade para-

og meta-stilling ved C-6 karbonet som resulterte i hgye utbytter. Malin-

hibitorene ble syntetisert ved fjerning av den beskyttende SEM-gruppen

pa pyrrolen i tillegg til et par tilleggsreaksjoner pa utvalgte forbindelser.
Molmolekylene ble isolert med varierende utbytter og hgy renhet.

1 SEM
N

SEM SEM i
7 N { N,
ZrN\{’ N Amination r =N Suzuki r = W =R Deprotection r e =R
ﬂJ/ po — NI//I—' J,./ N T I\J// 4
T D\, OO\’ Post modification
| N N e N
1 T -

~

Avbeskyttelse av bade en SEM-gruppe og en Boc-gruppe for & syntetisere
et anilinprodukt viste seg & veere problematisk og resulterte i ufullstendig
omsetning, der det ble observert flere biprodukter i det isolerte produk-
tet. En alternativ syntesevei ble utfgrt for a syntetisere det avbeskyttede
anilinproduktet ved reduksjon av en avbeskyttet nitroforbindelse, noe

som resulterte i hgy renhet og bedre utbytte.

vi
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I Igpet av denne masteroppgaven ble totalt 12 malmolekyler testet for
deres aktivitet som CSF-1R-hemmere. De 12 malmolekylene viste seg &
ha en meget hgy aktivitet som hemmere mot CSF-1R-kinasen med lave
1C5¢ verdier i omradet 0.4-1.9 nM. Malmolekylene ble ogsé testet for
deres aktivitet som hemmere mot andre ulike kinaser uten & vise noen

relevant aktivitet overfor disse.

vii
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1 Introduction and Theory

Treatment therapies such as small molecule inhibitors and monoclonal
antibodies have become an important field of research in the practice of
oncology in recent years. Small molecule inhibitors can block intracel-
lular signaling from tyrosine kinases such as colony-stimulating factor-
1 CSF-1R, that can cause cell growth, proliferation and migration in
cell tissues. Overexpression of signaling activity has been implicated in
many pathological conditions such as cancer development and inflam-
mation deceases. Inhibition of the signaling activity of tyrosine kinases

can therefore be a possible treatment for these diseases. 1 2l

The aim of this master thesis was to synthesize new CSF-1R inhibitors
based on the pyrrolopyrimidine scaffold, as well as evaluate their inhi-
bition activity towards the CSF-1R kinase in enzymatic studies. The

general structure of the target molecules in this project is illustrated in

Figure

Figure 1.1: General structure of the target molecules in this masters thesis

Three derivatives based on this scaffold had been prepared prior to this
thesis. These had shown remarkable high CSF-1R inhibitory activity.
The effect of different substituent in para and meta position on the 6-
aryl analogue was therefore further investigated in this thesis to get a

better understanding of the structure-activity relationship (SAR).
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1.1 Protein Tyrosine Kinase

Protein tyrosine kinases (PTK) are a family of enzymes that are charac-
terized by their ability to catalyze the transfer of v phosphate groups of
ATP to hydroxyl groups of tyrosine residues on protein substrates. 5l Hl
This process is called tyrosine phosphorylation and plays a key role in
regulating multicellular processes in eukaryotic organisms such as prolif-
eration, differentiation, metabolism, migration, and anti-apoptotic sig-
naling of the cell. It is also an important mechanism for transmitting

signals within a cell (signal transduction).

ADP

ATP
OH
N\ Kinase /
T
-€ /
Phosphatase
A

Figure 1.2: Protein phosphorylation catalyzing the transfer of phosphate to pro-

Protein Phaosphorylated

protein

teins by protein kinase [

The two classes of PTKs which are present in cells are called receptor
tyrosine kinases (RTK) and non-receptor tyrosine kinases (NRTK).Hl
There are a total of 90 unique tyrosine kinases present in the human
genome, where 58 of them are of RT'Ks and 32 of them are NRTKs. I
The RTKs are transmembrane glycoproteins that possess an extracellu-
lar ligand-binding domain, an intracellular catalytic domain, and a trans-
membrane domain. The RTKs are activated when ligands are bound to
their extracellular domain, which leads to dimerization and activation of
the receptor’s kinase activity. This triggers autophosphorylation of spe-

cific tyrosine residues in the kinase domain and creates phosphotyrosine
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docking sites for proteins that transduce signals inside of the cell. The
NRTks are cytoplasmic proteins that are important in the downstream

signal transduction cascade within the cell. 4 €110l

Regulation of the cellular activities in tyrosine kinases is of utmost im-
portance for maintaining homeostasis. Over-expression and mutations of
tyrosine kinases can cause abnormal and unregulated enzyme activities
in the cells, which can result in diseases such as cancer. Tyrosine kinase
inhibitors are therefore of clinical significance today for the development

of therapeutic treatments of cancer and other disease states. # [©l

1.2 Colony-stimulating factor 1 receptor

Colony-stimulating factor receptor (CSF-1R) is a type III receptor ty-
rosine kinase, which is activated by the macrophage-colony-stimulating
factor-1 (CSF-1), and primarily expressed on the surface of microglia,
monocytes and macrophages. I -1 12 Colony-stimulating factor-1 (CSF-
1), a common type of cytokine, that regulates the survival, prolifera-
tion, differentiation, and function of cells of the mononuclear phago-

cytic lineage. IL-34 is another important cytokine that activates CSF-
1R, I3 [14] [15]

The signal transduction pathways are activated by CSF-1 binding to its
receptor on targeted cells. ™ The binding of CSF-1R to CSF-1 stabilizes
dimerization of CSF-1R to activate the receptor through autophospho-
rylation of CSF-1R and phosphorylation of other downstream molecules.
Triggering the phosphorylation can then initiate a series of membrane-
proximal tyrosine phosphorylation cascades causing rapid stimulation of
cytoskeletal remodeling, protein translation and increased gene expres-
sion. 18l Figure shows the mechanism of signal transduction of CSF-1

expressed through CSF-1R causing the above processes.
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Figure 1.3: Signal transduction mechanism of CSF-1 when binding with CSF-
1R.

A number of disease states have overexpression of CSF-1 and/or CSF-
1R. The growth of metastases of certain types of cancer, the promotion
of osteoclast proliferation in bone osteolysis, and many inflammatory
disorders are examples of some of these disease states. X7 It is indicated
that microglial proliferation, neuronal damage, and disease progression
are slowed down by inhibition of CSF-1R signaling. Inhibition of CSF-
1R therefore represents a promising approach for the treatment of these

diseases.

Current research has shown that there are two possible methods for the
inhibition of CSF-1R. The first method is based on the use of mono-
clonal antibodies that block the binding site of the receptor, to prevent

the ligands CSF-1 and IL-34 from binding. As a result of this, CSF-1 is
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prohibited from transmitting signals to among others tumor-associated
macrophages (TAMs), a class of cells found in the body which are heavily
associated with cancer-related inflammation. The second method is by
the use of small molecules designed to block the tyrosine kinase activity
of CSF-1R. The main difference between these two types of inhibitors is
that the kinase inhibitors due to better accessibility are more likely to
block autocrine signaling than the monoclonal antibodies. 18] The sig-

naling and blocking mechanism for the CSF-1R inhibitors are illustrated
in Figure [[.4]

Anti

g ol o0
Y EAN

=t CSF-1R
—
- 18
- Laed CSF-1

o0/

CSF-1

AR,
S48 4
MR,
2 Y Y Small molecul
: o e CI;:-HQ Tle‘(we
o o inhibitor
PI3K MEK

Figure 1.4: Signal inhibition mechanism of CSF-1R.

The small-molecule inhibitor PL.X-3397, also called Turalio, is currently
the most frequent used CSF-1R inhibitor in clinical studies towards var-
ious cancers. P9 Inhibition of CSF-1R by PLX-3397 in mice has led to
profound depletion of microglia in their central nervous system without

reducing their cognitive function or giving them obvious behavioral ab-
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normalities. Pl PLX-3397 is today the only certified CSF-1R inhibitor
approved by the FDA. R

1.2.1 CSF-1R and disease states

The CSF-1R kinase is related to the initiation and development of several
types of cancers, bone disorders, and inflammations due to mutation

effects on the receptor function or by over-expression of its CSF-1 ligand.

The CSF-1R kinase is involved in regulating the function of tumor-
associated macrophages, which are significant components of leukocytic
infiltrate that promotes tumor progression. TAMs have been related
to many cancer inflammations, due to their activation by CSF-1. 1113l
CSF-1R inhibitors have become a target of study for the treatment of
cancer-related disease states, and the development of new CSF-1R in-

hibitors is an ongoing process. 22

CSF-1 is also synthesized in a variety of cells, including among others
bone cells. 18l There are three different types of bone cells; osteoclasts
(OCs), osteoblasts (OBs), and osteocytes (OSs). All of these cells have a
unique function and are important for the remodeling and development
of the skeleton and the bone marrow. The osteoblasts are responsible
for forming new bones, while the osteoclasts, which originate from the
monocyte/macrophage lineage, are responsible for the breakdown and
resorption of old bones. The number and activity of osteoclasts decide
the rate of bone resorption. 22 B3l Osteopetrosis and bone marrow fail-
ure are diseases that are caused by defective osteoclast activity, while
osteoporosis is a disease caused by excess osteoclast activity. 24 Tt is
suggested in studies that osteoclasts develop in the presence of CSF-
1.B31 281 By suppressing the formation and activity of osteoclasts by

blocking or depleting CSF-1R, the effect of pathological bone resorption
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in bone diseases will be reduced. 21

In recent studies, several promising CSF-1R inhibitors for the treatment
of bone diseases have come to light. The CSF-1R inhibitor PLX3397
has significantly reduced bone degradation caused by lipopolysaccharide
(LPS), a polysaccharide that can cause bone loss due to stimulation
of osteoclast formation. These findings suggest that a CSF-1R inhibitor
could be examined further as a possible treatment for bone loss caused by
LPS.28 Among other small molecule inhibitors, Ki20227 and GW2580
have been reported to inhibit bone destruction and joint connective tis-
sue formation in human osteoclast cultures by blocking the activation
of CSF-1R.EARABIA Monoclonal antibodies such as AFS98 have also
shown significant anti-inflammatory effects against bone and cartilage
destruction by CSF-1R blocking. Bl The structures of the small-molecule
CSF-1R inhibitors are illustrated in Figure

Y
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Cl — |
=N % HZN/J\N/ o
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PLX3397 Ki20227 GW2580

Figure 1.5: CSF-1R Kinase Inhibitors effective against bone diseases 28] 29] [30]

1.3 Pyrrolopyrimidines

Pyrrolopyrimides, also called 7-deazapurines, are bicyclic heterocyclic
compounds consisting of a pyrimidine and pyrrole ring fused together.
The six-membered pyrimidine ring contains two nitrogen atoms which
withdraw electron density from the ring carbons making it resistant to

electrophilic substitution. Thus, the electron deficiency at the carbons
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makes the pyrimidine more available for nucleophilic attacks. Pyrimidine
are especially activated for nucleophilic attacks in the 4-position, which
is the most electron deficient part of the pyrimidine. The pyrrole ring
contains one nitrogen atom and has a high reactivity in electrophilic
substitution.®2 In Figure below the numbering systems used for

pyrimidine, pyrrole, and pyrrolopyrimidine are illustrated.

3 H 1 H
‘an’ SN 2 N1 2WN\3N?
6
L0 ALY
& 4 5
Pyrimidine 1H-Pyrrole TH-Pyrrolo[2, 3-d]pyrimidine

Figure 1.6: Structure and nomenclature for pyrimidines, pyrroles and pyrrolopy-

rimidines

Due to its structural similarities with purines, pyrrolopyrimidines can
substitute purine nucleosides in DNA and RNA. B3l The pyrrolopyrimi-
dine scaffold has therefore been widely used as pharmacophores in medic-
inal research. B4 Pyrrolopyrimidine derivatives are also known to exhibit
antibiotic, anticancer, and anti-inflammatory activity B3 B8l as well as

possessing inhibition properties of protein kinases. 7

Synthesis of pyrrolopyrimidines can be done with different routes. One
method which has previously been employed in the research group B8l is

shown in Scheme [[.1]
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Scheme 1.1: Synthesis route toward 4-chloropyrrolopyrimidines. B8l

An alternative way of making pyrrolopyrimidines are by a Ugi-Smiles/Sonogashira
cascade followed by an efficient base-catalyzed intramolecular cyclization

described by Kaim et al.

1.4 Previous work

In earlier work within the research group, the development of new ways
to inhibit colony-stimulating factor receptor (CSF-1R) as well as the epi-
dermal growth factor receptor (EGFR) has been the main goal. B0l Bl
The group has identified several potent CSF-1R and EGFR inhibitors
based on the pyrrolopyrimidine scaffold as well as the furo®2- and
thienopyrimidine scaffold®3l.  The synthetic routes planned for mak-
ing the potential pyrrolopyrrolo[2,3-d|pyrimidine inhibitors have been
well developed within the research group. The method is illustrated in

Scheme [I.2] below.
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Scheme 1.2: Synthesis route for making potential pyrrolopyrimidine inhibitors

1.5 Directed metalation

Directed ortho metalation (DoM) is a reaction where aromatic rings or
heterocyclic compounds can be deprotonated under strongly basic condi-
tions on the ortho-position to a heteroatom-containing group. A strong
alkyllithium base is normally used, giving an ortho-lithium species. B4
This species can be combined with different electrophiles, to provide new
derivatives. #5 There are several general features in a DoM reaction that
must be present for the reaction to occur. A common DoM reaction is
typically carried out under an inert atmosphere at -78 °C where an alkyl-
lithium reagent is added to the solution of the substrate, followed by the
addition of the electrophile. In addition must the directed metalation
group be resistant to nucleophilic attacks by the metalating reagent and
contain at least one heteroatom to coordinate to the ortho metal atom

in the intermediate structure. ¥4 6l

The SEM group acts as a directing group for pyrrole metalation as well
as a protective group for the nitrogen on the pyrrole. B B8l Alternatively
can N-sulfonyl groups be used as protecting groups ¥, which have been
previously done by Zhao et al. to improve the reactivity at the C-6 car-

bon. B B The directed metalation reaction of pyrroles with a directing

10



1.6 Nucleophilic aromatic substitution TKJ4520

SEM-group is illustrated in Scheme [I.3] and is used in the iodination of

pyrrolopyrimidines.

Scheme 1.3: Directed ortho metalation for pyrrolopyrimidines with SEM as the
directing metalation group (DMG).

The reaction is initiated with lithium diisopropylamide reacting with
the pyrrolopyrimidine, introducing lithium to the C-6 position in the
pyrrolopyrimidine. Iodine is then added to the lithiated C-6 position,
giving an iodinated pyrrolopyrimidine product. A proposed mechanism

for the direct metalation of the pyrrolopyrimidine is given in Scheme

S‘/— 3{— Sl— Si/f
//of\ o/ N 0—/_ rc)L/_ \
N N ) N\ N
(2 LAy (b, = £
1 cl

Scheme 1.4: Proposed mechanism for the directed ortho metalation

1.6 Nucleophilic aromatic substitution

A nucleophilic aromatic substitution (SyAr) is a reaction that occurs
on an aromatic ring where a nucleophile replaces a leaving group on
the aromatic ring. The nucleophilic substitution proceeds by a two-
step mechanism; an addition step and an elimination step, where the
leaving group usually is either ortho or para to one or more strong elec-
tron withdrawing groups. 51152l In the first step of nucleophilic aromatic
substitution a nucleophile adds to the aromatic ring, which leads to a

negatively charged intermediate called a Meisenheimer complex. 53! 54

11
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This addition is followed by the second step which consists of the elimina-
tion of the leaving group.2 The mechanism of a nucleophilic aromatic

substitution for a general pyrimidine compound is illustrated in Scheme

7 B

NI R e r N_ R

\f; ] T

N/R—“N\r " N/R

CT_\\__ LA™ Nu
Nu t

Meisenheimer complex

Scheme 1.5: Proposed mechanism of a nucleophilic aromatic substitution on a

pyrimidine.

Several factors affect the rate of reaction in nucleophilic aromatic sub-
stitution. There are often used electron withdrawing groups (EWGs) on
the aromatic substrate to make the ring more electron deficient, thus
more susceptible for nucleophilic aromatic substitution. B3 B8l The leav-
ing group (X) also plays an important part in the rate of reaction. The
high electronegativity of the halogen causes a decrease in the electron
density at the site of the attack, resulting in a faster attack by the nucle-
ophile. The order of the leaving group reactivity of halides is X = F >
Cl > Br > I, with fluorine as the halogen with the most electron with-
drawing properties. 551 58] The electronic effects are also used to stabilize
the Meisenheimer intermediate through resonance by electron withdraw-
ing groups in the positions ortho and para to the halogen atom. The
mesomeric effect of the nitrogens in a pyrimidine ring leads the electron
deficiency to carbons at C-2 and C-4 position, making them susceptible
for a nucleophilic aromatic substitution. 5457 The resonance stabiliza-

tion of the Meisenheimer complex of pyrimidine compounds is illustrated

in Scheme [L.6]

12
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Scheme 1.6: Resonance structures of the Meisenheimer complex of pyrimidine. 2]

It has been the subject of debate on whether the rate-determining step
in the mechanism of nucleophilic aromatic substitution is the formation
step (step 1) or the decomposition of the intermediate complex (step
2). B3B8l In aprotic solvents the rate-determining step is usually the
loss of the leaving group, due to the high reactivity of nucleophiles in
these solvents. P 601 The addition step is typically the rate-determining
step in protic solvents, due to the stabilization of the negatively charged

intermediates (Meisenheimer complexes) formed in this step. B 611621

Nucleophilic aromatic substitution has in previous work by the research
group been done by introducing amines to pyrrolopyrimidines under
thermal conditions. ¥ The rate determining step in this reaction is most
likely the addition of the amine at the C-4 position. A pyrrolopyrimi-
dine with a chloride atom in the C-4 position will be more susceptible
to a nucleophilic aromatic substitution than with an iodine atom in the
C-6 position of the pyrrole. The reason for this is that the chloride is
a better leaving group than iodine, and because of the more electron
deficient character of the pyrimidine ring than the electron rich pyr-
role ring, thus making it more susceptible towards nucleophilic aromatic

substitution. B2 63l

13
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1.6.1 Buckwald-Hartwig amination

An alternative method for forming C-N bonds is by a palladium-catalyzed
Buchwald-Hartwig cross-coupling. The reaction usually proceeds in a re-
action between aryl halides and amines with the presence of a palladium
metal catalyst and a base. The base is typically present in stoichiometric
amounts while the temperature is much lower compared to the nucle-
ophilic aromatic substitution. 4 Large bidentate phosphine ligands like
diphenylphosphinobinapthyl (BINAP) and diphenylphosphinoferrocene
(DPPF) are typically complexed with the Pd(®) catalyst, as they have
proven to increase the rate and the yields of the cross-coupling reac-
tion. 651 661 Buchwald-Hartwig amination was not applied in this thesis

because the thermal aminations proceeded well.

1.7 Suzuki-Miyaura cross-coupling

The Suzuki-Miyaura reaction is a metal-catalyzed cross-coupling reac-
tion where new C-C bonds are formed. 6768 This cross-coupling reac-
tion is one of the most widely applied reactions in modern organic synthe-
sis. [ The Suzuki-Miyaura reaction was initially published in 19790
and in 2010 Akira Suzuki was awarded the Nobel Prize in Chemistry,
together with Richard F. Heck and Ei-ichi Negishi, for their work on

palladium-catalyzed cross-couplings in organic synthesis.

1.7.1 Mechanism

The Suzuki cross-coupling reaction typically occurs in a palladium-catalyzed
reaction between an organohalide/pseudohalide and a boronic compound
(boronic acid or boronic ester) under basic conditions to give a cou-
pled product. 7 The mechanism can be viewed as a catalytic circle via

three significant steps; oxidative addition, transmetalation, and reduc-

14



1.7 Suzuki-Miyaura cross-coupling TKJ4520

tive elimination. ™ In the oxidative addition step an organopalladium
species is formed by the addition of an aryl halide to the palladium com-
plex. Pd° is in this step oxidized to Pd!!. 23] This is succeeded by
the presence of a base that exchanges the halide on the organohalide
compound with the anion of the base giving a more reactive intermedi-
ate.BI 4 Tn the transmetalation step the aryl group from the boronic
acid is transferred to the organopalladium species. Lastly, the reduc-
tive elimination provides the desired product and the active palladium
catalyst is regenerated in the catalytic circle. 7 The reaction mechanism

of the Suzuki reaction is illustrated in Scheme [I.7

Reductive Oxidative
elimination addition

SEM SEM
=
M Pd"OR M Pd'-1
V4 Vi
Qjﬁ el
N N,
Transmetalation Metathesis
K'OH-

SEM

[t

0T p—raron

Ho_ OO\’/ [ KT
—- )R N

HO -

Scheme 1.7: Proposed mechanism for the Suzuki cross-coupling reaction of

pyrrolopyrimidine 4 -13 [

The rate determining step in the Suzuki reaction is often considered to
be the oxidative addition. Nevertheless, is it reported by Smith et al.

that the transmetalation step may be the rate-determining step when

15



1.7 Suzuki-Miyaura cross-coupling TKJ4520

using aryl iodine rather than aryl bromide. % Aryl halides with adjacent
electron withdrawing groups are more reactive to oxidative addition than
those with donating groups, and will therefore increase the rate of the
reaction. 87 The ability of leaving groups is based on the strength of

the carbon-halogen bonds and decreases in the order of I > Br > Cl >
F. 6,

Two alternative pathways have been proposed for the transmetalation
step; the boronate pathway and the oxo—palladium pathway. The boronate
pathway suggests that the base initially binds to the boronic acid form-
ing the organoboronate species and then substitutes the leaving group in
the coordination sphere of the palladium complex. The oxo-palladium
pathway suggests a direct substitution between the base and the leaving
group in the coordination sphere of the palladium complex. 7 [68] [78]

Scheme [I-§] illustrates the two pathways of the transmetalation step.

1 2 ]
HO® R'-[Pd]-X + R*-B(OH)3 B(OH); + NE
% Pathway A

R'-[Pd]-X Pathway 0
H e T T e » R'-[Pd]-R?
R2-B(OH),

HGO Pathway B
A B(OH);3
X

R'-[Pd]-OH + R2-B(OH), + X©

Scheme 1.8: The boronate (pathway A) and oxo-palladium pathway (pathway B)

in the transmetalation step of the Suzuki reaction. [z8l

The electronic properties of the ligands on palladium play an important
role in the final reductive elimination step of the catalytic circle. I Com-
plexes with stronger electron donating ligands will react faster and en-
hance the rate in the reductive elimination step than with weak electron

donating ligands. Electron poor complexes will therefore react faster

16



1.7 Suzuki-Miyaura cross-coupling TKJ4520

than electron rich complexes. BY B The presence of a base is also nec-

essary for this step. !

