Petros Danielsen Siapkaras

Steroid based CDK8 inhibitors and synthetic studies towards Plakinamine A

Master's thesis in Chemistry
Supervisor: Eirik Johansson Solum
May 2021
,

Steroid based CDK8 inhibitors and synthetic studies towards Plakinamine A

Master's thesis in Chemistry
Supervisor: Eirik Johansson Solum
May 2021
Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Chemistry

- NTNU

Norwegian University of Science and Technology

Declaration

I hereby declare that the work presented in this thesis has been conducted independently and in accordance with the rules and regulations of the Norwegian University of Science and Technology.

Trondheim, $14^{\text {th }}$ of May, 2021
Petros Danielsen Siapkaras

Preface

I would like to sincerely thank my supervisor Associate Professor Eirik Johansson Solum for the opportunity to perform my master thesis in his research group and for his valuable unconditional guidance, patience and moral support, as well as for the stimulating discussions throughout the duration of this work.

I would like to thank my lab colleagues Johannes Tveit, Ragnar Stene, Wojtek Swiergon, and the PhD canditate Sondre Nervik for the great working environment, the discussions and the great time of working together.

I would also like to thank Susana Villa Gonzales for running the MS samples and Roger Aarvik and Julie Asmussen for the technical support. Final acknowledgements go to my family and friends for their constant support and encouragement.

Abstract

Cyclin-dependent kinase 8 (CDK8) plays a momentous role in cell transcription regulation by its association with the Mediator complex or by phosphorylation of transcription factors. CDK8 has been identified as an important factor in oncogenesis of various cancer types, as for example breast cancer, colorectal cancer and leukemia. In the master thesis presented we attempted to synthesize a series of potential CDK8 inhibitors based on the sterol steroid scaffold. Seven steroidal analogs were synthesized, where five of them will be tested further against CDK8.

The steroidal key intermediate 16 containing the $\Delta_{-}^{7(8)}$-double bond, the amine function at position 3 and the terminal olefin at the side chain at the position 17 of the steroid scaffold, was prepared in a sevenstep synthesis, starting from ergosterol 7. Alongside, a series of 1,6-naphthyridine-2-carboxamides were prepared from 8-bromo-1,6-naph-thyridine-2-carboxylic acid. The amide derivatives together with a series of iodo-pyridinyl substituents were coupled to the key intermediate 16 via a Heck cross-coupling reaction. The successfully coupled steroidal analogs were then purified by reverse phase preparative HPLC to give the pure potential CDK8 inhibitors.

Furthermore, an attempt to the total synthesis of Plakinamine A 10 was performed. Though unsuccessful, the synthetic studies towards Plakinamine A 10 are presented in this thesis, alongside a proposed alternative synthetic route.

Sammendrag

Enzymet syklin-avhengig kinase 8 (CDK8) spiller en viktig rolle i reguleringen av transkripsjonen ved at det i samspill med et mediator kompleks fosforylerer og aktiverer ulike transkripsjonsfaktorer. CDK8 har i ulike studier blitt identifisert som en viktig og avgjørende driver av onkogense i ulike kreftformer, som f.eks. brystkreft, tarmkreft og leukemi. Tema for denne oppgaven har vært å fremstille en serie av potensielle CDK8 hemmere basert på en ergosterol steroid struktur. Totalt har det blitt fremstilt syv analoger, hvorav fem av dem vil bli testet for deres evne til å hemme CDK8.

Syntesen tok utgangspunkt i ergosterol 7 og det ble etablert en lineær syntese frem til intermediatet 16. Syntesen gikk ut på å modifisere 3posisjon, en selektiv hydorgenering på B-ringen, samt å gjøre om sidekjeden i 17 -posisjon til et terminalt olefin. Parallelt med dette ble en serie av 1,6-naftyridin-2- karboksamider fremstilt fra 8 -bromo-1,6-naftyridin-2-karboksylsyre. Amidene ble, sammen med en serie av kommersielt tilgjengelige iodo-pyridiner, koblet til intermediatet $\mathbf{1 6}$ via en Heck krysskobling reaksjon. Sluttproduktene ble renset med revers fase preparativ HPLC.

I tillegg arbeidet vi med syntetiske studier mot Plakinamin A 16. Forsøkene ble dessverre ikke vellykket, men er rapportert i avhandlingen. I tillegg er et forslag for en alternativ syntese mot Plakinamin A $\mathbf{1 0}$ foreslått.

30

13

33

16

35b

31

14

15

35a

35c

35b

12b

$12 f$

12c

12e

42

45

47

41

46

Contents

Preface
Symbols and Abbreviations 1
1 Introduction 5
1.1 Numbering and nomenclature of sterols 9
1.2 Planned Work 10
1.2.1 Synthetic studies towards the steroidal analogs 11
1.2.2 Synthetic studies towards Plakinamine A 13
1.2.3 The ozonolysis reaction 14
1.2.4 The Wittig reaction 15
1.2.5 The Mitsunobu reaction 16
1.2.6 The Staudinger reaction 17
1.2.7 Eschweiler-Clarke reductive alkylation of amines 18
1.2.8 Synthesis of amide bonds 19
1.2.9 The Heck cross-coupling reaction 20
1.2.10 The glycine aldol 22
2 Results and Discussion 25
2.1 Synthetic studies towards the steroidal analogs 25
2.1.1 Synthesis of the aldehyde intermediate 25
2.1.2 The Wittig reaction 31
2.1.3 Deprotection of the 3-acetyl group 32
2.1.4 The Mitsunobu reaction 33
2.1.5 Introduction of the dimethylamino group on the C-3 34
2.1.6 Preparation of amide derivatives from 8-bromo- 1,6-naphthyridine-2-carboxylic acid 35
2.1.7 Introduction of the heterocyclic moieties on C-23 of the steroid skeleton 37
2.2 Synthetic studies towards Plakinamine A 44
2.2.1 The glycine aldol reaction 44
2.2.2 Stereocontrolled synthesis by direct aldolization of Pseudoephedrine Glycamide 47
2.2.3 Aldolization of the aldehyde $\mathbf{1 1}$ with N-Boc-3-pyrrolidinone 49
2.2.4 Synthesis of the TBS-protected aldehyde steroid 50
3 Conclusion and further work 54
3.1 Synthetic studies towards the steroidal analogs 54
3.2 Synthetic studies towards Plakinamine A 56
4 Experimental 59
4.1 General materials and methods 59
4.1.1 Solvents 59
4.1.2 Reagents 59
4.1.3 Chromatography 59
4.1.4 Analytical techniques 60
4.1.5 $\quad 5 \alpha, 6$-Dihydroergosterol (30) 62
4.1.6 $5 \alpha, 6$-Dihydroergosteryl acetate (31) 63
4.1.7 (3S,20S)-20-Formylpregn-7-en-3-yl acetate (13) 64
4.1.8 (3S,20S)-Ethylene-pregn-7-en-3-yl acetate (14) 65
4.1.9 (3S,20S)-Ethylene-pregn-7-en-3-ol (33) 66
4.1.10 (3R,20S)-Ethylene-pregn-7-en-3-yl-azide (15) 68
4.1.11 ($3 R, 20 S$)-Ethylene-pregn-7-en-3-yl-dime- thylamine (16) 69
4.1.12 8-Bromo- N-cyclopropyl-1,6-napthyridine-2- carboxamide (35a) 71
4.1.13 8-bromo- N-methyl-1,6-naphthyridine-2- carboxamide (35b) 72
4.1.14 Azetidin-1-yl(8-bromo-1,6-naphthyridin-2-
yl) methanone (35c) 73
4.1.15 (8-bromo-1,6-naphthyridin-2-yl)(3-metho- xyazetidin-1-yl)methanone (35d) 74
4.1.16 General procedure for the Heck cross-coupling Number- Nmber 75
4.1.17 (3R,20R)-20-[2-(N-cyclopropyl-1,6-napthy- ridin-8-yl-2-carboxamide)-(E)-ethenyl]-pregn-7-en- 3-yl-dimethylamine (12a) 76
4.1.18 (3R,20R)-20-[2-(N-methyl-1,6-napthyridin- 8-yl-2-carboxamide)-(E)-ethenyl]-pregn-7-en-3-yl-dimethylamine (12b) 78
4.1.19 (3R,20R)-20-[2-(azetidin-1-yl)-(1,6-napthy- ridin-2,8-yl)-methanone-(E)-ethenyl]-pregn- 7-en-3-yl-dimethylamine (12c) 79
4.1.20 (3R,20R)-20-[2-(1,6-napthyridin-2,8-yl)(3- methoxyazetidin-1-yl)-methanone-(E)- ethenyl]-pregn-7-en-3-yl-dimethylamine (12d) 81
4.1.21 (3R,20R)-20-[2-(Pyridin-3-yl)-(E)-ethenyl]- pregn-7-en-3-yl-dimethylamine (12e) 82
4.1.22 (R, R)-Pseudoephedrine-N-Boc-glycamide (42) 83
4.1.23 (R, R)-Pseudoephedrine-glycamide (41) 85
4.1.24 (3S,20R)-20-[2-(N-Boc-3-pyrrolidinone)- (E)-ethenyl]-pregn-7-en-3-yl acetate (45) 86
4.1.25 ($3 S, 20 S$)-20-Formylpregn-7-en-3-yl t-butyl- dimethylsilyl (46) 87
4.1.26 (3S,20S)-20-Formylpregn-7-en-3-ol (47) 89
4.1.27 5 α,6-Dihydroergoster-3-yl- t-butyldimethyl- silyl (48) 90
Appendices i
A Spectroscopic data i
A. 1 Spectroscopic data for compound 30 i
A. 2 Spectroscopic data for compound 31 iii
A. 3 Spectroscopic data for compound 13 iv
A. 4 Spectroscopic data for compound 14 vi
A. 5 Spectroscopic data for compound 33 xiii
A. 6 Spectroscopic data for compound 15 xx
A. 7 Spectroscopic data for compound 16 xxvii
A. 8 Spectroscopic data for compound 35a xxxiv
A. 9 Spectroscopic data for compound $35 b$ xxxvi
A. 10 Spectroscopic data for compound 35 c xxxvii
A. 11 Spectroscopic data for compound 35 d xxxviii
A. 12 Spectroscopic data for compound 12a xl
A. 13 Spectroscopic data for compound 12 b xlvii
A. 14 Spectroscopic data for compound 12c liv
A. 15 Spectroscopic data for compound 12d lxi
A. 16 Spectroscopic data for compound 12e lxviii
A. 17 Spectroscopic data for compound 42 lxxv
A. 18 Spectroscopic data for compound 45 lxxvii
A. 19 Spectroscopic data for compound 46 lxxxiii
A. 20 Spectroscopic data for compound 47 xc
A. 21 Spectroscopic data for compound 48 xcvii

Symbols and Abbreviations

Abbreviation	Explanation
4-DMAB	4-Dimethylaminobenzaldehyde
${ }^{\circ} \mathrm{C}$	Celsius degree
tert	Tertiary
Ac	Acetyl
$\mathrm{Ac}_{2} \mathrm{O}$	Acetic Anhydride
ACN	Acetonitrile
AML	Acute Myelogenous Leukemia
$\mathrm{ASAP}+$	Atmospheric Solids Analysis Probe
Boc	tert-Butyloxycarbonyl
$\mathrm{Boc}_{2} \mathrm{O}$	Di-tert-butyl dicarbonate
$\mathrm{BuLi}^{\mathrm{B}}$	Butyl-Lithium
$\mathrm{Bz}^{\mathrm{Calcd}}$	Benzoyl
CDCl_{3}	Calculated
CDK	Chloroform-d
CDK^{1}	Cyclin-dependent kinase
CHCl	Cyclin-dependent kinase 8
CKI	Chloroform
COSY_{3}	Cyclin-dependent kinase Inhibitors
DCM	Correlated Spectroscopy
DIAD	Dichloromethane
DIPEA	Diisopropyl Azodicarboxylate
DMF	Diisopropyl Ethylamine
DNA	Dimethylformamide
	Deoxyribonucleic Acid

SYMBOLS AND ABBREVIATIONS

DPPA	Diphenyl Phosphoryl Azide
eq	Equivalent
ES+	Electron Spray
et	Ethyl
$\mathrm{Et}_{2} \mathrm{O}$	Diethyl ether
$\mathrm{Et}_{3} \mathrm{~N}$	Triethylamine
EtOAc	Ethyl Acetate
EtOH	Ethanol
h	Hour
HCl	Hydrochloric Acid
HIV	Human Immunodeficiency Virus
HMBC	Heteronuclear Multiple-Bond Correlation
HPLC	High Performance Liquid Chromatography
HRMS	High-Resolution Mass Spectroscopy
HSQC	Heteronuclear Single-Quantum Correlation
Hz	Hertz
IR	Infra-red
J	Coupling Constant
$\mathrm{K}_{2} \mathrm{CO}$	Potassium Carbonate
L	Liters
LDA	Lithium diisopropylamide
LiCl	Lithium Chloride
LiHMDS	Lithium bis(trimethylsilyl)amide
M	Molarity
Me	Methyl
$\mathrm{Me} \mathrm{H}_{2} \mathrm{~S}$	Dimethylsulfide
MeOH	Methanol

mg	Milligram
MgSO_{4}	Magnesium Sulfate
min	Minutes
mL	Milliliter
mm	Millimeter
mmol	Millimol
$\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NCl}$	Tetrabutylammonium chloride
$\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	Sodium Tungstate Dihydrate
NaCNBH_{3}	Sodium Cyanoborohydride
NaHCO_{3}	Sodium Bicarbonate
NaOH	Sodium Hydroxide
NMR	Nuclear Magnetic Resonance
$\mathrm{P}(o-\mathrm{tol})_{3}$	tris-o-tolylphosphine
Pd	Palladium
$\mathrm{Pd}(\mathrm{OAc})_{2}$	Palladium (II) Acetate
Piv-Cl	Pivaloyl Chloride
PPh_{3}	Triphenyl Phosphine
ppm	Parts per million
RNA	Ribonucleic Acid
rt	Room temperature ($20-25{ }^{\circ} \mathrm{C}$)
STAT5	Signal Transducer and Activator of Transcription 5
t_{R}	Retention time
TBDMS-Cl	tert-Butyldimethylsilyl Chloride
TBDMS-OTf	tert-Butyldimethylsilyl triflate
TFA	Trifluoroacetic Acid
THF	Tetrahydrofuran
TLC	Thin Layer Chromatography

UV	Ultraviolet
WNT	Wingless Int-1
ZnCl_{2}	Zinc Chloride

1 Introduction

Cyclin-dependent kinases (CDKs) are serine/threonine kinases responsible for the coordination of critical regulatory events during cell cycle and transcription. ${ }^{[1]}$ Their catalytic activities are modulated by interactions with cyclins and CDK inhibitors (CKIs). ${ }^{[2]}$ Given these fundamental roles, it is anticipated that deregulation of CDKs is a common feature of many cancers. More specifically, CDK8, a ubiquitously expressed, primarily transcriptional member of the CDK family, has come under focus owing to investigations of its centrals roles in transcription and oncogenesis. ${ }^{[3]}$ The kinase is involved in the regulation of multiple transcription pathways either through its association with the Mediator complex or by phosphorylation of transcription factors. ${ }^{[3]}$ In particular, CDK8 has been implicated as an oncogene in colorectal and gastric cancers through activation of WNT signaling. ${ }^{[4 ; 5]}$ Additionally, inhibitors of CDK8 have also been shown to be active in Acute Myelogenous Leukemia (AML) cells that have high activation of the Signal Transducer and Activator of Transcription 5 (STAT5). ${ }^{[6]}$ There has been increasing interest in small molecule modulators of CDK8 including Cortistatin $A^{[7]} \mathbf{1}$, Sorafenib $2^{[8]}$, SEL120-34A $3^{[6]}$, Senexin A $4^{[9]}$, CCT251921 $5^{[10]}$, and the 1,6-Naphthyridine derivative $6^{[11]}$, as shown in Scheme 1.1.

CCT251921 (5)

1,6 Naphthyridine derivative (6)

Scheme 1.1. Examples of previously reported CDK8 inhibitors.

The works of Hatcher et al. ${ }^{[12]}$ and Solum et al. ${ }^{[13]}$ have demonstrated that several steroidal analogs were effective inhibitors of CDK8. In both works the pharmacophore substituents were attached to the unsaturated carbon 17 of the steroidal core. In Hatcher's work the steroidal core of 3 - α-androsterone and $3-\beta$-androsterone was retained intact. Also a series of analogs were synthesized from 5 -androsten-17-one, which included the $\Delta_{-}^{5(6)}$ double bond on the B-ring. In Solum's work the steroidal core of epiandrosterone was modified with the addition of the $\Delta_{-}^{16(17)}$ dou-
ble bond on the D-ring (Scheme 1.2). Mallinger et al. ${ }^{[11]}$ synthesized a series of compounds containing derivatives of 1,6-naphthyridines carboxamides. The amide variation at C-2 of the 1,6-naphthyridine scaffold demonstrated great affinity against CDK8. In this work, the main objective was to synthesize a series of azasteroid analogs based on the steroidal core of ergosterol 7 , reducing the $\Delta_{-}^{5(6)}$ double bond and retaining the $\Delta_{-}{ }^{7(8)}$ double bond on the B-ring of the steroidal core. Additionally, a series of pyridinyl substituents and the most potent 1,6-naphthyridine derivatives from Mallinger et al. ${ }^{[11]}$ will be attached to the C-17 side chain. Applying these modifications we aim to identify the effect of the $\Delta_{-}{ }^{7(8)}$ double bond on the steroidal core and the effect of the rotation of the C-17 side chain as a result of the free rotation of C-22 and 23.

Scheme 1.2. The most potent compounds from the works of Hatcher 8 and Solum 9.

In 1984, Rosser and Faulkner isolated two steroidal alkaloids named Plakinamine A 10 and Plakinamine B 11 (Figure 1.1), containing 3α-amino groups as well as N-heterocyclic substituents in the side chain, from the Micronesian sponge Plakina sp. ${ }^{[14]}$ Both alkaloids have shown antibacterial and antifungal activities in preliminary screenings, ${ }^{[14]}$ antimicro-
bial, cytotoxic, immunomodulatory, anti-HIV, DNA-, and RNA-cleaving properties have been reported. ${ }^{[15 ; 16 ; 17]}$ An attempt to synthesize 10 was performed so that the effect of the pyrrolidinone side chain substituent could also be evaluated against CDK8.

Figure 1.1 Structures of Plakinamine A 10 and Plakinamine B 11.

1.1. NUMBERING AND NOMENCLATURE OF STEROLS

1.1 Numbering and nomenclature of sterols

For further comprehension, the principles of the sterol nomenclature will now be explained. It is first based on a special numbering system as illustrated in Figure 1.2.

Figure 1.2 The numbering system of sterols.

Additionally, it is based on three sterol prototypes, the cholestanol, the ergostanol and the stigmastanol series as shown in Figure 1.3. In a simplified nomenclature, this designation not only assigns the substitution at C-24, but also the stereochemistry of the hydroxy group at position 3 (β-configuration) and the trans-fusion of ring A and ring B.

Cholestanol series

Ergostanol series

Stigmastanol series

Figure 1.3 Key sterol prototypes serving as basis for the sterol nomenclature.

1.2. PLANNED WORK

The usual names of the steroid backbone were used to name the substances (Figure 1.4).

Ergostane

Pregnane

Figure 1.4 Trivial names of the steroid backbone.

1.2 Planned Work

As mentioned previously, in this work we aim to elaborate a series of steroidal analogs, possessing the pregnane skeleton, a $\Delta-^{7(8)}$-double bond and a nitrogen atom in the ring A at position 3 and in the side chain at position 17, as illustrated in Scheme 1.3.

Scheme 1.3. Structural features of the targeted compounds.

1.2.1 Synthetic studies towards the steroidal analogs

Inspired by the works of Solum et al. ${ }^{[13]}$, Hatcher et al. ${ }^{[12]}$ and Mallinger et $a l .{ }^{[11]}$, we aimed to synthesize a series of steroidal analogs $\mathbf{1 2 a} \mathbf{-} \mathbf{h}$ containing the dimethylamino group (α-configuration) at position 3 with pyridinyl substituents and 1,6-naphthyridine carboxamide derivatives at the $\mathrm{C}-17$ side chain, as presented in Scheme 1.4.

12a-h

12a

12b

$12 f$

12c

12g

12d

12h

Scheme 1.4. The targeted derivatives 12a-h containing the dimethylamino group at position 3 and the side chain substituents at position 17 .

Inspired by literature work $^{[18 ; 19 ; 20 ; 13]}$, we planned our synthesis, as described in the retro synthetic route shown in Scheme 1.5, starting by
selectively reducing the $\Delta_{-}^{5(6)}$-double bond of the B-ring of ergosterol $\mathbf{7}$, followed by protection of the C-3 hydroxy group. The selective ozonolysis of the $\Delta-^{22(23)}$-double bond gave access to nucleophilic attack on the afforded aldehyde 13 , to form the terminal $\Delta_{-}^{22(23)}$-double bond 14 by Wittig olefination. Then, a deprotection of the acetyl group at C-3, followed by Mitsunobu inversion afforded the azidosteroid 15, which easily was converted to the desired key intermediate dimethylamino steroid 16 by a one-pot Staudinger and Eschweiler-Clarke reaction. Lastly, a Heck cross-coupling reaction with the terminal olefin 16 on the $\mathrm{C}-17$ side chain led to the desired target analogs $\mathbf{1 2 a} \mathbf{-} \mathbf{h}$.

