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Abstract

Path sampling methods are successful in studying rare events. In chemical

reaction, it is the process where the system moves from the reactant state,

crosses a barrier, and reaches the product state.

Although the primary goal of these methods has been the computation

of the reaction rate of a chemical reaction, recent developments focus on

extracting more insights about the reaction mechanism and hence find a way

to drive a reaction from the reactant state to the product state. PyRETIS

is a Python library for rare events simulations based on transition interface

sampling (TIS) and replica exchange TIS (RETIS).

As of now, PyRETIS uses handcraft parameters to process RETIS data.

This work asks whether it is possible to use automatic methods to tune

these parameters and eliminate the need for manual tweaking. This willing-

ness merges with the goal of PyRETIS of being tailored for non-expert users,

as opposed to OpenPathSampling, another path sampling library, which is

more suitable for users eager to choose themselves the parameters.

This work introduces a method based on kernel density estimation for

reactive and nonreactive density functions and assesses its performance. The

main idea of this work is to simulate fake data to decide whether this kind

of method would be usable in a near future for PyRETIS.
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Chapter 1

Introduction

A rare event is defined as an event occurring very infrequently compared

to other relaxation processes involved in the phenomenon. Rare events are

of significant interest in many cutting-edge fields and applications, such as

climate change, economics, or disease spreading[4]. In the vast majority of

chemical reactions, crossing the free energy barrier between the reactant state

A and the product state B happens very infrequently.

Molecular dynamics (MD) can be used to model a reactive event. How-

ever, these methods have to perform well and be accurate using a relatively

small number of particles (up to 100 000 molecules) and a total simulation

time from nanoseconds to microseconds, using a time step of a few femtosec-

onds, constrained by molecular vibrations[8].

Hence, applying “vanilla” MD is only possible for systems with a relatively

small energy barrier separating the reactant and the product state, as the

probability of crossing the energy barrier decreases exponentially with the

height of the barrier. The system will stay most of the time in either A or B

and rarely jump from one state to the other state: this is the separation of

the time scales, stable states as opposed to short transitions.

Path sampling methods are successful in studying rare events. These

methods mainly focused on the computation of the reaction rate but another

3



4 CHAPTER 1. INTRODUCTION

major topic of interest is studying and analyzing reaction mechanism [6].



Chapter 2

Theory

2.1 Transition State Theory and Bennett-Chandler

approach

2.1.1 Statistical mechanics definitions

• x = r, p: phase space point with r Cartesian coordinates and p corre-

sponding momenta of all N particles.

• ρ(x) = exp (−βH(x))/Z: equilibrium distribution withH(x) the Hamil-

tonian of the system, β = 1/kBT and Z =
∫

exp (−βH(x))dx the

partition function.

• The ensemble average of an observable O is < O >=
∫
O(x)ρ(x)dx.

• The free energy is computed by projecting the phase space onto a con-

tinuous function λ(r) the reaction coordinate:

exp (−βF (λ∗)) ≡< δ(λ(r)− λ∗) >=

∫
ρ(r)δ(λ(r)− λ∗)dr

The probability histogram P (λ) can be seen as a series of delta func-

5



6 CHAPTER 2. THEORY

tions and the free energy can be computed using F (λ) = −kBT ln (P (λ)).

The probability distribution can be computed using umbrella sampling

for example.

2.1.2 Rate Constants

Very often in a rare event, the molecular transition time τmol is much smaller

than the time spent by the system in one of the two states, τstable: τmol �
τstable. The rate constant for a system made up of two stables states ,A

and B, separated by a significant activation barrier, could be defined as the

number NA→B(T ) of transitions from A to B during time T , given that the

system is initially in state A:

kAB = lim
T →∞

NA→B(T )

tAtot

with

tAtot(T ) =
∑
i

tAi

the total time spent in A during T .

2.1.3 Rate Constants from Transition State Theory

The transition state theory (TST) evaluates the reaction rate by exploit-

ing the properties of the free energy minima and the activation barrier. In

the simplest systems, the activation barrier can be related to the first-order

saddle points on the potential landscape: if the potential energy is regular

enough such that the saddle points are easy to enumerate and related to the

transition state, computing these points gives access the reaction rate[5].

However, in multi-dimensional many-body complex systems, the poten-

tial energy is not smooth anymore: the number of saddle points is growing

exponentially with the number of degrees of freedom, and most of these
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points are the order of kBT . Entropy has a significant contribution and is

not negligible anymore. A solution is to replace the potential energy with the

free energy and compute the free energy barrier as a function of the reaction

coordinate: this is the central point of the TST methods.

TST methods involve reactive flux methods: first, the free energy as a

function of the reaction coordinates is computed using for instance umbrella

sampling. The rate is proportional to the probability density to be at the

top of the free energy barrier. If the probability density is multiplied by an

analytical flux term, one obtains the TST estimate of the reaction rate. If

needed, this estimate can be made exact by the computation of a transmission

coefficient, obtained by starting many short trajectories from the top of the

barrier. Nevertheless, the efficiency of this procedure depends on the reaction

coordinate chosen; it might be challenging to find such a coordinate for high-

dimensional systems.