Another important issue is the "Bite angle" of the bidentate diphosphine
ligands in Pd-complexes. Casey et al. defines the natural bite angle (5,,)
as the preferred chelation angle only determined by the ligand backbone
constraints. 2 Wide bite angles and bulkiness of the ligands generally
facilitate the reductive elimination in palladium catalysis, resulting in a
more effective Suzuki cross coupling. A wide bide angle in metal com-
plexes can have two different effects. Firstly, the effective steric bulk
of the bidentate ligand increases, and secondly, can it favor or disfavor

specified geometries in the transition metal complex. 83l

1.7.2 Catalysts

The most commonly used catalysts in Suzuki cross-coupling today are
palladium catalysts. The use of monodentate, bulky, and electron rich
phosphine ligands, has greatly improved the selectivity and the efficiency
of palladium catalyzed carbon-carbon reactions. The rate of both the
oxidative addition step and the reductive elimination step gets enhanced
by employing steric bulky and electron rich phosphine ligands. A possi-
ble reason for this is that the ligands have electron donating and bulky
properties that are necessary for stabilizing the monoligated palladium
complexes, which are critical intermediates in the catalytic circle. 8411851
The phosphine ligands also show other useful attributes like air stability
and a high degree of thermal stability. 67 B8l Some of the most com-
mon used palladium catalysts include Pd(PPhs),, Pd(OAc),, Pd,(dba)s,
Pd(dppf)Cl, and XPhos. 871 BT The electron rich ferrocene based palla-
dium catalyst, Pd(dppf)Cl,, has earlier been used in the research group
affording full conversion after a short amount of time leading to good

results. B9 The structures of these common palladium catalysts are il-
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1.7 Suzuki-Miyaura cross-coupling TKJ4520

lustrated in Figure [I.7]

XPhos Pd(dppfCly Pd(PPhs),

[e]

= O lpdg

3

o pa § S
A"k »
Pd(OAC) Pds(dba)y

Figure 1.7: Structures for common palladium catalysts used in Suzuki cross-

coupling

1.7.3 Side reactions and products

There can often occur side reactions and formation of byproducts in
Suzuki cross-couplings. The most common types of side reactions affect
the boronic reagent in the Suzuki reaction and include palladium cat-
alyzed homocoupling, protodeboronation and oxidation. 69 B8l Side re-
actions such as catalyst decomposition and dehalogenation of the organo
halide are also common side reactions. B The side reactions of the

boronic acids in the Suzuki cross-coupling reaction are illustrated in

Scheme [I.9
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OH OH Homo-coupling
Ar—B\ + Ar—B\ R —— Ar—Ar
OH OH
OH Deboronation
Ar—B - w  A—H
OH
OH s
’ Oxidation
Ar—B\ —  w  Ar—OH
OH

Scheme 1.9: Possible side reactions for boronic acids in Suzuki cross-coupling

Both the palladium catalyzed homocoupling and the oxidation are side
reactions caused by undesired oxidative processes in the Suzuki cross
coupling reaction. In the oxidation reaction hydroperoxides are gener-
ated in ethereal solvents via metal-catalyzed aerobic oxidation, which
oxidates the boronic acid and produces a hydroxide product via hydrol-
ysis. This side reaction can be prevented by adding a quenching reagent
before the coupling, to eliminate the hydroperoxides in the solvent. 88 211
The palladium catalyzed homo coupling reaction proceeds via a peroxy
complex in the presence of dioxygen with palladium(0) to generate the
byproduct of symmetrical biaryls. This homo-coupling reaction runs in
competition with the desired Suzuki cross-coupling, due to a common
palladium intermediate in the reaction process, and is therefore a com-
mon side reaction in Suzuki cross-coupling. B8 2l The last side reaction
of boronic acids in Suzuki cross-couplings is protodeboronation, which is
a reaction where the boron from the organic fragment is exchanged for

a proton. B8] 93]
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1.7 Suzuki-Miyaura cross-coupling TKJ4520

1.7.4 Selectivity in cross-coupling

Selective coupling can be an important factor when developing a syn-
thetic route to organic molecules. Selectivity can be achieved by using

suitable starting materials, reagents, solvents, and reaction conditions.

The oxidative addition step is generally assumed to be the selectivity-
determining step in cross coupling reactions. ®* Selectivity between halo
groups plays an important part in cross-coupling in the oxidative addi-
tion. Halo groups can be used to introduce a desired substituent to a
specific position on the target molecule. This is called a chemoselec-
tive reaction. The reactivity order for the halo groups in chemoselective
reactions are I>Br>Cl>F. 67l The site of the reaction will usually
happen where the weakest carbon-halogen bond is. A site-selective or
regioselective cross-coupling happens if two similar halogens are present
in the same molecule. The reaction is then usually favored at the more
electron deficient position. 5 Scheme illustrates the difference of

chemo- and regioselectivity in Suzuki cross-coupling.

(a) chemoselective cross-coupling

R R’
R—M
catalyst
c
X2 X2
X1, X2 = halogen or pseudo-halogen
reactivity order: X' = X% (e.g., X' = I, X2 = Br)
(b) site-selective cross-coupling
R R
R—M
catalyst
S\/] . 5\..) ¥
X! it

Scheme 1.10: Chemo- and regioselectivity between halo groups in Suzuki cross-

coupling
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Regioselectivity in cross-coupling can also be influenced by steric and
electronic effects, as well as directing groups at neighboring sites to
the reactive position. #5128l Tt has also been proven by Strotman et al
that it’s possible to change the regioselectivity for some dihaloazoles, by
changing the palladium catalyst allowing a Suzuki coupling at the less

reactive carbon-halogen bond. 7l

1.8 SEM-deprotection

The pyrrole group is a very reactive compound that is susceptible to elec-
trophilic aromatic substitution due to the lone pair of electrons on its
nitrogen atom and the consequent stabilisation of its intermediate struc-
tures. ¥ Due to the high reactivity of the pyrrole unit is it important
to have control of the nucleophilicity of the electron rich pyrrolic core to
avoid unwanted transformations. These unwanted reactions can inhibit
desired nucleophilic reactions and can cause polymerization of the pyr-
role. The reactivity of pyrroles is therefore often harnessed or controlled
by the use of electron withdrawing protective or blocking groups to re-
duce the nucleophilicity of the pyrrole while also preventing unwanted

substitution at specific positions. 4 3]

There exist many available protection groups for the nitrogen atom in
pyrrole rings. Sulfonyl groups are often used for pyrrole protection due
to their strong electron withdrawing effect and their ability to decrease
pyrrole reactivity. Sulfonyl groups such as benzenesulfonyl (Bs) and
toulenesulfonyl (Ts) are some examples of common groups for pyrrole
protection. Other common electron withdrawing groups for pyrrole pro-
tection include the tert-butoxycarbonyl (Boc) group, the triisopropylsilyl
(TIPS) group and the 2-(trimethylsilyl)ethoxymethyl (SEM) group. #9

The structure of these pyrrole protecting groups are given in Figure [L.8
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B o Ak ek

Benzensulfonyl Toluenesulfonyl  tert-Butoxycarbonyl  Triisopropylsilyl  2-(Trimethylsilyl)ethoxymethyl
(Bs) (Ts) (Boc) (TIPS) (SEM)

Figure 1.8: Structures of common pyrrole protecting groups.

Many protective groups are unsuitable for pyrrole protection due to
harsh conditions for removal of the N-protecting group. ¥ The 2-(trimethylsilyl)
ethoxymethyl (SEM) group is a stable N-protecting group for pyrroles
that has proved to have high stability properties toward acidic, basic, re-
ductive and oxidative conditions. #3I BTt has been reported by Edwards
et al. that the SEM-group also can be used as a directing group in direct

metalation. Bl

The removal of the protective SEM-group can be done by using fluoride

sources such as, tetrabutyl ammonium fluoride (TBAF) in THF 00| [L01]

021 A sug-

and lithium tetrafluoroborate (LiBF,) in aqueous ammonia
gested mechanism for the SEM-protection reaction using fluoride sources

is illustrated in Scheme [L.11]

H*
4" -\ f,’—\ - H.0 Base”
- ezl F 12!
OISI\ (O_ﬁSv\ ‘/

k ‘O/-H
R F-source R “MesSiF R F H

N N N RN o
JT\/)—R‘ CH.Cl, D—R “H.C=CH, | Y R J\T\/)—R' o H)LH
R R R

Scheme 1.11: Proposed mechanism for the removal of the SEM-protection group
[103]

R

on the pyrrole using a fluoride source.

The SEM-group can also be removed in acidic conditions with trifluro-
roacetic acid (TFA) in DCM followed by basic conditions. #IIn previous
work by the research group, SEM-deprotection reaction has been done

in a two step reaction using the latter conditions. # The first step intro-
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1.8 SEM-deprotection TKJ4520

duces the pyrrlopyrimidine to TFA in DCM for removing the trimethylsi-
lyl (SiMey) part of the SEM-group. The second step is done under basic
conditions with saturated aqueous NaHCO4 and THF, for removal of the
remainder of the SEM-group, giving the desired product. A suggested
mechanism for the SEM-protection reaction using acidic conditions is

illustrated in Scheme [1.12

H*

— e — A
5 ®, <\ -
KO_/_ \ Ko—/_ M KO‘J N \\ﬁgH
RN TFA R\ RN PO | RN RN 1
| — | — .
()= o L )= wegon T o=
. & R HC=CH; R R

Scheme 1.12: Proposed mechanism for the removal of the SEM-protection group

on the pyrrole using a acidic conditions.
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2 Results and Discussion

The aim of this master’s thesis was to synthesize new CSF-1R inhibitors
based on the pyrrolopyrimidine scaffold, as well as preparing pyrrolopy-
rimidine derivatives in enzymatic studies. The total synthesis route
is shown in Scheme The starting material of the synthesis, com-
pound 1, was previously prepared by direct metalation in the pre-master
project B thus the first step in the synthesis was a nucleophilic aro-
matic substitution with amine 2 at C-4 to obtain compound 3. The
second part of the synthesis was Suzuki cross-coupling reactions with
different boronic acids at C-6 to obtain compound 4-13. The final prod-
ucts 14-23 were obtained by removal of the SEM-protecting group on
the pyrrole. Compound 17 was obtained by hydrolysis of the methyl

ester 15 and compound 25 was prepared by acylation of the aniline 20.

2

SEM - SEM  HO SEM R, H Ra
i g N : HD OR' FN N 1) TFA, CH,Cly, 50°C I’N‘ N R
R
ﬂ%’)’ o Bulanul O\,{j;/)_ T Reo, (l, ot 2) NaHCO3, MeOHITHF, Tt @\'{ A !
N
| ~ 3

P DWCz N
1,4- dlnxane HZO @1 ™

| Ra Ri | Ry
T4 OMe H 14 | owme H
5 | Come | H 16 | coMe | H
6 CF3 H 16 | cF; H
7 | CHF, H 18 | CHF, H
8 | SONHz| H 19 [ SOsNHy| H
9 H  |NH-Boc 20 H NH;
10 H N 21 H N
1 H | CcoMe 22 H COsMe
12 H | CH,0H 23 H | CHOH
13 H NOj 24 H NO,

SEM HN-Boc
/
N EJ/VWD ;c;( S0 o
NH
MEOH/M Coat N "J 6
DIPEA OO\’
Yol m\ N DCM 0°C N. 25
SEM NO, /
7
B

Scheme 2.1: Total synthesis route towards the target pyrrolopyrimidine compounds

14-25.

There are a total of six subsections in this result and discussion chap-
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ter. Section covers the different synthetic steps performed in the
synthesis route shown in Figure 2.1} The fifth subsection addresses the
structural elucidation of the new pyrrolopyrimidines synthesized, while

the final section presents the results of the CSF-1R inhibition activity .

2.1 Amination

Nucleophilic aromatic substitution was performed to introduce the amine
2 at the C-4 position on the pyrrolopyrimidine 1 to synthesize the
key intermediate 3. The reaction was carried out under an inert N,-
atmosphere at 145 °C, see Scheme [2.2] The thermal amination followed
the procedure described by Kaspersen et al.#! Scheme illustrates
the thermal amination reaction.

2

SEM N~ SEM
N. N H NN
W = p 1 0 Nﬁ P |
—_— =
Pz n-Butanol CO\/
a1 145 °C N 3

Scheme 2.2: Nucleophilic aromatic substitution of compound 1 in position C-4.

The thermal amination reaction was performed at a 1.2 g scale to obtain
the desired product 3. Compound 1 was dissolved in n-butanol, before
the secondary amine (1.5 eq.) 2 and DIPEA (1.5 eq.) were added to
reaction mixture. DIPEA was used as a co-base to scavenge excess HCI
produced in the reaction. Full conversion of the reaction was reached
after 3.5 hours and the crude product was purified by silica-gel column

chromatography using n-pentane/EtOAc (1/1) as the eluent system.

Compound 3 was isolated in a 78% yield as a transparent oil. This was
the expected yield compared to earlier aminations done with the same
amine 2 in the pre-master project. 194 The previous experiments were

done in a 500 mg scale, implicating that increasing the scale to 1.2 g
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didn’t affect the reaction in any significant way. The spectroscopic data

of the pyrrolopyrimidine 3 are attached in Appendix

2.2  Suzuki Cross-Coupling

Suzuki cross-coupling between pyrrolopyrimidine 3 and various aryl boronic
acids with functional groups in either para or meta position were per-
formed to synthesize the 6-arylated derivatives 4-13. The Suzuki cross-

couplings followed the procedure described by Han et al. B0

The Suzuki cross-couplings were carried out with the same reaction con-
ditions used under the pre-master project. 1% The pyrrolopyrimidine
building block 3 was mixed with various aryl boronic acids (1.2 eq.),
K;CO5 (3 eq.) as the base, Pd(dppf)Cl, (0.05 eq.) as the catalyst
and degassed 1,4-dioxane/H,0 (2:1). The reactions were performed at
80 °C under an inert Ny-atmosphere. Scheme ﬂ illustrates the gen-
eral reaction conditions for the Suzuki cross-coupling reactions between

compound 3 and the various boronic acids.

Rq
4 OMe
N SEM -
<N
Ry Nﬁ ) R 5 CO;Me
HO a 5 CO\/ /
: NL 6 CF
HO \\'l 5905139,0«\ 3
o A ]
o fo® 7| cHR
SEM PQ\L\&D@«B- —
RN hi ‘ NS 8 | SONH

WAL —
7
2 9 NH-Boc
5 m;“eoo&m@q) SEM  Re
“hon b 00 PN 0] &Y
ac;]e"’oofe?/ o N 7 — i
€ Ry O\,N\ 1 | cO.Me
12 | CHzOH
13 NO;

Scheme 2.3: Synthesis of compounds 4-13 by Suzuki cross-coupling with the key

intermediate 3.
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2.2.1 Synthesis of Compounds 4-8

Suzuki cross-couplings with five boronic acids with different functional-
ities in para-position were performed to synthesize compounds 4-8, see
Scheme The reactions were conducted in three different scales; one
in a 1000 g scale, one in a 400 mg scale and three in a 150 mg scale. The
scale-up of the intermediate 4 was done due to the need of product in

animal studies.

HO R,

o5 s

SEM HO SEM 4| Ome

s R i NN 5 | COMe
o N\;L)_ K.COj3 (3 eq.) o NoAd Ry Rl R
O\, N Pd(dppfClz (0.05 eq.) O\/ 0 .
- 3 1,4-dioxane:Hz0 (2:1) N. o

80°C BHERE

8 | SO.NH;

Scheme 2.4: Synthesis of compound 4-8 by Suzuki cross-coupling of compound 3.

TLC and 'H-NMR analysis confirmed that all five of the reactions reached
full conversion within 10-30 minutes. All the reaction mixtures also
changed from a transparent colour to a black-brown colour a few min-
utes after the initiation of the reactions. The reaction time between
4-methoxyphenylboronic acid and compound 3 was 30 minutes, which
is slower than for the other substrates. A possible explanation could be
that the solubility of the reactants was affected by the use of too little

solvent in the reaction causing a slow mass transfer.

After work up, purification of the crude products was performed by silica-
gel column chromatography using n-pentane/EtOAc (1/1) as the eluent
system. The eluent system resulted in Ry-values between 0.29-0.38. The
products were isolated as oils with various colours in high yields. The

results from the Suzuki cross-coupling reactions with para-substituted
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arylboronic acids are summarized in Table 2.1} in addition to scale and

reaction time. The spectroscopic data of the compounds are attached in

Appendix [Cl{G]

Table 2.1: Results of the synthesis of the pyrrolopyrimidines 4-8.

Scale Conv.* Time Yield?
Comp. Boronic acid ] State
[mg]  [%]  [min] 2]
O 1080 =99 30  Transparent oil 97

O~ 401 =99 11 Brown oil 78
%—@ca 150 >99 10 Transparent oil 94

CHF, 150 >99 12 Transparent oil 99

o N O o s

;@iwnz 150 =99 12 Brown oil 86

@ Conversion was measured by 'H-NMR spectroscopy

b Isolated yield after silica-gel column chromatography

2.2.2 Synthesis of compound 9-13

Suzuki cross-couplings with boronic acids with different functionalities in
meta-position were performed to synthesize compound 9-13, see Scheme

[2:5] The reactions were conducted in different scales within 100-500 mg.

Rz
R2 TR

HO 9 | NH-Boc

4B — N

SEM HO SEM Rz 10 -
PN i 1. N NN Y
QW’E KoCO3 (3 eq.) D, i B

‘U\, Pd(dppf)Cl (0.05 eq.) CO\,
N 3 1,4-dioxane:Hz0 (2:1) N —12 o
80°C
13| NO;

Scheme 2.5: Synthesis of compound 9-13 by Suzuki cross-coupling of compound 3.
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TLC and 'H-NMR analysis confirmed that all of the reactions reached
full conversion within 10-15 minutes. All the reaction mixtures also
changed from a transparent colour to a black-brown colour a few minutes

after initiation of the reactions.

After work up, purification of the crude products was performed by
silica-gel column chromatography using n-pentane/EtOAc (1/1) as the
eluent system. The products were isolated as oils with various colours
and with high yields. Compounds 9 and 13 were prepared twice to
provide enough material for later syntheses in the master project. The
lower yield of 65% of the first reaction of compound 9 may have been

due to crystallization on the silica-gel column.

The results from the Suzuki cross-coupling reactions with meta-substituted
arylboronic acids are summarized in Table The spectroscopic data
of the compounds are attached in Appendix [HHL}
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2.2 Suzuki Cross-Coupling TKJ4520

Table 2.2: Results of the synthesis of the pyrrolopyrimidines 9-13.

Scale Conv.* Time Yield®
Comp. Boronic acid State

[mg]  [%]  [min] %]

o
=]
&

501 >99 10 Transparent 65

©
Eigf

oil
Boc

501 >99 10 Transparent 77

oil

©
‘ 5
= -
Z

10 W 266 >99 15 Transparent 82
oil
o)
11 %j\\o\ 202 =99 12 Tramsparent 89
oil
QH
12 %d 150 =99 13 Red oil 85
MO,
13 @ 101 ~99 11 Yellow oil 98
NO;
13 @ 501 ~99 15 Yellow oil 94

a) Conversion was measured by 'H-NMR spectroscopy

b) Isolated yield after silica-gel column chromatography

2.2.3 Summary of the Suzuki Cross-Couplings

All the Suzuki cross-couplings were performed between compound 3 and
various aryl boronic acids with different functional groups in either para
or meta position. The reaction conditions have been the same with
respect to the equivalents of boronic acid, catalyst and base, with a
constant reaction temperature of 80 °C. The solvents 1,4-dioxane and

water have also been used with a ratio of 2:1. A total of 10 different
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2.2 Suzuki Cross-Coupling TKJ4520

Suzuki cross-couplings have been performed to synthesize compound 4-
13. The results from the Suzuki cross coupling reactions are summarized
in Table[2.3] The spectroscopic data of the cross-coupled compounds are
attached in Appendix [CJL]

Overall, the position or the electronic nature of the substituents, did not
have a major impact on reaction rate, yield or purity. The lower rate
in the case of compound 4 is most likely attributed to scale-up effects.
This can be substantiated by that compound 4 was also prepared in the
pre-master project in a considerably smaller scale with a reaction time

similar to all the other compounds. 194,

Table 2.3: Summary of the results obtained from the Suzuki cross-coupling reactions

of the pyrrolopyrimidines 4-13.
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Scale Conv.* Time Yield?
Comp. Boronic acid ) State
[mg]  [%]  [min] 7]
4  H()o 1080 =99 30  Transparent 97
oil
5 O~ 401 =99 1 Brown oil 78
6 g-@ca 150 >99 10 Transparent 94
oil
7 H{)-em 150 =99 12 Transparent 99
oil
o
8 g—Qﬁw 150 =99 12 Brown oil 86
Boc\NH
9 % :f 501 >99 10 Transparent 65
oil
Boc\
NH
9 % :f 501 >99 10 Transparent 7
oil
10 () 266 ~99 15  Transparemt 82
oil
0
0
11 % :<‘ A 202 >99 12 Transparent 89
oil
OH
12 %d 150 -99 13 Red oil 85
NO,
13 %_@ 101 =99 11 Yellow oil 98
NO;
501 >99 15 Yellow oil 94

a) Conversion was measured by 'H-NMR spectroscopy

b) Isolated yield after silica-gel column chromatography
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2.3 SEM-Deprotection

The last synthesis step towards potential CSF-1R inhibitors was the
removal of the SEM-protecting group which was performed in a two
step process, see Figure In the first step the pyrrolopyrimides were
dissolved in trifluoroacetic acid (TFA) and CH,Cl,, and stirred for 2.5-
3.5 hours at 50 °C before they were concentrated in vacuo. The second
step was performed at room temperature under basic conditions with

saturated aqueous NaHCO, and THF.

Scheme illustrates the general synthesis scheme of the target com-
pounds 14-16 and 18-24 by the removal of the SEM-protecting group.

SEM

N -
qos "j 4 7'% 1) TFA, CH,C, 50°C
N _
O(j\/ 7 2)NaHCO, THF, 1t

NH;
=N
Y,
COaMe
CH20H
NO3z

L I I I I|®

® N @ o &

Scheme 2.6: Synthesis of the target inhibitors 14-16 and 18-24 by SEM-

deprotection.

The conversion rate of the substrates was monitored by 'H-NMR spec-
troscopy in both steps of the reaction to ensure full conversion. After
work up, purification of the crude products was performed by silica-gel
column chromatography, isolating the target compounds 14-16 and 18-
24. The purity of the target compounds was measured by HPLC with
a desired high purity of over 95%. The results of the SEM-deprotection
reactions are summarized in Table The spectroscopic data of the
isolated products are presented in Appendix [MW]
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Table 2.4: Results of the SEM-deprotection performed to obtain target compound
14-16 and 18-24

Compound Scale Reaction Time [h] State Yield Purity®

[mg| Step 1  Step 2 [%] (%]
14 1080 4 18 White solid 65 97
15 142 3.5 ) White solid 96 98
16 118 2.5 16 White solid 63 >99
18 103 2.5 16 White solid 80 97
19 121 2.5 16 White solid 95 96
20 264 3 18 White solid 58 95
21 180 3.5 18 White solid 70 99
22 150 2.5 16 White solid 64 >99
23 80 2.5 16 White solid 85 98
24 97 3 19 Yellow solid 65 98
24 471 2.5 17 Yellow solid 80 98

@ Purity was measured by HPLC

All the SEM-deprotection reactions were comparable in terms of reaction
time for both steps. The reaction time in the first step varied between
2.5-3.5 hours, while the second step was usually stirred overnight due to
mild reaction conditions. The difference in isolated yields varied greatly
between the different substances with the yields ranging from 58-96%,
even though the reactions conditions were similar for all the reactions.
A possible reason for the products with modest yields may be due to a
challenging work up because of the crystalline nature of the deprotected
pyrrolopyrimidine compound and loss of product during silica gel column
chromatography. The low yield of substance 20 is discussed in more

detail in Section [2.3.11
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2.3 SEM-Deprotection TKJ4520

'H-NMR and '*C-NMR analysis of the final products didn’t show any
unexpected peaks other than the product and solvent residues signals.
The "YF-NMR analysis of compound 16 however revealed the '°F signal
peak for trifluoroacetic acid (TFA) at -78.6 ppm, meaning that excess
TFA had remained in the crude product after step two with basic con-
ditions in the SEM-deprotection. Nevertheless, HPLC showed that the
compound had a purity of over 99%. An article by Sloop et. al. reports
that the range of °F chemical shifts for the TFA group generally dif-
fers from -85 to -67 ppm. 1%l No signs of excess TFA were found in the

fluorine compound 18.

2.3.1 Synthesis of compound 20

The SEM-deprotection of compound 9 was performed two times to iso-
late the final product 20. The synthesis of this aniline is looked closer in
to because it is a precursor to the target amide 25. This synthesis was

performed with the reaction conditions in Scheme [2.7]

SEM HN-Boc NH;
N N . B -
ﬁ N : [/ - N
4 1) TFA, GHoCly 50°C |
& N~ . - 5 N_
O\,N 2) NaHCO3/NH3 MeOHITHF, rt.
< 9 N_ 20

Scheme 2.7: Synthesis of the target compound 20 by SEM-deprotection.

The first step of the synthesis showed full conversion on both TLC and
'H-NMR analysis for both reactions. The second step was performed
with two different base systems. The first test reaction was performed
with saturated aqueous NaHCO; and THF at room temperature and
stirred overnight. Both 'H-NMR analyses and TLC of the reaction
showed incomplete conversion, so a different base system with 25 %

aqueous NH;-solution and MeOH was used instead in the second step of
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2.3 SEM-Deprotection TKJ4520

the SEM-deprotection. This reaction was also performed at room tem-
perature and stirred overnight. The reaction with NH;/MeOH seemed
to have full conversion as analysed by TLC and 'H-NMR. Due to an in-
complete conversion to product in the reaction with the NaHCO,, only

the product from the NH; reaction was worked-up and purified.