14

15

Scheme 1.5. Retro synthetic route of the synthesis of the steroidal analogs.

1.2.2 Synthetic studies towards Plakinamine A

The synthesis of Plakinamine A 10 was planned to be performed following the retro synthetic route, described in Scheme 1.6.

17

10

18

1

\downarrow

13

Scheme 1.6. Retro synthetic route of the synthesis of Plakinamine A $\mathbf{1 0}$.

Using the aldehyde 13 as the starting point for the synthesis, an aldol reaction was planned to be implied to form a new carbon-carbon bond between 13 and a glycine molecule, followed by a deoxygenation of the β-hydroxy group via a Barton-McCombie reaction to afford 17. Sub-

1.2. PLANNED WORK

sequently, deprotection of the 3-acetyl could be performed, followed by Mitsunobu invertion to introduce the azide at the position 3, and deprotection of the Boc-protected amine to afford 18. A Michael addition reaction could then be implied to introduce the methyl glycinate group and afford 19. By this modifications, a Dieckmann condensation followed by a decarboxylation reaction could be performed to achieve the cyclization and the pyrrolidinone ring and give 20. Lastly, oxidation with sodium tungstate dihydrate $\left(\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right)$ to form the double bond in the pyrrolidinone ring, followed by a Wittig olefination on the carbonyl group to introduce the isopropyl group, and a Staudinger reaction on the azide at position 3 to afford Plakinamine A 10.

1.2.3 The ozonolysis reaction

The ozonolysis reaction is the cleavage of ozone with a double bond to afford carbonyl compounds. The reaction mechanism has been studied ${ }^{[21]}$ and involves a 1,3 -dipolar cycloaddition of ozone with an alkene to give the primary ozonide $\mathbf{2 1}$. This intermediate is unstable under the reaction conditions and undergoes a decomposition to give the zwitterion intermediate $\mathbf{2 2}$ and a carbonyl compound 23. The zwitterion intermediate reacts on the carbonyl compound 23 leading to the secondary ozonide 24. Reductive work-up procedures of $\mathbf{2 4}$ afford two carbonyl compounds (Scheme 1.7).

Scheme 1.7. Mechanism of the ozonolysis reaction.

1.2.4 The Wittig reaction

The Wittig reaction ${ }^{[22]}$ is the reaction of a phosphonium ylide with an aldehyde or ketone to introduce a carbon-carbon double bond in place of the carbonyl group. Phosphonium ylides are usually prepared by deprotonation of phosphonium salts, such as alkyltriphenylphosphonium halides. ${ }^{[23]}$ Treatment of the alkylphosphonium with usually organolithium reagents affords the desired phosphonium ylide (Scheme 1.8).

$$
\mathrm{Ph}_{3} \stackrel{+}{\mathrm{P}} \mathrm{CH}_{3} \mathrm{X}^{-} \xrightarrow{\text { Li-base }} \mathrm{Ph}_{3} \stackrel{+}{\mathrm{P}}-\stackrel{-}{\mathrm{C}} \mathrm{H}_{2}
$$

Scheme 1.8. The preparation of phosphonium ylides.

The mechanism of the Wittig reaction involves a $[2+2]$ cyclocaddition between the nucleophilic ylide carbon and the carbonyl group, forming

1.2. PLANNED WORK

the oxaphosphetane four-membered ring intermediate 25. ${ }^{[24]}$ The intermediate undergoes a reverse $[2+2]$ cycloaddition reaction to afford the desired alkene and the phosphonium oxide, as described in Scheme 1.9.

Scheme 1.9. The mechanism of the Wittig reaction.

1.2.5 The Mitsunobu reaction

The reaction was firstly reported in 1967, by its discoverer Oyo Mitsunobu. ${ }^{[25]}$. The reaction mechanism as described by Fletcher ${ }^{[26]}$ is the dehydrative coupling of a primary or secondary alcohol to a pronucleophile (NucH), which is mediated by the reaction between a dialkyl azodicarboxylate and a trialkyl- or triarylphosphine, leading to inversion of configuration as illustrated in Scheme 1.10. The pKa value of the pronucleophile must be around or below 11 in order for the betaine intermediate 26 from the reaction between the dialkyl azodicarboxylate and trialkyl- or triarylphosphine, with pKa 13, to be able to remove the acidic proton on the pronucleophile. Otherwise alkylation of the dialkyl azodicarboxylate occurs. ${ }^{[26]}$

Scheme 1.10. Mechanism of the Mitsunobu reaction.

1.2.6 The Staudinger reaction

In 1919, Staudinger and Meyer reported a reaction in which an azide reacted with a triaryl phosphine and water to afford a primary amine. ${ }^{[27]}$ The mechanism involves the formation of a phosphazide intermediate by an attack of the triayl phosphine on the far nitrogen of the azide. The intermediate then releases a molecule of nitrogen gas through rearrangement and forms an N-P ylide 27 . The ylide intermediate 27

1.2. PLANNED WORK

reacts with water to give a primary amine and a phosphonium oxide (Scheme 1.11). ${ }^{[28]}$

Scheme 1.11. Mechanism of the Staudinger reaction.

1.2.7 Eschweiler-Clarke reductive alkylation of amines

The Eschweiler-Clarke reaction is the reductive methylation of a primary or secondary amine to a tertiary amine, via a single or double methylation, respectively, with the use of formaldehyde and formic acid. ${ }^{[29]}$ An iminium ion 28 is first formed from condensation of the amine with the protonated formaldehyde. Formic acid reacts then with the iminium ion 28 to afford a methylated ammonium ion 29 and release CO_{2} gas, which is the driving force of the reaction. Deprotonation of 29 affords the methylated amine product. This process occurs twice for primary amines to give the tertiary amine, as described in Scheme 1.12. ${ }^{[30]}$ Other reducing agents such as sodium cyanoborohydride can be used in the reaction. ${ }^{[13 ; 31]}$

Scheme 1.12. Proposed mechanism of the Eschweiler-Clarke methylation reaction.

1.2.8 Synthesis of amide bonds

The use of amide bonds has unarguably been one of the most frequent and pivotal reactions performed in pharmaceutical industry. The most common synthetic strategy to form amide bonds from a carboxylic acid and an amine is to convert the carboxylic acid to an acid chloride, which can then react in a substitution reaction with the amine and form an amide bond, as described in Scheme 1.13.

Scheme 1.13. Formation of an amide bond from a carboxylic acid and amine via acid chloride.

Another way of forming amide bonds from carboxylic acids and amines is

1.2. PLANNED WORK

the use of a peptide coupling agent, such as HATU, in combination with a base, such as diisopropylethylamine. Reactions of carboxylic acids with amines in the presence of peptide coupling agents and a base, afford the desired amides in high yields and short reaction times (Scheme 1.14). ${ }^{[32]}$

Scheme 1.14. Mechanistic representation of the formation of an amide bond from a carboxylic acid and amine in the presence of HATU coupling agent.

1.2.9 The Heck cross-coupling reaction

Aryl and alkenyl halides react with alkenes in the presence of catalytic amounts of palladium to give net substitution of the halide by the alkenyl group. This reaction is known as the Heck reaction. ${ }^{[33 ; 34]}$. Many procedures use $\mathrm{Pd}(\mathrm{OAc})_{2}$ or other $\mathrm{Pd}(\mathrm{II})$ salts as catalysts with the catalyti-
cally active $\mathrm{Pd}(0)$ being generated in situ. The reactions are usually carried out in the presence of a phosphine ligand, with tris-o-tolylphosphine being preferred in many cases. ${ }^{[23]}$ The reaction is initiated by oxidative addition of the halide to a $\operatorname{Pd}(0)$ species generated in situ from the $\operatorname{Pd}(I I)$ catalyst. The arylpalladium(II) intermediate then forms a π-complex with the alkene, which followed by migratory insertion rearranges to a σ-complex. When Pd and a β-H are syn coplanar to each other then the σ-complex undergoes a β-H-elimination giving the desired alkene and X-Pd-H, which through reductive elimination regenerates $\mathrm{Pd}(0)$ to complete the catalytic cycle (Scheme 1.15).

In 1996, Jeffrey developed a Heck reaction with considerably milder and more efficient conditions. ${ }^{[35]}$ These involve using polar solvents, such as DMF, with added tetraalkylammonium salts. The combination of tetraalkylammonium salts and insoluble bases accelerates the rate to the extent that lower reaction temperatures are possible. One proposed explanation for this rate of enhancement is based on the fact that the tetraalkylammonium salts keep the concentration of soluble salts high, and halide ions stabilize and activate the $\operatorname{Pd}(0)$-complexes.

Scheme 1.15. Mechanism of the Heck cross-coupling reaction.

1.2.10 The glycine aldol

Aldol reactions constitute a powerful method for formation of carboncarbon bonds between two carbonyl compounds, resulting in the formation of chiral β-hydroxy carbonyl compounds or α, β-unsaturated ketones (Scheme 1.16). ${ }^{[23]}$

The mechanism of the base catalyzed aldol condensation involves a deprotonation of the α-proton of a carbonyl compound forming the nucleophile enolate. The enolate is able to attack the electrophile carbonyl compound, usually an aldehyde, and afford the β-hydroxy carbonyl compound. Dehydration of the hydroxy group leads to the α, β-unsaturated

Scheme 1.16. General base catalyzed aldol condensation.
ketone. Lewis acids and lithium bases are usually applied in aldol reactions in order to increase the electrophilicity of the carbonyl group and because they bring the reactants together in the chairlike transition state (Figure 1.5). ${ }^{[23]}$

Figure 1.5 The chairlike transition state of the aldol reaction between the enolate and the electrophile carbonyl compound.

In previous works Myers and co-workers ${ }^{[36]}$ have developed a stereocontrolled synthesis of syn- β-Hydroxy- α-amino acids by aldolization of pseudoephenamine glycamide leading to N-Boc protected glycine α-amino

1.2. PLANNED WORK

acids, as shown in Figure 1.6.

TFA

Figure 1.6 Stereocontrolled aldolization of pseudoephenamine glycamide leading to N -Boc protected glycine. ${ }^{[36]}$

2 Results and Discussion

2.1 Synthetic studies towards the steroidal analogs

2.1.1 Synthesis of the aldehyde intermediate

The first intermediate for the preparation of our series of analogs was ($3 S, 20 S$)-20-formylpregn-7-en-3-yl acetate $\mathbf{1 3}$. The intermediate was prepared in three steps from ergosterol 7, as outlined in Scheme 2.1.

$\mathrm{Ac}_{2} \mathrm{O}$, Pyridine rt, 16 h
88\%

Scheme 2.1. Overview of the preparation of the aldehyde intermediate 13 .

The first step of our synthesis was the selective hydrogenation of the $\Delta-{ }^{5(6)}$ double bond of 7 with the use of Raney Nikcel W-2 as cata-

2.1. SYNTHETIC STUDIES TOWARDS THE STEROIDAL ANALOGS

lyst and 4-dimethylaminobenzaldehyde to afford 5,6-dihydroergosterol $30^{[37 ; 38 ; 19]}$. The biggest challenge in the selective hydrogenation was the activation of Raney-Nickel. Initially, it was attempted to use commercially available Raney-Nickel slurries to selectively hydrogenate 7, which was unsuccessful. For this reason, Raney-Nickel needed to be activated from an aluminum-nickel alloy with concentrated aq. NaOH . Then, the reaction of 7 with the activated catalyst was performed under hydrogen atmosphere, normal pressure conditions, during six hours, in a mixture of tetrahydrofuran and ethyl acetate (1:1) and in presence of 4-dimethylaminobenzaldehyde to avoid the hydrogenation of the $\Delta-^{22(23)}$ double bond of 7 .

The dehydrogenated compound $\mathbf{3 0}$ was then converted to its acetate 31 to protect the free hydroxy group in the position 3 of the A ring, reacting with acetic anhydride and pyridine, either overnight at room temperature, or under reflux at $110^{\circ} \mathrm{C}$ for two hours. The acetylated compound 31 was subjected to a selective ozonlysis of its $\Delta_{-}^{22(23)}$-double bond to give the aldehyde $\mathbf{1 3}$. The two first steps were reproducible in high yields, 64% and 86% respectively, whereas for the last step, the ozonolysis reaction, it was not the case. Therefore we decided to focus on the improvement of its yield.

The particular oxidation reaction has been studied by diverse groups with yields varying between 20% and 40% of $13 .{ }^{[39 ; 40 ; 19 ; 18]}$ In our work it was decided to keep the same conditions as in the previous works and vary the amount of ozone added to the solution, as presented in Table 2.1.

2.1. SYNTHETIC STUDIES TOWARDS THE STEROIDAL ANALOGS

Table 2.1 Study on the effect of the amount ozone added to the solution of $\mathbf{3 1}$.

Entry	Period of ozone added (min)	Mass of $\mathbf{3 1}$ recovered (Yield)	Mass of $\mathbf{1 3}$ obtained (Yield)	Color of the solution
1	20	$121 \mathrm{mg}(6 \%)$	$164 \mathrm{mg}(9 \%)$	Blue
2	10	$788 \mathrm{mg}(36 \%)$	$192 \mathrm{mg}(10 \%)$	Yellow
3	13	$341 \mathrm{mg} \mathrm{(16} \mathrm{\%)}$	$786 \mathrm{mg}(42 \%)$	Yellow
4	15	$165 \mathrm{mg} \mathrm{(8} \mathrm{\%)}$	$248 \mathrm{mg}(13 \%)$	Blue

NB: The procedure: To a solution of 5,6-dihydroergosteryl acetate (2.2 $\mathrm{g}, 5.0 \mathrm{mmol})$ and pyridine $(2.5 \mathrm{~mL})$ in DCM it was added at $-78^{\circ} \mathrm{C}$ ozone (flow rate 60 liter $\mathrm{O}_{3} / \mathrm{h}$) during a known period of time. Two minutes later, $\mathrm{MeOH}(25 \mathrm{~mL})$ and dimethylsulfide $(0.75 \mathrm{~mL})$ were added. The mixture was allowed to stir for 30 min at $-78^{\circ} \mathrm{C}$ and then was allowed to warm up to room temperature. The reaction mixture was then concentrated and purified by flash chromatography.

From the results listed in Table 2.1, addition of ozone during a period of 15 minutes or more lead to the distinct blue color, indicating excess of ozone in the solution and thus reduction of both double bonds of $\mathbf{3 1}$. It was then decided to add ozone over 13 minutes, followed by reductive work up with MeOH and dimethylsulfide. The yield of this reaction varied between 33% to 42% and no further improvements were made in order to increase the yield of the ozonolysis reaction. It is important to point out again the importance of the addition of a defined amount of ozone in the solution, since excess of ozone leads to undesirable side reactions and decrease in the yield. Another important factor in the

2.1. SYNTHETIC STUDIES TOWARDS THE STEROIDAL ANALOGS

ozonolysis reaction was the addition of pyridine in the reaction mixture to avoid undesirable side products. It has been suggested that the zwitterion intermediate $\mathbf{3 2}$, formed during the ozonolysis reaction, reacts with the pyridine to form the aldehyde and pyridine oxide, as outlined in Scheme 2.2. ${ }^{[41]}$

32

Scheme 2.2. Reaction of the zwitterion intermediate 32 with pyridine.

It is significant that the aldehyde $\mathbf{1 3}$ isomerized on silica gel. The ${ }^{1} \mathrm{H}$ NMR spectrum of the aldehyde 13 (Figure 2.1) with (S)-configuration at C-20 has only one doublet signal at 9.52 ppm with a coupling constant of 3.30 Hz .

2.1. SYNTHETIC STUDIES TOWARDS THE STEROIDAL

 ANALOGS

Figure $2.1 \quad{ }^{1} \mathrm{H}$ NMR spectrum of the aldehyde $\mathbf{1 3}$.

In the case of the ${ }^{1} \mathrm{H}$ NMR spectrum shown below, the aldehyde 13 was left on silica gel overnight. Two doublet signals at 9.60 and 9.58 ppm are seen, with coupling constants 3.30 and 4.88 Hz , respectively, showing the isomerisation at the position 20. Furthermore, this isomerisation appears to influence the methyl groups in positions 20,19 and 18, as shown by the expansion in Figure 2.2 between 1.16 and 0.56 ppm .

2.1. SYNTHETIC STUDIES TOWARDS THE STEROIDAL

 ANALOGS

Figure $2.2{ }^{1} \mathrm{H}$ NMR spectrum of the aldehyde $\mathbf{1 3}$ showing the isomerisation at C-20.

It is speculated that the acidic environment in the silica gel causes protonation of the aldehyde, leading to a keto-enol tautomerisation equilibrium, and thus favorisation of the enol tautomer, as shown in Scheme 2.3. The longer the enol tautomer of the aldehyde is present, the more of the R-configuration at $\mathrm{C}-20$ will be present when the compound exits the acidic environment of the silica gel, which is confirmed later in Section

2.2.4.

Scheme 2.3. Keto-enol tautomerisation of the aldehyde 13.

2.1.2 The Wittig reaction

In order to synthesize a terminal alkene, which could later react in a Heck cross-coupling reaction, the Wittig reaction was considered. In earlier works of Sato et al. ${ }^{[42]}$ the Wittig reaction with triphenyl-(methoxy-methyl)-phopshonium chloride on various steroids was performed. Additionally, Renard et al. ${ }^{[43]}$ introduced pyridine and pyridinium substituets into the aldehyde 13, performing a Wittig reaction. Both works showed that this reaction is specific for the aldehyde function and furthermore no side reaction occured with the acetyl group on the 3-position.

Treatment of the aldehyde 13 with the in situ prepared ylide from methyltriphenylphosphonium bromide and n-butylithium ($1: 1$ ratio), provided the desired alkene 14 and the corresponding alcohol 33 as byproduct, as presented in Scheme 2.4.

The obtention of the desired alkene 14 and the corresponding alcohol 33 in good yields is dependent on the number of equivalents of the Wittig reagents used. As outlined in Table 2.2, increased amount of the ylide

2.1. SYNTHETIC STUDIES TOWARDS THE STEROIDAL ANALOGS

Scheme 2.4. The Wittig reaction performed on the aldehyde 13.
lead to increased yield of the alcohol 33. Considering that the next step of our synthesis was the deprotection of the ester, no further improvements were made, as the overall yield of 92% (entry 2) was satisfying.

Table 2.2 The effect of the amount of the Wittig reagents.

Entry	Number equivalents of	Yield	Yield	Yield	Overall
	methyltriphenylphosphonium	$\mathbf{1 4}$	$\mathbf{3 3}$	$\mathbf{1 3}$	Yield
	bromide	$(\%)$	$(\%)$	$(\%)$	$(\%)$
1	1 eq	44	21	8	65
2	1.5 eq	48	44	0	92
3	1.6 eq	36	51	0	87

2.1.3 Deprotection of the 3 -acetyl group

Different groups have accomplished the ester hydrolysis in position 3 in different yields depending on the side chain group attached to C-17 of the steroid main moiety. Gans et al. ${ }^{[20]}$ performed the ester hydrolysis using an aq. NaOH solution in THF or MeOH under reflux. In our case, it was decided to use milder conditions by treating $\mathbf{1 4}$ with excess of potassium carbonate in $\mathrm{CHC}_{3} / \mathrm{MeOH}$ (1:1), as proposed by Giera et al. ${ }^{[19]}$ and

Giroux et al. ${ }^{[44]}$, to afford the desired alcohol 33 in quantitative yield, as presented in Scheme 2.5.

14

99\%

Scheme 2.5. The hydrolysis of the 3-acetyl of the alkene 14.

2.1.4 The Mitsunobu reaction

The replacement of the hydroxy group of $\mathbf{3 3}$ was permformed via a Mitsunobu-type inversion of the chiral C-3 to the corresponding azide 15, as decribed in Solum et al. ${ }^{[13]}$. To achieve this inversion, the alcohol 33 was treated with triphenylphospine, diisopropyl azodicarboxylate and diphenyl phosphoryl azide at room temperature for 18 h , to afford the desired azido-steroid 15 in 95% yield, as outlined in Scheme 2.6. The presence of the azide group was confirmed by IR-spectroscopy by the characteristic peak at $2099 \mathrm{~cm}^{-1}$ (Figure A.25) and by the signal of C3 in ${ }^{13} \mathrm{C}$ NMR at 57.9 ppm (Figure A.21). It is noteworthy to mention the effect of the freshness of diisopropyl azodicarboxylate on the reaction yield. It was observed that fresh diisopropyl azodicarboxylate afforded the desired azide $\mathbf{1 5}$ in 95% yield, while the same reagent used a week later afforded 15 in 74% yield.