We define

hΩ(r) =

1 if r ∈ Ω,

0 otherwise.

So,

〈hΩ(r)〉 =

∫
Ω

ρ(r)dr

In the TST, these state definitions usually depends on a single dividing

surface, and therefore hA + hB = 1 so 〈hA〉+ 〈hB〉 = 1

We can define the mean time residence in A as before:

tmrA = lim
T →∞

2

N(T )

∫ T

0

hA(r(t))dt

with N(T ) the number of times that, during T , a very long dynamic

trajectory crosses ∂A, the boundary between A and B. The factor 2 accounts

for outgoing and ingoing crossings.
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Using a reaction coordinate λ(r), A = {r ∈ Rn|λ(r) < λ∗} and ∂A =

{r ∈ Rn|λ(r) = λ∗}, we have:

hA(r) = θ(λ∗ − λ(r))

and

hA(r) = θ(λ(r)− λ∗)

Finally,

kTSTAB =

〈
δ(λ(r)− λ∗)λ̇θ ˙(λ)

〉
〈θ(λ∗ − λ(r))〉

and, using, the free energy,

kTSTAB =
〈
λ̇θ(λ̇)

〉
λ=λ∗

exp−βF (λ∗)∫ λ∗
−∞ exp−βF (λ′)dλ′

TST also assumes that trajectories crossing ∂A do not recross it moments

later, so localizing the dividing surface λ∗ is crucial: the TST constant rate

is the right one only if {x|λ(x) = λ∗} is the separatrix, i.e the true transi-

tion state dividing the surface. However, it is impossible to know the exact

location of the separatrix for complex systems.

2.1.4 The Bennett-Chandler approach

This reaction rate is sensitive to the choice of the reaction coordinate, and the

computed rate is correct if {x|λ(x) = λ∗} corresponds to the true separatrix

(i.e., the transition state dividing system). The central assumption is that

any trajectory coming from A and crossing λ∗ will not recross λ∗ afterward.

In complex systems, it is impossible to know where the separatrix is located.

Fortunately, the kTST rate constant can be corrected with a transmission

coefficient in the Bennett-Chandler approach[1]. We can multiply the TST

rate constant with κ(t), the transmission coefficient to obtain the true rate

constant.
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kAB(t) = kABκ(t)

with

κ(t) =

〈
λ̇(x0)θ(λ(xt)− λ∗)

〉
λ=λ∗〈

λ̇(x0)θ(λ̇(x0))
〉
λ=λ∗

After a short molecular time tmol, the trajectories are committed to a

stable state, and κ becomes a constant, leading to kAB.

In κ(t), recrossings are effectively taken into account: untrue trajectories

B → B are not taken into account because positive and negative terms

cancel, and a A → B trajectory with multiple λ∗ crossings is counted only

once. However, λ∗ has to be close to the true transition state, otherwise κ

will be very low, this requires a priori knowledge about the system.

2.2 Transition Path Sampling

In transition path sampling (TPS) methods, we care about path ensembles,

which include different paths from state A to state B. One significant advan-

tage is that only defining state A and state B carefully is required, it does

not require a priori knowledge such as a reaction coordinate, for example[3].

TPS simulations, which aim at collecting all likely transition pathways

between A and B, requires the following assumptions:

1. The stable states are characterized by an order parameter, if λ < λA,

the system is in A and if λ > λB, the system is in B.

2. The system spends most of the time in states A and B, with rapid

transitions between the two states.

3. There are no other stable states than A and B.
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4. Stable states are separated by an unknown rough energy barrier or free

energy barrier.

2.2.1 Path Probability

A path is described as a sequence of states {x0, x∆t, x2∆t, . . . , xT } separated

by ∆t, x = {r, p} represents the position and the momenta of all the particles

in the system and T is the trajectory length. xi∆t is also called a snapshot

of the system or a time slice at i∆t.

Figure 2.1: Illustration of a path. Figure taken from article of Dellago et al
[5]

The path weight or probability of a path x(T ), P [x(T )], is given by

P [x(T )] = ρ(x0)

T
∆t
−1∏

i=0

ρ(xi∆t → x(i+1)∆t)/Z(T )

where ρ(x0) is the probability density of the initial conditions and ρ(xi∆t →
x(i+1)∆t) is the single time step transition probability.
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2.2.2 Reactive Pathways

Now we are looking at the paths that start in the region A and end in the

region B: the reactive pathways. In this ensemble, the path weight reads

PAB[x(T )] = hA(x0)P [x(T )]hB(x(T ))/ZAB(T )

with

ZAB(T ) =

∫
Dx(T )hA(x0)P [x(T )]hB(x(T ))

where
∫
Dx(T ) is a summation over all pathways.