After work up, three rounds of purification by silica-gel column chro-
matography was needed to isolate compound 20 in a moderate yield of
58 % with a purity of 95%. 'H-NMR analysis showed that some byprod-
ucts still were present in the isolated product, so HPLC analyses were
therefore conducted after each purification to see the improvement of the

purity. The results from the reactions are given in Table [2.5]

Table 2.5: Results from the synthesis of compound 20

Purity® 1 Purity® 2 Purity® 3 Yield

Entr Base-system
Y - o (%

1 NaHCO,, THF ; - - -

2 NH,, MeOH 80 91 95 58
@ Purity was measured by HPLC

Mass spectroscopy and NMR, characterization were conducted to try
to identify the byproduct in the isolated product 20. This indicated
that the tetrahydropyran group (THP) had been cleaved off in the
pyrrolopyrimidine compound, but the mass spectroscopy didn’t propose
any plausible molecular formulas that matched the observations from
NMR-spectroscopy. The results indicated also that the byproduct was
more unpolar than the main product. Figure [2.1] illustrates the chro-
matogram of the assumed byproduct compared to the isolated product

20.
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Figure 2.1: Chromatogram of the assumed byproduct and the isolated product 20.

A common side product in SEM-deprotections is the formation of formalde-
hyde, see Section[I.8] It could be possible that the formaldehyde have re-
acted to the free benzylic amino group resulting in the unwanted byprod-
uct. Due to the noticeable byproduct in the isolated product an alter-
native synthesis route was proposed to achieve a higher yield and purity

of compound 20, see Section 2.4.2]

2.4 Post modifications
2.4.1 Synthesis of compound 17 by hydrolysis

Hydrolysis of compound 15 was performed to replace the alkoxy group
(OMe) of the ester with a hydroxy group to give the carboxylic acid 17,
see Scheme 2.8
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k

H

N, N o] i N, N O
“/ o b LiOH (5eq.) “/ X i
O\N, = O—  MeOH Dioxane:H,0 (2:1:1) O\t = OH
N N
= 15 =97

Scheme 2.8: Synthesis of the target compound 17 by hydrolysis.

The reaction was carried out at 50 °C by mixing the methyl ester 15 in a
LiOH solution together with a 2:1:1 mixture of MeOH, 1,4-dioxane and
water. The conversion of the substrate was monitored by TLC during the
reaction, and the reaction was stopped after 24 hours with full conversion
confirmed also by 'H-NMR spectroscopy. The reaction mixture was then
concentrated in vacuo before the residue was diluted with water. The
pH of the diluted mixture was then adjusted to between 2.5-3.0 with
HCI before the product 17 was isolated by cold filtration with a yield of
29%. The purity of the compound was measured by HPLC to 99%.

The cold filtration gave a very pure product but a major part was lost as
it got stuck on the filtration paper. It was also believed that a sizable part
of the product was lost in the diluted water mixture, due to the product’s
high solubility in the water. The filtrate was saved and used in extraction
to try to recover more of the product. By extraction approximately
10% of the product was recovered but 'H-NMR showed a very impure
product. In conclusion the cold filtration was a better method than the
extraction to obtain a pure hydrolysis product. Nevertheless, should
there be investigated a better method to isolate the product in higher
yields. The spectroscopic data of the isolated product 17 are presented
in Appendix [P}
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2.4.2 Synthesis of compound 20 by reduction

Reduction of the nitro group in compound 24 was performed as an al-

ternative way to synthesize the aniline compound 20, see Scheme [2.9

NO» NH>
N FE NH4CI (9 eq.) N ’hj
M ; Fe powder (3 eq.) T >
N - N
0 = ELOH/H,0 CO\/ 7z
No 2 78°C N 20

Scheme 2.9: Synthesis of the target compound 20 by reduction

Two reductions were performed; one test reaction at 37 mg and one larger
scale reaction at 250 mg. The reactions were carried out by dissolving the
nitro derivative 24, NH,Cl and iron powder in 7:3 degassed EtOH/H,O
under a N,-atmosphere. The iron powder acted as the reducing agent in
this reaction. Both reactions were stirred at 78 °C for 3 hours until full
conversion was confirmed by "H-NMR spectroscopy. The change of the
initial yellow colour in the reaction mixture, caused by the nitro group,
to a more transparent colour was also a sign of full conversion. After
work up, purification of the crude products was performed by silica-gel
column chromatography isolating compound 20 in yields of 81 % and
63 % as white solids. The purity of the compounds was measured by

HPLC with a desired high purity (>99%).

The reduction route for isolating compound 20 was a better method
in comparison with the method described in Section in regards to
both yield and purity. The results of the reductions are given in Table
The spectroscopic data of the isolated product are presented in
Appendix [§
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Table 2.6: Results of the synthesis of compound 20 by reduction

Experiment Scale [mg] Conversion® |%] State Yield (%] Purity® [%]

1 37 >99 White solid 81 99
2 250 >99 White solid 63 99

@ Conversion was measured by "H-NMR spectroscopy

b Purity was measured by HPLC

2.4.3 Synthesis of compound 25 by acylation

Acylation of the aniline compound 20 was performed to arrive at the
amide 25. The synthesis was carried out with the reaction conditions

shown in Scheme 2.101

= o
: NH, HN
rN\ bj C}f/”‘v/ rN‘-. u
Moot e Nl
0 DIPEA, CO\/
No 2 DCM 0 °C No 25

Scheme 2.10: Synthesis of the target compound 25 by acylation.

The reaction was carried out in a 70 mg scale by dissolving the aniline
20 in DCM and DIPEA and then cooling down the mixture to 0 °C.
Propionyl chloride was then added dropwise under a nitrogen atmosphere
before the reaction mixture was stirred over night and quenched with
NaHCO;. 'H-NMR showed full conversion of the substrate. After work
up, purification of the crude product was performed by silica-gel column
chromatography to isolate the target amide 25 in a yield of 69% and
a purity of 98%. The spectroscopic data of the isolated product are
presented in Appendix [X]

The reaction between compound 20 and propionyl chloride was expected
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to give a diacylated product at N-7 and N-25 when using 2.5 equivalents
of the acyl chloride, but 'H-NMR analysis and mass spectroscopy re-
vealed that the acyl chloride had connected selectively to the N-25 atom
in the product. A possible reason for this is that substituents on the pyr-
role nitrogen are often very labile, and therefore easily cleaved of under

harsh reaction conditions.
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2.5 Structure Elucidation

To verify the identity of the new pyrrolopyrimidines synthesized, struc-
ture elucidation was performed. The NMR-spectroscopic methods 'H-
NMR, 3C-NMR, YF-NMR, 'H-'H COSY, 'H-'3C HSQC and 'H-'3C
HMBC were used to assign the chemical shifts and confirm the struc-
ture of the compounds 6-13 and 16-25. Compounds 1-5 and 14-15 were
prepared and characterised in the pre-master project. 194 The molecular
formulas of the various compounds were determined by high-resolution
mass spectroscopy (HRMS) and IR was used to confirm the presence of
their functional groups. All the spectra can be found in Appendix [A{W]
Table displays the signals of common solvents found in some of the

I'H- and '3C spectra of the compounds.

Table 2.7: Signals of common solvents used in 'H- and 13C NMR.

CDCl, DMSO-dg
1H 130 1H 130

Solvent residue 7.26 77.16 2.50 39.52
H,O 1.56 - 3.33 -

CH,Cl, 5.30 53.52 5.76 54.84

EtOAc 4.12,2.05 21.04 1.99, 4.03 20.68

'H-NMR spectroscopy was used to assign the proton shifts, the integrals,
the multiplicity and the coupling constants for the protons in the syn-
thesized compounds. 'H-'H COSY spectroscopy was used to determine
the correlation signals for the neighboring protons in the compounds.
'H-'3C HMBC, which shows the coupling between carbon and hydrogen
atoms 2-4 carbon atoms away from the observed carbon, was then used

to confirm the positions of the assigned protons.
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The coupling between the carbon and its attached protons was deter-
mined by 'H-'2C HSQC. The quarternary carbons without protons were
assigned with 'H-'3C HMBC. These 'H-'3C couplings are shown for
compounds 4 and 14 in Figure The 'H-'3C couplings of the other
pyrrolopyrimidines connects in a similar matter due to their structural

similarities.

Figure 2.2: 'H-13C HMBC connectivity used in the structural elucidation of the

quarternary carbons in 4 and 14

2.5.1 Common spectroscopic trends

The '"H-NMR and '*C-NMR shifts of the protected and deprotected com-
pounds are very much alike, due to their structural similarities. There
are generally only observed small variations in the chemical shifts. The
aromatic 'H and '>C chemical shifts are influenced by the electron den-
sity in the ring and are generally found within 7-9 ppm for the !H-shifts
and 110-135 ppm for the '3C-shifts in the pyrrolopyrimidine compounds.

The 'H-NMR and '*C-NMR shift values of the tetrahydropyran (THP)
group are normally around 3.82/3.23 ppm and 1.52/1.26 ppm, and 30.2
ppm and 66.7 ppm for the C-14 and C-15 atoms, respectively. Due to the
complexity of some of the signals in the THP group, these are defined

as multiplets. The 'H-NMR signals of the THP unit are illustrated in
Figure
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o

15*
3.85-3.79 (m, 2H) 3.23(1d, J =117, 2.1 Hz, 2H) 1.52 —1.46 (m, 2H) 1.26 (qd, J = 12.0, 4.4 Hz, 2H)

Figure 2.3: Common 'H-NMR signals of the tetrahydropyran (THP) unit.

The signal at position 15 arises the pair of equatorial protons adjacent
to the oxygen atom. These should in theory give one large geminal split
(J = 12 Hz) and two smaller vicinal connections (equatorial-axial +
equatorial-equatorial). 79! The fine splitting in the signal makes it hard
to find straight peaks that are connected to calculate coupling constants,
and it is therefore treated as a multiplet with a chemical shift around

3.85-3.79 ppm.

The signal at position 15* arises the pair of axial protons adjacent to
the oxygen atom. This signal should in theory give a ddd (doublet of
doublet of doublet) 106l Hut it seems that the geminal coupling constant
is approximately equal to the vicinal (axial-axial) coupling constant (J=
12 Hz). This makes the signal appear like a td (triplet of doublets) with
a chemical shift around 3.23 ppm.

The signal at position 14 arises the pair of equatorial protons between

the protons in position 15 and 13. This signal should in theory give a
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dddd (doublet of doublet of doublet of doublet) P06l but the fine splitting
in the signal makes it hard to find straight peaks that are connected to
calculate coupling constants, and it is therefore treated as a multiplet

with a chemical shift around 1.52-1.46 ppm.

The axial pair of protons at position 14* acts the same way as the signal
at position 15*. This signal should in theory give a dddd, but since the
geminal coupling constant is approximately equal to the vicinal coupling

constant, does the signal look like a qd (quartet of doublets).

The SEM-group in the protected pyrrolopyrimidines show distinct 'H-
NMR signals for the aliphatic protons in position 17 and 18, see Figure
24

19
l 19

i Sl/
60" N S
1
2 N‘\‘\
15 ||/
o 14 3N 4/
Oﬂv“’m

12 "

U

17 18
3.54 -3.48 (m, 2H) 0.84 - 0.77 (m, 2H)

Figure 2.4: Common 'H-NMR signals of the SEM group.

The 'H-NMR signals at C-17 and C-18 should in theory both be triplets,
but due to almost identical coupling constants and the high order split-

ting of the signals, both are therefore treated as multiplets with a chemi-
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cal shift of 3.54-3.48 and 0.84-0.77 ppm, respectively. Both the 'H-NMR
signals for the protons in position C-16 and C-19 are observed as singlets

at around 5.57 and -0.10 ppm, respectively.

The main differences of the protected and deprotected pyrrolopyrim-
idines are that the four signals from the aliphatic region of the SEM-
group in compounds are gone in the deprotected compounds after re-
moval of the SEM-group. The SEM-deprotection results in a new proton
signal from the N-7 atom which is usually found around 12 ppm. The
removal of the SEM protecting group also appears to cause a decrease

of the chemical shift at the C-5 atom.

2.5.2 Compounds 6, 7, 16 and 18

The 'H-NMR and '*C-NMR shifts for the difluoro- and trifluoro deriva-
tives 6 and 7, and 16 and 18 are presented in Table and Table

The spectroscopic spectra for the compounds are given in Appendix [E]

F} O] and [

The aromatic carbons at position 22, 23 and 24 were observed as triplets
in the ¥ C-NMR spectra of compounds 7 and 18 and as quartets in the
same positions for compounds 6 and 16. These signals are triplets and
quartets due to coupling with fluorine nuclei ("n+1" rule). The 'Jcp
coupling between carbon and fluorine in the CF3-group compound was
272.5 Hz and 271.4 Hz for compound 6 and 16. The coupling constants
in the ipso and ortho position for these compounds were both 31.6 Hz
and 3.3 Hz respectively. These coupling constants corresponds well with
earlier research done on C-F coupling done by Newmark et al.m97 The
LJcF coupling constant for the CHF,-group was 235.9 Hz and 235.5 Hz
for compound 7 and 18. The coupling constants in the ipso and ortho

position were 22.2 Hz and 5.9 Hz for compound 7 and 21.9 Hz and 6.0
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Hz for compound 18. These coupling constants corresponds well with

common C-F shifts in CHF,-groups. 108l

The CHF,-proton at position 24 for compounds 7 and 18 was also ob-
served as a triplet in 'H-NMR spectra due to hydrogen-fluorine coupling.
The coupling constant for the CHF,-proton was 56.1 Hz and 56.4 Hz for

compounds 7 and 18 respectively.

By comparing the CFj-compounds with the CHF,-compounds, large
variations in !'3C-shifts can be observed for the positions 23 and 24 in
the compounds. The '*C chemical shift values have 8.5-8.6 higher ppm
values in the CF5-compounds than the CHF,-analogues in the 24 posi-
tion, but have 5.2-5.5 lower ppm values in the 23 position. The reason
for the difference in the 24 position is that the CF3-group is a more elec-
tron withdrawing group than the CHF, group, so it will decrease the
electron density around the carbon nucleus and therefore resulting in a
larger chemical shift values. Similar with the 23 position where the elec-
tron density is lower in the CHF, groups than the CF; group resulting

in a larger chemical shift values in this position for the compounds 7 and

18. [108] [109]

Table 2.8: Assignment of 'H- and '3C-NMR shifts for compounds 6 and 7, obtained
at 600 MHz and 150 MHz, respectively. All chemical shift values are
given in ppm and the solvent used was DMSO-dg.

19 19
NS
S

17 18 A 18

16 fe]

21 22

1
N 7
2 8 N
( =~ ] 20 23 CF
15 3 15
i N P / 24
O B 5 21 2 O
13 10
18 ]
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Pos. 6 7 6 7
2 8.23 8.22 151.7 151.5
4 - - 156.6 156.5
5 7.04 6.96 104.3 103.5
6 - - 134.4 135.0
7 - - - -

8 - - 153.4 153.2
9 - - 102.1 102.1
11 3.41 3.40 39.0 38.9
12 3.71 3.70 55.4 55.4
13 2.10-2.04 2.08-2.04 33.8 33.8

14/14’ 1.52/1.28 1.52/1.28 30.2 30.2

15/15> 3.83/3.24 3.82/3.24 66.7 66.7
16 5.59 5.56 70.3 70.3
17 3.59 3.61 65.7 65.7
18 0.83 0.83 17.3 17.3
19 -0.10 -0.10 -1.5 -1.5
20 - - 135.6 134.1
21 7.99 7.90 128.9 128.7
22 7.84 7.67 125.6 126.1

(@, J =33Hz) (t,J=5.9Hz)
23 - - 128.1 133.3

(q, J =31.6Hz) (t, J =22.2 Hz)
24 - 7.09 123.4 114.8

(t,J =56.1 Hz) (q, J =272.5 Hz) (t, J =235.9 Hz)
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Table 2.9: Assignment of 'H- and '3C-NMR shifts for compounds 16 and 18, ob-
tained at 600 MHz and 150 MHz, respectively. All chemical shift values

are given in ppm and the solvent used was DMSO-dg.

1 T 1 H7
N H 21 22 N 21 22
8 __N 8 __N
2 2
= 6 20 23 W = 6 20 23
” | P CFs " | / CHF;
24
AN 2 143 g
O h 5 21 2 o] h 5 21 22
10
15 Ly 18 2 N\\
14 12 1 12

o .
"H [ppm] 3C [ppm]
Pos. 16 18 16 18
2 8.14 8.13 151.7 151.5
4 - - 156.6 156.5
5 7.28 7.21 101.3 100.4
6 - - 131.2 131.8
7 12.31 12.23 - -
8 - - 153.2 153.1
9 - - 103.3 103.3
11 3.41 3.41 38.9 38.9
12 3.70 3.70 55.3 55.3
13 210204  2.08-2.04 33.9 33.9
14/14’ 1.53/1.29  1.53/1.29 30.3 30.3
15/15 3.83/3.24  3.83/3.24 66.7 66.7
16 - - - -
17 - - - -
18 - - - -
19 - - - -
20 - - 135.5 134.0
21 8.09 8.01 125.0 124.8
22 7.76 7.61 125.7 126.2

(0, J =3.3Hz)  (t,J =6.0 Hz)
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23 - - 126.9 132.4
(q, J =31.6 Hz)  (t, J =21.9 Hz)
24 - 7.04 123.4 114.9

(t, ] =56.4 Hz) (q, J =271.4 Hz) (t, J =235.5 Hz)

2.5.3 Compound 8 and 19

The 'H-NMR and *C-NMR shifts for sulfoamides 8 and 19 are pre-
sented in Table and the spectroscopic spectra for the compounds
are given in Appendix [G] and

The 'H-NMR. and *C-NMR shifts of the two compounds are very much
alike, due to their structural similarities. There are only observed small
variations in the chemical shift values. The sulfonamide group in both
the compounds have a very electron withdrawing character which re-
moves electron density from the ring carbon in position 23, resulting in
a higher chemical shift value than the rest of the ring carbons at 143.1
and 142.1 ppm for compounds 8 and 19, respectively. The NH, group is
observed at 7.43 and 7.35 ppm in the sulfoamides 8 and 19, respectively.
Table 2.10: Assignment of 'H- and '3C-NMR shifts for compounds 8 and 19, ob-

tained at 600 MHz and 150 MHz, respectively. All chemical shift values

are given in ppm and the solvent used was DMSO-dg.

19
19
N
G
7 o
16 fo]
1 1 7
Ny ol a » N, W 2 o2
2 2
= 6 20 2 2 = 6 20 5 2
15 | y SNH 24 15 | V. S NHz 24
uJN g o] “jN B o
o] h 5 21 22 O ¥ 5 21" 22
i 10 i 10
15 N 18 N
~ ~
1w 2 "8 14 12 o119
1 13
H [ppm| C [ppm]
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2.5 Structure Elucidation TKJ4520

Pos. 8 19 8 19
2 8.22 8.14 151.7 151.7
4 - - 156.6 156.6
5 7.02 7.26 104.1 101.2
6 - - 134.5 131.4
7 - 12.27 - -

8 - - 153.4 153.2
9 - - 102.1 103.4
11 3.41 3.42 39.0 39.0
12 3.71 3.71 55.4 55.3
13 2.08-2.04  2.08-2.04 33.9 33.9
14/14  1.52/1.29 1.53-/1.29  30.2 30.3
15/15"  3.83/3.24 3.83/3.24  66.7 66.7
16 5.58 - 70.4 -
17 3.63 - 65.7 -
18 0.86 - 17.2 -
19 -0.08 - 14 -
20 - - 134.7 134.7
21 7.95 8.05 128.5 124.7
22 7.89 7.83 126.0 126.2
23 - - 143.1 142.1
24 7.43 7.35 - -

2.5.4 Compound 9 and 20

The 'H-NMR and '3C-NMR shifts for compounds 9 and 20 are presented
in Table and the spectroscopic spectra for the compounds are given
in Appendix [H] and [§]
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2.5 Structure Elucidation TKJ4520

The Boc-protecting group in compound 9 is an electron withdrawing
group that removes electron density from the amide proton at position
26 resulting it to have a high shift at 9.43 ppm. The 9 protons and the 3
carbons in position 29 of the Boc group is both observed as large singlets
with a low chemical shift value at 1.48 ppm and 28.1 ppm in the 'H- and
I3C-NMR spectra, respectively. The carbonyl carbon at position 27 in
the Boc-group is observed with a high '3C chemical shift value at 152.7
ppm. Removing the Boc-group results in a NH, group in position 26 in
compound 20, observed as a singlet in the 'H-spectra. This is a very
electron donating group that increases electron density in the aromatic
ring resulting in a much lower chemical shift of 5.07 ppm in position 26.
The increased electron density in the aromatic ring causes the chemical
shift values of the neighboring carbons to the NH,-group in position 23

and 25 to decrease in compound 20 compared to compound 9.

Table 2.11: Assignment of 'H- and '3C-NMR shifts for compounds 9 and 20, ob-
tained at 600 MHz and 150 MHz, respectively. All chemical shift values

are given in ppm and the solvent used was DMSO-dg.

19
19
/ 19
N

2 8.20 8.09 151.2 150.8
4 - - 156.4 156.3
) 6.74 6.83 102.1 97.9
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6 - - 136.3 134.0
7 - 11.97 - -
8 - - 152.9 152.6
9 - - 102.2 103.2
11 3.38 3.38 39.0 38.9
12 3.68 3.67 55.5 55.4
13 2.08-2.04  2.08-2.04 34.0 33.9
14/14°  1.53/1.29 1.55/1.27  30.3 30.3
15/15°  3.83/3.24 3.84/3.25 66.8 66.8
16 5.52 - 70.2 -
17 3.51 - 65.5 -
18 0.81 - 17.3 -
19 -0.11 - 15 -
20 - - 131.9 132.0
21 7.42 7.00 122.4 112.9
22 7.35 7.06 128.8 129.3
23 7.32 6.51 118.0 113.2
24 - - 139.9 148.8
25 7.82 7.01 118.6 110.2
26 9.43 5.07 - -
27 - - 152.7 -
28 - - 79.1 -
29 1.48 - 28.1 -

2.5.5 Compound 10 and 21

The 'H-NMR and '*C-NMR shifts for the 3-pyridyl derivatives 10 and
21 are presented in Table and the spectroscopic spectra for the

93



2.5 Structure Elucidation TKJ4520

compounds are given in Appendix [[] and [T]

One noticeable difference compared to other similar compounds are the
high '3C-shifts in position 23 and 25 between 146-149 ppm for both
compound 10 and 21. These high chemical shift values are due to the
electronegative nitrogen atom in the pyridyl ring that removes electron
density from the ring carbons next to the nitrogen.

Table 2.12: Assignment of 'H- and '3C-NMR shifts for compounds 10 and 21,

obtained at 600 MHz and 150 MHz, respectively. All chemical shift

values are given in ppm and the solvent used was DMSO-dg.

19

R/
. _d
: I/&\a 7 = o “/&\a =y
'"H [ppm] '3C [ppm|
Pos. 10 21 10 21
2 8.22 8.13 151.5 151.5
4 - - 156.5 156.5
5 7.02 7.24 103.7 100.3
6 - : 132.7 129.8
7 - 12.27 - :
8 - - 153.2 153.1
9 - _ 102.1 103.2
11 3.41 3.41 38.9 38.9
12 3.70 3.70 55.4 55.3
13 2.10-2.04 2.10-2.04  33.9 33.9
14/14  1.52/1.29 154/1.30  30.2 30.3
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2.5 Structure Elucidation TKJ4520

15/15° 3.83/3.24 3.83/3.24 66.7 66.8
16 5.57 - 70.2 -
17 3.59 - 65.7 -
18 0.83 - 17.3 -
19 -0.11 - -1.5 -
20 - - 127.7 127.6
21 8.16 8.24 135.5 131.6
22 7.52 7.44 123.6 123.7
23 8.60 8.46 148.8 147.9
24 - - - -
25 8.94 9.11 149.0 146.0

2.5.6 Compound 11 and 22

The 'H-NMR and '3C-NMR shifts for the m-methyl esters 11 and 22 are
presented in Table and the spectroscopic spectra for the compounds
are given in Appendix [J] and [T]

The ester present in both compounds 11 and 22 are electron withdraw-
ing, causing a similar effect as described before. It is also noticeable that
the C-26 carbon in both compounds have chemical '3C-shifts of 165.9-
166.2 ppm which is common shift values for carboxylic acid derivatives
like esters. The protons in the methyl group at C-27 are also observed

as large singlets at 3.88 and 3.90 ppm in the 'H-NMR spectra.