2.1. SYNTHETIC STUDIES TOWARDS THE STEROIDAL ANALOGS

33

95\%

Scheme 2.6. The Mitsunobu inversion of the alcohol 33 to the azido-steroid 15 .

2.1.5 Introduction of the dimethylamino group on the C-3

To introduce the dimethylamino group at the C-3, it was decided to convert the azido-steroid $\mathbf{1 5}$ to the primary amino-steroid and then to the dimethylamino-steroid 16, in a Staudinger and Eschweiler-Clarke one-pot synthesis, as reported by Solum et al. ${ }^{[13]}$ and Flyer et al. ${ }^{[31]}$. A Staudinger reaction with treatment with a 1M solution of trimethylphosphine in THF was employed to afford the primary amino-steroid, followed by the dialkylation of the primary amine, by an Eschweiler-Clarke reaction with excess formalin $(37 \% \mathrm{w} / \mathrm{t})$ and sodium cyanoborohydride. ${ }^{[29 ; 30]}$ This one-pot synthesis afforded the desired dimethylamino-steroid 16 in 89% yield, as presented in Scheme 2.7. It is important to mention that the Staudinger reaction did not achieve full conversion of the azidosteroid starting material 15 after 2 h , as in previous reported works. ${ }^{\text {[13;31] }}$ Thus, the mixture was allowed to stir for 4 h , yet full conversion was not achieved. The progression of the Eschweiler-Clarke dialkylation was monitored by ${ }^{1} \mathrm{H}$ NMR. In previous works ${ }^{[13 ; 31]}$ the reaction was completed after 1 h , while in our case the completion of the reaction was
achieved after 2 h . The signal for C-3 of the dimethylamine 16 in ${ }^{13} \mathrm{C}$ NMR was now found at 62.2 ppm , while in ${ }^{1} \mathrm{H}$ NMR the $\mathrm{H}-3$ proton was found as a multiplet underneath the dimethylamine singlet at 2.30 ppm (Figure A.28, Figure A.27).

15
 89\%

16

Scheme 2.7. One-pot synthesis of the dimethylamino-steroid 16.

2.1.6 Preparation of amide derivatives from 8-bromo-1,6-naphthyridine-2-carboxylic acid

As mentioned in the introduction, the preparation of the desired amides at C-2 of the 1,6-naphthyridine scaffold was inspired by Mallinger et al. ${ }^{[11]}$. This was achieved with treatment of the commercially available 8-bromo-1,6-naphthyridine-2-carboxylic acid 34 with excess of HATU, diisopropylethylamine and a selection of amines to yield the desired series of amides 35a-d, as outlined in Scheme 2.8. The reaction proceeded in quantitative yields within 2 h . To the reaction of $\mathbf{3 4}$ and 3 -methoxy-azeditine hydrogenchloride it was employed large excess of triethylamine instead of diisopropylethylamine. It is noteworthy to mention that excess HATU (3.5 eq) was necessary to achieve full conversion of the starting material 34, as the reaction yields with 1.2 eq $\operatorname{HATU}^{[11]}$ varied between $33-43 \%$.

2.1. SYNTHETIC STUDIES TOWARDS THE STEROIDAL

 ANALOGS

Scheme 2.8. Overview of the C-2 amide variation of the 8-bromo-1,6-naphthyridine scaffold.

2.1. SYNTHETIC STUDIES TOWARDS THE STEROIDAL ANALOGS

2.1.7 Introduction of the heterocyclic moieties on C-23 of the steroid skeleton

We lastly planned to introduce a series of heterocyclic moieties on the side chain of the dimethylamino-steroid 16. The preparation of the terminal $\Delta-^{22(23)}$-double bond on the steroid side-chain enabled the possibility of a Heck cross-coupling reaction of the steroid moiety with various arylhalides. The arylhalides selected for this reaction were the commercially available 3 -iodopyridine, 4 -iodopyridine, 2 -amino- 5 -iodopyridine, 3 -chloro- 5 -iodopyridine and the prepared 8-bromo-1,6-naphthyridine carboxamide derivatives $\mathbf{3 5 a - d}$. Treatment of the dimethylamino-steroid 16 with the in situ prepared $\operatorname{Pd}(0)$ active catalyst from $\operatorname{Pd}(\mathrm{OAc})_{2}(10 \%$ $\mathrm{mol}), \mathrm{P}(o-\mathrm{tol})_{3}(20 \% \mathrm{~mol})$, the arylhalide (2.0 eq) and triethylamine in DMF at $100^{\circ} \mathrm{C}$ to afford the desired analogs 12a-g in yields varying from $13-31 \%$, after further purification by reverse phase preparative HPLC, as outlined in Scheme 2.9. All halide substrates were successfully coupled to 16, except for 3 -chloro-5-iodopyridine. Due to low yields and poor purity after purification with flash column chromatography, analogs 12f and $\mathbf{1 2 g}$ were decided to not proceed with further purification by reverse phase preparative HPLC.

2.1. SYNTHETIC STUDIES TOWARDS THE STEROIDAL

 ANALOGS

12a
(31\%)

$12 e$
(31%)

12b
(13\%)

$12 f$
(confirmed by MS)

12c
(16\%)

12 g
(confirmed by MS)

Scheme 2.9. Overview of the Heck cross-coupling between 16 and the selected arylhalides.

2.1. SYNTHETIC STUDIES TOWARDS THE STEROIDAL ANALOGS

Under the same conditions, the unexpected ketone byproducts $\mathbf{3 6 a} \mathbf{-} \mathbf{g}$ were identified after each reaction (Scheme 2.10).

36a-g

36a

36e

36b

36f

Scheme 2.10. Overview of the byproducts from the Heck crosscoupling reactions between $\mathbf{1 6}$ and the selected arylhalides.

It is postulated, by Hosokawa et al. ${ }^{[45]}$ that presence of O_{2} in the Heck reaction induces an oxidative dealkylation of NR_{3} (Scheme 2.11). As shown in the catalytical cycle of the Heck reaction (Scheme 1.15), $\beta-\mathrm{H}$ elimination gives the desired trans alkene and X-Pd-H, which through reductive elimination decomposes to $\mathrm{Pd}(0)$ and HX . If O_{2} is in presence, it can react with either $\mathrm{X}-\mathrm{Pd}-\mathrm{H}$ or $\mathrm{Pd}(0)$ to generate $\mathrm{X}-\mathrm{Pd}-\mathrm{OOH}$

2.1. SYNTHETIC STUDIES TOWARDS THE STEROIDAL ANALOGS

species. ${ }^{[46 ; 47 ; 48]}$ More specifically, as suggested the $\mathrm{X}-\mathrm{Pd}-\mathrm{OOH}$ species can be induced either by reaction between $\mathrm{X}-\mathrm{Pd}-\mathrm{H}$ with O_{2} or via peroxopalladium(II) formed by $\operatorname{Pd}(0)$ and O_{2}. Then, as proposed by Muzart et al. ${ }^{[49]}$ coordination of the tertiary amine to $\mathrm{X}-\mathrm{Pd}(\mathrm{II})-\mathrm{OOH}$ would activate the hydrogen standing β to the nitrogen atom, leading to the formation of the palladacycle $\mathbf{3 7}$, which is followed by the $\beta-\mathrm{NMe}_{2}$ elimination to yield the alkene Pd-coordinated complex. $38^{[50 ; 51 ; 33]}$ Protonolysis of $\mathbf{3 8}$ by HI leads to ligand shift affording dimethylamine and $\mathbf{3 9}$. Then, the carbonyl is produced by a Wacker-type oxidation of $\mathbf{3 9}$ via the reaction pathway suggested by Roussel and Mimoun. ${ }^{[52}$

2.1. SYNTHETIC STUDIES TOWARDS THE STEROIDAL ANALOGS

Scheme 2.11. Suggested mechanism of the oxidative dealkylation of the dimethylamino group on the A ring of the steroid moiety.

In an attempt to optimize the Heck reaction conditions, different parameters were varied in an effort to increase the yield of the reaction and eliminate the undesired ketone byproducts, as outlined in Table 2.3.

2.1. SYNTHETIC STUDIES TOWARDS THE STEROIDAL ANALOGS

Table 2.3 Study on the Heck reaction conditions.

Entry	Phosphine					
	Ligand	Base	Additives	Yield $\mathbf{1 2 e}$ a	Yield $\mathbf{3 6 e}$	Yield recovered $(\%)$
	$\mathrm{P}(o \text {-tol })_{3}$	NaHCO_{3}	-	16	10	40
2	-	NaHCO_{3}	n- $\mathrm{Bu}_{4} \mathrm{NCl}$	3	14	12
3	$\mathrm{P}(o \text {-tol })_{3}$	NaHCO_{3}	n- $\mathrm{Bu}_{4} \mathrm{NCl}$	22	57	-
4	$\mathrm{P}(o \text {-tol })_{3}$	$\mathrm{Et}_{3} \mathrm{~N}$	-	56	28	15

${ }^{a}$ Yields given before purification with reverse phase HPLC.

In spite of variations in base, phosphine ligand and additives, the ketone byproduct was still present. This left the solvent as the only possible source of oxygen in the reaction, and therefore two different methods of degassing DMF were applied, ultrasound shaking under nitrogen bubbling and bubbling with helium gas. Neither method improved the outcome of the reaction as the ketone byproduct was still present after each attempt. Due to small amounts of 16 left, the procedure of degassing by freeze-pump-thaw was not attempted.

As shown in Table 2.3, even if the Jeffrey reaction conditions ${ }^{[35]}$ of entry 2 lead to full consumption of the starting material 16, the removal of

2.1. SYNTHETIC STUDIES TOWARDS THE STEROIDAL

 ANALOGSthe tetrabutylammonium salt was not possible, neither by flash column chromatography, due to the very polar eluent ($10 \% \mathrm{MeOH}$ in DCM), nor by extraction with diethyl ether, due to the poor solubility of $\mathbf{1 2 e}$ in $\mathrm{Et}_{2} \mathrm{O}$. Reviewing the results from Table 2.3 and the factors discussed above, it was decided to proceed with the remaining of the coupling reactions mentioned above with the conditions shown in entry 4.

At this point it is significant to point out the effect of the phosphine ligand on the Heck couplings performed. The reaction of the iodoaryl substituents with the terminal olefin was inhibited by the presence of the phosphine ligand. After 24 h the starting material was still not consumed, while when the Jeffrey conditions were applied the starting material was fully consumed after 24 h . This occurred most likely due to the excess of the phosphine ligand. In the presence of excess ligand, the concentration of the active species could be strongly decreased, which thus lead to inhibition of the catalytic process. ${ }^{[53]}$ Additionally, the bromo-naphthyridine carboxamide derivatives showed full consumption of the starting material in presence of the phosphine ligand.

2.2. SYNTHETIC STUDIES TOWARDS PLAKINAMINE A

2.2 Synthetic studies towards Plakinamine

 A
2.2.1 The glycine aldol reaction

In our study towards Plakinamine A 10 the next step of our synthesis was the formation of a new carbon-carbon bond between the aldehyde 13 and a glycine molecule. Our first attempt was the aldol reaction between aldehyde 13 and N-Boc-glycine methyl ester, as outlined in Scheme 2.12. Unfortunately, the attempts made did not afford the desired β-hydroxy carbonyl compound 40.

Scheme 2.12. Aldol reaction between 13 and N-Boc-glycine methyl ester.

Being a crucial step to our synthesis towards Plakinamine A 10 the reaction was carried out under different conditions, where none of them gave the desired β-hydroxy carbonyl compound 40. The results of this study are presented in Table 2.4.

Table 2.4 Study on the aldol reaction between aldehyde 13 and N-Boc-glycine methyl ester.

Entry	Lewis acid additive	Amount of LDA added	Reaction time	Mass of 40 obtained (Yield)
1	ZnCl_{2}	$\begin{gathered} 0.07 \mathrm{~mL} \\ (1.3 \mathrm{eq}) \end{gathered}$	45 min	-
2	ZnCl_{2}	$\begin{gathered} 0.07 \mathrm{~mL} \\ (1.3 \mathrm{eq}) \end{gathered}$	1.5 h	-
3	ZnCl_{2}	$\begin{gathered} 0.11 \mathrm{~mL} \\ (2 \mathrm{eq}) \end{gathered}$	45 min	-
4	ZnCl_{2}	$\begin{gathered} 0.11 \mathrm{~mL} \\ (2 \mathrm{eq}) \end{gathered}$	1.5 h	-
5	ZnCl_{2}	$\begin{gathered} 0.17 \mathrm{~mL} \\ (3 \mathrm{eq}) \end{gathered}$	45 min	-
6	ZnCl_{2}	$\begin{gathered} 0.17 \mathrm{ml} \\ (3 \mathrm{eq}) \end{gathered}$	1.5 h	-
7	ZnCl_{2}	$\begin{gathered} 0.22 \mathrm{~mL} \\ (4 \mathrm{eq}) \end{gathered}$	16 h	-
8	-	$\begin{gathered} 0.11 \mathrm{~mL} \\ (2 \mathrm{eq}) \end{gathered}$	45 min	-
9	-	$\begin{gathered} 0.18 \mathrm{~mL} \\ (3.2 \mathrm{eq}) \end{gathered}$	45 min	-
10	-	$\begin{gathered} 0.23 \mathrm{~mL} \\ (4.1 \mathrm{eq}) \end{gathered}$	45 min	$\begin{gathered} 3.33 \mathrm{mg} \\ (15 \%) \end{gathered}$

2.2. SYNTHETIC STUDIES TOWARDS PLAKINAMINE A

NB: The procedure: To a stirred solution of N-Boc-glycine methyl ester ($0.09 \mathrm{~mL}, 0.052 \mathrm{mmol}, 1.3 \mathrm{eq}$) in anhydrous THF (2 mL) it was added LDA (1 M in Hexanes/THF) under inert atmosphere at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and a solution of $13(150 \mathrm{mg}$, $0.4 \mathrm{mmol}, 1 \mathrm{eq})$ in anhydrous THF (1.7 mL) was added. The resulting solution was stirred for a known period of time at $-78^{\circ} \mathrm{C}$. The reaction mixture was quenched with destilled water $(0.5 \mathrm{~mL})$ and the mixture was then allowed to warm up to room temperature. The mixture was extracted with DCM and the combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude product was then purified by flash column chromatography.

Unfortunately, as shown in Table 2.4 the starting material was recovered each time, apart from the conditions shown in entry 10 , where a mixture of an aldolization product together with the starting material 13 was collected. The absence of the tert-butyl group from the glycine ester was identified and additionally, MS analysis revealed a mass of $430.29 \mathrm{~g} / \mathrm{mol}$ ($561.76 \mathrm{~g} / \mathrm{mol}$ for 40), which also confirmed that the desired β-hydroxy carbonyl compound 40 was not synthesized. It is speculated that selfcondensation of N -Boc-glycine methyl ester and steric hindrance due to the N-Boc protecting group, were the main reasons for the low yields.

2.2.2 Stereocontrolled synthesis by direct aldolization of Pseudoephedrine Glycamide

Following the established aldolization method of Myers et al. ${ }^{[36]}$, it was decided to attempt an aldolization between 13 and pseudoephedrine glycamide 41. (R, R)-pseudoephedrine N-Boc-glycamide 42 was synthesized in 83% yield from (R, R)-pseudoephedrine 43 and N-Boc-glycine treated with triethylamine and pivaloyl-Cl in DCM. Sufficient purification was not achieved by flash column chromatography. Subsequently, 42 was treated with trifluoroacetic acid in DCM to give the corresponding free amine (R, R)-pseudoephedrine glycamide 41, as outlined in Scheme 2.13. Unsuccessful purification of 41 lead to the use of crude 41 in the aldolization reaction with 13.

Scheme 2.13. Preparation of (R, R)-pseudoephedrine glycamide 41.

2.2. SYNTHETIC STUDIES TOWARDS PLAKINAMINE A

(R, R)-pseudoephedrine glycamide $\mathbf{4 1}$ was treated with LiHMDS in the presence of LiCl at $-78^{\circ} \mathrm{C}$ and 1 eq. of the aldehyde 13, as described in Myers et al. ${ }^{[36]}$. These conditions afforded the desired β-hydroxy carbonyl 44 in low yields ($<10 \%$), as outlined in Scheme 2.14. The purification of the reaction was also problematic due to the presence of impurities from LiHMDS and further unidentified impurities. Moreover MS did not confirm the presence of the desired compound and therefore this synthetic pathway was abandoned.

13

44

Scheme 2.14. Aldolization of the aldehyde 13 with (R, R) pseudoephedrine glycamide 41.

2.2.3 Aldolization of the aldehyde 11 with N -Boc-3-pyrrolidinone

Another attempt towards Plakinamine A 10 was made. This time a new aldol reaction between the aldehyde 13 and N -Boc-3-pyrrolidinone was studied. The aldolization was performed with LiHMDS and LiCl affording the thermodynamically stable α, β-unsaturated ketone 45 in 5% yield (Scheme 2.15). An additional obstacle with the reaction was also the self-condensation of the N-Boc-3-pyrrolidinone during the reaction, which in combination with the steric factors from the Boc-protecting group can justify the low yields.

Scheme 2.15. Aldol reaction between 13 and N-Boc-3pyrrolidinone.

The low yields in each of the attempted aldolizations, including the byproducts produced, consisted the aldol reaction an unattractive approach for the formation of a new carbon-carbon bond between the aldehyde 13 and a carbonyl compound.

2.2. SYNTHETIC STUDIES TOWARDS PLAKINAMINE A

2.2.4 Synthesis of the TBS-protected aldehyde steroid

From the results of our Wittig reaction and previous works of Renard et al. ${ }^{[18]}$ and Gans et al. ${ }^{[20]}$, it was shown that the use of Li-bases on 3-acetyl protected aldehyde $\mathbf{1 3}$ led to the deprotected 3-hydroxy byproducts. As a possible effect of the poor selectivity and yields of the aldol reactions mentioned above it was decided to approach the same route of synthesis by replacing the 3 -acetyl with 3-tert-butyldimethylsilyl ether from $\mathbf{1 3}$ and 31, as outlined in Scheme 2.16 and Scheme 2.17, respectively.

46
Scheme 2.16. Overview of the preparation of the TBS-protected aldehyde $\mathbf{4 6}$ from 13.

2.2. SYNTHETIC STUDIES TOWARDS PLAKINAMINE A

Preparation of 46 from 13 was successfully achieved by deprotection of the 3 -acetyl-group with potassium carbonate as performed previously, to afford the desired alcohol $\mathbf{4 7}$ in quantitative yield. It is noteworthy that 47 isomerized in silica giving the desired alcohol in a $60 / 40 \%(S / R)$ mix of isomers on (Figure A.90). Then, treatment of 47 with imidazole and TBDMS-Cl in THF for 16 h , afforded 46 in quantitative yield with (R)-configuration on C-20 (Figure A.83). The reaction of 47 with TBDMS-OTf and 2,6-lutidine in DCM afforded 46 in 13% yield.

Scheme 2.17. Overview of the preparation of the TBS-protected aldehyde 46 from 31.

The first step of the preparation of the silyl-ether protected aldehyde 46 from 31, was the hydrolysis of 31 under mild conditions with excess potassium carbonate in $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ to afford the corresponding alcohol 30 in quantitative yield. The deprotection was also performed with

2.2. SYNTHETIC STUDIES TOWARDS PLAKINAMINE A

treatment of $\mathbf{3 1}$ with a 10% potassium hydroxide solution in MeOH , giving the desired alcohol 30 in quantitative yield as well. The obtained 30 was treated with imidazole, TBDMS-Cl in THF at room temperature to give 48 in 96% yield. Compound 48 was then treated identically to 31 with ozone added during the period of 13 min , to give the desired silyl ether-protected aldehyde 46 with (S-configuration) in 6% yield.

In order to improve the yield of the aldehyde 46, the ozonolysis reaction was studied further. Based on the work of Fuse et al. ${ }^{[54]}$, it was decided to omitt MeOH altogether and increase the amount of dimethylsulfide added, under addition of varying amount of ozone. The results are presented in Table 2.5.

Table 2.5 Study on the effect of amount ozone added to the solution of 46.

Entry	Period of ozone added	Color of the solution
1	15 min	Blue
2	14 min	Blue
3	9 min	Blue

In our first attempt saturation of ozone in the mixture was indicated by the characteristic blue color after 15 minutes. The next attempt aimed to avoid this saturation and not let the addition of ozone to exceed 14 minutes. Surprisingly, after 14 minutes of addition of ozone the mixture turned blue showing the sensitivity of the reaction to the amount of ozone added. Lastly, a third attempt was made, where after 9 minutes of addition of ozone, the blue color indicated saturation of ozone in the solution. Due to the high sensitivity of the reaction towards the amount

2.2. SYNTHETIC STUDIES TOWARDS PLAKINAMINE A

of ozone added, it was decided to not proceed further with the silyl ether as the protecting group.

3 Conclusion and further work

3.1 Synthetic studies towards the steroidal analogs

In conclusion, this thesis describes the synthesis of six new steroidal analogs containing at least one nitrogen heteroatom in both the side chain position 3 and position 17, designed as potential CDK8 inhibitors.