2.2.3 Path Probabilities for Deterministic and Stochas-

tic Dynamics

For our use case, the system is in contact with a heat bath, the right statistics

to use is the canonical ensemble:

ρ(x) = exp (−βH(x))/Z

with Z the partition function

Then we would like to use the Newtonian dynamics. The following rela-

tions hold:

ṙ =
∂H(r, p)

∂p

and

ṗ = −∂H(r, p)

∂r

As the system is deterministic, its evolution is fully determined by the

initial condition x0, so we can define a function φt, called the propagator of

the system, such that

xt = φt(x0)
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Using this function,

ρ(xt → xt+∆T ) = δ[xt+∆t − φ∆t(xt)]

and finally

PAB[x(T )] = ρ(x0)hA(x0)
∏

δ[x(i+1)∆t − φ∆t(xi∆t)]hB(xT )/ZAB(T )

with

ZAB(T ) =

∫
dx0ρ(x0)PAB[x(T )]hA(x0)hB(xT )

2.2.4 Defining the Stable States A and B

The TPS method doesn’t require the reaction coordinate knowledge, but

require a careful definition of the states A and B.

These states can be characterized by an order parameter, denoted q, how-

ever finding this order parameter is not trivial.

A good order parameter should be such that A and B are large enough

A and B should not overlap

2.3 Sampling Path Ensembles

We would like now to explore the path ensemble and find all reactive trajec-

tories inside it.

2.3.1 Monte Carlo in Path Space

As said before, we would like to collect reactive trajectories x(T ) according to

their weight PAB[x(T )] in the transition path ensemble. Namely, we will use

the Monte Carlo importance sampling: a new path x(n)(T ) is generated from

an old one x(o)(T ) with a generating probability Pgen[x(o)(T ) → x(n)(T )].
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The new path is then accepted with an acceptance probability Pacc[x
(o)(T )→

x(n)(T )].

In order for pathways to be visited with a frequency proportional to the

weight in the path ensemble PAB[x(T )] (i.e maintain the path ensemble dis-

tribution), the detailed balance condition holds:

PAB[x(T )]Pgen[x(o)(T )→ x(n)(T )]Pacc[x
(o)(T )→ x(n)(T )] =

PAB[x(T )]Pgen[x(o)(T )→ x(n)(T )]Pacc[x
(o)(T )→ x(n)(T )]

Since hA(x
(o)
0 ) = 1 and hB(x

(o)
T ) = 1 as the old path is reactive, using the

definition of PAB[x(T )] yields the Metropolis-Hastings acceptance rule:

Pacc[x
(o)(T )→ x(n)(T )] = hA(x

(n)
0 )hB(x

(n)
T ) min

[
1,
P [x(n)(T )]Pgen[x(n)(T )→ x(o)(T )]

P [x(o)(T )]Pgen[x(o)(T )→ x(n)(T )]

]
2.3.2 Shooting Move

To generate a new path from an old one, the most common procedure used

is the shooting move:

1. Select a time slice from the old path, x
(o)
t′

2. Randomly modify the momenta from x
(o)
t′ according to a Maxwell-

Boltzmann distribution to get x
(n)
t′

3. From this new point, integrate forward to time T and backward to time

0

Using previous expressions, assuming microscopic reversibility and sta-

tionary and equilibrium distribution for the initial points, one can show that

the acceptance probability reduces to

Pacc[x
(o)(T )→ x(n)(T )] = hA(x

(n)
0 )hB(x

(n)
T )
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2.3.3 Shifting Move

In the shifting move, a new path is generated from the old one by translating

the trajectory backward or forward. For the forward shift, a segment of a

certain length is removed from the beginning of the path, then a segment of

the same length is grown at the end of the path by integrating the equations

of motion

This shifting move is computationally inexpensive and the new path par-

tially overlaps the old path, leading to a highly correlated move.

One can show that the acceptance probability for this move reads

Pacc[x
(o)(T )→ x(n)(T )] = hA(x

(n)
0 )hB(x

(n)
T )

2.3.4 The Initial Pathway

To use the previous moves, an initial reactive pathway has to be available.

Although using a plain MD simulation is still possible, it is computationally

expensive as we are trying to get a rare event. A better solution is to pro-

duce an atypical trajectory with a low weight, then equilibrate the pathway

towards more important regions of trajectory space: this can be done repeat-

ing MC steps and then begin the TPS simulation. Other solutions have been

provided, such as running a high temperature MD and then run the TPS

simulation at the temperature of interest, protein folding uses this process.

2.4 Reaction Mechanisms: Analyzing Tran-

sition Pathways

2.4.1 Rate constants

TPS can be used to compute reaction rate, and the reaction rate expression

is obtained by comparing macroscopic and microscopic kinetic equations.
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A time-dependent correlation function, C(t), is then used to compute the

reaction rate using TPS method, and reads as follows:

C(t) =
〈hA(x0)hB(xt)〉

〈hA〉

For τmol < t � τrxn, C(t) is a linear function of time and the slope is

given by kAB. Methods such as Umbrella Sampling can be used to compute

the correlation function, but this is beyond the scope of this work.