Table 2.13: Assignment of 'H- and 3C-NMR shifts for compounds 11 and 22 ob-
tained at 600 MHz and 150 MHz, respectively. All chemical shift values

are given in ppm and the solvent used was DMSO-dg.
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13

14/14°

15/15’
16
17
18
19
20
21
22
23

3.41
3.70
2.10-2.03
1.53/1.29
3.83/3.24
5.52
3.59
0.86
-0.10
8.02
7.64
7.99

8.12

7.18

12.29

3.41
3.70
2.10-2.01
1.54/1.30
3.84/3.25

8.15
7.57
7.85
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151.5
156.5
103.3
132.1

153.0
102.1
39.0
55.4
33.9
30.3
66.7
70.3
65.5
17.3
-14
134.9
133.2
129.2
128.6

151.4
156.6
100.0
131.8

153.1
103.3
38.9
55.3
33.9
30.3
66.8

132.2
129.3
129.3
127.7
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24 - - 130.3 130.4
25 8.33 8.46 129.1 125.2
26 - - 165.9 166.2
27 3.88 3.90 52.3 52.3

2.5.7 Compound 12 and 23

The '"H-NMR and '*C-NMR shifts for the hydroxymethylene analouges
12 and 23 are presented in Table and the spectroscopic spectra for

the compounds are given in Appendix [K] and [V}

Compared to compounds 11 and 22 in the previous section, the aro-
matic ring carbons and protons in compound 12 and 23 have lower
chemical shifts. This since the CH,OH-group in compound 12 and 23
has a more electron donating character, than the electron-withdrawing
carbonyl group in 11 and 22. The alcohol protons at position 27 in the
compounds 12 and 23 are observed as triplets with a chemical shift at
5.24 and 5.22 ppm in the 'H-NMR spectra, while the CH, groups next
to the hydroxy groups are observed as doublets with chemical 'H shifts
at 4.55 and 4.54 ppm, respectively.

Table 2.14: Assignment of 'H- and 3C-NMR shifts for compounds 12 and 23,
obtained at 600 MHz and 150 MHz, respectively. All chemical shift

values are given in ppm and the solvent used was DMSO-dg.
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13

14/14’

15/15’
16
17
18
19
20
21
22
23

3.39
3.69
2.08-2.04
1.52/1.28
3.83/3.24
5.52
3.58
0.83
-0.09
7.61
7.44
7.37

8.10

7.04

12.10

3.41
3.69
2.08-2.04
1.54/1.29
3.83/3.24

7.74
7.37
7.24

98

151.2
156.4
102.3
136.3

152.9
102.1
38.9
55.4
33.9
30.3
66.7
70.3
65.6
17.3
-1.4
131.2
126.9
128.4
126.1

151.1
156.4
98.8
133.1

152.8
103.3
38.9
55.4
33.9
30.3
66.7

131.3
123.1
128.6
125.5



2.5 Structure Elucidation TKJ4520

24 - - 143.1 143.1
25 7.65 7.82 126.6 122.9
26 4.55 4.54 62.8 62.8
27 5.24 5.22 - -

2.5.8 Compound 13 and 24

The 'H-NMR and *C-NMR shifts for the nitro analogues 13 and 24 are
presented in Table and the spectroscopic spectra for the compounds
are given in Appendix [[] and [W]

The NO,-group is a very electron withdrawing group causing both the
'H-NMR and '3C-NMR shifts of compounds 13 and 24 to be high in
the aromatic ring. Compared to compound 20 with the electron donat-
ing NH,-group, see Section the 'H-NMR and '*C-NMR shifts of
compound 24 are respectively 0.65-1.82 ppm and 1.0-17.6 ppm higher
for the atoms in aromatic ring structure in position 21-25.

Table 2.15: Assignment of 'H- and 3C-NMR shifts for compounds 13 and 24,

obtained at 600 MHz and 150 MHz, respectively. All chemical shift

values are given in ppm and the solvent used was DMSO-dg.

19
19
/ 19
N~

Pos. 13 24 13 24
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2 8.23 8.14

4 - -

5 7.12 7.38

6 - _

7 - 12.40

8 - -

9 - -

11 3.42 3.43
12 3.71 3.71
13 2.10-2.04  2.10-2.04

14/14°  1.52/1.29 1.53/1.29
15/15°  3.83/3.24 3.83/3.24

16 5.58 -
17 3.64 -
18 0.89 -
19 -0.08 -
20 - -
21 8.22 8.10
22 7.79 7.71
23 8.25 8.33
24 - -
25 8.65 8.76

151.8
156.6
104.6
133.6

153.2
102.1
38.9
55.4
33.8
30.2
66.7
70.3
65.6
17.3
-1.5
133.1
134.7
130.3
122.5
148.2
122.7

151.8
156.7
101.4
130.6

153.2
103.3
38.9
55.4
33.8
30.3
66.7

133.4
121.4
130.3
130.8
148.6
118.9

2.5.9 Compound 15 and 17

The 'H-NMR and '3*C-NMR shifts for compounds 15 and 17 are pre-

sented in Table and the spectroscopic spectra for the compounds

are given in Appendix [N] and [P}
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2.5 Structure Elucidation TKJ4520

There are only observed small variations in the chemical shifts. It is
noticeable that the C-24 carbon in both compounds have chemical '3C-
shift values over 165 ppm which is common shift values for carboxylic
acid derivatives and ester derivatives. The protons of the methyl group
at C-25 in compound 15 are observed as a large singlet at 3.86 ppm in
the 'H-NMR spectra. The alcohol proton at C-25 in compound 17 is
observed as a broad singlet with a chemical shift 12.89 ppm in the 'H-
NMR spectra. The proton in the hydroxy group gets a high chemical
shift at 12.89 ppm due to the neighboring electron withdrawing ketone

in compound 17.

Table 2.16: Assignment of 'H- and '3C-NMR shifts for compounds 15 and 17,
obtained at 600 MHz and 150 MHz, respectively. All chemical shift

values are given in ppm and the solvent used was DMSO-dg.

"H [ppm] 3C [ppm]

Pos 15 17 15 17
2 8.13 8.13 151.8 151.6
4 _ _ 156.6 156.6
5 7.29 7.26 101.5 101.2
6 - - 131.6 131.8
7 12.29 12.27 _ -

8 - - 153.3 153.2
9 - - 103.4 103.4
11 3.42 3.42 39.0 38.9
12 3.70 3.70 55.4 55.4
13 2.08-2.04 2.08-2.04 339 33.9
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2.5 Structure Elucidation TKJ4520

14/14°  1.54/1.29 1.53/1.30 30.3 30.3

15/15°  3.83/3.25 3.83/3.24 66.8 66.8
20 - - 136.1 135.7
21 7.89 7.95 129.7 129.8
22 8.03 8.00 124.6 124.5
23 - - 127.6 128.9
24 - - 165.9 167.0
25 3.86 12.89 52.1 -

2.5.10 Compound 25

The 'H-NMR and '3C-NMR shifts for compound 25 are presented in

Table and the spectroscopic spectra for the compounds are given in
Appendix [X]

The amide proton at N-26 in compound 25 is observed as a singlet
with a chemical shift of 9.90 ppm in the 'H-NMR spectra. The electron
withdrawing acyl group on compound 25 results in a much higher 'H-
shift on the N-25 atom compared to compound 20 with the electron
donating NH,-group in the same position. The '3C-shift in position 24
has a 9.1 lower ppm value in compound 25 than in compound 20, due

to a higher electron density around the C-24 carbon in compound 25.

Table 2.17: Assignment of 'H- and *C-NMR shifts for compound 25, obtained at
600 MHz and 150 MHz, respectively. All chemical shift values are given
in ppm and the solvent used was DMSO-dg.
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3C [ppm]
25
2 8.11 151.1
4 - 156.4
5 6.88 98.7
6 - 133.2
7 12.12 .
8 - 152.8
9 - 103.2
11 3.40 38.9
12 3.68 55.4
13 2.09-2.04 33.9
14/14° 1.55/1.29 30.3
15/15’ 3.83/3.25 66.8
20 - 132.0
21 7.51 119.6
22 7.34 129.1
23 7.48 118.4
24 ; 139.7
25 8.02 115.8
26 9.90 -
27 - 172.1
28 2.34 20.5
29 1.10 9.6
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2.5 Structure Elucidation TKJ4520

2.5.11 IR-spectroscopy

IR spectroscopy has been used to find the functional groups in all the
new synthesized compounds. Due to the structural similarities of the
synthesized compounds, the most important absorption peaks from the

IR analysis are summarized in this chapter. 110}

The medium absorption bands at 3000-2800 cm ™! represent C-H stretch-
ing of the aliphatic groups in all the compounds. The strong peak at 1570
cm~! is observed in all spectra and correlates with the C=C vibrations
contributed from aromatic ring mode. The C=C and C=N stretching
from the aromatic rings are observed as weak to medium peaks between
1600-1300 cm~!. The strong peaks at 1100-1050 cm ™! are caused by C-
O stretching and represent the ether groups in the compounds. In-plane
C-H bending in the aromatic compounds is found between 1300-1000
cm~!. The absorption bands between 900-650 cm ™! are due to out-of-

plane C-H stretching in the aromatic compounds.

For the deprotected compounds, absorption bands between 3150-3050
cm~! are observed due to N-H stretching. For the fluorine compounds
6, 7, 16 and 18, C-F stretching is observed between 1400-1000 cm™!. In
compounds 5, 11 15 and 22 a strong C=0O stretch is observed between
1700-1750 cm ™! representing the ester group in their structures. In

compound 9, 20 and 25 a medium N-H stretch is observed between

3100-3300 cm ™! representing the amine/amide group in their structures.
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2.6 Biological activity
2.6.1 In vitro enzymatic assays

The final pyrrolopyrimidines 14, 15, 16, 17, 20, 21, 22, 23, 24 and
25 were all tested by in vitro enzymatic assays, to determine their en-
zymatic inhibition towards CSF-1R. The assays were baselined towards
the approved drugs PLX33997 and Erlotinib for comparison of enzy-
matic activity. The test concentration for the inhibition of CSF-1R was
at 500 nM. The ATP concentration used in the experiments was equal
to the Michael constant, K,; (approximately 10 uM). The ICsq value is
defined as the concentration value needed of a drug to inhibit 50% of the
targeted enzyme. 11 The IC5, values are based on two or four titrations
with 20 or 40 data points in each case. The results are shown in Table

alongside three compounds prepared by Thomas Thle Aarhus.
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2.6 Biological activity TKJ4520

Table 2.18: Percentage of CSF-1R inhibition and ICsq values for the given
pyrrolopyrmidines compared to the approved drug PLX3397.

I’N"‘ H = R rN“ FJ =N
(=T (0
CO\sz (O\,N\

CSF1R CSF1R CSF1R ICsy

Compound R-group

(%inhib.)®  ICs (nM)
(nM)? Lanze®)

TIA05-028 ) p-CH,OH 101 0.5+ 0.1 5

TIA05-032 9 p-CH,CH,OH 100 <0.3 <0.3
TIA05-030 @ PO 104 <0.3 14
SH-01-18 ©) H 100 0.6 + 0.0 6
SH-01-27 ¢ F 97 0.8+ 0.0 7
14 p-OMe 98 0.4 + 0.1 <3
15 p-CO,Me 99 1.5 £ 0.7 18
16 p-CF, 95 1.9+ 0.2 29
17 p-CO,H 99 0.4 + 0.0 6
20 m-NH, 97 0.4 + 0.0 4
21 ) 96 1.4+0.1 18
22 m-CO,Me 96 22405 28

23 m-CH,OH 97 0.6 + 0.0 ND 9)
24 m-NO, 98 2.7+ 0.0 43
25 m-NHCOC, H; 99 1.2 +£0.1 13
PLX3397 - 100 5.4+ 1.5 38

3) Inhibition of CSF1R (%) at 500 nM test concentration. Average of two measure-
ments Assay performed by ThermoFisher

b) CSF1R ICs0-values based on two titration curves (20 data points) or more

¢) CSF1R ICs¢-values by Lanze (Perkin Elmer) ATP is equal to Km= 2.5 mM.

4) Compound prepared by PhD student Thomas Ihle Aarhus

) Compound prepared in the pre-master project. 104l

f) See structure above Table [2.18] 66

&) Not determined



2.6 Biological activity TKJ4520

The results from the enzymatic tests show that all of the pyrrolopy-
rimidine compounds show excellent inhibition activity towards CSF-1R,
with inhibition from 95-100% and low ICsgp-values in the range of 0.4-2.7
nM. All the compounds had ICsq-values lower (better) than the refer-
ence compound PLX3397. The data also indicate that having donating
groups at the 6-aryl ring is somewhat positive. For instance has com-
pound 20 with the electron donating group NH, a lower ICs5o-value than
compound 16 with the electron withdrawing CFs-group. This effect of
substitution pattern for the ICsg-values is also observed for the rest of

the pyrrolopyrimidine compounds.

A study by Ritchie et al. shows that heteroaliphatic rings exerts benefi-
cial effects in the case of solubility, lipophilicity, bioavailability and pro-
tein binding. M2 The tetrahydropyran (THP) moiety of the pyrrolopy-
rimidine is therefore believed to play an important role for promoting
activity, but also due to its solubilizing effect. Tetrahydropyrans are 6-
membered oxygen-containing heterocycles with anti-inflammatory, anal-
gesic and cytotoxic activity that can be used for the synthesis of biologi-
cally active compounds in medicinal chemistry. B3I 4 The 1C50-values
for the pyrrolopyrimidine inhibitors containing THP are lower, compared
to the already developed drug PLX3397. The tetrahydropyran moiety
can therefore be of great interest in further research in the synthesis of

pyrrolopyrimidine based CSF-1R. inhibitors.

2.6.2 1IC;5p comparison of two different series

The ICxg-values of the tetrahydropyran-based structures were compared
to ICsp-values of the m-methylbenzyl series of compounds to investigate
how the substitution pattern of the compounds affected the ICsg-values,
see Figure[2.5] Comparing the IC5p-values of that of the m-methylbenzyl

series of compounds, shows that the activity is less dependent of the sub-
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2.6 Biological activity TKJ4520

stitution pattern in the case of the tetrahydropyran-based structures.
The electron withdrawing groups are especially better tolerated in the
current series of compounds. The figure also illustrates that the com-
pounds with the THP group generally give lower ICsg-values than the
series with the m-methylbenzyl group.

N N\ N
Ou LA

Iﬂ - ‘H um |H

CH20H CO2Me CO2H m-pyridyl

B m-methylbenzyl @ Pyran

Figure 2.5: Comparison of the ICsp-values of the methylbenzyl and tetrahydropy-
ran series of the pyrrolopyrimidine compounds. The data is not yet

published.

2.6.3 Testing towards other kinases

The selected inhibitors were also tested towards EGFR since this has
been a major off-target for pyrrolopyrimidines. The test concentration
towards EGFR was at 100 nM. Inhibition of various kinases (%) at 500
nM test concentration for selected pyrrolopyrimidine inhibitors was also

tested. The results of these inhibition tests are presented in Table 2.19]
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Table 2.19: Percentage of inhibition of various kinases (%) at 500 nM test con-
centration values for the given pyrrolopyrmidines compared to the ap-

proved drugs PLX3397 and Erlotinib.

o N
H N H PLX3397 hegiaNe B
Y =N

N N —.R =
]/ " P | o
P
o QM cr N g Z
= S =y’ CF3 Erlotinib

EGFR ABL ABL- FLT3 FLT- KIT PDGFRB
Comp. R-group

a) ®)  H396P » D835Y P b)
b) b)
14 p-OMe 10 64 60 22 36 17 21

15 p-CO,Me 5 ND ND ND ND ND ND
c)

16 p-CF, 2 22 16 10 12 11 9
17 p-CO,H 10 37 31 20 24 14 27
20 m-NH, ND 54 58 35 42 19 24
21 s ND 37 34 11 14 8 11

22 m-CO,Me  ND ND ND ND ND ND ND
23 m-CH,OH ND 43 39 26 29 15 16

24 m-NO, ND ND ND ND ND ND ND
25 m- ND 42 42 8 17 13 10
NHCOC,H,
PLX3397 - 1 6 ND 56 ND 71 38
Erlotinib - 100 75 ND ND ND 17 <0

2) Inhibition of EGFR (%) at 100 nM test concentration. Average of two measurements.
Assay performed by ThermoFisher.

b) Inhibition of various kinases (%) at 500 nM test concentration. Average of two measure-
ments

<) Not determined
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The results from the enzymatic tests show that none of the inhibitors
assayed had any relevant activity towards EGFR. This shows that sub-
stituting a benzene ring with a tetrahydropyran unit effectively removes
EGFR activity. It is noticeable that compound 14, 20, 23 have mod-
erate inhibition activity towards all the other kinases. An important
element of these results is that FLT3, KIT and PDGFRB are in the
same family as CSF-1R. The fact that these kinases are not inhibited to

a large extent is seen as positive.
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3 Conclusion

The aim of this master’s thesis was to synthesize new CSF-1R inhibitors
based on the pyrrolopyrimidine scaffold, as well as test their inhibition

activity towards CSF-1R in enzymatic studies.

The pyrrolopyrimidines were prepared by a thermal amination reac-
tion on the chloro-atom at C-4 of the compound 4-chloro-6-iodo-7-((2-
(trimethylsilyl)ethoxy)methyl)-7 H-pyrrolo[2,3-d|pyrimidine, followed by
selective Suzuki cross-coupling reactions with various boronic acids at
the C-6 carbon. The target compounds were synthesized by removal
of the protective SEM-group on the pyrrole in addition to a couple of

post-modification reactions on some selected deprotected compounds.

Ry Ra
2 4 OMe H
SEM SEM 5 CO,Me H
N LN -C}R' rN\ 0 6| cfs | H
ﬂ/ 4 nBulano P 7 CHF> H
i PP, O\,“ 8 | SONH,| H
14- dloxane H:O (2 9 H NH-Boc
78% Ba:50% 10 H N
Ry Rs 11 H CoMe
i R. 14 | OMe H 12 H | cHoH
1) TFA, CH,Cl, 50°C PL . 15| COMe| H 13 H NO,
— 2T
2) NaHCO, MeOHITHF, it g~ N#nd 186 | cCFy H
O\,N\ 14-24 17 COH H
29.96% 18 | CHF, H
19 | SONH, | H
20 H NH,
21 Ho | =Y
22 H | coMe
23 H CH.OH
SEM  HN-B
- oc 24 H NO,
M
oy Noind 1
3
O\/N\ 9 JN“"?’C H’C’Q 500,
", € NH, 0 HN

58-81%

The nucleophilic aromatic substitution resulted in an isolated product
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with a yield of 78%. The Suzuki cross-coupling reactions were conducted
at C-6 to introduce various boronic acids with functional groups in either
para or meta position, resulting in isolated products with varying yields

between 65-99%.

The target molecules were synthesized by removal of the SEM group and
by post modification reactions of the deprotected compounds, resulting
in yields between 29-96% and desired high purities of over 95%. Depro-
tection of both a SEM-group and a Boc group to synthesize an aniline
product turned out to be problematic and resulted in incomplete conver-
sion and observation of several byproducts in the isolated product. An
alternative synthesis route was carried out to synthesize the deprotected
aniline product by reduction of a deprotected nitro compound, which

resulted in high purity and yields.

During this master’s thesis, a total of 12 target molecules were tested
for their CSF-1R inhibition activity. The 12 target compounds proved
to have a very high inhibition activity towards the CSF-1R kinase with
low ICsg values in the range of 0.4-1.9 nM. The target compounds were
also tested for their inhibition activity against various kinases without

showing any relevant activity towards the selected kinases.

72



TKJ4520

4 Future Work

In this master’s thesis a total of 18 new pyrrolopyrimidine compounds
have been synthesized, of which 12 of them have been tested for their
CSF-1R inhibition activity. These 12 target compounds have proved to
have a very high inhibition activity and low ICs5q values towards the CSF-
1R kinase, making them very promising as potential CSF-1R inhibitors.
The target molecules 18 and 19 will be tested for their inhibition ac-
tivity in the future, as they weren’t finished synthesized when the other
target compounds were sent for testing. In vitro ADME experiments
and in vivo mice pharmacokinetic studies of the compounds have just

been started.

Other future work will among others involve making new pyrrolopyrim-
idine derivatives for enzymatic testing. Hydrolysis of the methyl ester
pyrrolopyrimidine 22 will be carried out to synthesize the corresponding
carboxylic acid. Compound 24 will also be used in an acylation reaction
with acryloyl chloride to synthesize a similar compound to the product
25. Molecular modelling has indicated that the acrylamide could be an
irreversible inhibitor of CSF-1R.

Further, it would have been interesting to synthesize inhibitors with
different functional groups in the ortho-position at the coupled 6-aryl-
group and compare the synthesis results and the biological effects with

the already synthesized compounds.

The methyl-(tetrahydropyran-4-ylmethyl)-amine containing the THP group,
is a secondary amine which is a very expensive compound. Self prepa-
ration of this amine may therefore be a possible solution for a more cost
efficient way to synthesize the target pyrrolopyrimidines in the future.

Some possible routes for the preparation of the THP amine are pre-
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sented in Scheme [£.1] and include preparation of carbamates and amides

followed by reduction and reductive amination.
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Scheme 4.1: Proposed synthesis routes for the synthesis of the secondary amine

containing the THP group.

In a further extension of this work, substitution of the THF group is a
possible and exciting option. Work towards replacing the 6-aryl group

by saturated ring structures are also on-going.
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5 Experimental

5.1 General Information

All the reagents and solvents that have been used for the experiments
are commercially available and have been purchased from Sigma-Aldrich.
The materials were of analytical quality and were used without further
purification. An oil bath was used to regulate the temperature if the
reactions were conducted above room temperature. A magnetic stirrer
coated with a teflon layer was used in all reactions. Distilled water was
used. Dry solvents were acquired from a Braun MB SPS-800 Solvent

Purification System when needed and were stored over molecular sieves

(4 A).

Separation Techniques

Thin layer chromatography (TLC; silica-gel on aluminum plates, F254,
Merck) was used to monitor the reactions and for optimizing eluent sys-
tems in purification by column chromatography. UV-light (wavelength
254 nm and 365 nm) was used for the visualization of the TLC-plates.

Column chromatography was performed using silica-gel (40-63 mesh, 60
A) as a stationary phase the eluent systems used are specified for each

purification on the column.

Chromatographic Analyses

HPLC analyses were performed on an Agilent 1100-series instrument
with a G1379A degasser, G1313A ALS autosampler and Agilent G1315D
diode array detector. The chromatograms were recorded at 254 nm,
using Agilent ChemStation as processing software. A Poroshell C18

column (100 x 4.6 mm) with pore size of 2.7 ym and a flow volume of 1

(6]



5.1 General Information TKJ4520

mL/min (linear gradient from Hy,O + 0.1% TFA/ACN 90/10 to 0/100

over 5 minutes was used.

Spectroscopic Analyses

The infrared absorption (IR) spectra were recorded with a FTIR Thermo
Nicolet Nexus FT-IR Spectrometer using a Smart Endurance reflection
cell. The frequencies reported are in the range of 4000-400 cm ™!, where
the strength of the absorption band are given as strong (s), medium (m)

or weak (w).

'H-NMR and *C-NMR spectra were recorded on a ultrashielded Bruker
Avance III HD NMR instrument equipped with a 5-mm SmartProbe z-
gradient probe and SampleCase. 'H-NMR spectra were recorded at
400 MHz or 600 MHz, while '*C-NMR spectra were recorded at 150
mHz. Deuterated DMSO, DMSO-dg or deuterated chloroform, C'DCl3
were used as solvents. 'YF-NMR spectra were recorded at 565 MHz
using hexafluorobenzene, C3Fg in DMSO-dg, with a chemical shift at
-164.9 ppm as a reference standard. The chemical shifts § of protons
are reported in parts per million (ppm) and their coupling constants (J)
are reported in hertz (Hz). The chemical shifts are calibrated to the
reference tetramethylsilane (TMS) in CDCl; (0.00 ppm in 'H-NMR and
I3C-NMR), or the solvent peak in DMSO-dg (2.50 ppm in 'H-NMR and
39.52 ppm in 13C-NMR)). Water is present in both CDCl; and DMSO-dg
in the 'H-NMR spectra at 1.56 ppm and 3.33 ppm. The multiplicity of
the proton signals are reported as: s (singlet), d (doublet), t (triplet),
dd (doublet of doublet), td (triplet of doublets), qd (quartet of doublets)
and m (multiplet).