The carbonyl group of the aldehyde 13 was used as the starting point for the construction of the C-17 side chain. Although the slight increase in the reaction yield, the yield of the reaction remained low varying from 33% to 42%. The Wittig reaction of the aldehyde 13 led to the terminal olefin 14 on the C-17 side chain, giving also the corresponding alcohol byproduct 33, in 92% overall yield. The Wittig reaction was therefore a very sufficient procedure for the formation of carbon-carbon bonds from the aldehyde 13. The Mitsunobu reaction performed to introduce an azide with inverted stereochemistry on C-3 afforded the azidosteroid 15 in reproducible high yields $74-95 \%$ and trouble-free purification. Followed by one-pot Staudinger reduction and Eschweiler-Clarke reductive dialkylation the azidosteroid 15 was converted to the key intermediate dimethylamino steroid 16 in 87% yield. Although, the toxic conditions the one-pot reaction mentioned above, is an excellent method for the convertion of azides to dialkylated amines with relatively short reaction times (4 h). The seven-step synthesis to the key intermediate $\mathbf{1 6}$ was reproducible in high yields, besides the ozonolysis reaction, and was proved to be a sufficient synthesis.

3.1. SYNTHETIC STUDIES TOWARDS THE STEROIDAL ANALOGS

Additionally, four 8-bromo-1,6-naphthyridine-2-carboxamides 35a-d were synthesized by amide coupling from the commercially available 8 -bromo-1,6-naphthyridine- 2-carboxylic acid 34 .

Finally, four pyridinyl substituents and the four aryl-carboxamides 35ad obtained, were attempted to be coupled to the key intermediate $\mathbf{1 6}$ by a Heck cross-coupling reaction. Seven of them showed a successfully coupling, while five out of these seven showed a sufficient yield and were further purified by reverse phase preparative HPLC. A ketone byproduct from the oxidation of the dimethylamino group at the C-3 position was collected from each reaction. By altering the reaction conditions, it was concluded that presence of oxygen in the solvent caused the oxidation reaction. Thus, the degassing method by freeze-pump-thaw could be an efficient way to eliminate the occurring by-reaction or the change of solvent to a less polar solvent which can easier be degassed, as for instance THF. Hence, if the issue of the presence of oxygen in the reaction is solved, then the Heck reaction would be a sufficient method for the coupling of arylhalides to the terminal olefin 16.

The synthesized analogs 12a-g will be tested for their ability to inhibit CDK8. Furthermore, the compounds will be also tested for their selectivity towards CDK8 and to demonstrate "proof of concept" in cell studies against AML-cancer cells.

3.2. SYNTHETIC STUDIES TOWARDS PLAKINAMINE A

3.2 Synthetic studies towards Plakinamine

A

In the attempt towards Plakinamine A 10, the aldehyde 13 was the starting point for the construction of the $\mathrm{C}-17$ side chain once again. Unfortunately, the attempted aldol condensations performed were not sufficient enough and therefore no further synthesis was achieved. Silyl ether protection of the C-3 hydroxy group on the aldehyde 13 showed complete inversion of the stereochemistry on C-20, while also ozonolysis of 48 was abandoned. For future works, a Knovenagel reaction between the aldehyde 13 and methyl 2-nitroacetate could be attempted in order to avoid a possible imine formation. Otherwise, from our work it is shown that the Wittig reaction is a sufficient way of forming carbon-carbon bonds from the aldehyde 13. Herein, a suggested alternative for the formation of the desired carbon-carbon bond is described in Scheme 3.1.

13

Scheme 3.1. Alternative formation of the carbon-carbon bond by Wittig reaction.

With the reaction above as starting point the following retro synthetic pathway for the synthesis of Plakinamine A 10 is suggested (Scheme 3.2).

Starting from aldehyde 13 and performing the Wittig olefination shown

3.2. SYNTHETIC STUDIES TOWARDS PLAKINAMINE A

in Scheme 3.1, followed by hydrogenation of the $\Delta ـ^{22(23)}$ double bond formed after the Wittig olefination can afford 49. A new Wittig reaction on the carbonyl group to introduce the isopropyl group, followed by deprotection of the N-Boc and protection with benzoyl ether can afford 50. Cyclization can be achieved following the procedure of Noda et al. ${ }^{[55]}$ to afford 51. Then oxidation with sodium tungstate dihydrate $\left(\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right)$ to form the double bond in the pyrrolidine ring, followed by deprotection can afford 52. Lastly, as performed in our project, a Mitsunobu inversion can yield the azidosteroid in position C-3, which followed by a Staudinger reaction can afford Plakinamine A 10.

3.2. SYNTHETIC STUDIES TOWARDS PLAKINAMINE A

10

\downarrow

Scheme 3.2. Suggested retro synthetic pathway for the synthesis of Plakinamine A 10.

4 Experimental

4.1 General materials and methods

4.1.1 Solvents

All solvents were used as purchased without further purification unless stated otherwise. All anhydrous reaction were carried out under inert atmosphere (N_{2}) using the Schlenk techniques or round-bottomed flasks. Anhydrous solvents were collected from a Braun "MB SPS-800 Solvent Purification System".

4.1.2 Reagents

All reagents were used as purchased without further purification unless stated otherwise.

4.1.3 Chromatography

Reactions were monitored by thin-layer chromatography carried out on silica gel on aluminum ($60 \AA, \mathrm{~F}_{254}$ from the company Merck) using UV $(254 \mathrm{~nm})$ as visualizing agent, or an aqueous solution of potassium permaganate and potassium carbonate, and heat as developing agent for non-UV active compounds.

Flash column chromatography was carried out with silica gel from Sigma Aldrich, pore size $60 \AA, 200-400$ mesh particle size.

Analytical High-Performance Liquid Chromatography (HPLC) was per-

4.1. GENERAL MATERIALS AND METHODS

formed using an Agilent Technology "1290 Infinity" instrument with a G4220B binary pump, G4226A autosampler, G1316A column compartment and G1315D diode array detector (DAD). Unless otherwise stated, a Kinetex ${ }^{\circledR}$-C8 column ($100 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size) and a Zorbax Eclipse XDB-C18 column ($150 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size) were used.

Preparative HPLC was performed using an Agilent Technology "G1361A 1260" pump, "G2260A 1260" autosampler, "G1364B 1260" fraction collector, "G1315D 1260 Infinity" DAD VL and a Kinetex ${ }^{\circledR}$-C8 column (150 x $21.2 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size) or a Zorbax Eclipse XDB-C18 column ($150 \times 21.2 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size) were used.

Agilent Technologies ChemStation for LC and CE systems (version: B.04.03 SPI[87]) software was used for automation and processing. Solvent were analytical (HPLC) graden and the water Mili-Q purified.

- Method A: ACN: $\mathrm{H}_{2} \mathrm{O}$ (both modified with 0.2% formic acid) isocratic elution 30:70 for over 10 min at a flow rate of $20 \mathrm{~mL} / \mathrm{min}$, using a Zorbax Eclipse XDB-C18 column (150 x $21.2 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size).
- Method B: MeOH: $\mathrm{H}_{2} \mathrm{O}$ (both modified with 0.2% formic acid) gradient elution from 50:50 to 80:20 over 6 min at a flow rate 20 $\mathrm{mL} / \mathrm{min}$, using a Kinetex ${ }^{\circledR}$-C8 column ($150 \times 21.2 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size).

4.1.4 Analytical techniques

- NMR spectra were recorded using a Bruker 600 MHz "Avance III" with a 5 mm cryogenic CP-TCI Z-gradient probe, operating at

600 MHz for ${ }^{1} \mathrm{H}$ NMR and 150 MHz for ${ }^{13} \mathrm{C}$ NMR or Bruker 400 MHz "Avance III HD" with a 5 mm SmartProbe Z-gradient probe. In all CDCl 3 spectra, chemical shifts are expressed as $\delta(\mathrm{ppm})$, relative to TMS, and coupling constants (J) are in Hertz. The following abbreviations are used to explain the multiplicities: $\mathrm{s}=$ singlet, d $=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. All spectra were processed using MestRenova v14.1.2.

- Accurate mass determination in positive and negative mode was performed on a "Synapt G2-S" Q-TOF instrument from Water TM. Samples were ionized by the use of ASAP probe (APCI) or ESI probe. No chromatographic separation was used previous to the mass analysis. Calculated exact mass and spectra processing was done by Waters TM Software Masslynx V4.1 SCN871.
- IR spectra was obtained using a Bruker "Alpha FTIR ECO-ATR" spectrometer with OPUS software.
- Melting points were determined using a Stuart SMP40 automatic melting point recorder.
- Optical rotation was recorded using an Anton Paar "MCP 5100" polarimeter, with a 2.5 mm stainless steel sample holder, using the sodium D-line (589 nm), at $20^{\circ} \mathrm{C}$.
- Reaction of ozonolysis was performed on an ozone-generator model 500 from Fischer

4.1. GENERAL MATERIALS AND METHODS

4.1.5 $5 \alpha, 6$-Dihydroergosterol (30)

To a solution of $\mathrm{NaOH}(30 \mathrm{~g})$ in distilled water $(120 \mathrm{~mL})$ it was added at $0^{\circ} \mathrm{C}$ portionwise nickel-aluminum alloy (24 g), so that the temperature stayed under $25^{\circ} \mathrm{C}$. The reaction mixture was then allowed to come back at room temperature over 1 h and then to stir at $70^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was then allowed to come back to room temperature and the catalyst was washed with distilled water till $\mathrm{pH}=7(12 \times 200$ $\mathrm{mL})$, absolute $\mathrm{EtOH}(3 \times 100 \mathrm{~mL})$ and EtOAc $(3 \times 100 \mathrm{~mL})$. To the alloy it was added EtOAc $(150 \mathrm{~mL})$. To the Raney nickel catalyst obtained it was added THF (150 mL) , ergosterol $7(8.0 \mathrm{~g}, 20 \mathrm{mmol})$ and 4-DMAB (1.5 $\mathrm{g}, 10 \mathrm{mmol})$. The hydrogenation of the reaction mixture was carried out at room temperature and at atmospheric pressure for 6 h . After hydrogenation, the reaction mixture was decanted, filtered over celite and washed with $\mathrm{CHCl}_{3}(3 \times 200 \mathrm{~mL})$. The resulting filtrate was concentrated and recrystallized from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$, to give $\mathbf{3 0}$ as a white solid (5.14 $\mathrm{g}, 13 \mathrm{mmol}, 64 \%$)
${ }^{1} \mathbf{H N M R}\left(\mathbf{C D C l}_{3}, 400 \mathrm{MHz}, \delta \mathbf{p p m}\right): 5.24-5-13(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-22$, H-23), 3.63-3.56 (m, 1H, H-3), $2.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-20, \mathrm{H}-12 \mathrm{a}), 1.89-1.20(\mathrm{~m}$, $23 \mathrm{H}), 1.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, J=3.8,13.5 \mathrm{~Hz}), 1.02(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}-21, J=6.6$

Hz), 0.91 (d, $3 \mathrm{H}, \mathrm{H}-28, \mathrm{~J}=6.8 \mathrm{~Hz}$), 0.83 (2xd, $6 \mathrm{H}, \mathrm{H}-26, \mathrm{H}-27, J=$ $6.8 \mathrm{~Hz}), 0.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-19), 0.55$ (s, 3H, H-18) NMR corresponds with previously reported spectra. ${ }^{[56]}$

4.1.6 $5 \alpha, 6$-Dihydroergosteryl acetate (31)

To a stirred solution of $\mathbf{3 0}(3.83 \mathrm{~g}, 9.7 \mathrm{mmol})$ in pyridine (110 mL) it was added acetic anhydride ($2.5 \mathrm{~mL}, 22.9 \mathrm{mmol}, 2.4 \mathrm{eq}$). The solution was stirred for 16 h at room temperature. The mixture was concentrated in vacuo and purified through a short pad of silica (silica gel, pentane/EtOAc 10:1), to give 31 as white solid ($3.62 \mathrm{~g}, 8.2 \mathrm{mmol}, 88 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \delta \mathrm{ppm}\right): 5.24-5-13(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-22$, H-23), 4.73-4.65 (m, 1H, H-3), 2.02 (s, 3H, CH ${ }_{3} \mathrm{CO}$), 2.01-1.96 (m, 2H, $\mathrm{H}-12 \mathrm{a}$ and $\mathrm{H}-20$), 1.87-1.21 (m, 23H), 1.13 (ddd, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, J=3.8,13.5$ Hz), 1.02 (d, $3 \mathrm{H}, \mathrm{H}-21, J=6.6 \mathrm{~Hz}$), 0.91 (d, $3 \mathrm{H}, \mathrm{H}-28, J=6.8 \mathrm{~Hz}$), 0.83 ($2 x \mathrm{x}, 6 \mathrm{H}, \mathrm{H}-26, \mathrm{H}-27, J=6.8 \mathrm{~Hz}$), 0.81 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-19$), 0.54 (s, 3H, $\mathrm{H}-18)$. NMR corresponds with previously reported spectra. ${ }^{[19]}$

4.1. GENERAL MATERIALS AND METHODS

4.1.7 (3S,20S)-20-Formylpregn-7-en-3-yl acetate (13)

To a stirred solution of $\mathbf{3 1}(2.2 \mathrm{~g}, 5 \mathrm{mmol})$ and pyridine $(2.5 \mathrm{~mL})$ in DCM (500 mL) it was added at $-78^{\circ} \mathrm{C}$ (flow rate $60 \mathrm{~L} \mathrm{O}_{3} / \mathrm{h}, 16 \mathrm{mmol}, 1.6$ eqq) during 13 min . Two minutes later, $\mathrm{MeOH}(25 \mathrm{~mL})$ and dimethylsulfide $(0.75 \mathrm{~mL})$ were added. The reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and then was allowed to warm up to room temperature. The reaction mixture was then concentrated and purified by flash column chromatography (silica gel, pentane/ $\mathrm{Et}_{2} \mathrm{O} 9: 1$ to recover the starting material and then $85: 15$) to afford the desired aldehyde 13 as white solid ($786 \mathrm{mg}, 2.1 \mathrm{mmol}, 42 \%$).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \delta \mathbf{p p m}\right): 9.5\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CHO}, J_{\mathrm{CHO}} \mathrm{H} 20=\right.$ 3.2 Hz), 5.11 (m, 1H, H-7), $4.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-20), 1.96$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right) 1.92-1.28(\mathrm{~m}, 24 \mathrm{H}), 1.07(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}-21, J=6.8 \mathrm{~Hz}$, with underneath m, 1H, H-1b), 0.75 (s, 3H, H-18), 0.51 (s, 3H, H-18). NMR corresponds with previously reported spectra. ${ }^{[19]}$
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathbf{1 0 0 M H z}, \delta \mathrm{ppm}\right): 205.0(\mathrm{CHO}), 170.7$ (CO), 138.7 (C-8), 118.0 (C-7), 73.4 (C-3), 54.2 (C-14), 51.0 (C-17), 49.8 (C20), 49.2 (C-9), 43.9 (C-13), 40.0 (C-5), 39.2 (C-12), 36.8 (C-1), 34.2
(C-10), 33.8 (C-4), 29.5 (C-6), 27.5 (C-2), 26.8 (C-16), 23.3 (C-15), 21.4 (C-11 and $\underline{\mathrm{C}} \mathrm{H} 3 \mathrm{CO}$), 13.6 (C-21), 12.9 (C-19), 12.3 (C-18)

4.1.8 (3S,20S)-Ethylene-pregn-7-en-3-yl acetate (14)

To a stirred suspension of methyltriphenylphosphonium bromide (288 $\mathrm{mg}, 0.81 \mathrm{mmol}, 1.5 \mathrm{eq})$ in anhydrous THF (4 mL) it was added dropwise n - $\mathrm{BuLi}(2.5 \mathrm{M}$ solution in hexanes, $0.32 \mathrm{~mL}, 0.81 \mathrm{mmol}, 1.5 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$, under N_{2}. The yellow solution was stirred at $0^{\circ} \mathrm{C}$ for 15 min and was then allowed to come back to room temperature and stir an additional hour at room temperature. To the orange now solution, it was added dropwise a solution of $13(200 \mathrm{mg}, 0.54 \mathrm{mmol}, 1 \mathrm{eq})$ in anhydrous THF (5 mL). Upon its addition, the mixture turned white/pale yellow. The reaction mixture was stirred at room temperature for 16 h and quenched with water $(15 \mathrm{~mL})$. The biphasic mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15$ mL). The combined organic layers were washed with brine, dried over MgSO_{4}, concentrated in vacuo and purified by flash column chromatography (silica gel, pentane $/ \mathrm{Et}_{2} \mathrm{O} 9: 1$) to first afford 14 as a white solid ($96.3 \mathrm{mg}, 0.26 \mathrm{mmol}, 48 \%$) and then (silica gel, pentane $/ \mathrm{Et}_{2} \mathrm{O} 7: 1$) to afford 3-hydroxy product 33 as a white solid ($78.1 \mathrm{mg}, 0.24 \mathrm{mmol}, 44 \%$)

4.1. GENERAL MATERIALS AND METHODS

Melting point: $137^{\circ} \mathrm{C}$
TLC: $\mathrm{R}_{f}=0.44$ (silica gel, pentane/ $\mathrm{Et}_{2} \mathrm{O} 9: 1$)
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 600 \mathrm{MHz}, \delta \mathbf{p p m}\right): 5.61(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}-1$ ', $J=8.5$, $10.4,17.1 \mathrm{~Hz}$), 5.08 (m, 1H, H-7), 4.84 (ddd, $1 \mathrm{H}, \mathrm{H}-2$ 'a, $J=0.8,2.0$, 17.1 Hz), 4.75 (dd, 1H, H-2'b, $J=2.0,10.3 \mathrm{~Hz}$), $4.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.00$ (m, 1H, H-20), 1.96 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH} 3 \mathrm{CO}$), 1.93 (m, 1H, H-12a), 1.79-1.24 (m, 24 H), 1.04 (ddd, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, ~ J=3.3,13.0 \mathrm{~Hz}$), 0.97 (d, $3 \mathrm{H}, \mathrm{H}-21, J=$ 6.6 Hz), 0.74 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-19$), 0.49 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-18$)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, \delta \mathrm{ppm}\right): 169.7(\mathrm{CO}), 144.1$ (C-1'), 138.4 (C-8), 116.4 (C-7), 110.7 (C-2'), 72.5 (C-3), 54.4 (C-17), 54.0 (C14), 48.3 (C-9), 42.3 (C-13), 40.5 (C-20), 39.1 (C-5), 38.4 (C-12), 35.9 (C-1), 33.2 (C-10), 32.8 (C-4), 28.5 (C-6), 27.0 (C-16), 26.5 (C-2), 21.9 (C-15), 20.5 (C-11 and CH3CO), 19.2 (C-21), 11.9 (C-19), 11.0 (C-18)

IR (cm ${ }^{-1}$): 2943, 2865, 2849, 1731, 1445, 1366, 1245, 1031, 900
HRMS (ASAP+) m/z: $\left[\mathrm{M}^{*}+\right]$ calcd. 370.2872 for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{2}$ found 370.2866

4.1.9 (3S,20S)-Ethylene-pregn-7-en-3-ol (33)

66

To a stirred solution of $\mathbf{1 4}(444 \mathrm{mg}, 12 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ $(11 / 11 \mathrm{~mL})$ it was added $\mathrm{K}_{2} \mathrm{CO}_{3}(497 \mathrm{mg}, 35.9 \mathrm{mmol}, 3$ eqq) at room temperature. The mixture was stirred for 16 h and quenched with water $(20 \mathrm{~mL})$. The biphasic mixture was extracted with DCM $(4 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by a short pad of silica (silica gel, pentane/ $\mathrm{Et}_{2} \mathrm{O} 5: 5$) to afford $\mathbf{3 3}$ as white solid (392 $\mathrm{mg}, 12 \mathrm{mmol}$, quant.yield)

Melting point: $138^{\circ} \mathrm{C}$
TLC: $\mathrm{R}_{f}=0.58$ (silica gel, pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 5:5)
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 600 \mathrm{MHz}, \delta \mathbf{p p m}\right): 5.61$ (ddd, $1 \mathrm{H}, \mathrm{H}-1$ ', $J=8.5$, $10.4,17.1 \mathrm{~Hz}$), 5.09 (m, 1H, H-7), 4.84 (ddd, $1 \mathrm{H}, \mathrm{H}-2$ 'a, $J=0.8,2.0$, 17.1 Hz), 4.76 (dd, 1H, H-2'b, $J=2.0 \mathrm{~Hz}, J=2.0,10.3 \mathrm{~Hz}$), $3.53(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-3), 2.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-20), 1.94$ (m, 1H, H-12a), 1.77-1.15 (m, 23H), 1.02 (dd, 1H, H-1b, $J=3.3,13.1 \mathrm{~Hz}$), 0.97 (d, $3 \mathrm{H}, \mathrm{H}-21, J=6.6 \mathrm{~Hz}$), 0.72 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-19$), 0.49 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-18$)
${ }^{1} \mathbf{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathbf{1 5 0 M H z}, \delta \mathbf{p p m}\right): 145.2$ (C-1'), 139.5 (C-8), 117.6 (C-7), 111.7 (C-2'), 71.1 (C-3), 55.5 (C-17), 55.1 (C-14), 49.5 (C-9), 43.4 (C-13), 41.5 (C-20), 40.3 (C-5), 39.5 (C-12), 38.0 (C-4), 37.2 (C-1), 34.3 (C-10), 31.5 (C-2), 29.7 (C-6), 28.0 (C-16, 23.0 (C-15), 21.6 (C-11), 20.3 (C-21), 13.1 (C-19), 12.1 (C-18)

IR (cm ${ }^{-1}$): 3329, 2929, 2871, 2850, 1727, 1444, 1379, 1039, 907
HRMS (ASAP+) $m / z:[\mathrm{M}+2 \mathrm{H}-\mathrm{OH} 2]$ calcd. 311.2741 for $\mathrm{C}_{23} \mathrm{H}_{35}$ found 311.2739

4.1.10 (3R,20S)-Ethylene-pregn-7-en-3-yl-azide (15)

To a solution of $\mathrm{PPh}_{3}(64 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.6 \mathrm{eq})$ in THF (1.3 mL) it was added DIAD (0.05 mL), $0.24 \mathrm{mmol}, 1.6 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$ and the solution was stirred for 10 min . To this solution, it was added a solution of $33(50 \mathrm{mg}$, $0.15 \mathrm{mmol}, 1 \mathrm{eq}$). After stirring for an additional 10 min , DPPA (0.05 $\mathrm{mL}, 0.24 \mathrm{mmol}, 1.6 \mathrm{eq})$ was added dropwise. The reaction mixture was allowed to come up to room temperature and stir for 18 h . The reaction mixture was quenched with aq. $\mathrm{NaOH}(0.1 \mathrm{M}, 0.2 \mathrm{~mL})$ and extracted with DCM $(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography (silica gel, pentane $/ \mathrm{Et}_{2} \mathrm{O}$ $7: 3)$ to afford 15 as a white solid ($50.9 \mathrm{mg}, 14 \mathrm{mmol}, 95 \%$).