2.4.2 Reaction Coordinate vs Order Parameter

TPS requires a proper definition of the stable states A and B. Defining

the stable states can be achieved using an order parameter, a variable that

discriminate configurations belonging to A or B.

But this is not suitable for characterization of reaction mechanism, which

would use the reaction coordinate (RC), a variable capable of describing the

dynamical bottleneck separating the reactants from products A good RC

should capture the essence of the dynamics and allow us to predict what a

trajectory starting from a given configuration will most likely do: this is the

committor.

2.4.3 Committor

In simple systems, transition state is described by finding the saddle points

of the potential energy, which correspond to unstable states that can evolve

to A and B in response to a perturbation. The committor is a generalization

of this concept : it tells with which likelihood a certain configuration is

committed to one of the two states. Thus, this is a direct statistical indicator

of the progress of the reaction: the committor appears to be the ideal reaction

coordinate. However, it is highly non trivial to get a small number of variables

to parametrize the committor.

The committor of the state B at the time t is by definition
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pB(r, t) ≡
∫
Dx(t)P [x(t)]δ(r0 − r)hB(xt)∫
Dx(t)P [x(t)]δ(r0 − r)

where r0 is the initial configuration of the system from which the trajec-

tory x(t) is integrated.

Hence, the committor pB is a statistical measure for how committed a

given configuration is to the product state.

A value of pB = 0 indicates no commitment to the state B whereas a

value pB = 1 shows a fully B committed configuration

2.4.4 Transition State Ensemble

A configuration r is a transition state if both states A and B are equally

accessible from that configuration. This is equivalent to require that

pA(r) = pB(r)

Hence, the transition state defined in a statistical way is different from

particular features of the potential energy (ex: first-order saddle points).

Any r such that pA(r) = pB(r) is the separatrix, also called isocommittor

surface. If all trajectories end up in state A or B, then the transition state

is defined by pA(r) = pB(r) = 0.5

2.5 Transition Interface Sampling

The main change using transition interface sampling is the introduction of

overall states[7] A and B instead of regular ones, A and B. These overall

states are complementary.

A includes all phase points in A and all phase points that were most

recently in A than in B based on their history.

B includes all phase points in B and all phase points that were most

recently in B than in A based on their history.
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Hence, hA and hB, the characteristic function of A and B, are not very

sensitive to the stable state definition.

Now, the time-dependent correlation function is:

C(t) =
< hA(x0)hB(xt) >

< hA >

Recrossings of the phase space hypersurface separating the overall state

are eliminated and kAB is the slope of C(t) at time 0:

kAB =
< hA(x0)ḣB(x0) >

< hA >

This expression can be further rewritten to:

kAB =
< φAB >

< hA >

TIS methods also aim at computing the rate constant kAB for the reaction

A→ B. One can prove that:

kAB = fAPA(λB | λA)

where fA is the initial flux: it measures how often trajectories start off at

the foot of the reaction barrier from the reaction side λA and PA(λB | λA) is

the crossing probability: it’s the probability of reaching λB before λA given

λA has just been crossed.

One major issue is that PA(λB | λA) is very small and therefore impossible

to compute without having to wait for a long time. One solution is the

TIS method: we set n non-intersecting interfaces λi, called interfaces, with

λ0 = λA and λN = λB. So, now,

kAB = fA

N∏
i=0

PA(λi+1 | λi)
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with

PA(λi+1 | λi)

the probability of a path crossing λi+1 given it started from λA, ended in λA

or λB, and at least crossed λi in the past.

λi defines the path ensemble [i+]: it includes all the trajectories that

start at λA, end in λA or in λB, and reached λi at some point: with these

ensembles we can compute PA(λi+1 | λi), this is the fraction of paths in the

[i+] ensemble that cross λi+1. To generate trajectories, the shooting move as

seen before can be used as well as a new move: the time reversal move.

• Shooting move

1. Pick a random step from the MD simulation in the current tra-

jectory

2. Modify the velocities at this phase point

3. Generate a new trajectory from this point by integrating backward

and forward until A or B is reached

4. We accept the new trajectory if:

- The detailed balance condition is fulfilled (the maximum allowed

length path to obey the detailed balance is equal to the length of

the old path length divided by a random number between 0 and

1 drawn from a uniform distribution)

- It starts at A

- It has at least one crossing with λi before ending in A or B

• In a time-reversal move, a new trajectory is generated by changing the

time direction of the current path.

The shooting move is more efficient than the method to generate trajec-

tories in the classical TPS.
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2.5.1 Replica Exchange TIS

The RETIS approach[4] is similar to the TIS one, except that we include

a new move, called the swapping move, and a new ensemble, [0−], which

describes trajectories that explore the reactant state. The swapping is de-

scribed as follows: if, in two different path ensembles [(i− 1)+] and [i+], two

valid trajectories are valid for each other’s ensemble, we can swap these tra-

jectories, i.e the trajectory currently belonging to [(i− 1)+] now belongs to

[i+] and vice versa.