Accurate mass determination in positive or negative mode was performed

on a "Synapt G2-S" Q-TOF instrument from Water TM. Samples were
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5.1 General Information TKJ4520

ionized by the use of ASAP probe (APCI) or ESI probe. No chromato-
graphic separation was used previous to the mass analysis. Calculated
exact mass and spectra processing was done by Waters TM Software

Masslynx V4.1 SCN871.

Melting point

Melting points were determined by a Stuart automatic melting point

SMP40 instrument.

In vitro CSF-1R inhibitory potency

The compounds were supplied in a 10 mM DMSO solution, and enzy-
matic CSF1R inhibition potency was determined by Invitrogen (Ter-
moFisher) using their Z’-LYTE®) assay technology. M3l In short, the
assay is based on fluorescence resonance energy transfer (FRET). In the
primary reaction, the kinase transfers the gamma-phosphate of ATP to a
single tyrosine residue in a synthetic FRET-peptide. In the secondary re-
action, a site-specific protease recognizes and cleaves non-phosphorylated
FRET-peptides. Thus, phosphorylation of FRET-peptides suppresses
cleavage by the development reagent. Cleavage disrupts FRET between
the donor (i.e.,coumarin) and acceptor (i.e., fluorescein) fluorophores on
the FRET-peptide, whereas uncleaved, phosphorylated FRET-peptides
maintain FRET. A ratiometric method, which calculates the ratio (the
emission ratio) of donor emission to acceptor emission after excitation
of the donor fluorophore at 400 nm, is used to quantitate inhibition. All
compounds were first tested for their inhibitory activity at 500 nM in
duplicates. The potency observed at 500 nM was used to set starting
point of the ICyq titration curve, in which 1000 nM was used. The ICsq-
values reported are based on the average of at least 2 titration curves

(minimum 20 data points), and were calculated from activity data with
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5.2 Synthesis of Compound 3 TKJ4520

a four parameter logistic model using SigmaPlot (Windows Version 12.0
from Systat Software, Inc.) Unless stated otherwise the ATP concentra-
tion used was equal to Km (ca 10 mM). The average standard deviation

for single point measurements were <4%.

5.2 Synthesis of 6-iodo- N-methyl- N-((tetrahydro-2H -
pyran-4-yl)methyl)-7-((2-(trimethylsilyl)ethoxy)
methyl)-7 H-pyrrolo[2,3-d]pyrimidin-4-amine (3)

Compound 1 (1.21 g, 2.95 mmol) was dissolved

in n-BuOH (12 mL) and methyl-(tetrahydro- SEM

N
pyran-4-ylmethyl)-amine (576 mg, 4.46 mmol) ||/ >N |
ol

and DIPEA (575 mg, 4.45 mmol) were added g N
under an Ny-atmosphere. The reaction mix- N

ture was heated to 145 °C and stirred for 3.5

e

hours, before it was cooled down to room temperature. Water (15 mL)
was added to the residue and extracted with EtOAc (3 x 20 mL).The
combined organic phases were washed with brine (20 mL), dried over
Nay,SO,, filtered and concentrated in vacuo. The crude product was
purified by silica-gel column chromatography (n-pentane/EtOAc, 1/1).
The product 3 (1.14 g, 2.27 mmol), was isolated with a yield of 78% as

a transparent oil.

Spectroscopic data for compound 3 (Appendix :

'H-NMR (600 MHz, DMSO-dg) §: 8.09 (s, 1H), 7.00 (s, 1H), 5.48 (s, 2H),
3.85-3.79 (m, 2H), 3.64 (d, J = 7.4 Hz, 2H), 3.54-3.48 (m, 2H), 3.32 (s,
3H) 3.23 (td, J = 11.7, 2.1 Hz, 2H), 2.08-2.04 (m, 1H), 1.52-1.46 (m,
2H), 1.26 (qd, J = 12.0, 4.4 Hz, 2H), 0.84-0.77 (m, 2H), -0.09 (s, 9H).
IBC-NMR (150 MHz, DMSO-dg) §: 155.3, 152.7, 151.1, 112.4, 104.2,
79.9, 72.7, 66.7 (2C), 65.5, 55.3, 38.8, 33.8, 30.2 (2C), 17.1, -1.4 (3C). IR
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5.3 Synthesis of Compound 4 TKJ4520

(neat, em™1) v: 2947 (m), 2916 (m), 2849 (m), 2836 (m), 1562 (s), 1547
(w), 1510 (w), 1416 (s), 1375 (m), 1367 (w), 1301 (m), 1285 (m), 1272
(m), 1240 (m), 1087 (s), 1033 (m), 904 (m), 831 (s), 774 (m), 749 (m)

5.3 Synthesis of 6-(4-methoxyphenyl)- N-methyl-N-
((tetrahydro-2 H-pyran-4-yl)methyl)-7-((2-(trimethylsilyl)
ethoxy)methyl)-7 H-pyrrolo|2,3-d]|pyrimidin-4-amine

(4)

Compound 3 (1.16 g, 2.31 mmol), (4-methoxyphenyl)boronic

acid (419 mg, 2.76 mmol), K,CO5 (952 mg, 6.93 mmol) i SEM
N
and Pd(dppf)Cl, (84.2 mg, 1.15 mmol) were dissolved EMO\
O
in degassed 1,4-dioxane/H,0O (2:1, 30 mL) under an N,- O\,N
"

atmosphere and stirred at 80 °C for 30 minutes. The

reaction was concentrated in vacuo, added water (40 mL) and extracted
with CH,Cl, (3 x 40 mL). The combined organic phases were washed
with brine (40 mL), dried over Na,SO,, filtered and concentrated in
vacuo. The crude product was purified by silica-gel column chromatog-
raphy (n-pentane/EtOAc, 1/1, R;=0.34). The product 4 (1.08 g, 2.2

mmol), was isolated with a yield of 97% as a transparent oil.

Spectroscopic data for compound 4 (Appendix [C)):

'H-NMR (600 MHz, DMSO-dg) 6: 8.18 (s, 1H), 7.67 (d, J = 8.8 Hz,
2H), 7.05 (d, J = 8.8 Hz, 2H), 6.74 (s, 1H), 5.50 (s, 2H), 3.87-3.81 (m,
2H), 3.81 (s, 3H), 3.68 (d, J = 7.4 Hz, 2H), 3.63-3.57 (m, 2H), 3.38
(s, 3H), 3.24 (td, J = 11.7, 2.1 Hz, 2H), 2.08-2.04 (m, 1H), 1.55-1.49
(m, 2H), 1.28 (qd, J = 12.1, 4.4 Hz, 2H), 0.87-0.80 (m, 2H), -0.09 (s,
9H).13C-NMR (150 MHz, DMSO-dg) 6: 159.2, 156.3, 152.7, 150.9, 136.1,
129.9 (2C), 123.8, 114.2 (2C), 102.1, 101.4, 70.2, 66.7 (2C), 65.6, 55.4
55.2, 38.9, 33.9, 30.3 (2C), 17.4, -1.4 (3C). IR (neat, cm™1t) v: 2949
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5.4 Synthesis of Compound 5 TKJ4520

(m), 2916 (w), 2837 (m), 1567 (s), 1547 (w), 1498 (s), 1415 (m), 1306
(m), 1289 (w), 1246 (s), 1177 (m), 1071 (m), 1034 (m), 832 (s), 763 (m).
HRMS (ASAP-+, m/z): detected 483.2797, calculated for CoqHgoN,O45Si
[M-+H]* 483.2791

5.4 Synthesis of methyl 4-(4-(methyl((tetrahydro-2H-
pyran-4-yl) methyl)amino)-7-((2-(trimethylsilyl)ethoxy)
methyl)-7 H-pyrrolo[2,3-d]pyrimidin-6-yl)benzoate
(5)

Compound 3 (401 mg, 0.797 mmol), 4-

methoxycarbonylphenylboronic acid (171 mg,

0.952 mmol), K,CO5 (329 mg, 2.38 mmol) and ||/N“‘~

Pd(dppf)Cl, (19.8 mg, 0.027 mmol) were dis- @ N~

solved in degassed 1,4-dioxane/H,0 (2:1, 12 mL) &N

under an Ny-atmosphere and stirred at 60 °C for

11 minutes. The reaction was concentrated in vacuo, added water (20

mL) and extracted with CH,Cl, (3 x 20 mL). The combined organic

phases were washed with brine (30 mL), dried over Na,SO,, filtered and

concentrated in vacuo. The crude product was purified by silica-gel col-
umn chromatography (n-pentane/EtOAc, 1/1, R;=0.36). The product

5 (0.316 mg, 0.618 mmol), was isolated with a yield of 78% as a brown
oil, HPLC purity 93%, tg = 10.8 min.

Spectroscopic data for compound 5 (Appendix @[):

'H-NMR (600 MHz, DMSO-dg) 6: 8.22 (s, 1H), 8.04 (d, J = 8.5 Hz,

2H), 7.93 (d, J = 8.5 Hz, 2H), 7.04 (s, 1H), 5.58 (s, 2H), 3.88 (s, 3H),

3.86-3.80 (m, 2H), 3.71 (d, J = 7.4 Hz, 2H), 3.65-3.59 (m, 2H), 3.41 (s,
3H), 3.24 (td, J = 11.7, 2.1 Hz, 2H), 2.05 (dp, J = 11.3, 3.7 Hz, 1H),

1.55-1.49 (m, 2H), 1.29 (qd, J = 12.5, 4.6 Hz, 2H), 0.87-0.80 (m, 2H),
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5.5 Synthesis of Compound 6 TKJ4520

-0.10 (s, 9H). BC-NMR (150 MHz, DMSO-dg) 6: 165.9, 156.6, 153.5,
151.7, 136.2, 134.8, 129.5 (2C), 128.4 (2C), 104.2, 102.2, 70.4, 66.8 (2C),
65.8, 55.5, 52.3, 38.9, 33.8 30.3 (2C), 17.3, -1.4 (3C). IR (neat, cm™1) v:
2048 (m), 2931 (m), 2858 (w), 1721 (s), 1569 (s), 1545 (m), 1425 (m),
1313 (m), 1303 (m), 1276 (s), 1247 (m), 1183 (m), 1101 (w), 1090 (w),
1060 (s), 860 (w), 844 (w), 832 (s), 754 (s). HRMS (ASAP+, m/2):
detected 511.2739, calculated for C,,H;9N,0,Si [M+H]|* 511.2741

5.5 Synthesis of N-methyl- N-((tetrahydro-2H-pyran-
4-yl)methyl)-6-(4-(trifluoromethyl)phenyl)-7-((2-
(trimethylsilyl)ethoxy) methyl)-7H-pyrrolo|2,3-
d|pyrimidin-4-amine (6)

Compound 3 (150 mg, 0.299 mmol), 4-
(trifluoromethyl)phenyl boronic acid (68.0 mg, N MSEM
0.358 mmol), K,CO; (124 mg, 0.896 mmol) and JMCFS
Pd(dppf)Cl, (10.9 mg, 0.015 mmol) were dis- O\\/:l\/N\

solved in degassed 1,4-dioxane/H,0 (2:1, 6 mL)

under an Ny-atmosphere and stirred at 80 °C for 10 minutes. The reac-
tion was concentrated in vacuo, added water (20 mL) and extracted with
CH,Cl, (3 x 20 mL). The combined organic phases were washed with
brine (30 mL), dried over Na,SO,, filtered and concentrated in vacuo.
The crude product was purified by silica-gel column chromatography (n-
pentane/EtOAc, 1/1, R=0.29). The product 6 (123 mg, 0.279 mmol),

was isolated with a yield of 94% as a transparent oil.

Spectroscopic data for compound 6 (Appendix :

'H-NMR (600 MHz, DMSO-dg) §: 8.23 (s, 1H), 7.99 (d, J = 8.1 Hz, 2H),
7.84 (d, J = 8.2 Hz, 2H), 7.04 (s, 1H), 5.59 (s, 2H), 3.86-3.80 (m, 2H),
3.71 (d, J = 7.4 Hz, 2H), 3.63-3.57 (m, 2H), 3.41 (s, 3H), 3.24 (td, J =
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5.6 Synthesis of Compound 7 TKJ4520

11.7, 2.1 Hz, 2H), 2.10 - 2.03 (m, 1H), 1.56-1.50 (m, 2H), 1.29 (qd, J =
12.3, 4.7 Hz, 2H), 0.86-0.79 (m, 2H), -0.11 (s, 9H). 3C-NMR (150 MHz,
DMSO-dg) &: 156.6, 153.4, 151.7, 135.7, 134.4, 128.9, 128.1 (q, J = 31.6
Hz, 1C), 125.6 (q, J — 3.3 Hz, 2C), 125.2, 123.4 (q, J = 272.5 Hz, 1C),
104.3, 102.1, 70.3, 66.7 (2C), 65.7, 55.4, 39.0, 33.9, 30.2 (2C), 17.3, -1.5
(3C). ¥YF-NMR (565 MHz, DMSO-ds, C4Fg) & : -63.3 (3F). IR (neat,
em=1) v: 3404 (m), 3209 (w), 3094 (m), 2059 (w), 2932 (m), 2915 (m),
2843 (m), 2742 (w), 1668 (s), 1567 (s), 1550 (w), 1416 (m), 1323 (s),
1195 (m), 1156 (m), 1140 (s), 1115 (m), 1105 (s), 1093 (w), 1073 (m),
1060 (w), 1014 (m), 842 (m), 798 (m), 724 (m). HRMS (ASAP+, m/z):
detected 521.2559 calculated for CoqH44N,O5F;Si [M-+H|T 521.2560.

5.6 Synthesis of 6-(4-(difluoromethyl)phenyl)- N-methyl-
N-((tetrahydro-2 H-pyran-4-yl)methyl)-7-((2-(trimethylsilyl)
ethoxy)methyl)-7 H-pyrrolo|2,3-d]|pyrimidin-4-amine
(7)

Compound 3 (150 mg, 0.299 mmol), 4-

difluoromethyl-phenylboronic acid (61.6 mg, SEM

0.358 mmol), K,CO4 (124 mg, 0.896 mmol) and 5 ,U ; P CH
Pd(dppf)Cl, (10.9 mg, 0.015 mmol) were dis- O\,N
solved in degassed 1,4-dioxane/H,0O (2:1, 6 mL)

under an Ny-atmosphere and stirred at 80 °C for 12 minutes. The reac-
tion was concentrated in vacuo, added water (20 mL) and extracted with
CH,Cl, (3 x 20 mL). The combined organic phases were washed with
brine (30 mL), dried over Na,SO,, filtered and concentrated in vacuo.
The crude product was purified by silica-gel column chromatography (n-
pentane/EtOAc, 1/1, Ry=0.36). The product 7 (149 mg, 0.296 mmol),

was isolated with a yield of 99% as a transparent oil.
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5.7 Synthesis of Compound 8 TKJ4520

Spectroscopic data for compound 7 (Appendix :

'H-NMR (600 MHz, DMSO-dg) 6: 8.22 (s, 1H), 7.90 (d, J = 8.4 Hz,
2H), 7.68 (d, J = 8.4 Hz, 2H), 7.09 (t, Jy = 56.1 Hz, 1H), 6.96 (s, 1H),
5.56 (s, 2H), 3.86-3.80 (m, 2H), 3.70 (d, J = 7.4 Hz, 2H), 3.64-3.58 (m,
2H), 3.40 (s, 3H), 3.24 (td, J = 11.7, 2.1 Hz, 2H), 2.10-2.03 (m, 1H),
1.55-1.49 (m, 2H), 1.29 (qd, J = 12.7, 4.5 Hz, 2H), 0.86-0.79 (m, 2H),
-0.10 (s, 9H). 1¥C-NMR (150 MHz, DMSO-dg) d: 156.5, 153.2, 151.5,
135.0, 134.1, 133.3 (t, J = 22.2 Hz, 1C), 128.7, 126.1 (t, J = 5.9 Hz, 2C),
114.8 (t, J = 235.9 Hz, 1C), 103.5, 102.1, 70.3, 66.7 (2C), 65.7, 55.4,
38.9, 33.9, 30.3 (2C), 17.3, -1.5 (3C). YF-NMR (565 MHz, DMSO-dg,
CeFg) 6 : -111.9 (2F). IR (neat, em™1) v: 2952 (m), 2930 (m), 2844 (m),
1736 (s) 1568 (s), 1551 (s), 1416 (s), 1370 (s) 1308 (s), 1245 (s), 1070 (s),
1026 (m), 833 (s), 772 (m). HRMS (ASAP+, m/z): detected 503.2652
calculated for CyqH4,N,O,SiF, [M+H|* 503.2654.

5.7 Synthesis of 4-(4-(methyl((tetrahydro-2 H-pyran-
4-yl)methyl)amino)-7-((2-(trimethylsilyl)ethoxy)methyl)-
7 H-pyrrolo|2,3-d]|pyrimidin-6-yl)benzenesulfonamide

(8)

Compound 3 (150 mg, 0.299 mmol), (4-

aminosulfonylphenyl) boronic acid (72.1 mg, SEM &
0358 munol), K,C0, (124 g, 0896 manol) and i 1 E’.\ENHQ
Pd(dppf)Cl, (10.9 mg, 0.015 mmol) were dis- O\/N
solved in degassed 1,4-dioxane/H,0O (2:1, 6 mL)

under an Ny-atmosphere and stirred at 80 °C for 12 minutes. The reac-
tion was concentrated in vacuo, added water (20 mL) and extracted with
CH,Cl, (3 x 20 mL). The combined organic phases were washed with

brine (30 mL), dried over Na,SO,, filtered and concentrated in vacuo.
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5.8 Synthesis of Compound 9 TKJ4520

The crude product was purified by silica-gel column chromatography (n-
pentane/EtOAc, 1/1, Ry=0.29). The product 8 (137 mg, 0.257 mmol),

was isolated with a yield of 86% as a transparent oil.

Spectroscopic data for compound 8 (Appendix :
IH-NMR (600 MHz, DMSO-dg) &: 8.23 (s, 1H), 7.96 (d, J — 8.5 Hz,
2H), 7.90 (d, J = 8.6 Hz, 2H), 7.43 (s, 2H), 7.02 (s, 1H), 5.58 (s, 2H),
3.86-3.80 (m, 2H), 3.71 (d, J = 7.4 Hz, 2H), 3.66-3.60 (m, 2H), 3.41 (s,
3H), 3.24 (td, J = 11.7, 2.1 Hz, 2H), 2.11-2.01 (m, 1H), 1.55-1.49 (m
2H), 1.29 (qd, J = 16.4, 8.3 Hz, 2H), 0.89-0.82 (m, 2H), -0.08 (s, 9H).
IBO.NMR (150 MHz, DMSO-dg) &: 156.6, 153.4, 151.7, 143.1, 134.7,
134.6, 128.5 (2C), 126.0 (2C), 104.1, 102.1, 70.4, 66.7 (2C), 65.7, 55.4,
39.0,z 33.9, 30.2 (2C), 17.3, -1.4 (3C). IR (neat, cm™!) v: 3213 (m),
2952 (m), 2930 (s), 2916 (s), 2850 (m), 1738 (m) 1571 (s), 1552 (s), 1336
(), 1320 (s), 1161 (s), 1145 (s), 1078 (s), 968 (m), 836 (s), 811 (s) 797
(s), 779 (s), 751 (s), 609 (m), 546 (m). HRMS (ASAP+, m/z): detected
532.2411 calculated for Cy;H3gN;0,SiS [M+H|™ 532.2414.

5.8 Synthesis of tert-butyl (3-(4-(methyl((tetrahydro-
2 H-pyran-4-yl)methyl)amino)-7-((2-(trimethylsilyl)ethoxy)
methyl)-7 H-pyrrolo[2,3-d]pyrimidin-6-yl)phenyl)carbamate
(9)

5.8.1 2 times 500 mg scale

Compound 3 (501 mg, 0.995 mmol), 3-(N-Boc-

amino)phenylboronic acid (283 mg, 1.19 mmol), SEM  HN-Boc
K,CO4 (413 mg, 2.99 mmol) and Pd(dppf)Cl, NII/ h

V
-
(36.4 mg, 0.049 mmol) were dissolved in de- {O\_,
N
T,

gassed 1,4- dioxane/H,0O (2:1, 15 mL) under an
Ny-atmosphere and stirred at 80 °C for 10 min-
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5.9 Synthesis of Compound 10 TKJ4520

utes. The reaction was concentrated in vacuo, added water (20 mL)
and extracted with CH,Cl, (3 x 20 mL). The combined organic phases
were washed with brine (30 mL), dried over Na,SO,, filtered and con-
centrated in vacuo. The crude product was purified by silica-gel column
chromatography (n-pentane/EtOAc, 1/1, Rg=0.21). The product 9 (362

mg, 0.637 mmol), was isolated with a yield of 65% as a transparent oil.

The reaction was run a second time isolating product 9 (437 mg, 0.769

mmol), with a yield of 77% as a transparent oil.

Spectroscopic data for compound 9 (Appendix :

LH-NMR (600 MHz, DMSO-dg) &: 9.43 (s, 1H), 8.20 (s, 1H), 7.82 (s,
1H), 7.43 (d, J = 7.5 Hz, 1H), 7.35 (¢, J = 7.7 Hz, 1H), 7.32 (d, J =
7.6 Hz, 1H), 6.74 (s, 1H), 5.52 (s, 2H), 3.86-3.80 (m, 2H), 3.69 (d, J
= 7.4 Hz, 2H), 3.54-3.48 (m, 2H), 3.38 (s, 2H), 3.25 (td, J = 11.7, 2.0
Hz, 2H), 2.10-2.03 (m, 1H), 1.57-1.51 (m, 2H), 1.48 (s, 9H), 1.29 (qd,
J = 12.6, 4.5 Hz, 2H), 0.84-0.77 (m, 2H), -0.11 (s, 9H). *C-NMR (150
MHz, DMSO-dg) §: 156.4, 152.9, 152.7, 151.2, 139.9, 136.4, 131.9, 128.9,
122.4, 118.6, 118.0, 102.2, 102.0, 79.1, 70.2, 66.8 (2C), 65.5, 55.5, 39.0,
34.0, 30.3 (2C), 28.1, 17.3, -1.5 (3C). IR (neat, cm~1) v: 3289 (m), 2950
(s), 2930 (s), 2845 (m), 1724 (s), 1568 (s), 1529 (w), 1415 (w), 1365 (w),
1305 (w), 1234 (m), 1156 (s), 1070 (m), 1037 (w), 855 (w), 833 (m),
761 (m), 698 (w) 457 (w). HRMS (ASAP+, m/z): detected 568.3321
calculated for C4,H,,N;0,Si [M-+H]|* 568.3319.

5.9 Synthesis of N-methyl-6-(pyridin-3-yl)- N-((tetrahydro-
2 H-pyran-4-yl)methyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-
7 H-pyrrolo|2,3-d|pyrimidin-4-amine (10)
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5.9 Synthesis of Compound 10 TKJ4520

Compound 3 (266 mg, 0.529 mmol), 3-
pyridinylboronic acid (78.1 mg, 0.635 mmol), “/NM N
K,CO4 (219 mg, 1.59 mmol) and Pd(dppf)Cl, 0 N.__=
(19.4 mg, 0.026 mmol) were dissolved in de- O\/
gassed 1,4-dioxane/H,0O (2:1, 12 mL) under an

Ny-atmosphere and stirred at 80 °C for 15 minutes. The reaction was
concentrated in vacuo, added water (20 mL) and extracted with CH,Cl,
(3 x 20 mL). The combined organic phases were washed with brine
(30 mL), dried over Na,SO,, filtered and concentrated in vacuo. The
crude product was purified by silica-gel column chromatography (n-
pentane/EtOAc, 1/1, Ry=0.14). The product 10 (187 mg, 0.412 mmol),

was isolated with a yield of 82% as a transparent oil.

Spectroscopic data for compound 10 (Appendix [I):

UH-NMR (600 MHz, DMSO-dg) 8: 8.94 (dd, J = 2.4, 0.9 Hz, 1H), 8.60
(dd, J = 4.8, 1.6 Hz, 1H), 8.22 (s, 1H), 8.18 - 8.13 (m, 1H), 7.52 (ddd,
J = 8.0, 4.8, 0.9 Hz, 1H), 7.02 (s, 1H), 5.57 (s, 2H), 3.86-3.80 (m, 2H),
3.71 (d, J = 7.4 Hz, 2H), 3.62-3.56 (m, 2H), 3.41 (s, 3H), 3.24 (td, J =
11.7, 2.1 Hz, 2H), 2.11 - 2.03 (m, 1H), 1.55-1.49 (m, 2H), 1.29 (qd, J —
12.3, 4.4 Hz, 2H), 0.86-0.79 (m, 2H), -0.11 (s, 9H). *C-NMR (150 MHz,
DMSO-dg) d: 156.5, 153.2, 151.5, 149.0, 148.8, 135.5, 132.7, 127.8, 123.6,
103.7, 102.1, 70.2, 66.7 (2C), 65.7, 55.4, 38.9, 33.9, 30.2 (2C), 17.3, -1.4
(3C). IR (neat, cm ™) v: 2949 (m), 2924 (m), 2842 (m), 1736 (w) 1567
(s), 1414 (m) 1307 (m), 1246 (m), 1071 (m), 833 (m), 769 (m), 753 (w),
711 (w), 693 (w). HRMS (ASAP+, m/z): detected 454.2639 calculated
for CypyHyN50,Si [M+H|* 454.2638.