Melting point: $93.9^{\circ} \mathrm{C}$
TLC: $\mathrm{R}_{f}=0.83$ (silica gel, pentane/ $\mathrm{Et}_{2} \mathrm{O} 7: 3$)
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, \delta \mathbf{p p m}\right): 5.61$ (ddd, $1 \mathrm{H}, \mathrm{H}-1$ ', $J=8.5$, $10.4,17.1 \mathrm{~Hz}$), 5.08 (m, 1H, H-7), 4.84 (ddd, 1H, H-2'a, $J=0.8, ~ 2.0$, 17.1 Hz), $4.75(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2$ 'b, $J=2.0,10.3 \mathrm{~Hz}$), $3.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.00$
(m, 1H, H-20), 1.94 (ddd, 1H, H-12a $J=3.3,13.1 \mathrm{~Hz}$), 1.79-1.16 (m, $21 \mathrm{H}), 0.97$ (d, 3H, H-21, $J=6.6 \mathrm{~Hz}$), 0.72 (s, 3H, H-19), 0.49 (s, 3H, H-18)
${ }^{1} \mathbf{C N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 5 0 M H z}, \delta \mathbf{p p m}\right): 145.2$ (C-1'), 139.4 (C-8), 117.5 (C-7), 111.7 (C-2'), 57.9 (C-3), 55.4 (C-17), 55.1 (C-14), 49.3 (C-13), 43.4 (C-13), 41.5 (C-20), 39.4 (C-5), 35.5 (C-12), 34.6 (C-4), 32.7 (C-1), 32.0 (C-10), 29.2 (C-2), 28.0 (C-6), 25.7 (C-16), 22.9 (C-15), 21.2 (C-11), 20.3 (C-21), 12.4 (C-19), 12.0 (C-18)

IR (cm^{-1}): 2950, 2872, 2099, 1732, 1445, 1370, 1260, 1079, 908, 848 HRMS (ES+) m/z: $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]$ calcd. 326.2848 for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}$ found 326.2853

4.1.11 (3R,20S)-Ethylene-pregn-7-en-3-yl-dimethylamine (16)

A solution of $\mathbf{1 5}(1.01 \mathrm{~g}, 2,86 \mathrm{mmol}, 1 \mathrm{eq})$ in a mixture of THF $(6 \mathrm{~mL})$ and aq. NaOH solution ($1.0 \mathrm{M}, 3 \mathrm{~mL}$) was degassed by purging for 20 min with a slow stream of N_{2} gas through a 20 -gauge stainless steel

4.1. GENERAL MATERIALS AND METHODS

needle. To the degassed solution it was added a solution of $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$ in THF ($1 \mathrm{M}, 9 \mathrm{~mL}, 9 \mathrm{mmol}, 3 \mathrm{eq}$). After 2 h , $\mathrm{MeOH}(30 \mathrm{~mL}$) was added, followed by aq. $\mathrm{HCl}(1 \mathrm{M}, 3 \mathrm{~mL})$ and then acetic acid ($3.43 \mathrm{~mL}, 60 \mathrm{mmol}$, $20 \mathrm{eq})$. To the resulting solution were added sequentially formalin (37% $\mathrm{wt}, 5.53 \mathrm{~mL}, 150 \mathrm{mmol}, 50 \mathrm{eq})$ and a solution of $\mathrm{NaCNBH}_{3}(1.89 \mathrm{~g}$, $30 \mathrm{mmol}, 10 \mathrm{eq})$ in $\mathrm{MeOH}(14 \mathrm{~mL})$. After 2 h , the reaction mixture was quenched with aq. $\mathrm{NaOH}(1 \mathrm{M}, 50 \mathrm{~mL})$ and the biphasic mixture was extracted with DCM $(4 \times 60 \mathrm{~mL})$. The combined organic layers were washed with brine and dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography (silica gel, $1-10 \% \mathrm{MeOH}$ in DCM) to afford 16 as a white solid ($900 \mathrm{mg}, 2.53$ mmol, 89%).

Melting point: $193.8-194.1^{\circ} \mathrm{C}$
TLC: $\mathrm{R}_{f}=0.21$ (silica gel, $10 \% \mathrm{MeOH}$ in DCM)
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, \delta \mathbf{~ p p m}\right): 5.61$ (ddd, $1 \mathrm{H}, \mathrm{H}-1$ ', $J=8.5$, $10.4,17.1 \mathrm{~Hz}$), 5.08 (m, 1H, H-7), 4.83 (ddd, $1 \mathrm{H}, \mathrm{H}-2$ 'a, $0.8,2.0,17.1$ Hz), 4.75 (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime} \mathrm{b}$, $\left.J=2.0,10.3 \mathrm{~Hz}\right), 2.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}-\left(\mathrm{CH}_{3}\right)_{2}\right.$, with underneath m, 1H, H-3), 1.99 (m, 1H, H-20), 1.92 (ddd, 1H, H-12a $J=$ $3.3,13.1 \mathrm{~Hz}$), $1.80-1.16(\mathrm{~m}, 22 \mathrm{H}), 0.97(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}-21, J=6.6 \mathrm{~Hz}), 0.75$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-19$), 0.49 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-18$)
${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{1 5 0 M H z}, \delta \mathbf{p p m}\right): 145.2\left(\mathrm{C}-1{ }^{\prime}\right), 139.8(\mathrm{C}-8)$, 117.3 (C-7), 111.6 (C-2'), 62.2 (C-3), 55.3 (C-17), 55.0 (C-14), 49.3 (C13), 43.4 (C-13), 41.6 (C-20), 39.4 (C-5), 35.0 (C-12), 34.8 (C-4), 32.4 (C-1), 30.8 (C-10), 29.5 (C-2), 28.0 (C-6), 24.5 (C-16), 22.9 (C-15), 21.2 (C-11), 20.3 (C-21), 12.9 (C-19), 12.1 (C-18)

IR (cm^{-1}): 2952, 2872, 2767, 2340, 1457, 908
HRMS (ES+) m/z: $[\mathrm{M}+\mathrm{H}]$ calcd. 356.3317 for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{~N}$ found 356.3320

4.1.12 8 -Bromo- N-cyclopropyl-1,6-napthyridine-2carboxamide (35a)

To a suspension of 8-bromo 1,6-napthyridine-2-carboxylic acid 34 (150 $\mathrm{mg}, 0.59 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (6 mL) was added HATU ($789 \mathrm{mg}, 2.07$ mmol, 3.5 eq), cyclopropylamine ($0.12 \mathrm{~mL}, 1.79 \mathrm{mmol}, 3 \mathrm{eq}$), and DIPEA $(0.51 \mathrm{~mL}, 2.37 \mathrm{mmol}, 4 \mathrm{eq})$. The reaction mixture was stirred at room temperature for 2 h . Water (10 mL) and EtOAc (15 mL) were added and the layers were separated and extracted with EtOAc (3x15 mL). The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography (silica gel, $\mathbf{1 \%} \mathbf{~ M e O H}$ in DCM) to afford $\mathbf{3 5 a}$ as a cream solid ($161 \mathrm{mg}, 0.55 \mathrm{mmol}, 93 \%$).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, \mathbf{6 0 0 M H z}, \delta \mathbf{p p m}\right): 9.19(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.45$ $(\mathrm{d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.41(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.24(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}), 2.94$ $(\mathrm{m}, 1 \mathrm{H}), 0.89(\mathrm{~m}, 2 \mathrm{H}), 0.70(\mathrm{~m}, 2 \mathrm{H})$ NMR corresponds with previously reported spectra. ${ }^{[57]}$

4.1. GENERAL MATERIALS AND METHODS

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, \delta \mathrm{ppm}\right): 164.4,154.1,152.1,149.1$, 146.2, 138.0, 125.6, 121.4, 121.2, 22.9, 6.9

4.1.13 8 -bromo- N-methyl-1,6-naphthyridine-2carboxamide (35b)

To a mixture of $34(106 \mathrm{mg}, 0.42 \mathrm{mmol}, 1 \mathrm{eq})$ in DMF (6 mL) it was added HATU ($557 \mathrm{mg}, 1.47 \mathrm{mmol}, 3.5 \mathrm{eq}$), methylamine in THF (0.73 $\mathrm{mL}, 1.47 \mathrm{mmol}, 3.5 \mathrm{eq}$) and DIPEA ($0.32 \mathrm{~mL}, 1.47 \mathrm{mmol}, 3.5 \mathrm{eq}$) and the mixture was stirred at room temperature for 2 h . Water (10 mL) and EtOAc (15 mL) were added and the layers were separated and extracted with $\mathrm{EtOAc}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, washed with MgSO_{4}, and concentrated in vacuo. The crude product was purified by flash column chromatography (silica gel, $1-5 \% \mathrm{MeOH}$ i DCM) to afford $\mathbf{3 5 b}$ as white powder ($110 \mathrm{mg}, 0.41 \mathrm{mmol}, 99 \%$)
${ }^{1} \mathbf{H N M R}^{\left(\mathbf{C D C l}_{3}, \mathbf{6 0 0 M H z}, \delta \mathbf{~ p p m}\right): ~} 9.20(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.46$ $(\mathrm{d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.42(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.22(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}), 3.08(\mathrm{~d}$, $3 \mathrm{H}, J=5.1 \mathrm{~Hz})$. NMR corresponds with previously reported spectra. ${ }^{[11]}$.

4.1.14 Azetidin-1-yl(8-bromo-1,6-naphthyridin-2yl) methanone (35c)

To a mixture of $34(125 \mathrm{mg}, 0.49 \mathrm{mmol}, 1 \mathrm{eq})$ in DMF (6 mL) was added HATU ($657 \mathrm{mg}, 1.73 \mathrm{mmol}, 3.5 \mathrm{eq}$), azetidine ($0.12 \mathrm{~mL}, 1.73 \mathrm{mmol}, 3.5$ eq) and DIPEA ($0.37 \mathrm{~mL}, 1.73 \mathrm{mmol}, 3.5 \mathrm{eq}$) and the reaction mixture was stirred at room temperature for 2 h . Water (10 mL) and EtOAc (15 mL) were added and the layers were separated and extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography (silica gel, $1-5 \% \mathrm{MeOH}$ in DCM) to afford $\mathbf{3 5 c}$ as white powder ($143 \mathrm{mg}, 0.49 \mathrm{mmol}$, quant.yield). NMR corresponds with previously reported spectra. ${ }^{[58]}$
${ }^{1} \mathbf{H N M R}\left(\mathbf{C D C l}_{3}, \mathbf{6 0 0 M H z}, \delta \mathbf{~ p p m}\right): 9.17(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.38$ $(\mathrm{d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.36(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 5.01(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{~m}$, $2 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H})$.

4.1. GENERAL MATERIALS AND METHODS

4.1.15 (8-bromo-1,6-naphthyridin-2-yl)(3-metho-xyazetidin-1-yl)methanone (35d)

To a mixture of $\mathbf{3 4}(85 \mathrm{mg}, 0.34 \mathrm{mmol}, 1 \mathrm{eq})$ in DMF (3 mL) was added 3 -methoxy-azetidine HCl salt ($145 \mathrm{mg}, 1.18 \mathrm{mmol}, 3.5 \mathrm{eq}$), $\mathrm{Et}_{3} \mathrm{~N}(1.5$ $\mathrm{mL}, 4.03 \mathrm{mmol}, 12 \mathrm{eqq})$ and $\operatorname{HATU}(447 \mathrm{mg}, 1.18 \mathrm{mmol}, 3.5 \mathrm{eq})$ and the mixture was stirred at room temperature for 2 h . Water (10 mL) and EtOAc (15 mL) were added and the layers were separated and extracted with $\operatorname{EtOAc}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography (silica gel, $2 \% \mathrm{MeOH}$ in DCM) to afford $\mathbf{3 5 d}$ as yellow oil ($101 \mathrm{mg}, 0.31 \mathrm{mmol}, 93 \%$).
${ }^{1}{ }^{\mathbf{H}} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, \delta \mathbf{p p m}\right): 9.18(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~s}, 1 \mathrm{H})$, $8.39(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.37(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 5.19(\mathrm{~m}, 1 \mathrm{H}), 4.83$ $(\mathrm{m}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H})$. NMR corresponds with previously reported spectra. ${ }^{[11]}$.
${ }^{13}{ }^{1}$ CNMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, \delta \mathrm{ppm}\right): 163.1,155.9,152.9,149.0$, 146.7, 137.3, 125.0, 122.8, 122.0, 70.3, 63.1, 56.3, 47.7.

4.1.16 General procedure for the Heck cross-coupling Number-Nmber

To a flame-dried Schlenk tube it was added $\mathbf{1 6}(50 \mathrm{mg}, 0.14 \mathrm{mmol}, 1 \mathrm{eq})$ $\mathrm{Pd}(\mathrm{OAc})_{2}(3.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1 \mathrm{eq}), \mathrm{P}(o-\mathrm{tol})_{3}(8.6 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.2$ eq), the arylhalide (2 eq), freshly distilled $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL})$ and degassed dry DMF ($1-1.5 \mathrm{~mL}$) under N_{2}. The mixture was stirred at $100^{\circ} \mathrm{C}$ over 24 h. After 24 h the mixture was diluted with DCM (15 mL) and quenched with water $(10 \mathrm{~mL})$. The two layers were separated and the aqueous layer was extracted with DCM $(4 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude product was first purified by flash column chromatography (silica gel, gradient $1-10 \% \mathrm{MeOH}$ in DCM) and then by reverse phase HPLC to give the titled compounds.

4.1. GENERAL MATERIALS AND METHODS

4.1.17 $(3 R, 20 R)-20-[2-(N$-cyclopropyl-1,6-napthy-ridin-8-yl-2-carboxamide)-(E)-ethenyl]-pregn-7-en-3-yl-dimethylamine (12a)

The compound was prepared following the general procedure described and was purified by reverse phase preparative HPLC (Method B; $\mathrm{t}_{R}=6.5$ $\mathrm{min})$. The product 12a was isolated as brown oil $(24.9 \mathrm{mg}, 0.04 \mathrm{mmol}$, 31%).

TLC: $\mathrm{R}_{f}=0.12$ (silica gel, $10 \% \mathrm{MeOH}$ in DCM)
${ }^{1} \mathbf{H N M R}\left(\mathrm{CDCl}_{3}, \mathbf{6 0 0 M H z}, \delta \mathbf{~ p p m}\right): 9.10\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime}\right), 8.79(\mathrm{~s}, 1 \mathrm{H}$, H-4'), 8.37 (d, 1H, H-7', $J=8.6 \mathrm{~Hz}$). 8.35 (d, 1H, H-8', $J=8.6 \mathrm{~Hz}$), 8.09 (s(br), 1H, H-12'), 7.11 (d, 1H, H-2', $J=16.1 \mathrm{~Hz}$), 6.43 (dd, $1 \mathrm{H}, \mathrm{H}-1$, $J=2.1,16.1 \mathrm{~Hz}), 5.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 2.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~s}), 2.39(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-20), 2.18\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}-\left(\mathrm{CH}_{3}\right)_{2}\right), 2.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-12 \mathrm{a}$ and $\mathrm{H}-3), 1.83-1.23$ (m, 25H), 1.18 (d, 3H, H-21, J = 6.6 Hz), $0.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-15$) 0.77 (s , $3 \mathrm{H}, \mathrm{H}-19), 0.67$ (m, 2H, 0.57 (s, 3H, H-18).
${ }^{13} \mathbf{C N M R}\left(\mathrm{CDCl}_{3}, \mathbf{1 5 0 M H z}, \delta \mathrm{ppm}\right): 164.5$ (C-11'), 152.6 (C-9'),
150.9 ($\mathrm{C}-5^{\prime}$), 146.1 ($\left.\mathrm{C}-10^{\prime}\right), 144.2\left(\mathrm{C}-4{ }^{\prime}\right), 142.8\left(\mathrm{C}-1^{\prime}\right), 139.5(\mathrm{C}-8), 137.6$ (C-7') 130.1 ($\mathrm{C}-3 '), 123.8(\mathrm{C}-6 '), 120.1\left(\mathrm{C}-8^{\prime}\right), 120.0(\mathrm{C}-2 '), 117.9(\mathrm{C}-7)$, 61.5 (C-3), 55.8 ($\mathrm{C}-12$ '), 55.0 (C-17), 55.1 (C-14), 49.6 (C-9), 43.8 (C-13), $43.7\left(\mathrm{~N}-\left(\mathrm{CH}_{3}\right)_{2}\right), 41.6(\mathrm{C}-20), 39.6(\mathrm{C}-12), 35.1(\mathrm{C}-5), 34.9(\mathrm{C}-4), 32.7$ (C-1), 31.4 (C-10), 29.6 (C-2), 28.2 (C-6), 24.7 (C-16), 23.0 (C-15), 22.8 (C-11), 21.3 (C-13'), 20.5 (C-21), 13.0 (C-19), 12.3 (C-18), 6.9 (C-15'), 6.8 (C-14')

IR ($\left.\mathbf{c m}^{-1}\right): 2922,2852,1683,1514,1455,969$
HRMS (ES+) m/z: $[\mathrm{M}+\mathrm{H}]$ calcd. 567.4063 for $\mathrm{C}_{37} \mathrm{H}_{51} \mathrm{~N}_{4} \mathrm{O}$ found 567.4060

4.1. GENERAL MATERIALS AND METHODS

4.1.18 $\quad(3 R, 20 R)-20-[2-(N$-methyl-1,6-napthyridin-8-yl-2-carboxamide)-(E)-ethenyl]-pregn-7-en-3-yl-dimethylamine (12b)

The compound was prepared following the general procedure described and was purified by reverse phase preparative HPLC (Method B; $\mathrm{t}_{R}=5.9$ $\mathrm{min})$. The product $\mathbf{1 2 b}$ was isolated as brown oil $(10.2 \mathrm{mg}, 0.02 \mathrm{mmol}$, 13%).