The shooting move is the most time consuming because it requires force

calculations to do the MD steps, the least time consuming are time reverse

and swapping moves. Moreover, swapping move can efficiently decorrelate

consecutive paths.

2.5.2 Analyze complex mechanisms using RETIS

The use of a committor function is, as described above, considered as the best

reaction coordinate. However, computing the committor is very expensive

and find helpful chemical insights about the reaction is a non-trivial task.

The following approach[6] considers the reaction coordinate as a simple

order parameter, but considers also in addition other variables, called collec-

tive variables.

λ(x) is a progress coordinate, a function of phase-space point x, it could

be the length of a bond that needs to be broken or radius of gyration for pro-

tein folding. The collection of phase-space points x having a specific value λi

form the interfaces. There are M+1 interfaces: λ0 = λA is placed within the

reactant well, λM = λB is placed within the product well and the interfaces

in between are placed in the barrier region.

From now on, X denotes a path of L+1 time slices: X = {x0, x1, . . . , xL}:
L is the flexible path length and xk is the k-th phase point of the path
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X ∈ [i+] if λ(x0) < λ0, λ(xL) < λ0 or λ(xL) > λM , λ0 < λ(xk) < λM for

k = 1, 2, . . . , L− 1 and λmax ≡ max[λ(x1), λ(x2), . . . , λ(xL)] > λi. x
λc is the

first crossing point with interface λc: xλ
c
(X) = xk ∈ X if λ(xk) ≥ λc and

λ(xl) < λc for all l < k.

Naturally λ(xλ
c
(X)) ≥ λc, but there are other collective variables (CVs)

that can characterize this point: Ψ1,Ψ2, . . . ,ΨN . We denote ΨN(x) =

{Ψ1(x),Ψ2(x), . . . ,ΨN(x)} the vector corresponding to the N CVs.

Now, we consider 3 important interfaces: λA: the reactant interface,

λc > λA: the crossing interface, and λr > λc: the partial reaction interface,

that characterizes the reactive and unreactive trajectories: the reactive ones

cross λr, the unreactive recross λA without crossing λr. If λr = λB, reactive

trajectories are fully reactive, and for λr < λB, we can get useful information

about the reaction mechanism at intermediate stages of the reaction. We can

shift λc and λr to the desired region and construct a grid in the CVs space

ΨN and define bins covering the full accessible surface of the λc interface.

q is the index of the bins, tq is the fraction of all crossing trajectories

passing through bin q in the λc interface, rq is the fraction of all crossing

trajectories passing through bin q and crossing λr, and uq is the fraction of

all crossing trajectories passing through bin q and not crossing λr.

The following relations hold:

tq = uq + rq

∑
q

tq = 1

∑
q

rq = PA(λr | λc)
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Figure 2.2: Illustration of reactive and unreactive trajectories passing
through bins with two collective variables Ψ1 and Ψ2. Figure taken from
article of van Erp et al [6].

∑
q

uq = 1− PA(λr | λc)

Depending on the CVs and the grid spacing, we would get different values

of rq and uq. If we could partition the first crossing points such that
rq
tq

= 1

or rq = 0 for each bin, the predictive ability is optimal; each time that λc is

crossed for the first time, we check through which bin it passes and, then, we

would be able to say whether it will cross λr or not. But this is not achievable

as it is too difficult to find the right CVs.

For each bin q, the reactive ratio
rq
tq

can have a value between 0 and 1.

The overall measure of predictive power must then be a weighted average of
rq
tq

over q: This measure must reflect the fraction of reactive trajectories of

the bin q over the total number of reactive trajectories: the measure T is

defined as follow:
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T ≡
∑
q

 rq∑
v

rv

 rq
tq

We can rewrite using the properties mentioned above:

T = 1− 1

PA(λr | λc)
∑
q

rquq
tq
≡ 1− S

In continuous space, S is the overlap integral of the reactive and nonre-

active distributions:

Sλ
c,λr

A [ΨN ] =
1

PA(λr | λc)

∫ (
rλ

c,λr(ΨN)uλ
c,λr(ΨN)

tλc(ΨN)

)
dΨN

The overlap depends on the CVs chosen, which are functions of phase-

space point x. The goal is to minimise S:

Sλ
c,λr

A,0 [ΨN ] =
1

PA(λr | λc)
min
ΨN

[∫ (
rλ

c,λr(ΨN)uλ
c,λr(ΨN)

tλc(ΨN)

)
dΨN

]
and we call the corresponding CVs ΨN

min such that

Sλ
c,λr

A [ΨN
min] = Sλ

c,λr

A,0

ΨN
min is not unique: the aim is to minimize Sλ

c,λr

A and to get intuitive

properties to find out how to drive the reaction from the reactants to the

products.

T λ
c,λr

A is a measure of predictive capacity:

T λ
c,λr

A ≤ 1

T λ
c,λr

A

P(λr | λc)
is a measure of the enhancement of predictive capacity due to

the information on the selected CVs:
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T λ
c,λr

A

P(λr | λc)
≥ 1

With path sampling data, one can compute Sλ
c,λr

A (ΨN) for different λc

and λr between λA and λB and so we can get information information about

the predictive power of the CVs at each stage of the reaction.