86



5.10 Synthesis of Compound 11 TKJ4520

5.10 Synthesis of methyl 3-(4-(methyl((tetrahydro-
2 H-pyran-4-yl)methyl)amino)-7-((2-(trimethylsilyl)ethoxy)
methyl)-7 H-pyrrolo[2,3-d]pyrimidin-6-yl)benzoate
(11)

Compound 3 (202 mg, 0.398 mmol), 3-

methoxycarbonyl phenyl boronic acid (86.0 mg, - 0 N
0.478 mmol), K,CO5 (165 mg, 1.19 mmol) and JN\‘ N A
&

Pd(dppf)Cl, (14.6 mg, 0.019 mmol) were dis- (O\/ #
N
solved in degassed 1,4-dioxane/H,0O (2:1, 6 mL) 5

under an Ny-atmosphere and stirred at 80 °C for

12 minutes. The reaction was concentrated in vacuo, added water (20
mL) and extracted with CH,Cl, (3 x 20 mL). The combined organic
phases were washed with brine (30 mL), dried over Na,SO,, filtered
and concentrated in vacuo. The crude product was purified by silica-gel
column chromatography (n-pentane/EtOAc, 1/1, R;=0.21). The prod-
uct 11 (182 mg, 0.356 mmol), was isolated with a yield of 89% as a

transparent oil.

Spectroscopic data for compound 11 (Appendix :

'H-NMR (600 MHz, DMSO-dg) 6: 8.33 (td, J = 1.8, 0.5 Hz, 1H), 8.22
(s, 1H), 8.02 (ddd, J = 7.8, 1.9, 1.2 Hz, 1H), 7.99 (ddd, J = 7.8, 1.7, 1.1
Hz, 1H), 7.64 (t, J = 8.0 Hz, 1H), 6.96 (s, 1H), 5.52 (s, 2H), 3.88 (s, 3H),
3.86-3.80 (m, 2H), 3.70 (d, J = 7.4 Hz, 2H), 3.62-3.56 (m, 2H), 3.41 (s,
3H), 3.24 (td, J = 11.7, 2.1 Hz, 2H), 2.03-2.10 (m, 1H), 1.56-1.50 (m,
2H), 1.29 (qd, J = 12.3, 4.6 Hz, 2H), 0.89-0.82 (m, 2H), -0.10 (s, 9H).
BBC-NMR (150 MHz, DMSO-dg) §: 165.9, 156.5, 153.0, 151.5, 134.9,
133.2, 132.1, 130.3, 129.2, 129.1, 128.6, 103.3, 102.1, 70.3, 66.7 (2C),
65.5, 55.4, 52.3, 39.0, 33.9, 30.3 (2C), 17.3, -1.4 (3C). IR (neat, em™1)
v: 2949 (m), 2930 (m), 2841 (m), 1723 (s) 1567 (s), 1550 (w), 1415 (w),
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5.11 Synthesis of Compound 12 TKJ4520

1310 (m), 1268 (m), 1243 (m) 1214 (w), 1072 (m), 1033 (w), 833 (s),
776 (w), 750 (s), 693 (m). HRMS (ASAP+, m/z): detected 511.2740
calculated for C,,HqoN,O,Si [M+H|* 511.2741.

5.11 Synthesis of (3-(4-(methyl((tetrahydro-2 H-pyran-
4-yl)methyl)amino)-7-((2-(trimethylsilyl)ethoxy)
methyl)-7 H-pyrrolo[2,3-d|pyrimidin-6-yl)phenyl)methanol(12)

Compound 3 (150 mg, 0.299 mmol), 3-
(hydroxymethyl)phenylboronic acid (54.4 mg, SEM OH
0.358 mmol), K,CO; (124 mg, 0.896 mmol) and i No-N
Pd(dppf)Cl, (10.9 mg, 0.015 mmol) were dis- OO\N/ A~
solved in degassed 1,4-dioxane/H,O (2:1, 6 mL) N

under an Ny-atmosphere and stirred at 80 °C for

13 minutes. The reaction was concentrated in vacuo, added water (20
mL) and extracted with CH,Cl, (3 x 20 mL). The combined organic
phases were washed with brine (30 mL), dried over Na,SO,, filtered and
concentrated in vacuo. The crude product was purified by silica-gel col-
umn chromatography (n-pentane/EtOAc, 1/1, R=0.26). The product
12 (123 mg, 0.255 mmol), was isolated with a yield of 85% as a red,

transparent oil.

Spectroscopic data for compound 12 (Appendix :

'H-NMR (600 MHz, DMSO-dg) 6: 8.20 (s, 1H), 7.65 (s, 1H), 7.62 (d,
J = 7.7 Hz, 1H), 744 (t, J = 7.6 Hz, 1H), 7.38 (d, J = 7.9 Hz, 1H),
6.82 (s, 1H), 5.52 (s, 2H), 5.25 (t, J = 5.7 Hz, 1H), 4.56 (d, J = 5.7
Hz, 2H), 3.86-3.80 (m, 2H), 3.70 (d, J = 7.4 Hz, 2H), 3.62-3.56 (m,
2H), 3.40 (s, 3H), 3.24 (td, J = 11.7, 2.1 Hz, 2H), 2.12 — 2.02 (m, 1H),
1.55-1.49 (m, 2H), 1.29 (qd, J = 12.2, 4.5 Hz, 2H), 0.87-0.80 (m, 2H),
-0.09 (s, 9H). 13C-NMR (150 MHz, DMSO-dg) d: 156.4, 152.9, 151.2,
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5.12  Synthesis of Compound 13 TKJ4520

143.1, 136.3, 131.3, 128.4, 126.9, 126.6, 126.1, 102.2, 102.1, 70.3, 66.7
(20), 65.6, 62.8, 55.4, 38.9, 33.9, 30.3 (2C), 17.3, -1.4 (3C). IR (neat,
em=1) v: 3398 (w), 3280 (w), 2949 (m), 2019 (m), 2844 (m), 1737 (m),
1568 (s), 1549 (w), 1415 (m), 1306 (m) 1246 (m), 1071 (m), 1036 (m),
833 (m), 762 (m), 702 (w). HRMS (ASAP+, m/z): detected 483.2789
calculated for CyqHgoN,O4Si [M+H|™ 483.2791.

5.12 Synthesis of N-methyl-6-(3-nitrophenyl)- N-((tetrahydro-
2 H-pyran-4-yl)methyl)-7-((2-(trimethylsilyl)ethoxy)
methyl)-7 H-pyrrolo[2,3-d]pyrimidin-4-amine (13)

5.12.1 100 mg scale

Compound 3 (101 mg, 0.199 mmol), 3-

nitrophenylboronic acid (40.0 mg, 0.238 mmol), SEM NO;
K,CO;4 (82.5 mg, 0.597 mmol) and Pd(dppf)Cl, . Iﬂl ;
(7.28 mg, 0.0099 mmol) were dissolved in de- O\/N
gassed 1,4-dioxane/H,0 (2:1, 4.5 mL) under an
Ny-atmosphere and stirred at 80 °C for 11 minutes. The reaction was
concentrated in vacuo, added water (20 mL) and extracted with CH,Cl,
(3 x 20 mL). The combined organic phases were washed with brine
(30 mL), dried over Na,SO,, filtered and concentrated in vacuo. The
crude product was purified by silica-gel column chromatography (n-
pentane/EtOAc, 1/1, R=0.28). The product 13 (97.2 mg, 0.195 mmol),

was isolated with a yield of 98% as a yellow oil.

5.12.2 500 mg scale

Compound 3 (500 mg, 1.01 mmol), 3-nitrophenylboronic acid (202 mg,
1.21 mmol), K,CO; (419 mg, 3.03 mmol) and Pd(dppf)Cl, (36.9 mg,
0.0505 mmol) were dissolved in degassed 1,4-dioxane/H,O (2:1, 15 mL)

89



5.13 Synthesis of Compound 14 TKJ4520

under an Ny-atmosphere and stirred at 80 °C for 15 minutes. The reac-
tion was concentrated in vacuo, added water (20 mL) and extracted with
CH,Cl, (3 x 20 mL). The combined organic phases were washed with
brine (30 mL), dried over Na,SO,, filtered and concentrated in vacuo.
The crude product was purified by silica-gel column chromatography
(n-pentane/EtOAc, 1/1, R=0.22). The product 13 (470.8 mg, 0.946

mmol), was isolated with a yield of 94% as a yellow oil.

Spectroscopic data for compound 13 (Appendix [L):

IH-NMR (600 MHz, DMSO—dg) d: 8.65 (t, J = 2.0 Hz, 1H), 8.25 (ddd,
J = 8.2, 2.3, 1.0 Hz, 1H), 8.23 (s, 1H), 8.22 (ddd, J = 7.8, 1.9, 1.2 Hz,
1H), 7.13 (s, 1H), 5.58 (s, 2H), 3.86-3.80 (m, 2H), 3.72 (d, J = 7.4 Hz,
2H), 3.67-3.61 (m, 2H), 3.42 (s, 3H), 3.24 (td, J = 11.7, 2.1 Hz, 2H),
9.11 - 2.03 (m, 1H), 1.56-1.50 (m, 2H), 1.29 (qd, J = 12.1, 4.5 Hz, 2H),
0.92-0.85 (m, 2H), -0.08 (s, 9H). BC-NMR (150 MHz, DMSO-dq) o:
156.6, 153.2, 151.8, 148.2, 134.7, 133.6, 133.1, 130.3, 122.7, 122.5, 104.6,
102.1, 70.3, 66.7 (2C), 65.6, 55.4, 38.9, 33.9, 30.2, 17.3, -1.5 (3C). IR
(neat, cm™1) v: 3054 (w), 2987 (w), 2306 (w), 1572 (w), 1421 (w), 1264
(s), 895 (w), 730 (s) 703 (s). HRMS (ASAP-, m/z): detected 498.2535,
calculated for CyHysN;O,Si [M+H|" 498.2537

5.13 Synthesis of 6-(4-methoxyphenyl)- N-methyl- N-
((tetrahydro-2 H-pyran-4-yl)methyl)-7 H-pyrrolo[2,3-
d|pyrimidin-4-amine (14)

Compound 4 (1.08 g, 2.24 mmol) was stirred in
TFA (7 mL) and CH,Cl, (25 mL) at 50 °C for N R
A

=

T I T >~ )o

3 hours. The reaction mixture was concentrated o I\, = N
O\/Nx

in vacuo and then stirred in THF (20 mL) and
NaHCOj; (20 mL) for 18 hours at room temper-
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5.14 Synthesis of Compound 15 TKJ4520

ature. The reaction mixture was concentrated in vacuo before it was
stirred with CH,Cl,/MeOH (4:1, 50 mL) and filtered through celite.
The reaction mixture was concentrated in vacuo. The crude product
was purified by silica-gel column chromatography (CH,Cl,/MeOH, 9/1,
R;=0.37). The product 14 (501 mg, 1.4 mmol), was isolated with a yield
of 65% as a white powder. Mp. 220-224 °C. Purity 97%, tg = 5.8 min.

Spectroscopic data for compound 14 (Appendix [M]):

UH-NMR (600 MHz, DMSO—dg) 6: 12.02 (s, 1H), 8.09 (s, 1H), 7.81 (d, J
— 8.8 Hz, 2H), 6.9 (d, J = 8.9 Hz, 2H), 6.93 (s, 1), 3.86-3.80 (m, 2H),
3.79 (s, 3H), 3.68 (d, J = 7.4 Hz, 2H), 3.39 (s, 3H), 3.24 (td, J = 11.7,
2.1 Hz, 2H), 2.08-2.04 (m, 1H), 1.57-1.51 (m, 2H), 1.29 (qd, J = 11.7,
4.5 Hz, 2H). 3C-NMR (150 MHz, DMSO-ds) 6: 158.6, 156.2, 152.6,
150.6, 133.1, 126.9 (2C), 124.2, 114.2 (2C), 103.1, 97.4, 66.7 (2C), 55.3,
55.2, 38.9, 33.9, 30.3 (2C). IR (neat, cm 1) v: 3084 (w), 2947 (m), 2918
(m), 2833 (m), 2737 (W), 1565 (s), 1498 (s), 1439 (m), 1414 (m), 1319
(m), 1287 (m), 1250 (s), 1177 (m), 1096 (m), 1026 (m), 834 (s), 756 (w).
HRMS (ASAP+, m/z): detected 353.1978, calculated for CyyH,5N,O,
[M-H|* 353.1978

5.14 Synthesis of methyl 4-(4-(methyl((tetrahydro-
2 H-pyran-4-yl)methyl)amino)-7 H-pyrrolo|2,3-d]pyrimidin-
6-yl)benzoate (15)

Compound 5 (142 mg, 0.277 mmol) was stirred
in TFA (1.5 mL) and CH,Cl, (6 mL) at 50 °C

[/N\“ N o
for 3.5 hours. The reaction mixture was con- o NI /I/:: i :: ;3_
O\/Nx

centrated in vacuo and then stirred in THF (7.5
mL) and NaHCOg (7.5 mL) for 5 hours at room

temperature. The reaction mixture was concentrated in vacuo before it
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5.15 Synthesis of Compound 16 TKJ4520

was stirred with CH,Cl,/MeOH (4:1, 50 mL) and filtered through celite.
The reaction mixture was concentrated in vacuo. The crude product
was purified by silica-gel column chromatography (CH,Cl,/MeOH, 9/1,
R;=0.32). The product 15 (101 mg, 0.265 mmol), was isolated with a
yield of 96% as a white powder. Mp. >238 °C (decomposed). Purity
98%, tp = 6.8 min.

Spectroscopic data for compound 15 (Appendix [N)):

'H-NMR (600 MHz, DMSO-dg) 6: 12.29 (s, 1H), 8.13 (s, 1H), 8.03 (d,
J = 8.6 Hz, 2H), 7.98 (d, J = 8.6 Hz, 2H), 7.29 (s, 1H), 3.86 (s, 3H),
3.86-3.80 (m, 2H), 3.70 (d, J = 7.4 Hz, 2H), 3.42 (s, 3H), 3.25 (td, J
= 11.7, 2.1 Hz, 2H), 2.08-2.04 (m, 1H), 1.57-1.51 (m, 2H), 1.30 (qd, J
= 12.2, 4.4 Hz, 2H). 13C-NMR (150 MHz, DMSO-dg) ¢: 165.9, 156.6,
153.2, 151.7, 136.0, 131.5, 129.6 (2C), 127.6, 124.5 (2C), 103.4, 101.5,
66.8 (2C), 55.3, 52.1, 39.0, 33.9, 30.3 (2C). IR (neat, cm~1) v: 3124 (w),
2949 (m), 2917 (m), 2838 (m), 1707 (s), 1668 (m), 1571 (s), 1547 (w),
1432 (w), 1416 (w), 1276 (m), 1194 (m), 1141 (m), 1105, 1095 (m), 1080
(m), 848 (w), 799 (m), 760 (m), 725 (w), 519 (w). HRMS (ASAP+,
m/z): detected 381.1927, calculated for Cy HysN,O4 [M+H| ' 381.1927.

5.15 Synthesis of N-methyl- N-((tetrahydro-2H-pyran-

4-yl)methyl)-6-(4-(trifluoromethyl)phenyl)-7 H -
pyrrolo|2,3-d|pyrimidin-4-amine (16)

Compound 6 (118 mg, 0.227 mmol) was stirred
in TFA (1.2 mL) and CH,Cl, (4.8 mL) at 50 °C N H

B
CF,
for 2.5 hours. The reaction mixture was concen- CO\: /Lf C i
N

trated in vacuo and then stirred in THF (6 mL)
and NaHCOj; (6 mL) for 16 hours at room tem-

perature. The reaction mixture was concentrated in vacuo before it was
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5.16 Synthesis of Compound 17 TKJ4520

stirred with CH,Cl,/MeOH (4:1, 50 mL) and filtered through celite.
The reaction mixture was concentrated in vacuo. The crude product
was purified by silica-gel column chromatography (CH,Cl,/MeOH, 9/1,
R;=0.43). The product 16 (55.7 mg, 0.143 mmol), was isolated with a
yield of 63% as a white powder. Mp. 261.0-266.2 °C. Purity >99%, tg

= 7.1 min.

Spectroscopic data for compound 16 (Appendix @:

'H-NMR (600 MHz, DMSO—dg) &: 12.31 (s, 1H), 8.14 (s, 1H), 8.10 (d,
J = 8.1 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 7.29 (s, 1H), 3.86-3.80 (m,
9H), 3.71 (d, J = 7.4 Hz, 2H), 3.42 (s, 3H), 3.25 (td, J = 11.7, 2.1 Hz,
9H), 2.12 — 2.02 (m, 1H), 1.57-1.51 (m, 2H), 1.31 (td, J = 12.4, 4.4
Hz, 2H). 13C-NMR (150 MHz, DMSO-ds) 6: 156.6, 153.2, 151.8, 135.5,
131.2, 126.9 (q, J = 31.6 Hz), 125.7 (q, J = 3.3 Hz, 2C) 125.2, 125.0,
123.4 (q, J = 271.4 Hz), 103.3, 101.3, 66.7 (2C), 55.3, 39.0, 33.9, 30.3
(2C). F-NMR (565 MHz, DMSO-dg, C4Fy) 6 : -63.1 (3F), -75.8. IR
(neat, cm™1) v: 3404 (m), 3209 (w), 3094 (m), 2959 (w), 2932 (m), 2915
(m), 2843 (m), 2742 (w), 1668 (s), 1567 (s), 1550 (w), 1416 (m), 1323 (),
1195 (m), 1156 (m), 1140 (s), 1115 (m), 1105 (s), 1093 (w), 1073 (m),
1060 (w), 1014 (m), 842 (m), 798 (m), 724 (m). HRMS (ASAP+, m/z):
detected 391.1750, calculated for CyqH,,N,OF; [M+H]* 391.1746

5.16 Synthesis of 4-(4-(methyl((tetrahydro-2 H-pyran-
4-yl)methyl)amino)-7 H-pyrrolo[2,3-d]pyrimidin-
6-yl)benzoic acid (17)

Compound 15 (95.0 mg, 0.249 mmol, 1 eq.) was added
LiOH solution (29.9 mg, 1.25 mmol, 5 eq.), MeOH (4

I/N“ N 0
mL), HyO (2 mL) and dioxane (2 mL). The solution was o rJ /L/ i j: :OH
O\/N\,

stirred for 64 hours at room temperature. The reaction
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5.17 Synthesis of Compound 18 TKJ4520

mixture was concentrated in vacuo before the residue

was diluted in water (10 mL). The reaction mixture was then acidified
to pH 3 with HC1 (2M, 1 mL). The solid formed 17 was purified by cold
filtration and was isolated with a yield of 29% as a white powder. Mp.
>239 °C (decomposed). Purity 99%, tg = 5.4 min.

Spectroscopic data for compound 17 (Appendix :

LH-NMR (600 MHz, DMSO-dg) §: 12.89 (s, 1H), 12.27 (s, 1H), 8.13 (s,
1H), 8.01 (d, J = 8.5 Hz, 2H), 7.95 (d, J = 8.5 Hz, 2H), 7.26 (s, 1H),
3.86-3.80 (m, 2H), 3.70 (d, J = 7.4 Hz, 2H), 3.42 (s, 3H), 3.25 (td, J —
11.7, 2.1 Hz, 2H), 2.11 — 2.02 (m, 1H), 1.57-1.51 (m, 2H), 1.30 (qd, J
= 12.1, 4.4 Hz, 2H). 3C-NMR (150 MHz, DMSO-dg) 6: 167.0, 156.6,
153.2, 151.6, 135.7, 131.8, 129.8 (2C), 128.9, 124.5 (2C), 103.4, 101.2,
66.8 (2C), 55.4, 38.9, 33.9, 30.3 (2C). IR (neat, cm~1) v: 3485 (m),
3368 (m), 3219 (s), 2941 (m), 2598 (w), 2477 (w), 1672 (m), 1579 (s),
1557 (w), 1542 (w), 1518 (w), 1373 (w), 1275 (s), 1250 (s), 1222 (m),
1182 (m), 1079 (s), 983 (m), 797 (w), 759 (s), 730 (m), 693 (w), 676
(w), 467 (w).HRMS (ASAP+, m/z): detected 367.1771, calculated for
CyoH,sN, Oy [M+H|* 367.1770.

(
(

5.17 Synthesis of 6-(4-(difluoromethyl)phenyl)- N-methyl-
N-((tetrahydro-2 H-pyran-4-yl)methyl)-7 H-pyrrolo|2,3-
d]pyrimidin-4-amine (18)

Compound 7 (103 mg, 0.205 mmol) was stirred
in TFA (1.2 mL) and CH,Cl, (4.8 mL) at 50

2 M F
. . ) rJ y CH
C for 2.5 hours. The reaction mixture was con- CI\, F

centrated in vacuo and then stirred in THF (6
mL) and NaHCO4 (6 mL) for 16 hours at room temperature. The re-

action mixture was concentrated in wacuo before it was stirred with
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5.18 Synthesis of Compound 19 TKJ4520

CH,Cl,/MeOH (4:1, 50 mL) and filtered through celite. The reaction
mixture was concentrated in vacuo. The crude product was purified by
silica~gel column chromatography (CH,Cl,/MeOH, 9/1, R;=0.53). The
product 18 (60.7 mg, 0.163 mmol), was isolated with a yield of 80% as
a yellow solid. Mp. >235 °C (decomposed). Purity 97%, tg = 7.1 min.

Spectroscopic data for compound 18 (Appendix :

LH-NMR (600 MHz, DMSO—dg) 6: 12.23 (s, 1H), 8.13 (s, 1H), 8.02 (d, J
— 8.1 Hz, 2H), 7.61 (d, J = 7.9 Hz, 2H), 7.21 (s, 1H), 7.04 (t, Jp = 56.4
Hz, 1H), 3.86-3.80 (m, 2H), 3.70 (d, J = 7.4 Hz, 2H), 3.41 (s, 3H), 3.25
(td, J = 11.7, 2.1 Hz, 2H), 2.10-2.03 (m, 1H), 1.57-1.51 (m, 2H), 1.30
(qd, J = 12.3, 4.5 Hz, 2H). 3C-NMR (150 MHz, DMSO-dg) &: 156.6,
153.1, 151.5, 134.1, 1325 (t, J — 21.9 Hz), 131.8, 126.2 (t, J — 6.0 Hz,
20), 124.9, 114.9 (t, J = 235.5 Hz, 2C), 103.3, 100.4, 66.(2C), 55.3, 39.0,
33.9, 30.3 (2C). ¥YF-NMR (565 MHz, DMSO-dg, C4Fg) § : -111.5 (2F).
IR (neat, cm™1!) v: 3080 (m), 2952 (m), 2922 (m), 2848 (m), 1732 (s),
1565 (s), 1547 (s), 1510 (m), 1414 (m), 1365 (m), 1322 (m), 1302 (m),
1279 (m), 1264 (m), 1234 (m), 1223 (m), 1140 (m), 1065 (s), 1014 (s),
983 (m), 920 (m), 873 (w), 844 (w), 810 (w), 795 (w), 766 (w), 742 (w).
HRMS (ASAP-+, m/z): detected 373.1841, calculated for CyyHo3N,OF,
[M-+H|* 373.1840

5.18 Synthesis of 4-(4-(methyl((tetrahydro-2 H-pyran-
4-yl)methyl)amino)-7 H-pyrrolo[2,3-d]pyrimidin-

6-yl)benzenesulfonamide (19)

Compound 8 (121 mg, 0.227 mmol) was stirred
in TFA (1.2 mL) and CH,Cl, (4.8 mL) at 50 °C rw i
for 2.5 hours. The reaction mixture was concen- NI

trated in vacuo and then stirred in THF (6 mL) M.