TLC: $\mathrm{R}_{f}=0.17$ (silica gel, $10 \% \mathrm{MeOH}$ in DCM)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{6 0 0 M H z}, \boldsymbol{\delta} \mathbf{~ p p m}\right): 9.11\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime}\right), 8.84(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}-4^{\prime}\right), 8.38\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-7^{\prime}, J=8.4 \mathrm{~Hz}\right), 8.36\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}, J=8.4 \mathrm{~Hz}\right)$, 8.07 ($\mathrm{s}(\mathrm{br}), 1 \mathrm{H}, \mathrm{NH}-12$ '), 7.22 (d, 1H, H-2', $J=16.1 \mathrm{~Hz}$), $6.40(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{H}-1 ', J=8.9,16.1 \mathrm{~Hz}), 5.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 3.08(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}-13 ', J=5.1$ $\mathrm{Hz}), 2.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-20), 2.25\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}-\left(\mathrm{CH}_{3}\right)_{2}\right), 2.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.00$ (m 1H, H-12a), 1.82-1.25 (m, 29H), 1.18 (d, 3H, H-21, J = 6.6), 0.77 (s , $3 \mathrm{H}, \mathrm{H}-19), 0.60$ (s, 3H, H-18)
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 5 0 M H z}, \delta \mathbf{p p m}\right): 164.4\left(\mathrm{C}-11{ }^{\prime}\right), 152.7$ (C-9'),
150.9 (C-5'), 146.1 ($\left.\mathrm{C}-10^{\prime}\right), 143.8$ ($\left.\mathrm{C}-4^{\prime}\right), 142.2$ ($\left.\mathrm{C}-1^{\prime}\right), 139.5(\mathrm{C}-8), 137.6$ (C-7'), 130.1 ($\mathrm{C}-3^{\prime}$), 123.8 ($\mathrm{C}-6^{\prime}$), 120.2 ($\mathrm{C}-8^{\prime}$), 119.8 ($\left.\mathrm{H}-2^{\prime}\right), 117.7$ (C7), 61.8 (C-3), 55.7 (C-17), $55.0(\mathrm{C}-14), 49.3(\mathrm{C}-9), 43.7(\mathrm{C}-13), 43.6$ $\left(\mathrm{N}-\left(\mathrm{CH}_{3}\right)_{2}\right), 41.6(\mathrm{C}-20), 39.5(\mathrm{C}-12), 35.0(\mathrm{C}-5), 34.8(\mathrm{C}-4), 32.6$ (C1), 31.1 (C-10), 29.6 (C-2), 28.1 (C-6), 26.5 (C-13'), 24.6 (C-16), 23.0 (C-15), 21.2 (C-11), 20.6 (C-21), 13.0 (C-19), 12.4 (C-18)

IR ($\left.\mathbf{c m}^{-1}\right): 2929,2869,1679,1531,1452$
HRMS (ASAP+) m/z: $[\mathrm{M}+\mathrm{H}]$ calcd. 541.3906 for $\mathrm{C}_{35} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}$ found 541.3898

4.1.19 (3R,20R)-20-[2-(azetidin-1-yl)-(1,6-napthy-ridin-2,8-yl)-methanone-(E)-ethenyl]-pregn-7-en-3-yl-dimethylamine (12c)

The compound was prepared following the general procedure described and was purified by reverse phase preparative HPLC (Method B; $\mathrm{t}_{R}=6.4$ min).The product 12c was isolated as brown oil $(12.9 \mathrm{mg}, 0.02 \mathrm{mmol}$, 16%).

4.1. GENERAL MATERIALS AND METHODS

TLC: $\mathrm{R}_{f}=0.13$ (silica gel, $10 \% \mathrm{MeOH}$ in DCM)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{6 0 0 M H z}, \delta \mathbf{p p m}\right): 9.09\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime}\right), 8.84(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}-4^{\prime}\right), 8.29\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-7^{\prime}, J=8.4 \mathrm{~Hz}\right), 8.26\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}, J=8.4 \mathrm{~Hz}\right)$, $7.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2 ', J=16.1 \mathrm{~Hz}), 6.35(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-1 ', J=8.5,16.1), 5.10$ (m, 1H, H-7), 4.87 (m, 2H, H-13'), 4.27 (m, 2H, H-12'), 2.39 (m, 2H, $\left.\mathrm{H}-14^{\prime}\right), 2.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-20), 2.21\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}-\left(\mathrm{CH}_{3}\right)_{2}\right), 2.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, $1.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-12 \mathrm{a}), 1.82-1.21(\mathrm{~m}, 26 \mathrm{H}), 1.16(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}-21, J=6.6 \mathrm{~Hz})$, 0.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-19$), 0.57 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-18$)
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 5 0 M H z}, \delta \mathbf{p p m}\right): 163.9$ (C-11'), 154.6 (C-9'), 150.8 ($\mathrm{C}-5^{\prime}$), 146.4 ($\mathrm{C}-10^{\prime}$), 143.3 ($\mathrm{C}-4{ }^{\prime}$), 141.3 ($\mathrm{C}-1^{\prime}$), 139.4 ($\mathrm{C}-8$), 136.7 (C-7'), 130.9 (C-3'), 122.9 (C-6'), 121.7 (C-8'), 120.4 (C-2'), 117.8 (C-7), 61.6 (C-3), 55.9 (C-17) 55.5 (C-13'), 55.0 (C-14), 49.5 (C-9), 49.4 (C$\left.12^{\prime}\right), 43.7\left(\mathrm{C}-13\right.$ and $\left(\mathrm{N}-\left(\mathrm{CH}_{3}\right)_{2}\right), 41.3(\mathrm{C}-20), 39.5(\mathrm{C}-12), 35.1$ (C-5), 34.8 (C-4), 32.7 (C-1), 31.2 (C-10), 29.6 (C-2), 28.0 (C-6), 24.8 (C-16), 22.9 (C-15), 21.2 (C-11), 20.4 (C-21), 17.0 (C-14'), 13.0 (C-19), 12.3 (C-18)

IR ($\left.\mathbf{c m}^{-1}\right): 2952,2933,2874,2767,1637,1603,1466,1433$
HRMS (ASAP+) $m / z:[\mathrm{M}+\mathrm{H}]$ calcd. 567.4063 for $\mathrm{C}_{37} \mathrm{H}_{51} \mathrm{~N}_{4} \mathrm{O}$ found 567.4064

4.1.20 $(3 R, 20 R)-20-[2-(1,6-n a p t h y r i d i n-2,8-y l)(3-$ methoxyazetidin-1-yl)-methanone-(E)-ethenyl]-pregn-7-en-3-yl-dimethylamine (12d)

The compound was prepared following the general procedure described and was purified by reverse phase preparative HPLC (Method B; $\mathrm{t}_{R}=6.3$ $\mathrm{min})$. The product 12d was isolated as brown oil ($18.9 \mathrm{mg}, 0.03 \mathrm{mmol}$, 22%).

TLC: $\mathrm{R}_{f}=0.11$ (silica gel, $10 \% \mathrm{MeOH}$ in DCM)
${ }^{1} \mathbf{H N M R}\left(\mathbf{C D C l}_{3}, 600 \mathrm{MHz}, \delta \mathrm{ppm}\right): 9.09\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 8.84(\mathrm{~s}, 1 \mathrm{H}$, H-4'), 8.30 (d, 1H, H-7', $J=8.6 \mathrm{~Hz}$). 8.26 (d, 1H, H-8', $J=8.6 \mathrm{~Hz}$), 7.23 (d, 1H, H-2', $J=16.1 \mathrm{~Hz}$), 6.36 (dd, 1H, H-1, $J=2.1,16.1 \mathrm{~Hz}$), 5.09 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-7$), 5.01 (m, 1H, H-13'), 4.72 (m, 1H, H-13'), 4.40 (m, 1H, $\left.\mathrm{H}-12^{\prime}\right), 4.28$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-14^{\prime}$), 4.12 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-12^{\prime}$), 3.31 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-15^{\prime}\right)$, 2.36 (m, 1H, H-20), $2.20\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}-\left(\mathrm{CH}_{3}\right)_{2}\right), 2.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.99(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-12 \mathrm{a}$), 1.81-1.25 (m, 23H), 1.17 (d, 3H, H-21, $J=6.6 \mathrm{~Hz}$), 0.76 (s , $3 \mathrm{H}, \mathrm{H}-19), 0.57$ (s, 3H, H-18).

4.1. GENERAL MATERIALS AND METHODS

${ }^{13}{ }^{\mathbf{C N N M R ~ C D C l}}{ }_{3}, 150 \mathrm{MHz}, \delta \mathrm{ppm}$): 164.1 (C-11'), 154.4 (C-9'), 150.8 (C-5'), 146.4 (C-10'), 143.4 (C-4'), 141.4 (C-1'), 139.4 (C-8), 136.8 (C-7') 131.0 (C-3'), 123.0 (C-6'), 121.7 (C-8'), 120.4 (C-2'), 117.8 (C-7), 70.2 (C-14'), 62.3 (C-13'), 61.6 (C-3), 56.3 (C-15'), 56.32(C-12'), 56.0 (C-17), 55.0 (C-14), 49.5 (C-9), 43.8 (C-13), $43.7\left(\mathrm{~N}-\left(\mathrm{CH}_{3}\right)_{2}\right), 41.4$ (C-20), 39.5 (C-12), 35.1 (C-5), 34.9 (C-4), 32.7 (C-1), 31.3 (C-10), 29.6 (C-2), 28.1 (C-6), 24.8 (C-16), 22.9 (C-15), 21.2 (C-11), 20.4 (C-21), 13.0 (C-19), 12.3 (C-18)

IR (cm^{-1}): 2932, 2872, 2766, 1638, 1458, 1435, 1222, 1125, 1010, 763
HRMS (ES+) $m / z:[\mathrm{M}+\mathrm{H}]$ calcd. 597.4169 for $\mathrm{C}_{38} \mathrm{H}_{53} \mathrm{~N}_{4} \mathrm{O}_{2}$ found 597.4166

4.1.21 (3R,20R)-20-[2-(Pyridin-3-yl)-(E)-ethenyl]-pregn-7-en-3-yl-dimethylamine (12e)

The compound was prepared following the general procedure described and was purified by reverse phase preparative HPLC (Method A; $\mathrm{t}_{R}=3.4$ $\mathrm{min})$. The product 12e was isolated as brown oil ($18.9 \mathrm{mg}, 0.04 \mathrm{mmol}$, 31%).

TLC: $\mathrm{R}_{f}=0.06$ (silica gel, $10 \% \mathrm{MeOH}$ in DCM)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{6 0 0 M H z}, \delta \mathbf{p p m}\right): 8.57\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 8.47(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 8.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7^{\prime}\right), 7.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$, $6.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\prime} 1^{\prime}\right), 5.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 3.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.80(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{N}-\left(\mathrm{CH}_{3}\right)_{2}\right), 2.30-1.17(\mathrm{~m}, 29 \mathrm{H}), 1.10(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.78(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{H}-19), 0.52$ (s, 3H, H-18)
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 5 0 M H z}, \delta \mathbf{p p m}\right): 146.5$ (C-2'), 140.9 (C-7'), 139.5 ($\mathrm{C}-8$), 138.5 ($\mathrm{C}-4^{\prime}$), 138.1 ($\mathrm{C}-5^{\prime}$), 127.0 ($\mathrm{C}-3$ '), 126.6 ($\left.\mathrm{C}-6^{\prime}\right), 120.5$ (C-1'), 116.9 (C-7), 64.1 (C-3), 55.2 (C-17), 54.5 (C-14), 47.6 (C-9), 43.7 (C-13), $43.2\left(\mathrm{~N}-\left(\mathrm{CH}_{3}\right)_{2}\right), 41.2(\mathrm{C}-20), 39.0(\mathrm{C}-12), 34.7(\mathrm{C}-5), 34.3(\mathrm{C}-4)$, 31.4 (C-1), 29.2 (C-10), 29.1 (C-2), 28.0 (C-6), 23.0 (C-16), 22.9 (C-15), 21.0 (C-11), 19.9 (C-21), 12.9 (C-19), 12.3 (C-18)

IR ($\left.\mathbf{c m}^{-1}\right): 3413,2932,2868,1462,1377$

HRMS (ES+) $m / z:[\mathrm{M}+\mathrm{H}]$ calcd. 433.3583 for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~N}_{2}$ found 433.3582

4.1.22 ($\boldsymbol{R}, \boldsymbol{R})$-Pseudoephedrine-N-Boc-glycamide (42)

4.1. GENERAL MATERIALS AND METHODS

To a stirred solution of N-Boc-glycine ($5.30 \mathrm{~g}, 30.3 \mathrm{mmol}, 1 \mathrm{eq}$) in DCM $(100 \mathrm{~mL})$ it was added dropwise over $2 \mathrm{~min} \mathrm{Et}_{3} \mathrm{~N}(4.63 \mathrm{~mL}, 33.3 \mathrm{mmol}$, $1.1 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 5 min . $\mathrm{Piv-Cl}(3.72$ $\mathrm{mL}, 30.3 \mathrm{mmol}, 1$ eqq) was then added dropwise over 2 min , during which time a fine white solid percipitated from the solution. After 30 min at $0^{\circ} \mathrm{C}$, a second portion of $\mathrm{Et}_{3} \mathrm{~N}(4.63 \mathrm{~mL}, 33.3 \mathrm{mmol}, 1.1 \mathrm{eq})$ was added dropwise over 2 min , followed by (R, R)-Pseudoephedrine (5.00 g , $30.3 \mathrm{mmol}, 1 \mathrm{eq}$), added in a single portion. The resulting mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 90 min . 5% Aqueous $\mathrm{NaHCO}_{3}(70 \mathrm{~mL})$ was added, and the layers were mixed vigorously and separated. The aqueous layers was extracted with DCM (2 x 50 mL), and the combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography to afford $\mathbf{4 2}$ with additional impurities as white foam $(7.67 \mathrm{~g}, 23.8 \mathrm{mmol}$, 79%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, \delta \mathrm{ppm}\right.$, multiple rotamers present, spectrum reported as observed): 7.40-7.28 (m, 10H), $5.62(\mathrm{~s}(\mathrm{br})$, $0.7 \mathrm{H}), 5.53(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}), 4.62-4.54(\mathrm{~m}, 3 \mathrm{H}), 4.21-4.15(\mathrm{~m}, 0.7 \mathrm{H}), 4.04-3.99$ $(\mathrm{m}, 0.7 \mathrm{H}), 3.92(\mathrm{~m}(\mathrm{br}), 2 \mathrm{H}), 2.96(\mathrm{~s}, 2 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 18 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, \delta \mathrm{ppm}\right.$, multiple rotamers present, spectrum reported as observed): $170.2,169.5,141.8,141.0,128.8$, $128.6,128.5,128.0,126.9,126.5,79.7,79.6,76.1,75.3,57.5,42.9,42.5$, 28.4, 15.2, 14.2

4.1.23 (R, R)-Pseudoephedrine-glycamide (41)

TFA (15.5 mL) was added over 5 min to a stirred solution of 42 (5.00 $\mathrm{g}, 15.5 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{DCM}(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The colorless solution stirred at $0^{\circ} \mathrm{C}$ for 5 min and then was allowed to warm up to room temperature and stir for 1.5 h . The reaction mixture was concentrated in vacuo and DCM (50 mL) was added to the residue. A solution of aq. $\mathrm{NaOH}(3 \mathrm{M}, 40 \mathrm{~mL})$ was added slowly at $0^{\circ} \mathrm{C}$ with vigorous stirring until the aqueous layer reached a pH of $13-14$. The biphasic mixture was separated and extracted with DCM ($2 \times 40 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo to give $\mathbf{4 1}$ as a white foam ($3.12 \mathrm{~g}, 14.0 \mathrm{mmol}, 90 \%$). The resulted crude product was used without further purification.

4.1. GENERAL MATERIALS AND METHODS

4.1.24 (3S,20R)-20-[2-(N-Boc-3-pyrrolidinone)-(E)-ethenyl]-pregn-7-en-3-yl acetate (45)

A solution of N-Boc-3-pyrrolidinone ($994 \mathrm{mg}, 5.4 \mathrm{mmol}, 2 \mathrm{eq}$) in anhydrous THF (3 mL) was added dropwise to a solution of LiHMDS (1 M solution in THF, $5.4 \mathrm{~mL}, 5.4 \mathrm{mmol}, 2 \mathrm{eq})$ at $-78^{\circ} \mathrm{C}$ under N_{2}. The mixture was allowed to stir for 45 min and then a solution of $\mathbf{1 3}(1 \mathrm{~g}$, $2.7 \mathrm{mmol}, 1 \mathrm{eq})$ in anhydrous THF (4 mL) was added dropwise over a period of 15 min . The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min and was then quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$ and allowed to come up to room temperature. Water $(20 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$ were added and the layers were separated and extracted with EtOAC (3 x 15 mL). The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography (silica gel, pentane/ $\mathrm{Et}_{2} \mathrm{O} 7: 1$) to afford 45 as white solid ($78 \mathrm{mg}, 0.14 \mathrm{mmol}, 5 \%$)
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, \delta \mathbf{p p m}\right): 6.49(\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}-1$ ', $J=2.5$, 10.8 Hz), 5.08 (m, 1H, H-7), 4.62 (m, 1H, H-3), 4.23 (m, 2H, H-4'), 3.83 (m, 2H, H-5'), 2.20 (m, 1H, H-20), 1.96 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH} 3 \mathrm{CO}$), 1.92 (m, 1H,
$\mathrm{H}-12 \mathrm{a}), 1.78-1.19(\mathrm{~m}, 33 \mathrm{H}), 1.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 1.01(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}-21, J=$ 6.6 Hz), 0.74 (s, 3H, H-19), 0.50 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-18$)
${ }^{13} \mathbf{C}^{\text {NMR }}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, \delta \mathrm{ppm}\right): 199.1$ (C-3'), 170.7 (CO), 154.7 (CO-Boc), 144.1 (C-2'), 138.8 (C-8), 117.9 (C-7), $80.5\left(\underline{\left(C-\left(\mathrm{CH}_{3}\right)_{3}\right), ~}\right.$ 73.4 (C-3), 55.3 (C-17), 54.6 (C-14), 54.0 (C-5') 49.3 (C-9), 46.7 (C-4'), 43.7 (C-13), 40.1 (C-20), 39.3 (C-5), 37.9 (C-12), 36.9 (C-1), 34.3 (C10), 33.8 (C-4), 29.5 (C-6), $28.4\left(\mathrm{C}-\left(\mathrm{CH}_{3}\right)_{3}\right), 27.5(\mathrm{C}-16), 27.2(\mathrm{C}-2)$, 23.0 (C-15), 21.5 (C-11), 21.4 (CH 3 CO), 18.8 (C-21), 13.0 (C-19), 12.3 (C-18)

HRMS (ASAP+) $m / z:[\mathrm{M}-\mathrm{C} 4 \mathrm{H} 7 \mathrm{O} 2+\mathrm{H}]$ calcd. 424.852 for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}_{3}$ found 424.852

4.1.25 (3S,20S)-20-Formylpregn-7-en-3-yl t-butyldimethylsilyl (46)

To a stirred solution of $\mathbf{4 7}(72.6 \mathrm{mg}, 0.22 \mathrm{mmol}, 1 \mathrm{eq})$ in THF (2 mL) it was added Iimidazole ($67 \mathrm{mg}, 0.99 \mathrm{mmol}, 4.5 \mathrm{eq}$) and TBDMS-Cl (99 mg , $0.66 \mathrm{mmol}, 3 \mathrm{eqq}$) at room temperature. The mixture was stirred for 16 h and quenched with water $(10 \mathrm{~mL})$. The biphasic mixture was extracted with DCM (3x15 mL). The combined organic layers were washed with

4.1. GENERAL MATERIALS AND METHODS

brine, dried over MgSO_{4} and concentrated in vacuo. The crude product was filtered through a short pad of silica (silica gel, pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 9:1) to afford $\mathbf{4 6}$ as white solid ($95.9 \mathrm{mg}, 0.22 \mathrm{mmol}$, quant.yield)

Melting point: $160.3^{\circ} \mathrm{C}$

TLC: $\mathrm{R}_{f}=0.54$ (silica gel, pentane/ $\mathrm{Et}_{2} \mathrm{O} 90 / 10$)
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 600 \mathrm{MHz}, \delta \mathbf{~ p p m}\right): 9.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CHO}, J=4.9$ Hz), $5.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 3.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-20), 1.91(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-12 \mathrm{a}$) $1.86-1.25$ (m, 26H), 1.13 (ddd, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, J=4.2,13.0 \mathrm{~Hz}$), $1.04(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}-21, J=6.8 \mathrm{~Hz}), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-\left(\mathrm{CH}_{3}\right)_{3}\right), 0.77(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{H}-19), 0.53$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-18), 0.00\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}-\left(\mathrm{CH}_{3}\right)_{2}\right)$
${ }^{1} 3 \mathrm{CNMR}^{2}\left(\mathrm{CDCl}_{3}, \mathbf{1 5 0 M H z}\right.$, $\left.\delta \mathbf{p p m}\right): 205.9(\mathrm{CHO}), 138.8(\mathrm{C}-8)$, 118.2 (C-7), 71.9 (C-3), 54.5 (C-14), 51.2 (C-17), 49.4 (C-9), 49.1 (C-20), 43.2 (C-13), 40.4 (C-5), 38.5 (C-4), 38.3 (C-12), 37.3 (C-1) 34.3 (C-10), 31.9 (C-2), 29.7 (C-6), 26.1 (C-16), $26.0\left(\mathrm{Si}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 22.6$ (C-15), 21.2 (C-11), $18.30\left(\mathrm{Si}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 13.5$ (C-21), 13.1 (C-19), 12.9 (C-18), -4.5 $\left(\mathrm{Si}-\left(\mathrm{CH}_{3}\right)_{2}\right)$

IR (cm ${ }^{-1}$): 2927, 2854, 1725, 1460, 1103, 871, 837, 774

HRMS (ASAP+) $m / z:[\mathrm{M}+\mathrm{H}]$ calcd. 445.3502 for $\mathrm{C}_{28} \mathrm{H}_{49} \mathrm{O}_{2} \mathrm{Si}$ found 445.3501