Practically, the results from all path ensembles [i+] are merged together

using the weighted histogram analysis method (WHAM)[9, 13]. In substance,

WHAM enables merging all path ensembles data [0+], [1+], ..., [(M − 1)+]

to compute T λ
c,λr

A in a way to reduce statistical errors and being able to use

values for λc and λr that are not being part of the interface values.
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Chapter 3

Enhance the density probability

estimation of reactive and

nonreactive distributions R and

U using non parametric kernel

density estimation

3.1 Motivation

Recall from the previous part that we set up a grid in the CVs space using

bins, so we have to define a bin width. Following a discussion with Titus Van

Erp and Anders Lervik, finding the right bin width is challenging. It has to

be carefully chosen by the user in order to process mechanism analysis. This

raises some issues:

• if the bin size is too small, the situation where too many bins are empty

can happen, leading to falsely non-overlapping R and U distributions.

• if the bin size is too large, the resolution is not sufficient enough to

25
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compute the overlap integral.

Hence, when choosing the bin size, a trade-off between acceptable accu-

racy and wrong R and U distributions. This requires a priori knowledge

about the collective variable used for the analysis and the studied reaction,

which can be challenging to get, even if impossible. When studying a reac-

tion, many tests are required to check if a slight variation of the bin width

dramatically changes R and T distributions.

Moreover, this collective variable analysis could be integrated into a future

update of PyRETIS, and since this library globally aims at being usable

by non-expert users, not having to choose this parameter is a significant

advantage.

3.2 General framework

Estimation of a density probability function given a discrete set of points

has always been a tedious task. Two approaches have been mainly studied

in the literature: the parametric and the non-parametric methods. In the

parametric approach, one assumes a distribution shape described by a set of

parameters (i.e., a Gaussian distribution is described using two parameters,

the mean and the standard deviation) and then tries to fit this given distri-

bution to sampled data. In contrast, the non-parametric approach does not

require assumptions about the density function.

The most straightforward method is to plot a histogram, but more com-

plex and robust methods have been developed, such as the kernel density

estimation (KDE). This method evaluates the proper density by using a sum

of kernel functions which are centered on the data points:

fKDE(x) =
1

hN

N∑
j=1

K

(
x−Xj

h

)
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where K is the kernel function and h is the bandwidth.

Usually, non-parametric methods require the user to choose parameters

(bin size in case of a histogram, bandwidth in case of KDE) in order for

the method to be successful. Most of these parameters are used to smooth

the density estimation. It would be beneficial for the user to have the least

number of parameters involved in a method or have an automatic procedure

for choosing these parameters. Bernacchia et al.[2] developed a self-consistent

method that gives an optimal density function.

An optimal convolution kernel can be expressed as a function of the power

spectrum of the density to be estimated, the optimization is made by mini-

mizing the mean integrated square error. The estimate is first expressed as

follows:

f(x) =
1

N

N∑
j=1

K(x−Xj)

.

The Fourier transform of the optimal kernel is given by

κopt(t) =
N

N − 1+ | φ(t) |−2

where φ(t) is the characteristic function of the true density f(x), i.e the

Fourier transform:

φ(t) =

∫ +∞

−∞
exp(itx)f(x)dx

Obviously, the true density is unknown, so is the characteristic function

and this procedure is not usable. Self consistent method has been developed

to get rid of this issue.

The Fourier transform of the true density can be written as follows:

φ(t) = ∆(t)κopt(t) =
∆(t)N

N − 1+ | φ(t) |−2



28CHAPTER 3. ENHANCE THE DENSITY PROBABILITY OFR AND U USING KDE

where ∆(t) = 1
N

∑N
j=1 exp (itXj)

The iterative procedure uses a first estimation, φ0, and this estimation

yields φ1. Then we can find an improved estimate φ2 using a kernel which

is optimal for φ1, and so on so forth. More formally we try to find the fixed

point for the following suite defined by:

φ̂n+1 = ∆(t)κopt(t) =
∆(t)N

N − 1+ | φ̂n |−2

and the fixed point is by definition:

φ̂sc =
∆N

N − 1+ | φ̂sc |−2

It can be shown that:

φ̂sc =
N∆(t)

2(N − 1)
[1 +

√
1− 4(N − 1)

N2|∆(t)|2
]IA(t)

where IA(t) is the indicator function that equals to 1 if t ∈ A and 0

otherwise, and A is the set of accepted frequencies, i.e frequencies giving a

non-zero contribution to the estimate. To be a stable solution, the set A

must be contained in B where t ∈ B if and only if

|∆(t)|2 ≥ 4(N − 1)

N2

.

This condition sets a threshold below which φ̂sc(t) = 0.

The choice of A is still at the user’s discretion, but one can prove that

any bounded set A where the bound grows with N will make the estimate

converge to the true density. Hence, the authors used a default value for A

that works in many cases.
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The inverse Fourier transformation of φ̂sc will lead to the estimate density

f̂sc.