95

L 0
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5.19 Synthesis of Compound 20 TKJ4520

and NaHCO; (6 mL) for 16 hours at room tem-

perature. The reaction mixture was concentrated in vacuo before it was
stirred with CH,Cl,/MeOH (4:1, 50 mL) and filtered through celite.
The reaction mixture was concentrated in vacuo. The crude product
was purified by silica-gel column chromatography (CH,Cl,/MeOH, 9/1,
R#=0.26). The product 19 (86.6 mg, 0.216 mmol), was isolated with a
yield of 95% as a white solid. Mp. >235 °C (decomposed). Purity 96%,

tr = 4.9 min.

Spectroscopic data for compound 19 (Appendix :

TH-NMR (600 MHz, DMSO—dg) &: 12.27 (s, 1H), 8.14 (s, 1H), 8.06 (d,
J = 8.6 Hz, 2H), 7.83 (d, J = 8.6 Hz, 2H), 7.35 (s, 2H), 7.27 (s, 1H),
3.86-3.80 (m, 2H), 3.70 (d, J = 7.4 Hz, 2H), 3.42 (s, 3H), 3.25 (td, J =
11.7, 2.1 Hz, 2H), 2.12 - 2.02 (m, 1H), 1.57-1.51 (m, 2H), 1.30 (qd, J =
12.4, 4.4 Hz, 2H). 13C-NMR (150 MHz, DMSO-dg) §: 156.6, 153.2, 151.7,
142.1, 134.7, 131.4, 126.2 (2C), 124.7 (2C), 103.4, 101.2, 66.8 (2C), 55.3,
39.0, 33.9, 30.2 (2C). IR (neat, em~1) v: 3309 (m), 3211 (m), 3100 (m),
2920 (m), 2849 (m), 1694 (w), 1571 (s), 1543 (m), 1340 (m), 1325 (m),
1161 (s), 1087 (m), 767 (m), 703 (m), 541 (w). HRMS (ASAP+, m/z):
detected 402.1602, calculated for C;qH,,N;O5S [M+H|T 402.1600

5.19 Synthesis of 6-(3-aminophenyl)- N-methyl- N-((tetrahydro-
2 H-pyran-4-yl)methyl)-7 H-pyrrolo[2,3-d]|pyrimidin-
4-amine (20)

5.19.1 By SEM-deprotection

Compound 9 (264 mg, 0.465 mmol) was stirred

in TFA (2 mL) and CH,Cl, (10 mL) at 50 °C for NH;

3 hours. The reaction mixture was concentrated |’|/

in vacuo and then stirred in THF (12 mL) and O W
N""\
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5.19 Synthesis of Compound 20 TKJ4520

NaHCOj; (12 mL) over night at room tempera-
ture. The reaction mixture was concentrated in
vacuo before it was stirred with CH,Cl,/MeOH (4:1, 50 mL) and fil-
tered through celite. The reaction mixture was concentrated in vacuo.
The crude product was purified over three rounds by silica-gel column
chromatography (CH,Cl,/MeOH, 9/1, R;=0.28). The product 20 (90.5
mg, 0.268 mmol), was isolated with a yield of 58% as a white powder.
Mp. 196.2-201.3 °C. Purity 95%, tg = 4.1 min.

Spectroscopic data for compound 20 (Appendix [S)):

IH-NMR (600 MHz, DMSO—dg) §: 11.97 (s, 1H), 8.09 (s, 1H), 7.06 (t,
J = 8.0 Hz, 1H), 7.02-6.97 (m, 2H), 6.83 (s, 1H), 6.56-6.45 (m, 1H),
5.08 (s, 2H), 3.87-3.81 (m, 2H), 3.67 (d, J = 7.3 Hz, 2H), 3.38 (s, 3H),
3.25 (td, J = 11.7, 2.1 Hz, 2H), 2.13-1.98 (m, 1H), 1.57-1.51 (m, 2H)
,1.29 (qd, J = 11.7, 4.5 Hz, 2H). BC-NMR (150 MHz, DMSO-dq) 4:
156.3, 152.6, 150.8, 148.8, 134.0, 132.0, 129.3, 113.4, 112.9, 110.2, 103.2,
97.9, 66.7 (2C), 5.4, 38.9, 33.9, 30.3 (2C). IR (neat, em~") v: 3301 (m),
3172 (m), 2948 (m), 2928 (m), 2909 (m), 2835 (m), 1566 (s), 1509 (w),
1418 (w), 1405 (w), 1346 (w), 1320 (w), 1299 (w), 1234 (w), 1081 (m),
850 (m), 792 (m), 782 (m), 757 (m), 693 (w). HRMS (ASAP+, m/z):
detected 338.1998, calculated for C;qH,,N;O [M-+H]|* 338.1981.

5.19.2 By Reduction

Compound 24 (37.3 mg, 0.101 mmol), NH,Cl
(48.9 mg, 0.914 mmol) and iron powder (17.0 H NH;
mg, 0.305 mmol) were dissolved in degassed ||/N“‘ :
EtOH (2.1 ml) and water (0.9 ml) under an No- (O\N/ o
atmosphere. The reaction mixture was stirred N

at 78 °C for 3 hours. The reaction mixture was

filtrated through celite and extracted with CH,Cl, (50 ml) and water (2
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5.20 Synthesis of Compound 21 TKJ4520

x 50 ml). The organic phase was washed with brine (30 ml), dried over
Na,SO,, filtrated and concentrated in vacuo. The product was isolated

as a white solid in a 81% yield (27.9 mg, 0.0827 mmol).

Compound 24 (250 mg, 0.680 mmol), NH,Cl (328 mg, 6.12 mmol) and
iron powder (114 mg, 2.04 mmol) were dissolved in degassed EtOH (14
ml) and water (6 ml) under an Ny-atmosphere. The reaction mixture
was stirred at 78 °C for 3 hours. The reaction mixture was filtrated
through celite and extracted with CH,Cl, (50 ml) and water (2 x 50 ml).
The organic phase was washed with brine (30 ml), dried over Na,SO,,
filtrated and concentrated in vacuo. Product 20 was isolated as a white
solid in a 56% yield (128 mg, 0.378 mmol). Mp. 196.2-201.3 °C. Purity
99%, tr — 4.1 min.

5.20 Synthesis of N-methyl-6-(pyridin-3-yl)- N-((tetrahydro-
2 H-pyran-4-yl)methyl)-7 H-pyrrolo[2,3-d]|pyrimidin-
4-amine (21)

Compound 10 (180 mg, 0.397 mmol) was stirred
in TFA (1.5 mL) and CH,Cl, (6 mL) at 50 °C N o
|/ N =N

for 3.5 hours. The reaction mixture was con- |\p—@

o
centrated in vacuo and then stirred in THF (7.5 @N
mL) and NaHCOg (7.5 mL) over night at room h
temperature. The reaction mixture was concen-
trated in vacuo before it was stirred with CH,Cl,/MeOH (4:1, 50 mL)
and filtered through celite. The reaction mixture was concentrated in
vacuo. The crude product was purified by silica-gel column chromatog-
raphy (CH,Cl,/MeOH, 9/1, R;=0.52). The product 21 (89.3 mg, 0.276

mmol), was isolated with a yield of 70% as a white powder. Mp. 233.1-
235.2 °C. Purity 99%, tg = 3.5 min.
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5.21 Synthesis of Compound 22 TKJ4520

Spectroscopic data for compound 21 (Appendix :

IH-NMR (600 MHz, DMSO—dg) &: 12.27 (s, 1H), 9.13-9.11 (m, 1H),
8.47 (dd, J = 4.7, 1.6 Hz, 1H), 8.27 — 8.18 (m, 1H), 8.13 (s, 1H), 7.44
(ddd, J = 8.0, 4.8, 0.9 Hz, 1H), 7.24 (s, 1H), 3.86-3.80 (m, 2H), 3.70 (d,
J = 7.4 Hz, 2H), 3.41 (s, 3H), 3.25 (td, J = 11.7, 2.1 Hz, 2H), 2.10 -
2.03 (m, 1H), 1.57-1.51 (m, 2H), 1.30 (qd, J = 12.3, 4.5 Hz, 2H). 13C-
NMR (150 MHz, DMSO-dg) 6: 156.5, 153.1, 151.5, 147.9, 146.0, 131.6,
129.8, 127.6, 123.7, 103.2, 100.3, 66.8 (2C), 55.3, 39.0, 33.9, 30.3 (2C).
IR (neat, em™1!) v: 3095 (m), 2946 (m), 2912 (m), 2745 (m), 1564 (s),
1538 (w), 1512 (m), 1424 (m), 1410 (m), 1331 (m), 1317 (m), 1298 (w),
1092 (w), 844 (m), 759 (m). HRMS (ASAP+, m/z): detected 324.1825,
calculated for C;gHy,N;O [M+H|T 324.1824

5.21 Synthesis methyl 3-(4-(methyl((tetrahydro-2H -
pyran-4-yl)methyl)amino)-7 H-pyrrolo[2,3-d]pyrimidin-
6-yl)benzoate (22)

Compound 11 (150 mg, 0.285 mmol) was stirred

in TFA (1.2 mL) and CH,Cl, (4.8 mL) at 50 °C 0
for 2.5 hours. The reaction mixture was con- Qs
centrated in vacuo and then stirred in THF (6 @\, #
mL) and NaHCO; (6 mL) for 16 hours at room R
temperature. The reaction mixture was concen-

trated in vacuo before it was stirred with CH,Cl,/MeOH (4:1, 50 mL)
and filtered through celite. The reaction mixture was concentrated in
vacuo. The crude product was purified by silica-gel column chromatog-
raphy (CH,Cl,/MeOH, 9/1, R;=0.43). The product 22 (69.3 mg, 0.182
mmol), was isolated with a yield of 64% as a white powder. Mp. 206.2-
210.9 °C. Purity >99%, tg = 4.2 min.
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5.22  Synthesis of Compound 23 TKJ4520

Spectroscopic data for compound 22 (Appendix :

LH-NMR (600 MHz, DMSO—dg) : 12.29 (s, 1H), 8.48 — 8.44 (m, 1H),
8.16-8.13 (m, 1H), 8.12 (s, 1H), 7.87-7.84 (m, 1H), 7.57 (t, J = 7.8 Hz,
1H), 7.18 (s, 1H), 3.90 (s, 3H), 3.87-3.81 (m, 2H), 3.70 (d, J = 74
Hz, 2H), 3.42 (s, 3H), 3.25 (td, J = 11.7, 2.1 Hz, 2H), 2.10-2.01 (m,
1H), 1.57-1.51 (m, 2H), 1.30 (qd, J = 12.1, 4.5 Hz, 2H). 3C-NMR (150
MHz, DMSO-dg) §: 166.2, 156.6, 153.1, 151.4, 132.2, 131.8, 130.4, 129.3,
127.7, 125.2, 103.3, 100.0, 66.8 (2C), 55.3, 52.3, 38.9, 33.9, 30.3 (2C).
IR (neat, cm™1) v: 3086 (m), 2924 (m), 2840 (m), 2722 (w), 1710 (s),
1571 (s), 1536 (w), 1512 (m), 1432 (w), 1413 (w), 1344 (w), 1329 (m),
1289 (m), 1256 (s), 1114 (w), 1091 (w), 1081 (m), 968 (m), 846 (m), 789
(m), 747 (s). HRMS (ASAP+, m/z): detected 381.1924, calculated for
CyHysN,O5 [M+H|T 381.1927

5.22 Synthesis of (3-(4-(methyl((tetrahydro-2 H-pyran-
4-yl)methyl)amino)-7 H-pyrrolo[2,3-d]pyrimidin-
6-yl)phenyl)methanol (23)

Compound 12 (80.0 mg, 0.169 mmol) was stirred

in TFA (1.2 mL) and CH,Cl, (4.8 mL) at 50 °C . OH
for 2.5 hours. The reaction mixture was concen- ﬂ’\;j—d
trated in vacuo and then stirred in THF (6 mL) @\/Nx

and NaHCOj; (6 mL) for 16 hours at room tem-

perature. The reaction mixture was concentrated in vacuo before it was
stirred with CH,Cl,/MeOH (4:1, 50 mL) and filtered through celite.

The reaction mixture was concentrated in vacuo. The crude product

was purified by silica-gel column chromatography (CH,Cl,/MeOH, 9/1,

R=0.18). The product 23 (50.8 mg, 0.144 mmol), was isolated with a
yield of 85% as a white powder. Mp. >229 °C (decomposed). Purity
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5.23 Synthesis of Compound 24 TKJ4520

98%, tr = 5.2 min.

Spectroscopic data for compound 23 (Appendix :

LH-NMR (600 MHz, DMSO—dg) &: 12.10 (s, 1H), 8.10 (s, 1H), 7.82 (ap
s, 1H), 7.75-7.73 (m, 1H), 7.38 (t, J = 7.7 Hz, 1H), 7.25 (d, J = 6.8
Hz, 1H), 7.05 (ap s, 1H), 5.23 (t, J = 5.7 Hz, 1H), 4.54 (d, J = 5.7
Hz, 2H), 3.87-3.81 (m, 2H), 3.69 (d, J — 7.4 Hz, 2H), 3.41 (s, 3H), 3.25
(td, J = 11.7, 2.1 Hz, 2H), 2.12 — 2.01 (m, 1H), 1.57-1.51 (m, 2H), 1.27
(dd, J = 12.5, 4.0 Hz, 2H). 13C-NMR (150 MHz, DMSO-dg) 6: 156.4,
152.8, 151.1, 143.1, 133.1, 131.3, 128.6, 125.5, 123.1, 122.9, 103.3, 98.8,
66.7 (2C), 62.9, 55.3, 38.9, 33.9, 30.3 (2C). IR (neat, em™1) v: 3426
(m), 3184 (m), 3103 (m), 2913 (m), 2843 (m), 2737 (m), 1733 (w), 1568
(s), 1539 (m), 1514 (m), 1437 (m), 1410 (m), 1318 (m), 1301 (m), 790
(w), 758 (m). HRMS (ASAP-+, m/z): detected 353.1980, calculated for
CyoHosN, Oy [M+H|T 353.1978.

5.23 Synthesis of N-methyl-6-(3-nitrophenyl)- N-((tetrahydro-
2 H-pyran-4-yl)methyl)-7 H-pyrrolo|2,3-d]|pyrimidin-
4-amine (24)

5.23.1 Scale 100 mg

Compound 13 (97.0 mg, 0.195 mmol) was stirred

in TFA (1.2 mL) and CH,Cl, (4.8 mL) at 50 °C N N NO;
for 3 hours. The reaction mixture was concen- Jm
0
trated in vacuo and then stirred in THF (6 mL) N
T

and NaHCO; (6 mL) over night at room tem-

perature. The reaction mixture was concentrated in vacuo before it was
stirred with CH,Cl,/MeOH (4:1, 50 mL) and filtered through celite.
The reaction mixture was concentrated in vacuo. The crude product

was purified by silica-gel column chromatography (CH,Cl,/MeOH, 9/1,
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5.23 Synthesis of Compound 24 TKJ4520

R;=0.59). The product 24 (46.8 mg, 0.0877 mmol), was isolated with a
yield of 65% as a yellow powder. Mp. >248 °C (decomposed). Purity
98%, tg = 6.3 min.

5.23.2 Scale 470 mg

Compound 13 (471 mg, 0.946 mmol) was stirred in TFA (3.0 mL) and
CH,Cl, (15 mL) at 50 °C for 2.5 hours. The reaction mixture was con-
centrated in vacuo and then stirred in THF (18 mL) and NaHCO; (18
mL) over night at room temperature. The reaction mixture was concen-
trated in vacuo before it was stirred with CH,Cl,/MeOH (4:1, 50 mL)
and filtered through celite. The reaction mixture was concentrated in
vacuo. The crude product was purified by silica-gel column chromatog-
raphy (CH,Cl,/MeOH, 9/1, R¢=0.27). The product 24 (278 mg, 0.757
mmol), was isolated with a yield of 80% as a yellow powder, purity 98%,
tr = 6.3 min. Mp. >248 °C (decomposed).

Spectroscopic data for compound 24 (Appendix [W)):

IH-NMR (600 MHz, DMSO—dg) &: 12.40 (s, 1H), 8.77 (t, J = 2.0 Hz,
1H), 8.35-8.32 (m, 1H), 8.14 (s, 1H), 8.10 (ddd, J = 8.2, 2.3, 0.9 Hz,
1H), 7.71 (t, J = 8.0 Hz, 1H), 7.38 (s, 1H), 3.86-3.80 (m, 2H), 3.71 (d,
J = 7.4 Hz, 2H), 3.43 (s, 3H), 3.25 (td, J = 11.7, 2.1 Hz, 2H), 2.12-2.02
(m, 1H), 1.57-1.51 (m, 2H), 1.30 (qd, J = 12.1, 4.6 Hz, 2H). *C-NMR
(150 MHz, DMSO-dg) &: 156.7, 153.2, 151.8, 148.6, 133.4, 130.8, 130.6,
130.3, 121.4, 118.9, 103.3, 101.4, 66.8 (2C), 55.3, 38.9, 33.8, 30.3 (2C).
IR (neat, em™1) v: 3209 (m), 3134 (m), 2927 (m), 2835 (m), 1597 (w),
1577 (m), 1564 (s), 1546 (m), 1524 (m), 1510 (s), 1402 (m), 1345 (m),
1329 (w), 1318 (w), 1285 (m), 1140 (m), 1093 (m), 1069 (m), 920 (m),
849 (m), 779 (s), 737 (s), 690 (m). HRMS (ASAP+, m/z): detected
368.1725, calculated for C;gHoN;O5 [M+H]|T 368.1723
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5.24  Synthesis of Compound 25 TKJ4520

5.24 Synthesis of N-(3-(4-(methyl((tetrahydro-2H-
pyran-4-yl)methyl)amino)-7 H-pyrrolo[2,3-d]pyrimidin-
6-yl)phenyl)propionamide (25)

Compound 20 (70 mg, 0.207 mmol) was dis-

solved in CH,Cl, (3 mL), and DIPEA (0.072 ml, il 2
0.415 mmol) and cooled to 0 °C. Propinoyl chlo- N“” 3 J§
ride (0.036 mL, 0.415 mmol) was added drop- §_ ]
wise under nitrogen atmosphere. The reaction

mixture was stirred for 2 hours before the reaction was quenched with
saturated NaHCO, (10 mL) and extracted with EtOAc (3x30 mL). The
combined organic phases were dried over Na,SO, and concentrated in
vacuo. (CH5Cl,/MeOH, 9/1, R;=0.25). The product 25 (64.6 mg, 0.144
mmol), was isolated with a yield of 69% as a white powder. Mp. 199.7-
205.1 °C. Purity 98%, tg = 5.8 min.

Spectroscopic data for compound 25 (Appendix :

IH-NMR (600 MHz, DMSO-dg) &: 12.13 (s, 1H), 9.90 (s, 1H), 8.11 (s,
1H), 8.03 (s, 1H), 7.51 (d, J = 7.8 Hz, 1H), 7.48 (d, J — 8.5 Hz, 1H),
7.34 (t, J = 7.9 Hz, 1H), 6.88 (s, 1H), 3.87-3.81 (m, 2H), 3.68 (d, J = 7.4
Hz, 2H), 3.40 (s, 3H), 3.25 (td, J = 11.7, 2.1 Hz, 2H), 2.34 (q, J = 7.5
Hz, 2H), 2.11 — 2.02 (m, 1H), 1.58-1.52 (m, 2H), 1.29 (qd, J = 12.1, 4.5
Hz, 2H), 1.10 (t, J = 7.5 Hz, 3H). 3C-NMR (150 MHz, DMSO-dg) 6:
172.1, 156.4, 152.9, 151.1, 139.7, 133.2, 132.0, 129.1, 119.6, 118.4, 115.8,
103.2, 98.7, 66.8 (2C), 55.4, 38.9, 34.0, 30.3 (2C), 29.5, 9.6. IR (neat,
em™1) v: 3213 (m), 3053 (m), 2953 (s), 2931 (s), 2851 (s), 1734 (m),
1571 (s), 1264 (s), 1077 (s), 836 (s), 731 (s), 703 (s). HRMS (ASAP+,
m/z): detected 394.2239, calculated for CyyHogN;O, [M+H| 1 394.2243.
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B Spectroscopic data for Compound 3
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C Spectroscopic data for Compound 4
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Figure C.6: MS spectrum of compound 4
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D Spectroscopic data for Compound 5
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1H NMR spectrum of compound 5

Figure D.1
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Elemental Composition Report Page 1
Single Mass Analysis
Tolerance = 2.0 PPM / DBE: min = -50.0, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 6
Monoisotopic Mass, Even Electron lons
3107 formula(e) evaluated with 4 results within limits (all results (up to 1000) for each mass)
Elements Used:
C:0-100 H:0-100 N:0-10 ©O:0-10 Si:0-2
2020_443 83 (0.787) AM2 (Ar,35000.0,0.00,0.00); Cm (83:88)
1: TOF MS ES+
4.96e+006
100+ 511.2739
%]
512.2766
503.1341| (1o o0
355.0706
207.0330 2631104 3 W 5142773 6842082 8502494 1045 cy1g .
100 200 300 400 500 600 ' 700 = 800 900 1000 1100 ' 1200 1300 1400 ' 1500
Minimum: -50.0
Maximum: 5.0 2.0 100.0
Mass Calc. Mass mDa PPM DBE i-FIT  Norm  Conf(%) Formula
511.2739 511.2741 -0.2 -0.4 11.5 1929.3 0.000 100.00 C27 H39 N4 04
Si
511.2741 -0.2 -0.4 8.5 1941.2 11.861 0.00 C20 H35 N10 06
511.2745 -0.6 -1.2 7.5 1945.1 15.716 0.00 C19 H39 N10 03
Si2
511.2732 0.7 1.4 2.5 1944.9 15.509 0.00 C18 H43 N6 07
Si2

Figure D.6: MS spectrum of compound 5
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Figure E.1: 'H NMR spectrum of compound 6
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TKJ4520

Elemental Composition Report Page 1
Single Mass Analysis
Tolerance = 2.0 PPM / DBE: min =-10.0, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 6
Monoisotopic Mass, Even Electron lons
8814 formula(e) evaluated with 18 results within limits (all results (up to 1000) for each mass)
Elements Used:
C:0-100 H:0-100 N:0-4 0:0-8 F:0-4 Na:0-1 Si:0-2
2021-159 95 (1.063) AM2 (Ar,35000.0,0.00,0.00); Cm (90:95)
1: TOF MS ES+
5.44e+006
100+ 521.2559
%]
522.2585
5232581
463.2138
oL 1220088 2931010 403.1744 | (5432372 6652772 g5y 4500 9740342 10634547 183081,
100 200 300 400 500 600 | 700 = 800 900 1000 | 1100 1200
Minimum: -10.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE Norm  Conf(%) Formula
521.2559 521.2560 -0.1 -0.2 10.5 1719.3 0.906 40.42 C26 H36 N4 02 F3
Si
521.2558 0.1 0.2 1.5 1719.1 0.793 45.25 C22 H41 07 F4
Si
521.2560 -0.1 -0.2 10.5 1720.7 2.367 9.38 C26 H38 N4 04 Na
Si
521.2557 0.2 0.4 17.5 1727.5 9.143 0.01 C31 H37 N4 Si2
521.2556 0.3 0.6 6.5 1727.3 8.916 0.01 C23 H40 N4 02 F2
Na Si2
521.2556 0.3 0.6 12.5 1728.0 9.623 0.01 C30 H34 N2 F4
Na
521.2555 0.4 0.8 8.5 1726.4 8.038 0.03 C27 H42 05 F
Si2
521.2563 -0.4 -0.8 3.5 1730.2 11.850 0.00 C21 H37 N4 06 F3
Na
521.2564 -0.5 -1.0 14.5 1723.3 4.963 0.70 C29 H34 N4 04 F
521.2554 0.5 1.0 -2.5 1726.3 7.995 0.03 C19 H45 07 F3 Na
Si2
521.2553 0.6 1.2 18.5 1724.5 6.159 0.21 C32 H33 N4 03
521.2565 -0.6 -1.2 -6.5 1725.8 7.445 0.06 C16 H46 08 F4 Na
Si2
521.2566 -0.7 -1.3 4.5 1725.6 7.254 0.07 C24 H43 06 F2
Si2
521.2551 0.8 1.5 9.5 1721.6 3.286 3.74 C28 H38 08 F
521.2551 0.8 1.5 7.5 1727.8 9.434 0.01 C24 H36 N4 05 F2

Figure E.7: MS spectrum of compound 6
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Figure E.8: IR spectrum of compound 6
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F Spectroscopic data for Compound 7
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Figure F.1: 1H NMR spectrum of compound 7
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13C NMR spectrum of compound 7