4.1.26 (3S,20S)-20-Formylpregn-7-en-3-ol (47)

To a stirred solution of $\mathbf{1 3}(191 \mathrm{mg}, 0.51 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ $(4 / 4 \mathrm{~mL})$ it was added $\mathrm{K}_{2} \mathrm{CO}_{3}(212 \mathrm{mg}, 1.54 \mathrm{mmol}, 3 \mathrm{eq})$ at room temperature. The mixture was stirred for 16 h and quenched with water (10 $\mathrm{mL})$. The biphasic mixture was extracted with DCM ($4 \times 15 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by a short pad of silica (silica gel, pentane/ $\mathrm{Et}_{2} \mathrm{O} 5: 5$) to afford $\mathbf{4 7}$ as white solid (167.9 $\mathrm{mg}, 0.51 \mathrm{mmol}$, quant.yield)

Melting point: $108.3^{\circ} \mathrm{C}$
TLC: $\mathrm{R}_{f}=0.22$ (silica gel, pentane/ $\mathrm{Et}_{2} \mathrm{O} 2: 1$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \delta \mathrm{ppm}, 20 S\right.$-isomer): $9.52(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{CHO}, J=3.2 \mathrm{~Hz}), 5.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 3.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.30(\mathrm{~m}, 1 \mathrm{H}$, H-20), 1.90 (m, 1H, H-12a) 1.80-1.17 (m, 20H), 1.07 (d, 3H, H-21, $J=$ 6.8 Hz , with underneath m, 1H, H-1b), 0.73 (s, 3H, H-18), 0.52 (s, 3H, $\mathrm{H}-18)$.
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 400 \mathrm{MHz}, \delta \mathrm{ppm}, 20 \boldsymbol{R}\right.$-isomer): $9.49(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{CHO}, J=4.9 \mathrm{~Hz}), 5.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 3.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.24(\mathrm{~m}, 1 \mathrm{H}$,

4.1. GENERAL MATERIALS AND METHODS

$\mathrm{H}-20), 1.85$ (m, 1H, H-12a), 1.80-1.17 (m, 20H), 0.97 (d, 3H, H-21, $J=$ 6.8 Hz), 0.71 (s, 3H, H-18), 0.52 (s, 3H, H-18)
${ }^{1} 3 \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0 M H z}, \delta \mathbf{p p m}\right): 205.8(\mathrm{R}, \mathrm{CHO}), 205.1$ (S, CHO), 138.8 (R, C-8), 138.7 (S, C-8), 118.2 (S, C-7), 118.1 ($\mathrm{R}, \mathrm{C}-7$), 71.0 (C-3), 54.4 ($\mathrm{R}, \mathrm{C}-14$), 54.3 ($\mathrm{S}, \mathrm{C}-14$), 51.9 ($\mathrm{R}, \mathrm{C}-17$), 51.0 (S, C-17), 49.9 (S, C-20), 49.4 (S, C-9), 49.3 ($\mathrm{R}, \mathrm{C}-20$), 49.1 ($\mathrm{R}, \mathrm{C}-9$), 44.0 (S, C-13), 43.1 ($\mathrm{R}, \mathrm{C}-13$), 40.2 ($\mathrm{R}, \mathrm{S}, \mathrm{C}-5$), 39.3 ($\mathrm{S}, \mathrm{C}-12$), 38.2 ($\mathrm{R}, \mathrm{C}-12$) 37.1 (R,S, C-1), 34.2 (R,S, C-10), 33.8 (S, C-4), 31.5 (R, C-4) 29.6 (R,S, C-6), 27.5 (C-2), 26.8 (S, C-16), 26.1 ($\mathrm{R}, \mathrm{C}-16$), 23.3 ($\mathrm{S}, \mathrm{C}-15$), 22.6 ($\mathrm{R}, \mathrm{C}-15$), 21.5 (S, C-11), 21.2 ($\mathrm{R}, \mathrm{C}-11$), 13.6 ($\mathrm{S}, \mathrm{C}-21$), 13.5 ($\mathrm{R}, \mathrm{C}-21$), 13.1 (S, C-19), 13.0 ($\mathrm{R}, \mathrm{C}-19$), 12.9 ($\mathrm{R}, \mathrm{C}-18$), 12.3 (S, C-18)

IR ($\left.\mathbf{c m}^{-1}\right): 3395,2929,2872,2852,1719,1445,1380,1265,1039,735$ HRMS (ASAP+) m/z: $[\mathrm{M}+\mathrm{H}]$ calcd. 311.2637 for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{2}$ found 311.2640

4.1.27 $5 \alpha, 6$-Dihydroergoster-3-yl- t-butyldimethylsilyl (48)

To a stirred solution of $\mathbf{3 0}(4.00 \mathrm{~g}, 9.03 \mathrm{mmol}, 1 \mathrm{eq})$ in THF (40 mL) it was added imidazole ($2.77 \mathrm{~g}, 40.7 \mathrm{mmol}, 4.5 \mathrm{eq}$) and TBDMS-Cl (4.09 g ,
$27.1 \mathrm{mmol}, 3 \mathrm{eq})$. The mixture was stirred at room temperature for 16 h and quenched with water $(40 \mathrm{~mL})$. The biphasic mixture was extracted with DCM $(3 \times 40 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude product was filtered through a short pad of silica (silica gel, pentane/Et ${ }_{2} \mathrm{O}$ 9:1) to afford 48 as white solid ($4.50 \mathrm{~g}, 8.78 \mathrm{mmol}, 97 \%$)

Melting point: $160.2-161.7^{\circ} \mathrm{C}$
TLC: $\mathrm{R}_{f}=0.84$ (silica gel, pentane/ $\mathrm{Et}_{2} \mathrm{O} 90 / 10$)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, \mathbf{6 0 0 M H z}, \delta \mathbf{p p m}\right): 5.18-5.09(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-22$, $\mathrm{H}-23), 3.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-12 \mathrm{a}$ and $\mathrm{H}-20), 1.83-1.15$ (m, $25 \mathrm{H}), 0.99$ (ddd, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, J=3.8,13.5 \mathrm{~Hz}), 0.96(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}-21, J=$ $6.6 \mathrm{~Hz}), 0.86(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}-28, J=6.8 \mathrm{~Hz}), 0.83\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-\left(\mathrm{CH}_{3}\right)_{3}\right), J=6.8$ $\mathrm{Hz}), 0.78(2 \mathrm{xd}, 6 \mathrm{H}, \mathrm{H}-26, \mathrm{H}-27, J=6.8 \mathrm{~Hz}), 0.73(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-19), 0.49(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{H}-18)$
${ }^{1} 3 \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 5 0 M H z}, \delta \mathbf{p p m}\right): 139.6(\mathrm{C}-8), 135.7(\mathrm{C}-22)$, 131.9 (C-23), 117.6 (C-7), 71.9 (C-3), 56.0 (C-17), 55.16 (C-14), 49.6 (C-9), 43.3 (C-13), 42.9 (C-24), 40.5 (C-5), 40.4 (C-20), 38.5 (C-4), 37.4 (C-1), 34.3 (C-10), 33.1 (C-25), 31.9 (C-2), 29.7 (C-6), 28.2 (C-16), 26.0 $\left(\mathrm{Si}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.0(\mathrm{C}-15), 21.6(\mathrm{C}-11), 21.1(\mathrm{C}-20), 18.3\left(\mathrm{Si}-\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 17.6 (C-28), $13.1(\mathrm{C}-19), 12.1(\mathrm{C}-18),-4.5\left(\mathrm{Si}-\left(\mathrm{CH}_{3}\right)_{2}\right)$

IR (KBr, $\left.\mathbf{c m}^{-1}\right): 2953,2928,2870,2852,1459,1379,1252,1106,871$, 837, 774

HRMS (ASAP+) $m / z:[\mathrm{M}+\mathrm{H}]$ calcd. 511.4335 for $\mathrm{C}_{34} \mathrm{H}_{59} \mathrm{OSi}$ found 511.4328

Bibliography

[1] M. Malumbres, "Cyclin-dependent kinases," Genome Biol, vol. 15, p. 122, 2014.
[2] S. Lim and P. Kaldis, "Cdks, cyclins and CKIs: roles beyond cell cycle regulation," Development, vol. 140(15), pp. 3079-3093, 2013.
[3] S. Philip, M. Kumarasiri, T. Teo, M. Yum, and S. Wang, "Cyclindependent kinase 8: A new hope in targeted cancer therapy?," J. Med. Chem., vol. 61(12), pp. 5073-5092, 2018.
[4] E. Morris, J. Ji, F. Yang, L. Di Stefano, A. Herr, N. Moon, E. Kwon, K. Haigis, A. Naar, and N. Dyson, "E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8.," Nature, vol. 455(7212), pp. 552-556, 2008.
[5] R. Firestein, A. Bass, S. Kim, I. Dunn, S. Silver, I. Guney, E. Freed, A. Ligon, N. Vena, S. Ogino, M. Chheda, P. Tamayo, S. Finn, Y. Shrestha, J. Boehm, S. Jain, E. Bojarski, C. Mermel, J. Barretina, J. Chan, J. Baselga, J. Tabernero, D. Root, C. Fuchs, M. Loda, R. Shivdasani, M. Meyerson, and W. Hahn, "CDK8 is a colorectal cancer oncogene that regulates beta- catenin activity.," Nature, vol. 455(7212), pp. 547-551, 2008.
[6] T. Rzymski, M. Mikula, E. Żyłkiewicz, A. Dreas, K. Wiklik, A. Gołas, K. Wójcik, M. Masiejczyk, A. Wróbel, I. Dolata, A. Kitlińska, M. Statkiewicz, U. Kuklinska, K. Goryca, Sapała, A. Grochowska, A. Cabaj, M. Szajewska-Skuta, E. Gabor-Worwa, K. Kucwaj, A. Białas, A. Radzimierski, M. Combik, J. Woy-
ciechowski, M. Mikulski, R. Windak, J. Ostrowski, and K. Brzózka, "SEL120-34A is a novel CDK8 inhibitor active in AML cells with high levels of serine phosphorylation of STAT1 and STAT5 transactivation domains," Oncotarget, vol. 8(20), pp. 33779-33795, 2017.
[7] H. E. Pelish, B. B. Liau, I. I. Nitulescu, A. Tangpeerachaikul, Z. C. Poss, D. H. Da Silva, B. T. Caruso, A. Arefolov, O. Fadeyi, A. L. Christie, K. Du, D. Banka, E. V. Schneider, A. Jestel, G. Zou, C. Si, C. C. Ebmeier, R. T. Bronson, A. V. Krivtsov, A. G. Myers, N. E. Kohl, A. L. Kung, S. A. Armstrong, M. E. Lemieux, D. J. Taatjes, and M. D. Shair, "Mediator kinase inhibition further activates superenhancer-associated genes in AML.," Nature, vol. 526, pp. 273-276, 2015.
[8] E. V. Schneider, J. Böttcher, M. Blaesse, L. Neumann, R. Huber, and K. Maskos, "The structure of CDK8/CycC implicates specificity in the CDK/Cyclin family and reveals interaction with a deep pocket binder," J. Mol. Biol., vol. 412, pp. 251-266, 2011.
[9] D. C. Porter, E. Farmaki, S. Altilia, G. P. Schools, D. K. West, M. Chen, B. D. Chang, A. T. Puzyrev, C. Lim, R. Rokow-Kittel, L. Friedhoff, A. G. Papavassiliou, S. Kalurupalle, G. Hurteau, J. Shi, P. S. Baran, B. Gyorffy, M. P. Wentland, E. V. Broude, H. Kiaris, and I. B. Roninson, "Cyclin-dependent kinase 8 mediates chemotherapy-induced tumor-promoting paracrine activities," Proc. Natl. Acad. Sci. U. S. A., vol. 109, pp. 13799-13804, 2012.
[10] P. A. Clarke, M. J. Ortiz-Ruiz, R. TePoele, O. Adeniji-Popoola, G. Box, W. Court, S. Czasch, S. El Bawab, C. Esdar, K. Ewan, S. Gowan, A. De Haven Brandon, P. Hewitt, S. Hobbs, W. Kauf-
mann, A. Mallinger, F. Raynaud, T. Roe, F. Rohdich, K. Schiemann, S. Simon, R. Schneider, M. Valenti, S. Weigt, J. Blagg, A. Blaukat, T. Dale, S. Eccles, S. Hecht, K. Urbahns, P. Workman, and D. Wienke, "Assessing the mechanism and therapeutic potential of modulators of the human mediator complex-associated protein kinases," eLife, vol. 5, 2016.
[11] A. Mallinger, K. Schiemann, C. Rink, J. Sejberg, M. A. Honey, P. Czodrowski, M. Stubbs, O. Poeschke, M. Busch, R. Schneider, D. Schwarz, D. Musil, R. Burke, K. Urbahns, P. Workman, D. Wienke, P. A. Clarke, F. I. Raynaud, S. A. Eccles, C. Esdar, F. Rohdich, and J. Blagg, "2,8-Disubstituted-1,6-Naphthyridines and 4,6-Disubstituted-Isoquinolines with Potent, Selective Affinity for CDK8/19," ACS Med. Chem. Lett., vol. 7(6), pp. 573-578, 2016.
[12] J. M. Hatcher, E. S. Wang, L. Johannessen, N. Kwiatkowski, T. Sim, and N. S. Gray, "Development of Highly Potent and Selective Steroidal Inhibitors and Degraders of CDK8," ACS Med. Chem. Lett., vol. 9(6), pp. 540-545, 2018.
[13] E. Solum, T. V. Hansen, R. Aesoy, and L. Herfindal, "New CDK8 inhibitors as potential anti-leukemic agents - Design, synthesis and biological evaluation," Bioorg. Med. Chem., vol. 28(10), p. 115461, 2020.
[14] R. M. Rosser and D. J. Faulkner, "Two Steroidal Alkaloids from a Marine Sponge, Plakina sp.," J. Org. Chem., vol. 49(26), pp. 51575160, 1984.
[15] S. De Marino, F. Zollo, M. Iorizzi, and C. Debitus, "A new steroidal
alkaloid from a marine sponge Corticium sp.," Tetrahedron Lett., vol. 39, pp. 7611-7614, 1998.
[16] R. Langjae, S. Bussarawit, S. Yuenyongsawad, K. Ingkaninan, and A. Plubrukarn, "Acetylcholinesterase-inhibiting steroidal alkaloid from the sponge Corticium sp.," Steroids, vol. 72(9-10), pp. 682685, 2007.
[17] A. Zampella, R. D'Orsi, S. De Marino, N. Borbone, V. A., C. Debitus, F. Zollo, and M. V. D'Auria, "Isolation of plakinamine I: A new steroidal alkaloid from the marine sponge Corticium sp. and synthesis of an analogue model compound," Eur. J. Org. Chem., pp. 4359-4363, 2005(20).
[18] D. Renard, Side Chain Azasteroids and Thiasteroids as Sterol Biosynthesis Inhibitors with Antifungal, Antitrypanosomal and Antileishmanial Activities. PhD thesis, Ludwig-MaximiliansUniversität München Side, 2006.
[19] M. Giera, D. Renard, F. Plössl, and F. Bracher, "Lathosterol side chain amides-a new class of human lathosterol oxidase inhibitors," Steroids, vol. 73, pp. 299-308, 2008.
[20] M. Gans and F. Bracher, "First total synthesis of the marine steroid alkaloid plakinamine B," Tetrahedron, vol. 70(5), pp. 1084-1090, 2014.
[21] R. W. Murray, "Mechanism of ozonolysis," Acc. Chem. Res., vol. 1, pp. 313-320, 1968.
[22] G. Wittig, "The Wittig reaction," Angew. Chemie, vol. 68(505), 1956.
[23] F. Carey and R. Sundberg, eds., Advanced Organic Chemistry Part B: Reactions and Synthesis. Springer, 5th ed., 2008.
[24] E. Vedejs and K. A. J. Snoble, "Direct observation of oxaphosphetanes from typical Wittig reactions," J. Am. Chem. Soc., vol. 95(17), pp. 5778-5780, 1973.
[25] O. Mitsunobu and Y. Masaaki, "Preparation of Esters of Carboxylic and Phosphoric Acid via Quaternary Phosphonium salts," Bull. Chem. Soc. Jpn., vol. 40(10), pp. 2380-2382, 1967.
[26] S. Fletcher, "The Mitsunobu reaction in the 21st century," Org. Chem. Front., vol. 2(6), pp. 739-752, 2015.
[27] H. Staudinger and J. Meyer, "Ber neue organische phosphorverbindungen iii. phosphinmethylenderivate und phosphinimine," Helvetica, vol. 2(1), pp. 635-646, 1919.
[28] J. J. Li, Name Reactions. Springer, Cham, 5th ed., 2014.
[29] W. Eschweiler, "Ersatz von an stickstoff gebundenen wasserstoffatomen durch die methylgruppe mit hülfe von formaldehyd," Ber. Dtsch. Chem. Ges., vol. 38, p. 880-882, 1905.
[30] H. Clarke, H. Gillespie, and S. Weisshaus, "The action of formaldehyde on amines and amino acids," J. Am. Chem. Soc., vol. 55, p. 4571-4587, 1933.
[31] A. Flyer, C. Si, and A. Myers, "Synthesis of cortistatins A, J, K and L," Nature Chem., vol. 2, p. 886-892, 2010.
[32] E. Valeur and M. Bradley, "Amide bond formation: beyond the
myth of coupling reagents," Chem. Soc. Rev., vol. 38, pp. 606-631, 2009.
[33] R. F. Heck, "The palladium-catalyzed arylation of enol esters, ethers, and halides. A new synthesis of 2 -aryl aldehydes and ketons," J. Am. Chem. Soc., vol. 90(20), pp. 5535-5538, 1968.
[34] R. F. Heck, "Palladium-Catalyzed Vinylation of Organic Halides," Org. React., vol. 27, p. 345, 1982.
[35] T. Jeffrey, "On the efficiency of tetraalkylammonium salts in heck type reactions," Tetrahedron, vol. 52, pp. 10113-10130, 1996.
[36] I. B. Seiple, J. A. M. Mercer, R. J. Sussman, Z. Zhang, and A. G. Myers, "Stereocontrolled Synthesis of syn- β-Hydroxy- α-Amino Acids by Direct Aldolization of Pseudoephenamine Glycinamide," Angew. Chem. Int. Ed. Engl., vol. 53(18), pp. 4642-4647, 2014.
[37] W. Tadros and A. Boulos, "Steroids. Part I. Selective Hydrogenation of Ergosterol and its Acetate," Helv. Chim. Acta, vol. 58(3), pp. 668-671, 1975.
[38] H. J. E. Loewenthal, "Selective reactions and modification of functional groups in steroid chemistry," Tetrahedron, vol. 6(4), pp. 269303, 1959.
[39] D. H. R. Barton, P. J. Davies, U. Kempe, J. F. McGarrity, and D. A. Widdowson, "Biosynthesis of terpenes and steroids. Part VIII. The synthesis and metabolism in Saccharomyces cerevisiae of ergosta-7,22,24(28)-trien-3 3 -ol," J. Chem. Soc. Perkin Trans. I, pp. 12311233, 1972(24).
[40] J. P. Moreau, D. J. Aberhart, and E. Caspi, "Synthesis of 5-alpha-cholesta-7,24-dien-3-beta-ol and cholesta-5,7,24-trien-3-beta-ol," J. Org. Chem., vol. 39(14), pp. 2018-2023, 1974.
[41] G. Slomp Jr. and J. L. Johnson, "Ozonolysis. II. The Effect of Pyridine on the Ozonolysis of 4,22-Stigmastadien-3-one," J. Am. Chem. Soc., vol. 80(4), pp. 915-921, 1958.
[42] S. Sato, A. Akaiwa, and Y. Fujimoto, "Synthesis of Demethylgorgosterol and Its Stereoisomers," Chem. Pharm. Bull., vol. 29, pp. 406$415,1981$.
[43] D. Renard, J. Perruchon, M. Giera, J. Müller, and F. Bracher, "Side chain azasteroids and thiasteroids as sterol methyltransferase inhibitors in ergosterol biosynthesis," Bioorg. Med. Chem., vol. 17(23), pp. 8123-8137, 2009.
[44] S. Giroux and E. J. Corey, "Stereocontrolled Synthesis of Dafachronic Acid A, the Ligand for the DAF-12 Nuclear Receptor of Caenorhabditis elegans," J. Am. Chem. Soc., vol. 129(32), pp. $9866-9867,2007$.
[45] T. Hosokawa, T. Kamiike, S.-I. Murahashi, M. Shimada, and T. Sugafuji, "The Heck reaction in the presence of molecular oxygen," Tetrahedron Lett., vol. 43(51), pp. 9323-9325, 2002.
[46] T. Nishimura, N. Kakiuchi, T. Onoue, K. Ohe, and S. Uemura, "Palladium(II)-catalyzed oxidation of terminal alkenes to methyl ketones using molecular oxygen," J. Chem. Soc. Perkin Trans. I, pp. 1915-1918, 2000(12).
[47] T. Nishimura, T. Onoue, K. Ohe, and S. Uemura, "Palladium(II)-

Catalyzed Oxidation of Alcohols to Aldehydes and Ketones by Molecular Oxygen," J. Org. Chem., vol. 64(18), pp. 6750-6755, 1999.
[48] N. Kakiuchi, Y. Maeda, T. Nishimura, and S. Uemura, "Pd(II)Hydrotalcite-Catalyzed Oxidation of Alcohols to Aldehydes and Ketones Using Atmospheric Pressure of Air," J. Org. Chem., vol. 66(20), pp. 6620-6625, 2001.
[49] J. Muzart, "On the behavior of amines in the presence $\operatorname{Pd}(0)$ and Pd(II) species," J. Mol. Catal. A Chem., vol. 308, pp. 1381-1169, 2009.
[50] K. Akira, I. Taeko, and F. Naoki, "The Palladium-catalyzed Phenylation of Enol Esters with Iodobenzene," Bull. Chem. Soc. Jpn., vol. 50, pp. 551-552, 1977.
[51] Y. Kawamura, Y. Kawano, T. Matsuda, Y. Ishitobi, and T. Hosokawa, "Palladium(II)-Catalyzed Asymmetric Coupling of Allylic Alcohols and Vinyl Ethers: Insight into the Palladium and Copper Bimetallic Catalyst," J. Org. Chem., vol. 74, pp. 3048-3053, 2009.
[52] M. Roussel and H. Mimoun, "Palladium-catalyzed oxidation of terminal olefins to methyl ketones by hydrogen peroxide," J. Org. Chem., vol. 45(26), pp. 5387-5390, 1980.
[53] I. P. Beletskaya and A. V. Cheprakov, "The Heck Reaction as a Sharpening Stone of Palladium Catalysis," Chem. Rev, vol. 100(8), p. $30093066,2000$.
[54] S. Fuse, Y. Mifune, N. Tanabe, and T. Takahashi, "Continuous-flow

BIBLIOGRAPHY

synthesis of activated vitamin D3 and its analogues," Org. Biomol. Chem., vol. 10, pp. 5205-5211, 2012.
[55] H. Noda, Y. Asada, and M. Shibasaki, "O-Benzoylhydroxylamines as Alkyl Nitrene Precursors: Synthesis of Saturated N-Heterocycles from Primary Amines," Org. Lett, vol. 22, pp. 8769-9773, 2020.
[56] T. H. J. Niedermeyer, U. Lindequist, R. Mentel, D. Gördes, E. Schmidt, K. Thurow, and M. Lalk, "Antiviral Terpenoid constituents of Ganoderma pfeifferi.," J. Nat. Prod., vol. 68(12), pp. 1728-1731, 2005.
[57] G. Hanson, R. Ware, T. Barta, and H. Huang, "2,8-Disubstituted Naphthyridine Derivatives." Serenex, INC. US2008/0032991 A1, Feb. 7, 2008.
[58] K. Schiemann, J. Blagg, A. Mallinger, C. Rink, J. Sejberg, and M. Honey, "Novel naphthyridines and isoquinolines and their use as CDK8/19 inhibitors." Merck Patent GmbH. Cancer Research Technology, Ltd. US2016/16951, 2016, A1, Jan. 21, 2016.