However, the method implemented by Bernacchia et al. has not been

applied to multidimensional KDEs. O’Brien et al.[12] augmented the original

method to multivariate KDEs, called fastKDE. In essence, the theory lying

behind fastKDE is the same as before, but it relies on optimized Fourier

computations to achieve fast computations.

This method is closely related to histograms and does not interrupt the

already existing workflow of PyRETIS analysis scripts, resulting in minor

modifications in the codebase.

The code was implemented in Python 3.8, using Numpy[10] and built-in

Python functions. The fastKDE method has been used using the fastKDE

package available released by the authors at https://pypi.org/project/

fastkde/.



30CHAPTER 3. ENHANCE THE DENSITY PROBABILITY OFR AND U USING KDE



Chapter 4

Results and discussion

4.1 Kernel Density Estimation

4.1.1 Toy model using Gaussian distributions

To investigate the possibility of using the fastKDE method on PyRETIS

data, we used a model made up of Gaussian distributions, faking R and U

distributions. Different values of µ and σ were used to simulate different

cases. Two reasons lead us to use Gaussian as testing distributions:

• The ability to compute an exact value for the overlap coefficient be-

tween two Gaussian distributions.

• The ability to shape fake R and U distributions to mimic real-world

counterparts’ behavior.

The central quantity is the overlap coefficient between two distributions,

which is defined using a simplified notation as follows:

S[ΨN ] =

∫
R(ΨN)× U(ΨN)

R(ΨN) + U(ΨN)
dΨN

The current issue with density estimation is that, in the desired case

31
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where R and U distributions have a slight overlap value, i.e., the chosen CVs

are highly discriminating, computing these values is tricky.

The number of collective variables in ΨN is usually low, for instance, 2,

3, or 4, as we would like to explain the outcome of a reaction using a small

number of CVs[11].

The first step was to use 1D Gaussian distributions as fake R and U

distributions:

R(Ψ) =
1

σR
√

2π
exp

(
−(Ψ− µR)2

2σ2
R

)
and

U(Ψ) =
1

σU
√

2π
exp

(
−(Ψ− µU)2

2σ2
U

)
We define the mean difference to be the difference of the mean value of the

R distribution and the U distribution and is equal to µR−µD. Similarly, we

define the standard deviation ratio to be the ratio of the standard deviation

value of the R distribution and the U distribution and is equal to
σR
σU

.

In a real-case situation, as in [11], the reactive distribution can be of

several order of magnitude less than the unreactive distribution (107 for in-

stance) and shifted away from the unreactive distribution. We can translate

these properties of the real R and U distribution into the faked counterparts

by adjusting the mean and the standard deviation.

The overlap value was computed with a mean difference value ranging

from 0 to 5, simulating the different cases in a real dataset. The number of

generated points drawn from Gaussian distribution is equal to 10000. Nu-

meric integration was then carried out using the integrate.quad function from

the scipy module.
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Figure 4.1: Overlap value depending on the mean difference of the two dis-
tributions (1D case)
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It can be seen that the relative error ranges from 0% to 1.2% (with a

mean difference equal to 4).

The same was done using this time a difference in standard deviation

values. The overlap value was computed with a standard deviation ratio

ranging from 1 to 10000, simulating the different cases in a real dataset.

The number of generated points drawn from Gaussian distribution is equal

to 10000. Numeric integration was then carried out on estimated densities

using the integrate.quad function from the scipy module.
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Figure 4.2: Overlap value depending on the standard deviation ratio of the
two distributions (1D case)
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It can be seen that the relative error ranges from 0% (i.e the two dis-

tributions are the same) to 100% (with a standard deviation ratio equal to

10000). We switched over to 2D Gaussian distributions and used the same

process.
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Figure 4.3: Overlap value depending on the mean difference of the two dis-
tributions (2D case)
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Figure 4.4: Overlap value depending on the standard deviation ratio of the
two distributions (2D case)
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When the number of dimensions increases, the relative error dramatically

increases. The following section will discuss the obtained results here.

4.2 Discussion

The general framework around the fastKDE method can be seen as the frame-

work around most methods for estimating density, in the sense that the es-

timated density is a sum of kernels. Hence, testing this method enables us

to confirm the interest for kernel density estimation to be integrated into

PyRETIS or indicates a no-go and that we should not put further efforts

into the investigation of a similar method.

From the results above, using toy models made up of Gaussian distribu-

tions leads to the conclusion that fastKDE methods will likely not be suitable

to use for real-case PyRETIS data. Indeed, analyzing the results shows a dra-

matic loss of precision using the fastKDE method. The histogram method

has already led to some interesting practical results, for instance in [11].