Figure F.2
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Figure F.5: HSQC spectrum of compound 7
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-10.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron lons

5803 formula(e) evaluated with 10 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-5 0:0-12 Si:0-2 F:0-3

2021-300 166 (1.562) AM2 (Ar,35000.0,0.00,0.00); Cm (165:169)

1: TOF MS ES+
2.38e+006
100+ 503.2652
o]
504.2679
505.2676
1039565 asazmey o
" ) sind) 1866600.0809_ 770-8517 10674475 _H1°85791

T T T
100 200 300 400 500 600 700 800

ARLAAA AR A A AR AR RS AMAR M A A L S

900 1000 1100 1200 1300 1400 1500
-10.0

5.0 2.0 50.0

Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula

503.2652  503.2652 0.0 0.0 1.5 1861.7 0.633 53.10 €22 H42 07 Si
F3

503.2654  -0.2 -0.4 10.5 1862.2 1.078 34.02 C26 H37 N4 02 Si
F2

503.2645 0.7 1.4 9.5  1863.6 2.478 8.39  C28 H39 08

503.2658  -0.6 -1.2 14.5 1864.8 3.677 2.53  C29 H35 N4 04

503.2642 1.0 2.0  14.5 1865.5 4.418 1.21  C29 H36 N4 O Si
F

503.2648 0.4 0.8 -3.5 1866.5 5.339 0.48  C16 H44 N2 012
si F

503.2656  -0.4 -0.8 5.5  1867.4 6.316 0.18  C25 H40 09 F

503.2660 -0.8 -1.6 4.5  1869.0 7

1867 0.04  C24 H44 06 Si2
F

503.2643 0.9 1.8 -7.5 1869.1 7.979 0.03 C13 H46 N2 010
Si2 F3
503.2649 0.3 0.6 8.5 1869.8 8.731 0.02 C27 H43 05 Si2

Figure F.7: MS spectrum of compound 7

XXXV



TKJ4520

o4 ‘papIs signoq : uonisinboy Z : Buyyoisz JOojesjs|ulWpY : Jawojsn)
g : sueog a|dwes eydy :juswnasu| 1 uonnjosay pue adA) Juswinisu| : anbluyds
1202°¥0°6C : Uo painsesiy 9GZ'86€ - £6°'966€ : 9buey Aousnbai 9G-10-HS : a|dwes

L -WD JaqUINUBAB A

% 6 <6 06

86

ool

005 000} 005} 000z 005z 000€ 005€
_ ~ o “L NN PL N : : ZZZ_ _
NE RS RBYZ 8% 3 ¥ER
w R 20 GPOoD ~ o oSN
8% BN gruBRL 5 853
L ©
o
L ©
N
—
g
-2
]
- % %
=
L ©—
©
1 T T T T T T m

005 0001 0051 0002 00S¢ 000€ 00S€

IR spectrum of compound 7
XXX Vil

Figure F.8




TKJ4520

G Spectroscopic data for Compound 8

oo oo N
w o 88 o w 0% o =
2 snd 58 9 & 88 o & . 5
o E im0 3 oxX®O = S o= H = - O\';,O
D )PP O— 000NN OO ®OO0 @0 E\oozaooo v
28 L8®S-28e Y3288 987 RS2y $e8EC8°S
51 £9°984B02" £2328%43 87T gp2H 79
3L IS8R0 "HRETS%83 R woa H88 o o
5 RSazanyg <88 %38 & q £88
EL =8TAES R B
£s 8 Sat g = 5 :
© 1 S o -~ = - o o =
it it S - 8 J 58 G
3 L 1 @
% 5 s H o
a B o 2 N
o T oz oo g
§.08 “,.B82 8 8 & = £
SmZ0 T oeEma > o e o= ~ a
HELO 2 E®WOA = ja=if=) [=Jel s} = =m
SEXE NBAZADOONVEHOUEMM-AAORDO A NHEOWMMO o
O Z = A BAOFHLLHOZONRAEXAOQOBFQOHOZ Ao HOnNENA0MN
5 L
780 0-
¥78°0
L5870 Fe
TL8°0
LST°T
792" T
LLZ T _ s
P8z 1 = o <&
862" 1T
S0€°T
8TE" T
sze1 <6re
STS°T e
vss‘t\ czz ¢ £ —ege
L0z 077 ¢ o <iee
€s0°¢ Zvee - -
650" Cpzre > Q & -
9902 7976 o PE8T 0 <ok
gtg; voz e 1580 r
7807 129'€‘5 gree o —
€ce ¢ 2o R Q, L en
922@& 879°€ — L - /g2
sz'€7 062
Svz e 6L
. LLT" T £ T
z9z°€ oltl: S, Xore
¥9Z°€ £0L E— f“.msz & Lo \e2e
TIP°€ STL €— ‘”22?%7 L
129°€ oeTE T
pE9 € *“92{'1/
8v9°€ ™
€0L € -« Lo
STL € s Fo
g18°¢ 818" € e oz
ces e zeg e ” L
Le8 e [fare__ 3
P8 € Tre s L o ©
aLs’s o STS T— Fa
8 PES T —
eV L o
bZ0 L — F~ <560
£ LBOC g, N
TEV L~ T68'L—_ I 990‘2\ 2 <Hre
z68°L 906" L— 65072 - S
Zggik 056 L 995072 TR
¥96° L — zL0°z Lo 270e
v96°L 8LO'Z/ S >T)(n
922'8/ 7802 .
~N

Figure G.1: 'H NMR spectrum of compound 8
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Figure G.5: HMBC spectrum of compound 8
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-10.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron lons

3163 formula(e) evaluated with 5 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-5 0:0-12 Si:0-2 S:0-1

2021-301 136 (1.283) AM2 (Ar,35000.0,0.00,0.00); Cm (136:142)

1: TOF MS ES+
4.84e+006
100+ 5322411
%]
533.2437
534.2414
103.9565 377.2369 535.2419
14 A 751.4500815:7078¢16 1450 10854733
L R g A A R A L AN et VAR RS A A A L NS ASASA AARM At A AR o s L2
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -10.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT  Norm  Conf(%) Formula
532.2411 532.2414 -0.3 -0.6 10.5 1932.0 0.024 97.65 C25 H38 N5 04 Si
S

532.2400 1.1 2.1 5.5 1935.7 3.766 2.31 C24 H42 N 08 Si
S

532.2411 0.0 0.0 10.5 1940.0 7.981 0.03 C24 H38 N5 05
Si2

532.2420 -0.9 -1.7 19.5 1950.5 18.492 0.00 C33 H34 N3 02
Si

532.2407 0.4 0.8 11.5 1956.9 24.967 0.00 C25 H34 N5 08

Figure G.6: MS spectrum of compound 8
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H Spectroscopic data for Compound 9
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Figure H.1: 'H NMR spectrum of compound 9
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Figure H.5: HMBC spectrum of compound 9
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-10.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron lons

2781 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-9 0:0-5 Na:0-1 Si:0-2

2021-91 64 (0.722) AM2 (A1,35000.0,0.00,0.00); Cm (63:69)
+

1: TOF MS ES
7.97e+006
1004 568.3321
o]
560.3348
570.3348
o L97.9694 252.1250  394.1878  512.2690 | 571.3361 684.2035 832_23'*% 908.2573 1157_5359m
B A Ry LS Ry A A A L LA M LA MY LA Ay WA LR AR RN AR R
100 200 300 400 500 600 700 800 900 1000 1100 1200

-10.0
5.0 2.0 50.0

Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula
568.3321 568.3319 0.2 0.4 11.5 1763.8 0.000 100.00 C30 H46 N5 04
Si
568.3326 -0.5 -0.9 3.5 1775.2 11.389 0.00 C24 H51 N5 05 Na

Si2
568.3328 -0.7 -1.2 20.5 1776.9 13.066 0.00 C39 H42 N3 O

Figure H.6: MS spectrum of compound 9
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Figure 1.2: 13C NMR spectrum of compound 10
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Figure I.4: HSQC spectrum of compound 10
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Figure I.5: HMBC spectrum of compound 10

Ivi



TKJ4520

Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-10.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron lons

1396 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-8 0:0-12 Si:0-1

2021_125 116 (1.093) AM2 (Ar,35000.0,0.00,0.00); Cm (114:116)

1: TOF MS ES+
1.82e+005
100+ 454.2639
324.1829
%]
|455.2665
1325.1857
195.0671 456.2657
. 8 625.0595
}22 PQJS o L l L \ J 7514521 1006.9913 11898330 1465.128}‘1/z
BN A T T T T

T | T T T
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

-10.0
5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula
454.2639  454.2638 0.1 0.2 10.5 1298.4 n/a n/a C24 H36 N5 02
Si

Figure 1.6: MS spectrum of compound 10
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Figure I.7: IR spectrum of compound 10
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Figure J.1
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-10.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron lons

1582 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-8 0:0-12 Si:0-1

2021_127 102 (0.963) AM2 (Ar,35000.0,0.00,0.00); Cm (102:105)

1: TOF MS ES+
1.34e+006
100+ 511.2740
%
512.2765
453.2320 513.2762
208.0876 577 9363 ) P534.2578 6672013 8751045 10435231 11631836 1350.7410

LA Rl Al AR A VA RS VA M LEARUASA A A AR AR RS AR M M A L
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

-10.0
5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula
511.2740 511.2741 -0.1 -0.2 11.5 1627.7 0.000 100.00 C27 H39 N4 04
511.2749 -0.9 -1.8 20.5 1648.1 20.392 0.00 (SZCI*:G H35 N2 O

Figure J.6: MS spectrum of compound 11
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Figure J.7: IR spectrum of compound 11
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Figure K.1: 'H NMR spectrum of compound 12
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-10.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron lons

1504 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-8 0:0-12 Si:0-1

2021_128 112 (1.058) AM2 (Ar,35000.0,0.00,0.00); Cm (111:113)

1: TOF MS ES+
6.54e+005
100+ 483.2789
o]
l484.2814
4250368 4852813
208.0870 \ 625.0582 751 4483 987.5348
b eI e bebb et eSS U 09012102640 10224010,
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
-10.0
5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula
483.2789  483.2791  -0.2 -0.4 10.5 1450.6 n/a  n/a €26 H39 N4 03
Si

Figure K.6: MS spectrum of compound 12
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L. Spectroscopic data for Compound 13
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Figure L.1: 'H NMR spectrum of compound 13
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Figure L.4: HSQC spectrum of compound 13
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Elemental Composition Report Page 1
Single Mass Analysis
Tolerance = 2.0 PPM / DBE: min =-10.0, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 6
Monoisotopic Mass, Even Electron lons
1858 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
Elements Used:
C:0-100 H:0-100 N:0-12 0:0-10 Si:0-1
2021_237 117 (1.109) AM2 (Ar,35000.0,0.00,0.00); Cm (107:118)
1: TOF MS ES+
2.67e+006
100+ 498.2535
%]
499.2559
440.2116(500.2556
2843313 37123701 | 501 o567 6915102809.4443
A R g A A R e L A R e VAR RS A A LA NS NS AR AT A AR Ao s L2
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Minimum: -10.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT
498.2535 498.2537 -0.2 -0.4 11.5 2064.5 0.000 100.00 CgS H36 N5 04

498.2537 -0.2

i
8.5 2084.3 19.835 0.00 C18 H32 N11 06

Figure L.6: MS spectrum of compound 13
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Figure L.7: IR spectrum of compound 13
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M Spectroscopic data for Compound 14
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Figure M.2: 13C NMR spectrum of compound 14
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min = -50.0, max = 100.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron lons

4124 formula(e) evaluated with 4 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-8 0:0-8 Na:0-1 Si:0-2

2020_379 54 (0.517) AM2 (Ar,35000.0,0.00,0.00); Cm (49:54)

1: TOF MS ES+
2.42e+005

100+ 353.1978

o0

1354.2008
1220073 2810517 536.1649
256.263 1 ‘ \ fss?.mea 684.2028
o i TR T L 876.7985

L g A s U v L ANy e VAR RS A A a0 S ARG AR At aA AR Ao s L2
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

-50.0
5.0 2.0 100.0

Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula

353.1978  353.1978 0.0 .0 10.5 1816.1 0.000 100.00 C20 H25 N4 02
6 C5 H3:

353.1976 0.2 -6.5 1841.7 25.664 0.00 4 N6 06 Na
Si2

353.1971 0.7 2.0 -2.5 1835.1 19.010 0.00 C13 H34 07 Na
i

353.1985 -0.7 -2.0 2.5 1834.4 18.370 0.00 C14 H30 N4 03 Na
Si

Figure M.6: MS spectrum of compound 14
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance =2.0 PPM / DBE: min =-10.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

582 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)
Elements Used:

C:0-500 H:0-500 N:0-5 0:0-20

2020 457 56 (0.631) AM2 (Ar,35000.0,0.00,0.00); ABS; Cm (56:58)

1: TOF MS ES+
2.58e+005
100 381.1927
%]
382.1956
360.1822 3730528 4451207 453.7862
297.0469
357.0133 .
‘ ‘ 2980469 3269665 W ot1oz 4% 2”%429'0893 454.7887
I [ Ll L m R | \ TIPSO T I J\‘\/ L
s s A AR A R R A s A s s S et e i i L 3
280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460
Minimum: -10.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT  Norm Conf(%) Formula

381.1927 381.1927 0.0 0.0 11.5 657.2 0.000 100.00 C21 H25 N4 03
381.1932 -0.5 -1.3 -6.5 667.9 10.734 0.00 C8 H33 N2 014

Figure N.6: MS spectrum of compound 15
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-10.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron lons

1603 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-6 0:0-10 F:0-3

2021_185 69 (0.657) AM2 (Ar,35000.0,0.00,0.00); Cm (66:73)

1: TOF MS ES+
1.03e+006
100+ 391.1750
%]
610.1848
392.1779
536.1660 (611.1854
281.0520 J 685.2044
[ 8322411 906.2604
o bbb imiombbldm bk Y
A g A s R A L ANy e VAR RS VR A a0 M ARG AR At aA MR Ao s L2
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
-10.0
5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula

391.1750 391.1746 0.4 1.0 10.5 2254.8 0.012 98.78 C20 H22 N4 O F3
391.1757 -0.7 -1.8 8.5 2259.7 4.901 0.74 C21 H27 07
391.1753 -0.3 -0.8 1.5 2260.2 5.338 0.48 C11 H25 N6 07
F2

Figure O.6: MS spectrum of compound 16
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Figure O.7: IR spectrum of compound 16
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Figure P.1
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Figure P.2: 13C NMR spectrum of compound 17
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Elemental Composition Report

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-10.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron lons

664 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

Elements Used:

C:0-100 H:0-100 N:0-9 0:0-5 Na:0-1
2021-90 61 (0.690) AM2 (Ar,35000.0,0.00,0.00); Cm (61:69)
1: TOF MS ES+

100 367.1771

368.1801

97.9694 269.1038

oL rebbisden

369.1826 610.1846 684.2025

Page 1

2.34e+006

A A A s LA AN SR RS AR A MM Ay
100 200 300 400 500 600 700
Minimum: -10.0
Maximum: 5.0 2.0 50.0

Mass Calc. Mass mDa PPM DBE

T

367.1771 367.1770 0.1 0.3 11.5 2218.6

Figure P.6: MS spectrum of compound 17
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Spectroscopic data for Compound 18
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance =2.0 PPM / DBE: min =-1.5, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

1950 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass)
Elements Used:

C:0-500 H:0-1000 N:0-7 0:0-10 Na:0-1 F:0-2

2021 307 170 (1 598) AM2 (Ar,35000.0,0.00,0.00)

1: TOF MS E:
287e+005
100+ 373.1841
o]
374.1871

1781507 551 415.0429 507 0847

78.1507 f

\ J 275.11071 l l 750453 804.4904 957 5108

TR A o I O L Huhh nhh\m uuhu hu U\(ml , 10615619

LA VA LA LN S A s LA A A A A S s AL 3
100 | 200 300 400 500 600 700 = 800 900 1000 1100 1200 1300 1400 ' 1500

Minimum: -1.5
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT  Norm Conf(%) Formula

373.1841  373.1840 0.1 0.3
373.1838 0.3 0.8
373.1836 0.5 1.3
373.1847 -0.6 -1.6

10.5 836.3 0.432 64.91 C20 H23 N4 O F2
1.5 837.2 1.336 26.29 C16 H30 08 Na
5.5 838.4 2.470 8.46 C14 H25 N6 06
1.5 841.6 5.689 0.34 Cl1 H26 N6 07 F

Figure Q.6: MS spectrum of compound 18
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Figure Q.7: IR spectrum of compound 18
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R Spectroscopic data for Compound 19
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Figure R.1: 'H NMR spectrum of compound 19
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance =2.0 PPM / DBE: min =-1.5, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

2647 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)
Elements Used:

C:0-500 H:0-1000 N:0-7 0:0-10 Na:0-1 S:0-3

2021308 173 (1.624) AM2 (Ar,35000.0,0.00,0.00); Cm (173:174)

1: TOF MS ES+
1.18e+006
100 402.1602
%]
1403.1629
3580807 | 4150432
122,0970 [ 5970845 760.4633804.4897 957.5125 1089 5052
Ll | . Lol b o
LA A A L s A L g A L A L A LA B AR LA oA AR RSO AN A N S LS
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -1.5
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT  Norm Conf(%) Formula
402.1602 402.1600 0.2 0.5 10.5 977.6 0.001 99.93 C19 H24 N5 03 S
402.1610 -0.8 -2.0 2.5 985.0 7.384 0.06 C14 H29 N5 03 Na
s2

402.1601 0.1 0.2
402.1595 0.7 1.7

.5 988.3  10.763 0.00 C13 H25 N5 08 Na
- - 5
402.1606 -0.4 -1.0

- 988.4 10.860 0.00 C19 H32 N 02 S3
9.5 990.8 13.191 0.00 C27 H20 N3 O

Figure R.6: MS spectrum of compound 19
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Figure R.7: IR spectrum of compound 19
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Figure S.1: 1H NMR spectrum of compound 20
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Elemental Composition Report Page 1
Single Mass Analysis
Tolerance = 2.1 PPM / DBE: min =-10.0, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 6
Monoisotopic Mass, Even Electron lons
574 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
C:0-100 H:0-100 N:0-6 ©:0-7 Na:0-1
SVG_20210304_SH37 186 (3.437) AM2 (Ar,35000.0,0.00,0.00)
1: TOF MS ES+
6.56e+005
100+ 338.1988
%]
240.1254 [339.2014
126.5667
o et | 340.2037473.6261 737.3079 789.3279 11024701 12504041 14212172
L A g A A VA g A L AR N At g L RS VA AR A LA AR I A A
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -10.0
Maximum: 5.0 2.1 50.0
Mass Calc. Mass mDa PPM DBE i-FIT  Norm  Conf(%) Formula
338.1988 338.1981 0.7 2.1 10.5 1803.7 n/a n/a C19 H24 N5 O

Figure S.6: MS spectrum of compound 20
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Figure S.7: IR spectrum of compound 20
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T Spectroscopic data for Compound 21
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Figure T.1: 'H NMR spectrum of compound 21
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Figure T.2: 3C NMR spectrum of compound 21
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Figure T.5: HMBC spectrum of compound 21
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-10.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron lons

1023 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-8 0:0-12 Si:0-1

2021_126 99 (0.936) AM2 (Ar,35000.0,0.00,0.00); Cm (99:104)

1: TOF MS ES+
7.60e+004

100+ 324.1825

%

226.1096 13751853
568.3314
119.5587
454.2643 569.8337 763.1783
o L A“L N i R 616.1415 /03 9271672 10153809 1306:3928
Y

T T e
100 200 300 400

T TR
500 600 700 800

AR AR AN AU AR AR RS AR M e A L S
900 1000 1100 1200 1300 1400 1500

-10.0
5.0 2.0 50.0

Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula

324.1825 324.1824 0.1 0.3 10.5 1188.8 0.000 100.00 C18 H22 N5 O
324.1829 -0.4 -1.2 -7.5 1201.8 13.025 0.00 C5 H30 N3 012

Figure T.6: MS spectrum of compound 21
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Figure T.7: IR spectrum of compound 21
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U Spectroscopic data for Compound 22
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Figure U.1: 'H NMR spectrum of compound 22
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Figure U.2
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Figure U.4: HSQC spectrum of compound 22
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Figure U.5: HMBC spectrum of compound 22
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-10.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron lons

507 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-4 0:0-8 Na:0-1

2021-160 47 (0.536) AM2 (Ar,35000.0,0.00,0.00); Cm (47:52)

1: TOF MS ES+
3.73+005
100+ 3811924
9]
3821954
7
3637907 3791730 |3831080  403.1744408.7884 441.207
3187929 3312009 349-1848 M N L [ 4252177 7o
A A L S A S A SRS Al AL M A A AR AR AR RASAS AR R AN Ay it st L L4
320 330 340 350 360 370 380 390 400 410 420 430 440
Minimum: -10.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT  Norm  Conf(%) Formula
381.1924 381.1927 -0.3 -0.8 11.5 1735.6 n/a n/a C21 H25 N4 03

Figure U.6: MS spectrum of compound 22
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Figure U.7: IR spectrum of compound 22
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V  Spectroscopic data for Compound 23
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Figure V.1: 'H NMR spectrum of compound 23
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Figure V.2: 13C NMR spectrum of compound 23
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Figure V.4: HSQC spectrum of compound 23
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Elemental Composition Report Page 1
Single Mass Analysis
Tolerance = 2.0 PPM / DBE: min =-10.0, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 6
Monoisotopic Mass, Even Electron lons
477 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
C:0-100 H:0-100 N:0-4 0:0-8 Na:0-1
2021-161 147 (1.632) AM2 (Ar,35000.0,0.00,0.00); Cm (143:147)
1: TOF MS ES+
2.01e+005
100, 1220071
353.1980
%]
136.1127
226.9522
453.7865
487.3607
( 5212557 oo
A Ll sl s w0013 sraize 07908
L A M LA Rt S ALY AL RSN AR M AR AN NSRS A
100 200 300 400 500 600 700 800 900 1000 1100 1200
Minimum: -10.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i T Norm Conf(%) Formula
353.1980 353.1978 0.2 0.6 10.5 2142.3 n/a n/a C20 H25 N4 02

Figure V.6: MS spectrum of compound 23
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Figure V.7: IR spectrum of compound 23
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W  Spectroscopic data for Compound 24
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Figure W.1: 'H NMR spectrum of compound 24
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Figure W.2: 13C NMR spectrum of compound 24
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-10.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron lons

1413 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-12 0:0-10 Si:0-1

2021_238 143 (1.345) AM2 (Ar,35000.0,0.00,0.00); Cm (143:151)

1: TOF MS ES+
1.48e+006
100+ 368.1725
%
369.1753
453.7861
122.0973 2843312 454.7883
R T 691.5093733.5526 8756916
LN v e e ' Y W‘%‘WW

! AL M ARLAAA AR AN AU AR A RS AR M A A L CS
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Minimum: -10.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT  Norm  Conf(%) Formula
368.1725 368.1723 0.2 0.5 11.5 2306.5 0.000 99.99 C19 H22 N5 03
368.1727 -0.2 -0.5 7.5 2315.8 9.258 0.01 Cl11 H22 N11 02
Si

Figure W.6: MS spectrum of compound 24
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X Spectroscopic data for Compound 25
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Figure X.1: 'H NMR spectrum of compound 25
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Figure X.4: HSQC spectrum of compound 25
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-10.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron lons

3719 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-10 ©:0-12 Si:0-2 1:0-2

2021-299 167 (1.571) AM2 (Ar,35000.0,0.00,0.00); Cm (163:167)

1: TOF MS ES+
8.820+005
100+ 3942239
o]
2531454 395.2272
103.9564
3702060 453.7858
105.9545 7250
- 6201685
o Libsisll Ll L ﬁ‘ 877.4092 935 2667 12380087

B A Al AR A AL g A LA A M S Al MR g A UAARL AN AAARE AAAA AR M s st AL
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

-10.0
5.0 2.0 50.0

Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula
394.2239  394.2243 -0.4 -1.0 11.5 2059.4 0.000 99.99 C22 H28 N5 02
394.2234 0.5 1.8 5.5 2074.1 14.712 0.00 C20 H36 N 03
Si2
394.2234 0.5 1.3 2.5 2069.0 9.648 0.01 C13 H32 N7 05
Si

Figure X.6: MS spectrum of compound 25
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Figure X.7: IR spectrum of compound 25
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