A Spectroscopic data
A. 1 Spectroscopic data for compound 30

A.1. SPECTROSCOPIC DATA FOR COMPOUND 30

Figure A. $1 \quad{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 0}$.

A. 2 Spectroscopic data for compound 31

Figure A. $2{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 1}$.

A.3. SPECTROSCOPIC DATA FOR COMPOUND 13

A. 3 Spectroscopic data for compound 13

Figure A. $3{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3}$.

Figure A. $4{ }^{13}$ C NMR spectrum of 13.

A.4. SPECTROSCOPIC DATA FOR COMPOUND 14

A. 4 Spectroscopic data for compound 14

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=2.0$ PPM / DBE: $\min =-50.0, \max =100.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=6$
Monoisotopic Mass, Odd Electron Ions
942 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used:
$\begin{array}{llll}\text { C: } 0-100 & \text { H: } 0-100 & \mathrm{~N}: ~ 0-5 & \mathrm{O}: 0-20\end{array}$
2020_416 131 (2.568) AM2 (Ar,35000.0,0.00,0.00); Cm (131:132)
1: TOF MS ASAP+

Figure A. 5 HRMS (ASAP +) of 14.

Figure A. $6{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 4}$.

A.4. SPECTROSCOPIC DATA FOR COMPOUND 14

Figure A. $7{ }^{13} \mathrm{C}$ NMR spectrum of 14.

Figure A. 8 COSY spectrum of $\mathbf{1 4}$.

A.4. SPECTROSCOPIC DATA FOR COMPOUND 14

Figure A. 9 HSQC spectrum of $\mathbf{1 4 .}$

Figure A. 10 HMBC spectrum of $\mathbf{1 4}$.

A.4. SPECTROSCOPIC DATA FOR COMPOUND 14

Figure A. 11 IR spectrum of $\mathbf{1 4}$.

A.5. SPECTROSCOPIC DATA FOR COMPOUND 33

A. 5 Spectroscopic data for compound 33

Elemental Composition Report
Page 1
Single Mass Analysis
Tolerance $=2.0$ PPM / DBE: $\min =-10.0, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=6$
Monoisotopic Mass, Even Electron Ions
Monoisotopic Mass, Even Electron lons
1106 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass)
Elements Used
$\begin{array}{lllll}\text { C: } 0-100 & \text { H: 0-100 } & \mathrm{N}: ~ 0-12 & \text { O: } 0-5 & \text { Si: 0-2 }\end{array}$
2021-215b 72 (1.412) AM2 (Ar,35000.0,0.00,0.00); Cm (57:72)
1: TOF MS ASAP+

Figure A. 12 HRMS (ASAP +) of $\mathbf{3 3}$.

A.5. SPECTROSCOPIC DATA FOR COMPOUND 33

Figure A. $13{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 3}$.

Figure A. $14{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 3}$.

A.5. SPECTROSCOPIC DATA FOR COMPOUND 33

Figure A. 15 COSY spectrum of $\mathbf{3 3}$.

Figure A. 16 HSQC spectrum of $\mathbf{3 3}$.

A.5. SPECTROSCOPIC DATA FOR COMPOUND 33

Figure A. 17 HMBC spectrum of $\mathbf{3 3}$.

A.5. SPECTROSCOPIC DATA FOR COMPOUND 33

Figure A. 18 IR spectrum of $\mathbf{3 3}$.

A.6. SPECTROSCOPIC DATA FOR COMPOUND 15

A. 6 Spectroscopic data for compound 15

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=3.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=6$
Monoisotopic Mass, Even Electron Ions
122 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
C: 0-100 \quad H: 0-100 \quad N: 0-2 \quad O: 0-10
20212360 (0.577) AM2 (Ar,35000.0,0.00,0.00); Cm (59:68)
1: TOF MS ES +

Figure A. 19 HRMS (ES+) of 15.

Figure A. $20 \quad{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 5 .}$

A.6. SPECTROSCOPIC DATA FOR COMPOUND 15

Figure A. $21 \quad{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 5}$.

A.6. SPECTROSCOPIC DATA FOR COMPOUND 15

Figure A. $\mathbf{2 2}$ COSY spectrum of $\mathbf{1 5}$.

A.6. SPECTROSCOPIC DATA FOR COMPOUND 15

Figure A. 23 HSQC spectrum of $\mathbf{1 5}$.
xxiv

Figure A. 24 HMBC spectrum of $\mathbf{1 5}$.

A.6. SPECTROSCOPIC DATA FOR COMPOUND 15

Figure A. 25 IR spectrum of $\mathbf{1 5}$.

A.7. SPECTROSCOPIC DATA FOR COMPOUND 16

A. 7 Spectroscopic data for compound 16

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=3.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
Monoisotopic Mass, Even Electron lons
858 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used:
$\begin{array}{cccccc}C: 0-500 & H: 0-1000 & N: 0-7 & O & 0-10 \quad N a: ~ 0-1 ~ A u: ~ 0-1 ~\end{array}$
2021-257 142 (1.337) AM2 (Ar,35000.0,0.00,0.00); Cm (142:146)

Figure A. 26 HRMS (ES+) of $\mathbf{1 6 .}$

A.7. SPECTROSCOPIC DATA FOR COMPOUND 16

Figure A. $27{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6}$.

Figure A. $28{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 6}$.
xxix

A.7. SPECTROSCOPIC DATA FOR COMPOUND 16

Figure A. 29 COSY spectrum of $\mathbf{1 6 .}$

Figure A. $\mathbf{3 0}$ HSQC spectrum of $\mathbf{1 6}$.

A.7. SPECTROSCOPIC DATA FOR COMPOUND 16

Figure A. 31 HMBC spectrum of 16.

A.7. SPECTROSCOPIC DATA FOR COMPOUND 16

Figure A. 32 IR spectrum of $\mathbf{1 6}$.

A.8. SPECTROSCOPIC DATA FOR COMPOUND 35A

A. 8 Spectroscopic data for compound 35a

Figure A.33 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 5 a}$.

Figure A. $34{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 5 a}$.

A.9. SPECTROSCOPIC DATA FOR COMPOUND 35B

A. 9 Spectroscopic data for compound 35b

Figure A. $\mathbf{3 5}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 5 b}$.
xxxvi

A. 10 Spectroscopic data for compound 35c

Figure A. $\mathbf{3 6}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 5 c}$.

A.11. SPECTROSCOPIC DATA FOR COMPOUND 35D

A. 11 Spectroscopic data for compound 35d

Figure A. $37{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 5 d}$.

Figure A. $38 \quad{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 5 d}$.

A.12. SPECTROSCOPIC DATA FOR COMPOUND 12A

A. 12 Spectroscopic data for compound 12a

Elemental Composition Repor

Page 1
Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
364 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llll}C: & 0-500 & \text { H: 0-1000 } & \mathrm{N}: 0-4 \\ \mathrm{O}: 0-10\end{array}$
2021-287 213 (4.152) AM2 (Ar, $35000.0,0.00,0.00$); Cm (208:215)


```
Minimum: 
```

Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(\%) Formula
$\begin{array}{llllllllllll}567.4057 & 567.4063 & -0.6 & -1.1 & 14.5 & 647.7 & 3.029 & 4.83 & \text { C37 } & \text { H51 N4 } & 0 \\ & 567.4049 & 0.8 & 1.4 & 9.5 & 644.7 & 0.050 & 95.17 & \text { C36 } & \text { H55 } & 05\end{array}$

Figure A. 39 HRMS (ASAP +) of 12a.

Figure A. $40{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2 a}$.

A.12. SPECTROSCOPIC DATA FOR COMPOUND 12A

Figure A.41 ${ }^{13} \mathrm{C}$ NMR spectrum of 12a.

Figure A. 42 COSY spectrum of 12a.

A.12. SPECTROSCOPIC DATA FOR COMPOUND 12A

Figure A. 43 HSQC spectrum of 12a.

Figure A. 44 HMBC spectrum of 12a.

A.12. SPECTROSCOPIC DATA FOR COMPOUND 12A

Figure A. 45 IR spectrum of 12a.

A. 13 Spectroscopic data for compound 12b

Elemental Composition Report
Page 1
Single Mass Analysis
Tolerance $=2.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
2059 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llllllll}\text { C: }: 0-500 & \text { H: } 0-1000 & \mathrm{~N}: 0-4 & \mathrm{O}: 0-3 & \mathrm{Na}: 0-1 & \text { I: 0-2 } & \text { Au: } 0-2 & \text { Si: } 0-1\end{array}$
2021-290 238 (4.634) AM2 (Ar,35000.0,0.00,0.00); Cm (236:242)

Figure A. 46 HRMS (ASAP+) of 12b

A.13. SPECTROSCOPIC DATA FOR COMPOUND 12B

Figure A. $47{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2 b}$.

Figure A. $48 \quad{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2 b}$.

A.13. SPECTROSCOPIC DATA FOR COMPOUND 12B

Figure A. 49 COSY spectrum of $\mathbf{1 2 b}$.

Figure A. 50 HSQC spectrum of $\mathbf{1 2 b}$.

A.13. SPECTROSCOPIC DATA FOR COMPOUND 12B

Figure A. 51 HMBC spectrum of 12b.
A.13. SPECTROSCOPIC DATA FOR COMPOUND 12B

Figure A. 52 IR spectrum of $\mathbf{1 2 b}$.

A.14. SPECTROSCOPIC DATA FOR COMPOUND 12C

A. 14 Spectroscopic data for compound 12c

Elemental Composition Repor

Page 1
Single Mass Analysis
Tolerance $=2.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
Monoisotopic Mass, Even Electron lons
2258 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used:

2021-289 289 (5.635) AM2 (Ar,35000.0,0.00,0.00); Cm (282:291)

1. TOF MS ASAP+

Figure A.53 HRMS (ASAP+) of 12c

Figure A.54 ${ }^{1} \mathrm{H}$ NMR spectrum of 12c.

A.14. SPECTROSCOPIC DATA FOR COMPOUND 12C

Figure A.55 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2 c}$.

Figure A.56 COSY spectrum of 12c.

A.14. SPECTROSCOPIC DATA FOR COMPOUND 12C

Figure A. 57 HSQC spectrum of 12c.

Figure A. 58 HMBC spectrum of 12c.

A.14. SPECTROSCOPIC DATA FOR COMPOUND 12C

Figure A. 59 IR spectrum of 12c.

A. 15 Spectroscopic data for compound 12d

Elemental Composition Report
Page 1
Single Mass Analysis
Tolerance $=2.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
Monoisotopic Mass, Even Electron lons
383 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llll}\text { C: } 0-500 & \text { H: } 0-1000 & \text { N: 0-4 } & \text { O: } 0-10\end{array}$
2021-288 214 (4.169) AM2 (Ar,35000.0,0.00,0.00); Cm (209:215)

1. TOF MS ASAP+

Figure A. 60 HRMS (ASAP+) of 12d.

A.15. SPECTROSCOPIC DATA FOR COMPOUND 12D

Figure A.61 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2 d}$.

Figure A. $62{ }^{13} \mathrm{C}$ NMR spectrum of 12d.

A.15. SPECTROSCOPIC DATA FOR COMPOUND 12D

Figure A. 63 COSY spectrum of $\mathbf{1 2 d}$.

Figure A. 64 HSQC spectrum of $\mathbf{1 2 d}$.

A.15. SPECTROSCOPIC DATA FOR COMPOUND 12D

Figure A. 65 HMBC spectrum of 12d.
A.15. SPECTROSCOPIC DATA FOR COMPOUND 12D

Figure A. 66 IR spectrum of 12d.

A.16. SPECTROSCOPIC DATA FOR COMPOUND 12E

A. 16 Spectroscopic data for compound 12e

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
279 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llll}C: ~ 0-500 & \text { H: } 0-1000 & \mathrm{~N}: 0-4 & \mathrm{O}: 0-10\end{array}$
2021-286 124 (2.430) AM2 (Ar,35000.0,0.00,0.00)
1: TOF MS ASAP + +

Figure A. 67 HRMS (ASAP +) of $\mathbf{1 2 e}$.

Figure A. $68{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2 e}$.

A.16. SPECTROSCOPIC DATA FOR COMPOUND 12E

Figure A. $69{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2 e}$.

Figure A. 70 COSY spectrum of 12e.

A.16. SPECTROSCOPIC DATA FOR COMPOUND 12E

Figure A. 71 HSQC spectrum of $\mathbf{1 2 e}$.
lxxii

Figure A. 72 HMBC spectrum of $\mathbf{1 2 e}$.

A.16. SPECTROSCOPIC DATA FOR COMPOUND 12E

Figure A. 73 IR spectrum of $\mathbf{1 2 e}$.

A. 17 Spectroscopic data for compound 42

Figure A.74 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 2}$.

A.17. SPECTROSCOPIC DATA FOR COMPOUND 42

Figure A.75 ${ }^{13}$ C NMR spectrum of 42.

A. 18 Spectroscopic data for compound 45

Elemental Composition Report
Page 1
Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
Monoisotopic Mass, Even Electron lons
268 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llll}\text { C: } 0-500 & \mathrm{H}: 0-1000 & \mathrm{~N}: 0-4 & \mathrm{O}: 0-10\end{array}$
2021-310 195 (3.808) AM2 (Ar,35000.0,0.00,0.00)

Minimum:
Maximum:
$\begin{array}{llll} & 5.0 & 5.0 & 50.0\end{array}$
$424.2852424 .28520 .0 \quad 0.0 \quad 9.5 \quad 980.5 \quad n / a \quad n / a \quad$ C27 H38 N 03

Figure A. 76 HRMS (ASAP+) of 45.

A.18. SPECTROSCOPIC DATA FOR COMPOUND 45

Figure A.77 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 5}$.

Figure A. $78{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 5}$.
lxxix

A.18. SPECTROSCOPIC DATA FOR COMPOUND 45

Figure A. 79 COSY spectrum of $\mathbf{4 5}$.

Figure A. 80 HSQC spectrum of $\mathbf{4 5}$.

A.18. SPECTROSCOPIC DATA FOR COMPOUND 45

Figure A. 81 HMBC spectrum of 45.

A. 19 Spectroscopic data for compound 46

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=2.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
Monoisotopic Mass, Even Electron lons
6185 formula(e) evaluated with 3 results within limits (up to 50 closest results for each mass)
Elements Used
$\begin{array}{llllllllll}\text { C: } 0-500 & H: 0-1000 & \mathrm{~N}: 0-7 & \mathrm{O}: 0-10 & \mathrm{Na}: 0-1 & \mathrm{Si}: 0-1 & \mathrm{Br}: 0-1 & \mathrm{I}: 0-1 & \text { Au: } 0-1\end{array}$
2021-258 87 (1.705)AM2 (Ar,35000.0,0.00,0.00); Cm (87)

Figure A. 82 HRMS (ASAP+) of 46.

A.19. SPECTROSCOPIC DATA FOR COMPOUND 46

Figure A.83 ${ }^{1} \mathrm{H}$ NMR spectrum of 46.

Figure A.84 ${ }^{13}$ C NMR spectrum of 46.

A.19. SPECTROSCOPIC DATA FOR COMPOUND 46

Figure A. 85 COSY spectrum of 46.

Figure A. 86 HSQC spectrum of $\mathbf{4 6}$.

A.19. SPECTROSCOPIC DATA FOR COMPOUND 46

Figure A.87 HMBC spectrum of 46.

Figure A. 88 IR spectrum of 46.

A.20. SPECTROSCOPIC DATA FOR COMPOUND 47

A. 20 Spectroscopic data for compound 47

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=2.0$ PPM / DBE: $\min =-10.0, \max =100.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=6$
Monoisotopic Mass, Even Electron Ions
218 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used:
$\begin{array}{lllll}\text { C: } 0-100 & \text { H: 0-100 } & \text { O: 0-20 } & \mathrm{Br}: 0-2 \quad \mathrm{Au}: 0-3\end{array}$
2020_322 49 (0.984) AM2 (Ar,35000.0,0.00,0.00); Cm (33:50)

Figure A. 89 HRMS (ASAP +) of 47.

Figure A. $90 \quad{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 7}$.

A.20. SPECTROSCOPIC DATA FOR COMPOUND 47

Figure A.91 ${ }^{13} \mathrm{C}$ NMR spectrum of 47 .
xcii

Figure A. 92 COSY spectrum of $\mathbf{4 7}$.

A.20. SPECTROSCOPIC DATA FOR COMPOUND 47

Figure A.93 HSQC spectrum of $\mathbf{4 7}$.
xciv

Figure A. 94 HMBC spectrum of $\mathbf{4 7}$.

A.20. SPECTROSCOPIC DATA FOR COMPOUND 47

Figure A. 95 IR spectrum of 47.

A. 21 Spectroscopic data for compound 48

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=2.0$ PPM / DBE: $\min =-10.0, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=6$
Monoisotopic Mass, Even Electron Ions
4866 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used
C: 0-100 \quad H: 0-100 \quad N: 0-6 \quad O: 0-6 \quad I: $0-2 \quad$ Si: 0-2 $\quad \mathrm{Na}: 0-1$
2021-217 198 (3.859) AM2 (Ar,35000.0,0.00,0.00); Cm (193:200)

Figure A. 96 HRMS (ASAP +) of 48.

A.21. SPECTROSCOPIC DATA FOR COMPOUND 48

Figure A.97 ${ }^{1} \mathrm{H}$ NMR spectrum of 48.

Figure A. $98 \quad{ }^{13} \mathrm{C}$ NMR spectrum of 48.
xcix

A.21. SPECTROSCOPIC DATA FOR COMPOUND 48

Figure A. 99 COSY spectrum of 48.

Figure A. $100 \quad$ HSQC spectrum of $\mathbf{4 8}$.

A.21. SPECTROSCOPIC DATA FOR COMPOUND 48

Figure A. 101 HMBC spectrum of 48.

A.21. SPECTROSCOPIC DATA FOR COMPOUND 48

Figure A. 102 IR spectrum of 48.

- NTNU

Norwegian University of Science and Technology