Further analysis led to a possible issue with fastKDE: it is optimized to

reduce the mean integrated squared error, which might not be the optimum

for computing overlaps as done in the predictive capacity method. Therefore,

method improvements could aim for optimizing the bandwidth based on other

criteria.
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Chapter 5

Future work

Even if the method is not really successful on the toy system, it would be

interesting to work with a real system, as the water dataset. It could be

that the numerical difficulties that we tested are not representative of an

actual system, and KDE might still do equally well or better for such a real-

istic case. The Python scripts written for this purpose are still under active

development at the time of finalizing this work and ongoing work includes

applying the fastKDE method to another RETIS simulation that has been

running in the past year.

Currently, the WHAM method is the statistical tool used to combine all

path ensembles and compute histograms with reduced statistical errors. In-

vestigating more into weighted analysis could be a key to find a more sophis-

ticated and accurate version.Ongoing work includes applying the fastKDE

method to a water dataset similar to the one used in [11] and another RETIS

simulation running in the past year.

41
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Chapter 6

Conclusion

In this work, we tried to apply the fastKDE method, a parameter-free density

estimation, to estimate fake distributions simulating reactive R and unreac-

tive U distributions. Having applied the fastKDE method only on toy models

but simulating real cases, the conclusion is partial but gives a strong signal

that these kind of methods are challenging to apply to this kind of compu-

tations where we would like to compute a tiny quantity resulting from the

overlap of two distributions in regions with a small number of data points.

The WHAM is still the method of choice and the best one available at the

moment.

43



44 CHAPTER 6. CONCLUSION



Bibliography

[1] C.H Bennett. Algorithms for Chemical Computations (ACS Sympo-

sium, Series No. 46) ed R Christofferson. 1977.

[2] Alberto Bernacchia and Simone Pigolotti. “Self-consistent method for

density estimation”. In: Journal of the Royal Statistical Society: Series

B (Statistical Methodology) 73.3 (Apr. 2011), pp. 407–422. issn: 1369-

7412. doi: 10.1111/j.1467-9868.2011.00772.x. url: http://dx.

doi.org/10.1111/j.1467-9868.2011.00772.x.

[3] Peter G. Bolhuis, David Chandler, Christoph Dellago, and Phillip L.

Geissler. “TRANSITION PATH SAMPLING: Throwing Ropes Over

Rough Mountain Passes, in the Dark”. In: Annual Review of Physical

Chemistry 53.1 (2002). PMID: 11972010, pp. 291–318. doi: 10.1146/

annurev.physchem.53.082301.113146. eprint: https://doi.org/

10.1146/annurev.physchem.53.082301.113146. url: https://

doi.org/10.1146/annurev.physchem.53.082301.113146.

[4] Raffaela Cabriolu, Kristin M. Skjelbred Refsnes, Peter G. Bolhuis, and

Titus S. van Erp. “Foundations and latest advances in replica exchange

transition interface sampling”. In: The Journal of Chemical Physics

147.15 (2017), p. 152722. doi: 10.1063/1.4989844. eprint: https:

//doi.org/10.1063/1.4989844. url: https://doi.org/10.1063/

1.4989844.

45



46 BIBLIOGRAPHY

[5] Christoph Dellago, Peter G. Bolhuis, and Phillip L. Geissler. “Transi-

tion Path Sampling”. In: Advances in Chemical Physics. John Wiley

& Sons, Ltd, 2003. Chap. 1, pp. 1–78. isbn: 9780471231509. doi: 10.

1002/0471231509.ch1. eprint: https://onlinelibrary.wiley.com/

doi/pdf/10.1002/0471231509.ch1. url: https://onlinelibrary.

wiley.com/doi/abs/10.1002/0471231509.ch1.

[6] Titus S. van Erp, Mahmoud Moqadam, Enrico Riccardi, and Anders

Lervik. “Analyzing Complex Reaction Mechanisms Using Path Sam-

pling”. In: Journal of Chemical Theory and Computation 12.11 (2016).

PMID: 27732782, pp. 5398–5410. doi: 10.1021/acs.jctc.6b00642.

eprint: https://doi.org/10.1021/acs.jctc.6b00642. url: https:

//doi.org/10.1021/acs.jctc.6b00642.

[7] Titus S. van Erp, Daniele Moroni, and Peter G. Bolhuis. “A novel

path sampling method for the calculation of rate constants”. In: The

Journal of Chemical Physics 118.17 (2003), pp. 7762–7774. doi: 10.

1063/1.1562614. eprint: https://doi.org/10.1063/1.1562614.

url: https://doi.org/10.1063/1.1562614.

[8] Titus S. [van Erp] and Peter G. Bolhuis. “Elaborating transition inter-

face sampling methods”. In: Journal of Computational Physics 205.1

(2005), pp. 157–181. issn: 0021-9991. doi: https://doi.org/10.

1016/j.jcp.2004.11.003. url: http://www.sciencedirect.com/

science/article/pii/S0021999104004620.

[9] Alan M. Ferrenberg and Robert H. Swendsen. “Optimized Monte Carlo

data analysis”. In: Phys. Rev. Lett. 63 (12 Sept. 1989), pp. 1195–1198.

doi: 10.1103/PhysRevLett.63.1195. url: https://link.aps.org/

doi/10.1103/PhysRevLett.63.1195.

[10] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
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